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Preface

This monograph is an introduction to some aspects of stochastic analysis in
the framework of normal martingales, in both discrete and continuous time.
The text is mostly self-contained, except for Section 5.7 that requires some
background in geometry, and should be accessible to graduate students and
researchers having already received a basic training in probability. Prerequi-
sites are mostly limited to a knowledge of measure theory and probability,
namely o-algebras, expectations, and conditional expectations. A short intro-
duction to stochastic calculus for continuous and jump processes is given in
Chapter 2 using normal martingales, whose predictable quadratic variation
is the Lebesgue measure.

There already exists several books devoted to stochastic analysis for con-
tinuous diffusion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63],
[65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular fea-
ture of this text is to simultaneously consider continuous processes and jump
processes in the unified framework of normal martingales.

These notes have grown from several versions of graduate courses given
in the Master in Imaging and Computation at the University of La Rochelle
and in the Master of Mathematics and Applications at the University of
Poitiers, as well as from lectures presented at the universities of Ankara,
Greifswald, Marne la Vallée, Tunis, and Wuhan, at the invitations of
G. Wallet, M. Arnaudon, H. Korezlioglu, U. Franz, A. Sulem, H. Ouerdiane,
and L.M. Wu, respectively. The text has also benefited from constructive
remarks from several colleagues and former students, including D. David,
A. Joulin, Y.T. Ma, C. Pintoux, and A. Réveillac. I thank in particular
J.C. Breton for numerous suggestions and corrections.

Hong Kong, Nicolas Privault
May 2009
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Introduction

Stochastic analysis can be viewed as a branch of infinite-dimensional analysis
that stems from a combined use of analytic and probabilistic tools, and
is developed in interaction with stochastic processes. In recent decades it
has turned into a powerful approach to the treatment of numerous theoret-
ical and applied problems ranging from existence and regularity criteria for
densities (Malliavin calculus) to functional and deviation inequalities, math-
ematical finance, anticipative extensions of stochastic calculus.

The basic tools of stochastic analysis consist in a gradient and a divergence
operator which are linked by an integration by parts formula. Such gradient
operators can be defined by finite differences or by infinitesimal shifts of
the paths of a given stochastic process. Whenever possible, the divergence
operator is connected to the stochastic integral with respect to that same
underlying process. In this way, deep connections can be established between
the algebraic and geometric aspects of differentiation and integration by parts
on the one hand, and their probabilistic counterpart on the other hand. Note
that the term “stochastic analysis” is also used with somewhat different sig-
nifications especially in engineering or applied probability; here we refer to
stochastic analysis from a functional analytic point of view.

Let us turn to the contents of this monograph. Chapter 1 starts with an
elementary exposition in a discrete setting in which most of the basic tools
of stochastic analysis can be introduced. The simple setting of the discrete
case still captures many important properties of the continuous-time case
and provides a simple model for its understanding. It also yields non triv-
ial results such as concentration and deviation inequalities, and logarithmic
Sobolev inequalities for Bernoulli measures, as well as hedging formulas for
contingent claims in discrete time financial models. In addition, the results
obtained in the discrete case are directly suitable for computer implemen-
tation. We start by introducing discrete time versions of the gradient and
divergence operators, of chaos expansions, and of the predictable represen-
tation property. We write the discrete time structure equation satisfied by
a sequence (X,)nen of independent Bernoulli random variables defined on
the probability space 2 = {—1,1}", we construct the associated discrete
multiple stochastic integrals and prove the chaos representation property for

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007,/978-3-642-02380-4 0, 1
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2 Introduction

discrete time random walks with independent increments. A gradient op-
erator D acting by finite differences is introduced in connection with the
multiple stochastic integrals, and used to state a Clark predictable represen-
tation formula. The divergence operator ¢, defined as the adjoint of D, turns
out to be an extension of the discrete-time stochastic integral, and is used to
express the generator of the Ornstein-Uhlenbeck process. The properties of
the associated Ornstein-Uhlenbeck process and semi-group are investigated,
with applications to covariance identities and deviation inequalities under
Bernoulli measures. Covariance identities are stated both from the Clark rep-
resentation formula and using Ornstein-Uhlenbeck semigroups. Logarithmic
Sobolev inequalities are also derived in this framework, with additional ap-
plications to deviation inequalities. Finally we prove an Ito type change of
variable formula in discrete time and apply it, along with the Clark formula,
to option pricing and hedging in the Cox-Ross-Rubinstein discrete-time fi-
nancial model.

In Chapter 2 we turn to the continuous time case and present an ele-
mentary account of continuous time normal martingales. This includes the
construction of associated multiple stochastic integrals I,,(f,) of symmetric
deterministic functions f,, of n variables with respect to a normal martin-
gale, and the derivation of structure equations determined by a predictable
process (¢¢)icr, - In case (¢¢)icr, is a deterministic function, this family of
martingales includes Brownian motion (when ¢ vanishes identically) and the
compensated Poisson process (when ¢ is a deterministic constant), which will
be considered separately. A basic construction of stochastic integrals and cal-
culus is presented in the framework of normal martingales, with a proof of
the Ito formula. In this chapter, the construction of Brownian motion is done
via a series of Gaussian random variables and its pathwise properties will not
be particularly discussed, as our focus is more on connections with functional
analysis. Similarly, the notions of local martingales and semimartingales are
not within the scope of this introduction.

Chapter 3 contains a presentation of the continuous time gradient and
divergence in an abstract setting. We identify some minimal assumptions to
be satisfied by these operators in order to connect them later on to stochas-
tic integration with respect to a given normal martingale. The links between
the Clark formula, the predictable representation property and the relation
between Skorohod and It6 integrals, as well as covariance identities, are dis-
cussed at this level of generality. This general setting gives rise to applications
such as the determination of the predictable representation of random vari-
ables, and a proof of logarithmic Sobolev inequalities for normal martingales.
Generic examples of operators satisfying the hypotheses of Chapter 2 can be
constructed by addition of a process with vanishing adapted projection to the
gradient operator. Concrete examples of such gradient and divergence oper-
ators will be described in the sequel (Chapters 4, 5, 6, and 7), in particular
in the Wiener and Poisson cases.
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Chapter 4 introduces a first example of a pair of gradient and divergence
operators satisfying the hypotheses of Chapter 3, based on the notion of
multiple stochastic integral I,,(f,) of a symmetric function f, on R% with
respect to a normal martingale. Here the gradient operator D is defined by
lowering the degree of multiple stochastic integrals (i.e. as an annihilation
operator), while its adjoint § is defined by raising that degree (i.e. as a
creation operator). We give particular attention to the class of normal mar-
tingales which can be used to expand any square-integrable random variable
into a series of multiple stochastic integrals. This property, called the chaos
representation property, is stronger than the predictable representation prop-
erty and plays a key role in the representation of functionals as stochastic
integrals. Note that here the words “chaos” and “chaotic” are not taken
in the sense of dynamical systems theory and rather refer to the notion of
chaos introduced by N. Wiener [148]. We also present an application to de-
viation and concentration inequalities in the case of deterministic structure
equations. The family of normal martingales having the chaos representation
property, includes Brownian motion and the compensated Poisson process,
which will be dealt with separately cases in the following sections.

The general results developed in Chapter 3 are detailed in Chapter 5 in
the particular case of Brownian motion on the Wiener space. Here the gradi-
ent operator has the derivation property and the multiple stochastic integrals
can be expressed using Hermite polynomials, cf. Section 5.1. We state the ex-
pression of the Ornstein-Uhlenbeck semi-group and the associated covariance
identities and Gaussian deviation inequalities obtained. A differential calcu-
lus is presented for time changes on Brownian motion, and more generally for
random transformations on the Wiener space, with application to Brownian
motion on Riemannian path space in Section 5.7.

In Chapter 6 we introduce the main tools of stochastic analysis under
Poisson measures on the space of configurations of a metric space X. We
review the connection between Poisson multiple stochastic integrals and
Charlier polynomials, gradient and divergence operators, and the Ornstein-
Uhlenbeck semi-group. In this setting the annihilation operator defined on
multiple Poisson stochastic integrals is a difference operator that can be used
to formulate the Clark predictable representation formula. It also turns out
that the integration by parts formula can be used to characterize Poisson
measure. We also derive some deviation and concentration results for ran-
dom vectors and infinitely divisible random variables.

In Chapter 7 we study a class of local gradient operators on the Poisson
space that can also be used to characterize the Poisson measure. Unlike the
finite difference gradients considered in Chapter 6, these operators do satisfy
the chain rule of derivation. In the case of the standard Poisson process on the
real line, they provide another instance of an integration by parts setting that
fits into the general framework of Chapter 3. In particular this operator can be
used in a Clark predictable representation formula and it is closely connected
to the stochastic integral with respect to the compensated Poisson process
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via its associated divergence operator. The chain rule of derivation, which is
not satisfied by the difference operators considered in Chapter 6, turns out to
be necessary in a number of application such as deviation inequalities, chaos
expansions, or sensitivity analysis.

Chapter 8 is devoted to applications in mathematical finance. We use nor-
mal martingales to extend the classical Black-Scholes theory and to construct
complete market models with jumps. The results of previous chapters are
applied to the pricing and hedging of contingent claims in complete markets
driven by normal martingales. Normal martingales play only a modest role
in the modeling of financial markets. Nevertheless, in addition to Brownian
and Poisson models, they provide examples of complete markets with jumps.

To close this introduction we turn to some informal remarks on the Clark
formula and predictable representation in connection with classical tools of
finite dimensional analysis. This simple example shows how analytic argu-
ments and stochastic calculus can be used in stochastic analysis. The classical
“fundamental theorem of calculus” can be written using entire series as

flz) =) ana”

oo T
ag+ Y nan/ y"dy
n=1 0

— F0)+ /O " P )y,

and commonly relies on the identity
xT
" = n/ Yy Ldy, z € Ry (0.1)
0

Replacing the monomial 2™ with the Hermite polynomial H,(z,t) with pa-
rameter ¢t > 0, we do obtain an analog of (0.1) as

0
aan(x, t) =nHp_1(z,t),

however the argument contained in (0.1) is no longer valid since Ha,,(0,t) # 0,
n > 1. The question of whether there exists a simple analog of (0.1) for the
Hermite polynomials can be positively answered using stochastic calculus
with respect to Brownian motion (B;);cr, which provides a way to write
H,(B:,t) as a stochastic integral of nH,_1(B,t), i.e.

t
Ho(Bi,t) =n / H,_1(Bs, s)dBs. (0.2)
0
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Consequently H,, (By,t) can be written as an n-fold iterated stochastic in-
tegral with respect to Brownian motion (Bi);cr,, which is denoted by
L, (1jp,»). This allows us to write down the following expansion of a func-
tion f depending on the parameter ¢ into a series of Hermite polynomials, as
follows:

Bta Z ﬂn Bta

> t
S S e
n=1 0

Brn € Ry, n € N. Using the relation H, (z,t) = nH,_1(x,t), this series can
be written as

s =wimo+ B[ mols]a, 03

since, by the martingale property of (0.2), H,_1(Bs,s) coincides with the
conditional expectation IE[H,_1(B;,t) | Fi|; s < t, where (F;)er, is the
filtration generated by (B)er, -

It turns out that the above argument can be extended to general func-
tionals of the Brownian path (B;):cr, to prove that the square integrable
functionals of (B;);er, have the following expansion in series of multiple
stochastic integrals I,,(f,,) of symmetric functions f,, € L*(R"):

Fl+ > Lu(fa)

[F] +Zn/ L1 (fa (%, 1)1 1acsy)dBs.
n=1 0

Using again stochastic calculus in a way similar to the above argument will
show that this relation can be written under the form

0

where D is a gradient acting on Brownian functionals and (F;)ier, is the
filtration generated by (B;)¢cr. . Relation (0.4) is a generalization of (0.3) to
arbitrary dimensions which does not require the use of Hermite polynomials,
and can be adapted to other processes such as the compensated Poisson
process, and more generally to the larger class of normal martingales.
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Classical Taylor expansions for functions of one or several variables can
also be interpreted in a stochastic analysis framework, in relation to the
explicit determination of chaos expansions of random functionals. Consider
for instance the classical formula

o"f

n = ox"

(x)\m:O

for the coefficients in the entire series
x n
T
f(z) = Z -
n=0

In the general setting of normal martingales having the chaos represen-
tation property, one can similarly compute the function f,, in the develop-
ment of

=1
F= Z n!In(fn)
n=0

as

falte, ... ta) =E[Dy, --- Dy F], ae. ti,... tn € Ry, (0.5)

n

cf. [66], [138]. This identity holds in particular for Brownian motion and the
compensated Poisson process. However, the probabilistic interpretation of
D¢F' can be difficult to find except in the Wiener and Poisson cases, i.e. in
the case of deterministic structure equations.

Our aim in the next chapters will be in particular to investigate to which
extent these techniques remain valid in the general framework of normal
martingales and other processes with jumps.



Chapter 1
The Discrete Time Case

In this chapter we introduce the tools of stochastic analysis in the simple
framework of discrete time random walks. Our presentation relies on the
use of finite difference gradient and divergence operators which are defined
along with single and multiple stochastic integrals. The main applications of
stochastic analysis to be considered in the following chapters, including func-
tional inequalities and mathematical finance, are discussed in this elementary
setting. Some technical difficulties involving measurability and integrability
conditions, that are typical of the continuous-time case, are absent in the
discrete time case.

1.1 Normal Martingales

Consider a sequence (Y%)ren of (not necessarily independent) random vari-
ables on a probability space ({2, F,P). Let (F,)n>—1 denote the filtration
generated by (Y, )nen, i.e.

ffl = {@, ‘Q},
and
Fn=0Yy,...,Y,), n > 0.

Recall that a random variable F' is said to be F,-measurable if it can be
written as a function

F= fn(Y()avyn)
of Yp,...,Y,, where f, : R**! - R,
Assumption 1.1.1. We make the following assumptions on the sequence
(Yn)nEN:

a) it is conditionally centered:

E[Y, | Fo-1] =0,  n>0, (1.1.1)

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 1, 7
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8 1 The Discrete Time Case
b) its conditional quadratic variation satisfies:
E[Y? | Fooal=1, n>0.

Condition (1.1.1) implies that the process (Yo + -+ + Y, )n>0 is an F,-
martingale, cf. Section 9.4 in the Appendix. More precisely, the sequence
(Yo )nen and the process (Yo + -+ - + Y5, )n>0 can be viewed respectively as a
(correlated) noise and as a normal martingale in discrete time.

1.2 Stochastic Integrals

In this section we construct the discrete stochastic integral of predictable
square-summable processes with respect to a discrete-time normal martingale.

Definition 1.2.1. Let (ur)ren be a uniformly bounded sequence of random
variables with finite support in N, i.e. there exists N > 0 such that up, = 0
for all k > N. The stochastic integral J(u) of (un)nen is defined as

J(u) = Z ukYk.
k=0

The next proposition states a version of the Ito isometry in discrete time. A
sequence (un)nen of random variables is said to be F,-predictable if w,, is
Fn_1-measurable for all n € N, in particular ug is constant in this case.

Proposition 1.2.2. The stochastic integral operator J(u) extends to square-
integrable predictable processes (un)nen € L*(£2 x N) wia the (conditional)
isometry formula

E{l (1 0y) | | Fac] = Bl sullogy | Fact],  meN. (12)

Proof. Let (un)nen and (vy, )nen be bounded predictable processes with finite
support in N. The product uxYiv;, 0 < k < [, is F;_1-measurable, and uY;v;
is Fr_1-measurable, 0 < [ < k. Hence

E

(oo} (oo} o0
3w va]fn_ll —E [ Y wiuYi|Fuos
k=n l=n k,l=n

(oo}

=E Zuk’l}kyk2+ Z upYrv Y + Z ukkalY}’an,l
k=n n<k<l n<l<k
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M

EE[usviYy | Froal | Focal + Y EE[wnYsviYr | Fioa] | Fooi

n n<k<l

Z EE[urYevY) | Fe—1] | Fn-1]
n<l<k

=~
I

+

E[ugorBYy | Froal | Faoal +2 Y ElunYeoEY; | Fioa] | Faa
n<k<l

Mz I

E[ukvk | fnfl]
k

n

e}
E UV ‘fn,1 .
k=n

=E

This proves the isometry property (1.2.1) for J. The extension to L?(£2xN) is
proved using the following Cauchy sequence argument. Consider a sequence of
bounded predictable processes with finite support converging to u in L?(§2 x
N), for example the sequence (u™),ecn defined as

u” = (up)ken = (UrL{o<k<n} L{juy|<n})keN, n € N.

Then the sequence (J(u"))nen is Cauchy and converges in L?(£2), hence we
may define
J(u) := lim J(u").

k—o0

From the isometry property (1.2.1) applied with n = 0, the limit is clearly
independent of the choice of the approximating sequence (u*)xen. O

Note that by polarization, (1.2.1) can also be written as
E[J(1jn,00)%) T (1n,00)0) [ Fr-1] = B[(Lpn,00)t Lin,o0) )2y | Fre1],  mEN,
and that for n = 0 we get

E [J(u)J(v)] = E[(u,vﬂz(N)] , (1.2.2)

and
E[lJ ()] = E [Jullf) (1.2:3)

for all square-integrable predictable processes u = (uy)ken and v = (v )ken.

Proposition 1.2.3. Let (ug)ren € L2(2 x N) be a predictable square-
integrable process. We have

E[J(u) | Fx] = J(ulpy), keN.
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Proof. In case (uk)ren has finite support in N it suffices to note that

ElJ(u) | Fi] =

+ Z E [u:Y; | Fi]
1=k+1

ZuY
=0

—Zqu—i- Z E [u;Y; | Fioa] | Fi]

1=k+1

_ZquJrZ E[Y; | Fio1] | Fl
i=k+1
= ZuiYi
i=0

= J(ul[()’k]).

The formula extends to the general case by linearity and density, using the
continuity of the conditional expectation on L? and the sequence (u™),en
defined as u™ = (u})ren = (url{o<p<n})ren, n € N, ie.

E[(J(uljou) ~ E[J(w) | F))’] = lim E

by (1.2.3). O

Corollary 1.2.4. The indefinite stochastic integral (J(uljo y)))ren is a dis-
crete time martingale with respect to (Fp)n>—1-

Proof. We have

E[J(ulo k1)) | Fi] = EB[E[J (uljo kt1)) | Frtr | Fi]
[E[J(u) | Frt1 | Fil

[J(u) | Fi]

(ulo,)-

E
E
J
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1.3 Multiple Stochastic Integrals

The role of multiple stochastic integrals in the orthogonal expansion of
a random variable is similar to that of polynomials in the series expan-
sion of a function of a real variable. In some situations, multiple stochastic
integrals can be expressed using polynomials, such as in the symmetric case
Pn = ¢n = 1/2, n € N, in which the Krawtchouk polynomials are used, see
Relation (1.5.2) below.

Definition 1.3.1. Let (*(N)°" denote the subspace of (*(N)®" = (?(N")
made of functions f, that are symmetric in n variables, i.e. such that for
every permutation o of {1,...,n},

fn(ka(l)v"'aka’(n)) = fn(kl,“-,kn)a kl,“-akn € N.

Given f1 € (?(N) we let
I(f1) = J(f1) =Y filk)Ye.
k=0

As a convention we identify ¢2(N°) to R and let Jo(fo) = fo, fo € R. Let
Ay ={(k1,...,kn) eN" ¢ ki #kj, 1<i<j<n}, n>1.

The following proposition gives the definition of multiple stochastic integrals
by iterated stochastic integration of predictable processes in the sense of
Proposition 1.2.2.

Proposition 1.3.2. The multiple stochastic integral J,,(f) of fn € £2(N)°",
n > 1, is defined as

Tnlfn) =" D faliv,...,in)Yi, Y,

(31,00 0sin ) EAR
It satisfies the recurrence relation
Jn(fn) =n Z Yidn-1(fn(x, k)l[o,kfl]"—l () (1.3.1)
k=1

and the isometry formula

E{Tn (fo) i (gm)] = {g‘“ﬁnf“’gm”?mw o (132)
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Proof. Note that we have

Ta(fa)=nl > falit,.yin)Viy Y,

0<iy <<ty

=nl Y > e > falin, . in)Yi -0 Y, (13.3)

in=0 0<in_1<in 0<iq <ig

Note that since 0 < i1 <19 < -+ <1ip, and 0 < j; < jo < -+ < jp we have
]ED/ZI e }/in}/}l e }/jn] = 1{i1:j17<<<7in:jn,}'
Hence

E[Jn(fn)n(gn)]

=B D falin,e i)Y Yi, Y gainyesdn) Y- Y,

0<iy < <inp 0<j1<--<jn

= (n))? > Falin, i) gn (i, -5 Gn)EYey - Ya, Yy -+ Y5,

0<iy <+ <in, 0<j1 < <Ujn

=@m)? > falin, o in)gnlit, .. in)

0<iy <+ <in

=nl > falin, o in)gnlit, .. in)

(215025 in)EAR

= n!<1An fna gm>€2(N>®n'

When n < m and (i1,...,i,) € A, and (J1,...,Jm) € A, are two sets of
indices, there necessarily exists k& € {1,...,m} such that ji ¢ {i1,...,in},
hence

B[, -+ Y3, Y5, Y5, =0,
and this implies the orthogonality of J,(f.) and J,,(gm). The recurrence
relation (1.3.1) is a direct consequence of (1.3.3). The isometry property
(1.3.2) of .J,, also follows by induction from (1.2.1) and the recurrence relation.

O

If f, € (2(N") is not symmetric we let J,(fn) = Ju(fs), where f, is the
symmetrization of f,,, defined as

. ‘ 1 . . ‘ ,
fulin, .. i) = ol Z flicays - sio,), i,...,0, € N

oceX,

and X, is the set of all permutations of {1,...,n}.
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In particular, if (k1,...,k,) € 4A,, the symmetrization of 1y, . k.3 in n
variables is given by

~ ) . 1 ) .
Lot} (0150 in) = Mg d= b ndea s 100 €N,

and

I (g sko)y) = Yoy o Ya, -

Lemma 1.3.3. For all n > 1 we have

E[Jn(fn) ‘ fk] = Jn(fnl[o,k]"),

keN, f, € 2(N)°m.

Proof. This lemma can be proved in two ways, either as a consequence of
Proposition 1.2.3 and Proposition 1.3.2 or via the following direct argument,
noting that for all m = 0,...,n and g,, € £2(N)°™ we have:

E[(Jn(fn) - Jn(fnl[o,k]"))Jm(gml[o,k]""”
= Lin—my ! (fr (1 = Ljo,09m )5 Gm L0, k)m ) 2 (vm)

hence Jp, (fnlpo,pn) € L*(2, Fi), and Jn(frn) — Jn(fnljo,kn) is orthogonal to
L2(0, Fy). O

In other terms we have

E[Jn(fn)] = 0, fn € Ez(N)ona n=1,

the process (Jn(fnljo,xn))ken is a discrete-time martingale, and J,(f,) is
Fir-measurable if and only if

fn]-[O,k:]" = fn, 0 < k <n.

1.4 Structure Equations

Assume now that the sequence (Y;)nen satisfies the discrete structure
equation:
Y2=14¢,Y,, necN, (1.4.1)

where (¢n)nen is an Fy-predictable process. Condition (1.1.1) implies that

E[Y? | Fnoa] = 1, neN,
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hence the hypotheses of the preceding sections are satisfied. Since (1.4.1)
is a second order equation, there exists an F,-adapted process (X, )nen of
Bernoulli {—1, 1}-valued random variables such that

2
_ 9"2”+Xn\/1+(“’2”) ., meN (1.4.2)
Consider the conditional probabilities

pn=P(X,=1|F,_1) and ¢, =P(X,=-1|F,_1), n € N.
(1.4.3)
From the relation E[Y;, | F,,—1] = 0, rewritten as

Pn (‘2" +\/1+ (“’2”)2> + gn (‘p?" —\/1+ (‘2")2> -0, neN,

we get

1 Pn 1 Pn
= 1-— , = 1+ , 1.4.4
Pn 2( \/4+<P%> dn 2( \/4+@%> ( )

and
"V opn ¢pnqn ’

hence

_ qn Pn

Y, = 1{X,,,=1}\/ — 1{Xn=—1}\/ , n € N. (1.4.5)
DPn dn
Letting
X 1
Iy = "; e {0,1}, n eN,

we also have the relations

qnfpn+Xn _ Zn*pn

Y, = = ,
" 2/Pngn /Pndn

neN, (1.4.6)

which yield
fn:O'(X(),...,Xn):O'(Z(),...,Zn), n € N.

Remark 1.4.1. In particular, one can take 2 = {—1,1} and construct
the Bernoulli process (X, )nen as the sequence of canonical projections on
2 = {—1,1}" under a countable product P of Bernoulli measures on {—1,1}.
In this case the sequence (X,,)nen can be viewed as the dyadic expansion of
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X(w) € [0,1] defined as:
1
X =3,k
n=0

In the symmetric case pr, = qr = 1/2, k € N, the image measure of P by
the mapping w — X (w) is the Lebesgue measure on [0, 1], see [139] for the
non-symmetric case.

1.5 Chaos Representation

From now on we assume that the sequence (pg)ren defined in (1.4.3) is
deterministic, which implies that the random variables (X, )nen are in-
dependent. Precisely, X,, will be constructed as the canonical projection
X, 1 2 — {-1,1} on 2 = {—1,1} under the measure P given on cylin-
der sets by

P({Go, B ~,6n} % {71, 1}N) _ Hp;(§1+8k)/2q;(§1_ak)/2,
k=0

{€0,.-,€en} € {—1,1}""1. The sequence (Yj)ren can be constructed as a
family of independent random variables given by

= (5)
Y, 2+Xn\/1+ 9 ) n €N,

where the sequence (p,)nen is deterministic. In this case, all spaces
L™($2, F,), r > 1, have finite dimension 2"+ with basis

- dk Pk
1{Y0=507---7Yn=5n} : (607""671) € H {\/ 7\/ }}
{ 20 Pk qk
- {1{X0=507---7Xn:€n} t (€0, €6n) € H {-1, 1}} .
k=0

An orthogonal basis of L"(§2, F,,) is given by

Vi, Vi, = Ji(X{yybyy) t 0 k1 <+ <k <n, 1=0,....n+1}.
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Let

Su=3 L+ Xk (15.1)

denote the random walk associated to (Xj)ren. If pr = p, k € N, then
Jn(1g'ny) = Kn(Sn; N +1,p) (1.5.2)

coincides with the Krawtchouk polynomial K, (; N + 1,p) of order n and
parameter (N + 1, p), evaluated at Sy, cf. Proposition 4 of [115].

Let now Hp = R and let H,, denote the subspace of L?({2) made of integrals
of order n > 1, and called chaos of order n:

He = {Jn(fn) : fn € L2(N)°"}

The space of F,-measurable random variables is denoted by L°(£2, F,,).

Lemma 1.5.1. For all n € N we have

LY, Fp) = (Ho @ -+ @ Hyp1) [ | LO(92, F). (1.5.3)

Proof. Tt suffices to note that H; N L°(£2, F,,) has dimension (”ZH), 1<i<
n + 1. More precisely it is generated by the orthonormal basis

Vi, Y, = Ty, iyy) = 0k <o <k <n},

since any element F' of H; N LY(£2, F,,) can be written as F' = Ji(filj np)-
Hence L°($2,F,) and (Ho @ -+ @ Hyps1) () L°($2, F,) have same dimension

O+
ontl — Z < f >, and this implies (1.5.3) since
k=0

LO(Q,]:n) D) (HO b--- @Hn+1)mLO(Q’]:n)'

As a consequence of Lemma 1.5.1 we have
L2, F) CHo® - ® Hpyr.
Alternatively, Lemma 1.5.1 can be proved by noting that

Jn(fnlio,nn) =0, n>N+1, f,ecl?(N)°",
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and as a consequence, any F' € L°(£2, Fy) can be expressed as

N+1
F=E[F]+ Y Ju(falponp)-
n=1

Definition 1.5.2. Let S denote the linear space spanned by multiple stochas-
tic integrals, i.e.

S = Vect { D Hn} (1.5.4)
n=0
- {ij(fk) S fe € P(N)F k=0,...,n, n€e N}.
k=0

The completion of S in L?(£2) is denoted by the direct sum

The next result is the chaos representation property for Bernoulli processes,
which is analogous to the Walsh decomposition, cf. [78]. Here this property is
obtained under the assumption that the sequence (X, )nen is made of inde-
pendent random variables since (pg)ren is deterministic, which corresponds
to the setting of Proposition 4 in [38]. See [38] and Proposition 5 therein for
other instances of the chaos representation property without this indepen-
dence assumption.

Proposition 1.5.3. We have the identity

Proof. Tt suffices to show that S is dense in L?(£2). Let F' be a bounded
random variable. Relation (1.5.3) of Lemma 1.5.1 shows that E[F | ;] € S.
The martingale convergence theorem, cf. e.g. Theorem 27.1 in [67], implies
that (E[F | F,.])nen converges to F a.s., hence every bounded F is the L?({2)-
limit of a sequence in 8. If F € L?(£2) is not bounded, F is the limit in L?({2)
of the sequence (1{|p|<n}F)nen of bounded random variables. O

As a consequence of Proposition 1.5.3, any F € L?(£2,P) has a unique de-
composition

F=E[F|+) Julfa),  fo€LlN)™, neN,
n=1
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as a series of multiple stochastic integrals. Note also that the statement of
Lemma 1.5.1 is sufficient for the chaos representation property to hold.

1.6 Gradient Operator

We start by defining the operator D on the space S of finite sums of multiple
stochastic integrals, which is dense in in L?(£2) by Proposition 1.5.3.

Definition 1.6.1. We densely define the linear gradient operator
D:S — L*(2 x N)

by
DkJn(fn) = anfl(fn(*’k)lAn(*v k))’
keN, f, € A(N)°", neN.

Note that for all k1,...,k,_1,k € N, we have

1a, (K1seo s kn1,k) = Vg ey okn_)y 1A,y (B1y oo k1),

hence we can write

Didn(fn) = ndn—1(fu(*,k)1irgsy), Kk EN,

where in the above relation, “«” denotes the first k—1 variables (k1, ..., ky,—1)
of fn(ki,...,kn—1,k). We also have DyF = 0 whenever F € S is Fj_1-
measurable.

On the other hand, Dy, is a continuous operator on the chaos H,, since

1D (f)l 222y = 021 Jn—1(fu (¥, k)72 () (1.6.1)
= nn!”fn(*,k)”i([\]@(nfl)), fn € 62(N®n), ke N.

The following result gives the probabilistic interpretation of Dy as a finite
difference operator. Given

w = (wo,wr,...) € {~1,1},

let
k= 1
Wi = (wo, w1,y wWr—1, +1, Wkt1,.-.)

and
k
w® = (wo, w1y .oy Wk—1, — L, Wkt1,...).
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Proposition 1.6.2. We have for any F € S:

DyF(w) = /pege(F(WE) — F(w)), keN. (1.6.2)

Proof. We start by proving the above statement for an F,,-measurable F' € S.
Since L°(£2, F,,) is finite dimensional it suffices to consider

F:Ykl"'Ykl :f(X()?"',Xkl)a

with from (1.4.6):

Qk; — Pk; + Tk,
Zo, - - xk .
f( 0 1 21 1_[1 \/pkiqm

1=

First we note that from (1.5.3) we have for (ki,...,k,) € Ap:

Dy (Yey -+ Vi) = Dicdn(Lihy o e)y)
=1 (L, )} (5, k)

1 - -
) Z 1,3 (k) Z L firsosin s b= {k1seeskie 1 okis1sskon }}
Ti=1 (i15eeeyin—1)EAn_1

= Zl{k} In—1 1{(k1, wkickip1,eokn )})

n

= Lky ka3 (B) 1] Yaoo (1.6.3)

If k ¢ {ki,...,k} we clearly have F(w¥) = F(w") = F(w), hence
ok (F(Wh) = F(w*)) = 0 = DyF(w).
On the other hand if k € {kq,...,k;} we have

Ft) \/Qk H Qk; — Pk; + Wi,

i=1
ki#k

!
Gk 1 24/PriGk;
ki #k
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hence from (1.6.3) we get

!
1 Qk; — Dk + Wk,
\/Pka(F(Wi) - F(Wﬁ))  9i-1 H

1 \/pk7qu
ki #k
l
kj;élk
= Dy (Yi, -+ Yi) (w)

In the general case, J;(f;) is the L?-limit of the sequence E[J;(f;) | Fn] =
Ji(filjg, ) as n goes to infinity, and since from (1.6.1) the operator Dy is
continuous on all chaoses H,,, n > 1, we have

= Vprae lim (B[F | F,](wh) — E[F | Fo)(wl))

= Vpea(F(Wh) — F(w*)), keN.
O

The next property follows immediately from Proposition 1.6.2.

Corollary 1.6.3. A random wvariable F : 2 — R is F,-measurable if and
only if
DyF =0

for all k > n.
If F has the form F = f(Xo,...,X,), we may also write

DiF = prar(Fy — Fy),  keN,

with
FI:F = f(Xo, .. .,Xk_l, +1,Xk+1, o 7)(n),

and
Fo = f(Xo,. .o, Xpo1, =1, Xpq1, ..., X)),

The gradient D can also be expressed as
DF(S) = Vprar (F (S + 1ix=-11h<y) = F (S = 1ix=1ylin<y))
where F'(S.) is an informal notation for the random variable F' estimated on

a given path of (Sy)nen defined in (1.5.1) and S. + 1;x, —+131{x<.} denotes
the path of (S, )nen perturbed by forcing X, to be equal to +1.
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We will also use the gradient Vi, defined as
ViF =X, (f(Xoyo ooy Xi—1, =1, X1, - -+, Xin)
—[(Xoy- oo, X1, 1, Xpa1, - -, Xn))
k € N, with the relation
Dy, = —Xp/Prar Vi, k€N,

hence Vi F coincides with DpF' after squaring and multiplication by pgqk.
From now on, D denotes the finite difference operator which is extended to
any F' : {2 — R using Relation (1.6.2).

The L? domain of D, denoted Dom (D), is naturally defined as the space of
functionals F' € L?(2) such that

E[IDFllf ] < oo,

or equivalently by (1.6.1),

oo
> nnl|l fallfa ey < 00,

n=1

if F'=">" Ju(fn)-
n=0
The following is the product rule for the operator D.

Proposition 1.6.4. Let F,G : 2 — R. We have
X
Dk(FG) = FD,G + GDyF — Dy FD;G, keN.
/Prqk
Proof. Let F¥(w) = F(w), F¥(w) = F(w"), k > 0. We have

Dip(FG) = \/prar(F{GY — FFGE)
= 1x= 13v/orar (F(GE — Q)+ G(FF — F)+ (FF - F)(G* — @)
1~k (F(G—G* )+ G(F = FF) — (F — F*)(G - G*))

= 1{X1c:*1} (FDkG + GDLF + DkFDkG)
N
1
JF]—{Xk:l} <FDkG + GDLF — DkFDkG> .
Pk
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1.7 Clark Formula and Predictable Representation

In this section we prove a predictable representation formula for the func-
tionals of (Sy,)n>0 defined in (1.5.1).

Proposition 1.7.1. For all F € § we have

F =E[F] + i}E[DkF | Froa] Vi (1.7.1)
k=0

=E[F]+ ) YiDiE[F | Fi].
k=0

Proof. The formula is obviously true for F' = Jy(fp). Given n > 1, as a
consequence of Proposition 1.3.2 above and Lemma 1.3.3 we have:

Jn(fn) =n Z Jn—l(fn(*a k)l[O,k—l]’"*l (*))Yk

k=0

n Z Jn—l(fn(*, k)lﬂn (*a k)l[O,k—l]"*l (*))Yk
k=0

=nY E[Ju_1(falx,k)1a, (5 k) | Froa]Yi

k=0

- ZIE[DkJn(fn) | Fr1]Ye,

k=0

which yields (1.7.1) for F = J,(fn), since E[J,(fn)] = 0. By linearity the
formula is established for F' € S.
For the second identity we use the relation

E[DiF | Fi—1] = DyE[F | Fi]

which clearly holds since Dy F' is independent of X, k € N. O

Although the operator D is unbounded we have the following result, which
states the boundedness of the operator that maps a random variable to the
unique process involved in its predictable representation.

Lemma 1.7.2. The operator

L}(2) — L*(2 x N)
F e (E[DpF | Fr-1])ken

1s bounded with norm equal to one.
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Proof. Let F' € S. From Relation (1.7.1) and the isometry formula (1.2.2)
for the stochastic integral operator J we get

IEID.F | Fotl gy = IF — E[F) oy (1.72)
< |F —E[F]|[}2(g) + (E[F])?
= | FlZ2(0),
with equality in case F' = J1(f1). |

As a consequence of Lemma 1.7.2 we have the following corollary.
Corollary 1.7.3. The Clark formula of Proposition 1.7.1 extends to any
F e L*(92).

Proof. Since F +— E[D.F | F._1] is bounded from Lemma 1.7.2, the Clark
formula extends to F' € L?(f2) by a standard Cauchy sequence argument.
|

Let us give a first elementary application of the above construction to the
proof of a Poincaré inequality on Bernoulli space. Using (1.2.3) we have

Var (F) = E[|F —E[F]‘z}

=E (i E[DF | fklm>

k=0

=E i(E[DkF | ]—‘kl})2]

Lk=0

<E|) E[DiF|* | fkl]]

k=0

i

=E|> |[DvFP?
Lk=0

hence
Var (F) < ||DF||2L?(Q><N)'

More generally the Clark formula implies the following.

Corollary 1.7.4. Let a € N and F € L*(£2). We have

F=E[F|FJ)+ > E[DF|Fp1]Vs, (1.7.3)
k=a-+1
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and
E[F?] = E[(E[F | F))?]+E | Y (BIDuF | Fir))?|. (1.7.4)
k=a+1

Proof. From Proposition 1.2.3 and the Clark formula (1.7.1) of Proposi-
tion 1.7.1 we have

E[F | F.] = E[F] + za:JE[DkF | Fea]Ya,
k=0

which implies (1.7.3). Relation (1.7.4) is an immediate consequence of (1.7.3)
and the isometry property of J. ]

As an application of the Clark formula of Corollary 1.7.4 we obtain the fol-
lowing predictable representation property for discrete-time martingales.

Proposition 1.7.5. Let (M, )nen be a martingale in L?(§2) with respect to
(F)nen. There exists a predictable process (uy,)ren locally in L?(£2xN), (i.e.
u(-)1po,n1(-) € L*(2 x N) for all N > 0) such that

n
My =M1+ ugYs, n € N. (1.7.5)
k=0

Proof. Let k > 1. From Corollaries 1.6.3 and 1.7.4 we have:

M, = E[Mk ‘ .7:]@71] +E[DkMk ‘ fk,ﬂYk
= My—1 + E[Dpy My, | Fi—1]Yx,

hence it suffices to let
up = E[Dp My, | Fr—1], k>0,

to obtain

n n
M, =M_; + ZMk My, =M_,+ ZukYk.
k=0 k=0

1.8 Divergence Operator

The divergence operator § is introduced as the adjoint of D. Let U C L?(§2 x
N) be the space of processes defined as

U= {Z T(fes1(6,),  frp1 € P(N)°* @ 2(N), k=0,...,n, n€ N} .
k=0



1.8 Divergence Operator 25

We refer to Section 9.7 in the appendix for the definition of the tensor product
2(N)°F @ £2(N), k > 0.

Definition 1.8.1. Let § : U — L*(£2) be the linear mapping defined on U as

() = 06(Ju(far1 (%) = Jn1(fas)s  far1 € C(N)" @ £2(N),
for (ux)ken of the form
ug = Jn(frr1(x,k)), keN,
where an denotes the symmetrization of fn+1 in n+ 1 variables, i.e.

B 1 n+1
frrr(ke, .o knyr) = n 12 an+1 ki, kit ks oo kg, ki)

From Proposition 1.5.3, S is dense in L?({2), hence U is dense in L(2xN).

Proposition 1.8.2. The operator § is adjoint to D:

E[<DF,U>[2(N)] :E[Fé(u)], FeS uel.

Proof. We consider F' = J,,(fn) and ur = Jp(gm+t1(x, k), k € N, where
fn € 2(N)°" and g1 € £2(N)°™ @ £2(N). We have

E[(D.Jn(fn)s Jm(gm+1(x:))) ez ]

= nE[(Jn—1(fn(*,"))s Jm(gm(*,)))ez(v)]

= nE[(Jn—1(fn(*, )14, (*,°)), Jm (gm (%, ) ez )]

=nllg, = m}ZE n—1(fn(x, k)L A, (%, k) T (gm41 (%, K))]
k=0

= nl{nflzm} Z<1A" (*a k)fn(*, k)a gm-‘rl(*a k)>[2(N"*1)
k=0

= !l =mi13(1a, fry Gmt1) ez (in)

= n'l{n m+1}<1A"fnagm+1>[2(N")
= E[Jn(fn)Im(Gm+1)]
=E[Fd(u)].

O

The next proposition shows that ¢ coincides with the stochastic integral op-
erator J on the square-summable predictable processes.
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Proposition 1.8.3. The operator § can be extended to u € L*(£2 x N) with
o0 o0

= ZukYk — ZDkuk - 5(QDDU), (181)
k=0 k=0

provided all series converges in L%(12), where (or )ken appears in the structure
equation (1.4.1). We also have for all u,v € U:

E[|6(u)*] = Ef|lull?q0] + E | > DiwDyug| . (1.8.2)
k,1=0

Proof. Using the expression (1.3.3) of up = Jp(fn+1(*, k)) we have

5(u) = Jng1(fot1)
= Z fn+1(i1,~..,in+1)}/—il ...1/;."+1

(i17~<7in,+1)eAn+1

:Z Z fn+1(’i1,...,in,k)Yil...Yinyk

k=0 (i1,...,in)EA,

7”2 Z fn+1(i1a~",infl,ka k)ml"'m",1|yk|2

k=0 (i1,...,in—1)EAn_1

00 %)
= ZukYk — ZDkuk|Yk|2
k=0 k=0
[e%S) 00 x
= Z uEYr — Z Dyuy — Z Ok Dypug Y.
k=0 k=0 k=0

By polarization, orthogonality and density it suffices to take u = gJ,,(f°™),
f,g € F?(N), and to note that

\|5(U)H%2(Q) = [[Jn+1(1a,,, f" 0 9)”%2(9)

1
(n+1)2

2

n
Z J"-‘rl(f@i Rg® f®(nii)1ﬂn+1)
=0 LZ(Q)

1 n
= (Tl + 1)2 ((n + 1)'(” + 1)HfH?2(N)||gH%2(N)

+n+ Dn(n + DIFIE F 9)kw)
= n!”f”l?(N)HgHZ?(N) (n— 1)'”2\|f‘|?§(N2< >%2(N)
= [[ullZ2(aum) +E [(9, DIn(f™))e2 ) (95 DIn(F™)) ez )]
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= [lullF2gaxm +E | D 9(k)g()Dedu(fo") Didu(f")

8

= Ef|[ull72q)] +E | > DrwDiug
,1=0

From the above argument the Skorohod isometry can also be written as

(o)
16(w) 172y = Elllullzzn)] +E | D DrurDywr|
,1=0

however this formulation does not lead to a well defined expression in the
continuous time limit of Chapter 4.
In particular, (1.8.1) implies the following divergence formula

Corollary 1.8.4. For u € L?>(£2 x N) an F € L?(£2) we have
5(Fu) = Fo(u) — (u, D)y — 6(p(Ju()D.F),  (1.83)

provided all series converge in L?((2).

In the symmetric case p = g = 1/2 we have ¢, =0, k € N, and

0 0
u) = ZukYk — ZDkuk.
k=0 k=0

Moreover, (1.8.2) can be rewritten as a Weitzenbock type identity, cf.
Section 7.6 for details:

18(u) 17 2(2) + ZIIDW — Dyu(k)|22() = [ullZ2(axm) + 1 Dull 2 oxme)-
kl 0
(1.8.4)

The last two terms in the right hand side of (1.8.1) vanish when (ux)gen is
predictable, and in this case the Skorohod isometry (1.8.2) becomes the It
isometry as shown in the next proposition.

Corollary 1.8.5. If (uy)ken satisfies Dyup = 0, i.e. uj does not depend on
Xk, k €N, then §(u) coincides with the (discrete time) stochastic integral

(oo}
u) = Zquk, (1.8.5)
k=0
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provided the series converges in L?(£2). If moreover (ug)gen is predictable
and square-summable we have the isometry

E[()?] = E [lullqm) - (1.8.6)
and §(u) coincides with J(u) on the space of predictable square-summable
processes.

1.9 Ornstein-Uhlenbeck Semi-Group and Process

The Ornstein-Uhlenbeck operator L is defined as L = §D, i.e. L satisfies

LJn(fn) = an(fn)a fn € ZQ(N)on~

Proposition 1.9.1. For any F € S we have

LF =6DF = ZYk(DkF) = Z\/pquYk(F,:_ — Fk_)’
k=0 k=0

Proof. Note that DD, F'=0, k€N, and use Relation (1.8.1) of Proposition
1.8.3. ]

Note that L can be expressed in other forms, for example
oo
LF =Y AF,
k=0

where

AF = (Lix=13 6 (F(w) = F(Wh)) = 1ix, = ypr(F(Wh) = F(w)))

=F — (Lxeny @ F(WF) + 1y _iype F(Wh))

=F —E[F|F], keN,
and F} is the o-algebra generated by

{X; : l#k, leN}
Let now (P)icr, = (e')icr, denote the semi-group associated to L and
defined as -
PtF:Ze_ntJn(fn), teRy,

n=0
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oo
on F = ZJn(fn) € L*(£2). The next result shows that (P)ier, admits

an integral representation by a probability kernel. Let ¢¥ : 2 x 2 — R be
defined by

N
' (@w) =][[A+eVi(Yi(@), woen, teR,.
=0

Lemma 1.9.2. Let the probability kernel Q(o,dw) be defined by

d
[Qt ‘J—'] )=V (@,w), N>1, teR,.

For F € L?(2, Fn) we have

PP(@) = /QF(w)Qt(&),dw), e n>N. (1.9.1)

Proof. Since L?(£2,Fx) has finite dimension 2V*1 it suffices to consider
functionals of the form F =Y}, ---Y,, with 0 < kb < --- < k, < N. By
Relation (1.4.5) we have for w € 2, k € N:

E [V () (1 + e Vi () Ye(w))]
=% (1re [ T0)) a2 (1 i)
= e 'Y (w),

which implies, by independence of the sequence (X )ren,

N
Vi -+ Yo, [+ Vi, ()Y, ()

i=1

E[Ykl e YknqiN(w, )] =E

E [Yi, ()(1 + ™"V, (@) Vi, ()]

L

s
Il
_

= e M"Y, (W) - Vi, (w)
e ", (1{(k:1, Sk} (W)

= PoJn(Ighy, y) (@)
= Py(Yk, -+ Yi, ) (W)
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Consider the (2-valued stationary process

(X())eer, = (Xk(t))ren)rer,

with independent components and distribution given by

P(Xp(t) =1] Xk(0) =1) = pr + e g, (1.9.2)
P(X)(t) = —1 | X4(0) = 1) = g — e "qu, (1.9.3)
P(X)(t) = 1| Xp(0) = —1) = pj — e 'py, (1.9.4)
P(Xi(t) = —1| X1(0) = —1) = qx + e 'ps, (1.9.5)

keN,teR,.

Proposition 1.9.3. The process (X(t))icr, = ((Xi(t))ren)icr, is the
Ornstein- Uhlenbeck process associated to (Py)ier, , i.e. we have

PF=E[F(X(t) | X(0), teR,, (1.9.6)

for F bounded and F,-measurable on {2, n € N.
Proof. By construction of (X (t))¢cr, in Relations (1.9.2)-(1.9.5) we have

P(X5(t) = 1| X4(0)) = pr (1 + e_tYk(O)\/ q’“) :

Pk

PO = 1 Xu(0) = ai (1 - e-tYkm)\/pk) |

qk
where Y (0) is defined by (1.4.6), i.e.

_ qk — Pk + X%(0)

¥(0) 2/Pr i

kEeN,

thus
dP(Xi(t)(@) = €| X(0))(w) = (1 4+ e "V(w)Yi(@)) dP(Xk(@) =€),
e = £1. Since the components of (X (t))ren are independent, this shows that

the law of (Xo(t),...,Xn(t)) conditionally to X (0) has the density ¢}*(o,-)
with respect to P:
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dP(Xo(t)(@) = €0, ..., Xn(t)(@) = €n | X(0))(@)
= ¢'(@,w)dP(Xo(@) = €0, ..., Xn(@) = €p).

Consequently we have
E[F(X(#)) | X(0) =&] = /QF(w)qu(@,w)P(dW), (1.9.7)

hence from (1.9.1), Relation (1.9.6) holds for F' € L*(2, Fn), N > 0. O

The independent components Xj(t), k& € N, can be constructed from the
data of X3 (0)=e and an independent exponential random variable 75, via
the following procedure. If 7, > ¢, let X () = X3(0) = €, otherwise if 75, < ¢,
take X (t) to be an independent copy of X, (0). This procedure is illustrated
in the following equalities:

P(Xk(t) =1 Xk(o) =1)= E[l{rk>t}} +E[1{Tk<t}1{Xk:1}]
=e "4l —e), (1.9.8)

P(Xk(t) = =1] Xk (0) =1) = E[1{, <y L{x=—1}]
=q(l—e™"), (1.9.9)

P(Xk(t) = =1 Xk (0) = =1) = E[1{r, o] + B[l <ty 1 x=—1}]
=e t 4+ qp(l—e™), (1.9.10)

P(Xk(t) = 1] X3(0) = 1) = E[1 {5, <} 1 {x,=1}]
=pr(l —e7). (1.9.11)
The operator L?(2 x N) — L?(£2 x N) which maps (ug)gen to (Piug)ren

is also denoted by P;. As a consequence of the representation of P; given in
Lemma 1.9.2 we obtain the following bound.

Lemma 1.9.4. For F' € Dom (D) we have

| Prul| oo (2,02 vy < lull oo (2,02 )5 teRy, wueL?(2xN).

Proof. As a consequence of the representation formula (1.9.7) we have P(dw)-
a.s.:

o0
[ Peul| vy (@) = Z | Prug (@)
k=0

o

-y ( / uk<w>Qt<@,dw>)2

k=
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o ) .
< ; /n g () 2Qu (@, dow)

- / ol gy () Q0 (@ o)
(9]

< NJullF oo (2,02 -

1.10 Covariance Identities

In this section we state the covariance identities which will be used for the
proof of deviation inequalities in the next section. The covariance Cov (F, G)
of F,G € L*(£2) is defined as

Cov (F,G) = E[(F — E[F])(G — E[G])]
= E[FG] — E[F]E[G].

Proposition 1.10.1. For all F,G € L?(£2) such that IE[||DF||§2(N)] < 00 we

have
oo

> E[DyG | Fr—1] DiF

k=0

Cov(F,G)=E . (1.10.1)

Proof. This identity is a consequence of the Clark formula (1.7.1):

Cov (F,G) = E[(F — E[F])(G — E[G))]

(i E[DyF | fk_lm> (i E[D,G | ﬂ_l]yl>

k=0 =0

=E

E | E[DiF | Froa]E[DiG | ]-'kl}]
k=0

ZE [E[E[DxG | Fr—1]DF | Fi—1]]
k=0

=E |Y E[DiG | Fx_1]DiF

k=0

)

and of its extension to G' € L?(2) in Corollary 1.7.3. O

A covariance identity can also be obtained using the semi-group (P;)cr, -
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Proposition 1.10.2. For any F,G € L*(£2) such that

we have

Cov (F,G)

Z/ YDy F) PtDkGdt] (1.10.2)

Proof. Consider F = J,(f») and G = Jp,(gm ). We have

Cov (Jn(fn), Jm(gm)) = E [Jn(fn)Jm(gm)]
= Lin=m)n(fr, gnla, )2 qum)

1l—mynln / e " dt(fa, nla,)ezmn)
0

oo oo
= 1{n71:m71}n!n/ TN (fal k), e T g (k k) LA, (5, K)) g2 un 1 di
0 k=0

= nmE [/oo e Tna(fa e k) LA, (5, k)™ T T (g (%, k)1, (5, k’))dt}
0 k=0

= nmE |:/°° e™? Z Tn—1(fn (¥, k’)lAn (*7 k))PtJm—l(gm(*7 k)1a,, (*7 k))dt:|
0 k=0

E[/ ’tZDkJ (fn)P:DiJm (gm)dt]

k=0

]
By the relations (1.9.8)-(1.9.11) the covariance identity (1.10.2) shows that

Cov (F,G) = [Z / DkFPtDkGdt}

1 oo
E / ZDkFP(_loga)DkGda
0

k=0

1 s}
= / / Z DkF(w)DkG((wil{Ti<_ log a} + w§1{7i<_ 1Oga})¢gN)dQP(dw)P(dw/)
2x02 o

1
:/ / ZDkF )DRG((wilfe, <ay + wilie, >0 )ien)P(dw)P(dw)da,
02x82 ko

(1.10.3)

where (&;)ien is a family of independent identically distributed (i.i.d.) ran-
dom variables, uniformly distributed on [0,1]. Note that the marginals of
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(Xk, Xilge,<ay + X1 11¢,5q3) are identical when X is an independent copy
of Xj. Letting

. . . ’
¢a(5,t):E eZSXkeZt(Xk+1{§k<C¥})+Zt(Xk+1{€k>(¥}) ,

we have the relation

Clov (&%, ei*X4) = 1 (s,1) — do(s, 1

b doa
:/0 o (s,t)da.

Next we prove an iterated version of the covariance identity in discrete time,
which is an analog of a result proved in [56] for the Wiener and Poisson
processes.

Theorem 1.10.3. Let n € N and F,G € L*(2). We have

Cov (F,G) (1.10.4)
= (71)d+1E Z (Dkd”'Dle)(Dkd”'Dle)

d=1 {1<k1 < <ka}

+(-1)"E > (Dipyy -+ Diy, F)E [Dyy oy - Dy, G| Fieyy 1| -

{1<k1<-<kn41}

Proof. Take F = G. For n = 0, (1.10.4) is a consequence of the Clark formula.
Let n > 1. Applying Lemma 1.7.4 to Dy,, - - - Di, F' with a = ky, and b = k41,
and summing on (ki,...,k,) € Ay, we obtain

E > (E[Dy, Dy, F | Fi, 1))
{1<k1<<ky}

-k Z | Dy, - Dy, F|?
{1<k1 <<k}

2
7]E Z (]E [Dk'rt+1 e Dle ‘ fknJrl*l]) 9
{1<ki<-<kns1}
which concludes the proof by induction and polarization. O

As a consequence of Theorem 1.10.3, letting F'=G we get the variance in-
equality
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2n 2n—1
(_1)k+1 (_1)k+1
> IE[HDkFH?z(Ak)} <Var(F)< y0 0 ) E[HDkFH?z(M}’
k=1 k=1
since
E > (Diyy -+ Diy F)E [Dyyry - Dy F | Fipy—1]

{1<k1 < <kn+t1}

- F Z

{1<k1<--<kni41}

E [(Dkn+l o ‘Dle)E [Dkn+1 o ‘Dle | fkn+1*1] ‘ fkn+1*1] ]

=E > (E[Dpyy Dy F | Froyy—1])?

{1<ki<---<kns1}

>0

i

see Relation (2.15) in [56] in continuous time. In a similar way, another iter-
ated covariance identity can be obtained from Proposition 1.10.2.

Corollary 1.10.4. Let n € N and F,G € L?(2,Fn). We have

Cov (F,G) =Y (-1)*""'E > (Dy, - Dy, F)(Dy, - - - Dy, G)
d=1 {1<k1 < <kg<N}
+(7]‘)71/ Z Dk?n+1 "'Dk?lF(w)Dkn+1 ”'Dle(wl)
QXL () <py <<k <N}
g (w, W )P(dw)P(dw’). (1.10.5)

Using the tensorization property

Var (FG) = E[F?]Var (G) + (E[G])?Var (F)
< E[F?Var (G)] + E[G*Var (F)]

of the variance for independent random variable F, G, most of the identities in
this section can be obtained by tensorization of elementary one dimensional
covariance identities.

The following lemma is an elementary consequence of the covariance identity
proved in Proposition 1.10.1.
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Lemma 1.10.5. Let F,G € L?(§2) such that
E[DyF|Fi-1] - E[DxG|Fr—1] > 0, keN.
Then F and G are non-negatively correlated:
Cov (F,G) > 0.
According to the next definition, a non-decreasing functional F' satisfies

DiF >0 for all £k € N.

Definition 1.10.6. A random wariable F : 2 — R is said to be non-
decreasing if for all wi,ws € 2 we have

wi(k) Sws(k), keN, = F(w)< F(ws).

The following result is then immediate from Proposition 1.6.2 and Lemma
1.10.5, and shows that the FKG inequality holds on (2. It can also be obtained
from Proposition 1.10.2.

Proposition 1.10.7. If F,G € L?(£2) are non-decreasing then F and G are
non-negatively correlated:
Cov (F,G) > 0.

Note however that the assumptions of Lemma 1.10.5 are actually weaker as
they do not require F' and G to be non-decreasing.

1.11 Deviation Inequalities

In this section, which is based on [59], we recover a deviation inequality of [19]
in the case of Bernoulli measures, using covariance representations instead
of the logarithmic Sobolev inequalities to be presented in Section 1.12. The
method relies on a bound on the Laplace transform L(t) = E[e'!] obtained
via a differential inequality and Chebychev’s inequality.

Proposition 1.11.1. Let F € L*(£2) be such that |F — F, | < K, k € N,
for some K >0, and ||DF| o0,y < 00. Then

||DF||2L°°(.Q £2(N)) K
P(F - E[F] > x) <exp | — T g
K2 IDEIN e (2,620

< T o1+ K
S eXp | — Y )
2K HDFH%OO(Q’W(N))

with g(u) = (1 + u)log(l 4+ u) —u, u > 0.
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Proof. Although Dy does not satisfy a derivation rule for products, from
Proposition 1.6.4 we have

D . +
ke’ = Lix,—1pvprae(e” —"F ) + Lix, — 13 v/prae(e™ —e”)
= F - . DeF
= Lix,—1pvPreare (1 —e vera 780

e
= —Xpv/prare’ (e vora DRF 1),

L DuF
+1{Xk=_1}\/pqueF(e\/Pk‘1k )

hence

DkF)

F F - Xk
Dye” = Xi/prqre™ (1 —e verar , (1.11.1)

and since the function = — (e® — 1)/x is positive and increasing on R we
have:

e F Dyest’ _  Xk/Prak e_%::% DiF _
D, F D, F
< |
— K )
or in other terms:
e=sFDyesF esFr —FF 4 ST —F _ 1
=lx=1y - v Tlxe=—1 4+
DF =1 g =" pr
esK 1
<
- K

We first assume that F' is a bounded random variable with E[F] = 0. From
Proposition 1.10.2 applied to F' and e*F noting that since F' is bounded,

EIDe [0y | < CxBI*TIDF 3,20

< 00,
for some Cg > 0, we have

E[Fe*"] = Cov (F,e*!")

%) e}
/ e Z Dye*f P, D, Fdv
0 k=0

=E

e—sFDesF
DF

o
E [eSF/ ¢ "||DFP,DF ||y dv
o0 0
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esK -1 oF oo v

§ K E (&7 HDFHP(N) (&7 ||PUDF||K2(N)dv
0
<" g o) DR /ooe_”dv
= oo 2
K L=(2.200) |

K -1 sF 2

s g E [V IDF (| (2,02 (a0

where we also applied Lemma 1.9.4 to u = DF'.
In the general case, letting L(s) = E[es(" ~EFD] we have

log(E[e!(F-EFD]) — /t L'(s)

o L(s)

t o s(F—E[F])
< [ B Er. 1.,
; E[es(F—E[F)]

IN

1 t
IDFI a0 [ (€ = 1
K L= (£2,02(N)) 0

1

12 (€ —tK = DIDF|3 g ),

t > 0. We have for all x > 0 and ¢t > 0:
P(F —E[F] > z) < e E[e!(FEFD]

1
S exp (K2 (etK — tK — I)HDFHEPO(Q,ZZ(N)) — t.’E) 5

The minimum in ¢ > 0 in the above expression is attained with

t ! log {1+ oK
= O 5
K IDEIT e 0,020

1 HDFH%OO(_Q £2(N)) Kz x
<exp|— T+ ' log [ 1+ -
( K( K HDFH%oo(Q,gz(N)) K

X
Sexp(

_ 1(1 K|DF
o tog (14 2K DF|

-2
L”(Qyﬁ(N)J) ’
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where we used the inequality
log(1+u) (14 u)log(l+u) — u, u e Ry.

If K =0, the above proof is still valid by replacing all terms by their lim-
its as K — 0. Finally if F is not bounded the conclusion holds for F;

max(—n, min(F,n)), n > 1, and (F,)nen, (DF,)nen, converge respectively
almost surely and in L?(2 x N) to F' and DF, with ||DF,LH%OO(Q7L2(N)) <

IDF|F o0 (2, 2 (- 0
In case py, = p for all k € N, the conditions

IDpF| < B, k€N, and [DF|}wq e <o

give

P(F —E[F] > z) < exp <—a;€qg (afqu))

< exp <$\2/§q log (1 + a;qu)) )

which is Relation (13) in [19]. In particular if F' is Fy-measurable, then

P(F — E[F] > ) < exp (_Ng (xé/isq»

z\/pq z\/pq
< exp ( (log <1 + > — 1)) .
B BN
Finally we show a Gaussian concentration inequality for functionals of

(Sn)nen, using the covariance identity (1.10.1). We refer to [17], [18], [61],
[75], for other versions of this inequality.

Proposition 1.11.2. Let F € L'(£2) be such that

Z \DkFHIDkFHoo < K>
P 2(pr N q -
Then )
T
P(F —E[F] > x) < exp <— 2K2> , z > 0. (1.11.2)

Proof. Again we assume that F is a bounded random variable with E[F] = 0.
Using the inequality

t .
lef* — | < Q\x —y|(e"™ + '), z,y € R, (1.11.3)
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we have

|Dre’™| = Vpraile!s — o7 |

1 _ + —
< 2\/171cht|11’;§r — F |(e"% + et )
1 _
= JHDRF|(E" 4 o)
t
< DyF|E [e!F | X;, i # k
_2(pk/\q;f)|k‘ [e"" | # k]
1
= tE [ F|DuF| | X, i # k).
2(pk/\qk) [ |k|| 7 #]

Now Proposition 1.10.1 yields
E[Fe't] = Cov (F,e*F)

- ZE[]E[DkF | Fr—1]Dre't]

k=0
(oo}
<Y IDRF oo [| Dret]
k=0
e 1 o .
<, | Dk FllooE [E [ | Dk F| | Xi, i # k]]
o PNk
S SR RN
2 P LAY =
t =1
< E[etf Dy F|||DiF|| oo
< HEl }kZ:Oquk\ 1D F| )

This shows that

t _ eS(F—E[F])
log(E[e!F—EIFD]) :/0 HE E[;Es[(‘l;}—)]E[F])} |

t
§K2/ sds
0

= t2[(2
2 )

ds

hence

e*P(F — E[F] > z) < E[e!FEFD)
< et2K2/27 t>0,
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and
2R gy
P(F—E[F] >z) <e>2 , t>0.

The best inequality is obtained for t = z/K?.

Finally if F' is not bounded the conclusion holds for F,, = max(—n,min
(F,n)), n >0, and (Fy,)nen, (DF,)nen, converge respectively to F' and DF
in L2(02), resp. L?(£2 x N), with ||DFnHiw(Q’22(N)) < HDFHioo(Q,ez(N)y O

In case py, = p, k € N, we obtain

pa?
P(F—E[F]>z) <exp|— 9 .
IDEZ (v, Lo 20

Proposition 1.11.3. We have E[e®!Fl] < oo for all a > 0, and IE[e"‘FQ] < 00
for all o < 1/(2K?).

Proof. Let A < ¢/e. The bound (1.11.2) implies
(o)
E [e‘*‘”} :/ P(e?F > t)dt
0

— [ PGl = yeray

—00

<1 —l—/ P(a|F| > y)eYdy
0

s [ e (LI

< 00,

for all &« > 0. On the other hand we have
2 o0 2
E[eoF"] — / P(eoF* > 1)t
0

o0
= / P(aF? > y)e¥dy

— 00

= /0°° P(IF| > (y/a)'/?)ev dy

1 [ o (VY

A

o0,

provided 2K 2« < 1. ]
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1.12 Logarithmic Sobolev Inequalities

The logarithmic Sobolev inequalities on Gaussian space provide an infinite
dimensional analog of Sobolev inequalities, cf. e.g. [77]. On Riemannian
path space [22] and on Poisson space [6], [151], martingale methods have
been successfully applied to the proof of logarithmic Sobolev inequalities.
Here, discrete time martingale methods are used along with the Clark pre-
dictable representation formula (1.7.1) as in [46], to provide a proof of
logarithmic Sobolev inequalities for Bernoulli measures. Here we are only
concerned with modified logarithmic Sobolev inequalities, and we refer to
[127], Theorem 2.2.8 and references therein, for the standard version of the
logarithmic Sobolev inequality on the hypercube under Bernoulli measures.
The entropy of a random variable F' > 0 is defined by

Ent [F] = E[F log F] — E[F]log E[F],

for sufficiently integrable F'.

Lemma 1.12.1. The entropy has the tensorization property, i.e. if F,G are
sufficiently integrable independent random variables we have

Ent [FG] = E[FEnt [G]] + E[GEnt [F]]. (1.12.1)
Proof. We have

Ent [FG] = E[FGlog(FG)] — E[FG|log E[FG]|

E[FG(log F + log G)] — E[F]E[G](log E[F] 4 log E[G])

E[G|E[F log F| + E[F]E|G log G)] — E[F|E[G](log E[F] + log E[G])
E[FEnt [G]] + E[GEnt [F]].

O
In the next proposition we recover the modified logarithmic Sobolev inequal-

ity of [19] using the Clark representation formula in discrete time.

Theorem 1.12.2. Let F € Dom (D) with F > n a.s. for some n > 0. We
have

1
Ent [F] < E [F||DF||§2(N)] . (1.12.2)

Proof. Assume that F is F-measurable and let M,, = E[F' | F,,],0 <n < N.
Using Corollary 1.6.3 and the Clark formula (1.7.1) we have

My=M-+) wYs, 0<n<N,
k=0

with ug =E[DyF | Fr-1], 0 < k < n < N, and M_; = E[F]. Letting
f(z) = zlog x and using the bound
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fl@+y) — f(z) = ylogz + (v +y) log (1+ Z)

2
<y(1+logzx)+

we have:
Ent [F] = E[f(My)] — E[f(M_1)]

—E > f(My) - f(Mk—l)]

r N
=E | f (M1 + Yiug) —

Lk=0
' N

<E Zquk(l + long_l) +

Lk=0

1
E[F | Fr-1]

M=

Lk=0

INA
=
e

=0

1 N
_ 2
—F ; O: |Dy.F|

1T
E

)

J(My—1)

2,2
Y ui
M4

(E[DyF" | fkﬂf]

1
E DF|? _
{FI kFI | Fr 1H

where we used the Jensen inequality (9.3.1) and the convexity of (u,v) —
v?/u on (0,00) x R, or the Schwarz inequality applied to

1/VF and (DxF/VF)gen,

as in the Wiener and Poisson cases [22] and [6]. This inequality is extended

by density to F' € Dom (D).

O

By a one-variable argument, letting df = f(1) — f(—1), we have

Ent [f] = pf(1)log f(1) + ¢f (1) log f(—=1) — E[f]log E[f]

= p(E[f] + qd f)log(E[f] + qdf)

+q(E[f] — pdf)log(E[f] — pdf) — (pf(1) + ¢ f(—1)) log E[f]

= pE[f]log (1 + qﬂf[%

d
+qE[f]log <1 - p]E[fc]
< pgdflog f(1) — pgdflog f(—1)
= pgE[dfdlog f],

) + pqdflog f(1

)

> —qpdflog f(—1)
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which, by tensorization, recovers the following L! inequality of [47], [29], and
proved in [151] in the Poisson case. In the next proposition we state and prove
this inequality in the multidimensional case, using the Clark representation
formula, similarly to Theorem 1.12.2.

Theorem 1.12.3. Let F > 0 be Fn-measurable. We have

N

Z DiFDylog F
k=0

Ent[F] <E . (1.12.3)

Proof. Let f(x) = xloga and
T(2,y) = (v +)log(x +y) — vlogz — (1 +logz)y, z, z+y > 0.
From the relation

Yiuy = ViE[DLF | Fiv1]
= a1 ix =1 E[(F — FO) | Fra] + ol = E[(F — F) | Frei]
= 1x =1 El(F) - F)Lxe=—1y | Fi—1]

+1x, =3 Bl(Fy — BN 1x,—1y | Feoil,

we have, using the convexity of ¥:

Ent[F] =E

Z f (My—1 + Yur) — f(Mk—l):|
=0

U(Mpg—1, Yiur) + Yiug (1 + log Mkl):|

U (My—1, Yius)

é
- I T+

=E pe¥ (B[F | Fra], E[(F — F)lgxe=—1y | Fr-1])

el
Il
<}

+ar¥ (E[F | Froa, E[(F, = D) x, =1y | Fiem])]

N
<E|) E [pw (F,(F — FO)1x,=—13) + a¥ (F, (Fy — FD1(x,=1}) ‘f“u
Lk=0
[ N
=E | mlixee— ¥ (Fo F5 = FY) + aelix,—n ¥ (B By — F)

el
Il

0
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N
=B | Y pranW (B B = FD) + poan (B B = F)
Lk=0

r' N

=E | prac(log Ff —log Fy ) (F — Fy)
Lk=0
=E | DiFDylogF|.
Lk=0

O

The application of Theorem 1.12.3 to e’ gives the following inequality for
F > 0, Fny-measurable:

rN
Ent [eF] <E ZDkFDkeF]
k=0

=F Zpqulll e R ¢ ’c)—i—pqulp(e y eFk—eFfj)]

—E quke%’ (FF = Fp)ef = — ofd e 4 1)

+prgre’™ (B — F el —Fe —ofic =Rl 1)}

=B | > pelix,=ye™ (B — Fy)ef i — oM =R 11)
Lk=0

el (xonyel™ (F — F)efe =B — v =5 4 1)}

TN
=R |e" Z VR Y| (Vi FeVel — Vil 1) (1.12.4)
L k=0
This implies
N
Ent[e”] <E |ef ) (ViFeVF —eVrF 1) (1.12.5)
k=0

As noted in [29], Relation (1.12.3) and the Poisson limit theorem yield the L!
inequality of [151]. More precisely, letting M,, = (n+ X1 +---+ X,,)/2, F =
o(My,) and p, = A\/n, k € N, ,n > 1, A > 0, we have, from Proposition 1.6.2,
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n
Z D,FDylog F
k=0

= (12 0) (0= M) (M, + 1) — (08 o0, + 1) = (M)

A

0 (1) Mol = (0, 1) 08(0(0,) = (0, ~ 1)

in the limit as n goes to infinity we obtain
Ent [p(U)] < AE[(o(U +1) = ¢(U))(log (U + 1) —log o(U))],

where U is a Poisson random variable with parameter A. In one variable we
have, still letting df = f(1) — f(—1),

Ent [e/] < pgE [defdlog ef]
= pa(e’® — /) (1) ~ (1))
:pqef(fl)(( ( ) — f(=1))e FO)=F(=1) _ (f()=F(=1) +1)
—I—pqef(l)((f( 1) — f(1))e F(=D=fQ) _ of(=1)= f(1)+1)
Sqef(—l)(( f(1) = f(=1))e FO)=F(=1) _ of()=F(= 1)+1)
eref(l)((f( 1) — f(1))e F(=D)=f1) _ of (=)= f(1)+1)
=E[ef(VfeV! -V +1)],

where Vj, is the gradient operator defined in (1.6.4). This last inequality is
not comparable to the optimal constant inequality

N
" 3 prar(|VeFJelVH ] — el¥e 1)
k=0

Ent[ef] <E (1.12.6)

of [19] since when F}" — F_ > 0 the right-hand side of (1.12.6) grows as
F,j'e2Fk+, instead of F+e * in (1.12.5). In fact we can prove the following
inequality which improves (1.12.2), (1.12.3) and (1.12.6).

Theorem 1.12.4. Let F' be Fy-measurable. We have

N

eFZpqu(VkFev’“FfeV’“F+1)
k=0

Ent[ef] <E (1.12.7)

Clearly, (1.12.7) is better than (1.12.6), (1.12.4) and (1.12.3). It also improves
(1.12.2) from the bound

re” —e” +1< (e —1)2, 2 €R,
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which implies
eF(VFeVF _ eVF 4 1) S eF(eVF _ 1)2 — e—F|veF|2.

By the tensorization property (1.12.1), the proof of (1.12.7) reduces to the
following one dimensional lemma.

Lemma 1.12.5. Forany0<p<1,teR,aeR,qg=1—p,

pte! + gae® — (pet + qe“) log (pet + qea)
< pq (ge® ((t —a)e' ™" — e~ + 1) + pe' ((a —t)e* " — et +1)).
Proof. Set

g(t) = pg (ge® ((t —a)e'™* — e+ 1) + pe’ ((a — t)e* " —e* " 4+ 1))
—pte! — qae® + (pet + qea) log (pet + qe“) .
Then
g (t) = pq (qe“(t —a)e!™% + pet (—e“_t + 1)) — pte' + pe' log(pe’ + qe®)
and ¢”(t) = pe'h(t), where
t

pe

h(t) = —a — 2pt — p + 2pa + p*t — p*a + log(pe’ 4 qe®) + . .
pe* + ge®

2pet p2e2t

W(t)=—2p+p*+ -
) PP pet 4 gen T (pet + gen)?

_ p*(e" —e*)(pe’ + (g + 1)e?)

o (pet + ge®)? ’
which implies that h'(a) = 0, h'(t) < 0 for any ¢t < a and A/(t) > 0 for any
t > a. Hence, for any ¢ # a, h(t) > h(a) =0, and so ¢”(t) > 0 for any t € R
and ¢”(t) = 0 if and only if ¢ = a. Therefore, ¢’ is strictly increasing. Finally,
since ¢ = a is the unique root of ¢’ = 0, we have that g(¢t) > g(a) = 0 for all
teR. ]

This inequality improves (1.12.2), (1.12.3), and (1.12.6), as illustrated in one
dimension in Figure 1.1, where the entropy is represented as a function of
p €10,1] with f(1) =1 and f(—1) = 3.5:

The inequality (1.12.7) is a discrete analog of the sharp inequality on Poisson
space of [151]. In the symmetric case py, = qr = 1/2, k € N, we have
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164 optimal

modified

\

02 04 p 06 0.8 1

Fig. 1.1 Graph of bounds on the entropy as a function of p € [0, 1]

N
Ent [eF} <E|ef Zkak(VkFeka —ViF+1)
k=0

[ N
= E Y efi (B — F e~ —efi=Fi 1)
Lk=0

o (B — e~ — o= 4 1))

[ N

+ — _
= 8IE Z(eFk —ef ) FF - F)
Lk=0
1 T N
_ F
= ,E ;DkFDke ]

which improves on (1.12.3).
Similarly the sharp inequality of [151] can be recovered by taking F' = o(M,,)
in

Ent[ef] <E

A A
- <1 - > E [Mneeo(Mn)
n n

N
eFZpqu(VkFev’“F —ViF+1)
k=0

(o(M,) — o(M,, — 1))ev>(Mn)—sa(Mn—1) _ oP(Mn)=p(My—1) + 1)}

(
o () el e
(
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which, in the limit as n goes to infinity, yields
Ent [eso(U)} < )\IE[e“"(U)((ap(U +1)— go(U))e“’(U“)*“"(U) — WU+l —oU) 1),

where U is a Poisson random variable with parameter .

1.13 Change of Variable Formula

In this section we state a discrete-time analog of It6’s change of variable
formula which will be useful for the predictable representation of random
variables and for option hedging.

Proposition 1.13.1. Let (My,)nen be a square-integrable martingale and f :
R x N — R. We have

f(Mnan)
= f(M_1,—1)+> _ Dypf(My,k)Yi+ Y E[f (Mg, k)= f(My—1,k — 1) | Fp_1]
k=0 k=0
+ > F(My_1, k) = f(My—1, k= 1). (1.13.1)
k=0

Proof. By Proposition 1.7.5 there exists square-integrable process (ug)ren
such that

M, =M1+ uYs, neN.

k=0
We write
F(My,n) = f(M_y,=1) = > f(My, k) — f(My_1,k — 1)
k=0
_Zf My, k) = f(My—1,k) + f(Mr—1,k) = f(My—1,k — 1)

\/ < <Mk 1+uk\/qk,k> f(Mklak)> Yy
Pk
Pk dk
+ " lix=—1y (f <Mk1 +Uk\/ ,k> - f(Mk1,k))
gk Pk
+1{x,=—1} (f (Mk:1 - uk\/zz,k) - f(Mk1,k))

+Zf(Mk—1,k) — f(My—1,k—1)

k=0
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= \/p’“ (f (Mk_l + uk\/q’%k> - f(Mk_l,k») Y
=0 4k Pk

+> i 1ix,=—nyElf (My, k) = f(Mi—1,k) | Fr-1]
o Ik

+ 3 F(My—1, k) = f(Myy, k= 1),
k=0

Similarly we have
f(My,n)

= f(M_y,—1) — kzn: \/q’“ <f (Mk1 - uk\/’;’:k> — f(My_1, k)> i

Pk

+Z L0n=nELf(My, k) = f(Mia, k) | Fia)

+Zf(Mk—1,k?) — f(My_1,k —1).

k=0

Multiplying each increment in the above formulas respectively by g and px
and summing on k we get

n

F(Myyn) = f(M_y,=1)+ > f(My, k) = f(My_1,k —1)

k=0

= f(Mfla 71) + qu(f(Mkak) - f(Mkfla k— 1))
k=0

+Zpk f(My, k) = f(Mg—1,k —1))

= f(M-y,-1)+ kz_:_ox/pk% (f (Mk—l + Uk\/]zk,k‘) - f(Mk—lak)> Yi

k
- Z Pk <f (Mkl - uk\/’;’:k) — f(My—, k)) Y
+ZJE (M, k) | Froa] — f(My—1,k —1)

+Zf(Mk:71,k) — f(My—1,k—1)

= f(Mfla 71)
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+kZ:0\/kak <f (Mk—l +Uk\/§’;,k) —f <Mk—1 —uk\/z:,k>) Yy

+ Y B[f(My, k) | Fra] = f(My_1,k = 1)
k=0

+Zf(M’f—1vk) — f(My—1,k—1).

k=0

Note that in (1.13.1) we have

Dif(Mi k) = /ora <f (Mk_l + uk\/q’f,k) _f (Mk_l _ uk\/pkk)) ,
Pk qk

keN.
On the other hand, the term

E[f(My, k) — f(Mr—1,k —1) | Fr—1]

is analog to the generator part in the continuous time It6 formula, and can
be written as

i f (Mkl Jruk\/ZZ,k) +anf (Mkl uk\/z:,k) —f (Mg—1,k—1).

When p,, = g, = 1/2, n € N, we have

N f (My—1 + wp, k) — f (My—1 — ug, k)

f(Mpm) = f(M_y,=1)+ > ) Y
k=0
" f (My—y 4 up, k) — f (Mg—1 — ug, k) — 2f (Mg—1 — ug, k)
+k; )

n

JFZf(Mk*l’k) - f(Mk*h k — 1)'

k=0

The above proposition also provides an explicit version of the Doob decom-
position for supermartingales. Naturally if (f(M,,n))nen is a martingale we
have
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f(Mn?n) = f(M—l? _1)
+kz_:_0\/pk% <f <Mk—1 +Uk\/§’;’k> —f <Mk—1 —uk\/gz,k>) Yy

= f(M_1,=1)+ Y Dy f(My, k)Yi.
k=0

In this case the Clark formula, the martingale representation formula
Proposition 1.7.5 and the change of variable formula all coincide. In this
case, we have in particular

Dy f(My, k) = E[Dy. f(My, n) | Fi—1]
= E[Dkf(Mk, ki) | fk_ﬂ, k e N.

If F' is an F-measurable random variable and f is a function such that
E[F | Fn] = f(Mp,n), —1<n<N,

we have F = f(My,N), E[F] = f(M_-1,—1) and

F =E[F]+ Y E[Dyf(My,N) | Fi-1]Yi
k=0

= E[F]+ Y Dyf(My, k)Yx
k=0

= E[F]+ ) DiE[f(Mn,N) | Fi]Y.
k=0

Such a function f exists if (My)nen is Markov and F'=h(Mpy). In this
case, consider the semi-group (P n)o<k<n<n associated to (My)nen and de-
fined by

(Pynh)(x) = E[h(M,) | My = z].

Letting f(x,n) = (P,,~nh)(z) we can write

F =E[F]+ ) E[Dyh(My) | Fir1]Ys
k=0
=E[F]+ Y Di(Pexh(My))Ys.
k=0
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1.14 Option Hedging

In this section we give a presentation of the Black-Scholes formula in discrete
time, or Cox-Ross-Rubinstein model, see e.g. [45], [74], [125], or §15-1 of [149]
as an application of the Clark formula.

In order to be consistent with the notation of the previous sections we choose
to use the time scale N, hence the index 0 is that of the first random value of
any stochastic process, while the index —1 corresponds to its deterministic
initial value.

Let (Ag)gken be a riskless asset with initial value A_1, and defined by

Ay =A 1 [[(+m), neN,

k=0

where (rg)ken, is a sequence of deterministic numbers such that ry, > — 1,
k € N. Consider a stock price with initial value S_;, given in discrete time as

(1+4b,)Sp-1 if X, =1,
Sn =
(1—|—an)Sn_1 if X,, = -1, neN,
where (ar)ren and (bx)ren are sequences of deterministic numbers such that

—1<ap<rg <bg, ke N.

We have

n 14 by Xi/2
n — O— 1 1 s .
S, 51’];[0\/( + by)( +ak)<1+ak) neN

Consider now the discounted stock price given as

Sp =S [T +m)7"
k=0

1+ 7 1+ ay

n Xk/2
:5_11‘[( ! \/(1+bk)(1+ak)<1+bk) ) nen.
k=0

If -1 <ax <rp <bg, k€N, then (S'n)neN is a martingale with respect to
(Fn)n>—1 under the probability P* given by

Tk — Gk b — 71
Pr = ) k= s ke N.
b, — ak by, — ak
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In other terms, under P* we have
IE*[Sn+1 | ]:n} = (1 + 7“n+1)Sna n>—1,

where E* denotes the expectation under P*. Recall that under this probabil-
ity measure there is absence of arbitrage and the market is complete. From
the change of variable formula Proposition 1.13.1 or from the Clark formula
(1.7.1) we have the martingale representation

— ay

Y.
+ 7k k

n n
- ~ ~ b
S, =5_1+ kZ_OYkaSk =S+ kZ_OSk—l\/kak 1k

Definition 1.14.1. A portfolio strategy is represented by a pair of predictable
processes (Ni)ken and (Ck)ren where N, resp. (i represents the numbers of
units invested over the time period (k,k + 1] in the asset Sk, resp. Ay, with
k> 0.

The value at time k > —1 of the portfolio (1, Ck)o<k<n is defined as
Vi = Cer1 Ak + Mk+15k, k> -1, (1.14.1)

and its discounted value is defined as

Vo=Vo [J+m)™",  n>-1 (1.14.2)

Definition 1.14.2. A portfolio (nk,Ck)ren is said to be self-financing if

Ap(Cror1 — C) + Sk(Me+1 — me) = 0, k> 0.

Note that the self-financing condition implies
Vi = GeAr + Sk, k>0,

Our goal is to hedge an arbitrary claim on {2, i.e. given an F y-measurable ran-
dom variable F we search for a portfolio (1, Ck)o<k<n such that the equality

F=Vyx= CNAN + 77NSN (1143)
holds at time N € N.

Proposition 1.14.3. Assume that the portfolio (ng,Ck)o<k<n is self-
financing. Then we have the decomposition

n n

Vo =Vor [JA+me) + > mSicaypiai(bi —a)Y; ] (1+rk). (1.14.4)
k=0 i=0 k=it
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Proof. Under the self-financing assumption we have

Vi—Vier = Gi(Ai — A1) +0i(Si — Si—1)
=riGAi—1 + (@ilx,——1y + bilix,=1})niSi-1
= niSi—1(ailx,——1} + bilyx,—1) —7i) + Vi1
= niSi—1((ai — 7)1 x,=—1y + (bi = 71i)1x,=1}) + Vi1
= (bi — ai)niSi—1(—pilyx,——1y + @lyx,=1y) + Vi1
= 10iSi—1y/Diqi(bi — a;)Y; +riVi_1, 1 €N,

by Relation (1.4.5), hence for the discounted portfolio we get:

i i1
Vi—Vioi = H(l +rp) 7V - H(l +re) Vi
k=1 k=1

—Hl—i—rk (Vi = Vier — r3Vic1)
%
= niSioiy/pigi(bi —a)Yi [[(L+m) ™", i€N,

k=1

which successively yields (1.14.4). O
As a consequence of (1.14.4) and (1.14.2) we immediately obtain

vV, = 1+Zm i—1y/pigi(bi — a YH 14 rp) 7, (1.14.5)

n > —1. The next proposition provides a solution to the hedging problem
under the constraint (1.14.3).

Proposition 1.14.4. Given F € L?(2, Fn), let

N
1
n = E*[D,F | F,_ 14 7))t 1.14.6
T G /ot (b — an) [DnF' | Frni] k:lll( k) ( )
0<n<N, and
N
Cn = A1 ( I @+r) "B F | 7 nnsn> , (1.14.7)
k=n-+1
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0 <n < N. Then the portfolio (nx, Ck)o<k<n s self financing and satisfies

N
Cndn S = [[ Q+re) "B [F | Fl,
k=n-+1

0 <n < N, in particular we have Vi = F, hence (N, Cx)o<k<n 1S a hedging
strategy leading to F'.

Proof. Let (ng)—1<k<n be defined by (1.14.6) and n—_1 = 0, and consider the
process (¢n)o<n<n defined by

E*[F]
S_q

(Me+1 — M) Sk
Ay ’

1= (L+7)"" and Gy = G —

=

k=0

k=—1,...,N—1. Then (nx, (x)—1<r<n satisfies the self-financing condition

Ap(Cer1 — Ck) + Sk(Mer1 —me) = 0, -1<k<N-1L
Let now
N
Vo =B F [Ja+m)™", and Vi =Gudn+m0Ss,  0<n<N,
k=0
and .
H1+7"k 1, —1<n<N.

Since (Mg, Ck)—1<k<n is self-financing, Relation (1.14.5) shows that

n 7

Vo= Vo4 Y YimiSioay/pigi(bi — ai) [ (1 +70) 7", (1.14.8)

=0 k=1

—1 < n < N. On the other hand, from the Clark formula (1.7.1) and the
definition of (nx)_1<k<n we have

N

E*(F | Fo) [T +70)7"

k=0

N N -
=B [E'[F] [[(1+ )" + D VE'DF | i) [T+ m_l‘f"]

k=0 =0 k=0

N n N
=E[F] [JA+r)™" + D _ViED:F | Fia] [JA+r)"
k=0 =0 k=0



1.14 Option Hedging 57

N n i

= E*[F] H(1 +re) 7+ Z}/inisi—l\/pi%(bi —aj) H(l + )t

k=0 i=0 k=1

from (1.14.8). Hence

N
Vo =B [F|F) [Ja+m)™", -1<n<N,
k=0
and N
Vo =E*[F|F) [ Q+m)”', -1<n<N.
k=n+1

In particular we have Viy = F. To conclude the proof we note that from
the relation V;, = (, A, 4+ 10,55, 0 <n < N, the process ((,)o<n<n coincides
with ((n)o<n<n defined by (1.14.7). O

Note that we also have

N
Ct1An + 1S =B [F | 7)) [ @+m)™'  —-1<n<N.
k=n-+1

The above proposition shows that there always exists a hedging strategy

starting from
N

Vo =E [ ] +r)™"

k=0

Conversely, if there exists a hedging strategy leading to
. N
Vv =F [ +m)™"
k=0
then (V,,) _1<n<x is necessarily a martingale with initial value
. . N
Vo =E [Vn] =E*[F] (1 + )"
k=0
When F = h(Sy), we have E*[h(Sy) | Fi] = f(Sk, k) with

H \/1—|—bk 1—|—ak) 1+ b Xi/2
1+ 7, 14 ag '

1=k+1

fla, k) =
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The hedging strategy is given by

N
1 ~
_ Dif(Sk.k) J[ @ +r)™"
Tk Sk—l\/kak(bk — ag) e (5 )i:k+1( g

Hj»\ik_i_l(].‘i’?"i)il ~ 1+ by, ~ 1+ ag
= = _ k) — _ k
Sk—l(bk _ a/k;) (f (Sk 1 1 + T’k, ) f (Sk 1 1 + - 9 >> )

k> — 1. Note that 7 is non-negative (i.e. there is no short-selling) when
f is an increasing function, e.g. in the case of European options we have

flz) = (- K)".

1.15 Notes and References

This chapter is a revision of [113] with some additions, and is mainly based on
[59] and [115]. It is included for the sake of consistency and for the role it plays
as an introduction to the next chapters. Other approaches to discrete-time
stochastic analysis include [53], [54], [48], [78] and [89]; see [8] for an approach
based on quantum probability. Deviation inequalities and logarithmic Sobolev
inequalities are treated in [19], [46], [59]. We also refer to [5], [17], [18], [61],
[75], for other versions of logarithmic Sobolev inequalities in discrete settings.
See [74], §15-1 of [149], and [125], for other derivations of the Black-Scholes
formula in the discrete time Cox-Ross-Rubinstein model.



Chapter 2
Continuous Time Normal Martingales

This chapter is concerned with the basics of stochastic calculus in continuous
time. In continuation of Chapter 1 we keep considering the point of view of
normal martingales and structure equations, which provides a unified treat-
ment of stochastic integration and calculus that applies to both continuous
and discontinuous processes. In particular we cover the construction of single
and multiple stochastic integrals with respect to normal martingales and we
discuss other classical topics such as quadratic variations and the It6 formula.

2.1 Normal Martingales

Let (£2, F,P) be a probability space equipped with a right-continuous filtra-
tion (F):er, , i.e. an increasing family of sub o-algebras of F such that

Fo=()F.  teR,.

s>t

We refer to Section 9.5 in the Appendix for recalls on martingales in conti-
nuous time.

Definition 2.1.1. A square-integrable martingale (M;)icr, such that
E [(My — M,)?|F] =t — s, 0<s<t, (2.1.1)

1s called a normal martingale.

Every square-integrable process (M;)icr, with centered independent incre-
ments and generating the filtration (F;)er, satisfies

E[(M; — Mo)*|Fo] =B [(M: — Mo)?],  0<s<t,
hence the following remark.

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 2, 59
(© Springer-Verlag Berlin Heidelberg 2009
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Remark 2.1.2. A square-integrable process (M;)icr, with centered
independent increments is a normal martingale if and only if

E[(M;— M| =t—s, 0<s<t

In our presentation of stochastic integration we will restrict ourselves to nor-
mal martingales. As will be seen in the next sections, this family contains
Brownian motion and the standard Poisson process as particular cases.

Remark 2.1.3. A martingale (M;);cg, is normal if and only if (M? —t)ier,
is a martingale, i.e.

E [M7 — t|F,] = M7 — s, 0<s<t.

Proof. This follows from the equalities

E [(M; — My)?|F] — (t—s)

=E [M? — M2 — 2(M; — M,)M,|Fs] — (t —s)
=E [M? — M2|F,] — 2ME [M, — M| F,] — (t — s)
=E [M}|F] —t— (E [MZ|F] —s).

O

Throughout the remainder of this chapter, (M;);er, will be a normal mar-
tingale and (F;)ier, will be the right-continuous filtration generated by
(Mt)tGRJra Le.

Fi=0(Ms : 0<s<t), teR,.

2.2 Brownian Motion

In this section and the next one we present Brownian motion and the compen-
sated Poisson process as the fundamental examples of normal martingales.
Stochastic processes, as sequences of random variables can be naturally con-
structed in an infinite dimensional setting. Similarly to Remark 1.4.1 where
an infinite product of discrete Bernoulli measures is mapped to the Lebesgue
measure, one can map the uniform measure on “infinite dimensional spheres”
to a Gaussian measure, cf. e.g. [85], [49], and references therein. More pre-
cisely, the surface of the n-dimensional sphere with radius r is

nﬂ_n/Z

Sn(r) = F(g +1)

—n/2
P~ g2 onme/? (Z) T

where the equivalence is given by Stirling’s formula as n goes to infinity. The
set of points on the sphere S, (y/n) whose first coordinate z; lies between a
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and a + da has measure

O—ﬂ({(xla cee awn) € Sn(\/n) ca<z < a+da})

=" =

. Wlf)"da

1
— e */2da, [n — ool

\/ 27
When a point is chosen uniformly on the sphere, its components have an
approximately Gaussian distribution as n becomes large. Namely, the uniform

measure o,(dz) on S,(y/n) converges weakly as n goes to infinity to the
infinite dimensional Gaussian measure

1

> 1 >
w(dz) = ® e "/ 2dy, (2.2.1)
k=0 Var

on (RN, B]%N), cf. e.g. Ex. 5, page 66 of [52], which gives a numerical model of
Gaussian space in the sense of [83], §I-3. Since the n-dimensional sphere with
radius r has curvature (n —1)/72, S,(y/n) has curvature 1 —1/n, and can be
viewed as an infinite dimensional space with unit curvature when n is large.
We refer to [28] and to Chapter 5 of [50] for approaches to this phenomenon
using non standard analysis and white noise analysis respectively.

Thus our starting point is now a family (&,)n,en of independent standard
Gaussian random variables under 7y, constructed as the canonical projections
from (RN, Bgy,vy) into R. The measure yy is characterized by its Fourier

transform
(o]
exp (z > gnanﬂ
n=0

_ 2
e an/2

a—E [exp (i({, a>g2(N))] =E

oo

n=0
— 67;“0‘”52(1%), a € EQ(N),
i.e. (§, @)z is a centered Gaussian random variable with variance Hoz||§2(N).
Let (e,)nen denote an orthonormal basis (e, )nen of L2(R.).

Definition 2.2.1. Given u € L*(R.) with decomposition

o

u= Z(u,en>en,

n=0
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we let Jy : L2(Ry) — L2(RN 4N) be defined as

o0
= &ulu,en). (2.2.2)
n=0
We have the isometry property

E (|5 w)?] = [(u,en)"E [£2] (2.2.3)

and the characteristic function of .J (u) is given by

[ le(u)} H E [ i€ (u, en)}
- H e {w.en) L2<m+>

~exp (2||u||%z<R+>) ,

hence Ji(u) is a centered Gaussian random variable with variance [|ul|3, R4)>
cf. Section 9.2. Next is a constructive definition of Brownian motion, using
the mapping J; and the decomposition

o0 ¢
ljo4 = Zen/o en(s)ds
n=0

Definition 2.2.2. For allt € Ry, let

Ot] an/ en . (2.2.4)

Clearly, B; — Bs = Ji(1[s,) is a Gaussian centered random variable with
variance:

E[(B, — B2 = Bl (e )P) = [ glfag,, =t -5 (2:25)

Moreover, the isometry formula (2.2.3) shows that if uy, . . ., u, are orthogonal
in L2(Ry) then Jy(u1),...,J1(u,) are also mutually orthogonal in L?(£2),
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hence from Corollary 16.1 of [67], see Proposition 9.2.1 in the Appendix, we
get the following.

Proposition 2.2.3. Let uy,...,u, be an orthogonal family in L*(R,), i.e.
<ui,Uj>L2(R+)=O, 1<i#j<n.

Then (Ji(ui),...,Ji(uy)) is a vector of independent Gaussian centered ran-
dom wvariables with respective variances Hu1H%2(R+), ce ||u1||2Lz(R+),

As a consequence of Proposition 2.2.3, (B;)er, has centered independent
increments hence it is a martingale from Proposition 9.5.2 in the Appendix.
Moreover, from (2.2.5) and Remark 2.1.2 we deduce the following proposition.

Proposition 2.2.4. The Brownian motion (By)er, is a normal martingale.

2.3 Compensated Poisson Martingale

The compensated Poisson process will provide a second example of a normal
martingale. As mentioned at the beginning of Section 2, Gaussian distri-
butions arise from uniform measures on infinite-dimensional spheres. They
also can be constructed from the central limit theorem which states that if
(Y, ..., Y™) is a sequence of independent, identically distributed centered
random variables with variance o2 /n,

Y4+ Y a1,

converges in distribution to a centered Gaussian random variable with vari-

ance o2.

In a discrete setting we let
Sp=21"+---+2], n>1,

where Z7,...,Z" € {0,1} is a family of independent Bernoulli random vari-
ables with same parameter A\/n, i.e.

P(Zr=1)=", 1<k<n

Then S, has a binomial distribution with parameter (n, A/n):

- ()0 ()
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)\k

X e~ as n goes to infinity, i.e.

which converges to
Zr+ -+ 2Z)

converges in distribution to a Poisson random variable with intensity A > 0.
This defines a probability measure 7y on Z as

L
m({k}) = pa(k) :== Liz>0y i € A, kEeN, (2.3.1)

with the convolution property
TIANK Ty = TA4p-

Let now (7,),>1 denote a sequence of independent and identically exponen-
tially distributed random variables, with parameter A > 0, i.e.

E[f(Tlv"'aTn)} :)‘n/ / eiA(SIJr”.JrS")f(sla-..,Sn)d81"‘dSnv
0 0

(2.3.2)
for all sufficiently integrable f : R} — R. Let also
Th=m14+ 4+ Tn, n>1.
Next we consider the canonical point process associated to (T )k>1-
Definition 2.3.1. The point process (Ni)ier, defined by
N => 1pe0t), teRy (2.3.3)
k=1

1s called the standard Poisson point process with intensity A > 0.

Relation (2.3.2) can be rewritten as

E[f(T1,...,T,)] :)\"/ / e (b, )Ly ety by - d,
0 0

(2.3.4)
hence the law of (T4,...,T,) has density

(t1, .. tn) — )\nef)‘t"l{ogt1<m<tn}

n
on R7.



2.3 Compensated Poisson Martingale 65

From this we may directly show that N; has a Poisson distribution with
parameter \t:

]P(Nt = ]{3) = ]P)(Tk <t S Tk+1)

k+1 o A\t trt1 to
=\t / e~ k+1/ / 1{tk<t§tk+1}dt1"‘dtk+1
0 0
2]
= /\k+1/ —)\tk+1/ / / dty---dtgq
0

)\kJr]/ 7)\tk+1dtk 1
TR ¢

A* e
X e t>0.
Proposition 2.3.2. The law of T}, has the density t — A"e™* (n" 11), on R4,
n>1.
Proof. We have
P(T, >t) =P(N; =0)=e*,  tecR,,
and by induction, assuming that
oo ’ by n—2
P(T,—1 >t)= )\/ e_)‘é( 2 ds, n> 2,
' (n—2)!
we obtain
P(T, >t) =PI, >t>Th1) +P(Th-1>1)
=P\N:=n—-1)+P(T,_1 > 1)
At)n—t * As)n—2
_ ef)\t( ) + )\/ ef)\s( S) ds
(n—1)! ¢ (n—2)!
/\S n—1
o[ el d teR,.
/ (n—1)! * € R+
|
We also have
E[E[f(Tl?v )‘Tn-i-l E[f(TlavT )}

tn41 ta
:,\"+1/ —”Hl/ : fty, . ty)dty - dtngy
0

/ / n F, o tn) g cocty oy dty - dtn dP(Thp1 = thy),
n+1
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where dP(T},4+1 = tp41) denotes P(Ty41 € dtnt1). As a consequence we have
the next proposition.

Proposition 2.3.3. The conditional density of (Ti,...,T,) given that
Tn+1 =T is
n!
(t1, e atn) — T” 1{O§t1<~~~<tn§T}'

Moreover we have

E{f( noo, I )g(TnH)}

Thi1 Tt

n+1 tn
_ )\n+1/ 7)\tn+1/ / < L >g(tn+1)dt1 .. .dtn+1
thy1 tng
)\"“/ (tn+1)"g(tn+1) ’\t"“// / f(s1,...,8n)dsy -+ -dspdtyqq
= n'/ / / f S1yenny n)dSl -ds n/ ( n+1)dP( n+1l — tn+1)
0

=E {f (Tm""’ Tfilﬂ E[g(Ty+1)],

hence (T"Tjrl ey Tfi 1) is independent of T}, 11 and has density

(815+++,8n) = o<y <cs, <1}

on [0,1]™, cf. e.g. [26]. As will be seen in Proposition 2.5.10 below, the random

sum
No
> H(T)
=1

used in the next proposition can be interpreted as the Stieltjes integral
a
| s,
0

Proposition 2.3.4. Let a > 0 and let f : [0,a] — R be measurable. We have

exp ( Zf (Ty) > = exp <)\ /Oa(eif(w _ 1)dt> .

Proof. Let g,, n > 1, be defined as

of f with respect to (N¢)icr, -

n
gn(tl, cee 7tn) = Z 1{tk_1<a<tk}eif(tlHmﬂﬂtk*l) + 1{t,,L<a}eif(t1)+m+if(t")’
k=1
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with g = 0, so that

=E[g(T1,...,Tn)]

00 tn to
- )\n / e_)\t" / N / 1{% 1<a<ltp }eif(t1)+"'+if(tkil)dtl U dtn
0 0

/ / / QGO+ Hif () gy gy
—\" e AMn t" dt
- Z (n— 71).
x/ / B / eif(t1)+“'+if(tk—l)dt1...dtk71
/ / / O+ Hif () gy .y
—Aa k —At
A dt
Z / ¢ ( k—l)!
/ / / Q)i ) gy
tn
tk—1
7)\0,2)\]6/ / / )+ +if (tr— 1)dt1 dtkfl
+ef)\a2)\k/ a— / / Fl)tFiftn) gy, ... g,
k=n 0

n a te—1 to
—e‘*az/\k/ / / )+ F () G ey
= Jo Jo 0

0 a pra pty tny2
+e_’\“Z)\k/// / dtpir - diy
P— 0 Jt, Jt, tn
tnt1 ta
X/ / G+l o) gy gy
0 0

67
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[es} a tr ta
. e,)\a Z /\k / / o / eif(t1)+---+if(tk/\n)dt1 oo dty
k=0 0 0 0
ok
— ey A /a . /a GO+ (Enn) g - it
k=0 k! 0 0

Hence as n goes to infinity,

nAN,
eXP< Zf T}) > exp ( Z f(Tk:)>

— lim e,)\az / / Fl)teFif (tean) gey o dty,
n—oo O
_eanZ / / F(t)+-- +Zf(tk)dt1 -dty,
k=

= exp ()\ /O (e — 1)dt> .

The next corollary states the standard definition of the Poisson process.

Corollary 2.3.5. The standard Poisson process (Ni)ier, defined by (2.3.3)
has independent increments which are distributed according to the Poisson
law, i.e. for all 0 <tg <t1 < -+ <tp,

= limIE

O

(Nt; — Negyoo oy N, — N, )

is a wvector of independent Poisson random wvariables with respective
parameters

()‘(tl - tO)a R )‘(tn - tnfl))~
Proof. Letting
n
f= Zakl(tk_l,tk]a
k=1

from Proposition 2.3.4 we get

exp( Zak (Ny, — N))] = [ et

k=1

n
()\Z te — ti— 1 Za" — 1)>
k=1
n
H ook (Noy =N, 1)} :

k=1
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forall 0 =ty < t; < --- < t,, hence the components of the vector
(Nt; — Negyoo oy Ny, — N, )
are independent Poisson random variables with parameters

At — tno1),- . At — to).

In particular, for all n € Z and ¢t € R, we have

Y (A"

P(N: =n) = p,u(t) = ol

ie. pp—1 : Ry — Ry, n > 1, is the density function of T},, and
Pu(t) =pna(t) =pa(t),  n€Z teR,.
Relation (2.3.4) above can be extended as a statement in conditional ex-

pectation using the independent increment property of the Poisson process.
Let

Ap={(t1,...,tn) ERT : 0<t; <---<tl,}, n>L

Proposition 2.3.6. For any f € L'(A,,e *"ds; - - - ds,) we have

E[f(T1,...,Tn)|F] (2.3.5)

S o [ SNyt2
:/ 67(8"7)/ / f(T1,~-~7TNta3Nt+1a-~-a3n)d5Nt+1"'d3n~
t t t

Proof. Apply Relation (2.3.4) using the fact that for fixed ¢ > 0, (Ng—Ni)s>¢
is a standard Poisson process independent of F;. (]

In particular we have

E[f (T 7] = 1w zny f(Tn) + /too Pr-1-n(x = ) f(z)dz,  (2.3.6)

and taking ¢ = 0 in (2.3.5) recovers Relation (2.3.4).

Proposition 2.3.7. Given that {Np > n}, the jump times (T1,...,T,) of
the Poisson process (Ny)ier, are independent uniformly distributed random
variables on [0,T].
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Proof. For alln > 1 and f € C.([0,T]") we have

T tn to
E[f(Ty,...,Ty)] = /\n/ o= Mn / .. / f(tr, ... tp)dty - diy,
> T —t k—n
:e—AT)\nZ)\k—n/ / / ft1,-..,tn)dt1"'dtn
k=
175 tn+2
_)\T Z )\k/ / / dtn+1
tn tn

n+1
x/ / ftr, ... t)dty - dty
0 0
o0 T tr to
e—ATZA’f/ / / f(tr, ... ty)dty - - diy
k=n

=e‘”Z / /ftl,..., Yty - - dty,
ZTk NTfk/ /ftl,... n)dty - dty,

NT>n/ / ftl,..., dt1 -dt,,

]E[f(Tl,, )|NT>’I'L P(NT>’I'L)

hence

]E[f(Tl, )‘NT>TL / / ftl,... dtl d

O

As a consequence of Corollary 2.3.5, (M;)ier, = ANV2(N, — At)ier, has
centered independent increments, hence it is a martingale. Moreover a direct
variance computation under the Poisson law shows that we have

E[(Mt - Ms)2|‘7:s} = E[(Mt - MS)Z]

=t—2s,

hence from Remark 2.1.2 we get the next proposition.

Proposition 2.3.8. The normalized compensated Poisson process
ATV (N = At)ser,

is a normal martingale.
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2.4 Compound Poisson Martingale

In this section, (Yy)r>1 denotes an i.i.d. sequence of random variables with
probability distribution v(dy) on R.

Definition 2.4.1. The process

:zt:Yk, te Ry,
k=1

1s called a compound Poisson process.

For simplicity we only consider real-valued compound processes, however
this notion is easily extended to the R%valued case, see Relation 6.3.2 in
Section 6.3 below.

The compound Poisson processes provide other examples of normal
martingales.

Proposition 2.4.2. For any t € [0,T] we have
(o)

E fexp (ia(Xr — X,))] = exp (A(T [ - 1>u<dy>) |

a € R.

Proof. Since N; has a Poisson distribution with parameter ¢ > 0 and is
independent of (Y3)g>1, for all &« € R we have by conditioning:

Nt
E[exp (ia(X1 — X;))] = E |E |exp (m Z Yk) ’NT B Nt”
k=N,
e~ MT—1) Z —t)"E |exp (Zazyk> ’NT — Ny = n]
k=1
_ ANT— t)z 7t”E exp (ZO{ZYk)
n= 0 k=1
— o NT—1) Z | (T — )™ (E [exp (iaY1)])"
n.
n=0
(%) ) n
_ ATt Z < / emyu(dy)>
n= 0 e

— 00

= exp </\(T —t) /C>O (" — 1)V(dy)> ;

since v(dy) is the probability distribution of Y;. O
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:e*”iA " zn:Yk‘Nt—n]
n=0 k=1
o] An¢n n
:e—”Z ¥ E ZYk

o0

B e_)\tE Z )\ntn

n:l

= ME[V1],

In particular we have

E[X:]

Ny
E ZYk‘Nt
k=1

and

Ve [ = !(Zn— ) }
(B e ]

_ ey Mg [E [(ZYk—AtEH)Q‘Nt_n]]

=F

n=0

2
L= AT -
—e Atzo ) E <Z Yk—,\tE[Yl]> ]

_ —Atz)\tnE[Q 3 Yle+Z|Yk| — 2ME[Y1] ZYk+)\t( [Y1))?

1<k<i<n = k=1

=e Y M (0 — DEWI]? + nE[Yi 7] - 20M(EV])? + A (B[Y])?)

— n!
o0 o0
_ A" _ )\”t"
=e MEM]D?Y (n— ) e ME[V1 3] Z
n=2

2 M A(E[YA])? Y (nxi :);

n=1

+ A (E[V1))?)
= ME[|V1 3.

Both relations can be recovered from the characteristic function of X;, as

d .
E[ezaXt]\a:O

E[Xt} = _Zda
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= At / h yu(dy)

—00

= ME[Y1],
and

Var [X;] = E[| X, ] — (E[X,])?

d2 (%o
= a2 E[e****]jaz0 — t*(E[Y1])?

=\t / Iyl u(dy)

= ME[|v1]2].

From Proposition 2.4.2 we check as in Corollary 2.3.5 that (X;)cr, has
independent increments, since for all 0 <ty <ty --- <t, we have

E — E[eia(X*" —Xto)]

n
H pia(Xey —Xe, )

i=1

= oxp (At —t0) [ @ - i)

= ﬁexp ()\(ti —ti—1) /oo (e — 1)y(dy)>
i=1 -
= ﬁJE {eia(xti_xtifl)} , a €R.

Moreover we have
E[(M; — M,/ F,] = EI(M; — M) =t — s,

hence the following proposition.

Proposition 2.4.3. The compensated and rescaled process

X, — ME[Y]
o

= . teR,,
VAVar [Y7] -

is a normal martingale.

Compound Poisson processes belong to the more general family of Lévy pro-
cesses, see Section 6.1 of Chapter 6.
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2.5 Stochastic Integrals

In this section we construct the It6 stochastic integral of square-integrable
adapted processes with respect to normal martingales. Recall that the filtra-
tion (F;):er, is generated by (M;)icr, , i.e.

Fi=0(Ms : 0<s<t), teR,.
A process (X;)ier, is said to be Fi-adapted if X; is Fi-measurable for all
teR,.

Definition 2.5.1. Let LY (2 x Ry), p € [1,00], denote the space of
Fi-adapted processes in LP(§2 x R}).

Stochastic integrals will be first constructed as integrals of simple predictable
processes.

Definition 2.5.2. Let S be a space of random variables dense in L(£2, F,P).
Consider the following spaces of simple processes:

i) let U denote the space of simple processes of the form

Ut = ZFil(ti—l,tj](t)a t e R+,
i=1

Fr,...,F,eS ty =0ty <--- <}, n>1.
i1) let P denote the subspace of U made of simple predictable processes
(ut)ier, of the form

n
up =3 Filgn (1), t e Ry, (2.5.1)
i=1
where F; is Fir  -measurable, i =1,...,n.

One easily checks that the set P of simple predictable processes forms a linear
space. Part (i) of the next proposition also follows from Lemma 1.1 of [64],
pages 22 and 46.

Proposition 2.5.3. Let p > 1.

i) The space U of simple processes is dense in LP(£2 x R).
i) The space P of simple predictable processes is dense in L (2 x Ry).

Proof. We will prove both (i) and (¢¢) by the same argument, starting with
the case p = 2. Let (ut)epo,r] € L?(02 x [0,T]) and consider the sequence
(u™)nen of simple processes defined as
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n
ti—l

1
ult = Zl(tl g g /t ugds, teRy, n>1, (2.5.2)

where 0 = ", <t <t} < --- <tl'_; <t =T is a subdivision of [0,7].
Clearly, u™ belongs to U and in addition it is predictable and belongs to P
when (u¢)ejo,7) is adapted. We have

2
[lu— UnHL2(rsz+)

i n 2
n 1 2
=F / ( Zl (tr_ .17 (s) L /t" qu7'> ds

i—2

n 2
1 tia
=E / (Z l(tz 17tn] < Ug — tnil _ tn72 lﬂ quT>> ds

-2

n 2
1 ti_q
=E / (Z Lin n] e /t (us — u-,-)dT) ds
= -2
[ b g —u ’
=K / 1 0] / ® T odr| ds
0 Z (Fnt o, iy — iy
I 1 t?—l
<E / Z 1(t:L 1at7l] _tn / (us - uT)QdeS]
L 0 i—2 Jt

. i—2
=> (7 - / /
i=1 ¢

_ 2
{ (nus :T) " } drds,
o B ti—l)(ti—l B ti—2)

which tends to 0 provided (u¢)sefo,r) is (uniformly) continuous in L?(£2) on
[0, 7). If (u)eepo,r) € L*(2 x [0,T7]) is uniformly bounded but not conti-
nuous in L?(§2), then it can be approximated in L?(§2 x [0, 7T]) by continuous
processes in L?({2) using convolution by a smooth approximation of unity:

i@ = [T (1)@
-1 /:ous<w>so<tj>ds,

as € > 0 tends to 0, where ¢ € C°(R) is supported on [0,1] and such that
foo ¢(x)dr = 1. Moreover, the process u® is adapted when (ut)ico,7) is
adapted.

The conclusion follows by approximation of (ut):eo,r) in LP(£2 x [0,7]) by
uniformly bounded (adapted) processes, p > 1. O
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Note that an argument similar to the above shows that the simple processes

n
> g L, )
=1

also converges to (u¢)iejo,r) in L*(£2 x [0,T]) when (u¢)sefo,7) is continuous
on [0,71], a.e. uniformly on [0, 7] x §2, since

E/ ( Zw 1<t1,n<>>2ds
/ (Zl(tl Len)(s ( utg1)>2ds

/ Z 1(t tn] (’U,S — ut?_l)2 dS]
n n A 2
Ztkt? 1) /tl g | ) ]ds.
i—1 t

=E

n (tﬂ - t?ﬁl)

i—1 z

The stochastic integral of a simple predictable processes (u):er, of the form
(2.5.1) with respect to the normal martingale (M;);cr, is defined as

/ ’U,tht = ZFZ(Mtz - Mti—l)' (253)
0

i=1

Proposition 2.5.4. The definition (2.5.3) of the stochastic integral with
respect to the normal martingale (M;)ier, on simple predictable processes
extends to u € L2,(2 x Ry) via the (conditional) isometry formula

E U 1[S7oo)utht/ 1 (s oy vrd M, fs] - U utvtdt‘fs} ,  scR,.
0 0 s
(2.5.4)

Proof. We start by showing that the isometry (2.5.4) holds for the simple
predictable process u = Z?:l Gil(y,_ 4, wWith s =19 <tp <.ty

n 2
(A utht) ’fé (Z Gz(Mt7 - Mtq‘,—l)) “7:3
i=1
=E Z ‘GZ‘2(Mtz - Mti—l)z‘fS]

2
E
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+2E Z GiGj(My, — Mti—l)(Mtj - Mtj—l)

1<i<j<n

Z ‘G ‘ Mtz Mti—1)2|*7:t7‘,—1] |*7:é]

+2 Z [ [G G ( Mt7 1)(Mtj Mtj—1)|ftj—1j| ‘]:s]

1<i<j<n

‘G ‘ E Mti - Mti—1)2|*7:t7‘,—1] |*7:é]

||M:

+2 Z [GZG](Mtz - Mti—l)E[(Mtj - Mtj—1)|ftj—1]‘]:3}

1<i<j<n

=E | IGil*(t: —ti_l)’}"s]
i=1

= Efl|ullf2g, )| Fs]-

As in the discrete case, cf. Proposition 1.2.2, the stochastic integral operator
extends to L2 ;(£2xR, ) by density and a Cauchy sequence argument, applying
the isometry (2.5.4) with s = 0, i.e.

E |:/ utht/ ’Utht:| =E |:/ ’Z,Lt’l)tdt:| . (255)
0 0 0

O

The Ito integral with respect to the normal martingale (M;)icr, has the
following locality property.

Proposition 2.5.5. Let A € F and u € L? (2 x Ry) such that

us(w) =0, 14(w)ds x P(dw) — a.e.

(o)
/ usdM; =0,
0

Proof. Consider the sequence (u})scr,, n € N, of simple predictable pro-
cesses defined as

Then

P(dw)-a.e. on A.

1 25
Z 1(tz 1ty ]tn n / USdS, n e N,
i ti o

-1 ti72
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in the proof Proposition 2.5.3, which converges to u in L?(£2 x R,.). Clearly,
T

ul vanishes on A, dsdP-a.e., hence ugdMs = 0, P(dw)-a.e. on A for all

0
n > 0. We get the desired result by taking the limit as n goes to infinity.

O
The It6 integral of u € L2?,(£2 x R.) on the interval (a,b) is defined by
b o]
/ usdMy = / 11a,0)(8)usdMs,
a 0
with the Chasles relation
c b c
/ usdMy = / wsd M, —|—/ usdM,, 0<a<b<ec (2.5.6)
a a b

Proposition 2.5.6. For all T > 0, the indefinite integral process

t
</ uSdMS>
0 te[0,T]

has a measurable version in LZ,(£2 x [0,T7).

Proof. Let (u™),en be a sequence of simple predictable processes converging

to uw in L2(§2 x [0,T]). We have
T
/ / lus — u?|*dsdt
o Jo
T

T t t 2
/ (/ udesf/ uZdMS> dt| =E
0 0 0
/|us—u22ds]
0

E

<TxE

< 0.

Hence .

¢
lim ulrd M :/ usdM,, t €[0,T],
0

n—oo 0

in L2(02 x [0,T]), and the convergence holds dt x P(dw)-a.e. for a certain
subsequence of (u™),en. O

As a consequence, if a process (us)icr, is locally in L2,(2 x Ry):

T
IE/ u52d51<oo, T >0,
0
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then the indefinite integral process ( fot ugdM s) N has a version which also
teRL

belongs locally to L?,(£2 x R.). Note also that the sequence

n

ti—1
Z 1[ti,1,ti] / usdMs, n=>1,
0

i=1

converges to <fg udes) o0.1] in L2,(£2x[0,T7]) as the mesh of the partition
t€0,T
0=ty <ty <---<t, =T goes to zero.

Proposition 2.5.7. For any u € L?,(£2 x R}) we have

oo
E {/ usdMs
0

In particular, fg usdMs 1s Fi-measurable, t € Ry .

t
ft:| :/ ’Z,LdeS, tER+
0

Proof.  Let u € U of the form u = G1(,, where G is bounded and
Fa-measurable.

i) If 0 < a <t we have

E {/ usdMs
0

ft} =E[G(My, — M,)|F]

= GE (M, — M,)| F]
= GE [(My — M,)|F,] + GE [(M, — M,)|F]
= G(M; — M,)

oo
~ [ tpateuan.
0
ii) If 0 < ¢t < a we have for all bounded F;-measurable random variable F':
E [F / udes] —E[FG(M, — M,)] =0,
0

hence

E[G(My — Ma)|F]

7

E {/ usd Mg
0

0

o

10,4 (s)usdMs.
0
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This statement is extended by linearity and density, since by continuity of
the conditional expectation on L? we have:

t 0o 2
E </ uSdMSE|:/ usd M ft])
0 0
- . 5
= lim E (/ u?dM; — E [/ usdMs ft:|) ]
- - . 9
= lim E (IE [/ uldM; f/ usdMs ft]) ]
- - o 9
< lim E |E (/ ul dMg —/ udes> ‘ftH

oo 2
< lim E (/ (uy — us)dMS) ]
n—oo 0

r (o)
= lim E / |u?us|2ds]
0

n—oo L
as in the proof of Proposition 1.2.3. ]
In particular, since Fo = {0, 2}, the Ito integral is a centered random

variable:
E {/ uSdMS} =0. (2.5.7)
0
The following is an immediate corollary of Proposition 2.5.7.

Corollary 2.5.8. The indefinite stochastic integral (fg udes) N of u €
teRL
L2,(2 x Ry) is a martingale, i.e.:

t
E {/ urdM;
0

Recall that since the Poisson martingale (M;);cr, = (Ny —t)icr. is a normal
martingale, the stochastic integral

T
/ Utht
0

is defined in Itd sense as an L2({2)-limit of stochastic integrals of simple
adapted processes.

fs} :/ urdM;, 0<s<t.
0
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Clearly, from (2.2.2), (2.2.4) and (2.5.3), Ji(u) coincides with the single
stochastic integral with respect to (B;)ier,, i.e.

Jy(u) = /0 u(t)dB,

for all u € L?(R,). The next result is an integration by parts for Brownian
motion.

Remark 2.5.9. In the particular case of Brownian motion, i.e. when

(My)ter, = (Bt)ter,,

| swis = [~ rop

provided f € L?(R;) is C* on Ry, such that lim;_ . t|f(¢)|* = 0 and

A St /f

we have

Proof. We have

/Ooo f(t)dB; + /Ooo I/ (t)Bydt

oo 2
f(t)dBy

2
L2(£2)

o0 2
J(t)Bdt
L2(02)

- 0 0

+2 </(><> f(t)dBt,/oo f’(t)Btdt>L2(m
:/0 |2dt+/ / It ]dsdt+2/oo 1) /Otf(s)dsdt
:/0 ()| dt+/ / £t tAs)dsdt+Q/wf’(t)/tf(s)dsdt
= [ israee [ f’()/ sf()dsdt+2/ /f )dsdt

[ 25, = _
= [ 1rwra=2 [ oo 2/0 HOIRY

= — lim tf?(t)
t—oo
= 0.
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Since the It6 integral is defined in the L?(2) sense on adapted processes in
L?(2 xRy, dP®dt) the integrals of the adapted and predictable version of a
given square-integral process coincide, as follows from Proposition 2.5.3-i7),
see also [31], page 199.

In particular, for the compensated Poisson martingale (M;)ier, = (N; —
At)ier, , the integrals

(oo} o0
/ urd My and / ug—dMy
0 0

coincide in L?(£2) whenever ¢ — u; has left and right limits, P-a.s., since the
set of discontinuities of a function having left and right limits in every point
is always countable, cf. e.g. [52], page 5.

In the Poisson case, in addition to its definition in L? sense, the It6 integral
also admits a pathwise interpretation as the Stieltjes integral of (us—)i>o
under uniform continuity conditions, as shown in the next proposition, in

which
(My)ter, = AV2(Ny — At)ier,
is the compensated Poisson martingale with intensity A > 0.

Proposition 2.5.10. Let (ut)iepo,1] € L?(2 x [0,T)) be an adapted process
with a cadlag version (i.e. continuous on the right with left limits), (t¢)ie(o,1)
such that

lim sup |4, — @_|* =0, (2.5.8)
e—0 tele, T
in L*(£2). Then we have
T T
/ wydM, = A1/ / iy (w(dt) — Adt),
0

0

P(dw)-almost surely, where w(dt) denotes the random measure

o0
w(dt) = or, (dt).
k=1
Proof. Let
AY = sup |a,- —ur_c|? 0<e<T,

tele,T)

and u; = Uy-, t € Ry. Given a subdivision

T={0=ty<t1 < - <t, =T}
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of [0,T], with |7| = max;=1, ., |ti — t;—1|, we have

n 2 2

a_l[O,T] - Z U’Z—l L, 4

=1

n

Z(ﬁ_ - u?i—l)l(ti—lvti]

=1

L2(2%[0,T]) L2(2%[0,T])

< T)| A7 12 ()

hence from (2.5.8), Zuzl(ti—l,ti] defined by (2.5.2) converges to @~ in
i=1

L?(02 x [0,T]), and

n
Z uz (Mti, - Mt¢—1)

converges to fooo uy-dMy as |m| goes to zero. On the other hand we have

T n
\—1/2 / - (w(dt) — Adt) — > up (M, — My,_,)
0 i=1

L2(£2)
N
S A0 SEBUETENE 3 BB ICY
— 0 k=1 i=1 L2(2)
Nt o n
> Z Z% ieese(Th)
k k=1i= L2(2)
T n
L)L/ / usds—Zugil(ti —ti—1)
0 i=1 L2(02)
Nt n
Z Z L, ot (Tk)(ﬂT; —ug_,)
k=1i=1 L2(02)
T n
+A1/2 / Z 1 e (us —up )ds
0 =1 L2(2)

S ATV AL L @) INT I ) + ATVETY AL |12y,

hence as || goes to zero,

T
/ ’U/tht = lim Z’U/tl 1 Mt7 1)
0

\7r|~>0

T
= xlﬂ/ G- (w(dt) — Adt),
0

where the limit is taken in L?(£2). O
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Proposition 2.5.10 admits the following simplified corollary.

Corollary 2.5.11. Let T > 0 and let (u¢)ieor) € L*(22 x [0,T]) be an
adapted process with a uniformly cadlag version (ti)iepo,r] € L*(£2 % [0,T7)
and such that u € L*(£2,L°([0,T))), i.

sup |us| € L(12). (2.5.9)
t€[0,T]

Then we have, P(dw)-almost surely,

T T
/ wdM, = xl/?/ - (w(dt) — A\dt), T >0.
0 0

Proof. Tt suffices to check that Condition (2.5.8) holds under the hypothesis
(2.5.9). ]

Concerning the compound Poisson process

Ny
=> Vi, teRy,
of Section 2.4, under similar conditions we get

T T
/ ugdM; = (AVar [Yl])*l/z/ ug— (Yn,w(dt) — AE[Y7]dt),
0 0

where
X - ME[Y7]

. teR,.
V/AVar [v7]

2.6 Predictable Representation Property

Definition 2.6.1. We say that the martingale (M;)ier, has the predictable
representation property if

{c—i—/ wdMy : c €R, uEP}
0

is dense in L?(2).

The next proposition is the continuous time analog of Proposition 1.7.5.
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Proposition 2.6.2. The martingale (M;);cr, has the predictable represen-
tation property if and only if any square-integrable martingale (X;)ier, with
respect to (Fi)ier, can be represented as

t
Xt = XO +/ ’U,SdMS, te R+, (261)
0

where (ug)ier, € L2,(2 x Ry) is an adapted process such that
u1[07T] S LQ(Q X R+)

for all T > 0.

Proof. Assume that for any square-integrable martingale (X;);cr, a repre-

sentation of the form (2.6.1) exists. Given F' € L%(§2), letting
Xt:]E[F|ft}, t€R+,

defines a square-integrable martingale (X¢)ier,. If F is in L*(12),
Proposition 9.4.1 in the Appendix shows that (X,)nen converges to F
in L2(£2). On the other hand, X,, can be represented from (2.6.1) as

X, = E[F) +/ uydMs, n>1,
0

where for all n > 1 the process u™ can be approximated by a sequence of
elements of P by Proposition 2.5.3. Hence

o0
{ch/ wdM; : c € R, uGP}
0
is dense in L2(£2).

Conversely, assume that the predictable representation property of Definition
2.6.1 holds and let (X;)ier, be an L? martingale. Then for all n > 1 there

exists a sequence (u?’k)te[om] in P such that the limit
n

X, = Xo+ lim u?’det
k—oo 0

exists in L?({2). By the It6 isometry (2.5.4), the sequence (u?’k)te[om] is

Cauchy in L2(£2 x [0,7n]) and by completeness of LP spaces it converges to a
process (uf)iepo,n) € L*(£2 % [0,n]) such that

Xn:XO—l—/ ul dMs, n > 1.
0
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Then from Proposition 2.5.7 we have, for all n € N and ¢ € [n,n + 1):

X; = E[Xp41|7]

r n+1
=E | X, +/ u M,
L 0

7

r n n+1
=E | Xy +/ u?“dMS +/ u;”rldMS
0 n

;

n+1
Fn] +E { / u" M,
n

r n
=E X0+/ u M,
L 0

r n+1
=E | X, +/ u M,
L 0

- n+1
_E XnH’fn} +E U WM,

]-'t]
n+1
= X, +E U u?“dMs‘]-"t]
; n
=X, +/ utdM,.
Letting the process (us)scr, be defined by

us:u?H, n<s<n+1, neN,

we obtain

t
Xt:X0+/ Udes, tER+,
0

which is (2.6.1).

n+1
Fn] +E { / u M,

7

.

]

In the sequel we will show that Brownian motion and the compensated
Poisson process have the predictable representation property. This is how-
ever not true of compound Poisson processes in general, see (2.10.5) below.

2.7 Multiple Stochastic Integrals

Let L?*(R4)°" denote the subspace of L?(R4)®™ = L?(R" ), made of symmet-
ric functions f,, in n variables (see Section 9.7 in the Appendix for a review
of tensor products). The multiple stochastic integral of a symmetric function

fn € L?>(R,)°" is defined as an iterated integral. First we let

I(f) = /0(><> f(t)dMy, feL*Ry).
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As a convention we identify L?(R,)°° to R and let

Io(fo) = fo. fo € L*(R,)° ~R.

Proposition 2.7.1. The multiple stochastic integral I,(f.) of f. € L?
(Ry)°™, defined by induction as

In(fn) = TL/ Infl(fn(*vt)l[O,t]"_l(*))tha n > ]-7 (271)
0
satisfies the isometry formula
E[Ln (fn)Im(gm)] = ! (—m) <fm,gm>L2(R1)a

fn € L2(Ry)°™, fr, € L2(R4)°™, n,m € N.
Proof. Note that the process

t— Infl(fn(*v t)l[O,t]"_l (*))
is Fi-adapted, cf. Proposition 2.5.7, hence the iterated stochastic integral in

(2.7.1) is well-defined by Proposition 2.5.4. If n = m > 1 we have from (2.7.1)
and the Ito isometry (2.5.5):

E[l I (fa)"] = n? /Ooo BT -1 (fn (1) (0,01 (%)) [*)dt,

with the convention Iy(fo) = fo € R. By induction on n > 1 this yields:

E[L,(fn)?] :n!2/0 /O"_,./02 Fultty oo t)Pts - dt,

= ! fullZ2en)-
On the other hand, from (2.5.7) we have

E[L(f1)10(90)] = To(g0)E[11 (f1)] = 0.
By induction on the rank n > 1 of I,(f,), assuming that

Elln(fa)le(fe)l =0,  0<k<n,
fr € LA(Ry)°F, 0 < k < n, we have for all 0 < k < n:

E[Ln41(fa) Ik (fr)]

= k;(n + 1) /Ooo E[In(fn+1(*,t)]-[o,t]"(*))lk—l(fk(*at)l[o,t]k—l(*))]dt
= 0,
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hence for all n > 1 we have

E[L, (f)Iu(gs)] =0, 0<k<n—1.

In particular we have E[L,(f,)] = 0 for all n > 1.

We also have

oo tn to
In(fn):n!/ / / fu(ti, .o tn)dMy, - dMy, .
0 0 0

On the other hand, the symmetric tensor product u o f,, satisfies

n+1
uofn(tla' . ~atn+1)

u € L?(Ry), fn € L2(R4)°™, hence

In+1(u o fn) = nA In(fn(*, 8) © u(')l[O,s]"(*a ))dMS
Jr/o u(s)In(fnl[(),S]n)dMs.

Lemma 2.7.2. For all f, € L*(R;)°", n > 1, we have

E[In(fn) | ]:t] = In(fn]-[o,t]"), te R+.

1
= n + 1 Z;u(tz)fn(tl, e ati—lati+1a e 7tn+1),

(2.7.2)

(2.7.3)

(2.7.4)

Proof. Since the indefinite It6 integral is a martingale from (2.7.2) and

Proposition 2.5.7 we have

E[L(f,) | Fi] = n'E Um/t/ot Faltrer o tn)dMy, - dM,,

ta
= TL'/ / / fn(tl,...,tn)thl "'th"
0

= In(falpo,n)-

7

O

As a consequence of Lemma 2.7.2, I,,(f,) is Fi-measurable if and only if

fn= fnl[O,t]"a

ie. f, =0 over R™\ [0,¢]".
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2.8 Chaos Representation Property

Let now

S—{ka(fk) D fr € LARYR k=0,...,n, nEN}.
k=0

Let also Hyp = R and
Ho = {In(fn) : fn € Lz(R+)On}> n > 1.

We have
S C Vect {UHH}.
n=0

The following is the definition of the Fock space over L?(R.).
Definition 2.8.1. The completion of S in L*(£2) is denoted by the direct sum

S
n=0

The chaos representation property states that every F' € L?(£2, F,P) admits
a decomposition

(o)
F= fO + ZITL(fn)7
n=1
where fo = E[F] and f, € L*(R)°", n > 1.
It is equivalent to stating that S is dense in L?(£2), and can also be formulated
as in the next definition.

Definition 2.8.2. The martingale (My)icr, has the chaos representation
property if

LX(0,F,P) = éﬂn.

n=0

In case (M;)ier, has the chaos representation property, the multiple stochas-
tic integrals I,, provide an isometric isomorphism between L2({2) and the
Fock space ®(L?*(R)) defined as the direct sum

B(I2(R,) = ko () LR,

n=1

Definition 2.8.3. The number operator L is defined on S by L = 6D.
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The operator L satisfies
LIn(fn) = nIn(fn)a fn € LQ(RJr)ona n e N.

We will note later, cf. Proposition 5.1.5 and Proposition 6.3.2, that Brownian
motion and the compensated Poisson martingale have the chaos representa-
tion property.

Moreover, the chaos representation property of Definition 2.6.1 implies the
predictable representation property, as will be shown in Proposition 4.2.4
below.

2.9 Quadratic Variation

Next, we introduce the quadratic variation of a normal martingale.

Definition 2.9.1. The quadratic variation of the martingale (My)iecr. is the
process ([M, M];)icr, defined as

t
[M, M]; = M? — 2/ MdM,, t € Ry. (2.9.1)
0
Note that the we have

t
[M, M]; — [M, M), = (M; — M,)? — 2/ (M, — M)dM,, 0<s<t,
) (2.9.2)
since

t
Ms(Mt—Ms):/ M,dM,, 0<s<t,

as an immediate consequence of the definition 2.5.3 of the stochastic integral.
Let now
Tt ={0=1ty <t} <---<tp_, <tn=t}

denote a family of subdivision of [0, ¢], such that |7"| := max;=1,_, [t} —t 4|
converges to 0 as n goes to infinity.

Proposition 2.9.2. We have

n

[M, M]t = lim Z(Mtn — Mt’,‘ 1)2, t Z 0,
n— oo P B v

where the limit exists in L*(£2) and is independent of the sequence (7™)nen
of subdivisions chosen.
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Proof. We have

(M, M)y — [M, M)y | = Mz — M2 —2 [ MM,
e

t

i

= (M — My >+ 2/ (Myn_
tr

— My)dMs,

hence

E ([M, M); — i:(Mt? — Mt?1)2>

i=1

2
n
= (Z[M, Mgz — M, Mgz, — (Miy — Mt;:1>2)

i=1

r 2
nooat
= 4E (Z / L g (s) (M, — Mtg_ndMs)
i=170
Fn
— 4FE Z/ (M — My |)2ds
Li=1 ey
Fn e
=4E Z/ (s — t?l)zds]
Li=1 ey
< 4t|n|.

O
Proposition 2.9.3. The quadratic variation of Brownian motion (By)icr, is

[B,B]t:t, tER+

Proof. (cf. e.g. [121], Theorem I-28). For every subdivision {0 =t < --- <
t" =t} we have
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< timlE[(Z* - 1)%),

where Z is a standard Gaussian random variable. O

Concerning the Poisson process, a simple analysis of the paths of (N;)ier,
shows that the quadratic variation of the compensated Poisson process

(Mi)ier, = (Nt — t)ier, is
[M,M]t:Nt, t€R+

Similarly for the compensated compound Poisson martingale

X; — ME[Y;
t = K [ 1}, t e R+,
V/AVar [V]]
where
Nt
Xi=)» Yi, teRy,
k=1
we have

Nt
M, M), =Y [i?,  teRy.
k=1

Definition 2.9.4. The angle bracket (M, M), is defined as the unique in-
creasing process such that

M? — (M, M)y, teRy,

s a martingale.
As a consequence of Remark 2.1.3 we have

<M7M>t:ta te€Ry,

for all normal martingales.
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2.10 Structure Equations

We refer to [37] for the following definition.
Definition 2.10.1. An equation of the form

t
[M,M}t:t—i—/ psdM,, teR,, (2.10.1)
0

where (¢1)rer, € L2,(2%xRy) is a square-integrable adapted process, is called
a structure equation.

In the sequel we will always consider a right-continuous version of (¢):er, -
From (2.9.2) we get that for any normal martingale satisfying the structure
equation (2.10.1) we have

t t
(Mt—Ms)2:2/(MT—MT)dMT—|—/ GrdM, +t — s, 0<s<t.
S S

(2.10.2)
Moreover,
[MaM]t_<M?M>ta teR-‘ra

is also a martingale as a consequence of Remark 2.1.3 and Corollary 2.5.8,
since by Definition 2.9.1 we have

[M, M)y — (M, M), = [M,M]; —t

t
:Mf—t—Q/ MydM,, teR,.
0

As a consequence we have the following proposition.

Proposition 2.10.2. Assume that (M;)iecr, is a normal martingale in L*
having the predictable representation property. Then (My)icr, satisfies the
structure equation (2.10.1), i.e. there exists a square-integrable adapted pro-
cess (¢t)ier, such that

t
(M, M], :t+/ bsdM,,  teR,.
0
Proof. Since ([M, M]; — t);er, is a martingale and (M;);cr, has the chaos

representation property, Proposition 2.6.2 shows the existence of a square-
integrable adapted process (¢;)¢cr, such that

t
[M,M}t—t:/ ¢.dM,,  tER,.
0
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In general, letting
it = 1{¢t:0} and jt=1—1 = 1{¢t¢0}, te R+, (2103)

the continuous part of (My)icr, is given by dM{ = i;dM; and the eventual
jump of (My)icr, at time t € Ry is given as AM; = ¢, on {AM,; # 0},
t € Ry, see [37], page 70.

In particular,

a) Brownian motion (B;);cr, satisfies the structure equation (2.10.1) with
¢ = 0, since the quadratic variation of (By)ser, is [B,B]; =t,t € R;. In
(2.10.6) we have AB; = 4++/At with equal probabilities 1/2.

b) The compensated Poisson martingale (M;)ier, = AN — t/A?)ser,,
where (N))ier . is a standard Poisson process with intensity 1/A?, satisfies
the structure equation (2.10.1) with ¢ = A € R, t € R, since

[M,M]; = N’N} =t + A\M;,  teR,.

In this case, AM; € {0,A} in (2.10.6), with respective probabilities 1 —
A72At and A2 At.
c) If (¢¢)ter, is deterministic, then (My)icr, can be represented as

th - ’I:tdBt —+ ¢t(dNt - )\tdt), t € R+, MO = O, (2104)

with A\, = ji/¢7, t € Ry, where (By)er, is a standard Brownian motion,
and (N¢)icr, a Poisson process independent of (By);er, , with intensity
v = [ Asds, t € Ry, cf. [37].

d) The Azéma martingales correspond to ¢ = SMy, 8 € [—2,0), and pro-
vide other examples of processes having the chaos representation property,
and dependent increments, cf. [37].

e) Not all normal martingales satisfy a structure equation and have the
predictable representation property. For instance, for the compound Pois-
SON process

Nt
Xi=)» Yy, teRy,
k=1

and the compensated compound Poisson martingale

X; — ME[Y;
p="" : 1}, teRy, (2.10.5)
V/AVar [v1]
of Section 2.4 we have
Ny

[M, M]: = (A\Var[a]) ™' Y [Yal?
k=1
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t
= (A\Var [Yl])*l/ Yitn, _ |2dNs
0

= (A\Var[Y;])™* /Ot |Y1;Nf_ ‘Zd(Xs — AE[Y1]ds)

+E[Y1](Var [Yl])*l/o YNS ds

Y;
/ | 1+N ‘ U‘(
\/)\Var Yi

Y; 2
+E[Y1](Var [Yﬂ)*l/?/ Yign, | ds,
0 Y,

t € Ry, hence (M;)icr, does not satisfy a structure equation and as a
consequence of Proposition 2.6.2 it does not have the predictable repre-
sentation property, and it does not satisfy (2.10.1). Another way to verify
this fact is to consider for example the sum

M; = N} —t+ (N 1)

where |a| # 1 and (N}!), (N?) are independent standard Poisson processes.
In this case,

T
(M7)* — 2/ M,-dM, = N} + |a|* N2,
0

can clearly not be represented as a stochastic integral with respect to
(My)ier, when |af # 1.

The structure equation (2.10.1) can be informally written as
(AMy)* = At + ¢y AM,,

with solution

2
AM,; = q;t + \/(q;t) + At, (2.10.6)

which is a continuous time analog of Relation (1.4.2). By the martingale
property of (My)icr, we have the equation E[AM;] = 0 which yields the
respective probabilities

1 o

F :
2 2\/¢? +4At

compare with (1.4.2) and (1.4.4). This provides a procedure to simulate sam-
ple paths of a normal martingale.
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. ANTUA VAV
} AR R

0 0.1 02 03 04 05 06 07 08 09 20

Fig. 2.1 Sample path of an Azéma martingale with 8 = —0.5

Figure 2.1 presents a simulation of the paths of an Azéma martingale, in
which case we have

2
AMp:m?i¢(m?:)+At

with probabilities

+ )
2 2\/(BM;-)% +4At
for some 3 € R.

Informally, the above calculations of quadratic variations can be obtained by
applying the rules
|dB|? = dt,

‘dNt‘Z - dNt,

‘dXt‘Z = |YNt|2dNt7

|dt|? = 0.

2.11 Product Formula for Stochastic Integrals

In this section we present a multiplication formula in L?(§2) for stochastic
integrals with respect to normal martingales. For this we need to be able to
control their L* norms as in the next proposition.
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Assumption 2.11.1. Assume that for some constant K > 0,

E

b
/ qsﬁds‘fa] <K?(b—a), P-as, 0<a<b. (2.11.1)

Note that Condition (2.11.1) holds whenever (¢)cjo,r) € Lag(£2 x [0,T7).
This condition is satisfied in all cases of interest here, since for Azéma mar-
tingales we have (¢1)icj0.1) = (BMt)icpo, 1), B € (—2,0), and sup,¢jo [ M| <
(—2/8)Y/? < oo (see [37], page 83). In addition, Brownian motion and the
compensated Poisson martingales satisfy this hypothesis. Assumption 2.11.1
leads to the next proposition.

Proposition 2.11.2. Under the Assumption 2.11.1 we have

o0
’ / usdMg
0
1/2 1/2 )

< C(H“HL“(QXRQ + ||U||L4(Q,L2(R+)) + ||’u’||L4(.Q,L2(R+))“u‘|L4(Q><R+)
for allu e L,(2 x Ry) N L2, L*(Ry)), where C > 0 is a constant.

(2.11.2)

L4(Q)

Proof. Let u € P a simple predictable process of the form
n
uw=> Gil, (2.11.3)
i=1

for a given a subdivision 7 = {0 =tg < t; < --- < t,} with

‘71'| = max |tz 7ti,1‘ § 1.
i=1,...,n

We have, using Relation (2.1.1),

(/Oooudes) —E (g:cz,»(Mm_Mtj_1)>4

Z G:L(Mtz - Mti—1)4]
i=1

4
E

=E

- Mtj—l )2

J

+2E | Y GIGH(My, — My,_,)* (M,

1<i<j<n

=K Z G?(Mtz - Mti—1)4]
i=1
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2B | Y GIGH(My — My, )*(t; — 1)

1<i<j<n

n
< E Z G?(Mtz - Mti—1)4]
=1
n (o]
+2E | Y GH(M;, fMtH)z/ ug|?ds
i=1 ti
<E

Z G:L(Mtz - Mti—1)4]
=1

+2 (E (/Ooo %2078) 2D1/2 E (i G} (M, — Mti_1)2>

We will deal successively with the three terms in the above expression. From
Relation (2.10.2) we have

o7\ 1/2

E

n 2
(Z GY (M, — Maf) } (2.11.4)

=1

=E

n t; t; 2
(Z 2G? / (M, — My, )dM, + G2 / ¢rdMr + G3(ti—1 — ti)> }
i=1 tioa Jtica

i—1 ti—1

[ n t; 2 t; 2
<3E | 4G} </ (M, — Mt,,l)dMT> + G ( qudT) +GHti1 — ti)Q}
Li=1 t

[~ t; t;
<3E|Y 4G4 / (M, — M,, )2dr+G(t; — ti,l)/ |6 |2dr+ G (ti1 — ti)ﬂ
i=1 ti 1

Jtiy

[ n t; t;
< 3E 2214G;l/t (7‘ — tifl)dT + Gf(tl — tifl)/t ‘¢T|2d7'+ G;.l(ti71 - ti)2:|
Li= 1 i—1

i

[ t;

< 3E ZG? (4/ (T—ti_l)dT—F(KQ-i—l)(ti—ti_1)2>:|
Li=1 tioa

<3G+ E)nlllull1soxr, )

Next from Relation (2.10.2) we have
¢ t
(Mt—Mé)él: (t—s) (2/ (MT—Mé)dMT-i-/ ¢-,—dM-,—+t—S)
t . e
+2/ (M, — M,)dM, (2/ (M, — M,)dM, + / drdM, + 1t — s>

t t t
+/ brdM, (2/ (MTfMS)dMT+/ qSTdMTths),
S S S
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hence from Proposition 2.5.7, Relations (2.1.1) and (2.5.4), and the condi-
tional Itd isometry (2.5.4) we have

b r rt
S| +E / d2dr|F.

E[(M; — M)*|Fs] = (t — s)> + 4E [/t(MT — M.)?dr

S

r rt
+4E / - (M, — My)dr

= (t—5)2+4/:(7'—s)2d7'

r rt
+4E / - (M, — My)dr

T rrt
s| +E / prdr|F.

.7-'3]
fs])m (E [/:(MT ~ M,)%dr
SR R

el el ]) ([
< (t—s)2+§(t—s)3+\;1 3/2( [/ ¢rdT‘.7-'sD1/2

E [/:(b.z,dT ]:s:|

4K
<(t—s) (K +t—s+
<t-s) 9

< (t—5)2+4/t(7—5)2dr+]E{/tgﬁdT

+4 (IE: |:/:¢3.d7’

)"

(-9 + ylt= 7).

which yields
ZG4 ] Z Mt 7Mt ) ‘fti—lﬂ

4K 4
s<K2Hw+ |w+3ﬂﬁ

V3

ZG4 —t 1] (2.11.5)

< [~(2||u||%4(!2><R+)’
for some constant K > 0. Finally, ((2.11.4)) and (2.11.5) lead to (2.11.2).
]

Next we state a multiplication formula for stochastic integrals with respect
to a normal martingale.
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Proposition 2.11.3. Under the Assumption 2.11.1, for all u € L2, x

Ry) N LA(02, L*(Ry)) we have / usdM, € L*(2) and
0

oo 2 oo s oo oo
</ udes> = 2/ us/ quMTdMS—l—/ |us|2¢des+/ lug|?ds.
0 0 0 0 0

(2.11.6)

Proof. For simple predictable processes (us)scr, of the form (2.11.3), for-
mula (2.11.6) follows from (2.10.2). It is extended to u € L,(2 x R4) N
L4(2, L*(R,)) using (2.11.2) and the It6 isometry (2.5.4) which shows that

(/Ooo us%de) Z|G |4/ ¢52ds]

ti—1

Z |Gil*(t: — tz‘—l)]

= Kllullzs(oxr, ),

E =E

< KE

and
) s 2 [e%) s 2
</ u/ quMTdMS) =E / |us|? (/ quMT) ds
0 0 0 0
oo s 4 1/2
g/ E [Jus]*]"/? dsE </ quMT>
0 0
< Cllullgq (llull 7o + lullZao. L2,y lulZa )
= LA(2xRy) LA(2xRy) LA, L2RN) U LA(2xRL) )
for some constant C' > 0. O

The proof of Proposition 2.11.3 can easily be modified to show that we have

t t t
</udM +/ads)</ ved M —i—/bds)
0
/us/dedM +/ /quMds
+/ vs/ aTdeMS+/ as/ vrdM.ds
0 0 0 0
t s t s
+/ as/ deTd8+/ bs/ ardrds
0 0 0 0
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/us/ vrdM,dM, +/vs/ urdM,dM,

/ bsusvsd Mg —I—/ UsVsds, (2.11.7)

where all terms belong to L*(§2), t € Ry, for all u,v,a,b € L2,(2 x Ry) N
LY@, 2(R.)).

As a corollary we have the following multiplication formula for multiple
stochastic integrals.

Corollary 2.11.4. Let u€ L*(R,) and veE L*(Ry). Then under Assump-
tion 2.11.1 we have for alln > 1 andt € Ry :

I1 (ul[o’t])ln(l[o’t]n’l}@m)

t t s
:/ usIn(l[O,s]"'v®n)dMs +TL/ Us-[nfl(1[0,5]"'_1v®(n71))/ urdMdM,
0 0 0

t t
+n/ (bsusvsln_l(1[07s}n_1v®(”_1))dMs—|—n/ usvsln_l(1[07S]n_1v®(”_1))ds.
0 0

Proof. Applying Proposition 2.11.3 to us and vsln_l(1[078]%111@("_1)), we
have

t t
11(ul[o’t])ln(l[o’t]nﬂ@n) :n/ udes/ ’Usln_l(1[0’5]7L—1’U®(n71))dM
0 0
t s
:n/ u/ v 1 (Lo rn-10® )M, M,
0 0
t s
—|—7’l/ 'Usln—l(1[0,8]"71U®(n_1))/ urdMrdMs
0 0
t
+n/ QSSuSvSIn,l(l[o,s]n_lv@)(”*l))dMs
0
t
—I—n/ usvsln_l(1[07s]n71v®("_1))d5
0
t t s
:/ usIn(l[O,s]"v(gn)dMS +TL/ UsInfl(l[O,S]"_lll)@(nil))/ urdMrdM,
0 0 0

t
—I-Tl/ ¢SUSvsln_1(1[073]1L71U®(n_1))dM8
0

t
+n/ UV —1 (1[0’S]n—1v®("*1))ds.
0
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2.12 Ito Formula

Consider a normal martingale (M;);cr, satisfying the structure equation
d[M, M}t - dt + ¢tht~

Such an equation is satisfied in particular if (M;)qcr, has the predictable
representation property, cf. Proposition 2.10.2.

The following is a statement of 1t6’s formula for normal martingales, cf. [37],
page 70, for a proof using formal semimartingales. The proof presented here
is in the L? sense.

Proposition 2.12.1. Assume that ¢ € Lyg([0,T] x §2). Let (X¢)iejo,1) be a
process given by

¢ ¢
X = Xo +/ usd M, +/ v,ds, te0,T], (2.12.1)
0 0

where (us)sefo,r] and (vs)sepo,r) are adapted processes in L2,(02 x [0,7)).
Then for all f € CL2(Ry x R) we have

t
[t Xe) — £(0, Xo) :/ flo, XKoo+ ¢S:;S) ; f(s’XS’)dMS (2.12.2)
0 s
of
t f(S,XS + ¢sus) - f(SaXs) - ¢susa (SaXs)
—I—/ 5 x ds
0 ¢s

boof tof
| X, X.J)ds, ).
+/0 0ot s, )ds+/0 o x)ds, el

Proof. We prove the formula in the case where f does not depend on time
and vy = 0, s € R4, since this generalization can be done using standard
calculus arguments. Assume now that u € U is a simple predictable process
of the form u = G143, with G € L*>(£2, F,). Clearly the formula (2.12.2)
holds when f = ¢ is a constant function. By induction on n > 1, we assume
that it holds when applied to f(z) = 2", i.e.

t

t
szxg+/ Lgds+/ UrdM,,
0 0

with
U" = (Xs* + (bsus)n - (Xs*)n
s ¢ )
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and
L = (Xé + (bsus)n - (Xs)n - n¢sus(Xs)n71

S ¢§ )

From Proposition 2.11.3 we have

SERJ’_

X XD = (X — Xo) (X! — XP) + Xo(XP — X2) + X2(X: — Xo)

t s t s
= / s / LrdrdM . + / U / UrdM,dM,
/L"/ urdM, ds+/ U”/ wrdM-dMg

/ eu UM, +/ w U ds
t
+Xo / L7ds + Xo / UrdM,, + X5 / usdM,
0 0 0

t t t
:/ XSdeMSJr/ XSLgds+/ X uydM,
0 0 0

t t
+/ usquUs”dMer/ usUl'ds
0 0

t t
:/ Lg+1ds+/ UL,
0 0

since

Urtl = ug (X )" + XUl + usps U = us X + X~ U + usps UL,

S

and
L' = Ultug + X, L7, seRy, neN.

This proves the formula for f polynomial and u € P. For all n > 1, let
T, =inf{s e Ry : |X | >n}.

Let f € C2(R) and let (f)men be a sequence of polynomials converging
uniformly to f on [-n,n]. Since 1y,<, 1 =1, as,0<s <t on {t <7},
from the locality property of the stochastic integral (Proposition 2.5.5) we
have for all m € N:

! fm(Xs* + ¢su8) - fm(X
Ps

t _ N . , 7
+1{t§7—"}/0 fm(Xs* +¢sus) frr;b(sz ) (bé’u/éfm(XS )ds

1{t§'r"}(fm(Xt) - fm(XO)) = 1{t§7"} ; Si)dMs
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¢ m(Xs- + dsts) — frn(Xs-
N T e
0

Ps
K m Xs—+ sUs) — me— — PsUs , Xs_
Faiegry [ Ly T 000 = Jol) = 0rua (),
0 ¢s
Letting m go to infinity we get
1{t§‘rn}(f(Xt) - f(XO))
t Xy + psug) — f( Xy
ey [y T O Iy
0 s
i Xs_+ sUs) — Xs— — Psls /Xs_
T T ™
0 s

and it remains to let n go to infinity, which proves the formula for f € CZ(R)
by locality of the It6 integral. The formula is then extended to u € L2 ([0, 7] x
2), by density of U in L2,([0,T] x £2), and finally to all f € C*>(R), again by
locality of the It integral. O

Note that if ¢5 = 0, the terms

f(Xs= + dsus) — f(Xs-)
s
and .
(X + gsus) = f(Xs) = dsus f'(Xs)
3
have to be replaced by their respective limits us f'(X,-) and Ju?f”(X,-) as
¢s — 0. This gives

toooof 1t L0%f
FIX0) — £(0, Xo) = /0 s ! (s, XM, + /0 i %5, X,)ds

t
+/ jsf(s,Xs_ +¢sus) *f(S,Xs_)dMS
0

s

C P, X ) = Fls X) — bt (5, Xe)
+/0 Js *

02 “
+/tv 8f(sX)ds+ taf(sX)ds te€[0,T]
0 Sax ) S o 88 K S 9 ) )

where the processes (i)icr, and (ji)ier, have been defined in (2.10.3).
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Examples

i) In the case of Brownian motion (B;);cr, we have ¢, =0, s € Ry, hence
the It6 formula reads

F(B) = £(0) + /O F(B.)dB. + | /0 F7(B.)ds.

ii) For the compensated Poisson process (N; — t);cr, we have ¢, = 1,
s € Ry, hence

SN — 1) = £(0) + / (F(1+ Nyo — ) — f(N,- — ))d(N, — 5)

+ / (F(1+ Ny — ) — F(No—5) — F'(Ns — 5))ds.
0

In the Poisson case this formula can actually be recovered by elementary
calculus, as follows:

J(Ne —1t) = f(0) + f(Ny —t) — f(Nt — Tn,)

Ny
+> fk=Te) = f(k—1—Tp 1)
k=1

Nt

= f0)+ > f(k—Ti) = f(k—1—T)

k=1

t

Ny Ty
_ f’(Nt—s)ds—Z/ f(k—1—s)ds
k=1

T, Ti-1
— f(0)+ / (F(L+ Noo — ) — F(No- — )N, - / J/(N, — s)ds
— 7(0) + / (J(1+ No- — ) — f(N.- — 5))(dN, — ds)
4 / (F(L+ Ny —5)— f(Ns — 8) — F/(N, — 5))ds.
0

iii) More generally, in case (¢¢)ier, is deterministic we have

t t
ds
M; = / 1{(;55:0}st +/ 1{¢s¢0}¢3 <dNS — ¢2> , te Ry,
0 0 s
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and

1) = 50)+ [ 10,0018+ ) [ 10 (04108,

t
+/ (g, 20y (f (My- + 65) — f(M,-)) <st _ ZZ’)
0 S
t
d
Jr/O 1{¢s¢0}(f(Ms— +¢S) — f(MS_) _ ¢sf/(Ms)) ‘Z

S
iv) For the compound Poisson martingale

X, — ME[Y]

= . teRy,
T /AVar[v] *

of Section 2.4 we have

f(My) = f(0) +/0 (f(Yn, + M=) — f(M,-))d(Ns — As) (2.12.3)

E[11]

+/\/0 (f(YNs + Ms) - f(Ms) - \/)\Var [Yl

]f’(Ms)> ds.

However, as noted above the compound Poisson martingale (2.10.5) does
not have the predictable representation property. Thus it does not satisfy
the hypotheses of this section and the above formula is actually distinct
from (2.12.1) since here the stochastic integral is not with respect to
(My)ier, itself. Note also that the pathwise stochastic integral (2.12.3)
is not in the sense of Proposition 2.5.10 since the integrand (f(Yn, +
M;-) — f(M;-)) is not a left limit due to the presence of Yy,.

The change of variable formula can be extended to the multidimensional case
as in Proposition 2 of [37]. Here we use the convention 0/0 = 0.

Proposition 2.12.2. Let X = (Xy)icr, be a R™-valued process given by
dX; = Rydt + thMt, Xo >0,

where (Ry)ier, and (Ky)icr, are predictable square-integrable R™-valued pro-
cesses. For any f € CZ2(R4y x R™;R) we have

flit, Xy) = f(O,X0)+/O Lsf(s,XS)dMer/O Usf(S,Xs)d8+/0 g‘i(s,Xs)ds,

(2.12.4)
where

Lof(s, Xa) = ia{Ks, V(5. X)) + ; (F(5: Xom + 6 Kom) — (5. X)),
) (2.12.5)
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and
1
Usf(s,Xs) = RV (s, Xs) +a? (2i3<Hess f(s,X,), K, ® Ky)

I (5, X+ duKy ) — f(s.Xy ) — ¢S<K8,Vf<s,xs>>>) |

2.13 Exponential Vectors

The exponential vectors are a stochastic analog of the generating function
for polynomials. In this section they are presented as the solutions of lin-
ear stochastic differential equations with respect to a normal martingale
(My)ier, having the predictable representation property, and satisfying a
structure equation of the form (2.10.1).

In the next proposition, the solution (2.13.2) of Equation 2.13.1 can be de-
rived using the It6 formula, and the uniqueness can be proved using the 1t6
isometry and classical arguments.

Proposition 2.13.1. For any u € L2,(£2 x R.), the equation
t
Z, =1 +/ Zy-u,dM,, te0,T] (2.13.1)
0

has a unique solution (§(u))icr, given by

t 1t
&t (u) = exp (/0 usdM — ) /0 ugl{%o}ds) H (1+ us(bs)e*ums,

selJt,
(2.13.2)
where Ji; denotes the set of jump times of (Ms)sejo, t € [0,T].

In the pure jump case, from Proposition 2.5.10, (Z;)scr, satisfies the path-
wise stochastic differential equation with jumps

dGy = u(t)Gy- (dNy — dt), Gy =1, (2.13.3)
which can be directly solved on each interval (Ty—1,T%], k > 1, to get
t Ne
Gy=e Jou@E T+ u(Ty),  teR..
k=1

Proposition 2.13.2. Given u € L*>([0,T]), &r(u) can be represented as

o0

fr(w) =3 | L g 1) (2.13.4)

n=0
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Proof. Letting

"1
Zy =1+ Z kl[k(u®k1[07t]k),
k=1

we have

t n+1 1
1 +/0 u Z0dM, =1+ Z klfk(u@)kl[o,t]k)
k=1

o n+1
= Zt ,

which yields
t
Zy=1 +/ U ZrdM, te Ry,
0

as n goes to infinity, where integrals and sums have been interchanged in the
L? sense. Hence & (u) and Z; coincide since they solve the same equation
(2.13.1). O

In particular, letting T go to infinity in (2.13.2) and (2.13.4) yields the identity

e} 1 00
g(u) = exp </ uSdMs - 2 / Ugl{dgg:(]}ds) H (1 + us(bs)e_us‘ps.
0 0 AN, £0
(2.13.5)

Definition 2.13.3. Let £ denote the linear space generated by exponential
vectors of the form &(u), where u € L>=([0,T1]).

Under the chaos representation property of Definition 2.8.2 the space £ is
dense in L?(£2), and from the following lemma, & is an algebra for the point-
wise multiplication of random variables when (é;):cjo,7) is a deterministic
function.

Lemma 2.13.4. For any u,v € L>®(R,), we have the relation

§(w)(v) = exp({u, v)r2(ry))E(u + v + Puv). (2.13.6)

Proof. From Proposition 2.11.3 we have for u,v € L*(R;):

d(&e(u)&(v))
= ue&y— (W)€ (V)dMy + ve&e- ()& (u)dMy + veurd- (v)&- (u)d[M, M];
= us&y— (u)&s— (V)dMy + ve&— (V)E€— (W) d My + veues (v)E (u)dt
Foruvey- (V)€ (u)d My
= vpur&e (V)& (w)dt + & (V)&- (u) (ur + ve + Grurve)dMy.
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hence
d(e™ Jo usvedg, (u)g, (v)) = e Jo U d3g, (0)€ - (u) (g + vg + dyurve)dM,,

which shows that

exp(—(u, v) 2 (j0,17) )§ (W)€ (v) = E(u + v + Puv).

Relation (2.13.6) then follows by comparison with (2.13.1). O

2.14 Vector-Valued Case

In this section we consider multiple stochastic integrals of vector-valued func-
tions with respect to a d-dimensional normal martingale (M;)o<i<7 with
independent components M; = (Mt(l), ceey Mt(d)).

Let g, € L2([0,T)") and let (eq,...,eq) denote the canonical basis of RY. We
define the n-th iterated integral of gpe;, ®...®e;,, with 1 <iy,...,i, < d, as

T tn to . .
I,(gnei, ®...®e€;,) :n!/ / / gn(tl,...,tn)th(fl)...th(i").
o Jo 0
(2.14.1)

For g, € L2([0,T]"), hm € L2([0,T)™), with 1 < iy,....in < d and 1 <
J1s-eosdm < d, we have

E[L,(gnei @ ... ®e€i, ) Im(hmej, @ ...@¢;,.)]

n!<gn7 hm>L2([O’T]1L) if n=m and 4 =7, 1<1<n,
0 otherwise.

Given f, = (fy(fl"“’i"))1§i17w7in§d € L%([0,T],RH)®" we define the n-th
iterated integral of f,, by

d T ptn ta ) ) .
L(fa)=n' > /O/O /O Fl) (b ) dMEY M

01,00y in=1
d
_ E In(fr(Ln,m,Zn)eil ®R...® ei")~
i1 yeenyin=1

Let X, denote the set of all permutations of {1,...,n}. We have
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where f, is the symmetrization of f, in L2([0,T],R%)°", ie for 1 <
i1, ..,0, < d, we have

= (i1,ein) 1 (G (1) re-mrio(n))
fn (tla-“atn): n! Z In @ ) (ta(l)a-“vta(n))'

oceX,
Given
Fu= (F80 )10y inza € L2(0,T), RS
and _ _
9m = (9%1"“’J7”))1SJ’1,“',ijd € Lz([OaTLRd)(gm
we have

IE [1,(fn) I (gm)] =

Z n!<f7(Li1"“’i")ag%l’m’jm)>L2([0’T]n) if il = jl’ 1 S l S n,
i1, in=1
S im=
0 otherwise.

Finally we consider the multidimensional Poisson and mixed Brownian-
Poisson cases.
Let (£2,F,(Ft)ier,,P) be a probability space with the filtration (F;)icr,

generated by a d-dimensional Poisson process N; = (Nt(l), ce Nt(p))7
0 <t < T, and independent components, with deterministic intensity

t t
(/ /\g”ds,...,/ Agf”ds).
0 0

The iterated stochastic integral of a symmetric function
fn= (fr(zil’m’i"))1Si1,m,inSd € LQ([O’TLRd)On’

where f{) ¢ L2([0,T]™), is defined by

ISP Y A A

B1yeyin =1

FO ) (4 ) @ANTD = Aty (dNS = A,

In the mixed Brownian-Poisson case let (Bi)o<i<r with B, = (B,gl), ce
B,Ed)) be a d-dimensional Brownian motion with independent components,
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let (Ni)o<i<r with Ny = (Nt(l), ce Nt(p)) be a p-dimensional Poisson process
with independent components and intensity

t t
(/ /\g1>ds,...,/ Agd>ds>.
0 0

We work on a filtered probability space (£2,F, (F)icjo,r), P), where F; is
the filtration generated by (B;)icr, and (Ny)icr, , which are assumed to be
independent. We denote by M = (M W .M (p)) the compensated Poisson
process given by

dM® =an® —XPar,  tef0,7), I=1,....p.
Let
x©Ox®D x @ x Py = 8D, B M©, . ).
The iterated stochastic integral of a symmetric function
Fa= (" Nigin,in<arp € ([0, T], REFD)ER

where fiin) € L2([0,T)™), is given by

d+p

tn ) )
L(fu) =nl ) // /f(“’ Sty ) d X X,

i15e0in=1

The chaos representation property holds in the multidimensional case, i.e.
for any F' € L2({2) there exists a unique sequence (f,)nen of symmetric
deterministic functions

fo = (f0)), G enn gy € L2([0,T],RY)°"

such that

F =" IL(fn)
n=0

2.15 Notes and References

Our presentation of stochastic calculus is restricted to normal martingales,
which are well fitted to the construction of multiple stochastic integrals and
chaos expansions in the L? sense. We refer to e.g. [121] for the the standard
approach to stochastic calculus using local martingales and semimartingales.
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The systematic study of normal martingales started in [37], and d-dimensional
normal martingales have been considered in [9], [10]. Several books and sur-
veys exist on multiple stochastic integrals, see [39], [58], [73], [82]. A number
of properties of Brownian motion, such as almost sure path continuity, have
been omitted here and can be found in [122]. See [26], page 317, and [24], [153]
for the absence of predictable representation property of compound Poisson
processes. The It6 change of variable formula Proposition 2.12.1 can be found
in Proposition 2 in [37] with a different formulation and proof. We refer to
[121], Theorem 36, page 77, for results on exponential vectors. Lemma 2.13.4
is a version of Yor’s formula [152], cf. also Theorem 37 of [119], page 79,
for martingales with deterministic bracket (M, M);. Proposition 2.3.6 can
be proved using the independence of increments of the Poisson process and
arguments of [87]. The presentation of multidimensional Poisson and mixed
Brownian-Poisson integrals is based on [69].



Chapter 3
Gradient and Divergence Operators

In this chapter we construct an abstract framework for stochastic analysis
in continuous time with respect to a normal martingale (M;);cr. , using the
construction of stochastic calculus presented in Section 2. In particular we
identify some minimal properties that should be satisfied in order to connect
a gradient and a divergence operator to stochastic integration, and to apply
them to the predictable representation of random variables. Some applica-
tions, such as logarithmic Sobolev and deviation inequalities, are formulated
in this general setting. In the next chapters we will examine concrete exam-
ples of operators that can be included in this framework, in particular when
(Mi)ter . is a Brownian motion or a compensated Poisson process.

3.1 Definition and Closability

In this chapter, (M;)icr, denotes a normal martingale as considered in
Chapter 2. We let S, U, and P denote the spaces of random variables, simple
processes and simple predictable processes introduced in Definition 2.5.2, and
we note that S is dense in L?(£2) by Definition 2.5.2 and U, P are dense in
L?(0 x R,) respectively from Proposition 2.5.3.
Let now

D : L?(,dP) — L*(22 x Ry, dP x dt)

and
§: L2 x Ry, dP x dt) — L*(£2,dP)

be linear operators defined respectively on & and Y. We assume that the
following duality relation holds.

Assumption 3.1.1. (Duality relation) The operators D and ¢ satisfy the
relation
IE[<DF,U>L2(R+)] = E[Fd(u)], FeS uel. (3.1.1)

Note that D1 = 0 is equivalent to E[§(u)] = 0, for all v € U. In the next

proposition we use the notion of closability for operators in normed linear

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 3, 113
(© Springer-Verlag Berlin Heidelberg 2009
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spaces, whose definition is recalled in Section 9.8 of the Appendix. The next
proposition is actually a general result on the closability of the adjoint of a
densely defined operator.

Proposition 3.1.2. The duality assumption 3.1.1 implies that D and § are
closable.

Proof. If (F,)nen converges to 0 in L?(£2) and (DF,),en converges to U €
L?(02 x R,), the relation
IE[<DFn,U>L2(R+)} :E[Fn(g(u)]a u GL{,

implies

| ELU, w)r2r.)]|

< |E[(DFu, w2y — ELU w2yl + [ E[(DEF,, u) 2w,

= [E[(DF, = U, u) 2w ]| + [E[F6(u)]]

< |IDFy = Ullzzoxraylullzzoxryy + 1FallLzo)ll6(w) ]| L2(0),
hence as n goes to infinity we get IE[(U, u)r2r,)] =0, u € U, i.e. U = 0 since
U is dense in L?(£2 x R, ). The proof of closability of § is similar: if (4, )nen

converges to 0 in L2(2 x Ry) and (§(uy))nen converges to F' € L?(§2), we
have for all G € S:

|E[FG]| < |E[(DG, un)r2r,)] — E[FG]| + |E[(DG, un) L2 (r,) ]l
= |E[G((un) — F)]| + | E[(DG, un)12(2xr,) ]l
< |16(un) — F||L2(Q)||GHL2(Q) + Hun||L2(QxR+)||DG||L2(QxR+),
hence IE[FG] =0, G € S, i.e. F =0 since S is dense in L?(£2). O

From the above proposition these operators are respectively extended to their
closed domains Dom (D) and Dom (§), and for simplicity their extensions will
remain denoted by D and 4.

3.2 Clark Formula and Predictable Representation

In this section we study the connection between D, §, and the predictable
representation of random variables using stochastic integrals.

Assumption 3.2.1. (Clark formula). Every F' € § can be represented as

F =E[F] + /Oo E[D,F|F,]dM,. (3.2.1)
0
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This assumption is connected to the predictable representation property
for the martingale (M;)icr,, cf. Proposition 3.2.8 and Proposition 3.2.6
below.

Definition 3.2.2. Given k > 1, let D2 1 ([a,0)), a > 0, denote the comple-
tion of S under the norm

1/2

k S
IPIDs ey = Py + 2 ([ DiFPar)
i=1 a

where D} = Dy --- Dy denotes the i-th iterated power of Dy, i > 1.

In other words, for any F' € D2 ([a,00)), the process (D¢ F');e[a,00) exists in
L2(2 x [a,00)). Clearly we have Dom (D) = D3 1([0,00)). Under the Clark
formula Assumption 3.2.1, a representation result for F' € D3 1([a,00)) can
be stated as a consequence of the Clark formula:

Proposition 3.2.3. For allt € Ry >0 and F € IDy1([t,00)) we have

t
E[F|F:] = E[F] +/ E[DsF|Fs]dMs, (3.2.2)
0
and -
F = E[F|F] +/ E[DF|F,]dM,, teRy. (3.2.3)
t
Proof. This is a direct consequence of (3.2.1) and Proposition 2.5.7. ]

By uniqueness of the predictable representation of F' € L?({2), an expression
of the form

F=c —|—/ Utht
0
where ¢ € R and (u¢)¢er, is adapted and square-integrable, implies
uy = E[D F|F], dt x dP — a.e.

The covariance identity proved in the next lemma is a consequence of
Proposition 3.2.3 and the Ito isometry (2.5.5).
Lemma 3.2.4. For allt € Ry and F € IDy1([t,00)) we have

BIEIFIA) = IR+ B | [ mDrr)ie] 62

= E[FY - E Utw(]E[DsFm])?ds] : (3.2.5)
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Proof. From the It6 isometry (2.5.4) and Relation 3.2.2 we have

E[(E[F|F))? = E

(mm + /0 t IE[Dsts]dMsﬂ

(f E[Dsts]dMsﬂ

= (E[F])*+E {/Ot(]E[DSFVS])zds} , teRy,

= (B[F)*+E

which shows (3.2.4). Next, concerning (3.2.5) we have

E[F? =E

(i + [ E[Dsts]dMs)Q]

—E [(]E[F\ft})ﬂ +E {]E[F|ft] /Oo ]E[DSF|fS]dMS]

([ E[Dsts]dMs)g

_ {(E[F\ftbﬂ +E _/OO]E[FJ-}} ]E[DSF|}"S]dMS]

+E

i | [ @ED.r) ]

~E[@FE)] e[ ®DrE) ], reR.,

since from (2.5.7) the It6 stochastic integral has expectation 0, which shows
(3.2.5). |

The next remark applies in general to any mapping sending a random variable
to the process involved in its predictable representation with respect to a
normal martingale.

Lemma 3.2.5. The operator
F— (E[DtF|ft])t€]R+

defined on S extends to a continuous operator from L?(£2) into L?(02 x R,.).
Proof. This follows from the bound

I E[D.FIF]|2(axr,) = IFl7200) — (E[F))?
<|IFZ2(0),

that follows from Relation (3.2.4) with ¢ = 0. O
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As a consequence of Lemma 3.2.5, the Clark formula can be extended in
Proposition 3.2.6 below as in the discrete case, cf. Proposition 1.7.2.

Proposition 3.2.6. The Clark formula
F = E[F] +/ E[D, F| F]dM;.
0

can be extended to all F in L*(2).

Similarly, the results of Proposition 3.2.3 and Lemma 3.2.4 also extend to
F e L*(0).

The Clark representation formula naturally implies a Poincaré type
inequality.

Proposition 3.2.7. For all F' € Dom (D) we have

Var (F) < ||DF|Z2(oxp, )

Proof. From Lemma 3.2.4 we have

Var (F) = E[|F — E[F]|?]

-F (/OOO ]E[Dtht}th)Q]

=K /Ooo (E[D,F|F))? dt}

. i
g]E_/O E[|D,F| ft}dt}
g/o E [E[|D,F|*|F]] dt

o
< / E [|D,F|?] dt
0

<E U |DtF|2dt} :
0

hence the conclusion. O

Since the space S is dense in L2(f2) by Definition 2.5.2, the Clark for-
mula Assumption 3.2.1 implies the predictable representation property of
Definition 2.6.1 for (M;):cr, as a consequence of the next corollary.

Corollary 3.2.8. Under the Clark formula Assumption 3.2.1 the martingale
(My)ier, has the predictable representation property.

Proof. Definition 2.6.1 is satisfied because S is dense in L?(2) and the process
(E[D{F | Fi])ier, in (3.2.1) can be approximated by a sequence in P from
Proposition 2.5.3.
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Alternatively, one may use Proposition 2.6.2 and proceed as follows. Consider
a square-integrable martingale (X¢);cr, with respect to (F;)icr, and let

us = E[Ds X, 41| Fn], n<s<n+l, teR,.

Then (u¢)er, is an adapted process such that ulp 7 € L*(£2 x Ry) for all
T > 0, and the Clark formula Assumption 3.2.1 and Proposition 3.2.6 imply

Xt = ]E[Xn+1 | ft}

n+1
—E {XO + / E[D, X, 11 | Fu]dM, Ft}
0
t
= Xp +/ E[DsX, 41 | Fs]dM,
0
n t
= X, +/ E[D, X1 | Fs] dM, +/ E DX i1 | Fs] dM,
0 n
t
=X, +/ E[Ds X, 11 | Fs]dM;

t
= n—l—/udes, n<t<n+1, neN,
n

where we used the Chasles relation (2.5.6), hence
¢
Xt = X() +/ USdMS, te R+, (326)
0

hence from Proposition 2.6.2, (M;);ecr, has the predictable representation
property. O

In particular, the Clark formula Assumption 3.2.1 and Relation (3.2.3) of
Proposition 3.2.3 imply the following proposition.

Proposition 3.2.9. For any Fr-measurable F € L?(£2) we have

E[D.F|Fr] =0, 0<T<t. (3.2.7)
Proof. From from Relation (3.2.3) we have F' = E[F|Fr] if and only if

/ E[D, F|F]dM, = 0,
T

which implies E[D,F|F;], t > T, by the It6 isometry (2.5.4), hence (3.2.7)
holds as
E[D.F|Fr| = E[E[D:F|F]|Fr] = 0, t>T,

by the tower property of conditional expectations stated in Section 9.3. [
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The next assumption is a stability property for the gradient operator D.

Assumption 3.2.10. (Stability property) For all Fp-measurable F € S,
D, F is Fr-measurable for all ¢ > T.

Proposition 3.2.11. Let T > 0. Under the stability Assumption 3.2.10, for
any Fr-measurable random variable F € L*(2) we have F € D7,y and

D,F =0, t>T.

Proof. Since F' is Fp-measurable, D;F' is Fp-measurable, t > T, by the
stability Assumption 3.2.10, and from Proposition 3.2.9 we have

D,F = E[D,F|Fr] =0, 0<T<t.

3.3 Divergence and Stochastic Integrals

In this section we are interested in the connection between the operator §
and the stochastic integral with respect to (M;):er, .

Proposition 3.3.1. Under the duality Assumption 3.1.1 and the Clark for-
mula Assumption 3.2.1, the operator 0 applied to any square-integrable
adapted process (uy)ier, € L2,(£2 x Ry) coincides with the stochastic in-
tegral

O(u) = / ugd My, ue L?,(2 xRy, (3.3.1)
0

of (ut)ier, with respect to (My)ier, , and the domain Dom (6) of 6 contains
L2,(0% B,

Proof. Let u € P be a simple F;-predictable process. From the duality
Assumption 3.1.1 and the fact (2.5.7) that

E |:/ ’U,tht:| = 0,
0

we have:
]EPZ?WMW]:HHEL[zMMJ+EPF—EWDAwWM4
-E {(F _ B[] /0 h utht]

0 0
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0

_E / ]E[utDtF|}"t]dt]
LSO

0

= E[(DF,u)r2(r,)]
= E[F5(u)],

for all I € S, hence by density of S in L?(£2) we have

(S(U) = / utht
0

for all Fi-predictable v € P. In the general case, from Proposition 2.5.3
we approximate u € L?,(£2 x R}) by a sequence (u™),en C P of simple JFy-
predictable processes converging to u in L?(£2 x Ry ) and use the It6 isometry
(2.5.4). |

As a consequence of the proof of Proposition 3.3.1 we have the isometry
H5(U)HL2(Q) = HuHL2(Q><R+)a u € Lid(ﬂ xRy). (3.3.2)

We also have the following partial converse to Proposition 3.3.1.
Proposition 3.3.2. Assume that

i) (My)ier, has the predictable representation property, and
i1) the operator ¢ coincides with the stochastic integral with respect to
(My)ter, on the space L2,(£2xR) of square-integrable adapted processes.

Then the Clark formula Assumption 3.2.1 hold for the adjoint D of 6.

Proof. For all F € Dom (D) and square-integrable adapted process u we
have:

E[(F - E[F])3(u)] = E[F5(u)
— E[(DF,u)12z.)]

0

=E / utht/ ]E[DtF]:t}th:|
0 0

B :5(u) /O N ]E[DtF|]-'t]th] ,
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hence -
0

since by (i7) we have
{6(u) : we L2(2 xRy} = {/ ugdMy; : u € L2,(92 x R+)} ,
0

which is dense in {F € L?(£2) : E[F] = 0} by (i) and Definition 2.6.1. O

3.4 Covariance Identities

Covariance identities will be useful in the proof of concentration and deviation
inequalities. The Clark formula and the It6 isometry imply the following
covariance identity, which uses the L? extension of the Clark formula, cf.
Proposition 3.2.6.

Proposition 3.4.1. For any F,G € L*(£2) we have

Cov(F,G) = { / T BID,F|F) ]E[Dth’-'t]dt] . (3.4.1)
0
Proof. We have
Cov (F,G) = B|(F — E[F])(G — E[G])]

-E UOOO E[D,F|F|dM, /Ooo ]E[DtG|]-'t]th]

:EMMEQFHEW£WW}

The identity (3.4.1) can be rewritten as

%ﬂR@zE/mH&FHEW£mW]

:E/?EQFEW£ﬂ,
L/ O

provided G € Dom (D).
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As is well known, if X is a real random variable and f, g are monotone
functions then f(X) and g(X) are non-negatively correlated. Lemma 3.4.2,
which is an immediate consequence of (3.4.1), provides an analog of this result
for normal martingales, replacing the ordinary derivative with the adapted
process (E[D:F|F])ieio,1)-

Lemma 3.4.2. Let F,G € L?(2) such that

E[D,F|F] E[D,G|F] >0,  dtxdP—a.e.

Then F and G are non-negatively correlated:

Cov (F,G) > 0.

If G € Dom (D), resp. F,G € Dom (D), the above condition can be re-
placed by

E[D:F|F] >0 and D:G >0, dt x dP — a.e.,

resp.
D:F >0 and D,G >0, dt X dP — a.e..

Iterated versions of Lemma 3.2.4 can also be proved. Let

An:{(t1,~..,tn)€Ri : 0§t1<...<tn},

and assume further that

Assumption 3.4.3. (Domain condition) For all F' € § we have

Dy -~-Dt1F€ID271([tn,OO)), a.e. (t1,...,tn) € A,.

n

We denote by D ;,(Ay) the L? domain of D, i.e. the completion of S under

the norm

IFlD, 4 = BLFF] + B [/Ak Dy, -+ Dy, FI*dty - - dty,
Note the inclusion Ds (Ay) C Do 1(Ag), k> 1.

Next we prove an extension of the covariance identity of [56], with a shortened
proof.
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n+1
Theorem 3.4.4. Letn € N and F,G € m Dy ;(Ag). We have
k=1

Cov(F,G):i(q)’““]E[/A (Dtk---DtlF)(Dtk---Dth)dtlmdtk] (3.4.2)

k=1

+(-D"E [/ Dy Dy FE Dy, - Do, G| Fe, ] dtr - 'dtn+1] -
A

Proof. By polarization we may take F' = G. For n = 0, ((3.4.2)) is a
consequence of the Clark formula. Let n > 1. Applying Lemma 3.2.4 to
D, -+ Dy F with t = ¢, and ds = dt,, 41, and integrating on (¢1,...,t,) € A,
we obtain

E U (E[Dy, - Dy, F|F;))? dty - ~~dtn}
A

=E {/ |Dy,, -+ Dy, F|?dty - ~dtn}
Ap
2
r [/ (B [Dr,yy - Diy FIFi, 1)) da - "dtn+1] ;
Ant1

which concludes the proof by induction. O

The variance inequality

2n 2n—1
> (OFDEF |2y < Var (F) < Y (1) DFF|[72(a,),
k=1 k=1
2n
for F' € ﬂ D, 1 (Ag), is a consequence of Theorem 3.4.4, and extends (2.15)
k=1

in [56]. It also recovers the Poincaré inequality Proposition 3.2.7 when n = 1.

3.5 Logarithmic Sobolev Inequalities

The logarithmic Sobolev inequalities on Gaussian space provide an infi-
nite dimensional analog of Sobolev inequalities, cf. e.g. [77]. In this section
logarithmic Sobolev inequalities for normal martingales are proved as an
application of the It6 and Clark formulas. Recall that the entropy of a suffi-
ciently integrable random variable ' > 0 is defined by

Ent [F] = E[F log F] — E[F]log E[F].
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Proposition 3.5.1. Let F € Dom (D) be lower bounded with F > n a.s. for
some n > 0. We have

2 F

Proof. Let us assume that F' is bounded and Fr-measurable, and let

1 _[1 [
Ent [F] < IE{ / (2 = 1(p,—0y)| D F|?dt| . (3.5.1)
0

t
Xt:]E[F|ft}:XO+/ udeS, t€R+,
0

with us = IE[DsF' | ], s € R4. The change of variable formula Proposition
2.12.1 applied to f(z) = zlogx shows that

Flog F' — E[F]log E[F] = f(Xr) — f(X0)

_ / TP (X + deus) = f(Xp-)
0 on

T i LT g
U(X,- dt ] dt
+/0 (bf (Xi-, drup)dt + 2/, it x,

with the convention 0/0 = 0, and

T
th + / itutf’(th )th
0

U(u,v) = (u+v)log(u+v) —ulogu —v(1 +logu), u,u+v > 0.
Using the inequality
¥ (u,v) < v?/u, u>0, ut+v>0,

and applying Jensen’s inequality (9.3.1) to the convex function (u,v) — v2/u
on R x (0,00) we obtain

o Xt

1 T u?
E 2—iy) tdt
— 2 /0 ( Zt)Xt ]

T jt 1 T U2
Ent [F] =E / 2 Q(Xt, ¢tut)dt + it ¢ dt
0 O 2
<

1. [T |D,F|?
<,F /O ]E[(ta)| ;‘ ’ft}dt]
1. [1 /7
= 2 — i) |DF|*dt]| .
Q]E F/o( i1)| Dy F|°dt

Finally we apply the above to the approximating sequence F,, = FAn,n € N,
and let n go to infinity. O
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If ¢y = 0,1e. iy =1,t € Ry, then (M;)cr, is a Brownian motion and we
obtain the classical modified Sobolev inequality

1 1
Ent <[F] < ) Bx {F||DF||2LQ([O7T])] : (3.5.2)

If ¢ =1,t € Ry then i; =0, t € Ry, (M;)er, is a standard compensated
Poisson process and we obtain the modified Sobolev inequality

1
Buto[F) < Bx | L IDF 1o (35.)

More generally, the logarithmic Sobolev inequality (3.5.2) can be proved for
any gradient operator D satisfying both the derivation rule Assumption 3.6.1
below and the Clark formula Assumption 3.2.1, see Chapter 7 for another
example on the Poisson space.

3.6 Deviation Inequalities

In this section we assume that D is a gradient operator satisfying both the
Clark formula Assumption 3.2.1 and the derivation rule Assumption 3.6.1
below. Examples of such operators will be provided in the Wiener and Poisson
cases in Chapters 5 and 7.

Assumption 3.6.1. (Derivation rule) For all F,G € S we have
D(FG) = FD:G + GD\F, te R, (3.6.1)
Note that by polynomial approximation, Relation (3.6.1) extends as
Dif(F) = f'(F)D,F, teRy, (3.6.2)

for f € CL(R).
Under the derivation rule Assumption 3.6.1 we get the following deviation
bound.

Proposition 3.6.2. Let F' € Dom (D). If [|[DF||p2r, 1)) < C for some
C >0, then

2

P(F - E[F] > < —
( F] 2 2) < exp ( 2C||DF||2r, 1o (2))

), >0, (3.6.3)

In particular we have

1

E[M] < 0, A< .
o] 2C||DF||2(ry 1> (2)

(3.6.4)
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Proof. We first consider a bounded random variable F' € Dom (D). The
general case follows by approximating F' € Dom (D) by the sequence
(max(—n, min(F,n))),>1. Let

’I]F(t):]EH[DtFLFt}, te [O,T]
Since F' is bounded, the derivation rule (3.6.2) shows that

Dy’ = se*f' D, F, s,t € Ry,

hence assuming first that IE[F] = 0 we get
T
]E[FeSF] =K [/ D,e’f - nF(u)du]
0

T
=sE [eSF/ D,F - nF(u)du]
0

< sE [e* | DF||u [nrn]
< sE [e*F] ||np oo (wim |1 DF || 12(r 1 (2))
< sCE [e*"] |DF|| 12, 1 (0))-

In the general case, letting

L(s) = Blexp(s(F ~ E[F)], s € Ry,
we obtain:
g (E [exp (17 ~ BIFD)) = [ 7 s
"B ((F — E[F]) exp ((F — B[F))
<[ metr wmy

1
= 2t2CHDFHL2(R+,L°°(Q)), teRy.
We now have for all z € Ry and ¢t € [0,7T]:
P(F — B[F] > 2) < o E [exp (¢(F — E[F]))]

1
< exp (2t2C|DF|L2(R+,L°°(Q)) - tx) .

which yields (3.6.3) after minimization in ¢ € [0,T]. The proof of (3.6.4) is
completed as in Proposition 1.11.3. ]
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3.7 Markovian Representation

This subsection presents a predictable representation method that can be
used to compute E[D:F|F;], based on the Itd formula and the Markov
property, cf. Section 9.6 in the appendix. It can applied to Delta hedging
in mathematical finance, cf. Proposition 8.2.2 in Chapter 8, and [120]. Let
(Xt)tepo,r) be a R™-valued Markov (not necessarily time homogeneous) pro-
cess defined on 2, generating a filtration (F;)¢cr, and satisfying a change of
variable formula of the form

f(Xt):f(X0)+/0 Lsf(Xs)dMs+/0 Usf(Xs)ds, t€][0,T], (3.7.1)

where Lg, Us are operators defined on f € C2%(R"). Let the (non homo-
geneous) semi-group (P ¢)o<s<i< associated to (Xt)iepo,r) be defined on
CZ(R™) functions by

with

Proposition 3.7.1. For any f € CZ(R"), the process (Pr,7f(X¢))eepo,m 18
an Fi-martingale.

Proof. By the tower property of conditional expectations, cf. Section 9.3, we
have

E[Pt,Tf(Xt) | fs} = E[E[f(XT) | ft} ‘ st]
= E[f(XT) | 3]
= S,Tf(XS)?

0<s<t<T. ]

Next we use above the framework with application to the Clark formula.
When (¢¢):e0,r) is random the probabilistic interpretation, of D is unknown
in general, nevertheless it is possible to explicitly compute the predictable
representation of f(Xr) using (3.7.1) and the Markov property.

Lemma 3.7.2. Let f € CZ(R™). We have

E[D:f(Xt) | Fi] = (Le(Prrf))(X:), te€[0,T]. (3.7.2)

Proof. 'We apply the change of variable formula (3.7.1) to t — P.pf(X;) =
E[f(Xr) | Fi], since P, 1 f is C?. Using the fact that the finite variation term
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vanishes since (P 7 f(X¢))iepo,r] is a martingale, (see e.g. Corollary 1, p. 64
of [119]), we obtain:

Pt,Tf(Xt) = PO,Tf(XO) + /0 (LS(PS,Tf))(XS)dMS’ te [O’TL

with Py 1 f(Xo) = E[f(Xr)]. Letting ¢t = T', we obtain (3.7.2) by uniqueness
of the representation (4.2.2) applied to F' = f(Xr). O

In practice we can use Proposition 3.2.6 to extend (IE[D.f(X7) | F¢])iefo,1)
to a less regular function f: R™ — R.
As an example, if ¢ is written as ¢r = (¢, My), and

dSt = O'(t, St)th + ,u(t, St)dt,
we can apply Proposition 2.12.2, with (X¢)¢cjo,7) = ((St, M¢))iefo,r) and

Ly f(St, My) = izo(t, Sp)On f(St, My) + 402 f (St, M)

Jt
T ot agy) S (St @6 Mo (8 50), My + plt, M) = f(Si, M2)).

where j; = 144,20}, t € Ry, since the eventual jump of (M;).e[o,r) at time ¢
is p(t, My). Here, 01, resp. 02, denotes the partial derivative with respect to
the first, resp. second, variable. Hence

E[D. f(St, Mr) | Fi| = ir0(t, St)(01 P f)(Se, My) +i¢(02Pr,r f) (S, M)
Jt

Jrgp(t,‘Mt) (P 7 f)(St + @(t, My)o(t, Se), My + o(t, My))

Jt
= ot 2ty (P ) (S M),

When (¢¢)icr, and o(t,z) = o, are deterministic functions of time and
u(t,x) = 0, t € Ry, the semi-group P, can be explicitly computed as

follows.
In this case, from (2.10.4), the martingale (M;);cr, can be represented as

dM; = iy dB; + ¢¢(dNy — Nedt),  t €Ry, My =0,

with A, = j;/¢7, t € Ry, where (Ny)icr, is an independent Poisson process
with intensity A\;, t € R4. Let

T
Ft(T):/ Liy.—oyoods, 0<t<T,
t
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denote the variance of ftT 1s0sdBg = ftT 1{p,—0y0sdB;, 0 <t < T, and let

T
Ft(T):/ Neds, 0<t<T,
t

denote the intensity parameter of the Poisson random variable N — N;.

Proposition 3.7.3. We have for f € Cp(R)

Pirfla) = ie%m /OO efté/z/ A oA
LT N \/2’/T =0 k" — 00 [t’T]k h b

k
f (1;6— FtéT)-&-\/Ft(T)to—ftT PsAsosds H(1 4 Ut7¢¢ti)> dty - - - dtpdto.

i=1

Proof. We have Py rf(z) = E[f(S7)|S: = 2] = E[f(S{7)], and

Porf(x) =exp(—1,(T)

k=0

L,(T))k :
( t(k, Ve [p(sin|ve - v = o]
k € N. It can be shown (see e.g. Proposition 6.1.8 below) that the time

changed process (Npt_l(s) — Nt) is a standard Poisson process with
seRL

jump times (Tk);@l = (I't(Tk+n,))r>1- Hence from Proposition 2.3.7, condi-
tionally to { Ny — Ny = k}, the jump times (71, ...,T) have the law

k!
(T —t)k Lio<t, < <tp<T—tydts - dit.

over [0,T — t]*. Consequently, conditionally to {Nz — N; = k}, the k first
jump times (7%, ...,Tx) of (Ns)sep,7) have the distribution

k!
(I(T))k tcty<octy<Ty Al = Agpdly - - - diy.

We then use the identity in law between S;’7. and

T Nr
xXt,T exp (/ (bs)\s(l + ¢s¢s)05d8> H (1 +om, QST;C)a
t

k=1+N,

where X; 7 has same distribution as

exp (W/IUT) = T(T)/2)
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and W a standard Gaussian random variable, independent of (N¢):co,77,
which holds because (Bt).e[o,r) is a standard Brownian motion, independent
of (Nt)ielo,1)- O

3.8 Notes and References

Several examples of gradient operators satisfying the hypotheses of this chap-
ter will be provided in Chapters 4, 5, 6, and 7, on the Wiener and Poisson
space and also on Riemannian path space. The It6 formula has been used for
the proof of logarithmic Sobolev inequalities in [4], [6], [151] for the Poisson
process, and in [22] on Riemannian path space, and Proposition 3.5.1 can be
found in [111]. The probabilistic interpretations of D as a derivation opera-
tor and as a finite difference operator has been studied in [116] and will be
presented in more detail in the sequel. The extension of the Clark formula
presented in Proposition 3.2.6 is related to the approach of [88] of [142]. The
covariance identity (3.4.1) can be found in Proposition 2.1 of [59]. See also [7]
for a unified presentation of the Malliavin calculus based on the Fock space.



Chapter 4
Annihilation and Creation Operators

In this chapter we present a first example of a pair of gradient and diver-
gence operators satisfying the duality Assumption 3.1.1, the Clark formula
Assumption 3.2.1 and the stability Assumption 3.2.10 of Section 3.1. This
construction is based on annihilation and creation operators acting on multi-
ple stochastic integrals with respect to a normal martingale. In the following
chapters we will implement several constructions of such operators, respec-
tively when the normal martingale (M;)icr, is a Brownian motion or a
compensated Poisson process. Other examples of operators satisfying the
above assumptions will be built in the sequel by addition of a process with
vanishing adapted projection to the gradient D, such as in Section 7.7 on the
Poisson space.

4.1 Duality Relation

The annihilation and creation operators on multiple stochastic integrals pro-
vide a first concrete example of operators D, § satisfying the hypothesis of
Chapter 2. Let the spaces S and U of Section 3.1 be taken equal to

S= {ka(fk) D fr e LHRO)F k=0,...,n, ne N}, (4.1.1)
k=0
and
n
U= {Zl[ti,til)Fi s F eSS 0=ty <t; < - <ty, 77,21},
=1

which is contained in

Z;{ = {Zlk(gk(*a')) HNY S LQ(R-"-)Ok ®L2(R+)> k= 0,...,n, ne N}’
k=0

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 4, 131
(© Springer-Verlag Berlin Heidelberg 2009
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where the symmetric tensor product o is defined in Section 9.7 of the
Appendix.

In the following definitions the definition of the operators D and § are stated
on multiple stochastic integrals (random variables and processes), whose lin-
ear combinations span S and U.

Definition 4.1.1. Let

D:S— L*(2xR,)

be the linear operator defined by
Lo(fn) = ny_1(fa(*,1)), dP x dt —a.e., f, € L*(R,)°".

Due to its role as a lowering operator on the degree of multiple stochastic
integrals, the operator D is called an annihilation operator in the sequel,
in reference to the use of Fock space expansions (see Definition 2.8.1) in
quantum field theory.

Definition 4.1.2. Let R
§:U — L*(0)

be the linear operator defined by

S(Ln(far1(%,)) = Ins1(Fat1),  far1 € L2(R4)" @ L2(Ry),  (4.1.2)

where fni1 is the symmetrization of fn+1 inn+ 1 variables defined as:

B 1 n+1
frpa(t, o tng) = JrlanH (1 ety Bty o B B
In particular we have
n+1
fogn(ti e tupa) = ) Zf t)gn (st 1ttty s tngn), (4.1.3)

i.e. fogy, is the symmetrization of f ® g, in n + 1 variables, cf. Section 9.7.
Similarly to the above, the operator § is usually referred to as a creation oper-
ator, due to the fact that it raises the degree of multiple stochastic integrals.
The operator § is also called the Skorohod integral.

Note that

S =R = [ fODL e R,
0
and, in particular, from (2.7.4) we have

o

S(ula(f)) = n /Ow o (fal 8)ou g 4 (5, ) dM, + / Lo(fulio.g )AM,,
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u € L2(Ry), gn € L?(R1)°", where as a convention “#” denotes the n — 1
first variables and “-” denotes the last integration variable in I,,. In the next
proposition we show that D and ¢ satisfy the duality Assumption 3.1.1.

Proposition 4.1.3. The operators D and § satisfy the duality relation

E[F5(u)] = B[(DF,u)2,)), FeS, uell. (4.1.4)

Proof. As in Proposition 1.8.2, we consider F = I,(f,) and u; =
Ln(gm+1(,1)), t € Ry, fo € L2Ry)%", g1 € LP(Ry)°™ @ L2(Ry).

We have

E[Fé(u)] = E[Lnt1(Gm+1)In(fr)]
= n!l{n:m+1}<fm§n>L2(R1)

= n!l{n:m+1}<fnagn>L2(Ri)

:n!l{n—1=m}/ / fn(sla"'asnfl,t)gn(sla"',snflat)dsl"'dsnfldt
0 0

L1 / Bl (fu (52 ) T (g, )]t

= E[(D-Ln(fn), Im (gm+1 (%, ) 2(m )]
:E[<DF,U>L2(R+)].

O

In Proposition 4.2.3 below we will show that the Clark formula Assumption
3.2.1 is also satisfied by D.

Proposition 4.1.4. For any u € U we have

Did(u) = us + §(Dyu), teR,.

Proof. Letting u; = f(t)I.(gn), t € Ry, f € L*(Ry), g, € L2(R4)°", from
Proposition 4.1.3 we have, by (4.1.3),

Did(u) = Ded(f1(gn))
= Diloi1(f © gn)
= DtIn+1(fogn)
= (n+ 1) Int1((f o gn)(*,1))
SO In(gn) + ndn(f © gn(x,1))
FO)Ln(gn) + nd(Ln-1(f 0 gn(*,t)))
fO)In(gn) + 0(Didy(f © gn(*,t)))
= uy + 6(Dsu).
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Remark 4.1.5. By construction, the operator D satisfies the stability
Assumption 3.2.10 of Chapter 2, thus the conclusion of Proposition 3.2.11
is valid for D, i.e. we have DsF = 0, s > t, for any Fi-measurable F' € S,
teRy.

4.2 Annihilation Operator

From now on we will assume that S is dense in L?(2), which is equivalent
to saying that (M;)icr, has the chaos representation property according to
Definition 2.8.2. As a consequence of Proposition 3.1.2 and Proposition 4.1.3
we have the following.

Proposition 4.2.1. The operators D and § are closable in the sense of
Section 9.8 on L?(£2) and L*(£2 x Ry respectively.

It also follows from the density of S in L?(£2) that U is dense in L*(2 x R).

Proposition 4.2.2. The domain Dom (D) = ID([0,00)) of D consists in the
space of square-integrable random wvariables with chaos expansion

F= Zln(fn)v (4-2'1)
n=0

such that the series

D kIea(fr(x,-)
k=1

converges in L?(£2 x Ry) as n goes to infinity.

Given F' € Dom (D) with the expansion (4.2.1) we have

B |IDFIam,)| = 3 kRIS, < oo
k=1

and
DiF = fi(t) + > kli1(fi(x1),  dtdP — a.e.
k=1

In particular, the exponential vector (u), of (2.13.4) belongs to Dom (D) for
all w € L?(Ry) and we have

Ds&i(u) = 1 g(s)uls)ée(u), st €0, T].
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The following proposition shows that the Clark formula Assumption 3.2.1 is
satisfied by D. Its proof parallels the classical argument

flz) = Z anx”
n=0

oo x
= ap+ Znan/ y"Ldy
n=1 0

—f0)+ [ " )y,

described in the introduction for functions of one variable, using the identity

x
" = n/ y"ldy.
0

It shows in particular that the operator D defined in this chapter satisfies
the Clark formula Assumption 3.2.1 on predictable representation.

Proposition 4.2.3. Fvery F' € S can be represented as

0

Proof. By linearity, in order to prove the statement for F' € S, it suffices to
consider F' = I,,(f,). By the definitions of I,,(f,) and D.I,,(f,) and using
Lemma 2.7.2 we have, since IE[I,(f,)] = 0,

L(fn) = n/ooo T (Fn (5, B) g g1 (%)M
= n/OOO]E[Inl(fn(*,t)) | FildM,

_ /Ooo E[D,L,(f,) | FildM,.

O

As in the abstract framework of Chapter 3, the Clark formula (4.2.2) extends
to Dom (D) from the closability of D as in Proposition 3.2.3, and to L?({2)
by continuity of F'— IE[D.F | F.], cf. Proposition 3.2.6.

Since S defined by (4.1.1) is assumed to be dense in L?({2), Corollary 3.2.8
and Proposition 4.2.3 show that (M;)icr, has the chaos representation prop-
erty as in Definition 2.8.2.

More generally, the following proposition follows from the fact that the dense-
ness of S is equivalent to the chaos representation property.
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Proposition 4.2.4. If (M;)icr, has the chaos representation property then
it has the predictable representation property.

By iteration, the Clark formula (4.2.2) yields the following proposition.
Proposition 4.2.5. For all F' € N,;>1Dom (D") we have

Fl+ ) In(fn),

where 1
fn(tla - ,tn) = n' ]E[Dtl s Dt"F],

dty - --dt,dP-a.e., n > 1.
Proof. 1t suffices to note that
= k!
Diy Dy, F=nlfo(ts,....ta) + Y ke )'Ik,n(fk(*,tl, ctn),
k=n-+1 n):
and to use the fact that
Eli—n(fr(,t1,...,tn))] =0, dty---dt, —ae, k>n>1,

that follows from Proposition 2.7.1 or Lemma 2.7.2. ]

The above result is analogous to the following expression of Taylor’s formula:

o
+Z n! Gx” )

with the following correspondence:

calculus on R stochastic analysis
(@) r
1) EIF
oo >
40 BID"F)

The gradient operator D can be extended to the multidimensional case using
the vector-valued multiple stochastic integral (2.14.1).

Definition 4.2.6. Letl € {1,...,d}. We define the operator

DY : Dom (DY) ¢ L*(02) — L*(2 x [0,T))
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which maps any F € Dom (DW) with decomposition

n=0

to the process (Dgl)F)te[o,T] given by

In—l( 721 ..... in (tla oti—n, bt e ,tn)eil R...Q€_ Q€4 ... O ein)

= i nln_1(fh (1)), dP x dt — a.e. (4.2.3)

with
o= (ftnle, @@ €, )1<in, i1 <d-

The domain of D is given by

d

Dom (D®) = Z Z L(fir'me, ®@...0¢€;,) :

n=0141,...,i, =1

d

oo
Soent Y gl
n=1

i1,eyin=1

(lo,T)m) < O

The Clark formula extends to the multidimensional setting of Section 2.14 as
the next proposition.

d
Proposition 4.2.7. Let F € mDom (DW). We have
=1
d T
F =TE[F] + Z/ E[DF | F)dmP. (4.2.4)
0

In the multidimensional Poisson case we define the operator DV “ as in
((4.2.3)) and we have the following Clark formula:

d )
F=EF+ Y [ WO EDY R )N - 2d,
0
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for F' € ﬂ;i:l Dom (DN(Z) ). In the mixed Poisson-Brownian setting of Section

2.14, the operators DX are also defined as in ((4.2.3)) and we have the
Clark formula

d T P T
F =E[F] + Z/O E[D"F | 7)dB{" + Z/O E[DN" F | Flam®,
= =1

d+p W
for F € m Dom (DX ).
=1

4.3 Creation Operator

The domain Dom () of § is the space of processes (us)ier, € L*(£2 x Ry)

with -
wi =3 Lalfura(5,1)
n=0

and such that
(o]
=Y "+ D)[Ifall2, (g < 00
n=1

We will sometimes use the notation

b
/ usO M = 0(1[q,pu), (4.3.1)

to denote the Skorohod integral of u € Dom () on the interval [a,b], 0 <
a < b < oo. The creation operator § satisfies the following It6-Skorohod type
isometry, also called an energy identity for the Skorohod integral.

Proposition 4.3.1. Let u € Dom (§) such that uy € Dom (D), dt-a.e., and
(Dgug)sier, € L*(£2 x R%). We have

]E[é(u)|2}:]E[|u|i2(R+)}—I—JE[/O /0 DyuDyugdsdt|,  (4.3.2)

Proof. By polarization, orthogonality and density it suffices to choose u =
gL, (f®™), f,g € L?*(Ry), and to note that by the Definition 4.1.2 of § we
have

E[|6(w)?] = Bll6(g1. (£°™))I%]
= E[|Ln1(f9" 0 g)I’]
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2
_ 1 - i (n—1i)
C (n41)2 D (;0 Lini(fP@ge @ ))

1
= a1y (DO DI 9

tnn+ 1)+ D2 (F 9)32k,))
= ””|f\|%g(m+)||9\|%2(ﬂg+) +(n— 1)!n2||f||2LZ(u§+)<f, 9>2Lz(R+)

=E [HUH%z(R”} + ({9, DL, (f%™) 2wy ) (9> DIn(fE™) L2 (m1)) L2(92)

9 o0 o0
—Ehwm%J+Eu;A mma%@ﬂ.

]

By polarization, if v and v satisfy the conditions of Proposition 4.3.1 we also
have

(6(u),8(v)) L2 (2) = (U, V) L2 (xR, +/ / (Dsug, Divs) 2 (o)dsdt.
o Jo

The proof of (4.3.2) does not depend on the particular type of normal mar-
tingale we are considering, and it can be rewritten as a Weitzenbock type
identity, cf. [133] and Section 7.6 for details, i.e.:

1 o0 oo
6y + o [ [ 1D = Druslaopdsdt (433
= ‘IU‘I%Q(QXR+) + ||DUH%2(QxR1)~

For Riemannian Brownian motion the study of identities such as (4.3.3) can
be developed via intrinsic differential operators on Riemannian path space,
cf. [27].

Definition 4.3.2. Let IL, 1 denote the space of random processes (ut)teR+
such that vy € Dom (D), dt-a.e., and

Pi=E [HUH?}(R”} +E [/0 /0 |Dsut|pdsdt} < 0.

The next result is a direct consequence of Proposition 4.3.1 and Definition
4.3.2 for p = 2.

Proposition 4.3.3. We have ILy 1 C Dom (0).

As a consequence of Proposition 3.3.1, Proposition 4.1.3 and Proposition
4.2.3, the operator § coincides with the It6 integral with respect to (My)icr,
on the square-integrable adapted processes, as stated in the next proposition.

[l
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Proposition 4.3.4. Let (ut)ier, € L2,(2 x Ry) be a square-integrable
adapted process. We have

6(’11,) = / ’U,tht.
0

Proof. This result can also be recovered from the definition (4.1.2) of
d via multiple stochastic integrals. Since the adaptedness of (u;)ier, =

(In-1(fn(*,t)))ter, implies
fu(,t) = fu(, )L gn-1(x), T E€Ry,
by Lemma 2.7.2, we have
S(In(frt1(%:))) = Tng1(fas1)
= n/ooo In_l(fn(*,t)1[07t]n71(>k))th

:/0 Loy (Fa (s )10 01 (%)) M,
_ /Oojnl(fn(*,t))th, n>1.
0

O

Note that when (u¢)ier, € L2,;(2 x Ry ) is a square-integrable adapted pro-
cess, then Relation (4.3.2) becomes the Ito isometry as a consequence of
Proposition 4.3.4, i.e. we have

50 oy = | [ wianr (43.4
0 L2(£2)
= ||U||L2(rsz+), u € LZd(Q x R4),
as follows from Remark 4.1.5 since Dius = 0, 0 < s < t, cf. also

Relation (3.3.2) of Proposition 3.3.1.
The following proposition is a Fubini type property for the exchange of
Skorohod and Itd stochastic integrals with respect to normal martingales.

Lemma 4.3.5. Let u,v € L1,(2 x Ry). For all t > 0 we have

t t t pr
/ us/ v,.dM, O M, :/ / UV OMsd M., (4.3.5)
0 s o Jo

where the indefinite Skorohod integral is defined in (4.3.1).
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Proof. First, note that

/ U0 0Mg = 0§ (u.l{.<r}vr)
0

is Fr-measurable, r € R, hence the stochastic integral in the right hand side
of (4.3.5) exists in the It sense by Proposition 2.5.4. On the other hand, by
the duality relation (4.1.4) between D and § and using the Ité-Skorohod
isometry (4.3.4), we have

B (15 (100 [ vt )]

—E { /O s / t v,»erDst@(””)ds]

=0 [ O [ a2 )] ds
—n /0 o E [In2(f®(”2))us / t f(r)vrdr} s
=0 [1a(r20) [ g [ siryunaras]

=nE _]n_2(f®(nf2)) /tf(r)vr /T f(s)usdsdr}
L 0 0

r,rt
—ue || 5(u.1{.<r}vr)f(7“)drfn1(f®(n1))]
0

r rt
_E / 6(u.1{.<T}UT)DTIn(f®”)dr}
L/ O

=1 _In(f@)n) [)t 5(u,1{,<,ﬂ}v,«)6Mr}

r t
=E In(f(gm)‘/0 5(u.1{,<,ﬂ}v,«)er},

for n > 1 and f € L?(R.), since the processes u and v are adapted. Hence
by density of S in L?(£2) we get

t t
(5(1[0,t](-)u./ ’U,»er> :/0 6(u.1{.<,«}v7~) er,

which implies (4.3.5) by (4.3.1). O

As a consequence of Proposition 2.11.3 we have the following divergence
formula, whose analog is (1.8.3) in the discrete case. The hypothesis of the
next proposition is satisfied in particular when ¢ € L2([0,T] x £2).
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Proposition 4.3.6. Suppose that Assumption 2.11.1 holds, i.e.

E

b
/q&?ds’fa]gKQ(ba), P—as, 0<a<b.

Then for all T >0 and uw € L*([0,T]) we have

Proof. We prove this result by induction for all F' = In(l[o,t]nv‘@”), n € N.
The formula clearly holds for n = 0. From Corollary 2.11.4 we have

L (ulp ) In(1p0,n0®™)

t
:/ uSIn(l[O’S]nU(@n)dMs + n/
0 0

t s
Usln—1(1[07s]"_lv®(n_1))/ urdMrdM;
0

¢
+n/ ¢susvsln—1(1[073]"—11}@(”_1))dMs
0
¢
—I—n/ usvsIn_l(1[078]n71v®("_1))ds.
0
Applying the induction hypothesis and Relation (4.1.2) we get
T R VA ST A C))
0

S
+(n — 1)/ uTdeTIn,Q(1[0781",_21)@(7172))
0
+(n — 1)5(1[0,t]¢uvfn_2(1[0’51",2@@)(71*2)))
S
- ]n(l[o’s]"U@’("—l) °© u) + (n - 1)/ UTU-rdTIn—2(1[0,s]n—21}®("_2))
0
+(n — 1)5(1[0781qSuvIn,z(1[O’S]n_1v®(n72)))’
hence
t
L (ulo ) In (L0 e v®") = / Us I (1,52 v®™)d M,
0
t s
+n(n — 1)/ Us/ uTdeTIn_Q(1[0’5]"721}@@(7172))dMS
0 0

t
+n/ 115.771(1[()73]1Lv‘g’("_l)ou)dMS
0

t
+n(n— 1)/ U35(1[0,5]¢uvfn_2(1[0’S]nflv®(n_2)))dMs
0
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t
+n/ qSSuSvSIn,l(1[0,S]n—1v®("*1))dMs
0

t
+n/ usvsln_l(1[073]%11)@(”_1))ds
0

= n+1(1[0,t]n+1v®" o u)

t
+TL(717 1)/ v55(1[07s}¢uvfn,2(1[07s]n—1v®(”_2)))dMs
0

t
+n/ ¢susvsln—1(1[0,5]"’1v®(n_1))dMs
0
t s
+n(n — 1)/0 ”8/0 Grvrdr Ty o (1) gn—2v® ") dM,

t
+n/ usvsln_l(1[073]%11)@(”_1))ds
0

= n+1(1[0,t]n+1v®" o u)

t
+TL(717 1)/ v55(1[07s}¢uvfn,2(1[07s]n—1v®(”_2)))dMs
0

t
+n/ GsusVsln—1 (1[0,5]"’1v®(n71))dMs
0

t
+n/ usvsdsfn,l(1[O’t]n_w®(n*1))d3
0
= 8(uljo g 1n(110,4nv®™)) + S(uglio 4 DIn(1p0,gn ™))
i, DIn(Lio,70™")) L2,

where in the final equality we used the relations

t t
Infl(l[o,t]"’_lv@)(nil))/ usvsdsz/ ¢susvsIn71(1[0,8]"_1v®(n71))dMs
0

0

t s
+(n — 1)/ Us/ uTdeTIn_z(1[07s]n_2v®(”_2))dMs,
0 0

cf. (2.11.7), and

(5(¢uv1[0’t]ln_1 (1[0’,5]7L71’1)®(n71)))

t
=(n-1)9 <¢uv1[0’t]/ vsln_2(1[078]7lzv®("_2))dMs>
0

t
= (TL - 1)5 <¢uv1[0,t]()/ USIn2(1[0,5]"'_ZU®(n2))dMs>

143
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+(n—1)8 (¢.u.v.1[0,ﬂ(-)/ vsfn2(1[05]",_2@@(“))(1]\45)
0

t t
= (n—l)/ (b.u.v.l[o’t](-)/ UrIn—2(L(g 20" 2)dM, 6 M,
0 .
+6 <¢ w.v. 1o 4 () In— 1(1[0,-]"%1”@(“71)))

t
=(n-— 1)/ vsé(l[o’s](b.u.v.I”_g(1[0’S]7sz®("—2)))dMs
0

t
+ / ¢susvsln—1 (1[0,5]’"*1U®(n71))dMs>
0

that follows from Lemma 4.3.5. O

4.4 Ornstein-Uhlenbeck Semi-Group

As in the discrete case, a covariance identity can be obtained from the Clark
formula in Section 3.4. In this section we focus on covariance identities ob-
tained from the Ornstein-Uhlenbeck (O.-U.) semi-group (P ):er, defined as

= Z e " (fn), (4.4.1)
n=0

with F =327 I,(fn), i.e. P, =e ' with L =§D.
Proposition 4.4.1. Let F,G € Dom (D). We have the covariance identity

Cov (F,G) {/ / e *D,FP;D Gduds} . (4.4.2)

Proof. Tt suffices to prove this identity for F = I,,(f,) and G = I,(gn) as

Cov (F,G) = E[L.(fn)1In(gn)]
~<fn>gn>L2(Ri)

(o]
= E {/ DuFDquu]
n 0
= {/ / DuFe”SDquuds}
o Jo
=E {/ e*S/ DuFPSDquuds} .
0 0
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Let L' denote the inverse of the number operator L = §D, cf. Definition
2.8.3, defined on
{FeL*) : E[F] =0}
as 1 w
L7'F = nz::l ()
provided F' is written as .
F= Z In(fn)-
n=1

Note that using the identity

(oo} (oo}
Lt :/ e_tLdt:/ Pydt,
0 0

and the commutation relation DP;, = e *P,D, Relation (4.4.2) can also be
obtained from a general semi-group argument:

Cov (F,G) = E[LL~Y(F — E[F])G]
= E[(DL™(F — E[F]), DG) 12(x ¢

- / " (DP.(F - EB[F)), DG)Lz(XJ)dt]
0

=E /(><> e_t(PtD(F — E[F]),DG>L2(X’U)dt:|
0

:]E/ et(PtDF,DG>Lz(X’U)dt}
0

Relation (4.4.2) implies the covariance inequality

|Cov (F,G)| < ‘]E |:||DF||L2(R+)/ eSPsDGLQ(R+)dS:|
0

< |DG||L=(2,c2rs ) E [[IDF||2(r,)]

< DGl (2, L2@ ) [ DF[ L(2,L2@1))

F,G € Dom (D), provided P; satisfies the following continuity property.

Assumption 4.4.2. (Continuity property) For all F' € Dom (D) we have
HPtDFHLoo(Q7L2(R+)) < HDFHLOO(Q7L2(R+)), teR,. (443)

This property is satisfied in particular when (¢;)cr, is deterministic, cf.
Section 4.7.
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4.5 Deterministic Structure Equations

When the process (¢;)icr, is deterministic, Corollary 2.11.4 and Proposition
4.3.6 can be rewritten as a multiplication formula for multiple stochastic
integrals, without requiring any smoothness on (¢;):er, -

Proposition 4.5.1. Assume that ¢ € L™ (Ry) is a bounded, deterministic,
function. Then we have

I () 1, (0®™) = L1 (08" o ) + nl, ((¢puw) o v® M=) (4.5.1)

+n(u, v) 2, ) It (0FTY),

for allu € L*®(Ry) N L%(Ry), v € L2(Ry).

From the above proposition we obtain in particular that for every n > 1 there
exists a polynomial @, (z) such that

L") = Qu(L(v), n>1, (4.5.2)

see [116] for details when (¢5)ser, is a random process. As seen in Chapters
5 and 6, the Hermite and Charlier polynomials are respectively used to rep-
resent multiple stochastic integrals with respect to Brownian motion and the
compensated Poisson process.

On the other hand, if s < --- < s, and n = ny + --- + ng, we have

ny!-ng!

N Lito,ta]m1 - x[ta—1,ta]™a (51, 8n),

®ni . ®ng
o1 ]( b n!

[tlhtl] [ta—1,ta §
hence if 0 < tg < --- < tgq,

®n ®n
In (l[toél oo l[td dl,td )

_m/ / / 1%1] 018 (1, 80)dM,, oMy,

S"k ®n
( / / / tkkl ] 51,...,3nk)dMsl-~-dMs"k)

L, (127 ). (4.5.3)

[te—1,tk]

£} ::g

b
Il

1

The following is a product rule for the operator D.
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Proposition 4.5.2. Assume that ¢ € L>*(R,) is a bounded, deterministic
function. We have

teRy, F;GeS.

Proof. We first notice that for F' = I1(u) and G = I,,(fy), this formula is a
consequence of the multiplication formula Proposition 4.5.1 since

DT (W) ()
_ D, <In+1(fn ow) tn [ el s)ds +nl(fo <¢u>>)

= L,(fn)D:Ii(u) + nly(fr( t) ou) + n(n —1) /000 usIn—o(fn(t,8))ds

+7’L(7’L - 1)In(fn(7t) © (¢u)) + ¢tDtI1(u)DtIn(fn)
= Ipn(fn)Dielr(u) + I (w) Do (fn) + e Dida (w) DL (frn),  t € Ry

Next, we prove by induction on k£ € N that

Dt(In(fn)(Il(u))k) = (Il(u))thIn(fn) + 1n(frn)Di (1 (u))k
+¢¢ Dy (11 (1) DiLn(fn),

for all n € N. Clearly this formula holds for £ = 0. From Proposition 4.5.1
we have
In(fn)jl(u) eanl @Hn®Hn+la TLZ 1,

hence by the induction hypothesis applied at the rank k we have

Dy(In(fn) (I (w))*)

= (11(w)* De(Ln(fn) I (w)) + In(fn) I (w) Dy (I (w))*
+ e Dy (11 (w)* Dy (1 (fr) 11 (1))

= (L) ™ Dy L (fn) + In(f) I (u) Dy (1 (w)* + L () (12 (u)* D I (w)
+eLn (fn) Dely (w) De (11 (w))* + 6o 11 (u) Dy (1 ()" Dol (f)
+¢¢ (1 (w))* Doy (u) Dy I (fn) + 67 Didy (w) Dy (I (u)* DL (£)

= (L (W) Dy (fn) + In(f) De(L1 (w) T + 1Dy (1 () Dy L (f)-

Consequently, (4.5.4) holds for any polynomial in single stochastic integrals,
hence from Relation (4.5.2) it holds for any F and G of the form F' = I, (u®"),
G = I,(v®"). The extension of F,G € S is obtained by an approximation
argument in L?(£2) from Proposition (2.11.2). O
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In case ¢ = 0, t € Ry, in order for the product relation (4.5.4) of Proposition
4.5.2 to be satisfied it suffices that D; be a derivation operator. On the other
hand, if ¢; # 0, t € R4, Relation (4.5.4) is satisfied by any finite difference
operator of the form

1
F b (FP — F).

By induction on r > 1 we obtain the following generalization of Relation
(4.5.4).

Corollary 4.5.3. For all F,G € S we have

Dy, - Dy, (FG) = Z Z (4.5.5)

p=0g=r—p
Z Dy,, -+ Dy, FDy - Dy, G H b(ts),
{k1<--<kptu{li<--<lg}={1,...r} i€ {k1,....kp 0 {l1,...,lq}

tl,...tr€R+.

From Proposition 4.5.2, Proposition 4.3.6 can be extended to random u € U
as in the next result.

Proposition 4.5.4. Let T € Ry and assume that ¢ € L*°([0,T1]) is a locally
bounded deterministic function. Then for allu € U and F' € S we have
S(u)F = 0(uF) 4+ (DF,u)r2r,) + 0(puDF). (4.5.6)

Proof. The proof of this statement follows by duality from Proposition 4.5.2.
Letting u = vG we have for F,G1,Gy € S:

EFGy3(u)] = ElGa(v, D(FGY) 1oca, |
= E[G2F (v, DG1)2r )] + E[G2G1 (v, DF) 2R, )]
+B[Ga (v, $DFDGH) (s )]
= E[G16(uF)] + E[G1(vGa, DF) 2k )] + E[G16(G2v¢ DF)].

O

If (¢¢)ter, is random the probabilistic interpretation of the gradient operator
D is unknown, however we have the following conditional product rule.

Proposition 4.5.5. For F,G € S we have
E[D(FG) | Fi] = E[FD:G | o] + E[GDF | 7] + ¢ E[D F DG | Fi],

F.GeS, teRy.
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Proof. We write (4.5.6) for u € U adapted and apply the duality between D
and d:

E[(u, D(FG))] = E[§(u)FG]

= ]E[(u, FDG>L2(R+) + <u, GDF>L2(R+) + <u, ¢DFDG>L2(R+)].

|
With help of (4.5.4) and Proposition 4.2.5, the following multiplication for-

mula can been proved as a generalization of (4.5.1), cf. [107]. For f, €
L*(R4)°™ and g, € L?(R4)°™, we define f,, ®% g, 0 < 1 < k, to be the
function

(xl-‘rla'- xnayk-‘rl,"'aym
1'1,

¢(x141) -+ Pk / I

.. ,xn)gm(xla ooy Tk Ykt1,y - - - ,ym)dxl o 'dwl

of n +m — k — [ variables. We denote by f, ogc gm the symmetrization in
n +m — k — [ variables offn®§€gm, 0<I<k.

Proposition 4.5.6. We have the chaos expansion

2(nAm)

if and only if the functions

hnms: 'n mn i n‘?iim
e 2 () () () e

$<2i<2(sAnAm)

belong to L?(Ry)°"Fm=s 0 < s < 2(nAm).

Proof. From Corollary 4.5.3 we have

Dy, - D (L(f) Tm(gm)) = 30 S >

p=0q=r—p {k1<-<kp}u{li<---<lg}={1,...r}

(TL 7p)' (m . q)!In—p(fn('?tkla v 7tkp))1m—q(gm('?tlla v 7th))

X 11 o(t:).

i€ {k,e o kp {1, 0y}

n! m!
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Define a function hy, m nim—r € L2(R4)°" as

hn,m,n+mfr(tla B tr) = :! E[Dtl <o+ Dy, (In(fn)lm (Qm))}

TAN T |

1 n! m!

— _ 1 n—p

B D e e R T
1 nlm! n—p

= l Z (nip)!an,m,p,rfn Om—r+p gm(t17"'7t7’)7

" n—m+4r<2p<2(nAT)

where an m p,r is the number of sequences k; < --- <k, andl; < --- <[4 such
that {ki,...,kp} U{l1,..., o} ={1,...,r}, with exactly m —r+p— (n —p)
terms in common. This number is

7! p!

Anm,p,r = (r=p)p! (m—n—r+2p)l(n+r—m-p)

Hence

hn,m,n-{-m—r

= Z nim!f, o’;L*_PT_HJ Gm

n—m-+r<2p<2(nAr) (r=pl(m —n—r+2p)i(n+r—m—p)(n—p)
— Z n! m! 1 1 f ol
- (n— i) (m — i) 2~ (@ — iy Im

n+m—r<2i<2((n+m—r)AnAm)

RO OIARIER

1<2i<2(1AnAMm

with I = n+m —r and i = p+ m — r. The chaos expansion follows from
Proposition 4.2.5, first for f,, g, continuous with compact supports. The
general case follows by a density argument. O

In the next remark we give a necessary condition for the independence of
multiple stochastic integrals.

Remark 4.5.7. Let f, € L?>(R;)°" and g, € L*(R,)°™ and assume that
the I,,(f») and I, (g ) are independent. Then

fn(l'l, . -axn)gm(xla s Tk Yit1y - e ,ym)dxl e dl’sfi - O, (458)

s—1
R-I—

A Xs—ig1) - O(wi)das_ipr1 - drpdys—ip1---dry —a.e., 1 <20 < s <2(nA
m).
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Proof. 1f I,,(f,) and I,,,(gsm) are independent, then I,,(fy) L (gm) € L?(£2)
and
(TL + m)' | fn &Q Gm |%2(R+)®(1L+1n):‘ fn O gm |%2(R+)O(7H+7H)

> nlm! | fn ‘i2(R+ ®n‘ 9m ‘iQ(RJr)@""

B (1 (£2)?] B [n(9m)?] = E [(Lu(fa) o (9m))?

2(nAm)
= Z (TL +m — 7")' | hn,m,r ‘iz(RJr)@(ner—r)
r=0
= (n+m)!| fn ® gm T2, yomsm
2(nAm)

+ Z (TL +m — 7")' ‘ hn,m,'r‘ |12(R+)®(n+m—7-),

hence Ay, =0, 7 =1,...,2(n A m), which implies (4.5.8). |

4.6 Exponential Vectors

We define a linear transformation T f on the space £ spanned by the expo-
nential vectors introduced in Definition 2.13.3.

Definition 4.6.1. For all u € L?>(R,) let
TP6(u) = (1+ wey)§(u), we L™(Ry).

The transformation T} is well-defined on & because £(u1),...,&(uy,), are
linearly independent if uy,...,u, are distinct elements of L?(R,).

Lemma 4.6.2. The transformation Tt‘b is multiplicative, i.e.

TP (FG) = (TP F)TPG), F,Gek&.

Proof. From Lemma 2.13.4 we have

TP (E()E()) = exp((u, v) L2z,)) TP E(u + v+ puv)
= exp((u, v) 2(r,)) (1 + @t (us + v¢ + rusvr))E(u + v + duw)
= (14 drue) (1 + ¢rv)§(w)€(v)
= Tf{(u)Tf{(v).
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The following proposition provides an interpretation of 7; f using the construc-
tion of exponential vectors as solutions of stochastic differential equations,
cf. Proposition 2.13.1.

Proposition 4.6.3. For allu € L2(R,), TP ¢r(u) coincides dt x dP-a.e. with
the limit as T goes to infinity of the solution ZL to the equation

S
z;:1+/ Zt_u,dM!,  s€Rs, (4.6.1)
0

where (M!)ser, is defined as

M; :Ms—i—(btl[t,oo)(s)’ s € Ry

Proof. Clearly by Proposition 2.13.1 we have Z! = ¢,(u), s < t. Next, at
time t we have

Zy = (1 + rur) Zy -
= (1 + ¢rue)&e- (u)
= (14 grue)&e(u),
since &-(u) = &(u) a.s. for fixed t because AM; = 0, dt x dP-a.e. Finally,
for s > t we have

A / Zt_u,dM,
t

= (1+ drun)ée(u) + / "t undM,,
t

hence . t
Z s _
5 =&(u) + T urdMy, s>t
1+ dru &(w) /t 1+ drus
which implies from (2.13.1): 7t
° = Qs ; t,
1+ Geus &s(u), s>

and
Zh = (1 + ¢rug)é(u) = Y6 (w),
P-a.s.,t € Ry. ]

In other words, Tt‘bF , F' € &£, can be interpreted as the evaluation of F' on
the trajectories of (M,)ser, perturbed by addition of a jump of height ¢; at
time t.

In Chapters 5 and 6 we will express the multiple stochastic integrals in terms
of polynomials in the Brownian and Poisson cases. Note that such expressions
using polynomials are not available in other cases, see e.g. [116] in the case
(¢¢)ter, is random, in particular for the Azéma martingales.
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Finally we turn to the probabilistic interpretation of the gradient D. In case
(¢¢)ter, is a deterministic function, the probabilistic interpretation of D; is
known and D;F' can be explicitly computed. Define the operator

DB & - L2(2 xRy, dP x dt)

on the space £ of exponential vectors as

, Feé&. (4.6.2)
e=0

d o
(DPF, u)r2(r,) = dsF (M() +6/ zsusds)
0

We have for F' = £(u) and g € L*(R4):

d ° .
<DBF7 g>L2(R+) = de exp (5/ gsuszsd8> E(U)
0

e=0

- / getsinds £(u),
0

hence DP&(u) = iyué(u), t € Ry, where

§(u) = exp </Ooo usdM; — ; /OOO uszisds) H (14 usps)e "%, (4.6.3)

seJn

and Jy; denotes the set of jump times of (My)icr,. We have the follow-
ing proposition, which recovers and makes more precise the statement of
Proposition (4.5.2). Let again iy = 174,y and jy = 1 —i; = 144,20}, t € Ry.

Proposition 4.6.4. We have
D.F = DPF + 4 (T¢F F), teR,, FeC&. (4.6.4)
Proof. When ¢; = 0 we have DEF = i;u;é(u) = i D, F, hence

Di§(u) = i Di&(u) + jiDe&(u)
= jpue§(u) + jrur€(u)

= DPe(u) + o () —€w),  teRy
Concerning the product rule we have from Lemma 2.13.4:
Di(£(u)é(v)) = exp </ usvsds) Di&(u+ v+ ¢puv)
0

= exp </OOO usvst) (ug 4+ v 4+ Prugve)E(u + v + puv)
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= (ut + ¢ + drupve)E(u)é(v)
= §(u) D& (v) + E(v) D& (u) + ¢ D& (u) D& (v),

u,v € L*(R4), see also Relation (6) of [107]. O

4.7 Deviation Inequalities

In this section we work under the continuity Assumption 4.4.2, which is
satisfied when (¢¢)icr, is a deterministic function since in this case an
Ornstein-Uhlenbeck process (X¢)icr, can be associated to the semi-group
(Ps)ser .- The proof of the next lemma makes forward references to Lemmas
5.3.1 and 6.8.1.

Lemma 4.7.1. The continuity Assumption 4.4.2 is satisfied if (¢¢)icr, is @
deterministic function.

Proof. Let (M;)ier, be defined as in (2.10.4) on the product space £2 = (2, x
{25 of independent Brownian motion (B;);ecr, and Poisson process (N¢)ick, -
Using the decomposition (2.10.4), i.e.

dM; = i;dB; + ¢¢(dN; — M\dt),  t € Ry,

any element

G = f(Ii(w),... Ii(un))

of S can be constructed as a functional G : 21 X {25 — R. From Lemma 5.3.1
and Lemma 6.8.1 we have

PtG(w) :A o G(Zl(wlaajl),ZQ(WQaQQ))pt(wlaw27da}lada)2)a
1 X $22

for some probability kernel p; and mappings
7;1291X914>91, 7;2291X91*>.(21.
This implies

|P:DF||(0,02(2,)) < IPIDF| 2@yl
< |DF||p (2,22, ) te Ry,

for all F' € Dom (D). O

Proposition 4.7.2. Let F € Dom (D) be such that E[e”!F1] < 0o, and e3F €
Dom (D), 0 < s <T, for some T > 0. Let h be the function defined by
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e—sFDesF
h(s) = DF IDF|7 0,022 )) s€[0,T].
o0
Then
P(F —E[F] > x) < exp <—/ hl(s)ds> , 0<z<h(T),
0

where h™' is the inverse of h.

If h is not strictly increasing we may use the left-continuous inverse of h:

hY(z) =inf{t >0 : h(t) >z}, 0<x<h(T).
Proof. Assume first that IE[F] = 0. Since the Ornstein-Uhlenbeck semi-group
(Py)ter, satisfies the continuity Assumption 4.4.2, then using Proposition

4.4.1 we have

E[Fe*f] = Cov (F,e’F)

(o] (o]
=FE [ / eV / DueSFPUDuqudv}
0 0

stD sF 0o o)
< ‘ ‘ I [eSF/ efv/ DuFPvDudedu]
DF - 0 0
estDesF [Ss) B
< DF E |:65F/ e U||DF||L2(R+)||PUDF||L2(R+)dv:|
o) 0
estDesF . 0o B
< DF E [e F] | DF| Lo (2,02(R.)) H/ e "DP||DF||2(r,ydv
(o] 0 o
estDesF . 0o B
=\ pr I [e*] ||DF||L°°(Q,L2<R+>>/ e V| DF|| (0,2 ))dv
e’} 0
e~ Dest’
< [GSF] DF ||DF||2L°°(Q,L2(R+))~

< h(s)E [e*"].

es(F—IE[F])]

In the general case, letting L(s) = IE| , we have

log(E[e!(F~TEIF}) — /0 t LL ((j)) ds
"E[(F - E[F)er ")
0 E[es(F—IE[F])]

= /Ot h(s)ds,

ds
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0 <t<T.We have for all x € R;:

"P(F — E[F] > ) < B[t~ EFD)
< 0<t<T,

where .
H(t):/ h(s)ds, 0<t<T.
0

For any 0 < t < T" we have ;t (H(t) — tz) = h(t) — z, hence

0<mti?T(H(t) —tz) = —wvh™(z) + H(h (z))

h (@)
= —xh () —I—/ h(s)ds
0

= —xh '(z) + /w sdh™(s)

0

= /096 h™Y(s)ds.

From now on we work with (¢;):er, a deterministic function, i.e. (M;)er, is
written as in (2.10.4) and from Lemma 4.7.1, the continuity Assumption 4.4.2
is satisfied.

This covers the Gaussian case for ¢, = 0, ¢t € R, and also the general Poisson
case when ¢, is a non-zero constant.

O

Proposition 4.7.3. Let K > 0 and F € Dom (D) be such that ¢;D:F < K,
dtdP-a.e. for some K >0 and |DF || (0 12®,)) < oo. Then we have

HDFH%OO(Q L2(Ry)) oK
P(F — E[F] > z) < exp | — R
K2 IDFII] 0,12k, ))
x K
B R o (4T.1)
( 2K ( ||DF||2L°°(Q,L2(R+))>>

x > 0, with g(u) = (1 4+ u)log(l +u) —u, u > 0. If K = 0 (decreasing
functionals) we have

.’E2
P(F—E[F]>x) <exp| — . (4.7.2)
2IDF I r2, )
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Proof. We first assume that F € Dom (D) is a bounded random variable.
Let us assume that IE[F] = 0. From Proposition 4.5.2 we have as in the proof
of Proposition 1.11.1:

estDuesF
0<
- D, F
1
— souDuF _ q
oD, ° )

|
< )
- K
since the function x — (e* — 1)/ is positive and increasing on R. Hence in
Proposition 4.7.2 we can take

e

sK_l
06 = | 1P s s 0T

and
. _ __ ¥ 1
min (H () — tx) /0 B (s)ds

1 * 92
<- /0 log (1 + tKHDFHLOO(Q’LQ(RJr))) dt

1 1 _
=K ((l‘ i IDF|7 0, 12(, ) 108 (1 + xK||DF||L§°(Q,L2(R+))) - x)
<_ = log 1+ K
S IDEI o 2,122

If K =0, the above proof is still valid by replacing all terms by their limits
as K — 0. If F € Dom (D) is not bounded the conclusion holds for

F,, = max(—n,min(F,n)) € Dom (D), n>1,
and (F),)nen, (DF),)nen, converge respectively to F and DF in L?(§2), resp.
L*(2 x Ry), with [|[DF.||] 0 12z, ) < IDF 70,12z, )- 0

By the same argument as in Proposition 1.11.3, the bounds (4.7.1) and (4.7.2)
respectively imply
]E[eo“FllOng ‘Fl] < 00
for some o > 0, and
2
E[e] < 0

for all & < (QHDFH%OO(Q’LQ(R”))*.
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Applying Proposition 4.7.3 with the condition ¢DF < ¢K for constant ¢; =
¢ € Ry, t € Ry, we have the following.

Corollary 4.7.4. Assume that ¢y = ¢ € Ry, t € Ry, is constant. Let F' €
Dom (D) be such that DF' < K for some K > 0 and || DF|| (0 ,L2(r,)) < 00.
Then

HDFH%M(Q L2(R4)) rPpK
P(F —E[F] > z) <exp | — , g
PP IDE o 3,22y

< exp x log | 1+ i
> X - ’
20K ||DF||%°O(Q,L2(R+))

with g(u) = (1 +u)log(1 +u) —u, u> 0. If =0 (Wiener case) or K =0
(decreasing functionals) we have

22
P(F—-E[F]>x) <exp| — . (4.7.3)
2| DF||} 0, 12(r, )

In particular if /' is Fr-measurable, then | DF| g0 12, ) < KT and

P(F ~ E[F] > z) < exp (;9 ([i?))

< exp (22 log (1 + ;;:;)) ,

which improves (as in [151]) the inequality

P(F — E[F] > z) < exp < 4;}( log <1 + QQ?T» : (4.7.4)

which follows from Proposition 6.1 in [6], and relies on modified (not sharp)
logarithmic Sobolev inequalities on Poisson space.

4.8 Derivation of Fock Kernels

In this section we introduce some differential operators which will used to con-
struct other instances of operators satisfying Assumptions 3.1.1-3.4.3, namely
on the Wiener space in Section 5.8 and on the Poisson space in Section 7.7,
by infinitesimal time changes on the paths of the underling process.
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Definition 4.8.1. We define the linear operator
Ve :8 = LN xRy)

on S by
VELL(f2") = =nL((f1i,e0)) 0 fEY),

teRy, feCHRL), n €N, and by polarization of this expression.

The operator V© is unbounded, densely defined, and maps functionals of the
n-th chaos H,, into H,, n > 1.

For h € L?(Ry), let I, denote the function defined by

;L(t)z/oth(s)ds, tER,.

Definition 4.8.2. We define the linear operator V® : U — L?(§2) by

VE(hLL(f2") = nLu(f1) 0 D),
f,h € CLH(R,), and extend it by linearity and polarization.
Next we show that the operators V® and V© are mutually adjoint.
Proposition 4.8.3. The operators

Ve S - L2 x Ry)

and
VU — L*(0)

satisfy the duality relation
E [(VOF, u)Lz(R+)] =E [FV®(u)], FeS wuwel (4.8.1)

Proof. By polarization, we need to prove the following. Letting F' = I,,(f®"),
u = hl,(g®") and f,g,h € CL(R,), we have

E RVeFa U)>L2(R+)]
=B [(VOL(F"), 1) 2,y In (9"

= (L1 (fE VY, Iy 1 (0% D)) Loy / h() / £()g(s)dsdt
0 t
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—n?(n— 1)!<f®("_1),g®("_1)>L2(R+)o<n—1>/0 f()g(t)n(t)dt

n2(n — DIFEED B0y Lo / () (hg) (t)dt

W [1, (/%) L((gh) o g®" V)]
= E [1,(f*")V® (h1.(g°™))]
=E [FV@(U)] ,

hence Relation 4.8.1 holds. O

Note that the operators V© and V® are closable from Propositions 3.1.2 and
4.8.3.

4.9 Notes and References

The terminology “Skorohod integral” is adopted in reference to [136]. The
first systematic investigation of the relations between the multiple stochas-
tic integrals with respect to normal and the associated annihilation operator
and Skorohod integral appeared in [81]. Proposition 4.2.5 is also known as
the Stroock formula, cf. [138] and Relations (7.4) and (7.5), pages 26-27 of
[66]. We refer to page 216 of [31], and to [68], [140], [141], for other versions
of Proposition 4.5.6 in the Poisson case. In [126] a more general result is
proved, and yields a decomposition the product Ip,(fn)Im(gm) as a sum of
n A m integral terms. Those terms are not necessarily linear combinations
of multiple stochastic integrals with respect to (M;);cr, , except when the
bracket d[M, M]; is a linear deterministic combination of dt and dM, cf.
[116]. Remark 4.5.7 is an extension the necessary condition for independence
proved in the Wiener case in [144]. The necessary and sufficient conditions
obtained in [107], [109], [141] are true only when f,, and g, have constant
signs. Necessary and sufficient condition for the independence of multiple
stochastic integrals with respect to symmetric a-stable random measures with
0 < a < 2 have been obtained in [124] as a disjoint support condition on f,
and g¢,,. However, finding a necessary and sufficient condition two given sym-
metric functions f, and g, for the independence of I,,(f,) and I,,(gm) in
the Poisson case is still an open problem. We refer to [101] for the classical
Gaussian deviation inequality (4.7.2) in the case ¢, = 0, t € Ry, i.e. on
Wiener space. The material on multidimensional stochastic integrals is taken
from [69]. White noise versions of the annihilation and creation operators,
as well as connections with quantum field theory can be found in [51]. The
Skorohod isometry Proposition 4.3.1 has also been stated for Brownian mo-
tion on Lie groups and on Riemannian manifolds respectively in [43] and [27].



Chapter 5
Analysis on the Wiener Space

In this chapter we consider the particular case where the normal martin-
gale (M;)icr, is a standard Brownian motion. The general results stated in
Chapters 3 and 4 are developed in this particular setting of a continuous
martingale. Here, the gradient operator has the derivation property and can
be interpreted as a derivative in the directions of Brownian paths, while the
multiple stochastic integrals are connected to the Hermite polynomials. The
connection is also made between the gradient and divergence operators and
other transformations of Brownian motion, e.g. by time changes. We also de-
scribe in more detail the specific forms of covariance identities and deviation
inequalities that can be obtained on the Wiener space and on Riemannian
path space.

5.1 Multiple Wiener Integrals

In this chapter we consider in detail the particular case where (M;)ier,
is a standard Brownian motion, i.e. (My);cg, solves the structure equation
(2.10.1) with ¢ =0, t € Ry, i.e.

[M,M}t:t, t€R+

The Hermite polynomials will be used to represent the multiple Wiener
integrals.

Definition 5.1.1. The Hermite polynomial H, (x;0?) of degree n € N and
parameter o > 0 is defined with

Hy(z;0%) =1, Hy(z;0%) = x, Hy(z;0°%) = 2° — 02,
and more generally from the recurrence relation
Hy1(2;0%) = 2H, (x;0°%) — no®H,_1(2;0%), n>1. (5.1.1)

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 5, 161
(© Springer-Verlag Berlin Heidelberg 2009
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In particular we have
H,(z;0) = 2", n € N.

The generating function of Hermite polynomials is defined as

Ya(z,0%) = Z nT H,(z;0%), M€ (-1,1).
n=0

Proposition 5.1.2. The following statements hold on the Hermite
polynomials:

i) Generating function:
Ya(z,0) = e’\x_é)‘2”2, x, A €R.
ii) Derivation rule:

0H,

P (z;0%) = nH,_1(z;0%), (5.1.2)

iii) Creation rule:

Hor(50%) = (x o ai) Ha(:0%).

Proof. The recurrence relation (5.1.1) shows that the generating function
satisfies the differential equation

0
"2 (,0) = (2~ Ao?Ya(r,0),
'(/)0(-’17, 0) = 17
which proves (7). From the expression of the generating function we deduce
(#4), and by rewriting (5.1.1) we obtain (7). O
Let
o I (24ts?))2 d
¢d(51,...,sd):(2ﬂ)d/2e ale] (81,...,84) € RY,

denote the standard Gaussian density function with covariance o?Id on R™.
From Relation (5.1.2) we have
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hence by induction, Proposition 5.1.2-(i4¢) implies

( 1)k1+"'+kd

o 2(k1++ka) o 0k (2, ... wa) = | | Hi,(2:50%).
¢ (@1, ... xq) * il ) 21;[1 «(a

(5.1.3)

Let I,(f.) denote the multiple stochastic integral of f, € L%(R,)°" with
respect to (By)ier, , as defined in Section 2.7. Note that here I;(u) coincides
with Jq(u) defined in (2.2.2), and in particular it has a centered Gaussian
distribution with variance [[u])3 := ||lul[72g ), v € L*(Ry4).

In addition, the multiplication formula (4.5.1) of Proposition 4.5.1 reads

L ()1, (0F™) = Tngy (v 0 w) + n(u, v) 2,y Ino1 (0¥ Y) (5.1.4)
for n > 1, since with ¢y = 0, t € R4, and we have in particular
Ii(u) 1 (v) = I2(vou) + (u,v) L2k, )
for n = 1. More generally, Relation (4.5.7) of Proposition 4.5.6 reads

RISTATRED o (4| (4 LRt}

s=0

where Ay m 25 is the symmetrization in n + m — 2s variables of

($s+1,-~-7$n,ys+1a-~-7ym) =

fn(xl, e ,fn)gm(fh sy iy Ys+1s - - aym)dxl ceedxg.
RS
5

Proposition 5.1.3. For any orthogonal family {uy,...,uq} in L*(Ry) we
have

u

L(u$™ o ouf™) = H i (11 (un); [lugl|3),
k=1

where n =nq + -+ + ng.
Proof. We have

Ho(I1(w); |Jull3) = Io(u®’) =1 and  Hy(I1(u);[ull3) = I (u),

hence the proof follows by induction on n > 1, by comparison of the recur-
rence formula (5.1.1) with the multiplication formula (5.1.4). O

s2
5 (152) _n// [ ea,
0
Bt7

In particular,

(5.1.5)
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and from (4.5.3) we have

I
z&

I, (1®”1 00 18M )

[to,t1] [ta—1,ta]

®
I, (1[15::7%])

H,, (B, — B, itk — th—1).

=~
Il

1

I
z&

=~
Il

1

From this we recover the orthonormality properties of the Hermite polyno-
mials with respect to the Gaussian density:

/_00 H, (25 t)Hyp, (25 )e™ 5 \/d;ﬁ = E[H,,(By;t) Hy (B t)]

WL (15 T (1570
= l{n:m}n!t .

In addition, by Lemma 2.7.2 we have

Hy(Bg;t) = I, ( [Ot])

—E [I e ‘ft} . teR,,
is a martingale which, from Ito’s formula, can be written as

H,(By; t)=1y (1®"])

[0,
tOH, 1 [t 9%H,, t9H,
= H,(0; Bs; s)dBs Bs; Bs;
(0;0)+ . on (Bs; s)dBs + 2, o2 (Bs; s)ds + 0 (Bs; s)ds

t
—n/ L2 (10 Y)dB,

_n/Hnl 575 Bs

from Proposition 2.12.1. By identification we recover Proposition 5.1.2-(i4),
ie.

0H,,
or

and the partial differential equation

(x;8) =nHp—1(x;8), (5.1.6)

8Hn( . )__182Hn(
0s T T g g2

i ),

i.e the heat equation with initial condition

H,(z;0) = 2", reR, neN.
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Given f,, € L*(R;)®" with orthogonal expansion

_ N1,Nd QN1 L ®ng

fn = Z Doy yoikg €y~ © ©Cry >
ni4otng=n
ki,....,ka=>0

in an orthonormal basis (e, )nen of L2(R,), we have

In(fn) = Z aZ;:::::ngﬂl (Il(ekl);1)...Hnd(I1(ekd);1)’
ni4-fng=n
Kpyekg >0

where the coefficients ;!¢ are given by

1
N1yeesNd __ ®mn Rng
g,y = gl ! <In(fn),fk(ekl lo...0 (s )>L2(Q)
— <fn, e?lnl 0-+-0 e%d"d>Lz(R1).
Proposition 2.13.1 implies the following relation for exponential vectors, that
can be recovered independently using the Hermite polynomials.

Proposition 5.1.4. We have

€ =3 ! L) = exp (11 () - ;|u|§2(R+)) | (5.17)
k=0

Proof. Relation (5.1.7) follows from Proposition 5.1.2-7) and Proposition 5.1.3
which reads I, (u®") = H,, (11 (u); \|u\|%2(R+)), n>1. 0O

Proposition 5.1.5. The Brownian motion (By)icr, has the chaos represen-
tation property.

Proof. Theorem 4.1, p. 134 of [50], shows by a Fourier transform argument
that the linear space spanned by the exponential vectors

{eXp (11(U) - ;||u||%2(R+)> Coue L2(R+)}

is dense in L?(£2). To conclude we note that the exponential vectors belong
to the closure of S in L%(2). O

From Proposition 5.1.5, any F' € L?(2) has a chaos decomposition

(oo}
F=> Ilg)
k=0
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Tk (gr) (5.1.8)
k
1
=Y X EFLEN oo oo ugh)
d=1ki+-+ka=k

E[F L (ui™ o - o ud™)] [T Hi, (L (ws)s |[uill3),

i=1

!

k
1
= Z Z ke k
Kyt ka=k

d=1

is a finite sum since for all m > 1 and [ > k,
E[L(ef™)g(I1(e1), ..., Ii(ex))] = 0.

Lemma 5.1.6. Assume that F has the form F = g(Ii(e1),...,Ii(ex)) for
some ,
g € LA(RF, (2m)~F/ 271217/ 2 ),

and admits the chaos expansion
o0
F =" TL(fn)
n=0

Then for all n > 1 there exists a (multivariate) Hermite polynomial P, of
degree n. such that

I,(fn) = Pu(Li(e1), ..., L1 (ex)).
Proof. The polynomial P, is given by (5.1.8) above, which is a finite sum.

O
Lemma 5.1.6 can also be recovered from the relation
f(Il(el)?"'vll(ed)) (519)
oo 71 n
- Z Z k‘(l .. )k: l<f’ oy "'8§d¢}l>L2(Rd)In(e?kl -0 eé@kd),
v S d!
k1 >0,..., kg >0

which follows from (5.1.6) and (5.1.3).

5.2 Gradient and Divergence Operators

In the Brownian case D has the derivation property, as an application of
Proposition 4.5.2 with ¢, =0, t € Ry, i.e.

More precisely we have the following result.
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Proposition 5.2.1. Let uy,...,u, € L>(R}) and

F = f(Il(ul), e ,Il(un)),

where f is a polynomial or f € CL(R™). We have

DtF:Zuz(t)g,i (Il(ul),...,Il(un)), t €R+. (522)

Proof. Using the derivation rule (5.1.2), Definition 4.1.1 and Proposition
5.1.3, this statement is obvious when

F = I,(u®")
= Hu(L(w) uld),  we LA(R.).
Using the product rule (5.2.1) it extends to polynomial f (precisely, to prod-
ucts of Hermite polynomials) and to F' € S. In the general case we may

assume that ui,...,u, € L?(R;) are orthonormal, and that f € CL(R").
Then from Lemma 5.1.6, we have the chaotic decomposition

F=f(L(uy),...,I(uy))

where Ij(g) is a polynomial in I (uy), ..., I1(u,). The sequence

k
Fp=Y I(q), k€N, keN,
=0

is a sequence of polynomial functionals contained in S that converges to F
in L?(£2). By tensorization of the finite dimensional integration by parts

—x2/2 dx

V2
= [ @) - e

/ Z F(@) o (5 1)e

_$2/2 dx
Vor

_$2/2 dx

_/_oo F@)(aH(e:1) — nHoa ()™ /2

o0 2 d
- / f@H e
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of
(91’2- (Il(ul), ey Il(un))

E[f(I1(u1),- .- T (un)) g1 (w0 -+ 0 ulFn o uy)]
= Ele41 (g1 Ing1 (uF™ o+ o ud™ o uy)]
E )

[(DIk41(gk+1)s uz)LZ(RJr)fk:(% Poou

E Ik(u?kl 0---ouZkn)

n

hence gf (I1(u1),...,I1(uy)) has the chaotic decomposition

i

of

o0
8x-(11(u1)"' Z DIy (gr), wi) 2 (m, )
¢ k=1

that converges in L2(£2), hence (DFy)ren converges in L2(£2 x Ry) to

Zuz 11 (u1), Zuzz DIy (gr), wi) 2 (v, )
=1

o0
= ) DI(gx).
k=1
O
In particular for f polynomial and for f € C}(R™) we have
Dif(By,,...By) 21[(” Btl,...Btn), 0<t; < - <tp,
(5.2.3)
and (5.2.2) can also be written as
(DF,h) 2, ) (5.2.4)
d (o) (o)
g ( / w(t)(dB(E) + h(t)dt), ..., / wun(£)(AB(E) + 5h(t)dt)> ,
de 0 0 le=0

d
= dEF(w + 6h’)\6=0,

h € L*(R;), where the limit exists in L?(£2). We refer to the above identity
as the probabilistic interpretation of the gradient operator D on the Wiener
space.

From Proposition 4.2.3, the operator D satisfies the Clark formula
Assumption 3.2.1.
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Corollary 5.2.2. For all F € L*(£2) we have
F = E[F] + / E[D, F|F]dB:.
0
Moreover, since ¢, = 0, t € Ry, Proposition 4.5.4 becomes a divergence

formula as in the next proposition.
Proposition 5.2.3. For allu € U and F € S we have
6(U)F = (5(’U/F) =+ <DF, u>L2(R+)~
On the other hand, applying Proposition 4.5.6 yields the following multipli-
cation formula for Wiener multiple stochastic integrals:

nAm

B tnam) = 32 4 () () st o)

where f, ®p gm is the contraction

(thg1s- s tny Sk s - -5 Sm) —

/ / fn tl,... )gm(tl,...,tk,8k+1,...,8m)dt1...dtk,

thtly---ytns Sk+1,---,5m € Ry
From Proposition 4.3.4, the Skorohod integral d(u) coincides with the Itd
integral of u € L?(W; H) with respect to Brownian motion, i.e.

5(’&) = / UtdBt,
0

when u is square-integrable and adapted with respect to the Brownian
filtration (F¢)ier, -

We have the following corollary, that completes Proposition 4.2.2 and can be
proved using the density property of smooth functions in finite-dimensional
Sobolev spaces, cf. e.g. Lemma 1.2 of [91] or [96].

For simplicity we work with a Brownian motion (Bt):e[o,1) on [0, 1] and we
assume that (e,)nen is the dyadic basis of L2([0, 1]) given by

er = 2"/21[k o ], 20 <k S 2"t _1, nmeN. (5.2.5)

on

Corollary 5.2.4. Given F € L?(02), let for all n € N:

Qn = O’(Il (egn), ey I1(€2n+171)),
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and F,, = E[F|G,], and consider f, a square-integrable function with respect
to the standard Gaussian measure on R?", such that

Fn = fa(li(ean), ... Ii(ean+1-1)).

Then F € Dom (D) if and only if f, belongs for all n > 1 to the Sobolev
space W1 (R?") with respect to the standard Gaussian measure on R®", and
the sequence

271,

0 fn

DtFn = Zegn+i,1(t) 8f (Il (egn), e ,Il (62n,+1,1)), te [0, 1],
i=1

T

converges in L2(£2 x [0,1]). In this case we have

DF = lim DF,.
n— o0
We close this section by considering the case of a d-dimensional Brownian
motion (By)o<i<r=(B{", ..., B{")oci<r, where (B{)sen, ..., (B{" )ier, ,
are independent copies of Brownian motion. In this case the gradient D can
be defined with values in H = L?(R,, X ®R%), where X is a Hilbert space, by

DtF: Zl[ovti](t)vif(Btl"",Bt")a te R+,
=1

for F' of the form

F = f(By,,...,B,), (5.2.6)
feCrR"X), t1,...,t, e Ry, n > 1.
We let D, (X) denote the completion of the space of smooth X-valued
random variables under the norm

k

D, .x) = Z ID"ullpow xomery, — p>1,
1=0

where X ® H denotes the completed symmetric tensor product of X and H.
For all p,q > 1 such that p~' + ¢! = 1 and k > 1, the Skorohod integral

operator
0 : an(X ® H) — Dq,k—l(X)

adjoint of

D . .le’k(X) — Dq’kfl(X X H),
satisfies

E[(F,é6(u))x]| = E[(DF,u)xeH];

F e .le’k(X), u € Dq’k(X & H)
Finally we note that the chaos representation property extends to d-
dimensional Brownian motion.
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Theorem 5.2.5. For any F € L?(§2) there exists a unique sequence (fy)nen
of deterministic symmetric functions

fn _ (f7(1i1“Iwin))i1,m,in6{1,---,d} c LQ([O,T],Rd)On

such that -
F=E[F]+> IL(f).
n=1

Moreover we have

‘F”L?((Z) Z Z ! £i ’Z")”Lz [0,T]7)

n=011,...,in=1

Given F = f (By,,...,B:,) € L*(2) where (t1,...,t,) € [0,7]" and

is in C2°(R9™), for [ =1,...,d we have:

D(l)F Z 8xl k Btla ey Bt”) 1[07tk](t)'

Similarly the Clark formula of Corollary 5.2.2 extends to the d-dimensional
case as

F =E[F] + /Oo E[D.F|F] - dB;, (5.2.7)
0

F e L*(0).
5.3 Ornstein-Uhlenbeck Semi-Group
Recall the Definition 4.4.1 of the Ornstein-Uhlenbeck semi-group (P;):er, as
o0

PF=E[F]+ ) e ™I.(f.), teRy, (5.3.1)

for any F' € L?({2) with the chaos representation
F=E[F]+ Zln(fn)
n=1

In this section we show that on the Wiener space, P, admits the integral
representation, known as the Mehler formula,
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w) = / Fle7'w+ Vi1- e~2t0)dP(©), P(dw) — a.s., (5.3.2)

Q
F e L?(2),t € Ry, cf. e.g. [92], [143], [147]. Precisely we have the following.

Lemma 5.3.1. Let F of the form
F = f(Il(ul), . ,Il(un)),

where f € Cp(R™) and uy,...,u, € L*(Ry) are mutually orthogonal. For all
t € Ry we have:

/f I (u)( w)+\/1—e*2th(u1)(&;),...

e (un) (W) + V1 — e~ 201 (un) (@) P(dd).

Proof. Since, by Proposition 5.1.5, the exponential vectors are total in L?({2)
and P, is continuous on L2(2), it suffices to consider

fula) =exp (2= lul}).

and to note that by Proposition 5.1.4 we have
Lo
§(fu) = exp ( [1(u) — ||u||L2(R+)

_Z .H (11 (u |u||L2(]R+))

Hence

_ -
e ( - be %nun%m)) ,

/Q Fule™ T () (@) + V1 — 2T, (u) (@) P(d)
—/_ooexp<e I (u +\/1—e2 ;HUH%* Y 2> dy

2||ull3 ) 2| ull
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> _ 1., (y — V1 —e=2t||ul|3)? dy
= [ e (e thwe) - Dot - , )
—o0 2 2||ull3 V27| |2

= exp («0)w)  yleul3)
= P fu(li(u))(w).

The result is extended by density of the exponential vectors in L2(2)
since Brownian motion has the chaos representation property from
Proposition 5.2.5. O

The integral representation of Lemma 5.3.1 together with Jensen’s inequality
(9.3.1) imply the following bound which is used in the proof of deviation
inequalities in Section 4.7, cf. Lemma 4.7.1.

Lemma 5.3.2. We have for u € L*(2 x Ry):

[ Prullzo=(2,r2®y)) < llullpe@.r2®,)); teRy.

Proof. Due to Lemma 5.3.1 we have

1 Pyu@) 22, ) = / (Pyus () 2dt

< / Py |ug(w)|*dt
0

< ullF (o, r2, -

5.4 Covariance Identities and Inequalities

In this section we present some covariance identities and inequalities that can
be obtained in the particular setting of the Wiener space, in addition to the
general results of Section 3.4 and 4.4.

We consider the order relation introduced in [11] when 2 = Co(R4) is the
space of continuous functions on R, starting at 0.

Definition 5.4.1. Given wy,ws € 2, we say that w1 = we if and only if we
have

w1(ta) —wi(t1) < walte) — walty), 0<t <to.

The class of non-decreasing functionals with respect to =< is larger than
that of non-decreasing functionals with respect to the pointwise order on
{2 defined by

w1(t) < wa(t), teRy, wi,ws € 2.
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Definition 5.4.2. A random wvariable F : 2 — R is said to be non-
decreasing if

w1 2wy = F(w) < F(ws), P(dw1) ® P(dws) — a.s.

The next result is the FKG inequality on the Wiener space. It recovers
Theorem 4 of [11] under weaker (i.e. almost-sure) hypotheses.

Theorem 5.4.3. For any non-decreasing functionals F,G € L?(£2) we have
Cov (F,G) >0

The proof of this result is a direct consequence of Lemma 3.4.2 and the next
lemma.

Lemma 5.4.4. For every non-decreasing F' € Dom (D) we have

D.F >0, dt x dP — a.e.

Proof. Without loss of generality we state the proof for a Brownian motion
on the interval [0,1]. For n € N, let 7, denotes the orthogonal projection
from L?([0, 1]) onto the linear space generated by the sequence (Er)an<kean+1
introduced in Definition 5.2.5. Let

H= {h: 0,1] >R : /Olh(s)2d5< oo}

denote the Cameron-Martin space, i.e. the space of absolutely continuous
functions with square-integrable derivative.
Given h € H, let

hn(t) = /Ot[ﬂ'nh}(s)ds, tel0,1], neN.

Let A,, denote the square-integrable and G,,-measurable random variable

An = exp </01[7rn /m |2ds)

Letting F,, = E[F' | G,], n € N, a suitable change of variable on R™ with
respect to the standard Gaussian density (or an application of the Cameron-
Martin theorem cf. e.g. [146]) shows that for all n € N and G,-measurable
bounded random variable G,, shows that

E[Fn(- 4 hn)Gr] = E[A, F,Gr(- — hy)]
E[A E[F‘gn] n( _hn)]
= E[E[A,FGn (- = hn)|Gn]]
=E[A,FGp(- — hy)]

E[F (- + hn)Gnl,
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hence
Fo(w+ hy) =E[F(- + hy)|Gn](w), P(dw) — a.s.

If A is non-negative, then Toh is non-negative by construction hence w =
w+ hy,, w € 2, and we have

F(w) < F(w+ hy), P(dw) — a.s.,

since from the Cameron-Martin theorem, P({w + h, : w € 2}) = 1. Hence
we have

F.(w+h)

= fn(I1(e2n) + (62", h>L2([O,1])a N (R <€2"+1—1, h>L2([O,1]))

= fu(Li(e2n) + (€20, Tah) 20,1y - - - T (€an1_1) + (€an+1_1, Tph) 12(0.1]))
= F,(w+ hy)

= E[F (- + hn)|Gn](w)

> E[F|G,](w)

= F,(w), P(dw) — a.s.,

where (er)ren is the dyadic basis defined in (5.2.5). Consequently, for any
€1 < &9 and h € H such that h is non-negative we have

F,(w+e1h) < F,(w + e2h),

i.e. the smooth function ¢ — F),(w + €h) is non-decreasing in ¢ on [—1, 1],
P(dw)-a.s. As a consequence,

: d
(DFyn, h)r2(j0,1)) = de

for all h € H such that A > 0, hence DF,, > 0. Taking the limit of (DF},),en
as n goes to infinity shows that DF > 0. O

Fn(w + 6h)le:O > 07

Next, we extend Lemma 5.4.4 to F' € L?(12).

Proposition 5.4.5. For any non-decreasing functional F' € L*(§2) we have

E[D.F|F] >0,  dt x dP— a.e.

Proof. Assume that F' € L?(2) is non-decreasing. Then PypFyn > 1, 1is
non-decreasing from (5.3.2), and belongs to Dom (D) from Relation (5.3.1).
From Lemma 5.4.4 we have

DiPy/yF >0,  dt xdP—a.e.,

hence
E[DtPl/nF\ft} >0, dt x dP — a.e.
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Taking the limit as n goes to infinity yields E[D;F|F;] > 0, dt x dP-a.e. from
Proposition 3.2.6 and the fact that P/, F' converges to F' in L?(02) as n goes
to infinity. O

Finally, using the change of variable a = e, the covariance identity (4.4.2)
can be rewritten with help of Lemma 5.3.1 as

Cov (F,G)

= [ [R50, 1)), Vot ) V1 - 02 0) @)

s ady (un) (@) + V1 = o211 (1) (@))) e P(dw) P(d) do.
This identity can be recovered using characteristic function: letting
o(t) = B[] = ot lull3/2

and
Pals,t) = B[N HVIZE L@ — (o5 4 )% (ip(s)) = (1)),
we have

Var [eish(u)] = p1(s,t) — @o(s,t)
1 8@0

= . oa (s,t)da

— [ (o) olt + )" (o(s)) o
0

- / o8 ( 1)) o5

1
—stllul2a, / po(s,t)da

1
/ / / (De*1 ) (), D) (aw + /1 — a20))) 12 (=, ) P(dw)P(dD)da,
0 02 J02
hence
Cov (eisll(u), eisll(v))

1
= / / / <Deish(u) (w),Deith(v)(aw + \/1 _ 042@))>L2(R+)P(dw)IP(d&;)da.
0 02 J02

Since D is a derivation operator from Proposition 5.2.1, the deviation
results of Proposition 3.6.2 hold, i.e. for any F' € Dom (D) such that
IDF 12(® Lo (2)) < C for some C' > 0 we have
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.’132
P(F — E[F] > & Sexp(— > =t
( [F] = x) 2C||DF |12, = (2)

5.5 Moment Identities for Skorohod Integrals

In this section we prove a moment identity that extends the Skorohod isom-
etry to arbitrary powers of the Skorohod integral on the Wiener space. As
simple consequences of this identity we obtain sufficient conditions for the
Gaussianity of the law of the Skorohod integral and a recurrence relation for
the moments of second order Wiener integrals.
Here, (B;)ier, is a standard R?valued Brownian motion on the Wiener space
(W, 1) with W = Co(R,, R?).
Each element of X ® H is naturally identified to a linear operator from H to
X via

(a®b)e=alb,c), a®be X®H, ceH.

For v € Dy (H) we identify Du = (Djus)scr, to the random operator
Du : H — H almost surely defined by

(Du)v(s) :/ (Dyug)vedt, s€Ry, wve L*(W;H),
0
and define its adjoint D*u on H ® H as
o0
(D*u)v(s) :/ (Dlug)vedt,  seRy, wveL*(W;H),
0

where Dlut denotes the transpose matrix of Dyu; in R? @ RY.
The Skorohod isometry of Proposition 4.3.1 reads

E[|6(u)|*] = E[{u, u)#] + E [trace (Du)?] u e D1 (H), (5.5.1)
with
trace (Du)? = (Du, D*u)gon

/ / D sUt, tué>Rd®Rdd8dt

and the commutation relation
Dé(u) =u+ 6(D*u), u € Dy o(H). (5.5.2)

Next we state a moment identity for Skorohod integrals.
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Theorem 5.5.1. For anyn > 1 and u € IDy41 2(H) we have

Bl =Y " Bl (5.5.3)

k=1

k
(((Du)k_lu,wH + trace (Du)F ! + Z 1<(Du)k_iu, Dtrace (DU)Z>H>] ;

=2
where
trace (Du)**!

e} e}
= / / <Dzk_1utk’Dtk72utk71 ~-~Dt0ut1Dtkuto>Rd®Rddt0~-~dtk.
0 0

For n = 1 the above identity coincides with the Skorohod isometry (5.5.1).
The proof of Theorem 5.5.1 will be given at the end of this section.

In particular we obtain the following immediate consequence of
Theorem 5.5.1. Recall that trace (Du)® = 0, & > 2, when the process u
is adapted with respect to the Brownian filtration.

Corollary 5.5.2. Let n > 1 and v € IDp41,2(H) such that (u,u)p is deter-
ministic and

k
1 ) )
trace (Du)" ! +Z ; ((Du)*~*u, Dtrace (Du))y =0, a.s., 1<k<n.
=2
(5.5.4)

Then 6(u) has the same first n+ 1 moments as the centered Gaussian distri-
bution with variance {(u,u)y.

Proof. We have
o0
Di{u,u) = Dt/ (ug, us)ds
0

(o] o0
:/ <uS,DtuS>ds+/ (Dyug,us)ds
0 0

shows that

(D*Yw)u, u) = (D*u)*~tu, u) (5.5.5)
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k > 2, when (u,u) is deterministic, w € ID31(H). Hence under Condition
(5.5. ) Theorem 5.5.1 yields

E[(6(u)" ] = n(u, ) g B [(5(w)" '],
and by induction

2m)!
(2m) (u, u)y, 0<2m<n+1,

E[(0(w)*™) = )

and E[(6(u))*™ ] =0, 0 < 2m < n, while E[§(u)] = 0 for all u € D21 (H).
O

As a consequence of Corollary 5.5.2 we recover Theorem 2.1-b) of [145], i.e

d(Rh) has a centered Gaussian distribution with variance (h, h)y when u =

Rh, h € H, and R is a random mapping with values in the isometries of

H, such that Rh € Nys1D,2(H) and trace (DRR)*1 = 0, k > 1. Note

that in [145] the condition Rh € Nps>ix>2ID, k(H) is assumed instead of

Rh € ﬂp>1Dp72(H).

In the sequel, all scalar products will be simply denoted by (-, -).

We will need the following lemma.

Lemma 5.5.3. Let n > 1 and u € ID,,11 2(H). Then for all 1 < k < n we

have

I [(3(u)" ™ ((Du)* " u, D3(u))] = (n — k) B [(8(w))" "~ ((Dw)*u, Do (u))]
=E[(0(u)""

k
(((Du)klu, u) + trace (Du)*+1 4 Z 1<(Du)k*iu, Dtrace (Du)’))
i=2

Proof. We have (Du)kilu S D(n+1)/k,1(H), 6(u) S -ZD(n+1)/(n—k+1),1(R),
and using Relation (5.5.2) we obtain

I [(3(u)" ™ ((Du)*~ u, Di(u))]

= E[(6(u)" " (Du)" " u, u+ 6(D*u )>]
= B [(6(w)" " (Dw)" ™ u, w)] + B [(8(u))" " DU)k 1u,<5(DU)>]
= E [(6(u)" " ((Du)" " u, u)] + [D*u D((3(uw)"~*(Du)*"u))]
= B [(6(w)" "M {(Dw)"u, w)] + B [(5(u))"~ k (D*u, D((Du)*~'u))]
+E [(D*u, (Du)*"'u) @ D(6(u))"~ >]
= B [(6(w)" " ((Dw)*~ ", u) + (D*u, D((Du)* ' u)))]
+(n = k) E [(8(u)" ™" 1< u, (Du)* " u) ® D§(u))]
= E[(6(uw)" ™" ((Dw)*~ u,u) + (D*u, D((Du)* " u)))]
+(n = k) [(0(u)" " 1<(Du) u, Do (u))]
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Next,
(D*u, D((Du)*"tu))
oo oo
= / - / (D], s, Di (Dyy_yun, -+ Digug ) dto - - - dty,
0 0

(oo} (oo}
= / s / <Djk_1utk,Dtk_2utk_1 s DtoutlDtkut0>dt0 s dtk
0 0

+/ / <DIk—1utk’Dtk(Dtk_2Utk_l ~~~Dt0utl)ut0>dt0...dtk
0 0

k=2 .00 0o
= trace (Du)**1 + Z/ - /
=070 0

+
<Dtk_1utk’Dtkutk+1 T Dti+1uti+2 (Dti,Dtkuti+1)Dti—luti e Dtoutluto>

dtoy - - - dty

k—2 1 00 00
= trace (Du)k'H + ] / .. /

¥
<Dt7‘, <D utk’Dtkuthrl T Dti+1uti+2Dtkut7‘,+1>v Dti—luti T Dtoutluto>

tr—1
dto - - - diy,
=2 ' '
= trace (Du)*™t + Z {(Du)"u, Dtrace (Du)*~*).
k-

Proof of Theorem 5.5.1. We decompose

E[(8(u))" ] = Bl(u, D(6(u))")]
= nE[(3(u)" " (u, D5(u))]

=3 M B [6() (D), Do)

— n! n — U n—k—1 " k:u w
2 (n— (7~ BV [(0()" ™ H{(Du)u, Do(w))]

as a telescoping sum and then apply Lemma 5.5.3, which yields (5.5.3). O

5.6 Differential Calculus on Random Morphisms

In this section, in addition to the shift of Brownian paths by absolutely conti-
nuous functions as in (5.2.4), we consider a general class of transformations of
Brownian motion and its associated differential calculus. The main result of
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this section Corollary 5.6.5 will be applied in Section 5.7 to construct another
example of a gradient operator satisfying the assumptions of Chapter 3. Here
we work with a d-dimensional Brownian motion (Bt)t€R+ as in Section 2.14.
Let

U:SRy;RY — L2(02 x Ry RY)

be a random linear operator such that Uf € L2(2 x R, ;R?) is adapted for
all f in a space S(R;R?) of functions dense in L?(R;R?).

The operator U is extended by linearity to the algebraic tensor product
SR, ;R ®S, in this case U f is not necessarily adapted if f € S(R;; RY)®S.

Definition 5.6.1. Let (h(t))icr, € L*(£2 x Ry;R?) be a square-integrable
process, and let the transformation

AU R) : S — L*(2 x R;RY)
be defined as
AU, W F
=f (Il(Uul) +/Ooo<u1(t),h(t)>dt,...,Il(Uun) +/Ooo<un(t),h(t)>dt),
for F €S of the form

F=f(h(ur),..., Ii(un)),

u, ... un € SR RY), f € CP(R™;R).

In the particular case where
U:SRy;RY — L2(02 x Ry RY)

is given as
UA#) =V(©) (),  teRy,

by an adapted family of random endomorphisms
V(t):RE—RE teRy,

this definition states that A(U, h)F is the evaluation of F' on the perturbed
process of differential V*(t)dB(t) + h(t)dt instead of dB(t), where

V*(t) : R? — R?

denotes the dual of V(t) : R — R4 t € R,.
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We are going to define A(U,h) on the space S of smooth functionals. For

this we need to show that the definition of A(U,h)F is independent of the
particular representation

F:f(Il(ul),...,Il(un)), Uty ... Uy € H,

chosen for F' € S.
Lemma 5.6.2. Let F,G € S be written as

F=fTL(uw),. . . Ii(u)), ui, ..., u, € S(Ry;RY,  feCHR™R),
and
G=g(v1),...,[1(vm)), Ul,...,vaS(R+;Rd), gECl(Rm;R).

If F = G P-a.s. then A(U,h)F = A(U, h)G, P-a.s.

Proof. Let e1,...,ep € S(Ry;R?) be orthonormal vectors that generate
ULy Up, V1, .., Um. Assume that u; and v; are written as

E E
u; = E ale; and wv; = E Ble;, i=1,...,n,
Jj=1 Jj=1
in the basis ey, ...,ex. Then F' and G are also represented as

F=f(Le),. ... Iiex)),
and G = § (I, (e1), ..., I1(ex)), where the functions f and § are defined by

k k
flz,...,zp) = f Za{xj,...,Zafzxj , 21,...,2 € R,

Jj=1 Jj=1

and

Mw

gxy,...,ak)=f J,‘],.. Zﬁjw] , T1,...,2) € R.

<.
Il
_

Since F' = G and Ii(e1),..., 1 (ex) are independent, we have f=gae
hence everywhere, and by linearity,

AU, B)F = f(JI(Uel) +/Ooo<el(t),h(t))dt,...,[1(Uek) —i—/OOO(ek(t),h(t))dt),
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and
AU, h)G
=g (Il(Uel) +/0 (e1(t), h(t))dt,..., Iy (Uek) +/0 (ek(t),h(t»dt) ,

hence A(U, h)F = A(U, h)G. O
Moreover, A(U, h) is linear and multiplicative:
AU R f(Fry... Fy) = f(A(UR)Fy, ..., A(U, W) Ey),
Fi,....,F, €8, f € CL(RYR).
Definition 5.6.3. Let (Uc:)cco,1] be a family of linear operators
Ue : S(Ry;RY) — L?(2 x Ry;RY),

such that

i) Up is the identity of S(Ry;RY), ie. we have Ugf = f, P-a.s., f €
S(Ry;RY).

i) for any f € S(Ry;RY), U.f € L2(2 x Ry ;RY) and is adapted, € € [0, 1],
i) the family (Ue)eepo,1) admits a derivative at ¢ = 0 in the form of an
operator

L:S(Ry;RY) — L2 x Ry ;RY),
such that
((Uef = f)/€)eeion

converges in L*(2 x Ry;RY) to Lf = (Lof)ier, as € goes to zero, f €
S(R+,Rd)

Let h € L?(02 x Ry;RY) be a square-integrable adapted process.

The operator £ is extended by linearity to S(Ry;R?) ® S. The family
(Uc)ee[o,1] needs not have the semigroup property. The above assumptions
imply that LDF € Dom (§), F € S, with

§(LDF) = Z Oif (I (wr), ..., I (un))8(Lus) (5.6.1)

- Z (ui, Lug) 2w, ray0i0; f (I (u1), - - -, 1 (un)),

ij=1
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for F = f(I1(u1),...,11(uy)), where we used Relation 5.2.3. We now compute
on S the derivative at € = 0 of one-parameter families

A(U.,eh) : S — L*(2), e € R,

of transformations of Brownian functionals. Let the linear operator trace be
defined on the algebraic tensor product H ® H as

traceu ® v = (u,v)q, u,v € H.
Proposition 5.6.4. For F € S, we have in L?({2):

ai/l(Ug, eh)Fle—o = / (ho(t), Dy F)dt + §(LDF) + trace (Idg ® L)DDF.
0
(5.6.2)

Proof. Let A: S — S be defined by
AF = 0(LDF) + trace (Idg ® L)DDF + / (ho(t), D¢ F)dt, Fes.
0

For F = I,(u), u € S(R4;R?), we have

Ci/l(Ua,eh)ﬂE:O - /0 " lho(t), u(t))dt + I (Lu)

= / (ho(t), DiF)dt + §(LDF) + trace (Idg @ L)DDF
0
= AF

since DDF = 0. From (5.6.1), for F1,...,F, € S and f € C;°(R™;R) we
have

Af(Fy,...,F,) =
S(LDf(F1,...,F,))+trace(Idy @ L)DDf(Fy,..., Fy)

N /0 T lho(t), Duf (P, Fu))it
— Zn:(s(aif(Fl, ..., F,)LDF;)

+> 0if(Fy,..., Fy)trace (Idg ® £)DDF;
1=1
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+ > 8i8jf(F1,,...,Fn)/0 (LsDF;, DyF;)ds

4,5=1

+ Za,»f(Fl, L F) /Ooo<h0(t),DtFi>dt

—Zf)f Fi,...,F,)8(LDE;) +Zaf (F,..., Fy)trace (Idg ® £)DDF;

=1

+ Z Dif(Fu,...,Fy) /oo<h0(t), D, F;)dt
i=1 0

=3 0if(F,....F) (6(LDF;) + trace (Idy ® £)DDF;

v/ °°<ho<t>,DtFi>dt)
=1

Hence for Fy = I (u1),...,F, = I(u,) € S and f € C°(R™; R):

Af(Fy,... F) =Y 0if(F,... F,)AF,
i=1

i=1 de |le=0

d
= <d€A(U57€h)f(F1,~~-3Fn))|a 0‘

Consequently, Relation (5.6.2) holds on S. |

Corollary 5.6.5. Assume that £ : L>(Ry;RY) — L2(2 x Ry ;RY) is anti-
symmetric as an endomorphism of L?>(R,;R%), P-a.s., we have in L*(£2):

ai/l(Ug,eh)ﬂE:O - / (ho(t), D;F)dt + 5(CDF),  Fe€S.
0

Proof. Since L is antisymmetric, we have for any symmetric tensor u ® u €
S(R4;RY) @ S(Ry; RY):

trace (Idg ® L)u @ u = traceu ® Lu = (u, Lu) i = —(Lu,u) g = 0.

Hence the term trace (Idy ® £)DDF of Proposition 5.6.4 vanishes P-a.s. since
DDF is a symmetric tensor. O
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5.7 Riemannian Brownian Motion

In this section we mention another example of a gradient operator satisfying
the Clark formula Assumption 3.2.1 of Chapter 3. As an application we de-
rive concentration inequalities on path space using the method of covariance
representation. This section is not self-contained and we refer to [40], [41],
[44], [83] for details on Riemannian Brownian motion.

Let (B(t))ier, denote a R%-valued Brownian motion on (£2, F,P), generating
the filtration (F;):er,. Let M be a Riemannian manifold of dimension d
whose Ricci curvature is uniformly bounded from below, and let O(M') denote
the bundle of orthonormal frames over M. The Levi-Civita parallel transport
defines d canonical horizontal vector fields A;,..., A4 on O(M), and the
Stratonovich stochastic differential equation

i=d
dr(t) = ZAi(r(t)) odz'(t), teRy,

r(0) = (mo,r9) € O(M),

defines an O(M)-valued process (r(t))ier, . Let 7 : O(M) — M be the
canonical projection, let

V() =7(r(t),  teRy,

be the Brownian motion on M and let the It6 parallel transport along
(7(t))ter, is defined as

treo =rt)ryt : TpgM ~R* — T, ()M,  t€[0,T].

Let Co(R4;R?) denote the space of continuous R%-valued functions on R
vanishing at the origin. Let also P(M) denote the set of continuous paths on
M starting at mg, let

I:Co(Ry;RY) — P(M)
(W(t))ter, — I(w) = (v(t))ter,

be the It6 map, and let v denote the image measure on P(M) of the Wiener
measure P by I. In order to simplify the notation we write F' instead of Fol,
for random variables and stochastic processes. Let (2, denote the curvature
tensor and ric, : RY — RY the Ricci tensor of M at the frame r € O(M).
Given an adapted process (z;)ier, Wwith absolutely continuous trajectories,
we let (£(t))ier, be defined by
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. 1
20 =20 + ricat),  teRy,  £0)=0. (5.7.1)

We recall that z — Z can be inverted, i.e. there exists a process (Z;)¢cr, such
that Z = z, ¢f. Section 3.7 of [44]. Finally, let Qs : R? — R?, be defined as

th,s

1.
dt = _QHCT(t)Qt,Sa Qs,s = IdTmOa 0<s<t,

and let .
lt2) =~ | Buy(odBe) 26, teRy,
0

where odB(s) denotes the Stratonovich differential. Let @} ¢ be the adjoint of
Qts, let H= L?(Ry,R%), and let H = L°>°(P(M), H; dv). Let finally C2°(M™)
denote the space of infinitely differentiable functions with compact support
in M™.

In the sequel we endow P(M) with the o-algebra F¥ on P(M) generated by
subsets of the form

{yePWM) : (v(t1),..-,7(tn)) € B1 x --- X By},

where 0 <t; <--- <tpn, By,...,Bp, € B(M), n>1.
Let

and

k=n .
UPM) x Ry;RY) = {Z Fk/ ug(s)ds : Fy,...,F, € S(P(M);R),
k=1 0

U1, ..Uy € L2(Ry;RY), n> 1}

In the following, the space L2(P(M),F* v) will be simply denoted by
L?(P(M)). Note that the spaces S(P(M);R) and U(P(M) x R ;RY) are
dense in L?(P(M);R) and in L?(P(M) x R, ; R?) respectively. The following
definition of the intrisic gradient on P(M) can be found in [44].

Definition 5.7.1. Let D : L2(P(M);R) — L2(P(M) x R ;R%) be the gra-
dient operator defined as

i=n

th = Zto«—tlvyf(’y(tl)a <. a’Y(tn))l[O,tz](t)v te R-‘ra

i=1

for F € S(P(M);R) of the form F = f(y(t1),...,7(tn)), where VM denotes
the gradient on M applied to the i-th variable of f.
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Given an adapted vector field (Z(t))er, on M with Z(t) € T,y M, t € Ry,
we let z(t) = to—¢Z(t), t € Ry, and assume that 2(¢) exists, Vt € Ry. Let

VZ(t) = lim trtreZ(t ) = Z(t)
e— g

Then
2(t) = totVZ(t), teR,.

let 2, denote the curvature tensor of M and let ric, : RY — R? denote
the Ricci tensor at the frame » € O(M), and let the process (£(t))icr, be
defined by

: 1
z(t) = 2(¢) + 2ricr(t)z(t), teRy,
(5.7.2)

2(0) = 0.
As a consequence of Corollary 5.6.5 we obtain the following relation between
the gradient D and the operators D and 9, cf. Theorem 2.3.8 and Theorem 2.6
of [27].

Corollary 5.7.2. Assume that the Ricci curvature of M is uniformly
bounded, and let z € U(P(M) x Ry ;R?) be adapted. We have

/00<th, (1))t = /OO(DtF, (b))t + 6(q(-, 2)D.F), (5.7.3)
0 0

F € S(P(M);R), where q(t, z) : RY — R? is defined as

alt,2) = - / Qo) (0dB(s), (), tER,.

Proof. We let V.(t) = exp(eq(t, z)), t € Ry, e € R. Then from Proposition
3.5.3 of [44] we have

/ <bF, Z(t)>dt = d A(Ueag'é)F‘la:&
0 de

Since the Ricci curvature of M is bounded, we have z € L2(R,; L(W;R))
from (5.7.2). Moreover, from Theorem 2.2.1 of [44], ¢ — A(U,, 0)r(t) is differ-
entiable in L?(W;R), hence continuous, V¢ € R . Consequently, from (5.7.2)
and by construction of U(P(M) x Ry;R%), ¢ — A(U.,0)Z is continuous in
L?(W x Ry ;R?) and we can apply Corollary 5.6.5 with £; = ¢(t, z) to obtain
(5.7.3). 0
i=n
If u € U(P(M) x Ry;RY) is written as u = Z Gz, z; deterministic, G; €

i=1

SP(M);R),i=1,...,n, we let
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trace q(t, Dyu) = Zq t,z)D:G

Given u € U(P(M) x +,]Rd) written as u = Z:ZL G;zi, z; deterministic,
( pr—

G, e S(P(M);R), ¢ ..y, we let
U= GizZ;
i=1

We now recall the inversion of z — Z by the method of variation of constants
described in Section 3.7 of [44]. Let Id, () denote the identity of T’ M. We
have

. 1
Z(t) = g(t) + QI‘iCr(t)g(t), te Ry,

where (2(t))¢cr, is defined as

t
— [ Quitsds,  tery,
0

and Qs : R? — R? satisfies

th,s

1.
g = olltwls,  Qss=Idyo), 0=<s<t

Let also the process (Z(t))teR+ be defined by
- 1
VZ(t)=VZ(t)+ 2Ric,y(t)Z(t), te Ry,
Z(0) =0,
with 2(t) = 10 ¢Z(t), t € Ry In order to invert the mapping Z — Z, let
t
:/ R, sV Z(s)ds, teRy,
0
where Ry s : TyoyM — T, ;)M is defined by the equation
1.
ViR s = _QRIC'Y(t)Rt,Sa R s = Id'y(s 0<s<H,

V: denotes the covariant derivative along (y(t))icr, , and

Ric,, : T,,M — T,,M
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denotes the Ricci tensor at m € M, with the relation
ric,(y) = to—t o Ricy (4 o tro.
Then we have
VZ(t)=VZ(t) + IRic,)Z(t), teRy,
Z(0) = 0.

We refer to [44] for the next definition.
Definition 5.7.3. The damped gradient

D: L*(P(M);R) — L*(P(M) x R;;R%)

1s defined as

DiF = 1104)(O)@QF, ito—t, VI f(7(t1), ... Y (tn)),  tERL,
=1

for F € S(P(M);R) of the form F = f(y(t1),...,v(tn)), where
Qi R — R

denotes the adjoint of Q; s : RY — RY, 0 < s < t.

Given f € C°(M™) we also have

=n
DiF =Y 1 (Otos Ry, VY F(V(11), -3 (t)),  tERy,
i=1

where Ry, : T,y — Ty ) is the adjoint of Ry, 1 : T ) — Ty4,)-
Proposition 5.7.4. We have for z € U(P(M) x R ;R9):

/Oo(ﬁtF,,é(t»dt = /OO<DtF,§(t)>dt, FeSMPM);R).  (5.7.4)
0 0
Proof. We compute

| O sani =Y [0 o 000, (0. 26
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~.

=n

/0 o VM F(y(t0), - (), Qo o 2(5)

o

(D,F,2(t))dt,  F e S(P(M);R).

0

We also have

/Oo<DtF, A(t))dt = /®<DtF, s(t))dt,  FeSP(M);R).
0

0

Taking expectation on both sides of (5.7.3) and (5.7.4) it follows that the
processes DF and DF have the same adapted projections:

E[D:F | 7] = E[D:F | 7], teRy, (5.7.5)
F = f(y(t1),...,7(ts)). Using this relation and the Clark formula
F =E[F / E[D.F | F] - dB(t),

on the Wiener space, cf. Proposition 5.2.7 we obtain the expression of the
Clark formula on path space, i.e. Assumption 3.2.1 is satisfied by D.

Proposition 5.7.5. Let F € Dom (D), then
F = E[F] +/ E[D:F | 7] - dB(t).
0

The following covariance identity is then a consequence of Proposition 3.4.1.
Proposition 5.7.6. Let F,G € Dom (D), then

Cov (F,G) = { / DoF -E[D,G | Fi dt} (5.7.6)

From Proposition 3.6.2 we obtain a concentration inequality on path space.

Lemma 5.7.7. Let F' € Dom (D). If HDF||L2(R+7LOC(P(M))) < C, for some
C >0, then

22
v(F—E|F|>«x gexp(— - ), x> 0. 5.7.7
(F - E[F] 2 2 - 6.1

In particular, E[e*F’] < oo, for A < (2C||DF||u) !
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5.8 Time Changes on Brownian Motion

In this section we study the transformations given by time changes on
Brownian motion, in connection with the operator V© of Definition 4.8.1.

Proposition 5.8.1. On the Wiener space, V© satisfies the relation

VP (FG)=FVyG+ GV F — D,FD,G,  teR;. (5.8.1)

Proof. We will show by induction using the derivation property (5.2.3) of D
that for all £ > 1,

Ve (L (fE0(9)") = L)V (1(9)*) + Li(9)" Vi L(f€)
Dy I, (f®")Dy (I(9)"), (5.8.2)

t € Ri. We have

VO (L (PP (9)) = V© (L (F57 0 )+ nlF. g o Tus (F20)

= L1 (9L t.00)) © F¥7) = L1 (f'Ljt.00)) 0 g 0 fE77Y)
—n(n—1)(f,9) L2, ) In-1((f' Ljt,00)) © FE72))

= L1 (f'1j00) © FE 0 9) = n{g, (f 1 jt.00))) L2 R ) In—1 (fE7D)
L1 (f2" 0 (01 00))) — (= 1){f, 9) r2es ) L1 (FE 2 0 (F'L00)))
=1 (f, 9'Lit 00)) L2y ) L1 (FE7Y)
+n<f/1[t,oo),g>L2(R+)I"—1(f®(n_1)) +1(9' Lt 00) f>L2(R+)I"—1(f®(n_l))

= —nL((f'100)) © fE" TN (9) = In(FE™) (9" 1t 00)
—nf(t)g(t) -1 (F7"7Y)

= L(g)Vy L(fO") + L(f")VE Li(g) — Deli(9)Deln(f€"),  t€ Ry,

which shows (5.8.2) for £ = 1. Next, assuming that (5.8.2) holds for some
k > 1, we have

VE (L (fE (9" = Li(g) Ve I (FE™) 1(9)") + In(f¥") 1 (9)* Vi 11 (g)
—Di11(9)Di(11(9)" In (f&™))
= Ii(9) (L(9)"VEL.(f*") + L(f*)V{ (1i(9)*)
=Dy (11(9)") Deln(f*™))
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+L (") (9)" Vi Ti(g) — Deli(g) (Iu(9)" Deln(f™)
+L,(f*") Dy (11 (9)"))

= L)' VEL(f2") + L(f*")VE (Li(g)**Y)
=Dy (Ii(9)*") DeIn(£57),

t € R4, which shows that (5.8.2) holds at the rank k + 1. O

Definition 5.8.2. Let h € L*(Ry), with ||h||pem®,) <1, and

t
vp(t) =t + / h(s)ds, teR;.
0
We define a mapping Tp, : 2 — (2, t,e € Ry, as

Th(w) =wouy; !, he L*Ry,), seu]l%) | h(x) |< 1.
TER4

The transformation 7;, acts on the trajectory of (Bs)ser, by change of time,
or by perturbation of its predictable quadratic variation. Although 73, is not
absolutely continuous, the functional F' o 7}, is well-defined for F' € S, since
elements of S can be defined trajectory by trajectory.

Proposition 5.8.3. We have for FF € S

0

e—0

Proof. We first notice that as a consequence of Proposition 5.8.1, the operator
o 1
vy + 2DtDt
t € Ry, has the derivation property. Indeed, by Proposition 5.8.1 we have

1
VP (FG) + 2DtDt(FG) = FVPG +GVYF — DFD,G

1
+, (FD:DiG + GDiD,F +2D;F D,G)

1 1
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Moreover, 7, is multiplicative, hence we only need to treat the particular
case of F' = I;(f). We have

L(f)o T — L(f) = /0 " f(9)dB5 () — ()
— [ twatenan.~ [ s,

:/0 (f <t+s/0th(8)d8> f(t)) dB.

After division by ¢ > 0, this converges in L?(£2) as ¢ — 0 to

/OOO @) /Oth(s)dsdBt /000 h(t) /too f'(s)dB;dt

_ /Oo WOVELL (f)dt
0

_/0 h(t) (V? + ;DtDt) L (f)dt.

5.9 Notes and References

Proposition 5.2.1 is usually taken as a definition of the Malliavin deriva-
tive D, see for example [92]. The relation between multiple Wiener integrals
and Hermite polynomials originates in [132]. Corollary 5.2.4 can be found
in Lemma 1.2 of [91] and in [96]. Finding the probabilistic interpretation of
D for normal martingales other than the Brownian motion or the Poisson
process, e.g. for the Azéma martingales, is still an open problem. In rela-
tion to Proposition 5.6.1, see [27] for a treatment of transformations called
Euclidean motions, in which case the operator V(t) : R — R is chosen
to be an isometry and h is adapted, so that A(U,h) is extended by quasi-
invariance of the Wiener measure, see also [62]. Corollary 5.5.2 recovers and
extend the sufficient conditions for the invariance of the Wiener measure un-
der random rotations given in [145], i.e. the Skorohod integral §(Rh) to has
a Gaussian law when h € H = L?*(R;,R%) and R is a random isometry of
H. We refer to [42], [44] for the Clark formula and the construction of gradi-
ent and divergence operators on Riemannian path space, and to [60] for the
corresponding deviation results stated in Section 5.7.



Chapter 6
Analysis on the Poisson Space

In this chapter we give the definition of the Poisson measure on a space of
configurations of a metric space X, and we construct an isomorphism between
the Poisson measure on X and the Poisson process on R;. From this we
obtain the probabilistic interpretation of the gradient D as a finite difference
operator and the relation between Poisson multiple stochastic integrals and
Charlier polynomials. Using the gradient and divergence operators we also
derive an integration by parts characterization of Poisson measures, and other
results such as deviation and concentration inequalities on the Poisson space.

6.1 Poisson Random Measures

Let X be a o-compact metric space (i.e. X can be partitioned into a countable
union of compact metric spaces) with a diffuse Radon measure o. The space
of configurations of X is the set of Radon measures

2% = {w = zn:emk D (z)fZh X, neNU {oo}} , (6.1.1)

k=0

where ¢, denotes the Dirac measure at x € X, i.e.
(A) =1a(2), AeB(X),

and {2 defined in (6.1.1) is restricted to locally finite configurations.

The configuration space 2% is endowed with the vague topology and its
associated o-algebra denoted by FX, cf. [3]. When X is compact we will
consider Poisson functionals of the form

o0
F(w) = folgwx)=oy + 3 )=} fal@1, .., 2n), (6.1.2)
n=1
where f,, € L}(X™,0®") is symmetric in n variables, n > 1. As an example,
F(w) :=w(A4), w € §2,
N. Privault, Stochastic Analysis in Discrete and Continuous Settings,

Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 6, 195
(© Springer-Verlag Berlin Heidelberg 2009
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is represented using the symmetric functions
n
fn(xl,...,xn)221A(xk), n>1.
k=1

Our construction of the Poisson measure is inspired by that of [90].

Definition 6.1.1. In case X is precompact (i.e. X has a compact closure),
let FX denote the o-field generated by all functionals F of the form (6.1.2),
and let 7X denote the probability measure on (2%, FX) defined via

— 1
]E,rgc[F]:e_”(X)fO—i—e_”(X)Zn'/ / fo(x1, .. xn)o(dey) - - o(dzy),
n=17X X

(6.1.3)
for all non-negative F of the form (6.1.2).

For example, for A a compact subset of X, the mapping w +— w(A) has the
Poisson distribution with parameter o(A4) under 7. Indeed we have

oo
lo,ay=xy = Z Lw(x)y=n}fu(®1, .- 20),

n=k
with
fo(z1, ..o 20)
- k'(nl— k)! nezE:n Lar(@n(ays - Tnei) ) Loyt (Tncht1)s -5 Tnem)):
hence

T (W(A) = k) = Epx [Lio(a)=1}]
— o) ; k!(nl_ A o (X A

k
= e @ U(;) . (6.1.4)

The above construction is then extended to o-compact X in the next
definition.

Definition 6.1.2. In case X is o-compact we consider a countable partition
X = U,en Xn in compact subsets, and let

QX _ ﬁ QX’!L, fX — éfX", ’/Ti( = ®’n‘§". (615)
n=0 n=0
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Note that 7% in Definition 6.1.2 is independent of the choice of partition
made for X in (6.1.5).
The argument leading to Relation (6.1.4) can be extended to n variables.

Proposition 6.1.3. Let Ay, ..., A, be compact disjoint subsets of X. Under
the measure mx on (2%, FX), the N"-valued vector

w (O.)(Al), e ,O.)(An))

has independent components with Poisson distributions of respective
parameters

o(Ar),...,0(A).
Proof. Consider a disjoint partition A; U---U A, of X and

Fw) = 1goa)=k} Yo =k}

— 1 1 n
= 1{w(X):k1+~~~+k"}fn(x1a ce ,.Z‘kl, ey Ly ,J}k"),

1
=D Fyl o A En ) Tngea)) LA (@t a1 Tn)

is the symmetrization in N = ky + - - - + k,, variables of the function

(x%,...,x}ﬂ,...,x’f,...,xzn)
~ (k14 -+ k)
kqleo k!

1A1(x%,...,x,lcl)~-~1An(x?,...,x2"),

hence

ﬂ—c)r((w(Al) =ki,.. 'aw(An) = kn) =IE,x [F}

o

_ ef(U(Al)Jr...JrJ(A")) (T(Al)kl e O'(An)k"
kil ky!

O

When X is compact, the conditional distribution of w = {x1,...,2,} given
that w(X) = n is given by the formula

wX ({21, o} C A" | w(X)=n) = ("(Ai))n,

which follows from taking f, = 1a» in (6.1.2), and extends to symmetric
Borel subsets of X™.
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In the next proposition we compute the Fourier transform of 7X via the
Poisson stochastic integral

/X fwlde) = S f2),  feL (X.0),

TEW

In the sequel we will drop the index X in 7X.

Proposition 6.1.4. Let f € L'(X,0). We have

E,, {exp (z /X f(x)w(dx))] = exp ( /X (et (@) 1)0(d$)> . (6.1.6)

Proof. We first assume that X is compact. We have

E., {exp (z /X f(x)w(dx))]

= 1 Fln :
_e—a<X>§=:n!/X,,,/Xez(f(al>+~~+f(an>>g(dx1),,,J(dxn),

_ X)Z ! </X (dx))n
= exp (/X(eiﬂf) - 1)0(d$)> .

The extension to the o-compact case is done using (6.1.5). O

We have

E [/X f(x)w(dx)] - ;;]Eﬂa [exp <15/X f(:r)w(dx))] o
- oo / (@0 o))

/f felLl(X,0),

and similarly,

]EK/Xf(J:)(w(d —de)] /|f o(de),  fe IX(X,o0).

(6.1.7)

Both formulae can also be proved on simple functions of the form f =
Z?:l a;14,, and then extended to measurable functions under appropriate
integrability conditions.
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When f € L?(X,0) the formula (6.1.6) can be extended as

E,, {exp <z /X f(z)(w(dz) — a(dx))>] =exp ( /X (@ —if(x) — 1)0(dm)> .

Taking X = R? and
/ (1A [y2)o(dy) < oo,
Rd

where | - |3 is the #2 norm on R, the vector of single Poisson stochastic
integrals
F= ( | ety - otan) + ykw(dy)> (6.15)
{lyl2<1} {lyl2>1} 1<k<n

has the characteristic function
or(u) = E[e!fw)] (6.1.9)

= exp </d(ei<y’“> -1- i<y,u>1{|y|2<1})a(dy)) ,
R
u € R%, which is well-defined under the condition

/ (LA Jyl?)o(dy) < oo,
R4

from the bound
e —itlyy<iy — 1 <2(LAJtP?), teR.
Relation (6.1.9) is called the Lévy-Khintchine formula. and the vector
F=(F,...,F,)

is said to have an n-dimensional infinitely divisible distribution with Lévy
measure o.
Denote by nga the thinning of order a € (0, 1) of the Poisson measure 7

7.(.X

.o 18 Obtained by removing, resp. keeping, independently each configuration
point with probability «, resp. 1 — a.

The next proposition is a classical result on the thinning of Poisson measure.

X

-, le.

Proposition 6.1.5. Let a € (0,1). We have 75, = 7X , ie. ©X, is the

o,a oo o,a

Poisson measure with intensity ao(dz) on 2X.
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Proof. Tt suffices to treat the case where X is compact. We have

E,, . {exp <z /X f(x)w(dx))]

=SSO () ([ o)) 000y e

n=0 k=0

— o—o(X) g:g i! <a/Xeif(I)U(dx) + (1 - a)a(X)>n

— fx(eif<w>—1)a(dm)_

In terms of probabilities, for all compact A € B(X) we have

oo o k

Taa(W(A) =n) =e 7@ }" (;3) a™(1—a) <i)
k=n

k—n

n)' (1 _ a)k—n

oy (@0 (A)" S o (A)
= ¢~ o(A) o kzz;L k-

—ao(A) (OlO'(A))n )

=e
n!

]

Remark 6.1.6. The construction of Poisson measures with a diffuse inten-
sity measure can be extended to not necessarily diffuse intensities.

Proof. In case o is not diffuse, we can identify the atoms (x)ken of o which
are at most countably infinite with masses (u(zk))ren. Next we choose a
family (X, vk)ken of measure spaces such that vy is diffuse and v (Xy) =
w({zx}), k € N. Letting

(o)
X = (X \{zo,21,.. H U | Xi
k=0
and -
o=+ Z Vi,
k=0
then fi is a diffuse measure on X. Letting

f(x) = 21x\ (20,21, () + Zwklxk (x), reX,
k=1
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then

/, £(@)(w(dz) — f(dz))
X

has an infinitely divisible law with Lévy measure p since

/ (e —jux — 1)u(dr) = /ﬁ (™) —juf(x) - 1)a(dx).
X

X

More generally, functionals on the Poisson space on (X, i) of the form
Fw) = flw(Ar),...,w(An))

can be constructed on the Poisson space on (X, fi) as

F(w) = f(w(Bl)? s 7W(Bn))a
with

B; = (Ai\{xo,xz,...})U< U Xk> .

k:xr€A;

Poisson random measures on a metric space X can be constructed from the
Poisson process on R by identifying X with R . More precisely we have the
following result, see e.g. [34], p. 192.

Proposition 6.1.7. There exists a measurable map

7: X =Ry,

a.e. bijective, such that \ = 1,0, i.e. the Lebesque measure is the image of o
by T.

We denote by 7,w the image measure of w by 7, i.e. 7, : 2% — 2 maps

w= Ze% to Tew = Z Er(ay)- (6.1.10)
i=1 i=1

We have, for A € FX:

Tw(A) =#{z cw : 7(x) € A}
=#{rcw:xer (A}
= w(r7H(A)).

Proposition 6.1.8. The application T, : 2% — 2 maps the Poisson mea-
sure m, on 2% to the Poisson measure wy on 2.



202 6 Analysis on the Poisson Space

Proof. Tt suffices to check that for all families Ay, ..., A, of disjoint Borel
subsets X and kq,...,k, € N, we have

To({w € 2% mw(A)) = ki, ..., Tew(An) = kn})

= [[ 7o ({rw(A) = ki})

O

Clearly, F — F o 1* defines an isometry from LP(2) — LP(2%), p > 1,
and similarly we get that [, f o 7(z) mw(dz) has same distribution as

fooo f(®)w(dt), since

E, |exp(i [ f(r(2))nw(dz))| =exp( [ (7@ —1)o(dx)

o, )] = (] )
= exp (/Ooo(eif(t) - l)A(dt))
=E,, {exp (z /000 f(t)w(dt))} .

Using the measurable bijection 7 : X — Ry, we can also restate
Proposition 4.7.3 for a Poisson measure on X.

Corollary 6.1.9. Let F' € Dom (D) be such that DF < K, a.s., for some
K >0, and ||DF| p0,12(x)) < 00. Then

HDFH%OO(Q L2(X)) K
P(F - E[F] 2 z) < exp | — ’ g
K IDFI 7 (g.2x))

< x | 14 K
<exp |-, log :
2K IDEN < 0,2
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with g(u) = (1 +u)log(1 +u) —u, u > 0. If K =0 (decreasing functionals)
we have

2
P(F — E[F] > 2) < exp v . (6.1.11)
2| DF |} o120
In particular if ' = [, f(y)w(dy) we have || DF|| =0 r2(x)) = || fllz2(x) and

if f <K, a.s., then

(/f w(dy) - o(dy)) > )

If f <0, a.s., then

([, st ot 2 ) <o (QIXf;EZ)a(dy))'

This result will be recovered in Section 6.9, cf. Proposition 6.9.3 below.

6.2 Multiple Poisson Stochastic Integrals

We start by considering the particular case of the Poisson space

Q—{w—Zetk P 0<t <<y, nGNU{oo}}

k=1

on X = Ry, where we drop the upper index R, with intensity measure
v(dx) = Mz, A>0.

In this case the configuration points can be arranged in an ordered fashion
and the Poisson martingale of Section 2.3 can be constructed as in the next
proposition.

Proposition 6.2.1. The Poisson process (Ni)ier, of Definition 2.3.1 can
be constructed as

Nyw) =w([0,8]), teR,.
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Proof.  Clearly, the paths of (N;)ier, are piecewise continuous, cadlag
(i.e. continuous on the right with left limits), with jumps of height equal
to one. Moreover, by definition of the Poisson measure on {2, the vector
(Ny, — Ny, ..oy Ny, — Ny, ) of Poisson process increments, 0 < tg < t; <
-+« < tp, is made of independent, Poisson distributed, random variables with
parameters A(t; — to),...,A(tn — tn—1). Hence the law of (N¢)ier, coin-
cides with that of the standard Poisson process defined, cf. Corollary 2.3.5 in
Section 2.3. |

In other words, every configuration w € {2 can be viewed as the ordered
sequence w = (Tx)x>1 of jump times of (N;)ier, on R.

Applying Corollary 2.5.11 and using induction on n > 1 yields the following
result.

Proposition 6.2.2. Let f, : R} — R be continuous with compact support
in R . Then we have the P(dw)-almost sure equality

In(fn)(w)—n!/ooo/o" /O Falts . to)(w(dt)—dty) - - (w(dt,)—dtn).

The above formula can also be written as

0o t, ty
I.(fn) :n!/o /0 /0 falte, .o tn)d(Ny, —t1) - d(Ny, — tn),

and by symmetry of f,, in n variables we have

I.(fn) = /A oty .o tn)(w(dty) —dty) - -+ (w(dty,) — dty),

with
Using the mappings 7 : X — R of Proposition 6.1.7 and
7. %X =N

defined in (6.1.10), we can extend the construction of multiple Poisson
stochastic integrals to the setting of an abstract set X of indices.

Definition 6.2.3. For all f, € C.(4,), let

X (f) (@) = Ln(fn o 7)) (row). (6.2.1)

Leting
AX = {(01, . wa) € X" ¢ 2y Ay, Vi £ ),
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we have
IX(fo) (W) = Li(fa o 77 Y (1hw) (6.2.2)
/ FalT ), 7 () (e (A1) — Adtr) - - - (rao(dtn) — Adtn)
ax falze, .o x2p)(w(dzy) — o(dxy)) - -+ (w(day,) — o(dzy)),

and for g,41 € Co(Any1),

LY 1 (gng1)
—/Afﬂg (@1, am, 2)(@(d) — o(dz)) (W(dar) — o (dzr)) - - -
w(dan) — o(da))
/ /A a9l 7)) — o(de))
() — o)) (o) — o)

= /AX L (gn41(x, 2)) (W) (@ \ {2}) (w(da) — o(dx)). (6.2.3)

n

The integral I.X(f,) extends to symmetric functions in f,, € L?(X)°" via the
following isometry formula.

Proposition 6.2.4. For all symmetric functions f, € L*(X,0)°", gm €
L?(X,0)°™, we have

IEﬂ-(T [If(fn)ln)g(gm)] = n!l{n:m}<fn,gm>L2(X’a-)on. (624)

Proof. Denoting f, (77 (z1),..., 7 (xn)) by fno7 L(a1,...,2,) we have

Er, [LX (fa) Iy (9m)] = B, [In(fr 0 77 1) (1) L (gm 0 771 (Tew)]
= Ex, [In(fno T_I)Im(gm o 7'_1)]
= 1 =y (fn 0T gm0 T ) L2 (mn aem)
= n!]-{n:m}<fnagm>L2(X",a®")'
O

We have the following multiplication formula, in which we again use the
convention I< (fo) = fo for fo € R.
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Proposition 6.2.5. We have for u,v € L?>(X, o) such that uwv € L*(X,0):

I () (") (6.2.5)
= I (0" 0 w) 4 nY ((wv) 0 v® D) 4 nfu, v) p2(x 0y ey (02 7).

Proof. This result can be proved by direct computation from (6.2.1). Al-
ternatively it can be proved first for X = Ry using stochastic calculus or
directly from Proposition 4.5.1 with ¢, =1, ¢t € Ry:

Li(wor VI, ((vor H)®m)
=Lii((wor ™ H)®ouor ) +nl,(uor twor o (vor H@M-1)

+n{uor " vo T_1>L2(R+,/\)In—1((v or~h®r=l)),

and then extended to the general setting of metric spaces using the mapping
7 285 50

of Proposition 6.1.8 and Relation (6.2.2). O

Similarly using the mapping 7. : 2% — 2 and Proposition 4.5.6 we have

2(nAm)

(fn Z In+m s nms)

fn € L*(X,0)°", g € L*(X,0)°™, where

n m 1
hnms: ! . . . n‘?zm,

$<2i<2(sAnAm)
and f, ol g, 0 <1<k, is the symmetrization of

-Tl+1,-~ xnayk+1a-~-aym) =

/ fol@1, o Tn)gm (X1, o Ty Ykt 1y« -+ Ym)o (dxy) - - - o (day)

in n+m — k — [ variables.
Given fi, € L*(X, o)k, ..., fr, € L*(X, o)k with disjoint supports we have

d
In(fklo.'.ofkd):HIki(fkq‘,)? (6-2'6)
=1

forn=Fk +---+kq.
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Remark 6.2.6. Relation (6.2.5) implies that the linear space generated by

{IL(fi® - ®fn) ¢ fi,.., fn €CX(X), n €N},
coincides with the space of polynomials in first order integrals of the form
Li(f), fecCx(X).

Next we turn to the relation between multiple Poisson stochastic integrals
and the Charlier polynomials.

Definition 6.2.7. Let the Charlier polynomial of order n € N and parameter
t > 0 be defined by

Co(k,t) =1, Cy(k,t) =k —1t, keR, teRy,
and the recurrence relation

Crpi(kyt) = (k —n—t)Cp(k,t) — ntCp_y(k,t), n>1.  (6.2.7)

Let
k

t
pi(t) = e_tk', keN, teR,, (6.2.8)

denote the Poisson probability density, which satisfies the finite difference

differential equation

8(;’“ (t) = — Api(t), (6.2.9)

where A is the difference operator
Af(R) = f(R) — f(—1),  kEN.
Let also

alk ) =30 Y Oulh), Ae(-L1),
n=0 "

denote the generating function of Charlier polynomials.

Proposition 6.2.8. For all k € Z and t € Ry we have the relations

Co(k,t) = (p_ljt);t"(A)"pk(t), (6.2.10)
Co(k, 1) = p;lj(Lt) a{;ﬁk ), (6.2.11)
aoC,

Colk +1,8) — Co(k,t) = =" (k, 1), (6.2.12)

ot
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Co(k +1,8) — Cp(k,t) = nCp_1(k, 1), (6.2.13)
Cni1(k,t) = kC(k —1,t) — tC,(k, 1), (6.2.14)
and the generating function ¥y (k,t) satisfies

Un(k,t) = e M1+ N, (6.2.15)

At>0,keN.
Proof. By the Definition 6.2.8 of py(¢) it follows that

satisfies the recurrence relation (6.2.7), i.e.

_1\n+1

oty U 0
_ (_1)n n n (_1)n_1 n—1 n—1
=(k—n—t) o) (A)"pi(t) =t y (A)" k(1)

as well as its initial conditions, hence (6.2.10) holds. Relation (6.2.11) then
follows from Equation (6.2.9). On the other hand, the process

(Cr(Ng,t))ter, = (In(l([%z]))teuh

is a martingale from Lemma 2.7.2 and can using It6’s formula
Proposition 2.12.1 it can be written as

Cn(Ne,t) = In(lfgz])
— 0 (0,0) + /t(cn(zvs +1,8) = Cu(Noe, 8))d(Ns — 5)
0

ac,
P (Ns,s)> ds

t
+/ ((Cn(NS +1,8) = Cu(Nues5)) +
0
t
- n/ L2 (10 )N, = 5)
i ,

= n/ot Cp—1(N,—, 8)d(Ns — s)



6.2 Multiple Poisson Stochastic Integrals 209

where the last integral is in the Stieltjes sense of Proposition 2.5.10, hence
Relations (6.2.12) and (6.2.13) hold. Next, Relation (6.2.14) follows from
(6.2.11) and (6.2.9) as

thrl an+ 1Pk

Cpi1(k,t) = pr(t) o+l (t)
o tn+1 anpk tn+1 anpk_l( )
pk(t) otn pk(t) otn
e 0"py " 0"pr—
= —1 t)+k t
pr(t) Otm ®) pr—1(t) Ot" ®)

= —tCy(k,t) + kCh(k — 1,1).

Finally, using Relation (6.2.14) we have

00 (1. ) = f: (Anl C (k. 1)

oA = (n— 1)!
o0 An
= z:o TL‘ Cn+1(k?t)

- —t; L Cn(k=1,1) +k§  Cnlk)

— —t; L Cn(k=1,1) +k§  Cnk)

_t,(/))\(kvt) + k,(/))\(k - 1,t)a

A € (—1,1), hence the generating function v, (k,t) satisfies the differential
equation

O (k1) = ~Mba (k1) 4 koah— 1), wo(k,t) =1, k=1,
which yields (6.2.15) by induction on k. |

We also have
I pi
otk
The next proposition links the Charlier polynomials with multiple Poisson
stochastic integrals.

(t) = (=2)*pi(t).

Proposition 6.2.9. The multiple Poisson stochastic integral of the function

®k1 ®kq
lA1 o-~-olAd
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satisfies
d
LG o 018M) (W) = [ O, (w(As), o (4))), (6.2.16)
i=1
provided Ai,...,Aq are mutually disjoint compact subsets of X and n =
[

Proof. We have
1H(15%) =1 = Co(w(A), 5(A)),

and
L(15%)(w) = w(A) = 0(4) = C1(w(A4),0(A)).

On the other hand, by Proposition 6.2.5 we have the recurrence relation

n(1p)1,(15")
= i1 (15" 0 15) + klx(Lanp 0 15°7Y) + ko (A0 B) L (157Y),

which coincides for A = B with Relation (6.2.7) that defines the Charlier
polynomials, hence by induction on k € N we obtain

L,(1%") (@) = Cr(w(A)).

Finally from (6.2.6) we have

d
LM o 01§M) = TT I, 1)

which shows (6.2.16). O

In this way we recover the orthogonality properties of the Charlier polyno-
mials with respect to the Poisson distribution, with ¢ = o(A):

<Cn('7t),Cm('vt»lz(N,p.(t)) Z k! (k t)
k=

[C(())C(w())]
lE[I (15" I (157)]
= 1{n:m}n!t . (6.2.17)

The next lemma is the Poisson space version of Lemma 5.1.6.
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Lemma 6.2.10. Let F of the form
F(w) = g(w(Ar),...,w(Ag))

where

oo

ST gl W) P (0(Ar) -y (0(Ar)) < oo, (6.2.18)
l1,..,l=0

and A1, ..., A, are compact disjoint subsets of X. Then F admits the chaos
expansion

n=0
where for all n > 1, I,(fn) can be written as a linear combination
In(fn)(Ww) = Pa(w(A1), ..., w(An),0(A1),...0(An))
of multivariate Charlier polynomials

Ci, (w(A1), (A1) -+ - Cy (w(Ak), 0 (Ag)).-
Proof. We decompose g satistying (6.2.18) as an orthogonal series

(o)
glin, .. yik) = Y Palin, ... in,0(A1),...,0(An)),
n=0
where

P, (i1, .. ik, 0(A1),...,0(Ag))

= > oy 0,0 i, 0(A) - Cry ik, 0(Ag))
litotle=n

is a linear combination of multivariate Charlier polynomials of degree n which
is identified to the multiple stochastic integral
P, (w(A1),...,w(An),0(A1),...0(4y))
= Y e a(13 00150

Iyl =n

_ ®k1 Rkqg
=1, ( E O‘117<<<7lk1A1 O"'°1Ad >

Lt tlp=n

by Proposition 6.2.9. |
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6.3 Chaos Representation Property

The following expression of the exponential vector
— 1
— ®n
JOED DR ATED
k=0

is referred to as the Doléans exponential.

Proposition 6.3.1. For all u € L?(X) we have

§(u) = exp </X u(z)(w(dz) — U(dx))) [T +u(@)e ).

TEW
Proof. The case X = R is treated in Proposition 2.13.1, in particular when
¢ =1, t € R4, and the extension to X a metric space is obtained using the
isomorphism 7 : X — R, of Proposition 6.1.7. ]

In particular, from Proposition 6.2.9 the exponential vector £(A\14) satisfies

E01a) = Y0 Culw(4), 0(4))
n=0

_ ef)\a(A)(l + )\)w(A)
= ¥a(w(4),0(4)).

Next we show that the Poisson measure has the chaos representation property,
i.e. every square-integrable functional on Poisson space has an orthogonal
decomposition in a series of multiple stochastic integrals.

Proposition 6.3.2. Every square-integrable random variable F € L*(£2°%,
7o) admits the Wiener-Poisson decomposition

oo

F= Zln(fn)

n=0

i series of multiple stochastic integrals.

Proof. A modification of the proof of Theorem 4.1 in [50], cf. also Theorem 1.3
of [66], shows that the linear space spanned by

{e [ 5 u(x)o(dx) H(l +u(z)) : uwe CC(X)}
TEW

is dense in L2($2%). This concludes the proof since this space is contained in
the closure of S in L2(£27%). O
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As a corollary, the standard Poisson process (N;);cr, has the chaos
representation property.

As in the Wiener case, cf. Relation (5.1.8), Proposition 6.3.2 implies that any
F € L*(£2) has a chaos decomposition

where

n

Z 1

In(gn)= Z kll...kd!ln(u?klo"'Ougkd)E[FIn(U?klo-~ou§)kd)},
d=1ki+-+kg=n

(6.3.1)

for any orthonormal basis (u,)nen of L?(X,0), which completes the state-
ment of Lemma 6.2.10.
Consider now the compound Poisson process

N
Yi=> Y,
k=1

of Definition 2.4.1, where (Yj)r>1 is an i.i.d. sequence of random variables
with distribution x on R% and (N¢)ter, is a Poisson process with intensity
A > 0, can be constructed as

Y: = /Ot /Rd aw(ds, dz), (6.3.2)

by taking X = R, x R? and o(ds,dz) = Adspu(dr). The compensated com-
pound Poisson process

N
X, = (Zyk> ~ME[Y;], teRy,

k=1

of Section 2.4 has the chaos representation property if and only if Yy is
a.s. constant, i.e. when (M;)icr, is the compensated Poisson martingale,
cf. Section 2.10 and Proposition 4.2.4.

Next we turn to some practical computations of chaos expansions in the
Poisson case. In particular, from (6.2.17) we deduce the orthogonal expansion

- 1 —s —s
1{Nt—NS=n} = Z k"(t _ S)k <1{"}’ Cli >22(Z’Pt_s)cltf (Nt - NS)’
k=0
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0<s<t, neN, hence from (6.2.11):
1

LN, —N.=n} = Z k,p%’“) (t— S)Ik(l([%ﬁ]),
k=0’

0<s<t,neN.
From (6.3.3) we obtain for s = 0 and n > 1:

17, 00[(t) = L{n,>n}

o~ 1 k)
=> > P (O (1T

k=0 1>n
_ - 18kP T 1®k
= E k! n(t) k( [0715])’
k=0

where

t
Pn(t) = [J pnfl(s)dsv le RJra

is the distribution function of T, and p,(s) is defined in (2.3.1).

More generally, we have the following result.
Proposition 6.3.3. Let f € C}(R}). We have

== e (f

1V Vi

o

f’(S)Pék’(S)d8> ,

where t1 V-V t, = max(t1,...,tn), t1,...,tn € Ry,
Proof. We have

(T = - / T (g, ey ()ds

e} oo 1
-/ P31y PO OB i

=-Y 1 / F1(s)P () Ik (1) )ds
kL g :

0 [ee] S tr to B B
—Z/ f’(s)P,gk)(s)/ / / dNy, -+ dNy, ds
k=00 0 Jo 0

(6.3.3)

(6.3.4)

(6.3.5)

(6.3.6)
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0 0 otk to ~ ~
_Z/ f/(s)Pék)(S)/ / / 1[0,5](t1v"'\/tk)dNtl"'dNtde
k0”0 o Jo 0

tr to
—72/ < £ ()P (s ds/ /dNtl ANy, 1,)dNtk
tr
O

Note that Relation (6.3.6) can be rewritten after integration by parts on
R, as

7 (6.3.7)
— kZ:O ;!Ik <f(t1 AV \/tk)Pygk)(tl VeV tk)+/°° f(S)Py(Lk+1)(5)d5> ’

t1V---Vig

and then extends to all f € L?(R,t" te~tdt).
Next we state a result for smooth functions of a finite number of jump times.
As a convention, if k1 > 0,...,kqs > 0 satisfy ky + -+ - + kg = n, we define

1 142 2 d d
(tl,...,tkl,tl,...,tk tl""vtkd)

e
as
(B, thy Bty B ) = (B, ).

The next result extends Proposition 6.3.3 to the multivariate case. Its
proof uses only Poisson-Charlier orthogonal expansions instead of using
Proposition 4.2.5 and the gradient operator D.

Proposition 6.3.4. Let ny,...,ng € N with 1 < n; < --- < ng, and let
f €CHAy). The chaos expansion of f(Tn,, ..., Tn,) is given as

f(Tnyy. . Tp,) = Zz 14, hy)

Bty ... tn) = (6.3.8)

7+1

Z /d / /1 81 8df 81,... )Kkl’ jdddsl de,
t
. —n d

with, for 0 =sg <s1 <---<sq and ky,...kq € N:

k
Fheoka - 3 P (51— s0) - pE L (sa — sa1)-

my > ng, ..., mg > ng
0=mg<my <---<my
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Proof. Let 0 =359 < 81 <--- < 54, and nq,...,nqg € N. We have from (6.3.3)
and (6.2.16):

d 0o
1;[ s~ Nsy_y=ni} = Z Z Eyle- kgl

n=0 k; + - 4+kg=n
klzo ..... kg >0

Hp —mi_1 (si —si-1) 1k, (1 [sflsl]) Ikd( [sd 1,sd])

®k ®k
Hp Ty (8i = sic) In (L0 y om0 1),

where the last equality used the assumption s; < -+ < s4. Now, with 0 =
mo < my < --- <y,

Lt Ty a (1) Lm0 ((Sa) = Ling =may - LN, =ma)

= LNy, —Nog=mi—mo} ~ LN, — N, =ma—ma_1}

(k:) ®k1 ®k
Hp —m— 1 782’*1)1 (1[30,51] o”'ol[sdihsd])'

Given that s; < --- < 54, for any i < j the conditions s; € [Trn,, Tin,,,) and
€ [Tm;, Trm,,,) imply m; < m;, hence

d
I | 1[Tn1700)(31): E : 1[ m,lv 7,1+1[(81) e 1[Tm,d7Tm,d+l[(sd)
i=1 my >mny,...,mg > ng
0=mg < my < -+ < my
= > LN =miy LN, =ma}
my > ny, .., mg = ng
0=mg <mj < - <myg
= E : 1{N517N50:m17m0} '..1{Nsd7Nsd_1:md7md—l}
my > ny, ..., mg > ng
0=mg<my < < myg
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E (k1) (ka)
Pmy— mo(sl - 50) Pmg—maq_ 1( d— Sd—l)
my > ng,.. ., mg > ng
0=mg<my < - <my
Rk ®kaq
In (1[60 5109777 ° 1[64 178(1])

1 ki,...,k [ ®k
fz Z Bl KEeba L (a8 o1 @he .

Given f € C4(A,), using the identity
F(Tors e Toy)
o
/ / U, el (51) -+ i el (50) , © F(S1sssa)dsn s
— (_1)d 1 o .
= /Ad [Tnl’oo[(sl)...1[Tnd’oo[(sd)al._.adf(sh...,sd)dsl dsgq,

we get

1
f(Tnlﬁ"" Z Z k;1!~k;d'

k1 >0,..., kd >0
865 Kkl, kdl 1®k1 1®kd d d
A 81"'8(1]0(817“.’ sa) 815:-58d ( [s0,51] © 7770 Hsaz 13(1]) 81+ ASq.
d

From (6.2.16), we have for s; <-+- < sgand k1 >0,...,kg > 0:

I, <1®k1 [orr0 1%k )

[s0,51 [sa—1,84]
[T [ [t gt
dNtl e dNtd ,
1 kg

hence by exchange of deterministic and stochastic integrals we obtain

@y Toy) = ()4 >

n=0 k14 +kg=n

k1 >0,..., kg >0
oo ptd 3 2 o f
ki,....,kq
I, |14, (s1,.. )Ksl’ eddsy e dsq |
td $d—1 2 t1 681 s 8sd
kg = kg1 ko ¥ TRy

O
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Remarks

i) All expressions obtained above for f(T4,...,Tq), f € C;°(Aq), extend
to f € L?(Aq,e”%4dsy - --dsg), i.e. to square-integrable f(T},...,Ty), by
repeated integrations by parts.

ii) Chaotic decompositions on the Poisson space on the compact interval
[0,1] as in [79] or [80] can be obtained by considering the functional f(1 A
Ty,...,1 ANTy) instead of f(Ty,...,Ty).

6.4 Finite Difference Gradient

In this section we study the probabilistic interpretation and the extension to
the Poisson space on X of the operators D and ¢ defined in Definitions 4.1.1
and 4.1.2.

Let the spaces S and U of Section 3.1 be taken equal to

S = {Zlk(fk) : fk S L4(X)Ok, k=0,....,n, n€ N},
k=0
and
U= {ka(gk(*,~)) Cgr € LX(X)PQ LX), k=0,...,n, n€ N}.
k=0

Definition 6.4.1. Let the linear, unbounded, closable operators
DX L2(02% n,) — LX(2% x X,P®o0)

and
S8 LAY x X,P®Ro) — L*(2X,P)

be defined on S and U respectively by
DXL (fu) = 0l 1 (fa(, 7)), (6.4.1)
7o (dw) ® o(dz)-a.e., n €N, f, € L*(X,0)°", and
0 (L (far1 (%)) = Tng1 (fasn), (6.4.2)
7o (dw)-a.s., n €N, fry1 € L3(X,0)" @ L?(X,0).

In particular we have

§X(f) = L(f) =/ f@)(w(dz) —o(dz)),  fel*X,0), (64.3)
X
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and

§X(14) =w(A) —o(A),  AeB(X), (6.4.4)

and the Skorohod integral has zero expectation:
E[6% (u)] = 0, u € Dom (6%). (6.4.5)

In case X = R, we simply write D and § instead of D®+ and 6%+.
Note that using the mapping 7 of Proposition 6.1.7 we have the relations

(DT(‘T)F) oT" = Di((F o T*)7 7To‘(dw) & U(d.’lf) — a.e.

and
§(tr(y) o = 0% (u. 0 7%), 7o (dw) — a.e.
From these relations and Proposition 4.1.4 we have the following proposition.

Proposition 6.4.2. For any u € U we have

DX5% (u) = u(z) + 6% (DXu). (6.4.6)

Let Dom (D) denote the set of functionals F : 2% — R with the expansion

F=3 I.(fa)
n=0

such that o0
Y il fallaixn ooy < oo,

n=1

and let Dom (6%) denote the set of processes u : 2% x X — R with the
expansion

u(z) = ZIn(fn+1(*,x)), T € X,
n=0

such that

oo

Z(n + 1)!||fn+1Hi2(xn+1,g®(n+1)) < 0.

n=0
The following duality relation can be obtained by transfer from
Proposition 4.1.3 using Proposition 6.1.8. Here we also provide a direct
proof.

Proposition 6.4.3. The operators DX and 6% satisfy the duality relation
E[(D* F,u)r2(x.0)) = E[F5™ (u)], (6.4.7)

F € Dom (D), u € Dom (§%).
Proof. The proof is identical to those of Propositions 1.8.2 and 4.1.3, and
follows from the isometry formula (6.2.4). We consider F' = I, (f,) and uy =
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I (gms1 (%,2)), £ € X, fn € L2(X)°", gms1 € L2(X)°™ ® L2(X). We have
E[F6X (u)] = B[Lnt1 (Gms1) In ()]
= !l fn=mi1) (frs Gn) L2(x)
=1 1om} - fn(zy, o a1, 2)gn (1, - 201, 2)
o(dzy) - o(dr,_1)o(dz)

g 1m / Bl (5, 0) T (g (6, )]t

= E(DX Lu(fu), L (gmr1 (%)) 12 (x,00)

= E[(D¥ Fu)2(x,0))-

Again, we may alternatively use the mapping 7 : X — R to prove this
proposition from Proposition 4.1.3. ]

Propositions 3.1.2 and 6.4.3 show in particular that DX is closable.
The next lemma gives the probabilistic interpretation of the gradient DX

Lemma 6.4.4. For any F of the form

F=f(L(ur), ... L (un)), (6.4.8)

with uy, ..., u, € Co(X), and f is a bounded and continuous function, or a
polynomial on R™, we have F € Dom (DX) and

DXF(w) = F(wU{z}) — F(w), P® o(dw,dx) — a.e., (6.4.9)

where as a convention we identify w € 2% with its support.

Proof. We start by assuming that u; =14,,...,uy, = 14,, where A;,..., A,
are compact disjoint measurable subsets of X. In this case the proposition
clearly holds for f polynomial from Proposition 6.2.9 and Relation (6.2.16)
which implies

DXIn(lﬁfl o015 (w)

*ZlA Vil —1 (155 ka

J#

—ZlA kiCk_1 HCk ))

J#i

= 3" 14, @) (o (@A) + 1, 7(40) = O (A0, o (4.)
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—HCk i)+ 1a,(z HCk A5))
:Ina%i“ 01 (WU {a}) — <1®’“ 0+ 01§M)(w),

by (6.2.13).
If f € Cp(R™), from Lemma 6.2.10 the functional

F = f(Ii(1a,),...,11(14,))

has the chaotic decomposition

Fl+) " Ii(gr),
=1

where It (gx) is a polynomial in w(A1),...,w(A4,). Let now

k
[F]+> L(g), k>1

The sequence (Qx)reny C S consists in polynomial functionals converging to
F in L?(£2%). By the Abel transformation of sums

0o k 00 k—1
> (f(k+1) = f(k)Cn(k, /\)2! Zf(k)(kcn(kz —1,A)=\C, (K, /\)))\k!

k=0

2\F

\ Zf Crus (k, A) (6.4.10)

we get, with A =0(4;) and { = k1 + -+ + kq,

B[n (150 0 015k

(f(Il(]‘Al)’ - "Il(lAi) +1,... 711(1Ad)) - f(Il(lAl)? s 711(114(1)))]

- 0'(114) E[f(11(14,),- - 711(1Ad))Il+1( ®k1 0 -0 1%5(1 0ly,)]
1

= o(A)) E[L41(gir1) L1 (150 00 158 0 14)))]
[+1)!
= (O'(Ag (9141, 1%51 0---0 1%5‘1 o 1Ai>L2(Xl7o-®l)
1

= o(A)) E[(DXI41(g141), 14,) 2(x, 00 (A 0 -+ 0 15080,
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Hence the projection of
f(Il(lA1)> s 711(11471) +1,... 711(1A4)) - f(Il(1A1)> EERE) Il(lAd))

on the chaos H; of order [ € N is

1

o(As) (D*I141(gi41),14,) 12(x,0)

and we have the chaotic decomposition

f(Il(]‘Al)""’Il(lAi) + 17""]1(114(1)) - f(Il(1A1)7"'711(1Ad))

1 (o)
= DXT, 14 )72
o(A;) ’;< k(9x),1a,)L (X,0))

where the series converges in L2(£2%). Hence
Z 1Ai(f(11(1A1)7 ceey Il(]‘Ai) +1,..., Il(lAd)) - f(Il(lAl)a R Il(lAd)))
i=1

1 oo
A) 14, > (D¥Ik(gk), 14,) £2(X )
k=1

which shows that (DXQy)ren converges in L?(02% x X) to

n
Z La,(f(In(Xa), - i(Lay) + 1,00, [0(Aa,) — f((Lay ), - -5 111 a,)))-
i=1

The proof is concluded by the closability of DX and approximation of func-
tions in C.(X) by linear combination of indicator functions. ]

Definition 6.4.5. Given a mapping F : 2% — R, let
efF: 0% —R and e F: 0% — R,
x € X, be defined by

(e, F)(w) = F(w\x), and (e F)(w) = FlwUu), we ¥,
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Note that Relation (6.4.9) can be written as
DXF=¢fF—F, reX. (6.4.11)
On the other hand, the result of Lemma 6.4.4 is clearly verified on simple

functionals. For instance when F' = I;(u) is a single Poisson stochastic inte-
gral, we have

DX (u)(w) = I () (w U {z}) — () )
[t tdy) + esla) - otay) - / u(y)(w(dy) — o(dy))

/ .
= /X u(y)e: (dy)
u(

Corollary 6.4.6. For all F is bounded and measurable A € B(X), 0 <
o(A) < o0, we have

E [ /A FlwU {x})a(dx)} = E[Fw(A)]. (6.4.12)

Proof. From Proposition 6.4.3, Lemma 6.4.4, and Relation (6.4.4) we have

E [ /A F(wU{x})a(dx)} = E { /X 1A(x)DmFa(dx)] + o(A) E[F)]
= E[F6%(14)] + o(A) E[F]
= E[Fw(A)).
0

Hence as in [150] we get that the law of the mapping (z,w) — w U {a} under
14(z)o(dx)m, (dw) is absolutely continuous with respect to 7. In particular,
(w,z) — F(wU{z}) is well-defined, 7, ® o, and this justifies the extension
of Lemma 6.4.4 in the next proposition.

Proposition 6.4.7. For any F € Dom (D) we have
DXF(w) = F(wU{z}) - F(w),

7o (dw) X o(dx)-a.e.

Proof. There exists a sequence (Fj,)nen of functionals of the form (6.4.8),
such that (DXFn)neN converges everywhere to DX F on a set Ap such that
(1o ®0)(A%) = 0. For each n € N, there exists a measurable set B,, C 2% x X
such that (7, ® 0)(Bg) = 0 and
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DXF,(w) = F(wU{z}) — F,(w), (w,x) € By,
Taking the limit as n goes to infinity on (w,z) € Ap N[, —, Bn, we get
DXF(w) = F(wU {z}) — F(w), T (dw) X o(dz) — a.e.

O

Proposition 6.4.7 also allows us to recover the annihilation property (6.4.1)
of DX, ie.

DXT1,(fn) = nlu_1(fu(x,2)), o(dz) — a.e. (6.4.13)
Indeed, using the relation
1a,(z1,...,%0)€x(d;)eg(day) =0, ,j=1,...,n,

we have for f, € L?(X,0)°"
DXI,(f.) = DX / fo(@1, .. zp)(w(dey) — o(dey)) - - (w(dzy,) — o(dzy))
An
= /A fo(z1,. ., m0) H(w(dxz) —o(dz;)+ (1 —w({x}))es(dx;))
— / fo(z1, ... zn)(w(dzr) — o(dzr)) -+ (w(dxy,) — o(dxy,))

= (1 —-w({x})) Z/ faloy, . ooz, 0 xn) H (w(dzy) — o(dzy))

1<k#i<n

i—1 n—1

Hence we have for f, € C.(X™):
Iﬂ(fn):l{xiw}Zjnfl(fn(\'",,fm"',))a reX,
i=1 i—1 n—i
and since f, is symmetric,
Da)c(jn(fn) = 1{x¢w}n—7n71(fn(*,$)), reX,

from which we recover (6.4.13) since o is diffuse.
Proposition 6.4.7 implies that DX satisfies the following finite difference
product rule.
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Proposition 6.4.8. We have for F,G € S:
DX (FG) = FDyG+ GD}F + DXFD; G, (6.4.14)

P(dw)do(x)-a.e

Proof. This formula can be proved either from Propositions 4.5.2 and 6.1.8
with ¢ = 1, t € Ry, when X = R, or directly from (6.4.9):

D (FG)(w) = F(wU{z})G(w U {z}) - F(w)G(w)
= F(w)(G(wU{z}) = Gw)) + GW)(F(w U {z}) - F(w))
HF(wU{z}) - Fw)(G(w U {z}) - Gw))
= F(w)Dy G(w) + G(w) DY F(w) + Dy F(w) Dy G(w),

dP x o(dx)-a.e. O

As a consequence of Proposition 6.4.7 above, when X = R the Clark formula
Proposition 4.2.3 takes the following form when stated on the Poisson space.

Proposition 6.4.9. Assume that X = R. For any F € Dom (D) we have

F =E[F] + /OOO E[F(wU {t}) — F(w) | FJd(N; — t).

In case X = R, the finite difference operator D : L?(2) — L?(£2 x R,)
can be written as

DF = 1{Nt<n}(f(T1, s 7TNt7t,TNt+1, s aTnfl)ff(Tl, s aTn)), (6415)
t € Ry, for F = f(T1,...,Ty), hence E[D:F|F;] can be computed via the
following lemma.

Lemma 6.4.10. Let X = Ry and o(dz) = dz. For any F of the form
F = f(T1,...,T,) we have

E[D F|F;]

oo . Sn SNy+3
— 1{Nt<n}/ e*(snf)/ /
t t t

SN¢+2

<f(T1, oo TNyt SN2y 8n) — | f(T1, . TN, SN 415 - - ~,Sn)d8Nt+1>
¢
dSNt+2 . ~dsn.

Proof. By application of Proposition 2.3.6 we have

E[D.F|F]
= 1 ey Bl (Th, o T s Tt - oy Tae1) — f(Th, - T)|
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oo i Sn SN¢+3
= 1{Nt<n}/t e_(é"_t)/t /t f(T1,...,TNt,t,SNt_;,_Q,...,Sn)

dsNtJrQ .- ds

o0 ’ Sn SNy+2
—1{Nt<n}/t e_(é"_t)/t /t f(Tla-~-aTNt,5Nt+1a-~-75n)

dsn,+1 - dsy

o0 i : Sn sNt+3
= 1{Nt<n}/ e_(én_ )/ /
t t t

SNy+2

(f(Tl, “ee aTNtat,sNrF?a .. .,Sn) - f(Tl, “ee ,TNHSNt+1, .. 'asn)dsNt+1)
t

dsNtJrQ cee dSn

6.5 Divergence Operator

The adjoint 6% of DX satisfies the following divergence formula.
Proposition 6.5.1. Let u : X x 2X — R and F : 2X — R such that
u(-,w), DXF(w), and u(-,w)DX F(w) € L}(X,0), w € 2%. We have

F6% (u) = 6% (uF) + (u, DX F) 2(x o) + 6 X (uD*F). (6.5.1)
The relation also holds if the series and integrals converge, or if F €
Dom (D¥) and u € Dom (6%) is such that uDX F € Dom (§%).

Proof. Relation (6.5.1) follows by duality from Proposition 6.4.8, or from
Proposition 4.5.6 and Proposition 6.1.8. ]

In the next proposition, Relation (6.5.2) can be seen as a generalization of
(6.2.14) in Proposition 6.2.8:

Chnt1(k,t) = kCy(k — 1,t) —tCy(k, 1),

which is recovered by taking u = 14 and t = o(A). The following state-
ment provides a connection between the Skorohod integral and the Poisson
stochastic integral.

Proposition 6.5.2. For all u € Dom (6%) we have

5% (u) = /X e (w\ {2} (w(dz) — o(dz)). (6.5.2)

Proof. The statement clearly holds by (6.4.3) when g € L?(X,0) is deter-
ministic. Next we show using (6.5.1) that the identity also holds for a process
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of the form u = gI,(f,), g € L*(X,0), by induction on the order of the
multiple stochastic integral F' = I,(fp ) From (6.5.1) we have

§*(gF) = —6% (gDXF) + F5*(g) — (DXF,g)12(x.0
/ o@D P\ (ah(de) + [ g(e)DXF(\(a))oldo)
X
+F5%(g) — (DX F, 9>L2(X o)
=~ | s@F)tdn) + [ a@P@\ahld) + (DX P).0)1ex
X
+F6*(9) — (DXF,g)12(x.0)
= F(W)/X (z)o(dz) + /Xg(x)F(w\{fE})w(dx)
:/ g(fﬂ)F(W\{x})W(dw)*/ g(x)F(w\{z})o(dz).
X X
We used the fact that since o is diffuse on X, for v : X x 2% — R we have

Ug (wW\{z}) = uz(w), o(dz) —a.e., we N,

hence
/ g (w\{z})o(dx) :/ Uy (w)o(dx), we N, (6.5.3)
b's b's
and
X (u) = /Xum(w\{x})w(dx) — /X Uy (w)o(dx), u € Dom (6%).

O

Note that (6.5.1) can also be recovered from (6.5.2) using a simple trajectorial
argument. For x € w we have

ex DXF(w) = e, i F(w) — e, F(w)
= F(w) — es F(w)
= F(w) — F(w\{7}),

hence
*(wD*F)(w)
/ H\{z}) DX F(w\{z})w )—/Xux(w\{x})DfF(w\{x})g(dx)
:/ 2(W\{z})F )_/X“x(w\{x})F(w\{x})w(dx)
—(DXF(w),u(w)) £2(x.0)

F(w)d™ (u)(w) = 6% (uF)(w) = (DY F(w), u(w)) £2(x,0)
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since from Relation (6.5.3),

F(w) /X ua(\{2})o(dr) = F(w) / g (w)or(de)

X

- / F(\ {2} ua(\ {2})o(dz).
X

Relation (6.5.2) can also be proved using Relation (6.2.3).

In case X = R, Proposition 6.5.2 yields Proposition 2.5.10 since u;-
does not depend on the presence of a jump at time ¢. On the other hand,
Proposition 4.3.4 can be written as follows.

Proposition 6.5.3. When X = R, for any square-integrable adapted pro-
cess (u)ier, € L2,(2 x Ry) we have

(oo}
5(u) = / wd(N, — 1).
0
The following is the Skorohod isometry on the Poisson space, which follows

here from Proposition 6.5.1, or from Propositions 4.3.1 and 6.1.8.

Proposition 6.5.4. For u : 2% x X — R measurable and sufficiently inte-
grable we have

Er, (05 @P) =B [lulox] + 8| [ [ DXuwDFu@atanotn)
(6.5.4)

Proof. Applying Proposition 6.4.2, Proposition 6.5.1 and Relation (6.4.5) we
have

Er, [|0%(u)]

= Er, [6% (ud™ (u)) + (u, DX6X () 2(x.0) + 6 (uD¥ 6% (u))]
= E,, [(u, DX<5X LQ(X o)

- E

s + [ a0 u)a(dxﬂ
X

3
Q
| B —|

i + [ [ D )fou<y>a<dx>a<dy>].

O

The Skorohod isometry (6.5.4) shows that % is continuous on the subspace
ILy 5 of L2(X x %) defined by the norm

ullf 5 = HUH%%QX xx)) T HDXUH%%QX X X2)-
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Recall that the moment IE5[Z"] of order n of a Poisson random variable Z
with intensity A can be written as

EA[Z"] = Tu(N)

where T, () is the Touchard polynomial of order n, defined by Tpo(A) = 1
and the recurrence relation

_ ,\Z ( ) n>1. (6.5.5)

Replacing the Touchard polynomial T,,(\) by its centered version T, (\) de-
fined by To(N) =1, i.e.

Trir (A Z < )A”’“%(A), n >0, (6.5.6)

gives the moments of the centered Poisson random variable with intensity
A>0is B

T,.(\) =E[(Z - \"], n > 0.
The next proposition extends the Skorohod isometry of Proposition 6.5.4 to

higher order moments, and recovers Proposition 6.5.4 in case n = 1.

Proposition 6.5.5. We have, for u : 2% x X — R a sufficiently integrable
process,

B[ ()] = k: ()| [ e wytotan]

> (Z) E [ [ @+ D) - <6X<u>>k>a<dt>] ,

k=1
for alln > 1.

Proof. Using the relation

D (5% ()" = & (6% ()" — (6% ()"

)
)

= (/0% ()" — (6™ (w))"
= (6% (u) + D 6% (w)" — (6% (w))"
= (0% (u) +ue + X (DXw))" — (8% ()",  te X,

that follows from Proposition 6.4.2 and Relation (6.4.11), we get, applying
the duality relation of Proposition 6.4.3,
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B0 ()] = | [ u)D¥ 0¥ ()" o(ar)|

X

—E | [ @@+ ¥ OF )" - (%) o)
#

el <ut>"-k+1<6X<<I+DtX)u))ko(dt)}

+ 3 (k>]EU (ue)" O (I + D )u)* = (6% (w)*)o(dt) | -
k=1

X

O

Clearly, the moments of the compensated Poisson stochastic integral

/ ) (dt) — o(dt)
X

of f € L*(X, o) satisfy the recurrence identity

E [(/X F(t)(w(dt) — U(dt))) nﬂ]

:;(Z) /X ()" o) E [( /X f(t)(w(dt)—a(dt»)k],

which is analog to Relation (6.5.6) for the centered Touchard polynomials
and recovers in particular the isometry formula (6.1.7) for n = 1. Similarly
we can show that

]E[(/Xf(s)w(ds))nﬂl (6.5.7)
—Z(Z)]E [( [ st [ <f<t>>““’“a<dt>],

which is analog to (6.5.5).
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6.6 Characterization of Poisson Measures

The duality relation (6.4.7) satisfied by the operators DX and ¢% can also
be used to characterize Poisson measures.

Proposition 6.6.1. Let w be a probability measure on 2% such that h €
CX(X), Ii(h) has finite moments of all orders under w. Assume that

E. [6%(u)] =0, (6.6.1)
for all w e U, or equivalently
E. [(DXF,h)12(x,0)] = Ex [F6* ()], (6.6.2)

F eS8, heCX(X). Then  is the Poisson measure 7, with intensity o.

Proof. First, we note that from Remark 6.2.6, if I; (k) has finite moments of
all orders under 7, for all h € C2°(X), then 6% (u) is integrable under 7 for
all u € Y. Next we show that (6.6.1) and (6.6.2) are equivalent. First we note
that Relation (6.6.1) implies (6.6.2) from (6.5.1). The proof of the converse
statement is done for u of the form u = hF, F = I,(f®"), f,h € C(X),
by induction on the degree n € N of I,(f®"). The implication clearly holds
when n = 0. Next, assuming that

E. [6% (L, (") =0,  f,heCI(X),
for some n > 0, the Kabanov multiplication formula (6.2.5) shows that

§X (MLt (fO D)) = 6% () Lugr (FET) — (B, DX Lyt (F2 D)) Lo,
—(n+ )6 (R (fE™)),

hence from Relation (6.6.1) applied at the rank n we have

B 5% (ha (1)) = B |55 ()L (2040)]

~E, [(h,DXIn+1(f®<”+”)>L2<x,a>}
—(n+ 1) By [0X((hf) L (FE™)]
= By [0 (1) g (/5]
- E, [(h, DXI 14 (f®(n+1))>L2(X,a)}
=0,

by (6.6.2).
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Next we show that m = 7,. We have for h € C2°(X) and n > 1, using (6.6.2):

o K/X h“)“’(dl‘))n} = [5X<h> ( /X h(lf)w(dx))n_l]
+ ([ nwyotan) m. K / h(x)w(dx))”*]
<’%DX ([ Hopotan) >L2(X’J
+ ([ nwyotan) m. K / h(x)w(dx))”*]
+ [ h(y)(w\{f})(dy))nlo(dx)]
+f h(y)w(dy))“awx)]
) ([ et [( / h(m)w(d@)k] |

This induction relation coincides with (6.5.7) and characterizes the moments

of w / h(z)w(dz) under 7y, hence the moments of w — / h(z)w(dr)

:]Eﬂ_

E, ) (h(m)
E, ) (h(m)

o
o
0 <nk 1

n—1

E
Il

under 7 are that of a Poisson random variable with intensity / h(z)o(dz).
p's
By dominated convergence this implies

E, [exp <zz /X h(m)w(dx))} = exp /X (" —1)do,

z€R, h € CX(X), hence m = 7,. O
This proposition can be modified as follows.

Proposition 6.6.2. Let 7 be a probability measure on 2% such that 5% (u)
is integrable, u € U. Assume that

E, [6%(u)] =0, uwelU, (6.6.3)
or equivalently
E. (DXF u)r2(x,0)] = Ex [F6*(u)], FeS, ueld. (6.6.4)

Then 7 is the Poisson measure w, with intensity o.
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Proof. Clearly, (6.6.3) implies (6.6.4) as in the proof of Proposition 6.6.1. The
implication (6.6.4) = (6.6.3) follows in this case by taking F' = 1. Denoting
the characteristic function of w — [ h(z)w(dz) by

0(:) = B o (i [ npetan)) |
2 € R, we have:

=i, [/hy (dy) eXp(ZZ/h dy)ﬂ
— i, [ ) exp (lz/ h(y )]

+i By [ /X h(y)o(dy) exp <zz /X h(y)w(dy))]
=ik, [<h,DX exp <ZZ/X h(y)w(dy))>L2(X’g)

= i1, iy B e (i [ npetan)) | +i06) [ natay

= iw(z)<h?eiz}L>L2(X,a)a z€R.

() /X h(y)o(dy)

We used the relation

wap<m1;mwwmw)—wlm@> ﬁmp@z/lz dw) v e X,

that follows from Proposition 6.4.7. With the initial condition (0) = 1 we
obtain

P(z) = exp /X(ei”h(y) —1)o(dy), z e R.
]

Corollary 6.6.3. Let m be a probability measure on 2 such that I,,(f®")
is integrable under m, f € C°(X). The relation

E, [I.(f")] =0, (6.6.5)

holds for all f € C*(X) and n > 1, if and only if 7 is the Poisson measure
Te with intensity o.

Proof. 1f (6.6.5) holds then by polarization and the Definition 6.4.2 we get

Er [6*(g@L(i® @ f)] =0,
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9y 1,y fn €CX(X), n >0, and from Remark 6.2.6 we have
E.[6%w)] =0, wuecl,

hence m = m, from Proposition 6.6.1. O

6.7 Clark Formula and Lévy Processes

In this section we extend the construction of the previous section to the case
of Lévy processes, and state a Clark formula in this setting. Let X = R, x R?
and consider a random measure of the form

X (dt,dz) = do(dx)dBt + w(dt, dx) — o(dx)dt,
where w(dt,dz) — o(dz)dt is a compensated Poisson random measure on
R4\ {0} x Ry of intensity o(dz)dt, and (By)ier, is a standard Brownian mo-
tion independent of N(dt,dx). The underlying probability space is denoted
by (£2,F,P), where F is generated by X. We define the filtration (F;):er,
generated by X as
Fi =o(X(ds,dz) : xR, s<t).

The integral of a square-integrable (F)icr, -adapted process u € L?(2) ®
L*(R? x Ry ) with respect to X (dt,dz) is written as

/ u(t, 2) X (dt, dz),
R xR

with the isometry

E (/Rde+ u(t,x)X(dt,dw)) =E [/Rdxm lu(t, z)|?5(dz)dt| , (6.7.1)

with
G (dx) = do(dzx) + o(dz).

The multiple stochastic integral I,,(hy,) of h,, € L?(R¢ xR, )°™ can be defined
by induction with

L(h) = /]R | h(t)X (o)

_ / (0, )dB, + / h(t, 2)(w(dt, dz) — o(dz)dt),
0 R4\ {0} xR
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h € L*(R? x R,), and

I, (hy) = n/ I_1 (7 phe) X (dt, da),
R xRy '

where
me t LA(RY x Ry )" — L2(RY x Ry )°( ™Y (6.7.2)
is defined by
[ﬂﬁxhn] (T1, 815 oy T, tn—1)

= hn(xlatlv s axnflatnfl,tax)l[O,t] (tl) t 1[0,t] (tnfl)a

for x1,...,xn_1,2 € R% and t1,. ... th—1,t € R4
As in (6.1.9) the characteristic function of I1(h) is given by

E [eizh(h)}

2 o]
= exp (Z/ h(0,t)dt Jr/ (eih(t2) _ 1 — izh(t,x))a(dx)dt) .
0 R4\ {0} xR

The isometry property
E [|In (hn)*] = nlllhnll72gaxg, yon-

follows from Relation (6.7.1).
From Proposition 5.1.5 and Proposition 6.3.2, every F' € L?(£2) admits a
decomposition

F=TE[F+)_ 5! Io(fn) (6.7.3)

n>1

into a series of multiple stochastic integrals, with f, € L2(R% xR )", n > 1.
The next proposition is a version of the Clark predictable representation
formula for Lévy processes.

Proposition 6.7.1. For F € L*(2), we have

F =TE[F] + / E[DX,F | F]X (dt,dz). (6.7.4)
R4 xR

Proof. Let

Ap={((z1,t1), -, (Tnsty)) € REXRY)™ ¢ty <o <t}
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From (6.7.3) we have for F' € S:

Fl+ Y L(ful5,)

n>1

= E[F] + Z /]Rde In_1(fn(',t,l‘)lA?L(',t,x))X(dt,dx)

n>1
~ElF+ [ La(fasi (6 2)15,) | FiIX (dt, dx)
R4 ><R+n 0
:]E[F}—i-/Rd i E[D,F | F]X (dt, dx)

The extension of this statement to F' € L?({2) is a consequence of the fact
that the adapted projection of DX F extends to a continuous operator from
L2(02) into the space of adapted processes in L?(2) ® L?(R? x R, ). For

F= ZIn(fn) €S
n=0

and

(oo}
u=> TI(uns1) €U, Uny1 € LP(RYx R @ L2 (RY x Ry), neN,
we can extend the continuity argument of Proposition 3.2.6 as follows:

’]E [ / u(t,2) E[DX,F | ]-'t]a(da:)dt]
R4 xR

<y (n+1) ‘/R (frtr (1, 2) 100, ()s unt1 (5 8, @) 2 (maxr om0 (dow)dt
n=0

dxRy

(oo}
Z n+ DU fatall 2 @axr ) lluntll L2 me xry yomen

o o 1/2
< (Z n!”ani?(RdeJr)@" Z n|tpg1 ||2L2(Rd XR+)®(n+1>>

n=0 n=0
<N FllzzollullL2)yen2 @i xr,)-

Note that Relation (6.7.4) can be written as

F=T[F] + / E[DF | F]dB,
R xR

+ / E[D,F | F)(w(dt,dz) — o(dz)dt).
R xR
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6.8 Covariance Identities

The Ornstein-Uhlenbeck semi-group satisfies
P, (fn) = e ™1, (fn),  fn€L*(X)", neN.

We refer to [140] for the construction of the 2X-valued diffusion process as-
sociated to (P;):er, - Here we shall only need the existence of the probability
density kernel associated to (P;)icr. -

Lemma 6.8.1. In case o is finite on X we have
PF(w) = / F(OUO)q(w,do,dd), we N™, (6.8.1)
NX x X

where q(w, do, do) is the probability kernel on 2% x 2% defined by

\w\' _ W' _ W’ ~ R
w,di, di) = > |w,“‘w\w/|, (e Y1 — el ey, (d)m (1 _omt)o (d).

w'Cw

Here, T(1_e—t), is the thinned Poisson measure with intensity (1—e~")o(dx),
€. denote the Dirac measure at w € 2% and |w| = w(X) € N\{0} U {+o0}
represents the (m,-a.s. finite) cardinal of w € 2X.

Proof. We consider random functionals of the form

F=e¢ Jxul dI)H (1+u(zx i 'In
k=0

TEW

cf. Proposition 6.3.1, for which we have

PF = f:o ;!e_”tIn(u(@”) = exp <e_t /X u(x)a(dx)) [T +e u(@)),
= zew

and

/ F(&Uo)P(w, do, do)
NX x X

- ( /. u<x>0<dx>) fo ] Py

1 (0 +u@), , !

rzeEWUL

= exp (et /X u(x)a(dx))

|w’\!\w\w’\!eit‘w (1= o)™ ey (dB) 711y (d)
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Ax Z H(l +u(x)) w/|!|‘:<w/|!et|w'|(1 _ e*t)‘wfw/‘ew(da))

w'CwxEwWw

= exp (e_t /X u(x)a(dx))

Z H (1 +u(x)) ] e tWl(1 — ety

e\

= exp (e_t /X u(x)a(dx))

2 Iw/!|i|<w/! [I e 0 +u@) JT G-

W' Cw TEW’ zew\w’
= exp (e—t /X u(x)a(dx)) }1(1 + e tu(x))
= PF(w).

The semi-group P; can be rewritten as

|w|' —t|w’ — w—w’ -~ ~,
PFw)= Y Il 1° Hell(] — e t)loe| 5 F(w UD)T(_o-t)o (di).

w/'Cw X
Again, Lemma 6.8.1 and Jensen’s inequality (9.3.1) imply
||Ptu||L2(R+) < HUHLz(RJr)’ UELQ(QX XR+),

a.s., hence

[ Prull oo (ox r2ry)) < lullpe@x L2y )

t € Ry, u € L202X xRy). A covariance identity can be written using the
Ornstein-Uhlenbeck semi-group, in the same way as in Proposition 4.4.1.

Proposition 6.8.2. We have the covariance identity
o0
Cov(F,G)=FE U / e *DXFP,DXGo(dz)ds| , (6.8.2)
0o Jx

F,G € Dom (D™).

Proof. By the chaos representation property Proposition 6.3.2, orthogonality
of multiple integrals of different orders, and continuity of Ps, s € R4, on
L2(02X,P), it suffices to prove the identity for F' = I,,(f,) and G = I,,(gx).
We have
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]Eﬂ'o‘ [I”(fn)ln (gn)] = n'<fna gn>L2 (X,0)°m

= n! fn(xla cee awn)gn(fl, cee ,fn)a(dxl) T J(dxn)
XTI,

:n!/ /X(n , In(@9)ga(a,y) 0¥V (da) o(dy)
—n/ B, (T2 (a0 Ta 1 (90 9))] 0(dy)

— 2B | [ DXL D) 1) o)

=E,, UOOO e”S/XDf[n(fn)Di(In(gn)a(dy)ds}
=E,, UOOO eS/XDf[n(fn)PsD;(In(gn)a(dy)ds} .

O

The above identity can be rewritten using the integral representation (6.8.1)
of P;, to extend Proposition 3 of [57]:

Corollary 6.8.3. We have

Cov (F.G) ///QXXQXZDXF G Ub U {z}) — G/ U)

w'Cw

o 1(1 = @)™ 11—y (di) 7o (dw)o(da)da,  (6.8.3)

|w|!
W Nw\w'|!
|w'|

F,G € Dom (D).
Proof. From (6.8.1) and (6.8.2) we have

Cov (F,G) [/ / *(DXF)(P,DXG)o(dx)ds

/ / /QX oy —stF(W)(G(a/ UoU{z}) - Gl UD))

! el |(1 —e” )|“_“’/|ﬂ(l_efs)g(dd))ﬂ'g(dw)a(dx)ds.

|/ \w]!
We conclude the proof by applying the change of variable a = e™*. O

In other terms, denoting by w, the thinning of w with parameter a €
(0,1), and by &1-, an independent Poisson random measure with intensity
(1 — a)o(dx), we can rewrite (6.8.3) as

Cov(F,G)]EUI/XDfF(w)DfG(wauwla)a(dx)da . (6.8.4)
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This statement also admits a direct proof using characteristic functions. Let

ot) =1 [eiﬂ‘”'} = 7D >,

and let ¢, (s,t) denote the characteristic function of
(lw] lwa Ud1-al) = (0], lwal + [@1-al),
ie.
val(s,t) = E[exp (is|w] + itlwa Ud1-al)]

:/ / exp (i5]0] -+ 10 U [)) 7o (dar)p 10g o (o0, did, di5).
NX JNXx X

Since from Proposition 6.1.5 the thinning of order a of a Poisson random
measure of intensity o(dz) is itself a Poisson random measure with intensity
ao(dzx), we have

pals,t)

= [ e lis(1@] = @)+ 0]+ [6)) 7o () g 0 4, d)
nx NX xNX

= / exp (it|(fJ|)7T(17a)a(dw)
nx

_ | |' Iw | |w—w’|
X /Q exp (is(jw'| + |w — w'[) + it|w']) WZCW |w’|'|w\w’|' (1-a) 7o (dw)
o —o L (0(X)" = _ ; n! _
_ (90(75))1 ag (X) Z (o( !)) Z ezs(kJr(n k))+itk K- k)!ak(l - a)n k
n=0 k=0

= (w(t))l_ae_o(X) i (aa()!())’“ (- a)G(X))leis(k+l)+itk

|
k,1=0 i

= (p(1)" " (p(t + )" (90(8))1_
= (ipo(5,1)*(1(s, 1))~

Relation (6.8.4) also shows that

~— —

COV( is|w] eltlwl) = wl(s’t) - g00(87t)
1
_ / e (s t)da
0
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1 . ,
= [ =D = nts.t)d

/ /Qx /nx/ DY e (DX i) (wq Uy a)o(de)P(dw)P(di)da.

6.9 Deviation Inequalities

Using the covariance identity of Proposition 6.8.2 and the representation of
Lemma 6.8.1 we now present a general deviation result for Poisson function-
als. In this proposition and the following ones, the supremum on 2% can be
taken as an essential supremum with respect to 7.

Proposition 6.9.1. Let F € Dom (DX) be such that e’f € Dom (D),
0 < s <tg, for some ty > 0. Then

WJ(F]E[F]Zx)geXp( min <tx+/0th(s) ds>), x>0,

0<t<to

where

h(s) = sup / (eSDzi(F(“’) —1) DfF(w')a(dy)‘ , s €10,10).

(w,wNeNXxNX |JX
(6.9.1)

If moreover h is nondecreasing and finite on [0,tg) then

o (F —E[F] > x) < exp </ hl(s)ds> , 0<xz<h(ty), (6.9.2)

0

where h™' is the left-continuous inverse of h:

R (x) =inf{t >0 : h(t) >z}, 0<z<h(ty).

Proof. We start by deriving the following inequality for F' a centered random
variable:

E[Fe*f] < h(s)E[e*f], 0<s<ty. (6.9.3)

This follows from (6.8.2). Indeed, using the integral representation (6.8.1) of
the Ornstein-Uhlenbeck semi-group (P )ser, for PUDj( F(w), we have,

E[Fef| =T [ / / Dy e*¥ P, DY Fo(dy)dv

/ / / (DY F () _ 1)¢sF (@)
QX
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X/Q , DY F(w' U®)gy(w, dw', d)o(dy)dvm, (dw)
Xy 0X

oo
</ / e—vesF(w)
0nx.Jo
>< /
NX x X

< sup

(w,w")eNX xNX

/X (e PXF@ _ 1) DX F(w' U)o (dy)

G (w, dw’, dO)dvy (dw)

/ (esDy Fw) _ l)Dzj(F(w’)a(dy)‘ E [eSF/ e”dv}
X 0

= s [ @2 DX Fa () B[],
X

(w,w")eNX xNX

which yields (6.9.3). In the general case, we let L(s) = E [exp(s(F — E[F]))]

and obtain:
L'(s)

L(s)
which using Chebychev’s inequality gives:

< h(s), 0<s<ty,

7o (F — B[F] > 2) < exp (—m + /0 t h(s)ds) . (6.9.4)

d t
Using the relation gt </ h(s) ds — tx) = h(t) — x, we can then optimize as
0

follows:
t h=1(z)
. - _ B -1
021<nto< ter/O h(s) ds> /0 h(s)ds —axh™ " (x)
x
:/ sdh™(s) — xh™(x)
0
= 7/ h~Y(s) ds, (6.9.5)
0
hence

7o (F — E[F] > z) < exp (— /0 h—l(s)ds) . 0<az<h(ty)

O

In the sequel we derive several corollaries from Proposition 6.9.1 and dis-
cuss possible choices for the function h, in particular for vectors of random
functionals.

Proposition 6.9.2. Let F : 2X — R and let K : X — R, be a function
such that
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DY F(w) < K(y), yeX, wen®. (6.9.6)
Then

To(F —E[F] > 2) < exp <min (m + /Ot h(s) ds>) . 2>0,

t>0

where
etK(y) _ 1

h(t) = sup

DX F(w)[*o(dy), t>0. 6.9.7
S K(y)IJ()\(y) (6.9.7)

If moreover h is finite on [0,to) then
7o (F —E[F] > x) < exp </ hl(s)ds> ) 0<xz<h(ty). (6.9.8)
0
If K(y) =0, y € X, we have:

2
WJ(F—]E[F]EJ:)geXp(—;&2), x>0,

with
@* = sup /X(Di(F(w))Qa(dy).

weNX

Proof. Let F,, = max(—n,min(F,n)), n > 1. Since when K is R -valued
the condition D;(Fn(w) < K(y), w € 2%, y € X, is satisfied we may apply
Proposition 6.9.1 to F;, to get

X
etDy F,L(u)) o 1

h(t):@,w/)?flﬁ( oy DrEW Dy} Fo(w) Dy F(w') o(dy)
< [ IR @I ot
S oy (PSR + 1D Fu)) ol
< ap [ DY R ola)
< sup [0 S DX PR oty

weox Jx  K(y)

from which the conclusion follows after letting n tend to infinity. O
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Part of the next corollary recovers a result of [151], see also [59].

Corollary 6.9.3. Let F € L*(2X,7,) be such that DXF < K, 7, ® 0-a.e.,
for some K € R, and ||.DXFHL00(QX’L2(X’O-)) < a. We have for x > 0:

z _ a2
K T KT K2
To(F —B[F] > z) < /K (1 + “sz ) , x>0, (6.9.9)
and for K =0:
72
7o (F —IE[F] > z) < exp (— 2&2) , x> 0. (6.9.10)

Proof. If K > 0, let us first assume that F' is a bounded random variable.
The function h in (6.9.7) is such that

et —1 X 2
h(t) < e D7 Fll 700 (0% 12(x,0))
tK
—1
<a2® t > 0.

K )

Applying (6.9.4) with a2(ef — 1)/K gives
& ik
7o (F —IE[F] > z) < exp —tx+K2(e —tK—-1)].

Optimizing in ¢ with t = K~ log(1 + Kx/&?) (or using directly (6.9.2) with
the inverse K~'log (1 + Kt/a?*)) we have

x r  a? xK
WJ(F]E[F]Zx)geXp(K<K+K2)log(l+ &2)>,

which yields (6.9.10) and (6.9.9), depending on the value of K. For unbounded
F, apply the above to F,, = max(—n,min(F,n)) with |DXF,| < |DXF]|,
n > 1. Then (6.9.9) follows since, as n goes to infinity, F;, converges to F' in
L2(02X), DXF, converges to DXF in L*(2%,L?*(X,0)), and DXF, < K,
n > 1. The same argument applies if K = 0. O

As an example if F' is the Poisson stochastic integral
F= [ @) - odz))
X

where f € L?(X,0) is upper bounded by K > 0 then
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K _;_;2
To(F —E[F] > z) < ™/ K (1+22) , x>0,
where

& = [ \r)Pota).

Corollary 6.9.3 yields the following result which recovers Corollary 1 of [55].
Corollary 6.9.4. Let

F=(F,....F,) = w(dy) — o(d w(d
( ) (/{m}m (dy) — o(dy))+ /{lyl2>1}yk <y>)1<k<n
(6.9.11)

be an infinitely divisible random variable in R™ with Lévy measure o. Assume
that X = R"™ and o(dx) has bounded support, let

K=inf{r>0: c{zeX : |z|>r}) =0},

and & =[5,

y||?o(dy). For any Lipschitz (¢) function f : R"™ — R with

respect to a given norm || - || on R™, we have
K —x/(cK)—a?/K?
7o (f(F) — ELf(F)] 2 @) < o7/(€X) (1 n a) a0
Proof. The representation (6.9.11) shows that
DX F(F)(w)] = [f(F(wU{z})) = f(F(w))]

S| Flwufz}) - Fw)

= c|jz|. (6.9.12)
We conclude the proof by an application of Corollary 6.9.3. O

6.10 Notes and References

Early statements of the Clark formula on the Poisson space can be found in
[129], [130] and [131]. See also [1] for a white noise version of this formula
on Poisson space. The Clark formula for Lévy processes has been considered
in [1], [108], [98], [137], and applied to quadratic hedging in incomplete mar-
kets driven by jump processes in [98]. The construction of stochastic analysis
on the Poisson space using difference operators has been developed in [66],
[33], [95], [100], cf. [94] for the Definition 6.2.3 of Poisson multiple stochas-
tic integrals. The Kabanov [68] multiplication formula has been extended to
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Azéma martingales in [116]. Symmetric difference operators on the Poisson
space have also been introduced in [100]. The study of the characterization of
Poisson measures by integration by parts has been initiated in [86], see also
[123], Relation (6.4.12) is also known as the Mecke characterization of Poisson
measures. Proposition 6.5.5 is useful to study the invariance of Poisson mea-
sures under random transformations, cf. [114]. The deviation inequalities
presented in this chapter are based on [21]. On the Poisson space, explicit
computations of chaos expansions can be carried out from Proposition 4.2.5
(cf. [66] and [138]) using the iterated difference operator D;* --- D;* F, but
may be complicated by the recursive computation of finite differences, cf. [79].
A direct calculation using only the operator D can also be found in [80], for
a Poisson process on a bounded interval, see also [110] for the chaos decom-
position of Proposition 6.3.4. See [99] for a characterization of anticipative
integrals with respect to the compensated Poisson process.



Chapter 7
Local Gradients on the Poisson Space

We study a class of local gradient operators on Poisson space that have
the derivation property. This allows us to give another example of a gra-
dient operator that satisfies the hypotheses of Chapter 3, this time for a
discontinuous process. In particular we obtain an anticipative extension of
the compensated Poisson stochastic integral and other expressions for the
Clark predictable representation formula. The fact that the gradient oper-
ator satisfies the chain rule of derivation has important consequences for
deviation inequalities, computation of chaos expansions, characterizations of
Poisson measures, and sensitivity analysis. It also leads to the definition of
an infinite dimensional geometry under Poisson measures.

7.1 Intrinsic Gradient on Configuration Spaces

Let X be a Riemannian manifold with volume element o, cf. e.g. [14]. We
denote by T, X the tangent space at x € X, and let

TX = U T, X
rzeX

denote the tangent bundle to X. Assume we are given a differential operator
L defined on C(X) with adjoint L*, satisfying the duality relation

<Lu,V>L2(X’J;TX) = <u,L*V>L2(X’J), u e Ccl(X), Ve Ccl(X, TX).

In the sequel, L will be mainly chosen equal to the gradient V¥ on X.
We work on the Poisson probability space (2%, FX 7X) introduced in
Definition 6.1.2.

Definition 7.1.1. Given A a compact subset of X, we let S denote the set
of functionals F of the form

oo
F(w) = fOl{w(/l)=0} + Z 1{w(/1)=n}fn($1, . ,$n), (711)
n=1
N. Privault, Stochastic Analysis in Discrete and Continuous Settings,

Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 7, 247
(© Springer-Verlag Berlin Heidelberg 2009
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where f, € CL(A™) is symmetric in n variables, n > 1, with the notation
wNA={z1,...,2n}

when w(A) =n, w e X,

In the next definition the differential operator L on X is “lifted” to a differ-
ential operator D¥ on 2.

Definition 7.1.2. The intrinsic gradient DE is defined on F € S of the form
(7.1.1) as

o0 n
DEF(w) = Z 1iw(A)=n} Z Ly fn(w1, .. 20) 1m0 (),  w(dr) —ae.,
n=1 i=1

w e NX.
In other words if w(A) =n and wN A = {z1,...,2,} we have
Ly, fu(x1, ... 2), if 2 =a; for some i € {1,...,n},
DLF =
0, if v ¢ {x1,..., 20}

Let Z denote the space of functionals of the form

1={r( [ e@et.... [ o).

@1, on €CZ(X), fECTR"), neN},

and
n
U:{ZFiui DUy, up €CO(X), Fu,... Fy €T, nzl},
i=1

Note that for F' € 7 of the form

F:f</ <p1dw,,/ @nd‘*‘})a @1,,@n€CgO(X),
X X

we have
DIF(w) =Y oif ( / prdw, ..., / sondw) Lepi(x), w€w.
i=1 X X

The following result is the integration by parts formula satisfied by DL.
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Proposition 7.1.3. We have for F € T and V € C}(X,TX):

E [<DLF, V)Lz(XW;TX)} —E {F /X L*V(x)w(dm)]

Proof. We have

E [<DLF, V>L2(X’dw;TX)} —E

zmgmx»m]

recw

L{w(ay=n} O _(DEFV(2:)7rx

i=1

SR

n=1

_ —o(A) — J(A)n
- ¢ Z n!

- o ey o(dzy) o(dey)
;A A<szfn( 1y n),V( 2)>TX U(A) U(A)

—e—UW;; ;/A-~-/Afn(:rl,...,xn)L;iV(xi)a(dxl)n~J(d$n)

= _O-( ) 3 1 tt . * . e
— e o4 nz:ln'//] /Af”(xlv-“733“);inv(xz)0'(dx1) o(dzy,)

- E {F /X L*V(x)w(dm)].
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O

In particular when L = V¥ is the gradient on X we write D instead of DX

and obtain the following integration by parts formula:

B [(OF. Vissasr)] =B [F [ div (@)
X

provided VX and div ™ satisfy the duality relation
(VXU V) 2 (x o) = (U, div V) p2(x 0,

uweCHX),VeCX,TX).

(7.1.2)

The next result provides a relation between the gradient VX on X and its

lifting D on 2, using the operators of Definition 6.4.5.
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Lemma 7.1.4. For F' € 7 we have

D,F(w) =e;VXerF(w) on {(w,2) e N* x X : xew}. (7.1.3)

Proof. Let

F—f(/ <p1dw,...,/<pndw), reX, wenX,
X X

and assune that = € w. We have
DoF(w) —Z_En;az—f ([ oo, [ o) T
=gaif (204 [ a0 ue) + [ gutlorn)) Tt
=957 (a0 + [ ord\a)onle) + [ pndo\n)

et ([ oo, [ o)
— (VX F) (\ ()

=&, Vel F(w).
(|
The next proposition uses the operator 6% defined in Definition 6.4.1.
Proposition 7.1.5. For V € C*(X;TX) and F' € T we have
<ﬁF(w)v V>L2(X,dw;TX) (714)
= (VXDF(w),V)2(x,0:rx) + 0 ((VXDF, V)rx)(w).
Proof. This identity follows from the relation
D,F(w) = (VXD F)(w\{z}), =zecuw,
and the application to u = (VX DF,V)7x of the relation
X (u) = / u(z, w\{z})w(dx) — / u(z,w)o(dx),
X b'e
cf. Relation (6.5.2) in Proposition 6.5.2. O

In addition, for F,G € T we have the isometry

<DF, bG>LE)(TX) = <€_VXE+F, E_VX€+G>L3)(T)(), (715)
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w € 2% as an application of Relation (7.1.3) that holds w(dx)-a.e. for fixed
w e NX.
Similarly from (7.1.5) and Proposition 6.5.2 we have the relation

<DF, DG>LE)(TX) = 5X (<VXDF, VXDG>TX) + <VXDFa VXDG’>L(27(TX)a
(7.1.6)

w € X, F,G € T. Taking expectations on both sides in (7.1.4) using Relation
(6.4.5), we recover Relation (7.1.2) in a different way:

E[(DF(w),V)12(x,duirx)] = E(VXDF, V) 12(x,0:7x)]
= E[F5¥ (div* V),
Velr(X;TX), Fel
Definition 7.1.6. Let Sﬂa denote the adjoint ofﬁ under Ty, defined as
Er, |Fbr,(G)| = Ex, [(DF,DG)12rx) |
on G € T such that
I5F—E,, [<DF, Da) 2 (TX)]

extends to a bounded operator on L?(02% ,).

We close this section with a remark on integration by parts characterization
of Poisson measures, cf. Section 6.6, using the local gradient operator instead
of the finite difference operator. We now assume that div 2 is defined on V¥ f
for all f € C°(X), with

/ o(a)div XV f(2)o(dr) = / (VX g(2), V¥ f (@) 7, xo(dr),
X X

f,9 € CL(X).

As a corollary of our pointwise lifting of gradients we obtain in particular a
characterization of the Poisson measure. Let

HY = divyv¥
denote the Laplace-Beltrami operator on X.

Corollary 7.1.7. The isometry relation

Ex [(DF, DG)1z(rx)| = Bx (V¥ DF. VY DG)1z(rx)) (7.1.7)
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F.G € I, holds under the Poisson measure m, with intensity o. Moreover,
under the condition

COX)={Hf : [eCZ(X)},

Relation (7.1.7) entails m = 7.
Proof.
i) Relations (6.4.5) and (7.1.6) show that (7.1.7) holds when 7 = 7,.
i) If (7.1.7) is satisfied, then taking F = I,,(u®") and G = I,(h), h,u €
C°(X), Relation (7.1.6) implies
B [ Rl 1 (w2 0)] = B, [5 (95 DE, V¥ )]

=0, n>1,

hence m = 7, from Corollary 6.6.3.
O

We close this section with a study of the intrinsic gradient D when X = R, .
Recall that the jump times of the standard Poisson process (N;)icr, are
denoted by (Tj)k>1, with To = 0, cf. Section 2.3. In the next definition, all
C* functions on

Ad:{(tl,...,td)GRi : 0§t1<...<td}

are extended by continuity to the closure of Ay.

Definition 7.1.8. Let S denote the set of smooth random functionals F of
the form
F=f(Ty,...,Ty), fec®RY), d>1. (7.1.8)

We have
X d
DtF:Zl{Tk}(t)akf(Tl"“aTd), dNtfa.e.,
k=1

with F = f(T1,...,Tq), f € C§°(Aq), where Ok f is the partial derivative of
f with respect to its k-th variable, 1 < k < d.

Lemma 7.1.9. Let F € S and h € C}(Ry) with h(0) = 0. We have the

integration by parts formula
d Ty
FY 0Ty f/ W (t)dt || .
k=1 0

E ((DF, h>L2(R+,dw)] =-E
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Proof. By integration by parts on A, using Relation (2.3.4) we have, for
F € S of the form (7.1.8),

N d oo ta to
E[(DF,h)r2®, an,)] = Z/ / / e "h(tr)Okf(t1, ... ta)dty - dtg
= /o Jo 0

%) tq to
:/ e_td/ / h(t1)o1f(t1,. .. ta)dts ---dtg
0 0 0

d oo tq tht1 b th ta
+Z/ e_td/ / h(ty) v | fta, . tg)dt - - dig
=270 0 0 Otk Jo

0
d e ta trt1
_Z/ e—td/ / h(tk)
k=270 0 0
tre [fle—2 to )
/ / . Fltr, .o th—o, tp, th, ... ta)dtr - dby_1 - dtg
0 0 0
0o ty £
= _/ eftd/ B (t1) f(t1,. .. ta)dtr - dtq
0 0 o

o ta t3
+/ e*td/ oo | h(t2)f(ta, ta, ... tg)dtz - dtg
0 0 0

d oo 4 ta trq1 , tr to
Z/ ¢ d/ / h(tk)/ w0 f(ta, . ta)dty - dig
—270 0 0 0 0

oo ty

k

12
+/ e*tdh(td)/ v [ (b, tg)dty - - dtg
0 0

0

d-1 00 ta tryo
+Z/ eftd/ / h(tkt1)
a0 0 0

th+1 te—1 to N
/ / : flt1, o te—1,thg1, thgt, - ta)dts - dty - dtg
0 0 0

d oo 4 tq eyt tk te—2 to
—Z/ e d/ / h(tk)/ / . f(tla->tk—2>tk>tk>->td)dt1 dtd
i—s/0 o Jo o Jo 0
d oo . tq trt1 , tr to
:_Z/ e*d/ / h(tk)/ f(t1, ... tg)dty---dtg
k=1 0 0 0 0 0

oo tq tay
+/ e_tdh(td)/ v | fltr, L tg)dt - - - dig
0 0 0

d T
= _E [F (Z h'(Ty) —/ h/(t)dt>] ;
k=1 0

where df;, denotes the absence of dtj in the multiple integrals with respect
to dty - - - dtg. O

As a consequence we have the following corollary which directly involves the
compensated Poisson stochastic integral.
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Corollary 7.1.10. Let F € S and h € CL(Ry) with h(0) = 0. We have the
integration by parts formula

E[(DF, h) 2. 4] = — E {F /0 T RN, — t)] . (7.1.9)

Proof. From Lemma 7.1.9 it suffices to notice that if k£ > d,
122 tq t2
E[FR (T})] = / e "h (ty) / / Ft, ... tq)dty - - dty,

:/ tkhtk/ / /ftl,... J)dty - - dt
te_1 ta to
,/ e bty / / flty, .o ta)dty - dtg—1
0

= E[F(h(Ty) = W(Tk-1)

T
F/ R (t)dt| ,
Tr—1

in other terms the discrete-time process

(Zn:h’(Tk)— " h’(t)dt) :( " h’(t)d(Nt—t)>
k=1 0 k>1 0 k>1

is a martingale. O

=E

Alternatively we may also use the strong Markov property to show directly

that .
F n'(Ty) — h'(s)ds)] =0.

By linearity the adjoint 6 of D is defined on simple processes u € U of the
form u = hG, G € S, h € C}(R,), from the relation

5hG) = —G / W (0)d(N: — t) + (h, DG) 12, ane).
0

Relation (7.1.9) implies immediately the following duality relation.
Proposition 7.1.11. For F € S and h € C}(R.) we have :

E [(DFhG)1aa, any | = B [Fo(hG)|
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Proof. We have

E {@F, hG>L2(R+7dNt):| =B [@(FG)’h)L?(RJﬁsz) - F<bG’h>L2<R+7dN*)}
=K [F(Gg(h) - <h7DG>L2(R+,dNt)):|
=-FE {F <G/ h(t)d(Ny —t) + <h,ﬁG>L2<R+,dNt)>}
0

- E [FS(hG)].

7.2 Damped Gradient on the Half Line

In this section we construct an example of a gradient which, has the derivation
property and, unlike D, satisfies the duality Assumption 3.1.1 and the Clark
formula Assumption 3.2.1 of Section 3.1. Recall that the jump times of the
standard Poisson process (N;)er, are denoted by (T )r>1, with Ty = 0, cf.
Section 2.3.
Let

r(t,s) = —(sVt), s,t e Ry,

denote the Green function associated to equation
Lf:=—f", fec>([0,))
f(0) = f'(00) = 0.

In other terms, given g € C*°([0, 00)), the solution of

g(t) =—=f"@t),  f(0)=f'(0) =0,

is given by
(oo}
10 = [ sy tew..
0
Let also
r(t,s) = g;" (t,s)

= 71]—oo,t](s)’ s,t € Ry,
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i.e.

£(t) = / "0 (1, 5)g(s)ds

t
= 7/ g(s)ds, teRy, (7.2.1)
0
is the solution of
f/ = -9,
£(0) =o.

Let S denote the space of functionals of the form
I={F=f(Ty,....Ty) : fECLRY), d>1},

and let

n
= {ZFZUZ : u1,...,un€Cc(R+), Fi,..., F, ES, n > 1}

Definition 7.2.1. Given F € S of the form F = f(T1,...,Tq), we let

d
ZI[OTk VoL f(Th, ..., Ty).
k=1

Note that we have

d
D.F = r"(T}, $)0u f(Th, ..., Tu)

k=1

= / T(l)(t,S)DthNt.
0

From Proposition 2.3.6 we have the following lemma.

Lemma 7.2.2. For F of the form F = f(Th,...,T,) we have

E[DFIF] =~ Y Eouf(Th,....T)|F]
Ni<k<n
_ Z / _(sn—t)/ /éNt+2
N <k<n

(9kf(T1, N ,TNt,SNtJrl, .. .,Sn)dSNtJrl . dsn
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According to Definition 3.2.2, ID([a, 00)), a > 0, denotes the completion of S
under the norm

0o 1/2
HF”D([a,oo)) = [[Fll2(o) + <]E {/ DtFth}) ,
a

i.e. (D¢F)te(a,00) 18 defined in L2(£2 x [a, 00)) for F' € ID([a, 0)). Clearly, the
stability Assumption 3.2.10 is satisfied by D since

10,7, (t) = Lyn, <k}

is Fi-measurable, t € R4, k € N. Hence the following lemma holds as a con-
sequence of Proposition 3.2.11. For completeness we provide an independent
direct proof.

Lemma 7.2.3. Let T > 0. For any Fr-measurable random variable F €
L?(2) we have F € D7 ooy and

D.F =0, t>T.

Proof. In case F' = f(Th,...,T,) with f € C°(R"), F does not depend on
the future of the Poisson process after T', it does not depend on the k-th
jump time Ty if T, > T, i.e.

Oif(Ty,...,T,) =0 for Tp>T, 1<k<i<n.
This implies
8if(T1a~-~7Tn)1[0,Ti](t):0 tZT i:l,...,n,

and .

DiF == 0if(Ty, ..., To)lor(t) =0 t>T.

i=1
Hence DtF =0,t>1T. O
Proposition 7.2.4. We have for F € S and u € C.(Ry):
~ (o)
E[<DF, u>L2(R+,dt)] =E l:F/ u(t)(dNt — dt):| . (722)
0

Proof. We have, using (7.2.1),

oo oo
E (DF,u)Lz(R+7dt)} =E { / / r(l)(s,t)f)SFu(t)stdt}
0 0



258 7 Local Gradients on the Poisson Space

- _E <15.F,/O.u(t)dt>L2(R+’dNt)]
_E {F/OOO w(t)d(N, t)} :

from Corollary 7.1.10. O

The above proposition can also be proved by finite dimensional integration
by parts on jump times conditionally to the value of N, see Proposition 7.3.3
below.

The divergence operator defined next is the adjoint of D.

Definition 7.2.5. We define 6 on U by
5(hG) = G/ h(t)(dN; — dt) — (h, DG) 2z, ),
0

GeS, he L2Ry).
The closable adjoint
6 : L3(02 x [0,1]) — L%(2)

of D is another example of a Skorokhod type integral on the Poisson space.
Using this definition we obtain the following integration by parts formula
which shows that the duality Assumption 3.1.1 is satisfies by D and 4.

Proposition 7.2.6. The divergence operator
6: L2 (2 xRy) — L*(N)

is the adjoint of the gradient operator

D:L*(0) — L*(2 x Ry),
i.e. we have
E {Fg(u)} —E [(f)F, u>L2(R+)} . FeS, uel. (7.2.3)

Proof. 1t suffices to note that Proposition 7.2.4 implies

E{(DF,hG) (s, an) = B [{DIFG), ) 12(e. ary ~ F{DGh) p2(s, v

_E [F (G /0 T RN, — ) — (b, DG>L2(R+,dt>)],

for F,G € S. |

(7.2.4)
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As a consequence, the duality Assumption 3.1.1 of Section 3 is satisfied by
D and ¢ and from Proposition 3.1.2 we deduce that D and 4 are closable.
Recall that from Proposition 6.4.9, the finite difference operator

DtF = 1{Nt<n}(f(T1a e 7TNt7taTNt+1a e 7Tn—1) - f(Tla e aTn))a

teRy, F=f(Th,...,T,), defined in Chapter 6 satisfies the Clark formula
Assumption 3.2.1, i.e. by Proposition 4.2.3 applied to ¢y = 1, t € Ry, we
have

F=E[F]+ /Oo E[D,F | FiJd(N; —t), (7.2.5)
0

F e L*(02).

On the other hand, the gradient D has the derivation property and for this
reason it can be easier to manipulate than the finite difference operator D in
recursive computations. Its drawback is that its domain is smaller than that
of D, due to the differentiability conditions it imposes on random functionals.
In the next proposition we show that the adapted projections of (D;F')icr,
and (DtF)t€R+ coincide, cf. e.g. Proposition 20 of [102], by a direct compu-
tation of conditional expectations.

Proposition 7.2.7. The adapted projections of D and D coincide, i.e.

E[D.F | Fy] = E[D,F | ], teR,.
Proof. We have

n

DtF|]'—t Z (0,7, &) B[Ok f(T1, ..., Tn)|Ft]

— Y EBf(Ty,..., Ta)|F]

N, <k<n

-- ¥

N, <k<n

oo 7(3 7t) Sn SNy+2
/ e / / O f(Th, ..., TN,y SNy 415- -5 Sn)dSN,4+1 -+~ dSn
0 t t

n

oo_(s_t) Sn
A l

k= N+2
SNL+2
. 8 / / --,TNL,SNLJFI,---,Sn)dSNLJrl"'dsn
Sk
B
k=N;+2
SNy+2
/ J(T1, o TN, SNy +15 5 Sk—2, Sk» Sky Skt-15 - 5n)
t

—_—
dsNL+1 .. 'dskl—l .. .dsn
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Sn SNy+2
—1{n>NL}/ - '_t)/ / ONy+1f(T1, ., TN, SNy+15- - - Sn)
t t

dsNL+1

_(s b o Sn SNy+2
:_1{NL<n 1}/ " asnl K f(TI,--~,TNL,3NL+1,--~7Sn)

dsNL+1

n—1 ) Sn
—_ Z / ef(sn*t) /
t t

k=N,+2

SNL+2
Is / / T1,.. TNL>SNL+1>"~a3'rl)d3NL+1"'dsn
k

n Z /‘ (snft)/ n.../SNf,‘FZ
t t

k=N.;+2
—_—
f(Tla"'aTNusNHrla->3k—2>3k>3k>3k+1>-asn)dSNL+1"‘dsk—l"‘dsn
1 > —(sp—t) o SNtHa T T
1>y e N1t f(T1, ..., TN, SNy+1, -+ -, Sn)
t t
dsNL+1
Sn SNy+2
—(sn—t 5} ¢
= 1{NL<n 1}/ ( )85 / / f(TI,--~,TNL,3NL+1,--~7Sn)
n Jt t
dsNL+1
— e
k=N, 4271 t t

f(Tl, .. .’TNL,SNLJFl, ey Sk—1,Sk+1,Sk+1, - - .,Sn)dSNL+1 B ‘dsk .. ‘dsn

n

[ [
k=N, +27t t t
—_—
f(T17" TN”SNLJ,»I,-,3k—2,3k,3k,3k+1,-,Sn)dSNL+1"‘dSk_l"‘dSn
—(sn—t) Sn SNy+2
_1{n>NL}/ / / ON+1f(T1,..., TN, SN 41, -+, 5n)
t t
dsNL+1

Sn SNy+2
= _1{NL<n71}/ e_(s"—t)/ / f(Tl,...,TNL,SNL+1,...,S7~L)
t t

t
dsn,4+1- - dsn

+1{NL<n71} /"0 e~ (5n—t) /tsn .../:NLH ST, .., TN,, SN, 42, SN, 425« - -5 Sn)
dsn,+1 -

_1{n>NL}/ ~(sn—1) /:”.../:MH ON 41 f(Ths o TN,y SNot1s - - 1)
dsn,+1 -

(s Sn SNy+2
__1{NL<n 1}/ ne / / f(T1,...,TNL,SNLJrl,...,Sn)
t t

dSNf+1
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oo —(sn—1) Sn SNy+2
+1{NL<"171}/ € " / / f(T17'">TNHSNL+2>SNL+2>"'7871)
t

dSNL+1 e dsn
oo _(s —t) Sn SNy +3
_1{NL<7171}/ € " / / f(T17'">TNHSNL+2>SNL+2>"'7871)

dsNL+2

o (1) s"””’
+1{NL<n 1}/ " / / 1, ">TNL7t>sNL+2>---as'ﬂ)

dSNf+2
_l{n:NL+1}/ e_(S"_t)f(Tl,...,Tn71,8n)d8n
t

+1{n7NL+1}f(T17"' Tnfl t)

_ 1 (o0 e, n)
{n>NL} Iye-- NHSNL+1>"'>

dSNf+1

~(s0 1) e
—|—1{n<NL}/ e \on / / f(Tl,...,TNL,t,SNL+2,...,Sn)
t t t

dsn,4+2 - dsn
= E[D:F|F:],

from Lemma 6.4.10. (|

As a consequence of Proposition 7.2.7 we also have
E[D:F | F,] = E[D:F | F.], 0<a<t. (7.2.6)
For functions of a single jump time, by Relation (2.3.6) we simply have
E[Dyf (To)|Fi] = —1{n,<ny () ELf'(T2)| )
= —1in,<n} ( Ny S (T / ' (@)pn-1-n,(z — t)dx)
= —/ F(@)pn—1-n,(x — t)dz
K (oo}
— (Opan @+ [ @y, (o o
! o0
— Oty crery + [ @i (o O
t
which coincides with

E[D. f(Tn)|Fi]
= By, <n—13(f (Tn—1) = F(Tn)) + Lyn,=n-1y (f (1) = F(T0))| ]
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= ]E[(l{T,L,1>t}f(Tn—1) + 1{T,,L,1<t<T,,L}f(t) - 1{T,L>t}f(Tn))‘]:t]
=17, <<y f(O) + E[(Lr, >ty f(Ta-1) — Liz, 0y f(T0) | F

=1(1,_,<t<T, ) f(t) + / (Pn—2-nN,( —t) = pp-1-n,(x — 1)) f(z)dz
P R / F @), (& — t)da.

As a consequence of Proposition 7.2.7 and (7.2.5) we find that D satisfies the
Clark formula, hence the Clark formula Assumption 3.2.1 is satisfied by D.

Proposition 7.2.8. For any F € L?(2) we have

F =TE[F] + /Oo E[D:F | Fi]d(N; —t).
0

In other words we have
F = E[F] +/ E[D:F|Fi]d(Ny — t)
0
=Em+/ E[D,FIFJd(N; — ¢),
0

F e L*(02).
Since the duality Assumption 3.1.1 and the Clark formula Assumption 3.2.1

are satisfied by D, it follows from Proposition 3.3.1 that the operator &
coincides with the compensated Poisson stochastic integral with respect to
(N¢ — t)ier, on the adapted square-integrable processes. This fact is stated

in the next proposition with an independent proof.

Proposition 7.2.9. The adjoint of D extends the compensated Poisson sto-
chastic integral, i.e. for all adapted square-integrable process u € L*(2 x Ry)
we have

amzﬁmmam—w

Proof. We consider first the case where v is a cylindrical elementary pre-
dictable process v = F'1(;q(-) with F' = f(T%,...,Ty,), f € C2°(R™). Since v
is predictable, F' is F,-measurable hence from Lemma 7.2.3 we have D, F = 0,
s >t, and

Dtvu =0, t>u.
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Hence from Definition 7.2.5 we get

F(Np — Ny)

/ Fl(tT
= / deNS.
0

We then use the fact that D is linear to extend the property to the linear
combinations of elementary predictable processes. The compensated Poisson
stochastic integral coincides with § on the predictable square-integrable pro-
cesses from a density argument using the It6 isometry. O

Since the adjoint § of D extends the compensated Poisson stochastic integral,
we may also use Proposition 3.3.2 to show that the Clark formula Assumption
3.2.1 is satisfied by D, and in this way we recover the fact that the adapted
projections of D and D coincide:

E[D,F | )| = E[D.F | 7], teRy,

for F € L*(92).

7.3 Damped Gradient on a Compact Interval

In this section we work under the Poisson measure on the compact interval
[0,T], T > 0.

Definition 7.3.1. We denote by S, the space of Poisson functionals of the
form

F=hy(Ty,....Ty),  hn€C((0,00)"), n>1, (7.3.1)
and by Sy the space of Poisson functionals of the form
F = folinr—oy + > Lnpenyfu(T1s- ., o), (7.3.2)
n=1

where fo € R and f, € CL([0,T]"), 1 < n < m, is symmetric in n variables,
m > 1.

The elements of S, can be written as

F = fol{ny—o0} + Z Ynp=nyfu(T1, ..., Th),

n=1
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where fo € R and f, € C1([0,7]"), 1 < n < m, is symmetric in n variables,
m > 1, with the continuity condition

fo(Th, ..., Tn) = fop1(Th, ..., Tn,T).

We also let
U, = {zn:Flul DU, .., un € C([0,T), Fr,...,F €Sy n > 1},
i=1
and
Uy = {zn:Flul Dul,..,un €C([0,T)), Fr,... F, €8f, n> 1}.
i=1

Recall that under P we have, for all F' € Sy of the form (7.3.2):

m T frtn to
E[F)] =e*ATf0+e**TZA”/ / / Falty, . ty)dty - dby,.
1 o Jo 0

Definition 7.3.2. Let D be defined on F € Sy of the form (7.3.2) by

DF = — Z 1iNp=n} Z 10,7 (8) Ok fr (T, - .., Th).

n=1 k=1

If F has the form (7.3.1) we have

n

DtF - — Z 1[O,Tk](t)akfn(T1a e 7Tn)a
k=1

where O f,, denotes the partial derivative of f,, with respect to its k-th vari-
able as in Definition 7.2.1.
We define 6 on u € Uy by

T o]
§(Fu)=F / ugdN;y — / u Dy Fdt, (7.3.3)
0 0

F eS8y, uec(o,T).

The following result shows that D and § also satisfy the duality Assumption
3.1.1.

Proposition 7.3.3. The operators D and 6 satisfy the duality relation

E[(DF,u)] = E[F5(u)], (7.3.4)

F eS8y, uely.
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Proof. By standard integration by parts we first prove (7.3.4) when u € C
([0,71) and F' has the form (7.3.2). We have

E[(DF, u)]
_ —ATZ .Z/ //tk )dsOp (bt )ity -+~ b

o

)\n n T T
—e NS [ [ttt -,
= : O

e A 4 T T
—e” ;(nl)!/o u(s)ds ; ; oty o stn1,T)dty -+ -dty_q.
The continuity condition
Sty tn1, T) = froa(ty, - tnea) (7.3.5)
yields
E[(DF. )

:e**TZ / / Fulty, b)Y ulty)dty -
n= k=1
—Xe AT / u(s)ds / / fu(ti, ... ty)dty -+ - dty
0 0

F - u(Ty) — A Tu(s)ds)]
DY,
F/T u(t)dN(t)] .

Next we define 6(uG), G € Sy, by (7.3.3), with for all F € S;:

=E

=E

E[G(DF.u)] = E[(D(FG).u) - F(DG.u)]

T
F(G/ u(t)dNy — DG,u>>
0

= [F uG)],

which proves (7.3.4). O
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Hence, the duality Assumption 3.1.1 of Section 3 is also satisfied by 7D and
9, which are closable from Proposition 3.1.2, with domains Dom (D) and

Dom (6).

The stability Assumption 3.2.10 is also satisfied by D and Lemma, 7.2.3 holds
as well as a consequence of Proposition 3.2.11, i.e. for any Fpr-measurable
random variable F' € L?({2) we have

D.F =0, t>T.

Similarly, 0 coincides with the stochastic integral with respect to the com-
pensated Poisson process, i.e.

5(u) = /0 " wd(Ny — 1),

for all adapted square-integrable process u € L%(£2 x R, ), with the same
proof as in Proposition 7.2.9.

Consequently, from Proposition 3.3.2 it follows that the Clark formula
Assumption 3.2.1 is satisfied by D, and the adapted projections of D, D,
and D coincide:

E[D,F | F] = E[D/F | F]
=E[D:F | F],  teRy,

for F € L*(92).

Note that the gradients D and D coincide on a common domain under the
continuity condition (7.3.5). In case (7.3.5) is not satisfied by F the gradient
DF can still be defined in L?(£2 x [0,T]) on F € S; while DF exists only in
distribution sense due to the presence of the indicator function 1yy,—x} =
1{[Tk7Tk+1)}(T) in (7.3.2).

Yet when (7.3.5) does not hold, we still get the integration by parts

E [(DF,u)| = E (7.3.6)

k=1

=E

T

F/ u(t)dN(t)] , FeSy, uwely,
0

under the additional condition

/T u(s)ds = 0. (7.3.7)
0
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However, in this case Proposition 3.1.2 does not apply to extend D by clos-
ability from its definition on Sy since the condition (7.3.7) is required in the
integration by parts (7.3.6).

7.4 Chaos Expansions

In this section we review the application of D to the computation of chaos
expansions when X = R . As noted above the gradient D has some properties
in common with D, namely its adapted projection coincides with that of D,
and in particular from Proposition 7.2.7 we have

E[D,F]| =E[D,F], tecR,.

In addition, since the operator D has the derivation property it is easier to
manipulate than the finite difference operator D in recursive computations.
We aim at applying Proposition 4.2.5 in order to compute the chaos
expansions

with
falty, ..o tn) = [ E[Dy, -+ Dy, F,
dty ---dt,dP-a.e., n > 1.

However, Proposition 4.2.5 cannot be applied since the gradient D cannot be
iterated in L? due to the non-differentiability of 1j0,7,)(t) in T} In particular,
an expression such as

E[Dy, --- D, F] (7.4.1)
makes a priori no sense and may differ from E[Dy, --- Dy, F] for n > 2.
Note that we have
Dy, -+ Doy f(Tie) = (= 1)" Loz (ta) S (Th), 0 <ty <-ov <t

and

E[Dy, - Dy, f(Ti)] = (—1)" ElL 1 (t2) /" (T1)]

= / F ()pr-a(t)dt

tn

0<t; <--- <ty, which differs from

E[D:, D f(Te)] = — [ FOP 0y,

tn
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computed in Theorem 1 of [110], where

t
Py (t) :/ pr—1(s)ds, te Ry,
0

is the distribution function of Ty, cf. (6.3.5).

Hence on the Poisson space Dt" ~~~Dt1, 0<t; <+ <ty, cannot be used
in the L? sense as Dy, -+ Dy, to give the chaos decomposition of a random
variable. Nevertheless we have the following proposition, see [112] for an
approach to this problem gradient D in distribution sense.

(o)
Proposition 7.4.1. For any F¢€ ﬂDom(D”D) we have the chaos

n=0
expansion

n>1
where

faltiy. .. ty) =E[Dy, --- Dy, Dy, F),

n—1
O<t1 < - <tp,n>1.

Proof. We apply Proposition 4.2.5 to D,F,te R;:

I,(1; E[D"D,F)),

n

K

n=1

which yields
~ ~ 0 ~ ~
E[D.F|F] =E[DF]+ > I.(1, . ED"DF)).
n=1

Finally, integrating both sides with respect to d(N; — t) and using of the
Clark formula Proposition 7.2.8 and the inductive definition (2.7.1) we get

F —E[F] = i L1 (15, E[D"DF)).
n=0

O

The next lemma provides a way to compute the functions appearing in
Proposition 7.4.1.

Lemma 7.4.2. We have for f € CL(R) and n > 1

DD, f(Ty) = Dovef(Tn-1) — Devef(Tn) = Lsenr iz, 1) (s VE) /(s V 1),

S,t € R+.
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Proof. From Relation (6.4.15) we have

DD, f(T;,) = =Yo7, () (L1 1 (8)f (Tue1) = Lo, () (T0))
L, 1) (Lo (8) /(1) = Lo, (8) f'(T))
= 1pesy (Lo, () f'(Tn) = Ljo,m 11 (8) f' (T 1))

ety (Lo, (S (Tn) = Lo,z () (Trm1) = Lyg, 1 (O F (1))

P-a.s. O

In the next proposition we apply Lemma 7.4.2 to the computation of the
chaos expansion of f(T}).

Proposition 7.4.3. For k > 1, the chaos expansion of f(T}) is given as

FT) =BT+ Y 1A

n>1

where fX(t1,... ty) =k ()1 V- Vitn), t1,....tn ERy, and

k(D) == [ F6)0" pulsis, (142
¢

= ()" pr(t) + (f+ Lit,00/0"Pr) L2(R ) teRy, n>1,
where the derivative f' in (7.4.2) is taken in the distribution sense.

We note the relation

dor ()

B0 = ok (1)) — el (D), te Ry

From this proposition it is clearly seen that f(T,)1p,q(Tn) is Fjo.g-
measurable, and that f(7},)1(;,00[(T%) is not Fj; o -measurable.

Proof. of Proposition 7.4.3. Let us first assume that f € C}(R;). We have

f1 (t) = [th( k)]
= — ]E[l[o,Tk] (t)f/(Tk)}

:—[mm®f@w

Now, from Lemma 7.4.2, for n > 2 and 0 <ty < --- < t,,

Dy, -+ Dy, Dy, f(Tx) = Dy, -+ Dy, _,(Dy, f(Ti—1) — Dy, f(Ti)),
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hence taking expectations on both sides and using Proposition 7.4.1 we have

frlf(tla v atn) = f::%(tla cee atn72,tn) - frlffl(tl’ o 'atn72’tn)a

and we can show (4.3.3) by induction, for n > 2:

R, tn) = F ot tn) — Rt o th),
n n—2
Pk 1 5 Pk—1
— / f'(s Hsn—2 s)ds +/ (s ) (s)ds

S?’L

tn

/f anlpk()d

The conclusion is obtained by density of the C} functions in L?(R, py(t)dt),
k>1. ]

tn

7.5 Covariance Identities and Deviation Inequalities

Next we present a covariance identity for the gradient D, as an application
of Theorem 3.4.4.

Corollary 7.5.1. Letn € N and F,G € ﬂ"H ID(Ay). We have

n

ov N D, - D, F)(Dy, -+~ Dy, G)dt - -
Cov (F.G) ’;( 1) EUAk(Dk Dy, F)(Dy, -+ Dy, G)dt dtk}

+(71)n]E |:/ ]E |:Dtn+1 o .DtlF ‘ ftn+1:|
Apt1
< E [Dtm Dy, G| ftm} dty - dtnﬂ} . (7.5.1)

In particular,
Cov (T, f(T1, .., Tm)) = > BT f(T1, ..., Tn)].
i=1

From the well-known fact that exponential random variables
(Ti)rz1 = (T — Th—1)k>1

can be constructed as the half sums of squared independent Gaussian random
variables we define a mapping @ which sends Poisson functionals to Wiener
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functionals, cf. [103]. Given F = f(71,...,7,) a Poisson functional, let OF
denote the Gaussian functional defined by

oF — X2 4+Y? XZ+Y?
2 AR 2 K
where X1,..., X,, Y1,...,Y,, denote two independent collections of standard
Gaussian random variables. The random variables Xy,...,X,, Y1,...,Y,,

may be constructed as Brownian single stochastic integrals on the Wiener
space W. In the next proposition we let D denote the gradient operator of
Chapter 5 on the Wiener space.

Proposition 7.5.2. The mapping © : LP(2) — LP(W) is an isometry. Fur-
ther, it satisfies the intertwining relation

Proof. The proposition follows from the fact that F' and ©F have same
distribution since the half sum of two independent Gaussian squares has an
exponential distribution. Relation (7.5.2) follows by a direct calculation. O

Proposition 3.6.2 applies in particular to the damped gradient operator D:

Corollary 7.5.3. Let F € Dom (D). We have

2
P(F-]E[F]zx)gexp<— N ) x> 0.
2DFz2 g, L (0))

In particular if F' is 7 measurable and || DF||o. < K then

2
]P’(F]E[F]Zx)gexp(2;2T>, x> 0.

As an example we may consider F = f(7y,...,7,) with
n
S mloef(n,. )P S K7 as.
k=1

Applying Corollary 4.7.4 to @F, where © is the mapping defined in Defini-
tion 7.5.2 and using Relation (7.5.2) yields the following deviation result for
the damped gradient D on Poisson space.

Corollary 7.5.4. Let F € Dom (D). Then

2
IP(F—]E[F]Ex)SeXp(— _ 233 >
UDFI L (2 L2
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The above result can also be obtained via logarithmic Sobolev inequalities,
i.e. by application of Corollary 2.5 of [76] to Theorem 0.7 in [4] (or Relation
(4.4) in [76] for a formulation in terms of exponential random variables). A
sufficient condition for the exponential integrability of F' is ||| DF| L2@®4) oo
< 00, cf. Theorem 4 of [103].

7.6 Some Geometric Aspects of Poisson Analysis

In this section we use the operator D to endow the configuration space on
R4 with a (flat) differential structure.

We start by recalling some elements of differential geometry. Let M be a
Riemannian manifold with volume measure dz, covariant derivative V, and
exterior derivative d. Let Vj, and dj, denote the adjoints of V and d under
a measure p on M of the form p(dr) = e?®dz. The Weitzenbock formula
under the measure p states that

d;d+dd;, = V.,V + R — Hess ¢,

where R denotes the Ricci tensor on M. In terms of the de Rham Laplacian
Hr = d;d + dd; and of the Bochner Laplacian Hg = V;V we have

Hp = Hp + R — Hess ¢. (7.6.1)

In particular the term Hess ¢ plays the role of a curvature under the
measure p. The differential structure on R can be lifted to the space of con-
figurations on R.. Here, S is defined as in Definition 7.1.8, and U denotes
the space of smooth processes of the form

n

u(w,z) = ZFZ(w)hz(x), (w,z) € 2 xRy, (7.6.2)

h; € CP(Ry), F; € S,i=1,...,n. The differential geometric objects to be
introduced below have finite dimensional counterparts, and each of them has
a stochastic interpretation. The following table describes the correspondence
between geometry and probability.

Notation Geometry Probability

02 manifold probability space

w element of (2 point measure on R
CP(Ry) tangent vectors to 2 test functions on Ry

o Riemannian metric on {2 Lebesgue measure
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d gradient on {2 stochastic gradient D
vector field on 2 stochastic process

du exterior derivative of u € Y  two-parameter process

{,-} Dbracket of vector fields on 2 bracket on U x U
curvature tensor on {2 trilinear mapping on U

d* divergence on {2 stochastic integral operator

We turn to the definition of a covariant derivative V, in the direction u €
L2(R.), first for a vector field v € C°(R4) as

¢
Vao(t) = —i(t) / usds,  teR,,
0
where 0(t) denotes the derivative of v(t), and then for a vector field
V= Z Fh; el
i=1
in the next definition.

n
Definition 7.6.1. Givenu e U and v = ZFihi eU, let Vyvu be defined as

=1
~ . t
Vuo(t) = hi(t) Dy F; — Fihi(t) /O usds,  teRy, (7.6.3)

where

D,F = (DF,u)r2, ), FeS.
We have

Vur(vG) = FuD,G + FGV,v,  u,v€C®R,), F,GeS. (7.6.4)

We also let, by abuse of notation,
n ~ .
(Vsv)(t) == Z hi(t)DsF; — Fihi(t)10,4(s),
i=1
for s,t € Ry, in order to write
Vuo(t) = / us Vv ds, teRy, w,vel.
0

The following is the definition of the Lie-Poisson bracket.
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Definition 7.6.2. The Lie bracket {u,v} of u,v € C°(Ry) is defined as the
unique element of C3°(Ry) satisfying

(DyD, — D,D,)F = D,F, FesS.
The bracket {-, -} is extended to u,v € U via
{Ff,Gg}(t) = FG{f,g}(t) + () FD;G — f()GDyF,  tE€Ry, (7.6.5)

fyg € C(Ry), F,G € S. Given this definition we are able to prove the
vanishing of the associated torsion term.

Proposition 7.6.3. The Lie bracket {u,v} of u,v € U satisfies
{u,v} = Vv — Vyu, (7.6.6)
i.e. the connection defined by V has a vanishing torsion

T(u,v) = Vyv — Vyu — {u,v} =0, u,v € U.
Proof. For all u,v € C°(R;) we have

T, T,
(D.D, - D,D,)T,, = —D, veds + Dv/ usds
0 0
T, T,
UTn/ ugds — UT",/ vsds
0 0
T, t t
= / (v(t)/ usds — u(t)/ U3d8> dt
0 0 0

= DVuvaUuTvr

Since D is a derivation, this shows that
(DuDy = DyDy)F = Dy o-v,uF
for all F' € S, hence
Diuwy = DuDy — DyDy = Dy, y-vous w0 € CE(Ry),

which shows that (7.6.6) holds for u,v € C°(R4). The extension to u,v € U
follows from (7.6.4) and (7.6.5). O

Similarly we show the vanishing of the associated curvature.

Proposition 7.6.4. The Riemannian curvature tensor R of V vanishes on
U, i.e.
R(U,U)h = [vu,vv}hfv{u,v}h =0, u,v,h eU.
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Proof. We have, letting a(t) = — fg usds, t € Ry:
B st o
[V, Volh = aVoh — 0V uh =@ oh — @h = —tvh + uh,
and —_— . .
V{%U}h = Vﬁi,,fmh = (fw - fm)h = (uf} — ’Uﬁ)h,

hence R(u,v)h = 0, h,u,v € C2°(R ). The extension of the result to U follows
again from (7.6.4) and (7.6.5). O

Clearly, the bracket {-,-} is antisymmetric, i.e.:
{u,v} = —{v,u}, u,v € C°(Ry).
Proposition 7.6.5. The bracket {-,-} satisfies the Jacobi identity
{{u, v}, w} + {w,{u,v}} + {v,{u,w}} =0, u,v,w € CF(Ry),

hence U is a Lie algebra under {-,-}.

Proof. The vanishing of R(u,v) in Proposition 7.6.4 shows that
[V, Vo] = Viuurh, u,v €U,
hence

Vituoywt + Viwfuedt + Vi fuw)y
= [V{u,v}7 vw] + [vwa v{u,v}} + [Vva V{u,w}]
=0, u,v,h € U.

O

However, {-,-} does not satisfy the Leibniz identity, thus it can not be con-
sidered as a Poisson bragket.
The exterior derivative Du of a smooth vector field u € U is defined from

(Du, by Aha)p2woyarz @) = (Vats ho)p2e, ) — (Vi k1) r2 (k. )

hi,he € U, with the norm

o0 o0
||DU||2L2(R+)/\L2(R+) = 2/0 /0 (Du(s, t))*dsdt, (7.6.7)

where

1
Du(s,t) = Q(Vsut — Vius), s, teRy, wel.

The next result is analog to Proposition 4.1.4.



276 7 Local Gradients on the Poisson Space

Lemma 7.6.6. We have the commutation relation

Dyd(v) = 6(Vyv) + (u,v) 2R, ), (7.6.8)

u,v € CX(R,), between D and 6.
Proof. We have

~ o~ > T
D,é(v) = Zv / ds
k=1
[e%e) t
= ( usds> —/ v(t)/ ugdsdt
0 0
- VU’U <U,U>L2(R+)7
by (7.6.3). O

As an application we obtain a Skorohod type isometry for the operator 4.

Proposition 7.6.7. We have for u e U:

E [\S(u)ﬂ =1E [||u||2L2(R+)} +1IE {/000 /000 Vu:Viusdsdt| .

(7.6.9)

Proof. Given u = Z h; F; € U we have
i=1

E {S(hiFi)S(htFt)} ~E [FiD,LiS(thj)}

— T [FDn, (Fyd(h;) — Di, Fy)|
[ (FyF; Dy,h; + Fid(h;) Dy, F; — FiDhiDthj)}
[ (FyFy(hishy) 12w, + FiF36(Vn,hy) + Fid(hy) D, Fy — FiDy, Dy, Fj)}
{ FoFy(hi, hy) 12, + Dy, i, (FiEy) + Dy, (FiDp, Fy) — FiDhiDthj)}
[ (FyFy(his by 12,y + Dy, i, (FiFy) + D, Fy Dy F

+Fy(Dy, Dn, F; — Dy, Di, F ))}

-E {(F Fylhishy) 12,y + Dy, i, (FiFy) + Dp, Fy Dy Fj
+FiDvh]. hz-fvhih]-Fj)}

=K {(FZF] <hz, hj>L2(R+) + FjDV}Lithi + Fz’DV;Ljhi,Fj + DthiD}“Fj)}



7.7 Chaos Interpretation of Time Changes 277
= |:FZFJ<hZ, hj>L2(]R+) + Fj / DSFZ / Vthj(s)hz(t)dtds
0 0
(oo} ~ o0
0 0
+/ hi(t)DtFjdt/ h](S)ﬁédeS],
0 0

where we used the commutation relation (7.6.8). O

Proposition (7.6.7) is a version of the Skorohod isometry for the operator )
and it differs from from Propositions 4.3.1 and 6.5.4 which apply to finite
difference operators on the Poisson space.

Finally we state a Weitzenbock type identity on configuration space under
the form of the commutation relation

Dé + 6D = V*V + Isz(R+),

i.e. the Ricci tensor under the Poisson measure is the identity Idpz(g,) on
L?(R,) by comparison with (7.6.1).

Theorem 7.6.8. We have for u € U:

E (3] + B [IDull3e @, prem.) | (7.6.10)

=B [[ullfee.)] + B [IVulfe@ o,

n
Proof. Relation (7.6.10) for u = Z h;F; € U follows from Relation (7.6.7)
i=1

and Proposition 7.6.7. ([l

7.7 Chaos Interpretation of Time Changes

In this section we study the Poisson probabilistic interpretation of the opera-
tors introduced in Section 4.8. We refer to Section 5.8 for their interpretation
on the Wiener space. We now prove that V© + D is identified to the operator
D under the Poisson identification of & and L?(B).

Lemma 7.7.1. On the Poisson space, V© satisfies the relation

VYP(FG)=FVYG+GVYF - DiFD,G, teRy, FFGeS. (7.7.1)

Proof. We will use the multiplication formula for multiple Poisson stochastic
integrals of Proposition 6.2.5:
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Li(f*™)11(9) = L1 (f°" 0 g) + n(f. ) Luor (f"71) + nln((fg) 0 F"71),

f,g € L*(R,). We first show that
VE (In(f°) 0 (9)) = Ln(f*)VEL(9) + 1 (9) Vi (") = Di i (9) Di L (£°1),

t € Ry, when f,g € CL(R) and (f, f)r2@ry) = 1. Indeed, we have

L(f™)VEL(g) + Li(g)VE L (f)
= L (f")1(9 Vt,00)) — 011 (9) I ((F' L00) © £7OD)
" ( nt1((Fo0) )o [ og)+ (n—1)Ia((fg) o (f'1t,00)) © fen=2)
L9 D)) © £20D) 4 (oo ) gy Tt (70 )
+(n = 1(f, 9) 2@ ) In—1((f"1jt.00)) © fO(”*Q)))
~Ls1((9' Y r,00)) © F°") = 0L ('Lt ,00) f) © F27Y)
=1{g' Lt,00)s P12y ln—a (f070)
= —nlo 1 (f'ljoe)) © F 7Y 0.9) = Tng1 (g1 jt.00)) © ")
—n(n = DI ((f'Ljr,00)) © (fg) 0 F272)
L (9 1jt00)) © FO7D) = Lo ((£9' Lt ,00)) © £2"7D)
+nf(t) O L1 (P ) = n(n — D)(f, 9) 2wy In—1((f' Lit,00)) © £°"72)
(In+1(f°n og)+nl, (fo(n Do (f9)) +nlf,g >L2(R+)In71(fo(n71)))
Anf(t)g(t) -1 (F01)
= V7 Un(f")11(9)) + Dii(g) Deln(f7), f,g € CLHRY).

We now make use of the multiplication formula for Poisson stochastic inte-
grals to prove the result on S by induction. Assume that (7.7.1) holds for
F = I,(f°") and G = I;(g)* for some k > 1. Then, using the product rule
Proposition 4.5.2 or Proposition 6.4.8 for the operator D; we have

V(o) I (g) )
= Li(9)Vy (I (fo") 1 (9)") + L (fo") 1 (9)" Vi L (9)
—DiI1(9)Di(11(9) " In (f°™))
=11( ) (11(9)" VP Ln(f") + In(f")VE (11(9)") = D (11(9)*) DeLn(f°"))
L(f°™")1(9)* V7 1(g) — Didi(g) (I1(g) th L,.(f°")
L(f°™")Dy (I(9)*)) — Didi(g9)Der(9)* Did (£°7)
)

( FENVE L) + L (f)VE (L(9)™) = De (1u(9)™) DeLu(F°),

teR,. O
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Proposition 7.7.2. We have the identity
D=D+V®

on the space S.

Proof. Lemma 7.7.1 shows that (V© + D) is a derivation operator since

(Vi + Dy)(FG) = Vi (FG) + Dy(FG)
= FVYG+ GVYF — D FD,G + Dy(FG)
=F(VY +D)G+G(VY +Dy)F, F,GeS.

Thus it is sufficient to show that
(D: + V) f(Tx) = Df(Ty), k>1, feCi(R). (7.7.2)
Letting 7, denote the projection
TS = Flit,c0)s feL*(Ry),

we have

(D + V2V (T) = (D + 99) Y 1u(f)

neN
1 .
= Z Lia(fi(51) — Z ( 1 'In(ﬂ[t@)ld@( Doy fF)
n>1 ne1 T )!
= Z ( n1(st) —nm ®Id®("*1)81fff) ;

nEN

where Id : L2(Ry) — L?(R. ) is the identity operator. Now,

FE Lt t) = @ TAPTN R (L)
= a1 (V- Vi Vi)
“Lpctiveveny (n(f) + k1 () (V- Vi)
= O‘I:z+1(f)1{t1v--~vtn<t} —al(f ) t1v---V tn) it v v, >t}
= ajh(—f{)(tL V- Vi),
which coincides with n-th term, in the chaos expansion of —1(o 7,1 f'(Tx) by

Proposition 7.4.3, k € N, n > 1. Hence Relation (7.7.2) holds and we have
D+V® =D. O

Since both § and & = § + V® coincide with the Itd integral on adapted
processes, it follows that V® vanishes on adapted processes. By duality this
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implies that the adapted projection of V€ is zero, hence by Proposition 7.7.2,
D is written as a perturbation of D by a gradient process with vanishing
adapted projection.

7.8 Notes and References

The notion of lifting of the differential geometry on a Riemannian manifold
X to a differential geometry on 2% has been introduced in [3], and the in-
tegration by parts formula (7.1.2) can be found been obtained therein, cf.
also [16]. In Corollary 7.1.7, our pointwise lifting of gradients allows us to
recover Theorem 5-2 of [3], page 489, as a particular case by taking expec-
tations in Relation (7.1.5). See [20], [93], [106], for the locality of D and 0.
See [2] and [30] for another approaches to the Weitzenbock formula on con-
figuration spaces under Poisson measures. The proof of Proposition 7.6.7 is
based on an argument of [43] for path spaces over Lie groups. The gradient
D is called “damped” in reference to [44], cf. Section 5.7. The gradient D of
Definition 7.2.1 is a modification of the gradient introduced in [23], see also
[36]. However, the integration by parts formula of [23] deals with processes of
zero integral only, as in (7.3.6). A different version of the gradient D, which
solves the closability issue mentioned at the end of Section 7.3, has been used
for sensitivity analysis in [71], [117], [118]. The combined use of D" and D for
the computation of the chaos expansion of the jump time Ty, d > 1, and the
Clark representation formula for D can be found in [102]. The construction
of D and D can also be extended to arbitrary Poisson processes with adapted
intensities, cf. [32], [104], [105].



Chapter 8
Option Hedging in Continuous Time

Here we review some applications to mathematical finance of the tools
introduced in the previous chapters. We construct a market model with jumps
in which exponential normal martingales are used to model random prices.
We obtain pricing and hedging formulas for contingent claims, extending the
classical Black-Scholes theory to other complete markets with jumps.

8.1 Market Model

Let (M;)icr, be a martingale having the chaos representation property of
Definition 2.8.1 and angle bracket given by d(M, M), = a?dt. By a modifi-
cation of Proposition 2.10.2, (M;).c(o,1) satisfies the structure equation

d[M, M); = aidt + ¢idM;.

When (¢)se[o,7) is deterministic, (M)e(o,7) is alternatively a Brownian mo-
tion or a compensated Poisson martingale, depending on the vanishing of

(¢t)t€[0,T]-
Let r : Ry — R and 0 : Ry — (0,00) be deterministic non negative

bounded functions. We assume that 1+ o.¢; > 0, t € [0,T]. Let (A¢)ier,
denote the price of the riskless asset, given by

dA
Ay

t
A = Apexp </ rsds>, teRy.
0

For t > 0, let (S7,)uept,r) be the price process with risk-neutral dynamics
given by

P=rdt,  Ag=1, teRy, (8.1.1)

i.e.

dsy, =St du+0,S;, ~dM,, welt,T], Si,=uz,

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 8, 281
(© Springer-Verlag Berlin Heidelberg 2009
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Fig. 8.1 Sample trajectory of (St):ejo, 1]

cf. Relation 2.13.5. Recall that when (¢;)¢cr, is deterministic we have

T T
) 1
S;L’T = T exp (/ Oty d By +/ (ru — puAuoy — 2%0’30&)03%)
t t

k=Nt

< I a+onén), (8.1.2)
k=1+N,
0<t<T,with S, = S&t, t € [0,7T]. Figure 8.1 shows a sample path of
(St)tefo,m] when the function (i¢);c(o,7) takes values in {0, 1}, with Sy = 10,
or =10, and ay = 1, t € [0,T].
Let 1y and (; be the numbers of units invested at time ¢, respectively in the as-
sets (S¢)ier, and (A¢)ier, - The value of the portfolio V; at time ¢ is given by
Vi = G A + St teRy. (8.1.3)

Definition 8.1.1. The portfolio V; is said to be self-financing if
The self-financing condition can be written as

Atdct + Stdﬂt = O, 0 § t S T

under the approximation d(S¢, n;) ~ 0.
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Let also

t t
Vt = Vi exp (/ rsds) and 5',5 = S;exp </ rsds>
0 0

denote respectively the discounted portfolio price and underlying asset price.
Lemma 8.1.2. The following statements are equivalent:

i) the portfolio V; is self-financing,
i1) we have

t
V=T +/ cunuSudM,,  tER,, (8.1.5)
0

i11) we have

t t t
Vi = Vo exp </ rudu) + / Oy €Xp </ rudu) S dM,, (8.1.6)
0 0 u

teR,.

Proof. First, note that (8.1.5) is clearly equivalent to (8.1.6). Next, the self-
financing condition (8.1.4) shows that

d‘/t = CtdAt + ntdSt
= G Agredt + nere Sdt + 041y Spd My
= ’T't‘/;gdt —+ JtntSthta

t
d (exp (—/ rsds) Vt>
0
t t
= —r exp <—/ rsds> Vidt + exp <—/ rsds) dV;
0 0

t
= exp (/ rsds) o Sed My, teRy,
0

t € Ry, hence

dv;

i.e. (8.1.5) holds. Conversely, if (8.1.5) is satisfied we have

dV, = d(AVy)
= ‘7tdAt + Atht
=V, Ayrydt + 041, Spd M,
= Vyrydt + oy Sed My
= G Agredt + 0y Syridt + o4y Spd My
= GdA; + mdSt,

hence the portfolio is self-financing. |
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8.2 Hedging by the Clark Formula

In the next proposition we compute a self-financing hedging strategy leading
to an arbitrary square-integrable random variable F', using the Clark formula
Proposition 4.2.3.

Proposition 8.2.1. Given F € L?(£2), let

exp (7 ftT rsds)
n = E[D:F|F], (8.2.1)
O'tSt

— [T rydu) E[F|F] — n,S
QZ“"( Jor “i FIFd = m ot (8.2.2)

Then the portfolio (0, Ct)eecjo,1) i self-financing and yields a hedging strategy
leading to F, i.e. letting

Vi = G Ay + 1S, 0<t<T,

we have

Vi = exp ( /tT rudu> E[F|F], (8.2.3)

0 <t <T. In particular we have Vpr = F and

Vo = exp (/0 rudu> E[F].

Proof. Applying (8.2.2) at t = 0 we get

E[F]exp (/0 Tudu> =V,

hence from (8.2.2), the definition (8.2.1) of n; and the Clark formula we obtain

Vi = GAr + Sy

T
= exp (/t rudu> E[F|F]

<]E[F] + /O t ]E[DuFfu]dMu)

T t

) + exp (—/ rudu> / E[D,F|F,]dM,

t 0

t t t

= Vpexp (/ rudu> +/ Ny Oy Sy, €XP </ rsds) dM,, 0<t<T,
0 0 u

I I
b g
o) ol
» —
< |
VR
O\ e\
-+ ~
:; &
S S
~_
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and from Lemma 8.1.2 this also implies that the portfolio (1:,(¢)icjo, 7] is
self-financing,.

The above proposition shows that there always exists a hedging strategy

starting from
T
Vo = E[F] exp (—/ rudu> .
0

Conversely, since there exists a hedging strategy leading to

~ T
Vir = Fexp (—/ rudu> ,
0

then by (8.1.5), (f/;f)te[O,T] is necessarily a martingale with initial value

T
Vo = E[Vr] = E[F]exp (/0 rudu> .

We now consider the hedging of European call option with payoff FF =
(St — K)T using the Clark formula in the setting of deterministic struc-
ture equations. In this case the next proposition allows us to compute the
hedging strategy appearing in (8.2.1).

Proposition 8.2.2. Assume that ¢ > 0, t € [0,T]. Then for 0 <t < T we
have

]E[Dt(ST - K)+‘ft} =E [ita—t‘stz,Tl[K,Oo)(StZ,T)
j xr xT xr
+7 (0epe S — (K — St,T)+)1[ koo (SEr) .
¢t I4o =5
Proof. By Lemma 4.6.2, using Definition 4.6.1 and Relation (4.6.4) we have,
for any F' € S,

DiF =DEF+ 7 (TPF — ), telo,T). (8.2.4)
t

We have TSy = (1 + 0,¢¢)Sr, t € [0,T], and the chain rule DB f(F) =
f/(F)DBF, cf. Relation (5.2.1), holds for FF € S and f € CZ(R). Since S
is an algebra for deterministic (¢¢)ic(o,r), We may approach z — (z — K)*

by polynomials on compact intervals and proceed e.g. as in [97], p. 5-13. By
dominated convergence, F' = (S — K)™ € Dom (D) and (8.2.4) becomes

Di(St — K)* = i400Se .0y (1) + (Z (1 + 0160) S — K)F — (Sp — K)),

0 <t <T. The Markov property of (St);e[o,r] implies

E [D7 (St — K)T| 7] = w00 E [S{ 11 k,00) (P 1)

$=St ’
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and

R[PSSy — K)* — (S7 — K)*|F)

on

J % «
= B+ 00)Sir — K)* — (Sir ~ K)*], g,
_ - .
= L[+ o00Str K01k, (Six)]

J

_q; E[(Sfr — K)o (S52)],_g,

Jt - " . :
= JB oSty oSt + (Str = K01k (S|
g .
= 1B [n0Sirly oo (STn) — (K = St x| (SEn)]
_ N
B ¢t ]E |:(0-t¢tSf’T - (K B Sf’T) )1[1+‘I7(t¢t 7OO)(‘S';E’T)] xzst.

O

If (é¢)tefo, 1) is not constrained to be positive then

]E[Dt(ST — K)‘Wft} = ’I:tO't E [Sle[K,oo)(S;T)] =5,

jt T T r x
F5 B oSl ) (Sin) + (ST~ KNk (SEr)]

with the convention 1p, . = —1[4p, 0 < a < b < T'. Proposition 8.2.2 can
also be proved using Lemma 3.7.2 and the It6 formula (2.12.4).

In the sequel we assume that (¢¢)icr, is deterministic and
dM; = 1,dB; + ¢t(dNt — )\tdt), te RJ’_’ My =0,

as in Relation (2.10.4).

T
exp (/0 rsds> E [(Sp — K)*]

in terms of the Black-Scholes function

Next we compute

BS(z,T;r,0% K) =e ™" ]E[(acerT_azT/2+”WT - K)*],

where Wr is a centered Gaussian random variable with variance T'.
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Proposition 8.2.3. The expectation

T
exp (/0 rsds> E [(Sp — K)*]

can be computed as

T
exp <_/o rsd8>]E[(ST_K)+]
< 1 (T T
exp(FO(T))I;)k!/o /0

i=k

T
BS (SO exp (/ ¢S’ysasds> (1+o04,6t,),T; Ry, FO;T);K>
0

=1

fytl .. "Ytkdtl e dtk
Proof. Similarly to Proposition 3.7.3 we have
E [e~"H7(Sp — = E[e " (Sp — K)¥|Nr = k| P(N7 = k),
k=0

with

(Io(T))*
K

Conditionally to { N7 = k}, the jump times (71,...,Ty) have the law

P(Ny = k) = exp(—Io(T)) ke N.

k!
(Io(T))k Liocty <oty <T} Vs Ve by - - dip,

since the process (Nro—l(T)t)t€R+ is a standard Poisson process. Hence, con-
ditionally to

(NI (Io(T))) = k} = {N7 = k},
its jump times (I'o(7%),...,I0(Tk)) have a uniform law on [0, [H(T))*. We
then use the fact that (B;)icr, and (IN¢);er, are also independent under P
since (1¢)er, is deterministic, and the identity in law

k=N

T
St aw So X exp <_/ ¢s)\sasd8> H (1+onén,),
0

k=1
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where

1/2
X7 = exp (TRT — Io(T)/2+ (FOZ(FT)) WT> ,

and Wr is independent of V. O

8.3 Black-Scholes PDE

As in the standard Black-Scholes model, it is possible to determine the
hedging strategy in terms of the Delta of the price in the case (r¢)cr, is

deterministic.
Let the function C(t,z) be defined by

C(t, St) =W
T
= exp (—/t rudu> E[(St — K)T | 7]

T
= exp (—/ rudu> ]E[(ST — K)+ ‘ St], te R+.
t

cf. (8.2.3). An application of the It formula leads to

oC aCc 19°C
dC(t,St) = (8t +’I"tSt +

or 2 Ox2 it} Stop + )\t90> (t,Sy)dt

+St0-t gi (t, St)th+(C(t, St(]. —+ Ut¢t)) *C(t, St)) (dNt*)\tdt)
(8.3.1)

where

@C(t, St) = C(t, St(]. —+ Ut¢t)) — C(t, St) — ai (t, St)Stthﬁt.

0

The process

t
Cy := C(t, St) exp <—/ rsds)
0

= exp (/0 rudu> E[(ST - K)+ ‘ ft]

=V
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is a martingale from Propositions 2.5.8 and 8.2.1-(ii), with

dCy = n,dS; (8.3.2)
= o Sed M,
= 440y Sed By + 01 Se(ANy — Aidt),
from Lemma 8.1.2. Therefore, by identification of (8.3.1) and (8.3.2),

aC 1m25202820
tQ Ot O¢ 92

oC
reC(t, St) = ( ' + 145t oz + 9

! + wc) (t, S0),

aoC
UtUtStht = Sio¢ . (t, St)th+(C(t, St(l =+ Ut¢t))—C(t, St)) (dNt — )\tdt) .

13)
Therefore, by identification of the Brownian and Poisson parts,

. ) oC
ZtﬂtStUt = 91510¢ Oz (t, St)

(8.3.3)
JineStorr = C(t, Se(1L + ov¢r)) — C(t, St).

The term ©C(t,S;) vanishes on the set
{teRy : ¢ =0}={t : i(t)=1}.
Therefore, (8.3.3) reduces to

ocC
= oz (t,Sy),

i.e. the process (1 ):er, is equal to the usual Delta (8.3) on {t € Ry : iy = 1},

and to

= C(t,Si(1 + ¢por)) — C(t, Se)
‘ St¢t0t
on the set {t e Ry : iy = 0}.

Proposition 8.3.1. The Black-Scholes PDE for the price of a Furopean call
option is written as

ocC ocC 1 0*C
Iy (t,x) + rx O (t,x) + 204?3020? 92 (t,z) = r:C(t, z),
on {t: ¢ = 0}, and as
ocC ocC
Iy (t,x) + rix O (t,x) + »OC(t,x) = rC(t, x),

on the set {t € Ry : ¢ # 0}, under the terminal condition C(T,x) =
(x — K)*.
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8.4 Asian Options and Deterministic Structure

The price at time ¢ of an Asian option is defined as

E d( /Sdu ) ‘J—}

The next proposition provides a replicating hedging strategy for Asian
options in the case of a deterministic structure equation. Following [74],
page 91, and [13], we define the auxiliary process

1 /1 [t
s, <T/0 SuduK>, t€[0,7). (8.4.1)

Proposition 8.4.1. There erists a measurable function C on Ry x R such
that C(t,-) is Ct for allt € Ry, and

+

_ 1 T
S,C(t,Y,) = E ( / SuduK> ’]-'t.
T 0

Moreover, the replicating portfolio for an Asian option with payoff

1 [T "
wdu — K
(T/OSdu )
1

ne= e Jireds (@(t, Y;)oy (8.4.2)

Ot

+(1+ ov¢) (qbt (é (t, . J:;t@) - C*(t,Yt)> z‘tatytazé(t,yt)» .

Proof. With the above notation, the price at time ¢ of the Asian option
becomes

is given by (8.1.3) and

E [e* Ir reds G (Y ) ’].—t} .

For 0 < s <t <T, we have

d(SYy) = </ Sudu — ) _ Stdt,
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hence
SiYy

1 [*S,
=Y, du.
s T / s,
Since S, /S: is independent of S; by (8.1.2), we have, for any sufficiently
integrable payoff function H,

E [H(STYT) ‘ft} =E lH (Sty;f + ; /T Sudu> ‘ft]

z (T8,
:]ElH(xy—l—T/t Stdu .
y=Y:, z=5;

Let C € CZ(R4+ x R?) be defined as

z (T8,
C(t,x,y)]E[H (:EerT/t Stdu ,

Ot, S, ;) = E [H (SYr) ‘}"t} .

i.e.

When H(z)= max(z,0), since for any ¢t € [0,T], S; is positive and
Fi-measurable, and S, /S; is independent of Fi, u > t, we have:

E [H (S7Y7) ’]—"t} ~E [ST(YT)+]ft}

— S E | (v +‘5E
— Pt TSt t

1 (Ts "
_S,E (Yt + / “du> ’]—"t
t

with .
- 1 (TS,
Ct,y) =E <y+ T/t s, du>

We now proceed as in [13], which deals with the sum of a Brownian motion
and a Poisson process. From the expression of 1/S; given by (8.1.2) we have
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1 1 o?o? o
d = — Y ae— dM),
<St) Sy- <( et 1+Ut¢t) 1+ o0¢y i

hence by (2.12.4), It6’s formula and the definition (8.4.1) of Y;, we have

a2o? 1 Y- o4
AV, =Y (—re+ U0 )dt+ _dt— F dM,.
i t( K 14094 T 1+ o1y i

Assuming that H € CZ(R) and applying Lemma 3.7.2 we get

E [DtH (SrYr) ‘ft} — L,O(t, S, Y))
Yioy
1+ o0

+7t <C (t,St- 40,8, Y, —
fon

= it (O’tSt—aQC(t,St,Y;g) — 036'(15,5,5,3/})) (843)

Yioy

1+Ut¢t> C(t,st_vyvt_)> )

where L, is given by (2.12.5). Next, given a family (H,),en of CZ functions,
such that |H,(z)] < 2T and |H/(z)] < 2, x € R, n € N, and converging
pointwise to z — 2%, by dominated convergence (8.4.3) holds for C(t, x,y) =
xC(t,y) and we obtain:

T +
D, (;/ SuduK> ’]-‘t =i, C(t,Y})0,Sy
0

o <;tt (é <t 1 +0‘t¢t> (t, Yt)) - uatn%(](t,}@))

C
+St0't¢t (;i ( ( 1 +O’t¢t) t Yrt > —itath@2C~’(t,Yt)> .

O

As a particular case we consider the Brownian motion model, i.e. ¢; = 0, for
all t € [0,T], so it =1, j: = 0 for all t € [0,T], and we are in the Brownian
motion model. In this case we have

e = e [ Teds (4@52(3*@,3@) + Ot Yt))

T 0 = 1/1 [t ~
= 7ft rsds —
e (5,0 (1 (3 swaa-x)_ +ete)
t
— 8 (xe_ft 7"Sdsé’(t,l (1 / SuduK)>) , tel0,T],
ox z \T Jy lz=5,

which can be denoted informally as a partial derivative with respect to S;.
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8.5 Notes and References

See e.g. [74] and [135] for standard references on stochastic finance, and [97]
for a presentation of the Malliavin calculus applied to continuous markets.
The use of normal martingales in financial modelling has been first considered
in [35]. The material on Asian options is based on [70] and [12]. Hedging
strategies for Lookback options have been computed in [15] using the Clark-
Ocone formula.



Chapter 9
Appendix

This appendix shortly reviews some notions used in the preceding chapters.
It does not aim at completeness and is addressed to the non-probabilistic
reader, who is referred to standard texts, e.g. [67], [119] for more details.

9.1 Measurability

Given a sequence (Y, )nen of random variables, a random variable F' on a
probability space (£2, F,P) is said to be F,-measurable if it can be written
as a function

F=f.(Yo,...,Ys)

of Yo, ...,Y,, where f, : R"*! — R. This defines a filtration (F,)n>_1 as

Fo1= {@, “Q}
and
Fn=0Yy,...,Y,), n >0,
where 0(Yp,...,Y,) is the smallest o-algebra making Yy, ..., Y, measurable.

The space of F,,-measurable random variables is denoted by L°(£2, F,,,P).

9.2 Gaussian Random Variables

A random variable X is Gaussian with mean p and variance o2 if and only
if its characteristic function satisfies

E[eiaX] _ eiau—a2a2/2, a €R.
From e.g. Corollary 16.1 of [67] we have the following.
N. Privault, Stochastic Analysis in Discrete and Continuous Settings,

Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 9, 295
(© Springer-Verlag Berlin Heidelberg 2009
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Proposition 9.2.1. Let X;,...,X,, be an orthogonal family of centered
Gaussian variables, i.e.

Then (X1,...,Xn) is a vector of independent random variables.

9.3 Conditional Expectation

Consider ({2, F,P) a probability space and G C F a sub c-algebra of F.
The conditional expectation IE[F | G] of F € L?(£2,F,P) given G can be

defined as the orthogonal projection of F' on L?(§2, G, P) for the scalar product
(F,G) = E[FG], hence it satisfies

E[G(F -E[F|G))] =0, G e L*2,G,P).
The conditional expectaction has the following properties

a) E[E[F |F] |G =E[F|G]ifgGCF.

b) E[GF | G] = GEI[F | G] if G is G-measurable and sufficiently integrable.
c) E[f(X,Y) | F] = E[f(X,y)]y=y if X, Y are independent and Y is
F-measurable.

Property (a) is referred to as the tower property.
The Jensen inequality states that for ¢ any convex function ¢ : R4 — RY
we have

p(E[F]) < E[p(F)]. (9:3.1)

9.4 Martingales in Discrete Time

Cousider (Fy,)nen an increasing family of sub o-algebra of F. A discrete time
square-integrable martingale with respect to (Fy,)nen is a family (M, )nen of
random variables such that

i) M, € L*(2, F,P), n €N,
i) B[M11 | Fn] = My, n € N.

Then the process
Yo+ +Y)n>o0
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is a martingale with respect to its own filtration defined as
Fo1= {wv Q}

and

fn:U(Yb,...,Yn), 7’7/20,
if and only if the sequence (Y;,)nen satisfies

E[Y, | Fn-1] =0, n e N.
Proposition 9.4.1. Let F € L?(2). Then (E[F | Fn))nen converges to
I a.s.

Proof. This is a consequence of the martingale convergence theorem, cf. e.g.
Theorem 27.1 in [67]. O

9.5 Martingales in Continuous Time

Let (£2, F,P) be a probability space and (F;)cr, a filtration, i.e. an increas-
ing family of sub o-algebras of 7. We assume that (F;):er, is continuous on
the right, i.e.

Fo=()F  teRL

s>t

Definition 9.5.1. A stochastic process (My)ier, such that E[|M,[*] < oo,
t € Ry, is called an Fi-martingale if

E[M,;|F) =M, 0<s<t.

The martingale (M);cr, is said to be square-integrable when E[|M;|?] < oo,
t G R+.

A process (X¢)ier, is said to have independent increments if X; — X, is
independent of (X, : 0<u<s),0<s<t.

Proposition 9.5.2. Every integrable process (Xi)ier, with centered inde-
pendent increments is a martingale with respect to the filtration

Fri=0(X, : u<t), telRy,

it generates.
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9.6 Markov Processes

Let Co(R™) denote the class of continuous functions tending to 0 at infinity.
Recall that f is said to tend to 0 at infinity if for all € > 0 there exists a
compact subset K of R™ such that |f(z)| < e for all z € R" \ K.

Definition 9.6.1. An R"-valued stochastic process, i.e. a family (X¢)icr,
of random wvariables on (£2,F,P), is a Markov process if for all t € Ry the
o-fields

Firi=0(Xs 1 s>1)

and
Fir=0(Xs : 0<s<t).

are conditionally independent given Xi.

This condition can be restated by saying that for all A € F," and B € F; we
have
P(ANB| X) = P(A| X)P(B | X,),

cf. Chung [25]. This definition naturally entails that:

i) (X¢)ier, is adapted with respect to (Fy)ier, , i.e. Xy is Fi-measurable,

t e R+, and

i) X, is conditionally independent of F; given X, for all u > t, i.e.
E[f(X,) | Fi] = E[f(X.) | X¢], 0<t<u,

for any bounded measurable function f on R™.

Processes with independent increments provide simple examples of Markov
processes.
The transition kernel p, ¢ associated to (Xt)t€R+ is defined as

psi(x, A) =P(X, € A| Xs =1x) 0<s<t.
The transition operator (Ps;)o<s<¢ associated to (X;)ier, is defined as
P f () = EB[f (Xy) | X = 2] = - F@psi(x, dy), xR
Letting ps () denote the density of X; — X we have
pesled) = [ paty—o)dy. A€BEY.
and

P f(z) = - fW)ps,e(y — )dy.
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Next we assume that (X;)cr, is time homogeneous, i.e. s ; depends only
on the difference t — s, and we will denote it by p;—s. In this case the family

(Po,t)ter, is denoted by (P;)ier, and defines a transition semigroup associ-
ated to (Xi)ier, , with

Pif(z) =EB[f(Xy) | Xo=12] = . fWpe(z, dy), = €R™

It satisfies the semigroup property

PP f(z) = E[Psf(Xy) | Xo = 2]
= E[E[f(Xt-&-s) ‘ Xs] ‘ Xo = 17”
= E[E[f(Xtts) | Fo] | Xo = «]]
= E[f(Xi+s) | Xo = 1]

Piisf().

9.7 Tensor Products of L? Spaces

Let (X,u) and (Y,v) denote measure spaces. Given f € L?(X,u) and g €
L2(Y,v), the tensor product f®g of f by g is the function in L?(X x Y, u®v)
defined by

(f@g)(z,y) = f(x)g(y).

In particular, the tensor product f,, ® g,, of two functions f,, € L*(X,0)®",
gm € L*(X,0)®™ satisfies

fn ®gm(x17~~~axn,y1w"aym) = fn(xla~~~axn)gm(y1a~~-aym),

(15 s Ty YLy -y Ym) € XT™ Given fi, ..., fn € L3(X, u), the symmetric
tensor product fio---o f, is defined as the symmetrization of f; ® - -+ ® fy,
ie.

(fior-ofu)ltr, ... tn) = 71' Z fl(to(l)) e fn(to(n)), t1, ..., th € X,
oceX,

(9.7.1)
where X, denotes the set of permutations of {1,...,n}. Let now L?(X)°"
denote the subspace of L?(X)®" = L?(X") made of symmetric functions f,
in n variables. As a convention, L?(X)°" is identified to R. From (9.7.1), the
symmetric tensor product can be extended as an associative operation on
L2 (X)on.

The tensor power of order n of L2([0,T],R?%), n € N, d € N*, is

L2([0,T),RH®™ ~ L2([0, T]", (RT)®™).
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For n = 2 we have (R9)®2 = R? @ R? ~ M, 4(R) (the linear space of square
d x d matrices), hence

L2([0,T),RH®? ~ L2([0, T]?, Mg.a(R)).

More generally, the tensor product (R4)®" is isomorphic to R?". The generic
element of L2([0,T],R%)®" is denoted by

F=0" ) g i <ds

with f(-in) € L2([0, T]™).

9.8 Closability of Linear Operators

The notion of closability for operators in normed linear spaces consists in
some minimal hypotheses ensuring that the extension of a densely defined
linear operator is consistently defined.

Definition 9.8.1. A linear operator T : S — H from a normed linear space
S into a normed linear space H is said to be closable on H if for every
sequence (Fy)nen C S such that F,, — 0 and TF,, — U in H, one has
U=0.

The following proposition is proved by the linearity of T.

Proposition 9.8.2. Assume that T is closable. If (Fp,)nen and (Gyp)nen con-
verge to F' € Dom (T') and (T'F,,)nen and (TG )nen converge respectively to
UandV in H, thenU =V.

Proof. Indeed, under the above assumptions, (T'(F,, — Gy))nen converges to
U —V, hence U =V by the closability condition. O

Next we define the domain of a closable operator.

Definition 9.8.3. Given a closable operator T : S — H, let Dom (T') de-
note the space of functionals F for which there exists a sequence (Fy,)nen
converging to F and such that (TF,)nen converges to G € H.

It follows from Proposition 9.8.2 that the extension of T' to Dom (T') is well-
defined if T is closable, as in the following definition.

Definition 9.8.4. Given T : S — H a closable operator and F' € Dom (T),
we let

TF = lim TE,,
where (Fy,)nen denotes any sequence converging to F and such that (T F,)nen
converges in H.
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