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Preface

This monograph is an introduction to some aspects of stochastic analysis in
the framework of normal martingales, in both discrete and continuous time.
The text is mostly self-contained, except for Section 5.7 that requires some
background in geometry, and should be accessible to graduate students and
researchers having already received a basic training in probability. Prerequi-
sites are mostly limited to a knowledge of measure theory and probability,
namely σ-algebras, expectations, and conditional expectations. A short intro-
duction to stochastic calculus for continuous and jump processes is given in
Chapter 2 using normal martingales, whose predictable quadratic variation
is the Lebesgue measure.

There already exists several books devoted to stochastic analysis for con-
tinuous diffusion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63],
[65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular fea-
ture of this text is to simultaneously consider continuous processes and jump
processes in the unified framework of normal martingales.

These notes have grown from several versions of graduate courses given
in the Master in Imaging and Computation at the University of La Rochelle
and in the Master of Mathematics and Applications at the University of
Poitiers, as well as from lectures presented at the universities of Ankara,
Greifswald, Marne la Vallée, Tunis, and Wuhan, at the invitations of
G. Wallet, M. Arnaudon, H. Körezlioǧlu, U. Franz, A. Sulem, H. Ouerdiane,
and L.M. Wu, respectively. The text has also benefited from constructive
remarks from several colleagues and former students, including D. David,
A. Joulin, Y.T. Ma, C. Pintoux, and A. Réveillac. I thank in particular
J.C. Breton for numerous suggestions and corrections.

Hong Kong, Nicolas Privault
May 2009
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Introduction

Stochastic analysis can be viewed as a branch of infinite-dimensional analysis
that stems from a combined use of analytic and probabilistic tools, and
is developed in interaction with stochastic processes. In recent decades it
has turned into a powerful approach to the treatment of numerous theoret-
ical and applied problems ranging from existence and regularity criteria for
densities (Malliavin calculus) to functional and deviation inequalities, math-
ematical finance, anticipative extensions of stochastic calculus.

The basic tools of stochastic analysis consist in a gradient and a divergence
operator which are linked by an integration by parts formula. Such gradient
operators can be defined by finite differences or by infinitesimal shifts of
the paths of a given stochastic process. Whenever possible, the divergence
operator is connected to the stochastic integral with respect to that same
underlying process. In this way, deep connections can be established between
the algebraic and geometric aspects of differentiation and integration by parts
on the one hand, and their probabilistic counterpart on the other hand. Note
that the term “stochastic analysis” is also used with somewhat different sig-
nifications especially in engineering or applied probability; here we refer to
stochastic analysis from a functional analytic point of view.

Let us turn to the contents of this monograph. Chapter 1 starts with an
elementary exposition in a discrete setting in which most of the basic tools
of stochastic analysis can be introduced. The simple setting of the discrete
case still captures many important properties of the continuous-time case
and provides a simple model for its understanding. It also yields non triv-
ial results such as concentration and deviation inequalities, and logarithmic
Sobolev inequalities for Bernoulli measures, as well as hedging formulas for
contingent claims in discrete time financial models. In addition, the results
obtained in the discrete case are directly suitable for computer implemen-
tation. We start by introducing discrete time versions of the gradient and
divergence operators, of chaos expansions, and of the predictable represen-
tation property. We write the discrete time structure equation satisfied by
a sequence (Xn)n∈N of independent Bernoulli random variables defined on
the probability space Ω = {−1, 1}N, we construct the associated discrete
multiple stochastic integrals and prove the chaos representation property for

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 0,
c© Springer-Verlag Berlin Heidelberg 2009
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2 Introduction

discrete time random walks with independent increments. A gradient op-
erator D acting by finite differences is introduced in connection with the
multiple stochastic integrals, and used to state a Clark predictable represen-
tation formula. The divergence operator δ, defined as the adjoint of D, turns
out to be an extension of the discrete-time stochastic integral, and is used to
express the generator of the Ornstein-Uhlenbeck process. The properties of
the associated Ornstein-Uhlenbeck process and semi-group are investigated,
with applications to covariance identities and deviation inequalities under
Bernoulli measures. Covariance identities are stated both from the Clark rep-
resentation formula and using Ornstein-Uhlenbeck semigroups. Logarithmic
Sobolev inequalities are also derived in this framework, with additional ap-
plications to deviation inequalities. Finally we prove an Itô type change of
variable formula in discrete time and apply it, along with the Clark formula,
to option pricing and hedging in the Cox-Ross-Rubinstein discrete-time fi-
nancial model.

In Chapter 2 we turn to the continuous time case and present an ele-
mentary account of continuous time normal martingales. This includes the
construction of associated multiple stochastic integrals In(fn) of symmetric
deterministic functions fn of n variables with respect to a normal martin-
gale, and the derivation of structure equations determined by a predictable
process (φt)t∈R+ . In case (φt)t∈R+ is a deterministic function, this family of
martingales includes Brownian motion (when φ vanishes identically) and the
compensated Poisson process (when φ is a deterministic constant), which will
be considered separately. A basic construction of stochastic integrals and cal-
culus is presented in the framework of normal martingales, with a proof of
the Itô formula. In this chapter, the construction of Brownian motion is done
via a series of Gaussian random variables and its pathwise properties will not
be particularly discussed, as our focus is more on connections with functional
analysis. Similarly, the notions of local martingales and semimartingales are
not within the scope of this introduction.

Chapter 3 contains a presentation of the continuous time gradient and
divergence in an abstract setting. We identify some minimal assumptions to
be satisfied by these operators in order to connect them later on to stochas-
tic integration with respect to a given normal martingale. The links between
the Clark formula, the predictable representation property and the relation
between Skorohod and Itô integrals, as well as covariance identities, are dis-
cussed at this level of generality. This general setting gives rise to applications
such as the determination of the predictable representation of random vari-
ables, and a proof of logarithmic Sobolev inequalities for normal martingales.
Generic examples of operators satisfying the hypotheses of Chapter 2 can be
constructed by addition of a process with vanishing adapted projection to the
gradient operator. Concrete examples of such gradient and divergence oper-
ators will be described in the sequel (Chapters 4, 5, 6, and 7), in particular
in the Wiener and Poisson cases.
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Chapter 4 introduces a first example of a pair of gradient and divergence
operators satisfying the hypotheses of Chapter 3, based on the notion of
multiple stochastic integral In(fn) of a symmetric function fn on R

n
+ with

respect to a normal martingale. Here the gradient operator D is defined by
lowering the degree of multiple stochastic integrals (i.e. as an annihilation
operator), while its adjoint δ is defined by raising that degree (i.e. as a
creation operator). We give particular attention to the class of normal mar-
tingales which can be used to expand any square-integrable random variable
into a series of multiple stochastic integrals. This property, called the chaos
representation property, is stronger than the predictable representation prop-
erty and plays a key role in the representation of functionals as stochastic
integrals. Note that here the words “chaos” and “chaotic” are not taken
in the sense of dynamical systems theory and rather refer to the notion of
chaos introduced by N. Wiener [148]. We also present an application to de-
viation and concentration inequalities in the case of deterministic structure
equations. The family of normal martingales having the chaos representation
property, includes Brownian motion and the compensated Poisson process,
which will be dealt with separately cases in the following sections.

The general results developed in Chapter 3 are detailed in Chapter 5 in
the particular case of Brownian motion on the Wiener space. Here the gradi-
ent operator has the derivation property and the multiple stochastic integrals
can be expressed using Hermite polynomials, cf. Section 5.1. We state the ex-
pression of the Ornstein-Uhlenbeck semi-group and the associated covariance
identities and Gaussian deviation inequalities obtained. A differential calcu-
lus is presented for time changes on Brownian motion, and more generally for
random transformations on the Wiener space, with application to Brownian
motion on Riemannian path space in Section 5.7.

In Chapter 6 we introduce the main tools of stochastic analysis under
Poisson measures on the space of configurations of a metric space X . We
review the connection between Poisson multiple stochastic integrals and
Charlier polynomials, gradient and divergence operators, and the Ornstein-
Uhlenbeck semi-group. In this setting the annihilation operator defined on
multiple Poisson stochastic integrals is a difference operator that can be used
to formulate the Clark predictable representation formula. It also turns out
that the integration by parts formula can be used to characterize Poisson
measure. We also derive some deviation and concentration results for ran-
dom vectors and infinitely divisible random variables.

In Chapter 7 we study a class of local gradient operators on the Poisson
space that can also be used to characterize the Poisson measure. Unlike the
finite difference gradients considered in Chapter 6, these operators do satisfy
the chain rule of derivation. In the case of the standard Poisson process on the
real line, they provide another instance of an integration by parts setting that
fits into the general framework of Chapter 3. In particular this operator can be
used in a Clark predictable representation formula and it is closely connected
to the stochastic integral with respect to the compensated Poisson process



4 Introduction

via its associated divergence operator. The chain rule of derivation, which is
not satisfied by the difference operators considered in Chapter 6, turns out to
be necessary in a number of application such as deviation inequalities, chaos
expansions, or sensitivity analysis.

Chapter 8 is devoted to applications in mathematical finance. We use nor-
mal martingales to extend the classical Black-Scholes theory and to construct
complete market models with jumps. The results of previous chapters are
applied to the pricing and hedging of contingent claims in complete markets
driven by normal martingales. Normal martingales play only a modest role
in the modeling of financial markets. Nevertheless, in addition to Brownian
and Poisson models, they provide examples of complete markets with jumps.

To close this introduction we turn to some informal remarks on the Clark
formula and predictable representation in connection with classical tools of
finite dimensional analysis. This simple example shows how analytic argu-
ments and stochastic calculus can be used in stochastic analysis. The classical
“fundamental theorem of calculus” can be written using entire series as

f(x) =
∞∑

n=0

αnx
n

= α0 +
∞∑

n=1

nαn

∫ x

0

yn−1dy

= f(0) +
∫ x

0

f ′(y)dy,

and commonly relies on the identity

xn = n

∫ x

0

yn−1dy, x ∈ R+. (0.1)

Replacing the monomial xn with the Hermite polynomial Hn(x, t) with pa-
rameter t > 0, we do obtain an analog of (0.1) as

∂

∂x
Hn(x, t) = nHn−1(x, t),

however the argument contained in (0.1) is no longer valid sinceH2n(0, t) �= 0,
n ≥ 1. The question of whether there exists a simple analog of (0.1) for the
Hermite polynomials can be positively answered using stochastic calculus
with respect to Brownian motion (Bt)t∈R+ which provides a way to write
Hn(Bt, t) as a stochastic integral of nHn−1(Bt, t), i.e.

Hn(Bt, t) = n

∫ t

0

Hn−1(Bs, s)dBs. (0.2)
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Consequently Hn(Bt, t) can be written as an n-fold iterated stochastic in-
tegral with respect to Brownian motion (Bt)t∈R+ , which is denoted by
In(1[0,t]n). This allows us to write down the following expansion of a func-
tion f depending on the parameter t into a series of Hermite polynomials, as
follows:

f(Bt, t) =
∞∑

n=0

βnHn(Bt, t)

= β0 +
∞∑

n=1

nβn

∫ t

0

Hn−1(Bs, s)dBs,

βn ∈ R+, n ∈ N. Using the relation H ′n(x, t) = nHn−1(x, t), this series can
be written as

f(Bt, t) = IE[f(Bt, t)] +
∫ t

0

IE
[
∂f

∂x
(Bt, t)

∣∣∣Fs

]
dBs, (0.3)

since, by the martingale property of (0.2), Hn−1(Bs, s) coincides with the
conditional expectation IE[Hn−1(Bt, t) | Fs]; s < t, where (Ft)t∈R+ is the
filtration generated by (Bt)t∈R+ .

It turns out that the above argument can be extended to general func-
tionals of the Brownian path (Bt)t∈R+ to prove that the square integrable
functionals of (Bt)t∈R+ have the following expansion in series of multiple
stochastic integrals In(fn) of symmetric functions fn ∈ L2(Rn

+):

F = IE[F ] +
∞∑

n=1

In(fn)

= IE[F ] +
∞∑

n=1

n

∫ ∞

0

In−1(fn(∗, t)1{∗≤t})dBt.

Using again stochastic calculus in a way similar to the above argument will
show that this relation can be written under the form

F = IE[F ] +
∫ ∞

0

IE[DtF | Ft]dBt, (0.4)

where D is a gradient acting on Brownian functionals and (Ft)t∈R+ is the
filtration generated by (Bt)t∈R+ . Relation (0.4) is a generalization of (0.3) to
arbitrary dimensions which does not require the use of Hermite polynomials,
and can be adapted to other processes such as the compensated Poisson
process, and more generally to the larger class of normal martingales.



6 Introduction

Classical Taylor expansions for functions of one or several variables can
also be interpreted in a stochastic analysis framework, in relation to the
explicit determination of chaos expansions of random functionals. Consider
for instance the classical formula

an =
∂nf

∂xn
(x)|x=0

for the coefficients in the entire series

f(x) =
∞∑

n=0

an
xn

n!
.

In the general setting of normal martingales having the chaos represen-
tation property, one can similarly compute the function fn in the develop-
ment of

F =
∞∑

n=0

1
n!
In(fn)

as
fn(t1, . . . , tn) = IE[Dt1 · · ·DtnF ], a.e. t1, . . . , tn ∈ R+, (0.5)

cf. [66], [138]. This identity holds in particular for Brownian motion and the
compensated Poisson process. However, the probabilistic interpretation of
DtF can be difficult to find except in the Wiener and Poisson cases, i.e. in
the case of deterministic structure equations.

Our aim in the next chapters will be in particular to investigate to which
extent these techniques remain valid in the general framework of normal
martingales and other processes with jumps.



Chapter 1

The Discrete Time Case

In this chapter we introduce the tools of stochastic analysis in the simple
framework of discrete time random walks. Our presentation relies on the
use of finite difference gradient and divergence operators which are defined
along with single and multiple stochastic integrals. The main applications of
stochastic analysis to be considered in the following chapters, including func-
tional inequalities and mathematical finance, are discussed in this elementary
setting. Some technical difficulties involving measurability and integrability
conditions, that are typical of the continuous-time case, are absent in the
discrete time case.

1.1 Normal Martingales

Consider a sequence (Yk)k∈N of (not necessarily independent) random vari-
ables on a probability space (Ω,F ,P). Let (Fn)n≥−1 denote the filtration
generated by (Yn)n∈N, i.e.

F−1 = {∅, Ω},

and
Fn = σ(Y0, . . . , Yn), n ≥ 0.

Recall that a random variable F is said to be Fn-measurable if it can be
written as a function

F = fn(Y0, . . . , Yn)

of Y0, . . . , Yn, where fn : R
n+1 → R.

Assumption 1.1.1. We make the following assumptions on the sequence
(Yn)n∈N:

a) it is conditionally centered:

E[Yn | Fn−1] = 0, n ≥ 0, (1.1.1)

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 1,
c© Springer-Verlag Berlin Heidelberg 2009
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8 1 The Discrete Time Case

b) its conditional quadratic variation satisfies:

E[Y 2
n | Fn−1] = 1, n ≥ 0.

Condition (1.1.1) implies that the process (Y0 + · · · + Yn)n≥0 is an Fn-
martingale, cf. Section 9.4 in the Appendix. More precisely, the sequence
(Yn)n∈N and the process (Y0 + · · · + Yn)n≥0 can be viewed respectively as a
(correlated) noise and as a normal martingale in discrete time.

1.2 Stochastic Integrals

In this section we construct the discrete stochastic integral of predictable
square-summable processes with respect to a discrete-time normal martingale.

Definition 1.2.1. Let (uk)k∈N be a uniformly bounded sequence of random
variables with finite support in N, i.e. there exists N ≥ 0 such that uk = 0
for all k ≥ N . The stochastic integral J(u) of (un)n∈N is defined as

J(u) =
∞∑

k=0

ukYk.

The next proposition states a version of the Itô isometry in discrete time. A
sequence (un)n∈N of random variables is said to be Fn-predictable if un is
Fn−1-measurable for all n ∈ N, in particular u0 is constant in this case.

Proposition 1.2.2. The stochastic integral operator J(u) extends to square-
integrable predictable processes (un)n∈N ∈ L2(Ω × N) via the (conditional)
isometry formula

E[|J(1[n,∞)u)|2| | Fn−1] = E[‖1[n,∞)u‖2
�2(N) | Fn−1], n ∈ N. (1.2.1)

Proof. Let (un)n∈N and (vn)n∈N be bounded predictable processes with finite
support in N. The product ukYkvl, 0 ≤ k < l, is Fl−1-measurable, and ukYlvl

is Fk−1-measurable, 0 ≤ l < k. Hence

E

[ ∞∑

k=n

ukYk

∞∑

l=n

vlYl

∣∣∣Fn−1

]
= E

⎡

⎣
∞∑

k,l=n

ukYkvlYl

∣∣∣Fn−1

⎤

⎦

= E

⎡

⎣
∞∑

k=n

ukvkY
2
k +

∑

n≤k<l

ukYkvlYl +
∑

n≤l<k

ukYkvlYl

∣∣∣Fn−1

⎤

⎦
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=
∞∑

k=n

E[E[ukvkY
2
k | Fk−1] | Fn−1] +

∑

n≤k<l

E[E[ukYkvlYl | Fl−1] | Fn−1]

+
∑

n≤l<k

E[E[ukYkvlYl | Fk−1] | Fn−1]

=
∞∑

k=0

E[ukvkE[Y 2
k | Fk−1] | Fn−1] + 2

∑

n≤k<l

E[ukYkvlE[Yl | Fl−1] | Fn−1]

=
∞∑

k=n

E[ukvk | Fn−1]

= E

[ ∞∑

k=n

ukvk

∣∣∣Fn−1

]
.

This proves the isometry property (1.2.1) for J . The extension to L2(Ω×N) is
proved using the following Cauchy sequence argument. Consider a sequence of
bounded predictable processes with finite support converging to u in L2(Ω×
N), for example the sequence (un)n∈N defined as

un = (un
k )k∈N = (uk1{0≤k≤n}1{|uk|≤n})k∈N, n ∈ N.

Then the sequence (J(un))n∈N is Cauchy and converges in L2(Ω), hence we
may define

J(u) := lim
k→∞

J(uk).

From the isometry property (1.2.1) applied with n = 0, the limit is clearly
independent of the choice of the approximating sequence (uk)k∈N. �
Note that by polarization, (1.2.1) can also be written as

E[J(1[n,∞)u)J(1[n,∞)v)|Fn−1] = E[〈1[n,∞)u,1[n,∞)v〉�2(N) | Fn−1], n ∈ N,

and that for n = 0 we get

E
[
J(u)J(v)] = E[〈u, v〉�2(N)

]
, (1.2.2)

and
E[|J(u)|2] = E

[
‖u‖2

�2(N)

]
, (1.2.3)

for all square-integrable predictable processes u = (uk)k∈N and v = (vk)k∈N.

Proposition 1.2.3. Let (uk)k∈N ∈L2(Ω × N) be a predictable square-
integrable process. We have

E[J(u) | Fk] = J(u1[0,k]), k ∈ N.
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Proof. In case (uk)k∈N has finite support in N it suffices to note that

E[J(u) | Fk] = E

[
k∑

i=0

uiYi

∣∣∣Fk

]
+

∞∑

i=k+1

E [uiYi | Fk]

=
k∑

i=0

uiYi +
∞∑

i=k+1

E [E [uiYi | Fi−1] | Fk]

=
k∑

i=0

uiYi +
∞∑

i=k+1

E [uiE [Yi | Fi−1] | Fk]

=
k∑

i=0

uiYi

= J(u1[0,k]).

The formula extends to the general case by linearity and density, using the
continuity of the conditional expectation on L2 and the sequence (un)n∈N

defined as un = (un
k )k∈N = (uk1{0≤k≤n})k∈N, n ∈ N, i.e.

E

[(
J(u1[0,k]) − E[J(u) | Fk]

)2] = lim
n→∞E

[(
J(un1[0,k]) − E[J(u) | Fk]

)2]

= lim
n→∞E

[
(E [J(un) − J(u) | Fk])2

]

≤ lim
n→∞E

[
E

[
(J(un) − J(u))2

∣∣∣Fk

]]

= lim
n→∞E

[
(J(un) − J(u))2

]

= 0,

by (1.2.3). �

Corollary 1.2.4. The indefinite stochastic integral (J(u1[0,k]))k∈N is a dis-
crete time martingale with respect to (Fn)n≥−1.

Proof. We have

E[J(u1[0,k+1]) | Fk] = E[E[J(u1[0,k+1]) | Fk+1 | Fk]

= E[E[J(u) | Fk+1 | Fk]

= E[J(u) | Fk]

= J(u1[0,k]).

�
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1.3 Multiple Stochastic Integrals

The role of multiple stochastic integrals in the orthogonal expansion of
a random variable is similar to that of polynomials in the series expan-
sion of a function of a real variable. In some situations, multiple stochastic
integrals can be expressed using polynomials, such as in the symmetric case
pn = qn = 1/2, n ∈ N, in which the Krawtchouk polynomials are used, see
Relation (1.5.2) below.

Definition 1.3.1. Let 	2(N)◦n denote the subspace of 	2(N)⊗n = 	2(Nn)
made of functions fn that are symmetric in n variables, i.e. such that for
every permutation σ of {1, . . . , n},

fn(kσ(1), . . . , kσ(n)) = fn(k1, . . . , kn), k1, . . . , kn ∈ N.

Given f1 ∈ 	2(N) we let

J1(f1) = J(f1) =
∞∑

k=0

f1(k)Yk.

As a convention we identify 	2(N0) to R and let J0(f0) = f0, f0 ∈ R. Let

Δn = {(k1, . . . , kn) ∈ N
n : ki �= kj , 1 ≤ i < j ≤ n}, n ≥ 1.

The following proposition gives the definition of multiple stochastic integrals
by iterated stochastic integration of predictable processes in the sense of
Proposition 1.2.2.

Proposition 1.3.2. The multiple stochastic integral Jn(fn) of fn ∈ 	2(N)◦n,
n ≥ 1, is defined as

Jn(fn) =
∑

(i1,...,in)∈Δn

fn(i1, . . . , in)Yi1 · · ·Yin .

It satisfies the recurrence relation

Jn(fn) = n

∞∑

k=1

YkJn−1(fn(∗, k)1[0,k−1]n−1(∗)) (1.3.1)

and the isometry formula

E[Jn(fn)Jm(gm)] =
{
n!〈1Δnfn, gm〉�2(N)⊗n if n = m,

0 if n �= m.
(1.3.2)
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Proof. Note that we have

Jn(fn) = n!
∑

0≤i1<···<in

fn(i1, . . . , in)Yi1 · · ·Yin

= n!
∞∑

in=0

∑

0≤in−1<in

· · ·
∑

0≤i1<i2

fn(i1, . . . , in)Yi1 · · ·Yin . (1.3.3)

Note that since 0 ≤ i1 < i2 < · · · < in and 0 ≤ j1 < j2 < · · · < jn we have

E[Yi1 · · ·YinYj1 · · ·Yjn ] = 1{i1=j1,...,in=jn}.

Hence

E[Jn(fn)Jn(gn)]

= (n!)2E

⎡

⎣
∑

0≤i1<···<in

fn(i1, . . . , in)Yi1 · · ·Yin

∑

0≤j1<···<jn

gn(j1, . . . , jn)Yj1 · · · Yjn

⎤

⎦

= (n!)2
∑

0≤i1<···<in, 0≤j1<···<jn

fn(i1, . . . , in)gn(j1, . . . , jn)E[Yi1 · · ·YinYj1 · · · Yjn ]

= (n!)2
∑

0≤i1<···<in

fn(i1, . . . , in)gn(i1, . . . , in)

= n!
∑

(i1,...,in)∈Δn

fn(i1, . . . , in)gn(i1, . . . , in)

= n!〈1Δnfn, gm〉�2(N)⊗n .

When n < m and (i1, . . . , in) ∈ Δn and (j1, . . . , jm) ∈ Δm are two sets of
indices, there necessarily exists k ∈ {1, . . . ,m} such that jk /∈ {i1, . . . , in},
hence

E[Yi1 · · ·YinYj1 · · ·Yjm ] = 0,

and this implies the orthogonality of Jn(fn) and Jm(gm). The recurrence
relation (1.3.1) is a direct consequence of (1.3.3). The isometry property
(1.3.2) of Jn also follows by induction from (1.2.1) and the recurrence relation.

�
If fn ∈ 	2(Nn) is not symmetric we let Jn(fn) = Jn(f̃n), where f̃n is the
symmetrization of fn, defined as

f̃n(i1, . . . , in) =
1
n!

∑

σ∈Σn

f(iσ(1), . . . , iσn), i1, . . . , in ∈ N
n,

and Σn is the set of all permutations of {1, . . . , n}.
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In particular, if (k1, . . . , kn) ∈ Δn, the symmetrization of 1{(k1,...,kn)} in n
variables is given by

1̃{(k1,...,kn)}(i1, . . . , in) =
1
n!

1{{i1,...,in}={k1,...,kn}}, i1, . . . , in ∈ N,

and
Jn(1̃{(k1,...,kn)}) = Yk1 · · ·Ykn .

Lemma 1.3.3. For all n ≥ 1 we have

E[Jn(fn) | Fk] = Jn(fn1[0,k]n),

k ∈ N, fn ∈ 	2(N)◦n.

Proof. This lemma can be proved in two ways, either as a consequence of
Proposition 1.2.3 and Proposition 1.3.2 or via the following direct argument,
noting that for all m = 0, . . . , n and gm ∈ 	2(N)◦m we have:

E[(Jn(fn) − Jn(fn1[0,k]n))Jm(gm1[0,k]m)]
= 1{n=m}n!〈fn(1 − 1[0,k]n), gm1[0,k]m〉�2(Nn)

= 0,

hence Jn(fn1[0,k]n) ∈ L2(Ω,Fk), and Jn(fn)− Jn(fn1[0,k]n) is orthogonal to
L2(Ω,Fk). �
In other terms we have

E[Jn(fn)] = 0, fn ∈ 	2(N)◦n, n ≥ 1,

the process (Jn(fn1[0,k]n))k∈N is a discrete-time martingale, and Jn(fn) is
Fk-measurable if and only if

fn1[0,k]n = fn, 0 ≤ k ≤ n.

1.4 Structure Equations

Assume now that the sequence (Yn)n∈N satisfies the discrete structure
equation:

Y 2
n = 1 + ϕnYn, n ∈ N, (1.4.1)

where (ϕn)n∈N is an Fn-predictable process. Condition (1.1.1) implies that

E[Y 2
n | Fn−1] = 1, n ∈ N,
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hence the hypotheses of the preceding sections are satisfied. Since (1.4.1)
is a second order equation, there exists an Fn-adapted process (Xn)n∈N of
Bernoulli {−1, 1}-valued random variables such that

Yn =
ϕn

2
+Xn

√
1 +
(ϕn

2

)2
, n ∈ N. (1.4.2)

Consider the conditional probabilities

pn = P(Xn = 1 | Fn−1) and qn = P(Xn = −1 | Fn−1), n ∈ N.
(1.4.3)

From the relation E[Yn | Fn−1] = 0, rewritten as

pn

(
ϕn

2
+

√
1 +
(ϕn

2

)2
)

+ qn

(
ϕn

2
−
√

1 +
(ϕn

2

)2
)

= 0, n ∈ N,

we get

pn =
1
2

(
1 − ϕn√

4 + ϕ2
n

)
, qn =

1
2

(
1 +

ϕn√
4 + ϕ2

n

)
, (1.4.4)

and

ϕn =
√
qn
pn

−
√
pn

qn
=
qn − pn√
pnqn

, n ∈ N,

hence

Yn = 1{Xn=1}

√
qn
pn

− 1{Xn=−1}

√
pn

qn
, n ∈ N. (1.4.5)

Letting

Zn =
Xn + 1

2
∈ {0, 1}, n ∈ N,

we also have the relations

Yn =
qn − pn +Xn

2
√
pnqn

=
Zn − pn√
pnqn

, n ∈ N, (1.4.6)

which yield

Fn = σ(X0, . . . , Xn) = σ(Z0, . . . , Zn), n ∈ N.

Remark 1.4.1. In particular, one can take Ω = {−1, 1}N and construct
the Bernoulli process (Xn)n∈N as the sequence of canonical projections on
Ω = {−1, 1}N under a countable product P of Bernoulli measures on {−1, 1}.
In this case the sequence (Xn)n∈N can be viewed as the dyadic expansion of
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X(ω) ∈ [0, 1] defined as:

X(ω) =
∞∑

n=0

1
2n+1

Xn(ω).

In the symmetric case pk = qk = 1/2, k ∈ N, the image measure of P by
the mapping ω → X(ω) is the Lebesgue measure on [0, 1], see [139] for the
non-symmetric case.

1.5 Chaos Representation

From now on we assume that the sequence (pk)k∈N defined in (1.4.3) is
deterministic, which implies that the random variables (Xn)n∈N are in-
dependent. Precisely, Xn will be constructed as the canonical projection
Xn : Ω → {−1, 1} on Ω = {−1, 1}N under the measure P given on cylin-
der sets by

P({ε0, . . . , εn} × {−1, 1}N) =
n∏

k=0

p
(1+εk)/2
k q

(1−εk)/2
k ,

{ε0, . . . , εn} ∈ {−1, 1}n+1. The sequence (Yk)k∈N can be constructed as a
family of independent random variables given by

Yn =
ϕn

2
+Xn

√
1 +
(ϕn

2

)2
, n ∈ N,

where the sequence (ϕn)n∈N is deterministic. In this case, all spaces
Lr(Ω,Fn), r ≥ 1, have finite dimension 2n+1, with basis

{
1{Y0=ε0,...,Yn=εn} : (ε0, . . . , εn) ∈

n∏

k=0

{√
qk
pk
,−
√
pk

qk

}}

=

{
1{X0=ε0,...,Xn=εn} : (ε0, . . . , εn) ∈

n∏

k=0

{−1, 1}
}
.

An orthogonal basis of Lr(Ω,Fn) is given by

{
Yk1 · · ·Ykl

= Jl(1̃{(k1,...,kl)}) : 0 ≤ k1 < · · · < kl ≤ n, l = 0, . . . , n+ 1
}
.
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Let

Sn =
n∑

k=0

1 +Xk

2
(1.5.1)

=
n∑

k=0

Zk, n ∈ N,

denote the random walk associated to (Xk)k∈N. If pk = p, k ∈ N, then

Jn(1◦n[0,N ]) = Kn(SN ;N + 1, p) (1.5.2)

coincides with the Krawtchouk polynomial Kn(·;N + 1, p) of order n and
parameter (N + 1, p), evaluated at SN , cf. Proposition 4 of [115].
Let now H0 = R and let Hn denote the subspace of L2(Ω) made of integrals
of order n ≥ 1, and called chaos of order n:

Hn = {Jn(fn) : fn ∈ 	2(N)◦n}.

The space of Fn-measurable random variables is denoted by L0(Ω,Fn).

Lemma 1.5.1. For all n ∈ N we have

L0(Ω,Fn) = (H0 ⊕ · · · ⊕ Hn+1)
⋂
L0(Ω,Fn). (1.5.3)

Proof. It suffices to note that Hl ∩ L0(Ω,Fn) has dimension
(
n+1

l

)
, 1 ≤ l ≤

n+ 1. More precisely it is generated by the orthonormal basis

{
Yk1 · · ·Ykl

= Jl(1̃{(k1,...,kl)}) : 0 ≤ k1 < · · · < kl ≤ n
}
,

since any element F of Hl ∩ L0(Ω,Fn) can be written as F = Jl(fl1[0,n]l).
Hence L0(Ω,Fn) and (H0 ⊕ · · · ⊕ Hn+1)

⋂
L0(Ω,Fn) have same dimension

2n+1 =
n+1∑

k=0

(
n+ 1
k

)
, and this implies (1.5.3) since

L0(Ω,Fn) ⊃ (H0 ⊕ · · · ⊕ Hn+1)
⋂
L0(Ω,Fn).

�
As a consequence of Lemma 1.5.1 we have

L0(Ω,Fn) ⊂ H0 ⊕ · · · ⊕ Hn+1.

Alternatively, Lemma 1.5.1 can be proved by noting that

Jn(fn1[0,N ]n) = 0, n > N + 1, fn ∈ 	2(N)◦n,
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and as a consequence, any F ∈ L0(Ω,FN ) can be expressed as

F = E[F ] +
N+1∑

n=1

Jn(fn1[0,N ]n).

Definition 1.5.2. Let S denote the linear space spanned by multiple stochas-
tic integrals, i.e.

S = Vect

{ ∞⋃

n=0

Hn

}
(1.5.4)

=

{
n∑

k=0

Jk(fk) : fk ∈ 	2(N)◦k, k = 0, . . . , n, n ∈ N

}
.

The completion of S in L2(Ω) is denoted by the direct sum

∞⊕

n=0

Hn.

The next result is the chaos representation property for Bernoulli processes,
which is analogous to the Walsh decomposition, cf. [78]. Here this property is
obtained under the assumption that the sequence (Xn)n∈N is made of inde-
pendent random variables since (pk)k∈N is deterministic, which corresponds
to the setting of Proposition 4 in [38]. See [38] and Proposition 5 therein for
other instances of the chaos representation property without this indepen-
dence assumption.

Proposition 1.5.3. We have the identity

L2(Ω) =
∞⊕

n=0

Hn.

Proof. It suffices to show that S is dense in L2(Ω). Let F be a bounded
random variable. Relation (1.5.3) of Lemma 1.5.1 shows that E[F | Fn] ∈ S.
The martingale convergence theorem, cf. e.g. Theorem 27.1 in [67], implies
that (E[F | Fn])n∈N converges to F a.s., hence every bounded F is the L2(Ω)-
limit of a sequence in S. If F ∈ L2(Ω) is not bounded, F is the limit in L2(Ω)
of the sequence (1{|F |≤n}F )n∈N of bounded random variables. �
As a consequence of Proposition 1.5.3, any F ∈ L2(Ω,P) has a unique de-
composition

F = E[F ] +
∞∑

n=1

Jn(fn), fn ∈ 	2(N)◦n, n ∈ N,
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as a series of multiple stochastic integrals. Note also that the statement of
Lemma 1.5.1 is sufficient for the chaos representation property to hold.

1.6 Gradient Operator

We start by defining the operator D on the space S of finite sums of multiple
stochastic integrals, which is dense in in L2(Ω) by Proposition 1.5.3.

Definition 1.6.1. We densely define the linear gradient operator

D : S −→ L2(Ω × N)

by
DkJn(fn) = nJn−1(fn(∗, k)1Δn(∗, k)),

k ∈ N, fn ∈ 	2(N)◦n, n ∈ N.

Note that for all k1, . . . , kn−1, k ∈ N, we have

1Δn(k1, . . . , kn−1, k) = 1{k/∈(k1,...,kn−1)}1Δn−1(k1, . . . , kn−1),

hence we can write

DkJn(fn) = nJn−1(fn(∗, k)1{k/∈∗}), k ∈ N,

where in the above relation, “∗” denotes the first k−1 variables (k1, . . . , kn−1)
of fn(k1, . . . , kn−1, k). We also have DkF = 0 whenever F ∈ S is Fk−1-
measurable.
On the other hand, Dk is a continuous operator on the chaos Hn since

‖DkJn(fn)‖2
L2(Ω) = n2‖Jn−1(fn(∗, k))‖2

L2(Ω) (1.6.1)

= nn!‖fn(∗, k)‖2
�2(N⊗(n−1)), fn ∈ 	2(N⊗n), k ∈ N.

The following result gives the probabilistic interpretation of Dk as a finite
difference operator. Given

ω = (ω0, ω1, . . .) ∈ {−1, 1}N,

let
ωk

+ = (ω0, ω1, . . . , ωk−1,+1, ωk+1, . . .)

and
ωk
− = (ω0, ω1, . . . , ωk−1,−1, ωk+1, . . .).
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Proposition 1.6.2. We have for any F ∈ S:

DkF (ω) =
√
pkqk(F (ωk

+) − F (ωk
−)), k ∈ N. (1.6.2)

Proof. We start by proving the above statement for an Fn-measurable F ∈ S.
Since L0(Ω,Fn) is finite dimensional it suffices to consider

F = Yk1 · · ·Ykl
= f(X0, . . . , Xkl

),

with from (1.4.6):

f(x0, . . . , xkl
) =

1
2l

l∏

i=1

qki − pki + xki√
pkiqki

.

First we note that from (1.5.3) we have for (k1, . . . , kn) ∈ Δn:

Dk (Yk1 · · ·Ykn) = DkJn(1̃{(k1,...,kn)})

= nJn−1(1̃{(k1,...,kn)}(∗, k))

=
1

(n− 1)!

n∑

i=1

1{ki}(k)
∑

(i1,...,in−1)∈Δn−1

1̃{{i1,...,in−1}={k1,...,ki−1,ki+1,...,kn}}

=
n∑

i=1

1{ki}(k)Jn−1(1̃{(k1,...,ki−1,ki+1,...,kn)})

= 1{k1,...,kn}(k)
n∏

i=1
ki �=k

Yki . (1.6.3)

If k /∈ {k1, . . . , kl} we clearly have F (ωk
+) = F (ωk

−) = F (ω), hence

√
pkqk(F (ωk

+) − F (ωk
−)) = 0 = DkF (ω).

On the other hand if k ∈ {k1, . . . , kl} we have

F (ωk
+) =

√
qk
pk

l∏

i=1
ki �=k

qki − pki + ωki

2√pkiqki

,

F (ωk
−) = −

√
pk

qk

l∏

i=1
ki �=k

qki − pki + ωki

2√pkiqki

,
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hence from (1.6.3) we get

√
pkqk(F (ωk

+) − F (ωk
−)) =

1
2l−1

l∏

i=1
ki �=k

qki − pki + ωki√
pkiqki

=
l∏

i=1
ki �=k

Yki(ω)

= Dk (Yk1 · · ·Ykl
) (ω)

= DkF (ω).

In the general case, Jl(fl) is the L2-limit of the sequence E[Jl(fl) | Fn] =
Jl(fl1[0,n]l) as n goes to infinity, and since from (1.6.1) the operator Dk is
continuous on all chaoses Hn, n ≥ 1, we have

DkF = lim
n→∞DkE[F | Fn]

=
√
pkqk lim

n→∞(E[F | Fn](ωk
+) − E[F | Fn](ωk

−))

=
√
pkqk(F (ωk

+) − F (ωk
−)), k ∈ N.

�
The next property follows immediately from Proposition 1.6.2.

Corollary 1.6.3. A random variable F : Ω → R is Fn-measurable if and
only if

DkF = 0

for all k > n.

If F has the form F = f(X0, . . . , Xn), we may also write

DkF =
√
pkqk(F+

k − F−k ), k ∈ N,

with
F+

k = f(X0, . . . , Xk−1,+1, Xk+1, . . . , Xn),

and
F−k = f(X0, . . . , Xk−1,−1, Xk+1, . . . , Xn).

The gradient D can also be expressed as

DkF (S·) =
√
pkqk
(
F
(
S· + 1{Xk=−1}1{k≤·}

)
− F
(
S· − 1{Xk=1}1{k≤·}

))
,

where F (S·) is an informal notation for the random variable F estimated on
a given path of (Sn)n∈N defined in (1.5.1) and S· + 1{Xk=∓1}1{k≤·} denotes
the path of (Sn)n∈N perturbed by forcing Xk to be equal to ±1.
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We will also use the gradient ∇k defined as

∇kF = Xk (f(X0, . . . , Xk−1,−1, Xk+1, . . . , Xn)

− f(X0, . . . , Xk−1, 1, Xk+1, . . . , Xn)) ,

k ∈ N, with the relation

Dk = −Xk
√
pkqk∇k, k ∈ N,

hence ∇kF coincides with DkF after squaring and multiplication by pkqk.
From now on, Dk denotes the finite difference operator which is extended to
any F : Ω → R using Relation (1.6.2).
The L2 domain of D, denoted Dom (D), is naturally defined as the space of
functionals F ∈ L2(Ω) such that

E

[
‖DF‖2

�2(N)

]
<∞,

or equivalently by (1.6.1),

∞∑

n=1

nn!‖fn‖2
�2(Nn) <∞,

if F =
∞∑

n=0

Jn(fn).

The following is the product rule for the operator D.

Proposition 1.6.4. Let F,G : Ω → R. We have

Dk(FG) = FDkG+GDkF − Xk√
pkqk

DkFDkG, k ∈ N.

Proof. Let F k
+(ω) = F (ωk

+), F k
−(ω) = F (ωk

−), k ≥ 0. We have

Dk(FG) =
√
pkqk(F k

+G
k
+ − F k

−G
k
−)

= 1{Xk=−1}
√
pkqk
(
F (Gk

+ −G)+G(F k
+ − F )+ (F k

+ − F )(Gk
+ −G)

)

+1{Xk=1}
√
pkqk
(
F (G−Gk

−)+G(F − F k
−)− (F − F k

−)(G−Gk
−)
)

= 1{Xk=−1}

(
FDkG+GDkF +

1
√
pkqk

DkFDkG

)

+1{Xk=1}

(
FDkG+GDkF − 1

√
pkqk

DkFDkG

)
.

�
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1.7 Clark Formula and Predictable Representation

In this section we prove a predictable representation formula for the func-
tionals of (Sn)n≥0 defined in (1.5.1).

Proposition 1.7.1. For all F ∈ S we have

F = E[F ] +
∞∑

k=0

E[DkF | Fk−1]Yk (1.7.1)

= E[F ] +
∞∑

k=0

YkDkE[F | Fk].

Proof. The formula is obviously true for F = J0(f0). Given n ≥ 1, as a
consequence of Proposition 1.3.2 above and Lemma 1.3.3 we have:

Jn(fn) = n

∞∑

k=0

Jn−1(fn(∗, k)1[0,k−1]n−1(∗))Yk

= n
∞∑

k=0

Jn−1(fn(∗, k)1Δn(∗, k)1[0,k−1]n−1(∗))Yk

= n

∞∑

k=0

E[Jn−1(fn(∗, k)1Δn(∗, k)) | Fk−1]Yk

=
∞∑

k=0

E[DkJn(fn) | Fk−1]Yk,

which yields (1.7.1) for F = Jn(fn), since E[Jn(fn)] = 0. By linearity the
formula is established for F ∈ S.
For the second identity we use the relation

E[DkF | Fk−1] = DkE[F | Fk]

which clearly holds since DkF is independent of Xk, k ∈ N. �
Although the operator D is unbounded we have the following result, which
states the boundedness of the operator that maps a random variable to the
unique process involved in its predictable representation.

Lemma 1.7.2. The operator

L2(Ω) −→ L2(Ω × N)
F → (E[DkF | Fk−1])k∈N

is bounded with norm equal to one.
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Proof. Let F ∈ S. From Relation (1.7.1) and the isometry formula (1.2.2)
for the stochastic integral operator J we get

‖E[D·F | F·−1]‖2
L2(Ω×N) = ‖F − E[F ]‖2

L2(Ω) (1.7.2)

≤ ‖F − E[F ]‖2
L2(Ω) + (E[F ])2

= ‖F‖2
L2(Ω),

with equality in case F = J1(f1). �
As a consequence of Lemma 1.7.2 we have the following corollary.

Corollary 1.7.3. The Clark formula of Proposition 1.7.1 extends to any
F ∈ L2(Ω).

Proof. Since F → E[D·F | F·−1] is bounded from Lemma 1.7.2, the Clark
formula extends to F ∈ L2(Ω) by a standard Cauchy sequence argument.

�
Let us give a first elementary application of the above construction to the
proof of a Poincaré inequality on Bernoulli space. Using (1.2.3) we have

Var (F ) = E[|F − E[F ]|2]

= E

⎡

⎣
( ∞∑

k=0

E[DkF | Fk−1]Yk

)2
⎤

⎦

= E

[ ∞∑

k=0

(E[DkF | Fk−1])2
]

≤ E

[ ∞∑

k=0

E[|DkF |2 | Fk−1]

]

= E

[ ∞∑

k=0

|DkF |2
]
,

hence
Var (F ) ≤ ‖DF‖2

L2(Ω×N).

More generally the Clark formula implies the following.

Corollary 1.7.4. Let a ∈ N and F ∈ L2(Ω). We have

F = E[F | Fa] +
∞∑

k=a+1

E[DkF | Fk−1]Yk, (1.7.3)
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and

E[F 2] = E[(E[F | Fa])2] + E

[ ∞∑

k=a+1

(E[DkF | Fk−1])2
]
. (1.7.4)

Proof. From Proposition 1.2.3 and the Clark formula (1.7.1) of Proposi-
tion 1.7.1 we have

E[F | Fa] = E[F ] +
a∑

k=0

E[DkF | Fk−1]Yk,

which implies (1.7.3). Relation (1.7.4) is an immediate consequence of (1.7.3)
and the isometry property of J . �
As an application of the Clark formula of Corollary 1.7.4 we obtain the fol-
lowing predictable representation property for discrete-time martingales.

Proposition 1.7.5. Let (Mn)n∈N be a martingale in L2(Ω) with respect to
(Fn)n∈N. There exists a predictable process (uk)k∈N locally in L2(Ω×N), (i.e.
u(·)1[0,N ](·) ∈ L2(Ω × N) for all N > 0) such that

Mn = M−1 +
n∑

k=0

ukYk, n ∈ N. (1.7.5)

Proof. Let k ≥ 1. From Corollaries 1.6.3 and 1.7.4 we have:

Mk = E[Mk | Fk−1] + E[DkMk | Fk−1]Yk

= Mk−1 + E[DkMk | Fk−1]Yk,

hence it suffices to let

uk = E[DkMk | Fk−1], k ≥ 0,

to obtain

Mn = M−1 +
n∑

k=0

Mk −Mk−1 = M−1 +
n∑

k=0

ukYk.

�

1.8 Divergence Operator

The divergence operator δ is introduced as the adjoint of D. Let U ⊂ L2(Ω×
N) be the space of processes defined as

U =

{
n∑

k=0

Jk(fk+1(∗, ·)), fk+1 ∈ 	2(N)◦k ⊗ 	2(N), k = 0, . . . , n, n ∈ N

}
.
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We refer to Section 9.7 in the appendix for the definition of the tensor product
	2(N)◦k ⊗ 	2(N), k ≥ 0.

Definition 1.8.1. Let δ : U → L2(Ω) be the linear mapping defined on U as

δ(u) = δ(Jn(fn+1(∗, ·))) = Jn+1(f̃n+1), fn+1 ∈ 	2(N)◦n ⊗ 	2(N),

for (uk)k∈N of the form

uk = Jn(fn+1(∗, k)), k ∈ N,

where f̃n+1 denotes the symmetrization of fn+1 in n+ 1 variables, i.e.

f̃n+1(k1, . . . , kn+1) =
1

n+ 1

n+1∑

i=1

fn+1(k1, . . . , kk−1, kk+1, . . . , kn+1, ki).

From Proposition 1.5.3, S is dense in L2(Ω), hence U is dense in L2(Ω×N).

Proposition 1.8.2. The operator δ is adjoint to D:

E[〈DF, u〉�2(N)] = E[Fδ(u)], F ∈ S, u ∈ U .

Proof. We consider F = Jn(fn) and uk = Jm(gm+1(∗, k)), k ∈ N, where
fn ∈ 	2(N)◦n and gm+1 ∈ 	2(N)◦m ⊗ 	2(N). We have

E[〈D·Jn(fn), Jm(gm+1(∗, ·))〉�2(N)]

= nE[〈Jn−1(fn(∗, ·)), Jm(gm(∗, ·))〉�2(N)]

= nE[〈Jn−1(fn(∗, ·)1Δn(∗, ·)), Jm(gm(∗, ·))〉�2(N)]

= n!1{n−1=m}
∞∑

k=0

E[Jn−1(fn(∗, k)1Δn(∗, k))Jm(gm+1(∗, k))]

= n1{n−1=m}
∞∑

k=0

〈1Δn(∗, k)fn(∗, k), gm+1(∗, k)〉�2(Nn−1)

= n!1{n=m+1}〈1Δnfn, gm+1〉�2(Nn)

= n!1{n=m+1}〈1Δnfn, g̃m+1〉�2(Nn)

= E[Jn(fn)Jm(g̃m+1)]

= E[Fδ(u)].

�
The next proposition shows that δ coincides with the stochastic integral op-
erator J on the square-summable predictable processes.
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Proposition 1.8.3. The operator δ can be extended to u ∈ L2(Ω × N) with

δ(u) =
∞∑

k=0

ukYk −
∞∑

k=0

Dkuk − δ(ϕDu), (1.8.1)

provided all series converges in L2(Ω), where (ϕk)k∈N appears in the structure
equation (1.4.1). We also have for all u, v ∈ U :

E[|δ(u)|2] = E[‖u‖2
�2(N)] + E

⎡

⎣
∞∑

k,l=0

DkulDluk

⎤

⎦ . (1.8.2)

Proof. Using the expression (1.3.3) of uk = Jn(fn+1(∗, k)) we have

δ(u) = Jn+1(f̃n+1)

=
∑

(i1,...,in+1)∈Δn+1

f̃n+1(i1, . . . , in+1)Yi1 · · ·Yin+1

=
∞∑

k=0

∑

(i1,...,in)∈Δn

f̃n+1(i1, . . . , in, k)Yi1 · · ·YinYk

−n
∞∑

k=0

∑

(i1,...,in−1)∈Δn−1

f̃n+1(i1, . . . , in−1, k, k)Yi1 · · ·Yin−1 |Yk|2

=
∞∑

k=0

ukYk −
∞∑

k=0

Dkuk|Yk|2

=
∞∑

k=0

ukYk −
∞∑

k=0

Dkuk −
∞∑

k=0

ϕkDkukYk.

By polarization, orthogonality and density it suffices to take u = gJn(f◦n),
f, g ∈ 	2(N), and to note that

‖δ(u)‖2
L2(Ω) = ‖Jn+1(1Δn+1f

◦n ◦ g)‖2
L2(Ω)

=
1

(n+ 1)2

∥∥∥∥∥

n∑

i=0

Jn+1(f⊗i ⊗ g ⊗ f⊗(n−i)1Δn+1)

∥∥∥∥∥

2

L2(Ω)

=
1

(n+ 1)2
((n+ 1)!(n+ 1)‖f‖2n

�2(N)‖g‖2
�2(N)

+(n+ 1)!n(n+ 1)‖f‖2n−2
�2(N)〈f, g〉

2
�2(N))

= n!‖f‖2n
�2(N)‖g‖2

�2(N) + (n− 1)!n2‖f‖2n−2
�2(N)〈f, g〉

2
�2(N)

= ‖u‖2
L2(Ω×N) + E

[
〈g,DJn(f◦n)〉�2(N)〈g,DJn(f◦n)〉�2(N)

]
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= ‖u‖2
L2(Ω×N) + E

⎡

⎣
∞∑

k,l=0

g(k)g(l)DlJn(f◦n)DkJn(f◦n)

⎤

⎦

= E[‖u‖2
�2(N)] + E

⎡

⎣
∞∑

k,l=0

DkulDluk

⎤

⎦ .

�
From the above argument the Skorohod isometry can also be written as

‖δ(u)‖2
L2(Ω) = E[‖u‖2

�2(N)] + E

⎡

⎣
∞∑

k,l=0

DkukDlul

⎤

⎦ ,

however this formulation does not lead to a well defined expression in the
continuous time limit of Chapter 4.
In particular, (1.8.1) implies the following divergence formula

Corollary 1.8.4. For u ∈ L2(Ω × N) an F ∈ L2(Ω) we have

δ(Fu) = Fδ(u) − 〈u,DF 〉�2(N) − δ(ϕ(·)u(·)D·F ), (1.8.3)

provided all series converge in L2(Ω).

In the symmetric case pk = qk = 1/2 we have ϕk = 0, k ∈ N, and

δ(u) =
∞∑

k=0

ukYk −
∞∑

k=0

Dkuk.

Moreover, (1.8.2) can be rewritten as a Weitzenböck type identity, cf.
Section 7.6 for details:

‖δ(u)‖2
L2(Ω) +

1
2

∞∑

k,l=0

‖Dku(l)−Dlu(k)‖2
L2(Ω) = ‖u‖2

L2(Ω×N) +‖Du‖2
L2(Ω×N2).

(1.8.4)

The last two terms in the right hand side of (1.8.1) vanish when (uk)k∈N is
predictable, and in this case the Skorohod isometry (1.8.2) becomes the Itô
isometry as shown in the next proposition.

Corollary 1.8.5. If (uk)k∈N satisfies Dkuk = 0, i.e. uk does not depend on
Xk, k ∈ N, then δ(u) coincides with the (discrete time) stochastic integral

δ(u) =
∞∑

k=0

Ykuk, (1.8.5)
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provided the series converges in L2(Ω). If moreover (uk)k∈N is predictable
and square-summable we have the isometry

E[δ(u)2] = E

[
‖u‖2

�2(N)

]
, (1.8.6)

and δ(u) coincides with J(u) on the space of predictable square-summable
processes.

1.9 Ornstein-Uhlenbeck Semi-Group and Process

The Ornstein-Uhlenbeck operator L is defined as L = δD, i.e. L satisfies

LJn(fn) = nJn(fn), fn ∈ 	2(N)◦n.

Proposition 1.9.1. For any F ∈ S we have

LF = δDF =
∞∑

k=0

Yk(DkF ) =
∞∑

k=0

√
pkqkYk(F+

k − F−k ),

Proof. Note that DkDkF = 0, k∈N, and use Relation (1.8.1) of Proposition
1.8.3. �
Note that L can be expressed in other forms, for example

LF =
∞∑

k=0

ΔkF,

where

ΔkF = (1{Xk=1}qk(F (ω) − F (ωk
−)) − 1{Xk=−1}pk(F (ωk

+) − F (ω)))

= F − (1{Xk=1}qkF (ωk
−) + 1{Xk=−1}pkF (ωk

+))
= F − E[F | Fc

k], k ∈ N,

and Fc
k is the σ-algebra generated by

{Xl : l �= k, l ∈ N}.

Let now (Pt)t∈R+ = (etL)t∈R+ denote the semi-group associated to L and
defined as

PtF =
∞∑

n=0

e−ntJn(fn), t ∈ R+,
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on F =
∞∑

n=0

Jn(fn) ∈ L2(Ω). The next result shows that (Pt)t∈R+ admits

an integral representation by a probability kernel. Let qN
t : Ω×Ω→R+ be

defined by

qN
t (ω̃, ω) =

N∏

i=0

(1 + e−tYi(ω)Yi(ω̃)), ω, ω̃ ∈ Ω, t ∈ R+.

Lemma 1.9.2. Let the probability kernel Qt(ω̃, dω) be defined by

E

[
dQt(ω̃, ·)

dP

∣∣∣FN

]
(ω) = qN

t (ω̃, ω), N ≥ 1, t ∈ R+.

For F ∈ L2(Ω,FN ) we have

PtF (ω̃) =
∫

Ω

F (ω)Qt(ω̃, dω), ω̃ ∈ Ω, n ≥ N. (1.9.1)

Proof. Since L2(Ω,FN ) has finite dimension 2N+1, it suffices to consider
functionals of the form F =Yk1 · · ·Ykn with 0 ≤ k1 < · · · < kn ≤ N . By
Relation (1.4.5) we have for ω ∈ Ω, k ∈ N:

E
[
Yk(·)(1 + e−tYk(·)Yk(ω))

]

= pk

√
qk
pk

(
1 + e−t

√
qk
pk
Yk(ω)

)
− qk

√
pk

qk

(
1 − e−t

√
pk

qk
Yk(ω)

)

= e−tYk(ω),

which implies, by independence of the sequence (Xk)k∈N,

E[Yk1 · · ·Yknq
N
t (ω, ·)] = E

[
Yk1 · · ·Ykn

N∏

i=1

(1 + e−tYki(ω)Yki(·))
]

=
N∏

i=1

E
[
Yki(·)(1 + e−tYki(ω)Yki(·))

]

= e−ntYk1(ω) · · ·Ykn(ω)
= e−ntJn(1̃{(k1,...,kn)})(ω)

= PtJn(1̃{(k1,...,kn)})(ω)
= Pt(Yk1 · · ·Ykn)(ω).

�
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Consider the Ω-valued stationary process

(X(t))t∈R+ = ((Xk(t))k∈N)t∈R+

with independent components and distribution given by

P(Xk(t) = 1 | Xk(0) = 1) = pk + e−tqk, (1.9.2)

P(Xk(t) = −1 | Xk(0) = 1) = qk − e−tqk, (1.9.3)

P(Xk(t) = 1 | Xk(0) = −1) = pk − e−tpk, (1.9.4)

P(Xk(t) = −1 | Xk(0) = −1) = qk + e−tpk, (1.9.5)

k ∈ N, t ∈ R+.

Proposition 1.9.3. The process (X(t))t∈R+ = ((Xk(t))k∈N)t∈R+ is the
Ornstein-Uhlenbeck process associated to (Pt)t∈R+ , i.e. we have

PtF = E[F (X(t)) | X(0)], t ∈ R+, (1.9.6)

for F bounded and Fn-measurable on Ω, n ∈ N.

Proof. By construction of (X(t))t∈R+ in Relations (1.9.2)-(1.9.5) we have

P(Xk(t) = 1 | Xk(0)) = pk

(
1 + e−tYk(0)

√
qk
pk

)
,

P(Xk(t) = −1 | Xk(0)) = qk

(
1 − e−tYk(0)

√
pk

qk

)
,

where Yk(0) is defined by (1.4.6), i.e.

Yk(0) =
qk − pk +Xk(0)

2
√
pkqk

, k ∈ N,

thus

dP(Xk(t)(ω̃) = ε | X(0))(ω) =
(
1 + e−tYk(ω)Yk(ω̃)

)
dP(Xk(ω̃) = ε),

ε = ±1. Since the components of (Xk(t))k∈N are independent, this shows that
the law of (X0(t), . . . , Xn(t)) conditionally to X(0) has the density qn

t (ω̃, ·)
with respect to P:
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dP(X0(t)(ω̃) = ε0, . . . , Xn(t)(ω̃) = εn | X(0))(ω̃)
= qn

t (ω̃, ω)dP(X0(ω̃) = ε0, . . . , Xn(ω̃) = εn).

Consequently we have

E[F (X(t)) | X(0) = ω̃] =
∫

Ω

F (ω)qN
t (ω̃, ω)P(dω), (1.9.7)

hence from (1.9.1), Relation (1.9.6) holds for F ∈ L2(Ω,FN ), N ≥ 0. �
The independent components Xk(t), k ∈ N, can be constructed from the
data of Xk(0)= ε and an independent exponential random variable τk via
the following procedure. If τk > t, let Xk(t) = Xk(0) = ε, otherwise if τk < t,
take Xk(t) to be an independent copy of Xk(0). This procedure is illustrated
in the following equalities:

P(Xk(t) = 1 | Xk(0) = 1) = E[1{τk>t}] + E[1{τk<t}1{Xk=1}]

= e−t + pk(1 − e−t), (1.9.8)

P(Xk(t) = −1 | Xk(0) = 1) = E[1{τk<t}1{Xk=−1}]

= qk(1 − e−t), (1.9.9)

P(Xk(t) = −1 | Xk(0) = −1) = E[1{τk>t}] + E[1{τk<t}1{Xk=−1}]

= e−t + qk(1 − e−t), (1.9.10)

P(Xk(t) = 1 | Xk(0) = −1) = E[1{τk<t}1{Xk=1}]

= pk(1 − e−t). (1.9.11)

The operator L2(Ω × N) → L2(Ω × N) which maps (uk)k∈N to (Ptuk)k∈N

is also denoted by Pt. As a consequence of the representation of Pt given in
Lemma 1.9.2 we obtain the following bound.

Lemma 1.9.4. For F ∈ Dom (D) we have

‖Ptu‖L∞(Ω,�2(N)) ≤ ‖u‖L∞(Ω,�2(N)), t ∈ R+, u ∈ L2(Ω × N).

Proof. As a consequence of the representation formula (1.9.7) we have P(dω̃)-
a.s.:

‖Ptu‖2
�2(N)(ω̃) =

∞∑

k=0

|Ptuk(ω̃)|2

=
∞∑

k=0

(∫

Ω

uk(ω)Qt(ω̃, dω)
)2
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≤
∞∑

k=0

∫

Ω

|uk(ω)|2Qt(ω̃, dω)

=
∫

Ω

‖u‖2
�2(N)(ω)Qt(ω̃, dω)

≤ ‖u‖2
L∞(Ω,�2(N)).

�

1.10 Covariance Identities

In this section we state the covariance identities which will be used for the
proof of deviation inequalities in the next section. The covariance Cov (F,G)
of F,G ∈ L2(Ω) is defined as

Cov (F,G) = E[(F − E[F ])(G− E[G])]

= E[FG] − E[F ]E[G].

Proposition 1.10.1. For all F,G ∈ L2(Ω) such that E[‖DF‖2
�2(N)] <∞ we

have

Cov (F,G) = E

[ ∞∑

k=0

E [DkG | Fk−1]DkF

]
. (1.10.1)

Proof. This identity is a consequence of the Clark formula (1.7.1):

Cov (F,G) = E[(F − E[F ])(G − E[G])]

= E

[( ∞∑

k=0

E[DkF | Fk−1]Yk

)( ∞∑

l=0

E[DlG | Fl−1]Yl

)]

= E

[ ∞∑

k=0

E[DkF | Fk−1]E[DkG | Fk−1]

]

=
∞∑

k=0

E [E[E[DkG | Fk−1]DkF | Fk−1]]

= E

[ ∞∑

k=0

E[DkG | Fk−1]DkF

]
,

and of its extension to G ∈ L2(Ω) in Corollary 1.7.3. �
A covariance identity can also be obtained using the semi-group (Pt)t∈R+ .
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Proposition 1.10.2. For any F,G ∈ L2(Ω) such that

E

[
‖DF‖2

�2(N)

]
<∞ and E

[
‖DG‖2

�2(N)

]
<∞,

we have

Cov (F,G) = E

[ ∞∑

k=0

∫ ∞

0

e−t(DkF )PtDkGdt

]
. (1.10.2)

Proof. Consider F = Jn(fn) and G = Jm(gm). We have

Cov (Jn(fn), Jm(gm)) = E [Jn(fn)Jm(gm)]

= 1{n=m}n!〈fn, gn1Δn 〉�2(Nn)

= 1{n=m}n!n

∫ ∞

0

e−ntdt〈fn, gn1Δn〉�2(Nn)

= 1{n−1=m−1}n!n

∫ ∞

0

e−t
∞∑

k=0

〈fn(∗, k), e−(n−1)tgn(∗, k)1Δn (∗, k)〉�2(Nn−1)dt

= nmE

[∫ ∞

0

e−t
∞∑

k=0

Jn−1(fn(∗, k)1Δn (∗, k))e−(m−1)tJm−1(gm(∗, k)1Δm(∗, k))dt

]

= nmE

[∫ ∞

0

e−t
∞∑

k=0

Jn−1(fn(∗, k)1Δn (∗, k))PtJm−1(gm(∗, k)1Δm(∗, k))dt

]

= E

[∫ ∞

0

e−t
∞∑

k=0

DkJn(fn)PtDkJm(gm)dt

]
.

�
By the relations (1.9.8)-(1.9.11) the covariance identity (1.10.2) shows that

Cov (F, G) = E

[ ∞∑

k=0

∫ ∞

0

e−tDkFPtDkGdt

]

= E

[∫ 1

0

∞∑

k=0

DkFP(− log α)DkGdα

]

=

∫ 1

0

∫

Ω×Ω

∞∑

k=0

DkF (ω)DkG((ωi1{τi<− log α} + ω′
i1{τi<− log α})i∈N)dαP(dω)P(dω′)

=

∫ 1

0

∫

Ω×Ω

∞∑

k=0

DkF (ω)DkG((ωi1{ξi<α} + ω′
i1{ξi>α})i∈N)P(dω)P(dω′)dα,

(1.10.3)

where (ξi)i∈N is a family of independent identically distributed (i.i.d.) ran-
dom variables, uniformly distributed on [0, 1]. Note that the marginals of
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(Xk, Xk1{ξk<α} +X ′k1{ξi>α}) are identical when X ′k is an independent copy
of Xk. Letting

φα(s, t) = E

[
eisXkeit(Xk+1{ξk<α})+it(X′

k+1{ξk>α})
]
,

we have the relation

Cov (eisXk , eitXk ) = φ1(s, t) − φ0(s, t)

=
∫ 1

0

dφα

dα
(s, t)dα.

Next we prove an iterated version of the covariance identity in discrete time,
which is an analog of a result proved in [56] for the Wiener and Poisson
processes.

Theorem 1.10.3. Let n ∈ N and F,G ∈ L2(Ω). We have

Cov (F,G) (1.10.4)

=
n∑

d=1

(−1)d+1
E

⎡

⎣
∑

{1≤k1<···<kd}
(Dkd

· · ·Dk1F )(Dkd
· · ·Dk1G)

⎤

⎦

+(−1)n
E

⎡

⎣
∑

{1≤k1<···<kn+1}
(Dkn+1 · · ·Dk1F )E

[
Dkn+1 · · ·Dk1G | Fkn+1−1

]
⎤

⎦.

Proof. Take F = G. For n = 0, (1.10.4) is a consequence of the Clark formula.
Let n ≥ 1. Applying Lemma 1.7.4 to Dkn · · ·Dk1F with a = kn and b = kn+1,
and summing on (k1, . . . , kn) ∈ Δn, we obtain

E

⎡

⎣
∑

{1≤k1<···<kn}
(E[Dkn · · ·Dk1F | Fkn−1])

2

⎤

⎦

= E

⎡

⎣
∑

{1≤k1<···<kn}
| Dkn · · ·Dk1F |2

⎤

⎦

−E

⎡

⎣
∑

{1≤k1<···<kn+1}

(
E
[
Dkn+1 · · ·Dk1F | Fkn+1−1

])2
⎤

⎦ ,

which concludes the proof by induction and polarization. �
As a consequence of Theorem 1.10.3, letting F =G we get the variance in-
equality
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2n∑

k=1

(−1)k+1

k!
E

[
‖DkF‖2

�2(Δk)

]
≤ Var (F ) ≤

2n−1∑

k=1

(−1)k+1

k!
E

[
‖DkF‖2

�2(Δk)

]
,

since

E

⎡

⎣
∑

{1≤k1<···<kn+1}
(Dkn+1 · · ·Dk1F )E

[
Dkn+1 · · ·Dk1F | Fkn+1−1

]
⎤

⎦

= E

⎡

⎣
∑

{1≤k1<···<kn+1}

E
[
(Dkn+1 · · ·Dk1F )E

[
Dkn+1 · · ·Dk1F | Fkn+1−1

]
| Fkn+1−1

] ]

= E

⎡

⎣
∑

{1≤k1<···<kn+1}
(E
[
Dkn+1 · · ·Dk1F | Fkn+1−1

]
)2

⎤

⎦

≥ 0,

see Relation (2.15) in [56] in continuous time. In a similar way, another iter-
ated covariance identity can be obtained from Proposition 1.10.2.

Corollary 1.10.4. Let n ∈ N and F,G ∈ L2(Ω,FN ). We have

Cov (F,G) =
n∑

d=1

(−1)d+1
E

⎡

⎣
∑

{1≤k1<···<kd≤N}
(Dkd

· · ·Dk1F )(Dkd
· · ·Dk1G)

⎤

⎦

+(−1)n

∫

Ω×Ω

∑

{1≤k1<···<kn+1≤N}
Dkn+1 · · ·Dk1F (ω)Dkn+1 · · ·Dk1G(ω′)

qN
t (ω, ω′)P(dω)P(dω′). (1.10.5)

Using the tensorization property

Var (FG) = E[F 2]Var (G) + (E[G])2Var (F )

≤ E[F 2Var (G)] + E[G2Var (F )]

of the variance for independent random variable F,G, most of the identities in
this section can be obtained by tensorization of elementary one dimensional
covariance identities.
The following lemma is an elementary consequence of the covariance identity
proved in Proposition 1.10.1.
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Lemma 1.10.5. Let F,G ∈ L2(Ω) such that

E[DkF |Fk−1] · E[DkG|Fk−1] ≥ 0, k ∈ N.

Then F and G are non-negatively correlated:

Cov (F,G) ≥ 0.

According to the next definition, a non-decreasing functional F satisfies
DkF ≥ 0 for all k ∈ N.

Definition 1.10.6. A random variable F : Ω → R is said to be non-
decreasing if for all ω1, ω2 ∈ Ω we have

ω1(k) ≤ ω2(k), k ∈ N, ⇒ F (ω1) ≤ F (ω2).

The following result is then immediate from Proposition 1.6.2 and Lemma
1.10.5, and shows that the FKG inequality holds on Ω. It can also be obtained
from Proposition 1.10.2.

Proposition 1.10.7. If F,G ∈ L2(Ω) are non-decreasing then F and G are
non-negatively correlated:

Cov (F,G) ≥ 0.

Note however that the assumptions of Lemma 1.10.5 are actually weaker as
they do not require F and G to be non-decreasing.

1.11 Deviation Inequalities

In this section, which is based on [59], we recover a deviation inequality of [19]
in the case of Bernoulli measures, using covariance representations instead
of the logarithmic Sobolev inequalities to be presented in Section 1.12. The
method relies on a bound on the Laplace transform L(t) = E[etF ] obtained
via a differential inequality and Chebychev’s inequality.

Proposition 1.11.1. Let F ∈ L1(Ω) be such that |F+
k − F−k | ≤ K, k ∈ N,

for some K ≥ 0, and ‖DF‖L∞(Ω,�2(N)) <∞. Then

P(F − E[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,�2(N))

K2
g

(
xK

‖DF‖2
L∞(Ω,�2(N))

))

≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,�2(N))

))
,

with g(u) = (1 + u) log(1 + u) − u, u ≥ 0.
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Proof. Although Dk does not satisfy a derivation rule for products, from
Proposition 1.6.4 we have

DkeF = 1{Xk=1}
√
pkqk(eF − eF−

k ) + 1{Xk=−1}
√
pkqk(eF+

k − eF )

= 1{Xk=1}
√
pkqkeF (1 − e−

1√
pkqk

DkF ) + 1{Xk=−1}
√
pkqkeF (e

1√
pkqk

DkF − 1)

= −Xk
√
pkqkeF (e−

Xk√
pkqk

DkF − 1),

hence

DkeF = Xk
√
pkqkeF (1 − e−

Xk√
pkqk

DkF ), (1.11.1)

and since the function x → (ex − 1)/x is positive and increasing on R we
have:

e−sFDkesF

DkF
= −

Xk
√
pkqk

DkF

(
e−s

Xk√
pkqk

DkF − 1
)

≤ esK − 1
K

,

or in other terms:

e−sFDkesF

DkF
= 1{Xk=1}

esF−
k −F+

k − 1
F−k − F+

k

+ 1{Xk=−1}
esF+

k −F−
k − 1

F+
k − F−k

≤ esK − 1
K

.

We first assume that F is a bounded random variable with E[F ] = 0. From
Proposition 1.10.2 applied to F and esF , noting that since F is bounded,

E

[
‖DesF ‖2

�2(N)

]
≤ CKE[e2sF ]‖DF‖2

L∞(Ω,�2(N))

< ∞,

for some CK > 0, we have

E[F esF ] = Cov (F, esF )

= E

[∫ ∞

0

e−v
∞∑

k=0

DkesFPvDkFdv

]

≤
∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

E

[
esF

∫ ∞

0

e−v‖DFPvDF‖�1(N)dv

]



38 1 The Discrete Time Case

≤ esK − 1
K

E

[
esF ‖DF‖�2(N)

∫ ∞

0

e−v‖PvDF‖�2(N)dv

]

≤ esK − 1
K

E
[
esF
]
‖DF‖2

L∞(Ω,�2(N))

∫ ∞

0

e−vdv

≤ esK − 1
K

E
[
esF
]
‖DF‖2

L∞(Ω,�2(N)),

where we also applied Lemma 1.9.4 to u = DF .
In the general case, letting L(s) = E[es(F−E[F ])], we have

log(E[et(F−E[F ])]) =
∫ t

0

L′(s)
L(s)

ds

≤
∫ t

0

E[(F − E[F ])es(F−E[F ])]
E[es(F−E[F ])]

ds

≤ 1
K

‖DF‖2
L∞(Ω,�2(N))

∫ t

0

(esK − 1)ds

=
1
K2

(etK − tK − 1)‖DF‖2
L∞(Ω,�2(N)),

t ≥ 0. We have for all x ≥ 0 and t ≥ 0:

P(F − E[F ] ≥ x) ≤ e−tx
E[et(F−E[F ])]

≤ exp
(

1
K2

(etK − tK − 1)‖DF‖2
L∞(Ω,�2(N)) − tx

)
,

The minimum in t ≥ 0 in the above expression is attained with

t =
1
K

log

(
1 +

xK

‖DF‖2
L∞(Ω,�2(N))

)
,

hence

P(F − E[F ] ≥ x)

≤ exp

(
− 1
K

(
x+

‖DF‖2
L∞(Ω,�2(N))

K

)
log

(
1 +

Kx

‖DF‖2
L∞(Ω,�2(N))

)
− x

K

)

≤ exp
(
− x

2K
log
(
1 + xK‖DF‖−2

L∞(Ω,�2(N))

))
,
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where we used the inequality

u

2
log(1 + u) ≤ (1 + u) log(1 + u) − u, u ∈ R+.

If K =0, the above proof is still valid by replacing all terms by their lim-
its as K→ 0. Finally if F is not bounded the conclusion holds for Fn =
max(−n,min(F, n)), n ≥ 1, and (Fn)n∈N, (DFn)n∈N, converge respectively
almost surely and in L2(Ω × N) to F and DF , with ‖DFn‖2

L∞(Ω,L2(N)) ≤
‖DF‖2

L∞(Ω,L2(N)). �
In case pk = p for all k ∈ N, the conditions

|DkF | ≤ β, k ∈ N, and ‖DF‖2
L∞(Ω,�2(N)) ≤ α2,

give

P(F − E[F ] ≥ x) ≤ exp
(
−α

2pq

β2
g

(
xβ

α2√pq

))

≤ exp
(
−
x
√
pq

2β
log
(

1 +
xβ

α2√pq

))
,

which is Relation (13) in [19]. In particular if F is FN -measurable, then

P(F − E[F ] ≥ x) ≤ exp
(
−Ng

(
x
√
pq

βN

))

≤ exp
(
−
x
√
pq

β

(
log
(

1 +
x
√
pq

βN

)
− 1
))

.

Finally we show a Gaussian concentration inequality for functionals of
(Sn)n∈N, using the covariance identity (1.10.1). We refer to [17], [18], [61],
[75], for other versions of this inequality.

Proposition 1.11.2. Let F ∈ L1(Ω) be such that

∥∥∥∥∥

∞∑

k=0

1
2(pk ∧ qk)

|DkF |‖DkF‖∞

∥∥∥∥∥
∞

≤ K2.

Then

P(F − E[F ] ≥ x) ≤ exp
(
− x2

2K2

)
, x ≥ 0. (1.11.2)

Proof. Again we assume that F is a bounded random variable with E[F ] = 0.
Using the inequality

|etx − ety| ≤ t

2
|x− y|(etx + ety), x, y ∈ R, (1.11.3)
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we have

|DketF | =
√
pkqk|etF+

k − etF−
k |

≤ 1
2
√
pkqkt|F+

k − F−k |(etF+
k + etF−

k )

=
1
2
t|DkF |(etF+

k + etF−
k )

≤ t

2(pk ∧ qk)
|DkF |E

[
etF | Xi, i �= k

]

=
1

2(pk ∧ qk)
tE
[
etF |DkF | | Xi, i �= k

]
.

Now Proposition 1.10.1 yields

E[F etF ] = Cov (F, esF )

=
∞∑

k=0

E[E[DkF | Fk−1]DketF ]

≤
∞∑

k=0

‖DkF‖∞E
[
|DketF |

]

≤ t

2

∞∑

k=0

1
pk ∧ qk

‖DkF‖∞E
[
E
[
etF |DkF | | Xi, i �= k

]]

=
t

2
E

[
etF

∞∑

k=0

1
pk ∧ qk

‖DkF‖∞|DkF |
]

≤ t

2
E[etF ]

∥∥∥∥∥

∞∑

k=0

1
pk ∧ qk

|DkF |‖DkF‖∞

∥∥∥∥∥
∞
.

This shows that

log(E[et(F−E[F ])]) =
∫ t

0

E[(F − E[F ])es(F−E[F ])]
E[es(F−E[F ])]

ds

≤ K2

∫ t

0

sds

=
t2

2
K2,

hence

ex
P(F − E[F ] ≥ x) ≤ E[et(F−E[F ])]

≤ et2K2/2, t ≥ 0,
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and
P(F − E[F ] ≥ x) ≤ e

t2
2 K2−tx, t ≥ 0.

The best inequality is obtained for t = x/K2.
Finally if F is not bounded the conclusion holds for Fn = max(−n,min
(F, n)), n ≥ 0, and (Fn)n∈N, (DFn)n∈N, converge respectively to F and DF
in L2(Ω), resp. L2(Ω × N), with ‖DFn‖2

L∞(Ω,�2(N)) ≤ ‖DF‖2
L∞(Ω,�2(N)). �

In case pk = p, k ∈ N, we obtain

P(F − E[F ] ≥ x) ≤ exp

(
− px2

‖DF‖2
�2(N,L∞(Ω))

)
.

Proposition 1.11.3. We have E[eα|F |] <∞ for all α > 0, and E[eαF 2
] <∞

for all α < 1/(2K2).

Proof. Let λ < c/e. The bound (1.11.2) implies

IE
[
eα|F |
]

=
∫ ∞

0

P(eα|F | ≥ t)dt

=
∫ ∞

−∞
P(α|F | ≥ y)eydy

≤ 1 +
∫ ∞

0

P(α|F | ≥ y)eydy

≤ 1 +
∫ ∞

0

exp
(
− (IE[|F |] + y/α)2

2K2

)
eydy

< ∞,

for all α > 0. On the other hand we have

IE[eαF 2
] =
∫ ∞

0

P(eαF 2 ≥ t)dt

=
∫ ∞

−∞
P(αF 2 ≥ y)eydy

≤ 1 +
∫ ∞

0

P(|F | ≥ (y/α)1/2)eydy

≤ 1 +
∫ ∞

0

exp
(
− (IE[|F |] + (y/α)1/2)2

2K2

)
eydy

< ∞,

provided 2K2α < 1. �
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1.12 Logarithmic Sobolev Inequalities

The logarithmic Sobolev inequalities on Gaussian space provide an infinite
dimensional analog of Sobolev inequalities, cf. e.g. [77]. On Riemannian
path space [22] and on Poisson space [6], [151], martingale methods have
been successfully applied to the proof of logarithmic Sobolev inequalities.
Here, discrete time martingale methods are used along with the Clark pre-
dictable representation formula (1.7.1) as in [46], to provide a proof of
logarithmic Sobolev inequalities for Bernoulli measures. Here we are only
concerned with modified logarithmic Sobolev inequalities, and we refer to
[127], Theorem 2.2.8 and references therein, for the standard version of the
logarithmic Sobolev inequality on the hypercube under Bernoulli measures.
The entropy of a random variable F > 0 is defined by

Ent [F ] = E[F logF ] − E[F ] log E[F ],

for sufficiently integrable F .

Lemma 1.12.1. The entropy has the tensorization property, i.e. if F,G are
sufficiently integrable independent random variables we have

Ent [FG] = E[FEnt [G]] + E[GEnt [F ]]. (1.12.1)

Proof. We have

Ent [FG] = E[FG log(FG)] − E[FG] log E[FG]
= E[FG(logF + logG)] − E[F ]E[G](log E[F ] + log E[G])
= E[G]E[F logF ] + E[F ]E[G logG)] − E[F ]E[G](log E[F ] + log E[G])
= E[FEnt [G]] + E[GEnt [F ]].

�
In the next proposition we recover the modified logarithmic Sobolev inequal-
ity of [19] using the Clark representation formula in discrete time.

Theorem 1.12.2. Let F ∈ Dom (D) with F > η a.s. for some η > 0. We
have

Ent [F ] ≤ E

[
1
F
‖DF‖2

�2(N)

]
. (1.12.2)

Proof. Assume that F is FN -measurable and letMn = E[F | Fn], 0 ≤ n ≤ N .
Using Corollary 1.6.3 and the Clark formula (1.7.1) we have

Mn = M−1 +
n∑

k=0

ukYk, 0 ≤ n ≤ N,

with uk = E[DkF | Fk−1], 0 ≤ k ≤ n ≤ N , and M−1 = E[F ]. Letting
f(x) = x log x and using the bound
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f(x+ y) − f(x) = y log x+ (x+ y) log
(
1 +

y

x

)

≤ y(1 + log x) +
y2

x
,

we have:

Ent [F ] = E[f(MN)] − E[f(M−1)]

= E

[
N∑

k=0

f(Mk) − f(Mk−1)

]

= E

[
N∑

k=0

f (Mk−1 + Ykuk) − f(Mk−1)

]

≤ E

[
N∑

k=0

Ykuk(1 + logMk−1) +
Y 2

k u
2
k

Mk−1

]

= E

[
N∑

k=0

1
E[F | Fk−1]

(E[DkF | Fk−1])2
]

≤ E

[
N∑

k=0

E

[
1
F
|DkF |2 | Fk−1

]]

= E

[
1
F

N∑

k=0

|DkF |2
]
.

where we used the Jensen inequality (9.3.1) and the convexity of (u, v) →
v2/u on (0,∞) × R, or the Schwarz inequality applied to

1/
√
F and (DkF/

√
F )k∈N,

as in the Wiener and Poisson cases [22] and [6]. This inequality is extended
by density to F ∈ Dom (D). �
By a one-variable argument, letting df = f(1) − f(−1), we have

Ent [f ] = pf(1) log f(1) + qf(−1) log f(−1)− E[f ] log E[f ]
= p(E[f ] + qdf) log(E[f ] + qdf)

+q(E[f ] − pdf) log(E[f ] − pdf) − (pf(1) + qf(−1)) log E[f ]

= pE[f ] log
(

1 + q
df

E[f ]

)
+ pqdf log f(1)

+qE[f ] log
(

1 − p
df

E[f ]

)
− qpdf log f(−1)

≤ pqdf log f(1) − pqdf log f(−1)
= pqE [dfd log f ] ,
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which, by tensorization, recovers the following L1 inequality of [47], [29], and
proved in [151] in the Poisson case. In the next proposition we state and prove
this inequality in the multidimensional case, using the Clark representation
formula, similarly to Theorem 1.12.2.

Theorem 1.12.3. Let F > 0 be FN -measurable. We have

Ent [F ] ≤ E

[
N∑

k=0

DkFDk logF

]
. (1.12.3)

Proof. Let f(x) = x log x and

Ψ(x, y) = (x + y) log(x+ y) − x log x− (1 + log x)y, x, x+ y > 0.

From the relation

Ykuk = YkE[DkF | Fk−1]

= qk1{Xk=1}E[(F+
k − F−k ) | Fk−1] + pk1{Xk=−1}E[(F−k − F+

k ) | Fk−1]

= 1{Xk=1}E[(F+
k − F−k )1{Xk=−1} | Fk−1]

+1{Xk=−1}E[(F−k − F+
k )1{Xk=1} | Fk−1],

we have, using the convexity of Ψ :

Ent [F ] = E

[
N∑

k=0

f (Mk−1 + Ykuk) − f(Mk−1)

]

= E

[
N∑

k=0

Ψ(Mk−1, Ykuk) + Ykuk(1 + log Mk−1)

]

= E

[
N∑

k=0

Ψ(Mk−1, Ykuk)

]

= E

[
N∑

k=0

pkΨ
(
E[F | Fk−1], E[(F+

k − F−
k )1{Xk=−1} | Fk−1]

)

+qkΨ
(
E[F | Fk−1], E[(F−

k − F+
k )1{Xk=1} | Fk−1]

)]

≤ E

[
N∑

k=0

E

[
pkΨ
(
F, (F+

k − F−
k )1{Xk=−1}

)
+ qkΨ

(
F, (F−

k − F+
k )1{Xk=1}

) ∣∣∣Fk−1

]]

= E

[
N∑

k=0

pk1{Xk=−1}Ψ
(
F−

k , F+
k − F−

k

)
+ qk1{Xk=1}Ψ

(
F+

k , F−
k − F+

k

)
]
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= E

[
N∑

k=0

pkqkΨ(F−
k , F+

k − F−
k ) + pkqkΨ(F+

k , F−
k − F+

k )

]

= E

[
N∑

k=0

pkqk(log F+
k − log F−

k )(F+
k − F−

k )

]

= E

[
N∑

k=0

DkFDk log F

]
.

�
The application of Theorem 1.12.3 to eF gives the following inequality for
F > 0, FN -measurable:

Ent [eF ] ≤ E

[
N∑

k=0

DkFDkeF

]

= E

[
N∑

k=0

pkqkΨ(eF−
k , eF+

k − eF−
k ) + pkqkΨ(eF+

k , eF−
k − eF+

k )

]

= E

[
N∑

k=0

pkqkeF−
k ((F+

k − F−k )eF+
k −F−

k − eF+
k −F−

k + 1)

+pkqkeF+
k ((F−k − F+

k )eF−
k
−F+

k − eF−
k
−F+

k + 1)
]

= E

[
N∑

k=0

pk1{Xk=−1}eF−
k ((F+

k − F−k )eF+
k −F−

k − eF+
k −F−

k + 1)

+qk1{Xk=1}eF+
k ((F−k − F+

k )eF−
k
−F+

k − eF−
k
−F+

k + 1)
]

= E

[
eF

N∑

k=0

√
pkqk|Yk|(∇kF e∇kF − e∇kF + 1)

]
. (1.12.4)

This implies

Ent [eF ] ≤ E

[
eF

N∑

k=0

(∇kF e∇kF − e∇kF + 1)

]
. (1.12.5)

As noted in [29], Relation (1.12.3) and the Poisson limit theorem yield the L1

inequality of [151]. More precisely, letting Mn = (n+X1 + · · ·+Xn)/2, F =
ϕ(Mn) and pk = λ/n, k ∈ N, , n ≥ 1, λ > 0, we have, from Proposition 1.6.2,
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n∑

k=0

DkFDk logF

=
λ

n

(
1 − λ

n

)
(n−Mn)(ϕ(Mn + 1) − ϕ(Mn)) log(ϕ(Mn + 1) − ϕ(Mn))

+
λ

n

(
1 − λ

n

)
Mn(ϕ(Mn) − ϕ(Mn − 1)) log(ϕ(Mn) − ϕ(Mn − 1)),

in the limit as n goes to infinity we obtain

Ent [ϕ(U)] ≤ λE[(ϕ(U + 1) − ϕ(U))(logϕ(U + 1) − logϕ(U))],

where U is a Poisson random variable with parameter λ. In one variable we
have, still letting df = f(1) − f(−1),

Ent [ef ] ≤ pqE
[
defd log ef

]

= pq(ef(1) − ef(−1))(f(1) − f(−1))
= pqef(−1)((f(1) − f(−1))ef(1)−f(−1) − ef(1)−f(−1) + 1)

+pqef(1)((f(−1) − f(1))ef(−1)−f(1) − ef(−1)−f(1) + 1)
≤ qef(−1)((f(1) − f(−1))ef(1)−f(−1) − ef(1)−f(−1) + 1)

+pef(1)((f(−1) − f(1))ef(−1)−f(1) − ef(−1)−f(1) + 1)
= E
[
ef (∇fe∇f − e∇f + 1)

]
,

where ∇k is the gradient operator defined in (1.6.4). This last inequality is
not comparable to the optimal constant inequality

Ent [eF ] ≤ E

[
eF

N∑

k=0

pkqk(|∇kF |e|∇kF | − e|∇kF | + 1)

]
, (1.12.6)

of [19] since when F+
k − F−k ≥ 0 the right-hand side of (1.12.6) grows as

F+
k e2F+

k , instead of F+
k eF+

k in (1.12.5). In fact we can prove the following
inequality which improves (1.12.2), (1.12.3) and (1.12.6).

Theorem 1.12.4. Let F be FN -measurable. We have

Ent [eF ] ≤ E

[
eF

N∑

k=0

pkqk(∇kF e∇kF − e∇kF + 1)

]
. (1.12.7)

Clearly, (1.12.7) is better than (1.12.6), (1.12.4) and (1.12.3). It also improves
(1.12.2) from the bound

xex − ex + 1 ≤ (ex − 1)2, x ∈ R,



1.12 Logarithmic Sobolev Inequalities 47

which implies

eF (∇F e∇F − e∇F + 1) ≤ eF (e∇F − 1)2 = e−F |∇eF |2.

By the tensorization property (1.12.1), the proof of (1.12.7) reduces to the
following one dimensional lemma.

Lemma 1.12.5. For any 0 ≤ p ≤ 1, t ∈ R, a ∈ R, q = 1 − p,

ptet + qaea −
(
pet + qea

)
log
(
pet + qea

)

≤ pq
(
qea
(
(t− a)et−a − et−a + 1

)
+ pet

(
(a− t)ea−t − ea−t + 1

))
.

Proof. Set

g(t) = pq
(
qea
(
(t− a)et−a − et−a + 1

)
+ pet

(
(a− t)ea−t − ea−t + 1

))

−ptet − qaea +
(
pet + qea

)
log
(
pet + qea

)
.

Then

g′(t) = pq
(
qea(t− a)et−a + pet

(
−ea−t + 1

))
− ptet + pet log(pet + qea)

and g′′(t) = peth(t), where

h(t) = −a− 2pt− p+ 2pa+ p2t− p2a+ log(pet + qea) +
pet

pet + qea
.

Now,

h′(t) = −2p+ p2 +
2pet

pet + qea
− p2e2t

(pet + qea)2

=
pq2(et − ea)(pet + (q + 1)ea)

(pet + qea)2
,

which implies that h′(a) = 0, h′(t) < 0 for any t < a and h′(t) > 0 for any
t > a. Hence, for any t �= a, h(t) > h(a) = 0, and so g′′(t) ≥ 0 for any t ∈ R

and g′′(t) = 0 if and only if t = a. Therefore, g′ is strictly increasing. Finally,
since t = a is the unique root of g′ = 0, we have that g(t) ≥ g(a) = 0 for all
t ∈ R. �
This inequality improves (1.12.2), (1.12.3), and (1.12.6), as illustrated in one
dimension in Figure 1.1, where the entropy is represented as a function of
p ∈ [0, 1] with f(1) = 1 and f(−1) = 3.5:
The inequality (1.12.7) is a discrete analog of the sharp inequality on Poisson
space of [151]. In the symmetric case pk = qk = 1/2, k ∈ N, we have
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Fig. 1.1 Graph of bounds on the entropy as a function of p ∈ [0, 1]

Ent [eF ] ≤ E

[
eF

N∑

k=0

pkqk(∇kF e∇kF −∇kF + 1)

]

=
1
8

E

[
N∑

k=0

eF−
k ((F+

k − F−k )eF+
k −F−

k − eF+
k −F−

k + 1)

+eF+
k ((F−k − F+

k )eF−
k −F+

k − eF−
k −F+

k + 1)
]

=
1
8

E

[
N∑

k=0

(eF+
k − eF−

k )(F+
k − F−k )

]

=
1
2

E

[
N∑

k=0

DkFDkeF

]
,

which improves on (1.12.3).
Similarly the sharp inequality of [151] can be recovered by taking F = ϕ(Mn)
in

Ent [eF ] ≤ E

[
eF

N∑

k=0

pkqk(∇kF e∇kF −∇kF + 1)

]

=
λ

n

(
1 − λ

n

)
E

[
Mneϕ(Mn)

× ((ϕ(Mn) − ϕ(Mn − 1))eϕ(Mn)−ϕ(Mn−1) − eϕ(Mn)−ϕ(Mn−1) + 1)
]

+
λ

n

(
1 − λ

n

)
E

[
(n−Mn)eϕ(Mn)

× ((ϕ(Mn + 1) − ϕ(Mn))eϕ(Mn+1)−ϕ(Mn) − eϕ(Mn+1)−ϕ(Mn) + 1)
]
,
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which, in the limit as n goes to infinity, yields

Ent [eϕ(U)] ≤ λE[eϕ(U)((ϕ(U + 1)− ϕ(U))eϕ(U+1)−ϕ(U) − eϕ(U+1)−ϕ(U) + 1)],

where U is a Poisson random variable with parameter λ.

1.13 Change of Variable Formula

In this section we state a discrete-time analog of Itô’s change of variable
formula which will be useful for the predictable representation of random
variables and for option hedging.

Proposition 1.13.1. Let (Mn)n∈N be a square-integrable martingale and f :
R × N → R. We have

f(Mn, n)

= f(M−1,−1)+
n∑

k=0

Dkf(Mk, k)Yk+
n∑

k=0

E[f(Mk, k)−f(Mk−1, k − 1) | Fk−1]

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1). (1.13.1)

Proof. By Proposition 1.7.5 there exists square-integrable process (uk)k∈N

such that

Mn = M−1 +
n∑

k=0

ukYk, n ∈ N.

We write

f(Mn, n) − f(M−1,−1) =
n∑

k=0

f(Mk, k) − f(Mk−1, k − 1)

=
n∑

k=0

f(Mk, k) − f(Mk−1, k) + f(Mk−1, k) − f(Mk−1, k − 1)

=
n∑

k=0

√
pk

qk

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f(Mk−1, k)

)
Yk

+
pk

qk
1{Xk=−1}

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f(Mk−1, k)

)

+1{Xk=−1}

(
f

(
Mk−1 − uk

√
pk

qk
, k

)
− f(Mk−1, k)

)

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1)
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=
n∑

k=0

√
pk

qk

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f(Mk−1, k)

)
Yk

+
n∑

k=0

1
qk

1{Xk=−1}E[f(Mk, k) − f(Mk−1, k) | Fk−1]

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1).

Similarly we have

f(Mn, n)

= f(M−1,−1) −
n∑

k=0

√
qk
pk

(
f

(
Mk−1 − uk

√
pk

qk
, k

)
− f(Mk−1, k)

)
Yk

+
n∑

k=0

1
pk

1{Xk=1}E[f(Mk, k) − f(Mk−1, k) | Fk−1]

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1).

Multiplying each increment in the above formulas respectively by qk and pk

and summing on k we get

f(Mn, n) = f(M−1,−1) +
n∑

k=0

f(Mk, k) − f(Mk−1, k − 1)

= f(M−1,−1) +
n∑

k=0

qk(f(Mk, k) − f(Mk−1, k − 1))

+
n∑

k=0

pk(f(Mk, k) − f(Mk−1, k − 1))

= f(M−1,−1) +
n∑

k=0

√
pkqk

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f(Mk−1, k)

)
Yk

−
n∑

k=0

√
pkqk

(
f

(
Mk−1 − uk

√
pk

qk
, k

)
− f(Mk−1, k)

)
Yk

+
n∑

k=0

E[f(Mk, k) | Fk−1] − f(Mk−1, k − 1)

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1)

= f(M−1,−1)
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+
n∑

k=0

√
pkqk

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f

(
Mk−1 − uk

√
pk

qk
, k

))
Yk

+
n∑

k=0

E[f(Mk, k) | Fk−1] − f(Mk−1, k − 1)

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1).

�
Note that in (1.13.1) we have

Dkf(Mk, k) =
√
pkqk

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f

(
Mk−1 − uk

√
pk

qk
, k

))
,

k ∈ N.
On the other hand, the term

E[f(Mk, k) − f(Mk−1, k − 1) | Fk−1]

is analog to the generator part in the continuous time Itô formula, and can
be written as

pkf

(
Mk−1 + uk

√
qk
pk
, k

)
+ qkf

(
Mk−1 − uk

√
pk

qk
, k

)
− f (Mk−1, k − 1) .

When pn = qn = 1/2, n ∈ N, we have

f(Mn, n) = f(M−1,−1) +
n∑

k=0

f (Mk−1 + uk, k) − f (Mk−1 − uk, k)
2

Yk

+
n∑

k=0

f (Mk−1 + uk, k) − f (Mk−1 − uk, k) − 2f (Mk−1 − uk, k)
2

+
n∑

k=0

f(Mk−1, k) − f(Mk−1, k − 1).

The above proposition also provides an explicit version of the Doob decom-
position for supermartingales. Naturally if (f(Mn, n))n∈N is a martingale we
have
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f(Mn, n) = f(M−1,−1)

+
n∑

k=0

√
pkqk

(
f

(
Mk−1 + uk

√
qk
pk
, k

)
− f

(
Mk−1 − uk

√
pk

qk
, k

))
Yk

= f(M−1,−1) +
n∑

k=0

Dkf(Mk, k)Yk.

In this case the Clark formula, the martingale representation formula
Proposition 1.7.5 and the change of variable formula all coincide. In this
case, we have in particular

Dkf(Mk, k) = E[Dkf(Mn, n) | Fk−1]

= E[Dkf(Mk, k) | Fk−1], k ∈ N.

If F is an FN -measurable random variable and f is a function such that

E[F | Fn] = f(Mn, n), −1 ≤ n ≤ N,

we have F = f(MN , N), E[F ] = f(M−1,−1) and

F = E[F ] +
n∑

k=0

E[Dkf(MN , N) | Fk−1]Yk

= E[F ] +
n∑

k=0

Dkf(Mk, k)Yk

= E[F ] +
n∑

k=0

DkE[f(MN , N) | Fk]Yk.

Such a function f exists if (Mn)n∈N is Markov and F = h(MN). In this
case, consider the semi-group (Pk,n)0≤k<n≤N associated to (Mn)n∈N and de-
fined by

(Pk,nh)(x) = E[h(Mn) |Mk = x].

Letting f(x, n) = (Pn,Nh)(x) we can write

F = E[F ] +
n∑

k=0

E[Dkh(MN ) | Fk−1]Yk

= E[F ] +
n∑

k=0

Dk(Pk,Nh(Mk))Yk.
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1.14 Option Hedging

In this section we give a presentation of the Black-Scholes formula in discrete
time, or Cox-Ross-Rubinstein model, see e.g. [45], [74], [125], or §15-1 of [149]
as an application of the Clark formula.
In order to be consistent with the notation of the previous sections we choose
to use the time scale N, hence the index 0 is that of the first random value of
any stochastic process, while the index −1 corresponds to its deterministic
initial value.
Let (Ak)k∈N be a riskless asset with initial value A−1, and defined by

An = A−1

n∏

k=0

(1 + rk), n ∈ N,

where (rk)k∈N, is a sequence of deterministic numbers such that rk > − 1,
k ∈ N. Consider a stock price with initial value S−1, given in discrete time as

Sn =

⎧
⎨

⎩

(1 + bn)Sn−1 if Xn = 1,

(1 + an)Sn−1 if Xn = −1, n ∈ N,

where (ak)k∈N and (bk)k∈N are sequences of deterministic numbers such that

−1 < ak < rk < bk, k ∈ N.

We have

Sn = S−1

n∏

k=0

√
(1 + bk)(1 + ak)

(
1 + bk
1 + ak

)Xk/2

, n ∈ N.

Consider now the discounted stock price given as

S̃n = Sn

n∏

k=0

(1 + rk)−1

= S−1

n∏

k=0

(
1

1 + rk

√
(1 + bk)(1 + ak)

(
1 + bk
1 + ak

)Xk/2
)
, n ∈ N.

If −1 < ak < rk < bk, k ∈ N, then (S̃n)n∈N is a martingale with respect to
(Fn)n≥−1 under the probability P

∗ given by

pk =
rk − ak

bk − ak
, qk =

bk − rk
bk − ak

, k ∈ N.
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In other terms, under P
∗ we have

E
∗[Sn+1 | Fn] = (1 + rn+1)Sn, n ≥ −1,

where E
∗ denotes the expectation under P

∗. Recall that under this probabil-
ity measure there is absence of arbitrage and the market is complete. From
the change of variable formula Proposition 1.13.1 or from the Clark formula
(1.7.1) we have the martingale representation

S̃n = S−1 +
n∑

k=0

YkDkS̃k = S−1 +
n∑

k=0

S̃k−1
√
pkqk

bk − ak

1 + rk
Yk.

Definition 1.14.1. A portfolio strategy is represented by a pair of predictable
processes (ηk)k∈N and (ζk)k∈N where ηk, resp. ζk represents the numbers of
units invested over the time period (k, k + 1] in the asset Sk, resp. Ak, with
k ≥ 0.

The value at time k ≥ −1 of the portfolio (ηk, ζk)0≤k≤N is defined as

Vk = ζk+1Ak + ηk+1Sk, k ≥ −1, (1.14.1)

and its discounted value is defined as

Ṽn = Vn

n∏

k=0

(1 + rk)−1, n ≥ −1. (1.14.2)

Definition 1.14.2. A portfolio (ηk, ζk)k∈N is said to be self-financing if

Ak(ζk+1 − ζk) + Sk(ηk+1 − ηk) = 0, k ≥ 0.

Note that the self-financing condition implies

Vk = ζkAk + ηkSk, k ≥ 0.

Our goal is to hedge an arbitrary claim onΩ, i.e. given an FN -measurable ran-
dom variable F we search for a portfolio (ηk, ζk)0≤k≤n such that the equality

F = VN = ζNAN + ηNSN (1.14.3)

holds at time N ∈ N.

Proposition 1.14.3. Assume that the portfolio (ηk, ζk)0≤k≤N is self-
financing. Then we have the decomposition

Vn = V−1

n∏

k=0

(1 + rk) +
n∑

i=0

ηiSi−1
√
piqi(bi − ai)Yi

n∏

k=i+1

(1 + rk). (1.14.4)
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Proof. Under the self-financing assumption we have

Vi − Vi−1 = ζi(Ai −Ai−1) + ηi(Si − Si−1)
= riζiAi−1 + (ai1{Xi=−1} + bi1{Xi=1})ηiSi−1

= ηiSi−1(ai1{Xi=−1} + bi1{Xi=1} − ri) + riVi−1

= ηiSi−1((ai − ri)1{Xi=−1} + (bi − ri)1{Xi=1}) + riVi−1

= (bi − ai)ηiSi−1(−pi1{Xi=−1} + qi1{Xi=1}) + riVi−1

= ηiSi−1
√
piqi(bi − ai)Yi + riVi−1, i ∈ N,

by Relation (1.4.5), hence for the discounted portfolio we get:

Ṽi − Ṽi−1 =
i∏

k=1

(1 + rk)−1Vi −
i−1∏

k=1

(1 + rk)−1Vi−1

=
i∏

k=1

(1 + rk)−1(Vi − Vi−1 − riVi−1)

= ηiSi−1
√
piqi(bi − ai)Yi

i∏

k=1

(1 + rk)−1, i ∈ N,

which successively yields (1.14.4). �
As a consequence of (1.14.4) and (1.14.2) we immediately obtain

Ṽn = Ṽ−1 +
n∑

i=0

ηiSi−1
√
piqi(bi − ai)Yi

i∏

k=0

(1 + rk)−1, (1.14.5)

n ≥ −1. The next proposition provides a solution to the hedging problem
under the constraint (1.14.3).

Proposition 1.14.4. Given F ∈ L2(Ω,FN ), let

ηn =
1

Sn−1
√
pnqn(bn − an)

E
∗[DnF | Fn−1]

N∏

k=n+1

(1 + rk)−1, (1.14.6)

0 ≤ n ≤ N , and

ζn = A−1
n

(
N∏

k=n+1

(1 + rk)−1
E
∗[F | Fn] − ηnSn

)
, (1.14.7)
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0 ≤ n ≤ N . Then the portfolio (ηk, ζk)0≤k≤n is self financing and satisfies

ζnAn + ηnSn =
N∏

k=n+1

(1 + rk)−1
E
∗[F | Fn],

0 ≤ n ≤ N , in particular we have VN = F , hence (ηk, ζk)0≤k≤N is a hedging
strategy leading to F .

Proof. Let (ηk)−1≤k≤N be defined by (1.14.6) and η−1 = 0, and consider the
process (ζn)0≤n≤N defined by

ζ−1 =
E
∗[F ]
S−1

N∏

k=0

(1 + rk)−1 and ζk+1 = ζk − (ηk+1 − ηk)Sk

Ak
,

k = −1, . . . , N −1. Then (ηk, ζk)−1≤k≤N satisfies the self-financing condition

Ak(ζk+1 − ζk) + Sk(ηk+1 − ηk) = 0, −1 ≤ k ≤ N − 1.

Let now

V−1 = E
∗[F ]

N∏

k=0

(1 + rk)−1, and Vn = ζnAn + ηnSn, 0 ≤ n ≤ N,

and

Ṽn = Vn

n∏

k=0

(1 + rk)−1, −1 ≤ n ≤ N.

Since (ηk, ζk)−1≤k≤N is self-financing, Relation (1.14.5) shows that

Ṽn = Ṽ−1 +
n∑

i=0

YiηiSi−1
√
piqi(bi − ai)

i∏

k=1

(1 + rk)−1, (1.14.8)

−1 ≤ n ≤ N . On the other hand, from the Clark formula (1.7.1) and the
definition of (ηk)−1≤k≤N we have

E
∗[F | Fn]

N∏

k=0

(1 + rk)−1

= E
∗
[
E
∗[F ]

N∏

k=0

(1 + rk)−1 +
N∑

i=0

YiE
∗[DiF | Fi−1]

N∏

k=0

(1 + rk)−1
∣∣∣Fn

]

= E
∗[F ]

N∏

k=0

(1 + rk)−1 +
n∑

i=0

YiE
∗[DiF | Fi−1]

N∏

k=0

(1 + rk)−1
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= E
∗[F ]

N∏

k=0

(1 + rk)−1 +
n∑

i=0

YiηiSi−1
√
piqi(bi − ai)

i∏

k=1

(1 + rk)−1

= Ṽn

from (1.14.8). Hence

Ṽn = E
∗[F | Fn]

N∏

k=0

(1 + rk)−1, −1 ≤ n ≤ N,

and

Vn = E
∗[F | Fn]

N∏

k=n+1

(1 + rk)−1, −1 ≤ n ≤ N.

In particular we have VN = F . To conclude the proof we note that from
the relation Vn = ζnAn + ηnSn, 0 ≤ n ≤ N , the process (ζn)0≤n≤N coincides
with (ζn)0≤n≤N defined by (1.14.7). �
Note that we also have

ζn+1An + ηn+1Sn = E
∗[F | Fn]

N∏

k=n+1

(1 + rk)−1, −1 ≤ n ≤ N.

The above proposition shows that there always exists a hedging strategy
starting from

Ṽ−1 = E
∗[F ]

N∏

k=0

(1 + rk)−1.

Conversely, if there exists a hedging strategy leading to

ṼN = F
N∏

k=0

(1 + rk)−1,

then (Ṽn)−1≤n≤N is necessarily a martingale with initial value

Ṽ−1 = E
∗[ṼN ] = E

∗[F ]
N∏

k=0

(1 + rk)−1.

When F = h(S̃N ), we have E
∗[h(S̃N ) | Fk] = f(S̃k, k) with

f(x, k) = E
∗
[
h

(
x

n∏

i=k+1

√
(1 + bk)(1 + ak)

1 + rk

(
1 + bk
1 + ak

)Xk/2
)]

.
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The hedging strategy is given by

ηk =
1

Sk−1
√
pkqk(bk − ak)

Dkf(S̃k, k)
N∏

i=k+1

(1 + ri)−1

=
∏N

i=k+1(1 + ri)−1

Sk−1(bk − ak)

(
f

(
S̃k−1

1 + bk
1 + rk

, k

)
− f

(
S̃k−1

1 + ak

1 + rk
, k

))
,

k≥ − 1. Note that ηk is non-negative (i.e. there is no short-selling) when
f is an increasing function, e.g. in the case of European options we have
f(x) = (x−K)+.

1.15 Notes and References

This chapter is a revision of [113] with some additions, and is mainly based on
[59] and [115]. It is included for the sake of consistency and for the role it plays
as an introduction to the next chapters. Other approaches to discrete-time
stochastic analysis include [53], [54], [48], [78] and [89]; see [8] for an approach
based on quantum probability. Deviation inequalities and logarithmic Sobolev
inequalities are treated in [19], [46], [59]. We also refer to [5], [17], [18], [61],
[75], for other versions of logarithmic Sobolev inequalities in discrete settings.
See [74], §15-1 of [149], and [125], for other derivations of the Black-Scholes
formula in the discrete time Cox-Ross-Rubinstein model.



Chapter 2

Continuous Time Normal Martingales

This chapter is concerned with the basics of stochastic calculus in continuous
time. In continuation of Chapter 1 we keep considering the point of view of
normal martingales and structure equations, which provides a unified treat-
ment of stochastic integration and calculus that applies to both continuous
and discontinuous processes. In particular we cover the construction of single
and multiple stochastic integrals with respect to normal martingales and we
discuss other classical topics such as quadratic variations and the Itô formula.

2.1 Normal Martingales

Let (Ω,F ,P) be a probability space equipped with a right-continuous filtra-
tion (Ft)t∈R+ , i.e. an increasing family of sub σ-algebras of F such that

Ft =
⋂

s>t

Fs, t ∈ R+.

We refer to Section 9.5 in the Appendix for recalls on martingales in conti-
nuous time.

Definition 2.1.1. A square-integrable martingale (Mt)t∈R+ such that

E
[
(Mt −Ms)2|Fs

]
= t− s, 0 ≤ s < t, (2.1.1)

is called a normal martingale.

Every square-integrable process (Mt)t∈R+ with centered independent incre-
ments and generating the filtration (Ft)t∈R+ satisfies

E
[
(Mt −Ms)2|Fs

]
= E
[
(Mt −Ms)2

]
, 0 ≤ s ≤ t,

hence the following remark.

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 2,
c© Springer-Verlag Berlin Heidelberg 2009
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Remark 2.1.2. A square-integrable process (Mt)t∈R+ with centered
independent increments is a normal martingale if and only if

E
[
(Mt −Ms)2

]
= t− s, 0 ≤ s ≤ t.

In our presentation of stochastic integration we will restrict ourselves to nor-
mal martingales. As will be seen in the next sections, this family contains
Brownian motion and the standard Poisson process as particular cases.

Remark 2.1.3. A martingale (Mt)t∈R+ is normal if and only if (M2
t −t)t∈R+

is a martingale, i.e.

E
[
M2

t − t|Fs

]
= M2

s − s, 0 ≤ s < t.

Proof. This follows from the equalities

E
[
(Mt −Ms)2|Fs

]
− (t− s)

= E
[
M2

t −M2
s − 2(Mt −Ms)Ms|Fs

]
− (t− s)

= E
[
M2

t −M2
s |Fs

]
− 2MsE [Mt −Ms|Fs] − (t− s)

= E
[
M2

t |Fs

]
− t− (E

[
M2

s |Fs

]
− s).

�
Throughout the remainder of this chapter, (Mt)t∈R+ will be a normal mar-
tingale and (Ft)t∈R+ will be the right-continuous filtration generated by
(Mt)t∈R+ , i.e.

Ft = σ(Ms : 0 ≤ s ≤ t), t ∈ R+.

2.2 Brownian Motion

In this section and the next one we present Brownian motion and the compen-
sated Poisson process as the fundamental examples of normal martingales.
Stochastic processes, as sequences of random variables can be naturally con-
structed in an infinite dimensional setting. Similarly to Remark 1.4.1 where
an infinite product of discrete Bernoulli measures is mapped to the Lebesgue
measure, one can map the uniform measure on “infinite dimensional spheres”
to a Gaussian measure, cf. e.g. [85], [49], and references therein. More pre-
cisely, the surface of the n-dimensional sphere with radius r is

sn(r) =
nπn/2

Γ (n
2 + 1)

rn−1 � πn/2
√

2nπen/2
(n

2

)−n/2

rn−1,

where the equivalence is given by Stirling’s formula as n goes to infinity. The
set of points on the sphere Sn(

√
n) whose first coordinate x1 lies between a
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and a+ da has measure

σn({(x1, . . . , xn) ∈ Sn(
√
n) : a ≤ x1 ≤ a+ da})

=
sn−1(

√
n− a2)

sn(
√
n)

√
1 − a2

n
da

� 1√
2π

(√
1 − a2

n

)n

da

→ 1√
2π

e−a2/2da, [n→ ∞].

When a point is chosen uniformly on the sphere, its components have an
approximately Gaussian distribution as n becomes large. Namely, the uniform
measure σn(dx) on Sn(

√
n) converges weakly as n goes to infinity to the

infinite dimensional Gaussian measure

γN(dx) =
∞⊗

k=0

1√
2π

e−x2
k/2dxk, (2.2.1)

on (RN,B⊗N

R
), cf. e.g. Ex. 5, page 66 of [52], which gives a numerical model of

Gaussian space in the sense of [83], §I-3. Since the n-dimensional sphere with
radius r has curvature (n− 1)/r2, Sn(

√
n) has curvature 1− 1/n, and can be

viewed as an infinite dimensional space with unit curvature when n is large.
We refer to [28] and to Chapter 5 of [50] for approaches to this phenomenon
using non standard analysis and white noise analysis respectively.
Thus our starting point is now a family (ξn)n∈N of independent standard
Gaussian random variables under γN, constructed as the canonical projections
from (RN,BRN , γN) into R. The measure γN is characterized by its Fourier
transform

α → E
[
exp
(
i〈ξ, α〉�2(N)

)]
= E

[
exp

(
i
∞∑

n=0

ξnαn

)]

=
∞∏

n=0

e−α2
n/2

= e−
1
2‖α‖2�2(N) , α ∈ 	2(N),

i.e. 〈ξ, α〉�2(N) is a centered Gaussian random variable with variance ‖α‖2
�2(N).

Let (en)n∈N denote an orthonormal basis (en)n∈N of L2(R+).

Definition 2.2.1. Given u ∈ L2(R+) with decomposition

u =
∞∑

n=0

〈u, en〉en,
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we let J1 : L2(R+) −→ L2(RN, γN) be defined as

J1(u) =
∞∑

n=0

ξn〈u, en〉. (2.2.2)

We have the isometry property

E
[
|J1(u)|2

]
=
∞∑

k=0

|〈u, en〉|2E
[
ξ2n
]

(2.2.3)

=
∞∑

k=0

|〈u, en〉|2

= ‖u‖2
L2(R+),

and the characteristic function of J1(u) is given by

E

[
eiJ1(u)

]
=
∞∏

n=0

E

[
eiξn〈u,en〉

]

=
∞∏

n=0

e
− 1

2 〈u,en〉2L2(R+)

= exp
(
−1

2
‖u‖2

L2(R+)

)
,

hence J1(u) is a centered Gaussian random variable with variance ‖u‖2
L2(R+),

cf. Section 9.2. Next is a constructive definition of Brownian motion, using
the mapping J1 and the decomposition

1[0,t] =
∞∑

n=0

en

∫ t

0

en(s)ds.

Definition 2.2.2. For all t ∈ R+, let

Bt = J1(1[0,t]) =
∞∑

n=0

ξn

∫ t

0

en(s)ds. (2.2.4)

Clearly, Bt − Bs = J1(1[s,t]) is a Gaussian centered random variable with
variance:

E[(Bt −Bs)2] = E[|J1(1[s,t])|2] = ‖1[s,t]‖2
L2(R+) = t− s. (2.2.5)

Moreover, the isometry formula (2.2.3) shows that if u1, . . . , un are orthogonal
in L2(R+) then J1(u1), . . . , J1(un) are also mutually orthogonal in L2(Ω),
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hence from Corollary 16.1 of [67], see Proposition 9.2.1 in the Appendix, we
get the following.

Proposition 2.2.3. Let u1, . . . , un be an orthogonal family in L2(R+), i.e.

〈ui, uj〉L2(R+) = 0, 1 ≤ i �= j ≤ n.

Then (J1(u1), . . . , J1(un)) is a vector of independent Gaussian centered ran-
dom variables with respective variances ‖u1‖2

L2(R+), . . . , ‖u1‖2
L2(R+).

As a consequence of Proposition 2.2.3, (Bt)t∈R+ has centered independent
increments hence it is a martingale from Proposition 9.5.2 in the Appendix.
Moreover, from (2.2.5) and Remark 2.1.2 we deduce the following proposition.

Proposition 2.2.4. The Brownian motion (Bt)t∈R+ is a normal martingale.

2.3 Compensated Poisson Martingale

The compensated Poisson process will provide a second example of a normal
martingale. As mentioned at the beginning of Section 2, Gaussian distri-
butions arise from uniform measures on infinite-dimensional spheres. They
also can be constructed from the central limit theorem which states that if
(Y n

1 , . . . , Y
n
n ) is a sequence of independent, identically distributed centered

random variables with variance σ2/n,

Y n
1 + · · · + Y n

n , n ≥ 1,

converges in distribution to a centered Gaussian random variable with vari-
ance σ2.
In a discrete setting we let

Sn = Zn
1 + · · · + Zn

n , n ≥ 1,

where Zn
1 , . . . , Z

n
n ∈ {0, 1} is a family of independent Bernoulli random vari-

ables with same parameter λ/n, i.e.

P(Zn
k = 1) =

λ

n
, 1 ≤ k ≤ n.

Then Sn has a binomial distribution with parameter (n, λ/n):

P(Zn
1 + · · · + Zn

n = k) =
(
n

k

)(
λ

n

)k (
1 − λ

n

)n−k
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which converges to
λk

k!
e−λ as n goes to infinity, i.e.

Zn
1 + · · · + Zn

n

converges in distribution to a Poisson random variable with intensity λ > 0.
This defines a probability measure πλ on Z as

πλ({k}) = pλ(k) := 1{k≥0}
λk

k!
e−λ, k ∈ N, (2.3.1)

with the convolution property

πλ � πμ = πλ+μ.

Let now (τn)n≥1 denote a sequence of independent and identically exponen-
tially distributed random variables, with parameter λ > 0, i.e.

E[f(τ1, . . . , τn)] = λn

∫ ∞

0

· · ·
∫ ∞

0

e−λ(s1+···+sn)f(s1, . . . , sn)ds1 · · · dsn,

(2.3.2)
for all sufficiently integrable f : R

n
+ → R. Let also

Tn = τ1 + · · · + τn, n ≥ 1.

Next we consider the canonical point process associated to (Tk)k≥1.

Definition 2.3.1. The point process (Nt)t∈R+ defined by

Nt =
∞∑

k=1

1[Tk,∞)(t), t ∈ R+ (2.3.3)

is called the standard Poisson point process with intensity λ > 0.

Relation (2.3.2) can be rewritten as

E[f(T1, . . . , Tn)] = λn

∫ ∞

0

· · ·
∫ ∞

0

e−λtnf(t1, . . . , tn)1{t1<···<tn}dt1 · · · dtn,
(2.3.4)

hence the law of (T1, . . . , Tn) has density

(t1, . . . , tn) → λne−λtn1{0≤t1<···<tn}

on R
n
+.
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From this we may directly show that Nt has a Poisson distribution with
parameter λt:

P(Nt = k) = P(Tk < t ≤ Tk+1)

= λk+1

∫ ∞

0

e−λtk+1

∫ tk+1

0

· · ·
∫ t2

0

1{tk<t≤tk+1}dt1 · · · dtk+1

= λk+1

∫ ∞

t

e−λtk+1

∫ t

0

∫ tk

0

· · ·
∫ t2

0

dt1 · · · dtk+1

=
tk

k!
λk+1

∫ ∞

t

e−λtk+1dtk+1

=
(λt)k

k!
e−λt, t > 0.

Proposition 2.3.2. The law of Tn has the density t → λne−λt tn−1

(n−1)! on R+,
n ≥ 1.

Proof. We have

P(T1 > t) = P(Nt = 0) = e−λt, t ∈ R+,

and by induction, assuming that

P(Tn−1 > t) = λ

∫ ∞

t

e−λs (λs)n−2

(n− 2)!
ds, n ≥ 2,

we obtain

P(Tn > t) = P(Tn > t ≥ Tn−1) + P(Tn−1 > t)
= P(Nt = n− 1) + P(Tn−1 > t)

= e−λt (λt)n−1

(n− 1)!
+ λ

∫ ∞

t

e−λs (λs)n−2

(n− 2)!
ds

= λ

∫ ∞

t

e−λs (λs)n−1

(n− 1)!
ds, t ∈ R+.

�
We also have

E[E[f(T1, . . . , Tn)|Tn+1]] = E[f(T1, . . . , Tn)]

= λn+1

∫ ∞

0

e−λtn+1

∫ tn+1

0

· · ·
∫ t2

0

f(t1, . . . , tn)dt1 · · · dtn+1

=
∫ ∞

0

· · ·
∫ ∞

0

n!
tnn+1

f(t1, . . . , tn)1{t1<···<tn+1}dt1 · · · dtndP(Tn+1 = tn+1),
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where dP(Tn+1 = tn+1) denotes P(Tn+1 ∈ dtn+1). As a consequence we have
the next proposition.

Proposition 2.3.3. The conditional density of (T1, . . . , Tn) given that
Tn+1 = T is

(t1, . . . , tn) → n!
T n

1{0≤t1<···<tn≤T}.

Moreover we have

E

[
f

(
T1

Tn+1
, . . . ,

Tn

Tn+1

)
g(Tn+1)

]

= λn+1

∫ ∞

0

e−λtn+1

∫ tn+1

0

· · ·
∫ t2

0

f

(
t1
tn+1

, . . . ,
tn
tn+1

)
g(tn+1)dt1 · · ·dtn+1

= λn+1

∫ ∞

0

(tn+1)ng(tn+1)e−λtn+1

∫ 1

0

∫ sn

0

· · ·
∫ s2

0

f(s1, . . . , sn)ds1 · · ·dsndtn+1

= n!
∫ 1

0

∫ sn

0

· · ·
∫ s2

0

f(s1, . . . , sn)ds1 · · ·dsn

∫ ∞

0

g(tn+1)dP(Tn+1 = tn+1)

= E

[
f

(
T1

Tn+1
, . . . ,

Tn

Tn+1

)]
E[g(Tn+1)],

hence
(

T1
Tn+1

, . . . , Tn

Tn+1

)
is independent of Tn+1 and has density

(s1, . . . , sn) → n!1{0≤s1<···<sn≤1}

on [0, 1]n, cf. e.g. [26]. As will be seen in Proposition 2.5.10 below, the random
sum

Na∑

k=1

f(Tk)

used in the next proposition can be interpreted as the Stieltjes integral
∫ a

0

f(t)dNt

of f with respect to (Nt)t∈R+ .

Proposition 2.3.4. Let a > 0 and let f : [0, a] → R be measurable. We have

E

[
exp

(
i

Na∑

k=1

f(Tk)

)]
= exp

(
λ

∫ a

0

(eif(t) − 1)dt
)
.

Proof. Let gn, n ≥ 1, be defined as

gn(t1, . . . , tn) =
n∑

k=1

1{tk−1<a<tk}e
if(t1)+···+if(tk−1) + 1{tn<a}eif(t1)+···+if(tn),
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with t0 = 0, so that

exp

(
i

n∧Na∑

k=1

f(Tk)

)
= gn(T1, . . . , Tn).

Then

E

[
exp

(
i

n∧Na∑

k=1

f(Tk)

)]
= E[g(T1, . . . , Tn)]

= λn
n∑

k=1

∫ ∞

0

e−λtn

∫ tn

0

· · ·
∫ t2

0

1{tk−1<a<tk}e
if(t1)+···+if(tk−1)dt1 · · · dtn

+λn

∫ a

0

e−λtn

∫ tn

0

· · ·
∫ t2

0

eif(t1)+···+if(tn)dt1 · · ·dtn

= λn
n∑

k=1

∫ ∞

a

e−λtn
(tn − a)n−k

(n− k − 1)!
dtn

×
∫ a

0

∫ tk−1

0

· · ·
∫ t2

0

eif(t1)+···+if(tk−1)dt1 · · ·dtk−1

+λn

∫ a

0

e−λtn

∫ tn

0

· · ·
∫ t2

0

eif(t1)+···+if(tn)dt1 · · ·dtn

= e−λa
n∑

k=1

λk

∫ ∞

0

e−λt (λt)n−k

(n− k − 1)!
dt

×
∫ a

0

∫ tk−1

0

· · ·
∫ t2

0

eif(t1)+···+if(tk−1)dt1 · · ·dtk−1

+λn

∫ a

0

e−λtn

∫ tn

0

· · ·
∫ t2

0

eif(t1)+···+if(tn)dt1 · · ·dtn

= e−λa
n∑

k=1

λk

∫ a

0

∫ tk−1

0

· · ·
∫ t2

0

eif(t1)+···+if(tk−1)dt1 · · · dtk−1

+e−λa
∞∑

k=n

λk

∫ a

0

(a− tn)k−n

(k − n)!

∫ tn

0

· · ·
∫ t2

0

eif(t1)+···+if(tn)dt1 · · ·dtn

= e−λa
n∑

k=1

λk

∫ a

0

∫ tk−1

0

· · ·
∫ t2

0

eif(t1)+···+if(tk−1)dt1 · · · dtk−1

+e−λa
∞∑

k=n

λk

∫ a

0

∫ a

tn

∫ tk

tn

· · ·
∫ tn+2

tn

dtn+1 · · · dtk

×
∫ tn+1

0

· · ·
∫ t2

0

eif(t1)+···+if(tn)dt1 · · · dtn
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= e−λa
∞∑

k=0

λk

∫ a

0

∫ tk

0

· · ·
∫ t2

0

eif(t1)+···+if(tk∧n)dt1 · · · dtk

= e−λa
∞∑

k=0

λk

k!

∫ a

0

· · ·
∫ a

0

eif(t1)+···+if(tk∧n)dt1 · · ·dtk.

Hence as n goes to infinity,

E

[
exp

(
i

Na∑

k=1

f(Tk)

)]
= lim

n→∞E

[
exp

(
i

n∧Na∑

k=1

f(Tk)

)]

= lim
n→∞ e−λa

∞∑

k=0

λk

k!

∫ a

0

· · ·
∫ a

0

eif(t1)+···+if(tk∧n)dt1 · · · dtk

= e−λa
∞∑

k=0

λk

k!

∫ a

0

· · ·
∫ a

0

eif(t1)+···+if(tk)dt1 · · · dtk

= exp
(
λ

∫ a

0

(eif(t) − 1)dt
)
.

�
The next corollary states the standard definition of the Poisson process.

Corollary 2.3.5. The standard Poisson process (Nt)t∈R+ defined by (2.3.3)
has independent increments which are distributed according to the Poisson
law, i.e. for all 0 ≤ t0 ≤ t1 < · · · < tn,

(Nt1 −Nt0 , . . . , Ntn −Ntn−1)

is a vector of independent Poisson random variables with respective
parameters

(λ(t1 − t0), . . . , λ(tn − tn−1)).

Proof. Letting

f =
n∑

k=1

αk1(tk−1,tk],

from Proposition 2.3.4 we get

E

[
exp

(
i

n∑

k=1

αk(Ntk
−Ntk−1)

)]
=

n∏

k=1

eλ(tk−tk−1)(eiαn−1)

= exp

(
λ

n∑

k=1

(tk − tk−1)(eiαn − 1)

)

=
n∏

k=1

E

[
eiαk(Ntk

−Ntk−1 )
]
,
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for all 0 = t0 ≤ t1 < · · · < tn, hence the components of the vector

(Nt1 −Nt0 , . . . , Ntn −Ntn−1)

are independent Poisson random variables with parameters

(λ(tn − tn−1), . . . , λ(t1 − t0)).

�
In particular, for all n ∈ Z and t ∈ R+, we have

P(Nt = n) = pn(t) = e−λt (λt)
n

n!
,

i.e. pn−1 : R+ → R+, n ≥ 1, is the density function of Tn, and

p′n(t) = pn−1(t) − pn(t), n ∈ Z, t ∈ R+.

Relation (2.3.4) above can be extended as a statement in conditional ex-
pectation using the independent increment property of the Poisson process.
Let

Δn = {(t1, . . . , tn) ∈ R
n
+ : 0 ≤ t1 < · · · < tn}, n ≥ 1.

Proposition 2.3.6. For any f ∈ L1(Δn, e−snds1 · · · dsn) we have

E[f(T1, . . . , Tn)|Ft] (2.3.5)

=
∫ ∞

t

e−(sn−t)

∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt, sNt+1, . . . , sn)dsNt+1 · · ·dsn.

Proof. Apply Relation (2.3.4) using the fact that for fixed t > 0, (Ns−Nt)s≥t

is a standard Poisson process independent of Ft. �
In particular we have

E[f(Tn)|Ft] = 1{Nt≥n}f(Tn) +
∫ ∞

t

pn−1−Nt(x − t)f(x)dx, (2.3.6)

and taking t = 0 in (2.3.5) recovers Relation (2.3.4).

Proposition 2.3.7. Given that {NT ≥ n}, the jump times (T1, . . . , Tn) of
the Poisson process (Nt)t∈R+ are independent uniformly distributed random
variables on [0, T ].
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Proof. For all n ≥ 1 and f ∈ Cc([0, T ]n) we have

E[f(T1, . . . , Tn)] = λn

∫ T

0

e−λtn

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dt1 · · · dtn

= e−λTλn
∞∑

k=n

λk−n

∫ T

0

(T − tn)k−n

(k − n)!

∫ tn

0

· · ·
∫ t2

0

f(t1, . . . , tn)dt1 · · · dtn

= e−λT
∞∑

k=n

λk

∫ T

tn

∫ tk

tn

· · ·
∫ tn+2

tn

dtn+1 · · ·dtk

×
∫ tn+1

0

· · ·
∫ t2

0

f(t1, . . . , tn)dt1 · · · dtn

= e−λT
∞∑

k=n

λk

∫ T

0

∫ tk

0

· · ·
∫ t2

0

f(t1, . . . , tn)dt1 · · · dtk

= e−λT
∞∑

k=n

λk

k!

∫ T

0

· · ·
∫ T

0

f(t1, . . . , tn)dt1 · · ·dtk

=
∞∑

k=n

1
T k

P(NT = k)
∫ T

0

· · ·
∫ T

0

f(t1, . . . , tn)dt1 · · · dtk

=
1
T n

P(NT ≥ n)
∫ T

0

· · ·
∫ T

0

f(t1, . . . , tn)dt1 · · ·dtn

= IE [f(T1, . . . , Tn)|NT ≥ n] P(NT ≥ n),

hence

IE [f(T1, . . . , Tn)|NT ≥ n] =
1
T n

∫ T

0

· · ·
∫ T

0

f(t1, . . . , tn)dt1 · · · dtn.

�
As a consequence of Corollary 2.3.5, (Mt)t∈R+ = λ−1/2(Nt − λt)t∈R+ has
centered independent increments, hence it is a martingale. Moreover a direct
variance computation under the Poisson law shows that we have

E[(Mt −Ms)2|Fs] = E[(Mt −Ms)2]
= t− s,

hence from Remark 2.1.2 we get the next proposition.

Proposition 2.3.8. The normalized compensated Poisson process

λ−1/2(Nt − λt)t∈R+

is a normal martingale.
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2.4 Compound Poisson Martingale

In this section, (Yk)k≥1 denotes an i.i.d. sequence of random variables with
probability distribution ν(dy) on R.

Definition 2.4.1. The process

Xt =
Nt∑

k=1

Yk, t ∈ R+,

is called a compound Poisson process.

For simplicity we only consider real-valued compound processes, however
this notion is easily extended to the R

d-valued case, see Relation 6.3.2 in
Section 6.3 below.
The compound Poisson processes provide other examples of normal
martingales.

Proposition 2.4.2. For any t ∈ [0, T ] we have

E [exp (iα(XT −Xt))] = exp
(
λ(T − t)

∫ ∞

−∞
(eiyα − 1)ν(dy)

)
,

α ∈ R.

Proof. Since Nt has a Poisson distribution with parameter t > 0 and is
independent of (Yk)k≥1, for all α ∈ R we have by conditioning:

E [exp (iα(XT −Xt))] = E

[
E

[
exp

(
iα

NT∑

k=Nt

Yk

)∣∣∣NT −Nt

]]

= e−λ(T−t)
∞∑

n=0

λn

n!
(T − t)n

E

[
exp

(
iα

n∑

k=1

Yk

)∣∣∣NT −Nt = n

]

= e−λ(T−t)
∞∑

n=0

λn

n!
(T − t)n

E

[
exp

(
iα

n∑

k=1

Yk

)]

= e−λ(T−t)
∞∑

n=0

λn

n!
(T − t)n (E [exp (iαY1)])

n

= e−λ(T−t)
∞∑

n=0

1
n!

(
λ(T − t)

∫ ∞

−∞
eiαyν(dy)

)n

= exp
(
λ(T − t)

∫ ∞

−∞
(eiαy − 1)ν(dy)

)
,

since ν(dy) is the probability distribution of Y1. �
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In particular we have

E[Xt] = E

[
E

[
Nt∑

k=1

Yk

∣∣∣Nt

]]

= e−λt
∞∑

n=0

λntn

n!
E

[
n∑

k=1

Yk

∣∣∣Nt = n

]

= e−λt
∞∑

n=0

λntn

n!
E

[
n∑

k=1

Yk

]

= e−λt
E[Y1]

∞∑

n=1

λntn

(n− 1)!

= λtE[Y1],

and

Var [Xt] = E

⎡

⎣
(

Nt∑

k=1

Yk − E[Xt]

)2
⎤

⎦

= E

⎡

⎣E

⎡

⎣
(

Nt∑

k=1

Yk − E[Xt]

)2 ∣∣∣Nt

⎤

⎦

⎤

⎦

= e−λt
∞∑

n=0

λntn

n!
E

⎡

⎣E

⎡

⎣
(

n∑

k=1

Yk − λtE[Y1]

)2 ∣∣∣Nt = n

⎤

⎦

⎤

⎦

= e−λt
∞∑

n=0

λntn

n!
E

⎡

⎣
(

n∑

k=1

Yk − λtE[Y1]

)2
⎤

⎦

= e−λt
∞∑

n=0

λntn

n!
E

⎡

⎣2
∑

1≤k<l≤n

YkYl +
n∑

k=1

|Yk|2 − 2λtE[Y1]
n∑

k=1

Yk + λ2t2(E[Y1])
2

⎤

⎦

= e−λt
∞∑

n=0

λntn

n!
(n(n − 1)(E[Y1])

2 + nE[|Y1|2] − 2nλt(E[Y1])
2 + λ2t2(E[Y1])

2)

= e−λt(E[Y1])
2

∞∑

n=2

λntn

(n − 2)!
+ e−λt

E[|Y1|2]
∞∑

n=1

λntn

(n − 1)!

−2e−λtλt(E[Y1])
2

∞∑

n=1

λntn

(n − 1)!
+ λ2t2(E[Y1])

2)

= λtE[|Y1|2].

Both relations can be recovered from the characteristic function of Xt, as

E[Xt] = −i d
dα

E[eiαXt ]|α=0
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= λt

∫ ∞

−∞
yμ(dy)

= λtE[Y1],

and

Var [Xt] = E[|Xt|2] − (E[Xt])2

= − d2

dα2
E[eiαXt ]|α=0 − t2(E[Y1])2

= λt

∫ ∞

−∞
|y|2μ(dy)

= λtE[|Y1|2].

From Proposition 2.4.2 we check as in Corollary 2.3.5 that (Xt)t∈R+ has
independent increments, since for all 0 ≤ t0 ≤ t1 · · · ≤ tn we have

E

[
n∏

i=1

eiα(Xti
−Xti−1 )

]
= E[eiα(Xtn−Xt0 )]

= exp
(
λ(tn − t0)

∫ ∞

−∞
(eiλy − 1)ν(dy)

)

=
n∏

i=1

exp
(
λ(ti − ti−1)

∫ ∞

−∞
(eiλy − 1)ν(dy)

)

=
n∏

i=1

E

[
eiα(Xti

−Xti−1 )
]
, α ∈ R.

Moreover we have

E[(Mt −Ms)2|Fs] = E[(Mt −Ms)2] = t− s,

hence the following proposition.

Proposition 2.4.3. The compensated and rescaled process

Mt :=
Xt − λtE[Y1]√

λVar [Y1]
, t ∈ R+,

is a normal martingale.

Compound Poisson processes belong to the more general family of Lévy pro-
cesses, see Section 6.1 of Chapter 6.
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2.5 Stochastic Integrals

In this section we construct the Itô stochastic integral of square-integrable
adapted processes with respect to normal martingales. Recall that the filtra-
tion (Ft)t∈R+ is generated by (Mt)t∈R+ , i.e.

Ft = σ(Ms : 0 ≤ s ≤ t), t ∈ R+.

A process (Xt)t∈R+ is said to be Ft-adapted if Xt is Ft-measurable for all
t ∈ R+.

Definition 2.5.1. Let Lp
ad(Ω × R+), p ∈ [1,∞], denote the space of

Ft-adapted processes in Lp(Ω × R+).

Stochastic integrals will be first constructed as integrals of simple predictable
processes.

Definition 2.5.2. Let S be a space of random variables dense in L2(Ω,F ,P).
Consider the following spaces of simple processes:

i) let U denote the space of simple processes of the form

ut =
n∑

i=1

Fi1(ti−1,ti](t), t ∈ R+,

F1, . . . , Fn ∈ S, tn0 := 0 ≤ tn1 < · · · < tnn, n ≥ 1.
ii) let P denote the subspace of U made of simple predictable processes
(ut)t∈R+ of the form

ut =
n∑

i=1

Fi1(tn
i−1,tn

i ](t), t ∈ R+, (2.5.1)

where Fi is Ftn
i−1

-measurable, i = 1, . . . , n.

One easily checks that the set P of simple predictable processes forms a linear
space. Part (ii) of the next proposition also follows from Lemma 1.1 of [64],
pages 22 and 46.

Proposition 2.5.3. Let p ≥ 1.

i) The space U of simple processes is dense in Lp(Ω × R+).
ii) The space P of simple predictable processes is dense in Lp

ad(Ω × R+).

Proof. We will prove both (i) and (ii) by the same argument, starting with
the case p = 2. Let (ut)t∈[0,T ] ∈ L2(Ω × [0, T ]) and consider the sequence
(un)n∈N of simple processes defined as
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un
t =

n∑

i=1

1(tn
i−1,tn

i ]
1

tni−1 − tni−2

∫ tn
i−1

tn
i−2

usds, t ∈ R+, n ≥ 1, (2.5.2)

where 0 = tn−1 < tn0 < tn1 < · · · < tnn−1 < tnn = T is a subdivision of [0, T ].
Clearly, un belongs to U and in addition it is predictable and belongs to P
when (ut)t∈[0,T ] is adapted. We have

‖u− un‖2
L2(Ω×R+)

= E

⎡

⎣
∫ ∞

0

(
us −

n∑

i=1

1(tn
i−1,tn

i ](s)
1

tni−1 − tni−2

∫ tn
i−1

tn
i−2

uτdτ

)2

ds

⎤

⎦

= E

⎡

⎣
∫ ∞

0

(
n∑

i=1

1(tn
i−1,tn

i ](s)

(
us −

1
tni−1 − tni−2

∫ tn
i−1

tn
i−2

uτdτ

))2

ds

⎤

⎦

= E

⎡

⎣
∫ ∞

0

(
n∑

i=1

1(tn
i−1,tn

i ](s)
1

tni−1 − tni−2

∫ tn
i−1

tn
i−2

(us − uτ )dτ

)2

ds

⎤

⎦

= E

⎡

⎣
∫ ∞

0

n∑

i=1

1(tn
i−1,tn

i ](s)

(∫ tn
i−1

tn
i−2

us − uτ

tni−1 − tni−2

dτ

)2

ds

⎤

⎦

≤ E

[∫ ∞

0

n∑

i=1

1(tn
i−1,tn

i ](s)
1

tni−1 − tni−2

∫ tn
i−1

tn
i−2

(us − uτ )2dτds

]

=
n∑

i=1

(tni − tni−1)
∫ tn

i

tn
i−1

∫ tn
i−1

tn
i−2

E

[
(us − uτ )2

(tni − tni−1)(t
n
i−1 − tni−2)

]
dτds,

which tends to 0 provided (ut)t∈[0,T ] is (uniformly) continuous in L2(Ω) on
[0, T ]. If (ut)t∈[0,T ] ∈ L2(Ω × [0, T ]) is uniformly bounded but not conti-
nuous in L2(Ω), then it can be approximated in L2(Ω× [0, T ]) by continuous
processes in L2(Ω) using convolution by a smooth approximation of unity:

uε
t (ω) =

1
ε

∫ ∞

−∞
us(ω)ϕ

(
t− s

ε

)
ds

=
1
ε

∫ t

−∞
us(ω)ϕ

(
t− s

ε

)
ds,

as ε > 0 tends to 0, where ϕ ∈ C∞c (R) is supported on [0, 1] and such that∫∞
−∞ ϕ(x)dx = 1. Moreover, the process uε is adapted when (ut)t∈[0,T ] is

adapted.
The conclusion follows by approximation of (ut)t∈[0,T ] in Lp(Ω × [0, T ]) by
uniformly bounded (adapted) processes, p ≥ 1. �
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Note that an argument similar to the above shows that the simple processes

n∑

i=1

utn
i−1

1(tn
i−1,tn

i ]

also converges to (ut)t∈[0,T ] in L2(Ω × [0, T ]) when (ut)t∈[0,T ] is continuous
on [0, T ], a.e. uniformly on [0, T ]×Ω, since

E

⎡

⎣
∫ ∞

0

(
us −

n∑

i=1

utn
i−1

1(tn
i−1,tn

i ](s)

)2

ds

⎤

⎦

= E

⎡

⎣
∫ ∞

0

(
n∑

i=1

1(tn
i−1,tn

i ](s)
(
us − utn

i−1

))2

ds

⎤

⎦

= E

[∫ ∞

0

n∑

i=1

1(tn
i−1,tn

i ](s)
(
us − utn

i−1

)2
ds

]

=
n∑

i=1

(tni − tni−1)
∫ tn

i

tn
i−1

E

[
(us − utn

i−1
)2

(tni − tni−1)

]
ds.

The stochastic integral of a simple predictable processes (ut)t∈R+ of the form
(2.5.1) with respect to the normal martingale (Mt)t∈R+ is defined as

∫ ∞

0

utdMt :=
n∑

i=1

Fi(Mti −Mti−1). (2.5.3)

Proposition 2.5.4. The definition (2.5.3) of the stochastic integral with
respect to the normal martingale (Mt)t∈R+ on simple predictable processes
extends to u ∈ L2

ad(Ω × R+) via the (conditional) isometry formula

E

[∫ ∞

0

1[s,∞)utdMt

∫ ∞

0

1[s,∞)vtdMt

∣∣∣Fs

]
= E

[∫ ∞

s

utvtdt
∣∣∣Fs

]
, s ∈ R+.

(2.5.4)

Proof. We start by showing that the isometry (2.5.4) holds for the simple
predictable process u =

∑n
i=1Gi1(ti−1,ti], with s = t0 < t1 < · · · tn:

E

[(∫ ∞

0

utdMt

)2 ∣∣∣Fs

]
= E

⎡

⎣
(

n∑

i=1

Gi(Mti −Mti−1)

)2 ∣∣∣Fs

⎤

⎦

= E

[
n∑

i=1

|Gi|2(Mti −Mti−1)
2
∣∣∣Fs

]
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+2E

⎡

⎣
∑

1≤i<j≤n

GiGj(Mti −Mti−1)(Mtj −Mtj−1)
∣∣∣Fs

⎤

⎦

=
n∑

i=1

E
[
E
[
|Gi|2(Mti −Mti−1)

2|Fti−1

]
|Fs

]

+2
∑

1≤i<j≤n

E
[
E
[
GiGj(Mti −Mti−1)(Mtj −Mtj−1)|Ftj−1

]
|Fs

]

=
n∑

i=1

E
[
|Gi|2E

[
(Mti −Mti−1)

2|Fti−1

]
|Fs

]

+2
∑

1≤i<j≤n

E[GiGj(Mti −Mti−1)E[(Mtj −Mtj−1)|Ftj−1 ]|Fs]

= E

[
n∑

i=1

|Gi|2(ti − ti−1)
∣∣∣Fs

]

= E[‖u‖2
L2(R+)|Fs].

As in the discrete case, cf. Proposition 1.2.2, the stochastic integral operator
extends to L2

ad(Ω×R+) by density and a Cauchy sequence argument, applying
the isometry (2.5.4) with s = 0, i.e.

E

[∫ ∞

0

utdMt

∫ ∞

0

vtdMt

]
= E

[∫ ∞

0

utvtdt

]
. (2.5.5)

�
The Itô integral with respect to the normal martingale (Mt)t∈R+ has the
following locality property.

Proposition 2.5.5. Let A ∈ F and u ∈ L2
ad(Ω × R+) such that

us(ω) = 0, 1A(ω)ds× P(dω) − a.e.

Then ∫ ∞

0

usdMs = 0,

P(dω)-a.e. on A.

Proof. Consider the sequence (un
s )s∈R+ , n ∈ N, of simple predictable pro-

cesses defined as

un =
n∑

i=1

1(tn
i−1,tn

i ]
1

tni−1 − tni−2

∫ tn
i−1

tn
i−2

usds, n ∈ N,
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in the proof Proposition 2.5.3, which converges to u in L2(Ω ×R+). Clearly,

un
s vanishes on A, dsdP-a.e., hence

∫ T

0

un
s dMs = 0, P(dω)-a.e. on A for all

n ≥ 0. We get the desired result by taking the limit as n goes to infinity.
�

The Itô integral of u ∈ L2
ad(Ω × R+) on the interval (a, b) is defined by

∫ b

a

usdMs :=
∫ ∞

0

1[a,b](s)usdMs,

with the Chasles relation

∫ c

a

usdMs =
∫ b

a

usdMs +
∫ c

b

usdMs, 0 ≤ a ≤ b ≤ c. (2.5.6)

Proposition 2.5.6. For all T > 0, the indefinite integral process

(∫ t

0

usdMs

)

t∈[0,T ]

has a measurable version in L2
ad(Ω × [0, T ]).

Proof. Let (un)n∈N be a sequence of simple predictable processes converging
to u in L2(Ω × [0, T ]). We have

E

[∫ T

0

(∫ t

0

usdMs −
∫ t

0

un
s dMs

)2

dt

]
= E

[∫ T

0

∫ t

0

|us − un
s |2dsdt

]

≤ T × E

[∫ T

0

|us − un
s |2ds

]

< ∞.

Hence

lim
n→∞

∫ t

0

un
s dMs =

∫ t

0

usdMs, t ∈ [0, T ],

in L2(Ω × [0, T ]), and the convergence holds dt × P(dω)-a.e. for a certain
subsequence of (un)n∈N. �
As a consequence, if a process (ut)t∈R+ is locally in L2

ad(Ω × R+):

E

[∫ T

0

|us|2ds
]
<∞, T > 0,
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then the indefinite integral process
(∫ t

0
usdMs

)

t∈R+

has a version which also

belongs locally to L2
ad(Ω × R+). Note also that the sequence

n∑

i=1

1[ti−1,ti]

∫ ti−1

0

usdMs, n ≥ 1,

converges to
(∫ t

0 usdMs

)

t∈[0,T ]
in L2

ad(Ω× [0, T ]) as the mesh of the partition

0 = t0 ≤ t1 < · · · < tn = T goes to zero.

Proposition 2.5.7. For any u ∈ L2
ad(Ω × R+) we have

E

[∫ ∞

0

usdMs

∣∣∣Ft

]
=
∫ t

0

usdMs, t ∈ R+.

In particular,
∫ t

0 usdMs is Ft-measurable, t ∈ R+.

Proof. Let u ∈ U of the form u = G1(a,b], where G is bounded and
Fa-measurable.

i) If 0 ≤ a ≤ t we have

E

[∫ ∞

0

usdMs

∣∣∣Ft

]
= E [G(Mb −Ma)|Ft]

= GE [(Mb −Ma)|Ft]

= GE [(Mb −Mt)|Ft] +GE [(Mt −Ma)|Ft]

= G(Mt −Ma)

=
∫ ∞

0

1[0,t](s)usdMs.

ii) If 0 ≤ t ≤ a we have for all bounded Ft-measurable random variable F :

E

[
F

∫ ∞

0

usdMs

]
= E [FG(Mb −Ma)] = 0,

hence

E

[∫ ∞

0

usdMs

∣∣∣Ft

]
= E [G(Mb −Ma)|Ft]

= 0

=
∫ ∞

0

1[0,t](s)usdMs.
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This statement is extended by linearity and density, since by continuity of
the conditional expectation on L2 we have:

E

[(∫ t

0

usdMs − E

[∫ ∞

0

usdMs

∣∣∣Ft

])2
]

= lim
n→∞E

[(∫ t

0

un
s dMs − E

[∫ ∞

0

usdMs

∣∣∣Ft

])2
]

= lim
n→∞E

[(
E

[∫ ∞

0

un
sdMs −

∫ ∞

0

usdMs

∣∣∣Ft

])2
]

≤ lim
n→∞E

[
E

[(∫ ∞

0

un
s dMs −

∫ ∞

0

usdMs

)2 ∣∣∣Ft

]]

≤ lim
n→∞E

[(∫ ∞

0

(un
s − us)dMs

)2
]

= lim
n→∞E

[∫ ∞

0

|un
s − us|2ds

]

= 0,

as in the proof of Proposition 1.2.3. �
In particular, since F0 = {∅, Ω}, the Itô integral is a centered random
variable:

E

[∫ ∞

0

usdMs

]
= 0. (2.5.7)

The following is an immediate corollary of Proposition 2.5.7.

Corollary 2.5.8. The indefinite stochastic integral
(∫ t

0
usdMs

)

t∈R+

of u ∈

L2
ad(Ω × R+) is a martingale, i.e.:

E

[∫ t

0

uτdMτ

∣∣∣Fs

]
=
∫ s

0

uτdMτ , 0 ≤ s ≤ t.

Recall that since the Poisson martingale (Mt)t∈R+ = (Nt− t)t∈R+ is a normal
martingale, the stochastic integral

∫ T

0

utdMt

is defined in Itô sense as an L2(Ω)-limit of stochastic integrals of simple
adapted processes.
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Clearly, from (2.2.2), (2.2.4) and (2.5.3), J1(u) coincides with the single
stochastic integral with respect to (Bt)t∈R+ , i.e.

J1(u) =
∫ ∞

0

u(t)dBt,

for all u ∈ L2(R+). The next result is an integration by parts for Brownian
motion.

Remark 2.5.9. In the particular case of Brownian motion, i.e. when

(Mt)t∈R+ = (Bt)t∈R+ ,

we have ∫ ∞

0

f(t)dBt = −
∫ ∞

0

f ′(t)Btdt,

provided f ∈ L2(R+) is C1 on R+, such that limt→∞ t|f(t)|2 = 0 and

lim
t→∞ f(t)

∫ t

0

f(s)ds = 0.

Proof. We have

∥∥∥∥
∫ ∞

0

f(t)dBt +
∫ ∞

0

f ′(t)Btdt

∥∥∥∥
2

L2(Ω)

=
∥∥∥∥
∫ ∞

0

f(t)dBt

∥∥∥∥
2

+
∥∥∥∥
∫ ∞

0

f ′(t)Btdt

∥∥∥∥
2

L2(Ω)

+2
〈∫ ∞

0

f(t)dBt,

∫ ∞

0

f ′(t)Btdt

〉

L2(Ω)

=
∫ ∞

0

|f(t)|2dt+
∫ ∞

0

∫ ∞

0

f ′(t)f ′(s)E[BtBs]dsdt+ 2
∫ ∞

0

f ′(t)
∫ t

0

f(s)dsdt

=
∫ ∞

0

|f(t)|2dt+
∫ ∞

0

∫ ∞

0

f ′(t)f ′(s)(t ∧ s)dsdt+ 2
∫ ∞

0

f ′(t)
∫ t

0

f(s)dsdt

=
∫ ∞

0

|f(t)|2dt+ 2
∫ ∞

0

f ′(t)
∫ t

0

sf ′(s)dsdt+ 2
∫ ∞

0

f ′(t)
∫ t

0

f(s)dsdt

=
∫ ∞

0

|f(t)|2dt− 2
∫ ∞

0

tf ′(t)f(t)dt − 2
∫ ∞

0

|f(t)|2dt

= − lim
t→∞ tf

2(t)

= 0.

�
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Since the Itô integral is defined in the L2(Ω) sense on adapted processes in
L2(Ω×R+, dP⊗dt) the integrals of the adapted and predictable version of a
given square-integral process coincide, as follows from Proposition 2.5.3-ii),
see also [31], page 199.
In particular, for the compensated Poisson martingale (Mt)t∈R+ = (Nt −
λt)t∈R+ , the integrals

∫ ∞

0

utdMt and
∫ ∞

0

ut−dMt

coincide in L2(Ω) whenever t → ut has left and right limits, P-a.s., since the
set of discontinuities of a function having left and right limits in every point
is always countable, cf. e.g. [52], page 5.
In the Poisson case, in addition to its definition in L2 sense, the Itô integral
also admits a pathwise interpretation as the Stieltjes integral of (ut−)t>0

under uniform continuity conditions, as shown in the next proposition, in
which

(Mt)t∈R+ = λ−1/2(Nt − λt)t∈R+

is the compensated Poisson martingale with intensity λ > 0.

Proposition 2.5.10. Let (ut)t∈[0,T ] ∈ L2(Ω × [0, T ]) be an adapted process
with a càdlàg version (i.e. continuous on the right with left limits), (ūt)t∈[0,T ]

such that
lim
ε→0

sup
t∈[ε,T ]

|ūt− − ūt−ε|2 = 0, (2.5.8)

in L4(Ω). Then we have

∫ T

0

utdMt = λ−1/2

∫ T

0

ūt−(ω(dt) − λdt),

P(dω)-almost surely, where ω(dt) denotes the random measure

ω(dt) =
∞∑

k=1

δTk
(dt).

Proof. Let
Au

ε = sup
t∈[ε,T ]

|ūt− − ūt−ε|2, 0 < ε < T,

and ū−t = ūt− , t ∈ R+. Given a subdivision

π = {0 = t0 < t1 < · · · < tn = T }
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of [0, T ], with |π| = maxi=1,...,n |ti − ti−1|, we have

∥∥∥∥∥ū
−1[0,T ] −

n∑

i=1

un
ti−11(ti−1,ti]

∥∥∥∥∥

2

L2(Ω×[0,T ])

=

∥∥∥∥∥

n∑

i=1

(ū− − un
ti−1)1(ti−1,ti]

∥∥∥∥∥

2

L2(Ω×[0,T ])

≤ T‖Au
|π|‖2

L2(Ω),

hence from (2.5.8),
n∑

i=1

un
ti
1(ti−1,ti] defined by (2.5.2) converges to ū− in

L2(Ω × [0, T ]), and
n∑

i=1

un
ti
(Mti −Mti−1)

converges to
∫∞
0 ūt−dMt as |π| goes to zero. On the other hand we have

∥∥∥∥∥λ
−1/2

∫ T

0

ūt−(ω(dt) − λdt) −
n∑

i=1

un
ti−1

(Mti − Mti−1)

∥∥∥∥∥
L2(Ω)

= λ−1/2

∥∥∥∥∥

NT∑

k=1

ūT−
k
−
∫ T

0

usds+

NT∑

i=1

un
ti−1

(ti − ti−1)−
∞∑

k=1

n∑

i=1

un
ti−1

1[ti−1,ti](Tk)

∥∥∥∥∥
L2(Ω)

≤ λ−1/2

∥∥∥∥∥

NT∑

k=1

ūT−
k

−
∞∑

k=1

n∑

i=1

un
ti−1

1[ti−1,ti](Tk)

∥∥∥∥∥
L2(Ω)

+λ−1/2

∥∥∥∥∥

∫ T

0

usds −
n∑

i=1

un
ti−1

(ti − ti−1)

∥∥∥∥∥
L2(Ω)

= λ−1/2

∥∥∥∥∥

NT∑

k=1

n∑

i=1

1[ti−1,ti](Tk)(ūT−
k
− un

ti−1
)

∥∥∥∥∥
L2(Ω)

+λ−1/2

∥∥∥∥∥

∫ T

0

n∑

i=1

1[ti−1,ti](us − un
ti−1

)ds

∥∥∥∥∥
L2(Ω)

≤ λ−1/2‖Au
ε ‖2

L4(Ω)‖NT ‖2
L4(Ω) + λ−1/2T 1/2‖Au

ε ‖L2(Ω),

hence as |π| goes to zero,

∫ T

0

utdMt = lim
|π|→0

n∑

i=1

uti−1(Mti −Mti−1)

= λ−1/2

∫ T

0

ūt−(ω(dt) − λdt),

where the limit is taken in L2(Ω). �
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Proposition 2.5.10 admits the following simplified corollary.

Corollary 2.5.11. Let T > 0 and let (ut)t∈[0,T ] ∈ L2(Ω × [0, T ]) be an
adapted process with a uniformly càdlàg version (ūt)t∈[0,T ] ∈ L2(Ω × [0, T ])
and such that u ∈ L4(Ω,L∞([0, T ])), i.e

sup
t∈[0,T ]

|ut| ∈ L4(Ω). (2.5.9)

Then we have, P(dω)-almost surely,

∫ T

0

utdMt = λ−1/2

∫ T

0

ūt−(ω(dt) − λdt), T > 0.

Proof. It suffices to check that Condition (2.5.8) holds under the hypothesis
(2.5.9). �
Concerning the compound Poisson process

Xt =
Nt∑

k=1

Yk, t ∈ R+,

of Section 2.4, under similar conditions we get

∫ T

0

utdMt = (λVar [Y1])−1/2

∫ T

0

ut−(YNtω(dt) − λE[Y1]dt),

where
Mt :=

Xt − λtE[Y1]√
λVar [Y1]

, t ∈ R+.

2.6 Predictable Representation Property

Definition 2.6.1. We say that the martingale (Mt)t∈R+ has the predictable
representation property if

{
c+
∫ ∞

0

utdMt : c ∈ R, u ∈ P
}

is dense in L2(Ω).

The next proposition is the continuous time analog of Proposition 1.7.5.
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Proposition 2.6.2. The martingale (Mt)t∈R+ has the predictable represen-
tation property if and only if any square-integrable martingale (Xt)t∈R+ with
respect to (Ft)t∈R+ can be represented as

Xt = X0 +
∫ t

0

usdMs, t ∈ R+, (2.6.1)

where (ut)t∈R+ ∈ L2
ad(Ω × R+) is an adapted process such that

u1[0,T ] ∈ L2(Ω × R+)

for all T > 0.

Proof. Assume that for any square-integrable martingale (Xt)t∈R+ a repre-
sentation of the form (2.6.1) exists. Given F ∈ L2(Ω), letting

Xt = E[F | Ft], t ∈ R+,

defines a square-integrable martingale (Xt)t∈R+ . If F is in L2(Ω),
Proposition 9.4.1 in the Appendix shows that (Xn)n∈N converges to F
in L2(Ω). On the other hand, Xn can be represented from (2.6.1) as

Xn = E[F ] +
∫ n

0

un
s dMs, n ≥ 1,

where for all n ≥ 1 the process un can be approximated by a sequence of
elements of P by Proposition 2.5.3. Hence

{
c+
∫ ∞

0

utdMt : c ∈ R, u ∈ P
}

is dense in L2(Ω).
Conversely, assume that the predictable representation property of Definition
2.6.1 holds and let (Xt)t∈R+ be an L2 martingale. Then for all n ≥ 1 there
exists a sequence (un,k

t )t∈[0,n] in P such that the limit

Xn = X0 + lim
k→∞

∫ n

0

un,k
t dMt

exists in L2(Ω). By the Itô isometry (2.5.4), the sequence (un,k
t )t∈[0,n] is

Cauchy in L2(Ω × [0, n]) and by completeness of Lp spaces it converges to a
process (un

t )t∈[0,n] ∈ L2(Ω × [0, n]) such that

Xn = X0 +
∫ n

0

un
s dMs, n ≥ 1.
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Then from Proposition 2.5.7 we have, for all n ∈ N and t ∈ [n, n+ 1):

Xt = E[Xn+1|Ft]

= E

[
X0 +

∫ n+1

0

un+1
s dMs

∣∣∣Ft

]

= E

[
X0 +

∫ n

0

un+1
s dMs +

∫ n+1

n

un+1
s dMs

∣∣∣Ft

]

= E

[
X0 +

∫ n

0

un+1
s dMs

∣∣∣Fn

]
+ E

[∫ n+1

n

un+1
s dMs

∣∣∣Ft

]

= E

[
X0 +

∫ n+1

0

un+1
s dMs

∣∣∣Fn

]
+ E

[∫ n+1

n

un+1
s dMs

∣∣∣Ft

]

= E

[
Xn+1

∣∣∣Fn

]
+ E

[∫ n+1

n

un+1
s dMs

∣∣∣Ft

]

= Xn + E

[∫ n+1

n

un+1
s dMs

∣∣∣Ft

]

= Xn +
∫ t

n

un+1
s dMs.

Letting the process (us)s∈R+ be defined by

us = un+1
s , n ≤ s < n+ 1, n ∈ N,

we obtain

Xt = X0 +
∫ t

0

usdMs, t ∈ R+,

which is (2.6.1). �
In the sequel we will show that Brownian motion and the compensated
Poisson process have the predictable representation property. This is how-
ever not true of compound Poisson processes in general, see (2.10.5) below.

2.7 Multiple Stochastic Integrals

Let L2(R+)◦n denote the subspace of L2(R+)⊗n = L2(Rn
+), made of symmet-

ric functions fn in n variables (see Section 9.7 in the Appendix for a review
of tensor products). The multiple stochastic integral of a symmetric function
fn ∈ L2(R+)◦n is defined as an iterated integral. First we let

I1(f) =
∫ ∞

0

f(t)dMt, f ∈ L2(R+).
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As a convention we identify L2(R+)◦0 to R and let

I0(f0) = f0, f0 ∈ L2(R+)◦0 � R.

Proposition 2.7.1. The multiple stochastic integral In(fn) of fn ∈ L2

(R+)◦n, defined by induction as

In(fn) = n

∫ ∞

0

In−1(fn(∗, t)1[0,t]n−1(∗))dMt, n ≥ 1, (2.7.1)

satisfies the isometry formula

E[In(fn)Im(gm)] = n!1{n=m}〈fm, gm〉L2(Rn
+),

fn ∈ L2(R+)◦n, fm ∈ L2(R+)◦m, n,m ∈ N.

Proof. Note that the process

t → In−1(fn(∗, t)1[0,t]n−1(∗))

is Ft-adapted, cf. Proposition 2.5.7, hence the iterated stochastic integral in
(2.7.1) is well-defined by Proposition 2.5.4. If n = m ≥ 1 we have from (2.7.1)
and the Itô isometry (2.5.5):

E[|In(fn)|2] = n2

∫ ∞

0

E[|In−1(fn(∗, t)1[0,t]n−1(∗))|2]dt,

with the convention I0(f0) = f0 ∈ R. By induction on n ≥ 1 this yields:

E[In(fn)2] = n!2
∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

|fn(t1, . . . , tn)|2dt1 · · · dtn

= n!‖fn‖2
L2(Rn

+).

On the other hand, from (2.5.7) we have

E[I1(f1)I0(g0)] = I0(g0)E[I1(f1)] = 0.

By induction on the rank n ≥ 1 of In(fn), assuming that

E[In(fn)Ik(fk)] = 0, 0 ≤ k < n,

fk ∈ L2(R+)◦k, 0 ≤ k ≤ n, we have for all 0 ≤ k ≤ n:

E[In+1(fn)Ik(fk)]

= k(n+ 1)
∫ ∞

0

E[In(fn+1(∗, t)1[0,t]n(∗))Ik−1(fk(∗, t)1[0,t]k−1(∗))]dt

= 0,



88 2 Continuous Time Normal Martingales

hence for all n ≥ 1 we have

E[In(fn)Ik(gk)] = 0, 0 ≤ k ≤ n− 1.

�
In particular we have E[In(fn)] = 0 for all n ≥ 1.

We also have

In(fn) = n!
∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn . (2.7.2)

On the other hand, the symmetric tensor product u ◦ fn satisfies

u ◦ fn(t1, . . . , tn+1) =
1

n+ 1

n+1∑

i=1

u(ti)fn(t1, . . . , ti−1, ti+1, . . . , tn+1), (2.7.3)

u ∈ L2(R+), fn ∈ L2(R+)◦n, hence

In+1(u ◦ fn) = n

∫ ∞

0

In(fn(∗, s) ◦ u(·)1[0,s]n(∗, ·))dMs (2.7.4)

+
∫ ∞

0

u(s)In(fn1[0,s]n)dMs.

Lemma 2.7.2. For all fn ∈ L2(R+)◦n, n ≥ 1, we have

E[In(fn) | Ft] = In(fn1[0,t]n), t ∈ R+.

Proof. Since the indefinite Itô integral is a martingale from (2.7.2) and
Proposition 2.5.7 we have

E[In(fn) | Ft] = n!E
[∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn

∣∣∣Ft

]

= n!
∫ t

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn

= In(fn1[0,t]n).

�
As a consequence of Lemma 2.7.2, In(fn) is Ft-measurable if and only if

fn = fn1[0,t]n ,

i.e. fn = 0 over R
n \ [0, t]n.
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2.8 Chaos Representation Property

Let now

S =

{
n∑

k=0

Ik(fk) : fk ∈ L4(R+)◦k, k = 0, . . . , n, n ∈ N

}
.

Let also H0 = R and

Hn = {In(fn) : fn ∈ L2(R+)◦n}, n ≥ 1.

We have

S ⊂ Vect

{ ∞⋃

n=0

Hn

}
.

The following is the definition of the Fock space over L2(R+).

Definition 2.8.1. The completion of S in L2(Ω) is denoted by the direct sum

∞⊕

n=0

Hn.

The chaos representation property states that every F ∈ L2(Ω,F ,P) admits
a decomposition

F = f0 +
∞∑

n=1

In(fn),

where f0 = E[F ] and fn ∈ L2(R+)◦n, n ≥ 1.
It is equivalent to stating that S is dense in L2(Ω), and can also be formulated
as in the next definition.

Definition 2.8.2. The martingale (Mt)t∈R+ has the chaos representation
property if

L2(Ω,F ,P) =
∞⊕

n=0

Hn.

In case (Mt)t∈R+ has the chaos representation property, the multiple stochas-
tic integrals In provide an isometric isomorphism between L2(Ω) and the
Fock space Φ(L2(R+)) defined as the direct sum

Φ(L2(R+)) = R ⊕
∞⊕

n=1

L2(R+)◦n.

Definition 2.8.3. The number operator L is defined on S by L = δD.
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The operator L satisfies

LIn(fn) = nIn(fn), fn ∈ L2(R+)◦n, n ∈ N.

We will note later, cf. Proposition 5.1.5 and Proposition 6.3.2, that Brownian
motion and the compensated Poisson martingale have the chaos representa-
tion property.
Moreover, the chaos representation property of Definition 2.6.1 implies the
predictable representation property, as will be shown in Proposition 4.2.4
below.

2.9 Quadratic Variation

Next, we introduce the quadratic variation of a normal martingale.

Definition 2.9.1. The quadratic variation of the martingale (Mt)t∈R+ is the
process ([M,M ]t)t∈R+ defined as

[M,M ]t = M2
t − 2

∫ t

0

MsdMs, t ∈ R+. (2.9.1)

Note that the we have

[M,M ]t − [M,M ]s = (Mt −Ms)2 − 2
∫ t

s

(Mτ −Ms)dMτ , 0 < s < t,

(2.9.2)
since

Ms(Mt −Ms) =
∫ t

s

MsdMτ , 0 ≤ s ≤ t,

as an immediate consequence of the definition 2.5.3 of the stochastic integral.
Let now

πn = {0 = tn0 < tn1 < · · · < tnn−1 < tnn = t}

denote a family of subdivision of [0, t], such that |πn| := maxi=1,...,n |tni −tni−1|
converges to 0 as n goes to infinity.

Proposition 2.9.2. We have

[M,M ]t = lim
n→∞

n∑

i=1

(Mtn
i
−Mtn

i−1
)2, t ≥ 0,

where the limit exists in L2(Ω) and is independent of the sequence (πn)n∈N

of subdivisions chosen.
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Proof. We have

[M,M ]tn
i
− [M,M ]tn

i−1
= M2

tn
i
−M2

tn
i−1

− 2
∫ tn

i

tn
i−1

MsdMs

= (Mtn
i
−Mtn

i−1
)2 + 2

∫ tn
i

tn
i−1

(Mtn
i−1

−Ms)dMs,

hence

E

⎡

⎣
(

[M,M ]t −
n∑

i=1

(Mtn
i
−Mtn

i−1
)2
)2
⎤

⎦

= E

⎡

⎣
(

n∑

i=1

[M,M ]tn
i
− [M,M ]tn

i−1
− (Mtn

i
−Mtn

i−1
)2
)2
⎤

⎦

= 4E

⎡

⎣
(

n∑

i=1

∫ t

0

1(tn
i−1,tn

i ](s)(Ms −Mtn
i−1

)dMs

)2
⎤

⎦

= 4E

[
n∑

i=1

∫ tn
i

tn
i−1

(Ms −Mtn
i−1

)2ds

]

= 4E

[
n∑

i=1

∫ tn
i

tn
i−1

(s− tni−1)
2ds

]

≤ 4t|π|.

�

Proposition 2.9.3. The quadratic variation of Brownian motion (Bt)t∈R+ is

[B,B]t = t, t ∈ R+.

Proof. (cf. e.g. [121], Theorem I-28). For every subdivision {0 = tn0 < · · · <
tnn = t} we have

E

⎡

⎣
(
t−

n∑

i=1

(Btn
i
−Btn

i−1
)2
)2
⎤

⎦

= E

⎡

⎣
(

n∑

i=1

(Btn
i
−Btn

i−1
)2 − (tni − tni−1)

)2
⎤

⎦
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=
n∑

i=1

(tni − tni−1)
2
E

⎡

⎣
(

(Btn
i
−Btn

i−1
)2

tni − tni−1

− 1

)2
⎤

⎦

= E[(Z2 − 1)2]
n∑

i=0

(tni − tni−1)
2

≤ t|π|E[(Z2 − 1)2],

where Z is a standard Gaussian random variable. �
Concerning the Poisson process, a simple analysis of the paths of (Nt)t∈R+

shows that the quadratic variation of the compensated Poisson process
(Mt)t∈R+ = (Nt − t)t∈R+ is

[M,M ]t = Nt, t ∈ R+.

Similarly for the compensated compound Poisson martingale

Mt :=
Xt − λtE[Y1]√

λVar [Y1]
, t ∈ R+,

where

Xt =
Nt∑

k=1

Yk, t ∈ R+,

we have

[M,M ]t =
Nt∑

k=1

|Yk|2, t ∈ R+.

Definition 2.9.4. The angle bracket 〈M,M〉t is defined as the unique in-
creasing process such that

M2
t − 〈M,M〉t, t ∈ R+,

is a martingale.

As a consequence of Remark 2.1.3 we have

〈M,M〉t = t, t ∈ R+,

for all normal martingales.
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2.10 Structure Equations

We refer to [37] for the following definition.

Definition 2.10.1. An equation of the form

[M,M ]t = t+
∫ t

0

φsdMs, t ∈ R+, (2.10.1)

where (φt)t∈R+ ∈ L2
ad(Ω×R+) is a square-integrable adapted process, is called

a structure equation.

In the sequel we will always consider a right-continuous version of (φt)t∈R+ .
From (2.9.2) we get that for any normal martingale satisfying the structure
equation (2.10.1) we have

(Mt −Ms)2 = 2
∫ t

s

(Mτ −Mτ )dMτ +
∫ t

s

φτdMτ + t− s, 0 ≤ s ≤ t.

(2.10.2)
Moreover,

[M,M ]t − 〈M,M〉t, t ∈ R+,

is also a martingale as a consequence of Remark 2.1.3 and Corollary 2.5.8,
since by Definition 2.9.1 we have

[M,M ]t − 〈M,M〉t = [M,M ]t − t

= M2
t − t− 2

∫ t

0

MsdMs, t ∈ R+.

As a consequence we have the following proposition.

Proposition 2.10.2. Assume that (Mt)t∈R+ is a normal martingale in L4

having the predictable representation property. Then (Mt)t∈R+ satisfies the
structure equation (2.10.1), i.e. there exists a square-integrable adapted pro-
cess (φt)t∈R+ such that

[M,M ]t = t+
∫ t

0

φsdMs, t ∈ R+.

Proof. Since ([M,M ]t − t)t∈R+ is a martingale and (Mt)t∈R+ has the chaos
representation property, Proposition 2.6.2 shows the existence of a square-
integrable adapted process (φt)t∈R+ such that

[M,M ]t − t =
∫ t

0

φsdMs, t ∈ R+.

�
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In general, letting

it = 1{φt=0} and jt = 1 − it = 1{φt �=0}, t ∈ R+, (2.10.3)

the continuous part of (Mt)t∈R+ is given by dM c
t = itdMt and the eventual

jump of (Mt)t∈R+ at time t ∈ R+ is given as ΔMt = φt on {ΔMt �= 0},
t ∈ R+, see [37], page 70.
In particular,

a) Brownian motion (Bt)t∈R+ satisfies the structure equation (2.10.1) with
φt = 0, since the quadratic variation of (Bt)t∈R+ is [B,B]t = t, t ∈ R+. In
(2.10.6) we have ΔBt = ±

√
Δt with equal probabilities 1/2.

b) The compensated Poisson martingale (Mt)t∈R+ = λ(Nλ
t − t/λ2)t∈R+ ,

where (Nλ
t )t∈R+ is a standard Poisson process with intensity 1/λ2, satisfies

the structure equation (2.10.1) with φt = λ ∈ R, t ∈ R+, since

[M,M ]t = λ2Nλ
t = t+ λMt, t ∈ R+.

In this case, ΔMt ∈ {0, λ} in (2.10.6), with respective probabilities 1 −
λ−2Δt and λ−2Δt.
c) If (φt)t∈R+ is deterministic, then (Mt)t∈R+ can be represented as

dMt = itdBt + φt(dNt − λtdt), t ∈ R+, M0 = 0, (2.10.4)

with λt = jt/φ
2
t , t ∈ R+, where (Bt)t∈R+ is a standard Brownian motion,

and (Nt)t∈R+ a Poisson process independent of (Bt)t∈R+ , with intensity
νt =
∫ t

0
λsds, t ∈ R+, cf. [37].

d) The Azéma martingales correspond to φt = βMt, β ∈ [−2, 0), and pro-
vide other examples of processes having the chaos representation property,
and dependent increments, cf. [37].
e) Not all normal martingales satisfy a structure equation and have the
predictable representation property. For instance, for the compound Pois-
son process

Xt =
Nt∑

k=1

Yk, t ∈ R+,

and the compensated compound Poisson martingale

Mt =
Xt − λtE[Y1]√

λVar [Y1]
, t ∈ R+, (2.10.5)

of Section 2.4 we have

[M,M ]t = (λVar [Y1])−1
Nt∑

k=1

|Yk|2
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= (λVar [Y1])−1

∫ t

0

|Y1+Ns− |2dNs

= (λVar [Y1])−1

∫ t

0

|Y1+N
s− |

2

YNs

d(Xs − λE[Y1]ds)

+E[Y1](Var [Y1])−1

∫ t

0

|Y1+Ns− |2

YNs

ds

=
1√

λVar [Y1]

∫ t

0

|Y1+Ns− |
2

YNs

dMs

+E[Y1](Var [Y1])−1/2

∫ t

0

|Y1+Ns− |
2

YNs

ds,

t ∈ R+, hence (Mt)t∈R+ does not satisfy a structure equation and as a
consequence of Proposition 2.6.2 it does not have the predictable repre-
sentation property, and it does not satisfy (2.10.1). Another way to verify
this fact is to consider for example the sum

Mt = N1
t − t+ α(N2

t − t)

where |α| �= 1 and (N1
t ), (N2

t ) are independent standard Poisson processes.
In this case,

(MT )2 − 2
∫ T

0

Ms−dMs = N1
T + |α|2N2

T ,

can clearly not be represented as a stochastic integral with respect to
(Mt)t∈R+ when |α| �= 1.

The structure equation (2.10.1) can be informally written as

(ΔMt)2 = Δt+ φtΔMt,

with solution

ΔMt =
φt

2
±

√(
φt

2

)2

+Δt, (2.10.6)

which is a continuous time analog of Relation (1.4.2). By the martingale
property of (Mt)t∈R+ we have the equation E[ΔMt] = 0 which yields the
respective probabilities

1
2
∓ φt

2
√
φ2

t + 4Δt
,

compare with (1.4.2) and (1.4.4). This provides a procedure to simulate sam-
ple paths of a normal martingale.



96 2 Continuous Time Normal Martingales
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Fig. 2.1 Sample path of an Azéma martingale with β = −0.5

Figure 2.1 presents a simulation of the paths of an Azéma martingale, in
which case we have

ΔMt =
βMt−

2
±

√(
βMt−

2

)2

+Δt,

with probabilities
1
2
∓ βMt−

2
√

(βMt−)2 + 4Δt
,

for some β ∈ R.
Informally, the above calculations of quadratic variations can be obtained by
applying the rules ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|dBt|2 = dt,

|dNt|2 = dNt,

|dXt|2 = |YNt |2dNt,

|dt|2 = 0.

2.11 Product Formula for Stochastic Integrals

In this section we present a multiplication formula in L2(Ω) for stochastic
integrals with respect to normal martingales. For this we need to be able to
control their L4 norms as in the next proposition.
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Assumption 2.11.1. Assume that for some constant K > 0,

E

[∫ b

a

φ2
sds
∣∣∣Fa

]
≤ K2(b − a), P − a.s., 0 ≤ a ≤ b. (2.11.1)

Note that Condition (2.11.1) holds whenever (φt)t∈[0,T ] ∈ L∞ad(Ω × [0, T ]).
This condition is satisfied in all cases of interest here, since for Azéma mar-
tingales we have (φt)t∈[0,T ] = (βMt)t∈[0,T ], β ∈ (−2, 0), and supt∈[0,T ] |Mt| ≤
(−2/β)1/2 < ∞ (see [37], page 83). In addition, Brownian motion and the
compensated Poisson martingales satisfy this hypothesis. Assumption 2.11.1
leads to the next proposition.

Proposition 2.11.2. Under the Assumption 2.11.1 we have
∥∥∥∥
∫ ∞

0

usdMs

∥∥∥∥
L4(Ω)

(2.11.2)

≤ C(‖u‖L4(Ω×R+) + ‖u‖L4(Ω,L2(R+)) + ‖u‖1/2
L4(Ω,L2(R+))‖u‖

1/2
L4(Ω×R+)),

for all u ∈ L4
ad(Ω × R+) ∩ L4(Ω,L2(R+)), where C > 0 is a constant.

Proof. Let u ∈ P a simple predictable process of the form

u =
n∑

i=1

Gi1(ti−1,ti], (2.11.3)

for a given a subdivision π = {0 = t0 < t1 < · · · < tn} with

|π| := max
i=1,...,n

|ti − ti−1| ≤ 1.

We have, using Relation (2.1.1),

E

[(∫ ∞

0

usdMs

)4
]

= E

⎡

⎣
(

n∑

i=1

Gi(Mti −Mti−1)

)4
⎤

⎦

= E

[
n∑

i=1

G4
i (Mti −Mti−1)

4

]

+2E

⎡

⎣
n∑

1≤i<j≤n

G2
iG

2
j(Mti −Mti−1)

2(Mtj −Mtj−1)
2

⎤

⎦

= E

[
n∑

i=1

G4
i (Mti −Mti−1)

4

]
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+2E

⎡

⎣
n∑

1≤i<j≤n

G2
iG

2
j(Mti −Mti−1)

2(tj − tj−1)

⎤

⎦

≤ E

[
n∑

i=1

G4
i (Mti −Mti−1)

4

]

+2E

[
n∑

i=1

G2
i (Mti −Mti−1)

2

∫ ∞

ti

|us|2ds
]

≤ E

[
n∑

i=1

G4
i (Mti −Mti−1)

4

]

+2

(
E

[(∫ ∞

0

|us|2ds
)2
])1/2

⎛

⎝E

⎡

⎣
(

n∑

i=1

G2
i (Mti −Mti−1)

2

)2
⎤

⎦

⎞

⎠
1/2

.

We will deal successively with the three terms in the above expression. From
Relation (2.10.2) we have

E

[(
n∑

i=1

G2
i (Mti

− Mti−1 )
2

)2]
(2.11.4)

= E

[(
n∑

i=1

2G2
i

∫
ti

ti−1

(Mτ − Mti−1 )dMτ + G2
i

∫
ti

ti−1

φτdMτ + G2
i (ti−1 − ti)

)2]

≤ 3E

[
n∑

i=1

4G4
i

(∫ ti

ti−1

(Mτ − Mti−1)dMτ

)2

+ G4
i

(∫ ti

ti−1

φτdτ

)2

+ G4
i (ti−1 − ti)

2

]

≤ 3E

[
n∑

i=1

4G4
i

∫ ti

ti−1

(Mτ − Mti−1)
2dτ+G4

i (ti − ti−1)

∫ ti

ti−1

|φτ |2dτ+G4
i (ti−1 − ti)

2

]

≤ 3E

[
n∑

i=1

4G4
i

∫
ti

ti−1

(τ − ti−1)dτ + G4
i (ti − ti−1)

∫
ti

ti−1

|φτ |2dτ + G4
i (ti−1 − ti)

2

]

≤ 3E

[
n∑

i=1

G4
i

(
4

∫
ti

ti−1

(τ − ti−1)dτ + (K2 + 1)(ti − ti−1)
2

)]

≤ 3(5 + K2)|π|‖u‖4L4(Ω×R+).

Next from Relation (2.10.2) we have

(Mt −Ms)4 = (t− s)
(

2
∫ t

s

(Mτ −Ms)dMτ +
∫ t

s

φτdMτ + t− s

)

+2
∫ t

s

(Mτ −Ms)dMτ

(
2
∫ t

s

(Mτ −Ms)dMτ +
∫ t

s

φτdMτ + t− s

)

+
∫ t

s

φτdMτ

(
2
∫ t

s

(Mτ −Ms)dMτ +
∫ t

s

φτdMτ + t− s

)
,
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hence from Proposition 2.5.7, Relations (2.1.1) and (2.5.4), and the condi-
tional Itô isometry (2.5.4) we have

E[(Mt − Ms)
4|Fs] = (t − s)2 + 4E

[∫ t

s

(Mτ − Ms)
2dτ
∣∣∣Fs

]

+4E

[∫ t

s

φτ (Mτ − Ms)dτ
∣∣∣Fs

]
+ E

[∫ t

s

φ2
τdτ
∣∣∣Fs

]

= (t − s)2 + 4

∫ t

s

(τ − s)2dτ

+4E

[∫ t

s

φτ (Mτ − Ms)dτ
∣∣∣Fs

]
+ E

[∫ t

s

φ2
τdτ
∣∣∣Fs

]

≤ (t − s)2 + 4

∫ t

s

(τ − s)2dτ + E

[∫ t

s

φ2
τdτ
∣∣∣Fs

]

+4

(
E

[∫ t

s

φ2
τdτ
∣∣∣Fs

])1/2 (
E

[∫ t

s

(Mτ − Ms)
2dτ
∣∣∣Fs

])1/2

≤ (t − s)2 + 4

∫ t

s

(τ − s)2dτ + E

[∫ t

s

φ2
τdτ
∣∣∣Fs

]

+4

(
E

[∫ t

s

φ2
τdτ
∣∣∣Fs

])1/2 (∫ t

s

(τ − s)2dτ

)1/2

≤ (t − s)2 +
4

3
(t − s)3 +

4√
3
|t − s|3/2

(
E

[∫ t

s

φ2
τdτ
∣∣∣Fs

])1/2

+E

[∫ t

s

φ2
τ dτ
∣∣∣Fs

]

≤ (t − s)

(
K2 + t − s +

4K√
3

(t − s) +
4

3
(t − s)2

)
,

which yields

E

[
n∑

i=1

G4
i (Mti −Mti−1)

4

]
=

n∑

i=1

E[G4
i E[(Mti −Mti−1)

4|Fti−1 ]]

≤
(
K2 + |π| + 4K√

3
|π| + 4

3
|π|2
)

E

[
n∑

i=1

G4
i (ti − ti−1)

]
(2.11.5)

≤ K̃2‖u‖4
L4(Ω×R+),

for some constant K̃ > 0. Finally, ((2.11.4)) and (2.11.5) lead to (2.11.2).
�

Next we state a multiplication formula for stochastic integrals with respect
to a normal martingale.
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Proposition 2.11.3. Under the Assumption 2.11.1, for all u ∈ L4
ad(Ω ×

R+) ∩ L4(Ω,L2(R+)) we have
∫ ∞

0

usdMs ∈ L4(Ω) and

(∫ ∞

0

usdMs

)2

= 2
∫ ∞

0

us

∫ s

0

uτdMτdMs+
∫ ∞

0

|us|2φsdMs+
∫ ∞

0

|us|2ds.

(2.11.6)

Proof. For simple predictable processes (us)s∈R+ of the form (2.11.3), for-
mula (2.11.6) follows from (2.10.2). It is extended to u ∈ L4

ad(Ω × R+) ∩
L4(Ω,L2(R+)) using (2.11.2) and the Itô isometry (2.5.4) which shows that

E

[(∫ ∞

0

|us|2φsdMs

)2
]

= E

[
n∑

i=1

|Gi|4
∫ ti

ti−1

|φs|2ds
]

≤ KE

[
n∑

i=1

|Gi|4(ti − ti−1)

]

= K‖u‖4
L4(Ω×R+),

and

E

[(∫ ∞

0

us

∫ s

0

uτdMτdMs

)2
]

= E

[∫ ∞

0

|us|2
(∫ s

0

uτdMτ

)2

ds

]

≤
∫ ∞

0

E
[
|us|4
]1/2

dsE

[(∫ s

0

uτdMτ

)4
]1/2

≤ C‖u‖2
L4(Ω×R+)(‖u‖2

L4(Ω×R+) + ‖u‖2
L4(Ω,L2(R+))‖u‖2

L4(Ω×R+)),

for some constant C > 0. �
The proof of Proposition 2.11.3 can easily be modified to show that we have

(∫ t

0

usdMs +
∫ t

0

asds

)(∫ t

0

vsdMs +
∫ t

0

bsds

)

=
∫ t

0

us

∫ s

0

bτdτdMs +
∫ t

0

bs

∫ s

0

uτdMτds

+
∫ t

0

vs

∫ s

0

aτdτdMs +
∫ t

0

as

∫ s

0

vτdMτds

+
∫ t

0

as

∫ s

0

bτdτds+
∫ t

0

bs

∫ s

0

aτdτds
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+
∫ t

0

us

∫ s

0

vτdMτdMs +
∫ t

0

vs

∫ s

0

uτdMτdMs

+
∫ t

0

φsusvsdMs +
∫ t

0

usvsds, (2.11.7)

where all terms belong to L4(Ω), t ∈ R+, for all u, v, a, b ∈ L4
ad(Ω × R+) ∩

L4(Ω,L2(R+)).
As a corollary we have the following multiplication formula for multiple
stochastic integrals.

Corollary 2.11.4. Let u∈L∞(R+) and v ∈L4(R+). Then under Assump-
tion 2.11.1 we have for all n ≥ 1 and t ∈ R+:

I1(u1[0,t])In(1[0,t]nv
⊗n)

=
∫ t

0

usIn(1[0,s]nv
⊗n)dMs + n

∫ t

0

vsIn−1(1[0,s]n−1v⊗(n−1))
∫ s

0

uτdMτdMs

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs+n
∫ t

0

usvsIn−1(1[0,s]n−1v⊗(n−1))ds.

Proof. Applying Proposition 2.11.3 to us and vsIn−1(1[0,s]n−1v⊗(n−1)), we
have

I1(u1[0,t])In(1[0,t]nv
⊗n) = n

∫ t

0

usdMs

∫ t

0

vsIn−1(1[0,s]n−1v⊗(n−1))dMs

= n

∫ t

0

us

∫ s

0

vτ In−1(1[0,τ ]n−1v⊗(n−1))dMτdMs

+n
∫ t

0

vsIn−1(1[0,s]n−1v⊗(n−1))
∫ s

0

uτdMτdMs

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+n
∫ t

0

usvsIn−1(1[0,s]n−1v⊗(n−1))ds

=
∫ t

0

usIn(1[0,s]nv
⊗n)dMs + n

∫ t

0

vsIn−1(1[0,s]n−1v⊗(n−1))
∫ s

0

uτdMτdMs

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+n
∫ t

0

usvsIn−1(1[0,s]n−1v⊗(n−1))ds.

�
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2.12 Itô Formula

Consider a normal martingale (Mt)t∈R+ satisfying the structure equation

d[M,M ]t = dt+ φtdMt.

Such an equation is satisfied in particular if (Mt)t∈R+ has the predictable
representation property, cf. Proposition 2.10.2.
The following is a statement of Itô’s formula for normal martingales, cf. [37],
page 70, for a proof using formal semimartingales. The proof presented here
is in the L2 sense.

Proposition 2.12.1. Assume that φ ∈ L∞ad([0, T ]× Ω). Let (Xt)t∈[0,T ] be a
process given by

Xt = X0 +
∫ t

0

usdMs +
∫ t

0

vsds, t ∈ [0, T ], (2.12.1)

where (us)s∈[0,T ] and (vs)s∈[0,T ] are adapted processes in L2
ad(Ω × [0, T ]).

Then for all f ∈ C1,2(R+ × R) we have

f(t,Xt) − f(0, X0) =
∫ t

0

f(s,Xs− + φsus) − f(s,Xs−)
φs

dMs (2.12.2)

+
∫ t

0

f(s,Xs + φsus) − f(s,Xs) − φsus
∂f

∂x
(s,Xs)

φ2
s

ds

+
∫ t

0

vs
∂f

∂x
(s,Xs)ds+

∫ t

0

∂f

∂s
(s,Xs)ds, t ∈ [0, T ].

Proof. We prove the formula in the case where f does not depend on time
and vs = 0, s ∈ R+, since this generalization can be done using standard
calculus arguments. Assume now that u ∈ U is a simple predictable process
of the form u = G1[a,b], with G ∈ L∞(Ω,Fa). Clearly the formula (2.12.2)
holds when f = c is a constant function. By induction on n ≥ 1, we assume
that it holds when applied to f(x) = xn, i.e.

Xn
t = Xn

0 +
∫ t

0

Ln
s ds+

∫ t

0

Un
s dMs,

with

Un
s =

(Xs− + φsus)n − (Xs−)n

φs
,
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and

Ln
s =

(Xs + φsus)n − (Xs)n − nφsus(Xs)n−1

φ2
s

, s ∈ R+.

From Proposition 2.11.3 we have

Xn+1
t −Xn

0 = (Xt −X0)(Xn
t −Xn

0 ) +X0(Xn
t −Xn

0 ) +Xn
0 (Xt −X0)

=
∫ t

0

us

∫ s

0

Ln
τ dτdM s +

∫ t

0

us

∫ s

0

Un
τ dMτdMs

+
∫ t

0

Ln
s

∫ s

0

uτdMτds+
∫ t

0

Un
s

∫ s

0

uτdMτdMs

+
∫ t

0

φsusU
n
s dMs +

∫ t

0

usU
n
s ds

+X0

∫ t

0

Ln
s ds+X0

∫ t

0

Un
s dMs,+Xn

0

∫ t

0

usdMs

=
∫ t

0

XsU
n
s dMs +

∫ t

0

XsL
n
sds+

∫ t

0

Xn
s usdMs

+
∫ t

0

usφsU
n
s dMs +

∫ t

0

usU
n
s ds

=
∫ t

0

Ln+1
s ds+

∫ t

0

Un+1
s dMs,

since

Un+1
s = us(Xs−)n +Xs−Un

s + usφsU
n
s = usX

n
s− +Xs−Un

s + usφsU
n
s ,

and
Ln+1

s = Un
s us +Xs−Ln

s , s ∈ R+, n ∈ N.

This proves the formula for f polynomial and u ∈ P . For all n ≥ 1, let

τn = inf{s ∈ R+ : |Xs| > n}.

Let f ∈ C2
b (R) and let (fm)m∈N be a sequence of polynomials converging

uniformly to f on [−n, n]. Since 1{s≤τn} = 1, a.s., 0 ≤ s ≤ t, on {t ≤ τn},
from the locality property of the stochastic integral (Proposition 2.5.5) we
have for all m ∈ N:

1{t≤τn}(fm(Xt) − fm(X0)) = 1{t≤τn}

∫ t

0

fm(Xs− + φsus) − fm(Xs−)
φs

dMs

+1{t≤τn}

∫ t

0

fm(Xs− + φsus) − fm(Xs−) − φsusf
′
m(Xs−)

φ2
s

ds
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= 1{t≤τn}

∫ t

0

1{s≤τn}
fm(Xs− + φsus) − fm(Xs−)

φs
dMs

+1{t≤τn}

∫ t

0

1{s≤τn}
fm(Xs− + φsus) − fm(Xs−) − φsusf

′
m(Xs−)

φ2
s

ds.

Letting m go to infinity we get

1{t≤τn}(f(Xt) − f(X0))

= 1{t≤τn}

∫ t

0

1{s≤τn}
f(Xs− + φsus) − f(Xs−)

φs
dMs

+1{t≤τn}

∫ t

0

1{s≤τn}
f(Xs− + φsus) − f(Xs−) − φsusf

′(Xs−)
φ2

s

ds,

and it remains to let n go to infinity, which proves the formula for f ∈ C2
b (R)

by locality of the Itô integral. The formula is then extended to u ∈ L2
ad([0, T ]×

Ω), by density of U in L2
ad([0, T ]×Ω), and finally to all f ∈ C2(R), again by

locality of the Itô integral. �
Note that if φs = 0, the terms

f(Xs− + φsus) − f(Xs−)
φs

and
f(Xs + φsus) − f(Xs) − φsusf

′(Xs)
φ2

s

have to be replaced by their respective limits usf
′(Xs−) and 1

2u
2
sf
′′(Xs−) as

φs → 0. This gives

f(t,Xt) − f(0, X0) =
∫ t

0

isus
∂f

∂x
(s,Xs)dMs +

1
2

∫ t

0

isu
2
s

∂2f

∂x2
(s,Xs)ds

+
∫ t

0

js
f(s,Xs− + φsus) − f(s,Xs−)

φs
dMs

+
∫ t

0

js
f(s,Xs + φsus) − f(s,Xs) − φsus

∂f

∂x
(s,Xs)

φ2
s

ds

+
∫ t

0

vs
∂f

∂x
(s,Xs)ds+

∫ t

0

∂f

∂s
(s,Xs)ds, t ∈ [0, T ],

where the processes (it)t∈R+ and (jt)t∈R+ have been defined in (2.10.3).
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Examples

i) In the case of Brownian motion (Bt)t∈R+ we have φs = 0, s ∈ R+, hence
the Itô formula reads

f(Bt) = f(0) +
∫ t

0

f ′(Bs)dBs +
1
2

∫ t

0

f ′′(Bs)ds.

ii) For the compensated Poisson process (Nt − t)t∈R+ we have φs = 1,
s ∈ R+, hence

f(Nt − t) = f(0) +
∫ t

0

(f(1 +Ns− − s) − f(Ns− − s))d(Ns − s)

+
∫ t

0

(f(1 +Ns − s) − f(Ns − s) − f ′(Ns − s))ds.

In the Poisson case this formula can actually be recovered by elementary
calculus, as follows:

f(Nt − t) = f(0) + f(Nt − t) − f(Nt − TNt)

+
Nt∑

k=1

f(k − Tk) − f(k − 1 − Tk−1)

= f(0) +
Nt∑

k=1

f(k − Tk) − f(k − 1 − Tk)

−
∫ t

TNt

f ′(Nt − s)ds−
Nt∑

k=1

∫ Tk

Tk−1

f ′(k − 1 − s)ds

= f(0) +
∫ t

0

(f(1 +Ns− − s) − f(Ns− − s))dNs −
∫ t

0

f ′(Ns − s)ds

= f(0) +
∫ t

0

(f(1 +Ns− − s) − f(Ns− − s))(dNs − ds)

+
∫ t

0

(f(1 +Ns − s) − f(Ns − s) − f ′(Ns − s))ds.

iii) More generally, in case (φt)t∈R+ is deterministic we have

Mt =
∫ t

0

1{φs=0}dBs +
∫ t

0

1{φs �=0}φs

(
dNs −

ds

φ2
s

)
, t ∈ R+,
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and

f(Mt) = f(0) +
∫ t

0

1{φs=0}f ′(Ms)dBs +
1
2

∫ t

0

1{φs=0}f ′′(Ms)dBs

+
∫ t

0

1{φs �=0}(f(Ms− + φs) − f(Ms−))
(
dNs −

ds

φ2
s

)

+
∫ t

0

1{φs �=0}(f(Ms− + φs) − f(Ms−) − φsf
′(Ms))

ds

φ2
s

.

iv) For the compound Poisson martingale

Mt :=
Xt − λtE[Y1]√

λVar [Y1]
, t ∈ R+,

of Section 2.4 we have

f(Mt) = f(0) +
∫ t

0

(f(YNs +Ms−) − f(Ms−))d(Ns − λs) (2.12.3)

+λ
∫ t

0

(
f(YNs +Ms) − f(Ms) −

E[Y1]√
λVar [Y1]

f ′(Ms)

)
ds.

However, as noted above the compound Poisson martingale (2.10.5) does
not have the predictable representation property. Thus it does not satisfy
the hypotheses of this section and the above formula is actually distinct
from (2.12.1) since here the stochastic integral is not with respect to
(Mt)t∈R+ itself. Note also that the pathwise stochastic integral (2.12.3)
is not in the sense of Proposition 2.5.10 since the integrand (f(YNt +
Mt−) − f(Mt−)) is not a left limit due to the presence of YNt .

The change of variable formula can be extended to the multidimensional case
as in Proposition 2 of [37]. Here we use the convention 0/0 = 0.
Proposition 2.12.2. Let X = (Xt)t∈R+ be a R

n-valued process given by

dXt = Rtdt+KtdMt, X0 > 0,

where (Rt)t∈R+ and (Kt)t∈R+ are predictable square-integrable R
n-valued pro-

cesses. For any f ∈ C2
b (R+ × R

n; R) we have

f(t,Xt) = f(0, X0)+
∫ t

0

Lsf(s,Xs)dMs+
∫ t

0

Usf(s,Xs)ds+
∫ t

0

∂f

∂s
(s,Xs)ds,

(2.12.4)
where

Lsf(s,Xs) = is〈Ks,∇f(s,Xs)〉 +
js
φs

(f(s,Xs− + φsKs−) − f(s,Xs−)),

(2.12.5)
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and

Usf(s,Xs) = Rs∇f(s,Xs) + α2
s

(
1
2
is〈Hess f(s,Xs),Ks ⊗Ks〉

+
js
φ2

s

(f(s,Xs− + φsKs−) − f(s,Xs−) − φs〈Ks,∇f(s,Xs)〉)
)
.

2.13 Exponential Vectors

The exponential vectors are a stochastic analog of the generating function
for polynomials. In this section they are presented as the solutions of lin-
ear stochastic differential equations with respect to a normal martingale
(Mt)t∈R+ having the predictable representation property, and satisfying a
structure equation of the form (2.10.1).
In the next proposition, the solution (2.13.2) of Equation 2.13.1 can be de-
rived using the Itô formula, and the uniqueness can be proved using the Itô
isometry and classical arguments.

Proposition 2.13.1. For any u ∈ L2
ad(Ω × R+), the equation

Zt = 1 +
∫ t

0

Zs−usdMs, t ∈ [0, T ] (2.13.1)

has a unique solution (ξt(u))t∈R+ given by

ξt(u) = exp
(∫ t

0

usdMs −
1
2

∫ t

0

u2
s1{φs=0}ds

) ∏

s∈Jt
M

(1 + usφs)e−usφs ,

(2.13.2)

where J t
M denotes the set of jump times of (Ms)s∈[0,t], t ∈ [0, T ].

In the pure jump case, from Proposition 2.5.10, (Zs)s∈R+ satisfies the path-
wise stochastic differential equation with jumps

dGt = u(t)Gt−(dNt − dt), G0 = 1, (2.13.3)

which can be directly solved on each interval (Tk−1, Tk], k ≥ 1, to get

Gt = e−
∫

t
0 u(s)ds

Nt∏

k=1

(1 + u(Tk)), t ∈ R+.

Proposition 2.13.2. Given u ∈ L∞([0, T ]), ξT (u) can be represented as

ξT (u) =
∞∑

n=0

1
n!
In(u⊗n1[0,T ]n). (2.13.4)
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Proof. Letting

Zn
t = 1 +

n∑

k=1

1
k!
Ik(u⊗k1[0,t]k),

we have

1 +
∫ t

0

uτZ
n
τ dMτ = 1 +

n+1∑

k=1

1
k!
Ik(u⊗k1[0,t]k)

= Zn+1
t ,

which yields

Zt = 1 +
∫ t

0

uτZτdMτ , t ∈ R+,

as n goes to infinity, where integrals and sums have been interchanged in the
L2 sense. Hence ξt(u) and Zt coincide since they solve the same equation
(2.13.1). �
In particular, letting T go to infinity in (2.13.2) and (2.13.4) yields the identity

ξ(u) = exp
(∫ ∞

0

usdMs −
1
2

∫ ∞

0

u2
s1{φs=0}ds

) ∏

ΔNs �=0

(1 + usφs)e−usφs .

(2.13.5)

Definition 2.13.3. Let E denote the linear space generated by exponential
vectors of the form ξ(u), where u ∈ L∞([0, T ]).

Under the chaos representation property of Definition 2.8.2 the space E is
dense in L2(Ω), and from the following lemma, E is an algebra for the point-
wise multiplication of random variables when (φt)t∈[0,T ] is a deterministic
function.

Lemma 2.13.4. For any u, v ∈ L∞(R+), we have the relation

ξ(u)ξ(v) = exp(〈u, v〉L2(R+))ξ(u + v + φuv). (2.13.6)

Proof. From Proposition 2.11.3 we have for u, v ∈ L∞(R+):

d(ξt(u)ξt(v))

= utξt−(u)ξt−(v)dMt + vtξt−(v)ξt−(u)dMt + vtutξt−(v)ξt−(u)d[M,M ]t

= utξt−(u)ξt−(v)dMt + vtξt−(v)ξt−(u)dMt + vtutξt(v)ξt(u)dt

+φtutvtξt−(v)ξt−(u)dMt

= vtutξt(v)ξt(u)dt+ ξt−(v)ξt−(u)(ut + vt + φtutvt)dMt.
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hence

d(e−
∫ t
0 usvsdsξt(u)ξt(v)) = e−

∫ t
0 usvsdsξt−(v)ξt− (u)(ut + vt + φtutvt)dMt,

which shows that

exp(−〈u, v〉L2([0,T ]))ξ(u)ξ(v) = ξ(u+ v + φuv).

Relation (2.13.6) then follows by comparison with (2.13.1). �

2.14 Vector-Valued Case

In this section we consider multiple stochastic integrals of vector-valued func-
tions with respect to a d-dimensional normal martingale (Mt)0≤t≤T with
independent components Mt = (M (1)

t , . . . ,M
(d)
t ).

Let gn ∈ L2([0, T ]n) and let (e1, . . . , ed) denote the canonical basis of R
d. We

define the n-th iterated integral of gnei1 ⊗ . . .⊗ein , with 1 ≤ i1, . . . , in ≤ d, as

In(gnei1 ⊗ . . .⊗ ein) = n!
∫ T

0

∫ tn

0

. . .

∫ t2

0

gn(t1, . . . , tn)dM (i1)
t1 . . . dM

(in)
tn

.

(2.14.1)
For gn ∈ L2([0, T ]n), hm ∈ L2([0, T ]m), with 1 ≤ i1, . . . , in ≤ d and 1 ≤
j1, . . . , jm ≤ d, we have

IE [In(gnei1 ⊗ . . .⊗ ein)Im(hmej1 ⊗ . . .⊗ ejm)]

=

⎧
⎪⎨

⎪⎩

n!〈gn, hm〉L2([0,T ]n) if n = m and il = jl, 1 ≤ l ≤ n,

0 otherwise.

Given fn = (f (i1,...,in)
n )1≤i1,...,in≤d ∈ L2([0, T ],Rd)⊗n, we define the n-th

iterated integral of fn by

In(fn) = n!
d∑

i1,...,in=1

∫ T

0

∫ tn

0

. . .

∫ t2

0

f (i1,...,in)
n (t1, . . . , tn)dM (i1)

t1 . . . dM
(in)
tn

=
d∑

i1,...,in=1

In(f (i1,...,in)
n ei1 ⊗ . . .⊗ ein).

Let Σn denote the set of all permutations of {1, . . . , n}. We have

In(f̃n) = In(fn),
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where f̃n is the symmetrization of fn in L2([0, T ],Rd)◦n, i.e for 1 ≤
i1, . . . , in ≤ d, we have

f̃n
(i1,...,in)

(t1, . . . , tn) =
1
n!

∑

σ∈Σn

f
(iσ(1),...,iσ(n))
n (tσ(1), . . . , tσ(n)).

Given
fn = (f (i1,...,in)

n )1≤i1,...,in≤d ∈ L2([0, T ],Rd)⊗n

and
gm = (g(j1,...,jm)

m )1≤j1,··· ,jm≤d ∈ L2([0, T ],Rd)⊗m

we have

IE [In(fn)Im(gm)] =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d∑
i1,··· ,in=1
j1,··· ,jm=1

n!〈f (i1,...,in)
n , g

(j1,...,jm)
m 〉L2([0,T ]n) if il = jl, 1 ≤ l ≤ n,

0 otherwise.

Finally we consider the multidimensional Poisson and mixed Brownian-
Poisson cases.
Let (Ω,F , (Ft)t∈R+ , P ) be a probability space with the filtration (Ft)t∈R+

generated by a d-dimensional Poisson process Nt = (N (1)
t , . . . , N

(p)
t ),

0 ≤ t ≤ T , and independent components, with deterministic intensity

(∫ t

0

λ(1)
s ds, . . . ,

∫ t

0

λ(d)
s ds

)
.

The iterated stochastic integral of a symmetric function

fn = (f (i1,...,in)
n )1≤i1,...,in≤d ∈ L2([0, T ],Rd)◦n,

where f (i1,...,in)
n ∈ L2([0, T ]n), is defined by

In(fn) := n!
d∑

i1,...,in=1

∫ T

0

∫ tn

0

. . .

∫ t2

0

f (i1,...,in)
n (t1, . . . , tn)(dN (i1)

t1 − λ
(i1)
t1 dt1) . . . (dN

(in)
tn

− λ
(in)
tn

dtn).

In the mixed Brownian-Poisson case let (Bt)0≤t≤T with Bt = (B(1)
t , . . . ,

B
(d)
t ) be a d-dimensional Brownian motion with independent components,
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let (Nt)0≤t≤T with Nt = (N (1)
t , . . . , N

(p)
t ) be a p-dimensional Poisson process

with independent components and intensity

(∫ t

0

λ(1)
s ds, . . . ,

∫ t

0

λ(d)
s ds

)
.

We work on a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), where Ft is
the filtration generated by (Bt)t∈R+ and (Nt)t∈R+ , which are assumed to be
independent. We denote by M = (M (1), . . . ,M (p)) the compensated Poisson
process given by

dM (l) = dN
(l)
t − λ

(l)
t dt, t ∈ [0, T ], l = 1, . . . , p.

Let

(X(1)
t , . . . , X

(d)
t , X

(d+1)
t , . . . , X

(d+p)
t ) = (B(1)

t , . . . , B
(d)
t ,M

(1)
t , . . . ,M

(p)
t ).

The iterated stochastic integral of a symmetric function

fn = (f (i1,...,in)
n )1≤i1,...,in≤d+p ∈ L2([0, T ],R(d+p))⊗n,

where f (i1,...,in)
n ∈ L2([0, T ]n), is given by

In(fn) := n!
d+p∑

i1,...,in=1

∫ T

0

∫ tn

0

. . .

∫ t2

0

f (i1,...,in)
n (t1, . . . , tn)dX(i1)

t1 . . . dX
(in)
tn

.

The chaos representation property holds in the multidimensional case, i.e.
for any F ∈ L2(Ω) there exists a unique sequence (fn)n∈N of symmetric
deterministic functions

fn = (f (i1,...,in)
n )i1,...,in∈{1,...,d} ∈ L2([0, T ],Rd)◦n

such that

F =
∞∑

n=0

In(fn).

2.15 Notes and References

Our presentation of stochastic calculus is restricted to normal martingales,
which are well fitted to the construction of multiple stochastic integrals and
chaos expansions in the L2 sense. We refer to e.g. [121] for the the standard
approach to stochastic calculus using local martingales and semimartingales.
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The systematic study of normal martingales started in [37], and d-dimensional
normal martingales have been considered in [9], [10]. Several books and sur-
veys exist on multiple stochastic integrals, see [39], [58], [73], [82]. A number
of properties of Brownian motion, such as almost sure path continuity, have
been omitted here and can be found in [122]. See [26], page 317, and [24], [153]
for the absence of predictable representation property of compound Poisson
processes. The Itô change of variable formula Proposition 2.12.1 can be found
in Proposition 2 in [37] with a different formulation and proof. We refer to
[121], Theorem 36, page 77, for results on exponential vectors. Lemma 2.13.4
is a version of Yor’s formula [152], cf. also Theorem 37 of [119], page 79,
for martingales with deterministic bracket 〈M,M〉t. Proposition 2.3.6 can
be proved using the independence of increments of the Poisson process and
arguments of [87]. The presentation of multidimensional Poisson and mixed
Brownian-Poisson integrals is based on [69].



Chapter 3

Gradient and Divergence Operators

In this chapter we construct an abstract framework for stochastic analysis
in continuous time with respect to a normal martingale (Mt)t∈R+ , using the
construction of stochastic calculus presented in Section 2. In particular we
identify some minimal properties that should be satisfied in order to connect
a gradient and a divergence operator to stochastic integration, and to apply
them to the predictable representation of random variables. Some applica-
tions, such as logarithmic Sobolev and deviation inequalities, are formulated
in this general setting. In the next chapters we will examine concrete exam-
ples of operators that can be included in this framework, in particular when
(Mt)t∈R+ is a Brownian motion or a compensated Poisson process.

3.1 Definition and Closability

In this chapter, (Mt)t∈R+ denotes a normal martingale as considered in
Chapter 2. We let S, U , and P denote the spaces of random variables, simple
processes and simple predictable processes introduced in Definition 2.5.2, and
we note that S is dense in L2(Ω) by Definition 2.5.2 and U , P are dense in
L2(Ω × R+) respectively from Proposition 2.5.3.
Let now

D : L2(Ω, dP) → L2(Ω × R+, dP × dt)

and
δ : L2(Ω × R+, dP × dt) → L2(Ω, dP)

be linear operators defined respectively on S and U . We assume that the
following duality relation holds.

Assumption 3.1.1. (Duality relation) The operators D and δ satisfy the
relation

IE[〈DF, u〉L2(R+)] = IE[Fδ(u)], F ∈ S, u ∈ U . (3.1.1)

Note that D1 = 0 is equivalent to IE[δ(u)] = 0, for all u ∈ U . In the next
proposition we use the notion of closability for operators in normed linear

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 3,
c© Springer-Verlag Berlin Heidelberg 2009
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spaces, whose definition is recalled in Section 9.8 of the Appendix. The next
proposition is actually a general result on the closability of the adjoint of a
densely defined operator.

Proposition 3.1.2. The duality assumption 3.1.1 implies that D and δ are
closable.

Proof. If (Fn)n∈N converges to 0 in L2(Ω) and (DFn)n∈N converges to U ∈
L2(Ω × R+), the relation

IE[〈DFn, u〉L2(R+)] = IE[Fnδ(u)], u ∈ U ,

implies

| IE[〈U, u〉L2(R+)]|
≤ | IE[〈DFn, u〉L2(R+)] − IE[〈U, u〉L2(R+)]| + | IE[〈DFn, u〉L2(R+)|
= | IE[〈DFn − U, u〉L2(R+)]| + | IE[Fnδ(u)]|
≤ ‖DFn − U‖L2(Ω×R+)‖u‖L2(Ω×R+) + ‖Fn‖L2(Ω)‖δ(u)‖L2(Ω),

hence as n goes to infinity we get IE[〈U, u〉L2(R+)] = 0, u ∈ U , i.e. U = 0 since
U is dense in L2(Ω × R+). The proof of closability of δ is similar: if (un)n∈N

converges to 0 in L2(Ω × R+) and (δ(un))n∈N converges to F ∈ L2(Ω), we
have for all G ∈ S:

| IE[FG]| ≤ | IE[〈DG, un〉L2(R+)] − IE[FG]| + | IE[〈DG, un〉L2(R+)]|
= | IE[G(δ(un) − F )]| + | IE[〈DG, un〉L2(Ω×R+)]|
≤ ‖δ(un) − F‖L2(Ω)‖G‖L2(Ω) + ‖un‖L2(Ω×R+)‖DG‖L2(Ω×R+),

hence IE[FG] = 0, G ∈ S, i.e. F = 0 since S is dense in L2(Ω). �
From the above proposition these operators are respectively extended to their
closed domains Dom (D) and Dom (δ), and for simplicity their extensions will
remain denoted by D and δ.

3.2 Clark Formula and Predictable Representation

In this section we study the connection between D, δ, and the predictable
representation of random variables using stochastic integrals.

Assumption 3.2.1. (Clark formula). Every F ∈ S can be represented as

F = IE[F ] +
∫ ∞

0

IE[DtF |Ft]dMt. (3.2.1)
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This assumption is connected to the predictable representation property
for the martingale (Mt)t∈R+ , cf. Proposition 3.2.8 and Proposition 3.2.6
below.

Definition 3.2.2. Given k ≥ 1, let ID2,k([a,∞)), a > 0, denote the comple-
tion of S under the norm

‖F‖ID2,k([a,∞)) = ‖F‖L2(Ω) +
k∑

i=1

(∫ ∞

a

|Di
tF |2dt

)1/2

,

where Di
t = Dt · · ·Dt denotes the i-th iterated power of Dt, i ≥ 1.

In other words, for any F ∈ ID2,k([a,∞)), the process (DtF )t∈[a,∞) exists in
L2(Ω × [a,∞)). Clearly we have Dom (D) = ID2,1([0,∞)). Under the Clark
formula Assumption 3.2.1, a representation result for F ∈ ID2,1([a,∞)) can
be stated as a consequence of the Clark formula:

Proposition 3.2.3. For all t ∈ R+ > 0 and F ∈ ID2,1([t,∞)) we have

IE[F |Ft] = IE[F ] +
∫ t

0

IE[DsF |Fs]dMs, (3.2.2)

and
F = IE[F |Ft] +

∫ ∞

t

IE[DsF |Fs]dMs, t ∈ R+. (3.2.3)

Proof. This is a direct consequence of (3.2.1) and Proposition 2.5.7. �
By uniqueness of the predictable representation of F ∈ L2(Ω), an expression
of the form

F = c+
∫ ∞

0

utdMt

where c ∈ R and (ut)t∈R+ is adapted and square-integrable, implies

ut = E[DtF |Ft], dt× dP − a.e.

The covariance identity proved in the next lemma is a consequence of
Proposition 3.2.3 and the Itô isometry (2.5.5).

Lemma 3.2.4. For all t ∈ R+ and F ∈ ID2,1([t,∞)) we have

IE[(IE[F |Ft])2] = (IE[F ])2 + IE
[∫ t

0

(IE[DsF |Fs])2ds
]

(3.2.4)

= IE[F 2] − IE
[∫ ∞

t

(IE[DsF |Fs])2ds
]
. (3.2.5)
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Proof. From the Itô isometry (2.5.4) and Relation 3.2.2 we have

IE[(IE[F |Ft])2] = IE

[(
IE[F ] +

∫ t

0

IE[DsF |Fs]dMs

)2
]

= (IE[F ])2 + IE

[(∫ t

0

IE[DsF |Fs]dMs

)2
]

= (IE[F ])2 + IE
[∫ t

0

(IE[DsF |Fs])2ds
]
, t ∈ R+,

which shows (3.2.4). Next, concerning (3.2.5) we have

IE[F 2] = IE

[(
IE[F |Ft] +

∫ ∞

t

IE[DsF |Fs]dMs

)2
]

= IE
[
(IE[F |Ft])

2
]

+ IE
[
IE[F |Ft]

∫ ∞

t

IE[DsF |Fs]dMs

]

+ IE

[(∫ ∞

t

IE[DsF |Fs]dMs

)2
]

= IE
[
(IE[F |Ft])

2
]

+ IE
[∫ ∞

t

IE[F |Ft] IE[DsF |Fs]dMs

]

+ IE
[∫ ∞

t

(IE[DsF |Fs])
2
ds

]

= IE
[
(IE[F |Ft])

2
]

+ IE
[∫ ∞

t

(IE[DsF |Fs])
2
ds

]
, t ∈ R+,

since from (2.5.7) the Itô stochastic integral has expectation 0, which shows
(3.2.5). �
The next remark applies in general to any mapping sending a random variable
to the process involved in its predictable representation with respect to a
normal martingale.
Lemma 3.2.5. The operator

F → (IE[DtF |Ft])t∈R+

defined on S extends to a continuous operator from L2(Ω) into L2(Ω×R+).

Proof. This follows from the bound

‖ IE[D·F |F·]‖2
L2(Ω×R+) = ‖F‖2

L2(Ω) − (IE[F ])2

≤ ‖F‖2
L2(Ω),

that follows from Relation (3.2.4) with t = 0. �
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As a consequence of Lemma 3.2.5, the Clark formula can be extended in
Proposition 3.2.6 below as in the discrete case, cf. Proposition 1.7.2.

Proposition 3.2.6. The Clark formula

F = IE[F ] +
∫ ∞

0

IE[DtF |Ft]dMt.

can be extended to all F in L2(Ω).

Similarly, the results of Proposition 3.2.3 and Lemma 3.2.4 also extend to
F ∈ L2(Ω).
The Clark representation formula naturally implies a Poincaré type
inequality.

Proposition 3.2.7. For all F ∈ Dom (D) we have

Var (F ) ≤ ‖DF‖2
L2(Ω×R+).

Proof. From Lemma 3.2.4 we have

Var (F ) = IE[|F − E[F ]|2]

= IE

[(∫ ∞

0

IE[DtF |Ft]dMt

)2
]

= IE
[∫ ∞

0

(IE[DtF |Ft])
2
dt

]

≤ IE
[∫ ∞

0

IE[|DtF |2|Ft]dt
]

≤
∫ ∞

0

IE
[
IE[|DtF |2|Ft]

]
dt

≤
∫ ∞

0

IE
[
|DtF |2

]
dt

≤ IE
[∫ ∞

0

|DtF |2dt
]
,

hence the conclusion. �
Since the space S is dense in L2(Ω) by Definition 2.5.2, the Clark for-
mula Assumption 3.2.1 implies the predictable representation property of
Definition 2.6.1 for (Mt)t∈R+ as a consequence of the next corollary.

Corollary 3.2.8. Under the Clark formula Assumption 3.2.1 the martingale
(Mt)t∈R+ has the predictable representation property.

Proof. Definition 2.6.1 is satisfied because S is dense in L2(Ω) and the process
(IE[DtF | Ft])t∈R+ in (3.2.1) can be approximated by a sequence in P from
Proposition 2.5.3.
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Alternatively, one may use Proposition 2.6.2 and proceed as follows. Consider
a square-integrable martingale (Xt)t∈R+ with respect to (Ft)t∈R+ and let

us = IE[DsXn+1|Fn], n ≤ s < n+ 1, t ∈ R+.

Then (ut)t∈R+ is an adapted process such that u1[0,T ] ∈ L2(Ω × R+) for all
T > 0, and the Clark formula Assumption 3.2.1 and Proposition 3.2.6 imply

Xt = IE[Xn+1 | Ft]

= IE
[
X0 +

∫ n+1

0

IE[DsXn+1 | Fs]dMs

∣∣∣Ft

]

= X0 +
∫ t

0

IE [DsXn+1 | Fs] dMs

= X0 +
∫ n

0

IE [DsXn+1 | Fs] dMs +
∫ t

n

IE [DsXn+1 | Fs] dMs

= Xn +
∫ t

n

IE[DsXn+1 | Fs]dMs

= Xn +
∫ t

n

usdMs, n ≤ t < n+ 1, n ∈ N,

where we used the Chasles relation (2.5.6), hence

Xt = X0 +
∫ t

0

usdMs, t ∈ R+, (3.2.6)

hence from Proposition 2.6.2, (Mt)t∈R+ has the predictable representation
property. �
In particular, the Clark formula Assumption 3.2.1 and Relation (3.2.3) of
Proposition 3.2.3 imply the following proposition.

Proposition 3.2.9. For any FT -measurable F ∈ L2(Ω) we have

IE[DtF |FT ] = 0, 0 ≤ T ≤ t. (3.2.7)

Proof. From from Relation (3.2.3) we have F = IE[F |FT ] if and only if

∫ ∞

T

IE[DtF |Ft]dMt = 0,

which implies IE[DtF |Ft], t ≥ T , by the Itô isometry (2.5.4), hence (3.2.7)
holds as

IE[DtF |FT ] = IE[IE[DtF |Ft]|FT ] = 0, t ≥ T,

by the tower property of conditional expectations stated in Section 9.3. �
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The next assumption is a stability property for the gradient operator D.

Assumption 3.2.10. (Stability property) For all FT -measurable F ∈ S,
DtF is FT -measurable for all t ≥ T .

Proposition 3.2.11. Let T > 0. Under the stability Assumption 3.2.10, for
any FT -measurable random variable F ∈ L2(Ω) we have F ∈ ID[T,∞) and

DtF = 0, t ≥ T.

Proof. Since F is FT -measurable, DtF is FT -measurable, t ≥ T , by the
stability Assumption 3.2.10, and from Proposition 3.2.9 we have

DtF = IE[DtF |FT ] = 0, 0 ≤ T ≤ t.

�

3.3 Divergence and Stochastic Integrals

In this section we are interested in the connection between the operator δ
and the stochastic integral with respect to (Mt)t∈R+ .

Proposition 3.3.1. Under the duality Assumption 3.1.1 and the Clark for-
mula Assumption 3.2.1, the operator δ applied to any square-integrable
adapted process (ut)t∈R+ ∈ L2

ad(Ω × R+) coincides with the stochastic in-
tegral

δ(u) =
∫ ∞

0

utdMt, u ∈ L2
ad(Ω × R+), (3.3.1)

of (ut)t∈R+ with respect to (Mt)t∈R+ , and the domain Dom (δ) of δ contains
L2

ad(Ω × R+).

Proof. Let u ∈ P be a simple Ft-predictable process. From the duality
Assumption 3.1.1 and the fact (2.5.7) that

IE
[∫ ∞

0

utdMt

]
= 0,

we have:

IE
[
F

∫ ∞

0

utdMt

]
= IE[F ] IE

[∫ ∞

0

utdMt

]
+ IE
[
(F − IE[F ])

∫ ∞

0

utdMt

]

= IE
[
(F − IE[F ])

∫ ∞

0

utdMt

]

= IE
[∫ ∞

0

IE[DtF |Ft]dMt

∫ ∞

0

utdMt

]
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= IE
[∫ ∞

0

ut IE[DtF |Ft]dt
]

= IE
[∫ ∞

0

IE[utDtF |Ft]dt
]

= IE
[∫ ∞

0

utDtFdt

]

= IE[〈DF, u〉L2(R+)]
= IE[Fδ(u)],

for all F ∈ S, hence by density of S in L2(Ω) we have

δ(u) =
∫ ∞

0

utdMt

for all Ft-predictable u ∈ P . In the general case, from Proposition 2.5.3
we approximate u ∈ L2

ad(Ω × R+) by a sequence (un)n∈N ⊂ P of simple Ft-
predictable processes converging to u in L2(Ω×R+) and use the Itô isometry
(2.5.4). �
As a consequence of the proof of Proposition 3.3.1 we have the isometry

‖δ(u)‖L2(Ω) = ‖u‖L2(Ω×R+), u ∈ L2
ad(Ω × R+). (3.3.2)

We also have the following partial converse to Proposition 3.3.1.

Proposition 3.3.2. Assume that

i) (Mt)t∈R+ has the predictable representation property, and
ii) the operator δ coincides with the stochastic integral with respect to
(Mt)t∈R+ on the space L2

ad(Ω×R+) of square-integrable adapted processes.

Then the Clark formula Assumption 3.2.1 hold for the adjoint D of δ.

Proof. For all F ∈ Dom (D) and square-integrable adapted process u we
have:

IE[(F − IE[F ])δ(u)] = IE[Fδ(u)]

= IE[〈DF, u〉L2(R+)]

= IE
[∫ ∞

0

ut IE[DtF |Ft]dt
]

= IE
[∫ ∞

0

utdMt

∫ ∞

0

IE[DtF |Ft]dMt

]

= IE
[
δ(u)
∫ ∞

0

IE[DtF |Ft]dMt

]
,
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hence
F − IE[F ] =

∫ ∞

0

IE[DtF |Ft]dMt,

since by (ii) we have

{
δ(u) : u ∈ L2

ad(Ω × R+)
}

=
{∫ ∞

0

utdMt : u ∈ L2
ad(Ω × R+)

}
,

which is dense in {F ∈ L2(Ω) : IE[F ] = 0} by (i) and Definition 2.6.1. �

3.4 Covariance Identities

Covariance identities will be useful in the proof of concentration and deviation
inequalities. The Clark formula and the Itô isometry imply the following
covariance identity, which uses the L2 extension of the Clark formula, cf.
Proposition 3.2.6.

Proposition 3.4.1. For any F,G ∈ L2(Ω) we have

Cov (F,G) = IE
[∫ ∞

0

IE[DtF |Ft] IE[DtG|Ft]dt
]
. (3.4.1)

Proof. We have

Cov (F,G) = IE[(F − IE[F ])(G− IE[G])]

= IE
[∫ ∞

0

IE[DtF |Ft]dMt

∫ ∞

0

IE[DtG|Ft]dMt

]

= IE
[∫ ∞

0

IE[DtF |Ft] IE[DtG|Ft]dt
]
.

�
The identity (3.4.1) can be rewritten as

Cov (F,G) = IE
[∫ ∞

0

IE[DtF |Ft] IE[DtG|Ft]dt
]

= IE
[∫ ∞

0

IE[IE[DtF |Ft]DtG|Ft]dt
]

= IE
[∫ ∞

0

IE[DtF |Ft]DtGdt

]
,

provided G ∈ Dom (D).
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As is well known, if X is a real random variable and f, g are monotone
functions then f(X) and g(X) are non-negatively correlated. Lemma 3.4.2,
which is an immediate consequence of (3.4.1), provides an analog of this result
for normal martingales, replacing the ordinary derivative with the adapted
process (E[DtF |Ft])t∈[0,1].

Lemma 3.4.2. Let F,G ∈ L2(Ω) such that

E[DtF |Ft] · E[DtG|Ft] ≥ 0, dt× dP − a.e.

Then F and G are non-negatively correlated:

Cov (F,G) ≥ 0.

If G ∈ Dom(D), resp. F,G ∈ Dom (D), the above condition can be re-
placed by

E[DtF |Ft] ≥ 0 and DtG ≥ 0, dt× dP − a.e.,

resp.

DtF ≥ 0 and DtG ≥ 0, dt× dP − a.e..

Iterated versions of Lemma 3.2.4 can also be proved. Let

Δn = {(t1, . . . , tn) ∈ R
n
+ : 0 ≤ t1 < · · · < tn},

and assume further that

Assumption 3.4.3. (Domain condition) For all F ∈ S we have

Dtn · · ·Dt1F ∈ ID2,1([tn,∞)), a.e. (t1, . . . , tn) ∈ Δn.

We denote by ID2,k(Δk) the L2 domain of Dk, i.e. the completion of S under
the norm

‖F‖2
ID2,k(Δk)

= IE
[
F 2
]
+ IE
[∫

Δk

|Dtk
· · ·Dt1F |2dt1 · · · dtk

]
.

Note the inclusion ID2,k(Δk) ⊂ ID2,1(Δk), k ≥ 1.
Next we prove an extension of the covariance identity of [56], with a shortened
proof.
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Theorem 3.4.4. Let n ∈ N and F,G ∈
n+1⋂

k=1

ID2,k(Δk). We have

Cov (F, G) =
n∑

k=1

(−1)k+1 IE

[∫

Δk

(Dtk · · ·Dt1F )(Dtk · · ·Dt1G)dt1 · · · dtk

]
(3.4.2)

+ (−1)n IE

[∫

Δn+1

Dtn+1 · · ·Dt1F IE
[
Dtn+1 · · ·Dt1G|Ftn+1

]
dt1 · · · dtn+1

]
.

Proof. By polarization we may take F = G. For n = 0, ((3.4.2)) is a
consequence of the Clark formula. Let n ≥ 1. Applying Lemma 3.2.4 to
Dtn · · ·Dt1F with t = tn and ds = dtn+1, and integrating on (t1, . . . , tn) ∈ Δn

we obtain

IE
[∫

Δn

(IE[Dtn · · ·Dt1F |Ftn ])2 dt1 · · · dtn
]

= IE
[∫

Δn

|Dtn · · ·Dt1F |2dt1 · · · dtn
]

− IE

[∫

Δn+1

(
IE
[
Dtn+1 · · ·Dt1F |Ftn+1

])2
dt1 · · · dtn+1

]
,

which concludes the proof by induction. �
The variance inequality

2n∑

k=1

(−1)k+1‖DkF‖2
L2(Δk) ≤ Var (F ) ≤

2n−1∑

k=1

(−1)k+1‖DkF‖2
L2(Δk),

for F ∈
2n⋂

k=1

ID2,k(Δk), is a consequence of Theorem 3.4.4, and extends (2.15)

in [56]. It also recovers the Poincaré inequality Proposition 3.2.7 when n = 1.

3.5 Logarithmic Sobolev Inequalities

The logarithmic Sobolev inequalities on Gaussian space provide an infi-
nite dimensional analog of Sobolev inequalities, cf. e.g. [77]. In this section
logarithmic Sobolev inequalities for normal martingales are proved as an
application of the Itô and Clark formulas. Recall that the entropy of a suffi-
ciently integrable random variable F > 0 is defined by

Ent [F ] = IE[F logF ] − IE[F ] log IE[F ].
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Proposition 3.5.1. Let F ∈ Dom (D) be lower bounded with F > η a.s. for
some η > 0. We have

Ent [F ] ≤ 1
2

IE
[

1
F

∫ ∞

0

(2 − 1{φt=0})|DtF |2dt
]
. (3.5.1)

Proof. Let us assume that F is bounded and FT -measurable, and let

Xt = IE[F | Ft] = X0 +
∫ t

0

usdMs, t ∈ R+,

with us = IE[DsF | Fs], s ∈ R+. The change of variable formula Proposition
2.12.1 applied to f(x) = x log x shows that

F logF − IE[F ] log IE[F ] = f(XT ) − f(X0)

=
∫ T

0

f(Xt− + φtut) − f(Xt−)
φt

dMt +
∫ T

0

itutf
′(Xt−)dMt

+
∫ T

0

jt
φ2

t

Ψ(Xt− , φtut)dt+
1
2

∫ T

0

it
u2

t

Xt
dt,

with the convention 0/0 = 0, and

Ψ(u, v) = (u + v) log(u+ v) − u log u− v(1 + log u), u, u+ v > 0.

Using the inequality

Ψ(u, v) ≤ v2/u, u > 0, u+ v > 0,

and applying Jensen’s inequality (9.3.1) to the convex function (u, v) → v2/u
on R × (0,∞) we obtain

Ent [F ] = IE

[∫ T

0

jt
φ2

t

Ψ(Xt, φtut)dt+
1
2

∫ T

0

it
u2

t

Xt
dt

]

≤ 1
2

IE

[∫ T

0

(2 − it)
u2

t

Xt
dt

]

≤ 1
2

IE

[∫ T

0

IE
[
(2 − it)

|DtF |2
F

∣∣∣Ft

]
dt

]

=
1
2

IE

[
1
F

∫ T

0

(2 − it)|DtF |2dt
]
.

Finally we apply the above to the approximating sequence Fn = F ∧n, n ∈ N,
and let n go to infinity. �
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If φt = 0, i.e. it = 1, t ∈ R+, then (Mt)t∈R+ is a Brownian motion and we
obtain the classical modified Sobolev inequality

Ent π[F ] ≤ 1
2

IEπ

[
1
F
‖DF‖2

L2([0,T ])

]
. (3.5.2)

If φt = 1, t ∈ R+ then it = 0, t ∈ R+, (Mt)t∈R+ is a standard compensated
Poisson process and we obtain the modified Sobolev inequality

Ent π[F ] ≤ IEπ

[
1
F
‖DF‖2

L2([0,T ])

]
. (3.5.3)

More generally, the logarithmic Sobolev inequality (3.5.2) can be proved for
any gradient operator D satisfying both the derivation rule Assumption 3.6.1
below and the Clark formula Assumption 3.2.1, see Chapter 7 for another
example on the Poisson space.

3.6 Deviation Inequalities

In this section we assume that D is a gradient operator satisfying both the
Clark formula Assumption 3.2.1 and the derivation rule Assumption 3.6.1
below. Examples of such operators will be provided in the Wiener and Poisson
cases in Chapters 5 and 7.
Assumption 3.6.1. (Derivation rule) For all F,G ∈ S we have

Dt(FG) = FDtG+GDtF, t ∈ R+. (3.6.1)

Note that by polynomial approximation, Relation (3.6.1) extends as

Dtf(F ) = f ′(F )DtF, t ∈ R+, (3.6.2)

for f ∈ C1
b (R).

Under the derivation rule Assumption 3.6.1 we get the following deviation
bound.
Proposition 3.6.2. Let F ∈ Dom (D). If ‖DF‖L2(R+,L∞(Ω)) ≤ C for some
C > 0, then

P(F − IE[F ] ≥ x) ≤ exp
(
− x2

2C‖DF‖L2(R+,L∞(Ω))

)
, x ≥ 0. (3.6.3)

In particular we have

IE[eλF 2
] <∞, λ <

1
2C‖DF‖L2(R+,L∞(Ω)

. (3.6.4)
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Proof. We first consider a bounded random variable F ∈ Dom(D). The
general case follows by approximating F ∈ Dom (D) by the sequence
(max(−n,min(F, n)))n≥1. Let

ηF (t) = IEμ[DtF | Ft], t ∈ [0, T ].

Since F is bounded, the derivation rule (3.6.2) shows that

DtesF = sesFDtF, s, t ∈ R+,

hence assuming first that IE[F ] = 0 we get

IE[F esF ] = IE

[∫ T

0

DuesF · ηF (u)du

]

= s IE

[
esF

∫ T

0

DuF · ηF (u)du

]

≤ s IE
[
esF ‖DF‖H ‖ηF ‖H

]

≤ s IE
[
esF
]
‖ηF ‖L∞(W,H)‖DF‖L2(R+,L∞(Ω))

≤ sC IE
[
esF
]
‖DF‖L2(R+,L∞(Ω)).

In the general case, letting

L(s) = IE[exp(s(F − IE[F ]))], s ∈ R+,

we obtain:

log (IE [exp (t(F − IE[F ]))]) =
∫ t

0

L′(s)
L(s)

ds

≤
∫ t

0

IE [(F − IE[F ]) exp (t(F − IE[F ]))]
IE [exp (t(F − IE[F ]))]

ds

=
1
2
t2C‖DF‖L2(R+,L∞(Ω)), t ∈ R+.

We now have for all x ∈ R+ and t ∈ [0, T ]:

P(F − IE[F ] ≥ x) ≤ e−tx IE [exp (t(F − IE[F ]))]

≤ exp
(

1
2
t2C‖DF‖L2(R+,L∞(Ω)) − tx

)
,

which yields (3.6.3) after minimization in t ∈ [0, T ]. The proof of (3.6.4) is
completed as in Proposition 1.11.3. �
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3.7 Markovian Representation

This subsection presents a predictable representation method that can be
used to compute IE[DtF |Ft], based on the Itô formula and the Markov
property, cf. Section 9.6 in the appendix. It can applied to Delta hedging
in mathematical finance, cf. Proposition 8.2.2 in Chapter 8, and [120]. Let
(Xt)t∈[0,T ] be a R

n-valued Markov (not necessarily time homogeneous) pro-
cess defined on Ω, generating a filtration (Ft)t∈R+ and satisfying a change of
variable formula of the form

f(Xt) = f(X0) +
∫ t

0

Lsf(Xs)dMs +
∫ t

0

Usf(Xs)ds, t ∈ [0, T ], (3.7.1)

where Ls, Us are operators defined on f ∈ C2(Rn). Let the (non homo-
geneous) semi-group (Ps,t)0≤s≤t≤T associated to (Xt)t∈[0,T ] be defined on
C2

b (Rn) functions by

Ps,tf(Xs) = E[f(Xt) | Xs]
= E[f(Xt) | Fs], 0 ≤ s ≤ t ≤ T,

with
Ps,t ◦ Pt,u = Ps,u, 0 ≤ s ≤ t ≤ u ≤ T.

Proposition 3.7.1. For any f ∈ C2
b (Rn), the process (Pt,T f(Xt))t∈[0,T ] is

an Ft-martingale.

Proof. By the tower property of conditional expectations, cf. Section 9.3, we
have

E[Pt,T f(Xt) | Fs] = E[E[f(XT ) | Ft] | Fs]
= E[f(XT ) | Fs]
= Ps,T f(Xs),

0 ≤ s ≤ t ≤ T . �
Next we use above the framework with application to the Clark formula.
When (φt)t∈[0,T ] is random the probabilistic interpretation, of D is unknown
in general, nevertheless it is possible to explicitly compute the predictable
representation of f(XT ) using (3.7.1) and the Markov property.

Lemma 3.7.2. Let f ∈ C2
b (Rn). We have

IE[Dtf(XT ) | Ft] = (Lt(Pt,T f))(Xt), t ∈ [0, T ]. (3.7.2)

Proof. We apply the change of variable formula (3.7.1) to t → Pt,T f(Xt) =
IE[f(XT ) | Ft], since Pt,T f is C2. Using the fact that the finite variation term
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vanishes since (Pt,T f(Xt))t∈[0,T ] is a martingale, (see e.g. Corollary 1, p. 64
of [119]), we obtain:

Pt,T f(Xt) = P0,T f(X0) +
∫ t

0

(Ls(Ps,T f))(Xs)dMs, t ∈ [0, T ],

with P0,T f(X0) = IE[f(XT )]. Letting t = T , we obtain (3.7.2) by uniqueness
of the representation (4.2.2) applied to F = f(XT ). �
In practice we can use Proposition 3.2.6 to extend (IE[Dtf(XT ) | Ft])t∈[0,T ]

to a less regular function f : R
n → R.

As an example, if φt is written as φt = ϕ(t,Mt), and

dSt = σ(t, St)dMt + μ(t, St)dt,

we can apply Proposition 2.12.2, with (Xt)t∈[0,T ] = ((St,Mt))t∈[0,T ] and

Ltf(St,Mt) = itσ(t, St)∂1f(St,Mt) + it∂2f(St,Mt)

+
jt

ϕ(t,Mt)
(f(St + ϕ(t,Mt)σ(t, St),Mt + ϕ(t,Mt)) − f(St,Mt)),

where jt = 1{φt �=0}, t ∈ R+, since the eventual jump of (Mt)t∈[0,T ] at time t
is ϕ(t,Mt). Here, ∂1, resp. ∂2, denotes the partial derivative with respect to
the first, resp. second, variable. Hence

IE[Dtf(ST ,MT ) | Ft] = itσ(t, St)(∂1Pt,T f)(St,Mt) + it(∂2Pt,T f)(St,Mt)

+
jt

ϕ(t,Mt)
(Pt,T f)(St + ϕ(t,Mt)σ(t, St),Mt + ϕ(t,Mt))

− jt
ϕ(t,Mt)

(Pt,T f)(St,Mt).

When (φt)t∈R+ and σ(t, x) = σt, are deterministic functions of time and
μ(t, x) = 0, t ∈ R+, the semi-group Pt,T can be explicitly computed as
follows.
In this case, from (2.10.4), the martingale (Mt)t∈R+ can be represented as

dMt = itdBt + φt(dNt − λtdt), t ∈ R+, M0 = 0,

with λt = jt/φ
2
t , t ∈ R+, where (Nt)t∈R+ is an independent Poisson process

with intensity λt, t ∈ R+. Let

Γt(T ) =
∫ T

t

1{φs=0}σ2
sds, 0 ≤ t ≤ T,
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denote the variance of
∫ T

t isσsdBs =
∫ T

t 1{φs=0}σsdBs, 0 ≤ t ≤ T , and let

Γt(T ) =
∫ T

t

λsds, 0 ≤ t ≤ T,

denote the intensity parameter of the Poisson random variable NT −Nt.

Proposition 3.7.3. We have for f ∈ Cb(R)

Pt,T f(x) =
1√
2π

∞∑

k=0

e−Γt(T )

k!

∫ ∞

−∞
e−t20/2

∫

[t,T ]k
λt1 · · ·λtk

f

(
xe−

Γt(T )
2 +

√
Γt(T )t0−

∫
T
t

φsλsσsds
k∏

i=1

(1 + σtiφti)

)
dt1 · · ·dtkdt0.

Proof. We have Pt,T f(x) = E[f(ST )|St = x] = E[f(Sx
t,T )], and

Pt,T f(x) = exp(−Γt(T ))
∞∑

k=0

(Γt(T ))k

k!
E

[
f(Sx

t,T )
∣∣∣NT −Nt = k

]

k ∈ N. It can be shown (see e.g. Proposition 6.1.8 below) that the time
changed process

(
NΓ−1

t (s) −Nt

)

s∈R+

is a standard Poisson process with

jump times (T̃k)k≥1 = (Γt(Tk+Nt))k≥1. Hence from Proposition 2.3.7, condi-
tionally to {NT −Nt = k}, the jump times (T̃1, . . . , T̃k) have the law

k!
(T − t)k

1{0<t1<···<tk<T−t}dt1 · · · dtk.

over [0, T − t]k. Consequently, conditionally to {NT − Nt = k}, the k first
jump times (T1, . . . , Tk) of (Ns)s∈[t,T ] have the distribution

k!
(Γt(T ))k

1{t<t1<···<tk<T}λt1 · · ·λtk
dt1 · · ·dtk.

We then use the identity in law between Sx
t,T and

xXt,T exp

(
−
∫ T

t

φsλs(1 + φsψs)σsds

)
NT∏

k=1+Nt

(1 + σTk
φTk

),

where Xt,T has same distribution as

exp
(
W
√
Γt(T ) − Γt(T )/2

)
,
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and W a standard Gaussian random variable, independent of (Nt)t∈[0,T ],
which holds because (Bt)t∈[0,T ] is a standard Brownian motion, independent
of (Nt)t∈[0,T ]. �

3.8 Notes and References

Several examples of gradient operators satisfying the hypotheses of this chap-
ter will be provided in Chapters 4, 5, 6, and 7, on the Wiener and Poisson
space and also on Riemannian path space. The Itô formula has been used for
the proof of logarithmic Sobolev inequalities in [4], [6], [151] for the Poisson
process, and in [22] on Riemannian path space, and Proposition 3.5.1 can be
found in [111]. The probabilistic interpretations of D as a derivation opera-
tor and as a finite difference operator has been studied in [116] and will be
presented in more detail in the sequel. The extension of the Clark formula
presented in Proposition 3.2.6 is related to the approach of [88] of [142]. The
covariance identity (3.4.1) can be found in Proposition 2.1 of [59]. See also [7]
for a unified presentation of the Malliavin calculus based on the Fock space.



Chapter 4

Annihilation and Creation Operators

In this chapter we present a first example of a pair of gradient and diver-
gence operators satisfying the duality Assumption 3.1.1, the Clark formula
Assumption 3.2.1 and the stability Assumption 3.2.10 of Section 3.1. This
construction is based on annihilation and creation operators acting on multi-
ple stochastic integrals with respect to a normal martingale. In the following
chapters we will implement several constructions of such operators, respec-
tively when the normal martingale (Mt)t∈R+ is a Brownian motion or a
compensated Poisson process. Other examples of operators satisfying the
above assumptions will be built in the sequel by addition of a process with
vanishing adapted projection to the gradient D, such as in Section 7.7 on the
Poisson space.

4.1 Duality Relation

The annihilation and creation operators on multiple stochastic integrals pro-
vide a first concrete example of operators D, δ satisfying the hypothesis of
Chapter 2. Let the spaces S and U of Section 3.1 be taken equal to

S =

{
n∑

k=0

Ik(fk) : fk ∈ L4(R+)◦k, k = 0, . . . , n, n ∈ N

}
, (4.1.1)

and

U =

{
n∑

i=1

1[ti,ti−1)Fi : Fi ∈ S, 0 = t0 ≤ t1 < · · · < tn, n ≥ 1

}
,

which is contained in

Ũ :=

{
n∑

k=0

Ik(gk(∗, ·)) : gk ∈ L2(R+)◦k ⊗ L2(R+), k = 0, . . . , n, n ∈ N

}
,

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 4,
c© Springer-Verlag Berlin Heidelberg 2009
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where the symmetric tensor product ◦ is defined in Section 9.7 of the
Appendix.
In the following definitions the definition of the operators D and δ are stated
on multiple stochastic integrals (random variables and processes), whose lin-
ear combinations span S and U .
Definition 4.1.1. Let

D : S −→ L2(Ω × R+)

be the linear operator defined by

DtIn(fn) = nIn−1(fn(∗, t)), dP × dt− a.e., fn ∈ L2(R+)◦n.

Due to its role as a lowering operator on the degree of multiple stochastic
integrals, the operator D is called an annihilation operator in the sequel,
in reference to the use of Fock space expansions (see Definition 2.8.1) in
quantum field theory.

Definition 4.1.2. Let
δ : Ũ −→ L2(Ω)

be the linear operator defined by

δ(In(fn+1(∗, ·))) = In+1(f̃n+1), fn+1 ∈ L2(R+)◦n ⊗ L2(R+), (4.1.2)

where f̃n+1 is the symmetrization of fn+1 in n+ 1 variables defined as:

f̃n+1(t1, . . . , tn+1) =
1

n+ 1

n+1∑

k=1

fn+1(t1, . . . , tk−1, tk+1, . . . , tn+1, tk).

In particular we have

f ◦gn(t1, . . . , tn+1) =
1

n+ 1

n+1∑

k=1

f(tk)gn(t1, . . . , tk−1, tk+1, . . . , tn+1), (4.1.3)

i.e. f ◦ gn is the symmetrization of f ⊗ gn in n+ 1 variables, cf. Section 9.7.
Similarly to the above, the operator δ is usually referred to as a creation oper-
ator, due to the fact that it raises the degree of multiple stochastic integrals.
The operator δ is also called the Skorohod integral.
Note that

δ(f) = I1(f) =
∫ ∞

0

f(t)dMt, f ∈ L2(R+),

and, in particular, from (2.7.4) we have

δ(uIn(fn)) = n

∫ ∞

0

In(fn(∗, s)◦u·1[0,s]n(∗, ·))dMs+
∫ ∞

0

usIn(fn1[0,s]n)dMs,
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u ∈ L2(R+), gn ∈ L2(R+)◦n, where as a convention “∗” denotes the n − 1
first variables and “·” denotes the last integration variable in In. In the next
proposition we show that D and δ satisfy the duality Assumption 3.1.1.
Proposition 4.1.3. The operators D and δ satisfy the duality relation

IE[Fδ(u)] = IE[〈DF, u〉L2(R+)], F ∈ S, u ∈ U . (4.1.4)

Proof. As in Proposition 1.8.2, we consider F = In(fn) and ut =
Im(gm+1(∗, t)), t ∈ R+, fn ∈ L2(R+)◦n, gm+1 ∈ L2(R+)◦m ⊗ L2(R+).
We have

IE[Fδ(u)] = IE[Im+1(g̃m+1)In(fn)]
= n!1{n=m+1}〈fn, g̃n〉L2(Rn

+)

= n!1{n=m+1}〈fn, gn〉L2(Rn
+)

= n!1{n−1=m}

∫ ∞

0

· · ·
∫ ∞

0

fn(s1, . . . , sn−1, t)gn(s1, . . . , sn−1, t)ds1 · · ·dsn−1dt

= n1{n−1=m}

∫ ∞

0

IE[In−1(fn(∗, t))In−1(gn(∗, t))]dt

= IE[〈D·In(fn), Im(gm+1(∗, ·))〉L2(R+)]
= IE[〈DF, u〉L2(R+)].

�
In Proposition 4.2.3 below we will show that the Clark formula Assumption
3.2.1 is also satisfied by D.
Proposition 4.1.4. For any u ∈ Ũ we have

Dtδ(u) = ut + δ(Dtu), t ∈ R+.

Proof. Letting ut = f(t)In(gn), t ∈ R+, f ∈ L2(R+), gn ∈ L2(R+)◦n, from
Proposition 4.1.3 we have, by (4.1.3),

Dtδ(u) = Dtδ(fIn(gn))

= DtIn+1(f̃ ⊗ gn)

= DtIn+1(f ◦ gn)

= (n+ 1)In+1((f ◦ gn)(∗, t))
= f(t)In(gn) + nIn(f ◦ gn(∗, t))
= f(t)In(gn) + nδ(In−1(f ◦ gn(∗, t)))
= f(t)In(gn) + δ(DtIn(f ◦ gn(∗, t)))
= ut + δ(Dtu).

�



134 4 Annihilation and Creation Operators

Remark 4.1.5. By construction, the operator D satisfies the stability
Assumption 3.2.10 of Chapter 2, thus the conclusion of Proposition 3.2.11
is valid for D, i.e. we have DsF = 0, s > t, for any Ft-measurable F ∈ S,
t ∈ R+.

4.2 Annihilation Operator

From now on we will assume that S is dense in L2(Ω), which is equivalent
to saying that (Mt)t∈R+ has the chaos representation property according to
Definition 2.8.2. As a consequence of Proposition 3.1.2 and Proposition 4.1.3
we have the following.

Proposition 4.2.1. The operators D and δ are closable in the sense of
Section 9.8 on L2(Ω) and L2(Ω × R+) respectively.

It also follows from the density of S in L2(Ω) that U is dense in L2(Ω×R+).

Proposition 4.2.2. The domain Dom (D) = ID([0,∞)) of D consists in the
space of square-integrable random variables with chaos expansion

F =
∞∑

n=0

In(fn), (4.2.1)

such that the series
n∑

k=1

kIk−1(fk(∗, ·))

converges in L2(Ω × R+) as n goes to infinity.

Given F ∈ Dom (D) with the expansion (4.2.1) we have

IE
[
‖DF‖2

L2(R+)

]
=
∞∑

k=1

kk!‖fk‖2
L2(Rk

+) <∞,

and

DtF = f1(t) +
∞∑

k=1

kIk−1(fk(∗, t)), dtdP − a.e.

In particular, the exponential vector ξ(u), of (2.13.4) belongs to Dom (D) for
all u ∈ L2(R+) and we have

Dsξt(u) = 1[0,t](s)u(s)ξt(u), s, t ∈ [0, T ].
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The following proposition shows that the Clark formula Assumption 3.2.1 is
satisfied by D. Its proof parallels the classical argument

f(x) =
∞∑

n=0

αnx
n

= α0 +
∞∑

n=1

nαn

∫ x

0

yn−1dy

= f(0) +
∫ x

0

f ′(y)dy,

described in the introduction for functions of one variable, using the identity

xn = n

∫ x

0

yn−1dy.

It shows in particular that the operator D defined in this chapter satisfies
the Clark formula Assumption 3.2.1 on predictable representation.

Proposition 4.2.3. Every F ∈ S can be represented as

F = IE[F ] +
∫ ∞

0

IE[DtF | Ft]dMt. (4.2.2)

Proof. By linearity, in order to prove the statement for F ∈ S, it suffices to
consider F = In(fn). By the definitions of In(fn) and DtIn(fn) and using
Lemma 2.7.2 we have, since IE[In(fn)] = 0,

In(fn) = n

∫ ∞

0

In−1(fn(∗, t)1[0,t]n−1(∗))dMt

= n

∫ ∞

0

IE[In−1(fn(∗, t)) | Ft]dMt

=
∫ ∞

0

IE[DtIn(fn) | Ft]dMt.

�
As in the abstract framework of Chapter 3, the Clark formula (4.2.2) extends
to Dom (D) from the closability of D as in Proposition 3.2.3, and to L2(Ω)
by continuity of F → IE[D·F | F·], cf. Proposition 3.2.6.
Since S defined by (4.1.1) is assumed to be dense in L2(Ω), Corollary 3.2.8
and Proposition 4.2.3 show that (Mt)t∈R+ has the chaos representation prop-
erty as in Definition 2.8.2.
More generally, the following proposition follows from the fact that the dense-
ness of S is equivalent to the chaos representation property.
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Proposition 4.2.4. If (Mt)t∈R+ has the chaos representation property then
it has the predictable representation property.
By iteration, the Clark formula (4.2.2) yields the following proposition.

Proposition 4.2.5. For all F ∈ ∩n≥1Dom (Dn) we have

F = IE[F ] +
∞∑

n=1

In(fn),

where
fn(t1, . . . , tn) =

1
n!

IE[Dt1 · · ·DtnF ],

dt1 · · · dtndP-a.e., n ≥ 1.

Proof. It suffices to note that

Dt1 · · ·DtnF = n!fn(t1, . . . , tn) +
∞∑

k=n+1

k!
(k − n)!

Ik−n(fk(∗, t1, . . . , tn)),

and to use the fact that

IE[Ik−n(fk(∗, t1, . . . , tn))] = 0, dt1 · · · dtn − a.e., k > n ≥ 1,

that follows from Proposition 2.7.1 or Lemma 2.7.2. �
The above result is analogous to the following expression of Taylor’s formula:

f(x) = f(0) +
∞∑

n=1

xn

n!
∂nf

∂xn
(0),

with the following correspondence:

calculus on R stochastic analysis

f(x) F

f(0) IE[F ]

∂n

∂xn
Dn

∂nf

∂xn
(0) IE[DnF ]

The gradient operator D can be extended to the multidimensional case using
the vector-valued multiple stochastic integral (2.14.1).
Definition 4.2.6. Let l ∈ {1, . . . , d}. We define the operator

D(l) : Dom (D(l)) ⊂ L2(Ω) → L2(Ω × [0, T ])
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which maps any F ∈ Dom (D(l)) with decomposition

F =
∞∑

n=0

In(fn),

to the process (D(l)
t F )t∈[0,T ] given by

D
(l)
t F =

∞∑

n=1

n∑

h=1

d∑

i1,...,in=1

1{ih=l}

In−1(f
i1,...,in
n (t1, . . . , tl−1, t, tl+1 . . . , tn)ei1 ⊗ . . . ⊗ eih−1⊗eih+1 . . . ⊗ ein)

=
∞∑

n=1

nIn−1(f
l
n(∗, t)), dP × dt − a.e. (4.2.3)

with
f l

n = (f i1,...,in−1,l
n ei1 ⊗ . . .⊗ ein−1)1≤i1,...,in−1≤d.

The domain of D(l) is given by

Dom (D(l)) =

⎧
⎨

⎩F =
∞∑

n=0

d∑

i1,...,in=1

In(f i1,...,in
n ei1 ⊗ . . .⊗ ein) :

∞∑

n=1

nn!
d∑

i1,...,in=1

‖f i1,...,in
n ‖2

L2([0,T ]n) <∞

⎫
⎬

⎭ .

The Clark formula extends to the multidimensional setting of Section 2.14 as
the next proposition.

Proposition 4.2.7. Let F ∈
d⋂

l=1

Dom (D(l)). We have

F = IE[F ] +
d∑

l=1

∫ T

0

IE[D(l)
t F | Ft]dM

(l)
t . (4.2.4)

In the multidimensional Poisson case we define the operator DN(l)
as in

((4.2.3)) and we have the following Clark formula:

F = IE[F ] +
d∑

l=1

∫ ∞

0

|λ(l)
t |−1/2 IE[DN(l)

t F | Ft](dN
(l)
t − λ

(l)
t dt),
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for F ∈
⋂d

l=1 Dom(DN(l)
). In the mixed Poisson-Brownian setting of Section

2.14, the operators DX(l)
are also defined as in ((4.2.3)) and we have the

Clark formula

F = IE[F ] +
d∑

l=1

∫ T

0

IE[D(l)
t F | Ft]dB

(l)
t +

p∑

l=1

∫ T

0

IE[DN(l)

t F | Ft]dM
(l)
t ,

for F ∈
d+p⋂

l=1

Dom (DX(l)
).

4.3 Creation Operator

The domain Dom(δ) of δ is the space of processes (ut)t∈R+ ∈ L2(Ω × R+)
with

ut =
∞∑

n=0

In(fn+1(∗, t)),

and such that

IE[|δ(u)|2] =
∞∑

n=1

(n+ 1)!‖f̃n‖2
L2(Rn+1

+ )
<∞.

We will sometimes use the notation

∫ b

a

usδMs := δ(1[a,b]u), (4.3.1)

to denote the Skorohod integral of u ∈ Dom (δ) on the interval [a, b], 0 ≤
a ≤ b ≤ ∞. The creation operator δ satisfies the following Itô-Skorohod type
isometry, also called an energy identity for the Skorohod integral.

Proposition 4.3.1. Let u ∈ Dom (δ) such that ut ∈ Dom (D), dt-a.e., and
(Dsut)s,t∈R+ ∈ L2(Ω × R

2
+). We have

IE[|δ(u)|2] = IE
[
‖u‖2

L2(R+)

]
+ IE
[∫ ∞

0

∫ ∞

0

DsutDtusdsdt

]
, (4.3.2)

Proof. By polarization, orthogonality and density it suffices to choose u =
gIn(f⊗n), f, g ∈ L2(R+), and to note that by the Definition 4.1.2 of δ we
have

IE[|δ(u)|2] = IE[|δ(gIn(f⊗n))|2]
= IE[|In+1(f⊗n ◦ g)|2]
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=
1

(n+ 1)2
IE

⎡

⎣
(

n∑

i=0

In+1(f⊗i ⊗ g ⊗ f⊗(n−i))

)2
⎤

⎦

=
1

(n+ 1)2
(
(n+ 1)!(n+ 1)‖f‖2n

L2(R+)‖g‖2
L2(R+)

+n(n+ 1)(n+ 1)!‖f‖2n−2
L2(R+)〈f, g〉

2
L2(R+))

)

= n!‖f‖2n
L2(R+)‖g‖2

L2(R+) + (n− 1)!n2‖f‖2n−2
L2(R+)〈f, g〉

2
L2(R+)

= IE
[
‖u‖2

L2(R+)

]
+ 〈〈g,DIn(f⊗n)〉L2(R+), 〈g,DIn(f⊗n)〉L2(R+)〉L2(Ω)

= IE
[
‖u‖2

L2(R+)

]
+ IE
[∫ ∞

0

∫ ∞

0

DsutDtusdsdt

]
.

�
By polarization, if u and v satisfy the conditions of Proposition 4.3.1 we also
have

〈δ(u), δ(v)〉L2(Ω) = 〈u, v〉L2(Ω×R+) +
∫ ∞

0

∫ ∞

0

〈Dsut, Dtvs〉L2(Ω)dsdt.

The proof of (4.3.2) does not depend on the particular type of normal mar-
tingale we are considering, and it can be rewritten as a Weitzenböck type
identity, cf. [133] and Section 7.6 for details, i.e.:

‖δ(u)‖2
L2(Ω) +

1
2

∫ ∞

0

∫ ∞

0

‖Dsut −Dtus‖2
L2(Ω)dsdt (4.3.3)

= ‖u‖2
L2(Ω×R+) + ‖Du‖2

L2(Ω×R2
+).

For Riemannian Brownian motion the study of identities such as (4.3.3) can
be developed via intrinsic differential operators on Riemannian path space,
cf. [27].

Definition 4.3.2. Let ILp,1 denote the space of random processes (ut)t∈R+

such that ut ∈ Dom (D), dt-a.e., and

‖u‖p
p,1 := IE

[
‖u‖p

L2(R+)

]
+ IE
[∫ ∞

0

∫ ∞

0

|Dsut|pdsdt
]
<∞.

The next result is a direct consequence of Proposition 4.3.1 and Definition
4.3.2 for p = 2.

Proposition 4.3.3. We have IL2,1 ⊂ Dom (δ).

As a consequence of Proposition 3.3.1, Proposition 4.1.3 and Proposition
4.2.3, the operator δ coincides with the Itô integral with respect to (Mt)t∈R+

on the square-integrable adapted processes, as stated in the next proposition.
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Proposition 4.3.4. Let (ut)t∈R+ ∈ L2
ad(Ω × R+) be a square-integrable

adapted process. We have

δ(u) =
∫ ∞

0

utdMt.

Proof. This result can also be recovered from the definition (4.1.2) of
δ via multiple stochastic integrals. Since the adaptedness of (ut)t∈R+ =
(In−1(fn(∗, t)))t∈R+ implies

fn(∗, t) = fn(∗, t)1[0,t]n−1(∗), t ∈ R+,

by Lemma 2.7.2, we have

δ(In(fn+1(∗, ·))) = In+1(f̃n+1)

= n

∫ ∞

0

In−1(f̃n(∗, t)1[0,t]n−1(∗))dMt

=
∫ ∞

0

In−1(fn(∗, t)1[0,t]n−1(∗))dMt

=
∫ ∞

0

In−1(fn(∗, t))dMt, n ≥ 1.

�
Note that when (ut)t∈R+ ∈ L2

ad(Ω ×R+) is a square-integrable adapted pro-
cess, then Relation (4.3.2) becomes the Itô isometry as a consequence of
Proposition 4.3.4, i.e. we have

‖δ(u)‖L2(Ω) =
∥∥∥∥
∫ ∞

0

utdMt

∥∥∥∥
L2(Ω)

(4.3.4)

= ‖u‖L2(Ω×R+), u ∈ L2
ad(Ω × R+),

as follows from Remark 4.1.5 since Dtus = 0, 0 ≤ s ≤ t, cf. also
Relation (3.3.2) of Proposition 3.3.1.
The following proposition is a Fubini type property for the exchange of
Skorohod and Itô stochastic integrals with respect to normal martingales.

Lemma 4.3.5. Let u, v ∈ L4
ad(Ω × R+). For all t > 0 we have

∫ t

0

us

∫ t

s

vrdMrδMs =
∫ t

0

∫ r

0

usvrδMsdMr, (4.3.5)

where the indefinite Skorohod integral is defined in (4.3.1).
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Proof. First, note that

∫ r

0

usvrδMs = δ
(
u·1{·<r}vr

)

is Fr-measurable, r ∈ R+, hence the stochastic integral in the right hand side
of (4.3.5) exists in the Itô sense by Proposition 2.5.4. On the other hand, by
the duality relation (4.1.4) between D and δ and using the Itô-Skorohod
isometry (4.3.4), we have

IE
[
In(f⊗n)δ

(
1[0,t](·)u·

∫ t

·
vrdMr

)]

= IE
[∫ t

0

us

∫ t

s

vrdMrDsIn(f⊗(n−1))ds
]

= n

∫ t

0

f(s) IE
[
δ(f(·)In−2(f⊗(n−2)))δ(1[s,t]usv·)

]
ds

= n

∫ t

0

f(s) IE
[
In−2(f⊗(n−2))us

∫ t

s

f(r)vrdr

]
ds

= n IE
[
In−2(f⊗(n−2))

∫ t

0

f(s)us

∫ t

s

f(r)vrdrds

]

= n IE
[
In−2(f⊗(n−2))

∫ t

0

f(r)vr

∫ r

0

f(s)usdsdr

]

= n IE
[∫ t

0

δ(u·1{·<r}vr)f(r)drIn−1(f⊗(n−1))
]

= IE
[∫ t

0

δ(u·1{·<r}vr)DrIn(f⊗n)dr
]

= IE
[
In(f⊗n)

∫ t

0

δ(u·1{·<r}vr)δMr

]

= IE
[
In(f⊗n)

∫ t

0

δ(u·1{·<r}vr)dMr

]
,

for n ≥ 1 and f ∈ L2(R+), since the processes u and v are adapted. Hence
by density of S in L2(Ω) we get

δ

(
1[0,t](·)u·

∫ t

·
vrdMr

)
=
∫ t

0

δ
(
u·1{·<r}vr

)
dMr,

which implies (4.3.5) by (4.3.1). �
As a consequence of Proposition 2.11.3 we have the following divergence
formula, whose analog is (1.8.3) in the discrete case. The hypothesis of the
next proposition is satisfied in particular when φ ∈ L∞ad([0, T ]×Ω).
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Proposition 4.3.6. Suppose that Assumption 2.11.1 holds, i.e.

E

[∫ b

a

φ2
sds
∣∣∣Fa

]
≤ K2(b− a), P − a.s., 0 ≤ a ≤ b.

Then for all T > 0 and u ∈ L∞([0, T ]) we have

I1(u)F = δ(uF ) + 〈u,DF 〉L2(R+) + δ(uφDF ), F ∈ S. (4.3.6)

Proof. We prove this result by induction for all F = In(1[0,t]nv
⊗n), n ∈ N.

The formula clearly holds for n = 0. From Corollary 2.11.4 we have

I1(u1[0,t])In(1[0,t]nv
⊗n)

=
∫ t

0

usIn(1[0,s]nv
⊗n)dMs + n

∫ t

0

vsIn−1(1[0,s]n−1v⊗(n−1))
∫ s

0

uτdMτdMs

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+n
∫ t

0

usvsIn−1(1[0,s]n−1v⊗(n−1))ds.

Applying the induction hypothesis and Relation (4.1.2) we get

In−1(1[0,s]n−1v⊗(n−1))
∫ s

0

uτdMτ = δ(1[0,s]uIn−1(1[0,s]n−1v⊗(n−1)))

+(n− 1)
∫ s

0

uτvτdτIn−2(1[0,s]n−2v⊗(n−2))

+(n− 1)δ(1[0,t]φuvIn−2(1[0,s]n−2v⊗(n−2)))

= In(1[0,s]nv
⊗(n−1) ◦ u) + (n− 1)

∫ s

0

uτvτdτIn−2(1[0,s]n−2v⊗(n−2))

+(n− 1)δ(1[0,s]φuvIn−2(1[0,s]n−1v⊗(n−2))),

hence

I1(u1[0,t])In(1[0,t]nv
⊗n) =

∫ t

0

usIn(1[0,s]nv
⊗n)dMs

+n(n− 1)
∫ t

0

vs

∫ s

0

uτvτdτIn−2(1[0,s]n−2v⊗(n−2))dMs

+n
∫ t

0

vsIn(1[0,s]nv
⊗(n−1) ◦ u)dMs

+n(n− 1)
∫ t

0

vsδ(1[0,s]φuvIn−2(1[0,s]n−1v⊗(n−2)))dMs



4.3 Creation Operator 143

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+n
∫ t

0

usvsIn−1(1[0,s]n−1v⊗(n−1))ds

= In+1(1[0,t]n+1v⊗n ◦ u)

+n(n− 1)
∫ t

0

vsδ(1[0,s]φuvIn−2(1[0,s]n−1v⊗(n−2)))dMs

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+n(n− 1)
∫ t

0

vs

∫ s

0

φτvτdτIn−2(1[0,s]n−2v⊗(n−2))dMs

+n
∫ t

0

usvsIn−1(1[0,s]n−1v⊗(n−1))ds

= In+1(1[0,t]n+1v⊗n ◦ u)

+n(n− 1)
∫ t

0

vsδ(1[0,s]φuvIn−2(1[0,s]n−1v⊗(n−2)))dMs

+n
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+n
∫ t

0

usvsdsIn−1(1[0,t]n−1v⊗(n−1))ds

= δ(u1[0,t]In(1[0,t]nv
⊗n)) + δ(uφ1[0,t]DIn(1[0,t]nv

⊗n))

+〈u1[0,t], DIn(1[0,t]nv
⊗n)〉L2(R+),

where in the final equality we used the relations

In−1(1[0,t]n−1v⊗(n−1))
∫ t

0

usvsds =
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs

+(n− 1)
∫ t

0

vs

∫ s

0

uτvτdτIn−2(1[0,s]n−2v⊗(n−2))dMs,

cf. (2.11.7), and

δ(φuv1[0,t]In−1(1[0,t]n−1v⊗(n−1)))

= (n− 1)δ
(
φuv1[0,t]

∫ t

0

vsIn−2(1[0,s]n−2v⊗(n−2))dMs

)

= (n− 1)δ
(
φ·u·v·1[0,t](·)

∫ t

·
vsIn−2(1[0,s]n−2v⊗(n−2))dMs

)
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+(n− 1)δ
(
φ·u·v·1[0,t](·)

∫ ·

0

vsIn−2(1[0,s]n−2v⊗(n−2))dMs

)

= (n− 1)
∫ t

0

φ·u·v·1[0,t](·)
∫ t

·
vrIn−2(1[0,r]n−2v⊗(n−2))dMrδMs

+δ
(
φ·u·v·1[0,t](·)In−1(1[0,·]n−1v⊗(n−1))

)

= (n− 1)
∫ t

0

vsδ(1[0,s]φ·u·v·In−2(1[0,s]n−2v⊗(n−2)))dMs

+
∫ t

0

φsusvsIn−1(1[0,s]n−1v⊗(n−1))dMs,

that follows from Lemma 4.3.5. �

4.4 Ornstein-Uhlenbeck Semi-Group

As in the discrete case, a covariance identity can be obtained from the Clark
formula in Section 3.4. In this section we focus on covariance identities ob-
tained from the Ornstein-Uhlenbeck (O.-U.) semi-group (Pt)t∈R+ defined as

PtF =
∞∑

n=0

e−ntIn(fn), (4.4.1)

with F =
∑∞

n=0 In(fn), i.e. Pt = e−tL with L = δD.

Proposition 4.4.1. Let F,G ∈ Dom (D). We have the covariance identity

Cov (F,G) = IE
[∫ ∞

0

∫ ∞

0

e−sDuFPsDuGduds

]
. (4.4.2)

Proof. It suffices to prove this identity for F = In(fn) and G = In(gn) as

Cov (F,G) = IE[In(fn)In(gn)]
= n!〈fn, gn〉L2(Rn

+)

=
1
n

IE
[∫ ∞

0

DuFDuGdu

]

= IE
[∫ ∞

0

∫ ∞

0

DuF e−nsDuGduds

]

= IE
[∫ ∞

0

e−s

∫ ∞

0

DuFPsDuGduds

]
.

�
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Let L−1 denote the inverse of the number operator L = δD, cf. Definition
2.8.3, defined on

{F ∈ L2(Ω) : IE[F ] = 0}

as

L−1F =
∞∑

n=1

1
n
In(fn)

provided F is written as

F =
∞∑

n=1

In(fn).

Note that using the identity

L−1 =
∫ ∞

0

e−tLdt =
∫ ∞

0

Ptdt,

and the commutation relation DPt = e−tPtD, Relation (4.4.2) can also be
obtained from a general semi-group argument:

Cov (F,G) = IE[LL−1(F − IE[F ])G]

= IE[〈DL−1(F − IE[F ]), DG〉L2(X,σ)]

= IE
[∫ ∞

0

〈DPt(F − IE[F ]), DG〉L2(X,σ)dt

]

= IE
[∫ ∞

0

e−t〈PtD(F − IE[F ]), DG〉L2(X,σ)dt

]

= IE
[∫ ∞

0

e−t〈PtDF,DG〉L2(X,σ)dt

]
.

Relation (4.4.2) implies the covariance inequality

|Cov (F,G)| ≤
∣∣∣∣IE
[
‖DF‖L2(R+)

∫ ∞

0

e−s‖PsDG‖L2(R+)ds

]∣∣∣∣

≤ ‖DG‖L∞(Ω,L2(R+)) IE
[
‖DF‖L2(R+)

]

≤ ‖DG‖L∞(Ω,L2(R+))‖DF‖L∞(Ω,L2(R+)),

F,G ∈ Dom (D), provided Ps satisfies the following continuity property.

Assumption 4.4.2. (Continuity property) For all F ∈ Dom (D) we have

‖PtDF‖L∞(Ω,L2(R+)) ≤ ‖DF‖L∞(Ω,L2(R+)), t ∈ R+. (4.4.3)

This property is satisfied in particular when (φt)t∈R+ is deterministic, cf.
Section 4.7.
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4.5 Deterministic Structure Equations

When the process (φt)t∈R+ is deterministic, Corollary 2.11.4 and Proposition
4.3.6 can be rewritten as a multiplication formula for multiple stochastic
integrals, without requiring any smoothness on (φt)t∈R+ .

Proposition 4.5.1. Assume that φ ∈ L∞(R+) is a bounded, deterministic,
function. Then we have

I1(u)In(v⊗n) = In+1(v⊗n ◦ u) + nIn((φuv) ◦ v⊗(n−1)) (4.5.1)

+n〈u, v〉L2(R+)In−1(v⊗(n−1)),

for all u ∈ L∞(R+) ∩ L2(R+), v ∈ L2(R+).

From the above proposition we obtain in particular that for every n ≥ 1 there
exists a polynomial Qn(x) such that

In(v⊗n) = Qn(I1(v)), n ≥ 1, (4.5.2)

see [116] for details when (φs)s∈R+ is a random process. As seen in Chapters
5 and 6, the Hermite and Charlier polynomials are respectively used to rep-
resent multiple stochastic integrals with respect to Brownian motion and the
compensated Poisson process.

On the other hand, if s1 < · · · < sn and n = n1 + · · · + nd, we have

1⊗n1
[t0,t1]

◦· · ·◦1⊗nd

[td−1,td](s1, . . . , sn)=
n1! · · ·nd!

n!
1[t0,t1]n1×···×[td−1,td]nd (s1, . . . , sn),

hence if 0 ≤ t0 < · · · < td,

In(1⊗n1
[t0,t1]

◦ · · · ◦ 1⊗nd

[td−1,td])

= n!
∫ ∞

0

∫ sn

0

· · ·
∫ s2

0

1⊗n1
[t0,t1]

◦ · · · ◦ 1⊗nd

[td−1,td](s1, . . . , sn)dMs1 · · ·dMsn

= n1! · · ·nd!
∫ ∞

0

∫ sn

0

· · ·
∫ s2

0

1[t0,t1]n1×···×[td−1,td]nd (s1, . . . , sn)dMs1 · · · dMsn

=
d∏

k=1

(
nk!
∫ ∞

0

∫ snk

0

· · ·
∫ s2

0

1⊗nk

[tk−1,tk](s1, . . . , snk
)dMs1 · · ·dMsnk

)

=
d∏

k=1

Ink
(1⊗nk

[tk−1,tk]). (4.5.3)

The following is a product rule for the operator D.
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Proposition 4.5.2. Assume that φ ∈ L∞(R+) is a bounded, deterministic
function. We have

Dt(FG) = FDtG+GDtF + φtDtFDtG, (4.5.4)

t ∈ R+, F,G ∈ S.

Proof. We first notice that for F = I1(u) and G = In(fn), this formula is a
consequence of the multiplication formula Proposition 4.5.1 since

Dt(I1(u)In(fn))

= Dt

(
In+1(fn ◦ u) + n

∫ ∞

0

usIn−1(fn(·, s)ds+ nIn(fn ◦ (φu))
)

= In(fn)DtI1(u) + nIn(fn(·, t) ◦ u) + n(n− 1)
∫ ∞

0

usIn−2(fn(·, t, s))ds

+n(n− 1)In(fn(·, t) ◦ (φu)) + φtDtI1(u)DtIn(fn)
= In(fn)DtI1(u) + I1(u)DtIn(fn) + φtDtI1(u)DtIn(fn), t ∈ R+.

Next, we prove by induction on k ∈ N that

Dt(In(fn)(I1(u))k) = (I1(u))kDtIn(fn) + In(fn)Dt(I1(u))k

+φtDt(I1(u))kDtIn(fn),

for all n ∈ N. Clearly this formula holds for k = 0. From Proposition 4.5.1
we have

In(fn)I1(u) ∈ Hn−1 ⊕Hn ⊕Hn+1, n ≥ 1,

hence by the induction hypothesis applied at the rank k we have

Dt(In(fn)(I1(u))k+1)
= (I1(u))kDt(In(fn)I1(u)) + In(fn)I1(u)Dt(I1(u))k

+φtDt(I1(u))kDt(In(fn)I1(u))
= (I1(u))k+1DtIn(fn) + In(fn)I1(u)Dt(I1(u))k + In(fn)(I1(u))kDtI1(u)

+φtIn(fn)DtI1(u)Dt(I1(u))k + φtI1(u)Dt(I1(u))kDtIn(fn)

+φt(I1(u))kDtI1(u)DtIn(fn) + φ2
tDtI1(u)Dt(I1(u))kDtIn(fn)

= (I1(u))k+1DtIn(fn) + In(fn)Dt(I1(u))k+1 + φtDt(I1(u))k+1DtIn(fn).

Consequently, (4.5.4) holds for any polynomial in single stochastic integrals,
hence from Relation (4.5.2) it holds for any F andG of the form F = In(u⊗n),
G = In(v⊗n). The extension of F,G ∈ S is obtained by an approximation
argument in L2(Ω) from Proposition (2.11.2). �
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In case φt = 0, t ∈ R+, in order for the product relation (4.5.4) of Proposition
4.5.2 to be satisfied it suffices that Dt be a derivation operator. On the other
hand, if φt �= 0, t ∈ R+, Relation (4.5.4) is satisfied by any finite difference
operator of the form

F → 1
φt

(Fφ
t − F ).

By induction on r ≥ 1 we obtain the following generalization of Relation
(4.5.4).

Corollary 4.5.3. For all F,G ∈ S we have

Dt1 · · ·Dtr(FG) =
r∑

p=0

r∑

q=r−p

(4.5.5)

∑

{k1<···<kp}∪{l1<···<lq}={1,...,r}
Dtk1

· · ·Dtkp
FDtl1

· · ·Dtlq
G

∏

i∈{k1,...,kp}∩{l1,...,lq}
φ(ti),

t1, . . . tr ∈ R+.

From Proposition 4.5.2, Proposition 4.3.6 can be extended to random u ∈ U
as in the next result.

Proposition 4.5.4. Let T ∈ R+ and assume that φ ∈ L∞([0, T ]) is a locally
bounded deterministic function. Then for all u ∈ U and F ∈ S we have

δ(u)F = δ(uF ) + 〈DF, u〉L2(R+) + δ(φuDF ). (4.5.6)

Proof. The proof of this statement follows by duality from Proposition 4.5.2.
Letting u = vG we have for F,G1, G2 ∈ S:

IE[FG1δ(u)] = IE[G2〈v,D(FG1)〉L2(R+)]

= IE[G2F 〈v,DG1〉L2(R+)] + IE[G2G1〈v,DF 〉L2(R+)]

+ IE[G2〈v, φDFDG1〉L2(R+)]

= IE[G1δ(uF )] + IE[G1〈vG2, DF 〉L2(R+)] + IE[G1δ(G2vφDF )].

�
If (φt)t∈R+ is random the probabilistic interpretation of the gradient operator
D is unknown, however we have the following conditional product rule.

Proposition 4.5.5. For F,G ∈ S we have

IE[Dt(FG) | Ft] = IE[FDtG | Ft] + IE[GDtF | Ft] + φt IE[DtFDtG | Ft],

F,G ∈ S, t ∈ R+.
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Proof. We write (4.5.6) for u ∈ U adapted and apply the duality between D
and δ:

IE[〈u,D(FG)〉] = IE[δ(u)FG]

= IE[G(δ(uF ) + 〈u,DF 〉L2(R+) + δ(uφDF )]

= IE[〈u, FDG〉L2(R+) + 〈u,GDF 〉L2(R+) + 〈u, φDFDG〉L2(R+)].

�
With help of (4.5.4) and Proposition 4.2.5, the following multiplication for-
mula can been proved as a generalization of (4.5.1), cf. [107]. For fn ∈
L2(R+)◦n and gm ∈ L2(R+)◦m, we define fn ⊗l

k gm, 0 ≤ l ≤ k, to be the
function

(xl+1, . . . , xn, yk+1, . . . , ym) →

φ(xl+1) · · ·φ(xk)
∫

Rl
+

fn(x1, . . . , xn)gm(x1, . . . , xk, yk+1, . . . , ym)dx1 · · · dxl

of n + m − k − l variables. We denote by fn ◦l
k gm the symmetrization in

n+m− k − l variables of fn ⊗l
k gm, 0 ≤ l ≤ k.

Proposition 4.5.6. We have the chaos expansion

In(fn)Im(gm) =
2(n∧m)∑

s=0

In+m−s(hn,m,s), (4.5.7)

if and only if the functions

hn,m,s =
∑

s≤2i≤2(s∧n∧m)

i!
(
n

i

)(
m

i

)(
i

s− i

)
fn ◦s−i

i gm

belong to L2(R+)◦n+m−s, 0 ≤ s ≤ 2(n ∧m).

Proof. From Corollary 4.5.3 we have

Dt1 · · ·Dtr (In(fn)Im(gm)) =
r∑

p=0

r∑

q=r−p

∑

{k1<···<kp}∪{l1<···<lq}={1,...,r}
n!

(n− p)!
m!

(m− q)!
In−p(fn(·, tk1 , . . . , tkp))Im−q(gm(·, tl1 , . . . , tlq))

×
∏

i∈{k1,...,kp}∩{l1,...,lq}
φ(ti).



150 4 Annihilation and Creation Operators

Define a function hn,m,n+m−r ∈ L2(R+)◦r as

hn,m,n+m−r(t1, . . . , tr) =
1

r!
IE[Dt1 · · ·Dtr (In(fn)Im(gm))]

=
1

r!

r∧n∑

p=0

r∑

q=r−p

1{n−p=m−q}
n!

(n − p)!

m!

(m − q)!
(n − p)!an,m,p,rfn ◦n−p

q+p−r gm(t1, . . . , tr),

=
1

r!

∑

n−m+r≤2p≤2(n∧r)

n!m!

(n − p)!
an,m,p,rfn ◦n−p

m−r+p gm(t1, . . . , tr),

where an,m,p,r is the number of sequences k1 < · · · < kp and l1 < · · · < lq such
that {k1, . . . , kp} ∪ {l1, . . . , lq} = {1, . . . , r}, with exactly m− r+ p− (n− p)
terms in common. This number is

an,m,p,r =
r!

(r − p)!p!
p!

(m− n− r + 2p)!(n+ r −m− p)!
.

Hence

hn,m,n+m−r

=
∑

n−m+r≤2p≤2(n∧r)

n!m!fn ◦n−p
m−r+p gm

(r − p)!(m− n− r + 2p)!(n+ r −m− p)!(n− p)!

=
∑

n+m−r≤2i≤2((n+m−r)∧n∧m)

n!
(n− i)!

m!
(m− i)!

1
(2i− l)!

1
(l − i)!

fn ◦l−i
i gm

=
∑

l≤2i≤2(l∧n∧m)

i!
(
n

i

)(
m

i

)(
i

l− i

)
fn ◦l−i

i gm,

with l = n + m − r and i = p + m − r. The chaos expansion follows from
Proposition 4.2.5, first for fn, gm continuous with compact supports. The
general case follows by a density argument. �
In the next remark we give a necessary condition for the independence of
multiple stochastic integrals.

Remark 4.5.7. Let fn ∈ L2(R+)◦n and gm ∈ L2(R+)◦m and assume that
the In(fn) and Im(gm) are independent. Then

∫

R
s−i
+

fn(x1, . . . , xn)gm(x1, . . . , xk, yi+1, . . . , ym)dx1 · · · dxs−i = 0, (4.5.8)

φ(xs−i+1) · · ·φ(xi)dxs−i+1 · · · dxndys−i+1 · · ·dxm − a.e., 1 ≤ 2i ≤ s ≤ 2(n ∧
m).
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Proof. If In(fn) and Im(gm) are independent, then In(fn)Im(gm) ∈ L2(Ω)
and

(n+m)! | fn ⊗ gm |2L2(R+)⊗(n+m)=| fn ◦ gm |2L2(R+)◦(m+m)

≥ n!m! | fn |2L2(R+)⊗n | gm |2L2(R+)⊗m

= E
[
In(fn)2

]
E
[
Im(gm)2

]
= E
[
(In(fn)Im(gm))2

]

=
2(n∧m)∑

r=0

(n+m− r)! | hn,m,r |2L2(R+)⊗(n+m−r)

= (n+m)! | fn ⊗ gm |2L2(R+)⊗(n+m)

+
2(n∧m)∑

r=1

(n+m− r)! | hn,m,r |2L2(R+)⊗(n+m−r) ,

hence hn,m,r = 0, r = 1, . . . , 2(n ∧m), which implies (4.5.8). �

4.6 Exponential Vectors

We define a linear transformation T φ
t on the space E spanned by the expo-

nential vectors introduced in Definition 2.13.3.

Definition 4.6.1. For all u ∈ L2(R+) let

T φ
t ξ(u) = (1 + utφt)ξ(u), u ∈ L∞(R+).

The transformation T φ
t is well-defined on E because ξ(u1), . . . , ξ(un), are

linearly independent if u1, . . . , un are distinct elements of L2(R+).

Lemma 4.6.2. The transformation T φ
t is multiplicative, i.e.

T φ
t (FG) = (T φ

t F )(T φ
t G), F,G ∈ E .

Proof. From Lemma 2.13.4 we have

T φ
t (ξ(u)ξ(v)) = exp(〈u, v〉L2(R+))T

φ
t ξ(u+ v + φuv)

= exp(〈u, v〉L2(R+))(1 + φt(ut + vt + φtutvt))ξ(u + v + φuv)
= (1 + φtut)(1 + φtvt)ξ(u)ξ(v)

= T φ
t ξ(u)T φ

t ξ(v).

�



152 4 Annihilation and Creation Operators

The following proposition provides an interpretation of T φ
t using the construc-

tion of exponential vectors as solutions of stochastic differential equations,
cf. Proposition 2.13.1.
Proposition 4.6.3. For all u ∈ L2(R+), T φ

t ξT (u) coincides dt×dP-a.e. with
the limit as T goes to infinity of the solution Zt

T to the equation

Zt
s = 1 +

∫ s

0

Zt
τ−uτdM

t
τ , s ∈ R+, (4.6.1)

where (M t
s)s∈R+ is defined as

M t
s = Ms + φt1[t,∞)(s), s ∈ R+.

Proof. Clearly by Proposition 2.13.1 we have Zt
s = ξs(u), s < t. Next, at

time t we have

Zt
t = (1 + φtut)Zt

t−

= (1 + φtut)ξt−(u)
= (1 + φtut)ξt(u),

since ξt−(u) = ξt(u) a.s. for fixed t because ΔMt = 0, dt × dP-a.e. Finally,
for s > t we have

Zt
s = Zt

t +
∫ s

t

Zt
τ−uτdMτ

= (1 + φtut)ξt(u) +
∫ s

t

Zt
τ−uτdMτ ,

hence
Zt

s

1 + φtut
= ξt(u) +

∫ s

t

Zt
τ−

1 + φtut
uτdMτ , s > t,

which implies from (2.13.1):
Zt

s

1 + φtut
= ξs(u), s > t,

and
Zt

T = (1 + φtut)ξ(u) = T φ
t ξ(u),

P-a.s., t ∈ R+. �
In other words, T φ

t F , F ∈ E , can be interpreted as the evaluation of F on
the trajectories of (Ms)s∈R+ perturbed by addition of a jump of height φt at
time t.
In Chapters 5 and 6 we will express the multiple stochastic integrals in terms
of polynomials in the Brownian and Poisson cases. Note that such expressions
using polynomials are not available in other cases, see e.g. [116] in the case
(φt)t∈R+ is random, in particular for the Azéma martingales.
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Finally we turn to the probabilistic interpretation of the gradient D. In case
(φt)t∈R+ is a deterministic function, the probabilistic interpretation of Dt is
known and DtF can be explicitly computed. Define the operator

DB : E → L2(Ω × R+, dP × dt)

on the space E of exponential vectors as

〈DBF, u〉L2(R+) =
d

dε
F

(
M(·) + ε

∫ ·

0

isusds

)
∣∣∣ε=0

, F ∈ E . (4.6.2)

We have for F = ξ(u) and g ∈ L2(R+):

〈DBF, g〉L2(R+) =
d

dε
exp
(
ε

∫ ∞

0

gsusisds

)
ξ(u)∣∣∣ε=0

=
∫ ∞

0

gsusisds ξ(u),

hence DB
t ξ(u) = itutξ(u), t ∈ R+, where

ξ(u) = exp
(∫ ∞

0

usdMs −
1
2

∫ ∞

0

|us|2isds
) ∏

s∈JM

(1 + usφs)e−usφs , (4.6.3)

and JM denotes the set of jump times of (Mt)t∈R+ . We have the follow-
ing proposition, which recovers and makes more precise the statement of
Proposition (4.5.2). Let again it = 1{φt=0} and jt = 1− it = 1{φt �=0}, t ∈ R+.

Proposition 4.6.4. We have

DtF = DB
t F +

jt
φt

(T φ
t F − F ), t ∈ R+, F ∈ E . (4.6.4)

Proof. When φt = 0 we have DB
t F = itutξ(u) = itDtF , hence

Dtξ(u) = itDtξ(u) + jtDtξ(u)
= itutξ(u) + jtutξ(u)

= DB
t ξ(u) +

jt
φt

(T φ
t ξ(u) − ξ(u)), t ∈ R+.

Concerning the product rule we have from Lemma 2.13.4:

Dt(ξ(u)ξ(v)) = exp
(∫ ∞

0

usvsds

)
Dtξ(u+ v + φuv)

= exp
(∫ ∞

0

usvsds

)
(ut + vt + φtutvt)ξ(u + v + φuv)
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= (ut + vt + φtutvt)ξ(u)ξ(v)
= ξ(u)Dtξ(v) + ξ(v)Dtξ(u) + φtDtξ(u)Dtξ(v),

u, v ∈ L∞(R+), see also Relation (6) of [107]. �

4.7 Deviation Inequalities

In this section we work under the continuity Assumption 4.4.2, which is
satisfied when (φt)t∈R+ is a deterministic function since in this case an
Ornstein-Uhlenbeck process (Xt)t∈R+ can be associated to the semi-group
(Ps)s∈R+ . The proof of the next lemma makes forward references to Lemmas
5.3.1 and 6.8.1.

Lemma 4.7.1. The continuity Assumption 4.4.2 is satisfied if (φt)t∈R+ is a
deterministic function.

Proof. Let (Mt)t∈R+ be defined as in (2.10.4) on the product space Ω = Ω1×
Ω2 of independent Brownian motion (Bt)t∈R+ and Poisson process (Nt)t∈R+ .
Using the decomposition (2.10.4), i.e.

dMt = itdBt + φt(dNt − λtdt), t ∈ R+,

any element
G = f(I1(u1), . . . , I1(un))

of S can be constructed as a functional G : Ω1×Ω2 → R. From Lemma 5.3.1
and Lemma 6.8.1 we have

PtG(ω) =
∫

Ω1×Ω2

G(T 1
t (ω1, ω̃1), T 2

t (ω2, ω̃2))pt(ω1, ω2, dω̃1, dω̃2),

for some probability kernel pt and mappings

T 1
t : Ω1 ×Ω1 → Ω1, T 2

t : Ω1 ×Ω1 → Ω1.

This implies

‖PtDF‖L∞(Ω,L2(R+)) ≤ ‖Pt‖DF‖L2(R+)‖L∞(Ω)

≤ ‖DF‖L∞(Ω,L2(R+)), t ∈ R+,

for all F ∈ Dom (D). �

Proposition 4.7.2. Let F ∈ Dom (D) be such that IE[eT |F |] <∞, and esF ∈
Dom (D), 0 < s ≤ T , for some T > 0. Let h be the function defined by
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h(s) =
∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

‖DF‖2
L∞(Ω,L2(R+)), s ∈ [0, T ].

Then

P(F − IE[F ] ≥ x) ≤ exp
(
−
∫ x

0

h−1(s)ds
)
, 0 < x < h(T ),

where h−1 is the inverse of h.

If h is not strictly increasing we may use the left-continuous inverse of h:

h−1(x) = inf{t > 0 : h(t) ≥ x}, 0 < x < h(T−).

Proof. Assume first that IE[F ] = 0. Since the Ornstein-Uhlenbeck semi-group
(Pt)t∈R+ satisfies the continuity Assumption 4.4.2, then using Proposition
4.4.1 we have

IE[F esF ] = Cov (F, esF )

= IE
[∫ ∞

0

e−v

∫ ∞

0

DuesFPvDuFdudv

]

≤
∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

IE
[
esF

∫ ∞

0

e−v

∫ ∞

0

DuFPvDuFdvdu

]

≤
∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

IE
[
esF

∫ ∞

0

e−v‖DF‖L2(R+)‖PvDF‖L2(R+)dv

]

≤
∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

IE
[
esF
]
‖DF‖L∞(Ω,L2(R+))

∥∥∥∥
∫ ∞

0

e−vPv‖DF‖L2(R+)dv

∥∥∥∥
∞

≤
∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

IE
[
esF
]
‖DF‖L∞(Ω,L2(R+))

∫ ∞

0

e−v‖DF‖L∞(Ω,L2(R+))dv

≤ IE
[
esF
] ∥∥∥∥

e−sFDesF

DF

∥∥∥∥
∞

‖DF‖2
L∞(Ω,L2(R+)).

≤ h(s) IE
[
esF
]
.

In the general case, letting L(s) = IE[es(F−IE[F ])], we have

log(IE[et(F−IE[F ])]) =
∫ t

0

L′(s)
L(s)

ds

=
∫ t

0

IE[(F − IE[F ])es(F−IE[F ])]

IE[es(F−IE[F ])]
ds

=
∫ t

0

h(s)ds,
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0 ≤ t ≤ T . We have for all x ∈ R+:

etx
P(F − IE[F ] ≥ x) ≤ IE[et(F−IE[F ])]

≤ eH(t), 0 ≤ t ≤ T,

where

H(t) =
∫ t

0

h(s)ds, 0 ≤ t ≤ T.

For any 0 < t < T we have d
dt(H(t) − tx) = h(t) − x, hence

min
0<t<T

(H(t) − tx) = −xh−1(x) +H(h−1(x))

= −xh−1(x) +
∫ h−1(x)

0

h(s)ds

= −xh−1(x) +
∫ x

0

sdh−1(s)

= −
∫ x

0

h−1(s)ds.

�
From now on we work with (φt)t∈R+ a deterministic function, i.e. (Mt)t∈R+ is
written as in (2.10.4) and from Lemma 4.7.1, the continuity Assumption 4.4.2
is satisfied.
This covers the Gaussian case for φt = 0, t ∈ R+, and also the general Poisson
case when φt is a non-zero constant.

Proposition 4.7.3. Let K ≥ 0 and F ∈ Dom (D) be such that φtDtF ≤ K,
dtdP-a.e. for some K ≥ 0 and ‖DF‖L∞(Ω,L2(R+)) <∞. Then we have

P(F − IE[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,L2(R+))

K2
g

(
xK

‖DF‖2
L∞(Ω,L2(R+))

))

≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,L2(R+))

))
, (4.7.1)

x ≥ 0, with g(u) = (1 + u) log(1 + u) − u, u ≥ 0. If K = 0 (decreasing
functionals) we have

P(F − IE[F ] ≥ x) ≤ exp

(
− x2

2‖DF‖2
L∞(Ω,L2(R+))

)
. (4.7.2)
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Proof. We first assume that F ∈ Dom (D) is a bounded random variable.
Let us assume that IE[F ] = 0. From Proposition 4.5.2 we have as in the proof
of Proposition 1.11.1:

0 ≤ e−sFDuesF

DuF

=
1

φuDuF

(
esφuDuF − 1

)

≤ esK − 1
K

,

since the function x → (ex − 1)/x is positive and increasing on R. Hence in
Proposition 4.7.2 we can take

h(s) =
∣∣∣∣
esK − 1
K

∣∣∣∣ ‖DF‖
2
L∞(Ω,L2(R+)), s ∈ [0, T ],

and

min
0<t<T

(H(t) − tx) = −
∫ x

0

h−1(s)ds

≤ − 1
K

∫ x

0

log
(
1 + tK‖DF‖−2

L∞(Ω,L2(R+))

)
dt

= − 1
K

(
(x+

1
K

‖DF‖2
L∞(Ω,L2(R+))) log

(
1 + xK‖DF‖−2

L∞(Ω,L2(R+))

)
− x

)

≤ − x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,L2(R+))

)
.

If K = 0, the above proof is still valid by replacing all terms by their limits
as K → 0. If F ∈ Dom (D) is not bounded the conclusion holds for

Fn = max(−n,min(F, n)) ∈ Dom (D), n ≥ 1,

and (Fn)n∈N, (DFn)n∈N, converge respectively to F and DF in L2(Ω), resp.
L2(Ω × R+), with ‖DFn‖2

L∞(Ω,L2(R+)) ≤ ‖DF‖2
L∞(Ω,L2(R+)). �

By the same argument as in Proposition 1.11.3, the bounds (4.7.1) and (4.7.2)
respectively imply

IE[eα|F | log+ |F |] <∞

for some α > 0, and
IE[eαF 2

] <∞

for all α < (2‖DF‖2
L∞(Ω,L2(R+)))

−1.
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Applying Proposition 4.7.3 with the condition φDF ≤ φK for constant φt =
φ ∈ R+, t ∈ R+, we have the following.

Corollary 4.7.4. Assume that φt = φ ∈ R+, t ∈ R+, is constant. Let F ∈
Dom (D) be such that DF ≤ K for some K ≥ 0 and ‖DF‖L∞(Ω,L2(R+)) <∞.
Then

P(F − IE[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,L2(R+))

φ2K2
g

(
xφK

‖DF‖2
L∞(Ω,L2(R+))

))

≤ exp

(
− x

2φK
log

(
1 +

xφK

‖DF‖2
L∞(Ω,L2(R+))

))
,

with g(u) = (1 + u) log(1 + u) − u, u ≥ 0. If φ = 0 (Wiener case) or K = 0
(decreasing functionals) we have

P(F − IE[F ] ≥ x) ≤ exp

(
− x2

2‖DF‖2
L∞(Ω,L2(R+))

)
. (4.7.3)

In particular if F is FT -measurable, then ‖DF‖L∞(Ω,L2(R+)) ≤ KT and

P(F − IE[F ] ≥ x) ≤ exp
(
− T

φ2
g

(
φx

KT

))

≤ exp
(
− x

2K
log
(

1 +
φx

KT

))
,

which improves (as in [151]) the inequality

P(F − IE[F ] ≥ x) ≤ exp
(
− x

4φK
log
(

1 +
φx

2KT

))
, (4.7.4)

which follows from Proposition 6.1 in [6], and relies on modified (not sharp)
logarithmic Sobolev inequalities on Poisson space.

4.8 Derivation of Fock Kernels

In this section we introduce some differential operators which will used to con-
struct other instances of operators satisfying Assumptions 3.1.1-3.4.3, namely
on the Wiener space in Section 5.8 and on the Poisson space in Section 7.7,
by infinitesimal time changes on the paths of the underling process.
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Definition 4.8.1. We define the linear operator

∇� : S → L2(Ω × R+)

on S by
∇�t In(f⊗n) = −nIn((f ′1[t,∞)) ◦ f⊗(n−1)),

t ∈ R+, f ∈ C1
c (R+), n ∈ N, and by polarization of this expression.

The operator ∇� is unbounded, densely defined, and maps functionals of the
n-th chaos Hn into Hn, n ≥ 1.
For h ∈ L2(R+), let

◦
h denote the function defined by

◦
h(t) =

∫ t

0

h(s)ds, t ∈ R+.

Definition 4.8.2. We define the linear operator ∇⊕ : U → L2(Ω) by

∇⊕(hIn(f⊗n)) = nIn((f
◦
h)′ ◦ f⊗(n−1)),

f, h ∈ C1
c (R+), and extend it by linearity and polarization.

Next we show that the operators ∇⊕ and ∇� are mutually adjoint.

Proposition 4.8.3. The operators

∇� : S → L2(Ω × R+)

and
∇⊕ : U → L2(Ω)

satisfy the duality relation

IE
[
〈∇�F, u〉L2(R+)

]
= IE
[
F∇⊕(u)

]
, F ∈ S, u ∈ U . (4.8.1)

Proof. By polarization, we need to prove the following. Letting F = In(f⊗n),
u = hIn(g⊗n) and f, g, h ∈ C1

c (R+), we have

IE
[
〈∇�F, u)〉L2(R+)

]

= IE
[
〈∇�In(f⊗n), h)〉L2(R+)In(g⊗n

]

= −n IE
[∫ ∞

0

In((f ′1[t,∞)) ◦ f⊗(n−1))In(g⊗n)h(t)dt
]

= −n2〈In−1(f⊗(n−1)), In−1(g⊗(n−1))〉L2(R+)◦(n−1)

∫ ∞

0

h(t)
∫ ∞

t

f ′(s)g(s)dsdt
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= −n2(n− 1)!〈f⊗(n−1), g⊗(n−1)〉L2(R+)◦(n−1)

∫ ∞

0

f ′(t)g(t)
◦
h(t)dt

= n2(n− 1)!〈f⊗(n−1), g⊗(n−1)〉L2(R+)◦(n−1)

∫ ∞

0

f(t)(
◦
hg)′(t)dt

= n IE
[
In(f⊗n)In((g

◦
h)′ ◦ g⊗(n−1))

]

= IE
[
In(f⊗n)∇⊕(hIn(g⊗n))

]

= IE
[
F∇⊕(u)

]
,

hence Relation 4.8.1 holds. �
Note that the operators ∇� and ∇⊕ are closable from Propositions 3.1.2 and
4.8.3.

4.9 Notes and References

The terminology “Skorohod integral” is adopted in reference to [136]. The
first systematic investigation of the relations between the multiple stochas-
tic integrals with respect to normal and the associated annihilation operator
and Skorohod integral appeared in [81]. Proposition 4.2.5 is also known as
the Stroock formula, cf. [138] and Relations (7.4) and (7.5), pages 26-27 of
[66]. We refer to page 216 of [31], and to [68], [140], [141], for other versions
of Proposition 4.5.6 in the Poisson case. In [126] a more general result is
proved, and yields a decomposition the product In(fn)Im(gm) as a sum of
n ∧ m integral terms. Those terms are not necessarily linear combinations
of multiple stochastic integrals with respect to (Mt)t∈R+ , except when the
bracket d[M,M ]t is a linear deterministic combination of dt and dMt, cf.
[116]. Remark 4.5.7 is an extension the necessary condition for independence
proved in the Wiener case in [144]. The necessary and sufficient conditions
obtained in [107], [109], [141] are true only when fn and gm have constant
signs. Necessary and sufficient condition for the independence of multiple
stochastic integrals with respect to symmetric α-stable random measures with
0 < α < 2 have been obtained in [124] as a disjoint support condition on fn

and gm. However, finding a necessary and sufficient condition two given sym-
metric functions fn and gm for the independence of In(fn) and Im(gm) in
the Poisson case is still an open problem. We refer to [101] for the classical
Gaussian deviation inequality (4.7.2) in the case φt = 0, t ∈ R+, i.e. on
Wiener space. The material on multidimensional stochastic integrals is taken
from [69]. White noise versions of the annihilation and creation operators,
as well as connections with quantum field theory can be found in [51]. The
Skorohod isometry Proposition 4.3.1 has also been stated for Brownian mo-
tion on Lie groups and on Riemannian manifolds respectively in [43] and [27].



Chapter 5

Analysis on the Wiener Space

In this chapter we consider the particular case where the normal martin-
gale (Mt)t∈R+ is a standard Brownian motion. The general results stated in
Chapters 3 and 4 are developed in this particular setting of a continuous
martingale. Here, the gradient operator has the derivation property and can
be interpreted as a derivative in the directions of Brownian paths, while the
multiple stochastic integrals are connected to the Hermite polynomials. The
connection is also made between the gradient and divergence operators and
other transformations of Brownian motion, e.g. by time changes. We also de-
scribe in more detail the specific forms of covariance identities and deviation
inequalities that can be obtained on the Wiener space and on Riemannian
path space.

5.1 Multiple Wiener Integrals

In this chapter we consider in detail the particular case where (Mt)t∈R+

is a standard Brownian motion, i.e. (Mt)t∈R+ solves the structure equation
(2.10.1) with φt = 0, t ∈ R+, i.e.

[M,M ]t = t, t ∈ R+.

The Hermite polynomials will be used to represent the multiple Wiener
integrals.

Definition 5.1.1. The Hermite polynomial Hn(x;σ2) of degree n ∈ N and
parameter σ2 > 0 is defined with

H0(x;σ2) = 1, H1(x;σ2) = x, H2(x;σ2) = x2 − σ2,

and more generally from the recurrence relation

Hn+1(x;σ2) = xHn(x;σ2) − nσ2Hn−1(x;σ2), n ≥ 1. (5.1.1)

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 5,
c© Springer-Verlag Berlin Heidelberg 2009
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In particular we have

Hn(x; 0) = xn, n ∈ N.

The generating function of Hermite polynomials is defined as

ψλ(x, σ2) =
∞∑

n=0

λn

n!
Hn(x;σ2), λ ∈ (−1, 1).

Proposition 5.1.2. The following statements hold on the Hermite
polynomials:
i) Generating function:

ψλ(x, σ) = eλx− 1
2 λ2σ2

, x, λ ∈ R.

ii) Derivation rule:
∂Hn

∂x
(x;σ2) = nHn−1(x;σ2), (5.1.2)

iii) Creation rule:

Hn+1(x;σ2) =
(
x− σ2 ∂

∂x

)
Hn(x;σ2).

Proof. The recurrence relation (5.1.1) shows that the generating function ψλ

satisfies the differential equation

⎧
⎪⎨

⎪⎩

∂ψλ

∂λ
(x, σ) = (x− λσ2)ψλ(x, σ),

ψ0(x, σ) = 1,

which proves (i). From the expression of the generating function we deduce
(ii), and by rewriting (5.1.1) we obtain (iii). �
Let

φσ
d (s1, . . . , sd) =

1
(2π)d/2

e−(s2
1+···+s2

d)/2, (s1, . . . , sd) ∈ R
d,

denote the standard Gaussian density function with covariance σ2Id on R
n.

From Relation (5.1.2) we have

∂

∂x
(φσ

1 (x)Hn(x;σ2)) = φσ
1 (x)
(
∂Hn

∂x
(x;σ2) − x

σ2
Hn(x;σ2)

)

= −φ
σ
1 (x)
σ2

Hn+1(x;σ2),
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hence by induction, Proposition 5.1.2-(iii) implies

σ2(k1+···+kd) (−1)k1+···+kd

φσ
d (x1, . . . xd)

∂k1
x1

· · ·∂kd
xd
φσ

d (x1, . . . , xd) =
d∏

i=1

Hki(xi;σ2).

(5.1.3)
Let In(fn) denote the multiple stochastic integral of fn ∈ L2(R+)◦n with
respect to (Bt)t∈R+ , as defined in Section 2.7. Note that here I1(u) coincides
with J1(u) defined in (2.2.2), and in particular it has a centered Gaussian
distribution with variance ‖u‖2

2 := ‖u‖2
L2(R+), u ∈ L2(R+).

In addition, the multiplication formula (4.5.1) of Proposition 4.5.1 reads

I1(u)In(v⊗n) = In+1(v⊗n ◦ u) + n〈u, v〉L2(R+)In−1(v⊗(n−1)) (5.1.4)

for n ≥ 1, since with φt = 0, t ∈ R+, and we have in particular

I1(u)I1(v) = I2(v ◦ u) + 〈u, v〉L2(R+)

for n = 1. More generally, Relation (4.5.7) of Proposition 4.5.6 reads

In(fn)Im(gm) =
n∧m∑

s=0

(
n

s

)(
m

s

)
In+m−2s(hn,m,2s),

where hn,m,2s is the symmetrization in n+m− 2s variables of

(xs+1, . . . , xn, ys+1, . . . , ym) →∫

Rs
+

fn(x1, . . . , xn)gm(x1, . . . , xi, ys+1, . . . , ym)dx1 · · ·dxs.

Proposition 5.1.3. For any orthogonal family {u1, . . . , ud} in L2(R+) we
have

In(u⊗n1
1 ◦ · · · ◦ u⊗nd

d ) =
d∏

k=1

Hnk
(I1(uk); ‖uk‖2

2),

where n = n1 + · · · + nd.

Proof. We have

H0(I1(u); ‖u‖2
2) = I0(u⊗0) = 1 and H1(I1(u); ‖u‖2

2) = I1(u),

hence the proof follows by induction on n ≥ 1, by comparison of the recur-
rence formula (5.1.1) with the multiplication formula (5.1.4). �
In particular,

In

(
1⊗n

[0,t]

)
= n!
∫ t

0

∫ sn

0

· · ·
∫ s2

0

dBs1 · · · dBsn

= Hn(Bt; t), (5.1.5)
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and from (4.5.3) we have

In

(
1⊗n1

[t0,t1]
◦ · · · ◦ 1⊗nd

[td−1,td]

)
=

d∏

k=1

Ink

(
1⊗nk

[tk−1,tk]

)

=
d∏

k=1

Hnk
(Btk

−Btk−1 ; tk − tk−1).

From this we recover the orthonormality properties of the Hermite polyno-
mials with respect to the Gaussian density:

∫ ∞

−∞
Hn(x; t)Hm(x; t)e−

x2
2t

dx√
2πt

= IE[Hn(Bt; t)Hm(Bt; t)]

= IE[In(1⊗n
[0,t])Im(1⊗m

[0,t])]

= 1{n=m}n!tn.

In addition, by Lemma 2.7.2 we have

Hn(Bt; t) = In

(
1⊗n

[0,t]

)

= IE
[
In(1⊗n

[0,T ])
∣∣∣Ft

]
, t ∈ R+,

is a martingale which, from Itô’s formula, can be written as

Hn(Bt; t)=In(1⊗n
[0,t])

= Hn(0; 0)+
∫ t

0

∂Hn

∂x
(Bs; s)dBs +

1
2

∫ t

0

∂2Hn

∂x2
(Bs; s)ds+

∫ t

0

∂Hn

∂s
(Bs; s)ds

= n

∫ t

0

In−1(1
⊗(n−1)
[0,s] )dBs

= n

∫ t

0

Hn−1(Bs; s)dBs

from Proposition 2.12.1. By identification we recover Proposition 5.1.2-(ii),
i.e.

∂Hn

∂x
(x; s) = nHn−1(x; s), (5.1.6)

and the partial differential equation

∂Hn

∂s
(x; s) = −1

2
∂2Hn

∂x2
(x; s),

i.e the heat equation with initial condition

Hn(x; 0) = xn, x ∈ R, n ∈ N.
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Given fn ∈ L2(R+)⊗n with orthogonal expansion

fn =
∑

n1+···+nd=n

k1,...,kd≥0

an1,...,nd

k1,...,kd
e⊗n1

k1
◦ · · · ◦ e⊗nd

kd
,

in an orthonormal basis (en)n∈N of L2(R+), we have

In(fn) =
∑

n1+···+nd=n

k1,...,kd≥0

an1,...,nd

k1,...,kd
Hn1(I1(ek1); 1) · · ·Hnd

(I1(ekd
); 1),

where the coefficients an1,...,nd

k1,...,kd
are given by

an1,...,nd

k1,...,kd
=

1
n1! · · ·nd!

〈In(fn), Ik(e⊗n1
k1

◦ · · · ◦ u⊗nd

kd
)〉L2(Ω)

= 〈fn, e
⊗n1
k1

◦ · · · ◦ e⊗nd

kd
〉L2(Rn

+).

Proposition 2.13.1 implies the following relation for exponential vectors, that
can be recovered independently using the Hermite polynomials.

Proposition 5.1.4. We have

ξ(u) =
∞∑

k=0

1
n!
In(u⊗n) = exp

(
I1(u) − 1

2
‖u‖2

L2(R+)

)
. (5.1.7)

Proof. Relation (5.1.7) follows from Proposition 5.1.2-i) and Proposition 5.1.3
which reads In(u⊗n) = Hn(I1(u); ‖u‖2

L2(R+)), n ≥ 1. �

Proposition 5.1.5. The Brownian motion (Bt)t∈R+ has the chaos represen-
tation property.

Proof. Theorem 4.1, p. 134 of [50], shows by a Fourier transform argument
that the linear space spanned by the exponential vectors

{
exp
(
I1(u) − 1

2
‖u‖2

L2(R+)

)
: u ∈ L2(R+)

}

is dense in L2(Ω). To conclude we note that the exponential vectors belong
to the closure of S in L2(Ω). �

From Proposition 5.1.5, any F ∈ L2(Ω) has a chaos decomposition

F =
∞∑

k=0

Ik(gk),
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where

Ik(gk) (5.1.8)

=
k∑

d=1

∑

k1+···+kd=k

1
k1! · · ·kd!

IE[FIk(u⊗k1
1 ◦ · · · ◦ u⊗kd

d )]Ik(u⊗k1
1 ◦ · · · ◦ u⊗kd

d )

=
k∑

d=1

∑

k1+···+kd=k

1
k1! · · ·kd!

IE[FIk(u⊗k1
1 ◦ · · · ◦ u⊗kd

d )]
n∏

i=1

Hki(I1(ui); ‖ui‖2
2),

is a finite sum since for all m ≥ 1 and l > k,

IE[Im(e⊗m
l )g(I1(e1), . . . , I1(ek))] = 0.

Lemma 5.1.6. Assume that F has the form F = g(I1(e1), . . . , I1(ek)) for
some

g ∈ L2(Rk, (2π)−k/2e−|x|
2/2dx),

and admits the chaos expansion

F =
∞∑

n=0

In(fn).

Then for all n ≥ 1 there exists a (multivariate) Hermite polynomial Pn of
degree n such that

In(fn) = Pn(I1(e1), . . . , I1(ek)).

Proof. The polynomial Pn is given by (5.1.8) above, which is a finite sum.
�

Lemma 5.1.6 can also be recovered from the relation

f(I1(e1), . . . , I1(ed)) (5.1.9)

=
∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

(−1)n

k1! · · · kd!
〈f, ∂k1

1 · · · ∂kd

d φ1
d〉L2(Rd)In(e⊗k1

1 ◦ · · · ◦ e⊗kd

d ),

which follows from (5.1.6) and (5.1.3).

5.2 Gradient and Divergence Operators

In the Brownian case D has the derivation property, as an application of
Proposition 4.5.2 with φt = 0, t ∈ R+, i.e.

Dt(FG) = FDtG+GDtF, F,G ∈ S. (5.2.1)

More precisely we have the following result.
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Proposition 5.2.1. Let u1, . . . , un ∈ L2(R+) and

F = f(I1(u1), . . . , I1(un)),

where f is a polynomial or f ∈ C1
b (Rn). We have

DtF =
n∑

i=1

ui(t)
∂f

∂xi
(I1(u1), . . . , I1(un)), t ∈ R+. (5.2.2)

Proof. Using the derivation rule (5.1.2), Definition 4.1.1 and Proposition
5.1.3, this statement is obvious when

F = In(u⊗n)
= Hn(I1(u); ‖u‖2

2), u ∈ L2(R+).

Using the product rule (5.2.1) it extends to polynomial f (precisely, to prod-
ucts of Hermite polynomials) and to F ∈ S. In the general case we may
assume that u1, . . . , un ∈ L2(R+) are orthonormal, and that f ∈ C1

c (Rn).
Then from Lemma 5.1.6, we have the chaotic decomposition

F = f(I1(u1), . . . , I1(un))

=
∞∑

k=0

Ik(gk),

where Ik(gk) is a polynomial in I1(u1), . . . , I1(un). The sequence

Fk =
k∑

l=0

Il(gl), k ∈ N, k ∈ N,

is a sequence of polynomial functionals contained in S that converges to F
in L2(Ω). By tensorization of the finite dimensional integration by parts

∫ ∞

−∞
f ′(x)Hn(x; 1)e−x2/2 dx√

2π

=
∫ ∞

−∞
f(x)(xHn(x; 1) −H ′n(x; 1))e−x2/2 dx√

2π

=
∫ ∞

−∞
f(x)(xHn(x; 1) − nHn−1(x; 1))e−x2/2 dx√

2π

=
∫ ∞

−∞
f(x)Hn+1(x; 1)e−x2/2 dx√

2π
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we get

IE
[
Ik(u⊗k1

1 ◦ · · · ◦ u⊗kn
n )

∂f

∂xi
(I1(u1), . . . , I1(un))

]

= IE[f(I1(u1), . . . , I1(un))Ik+1(u⊗k1
1 ◦ · · · ◦ u⊗kn

n ◦ ui)]

= IE[Ik+1(gk+1)Ik+1(u⊗k1
1 ◦ · · · ◦ u⊗kn

n ◦ ui)]

= IE[〈DIk+1(gk+1), ui〉L2(R+)Ik(u⊗k1
1 ◦ · · · ◦ u⊗kn

n )]

hence
∂f

∂xi
(I1(u1), . . . , I1(un)) has the chaotic decomposition

∂f

∂xi
(I1(u1), . . . , I1(un)) =

∞∑

k=1

〈DIk(gk), ui〉L2(R+),

that converges in L2(Ω), hence (DFk)k∈N converges in L2(Ω × R+) to

n∑

i=1

ui
∂f

∂xi
(I1(u1), . . . , I1(un)) =

n∑

i=1

ui

∞∑

k=1

〈DIk(gk), ui〉L2(R+)

=
∞∑

k=1

DIk(gk).

�
In particular for f polynomial and for f ∈ C1

b (Rn) we have

Dtf(Bt1 , . . . Btn) =
n∑

i=1

1[0,ti](t)
∂f

∂xi
(Bt1 , . . . Btn), 0 ≤ t1 < · · · < tn,

(5.2.3)
and (5.2.2) can also be written as

〈DF, h〉L2(R+) (5.2.4)

=
d

dε
f

(∫ ∞

0

u1(t)(dB(t) + εh(t)dt), . . . ,
∫ ∞

0

un(t)(dB(t) + εh(t)dt)
)

|ε=0

,

=
d

dε
F (ω + εh)|ε=0,

h ∈ L2(R+), where the limit exists in L2(Ω). We refer to the above identity
as the probabilistic interpretation of the gradient operator D on the Wiener
space.
From Proposition 4.2.3, the operator D satisfies the Clark formula
Assumption 3.2.1.
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Corollary 5.2.2. For all F ∈ L2(Ω) we have

F = IE[F ] +
∫ ∞

0

IE[DtF |Ft]dBt.

Moreover, since φt = 0, t ∈ R+, Proposition 4.5.4 becomes a divergence
formula as in the next proposition.

Proposition 5.2.3. For all u ∈ U and F ∈ S we have

δ(u)F = δ(uF ) + 〈DF, u〉L2(R+).

On the other hand, applying Proposition 4.5.6 yields the following multipli-
cation formula for Wiener multiple stochastic integrals:

In(fn)Im(gm) =
n∧m∑

k=0

1
k!

(
n

k

)(
m

k

)
In+m−2k(fn ⊗k gm),

where fn ⊗k gm is the contraction

(tk+1, . . . , tn, sk+1, . . . , sm) →∫ ∞

0

· · ·
∫ ∞

0

fn(t1, . . . tn)gm(t1, . . . , tk, sk+1, . . . , sm)dt1 . . . dtk,

tk+1, . . . , tn, sk+1, . . . , sm ∈ R+.
From Proposition 4.3.4, the Skorohod integral δ(u) coincides with the Itô
integral of u ∈ L2(W ;H) with respect to Brownian motion, i.e.

δ(u) =
∫ ∞

0

utdBt,

when u is square-integrable and adapted with respect to the Brownian
filtration (Ft)t∈R+ .
We have the following corollary, that completes Proposition 4.2.2 and can be
proved using the density property of smooth functions in finite-dimensional
Sobolev spaces, cf. e.g. Lemma 1.2 of [91] or [96].
For simplicity we work with a Brownian motion (Bt)t∈[0,1] on [0, 1] and we
assume that (en)n∈N is the dyadic basis of L2([0, 1]) given by

ek = 2n/21[ k−2n

2n , k+1−2n

2n ], 2n ≤ k ≤ 2n+1 − 1, n ∈ N. (5.2.5)

Corollary 5.2.4. Given F ∈ L2(Ω), let for all n ∈ N:

Gn = σ(I1(e2n), . . . , I1(e2n+1−1)),
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and Fn = E[F |Gn], and consider fn a square-integrable function with respect
to the standard Gaussian measure on R

2n

, such that

Fn = fn(I1(e2n), . . . , I1(e2n+1−1)).

Then F ∈ Dom (D) if and only if fn belongs for all n ≥ 1 to the Sobolev
space W 2,1(R2n

) with respect to the standard Gaussian measure on R
2n

, and
the sequence

DtFn :=
2n∑

i=1

e2n+i−1(t)
∂fn

∂xi
(I1(e2n), . . . , I1(e2n+1−1)), t ∈ [0, 1],

converges in L2(Ω × [0, 1]). In this case we have

DF = lim
n→∞DFn.

We close this section by considering the case of a d-dimensional Brownian
motion (Bt)0≤t≤T =(B(1)

t , . . . , B
(d)
t )0≤t≤T , where (B(1)

t )t∈R+ , . . . , (B
(d)
t )t∈R+ ,

are independent copies of Brownian motion. In this case the gradient D can
be defined with values in H = L2(R+, X⊗R

d), whereX is a Hilbert space, by

DtF =
n∑

i=1

1[0,ti](t)∇if(Bt1 , . . . , Btn), t ∈ R+,

for F of the form
F = f(Bt1 , . . . , Btn), (5.2.6)

f ∈ C∞b (Rn, X), t1, . . . , tn ∈ R+, n ≥ 1.
We let IDp,k(X) denote the completion of the space of smooth X-valued
random variables under the norm

‖u‖IDp,k(X) =
k∑

l=0

‖Dlu‖Lp(W,X⊗H⊗l), p > 1,

where X ⊗H denotes the completed symmetric tensor product of X and H .
For all p, q > 1 such that p−1 + q−1 = 1 and k ≥ 1, the Skorohod integral
operator

δ : IDp,k(X ⊗H) → IDq,k−1(X)

adjoint of
D : IDp,k(X) → IDq,k−1(X ⊗H),

satisfies
E[〈F, δ(u)〉X ] = E[〈DF, u〉X⊗H ],

F ∈ IDp,k(X), u ∈ IDq,k(X ⊗H).
Finally we note that the chaos representation property extends to d-
dimensional Brownian motion.
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Theorem 5.2.5. For any F ∈ L2(Ω) there exists a unique sequence (fn)n∈N

of deterministic symmetric functions

fn = (f (i1,...,in)
n )i1,...,in∈{1,...,d} ∈ L2([0, T ],Rd)◦n

such that

F = IE[F ] +
∞∑

n=1

In(fn).

Moreover we have

‖F‖2
L2(Ω) =

∞∑

n=0

d∑

i1,...,in=1

n!‖f (i1,...,in)
n ‖2

L2([0,T ]n).

Given F = f (Bt1 , . . . , Btn) ∈ L2(Ω) where (t1, . . . , tn) ∈ [0, T ]n and

f(x1,1, . . . , xd,1, . . . , x1,n, . . . , xd,n)

is in C∞b (Rdn), for l = 1, . . . , d we have:

D
(l)
t F =

n∑

k=1

∂f

∂xl,k
(Bt1 , . . . , Btn)1[0,tk](t).

Similarly the Clark formula of Corollary 5.2.2 extends to the d-dimensional
case as

F = IE[F ] +
∫ ∞

0

IE[DtF |Ft] · dBt, (5.2.7)

F ∈ L2(Ω).

5.3 Ornstein-Uhlenbeck Semi-Group

Recall the Definition 4.4.1 of the Ornstein-Uhlenbeck semi-group (Pt)t∈R+ as

PtF = E[F ] +
∞∑

n=1

e−ntIn(fn), t ∈ R+, (5.3.1)

for any F ∈ L2(Ω) with the chaos representation

F = E[F ] +
∞∑

n=1

In(fn).

In this section we show that on the Wiener space, Pt admits the integral
representation, known as the Mehler formula,
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PtF (ω) =
∫

Ω

F (e−tω +
√

1 − e−2tω̃)dP(ω̃), P(dω) − a.s., (5.3.2)

F ∈ L2(Ω), t ∈ R+, cf. e.g. [92], [143], [147]. Precisely we have the following.

Lemma 5.3.1. Let F of the form

F = f(I1(u1), . . . , I1(un)),

where f ∈ Cb(Rn) and u1, . . . , un ∈ L2(R+) are mutually orthogonal. For all
t ∈ R+ we have:

PtF (ω) =
∫

Ω

f(e−tI1(u1)(ω) +
√

1 − e−2tI1(u1)(ω̃), . . .

. . . , e−tI1(un)(ω) +
√

1 − e−2tI1(un)(ω̃))P(dω̃).

Proof. Since, by Proposition 5.1.5, the exponential vectors are total in L2(Ω)
and Pt is continuous on L2(Ω), it suffices to consider

fu(x) = exp
(
x− 1

2
‖u‖2

2

)
,

and to note that by Proposition 5.1.4 we have

ξ(fu) = exp
(
I1(u) − 1

2
‖u‖2

L2(R+)

)

=
∞∑

k=0

1
n!
Hn(I1(u); ‖u‖2

L2(R+))

=
∞∑

k=0

1
n!
In(u⊗n).

Hence

Ptξ(fu) =
∞∑

k=0

e−nt

n!
In(u⊗n)

= exp
(

e−tI1(u) − 1
2
e−2t‖u‖2

L2(R+)

)
,

and
∫

Ω

fu(e−tI1(u)(ω) +
√

1 − e−2tI1(u)(ω̃))P(dω̃)

=
∫ ∞

−∞
exp
(

e−tI1(u)(ω) +
√

1 − e−2ty − 1
2
‖u‖2

2 −
y2

2‖u‖2
2

)
dy√

2π‖u‖2
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=
∫ ∞

−∞
exp

(
e−tI1(u)(ω) − 1

2
‖e−tu‖2

2 −
(y −

√
1 − e−2t‖u‖2

2)2

2‖u‖2
2

)
dy√

2π‖u‖2

= exp
(

e−tI1(u)(ω) − 1
2
‖e−tu‖2

2

)

= Ptfu(I1(u))(ω).

The result is extended by density of the exponential vectors in L2(Ω)
since Brownian motion has the chaos representation property from
Proposition 5.2.5. �
The integral representation of Lemma 5.3.1 together with Jensen’s inequality
(9.3.1) imply the following bound which is used in the proof of deviation
inequalities in Section 4.7, cf. Lemma 4.7.1.

Lemma 5.3.2. We have for u ∈ L2(Ω × R+):

‖Ptu‖L∞(Ω,L2(R+)) ≤ ‖u‖L∞(Ω,L2(R+)), t ∈ R+.

Proof. Due to Lemma 5.3.1 we have

‖Psu(ω)‖2
L2(R+) =

∫ ∞

0

|Psut(ω)|2dt

≤
∫ ∞

0

Ps|ut(ω)|2dt

≤ ‖u‖2
L∞(Ω,L2(R+)).

�

5.4 Covariance Identities and Inequalities

In this section we present some covariance identities and inequalities that can
be obtained in the particular setting of the Wiener space, in addition to the
general results of Section 3.4 and 4.4.
We consider the order relation introduced in [11] when Ω = C0(R+) is the
space of continuous functions on R+ starting at 0.

Definition 5.4.1. Given ω1, ω2 ∈ Ω, we say that ω1 � ω2 if and only if we
have

ω1(t2) − ω1(t1) ≤ ω2(t2) − ω2(t1), 0 ≤ t1 ≤ t2.

The class of non-decreasing functionals with respect to � is larger than
that of non-decreasing functionals with respect to the pointwise order on
Ω defined by

ω1(t) ≤ ω2(t), t ∈ R+, ω1, ω2 ∈ Ω.
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Definition 5.4.2. A random variable F : Ω → R is said to be non-
decreasing if

ω1 � ω2 ⇒ F (ω1) ≤ F (ω2), P(dω1) ⊗ P(dω2) − a.s.

The next result is the FKG inequality on the Wiener space. It recovers
Theorem 4 of [11] under weaker (i.e. almost-sure) hypotheses.
Theorem 5.4.3. For any non-decreasing functionals F,G ∈ L2(Ω) we have

Cov (F,G) ≥ 0.

The proof of this result is a direct consequence of Lemma 3.4.2 and the next
lemma.
Lemma 5.4.4. For every non-decreasing F ∈ Dom (D) we have

DtF ≥ 0, dt× dP − a.e.

Proof. Without loss of generality we state the proof for a Brownian motion
on the interval [0, 1]. For n ∈ N, let πn denotes the orthogonal projection
from L2([0, 1]) onto the linear space generated by the sequence (ek)2n≤k<2n+1

introduced in Definition 5.2.5. Let

H =
{
h : [0, 1] → R :

∫ 1

0

|ḣ(s)|2ds <∞
}

denote the Cameron-Martin space, i.e. the space of absolutely continuous
functions with square-integrable derivative.
Given h ∈ H , let

hn(t) =
∫ t

0

[πnḣ](s)ds, t ∈ [0, 1], n ∈ N.

Let Λn denote the square-integrable and Gn-measurable random variable

Λn = exp
(∫ 1

0

[πnḣ](s)dBs −
1
2

∫ 1

0

|[πnḣ](s)|2ds
)
.

Letting Fn = E[F | Gn], n ∈ N, a suitable change of variable on R
n with

respect to the standard Gaussian density (or an application of the Cameron-
Martin theorem cf. e.g. [146]) shows that for all n ∈ N and Gn-measurable
bounded random variable Gn shows that

E[Fn(· + hn)Gn] = E[ΛnFnGn(· − hn)]
= E[ΛnE[F |Gn]Gn(· − hn)]
= E[E[ΛnFGn(· − hn)|Gn]]
= E[ΛnFGn(· − hn)]
= E[F (· + hn)Gn],
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hence
Fn(ω + hn) = E[F (· + hn)|Gn](ω), P(dω) − a.s.

If ḣ is non-negative, then πnḣ is non-negative by construction hence ω �
ω + hn, ω ∈ Ω, and we have

F (ω) ≤ F (ω + hn), P(dω) − a.s.,

since from the Cameron-Martin theorem, P({ω + hn : ω ∈ Ω}) = 1. Hence
we have

Fn(ω + h)
= fn(I1(e2n) + 〈e2n , ḣ〉L2([0,1]), . . . , I1(e2n+1−1) + 〈e2n+1−1, ḣ〉L2([0,1]))

= fn(I1(e2n) + 〈e2n , πnḣ〉L2([0,1]), . . . , I1(e2n+1−1) + 〈e2n+1−1, πnḣ〉L2([0,1]))
= Fn(ω + hn)
= E[F (· + hn)|Gn](ω)
≥ E[F |Gn](ω)
= Fn(ω), P(dω) − a.s.,

where (ek)k∈N is the dyadic basis defined in (5.2.5). Consequently, for any
ε1 ≤ ε2 and h ∈ H such that ḣ is non-negative we have

Fn(ω + ε1h) ≤ Fn(ω + ε2h),

i.e. the smooth function ε → Fn(ω + εh) is non-decreasing in ε on [−1, 1],
P(dω)-a.s. As a consequence,

〈DFn, ḣ〉L2([0,1]) =
d

dε
Fn(ω + εh)|ε=0 ≥ 0,

for all h ∈ H such that ḣ ≥ 0, hence DFn ≥ 0. Taking the limit of (DFn)n∈N

as n goes to infinity shows that DF ≥ 0. �

Next, we extend Lemma 5.4.4 to F ∈ L2(Ω).
Proposition 5.4.5. For any non-decreasing functional F ∈ L2(Ω) we have

E[DtF |Ft] ≥ 0, dt× dP − a.e.

Proof. Assume that F ∈ L2(Ω) is non-decreasing. Then P1/nF , n ≥ 1, is
non-decreasing from (5.3.2), and belongs to Dom (D) from Relation (5.3.1).
From Lemma 5.4.4 we have

DtP1/nF ≥ 0, dt× dP − a.e.,

hence
E[DtP1/nF |Ft] ≥ 0, dt× dP − a.e.
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Taking the limit as n goes to infinity yields E[DtF |Ft] ≥ 0, dt× dP-a.e. from
Proposition 3.2.6 and the fact that P1/nF converges to F in L2(Ω) as n goes
to infinity. �
Finally, using the change of variable α = e−t, the covariance identity (4.4.2)
can be rewritten with help of Lemma 5.3.1 as

Cov (F,G)

=
∫ 1

0

∫

Ω

∫

Ω

〈∇f(I1(u1), . . . , I1(un))(ω),∇g(αI1(u1)(ω)+
√

1 − α2I1(u1)(ω̃),

. . . , αI1(un)(ω) +
√

1 − α2I1(un)(ω̃))〉RnP(dω)P(dω̃)dα.

This identity can be recovered using characteristic function: letting

ϕ(t) = IE[eitI1(u)] = e−t2‖u‖22/2

and

ϕα(s, t) := IE[eisαI1(u)(ω)+it
√

1−α2I1(u)(ω̃)] = (ϕ(s+ t))α(ϕ(s))1−α(ϕ(t))1−α,

we have

Var [eisI1(u)] = ϕ1(s, t) − ϕ0(s, t)

=
∫ 1

0

∂ϕα

∂α
(s, t)dα

=
∫ 1

0

∂

∂α
((ϕ(t))1−α(ϕ(t + s))α(ϕ(s))1−α)dα

=
∫ 1

0

log
(
ϕ(s+ t)
ϕ(s)ϕ(t)

)
ϕα(s, t)dα

= −st‖u‖2
L2(R+)

∫ 1

0

ϕα(s, t)dα

=
∫ 1

0

∫

Ω

∫

Ω

〈DeisI1(u)(ω), DeitI1(u)(αω +
√

1 − α2ω̃))〉L2(R+)P(dω)P(dω̃)dα,

hence

Cov (eisI1(u), eisI1(v))

=
∫ 1

0

∫

Ω

∫

Ω

〈DeisI1(u)(ω), DeitI1(v)(αω +
√

1 − α2ω̃))〉L2(R+)P(dω)P(dω̃)dα.

Since D is a derivation operator from Proposition 5.2.1, the deviation
results of Proposition 3.6.2 hold, i.e. for any F ∈ Dom (D) such that
‖DF‖L2(R+,L∞(Ω)) ≤ C for some C > 0 we have
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P(F − IE[F ] ≥ x) ≤ exp
(
− x2

2C‖DF‖L2(R+,L∞(Ω))

)
, x ≥ 0.

5.5 Moment Identities for Skorohod Integrals

In this section we prove a moment identity that extends the Skorohod isom-
etry to arbitrary powers of the Skorohod integral on the Wiener space. As
simple consequences of this identity we obtain sufficient conditions for the
Gaussianity of the law of the Skorohod integral and a recurrence relation for
the moments of second order Wiener integrals.
Here, (Bt)t∈R+ is a standard R

d-valued Brownian motion on the Wiener space
(W,μ) with W = C0(R+,R

d).
Each element of X ⊗H is naturally identified to a linear operator from H to
X via

(a⊗ b)c = a〈b, c〉, a⊗ b ∈ X ⊗H, c ∈ H.

For u ∈ ID2,1(H) we identify Du = (Dtus)s,t∈R+ to the random operator
Du : H → H almost surely defined by

(Du)v(s) =
∫ ∞

0

(Dtus)vtdt, s ∈ R+, v ∈ L2(W ;H),

and define its adjoint D∗u on H ⊗H as

(D∗u)v(s) =
∫ ∞

0

(D†sut)vtdt, s ∈ R+, v ∈ L2(W ;H),

where D†sut denotes the transpose matrix of Dsut in R
d ⊗ R

d.
The Skorohod isometry of Proposition 4.3.1 reads

IE[|δ(u)|2] = IE[〈u, u〉H ] + IE
[
trace (Du)2

]
, u ∈ ID2,1(H), (5.5.1)

with

trace (Du)2 = 〈Du,D∗u〉H⊗H

=
∫ ∞

0

∫ ∞

0

〈Dsut, D
†
tus〉Rd⊗Rddsdt,

and the commutation relation

Dδ(u) = u+ δ(D∗u), u ∈ ID2,2(H). (5.5.2)

Next we state a moment identity for Skorohod integrals.
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Theorem 5.5.1. For any n ≥ 1 and u ∈ IDn+1,2(H) we have

IE[(δ(u))n+1] =
n∑

k=1

n!
(n− k)!

IE
[
(δ(u))n−k (5.5.3)

(
〈(Du)k−1u, u〉H + trace (Du)k+1 +

k∑

i=2

1
i
〈(Du)k−iu,Dtrace (Du)i〉H

)]
,

where

trace (Du)k+1

=
∫ ∞

0

· · ·
∫ ∞

0

〈D†tk−1
utk

, Dtk−2utk−1 · · ·Dt0ut1Dtk
ut0〉Rd⊗Rddt0 · · · dtk.

For n = 1 the above identity coincides with the Skorohod isometry (5.5.1).
The proof of Theorem 5.5.1 will be given at the end of this section.
In particular we obtain the following immediate consequence of
Theorem 5.5.1. Recall that trace (Du)k = 0, k ≥ 2, when the process u
is adapted with respect to the Brownian filtration.
Corollary 5.5.2. Let n ≥ 1 and u ∈ IDn+1,2(H) such that 〈u, u〉H is deter-
ministic and

trace (Du)k+1 +
k∑

i=2

1
i
〈(Du)k−iu,Dtrace (Du)i〉H = 0, a.s., 1 ≤ k ≤ n.

(5.5.4)
Then δ(u) has the same first n+ 1 moments as the centered Gaussian distri-
bution with variance 〈u, u〉H.

Proof. We have

Dt〈u, u〉 = Dt

∫ ∞

0

〈us, us〉ds

=
∫ ∞

0

〈us, Dtus〉ds+
∫ ∞

0

〈Dtus, us〉ds

= 2
∫ ∞

0

〈D†tus, us〉ds

= 2(D∗u)u,

shows that

〈(Dk−1u)u, u〉 = 〈(D∗u)k−1u, u〉 (5.5.5)

=
1
2
〈u, (D∗)k−2D〈u, u〉〉

= 0,
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k ≥ 2, when 〈u, u〉 is deterministic, u ∈ ID2,1(H). Hence under Condition
(5.5.4), Theorem 5.5.1 yields

IE[(δ(u))n+1] = n〈u, u〉H IE
[
(δ(u))n−1

]
,

and by induction

IE[(δ(u))2m] =
(2m)!
2mm!

〈u, u〉mH , 0 ≤ 2m ≤ n+ 1,

and IE[(δ(u))2m+1] = 0, 0 ≤ 2m ≤ n, while IE[δ(u)] = 0 for all u ∈ ID2,1(H).
�

As a consequence of Corollary 5.5.2 we recover Theorem 2.1-b) of [145], i.e.
δ(Rh) has a centered Gaussian distribution with variance 〈h, h〉H when u =
Rh, h ∈ H , and R is a random mapping with values in the isometries of
H , such that Rh ∈ ∩p>1IDp,2(H) and trace (DRh)k+1 = 0, k ≥ 1. Note
that in [145] the condition Rh ∈ ∩p>1,k≥2IDp,k(H) is assumed instead of
Rh ∈ ∩p>1IDp,2(H).
In the sequel, all scalar products will be simply denoted by 〈·, ·〉.
We will need the following lemma.
Lemma 5.5.3. Let n ≥ 1 and u ∈ IDn+1,2(H). Then for all 1 ≤ k ≤ n we
have

IE
[
(δ(u))n−k〈(Du)k−1u,Dδ(u)〉

]
−(n− k) IE

[
(δ(u))n−k−1〈(Du)ku,Dδ(u)〉

]

= IE
[
(δ(u))n−k

(
〈(Du)k−1u, u〉+ trace (Du)k+1 +

k∑

i=2

1
i
〈(Du)k−iu,Dtrace (Du)i〉

)]
.

Proof. We have (Du)k−1u ∈ ID(n+1)/k,1(H), δ(u) ∈ ID(n+1)/(n−k+1),1(R),
and using Relation (5.5.2) we obtain

IE
[
(δ(u))n−k〈(Du)k−1u,Dδ(u)〉

]

= IE
[
(δ(u))n−k〈(Du)k−1u, u+ δ(D∗u)〉

]

= IE
[
(δ(u))n−k〈(Du)k−1u, u〉

]
+ IE
[
(δ(u))n−k〈(Du)k−1u, δ(Du)〉

]

= IE
[
(δ(u))n−k〈(Du)k−1u, u〉

]
+ IE
[
〈D∗u,D((δ(u))n−k(Du)k−1u)〉

]

= IE
[
(δ(u))n−k〈(Du)k−1u, u〉

]
+ IE
[
(δ(u))n−k〈D∗u,D((Du)k−1u)〉

]

+ IE
[
〈D∗u, ((Du)k−1u) ⊗D(δ(u))n−k〉

]

= IE
[
(δ(u))n−k

(
〈(Du)k−1u, u〉 + 〈D∗u,D((Du)k−1u)〉

)]

+(n− k) IE
[
(δ(u))n−k−1〈D∗u, ((Du)k−1u) ⊗Dδ(u)〉

]

= IE
[
(δ(u))n−k

(
〈(Du)k−1u, u〉 + 〈D∗u,D((Du)k−1u)〉

)]

+(n− k) IE
[
(δ(u))n−k−1〈(Du)ku,Dδ(u)〉

]
.
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Next,

〈D∗u,D((Du)k−1u)〉

=
∫ ∞

0

· · ·
∫ ∞

0

〈D†tk−1
utk

, Dtk
(Dtk−2utk−1 · · ·Dt0ut1ut0)〉dt0 · · · dtk

=
∫ ∞

0

· · ·
∫ ∞

0

〈D†tk−1
utk

, Dtk−2utk−1 · · ·Dt0ut1Dtk
ut0〉dt0 · · · dtk

+
∫ ∞

0

· · ·
∫ ∞

0

〈D†tk−1
utk

, Dtk
(Dtk−2utk−1 · · ·Dt0ut1)ut0〉dt0 · · · dtk

= trace (Du)k+1 +
k−2∑

i=0

∫ ∞

0

· · ·
∫ ∞

0

〈D†tk−1
utk

, Dtk
utk+1 · · ·Dti+1uti+2(DtiDtk

uti+1)Dti−1uti · · ·Dt0ut1ut0〉
dt0 · · · dtk

= trace (Du)k+1 +
k−2∑

i=0

1
k − i

∫ ∞

0

· · ·
∫ ∞

0

〈Dti〈D†tk−1
utk

, Dtk
utk+1 · · ·Dti+1uti+2Dtk

uti+1〉, Dti−1uti · · ·Dt0ut1ut0〉
dt0 · · · dtk

= trace (Du)k+1 +
k−2∑

i=0

1
k − i

〈(Du)iu,Dtrace (Du)k−i〉.

�

Proof of Theorem 5.5.1. We decompose

IE[(δ(u))n+1] = IE[〈u,D(δ(u))n〉]
= n IE[(δ(u))n−1〈u,Dδ(u)〉]

=
n∑

k=1

n!
(n− k)!

IE
[
(δ(u))n−k〈(Du)k−1u,Dδ(u)〉

]

−
n∑

k=1

n!
(n− k)!

(n− k) IE
[
(δ(u))n−k−1〈(Du)ku,Dδ(u)〉

]
,

as a telescoping sum and then apply Lemma 5.5.3, which yields (5.5.3). �

5.6 Differential Calculus on Random Morphisms

In this section, in addition to the shift of Brownian paths by absolutely conti-
nuous functions as in (5.2.4), we consider a general class of transformations of
Brownian motion and its associated differential calculus. The main result of
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this section Corollary 5.6.5 will be applied in Section 5.7 to construct another
example of a gradient operator satisfying the assumptions of Chapter 3. Here
we work with a d-dimensional Brownian motion (Bt)t∈R+ as in Section 2.14.
Let

U : S(R+; Rd) −→ L2(Ω × R+; Rd)

be a random linear operator such that Uf ∈ L2(Ω × R+; Rd) is adapted for
all f in a space S(R+; Rd) of functions dense in L2(R+; Rd).
The operator U is extended by linearity to the algebraic tensor product
S(R+; Rd)⊗S, in this case Uf is not necessarily adapted if f ∈ S(R+; Rd)⊗S.

Definition 5.6.1. Let (h(t))t∈R+ ∈ L2(Ω × R+; Rd) be a square-integrable
process, and let the transformation

Λ(U, h) : S −→ L2(Ω × R+; Rd)

be defined as

Λ(U, h)F

= f

(
I1(Uu1) +

∫ ∞

0

〈u1(t), h(t)〉dt, . . . , I1(Uun) +
∫ ∞

0

〈un(t), h(t)〉dt
)
,

for F ∈ S of the form

F = f(I1(u1), . . . , I1(un)),

u1, . . . , un ∈ S(R+; Rd), f ∈ C∞b (Rn; R).

In the particular case where

U : S(R+; Rd) −→ L2(Ω × R+; Rd)

is given as
[Uf ](t) = V (t)f(t), t ∈ R+,

by an adapted family of random endomorphisms

V (t) : R
d −→ R

d, t ∈ R+,

this definition states that Λ(U, h)F is the evaluation of F on the perturbed
process of differential V ∗(t)dB(t) + h(t)dt instead of dB(t), where

V ∗(t) : R
d −→ R

d

denotes the dual of V (t) : R
d −→ R

d, t ∈ R+.
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We are going to define Λ(U, h) on the space S of smooth functionals. For
this we need to show that the definition of Λ(U, h)F is independent of the
particular representation

F = f(I1(u1), . . . , I1(un)), u1, . . . , un ∈ H,

chosen for F ∈ S.
Lemma 5.6.2. Let F,G ∈ S be written as

F = f (I1(u1), . . . , I1(un)) , u1, . . . , un ∈ S(R+; Rd), f ∈ C1(Rn; R),

and

G = g (I1(v1), . . . , I1(vm)), v1, . . . , vm ∈ S(R+; Rd), g ∈ C1(Rm; R).

If F = G P-a.s. then Λ(U, h)F = Λ(U, h)G, P-a.s.

Proof. Let e1, . . . , ek ∈ S(R+; Rd) be orthonormal vectors that generate
u1, . . . , un, v1, . . . , vm. Assume that ui and vi are written as

ui =
k∑

j=1

αj
iej and vi =

k∑

j=1

βj
i ej , i = 1, . . . , n,

in the basis e1, . . . , ek. Then F and G are also represented as

F = f̃ (I1(e1), . . . , I1(ek)) ,

and G = g̃ (I1(e1), . . . , I1(ek)), where the functions f̃ and g̃ are defined by

f̃(x1, . . . , xk) = f

⎛

⎝
k∑

j=1

αj
1xj , . . . ,

k∑

j=1

αj
nxj

⎞

⎠ , x1, . . . , xk ∈ R,

and

g̃(x1, . . . , xk) = f

⎛

⎝
k∑

j=1

βj
1xj , . . . ,

k∑

j=1

βj
nxj

⎞

⎠ , x1, . . . , xk ∈ R.

Since F = G and I1(e1), . . . , I1(ek) are independent, we have f̃ = g̃ a.e.,
hence everywhere, and by linearity,

Λ(U, h)F = f̃

(
I1(Ue1) +

∫ ∞

0

〈e1(t), h(t)〉dt, . . . , I1(Uek) +

∫ ∞

0

〈ek(t), h(t)〉dt

)
,
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and

Λ(U, h)G

= g̃

(
I1(Ue1) +

∫ ∞

0

〈e1(t), h(t)〉dt, . . . , I1(Uek) +
∫ ∞

0

〈ek(t), h(t)〉dt
)
,

hence Λ(U, h)F = Λ(U, h)G. �

Moreover, Λ(U, h) is linear and multiplicative:

Λ(U, h)f(F1, . . . , Fn) = f(Λ(U, h)F1, . . . , Λ(U, h)Fn),

F1, . . . , Fn ∈ S, f ∈ C1
b (Rn; R).

Definition 5.6.3. Let (Uε)ε∈[0,1] be a family of linear operators

Uε : S(R+; Rd) −→ L2(Ω × R+; Rd),

such that

i) U0 is the identity of S(R+; Rd), i.e. we have U0f = f , P-a.s., f ∈
S(R+; Rd).
ii) for any f ∈ S(R+; Rd), Uεf ∈ L2(Ω × R+; Rd) and is adapted, ε ∈ [0, 1],
iii) the family (Uε)ε∈[0,1] admits a derivative at ε = 0 in the form of an
operator

L : S(R+; Rd) −→ L2(Ω × R+; Rd),

such that
((Uεf − f)/ε)ε∈[0,1]

converges in L2(Ω × R+; Rd) to Lf = (Ltf)t∈R+ as ε goes to zero, f ∈
S(R+; Rd).

Let h ∈ L2(Ω × R+; Rd) be a square-integrable adapted process.

The operator L is extended by linearity to S(R+; Rd) ⊗ S. The family
(Uε)ε∈[0,1] needs not have the semigroup property. The above assumptions
imply that LDF ∈ Dom (δ), F ∈ S, with

δ(LDF ) =
n∑

i=1

∂if(I1(u1), . . . , I1(un))δ(Lui) (5.6.1)

−
n∑

i,j=1

〈ui,Luj〉L2(R+;Rd)∂i∂jf(I1(u1), . . . , I1(un)),
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for F = f(I1(u1), . . . , I1(un)), where we used Relation 5.2.3. We now compute
on S the derivative at ε = 0 of one-parameter families

Λ(Uε, εh) : S −→ L2(Ω), ε ∈ R,

of transformations of Brownian functionals. Let the linear operator trace be
defined on the algebraic tensor product H ⊗H as

traceu⊗ v = (u, v)H , u, v ∈ H.

Proposition 5.6.4. For F ∈ S, we have in L2(Ω):

d

dε
Λ(Uε, εh)F|ε=0 =

∫ ∞

0

〈h0(t), DtF 〉dt+ δ(LDF ) + trace (IdH ⊗ L)DDF.

(5.6.2)

Proof. Let A : S −→ S be defined by

AF = δ(LDF ) + trace (IdH ⊗ L)DDF +
∫ ∞

0

〈h0(t), DtF 〉dt, F ∈ S.

For F = I1(u), u ∈ S(R+; Rd), we have

d

dε
Λ(Uε, εh)F|ε=0 =

∫ ∞

0

〈h0(t), u(t)〉dt+ I1(Lu)

=
∫ ∞

0

〈h0(t), DtF 〉dt+ δ(LDF ) + trace (IdH ⊗ L)DDF

= AF

since DDF = 0. From (5.6.1), for F1, . . . , Fn ∈ S and f ∈ C∞b (Rn; R) we
have

Af(F1, . . . , Fn) =

δ(LDf(F1, . . . , Fn)) + trace (IdH ⊗ L)DDf(F1, . . . , Fn)

+
∫ ∞

0

〈h0(t), Dtf(F1, . . . , Fn)〉dt

=
n∑

i=1

δ (∂if(F1, . . . , Fn)LDFi)

+
n∑

i=1

∂if(F1, . . . , Fn)trace (IdH ⊗ L)DDFi
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+
n∑

i,j=1

∂i∂jf(F1, , . . . , Fn)
∫ ∞

0

〈LsDFi, DsFj〉ds

+
n∑

i=1

∂if(F1, . . . , Fn)
∫ ∞

0

〈h0(t), DtFi〉dt

=
n∑

i=1

∂if(F1, . . . , Fn)δ(LDFi) +
n∑

i=1

∂if(F1, . . . , Fn)trace (IdH ⊗ L)DDFi

+
n∑

i=1

∂if(F1, . . . , Fn)
∫ ∞

0

〈h0(t), DtFi〉dt

=
n∑

i=1

∂if(F1, . . . , Fn) (δ(LDFi) + trace (IdH ⊗ L)DDFi

+
∫ ∞

0

〈h0(t), DtFi〉dt
)

=
n∑

i=1

∂if(F1, . . . , Fn)AFi.

Hence for F1 = I1(u1), . . . , Fn = I1(un) ∈ S and f ∈ C∞b (Rn; R):

Af(F1, . . . , Fn) =
n∑

i=1

∂if(F1, . . . , Fn)AFi

=
n∑

i=1

∂if(F1, . . . , Fn)
(
d

dε
Λ(Uε, εh)Fi

)

|ε=0

=
(
d

dε
Λ(Uε, εh)f(F1, . . . , Fn)

)

|ε=0

.

Consequently, Relation (5.6.2) holds on S. �

Corollary 5.6.5. Assume that L : L2(R+; Rd) −→ L2(Ω × R+; Rd) is anti-
symmetric as an endomorphism of L2(R+; Rd), P-a.s., we have in L2(Ω):

d

dε
Λ(Uε, εh)F|ε=0 =

∫ ∞

0

〈h0(t), DtF 〉dt+ δ(LDF ), F ∈ S.

Proof. Since L is antisymmetric, we have for any symmetric tensor u⊗ u ∈
S(R+; Rd) ⊗ S(R+; Rd):

trace (IdH ⊗ L)u ⊗ u = traceu⊗ Lu = 〈u,Lu〉H = −〈Lu, u〉H = 0.

Hence the term trace (IdH⊗L)DDF of Proposition 5.6.4 vanishes P-a.s. since
DDF is a symmetric tensor. �
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5.7 Riemannian Brownian Motion

In this section we mention another example of a gradient operator satisfying
the Clark formula Assumption 3.2.1 of Chapter 3. As an application we de-
rive concentration inequalities on path space using the method of covariance
representation. This section is not self-contained and we refer to [40], [41],
[44], [83] for details on Riemannian Brownian motion.
Let (B(t))t∈R+ denote a R

d-valued Brownian motion on (Ω,F ,P), generating
the filtration (Ft)t∈R+ . Let M be a Riemannian manifold of dimension d
whose Ricci curvature is uniformly bounded from below, and let O(M) denote
the bundle of orthonormal frames over M . The Levi-Civita parallel transport
defines d canonical horizontal vector fields A1, . . . , Ad on O(M), and the
Stratonovich stochastic differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dr(t) =
i=d∑

i=1

Ai(r(t)) ◦ dxi(t), t ∈ R+,

r(0) = (m0, r0) ∈ O(M),

defines an O(M)-valued process (r(t))t∈R+ . Let π : O(M) −→ M be the
canonical projection, let

γ(t) = π(r(t)), t ∈ R+,

be the Brownian motion on M and let the Itô parallel transport along
(γ(t))t∈R+ is defined as

tt←0 = r(t)r−1
0 : Tm0M � R

d −→ Tγ(t)M, t ∈ [0, T ].

Let C0(R+; Rd) denote the space of continuous R
d-valued functions on R+

vanishing at the origin. Let also IP(M) denote the set of continuous paths on
M starting at m0, let

I : C0(R+; Rd) −→ IP(M)
(ω(t))t∈R+ → I(ω) = (γ(t))t∈R+

be the Itô map, and let ν denote the image measure on IP(M) of the Wiener
measure P by I. In order to simplify the notation we write F instead of F ◦I,
for random variables and stochastic processes. Let Ωr denote the curvature
tensor and ricr : R

d −→ R
d the Ricci tensor of M at the frame r ∈ O(M).

Given an adapted process (zt)t∈R+ with absolutely continuous trajectories,
we let (ẑ(t))t∈R+ be defined by
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˙̂z(t) = ż(t) +
1
2
ricr(t)z(t), t ∈ R+, ẑ(0) = 0. (5.7.1)

We recall that z → ẑ can be inverted, i.e. there exists a process (z̃t)t∈R+ such
that ˆ̃z = z, cf. Section 3.7 of [44]. Finally, let Qt,s : R

d −→ R
d, be defined as

dQt,s

dt
= −1

2
ricr(t)Qt,s, Qs,s = IdTm0

, 0 ≤ s ≤ t,

and let

q(t, z) = −
∫ t

0

Ωr(s)(◦dB(s), z(s)), t ∈ R+,

where ◦dB(s) denotes the Stratonovich differential. Let Q∗t,s be the adjoint of
Qt,s, let H = L2(R+,R

d), and let H = L∞(IP(M),H; dν). Let finally C∞c (Mn)
denote the space of infinitely differentiable functions with compact support
in Mn.
In the sequel we endow IP(M) with the σ-algebra FP on IP(M) generated by
subsets of the form

{γ ∈ IP(M) : (γ(t1), . . . , γ(tn)) ∈ B1 × · · · ×Bn} ,

where 0 ≤ t1 < · · · < tn, B1, . . . , Bn ∈ B(M), n ≥ 1.
Let

S(IP(M); R) = {F = f(γ(t1), . . . , γ(tn)) : f ∈ C∞b (Mn; R),
0 ≤ t1 ≤ · · · ≤ tn ≤ 1, n ≥ 1} ,

and

U(IP(M) × R+; Rd) =

{
k=n∑

k=1

Fk

∫ ·

0

uk(s)ds : F1, . . . , Fn ∈ S(IP(M); R),

u1, . . . , un ∈ L2(R+; Rd), n ≥ 1
}

In the following, the space L2(IP(M),FP , ν) will be simply denoted by
L2(IP(M)). Note that the spaces S(IP(M); R) and U(IP(M) × R+; Rd) are
dense in L2(IP(M); R) and in L2(IP(M)×R+; Rd) respectively. The following
definition of the intrisic gradient on IP(M) can be found in [44].

Definition 5.7.1. Let D̂ : L2(IP(M); R) −→ L2(IP(M)×R+; Rd) be the gra-
dient operator defined as

D̂tF =
i=n∑

i=1

t0←ti∇M
i f(γ(t1), . . . , γ(tn))1[0,ti](t), t ∈ R+,

for F ∈ S(IP(M); R) of the form F = f(γ(t1), . . . , γ(tn)), where ∇M
i denotes

the gradient on M applied to the i-th variable of f .



188 5 Analysis on the Wiener Space

Given an adapted vector field (Z(t))t∈R+ on M with Z(t) ∈ Tγ(t)M , t ∈ R+,
we let z(t) = t0←tZ(t), t ∈ R+, and assume that ż(t) exists, ∀t ∈ R+. Let

∇Z(t) = lim
ε→0

tt←t+εZ(t+ ε) − Z(t)
ε

.

Then
ż(t) = t0←t∇Z(t), t ∈ R+.

let Ωr denote the curvature tensor of M and let ricr : R
d −→ R

d denote
the Ricci tensor at the frame r ∈ O(M), and let the process (ẑ(t))t∈R+ be
defined by ⎧

⎪⎨

⎪⎩

˙̂z(t) = ż(t) +
1
2
ricr(t)z(t), t ∈ R+,

ẑ(0) = 0.

(5.7.2)

As a consequence of Corollary 5.6.5 we obtain the following relation between
the gradient D̂ and the operatorsD and δ, cf. Theorem 2.3.8 and Theorem 2.6
of [27].

Corollary 5.7.2. Assume that the Ricci curvature of M is uniformly
bounded, and let z ∈ U(IP(M) × R+; Rd) be adapted. We have

∫ ∞

0

〈D̂tF, ż(t)〉dt =
∫ ∞

0

〈DtF, ˙̂z(t)〉dt + δ(q(·, z)D·F ), (5.7.3)

F ∈ S(IP(M); R), where q(t, z) : R
d −→ R

d is defined as

q(t, z) = −
∫ t

0

Ωr(s)(◦dB(s), z(s)), t ∈ R+.

Proof. We let Vε(t) = exp(εq(t, z)), t ∈ R+, ε ∈ R. Then from Proposition
3.5.3 of [44] we have

∫ ∞

0

〈D̂F, ż(t)〉dt =
d

dε
Λ(Uε, ε ˙̂z)F|ε=0.

Since the Ricci curvature of M is bounded, we have ˙̂z ∈ L2(R+;L∞(W ; R))
from (5.7.2). Moreover, from Theorem 2.2.1 of [44], ε → Λ(Uε, 0)r(t) is differ-
entiable in L2(W ; R), hence continuous, ∀t ∈ R+. Consequently, from (5.7.2)
and by construction of U(IP(M) × R+; Rd), ε → Λ(Uε, 0) ˙̂z is continuous in
L2(W ×R+; Rd) and we can apply Corollary 5.6.5 with Lt = q(t, z) to obtain
(5.7.3). �

If u ∈ U(IP(M) × R+; Rd) is written as u =
i=n∑

i=1

Gizi, zi deterministic, Gi ∈

S(IP(M); R), i = 1, . . . , n, we let
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trace q(t,Dtu) =
i=n∑

i=1

q(t, zi)DtGi.

Given u ∈ U(IP(M) × R+; Rd) written as u =
∑i=n

i=1 Gizi, zi deterministic,
Gi ∈ S(IP(M); R), i = 1, . . . , n, we let

û =
i=n∑

i=1

Giẑi.

We now recall the inversion of z → ẑ by the method of variation of constants
described in Section 3.7 of [44]. Let Idγ(t) denote the identity of Tγ(t)M . We
have

ż(t) = ˙̃z(t) +
1
2
ricr(t)z̃(t), t ∈ R+,

where (z̃(t))t∈R+ is defined as

z̃(t) =
∫ t

0

Qt,sż(s)ds, t ∈ R+,

and Qt,s : R
d −→ R

d satisfies

dQt,s

dt
= −1

2
ricr(t)Qt,s, Qs,s = Idγ(0), 0 ≤ s ≤ t.

Let also the process (Ẑ(t))t∈R+ be defined by

⎧
⎪⎨

⎪⎩

∇Ẑ(t) = ∇Z(t) +
1
2
Ricγ(t)Z(t), t ∈ R+,

Ẑ(0) = 0,

with ẑ(t) = τ0←tẐ(t), t ∈ R+. In order to invert the mapping Z → Ẑ, let

Z̃(t) =
∫ t

0

Rt,s∇Z(s)ds, t ∈ R+,

where Rt,s : Tγ(s)M −→ Tγ(t)M is defined by the equation

∇tRt,s = −1
2
Ricγ(t)Rt,s, Rs,s = Idγ(s), 0 ≤ s ≤ t,

∇t denotes the covariant derivative along (γ(t))t∈R+ , and

Ricm : TmM −→ TmM
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denotes the Ricci tensor at m ∈M , with the relation

ricr(t) = t0←t ◦ Ricγ(t) ◦ tt←0.

Then we have
⎧
⎨

⎩

∇Z(t) = ∇Z̃(t) + 1
2Ricγ(t)Z̃(t), t ∈ R+,

Z(0) = 0.

We refer to [44] for the next definition.

Definition 5.7.3. The damped gradient

D̃ : L2(IP(M); R) −→ L2(IP(M) × R+; Rd)

is defined as

D̃tF =
i=n∑

i=1

1[0,ti](t)Q
∗
ti,tt0←ti∇M

i f(γ(t1), . . . , γ(tn)), t ∈ R+,

for F ∈ S(IP(M); R) of the form F = f(γ(t1), . . . , γ(tn)), where

Q∗t,s : R
d −→ R

d

denotes the adjoint of Qt,s : R
d −→ R

d, 0 ≤ s < t.

Given f ∈ C∞c (Mn) we also have

D̃tF =
i=n∑

i=1

1[0,ti](t)t0←tR
∗
ti,t∇

M
i f(γ(t1), . . . , γ(tn)), t ∈ R+,

where R∗ti,t : Tγ(ti) −→ Tγ(t) is the adjoint of Rti,t : Tγ(t) −→ Tγ(ti).

Proposition 5.7.4. We have for z ∈ U(IP(M) × R+; Rd):

∫ ∞

0

〈D̃tF, ż(t)〉dt =
∫ ∞

0

〈D̂tF, ˙̃z(t)〉dt, F ∈ S(IP(M); R). (5.7.4)

Proof. We compute

∫ ∞

0

〈D̃tF, ż(t)〉dt =
i=n∑

i=1

∫ ti

0

〈Q∗ti,st0←ti∇M
i f(γ(t1), . . . , γ(tn)), ż(s)〉ds
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=
i=n∑

i=1

∫ ti

0

〈t0←ti∇M
i f(γ(t1), . . . , γ(tn)), Qti,sż(s)〉dt

=
∫ ∞

0

〈D̂tF, ˙̃z(t)〉dt, F ∈ S(IP(M); R).

�
We also have

∫ ∞

0

〈D̃tF, ˙̂z(t)〉dt =
∫ ∞

0

〈D̂tF, ż(t)〉dt, F ∈ S(IP(M); R).

Taking expectation on both sides of (5.7.3) and (5.7.4) it follows that the
processes DF and D̃F have the same adapted projections:

IE[DtF | Ft] = IE[D̃tF | Ft], t ∈ R+, (5.7.5)

F = f(γ(t1), . . . , γ(tn)). Using this relation and the Clark formula

F = IE[F ] +
∫ ∞

0

IE[DtF | Ft] · dB(t),

on the Wiener space, cf. Proposition 5.2.7 we obtain the expression of the
Clark formula on path space, i.e. Assumption 3.2.1 is satisfied by D̃.
Proposition 5.7.5. Let F ∈ Dom (D̃), then

F = IE[F ] +
∫ ∞

0

IE[D̃tF | Ft] · dB(t).

The following covariance identity is then a consequence of Proposition 3.4.1.

Proposition 5.7.6. Let F,G ∈ Dom (D̃), then

Cov (F,G) = IE
[∫ ∞

0

D̃tF · IE[D̃tG | Ft] dt
]
. (5.7.6)

From Proposition 3.6.2 we obtain a concentration inequality on path space.
Lemma 5.7.7. Let F ∈ Dom (D̃). If ‖D̃F‖L2(R+,L∞(IP(M))) ≤ C, for some
C > 0, then

ν(F − IE[F ] ≥ x) ≤ exp
(
− x2

2C‖D̃F‖H

)
, x ≥ 0. (5.7.7)

In particular, IE[eλF 2
] <∞, for λ < (2C‖D̃F‖H)−1.
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5.8 Time Changes on Brownian Motion

In this section we study the transformations given by time changes on
Brownian motion, in connection with the operator ∇� of Definition 4.8.1.

Proposition 5.8.1. On the Wiener space, ∇� satisfies the relation

∇�t (FG) = F∇�t G+G∇�t F −DtFDtG, t ∈ R+. (5.8.1)

Proof. We will show by induction using the derivation property (5.2.3) of D
that for all k ≥ 1,

∇�t (In(f⊗n)I1(g)k) = In(f⊗n)∇�t
(
I1(g)k

)
+ I1(g)k∇�t In(f⊗n)

−DtIn(f⊗n)Dt

(
I1(g)k

)
, (5.8.2)

t ∈ R+. We have

∇�
(
In(f⊗n)I1(g)

)
= ∇�

(
In+1(f⊗n ◦ g) + n〈f, g〉L2(R+)In−1(f⊗(n−1))

)

= −In+1((g′1[t,∞)) ◦ f⊗n) − nIn+1((f ′1[t,∞)) ◦ g ◦ f⊗(n−1))

−n(n− 1)〈f, g〉L2(R+)In−1((f ′1[t,∞)) ◦ f⊗(n−2))

= −nIn+1((f ′1[t,∞)) ◦ f⊗(n−1) ◦ g) − n〈g, (f ′1[t,∞))〉L2(R+)In−1(f⊗(n−1))

−In+1(f⊗n ◦ (g′1[t,∞))) − n(n− 1)〈f, g〉L2(R+)In−1(f⊗(n−2) ◦ (f ′1[t,∞)))

−n〈f, g′1[t,∞)〉L2(R+)In−1(f⊗(n−1))

+n〈f ′1[t,∞), g〉L2(R+)In−1(f⊗(n−1)) + n〈g′1[t,∞), f〉L2(R+)In−1(f⊗(n−1))

= −nIn((f ′1[t,∞)) ◦ f⊗(n−1))I1(g) − In(f⊗n)I1(g′1[t,∞))

−nf(t)g(t)In−1(f⊗(n−1))

= I1(g)∇�t In(f⊗n) + In(f⊗n)∇�t I1(g) −DtI1(g)DtIn(f⊗n), t ∈ R+,

which shows (5.8.2) for k = 1. Next, assuming that (5.8.2) holds for some
k ≥ 1, we have

∇�t (In(f⊗n)I1(g)k+1) = I1(g)∇�t (In(f⊗n)I1(g)k) + In(f⊗n)I1(g)k∇�t I1(g)

−DtI1(g)Dt(I1(g)kIn(f⊗n))

= I1(g)
(
I1(g)k∇�t In(f⊗n) + In(f⊗n)∇�t

(
I1(g)k

)

−Dt

(
I1(g)k

)
DtIn(f⊗n)

)
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+In(f⊗n)I1(g)k∇�t I1(g) −DtI1(g)
(
I1(g)kDtIn(f⊗n)

+In(f⊗n)Dt

(
I1(g)k

))

= I1(g)k+1∇�t In(f⊗n) + In(f⊗n)∇�t
(
I1(g)k+1

)

−Dt

(
I1(g)k+1

)
DtIn(f⊗n),

t ∈ R+, which shows that (5.8.2) holds at the rank k + 1. �

Definition 5.8.2. Let h ∈ L2(R+), with ‖h‖L∞(R+) < 1, and

νh(t) = t+
∫ t

0

h(s)ds, t ∈ R+.

We define a mapping Th : Ω → Ω, t, ε ∈ R+, as

Th(ω) = ω ◦ ν−1
h , h ∈ L2(R+), sup

x∈R+

| h(x) |< 1.

The transformation Th acts on the trajectory of (Bs)s∈R+ by change of time,
or by perturbation of its predictable quadratic variation. Although Th is not
absolutely continuous, the functional F ◦ Th is well-defined for F ∈ S, since
elements of S can be defined trajectory by trajectory.

Proposition 5.8.3. We have for F ∈ S
∫ ∞

0

h(t)
(
∇�t +

1
2
DtDt

)
Fdt = − lim

ε→0

1
ε
(F ◦ Tεh − F ).

Proof. We first notice that as a consequence of Proposition 5.8.1, the operator

∇�t +
1
2
DtDt

t ∈ R+, has the derivation property. Indeed, by Proposition 5.8.1 we have

∇�t (FG) +
1
2
DtDt(FG) = F∇�t G+G∇�t F −DtFDtG

+
1
2

(FDtDtG+GDtDtF + 2DtFDtG)

= F

(
∇�t G+

1
2
DtDtG

)
+G

(
∇�t F +

1
2
DtDtF

)
.
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Moreover, Tεh is multiplicative, hence we only need to treat the particular
case of F = I1(f). We have

I1(f) ◦ Tεh − I1(f) =
∫ ∞

0

f(s)dB(ν−1
εh (s)) − I1(f)

=
∫ ∞

0

f(νεh(s))dBs −
∫ ∞

0

f(s)dBs

=
∫ ∞

0

(
f

(
t+ ε

∫ t

0

h(s)ds
)
− f(t)

)
dBt.

After division by ε > 0, this converges in L2(Ω) as ε→ 0 to

∫ ∞

0

f ′(t)
∫ t

0

h(s)dsdBt =
∫ ∞

0

h(t)
∫ ∞

t

f ′(s)dBsdt

= −
∫ ∞

0

h(t)∇�t I1(f)dt

= −
∫ ∞

0

h(t)
(
∇�t +

1
2
DtDt

)
I1(f)dt.

�

5.9 Notes and References

Proposition 5.2.1 is usually taken as a definition of the Malliavin deriva-
tive D, see for example [92]. The relation between multiple Wiener integrals
and Hermite polynomials originates in [132]. Corollary 5.2.4 can be found
in Lemma 1.2 of [91] and in [96]. Finding the probabilistic interpretation of
D for normal martingales other than the Brownian motion or the Poisson
process, e.g. for the Azéma martingales, is still an open problem. In rela-
tion to Proposition 5.6.1, see [27] for a treatment of transformations called
Euclidean motions, in which case the operator V (t) : R

d −→ R
d is chosen

to be an isometry and h is adapted, so that Λ(U, h) is extended by quasi-
invariance of the Wiener measure, see also [62]. Corollary 5.5.2 recovers and
extend the sufficient conditions for the invariance of the Wiener measure un-
der random rotations given in [145], i.e. the Skorohod integral δ(Rh) to has
a Gaussian law when h ∈ H = L2(R+,R

d) and R is a random isometry of
H . We refer to [42], [44] for the Clark formula and the construction of gradi-
ent and divergence operators on Riemannian path space, and to [60] for the
corresponding deviation results stated in Section 5.7.



Chapter 6

Analysis on the Poisson Space

In this chapter we give the definition of the Poisson measure on a space of
configurations of a metric spaceX , and we construct an isomorphism between
the Poisson measure on X and the Poisson process on R+. From this we
obtain the probabilistic interpretation of the gradient D as a finite difference
operator and the relation between Poisson multiple stochastic integrals and
Charlier polynomials. Using the gradient and divergence operators we also
derive an integration by parts characterization of Poisson measures, and other
results such as deviation and concentration inequalities on the Poisson space.

6.1 Poisson Random Measures

LetX be a σ-compact metric space (i.e. X can be partitioned into a countable
union of compact metric spaces) with a diffuse Radon measure σ. The space
of configurations of X is the set of Radon measures

ΩX :=

{
ω =

n∑

k=0

εxk
: (xk)k=n

k=0 ⊂ X, n ∈ N ∪ {∞}
}
, (6.1.1)

where εx denotes the Dirac measure at x ∈ X , i.e.

εx(A) = 1A(x), A ∈ B(X),

and Ω defined in (6.1.1) is restricted to locally finite configurations.
The configuration space ΩX is endowed with the vague topology and its
associated σ-algebra denoted by FX , cf. [3]. When X is compact we will
consider Poisson functionals of the form

F (ω) = f01{ω(X)=0} +
∞∑

n=1

1{ω(X)=n}fn(x1, . . . , xn), (6.1.2)

where fn ∈ L1(Xn, σ⊗n) is symmetric in n variables, n ≥ 1. As an example,

F (ω) := ω(A), ω ∈ Ω,

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 6,
c© Springer-Verlag Berlin Heidelberg 2009
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is represented using the symmetric functions

fn(x1, . . . , xn) =
n∑

k=1

1A(xk), n ≥ 1.

Our construction of the Poisson measure is inspired by that of [90].

Definition 6.1.1. In case X is precompact (i.e. X has a compact closure),
let FX denote the σ-field generated by all functionals F of the form (6.1.2),
and let πX

σ denote the probability measure on (ΩX ,FX) defined via

IEπX
σ

[F ]=e−σ(X)f0+e−σ(X)
∞∑

n=1

1
n!

∫

X

· · ·
∫

X

fn(x1, . . . , xn)σ(dx1) · · ·σ(dxn),

(6.1.3)
for all non-negative F of the form (6.1.2).

For example, for A a compact subset of X , the mapping ω → ω(A) has the
Poisson distribution with parameter σ(A) under πX

σ . Indeed we have

1{ω(A)=k} =
∞∑

n=k

1{ω(X)=n}fn(x1, . . . , xn),

with

fn(x1, . . . , xn)

=
1

k!(n− k)!

∑

η∈Σn

1Ak(xη(1), . . . , xη(k))1(X\A)n−k(xη(k+1), . . . , xη(n)),

hence

πX
σ (ω(A) = k) = IEπX

σ
[1{ω(A)=k}]

= e−σ(X)
∞∑

n=1

1
k!(n− k)!

σ(A)kσ(X \A)n−k

= e−σ(A)σ(A)k

k!
. (6.1.4)

The above construction is then extended to σ-compact X in the next
definition.

Definition 6.1.2. In case X is σ-compact we consider a countable partition
X =

⋃
n∈N

Xn in compact subsets, and let

ΩX =
∞∏

n=0

ΩXn , FX =
∞⊗

n=0

FXn , πX
σ =

∞⊗

n=0

πXn
σ . (6.1.5)
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Note that πX
σ in Definition 6.1.2 is independent of the choice of partition

made for X in (6.1.5).
The argument leading to Relation (6.1.4) can be extended to n variables.

Proposition 6.1.3. Let A1, . . . , An be compact disjoint subsets of X. Under
the measure πX

σ on (ΩX ,FX), the N
n-valued vector

ω → (ω(A1), . . . , ω(An))

has independent components with Poisson distributions of respective
parameters

σ(A1), . . . , σ(An).

Proof. Consider a disjoint partition A1 ∪ · · · ∪An of X and

F (ω) = 1{ω(A1)=k1} · · ·1{ω(An)=kn}
= 1{ω(X)=k1+···+kn}fn(x1

1, . . . , x
1
k1
, . . . , xn

1 , . . . , x
n
kn

),

where

fn(x1, . . . , xN )

=
∑

η∈ΣN

1
k1! · · · kn!

1A1(xη(1), . . . , xη(k1)) · · ·1An(xη(k1+...+kn−1+1), . . . , xη(N))

is the symmetrization in N = k1 + · · · + kn variables of the function

(x1
1, . . . , x

1
k1
, . . . , xn

1 , . . . , x
n
kn

)

→ (k1 + · · · + kn)!
k1! · · · kn!

1A1(x
1
1, . . . , x

1
k1

) · · ·1An(xn
1 , . . . , x

n
kn

),

hence

πX
σ (ω(A1) = k1, . . . , ω(An) = kn) = IEπX

σ
[F ]

= e−(σ(A1)+···+σ(An))σ(A1)k1 · · ·σ(An)kn

k1! · · · kn!
.

�
When X is compact, the conditional distribution of ω = {x1, . . . , xn} given
that ω(X) = n is given by the formula

πX
σ ({x1, . . . , xn} ⊂ An | ω(X) = n) =

(
σ(Ai)
σ(X)

)n

,

which follows from taking fn = 1An in (6.1.2), and extends to symmetric
Borel subsets of Xn.
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In the next proposition we compute the Fourier transform of πX
σ via the

Poisson stochastic integral
∫

X

f(x)ω(dx) =
∑

x∈ω

f(x), f ∈ L1(X,σ).

In the sequel we will drop the index X in πX
σ .

Proposition 6.1.4. Let f ∈ L1(X,σ). We have

IEπσ

[
exp
(
i

∫

X

f(x)ω(dx)
)]

= exp
(∫

X

(eif(x) − 1)σ(dx)
)
. (6.1.6)

Proof. We first assume that X is compact. We have

IEπσ

[
exp
(
i

∫

X

f(x)ω(dx)
)]

= e−σ(X)
∞∑

n=0

1
n!

∫

X

· · ·
∫

X

ei(f(x1)+···+f(xn))σ(dx1) · · ·σ(dxn).

= e−σ(X)
∞∑

n=0

1
n!

(∫

X

eif(x)σ(dx)
)n

= exp
(∫

X

(eif(x) − 1)σ(dx)
)
.

The extension to the σ-compact case is done using (6.1.5). �
We have

IE
[∫

X

f(x)ω(dx)
]

=
d

dε
IEπσ

[
exp
(
iε

∫

X

f(x)ω(dx)
)]

|ε=0

=
d

dε
exp
(∫

X

(eiεf(x) − 1)σ(dx)
)

|ε=0

=
∫

X

f(x)σ(dx), f ∈ L1(X,σ),

and similarly,

IE

[(∫

X

f(x)(ω(dx) − σ(dx)
)2
]

=
∫

X

|f(x)|2σ(dx), f ∈ L2(X,σ).

(6.1.7)

Both formulae can also be proved on simple functions of the form f =∑n
i=1 αi1Ai , and then extended to measurable functions under appropriate

integrability conditions.
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When f ∈ L2(X,σ) the formula (6.1.6) can be extended as

IEπσ

[
exp
(
i

∫

X

f(x)(ω(dx) − σ(dx))
)]

=exp
(∫

X

(eif(x) − if(x) − 1)σ(dx)
)
.

Taking X = R
d and ∫

Rd

(1 ∧ |y|22)σ(dy) <∞,

where | · |22 is the 	2 norm on R
d, the vector of single Poisson stochastic

integrals

F =

(∫

{|y|2≤1}
yk (ω(dy) − σ(dy)) +

∫

{|y|2>1}
yk ω(dy)

)

1≤k≤n

(6.1.8)

has the characteristic function

ϕF (u) = IE[ei〈F,u〉] (6.1.9)

= exp
(∫

Rd

(ei〈y,u〉 − 1 − i〈y, u〉1{|y|2≤1})σ(dy)
)
,

u ∈ R
d, which is well-defined under the condition

∫

Rd

(1 ∧ |y|2)σ(dy) <∞,

from the bound

|eit − it1{|t|≤1} − 1| ≤ 2(1 ∧ |t|2), t ∈ R.

Relation (6.1.9) is called the Lévy-Khintchine formula. and the vector

F = (F1, . . . , Fn)

is said to have an n-dimensional infinitely divisible distribution with Lévy
measure σ.
Denote by πX

σ,α the thinning of order α ∈ (0, 1) of the Poisson measure πX
σ , i.e.

πX
σ,α is obtained by removing, resp. keeping, independently each configuration

point with probability α, resp. 1 − α.
The next proposition is a classical result on the thinning of Poisson measure.

Proposition 6.1.5. Let α ∈ (0, 1). We have πX
σ,α = πX

ασ, i.e. πX
σ,α is the

Poisson measure with intensity ασ(dx) on ΩX .
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Proof. It suffices to treat the case where X is compact. We have

IEπσ,α

[
exp
(
i

∫

X

f(x)ω(dx)
)]

= e−σ(X)
∞∑

n=0

n∑

k=0

αk

n!

(
n

k

)(∫

X

eif(x)σ(dx)
)k

(σ(X))n−k(1 − α)n−k

= e−σ(X)
∞∑

n=0

1
n!

(
α

∫

X

eif(x)σ(dx) + (1 − α)σ(X)
)n

= eα
∫

X
(eif(x)−1)σ(dx).

In terms of probabilities, for all compact A ∈ B(X) we have

πX
σ,α(ω(A) = n) = e−σ(A)

∞∑

k=n

σ(A)k

k!
αn(1 − α)k−n

(
k

n

)

= e−σ(A) (ασ(A))n

n!

∞∑

k=n

σ(A)k−n

(k − n)!
(1 − α)k−n

= e−ασ(A) (ασ(A))n

n!
.

�

Remark 6.1.6. The construction of Poisson measures with a diffuse inten-
sity measure can be extended to not necessarily diffuse intensities.

Proof. In case σ is not diffuse, we can identify the atoms (xk)k∈N of σ which
are at most countably infinite with masses (μ(xk))k∈N. Next we choose a
family (Xk, νk)k∈N of measure spaces such that νk is diffuse and νk(Xk) =
μ({xk}), k ∈ N. Letting

X̄ := (X \ {x0, x1, . . .}) ∪
∞⋃

k=0

Xk

and

μ̄ := μ+
∞∑

k=0

νk,

then μ̄ is a diffuse measure on X̄ . Letting

f(x) = x1X\{x0,x1,...}(x) +
∞∑

k=1

xk1Xk
(x), x ∈ X̄,
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then ∫

X̄

f(x)(ω(dx) − μ̄(dx))

has an infinitely divisible law with Lévy measure μ since
∫

X

(eiux − iux− 1)μ(dx) =
∫

X̄

(eiuf(x) − iuf(x) − 1)μ̄(dx).

�
More generally, functionals on the Poisson space on (X,μ) of the form

F (ω) = f(ω(A1), . . . , ω(An))

can be constructed on the Poisson space on (X̄, μ̄) as

F̃ (ω) = f(ω(B1), . . . , ω(Bn)),

with

Bi = (Ai \ {x0, x2, . . .})
⋃
(
⋃

k : xk∈Ai

Xk

)
.

Poisson random measures on a metric space X can be constructed from the
Poisson process on R+ by identifying X with R+. More precisely we have the
following result, see e.g. [34], p. 192.

Proposition 6.1.7. There exists a measurable map

τ : X → R+,

a.e. bijective, such that λ = τ∗σ, i.e. the Lebesgue measure is the image of σ
by τ .

We denote by τ∗ω the image measure of ω by τ , i.e. τ∗ : ΩX → Ω maps

ω =
∞∑

i=1

εxi to τ∗ω =
∞∑

i=1

ετ(xi). (6.1.10)

We have, for A ∈ FX :

τ∗ω(A) = #{x ∈ ω : τ(x) ∈ A}
= #{x ∈ ω : x ∈ τ−1(A)}
= ω(τ−1(A)).

Proposition 6.1.8. The application τ∗ : ΩX → Ω maps the Poisson mea-
sure πσ on ΩX to the Poisson measure πλ on Ω.
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Proof. It suffices to check that for all families A1, . . . , An of disjoint Borel
subsets X and k1, . . . , kn ∈ N, we have

πσ({ω ∈ ΩX : τ∗ω(A1) = k1, . . . , τ∗ω(An) = kn})

=
n∏

i=1

πσ({τ∗ω(Ai) = ki})

=
n∏

i=1

πσ({ω(τ−1(Ai)) = ki})

= exp

(
−

n∑

i=1

σ(τ−1(Ai))

)
n∏

i=1

(σ(τ−1(Ai)))ki

ki!

= exp

(
−

n∑

i=1

λ(Ai)

)
n∏

i=1

(λ(Ai))ki

ki!

=
n∏

i=1

πλ({ω(Ai) = ki})

= πλ({ω(A1) = k1, . . . , ω(An) = kn}).

�
Clearly, F → F ◦ τ∗ defines an isometry from Lp(Ω) → Lp(ΩX), p ≥ 1,
and similarly we get that

∫
X
f ◦ τ(x) τ∗ω(dx) has same distribution as∫∞

0 f(t)ω(dt), since

IEπσ

[
exp
(
i

∫

X

f(τ(x))τ∗ω(dx)
)]

= exp
(∫

X

(eif(τ(x)) − 1)σ(dx)
)

= exp
(∫ ∞

0

(eif(t) − 1)λ(dt)
)

= IEπλ

[
exp
(
i

∫ ∞

0

f(t)ω(dt)
)]

.

Using the measurable bijection τ : X → R+, we can also restate
Proposition 4.7.3 for a Poisson measure on X .

Corollary 6.1.9. Let F ∈ Dom (D) be such that DF ≤ K, a.s., for some
K ≥ 0, and ‖DF‖L∞(Ω,L2(X)) <∞. Then

P(F − IE[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,L2(X))

K2
g

(
xK

‖DF‖2
L∞(Ω,L2(X))

))

≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,L2(X))

))
,
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with g(u) = (1 + u) log(1 + u) − u, u ≥ 0. If K = 0 (decreasing functionals)
we have

P(F − IE[F ] ≥ x) ≤ exp

(
− x2

2‖DF‖2
L∞(Ω,L2(X))

)
. (6.1.11)

In particular if F =
∫

X
f(y)ω(dy) we have ‖DF‖L∞(Ω,L2(X)) = ‖f‖L2(X) and

if f ≤ K, a.s., then

P

(∫

X

f(y)(ω(dy) − σ(dy)) ≥ x

)

≤ exp
(
−
∫

X f2(y)σ(dy)
K2

g

(
xK∫

X f2(y)σ(dy)

))
.

If f ≤ 0, a.s., then

P

(∫

X

f(y)(ω(dy) − σ(dy)) ≥ x

)
≤ exp

(
− x2

2
∫
X
f2(y)σ(dy)

)
.

This result will be recovered in Section 6.9, cf. Proposition 6.9.3 below.

6.2 Multiple Poisson Stochastic Integrals

We start by considering the particular case of the Poisson space

Ω =

{
ω =

n∑

k=1

εtk
: 0 ≤ t1 < · · · < tn, n ∈ N ∪ {∞}

}

on X = R+, where we drop the upper index R+, with intensity measure

ν(dx) = λdx, λ > 0.

In this case the configuration points can be arranged in an ordered fashion
and the Poisson martingale of Section 2.3 can be constructed as in the next
proposition.

Proposition 6.2.1. The Poisson process (Nt)t∈R+ of Definition 2.3.1 can
be constructed as

Nt(ω) = ω([0, t]), t ∈ R+.
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Proof. Clearly, the paths of (Nt)t∈R+ are piecewise continuous, càdlàg
(i.e. continuous on the right with left limits), with jumps of height equal
to one. Moreover, by definition of the Poisson measure on Ω, the vector
(Nt1 − Nt0 , . . . , Ntn − Ntn−1) of Poisson process increments, 0 ≤ t0 < t1 <
· · · < tn, is made of independent, Poisson distributed, random variables with
parameters λ(t1 − t0), . . . , λ(tn − tn−1). Hence the law of (Nt)t∈R+ coin-
cides with that of the standard Poisson process defined, cf. Corollary 2.3.5 in
Section 2.3. �
In other words, every configuration ω ∈ Ω can be viewed as the ordered
sequence ω = (Tk)k≥1 of jump times of (Nt)t∈R+ on R+.
Applying Corollary 2.5.11 and using induction on n ≥ 1 yields the following
result.

Proposition 6.2.2. Let fn : R
n
+ → R be continuous with compact support

in R
n
+. Then we have the P(dω)-almost sure equality

In(fn)(ω) = n!
∫ ∞

0

∫ t−n

0

· · ·
∫ t−2

0

fn(t1, . . . , tn)(ω(dt1)−dt1) · · · (ω(dtn)−dtn).

The above formula can also be written as

In(fn) = n!
∫ ∞

0

∫ t−n

0

· · ·
∫ t−2

0

fn(t1, . . . , tn)d(Nt1 − t1) · · · d(Ntn − tn),

and by symmetry of fn in n variables we have

In(fn) =
∫

Δn

fn(t1, . . . , tn)(ω(dt1) − dt1) · · · (ω(dtn) − dtn),

with
Δn = {(t1, . . . , tn) ∈ R

n
+ : ti �= tj , ∀i �= j}.

Using the mappings τ : X → R+ of Proposition 6.1.7 and

τ∗ : ΩX → Ω

defined in (6.1.10), we can extend the construction of multiple Poisson
stochastic integrals to the setting of an abstract set X of indices.

Definition 6.2.3. For all fn ∈ Cc(Δn), let

IX
n (fn)(ω) := In(fn ◦ τ−1)(τ∗ω). (6.2.1)

Leting
ΔX

n = {(x1, . . . , xn) ∈ Xn : xi �= xj , ∀i �= j},
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we have

IX
n (fn)(ω) = In(fn ◦ τ−1)(τ∗ω) (6.2.2)

=
∫

Δn

fn(τ−1(t1), . . . , τ−1(tn))(τ∗ω(dt1) − λdt1) · · · (τ∗ω(dtn) − λdtn)

=
∫

ΔX
n

fn(x1, . . . , xn)(ω(dx1) − σ(dx1)) · · · (ω(dxn) − σ(dxn)),

and for gn+1 ∈ Cc(Δn+1),

IX
n+1(gn+1)

=
∫

ΔX
n+1

gn(x1, . . . , xn, x)(ω(dx) − σ(dx))(ω(dx1) − σ(dx1)) · · ·

· · · (ω(dxn) − σ(dxn))

=
∫

X

∫

ΔX
n

1{x/∈{x1,...,xn}}gn(x1, . . . , xn, x)(ω(dx1) − σ(dx1)) · · ·

· · · (ω(dxn) − σ(dxn))(ω(dx) − σ(dx))

=
∫

ΔX
n

IX
n (gn+1(∗, x))(ω)(ω \ {x})(ω(dx) − σ(dx)). (6.2.3)

The integral IX
n (fn) extends to symmetric functions in fn ∈ L2(X)◦n via the

following isometry formula.

Proposition 6.2.4. For all symmetric functions fn ∈ L2(X,σ)◦n, gm ∈
L2(X,σ)◦m, we have

IEπσ

[
IX
n (fn)IX

m (gm)
]

= n!1{n=m}〈fn, gm〉L2(X,σ)◦n . (6.2.4)

Proof. Denoting fn(τ−1(x1), . . . , τ−1(xn)) by fn ◦ τ−1(x1, . . . , xn) we have

IEπσ [IX
n (fn)IX

m (gm)] = IEπσ [In(fn ◦ τ−1)(τ∗ω)Im(gm ◦ τ−1)(τ∗ω)]

= IEπλ
[In(fn ◦ τ−1)Im(gm ◦ τ−1)]

= n!1{n=m}〈fn ◦ τ−1, gm ◦ τ−1〉L2(Rn
+,λ⊗n)

= n!1{n=m}〈fn, gm〉L2(Xn,σ⊗n).

�
We have the following multiplication formula, in which we again use the
convention IX

0 (f0) = f0 for f0 ∈ R.
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Proposition 6.2.5. We have for u, v ∈ L2(X,σ) such that uv ∈ L2(X,σ):

IX
1 (u)IX

n (v⊗n) (6.2.5)
= IX

n+1(v
⊗n ◦ u) + nIX

n ((uv) ◦ v⊗(n−1)) + n〈u, v〉L2(X,σ)I
X
n−1(v

⊗(n−1)).

Proof. This result can be proved by direct computation from (6.2.1). Al-
ternatively it can be proved first for X = R+ using stochastic calculus or
directly from Proposition 4.5.1 with φt = 1, t ∈ R+:

I1(u ◦ τ−1)In((v ◦ τ−1)⊗n)
= In+1((v ◦ τ−1)⊗n ◦ u ◦ τ−1) + nIn((u ◦ τ−1v ◦ τ−1) ◦ (v ◦ τ−1)⊗(n−1))

+n〈u ◦ τ−1, v ◦ τ−1〉L2(R+,λ)In−1((v ◦ τ−1)⊗(n−1)),

and then extended to the general setting of metric spaces using the mapping

τ∗ : ΩX → Ω

of Proposition 6.1.8 and Relation (6.2.2). �
Similarly using the mapping τ∗ : ΩX → Ω and Proposition 4.5.6 we have

In(fn)Im(gm) =
2(n∧m)∑

s=0

In+m−s(hn,m,s),

fn ∈ L2(X,σ)◦n, gm ∈ L2(X,σ)◦m, where

hn,m,s =
∑

s≤2i≤2(s∧n∧m)

i!
(
n

i

)(
m

i

)(
i

s− i

)
fn ◦s−i

i gm,

and fn ◦l
k gm, 0 ≤ l ≤ k, is the symmetrization of

(xl+1, . . . , xn, yk+1, . . . , ym) →∫

Xl

fn(x1, . . . , xn)gm(x1, . . . , xk, yk+1, . . . , ym)σ(dx1) · · ·σ(dxl)

in n+m− k − l variables.
Given fk1 ∈ L2(X,σ)k1 , . . . , fkd

∈ L2(X,σ)kd with disjoint supports we have

In(fk1 ◦ · · · ◦ fkd
) =

d∏

i=1

Iki (fki), (6.2.6)

for n = k1 + · · · + kd.
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Remark 6.2.6. Relation (6.2.5) implies that the linear space generated by

{In(f1 ⊗ · · · ⊗ fn) : f1, . . . , fn ∈ C∞c (X), n ∈ N},

coincides with the space of polynomials in first order integrals of the form
I1(f), f ∈ C∞c (X).

Next we turn to the relation between multiple Poisson stochastic integrals
and the Charlier polynomials.

Definition 6.2.7. Let the Charlier polynomial of order n ∈ N and parameter
t ≥ 0 be defined by

C0(k, t) = 1, C1(k, t) = k − t, k ∈ R, t ∈ R+,

and the recurrence relation

Cn+1(k, t) = (k − n− t)Cn(k, t) − ntCn−1(k, t), n ≥ 1. (6.2.7)

Let

pk(t) = e−t t
k

k!
, k ∈ N, t ∈ R+, (6.2.8)

denote the Poisson probability density, which satisfies the finite difference
differential equation

∂pk

∂t
(t) = −Δpk(t), (6.2.9)

where Δ is the difference operator

Δf(k) := f(k) − f(k − 1), k ∈ N.

Let also

ψλ(k, t) =
∞∑

n=0

λn

n!
Cn(k, t), λ ∈ (−1, 1),

denote the generating function of Charlier polynomials.

Proposition 6.2.8. For all k ∈ Z and t ∈ R+ we have the relations

Cn(k, t) =
(−1)n

pk(t)
tn(Δ)npk(t), (6.2.10)

Cn(k, t) =
tn

pk(t)
∂npk

∂tn
(t), (6.2.11)

Cn(k + 1, t) − Cn(k, t) = −∂Cn

∂t
(k, t), (6.2.12)
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Cn(k + 1, t) − Cn(k, t) = nCn−1(k, t), (6.2.13)

Cn+1(k, t) = kCn(k − 1, t) − tCn(k, t), (6.2.14)

and the generating function ψλ(k, t) satisfies

ψλ(k, t) = e−λt(1 + λ)k, (6.2.15)

λ, t > 0, k ∈ N.

Proof. By the Definition 6.2.8 of pk(t) it follows that

(−1)n

pk(t)
tn(Δ)npk(t)

satisfies the recurrence relation (6.2.7), i.e.

(−1)n+1

pk(t)
tn+1(Δ)n+1pk(t)

= (k − n− t)
(−1)n

pk(t)
tn(Δ)npk(t) − nt

(−1)n−1

pk(t)
tn−1(Δ)n−1pk(t),

as well as its initial conditions, hence (6.2.10) holds. Relation (6.2.11) then
follows from Equation (6.2.9). On the other hand, the process

(Cn(Nt, t))t∈R+ = (In(1⊗n
[0,t]))t∈R+

is a martingale from Lemma 2.7.2 and can using Itô’s formula
Proposition 2.12.1 it can be written as

Cn(Nt, t) = In(1⊗n
[0,t])

= Cn(0, 0) +
∫ t

0

(Cn(Ns− + 1, s) − Cn(Ns− , s))d(Ns − s)

+
∫ t

0

(
(Cn(Ns− + 1, s) − Cn(Ns− , s)) +

∂Cn

∂s
(Ns, s)

)
ds

= n

∫ t

0

In−1(1
⊗(n−1)
[0,s] )d(Ns − s)

= n

∫ t

0

Cn−1(Ns− , s)d(Ns − s)
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where the last integral is in the Stieltjes sense of Proposition 2.5.10, hence
Relations (6.2.12) and (6.2.13) hold. Next, Relation (6.2.14) follows from
(6.2.11) and (6.2.9) as

Cn+1(k, t) =
tn+1

pk(t)
∂n+1pk

∂tn+1
(t)

= − tn+1

pk(t)
∂npk

∂tn
(t) +

tn+1

pk(t)
∂npk−1

∂tn
(t)

= −t tn

pk(t)
∂npk

∂tn
(t) + k

tn

pk−1(t)
∂npk−1

∂tn
(t)

= −tCn(k, t) + kCn(k − 1, t).

Finally, using Relation (6.2.14) we have

∂ψλ

∂λ
(k, t) =

∞∑

n=1

λn−1

(n− 1)!
Cn(k, t)

=
∞∑

n=0

λn

n!
Cn+1(k, t)

= −t
∞∑

n=0

λn

n!
Cn(k − 1, t) + k

∞∑

n=0

λn

n!
Cn(k, t)

= −t
∞∑

n=0

λn

n!
Cn(k − 1, t) + k

∞∑

n=0

λn

n!
Cn(k, t)

= −tψλ(k, t) + kψλ(k − 1, t),

λ ∈ (−1, 1), hence the generating function ψλ(k, t) satisfies the differential
equation

∂ψλ

∂λ
(k, t) = −λψλ(k, t) + kψλ(k − 1, t), ψ0(k, t) = 1, k ≥ 1,

which yields (6.2.15) by induction on k. �
We also have

∂kpk

∂tk
(t) = (−Δ)kpk(t).

The next proposition links the Charlier polynomials with multiple Poisson
stochastic integrals.

Proposition 6.2.9. The multiple Poisson stochastic integral of the function

1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
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satisfies

In(1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
)(ω) =

d∏

i=1

Cki(ω(Ai), σ(Ai)), (6.2.16)

provided A1, . . . , Ad are mutually disjoint compact subsets of X and n =
k1 + · · · + kd.

Proof. We have
I0(1⊗0

A ) = 1 = C0(ω(A), σ(A)),

and
I1(1⊗0

A )(ω) = ω(A) − σ(A) = C1(ω(A), σ(A)).

On the other hand, by Proposition 6.2.5 we have the recurrence relation

I1(1B)Ik(1⊗k
A )

= Ik+1(1⊗k
A ◦ 1B) + kIk(1A∩B ◦ 1⊗(k−1)

A ) + kσ(A ∩B)Ik−1(1
⊗(k−1)
A ),

which coincides for A = B with Relation (6.2.7) that defines the Charlier
polynomials, hence by induction on k ∈ N we obtain

Ik(1⊗k
A )(ω) = Ck(ω(A)).

Finally from (6.2.6) we have

In(1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
) =

d∏

i=1

Iki (1
⊗ki

Ai
)

=
d∏

i=1

Cki (ω(Ai), σ(Ai)),

which shows (6.2.16). �
In this way we recover the orthogonality properties of the Charlier polyno-
mials with respect to the Poisson distribution, with t = σ(A):

〈Cn(·, t), Cm(·, t)〉�2(N,p·(t)) = e−t
∞∑

k=0

tk

k!
Cn(k, t)Cm(k, t)

= IE[Cn(ω(A), t)Cm(ω(A), t)]
= IE[In(1⊗n

A )Im(1⊗m
A )]

= 1{n=m}n!tn. (6.2.17)

The next lemma is the Poisson space version of Lemma 5.1.6.
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Lemma 6.2.10. Let F of the form

F (ω) = g(ω(A1), . . . , ω(Ak))

where

∞∑

l1,...,lk=0

|g(l1, . . . , lk)|2pl1(σ(A1)) · · · plk(σ(Ak)) <∞, (6.2.18)

and A1, . . . , Ak are compact disjoint subsets of X. Then F admits the chaos
expansion

F =
∞∑

n=0

In(fn),

where for all n ≥ 1, In(fn) can be written as a linear combination

In(fn)(ω) = Pn(ω(A1), . . . , ω(An), σ(A1), . . . σ(An))

of multivariate Charlier polynomials

Cl1(ω(A1), σ(A1)) · · ·Clk(ω(Ak), σ(Ak)).

Proof. We decompose g satisfying (6.2.18) as an orthogonal series

g(i1, . . . , ik) =
∞∑

n=0

Pn(i1, . . . , in, σ(A1), . . . , σ(An)),

where

Pn(i1, . . . , ik, σ(A1), . . . , σ(Ak))

=
∑

l1+···+lk=n

αl1,...,lkCl1(i1, σ(A1)) · · ·Clk(ik, σ(Ak))

is a linear combination of multivariate Charlier polynomials of degree n which
is identified to the multiple stochastic integral

Pn(ω(A1), . . . , ω(An), σ(A1), . . . σ(An))

=
∑

l1+···+lk=n

αl1,...,lkIn(1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
)

= In

(
∑

l1+···+lk=n

αl1,...,lk1
⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad

)

= In(fn),

by Proposition 6.2.9. �
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6.3 Chaos Representation Property

The following expression of the exponential vector

ξ(u) =
∞∑

k=0

1
n!
In(u⊗n)

is referred to as the Doléans exponential.

Proposition 6.3.1. For all u ∈ L2(X) we have

ξ(u) = exp
(∫

X

u(x)(ω(dx) − σ(dx))
) ∏

x∈ω

((1 + u(x))e−u(x)).

Proof. The case X = R+ is treated in Proposition 2.13.1, in particular when
φt = 1, t ∈ R+, and the extension to X a metric space is obtained using the
isomorphism τ : X → R+ of Proposition 6.1.7. �

In particular, from Proposition 6.2.9 the exponential vector ξ(λ1A) satisfies

ξ(λ1A) =
∞∑

n=0

λn

n!
Cn(ω(A), σ(A))

= e−λσ(A)(1 + λ)ω(A)

= ψλ(ω(A), σ(A)).

Next we show that the Poisson measure has the chaos representation property,
i.e. every square-integrable functional on Poisson space has an orthogonal
decomposition in a series of multiple stochastic integrals.

Proposition 6.3.2. Every square-integrable random variable F ∈ L2(ΩX ,
πσ) admits the Wiener-Poisson decomposition

F =
∞∑

n=0

In(fn)

in series of multiple stochastic integrals.

Proof. A modification of the proof of Theorem 4.1 in [50], cf. also Theorem 1.3
of [66], shows that the linear space spanned by

{
e−
∫

X
u(x)σ(dx)

∏

x∈ω

(1 + u(x)) : u ∈ Cc(X)

}

is dense in L2(ΩX). This concludes the proof since this space is contained in
the closure of S in L2(ΩX). �
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As a corollary, the standard Poisson process (Nt)t∈R+ has the chaos
representation property.
As in the Wiener case, cf. Relation (5.1.8), Proposition 6.3.2 implies that any
F ∈ L2(Ω) has a chaos decomposition

F =
∞∑

n=0

In(gn),

where

In(gn)=
n∑

d=1

∑

k1+···+kd=n

1
k1! · · ·kd!

In(u⊗k1
1 ◦· · ·◦u⊗kd

d ) IE[FIn(u⊗k1
1 ◦· · ·◦u⊗kd

d )],

(6.3.1)

for any orthonormal basis (un)n∈N of L2(X,σ), which completes the state-
ment of Lemma 6.2.10.
Consider now the compound Poisson process

Yt =
Nt∑

k=1

Yk,

of Definition 2.4.1, where (Yk)k≥1 is an i.i.d. sequence of random variables
with distribution μ on R

d and (Nt)t∈R+ is a Poisson process with intensity
λ > 0, can be constructed as

Yt =
∫ t

0

∫

Rd

xω(ds, dx), (6.3.2)

by taking X = R+ × R
d and σ(ds, dx) = λdsμ(dx). The compensated com-

pound Poisson process

Xt =

(
Nt∑

k=1

Yk

)
− λt IE[Y1], t ∈ R+,

of Section 2.4 has the chaos representation property if and only if Yk is
a.s. constant, i.e. when (Mt)t∈R+ is the compensated Poisson martingale,
cf. Section 2.10 and Proposition 4.2.4.
Next we turn to some practical computations of chaos expansions in the
Poisson case. In particular, from (6.2.17) we deduce the orthogonal expansion

1{Nt−Ns=n} =
∞∑

k=0

1
k!(t− s)k

〈1{n}, Ct−s
k 〉�2(Z,pt−s)C

t−s
k (Nt −Ns),
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0 ≤ s ≤ t, n ∈ N, hence from (6.2.11):

1{Nt−Ns=n} =
∞∑

k=0

1
k!
p(k)

n (t− s)Ik(1⊗k
[s,t]), (6.3.3)

0 ≤ s ≤ t, n ∈ N.
From (6.3.3) we obtain for s = 0 and n ≥ 1:

1[Tn,∞[(t) = 1{Nt≥n} (6.3.4)

=
∞∑

k=0

∑

l≥n

1
k!
p
(k)
l (t)Ik(1⊗k

[0,t])

=
∞∑

k=0

1
k!
∂kPn(t)Ik(1⊗k

[0,t]),

where

Pn(t) =
∫ t

0

pn−1(s)ds, t ∈ R+, (6.3.5)

is the distribution function of Tn and pn(s) is defined in (2.3.1).
More generally, we have the following result.
Proposition 6.3.3. Let f ∈ C1

b (R+). We have

f(Tn) = −
∞∑

k=0

1
k!
Ik

(∫ ∞

t1∨···∨tk

f ′(s)P (k)
n (s)ds

)
, (6.3.6)

where t1 ∨ · · · ∨ tn = max(t1, . . . , tn), t1, . . . , tn ∈ R+.

Proof. We have

f(Tn) = −
∫ ∞

0

f ′(s)1[Tn,∞)(s)ds

= −
∫ ∞

0

f ′(s)
∞∑

k=0

1
k!
P (k)

n (s)Ik(1⊗k
[0,s])ds

= −
∞∑

k=0

1
k!

∫ ∞

0

f ′(s)P (k)
n (s)Ik(1⊗k

[0,s])ds

= −
∞∑

k=0

∫ ∞

0

f ′(s)P (k)
n (s)

∫ s

0

∫ tk

0

· · ·
∫ t2

0

dÑt1 · · · dÑtk
ds
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= −
∞∑

k=0

∫ ∞

0

f ′(s)P (k)
n (s)

∫ ∞

0

∫ tk

0

· · ·
∫ t2

0

1[0,s](t1 ∨ · · · ∨ tk)dÑt1 · · · dÑtk
ds

= −
∞∑

k=0

∫ ∞

0

(∫ ∞

tk

f ′(s)P (k)
n (s)ds

∫ tk

0

· · ·
∫ t2

0

dÑt1 · · · dÑtk−1 ,

)
dÑtk

.

�
Note that Relation (6.3.6) can be rewritten after integration by parts on
R+ as

f(Tn) (6.3.7)

=
∞∑

k=0

1
k!
Ik

(
f(t1 ∨ · · · ∨ tk)P (k)

n (t1 ∨ · · · ∨ tk)+
∫ ∞

t1∨···∨tk

f(s)P (k+1)
n (s)ds

)
,

and then extends to all f ∈ L2(R+, t
n−1e−tdt).

Next we state a result for smooth functions of a finite number of jump times.
As a convention, if k1 ≥ 0, . . . , kd ≥ 0 satisfy k1 + · · · + kd = n, we define

(t11, . . . , t
1
k1
, t21, . . . , t

2
k2
, . . . , td1, . . . , t

d
kd

)

as
(t11, . . . , t

1
k1
, t21, . . . , t

2
k2
, . . . , td1, . . . , t

d
kd

) = (t1, . . . , tn).

The next result extends Proposition 6.3.3 to the multivariate case. Its
proof uses only Poisson-Charlier orthogonal expansions instead of using
Proposition 4.2.5 and the gradient operator D.

Proposition 6.3.4. Let n1, . . . , nd ∈ N with 1 ≤ n1 < · · · < nd, and let
f ∈ Cd

c (Δd). The chaos expansion of f(Tn1 , . . . , Tnd
) is given as

f(Tn1 , . . . , Tnd
) = (−1)d

∞∑

n=0

In(1Δnhn),

where

hn(t1, . . . , tn) = (6.3.8)
∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

∫ ∞

td
kd

· · ·
∫ ti+1

1

ti
ki

· · ·
∫ t21

t1k1

∂1 · · · ∂df(s1, . . . , sd)Kk1,...,kd
s1,...,sd

ds1 · · · dsd,

with, for 0 = s0 ≤ s1 ≤ · · · ≤ sd and k1, . . . kd ∈ N:

Kk1,...,kd
s1,...,sd

=
∑

m1 ≥ n1, . . . , md ≥ nd
0 = m0 ≤ m1 ≤ · · · ≤ md

p
(k1)
m1−m0

(s1 − s0) · · · p(kd)
md−md−1

(sd − sd−1).



216 6 Analysis on the Poisson Space

Proof. Let 0 = s0 ≤ s1 ≤ · · · ≤ sd, and n1, . . . , nd ∈ N. We have from (6.3.3)
and (6.2.16):

d∏

i=1

1{Nsi
−Nsi−1=ni} =

∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

1
k1! · · · kd!

d∏

i=1

p
(ki)
mi−mi−1

(si − si−1)Ik1 (1
⊗k1
[s0,s1]) · · · Ikd

(1⊗kd

[sd−1,sd])

=
∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

1
k1! · · · kd!

d∏

i=1

p
(ki)
mi−mi−1

(si − si−1)In(1⊗k1
[s0,s1]

◦ · · · ◦ 1⊗kd

[sd−1,sd]),

where the last equality used the assumption s1 ≤ · · · ≤ sd. Now, with 0 =
m0 ≤ m1 ≤ · · · ≤ md,

1[Tm1 ,Tm1+1[(s1) · · ·1[Tmd
,Tmd+1[(sd) = 1{Ns1=m1} · · ·1{Nsd

=md}
= 1{Ns1−Ns0=m1−m0} · · ·1{Nsd

−Nsd−1=md−md−1}

=
∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

1
k1! · · ·kd!

d∏

i=1

p
(ki)
mi−mi−1

(si − si−1)In(1⊗k1
[s0,s1] ◦ · · · ◦ 1⊗kd

[sd−1,sd]).

Given that s1 ≤ · · · ≤ sd, for any i < j the conditions si ∈ [Tmi , Tmi+1) and
sj ∈ [Tmj , Tmj+1) imply mi ≤ mj , hence

d∏

i=1

1[Tni
,∞)(si)=

∑

m1 ≥ n1, . . . , md ≥ nd
0=m0 ≤ m1 ≤ · · · ≤ md

1[Tm1 ,Tm1+1[(s1) · · ·1[Tmd
,Tmd+1[(sd)

=
∑

m1 ≥ n1, . . . , md ≥ nd
0 = m0 ≤ m1 ≤ · · · ≤ md

1{Ns1=m1} · · ·1{Nsd
=md}

=
∑

m1 ≥ n1, . . . , md ≥ nd
0 = m0 ≤ m1 ≤ · · · ≤ md

1{Ns1−Ns0=m1−m0} · · ·1{Nsd
−Nsd−1=md−md−1}

=
∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

1
k1! · · ·kd!
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∑

m1 ≥ n1, . . . , md ≥ nd
0 = m0 ≤ m1 ≤ · · · ≤ md

p
(k1)
m1−m0

(s1 − s0) · · · p(kd)
md−md−1

(sd − sd−1)

In(1⊗k1
[s0,s1] ◦ · · · ◦ 1⊗kd

[sd−1,sd])

=
∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

1
k1! · · ·kd!

Kk1,...,kd
s1,...,sd

In(1⊗k1
[s0,s1]

◦ · · · ◦ 1⊗kd

[sd−1,sd]).

Given f ∈ Cd
c (Δd), using the identity

f(Tn1 , . . . , Tnd)

= (−1)d
∫ ∞

0

· · ·
∫ ∞

0

1[Tn1 ,∞[(s1) · · ·1[Tnd
,∞[(sd)

∂d

∂1 · · · ∂d
f(s1, . . . , sd)ds1 · · · dsd

= (−1)d
∫

Δd

1[Tn1 ,∞[(s1) · · ·1[Tnd
,∞[(sd)

∂d

∂1 · · · ∂d
f(s1, . . . , sd)ds1 · · · dsd,

we get

f(Tn1 , . . . , Tnd
) = (−1)d

∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

1
k1! · · ·kd!

∫

Δd

∂d

∂1 · · · ∂d
f(s1, . . . , sd)Kk1,...,kd

s1,...,sd
In(1⊗k1

[s0,s1] ◦ · · · ◦ 1⊗kd

[sd−1,sd])ds1 · · · dsd.

From (6.2.16), we have for s1 ≤ · · · ≤ sd and k1 ≥ 0, . . . , kd ≥ 0:

In

(
1⊗k1

[s0,s1] ◦ · · · ◦ 1⊗kd

[sd−1,sd]

)

= k1! · · · kd!
∫ ∞

0

∫ td
kd

0

· · ·
∫ t12

0

1⊗2
[s0,s1]

(t11, t
1
k1

) · · ·1⊗2
[sd−1,sd](t

d
1, t

d
kd

)

dÑt11
· · · dÑtd

kd

,

hence by exchange of deterministic and stochastic integrals we obtain

f(Tn1 , . . . , Tnd
) = (−1)d

∞∑

n=0

∑

k1 + · · · + kd = n

k1 ≥ 0, . . . , kd ≥ 0

In

(
1Δn

∫ ∞

td
kd

∫ td
1

td−1
kd−1

· · ·
∫ t31

t2k2

∫ t21

t1k1

∂df

∂s1 · · · ∂sd
(s1, . . . , sd)Kk1,...,kd

s1,...,sd
ds1 · · · dsd

)
.

�
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Remarks

i) All expressions obtained above for f(T1, . . . , Td), f ∈ C∞b (Δd), extend
to f ∈ L2(Δd, e−sdds1 · · ·dsd), i.e. to square-integrable f(T1, . . . , Td), by
repeated integrations by parts.
ii) Chaotic decompositions on the Poisson space on the compact interval
[0, 1] as in [79] or [80] can be obtained by considering the functional f(1∧
T1, . . . , 1 ∧ Td) instead of f(T1, . . . , Td).

6.4 Finite Difference Gradient

In this section we study the probabilistic interpretation and the extension to
the Poisson space on X of the operators D and δ defined in Definitions 4.1.1
and 4.1.2.
Let the spaces S and U of Section 3.1 be taken equal to

S =

{
n∑

k=0

Ik(fk) : fk ∈ L4(X)◦k, k = 0, . . . , n, n ∈ N

}
,

and

U =

{
n∑

k=0

Ik(gk(∗, ·)) : gk ∈ L2(X)◦k ⊗ L2(X), k = 0, . . . , n, n ∈ N

}
.

Definition 6.4.1. Let the linear, unbounded, closable operators

DX : L2(ΩX , πσ) → L2(ΩX ×X,P ⊗ σ)

and
δX : L2(ΩX ×X,P ⊗ σ) → L2(ΩX ,P)

be defined on S and U respectively by

DX
x In(fn) := nIn−1(fn(∗, x)), (6.4.1)

πσ(dω) ⊗ σ(dx)-a.e., n ∈ N, fn ∈ L2(X,σ)◦n, and

δX(In(fn+1(∗, ·))) := In+1(f̃n+1), (6.4.2)

πσ(dω)-a.s., n ∈ N, fn+1 ∈ L2(X,σ)◦n ⊗ L2(X,σ).

In particular we have

δX(f) = I1(f) =
∫

X

f(x)(ω(dx) − σ(dx)), f ∈ L2(X,σ), (6.4.3)
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and
δX(1A) = ω(A) − σ(A), A ∈ B(X), (6.4.4)

and the Skorohod integral has zero expectation:

IE[δX(u)] = 0, u ∈ Dom (δX). (6.4.5)

In case X = R+ we simply write D and δ instead of DR+ and δR+ .
Note that using the mapping τ of Proposition 6.1.7 we have the relations

(Dτ(x)F ) ◦ τ∗ = DX
x (F ◦ τ∗), πσ(dω) ⊗ σ(dx) − a.e.

and
δ(uτ(·)) ◦ τ∗ = δX(u· ◦ τ∗), πσ(dω) − a.e.

From these relations and Proposition 4.1.4 we have the following proposition.

Proposition 6.4.2. For any u ∈ U we have

DX
x δ

X(u) = u(x) + δX(DX
x u). (6.4.6)

Let Dom (DX) denote the set of functionals F : ΩX → R with the expansion

F =
∞∑

n=0

In(fn)

such that ∞∑

n=1

n!n‖fn‖2
L2(Xn,σ⊗n) <∞,

and let Dom (δX) denote the set of processes u : ΩX × X → R with the
expansion

u(x) =
∞∑

n=0

In(fn+1(∗, x)), x ∈ X,

such that ∞∑

n=0

(n+ 1)!‖f̃n+1‖2
L2(Xn+1,σ⊗(n+1)) <∞.

The following duality relation can be obtained by transfer from
Proposition 4.1.3 using Proposition 6.1.8. Here we also provide a direct
proof.
Proposition 6.4.3. The operators DX and δX satisfy the duality relation

IE[〈DXF, u〉L2(X,σ)] = IE[FδX(u)], (6.4.7)

F ∈ Dom (DX), u ∈ Dom (δX).
Proof. The proof is identical to those of Propositions 1.8.2 and 4.1.3, and
follows from the isometry formula (6.2.4). We consider F = In(fn) and ux =
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Im(gm+1(∗, x)), x ∈ X , fn ∈ L2(X)◦n, gm+1 ∈ L2(X)◦m ⊗ L2(X). We have

IE[FδX(u)] = IE[Im+1(g̃m+1)In(fn)]
= n!1{n=m+1}〈fn, g̃n〉L2(Xn)

= 1{n−1=m}

∫

Xn

fn(x1, . . . , xn−1, x)gn(x1, . . . , xn−1, x)

σ(dx1) · · ·σ(dxn−1)σ(dx)

= n1{n−1=m}

∫ ∞

0

IE[In−1(fn(∗, t))In−1(gn(∗, t))]dt

= IE[〈DX
· In(fn), Im(gm+1(∗, ·))〉L2(X,σ)]

= IE[〈DXF, u〉L2(X,σ)].

Again, we may alternatively use the mapping τ : X → R to prove this
proposition from Proposition 4.1.3. �
Propositions 3.1.2 and 6.4.3 show in particular that DX is closable.
The next lemma gives the probabilistic interpretation of the gradient DX .

Lemma 6.4.4. For any F of the form

F = f(I1(u1), . . . , I1(un)), (6.4.8)

with u1, . . . , un ∈ Cc(X), and f is a bounded and continuous function, or a
polynomial on R

n, we have F ∈ Dom (DX) and

DX
x F (ω) = F (ω ∪ {x}) − F (ω), P ⊗ σ(dω, dx) − a.e., (6.4.9)

where as a convention we identify ω ∈ ΩX with its support.

Proof. We start by assuming that u1 = 1A1 , . . . , un = 1An , where A1, . . . , An

are compact disjoint measurable subsets of X . In this case the proposition
clearly holds for f polynomial from Proposition 6.2.9 and Relation (6.2.16)
which implies

DX
x In(1⊗k1

A1
◦ · · · ◦ 1⊗kd

Ad
)(ω)

=
d∑

i=1

1Ai(x)kiIki−1(1⊗ki−1
Ai

)(ω)
∏

j �=i

Ikj (1
⊗kj

Aj
)(ω)

=
d∑

i=1

1Ai(x)kiCki−1(ω(Ai), σ(Ai))
∏

j �=i

Ckj (ω(Aj), σ(Aj))

=
d∑

i=1

1Ai(x)(Cki (ω(Ai) + 1, σ(Ai)) − Cki(ω(Ai), σ(Ai)))

∏

j �=i

Ckj (ω(Aj), σ(Aj))
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=
n∏

i=1

Cki(ω(Ai) + 1Ai(x), σ(Ai)) −
n∏

i=1

Cki(ω(Ai), σ(Ai))

= In(1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
)(ω ∪ {x}) − In(1⊗k1

A1
◦ · · · ◦ 1⊗kd

Ad
)(ω),

by (6.2.13).
If f ∈ Cb(Rn), from Lemma 6.2.10 the functional

F := f(I1(1A1), . . . , I1(1An))

has the chaotic decomposition

F = IE[F ] +
∞∑

k=1

Ik(gk),

where Ik(gk) is a polynomial in ω(A1), . . . , ω(An). Let now

Qk := IE[F ] +
k∑

l=1

Il(gl), k ≥ 1.

The sequence (Qk)k∈N ⊂ S consists in polynomial functionals converging to
F in L2(ΩX). By the Abel transformation of sums

∞∑

k=0

(f(k + 1) − f(k))Cn(k, λ)
λk

k!
=
∞∑

k=1

f(k)(kCn(k − 1, λ)−λCn(k, λ))
λk−1

k!

=
1
λ

∞∑

k=1

f(k)Cn+1(k, λ)
λk

k!
(6.4.10)

we get, with λ = σ(Ai) and l = k1 + · · · + kd,

IE
[
Il

(
1⊗k1

A1
◦ · · · ◦ 1⊗kd

Ad
)×

(f(I1(1A1), . . . , I1(1Ai) + 1, . . . , I1(1Ad
)) − f(I1(1A1), . . . , I1(1Ad

)))]

=
1

σ(Ai)
IE[f(I1(1A1), . . . , I1(1Ad

))Il+1(1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
◦ 1Ai)]

=
1

σ(Ai)
IE[Il+1(gl+1)Il+1(1⊗k1

A1
◦ · · · ◦ 1⊗kd

Ad
◦ 1Ai)]

=
(l + 1)!
σ(Ai)

〈gl+1,1⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
◦ 1Ai〉L2(Xl,σ⊗l)

=
1

σ(Ai)
IE[〈DXIl+1(gl+1),1Ai〉L2(X,σ)Il(1

⊗k1
A1

◦ · · · ◦ 1⊗kd

Ad
)].
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Hence the projection of

f(I1(1A1), . . . , I1(1Ai) + 1, . . . , I1(1Ad
)) − f(I1(1A1), . . . , I1(1Ad

))

on the chaos Hl of order l ∈ N is

1
σ(Ai)

〈DXIl+1(gl+1),1Ai〉L2(X,σ),

and we have the chaotic decomposition

f(I1(1A1), . . . , I1(1Ai) + 1, . . . , I1(1Ad
)) − f(I1(1A1), . . . , I1(1Ad

))

=
1

σ(Ai)

∞∑

k=1

〈DXIk(gk),1Ai〉L2(X,σ),

where the series converges in L2(ΩX). Hence

n∑

i=1

1Ai(f(I1(1A1), . . . , I1(1Ai) + 1, . . . , I1(1Ad
)) − f(I1(1A1), . . . , I1(1Ad

)))

=
n∑

i=1

1
σ(Ai)

1Ai

∞∑

k=1

〈DXIk(gk),1Ai〉L2(X,σ)

=
∞∑

k=1

DXIk(gk)

= lim
n→∞D

XQn,

which shows that (DXQk)k∈N converges in L2(ΩX ×X) to

n∑

i=1

1Ai(f(I1(1A1), . . . , I1(1Ai) + 1, . . . , I1(1Ad
)) − f(I1(1A1), . . . , I1(1Ad

))).

The proof is concluded by the closability of DX and approximation of func-
tions in Cc(X) by linear combination of indicator functions. �

Definition 6.4.5. Given a mapping F : ΩX −→ R, let

ε+x F : ΩX −→ R and ε−x F : ΩX −→ R,

x ∈ X, be defined by

(ε−x F )(ω) = F (ω\x), and (ε+x F )(ω) = F (ω ∪ x), ω ∈ ΩX .
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Note that Relation (6.4.9) can be written as

DX
x F = ε+x F − F, x ∈ X. (6.4.11)

On the other hand, the result of Lemma 6.4.4 is clearly verified on simple
functionals. For instance when F = I1(u) is a single Poisson stochastic inte-
gral, we have

DX
x I1(u)(ω) = I1(u)(ω ∪ {x}) − I1(u)(ω)

=
∫

X

u(y)(ω(dy) + εx(dy) − σ(dy)) −
∫

X

u(y)(ω(dy) − σ(dy))

=
∫

X

u(y)εx(dy)

= u(x).

Corollary 6.4.6. For all F is bounded and measurable A ∈ B(X), 0 <
σ(A) <∞, we have

IE
[∫

A

F (ω ∪ {x})σ(dx)
]

= IE[Fω(A)]. (6.4.12)

Proof. From Proposition 6.4.3, Lemma 6.4.4, and Relation (6.4.4) we have

IE
[∫

A

F (ω ∪ {x})σ(dx)
]

= IE
[∫

X

1A(x)DxFσ(dx)
]

+ σ(A) IE[F ]

= IE[FδX(1A)] + σ(A) IE[F ]
= IE[Fω(A)].

�
Hence as in [150] we get that the law of the mapping (x, ω) → ω ∪{x} under
1A(x)σ(dx)πσ(dω) is absolutely continuous with respect to πσ . In particular,
(ω, x) → F (ω ∪ {x}) is well-defined, πσ ⊗ σ, and this justifies the extension
of Lemma 6.4.4 in the next proposition.

Proposition 6.4.7. For any F ∈ Dom (DX) we have

DX
x F (ω) = F (ω ∪ {x}) − F (ω),

πσ(dω) × σ(dx)-a.e.

Proof. There exists a sequence (Fn)n∈N of functionals of the form (6.4.8),
such that (DXFn)n∈N converges everywhere to DXF on a set AF such that
(πσ⊗σ)(Ac

F ) = 0. For each n ∈ N, there exists a measurable set Bn ⊂ ΩX×X
such that (πσ ⊗ σ)(Bc

n) = 0 and
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DX
x Fn(ω) = Fn(ω ∪ {x}) − Fn(ω), (ω, x) ∈ Bn.

Taking the limit as n goes to infinity on (ω, x) ∈ AF ∩
⋂∞

n=0Bn, we get

DX
x F (ω) = F (ω ∪ {x}) − F (ω), πσ(dω) × σ(dx) − a.e.

�
Proposition 6.4.7 also allows us to recover the annihilation property (6.4.1)
of DX , i.e.:

DX
x In(fn) = nIn−1(fn(∗, x)), σ(dx) − a.e. (6.4.13)

Indeed, using the relation

1Δn(x1, . . . , xn)εx(dxi)εx(dxj) = 0, i, j = 1, . . . , n,

we have for fn ∈ L2(X,σ)◦n:

DX
x In(fn) = DX

x

∫

Δn

fn(x1, . . . xn)(ω(dx1) − σ(dx1)) · · · (ω(dxn) − σ(dxn))

=
∫

Δn

fn(x1, . . . , xn)
n∏

i=1

(ω(dxi) − σ(dxi) + (1 − ω({x}))εx(dxi))

−
∫

Δn

fn(x1, . . . , xn)(ω(dx1) − σ(dx1)) · · · (ω(dxn) − σ(dxn))

= (1 − ω({x}))
n∑

i=1

∫

Δn−1

fn(x1, . . . , x, . . . , xn)
∏

1≤k �=i≤n

(ω(dxk) − σ(dxk))

= (1 − ω({x}))
n∑

i=1

In−1(fn( · · ·︸︷︷︸
i−1

, x, · · ·︸︷︷︸
n−i

)), x ∈ X.

Hence we have for fn ∈ Cc(Xn):

DX
x In(fn) = 1{x/∈ω}

n∑

i=1

In−1(fn( · · ·︸︷︷︸
i−1

, x, · · ·︸︷︷︸
n−i

)), x ∈ X,

and since fn is symmetric,

DX
x In(fn) = 1{x/∈ω}nIn−1(fn(∗, x)), x ∈ X,

from which we recover (6.4.13) since σ is diffuse.
Proposition 6.4.7 implies that DX satisfies the following finite difference
product rule.
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Proposition 6.4.8. We have for F,G ∈ S:

DX
x (FG) = FDX

x G+GDX
x F +DX

x FD
X
x G, (6.4.14)

P(dω)dσ(x)-a.e.

Proof. This formula can be proved either from Propositions 4.5.2 and 6.1.8
with φt = 1, t ∈ R+, when X = R+, or directly from (6.4.9):

DX
x (FG)(ω) = F (ω ∪ {x})G(ω ∪ {x}) − F (ω)G(ω)

= F (ω)(G(ω ∪ {x}) −G(ω)) +G(ω)(F (ω ∪ {x}) − F (ω))
+(F (ω ∪ {x}) − F (ω))(G(ω ∪ {x}) −G(ω))

= F (ω)DX
x G(ω) +G(ω)DX

x F (ω) +DX
x F (ω)DX

x G(ω),

dP × σ(dx)-a.e. �
As a consequence of Proposition 6.4.7 above, whenX = R+ the Clark formula
Proposition 4.2.3 takes the following form when stated on the Poisson space.

Proposition 6.4.9. Assume that X = R+. For any F ∈ Dom (D) we have

F = IE[F ] +
∫ ∞

0

IE[F (ω ∪ {t})− F (ω) | Ft]d(Nt − t).

In case X = R+ the finite difference operator D : L2(Ω) −→ L2(Ω × R+)
can be written as

DtF = 1{Nt<n}(f(T1, . . . , TNt , t, TNt+1, . . . , Tn−1)−f(T1, . . . , Tn)), (6.4.15)

t ∈ R+, for F = f(T1, . . . , Tn), hence IE[DtF |Ft] can be computed via the
following lemma.

Lemma 6.4.10. Let X = R+ and σ(dx) = dx. For any F of the form
F = f(T1, . . . , Tn) we have

IE[DtF |Ft]

= 1{Nt<n}

∫ ∞

t

e−(sn−t)

∫ sn

t

· · ·
∫ sNt+3

t(
f(T1, . . . , TNt, t, sNt+2, . . . , sn) −

∫ sNt+2

t

f(T1, . . . , TNt, sNt+1, . . . , sn)dsNt+1

)

dsNt+2 · · · dsn.

Proof. By application of Proposition 2.3.6 we have

IE[DtF |Ft]
= 1{Nt<n} IE[f(T1, . . . , TNt , t, TNt+1, . . . , Tn−1) − f(T1, . . . , Tn)|Ft]
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= 1{Nt<n}

∫ ∞

t

e−(sn−t)

∫ sn

t

· · ·
∫ sNt+3

t

f(T1, . . . , TNt , t, sNt+2, . . . , sn)

dsNt+2 · · · dsn

−1{Nt<n}

∫ ∞

t

e−(sn−t)

∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt, sNt+1, . . . , sn)

dsNt+1 · · · dsn

= 1{Nt<n}

∫ ∞

t

e−(sn−t)

∫ sn

t

· · ·
∫ sNt+3

t(
f(T1, . . . , TNt, t, sNt+2, . . . , sn) −

∫ sNt+2

t

f(T1, . . . , TNt, sNt+1, . . . , sn)dsNt+1

)

dsNt+2 · · · dsn.

�

6.5 Divergence Operator

The adjoint δX of DX satisfies the following divergence formula.

Proposition 6.5.1. Let u : X × ΩX −→ R and F : ΩX −→ R such that
u(·, ω), DX

· F (ω), and u(·, ω)DX
· F (ω) ∈ L1(X,σ), ω ∈ ΩX . We have

FδX(u) = δX(uF ) + 〈u,DXF 〉L2(X,σ) + δX(uDXF ). (6.5.1)

The relation also holds if the series and integrals converge, or if F ∈
Dom (DX) and u ∈ Dom (δX) is such that uDXF ∈ Dom (δX).

Proof. Relation (6.5.1) follows by duality from Proposition 6.4.8, or from
Proposition 4.5.6 and Proposition 6.1.8. �
In the next proposition, Relation (6.5.2) can be seen as a generalization of
(6.2.14) in Proposition 6.2.8:

Cn+1(k, t) = kCn(k − 1, t) − tCn(k, t),

which is recovered by taking u = 1A and t = σ(A). The following state-
ment provides a connection between the Skorohod integral and the Poisson
stochastic integral.

Proposition 6.5.2. For all u ∈ Dom (δX) we have

δX(u) =
∫

X

ux(ω \ {x})(ω(dx) − σ(dx)). (6.5.2)

Proof. The statement clearly holds by (6.4.3) when g ∈ L2(X,σ) is deter-
ministic. Next we show using (6.5.1) that the identity also holds for a process
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of the form u = gIn(fn), g ∈ L2(X,σ), by induction on the order of the
multiple stochastic integral F = In(fn). From (6.5.1) we have

δX(gF ) = −δX(gDXF ) + FδX(g) − 〈DXF, g〉L2(X,σ)

= −
∫

X

g(x)DX
x F (ω\{x})ω(dx) +

∫

X

g(x)DX
x F (ω\{x})σ(dx)

+FδX(g) − 〈DXF, g〉L2(X,σ)

= −
∫

X

g(x)F (ω)ω(dx) +
∫

X

g(x)F (ω\{x})ω(dx) + 〈DXF (ω), g〉L2(X,σ)

+FδX(g) − 〈DXF, g〉L2(X,σ)

= −F (ω)
∫

X

g(x)σ(dx) +
∫

X

g(x)F (ω\{x})ω(dx)

=
∫

X

g(x)F (ω\{x})ω(dx) −
∫

X

g(x)F (ω\{x})σ(dx).

We used the fact that since σ is diffuse on X , for u : X ×ΩX −→ R we have

ux(ω\{x}) = ux(ω), σ(dx) − a.e., ω ∈ ΩX ,

hence
∫

X

ux(ω\{x})σ(dx) =
∫

X

ux(ω)σ(dx), ω ∈ ΩX , (6.5.3)

and

δX(u) =
∫

X

ux(ω\{x})ω(dx) −
∫

X

ux(ω)σ(dx), u ∈ Dom (δX).

�
Note that (6.5.1) can also be recovered from (6.5.2) using a simple trajectorial
argument. For x ∈ ω we have

ε−x D
X
x F (ω) = ε−x ε

+
x F (ω) − ε−x F (ω)

= F (ω) − ε−x F (ω)
= F (ω) − F (ω\{x}),

hence

δX(uDXF )(ω)

=
∫

X

ux(ω\{x})DX
x F (ω\{x})ω(dx) −

∫

X

ux(ω\{x})DX
x F (ω\{x})σ(dx)

=
∫

X

ux(ω\{x})F (ω)ω(dx) −
∫

X

ux(ω\{x})F (ω\{x})ω(dx)

−〈DXF (ω), u(ω)〉L2(X,σ)

= F (ω)δX(u)(ω) − δX(uF )(ω) − 〈DXF (ω), u(ω)〉L2(X,σ),
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since from Relation (6.5.3),

F (ω)
∫

X

ux(ω\{x})σ(dx) = F (ω)
∫

X

ux(ω)σ(dx)

=
∫

X

F (ω\{x})ux(ω\{x})σ(dx).

Relation (6.5.2) can also be proved using Relation (6.2.3).
In case X = R+, Proposition 6.5.2 yields Proposition 2.5.10 since ut−

does not depend on the presence of a jump at time t. On the other hand,
Proposition 4.3.4 can be written as follows.

Proposition 6.5.3. When X = R+, for any square-integrable adapted pro-
cess (ut)t∈R+ ∈ L2

ad(Ω × R+) we have

δ(u) =
∫ ∞

0

utd(Nt − t).

The following is the Skorohod isometry on the Poisson space, which follows
here from Proposition 6.5.1, or from Propositions 4.3.1 and 6.1.8.

Proposition 6.5.4. For u : ΩX ×X → R measurable and sufficiently inte-
grable we have

IEπσ

[
|δX(u)|2

]
= IE
[
‖u‖2

L2(X,σ)

]
+ IE
[∫

X

∫

X

DX
x u(y)DX

y u(x)σ(dx)σ(dy)
]
.

(6.5.4)

Proof. Applying Proposition 6.4.2, Proposition 6.5.1 and Relation (6.4.5) we
have

IEπσ

[
|δX(u)|2

]

= IEπσ

[
δX(uδX(u)) + 〈u,DXδX(u)〉L2(X,σ) + δX(uDXδX(u))

]

= IEπσ

[
〈u,DXδX(u)〉L2(X,σ)

]

= IEπσ

[
‖u‖2

L2(X,σ) +
∫

X

u(x)δX(DX
x u)σ(dx)

]

= IEπσ

[
‖u‖2

L2(X,σ) +
∫

X

∫

X

DX
y u(x)DX

x u(y)σ(dx)σ(dy)
]
.

�
The Skorohod isometry (6.5.4) shows that δX is continuous on the subspace
IL1,2 of L2(X ×ΩX) defined by the norm

‖u‖2
1,2 = ‖u‖2

L2(ΩX×X)) + ‖DXu‖2
L2(ΩX×X2).
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Recall that the moment IEλ[Zn] of order n of a Poisson random variable Z
with intensity λ can be written as

IEλ[Zn] = Tn(λ)

where Tn(λ) is the Touchard polynomial of order n, defined by T0(λ) = 1
and the recurrence relation

Tn(λ) = λ
n∑

k=0

(
n

k

)
Tk(λ), n ≥ 1. (6.5.5)

Replacing the Touchard polynomial Tn(λ) by its centered version T̃n(λ) de-
fined by T̃0(λ) = 1, i.e.

T̃n+1(λ) =
n−1∑

k=0

(
n

k

)
λn−k+1T̃k(λ), n ≥ 0, (6.5.6)

gives the moments of the centered Poisson random variable with intensity
λ > 0 is

T̃n(λ) = IE[(Z − λ)n], n ≥ 0.

The next proposition extends the Skorohod isometry of Proposition 6.5.4 to
higher order moments, and recovers Proposition 6.5.4 in case n = 1.

Proposition 6.5.5. We have, for u : ΩX ×X → R a sufficiently integrable
process,

IE[(δX(u))n+1] =
n−1∑

k=0

(
n

k

)
IE
[∫

X

(ut)n−k+1(δX(u))kσ(dt)
]

+
n∑

k=1

(
n

k

)
IE
[∫

X

(ut)n−k+1((δX((I +DX
t )u))k − (δX(u))k)σ(dt)

]
,

for all n ≥ 1.

Proof. Using the relation

DX
t (δX(u))n = ε+t (δX(u))n − (δX(u))n

= (ε+t δ
X(u))n − (δX(u))n

= (δX(u) +DX
t δ

X(u))n − (δX(u))n

= (δX(u) + ut + δX(DX
t u))n − (δX(u))n, t ∈ X,

that follows from Proposition 6.4.2 and Relation (6.4.11), we get, applying
the duality relation of Proposition 6.4.3,
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IE[(δX(u))n+1] = IE
[∫

X

u(t)DX
t (δX(u))nσ(dt)

]

= IE
[∫

X

ut((δX(u) + ut + δX(DX
t u))n − (δX(u))n)σ(dt)

]

=
n∑

k=0

(
n

k

)
IE
[∫

X

(ut)n−k+1(δX((I +DX
t )u))kσ(dt)

]

− IE
[
(δX(u))n

∫

X

utσ(dt)
]

=
n−1∑

k=0

(
n

k

)
IE
[∫

X

(ut)n−k+1(δX(u))kσ(dt)
]

+
n∑

k=1

(
n

k

)
IE
[∫

X

(ut)n−k+1((δX((I +DX
t )u))k − (δX(u))k)σ(dt)

]
.

�
Clearly, the moments of the compensated Poisson stochastic integral

∫

X

f(t)(ω(dt) − σ(dt))

of f ∈ L2(X,σ) satisfy the recurrence identity

IE

[(∫

X

f(t)(ω(dt) − σ(dt))
)n+1

]

=
n−1∑

k=0

(
n

k

)∫

X

(f(t))n−k+1σ(dt) IE

[(∫

X

f(t)(ω(dt) − σ(dt))
)k
]
,

which is analog to Relation (6.5.6) for the centered Touchard polynomials
and recovers in particular the isometry formula (6.1.7) for n = 1. Similarly
we can show that

IE

[(∫

X

f(s)ω(ds)
)n+1

]
(6.5.7)

=
n∑

k=0

(
n

k

)
IE

[(∫

X

f(s)ω(ds)
)k ∫

X

(f(t))n+1−kσ(dt)

]
,

which is analog to (6.5.5).
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6.6 Characterization of Poisson Measures

The duality relation (6.4.7) satisfied by the operators DX and δX can also
be used to characterize Poisson measures.

Proposition 6.6.1. Let π be a probability measure on ΩX such that h ∈
C∞c (X), I1(h) has finite moments of all orders under π. Assume that

IEπ

[
δX(u)

]
= 0, (6.6.1)

for all u ∈ U , or equivalently

IEπ

[
〈DXF, h〉L2(X,σ)

]
= IEπ

[
FδX(h)

]
, (6.6.2)

F ∈ S, h ∈ C∞c (X). Then π is the Poisson measure πσ with intensity σ.

Proof. First, we note that from Remark 6.2.6, if I1(h) has finite moments of
all orders under π, for all h ∈ C∞c (X), then δX(u) is integrable under π for
all u ∈ U . Next we show that (6.6.1) and (6.6.2) are equivalent. First we note
that Relation (6.6.1) implies (6.6.2) from (6.5.1). The proof of the converse
statement is done for u of the form u = hF , F = In(f⊗n), f, h ∈ C∞c (X),
by induction on the degree n ∈ N of In(f⊗n). The implication clearly holds
when n = 0. Next, assuming that

IEπ

[
δX(hIn(f⊗n))

]
= 0, f, h ∈ C∞c (X),

for some n ≥ 0, the Kabanov multiplication formula (6.2.5) shows that

δX(hIn+1(f⊗(n+1))) = δX(h)In+1(f⊗(n+1)) − 〈h,DXIn+1(f⊗(n+1))〉L2(X,σ)

−(n+ 1)δX((hf)In(f⊗n)),

hence from Relation (6.6.1) applied at the rank n we have

IEπ

[
δX(hIn+1(f⊗n+1))

]
= IEπ

[
δX(h)In+1(f⊗(n+1))

]

− IEπ

[
〈h,DXIn+1(f⊗(n+1))〉L2(X,σ)

]

−(n+ 1) IEπ

[
δX((hf)In(f⊗n))

]

= IEπ

[
δX(h)In+1(f⊗(n+1))

]

− IEπ

[
〈h,DXIn+1(f⊗(n+1))〉L2(X,σ)

]

= 0,

by (6.6.2).
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Next we show that π = πσ. We have for h ∈ C∞c (X) and n ≥ 1, using (6.6.2):

IEπ

[(∫

X

h(x)ω(dx)
)n]

= IEπ

[
δX(h)

(∫

X

h(x)ω(dx)
)n−1

]

+
(∫

X

h(x)σ(dx)
)

IEπ

[(∫

X

h(x)ω(dx)
)n−1

]

= IEπ

⎡

⎣
〈
h,DX

(∫

X

h(x)ω(dx)
)n−1

〉

L2(X,σ)

⎤

⎦

+
(∫

X

h(x)σ(dx)
)

IEπ

[(∫

X

h(x)ω(dx)
)n−1

]

= IEπ

[∫

X

h(x)
(
h(x) +

∫

X

h(y)(ω\{x})(dy)
)n−1

σ(dx)

]

= IEπ

[∫

X

h(x)
(
h(x) +

∫

X

h(y)ω(dy)
)n−1

σ(dx)

]

=
n−1∑

k=0

(
n− 1
k

)(∫

X

hn−k(x)σ(dx)
)

IEπ

[(∫

X

h(x)ω(dx)
)k
]
.

This induction relation coincides with (6.5.7) and characterizes the moments

of ω →
∫

X

h(x)ω(dx) under πσ, hence the moments of ω →
∫

X

h(x)ω(dx)

under π are that of a Poisson random variable with intensity
∫

X

h(x)σ(dx).

By dominated convergence this implies

IEπ

[
exp
(
iz

∫

X

h(x)ω(dx)
)]

= exp
∫

X

(eizh − 1)dσ,

z ∈ R, h ∈ C∞c (X), hence π = πσ. �
This proposition can be modified as follows.

Proposition 6.6.2. Let π be a probability measure on ΩX such that δX(u)
is integrable, u ∈ U . Assume that

IEπ

[
δX(u)

]
= 0, u ∈ U , (6.6.3)

or equivalently

IEπ

[
〈DXF, u〉L2(X,σ)

]
= IEπ

[
FδX(u)

]
, F ∈ S, u ∈ U . (6.6.4)

Then π is the Poisson measure πσ with intensity σ.
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Proof. Clearly, (6.6.3) implies (6.6.4) as in the proof of Proposition 6.6.1. The
implication (6.6.4) ⇒ (6.6.3) follows in this case by taking F = 1. Denoting
the characteristic function of ω →

∫
X h(x)ω(dx) by

ψ(z) = IEπ

[
exp
(
iz

∫

X

h(y)ω(dy)
)]

,

z ∈ R, we have:

dψ

dz
(z) = i IEπ

[∫

X

h(y)ω(dy) exp
(
iz

∫

X

h(y)ω(dy)
)]

= i IEπ

[
δX(h) exp

(
iz

∫

X

h(y)ω(dy)
)]

+i IEπ

[∫

X

h(y)σ(dy) exp
(
iz

∫

X

h(y)ω(dy)
)]

= i IEπ

[〈
h,DX exp

(
iz

∫

X

h(y)ω(dy)
)〉

L2(X,σ)

]
+ iψ(z)

∫

X

h(y)σ(dy)

= i〈h, eizh − 1〉L2(X,σ) IEπ

[
exp
(
iz

∫

X

h(y)ω(dy)
)]

+ iψ(z)
∫

X

h(y)σ(dy)

= iψ(z)〈h, eizh〉L2(X,σ), z ∈ R.

We used the relation

DX
x exp

(
iz

∫

X

h(y)ω(dy)
)

= (eizh(x)−1) exp
(
iz

∫

X

h(y)ω(dy)
)
, x ∈ X,

that follows from Proposition 6.4.7. With the initial condition ψ(0) = 1 we
obtain

ψ(z) = exp
∫

X

(eizh(y) − 1)σ(dy), z ∈ R.

�

Corollary 6.6.3. Let π be a probability measure on ΩX such that In(f⊗n)
is integrable under π, f ∈ C∞c (X). The relation

IEπ

[
In(f⊗n)

]
= 0, (6.6.5)

holds for all f ∈ C∞c (X) and n ≥ 1, if and only if π is the Poisson measure
πσ with intensity σ.

Proof. If (6.6.5) holds then by polarization and the Definition 6.4.2 we get

IEπ

[
δX(g ⊗ In(f1 ⊗ · · · ⊗ fn))

]
= 0,
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g, f1, . . . , fn ∈ C∞c (X), n ≥ 0, and from Remark 6.2.6 we have

IEπ[δX(u)] = 0, u ∈ U ,

hence π = πσ from Proposition 6.6.1. �

6.7 Clark Formula and Lévy Processes

In this section we extend the construction of the previous section to the case
of Lévy processes, and state a Clark formula in this setting. Let X = R+×R

d

and consider a random measure of the form

X(dt, dx) = δ0(dx)dBt + ω(dt, dx) − σ(dx)dt,

where ω(dt, dx) − σ(dx)dt is a compensated Poisson random measure on
R

d \{0}×R+ of intensity σ(dx)dt, and (Bt)t∈R+ is a standard Brownian mo-
tion independent of N(dt, dx). The underlying probability space is denoted
by (Ω,F ,P), where F is generated by X . We define the filtration (Ft)t∈R+

generated by X as

Ft = σ(X(ds, dx) : x ∈ R
d, s ≤ t).

The integral of a square-integrable (Ft)t∈R+ -adapted process u ∈ L2(Ω) ⊗
L2(Rd × R+) with respect to X(dt, dx) is written as

∫

Rd×R+

u(t, x)X(dt, dx),

with the isometry

IE

⎡

⎣
(∫

Rd×R+

u(t, x)X(dt, dx)

)2
⎤

⎦ = IE

[∫

Rd×R+

|u(t, x)|2σ̃(dx)dt

]
, (6.7.1)

with
σ̃(dx) = δ0(dx) + σ(dx).

The multiple stochastic integral In(hn) of hn ∈ L2(Rd×R+)◦n can be defined
by induction with

I1(h) =
∫

Rd×R+

h(t, x)X(dt, dx)

=
∫ ∞

0

h(0, t)dBt +
∫

Rd\{0}×R+

h(t, x)(ω(dt, dx) − σ(dx)dt),
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h ∈ L2(Rd × R+), and

In(hn) = n

∫

Rd×R+

In−1(πn
t,xhn)X(dt, dx),

where
πn

t,x : L2(Rd × R+)◦n −→ L2(Rd × R+)◦(n−1) (6.7.2)

is defined by

[
πn

t,xhn

]
(x1, t1, . . . , xn−1, tn−1)

= hn(x1, t1, . . . , xn−1, tn−1, t, x)1[0,t](t1) · · ·1[0,t](tn−1),

for x1, . . . , xn−1, x ∈ R
d and t1, . . . , tn−1, t ∈ R+.

As in (6.1.9) the characteristic function of I1(h) is given by

IE
[
eizI1(h)

]

= exp

(
−z

2

2

∫ ∞

0

h(0, t)2dt+
∫

Rd\{0}×R+

(eizh(t,x) − 1 − izh(t, x))σ(dx)dt

)
.

The isometry property

IE
[
|In(hn)|2

]
= n!‖hn‖2

L2(Rd×R+)⊗n ,

follows from Relation (6.7.1).
From Proposition 5.1.5 and Proposition 6.3.2, every F ∈ L2(Ω) admits a
decomposition

F = IE[F ] +
∑

n≥1

1
n!
In(fn) (6.7.3)

into a series of multiple stochastic integrals, with fn ∈ L2(Rd×R+)◦n, n ≥ 1.
The next proposition is a version of the Clark predictable representation
formula for Lévy processes.

Proposition 6.7.1. For F ∈ L2(Ω), we have

F = IE[F ] +
∫

Rd×R+

IE[DX
t,xF | Ft]X(dt, dx). (6.7.4)

Proof. Let

Δ̃n =
{
((x1, t1), . . . , (xn, tn)) ∈ (Rd × R+)n : t1 < · · · < tn

}
.
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From (6.7.3) we have for F ∈ S:

F = IE[F ] +
∑

n≥1

In(fn1Δ̃n
)

= IE[F ] +
∑

n≥1

∫

Rd×R+

In−1(fn(·, t, x)1Δ̃n
(·, t, x))X(dt, dx)

= IE[F ] +
∫

Rd×R+

∞∑

n=0

IE[In(fn+1(·, t, x)1Δ̃n
) | Ft]X(dt, dx)

= IE[F ] +
∫

Rd×R+

IE[DX
t,xF | Ft]X(dt, dx)

The extension of this statement to F ∈ L2(Ω) is a consequence of the fact
that the adapted projection of DXF extends to a continuous operator from
L2(Ω) into the space of adapted processes in L2(Ω) ⊗ L2(Rd × R+). For

F =
∞∑

n=0

In(fn) ∈ S

and

u =
∞∑

n=0

In(un+1) ∈ U , un+1 ∈ L2(Rd × R+)◦n ⊗ L2(Rd × R+), n ∈ N,

we can extend the continuity argument of Proposition 3.2.6 as follows:
∣∣∣∣∣IE
[∫

Rd×R+

u(t, x) IE[DX
t,xF | Ft]σ(dx)dt

]∣∣∣∣∣

≤
∞∑

n=0

(n+ 1)!
∣∣∣
∫

Rd×R+

〈fn+1(·, t, x)1[0,t](·), un+1(·, t, x)〉L2(Rd×R+)⊗nσ(dx)dt
∣∣∣

≤
∞∑

n=0

(n+ 1)!‖fn+1‖L2(Rd×R+)‖un+1‖L2(Rd×R+)⊗(n+1)

≤
( ∞∑

n=0

n!‖fn‖2
L2(Rd×R+)⊗n

∞∑

n=0

n!‖un+1‖2
L2(Rd×R+)⊗(n+1)

)1/2

≤ ‖F‖L2(Ω)‖u‖L2(Ω)⊗L2(Rd×R+).

�
Note that Relation (6.7.4) can be written as

F = IE[F ] +
∫

Rd×R+

IE[DX
t,0F | Ft]dBt

+
∫

Rd×R+

IE[DX
t,xF | Ft](ω(dt, dx) − σ(dx)dt).
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6.8 Covariance Identities

The Ornstein-Uhlenbeck semi-group satisfies

PtIn(fn) = e−ntIn(fn), fn ∈ L2(X)◦n, n ∈ N.

We refer to [140] for the construction of the ΩX -valued diffusion process as-
sociated to (Pt)t∈R+ . Here we shall only need the existence of the probability
density kernel associated to (Pt)t∈R+ .

Lemma 6.8.1. In case σ is finite on X we have

PtF (ω) =
∫

ΩX×ΩX

F (ω̃ ∪ ω̂)qt(ω, dω̃, dω̂), ω ∈ ΩX , (6.8.1)

where qt(ω, dω̃, dω̂) is the probability kernel on ΩX ×ΩX defined by

qt(ω, dω̃, dω̂) =
∑

ω′⊂ω

|ω|!
|ω′|!|ω\ω′|! (e

−t)|ω
′|(1 − e−t)|ω−ω′|εω′(dω̃)π(1−e−t)σ(dω̂).

Here, π(1−e−t)σ is the thinned Poisson measure with intensity (1−e−t)σ(dx),
εω denote the Dirac measure at ω ∈ ΩX and |ω| = ω(X) ∈ N\{0} ∪ {+∞}
represents the (πσ-a.s. finite) cardinal of ω ∈ ΩX .

Proof. We consider random functionals of the form

F = e−
∫

X
u(x)σ(dx)

∏

x∈ω

(1 + u(x)) =
∞∑

k=0

1
n!
In(u⊗n),

cf. Proposition 6.3.1, for which we have

PtF =
∞∑

n=0

1
n!

e−ntIn(u⊗n) = exp
(
−e−t

∫

X

u(x)σ(dx)
) ∏

x∈ω

(1 + e−tu(x)),

and
∫

ΩX×ΩX

F (ω̂ ∪ ω̃)P(ω, dω̃, dω̂)

= exp
(
−
∫

X

u(x)σ(dx)
)∫

ΩX

∫

ΩX

∑

ω′⊂ω

∏

x∈ω̂∪ω̃

(1 + u(x))
|ω|!

|ω′|!|ω\ω′|! e
−t|ω′|(1 − e−t)|ω−ω′|εω(dω̃)π(1−e−t)σ(dω̂)

= exp
(
−e−t

∫

X

u(x)σ(dx)
)
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∫

ΩX

∑

ω′⊂ω

∏

x∈ω̃

(1 + u(x))
|ω|!

|ω′|!|ω\ω′|! e
−t|ω′|(1 − e−t)|ω−ω′|εω(dω̃)

= exp
(
−e−t

∫

X

u(x)σ(dx)
)

∑

ω′⊂ω

∏

x∈ω′
(1 + u(x))

|ω|!
|ω′|!|ω\ω′|! e

−t|ω′|(1 − e−t)|ω−ω′|

= exp
(
−e−t

∫

X

u(x)σ(dx)
)

∑

ω′⊂ω

|ω|!
|ω′|!|ω\ω′|!

∏

x∈ω′
e−t(1 + u(x))

∏

x∈ω\ω′
(1 − e−t)

= exp
(
−e−t

∫

X

u(x)σ(dx)
) ∏

x∈ω

(1 + e−tu(x))

= PtF (ω).
�

The semi-group Pt can be rewritten as

PtF (ω) =
∑

ω′⊂ω

|ω|!
|ω′|!|ω\ω′|! e

−t|ω′|(1− e−t)|ω−ω′|
∫

ΩX

F (ω′ ∪ ω̂)π(1−e−t)σ(dω̂).

Again, Lemma 6.8.1 and Jensen’s inequality (9.3.1) imply

‖Ptu‖L2(R+) ≤ ‖u‖L2(R+), u ∈ L2(ΩX × R+),

a.s., hence
‖Ptu‖L∞(ΩX ,L2(R+)) ≤ ‖u‖L∞(ΩX ,L2(R+)),

t ∈ R+, u ∈ L2(ΩX × R+). A covariance identity can be written using the
Ornstein-Uhlenbeck semi-group, in the same way as in Proposition 4.4.1.

Proposition 6.8.2. We have the covariance identity

Cov (F,G) = IE
[∫ ∞

0

∫

X

e−sDX
x FPsD

X
x Gσ(dx)ds

]
, (6.8.2)

F,G ∈ Dom (DX).

Proof. By the chaos representation property Proposition 6.3.2, orthogonality
of multiple integrals of different orders, and continuity of Ps, s ∈ R+, on
L2(ΩX ,P), it suffices to prove the identity for F = In(fn) and G = In(gn).
We have
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IEπσ [In(fn)In(gn)] = n!〈fn, gn〉L2(X,σ)◦n

= n!
∫

Xn

fn(x1, . . . , xn)gn(x1, . . . , xn)σ(dx1) · · ·σ(dxn)

= n!
∫

X

∫

X(n−1)
fn(x, y)gn(x, y) σ⊗(n−1)(dx) σ(dy)

= n

∫

X

IEπσ [In−1(fn(·, y))In−1(gn(·, y))] σ(dy)

=
1
n

IEπσ

[∫

X

DX
y In(fn)DX

y In(gn) σ(dy)
]

= IEπσ

[∫ ∞

0

e−ns

∫

X

DX
y In(fn)DX

y In(gn)σ(dy)ds
]

= IEπσ

[∫ ∞

0

e−s

∫

X

DX
y In(fn)PsD

X
y In(gn)σ(dy)ds

]
.

�
The above identity can be rewritten using the integral representation (6.8.1)
of Pt, to extend Proposition 3 of [57]:

Corollary 6.8.3. We have

Cov (F,G) =
∫ 1

0

∫

X

∫

ΩX×ΩX

∑

ω′⊂ω

DX
x F (ω)(G(ω′ ∪ ω̂ ∪ {x}) −G(ω′ ∪ ω̂))

|ω|!
|ω′|!|ω\ω′|!α

|ω′|(1 − α)|ω−ω′|π(1−α)σ(dω̂)πσ(dω)σ(dx)dα, (6.8.3)

F,G ∈ Dom (DX).

Proof. From (6.8.1) and (6.8.2) we have

Cov (F,G) = IE
[∫ ∞

0

∫

X

e−s(DX
x F )(PsD

X
x G)σ(dx)ds

]

=
∫ ∞

0

∫

X

∫

ΩX×ΩX

∑

ω′⊂ω

e−sDX
x F (ω)(G(ω′ ∪ ω̂ ∪ {x}) −G(ω′ ∪ ω̂))

|ω|!
|ω′|!|ω\ω′|! e

−s|ω′|(1 − e−s)|ω−ω′|π(1−e−s)σ(dω̂)πσ(dω)σ(dx)ds.

We conclude the proof by applying the change of variable α = e−s. �
In other terms, denoting by ωα the thinning of ω with parameter α ∈
(0, 1), and by ω̂1−α an independent Poisson random measure with intensity
(1 − α)σ(dx), we can rewrite (6.8.3) as

Cov (F,G) = IE
[∫ 1

0

∫

X

DX
x F (ω)DX

x G(ωα ∪ ω̂1−α)σ(dx)dα
]
. (6.8.4)
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This statement also admits a direct proof using characteristic functions. Let

ϕ(t) = IE
[
eit|ω|
]

= eσ(X)(eit−1), t ≥ 0,

and let ϕα(s, t) denote the characteristic function of

(|ω|, |ωα ∪ ω̂1−α|) = (|ω|, |ωα| + |ω̂1−α|),

i.e.

ϕα(s, t) = IE [exp (is|ω|+ it|ωα ∪ ω̂1−α|)]

=
∫

ΩX

∫

ΩX×ΩX

exp (is|ω|+ it|ω̃ ∪ ω̂|))πσ(dω)p− log α(ω, dω̃, dω̂).

Since from Proposition 6.1.5 the thinning of order α of a Poisson random
measure of intensity σ(dx) is itself a Poisson random measure with intensity
ασ(dx), we have

ϕα(s, t)

=

∫

ΩX

∫

ΩX×ΩX

exp (is(|ω̃| + |ω − ω̃|) + it(|ω̃| + |ω̂|)))πσ(dω)q− log α(ω, dω̃, dω̂)

=

∫

ΩX

exp (it|ω̂|) π(1−α)σ(dω̂)

×
∫

ΩX

exp
(
is(|ω′| + |ω − ω′|) + it|ω′|)

∑

ω′⊂ω

|ω|!
|ω′|!|ω\ω′|!α

|ω′|(1 − α)|ω−ω′|πσ(dω)

= (ϕ(t))1−αe−σ(X)
∞∑

n=0

(σ(X))n

n!

n∑

k=0

eis(k+(n−k))+itk n!

k!(n − k)!
αk(1 − α)n−k

= (ϕ(t))1−αe−σ(X)
∞∑

k,l=0

(ασ(X))k

k!

((1 − α)σ(X))l

l!
eis(k+l)+itk

= (ϕ(t))1−α(ϕ(t + s))α(ϕ(s))1−α

= (ϕ0(s, t))
α(ϕ1(s, t))

1−α.

Relation (6.8.4) also shows that

Cov (eis|ω|, eit|ω|) = ϕ1(s, t) − ϕ0(s, t)

=
∫ 1

0

dϕα

dα
(s, t)dα

=
∫ 1

0

d

dα
((ϕ(t))1−α(ϕ(t + s))α(ϕ(s))1−α)dα

=
∫ 1

0

log
(
ϕ(s+ t)
ϕ(s)ϕ(t)

)
ϕα(s, t)dα
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=
∫ 1

0

(eit − 1)(eis − 1)ϕα(s, t)dα

=
∫ 1

0

∫

ΩX

∫

ΩX

∫

X

DX
x eis|ω|(DX

x eit|·|)(ωα ∪ ω̂1−α)σ(dx)P(dω)P(dω̃)dα.

6.9 Deviation Inequalities

Using the covariance identity of Proposition 6.8.2 and the representation of
Lemma 6.8.1 we now present a general deviation result for Poisson function-
als. In this proposition and the following ones, the supremum on ΩX can be
taken as an essential supremum with respect to πσ.

Proposition 6.9.1. Let F ∈ Dom (DX) be such that esF ∈ Dom (DX),
0 ≤ s ≤ t0, for some t0 > 0. Then

πσ(F − IE[F ] ≥ x) ≤ exp
(

min
0<t<t0

(
−tx+

∫ t

0

h(s) ds
))

, x > 0,

where

h(s) = sup
(ω,ω′)∈ΩX×ΩX

∣∣∣∣
∫

X

(esDX
y F (ω) − 1)DX

y F (ω′)σ(dy)
∣∣∣∣ , s ∈ [0, t0).

(6.9.1)
If moreover h is nondecreasing and finite on [0, t0) then

πσ(F − IE[F ] ≥ x) ≤ exp
(
−
∫ x

0

h−1(s)ds
)
, 0 < x < h(t−0 ), (6.9.2)

where h−1 is the left-continuous inverse of h:

h−1(x) = inf{t > 0 : h(t) ≥ x}, 0 < x < h(t−0 ).

Proof. We start by deriving the following inequality for F a centered random
variable:

IE[F esF ] ≤ h(s) IE[esF ], 0 ≤ s ≤ t0. (6.9.3)

This follows from (6.8.2). Indeed, using the integral representation (6.8.1) of
the Ornstein-Uhlenbeck semi-group (Pt)t∈R+ for PvD

X
y F (ω), we have,

IE[F esF ] = IE
[∫ ∞

0

e−v

∫

X

DX
y esFPvD

X
y Fσ(dy)dv

]

=
∫

ΩX

∫ ∞

0

e−v

∫

X

(esDX
y F (ω) − 1)esF (ω)
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×
∫

ΩX×ΩX

DX
y F (ω′ ∪ ω̃)qv(ω, dω′, dω̃)σ(dy)dvπσ(dω)

≤
∫

ΩX

∫ ∞

0

e−vesF (ω)

×
∫

ΩX×ΩX

∣∣∣∣
∫

X

(esDX
y F (ω) − 1)DX

y F (ω′ ∪ ω̃)σ(dy)
∣∣∣∣ qv(ω, dω′, dω̃)dvπσ(dω)

≤ sup
(ω,ω′)∈ΩX×ΩX

∣∣∣∣
∫

X

(esDX
y F (ω) − 1)DX

y F (ω′)σ(dy)
∣∣∣∣ IE
[
esF

∫ ∞

0

e−vdv

]

= sup
(ω,ω′)∈ΩX×ΩX

∣∣∣∣
∫

X

(esDX
y F (ω) − 1)DX

y F (ω′)σ(dy)
∣∣∣∣ IE
[
esF
]
,

which yields (6.9.3). In the general case, we let L(s) = IE [exp(s(F − IE[F ]))]
and obtain:

L′(s)
L(s)

≤ h(s), 0 ≤ s ≤ t0,

which using Chebychev’s inequality gives:

πσ(F − IE[F ] ≥ x) ≤ exp
(
−tx+

∫ t

0

h(s)ds
)
. (6.9.4)

Using the relation
d

dt

(∫ t

0

h(s) ds− tx

)
= h(t)−x, we can then optimize as

follows:

min
0<t<t0

(
−tx+

∫ t

0

h(s) ds
)

=
∫ h−1(x)

0

h(s) ds− xh−1(x)

=
∫ x

0

s dh−1(s) − xh−1(x)

= −
∫ x

0

h−1(s) ds, (6.9.5)

hence

πσ(F − IE[F ] ≥ x) ≤ exp
(
−
∫ x

0

h−1(s)ds
)
, 0 < x < h(t−0 ).

�
In the sequel we derive several corollaries from Proposition 6.9.1 and dis-
cuss possible choices for the function h, in particular for vectors of random
functionals.

Proposition 6.9.2. Let F : ΩX → R and let K : X → R+ be a function
such that
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DX
y F (ω) ≤ K(y), y ∈ X, ω ∈ ΩX . (6.9.6)

Then

πσ(F − IE[F ] ≥ x) ≤ exp
(

min
t>0

(
−tx+

∫ t

0

h(s) ds
))

, x > 0,

where

h(t) = sup
ω∈ΩX

∫

X

etK(y) − 1
K(y)

|DX
y F (ω)|2σ(dy), t > 0. (6.9.7)

If moreover h is finite on [0, t0) then

πσ(F − IE[F ] ≥ x) ≤ exp
(
−
∫ x

0

h−1(s)ds
)
, 0 < x < h(t−0 ). (6.9.8)

If K(y) = 0, y ∈ X, we have:

πσ(F − IE[F ] ≥ x) ≤ exp
(
− x2

2α̃2

)
, x > 0,

with

α̃2 = sup
ω∈ΩX

∫

X

(DX
y F (ω))2σ(dy).

Proof. Let Fn = max(−n,min(F, n)), n ≥ 1. Since when K is R+-valued
the condition DX

y Fn(ω) ≤ K(y), ω ∈ ΩX , y ∈ X , is satisfied we may apply
Proposition 6.9.1 to Fn to get

h(t) = sup
(ω,ω′)∈ΩX×ΩX

∣∣∣∣∣

∫

X

etDX
y Fn(ω) − 1
DX

y Fn(ω)
DX

y Fn(ω)DX
y Fn(ω′) σ(dy)

∣∣∣∣∣

≤ sup
(ω,ω′)∈ΩX×ΩX

∫

X

etK(y) − 1
K(y)

|DX
y Fn(ω)| |DX

y Fn(ω′)| σ(dy)

≤ 1
2

sup
(ω,ω′)∈ΩX×ΩX

∫

X

etK(y) − 1
K(y)

(|DX
y Fn(ω)|2 + |DX

y Fn(ω′)|2) σ(dy)

≤ sup
ω∈ΩX

∫

X

etK(y) − 1
K(y)

|DX
y Fn(ω)|2 σ(dy)

≤ sup
ω∈ΩX

∫

X

etK(y) − 1
K(y)

|DX
y F (ω)|2 σ(dy),

from which the conclusion follows after letting n tend to infinity. �
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Part of the next corollary recovers a result of [151], see also [59].

Corollary 6.9.3. Let F ∈ L2(ΩX , πσ) be such that DXF ≤ K, πσ ⊗ σ-a.e.,
for some K ∈ R, and ‖DXF‖L∞(ΩX ,L2(X,σ)) ≤ α̃. We have for x > 0:

πσ(F − IE[F ] ≥ x) ≤ ex/K

(
1 +

xK

α̃2

)− x
K− α̃2

K2

, x > 0, (6.9.9)

and for K = 0:

πσ(F − IE[F ] ≥ x) ≤ exp
(
− x2

2α̃2

)
, x > 0. (6.9.10)

Proof. If K ≥ 0, let us first assume that F is a bounded random variable.
The function h in (6.9.7) is such that

h(t) ≤ etK − 1
K

‖DXF‖2
L∞(ΩX ,L2(X,σ))

≤ α̃2 etK − 1
K

, t > 0.

Applying (6.9.4) with α̃2(etK − 1)/K gives

πσ(F − IE[F ] ≥ x) ≤ exp
(
−tx+

α̃2

K2
(etK − tK − 1)

)
.

Optimizing in t with t = K−1 log(1 +Kx/α̃2) (or using directly (6.9.2) with
the inverse K−1 log

(
1 +Kt/α̃2

)
) we have

πσ(F − IE[F ] ≥ x) ≤ exp
(
x

K
−
(
x

K
+
α̃2

K2

)
log
(

1 +
xK

α̃2

))
,

which yields (6.9.10) and (6.9.9), depending on the value ofK. For unbounded
F , apply the above to Fn = max(−n,min(F, n)) with |DXFn| ≤ |DXF |,
n ≥ 1. Then (6.9.9) follows since, as n goes to infinity, Fn converges to F in
L2(ΩX), DXFn converges to DXF in L2(ΩX , L2(X,σ)), and DXFn ≤ K,
n ≥ 1. The same argument applies if K = 0. �
As an example if F is the Poisson stochastic integral

F =
∫

X

f(x)(ω(dx) − σ(dx)),

where f ∈ L2(X,σ) is upper bounded by K > 0 then
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πσ(F − IE[F ] ≥ x) ≤ ex/K

(
1 +

xK

α̃2

)− x
K− α̃2

K2

, x > 0,

where
α̃2 =

∫

X

|f(x)|2σ(dx).

Corollary 6.9.3 yields the following result which recovers Corollary 1 of [55].

Corollary 6.9.4. Let

F = (F1, . . . , Fn) =

(∫

{|y|2≤1}
yk (ω(dy) − σ(dy))+

∫

{|y|2>1}
yk ω(dy)

)

1≤k≤n

(6.9.11)
be an infinitely divisible random variable in R

n with Lévy measure σ. Assume
that X = R

n and σ(dx) has bounded support, let

K = inf{r > 0 : σ({x ∈ X : ‖x‖ > r}) = 0},

and α̃2 =
∫

Rn ‖y‖2σ(dy). For any Lipschitz (c) function f : R
n → R with

respect to a given norm ‖ · ‖ on R
n, we have

πσ(f(F ) − IE[f(F )] ≥ x) ≤ ex/(cK)

(
1 +

xK

cα̃2

)−x/(cK)−α̃2/K2

, x > 0.

Proof. The representation (6.9.11) shows that

|DX
x f(F )(ω)| = |f(F (ω ∪ {x})) − f(F (ω))|

≤ c‖F (ω ∪ {x}) − F (ω)‖
= c‖x‖. (6.9.12)

We conclude the proof by an application of Corollary 6.9.3. �

6.10 Notes and References

Early statements of the Clark formula on the Poisson space can be found in
[129], [130] and [131]. See also [1] for a white noise version of this formula
on Poisson space. The Clark formula for Lévy processes has been considered
in [1], [108], [98], [137], and applied to quadratic hedging in incomplete mar-
kets driven by jump processes in [98]. The construction of stochastic analysis
on the Poisson space using difference operators has been developed in [66],
[33], [95], [100], cf. [94] for the Definition 6.2.3 of Poisson multiple stochas-
tic integrals. The Kabanov [68] multiplication formula has been extended to
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Azéma martingales in [116]. Symmetric difference operators on the Poisson
space have also been introduced in [100]. The study of the characterization of
Poisson measures by integration by parts has been initiated in [86], see also
[123], Relation (6.4.12) is also known as the Mecke characterization of Poisson
measures. Proposition 6.5.5 is useful to study the invariance of Poisson mea-
sures under random transformations, cf. [114]. The deviation inequalities
presented in this chapter are based on [21]. On the Poisson space, explicit
computations of chaos expansions can be carried out from Proposition 4.2.5
(cf. [66] and [138]) using the iterated difference operator DX

t1 · · ·DX
tn
F , but

may be complicated by the recursive computation of finite differences, cf. [79].
A direct calculation using only the operator D can also be found in [80], for
a Poisson process on a bounded interval, see also [110] for the chaos decom-
position of Proposition 6.3.4. See [99] for a characterization of anticipative
integrals with respect to the compensated Poisson process.



Chapter 7

Local Gradients on the Poisson Space

We study a class of local gradient operators on Poisson space that have
the derivation property. This allows us to give another example of a gra-
dient operator that satisfies the hypotheses of Chapter 3, this time for a
discontinuous process. In particular we obtain an anticipative extension of
the compensated Poisson stochastic integral and other expressions for the
Clark predictable representation formula. The fact that the gradient oper-
ator satisfies the chain rule of derivation has important consequences for
deviation inequalities, computation of chaos expansions, characterizations of
Poisson measures, and sensitivity analysis. It also leads to the definition of
an infinite dimensional geometry under Poisson measures.

7.1 Intrinsic Gradient on Configuration Spaces

Let X be a Riemannian manifold with volume element σ, cf. e.g. [14]. We
denote by TxX the tangent space at x ∈ X , and let

TX =
⋃

x∈X

TxX

denote the tangent bundle to X . Assume we are given a differential operator
L defined on C1

c (X) with adjoint L∗, satisfying the duality relation

〈Lu, V 〉L2(X,σ;TX) = 〈u, L∗V 〉L2(X,σ), u ∈ C1
c (X), V ∈ C1

c (X,TX).

In the sequel, L will be mainly chosen equal to the gradient ∇X on X .
We work on the Poisson probability space (ΩX ,FX , πX

σ ) introduced in
Definition 6.1.2.

Definition 7.1.1. Given Λ a compact subset of X, we let S denote the set
of functionals F of the form

F (ω) = f01{ω(Λ)=0} +
∞∑

n=1

1{ω(Λ)=n}fn(x1, . . . , xn), (7.1.1)

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 7,
c© Springer-Verlag Berlin Heidelberg 2009

247
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where fn ∈ C1
c (Λn) is symmetric in n variables, n ≥ 1, with the notation

ω ∩ Λ = {x1, . . . , xn}

when ω(Λ) = n, ω ∈ ΩX .

In the next definition the differential operator L on X is “lifted” to a differ-
ential operator D̂L on ΩX .

Definition 7.1.2. The intrinsic gradient D̂L is defined on F ∈ S of the form
(7.1.1) as

D̂L
xF (ω) =

∞∑

n=1

1{ω(Λ)=n}
n∑

i=1

Lxifn(x1, . . . , xn)1{xi}(x), ω(dx) − a.e.,

ω ∈ ΩX .

In other words if ω(Λ) = n and ω ∩ Λ = {x1, . . . , xn} we have

D̂L
xF =

⎧
⎨

⎩

Lxifn(x1, . . . , xn), if x = xi for some i ∈ {1, . . . , n},

0, if x /∈ {x1, . . . , xn}.

Let I denote the space of functionals of the form

I =
{
f

(∫

X

ϕ1(x)ω(dx), . . . ,
∫

X

ϕn(x)ω(dx)
)
,

ϕ1, . . . , ϕn ∈ C∞c (X), f ∈ C∞b (Rn), n ∈ N} ,

and

U =

{
n∑

i=1

Fiui : u1, . . . , un ∈ C∞c (X), F1, . . . , Fn ∈ I, n ≥ 1

}
,

Note that for F ∈ I of the form

F = f

(∫

X

ϕ1dω, . . . ,

∫

X

ϕndω

)
, ϕ1, . . . , ϕn ∈ C∞c (X),

we have

D̂L
xF (ω) =

n∑

i=1

∂if

(∫

X

ϕ1dω, . . . ,

∫

X

ϕndω

)
Lxϕi(x), x ∈ ω.

The following result is the integration by parts formula satisfied by D̂L.
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Proposition 7.1.3. We have for F ∈ I and V ∈ C1
c (X,TX):

IE
[
〈D̂LF, V 〉L2(X,dω;TX)

]
= IE
[
F

∫

X

L∗V (x)ω(dx)
]

Proof. We have

IE
[
〈D̂LF, V 〉L2(X,dω;TX)

]
= IE

[
∑

x∈ω

〈D̂L
xF, V (x)〉TX

]

=
∞∑

n=1

IE

[
1{ω(Λ)=n}

n∑

i=1

〈D̂L
xi
F, V (xi)〉TX

]

= e−σ(Λ)
∞∑

n=1

σ(Λ)n

n!

n∑

i=1

∫

Λ

· · ·
∫

Λ

〈Lxifn(x1, . . . , xn), V (xi)〉TX
σ(dx1)
σ(Λ)

· · · σ(dxn)
σ(Λ)

= e−σ(Λ)
∞∑

n=1

1
n!

n∑

i=1

∫

Λ

· · ·
∫

Λ

fn(x1, . . . , xn)L∗xi
V (xi)σ(dx1) · · ·σ(dxn)

= e−σ(Λ)
∞∑

n=1

1
n!

∫

Λ

· · ·
∫

Λ

fn(x1, . . . , xn)
n∑

i=1

L∗xi
V (xi)σ(dx1) · · ·σ(dxn)

= IE
[
F

∫

X

L∗V (x)ω(dx)
]
.

�
In particular when L = ∇X is the gradient on X we write D̂ instead of D̂X

and obtain the following integration by parts formula:

IE
[
〈D̂F, V 〉L2(X,dω;TX)

]
= IE
[
F

∫

X

div XV (x)ω(dx)
]
, (7.1.2)

provided ∇X and div X satisfy the duality relation

〈∇Xu, V 〉L2(X,σ;TX) = 〈u, div XV 〉L2(X,σ),

u ∈ C1
c (X), V ∈ C1

c (X,TX).

The next result provides a relation between the gradient ∇X on X and its
lifting D̂ on Ω, using the operators of Definition 6.4.5.
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Lemma 7.1.4. For F ∈ I we have

D̂xF (ω) = ε−x ∇Xε+x F (ω) on {(ω, x) ∈ Ωx ×X : x ∈ ω}. (7.1.3)

Proof. Let

F = f

(∫

X

ϕ1dω, . . . ,

∫

X

ϕndω

)
, x ∈ X, ω ∈ ΩX ,

and assume that x ∈ ω. We have

D̂xF (ω) =
n∑

i=1

∂if

(∫

X

ϕ1dω, . . . ,

∫

X

ϕndω

)
∇Xϕi(x)

=
n∑

i=1

∂if

(
ϕ1(x) +

∫

X

ϕ1d(ω\x), . . . , ϕn(x) +
∫

X

ϕnd(ω\x)
)
∇Xϕi(x)

= ∇Xf

(
ϕ1(x) +

∫

X

ϕ1d(ω\x), . . . , ϕn(x) +
∫

X

ϕnd(ω\x)
)

= ∇Xε+x f

(∫

X

ϕ1d(ω\x), . . . ,
∫

X

ϕnd(ω\x)
)

=
(
∇Xε+x F

)
(ω\{x})

= ε−x ∇Xε+x F (ω).

�
The next proposition uses the operator δX defined in Definition 6.4.1.

Proposition 7.1.5. For V ∈ C∞c (X ;TX) and F ∈ I we have

〈D̂F (ω), V 〉L2(X,dω;TX) (7.1.4)

= 〈∇XDF (ω), V 〉L2(X,σ;TX) + δX(〈∇XDF, V 〉TX)(ω).

Proof. This identity follows from the relation

D̂xF (ω) = (∇X
x DxF )(ω\{x}), x ∈ ω,

and the application to u = 〈∇XDF, V 〉TX of the relation

δX(u) =
∫

X

u(x, ω\{x})ω(dx) −
∫

X

u(x, ω)σ(dx),

cf. Relation (6.5.2) in Proposition 6.5.2. �
In addition, for F,G ∈ I we have the isometry

〈D̂F, D̂G〉L2
ω(TX) = 〈ε−∇Xε+F, ε−∇Xε+G〉L2

ω(TX), (7.1.5)
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ω ∈ ΩX , as an application of Relation (7.1.3) that holds ω(dx)-a.e. for fixed
ω ∈ ΩX .
Similarly from (7.1.5) and Proposition 6.5.2 we have the relation

〈D̂F, D̂G〉L2
ω(TX) = δX

(
〈∇XDF,∇XDG〉TX

)
+ 〈∇XDF,∇XDG〉L2

σ(TX),
(7.1.6)

ω ∈ ΩX , F,G ∈ I. Taking expectations on both sides in (7.1.4) using Relation
(6.4.5), we recover Relation (7.1.2) in a different way:

IE[〈D̂F (ω), V 〉L2(X,dω;TX)] = IE[〈∇XDF, V 〉L2(X,σ;TX)]

= IE[FδX(div XV )],

V ∈ C∞c (X ;TX), F ∈ I.

Definition 7.1.6. Let δ̂πσ denote the adjoint of D̂ under πσ, defined as

IEπσ

[
F δ̂πσ(G)

]
= IEπσ

[
〈D̂F, D̂G〉L2

ω(TX)

]
,

on G ∈ I such that

I � F → IEπσ

[
〈D̂F, D̂G〉L2

ω(TX)

]

extends to a bounded operator on L2(ΩX , πσ).

We close this section with a remark on integration by parts characterization
of Poisson measures, cf. Section 6.6, using the local gradient operator instead
of the finite difference operator. We now assume that div X

σ is defined on ∇Xf
for all f ∈ C∞c (X), with

∫

X

g(x)div X
σ ∇Xf(x)σ(dx) =

∫

X

〈∇Xg(x),∇Xf(x)〉TxXσ(dx),

f, g ∈ C1
c (X).

As a corollary of our pointwise lifting of gradients we obtain in particular a
characterization of the Poisson measure. Let

HX
σ = div X

σ ∇X

denote the Laplace-Beltrami operator on X .

Corollary 7.1.7. The isometry relation

IEπ

[
〈D̂F, D̂G〉L2

ω(TX)

]
= IEπ

[
〈∇XDF,∇XDG〉L2

σ(TX)

]
, (7.1.7)
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F,G ∈ I, holds under the Poisson measure πσ with intensity σ. Moreover,
under the condition

C∞c (X) = {HX
σ f : f ∈ C∞c (X)},

Relation (7.1.7) entails π = πσ.

Proof.

i) Relations (6.4.5) and (7.1.6) show that (7.1.7) holds when π = πσ.
ii) If (7.1.7) is satisfied, then taking F = In(u⊗n) and G = I1(h), h, u ∈
C∞c (X), Relation (7.1.6) implies

IEπ

[
δ((HX

σ h)uIn−1(u⊗(n−1)))
]

= IEπ

[
δ
(
〈∇XDF,∇Xh〉TX

)]

= 0, n ≥ 1,

hence π = πσ from Corollary 6.6.3.

�
We close this section with a study of the intrinsic gradient D̂ when X = R+.
Recall that the jump times of the standard Poisson process (Nt)t∈R+ are
denoted by (Tk)k≥1, with T0 = 0, cf. Section 2.3. In the next definition, all
C∞ functions on

Δd = {(t1, . . . , td) ∈ R
d
+ : 0 ≤ t1 < · · · < td}

are extended by continuity to the closure of Δd.

Definition 7.1.8. Let S denote the set of smooth random functionals F of
the form

F = f(T1, . . . , Td), f ∈ C1
b (Rd

+), d ≥ 1. (7.1.8)

We have

D̂tF =
d∑

k=1

1{Tk}(t)∂kf(T1, . . . , Td), dNt − a.e.,

with F = f(T1, . . . , Td), f ∈ C∞b (Δd), where ∂kf is the partial derivative of
f with respect to its k-th variable, 1 ≤ k ≤ d.

Lemma 7.1.9. Let F ∈ S and h ∈ C1
b (R+) with h(0) = 0. We have the

integration by parts formula

IE
[
〈D̂F, h〉L2(R+,dω)

]
= − IE

[
F

(
d∑

k=1

h′(Tk) −
∫ Td

0

h′(t)dt

)]
.
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Proof. By integration by parts on Δd using Relation (2.3.4) we have, for
F ∈ S of the form (7.1.8),

IE[〈D̂F, h〉L2(R+,dNt)] =
d∑

k=1

∫ ∞

0

∫ td

0

· · ·
∫ t2

0

e−td h(tk)∂kf(t1, . . . , td)dt1 · · · dtd

=

∫ ∞

0

e−td

∫ td

0

· · ·
∫ t2

0

h(t1)∂1f(t1, . . . , td)dt1 · · · dtd

+
d∑

k=2

∫ ∞

0

e−td

∫ td

0

· · ·
∫ tk+1

0

h(tk)
∂

∂tk

∫ tk

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtd

−
d∑

k=2

∫ ∞

0

e−td

∫ td

0

·
∫ tk+1

0

h(tk)

∫ tk

0

∫ tk−2

0

·
∫ t2

0

f(t1, . . . , tk−2, tk, tk, . . . , td)dt1 · dt̂k−1 · dtd

= −
∫ ∞

0

e−td

∫ td

0

· · ·
∫ t2

0

h′(t1)f(t1, . . . , td)dt1 · · · dtd

+

∫ ∞

0

e−td

∫ td

0

· · ·
∫ t3

0

h(t2)f(t2, t2, . . . , td)dt2 · · · dtd

−
d∑

k=2

∫ ∞

0

e−td

∫ td

0

·
∫ tk+1

0

h′(tk)

∫ tk

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtd

+

∫ ∞

0

e−td h(td)

∫ td

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtd

+
d−1∑

k=2

∫ ∞

0

e−td

∫ td

0

·
∫ tk+2

0

h(tk+1)

∫ tk+1

0

∫ tk−1

0

·
∫ t2

0

f(t1, ., tk−1, tk+1, tk+1, ., td)dt1 · dt̂k · dtd

−
d∑

k=2

∫ ∞

0

e−td

∫ td

0

·
∫ tk+1

0

h(tk)

∫ tk

0

∫ tk−2

0

·
∫ t2

0

f(t1, ., tk−2, tk, tk, ., td)dt1 · dtd

= −
d∑

k=1

∫ ∞

0

e−td

∫ td

0

· · ·
∫ tk+1

0

h′(tk)

∫ tk

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtd

+

∫ ∞

0

e−td h(td)

∫ td

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtd

= − IE

[
F

(
d∑

k=1

h′(Tk) −
∫ Td

0

h′(t)dt

)]
,

where dt̂k denotes the absence of dtk in the multiple integrals with respect
to dt1 · · ·dtd. �
As a consequence we have the following corollary which directly involves the
compensated Poisson stochastic integral.
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Corollary 7.1.10. Let F ∈ S and h ∈ C1
b (R+) with h(0) = 0. We have the

integration by parts formula

IE[〈D̂F, h〉L2(R+,dω)] = − IE
[
F

∫ ∞

0

h′(t)d(Nt − t)
]
. (7.1.9)

Proof. From Lemma 7.1.9 it suffices to notice that if k > d,

IE[Fh′(Tk)] =
∫ ∞

0

e−tkh′(tk)
∫ tk

0

· · ·
∫ td

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtk

=
∫ ∞

0

e−tkh(tk)
∫ tk

0

· · ·
∫ td

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtk

−
∫ ∞

0

e−tk−1h(tk−1)
∫ tk−1

0

· · ·
∫ td

0

· · ·
∫ t2

0

f(t1, . . . , td)dt1 · · · dtk−1

= IE[F (h(Tk) − h(Tk−1))]

= IE

[
F

∫ Tk

Tk−1

h′(t)dt

]
,

in other terms the discrete-time process

(
n∑

k=1

h′(Tk) −
∫ Tk

0

h′(t)dt

)

k≥1

=

(∫ Tk

0

h′(t)d(Nt − t)

)

k≥1

is a martingale. �
Alternatively we may also use the strong Markov property to show directly
that

IE

[
F

( ∞∑

k=d+1

h′(Tk) −
∫ ∞

Td+1

h′(s)ds

)]
= 0.

By linearity the adjoint δ̂ of D̂ is defined on simple processes u ∈ U of the
form u = hG, G ∈ S, h ∈ C1(R+), from the relation

δ̂(hG) = −G
∫ ∞

0

h′(t)d(Nt − t) + 〈h, D̂G〉L2(R+,dNt).

Relation (7.1.9) implies immediately the following duality relation.

Proposition 7.1.11. For F ∈ S and h ∈ C1
c (R+) we have :

IE
[
〈D̂F, hG〉L2(R+,dNt)

]
= IE
[
F δ̂(hG)

]
.
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Proof. We have

IE
[
〈D̂F, hG〉L2(R+,dNt)

]
= IE
[
〈D̂(FG), h〉L2(R+,dNt) − F 〈D̂G, h〉L2(R+,dNt)

]

= IE
[
F (Gδ̂(h) − 〈h, D̂G〉L2(R+,dNt))

]

= − IE
[
F

(
G

∫ ∞

0

h′(t)d(Nt − t) + 〈h, D̂G〉L2(R+,dNt)

)]

= IE
[
F δ̂(hG)

]
.

�

7.2 Damped Gradient on the Half Line

In this section we construct an example of a gradient which, has the derivation
property and, unlike D̂, satisfies the duality Assumption 3.1.1 and the Clark
formula Assumption 3.2.1 of Section 3.1. Recall that the jump times of the
standard Poisson process (Nt)t∈R+ are denoted by (Tk)k≥1, with T0 = 0, cf.
Section 2.3.
Let

r(t, s) = −(s ∨ t), s, t ∈ R+,

denote the Green function associated to equation

⎧
⎨

⎩

Lf := −f ′′, f ∈ C∞([0,∞))

f ′(0) = f ′(∞) = 0.

In other terms, given g ∈ C∞([0,∞)), the solution of

g(t) = −f ′′(t), f ′(0) = f ′(∞) = 0,

is given by

f(t) =
∫ ∞

0

r(t, s)g(s)ds, t ∈ R+.

Let also

r(1)(t, s) =
∂r

∂t
(t, s)

= −1]−∞,t](s), s, t ∈ R+,
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i.e.

f(t) =
∫ ∞

0

r(1)(t, s)g(s)ds

= −
∫ t

0

g(s)ds, t ∈ R+, (7.2.1)

is the solution of ⎧
⎨

⎩

f ′ = −g,

f(0) = 0.

Let S denote the space of functionals of the form

I =
{
F = f(T1, . . . , Td) : f ∈ C1

b (Rd), d ≥ 1
}
,

and let

U =

{
n∑

i=1

Fiui : u1, . . . , un ∈ Cc(R+), F1, . . . , Fn ∈ S, n ≥ 1

}
.

Definition 7.2.1. Given F ∈ S of the form F = f(T1, . . . , Td), we let

D̃sF = −
d∑

k=1

1[0,Tk](s)∂kf(T1, . . . , Td).

Note that we have

D̃sF =
d∑

k=1

r(1)(Tk, s)∂kf(T1, . . . , Td)

=
∫ ∞

0

r(1)(t, s)D̂tFdNt.

From Proposition 2.3.6 we have the following lemma.

Lemma 7.2.2. For F of the form F = f(T1, . . . , Tn) we have

IE[D̃tF |Ft] = −
∑

Nt<k≤n

IE[∂kf(T1, . . . , Tn)|Ft]

= −
∑

Nt<k≤n

∫ ∞

t

e−(sn−t)

∫ sn

t

· · ·
∫ sNt+2

t

∂kf(T1, . . . , TNt, sNt+1, . . . , sn)dsNt+1 · · ·dsn.
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According to Definition 3.2.2, ID([a,∞)), a > 0, denotes the completion of S
under the norm

‖F‖ID([a,∞)) = ‖F‖L2(Ω) +
(

IE
[∫ ∞

a

|D̃tF |2dt
])1/2

,

i.e. (D̃tF )t∈[a,∞) is defined in L2(Ω× [a,∞)) for F ∈ ID([a,∞)). Clearly, the
stability Assumption 3.2.10 is satisfied by D̃ since

1[0,Tk](t) = 1{Nt<k}

is Ft-measurable, t ∈ R+, k ∈ N. Hence the following lemma holds as a con-
sequence of Proposition 3.2.11. For completeness we provide an independent
direct proof.

Lemma 7.2.3. Let T > 0. For any FT -measurable random variable F ∈
L2(Ω) we have F ∈ ID[T,∞) and

D̃tF = 0, t ≥ T.

Proof. In case F = f(T1, . . . , Tn) with f ∈ C∞c (Rn), F does not depend on
the future of the Poisson process after T , it does not depend on the k-th
jump time Tk if Tk > T , i.e.

∂if(T1, . . . , Tn) = 0 for Tk > T, 1 ≤ k ≤ i ≤ n.

This implies

∂if(T1, . . . , Tn)1[0,Ti](t) = 0 t ≥ T i = 1, . . . , n,

and

D̃tF = −
n∑

i=1

∂if(T1, . . . , Tn)1[0,Ti](t) = 0 t ≥ T.

Hence D̃tF = 0, t ≥ T . �

Proposition 7.2.4. We have for F ∈ S and u ∈ Cc(R+):

IE[〈D̃F, u〉L2(R+,dt)] = IE
[
F

∫ ∞

0

u(t)(dNt − dt)
]
. (7.2.2)

Proof. We have, using (7.2.1),

IE
[
〈D̃F, u〉L2(R+,dt)

]
= IE
[∫ ∞

0

∫ ∞

0

r(1)(s, t)D̂sFu(t)dNsdt

]
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= − IE

[〈
D̂·F,

∫ ·

0

u(t)dt
〉

L2(R+,dNt)

]

= IE
[
F

∫ ∞

0

u(t)d(Nt − t)
]
,

from Corollary 7.1.10. �
The above proposition can also be proved by finite dimensional integration
by parts on jump times conditionally to the value ofNT , see Proposition 7.3.3
below.
The divergence operator defined next is the adjoint of D̃.

Definition 7.2.5. We define δ̃ on U by

δ̃(hG) = G

∫ ∞

0

h(t)(dNt − dt) − 〈h, D̃G〉L2(R+),

G ∈ S, h ∈ L2(R+).

The closable adjoint

δ̃ : L2(Ω × [0, 1]) −→ L2(Ω)

of D̃ is another example of a Skorokhod type integral on the Poisson space.
Using this definition we obtain the following integration by parts formula
which shows that the duality Assumption 3.1.1 is satisfies by D̃ and δ̃.

Proposition 7.2.6. The divergence operator

δ̃ : L2(Ω × R+) −→ L2(Ω)

is the adjoint of the gradient operator

D̃ : L2(Ω) → L2(Ω × R+),

i.e. we have

IE
[
F δ̃(u)

]
= IE
[
〈D̃F, u〉L2(R+)

]
, F ∈ S, u ∈ U . (7.2.3)

Proof. It suffices to note that Proposition 7.2.4 implies

IE[〈D̃F, hG〉L2(R+,dt)] = IE
[
〈D̃(FG), h〉L2(R+,dt) − F 〈D̃G, h〉L2(R+,dt)

]

= IE
[
F

(
G

∫ ∞

0

h(t)d(Nt − t) − 〈h, D̃G〉L2(R+,dt)

)]
,

(7.2.4)

for F,G ∈ S. �
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As a consequence, the duality Assumption 3.1.1 of Section 3 is satisfied by
D̃ and δ̃ and from Proposition 3.1.2 we deduce that D̃ and δ̃ are closable.
Recall that from Proposition 6.4.9, the finite difference operator

DtF = 1{Nt<n}(f(T1, . . . , TNt , t, TNt+1, . . . , Tn−1) − f(T1, . . . , Tn)),

t ∈ R+, F = f(T1, . . . , Tn), defined in Chapter 6 satisfies the Clark formula
Assumption 3.2.1, i.e. by Proposition 4.2.3 applied to φt = 1, t ∈ R+, we
have

F = IE[F ] +
∫ ∞

0

IE[DtF | Ft]d(Nt − t), (7.2.5)

F ∈ L2(Ω).

On the other hand, the gradient D̃ has the derivation property and for this
reason it can be easier to manipulate than the finite difference operator D in
recursive computations. Its drawback is that its domain is smaller than that
of D, due to the differentiability conditions it imposes on random functionals.
In the next proposition we show that the adapted projections of (DtF )t∈R+

and (D̃tF )t∈R+ coincide, cf. e.g. Proposition 20 of [102], by a direct compu-
tation of conditional expectations.

Proposition 7.2.7. The adapted projections of D̃ and D coincide, i.e.

IE[D̃tF | Ft] = IE[DtF | Ft], t ∈ R+.

Proof. We have

IE[D̃tF |Ft] = −
n∑

k=1

1[0,Tk](t) IE[∂kf(T1, . . . , Tn)|Ft]

= −
∑

Nt<k≤n

IE[∂kf(T1, . . . , Tn)|Ft]

= −
∑

Nt<k≤n
∫ ∞

0

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

∂kf(T1, . . . , TNt , sNt+1, . . . , sn)dsNt+1 · · · dsn

= −
n∑

k=Nt+2

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·

· · · ∂

∂sk

∫ sk

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)dsNt+1 · · · dsn

+
n∑

k=Nt+2

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, ., sk−2, sk, sk, sk+1, ., sn)

dsNt+1 · · · d̂sk−1 · · · dsn
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−1{n>Nt}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

∂Nt+1f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

= −1{Nt<n−1}

∫ ∞

t

e−(sn−t) ∂

∂sn

∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

−
n−1∑

k=Nt+2

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·

∂

∂sk

∫ sk

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)dsNt+1 · · · dsn

+
n∑

k=Nt+2

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, ., sk−2, sk, sk, sk+1, ., sn)dsNt+1 · · · d̂sk−1 · · · dsn

−1{n>Nt}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

∂Nt+1f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

= −1{Nt<n−1}

∫ ∞

t

e−(sn−t) ∂

∂sn

∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

−
n−1∑

k=Nt+2

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sk−1, sk+1, sk+1, . . . , sn)dsNt+1 · · · d̂sk · · · dsn

+
n∑

k=Nt+2

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, ., sk−2, sk, sk, sk+1, ., sn)dsNt+1 · · · d̂sk−1 · · · dsn

−1{n>Nt}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

∂Nt+1f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

= −1{Nt<n−1}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

+1{Nt<n−1}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+2, sNt+2, . . . , sn)

dsNt+1 · · · dsn

−1{n>Nt}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

∂Nt+1f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

= −1{Nt<n−1}

∫ ∞

0

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn
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+1{Nt<n−1}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+2, sNt+2, . . . , sn)

dsNt+1 · · · dsn

−1{Nt<n−1}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+3

t

f(T1, . . . , TNt , sNt+2, sNt+2, . . . , sn)

dsNt+2 · · · dsn

+1{Nt<n−1}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+3

t

f(T1, . . . , TNt , t, sNt+2, . . . , sn)

dsNt+2 · · · dsn

−1{n=Nt+1}

∫ ∞

t

e−(sn−t)f(T1, . . . , Tn−1, sn)dsn

+1{n=Nt+1}f(T1, . . . , Tn−1, t)

= −1{n>Nt}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+2

t

f(T1, . . . , TNt , sNt+1, . . . , sn)

dsNt+1 · · · dsn

+1{n<Nt}

∫ ∞

t

e−(sn−t)
∫ sn

t

· · ·
∫ sNt+3

t

f(T1, . . . , TNt , t, sNt+2, . . . , sn)

dsNt+2 · · · dsn

= IE[DtF |Ft],

from Lemma 6.4.10. �
As a consequence of Proposition 7.2.7 we also have

IE[D̃tF | Fa] = IE[DtF | Fa], 0 ≤ a ≤ t. (7.2.6)

For functions of a single jump time, by Relation (2.3.6) we simply have

IE[D̃tf(Tn)|Ft] = −1{Nt<n}(t) IE[f ′(Tn)|Ft]

= −1{Nt<n}

(
1{Nt≥n}f ′(Tn) +

∫ ∞

t

f ′(x)pn−1−Nt(x− t)dx
)

= −
∫ ∞

t

f ′(x)pn−1−Nt(x − t)dx

= f(t)pn−1−Nt(0) +
∫ ∞

t

f(x)p′n−1−Nt
(x − t)dx

= f(t)1{Tn−1<t<Tn} +
∫ ∞

t

f(x)p′n−1−Nt
(x− t)dx,

which coincides with

IE[Dtf(Tn)|Ft]

= IE[1{Nt<n−1}(f(Tn−1) − f(Tn)) + 1{Nt=n−1}(f(t) − f(Tn))|Ft]



262 7 Local Gradients on the Poisson Space

= IE[(1{Tn−1>t}f(Tn−1) + 1{Tn−1<t<Tn}f(t) − 1{Tn>t}f(Tn))|Ft]

= 1{Tn−1<t<Tn}f(t) + IE[(1{Tn−1>t}f(Tn−1) − 1{Tn>t}f(Tn))|Ft]

= 1{Tn−1<t<Tn}f(t) +
∫ ∞

t

(pn−2−Nt(x− t) − pn−1−Nt(x− t))f(x)dx

= 1{Tn−1<t<Tn}f(t) +
∫ ∞

t

f(x)p′n−1−Nt
(x− t)dx.

As a consequence of Proposition 7.2.7 and (7.2.5) we find that D̃ satisfies the
Clark formula, hence the Clark formula Assumption 3.2.1 is satisfied by D̃.

Proposition 7.2.8. For any F ∈ L2(Ω) we have

F = IE[F ] +
∫ ∞

0

IE[D̃tF | Ft]d(Nt − t).

In other words we have

F = IE[F ] +
∫ ∞

0

IE[DtF |Ft]d(Nt − t)

= IE[F ] +
∫ ∞

0

IE[D̃tF |Ft]d(Nt − t),

F ∈ L2(Ω).

Since the duality Assumption 3.1.1 and the Clark formula Assumption 3.2.1
are satisfied by D̃, it follows from Proposition 3.3.1 that the operator δ̃
coincides with the compensated Poisson stochastic integral with respect to
(Nt − t)t∈R+ on the adapted square-integrable processes. This fact is stated
in the next proposition with an independent proof.

Proposition 7.2.9. The adjoint of D̃ extends the compensated Poisson sto-
chastic integral, i.e. for all adapted square-integrable process u ∈ L2(Ω×R+)
we have

δ̃(u) =
∫ ∞

0

utd(Nt − t).

Proof. We consider first the case where v is a cylindrical elementary pre-
dictable process v = F1(s,T ](·) with F = f(T1, . . . , Tn), f ∈ C∞c (Rn). Since v
is predictable, F is Fs-measurable hence from Lemma 7.2.3 we have D̃tF = 0,
s ≥ t, and

D̃tvu = 0, t ≥ u.
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Hence from Definition 7.2.5 we get

δ̃(v) = F (ÑT − Ñt)

=
∫ ∞

0

F1(t,T ](s)dÑs

=
∫ ∞

0

vsdÑs.

We then use the fact that D̃ is linear to extend the property to the linear
combinations of elementary predictable processes. The compensated Poisson
stochastic integral coincides with δ̃ on the predictable square-integrable pro-
cesses from a density argument using the Itô isometry. �
Since the adjoint δ̃ of D̃ extends the compensated Poisson stochastic integral,
we may also use Proposition 3.3.2 to show that the Clark formula Assumption
3.2.1 is satisfied by D̃, and in this way we recover the fact that the adapted
projections of D̃ and D coincide:

IE[D̃tF | Ft] = IE[DtF | Ft], t ∈ R+,

for F ∈ L2(Ω).

7.3 Damped Gradient on a Compact Interval

In this section we work under the Poisson measure on the compact interval
[0, T ], T > 0.

Definition 7.3.1. We denote by Sc the space of Poisson functionals of the
form

F = hn(T1, . . . , Tn), hn ∈ Cc((0,∞)n), n ≥ 1, (7.3.1)

and by Sf the space of Poisson functionals of the form

F = f01{NT =0} +
m∑

n=1

1{NT =n}fn(T1, . . . , Tn), (7.3.2)

where f0 ∈ R and fn ∈ C1([0, T ]n), 1 ≤ n ≤ m, is symmetric in n variables,
m ≥ 1.

The elements of Sc can be written as

F = f01{NT =0} +
∞∑

n=1

1{NT =n}fn(T1, . . . , Tn),
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where f0 ∈ R and fn ∈ C1([0, T ]n), 1 ≤ n ≤ m, is symmetric in n variables,
m ≥ 1, with the continuity condition

fn(T1, . . . , Tn) = fn+1(T1, . . . , Tn, T ).

We also let

Uc =

{
n∑

i=1

Fiui : u1, . . . , un ∈ C([0, T ]), F1, . . . , Fn ∈ Sc, n ≥ 1

}
,

and

Uf =

{
n∑

i=1

Fiui : u1, . . . , un ∈ C([0, T ]), F1, . . . , Fn ∈ Sf , n ≥ 1

}
.

Recall that under P we have, for all F ∈ Sf of the form (7.3.2):

IE[F ] = e−λT f0 + e−λT
m∑

n=1

λn

∫ T

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dt1 · · · dtn.

Definition 7.3.2. Let D̄ be defined on F ∈ Sf of the form (7.3.2) by

D̄tF = −
m∑

n=1

1{NT =n}
n∑

k=1

1[0,Tk](t)∂kfn(T1, . . . , Tn).

If F has the form (7.3.1) we have

D̄tF = −
n∑

k=1

1[0,Tk](t)∂kfn(T1, . . . , Tn),

where ∂kfn denotes the partial derivative of fn with respect to its k-th vari-
able as in Definition 7.2.1.
We define δ̄ on u ∈ Uf by

δ̄(Fu) = F

∫ T

0

utdNt −
∫ ∞

0

utD̄tFdt, (7.3.3)

F ∈ Sf , u ∈ C([0, T ]).

The following result shows that D̄ and δ̄ also satisfy the duality Assumption
3.1.1.
Proposition 7.3.3. The operators D̄ and δ̄ satisfy the duality relation

IE[〈D̄F, u〉] = IE[F δ̄(u)], (7.3.4)

F ∈ Sf , u ∈ Uf .
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Proof. By standard integration by parts we first prove (7.3.4) when u ∈ C
([0, T ]) and F has the form (7.3.2). We have

IE[〈D̄F, u〉]

= −e−λT
m∑

n=1

λn

n!

n∑

k=1

∫ T

0

· · ·
∫ T

0

∫ tk

0

u(s)ds∂kfn(t1, . . . , tn)dt1 · · · dtn

= e−λT
∞∑

n=1

λn

n!

n∑

k=1

∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn)u(tk)dt1 · · ·dtn

−e−λT
∞∑

n=1

λn

(n− 1)!

∫ T

0

u(s)ds
∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn−1, T )dt1 · · ·dtn−1.

The continuity condition

fn(t1, . . . , tn−1, T ) = fn−1(t1, . . . , tn−1) (7.3.5)

yields

IE
[
〈D̄F, u〉

]

= e−λT
∞∑

n=1

λn

n!

∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn)
n∑

k=1

u(tk)dt1 · · ·dtn

−λe−λT

∫ T

0

u(s)ds
∞∑

n=0

λn

n!

∫ T

0

· · ·
∫ T

0

fn(t1, . . . , tn)dt1 · · ·dtn

= IE

[
F

(
NT∑

k=1

u(Tk) − λ

∫ T

0

u(s)ds

)]

= IE

[
F

∫ T

0

u(t)dÑ(t)

]
.

Next we define δ̄(uG), G ∈ Sf , by (7.3.3), with for all F ∈ Sf :

IE
[
G〈D̄F, u〉

]
= IE
[
〈D̄(FG), u〉 − F 〈D̄G, u〉

]

= IE

[
F

(
G

∫ T

0

u(t)dNt − 〈D̄G, u〉
)]

= IE
[
F δ̄(uG)

]
,

which proves (7.3.4). �
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Hence, the duality Assumption 3.1.1 of Section 3 is also satisfied by D̄ and
δ̄, which are closable from Proposition 3.1.2, with domains Dom(D̄) and
Dom (δ̄).
The stability Assumption 3.2.10 is also satisfied by D̄ and Lemma 7.2.3 holds
as well as a consequence of Proposition 3.2.11, i.e. for any FT -measurable
random variable F ∈ L2(Ω) we have

D̃tF = 0, t ≥ T.

Similarly, δ̄ coincides with the stochastic integral with respect to the com-
pensated Poisson process, i.e.

δ̃(u) =
∫ ∞

0

utd(Nt − t),

for all adapted square-integrable process u ∈ L2(Ω × R+), with the same
proof as in Proposition 7.2.9.
Consequently, from Proposition 3.3.2 it follows that the Clark formula
Assumption 3.2.1 is satisfied by D̄, and the adapted projections of D̄, D̃,
and D coincide:

IE[D̄tF | Ft] = IE[D̃tF | Ft]

= IE[DtF | Ft], t ∈ R+,

for F ∈ L2(Ω).

Note that the gradients D̃ and D̄ coincide on a common domain under the
continuity condition (7.3.5). In case (7.3.5) is not satisfied by F the gradient
D̄F can still be defined in L2(Ω × [0, T ]) on F ∈ Sf while D̃F exists only in
distribution sense due to the presence of the indicator function 1{NT =k} =
1{[Tk,Tk+1)}(T ) in (7.3.2).
Yet when (7.3.5) does not hold, we still get the integration by parts

IE
[
〈D̄F, u〉

]
= IE

[
F

NT∑

k=1

u(Tk)

]
(7.3.6)

= IE

[
F

∫ T

0

u(t)dN(t)

]
, F ∈ Sf , u ∈ Uf ,

under the additional condition

∫ T

0

u(s)ds = 0. (7.3.7)



7.4 Chaos Expansions 267

However, in this case Proposition 3.1.2 does not apply to extend D̄ by clos-
ability from its definition on Sf since the condition (7.3.7) is required in the
integration by parts (7.3.6).

7.4 Chaos Expansions

In this section we review the application of D̃ to the computation of chaos
expansions whenX = R+. As noted above the gradient D̃ has some properties
in common with D, namely its adapted projection coincides with that of D,
and in particular from Proposition 7.2.7 we have

IE[DtF ] = IE[D̃tF ], t ∈ R+.

In addition, since the operator D̃ has the derivation property it is easier to
manipulate than the finite difference operator D in recursive computations.
We aim at applying Proposition 4.2.5 in order to compute the chaos
expansions

F = IE[F ] +
∞∑

n=1

In(fn),

with
fn(t1, . . . , tn) =

1
n!

IE[D̃t1 · · · D̃tnF ],

dt1 · · · dtndP-a.e., n ≥ 1.

However, Proposition 4.2.5 cannot be applied since the gradient D̃ cannot be
iterated in L2 due to the non-differentiability of 1[0,Tk](t) in Tk. In particular,
an expression such as

IE[D̃t1 · · · D̃tnF ] (7.4.1)

makes a priori no sense and may differ from IE[Dt1 · · ·DtnF ] for n ≥ 2.
Note that we have

D̃tn · · · D̃t1f(Tk) = (−1)n1[0,Tk](tn)f (n)(Tk), 0 < t1 < · · · < tn,

and

IE[D̃tn · · · D̃t1f(Tk)] = (−1)n IE[1[0,Tk](tn)f (n)(Tk)]

= (−1)n

∫ ∞

tn

f (n)(t)pk−1(t)dt,

0 < t1 < · · · < tn, which differs from

IE[Dtn · · ·Dt1f(Tk)] = −
∫ ∞

tn

f(t)P (n)
k (t)dt,
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computed in Theorem 1 of [110], where

Pk(t) =
∫ t

0

pk−1(s)ds, t ∈ R+,

is the distribution function of Tk, cf. (6.3.5).
Hence on the Poisson space D̃tn · · · D̃t1 , 0 < t1 < · · · < tn, cannot be used
in the L2 sense as Dtn · · ·Dt1 to give the chaos decomposition of a random
variable. Nevertheless we have the following proposition, see [112] for an
approach to this problem gradient D̃ in distribution sense.

Proposition 7.4.1. For any F ∈
∞⋂

n=0

Dom (DnD̃) we have the chaos

expansion

F = IE[F ] +
∞∑

n≥1

Ĩn(1Δnfn),

where
fn(t1, . . . , tn) = IE[Dt1 · · ·Dtn−1D̃tnF ],

0 < t1 < · · · < tn, n ≥ 1.

Proof. We apply Proposition 4.2.5 to D̃tF , t ∈ R+:

D̃tF = IE[D̃tF ] +
∞∑

n=1

Ĩn(1Δ̃n
IE[DnD̃tF ]),

which yields

IE[D̃tF |Ft] = IE[D̃tF ] +
∞∑

n=1

Ĩn(1Δ̃n+1(∗,t) IE[DnD̃tF ]).

Finally, integrating both sides with respect to d(Nt − t) and using of the
Clark formula Proposition 7.2.8 and the inductive definition (2.7.1) we get

F − IE[F ] =
∞∑

n=0

Ĩn+1(1Δ̃n+1
IE[DnD̃F ]).

�
The next lemma provides a way to compute the functions appearing in
Proposition 7.4.1.

Lemma 7.4.2. We have for f ∈ C1
c (R) and n ≥ 1

DtD̃sf(Tn) = D̃s∨tf(Tn−1) − D̃s∨tf(Tn) − 1{s<t}1[Tn−1,Tn](s ∨ t)f ′(s ∨ t),

s, t ∈ R+.
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Proof. From Relation (6.4.15) we have

DtD̃sf(Tn) = −1[0,Tn−1](t)
(
1[0,Tn−1](s)f

′(Tn−1) − 1[0,Tn](s)f ′(Tn)
)

−1[Tn−1,Tn](t)
(
1[0,t](s)f ′(t) − 1[0,Tn](s)f ′(Tn)

)

= 1{t<s}
(
1[0,Tn](s)f ′(Tn) − 1[0,Tn−1](s)f

′(Tn−1),
)

+1{s<t}
(
1[0,Tn](t)f ′(Tn) − 1[0,Tn−1](t)f

′(Tn−1) − 1[Tn−1,Tn](t)f ′(t)
)
,

P-a.s. �
In the next proposition we apply Lemma 7.4.2 to the computation of the
chaos expansion of f(Tk).

Proposition 7.4.3. For k ≥ 1, the chaos expansion of f(Tk) is given as

f(Tk) = IE[f(Tk)] +
∑

n≥1

1
n!
In(fk

n),

where fk
n(t1, . . . , tn) = αk

n(f)(t1 ∨ · · · ∨ tn), t1, . . . , tn ∈ R+, and

αk
n(f)(t) = −

∫ ∞

t

f ′(s)∂n−1pk(s)ds, (7.4.2)

= f(t)∂n−1pk(t) + 〈f,1[t,∞[∂
npk〉L2(R+), t ∈ R+, n ≥ 1,

where the derivative f ′ in (7.4.2) is taken in the distribution sense.

We note the relation

dαk
n(f)
dt

(t) = αk
n(f ′)(t) − αk

n+1(f)(t), t ∈ R+.

From this proposition it is clearly seen that f(Tn)1[0,t](Tn) is F[0,t]-
measurable, and that f(Tn)1[t,∞[(Tn) is not F[t,∞[-measurable.

Proof. of Proposition 7.4.3. Let us first assume that f ∈ C1
c (R+). We have

fk
1 (t) = IE[D̃tf(Tk)]

= − IE[1[0,Tk](t)f ′(Tk)]

= −
∫ ∞

t

pk(s)f ′(s)ds.

Now, from Lemma 7.4.2, for n ≥ 2 and 0 ≤ t1 < · · · < tn,

Dt1 · · ·Dtn−1D̃tnf(Tk) = Dt1 · · ·Dtn−2(D̃tnf(Tk−1) − D̃tnf(Tk)),
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hence taking expectations on both sides and using Proposition 7.4.1 we have

fk
n(t1, . . . , tn) = fk−1

n−1(t1, . . . , tn−2, tn) − fk
n−1(t1, . . . , tn−2, tn),

and we can show (4.3.3) by induction, for n ≥ 2:

fk
n(t1, . . . , tn) = fk−1

n−1(t1, . . . , tn−2, tn) − fk
n−1(t1, . . . , tn−2, tn),

= −
∫ ∞

tn

f ′(s)
∂n−2pk−1

∂sn−2
(s)ds+

∫ ∞

tn

f ′(s)
∂n−2pk−1

∂sn−2
(s)ds

= −
∫ ∞

0

f ′(s)
∂n−1pk−1

∂sn−1
pk(s)ds.

The conclusion is obtained by density of the C1
c functions in L2(R+, pk(t)dt),

k ≥ 1. �

7.5 Covariance Identities and Deviation Inequalities

Next we present a covariance identity for the gradient D̃, as an application
of Theorem 3.4.4.

Corollary 7.5.1. Let n ∈ N and F,G ∈
⋂n+1

k=1 ID(Δk). We have

Cov (F,G) =
n∑

k=1

(−1)k+1 IE
[∫

Δk

(D̃tk
· · · D̃t1F )(D̃tk

· · · D̃t1G)dt1 · · ·dtk
]

+(−1)n IE

[∫

Δn+1

IE
[
D̃tn+1 · · · D̃t1F | Ftn+1

]

× IE
[
D̃tn+1 · · · D̃t1G | Ftn+1

]
dt1 · · · dtn+1

]
. (7.5.1)

In particular,

Cov (Tm, f(T1, . . . , Tm)) =
m∑

i=1

IE[Ti∂if(T1, . . . , Tm)].

From the well-known fact that exponential random variables

(τk)k≥1 := (Tk − Tk−1)k≥1

can be constructed as the half sums of squared independent Gaussian random
variables we define a mapping Θ which sends Poisson functionals to Wiener
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functionals, cf. [103]. Given F = f(τ1, . . . , τn) a Poisson functional, let ΘF
denote the Gaussian functional defined by

ΘF = f

(
X2

1 + Y 2
1

2
, . . . ,

X2
n + Y 2

n

2

)
,

whereX1, . . . , Xn, Y1, . . . , Yn, denote two independent collections of standard
Gaussian random variables. The random variables X1, . . . , Xn, Y1, . . . , Yn,
may be constructed as Brownian single stochastic integrals on the Wiener
space W . In the next proposition we let D denote the gradient operator of
Chapter 5 on the Wiener space.

Proposition 7.5.2. The mapping Θ : Lp(Ω) → Lp(W ) is an isometry. Fur-
ther, it satisfies the intertwining relation

2Θ|D̃F |2L2(R+) = |DΘF |2L2(R+), (7.5.2)

Proof. The proposition follows from the fact that F and ΘF have same
distribution since the half sum of two independent Gaussian squares has an
exponential distribution. Relation (7.5.2) follows by a direct calculation. �
Proposition 3.6.2 applies in particular to the damped gradient operator D̃:

Corollary 7.5.3. Let F ∈ Dom (D̃). We have

P(F − IE[F ] ≥ x) ≤ exp

(
− x2

2‖D̃F‖2
L2(R+,L∞(Ω))

)
, x > 0.

In particular if F is FT measurable and ‖D̃F‖∞ ≤ K then

P(F − IE[F ] ≥ x) ≤ exp
(
− x2

2K2T

)
, x ≥ 0.

As an example we may consider F = f(τ1, . . . , τn) with

n∑

k=1

τk|∂kf(τ1, . . . , τn)|2 ≤ K2, a.s.

Applying Corollary 4.7.4 to ΘF , where Θ is the mapping defined in Defini-
tion 7.5.2 and using Relation (7.5.2) yields the following deviation result for
the damped gradient D̃ on Poisson space.

Corollary 7.5.4. Let F ∈ Dom (D̃). Then

P(F − IE[F ] ≥ x) ≤ exp

(
− x2

4‖D̃F‖2
L∞(Ω,L2(R+))

)
.
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The above result can also be obtained via logarithmic Sobolev inequalities,
i.e. by application of Corollary 2.5 of [76] to Theorem 0.7 in [4] (or Relation
(4.4) in [76] for a formulation in terms of exponential random variables). A
sufficient condition for the exponential integrability of F is ‖|D̃F |L2(R+)‖∞
<∞, cf. Theorem 4 of [103].

7.6 Some Geometric Aspects of Poisson Analysis

In this section we use the operator D̃ to endow the configuration space on
R+ with a (flat) differential structure.
We start by recalling some elements of differential geometry. Let M be a
Riemannian manifold with volume measure dx, covariant derivative ∇, and
exterior derivative d. Let ∇∗μ and d∗μ denote the adjoints of ∇ and d under
a measure μ on M of the form μ(dx) = eφ(x)dx. The Weitzenböck formula
under the measure μ states that

d∗μd + dd∗μ = ∇∗μ∇ +R− Hess φ,

where R denotes the Ricci tensor on M . In terms of the de Rham Laplacian
HR = d∗μd + dd∗μ and of the Bochner Laplacian HB = ∇∗μ∇ we have

HR = HB +R− Hess φ. (7.6.1)

In particular the term Hess φ plays the role of a curvature under the
measure μ. The differential structure on R can be lifted to the space of con-
figurations on R+. Here, S is defined as in Definition 7.1.8, and U denotes
the space of smooth processes of the form

u(ω, x) =
n∑

i=1

Fi(ω)hi(x), (ω, x) ∈ Ω × R+, (7.6.2)

hi ∈ C∞c (R+), Fi ∈ S, i = 1, . . . , n. The differential geometric objects to be
introduced below have finite dimensional counterparts, and each of them has
a stochastic interpretation. The following table describes the correspondence
between geometry and probability.

Notation Geometry Probability
Ω manifold probability space

ω element of Ω point measure on R+

C∞c (R+) tangent vectors to Ω test functions on R+

σ Riemannian metric on Ω Lebesgue measure
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d gradient on Ω stochastic gradient D̃

U vector field on Ω stochastic process

du exterior derivative of u ∈ U two-parameter process

{·, ·} bracket of vector fields on Ω bracket on U × U
R curvature tensor on Ω trilinear mapping on U
d∗ divergence on Ω stochastic integral operator

We turn to the definition of a covariant derivative ∇u in the direction u ∈
L2(R+), first for a vector field v ∈ C∞c (R+) as

∇uv(t) = −v̇(t)
∫ t

0

usds, t ∈ R+,

where v̇(t) denotes the derivative of v(t), and then for a vector field

v =
n∑

i=1

Fihi ∈ U

in the next definition.

Definition 7.6.1. Given u ∈ U and v =
n∑

i=1

Fihi ∈ U , let ∇uv be defined as

∇uv(t) =
n∑

i=1

hi(t)D̃uFi − Fiḣi(t)
∫ t

0

usds, t ∈ R+, (7.6.3)

where
D̃uF = 〈D̃F, u〉L2(R+), F ∈ S.

We have

∇uF (vG) = FvD̃uG+ FG∇uv, u, v ∈ C∞c (R+), F,G ∈ S. (7.6.4)

We also let, by abuse of notation,

(∇sv)(t) :=
n∑

i=1

hi(t)D̃sFi − Fiḣi(t)1[0,t](s),

for s, t ∈ R+, in order to write

∇uv(t) =
∫ ∞

0

us∇svtds, t ∈ R+, u, v ∈ U .

The following is the definition of the Lie-Poisson bracket.
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Definition 7.6.2. The Lie bracket {u, v} of u, v ∈ C∞c (R+) is defined as the
unique element of C∞c (R+) satisfying

(D̃uD̃v − D̃vD̃u)F = D̃wF, F ∈ S.

The bracket {·, ·} is extended to u, v ∈ U via

{Ff,Gg}(t) = FG{f, g}(t) + g(t)FD̃fG− f(t)GD̃gF, t ∈ R+, (7.6.5)

f, g ∈ C∞c (R+), F,G ∈ S. Given this definition we are able to prove the
vanishing of the associated torsion term.

Proposition 7.6.3. The Lie bracket {u, v} of u, v ∈ U satisfies

{u, v} = ∇uv −∇vu, (7.6.6)

i.e. the connection defined by ∇ has a vanishing torsion

T (u, v) = ∇uv −∇vu− {u, v} = 0, u, v ∈ U .
Proof. For all u, v ∈ C∞c (R+) we have

(D̃uD̃v − D̃vD̃u)Tn = −D̃u

∫ Tn

0

vsds+ D̃v

∫ Tn

0

usds

= vTn

∫ Tn

0

usds− uTn

∫ Tn

0

vsds

=
∫ Tn

0

(
v̇(t)
∫ t

0

usds− u̇(t)
∫ t

0

vsds

)
dt

= D̃∇uv−∇vuTn.

Since D̃ is a derivation, this shows that

(D̃uD̃v − D̃vD̃u)F = D̃∇uv−∇vuF

for all F ∈ S, hence

D̃{u,v} = D̃uD̃v − D̃vD̃u = D̃∇uv−∇vu, u, v ∈ C∞c (R+),

which shows that (7.6.6) holds for u, v ∈ C∞c (R+). The extension to u, v ∈ U
follows from (7.6.4) and (7.6.5). �
Similarly we show the vanishing of the associated curvature.

Proposition 7.6.4. The Riemannian curvature tensor R of ∇ vanishes on
U , i.e.

R(u, v)h := [∇u,∇v]h−∇{u,v}h = 0, u, v, h ∈ U .
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Proof. We have, letting ũ(t) = −
∫ t

0 usds, t ∈ R+:

[∇u,∇v]h = ũ
˙︷︸︸︷

∇vh− ṽ
˙︷︸︸︷

∇uh = ũ

.︷︸︸︷
ṽḣ −ṽ

.︷︸︸︷
ũḣ = −ũvḣ+ ṽuḣ,

and
∇{u,v}h = ∇ũv̇−ṽu̇h = ( ˜ũv̇ − ṽu̇)ḣ = (uṽ − vũ)ḣ,

hence R(u, v)h = 0, h, u, v ∈ C∞c (R+). The extension of the result to U follows
again from (7.6.4) and (7.6.5). �
Clearly, the bracket {·, ·} is antisymmetric, i.e.:

{u, v} = −{v, u}, u, v ∈ C∞c (R+).

Proposition 7.6.5. The bracket {·, ·} satisfies the Jacobi identity

{{u, v}, w} + {w, {u, v}}+ {v, {u,w}} = 0, u, v, w ∈ C∞c (R+),

hence U is a Lie algebra under {·, ·}.
Proof. The vanishing of R(u, v) in Proposition 7.6.4 shows that

[∇u,∇v] = ∇{u,v}h, u, v ∈ U ,

hence

∇{{u,v},w} + ∇{w,{u,v}} + ∇{v,{u,w}}
= [∇{u,v},∇w] + [∇w,∇{u,v}] + [∇v,∇{u,w}]
= 0, u, v, h ∈ U .

�
However, {·, ·} does not satisfy the Leibniz identity, thus it can not be con-
sidered as a Poisson bracket.
The exterior derivative D̃u of a smooth vector field u ∈ U is defined from

〈D̃u, h1 ∧ h2〉L2(R+)∧L2(R+) = 〈∇h1u, h2〉L2(R+) − 〈∇h2u, h1〉L2(R+),

h1, h2 ∈ U , with the norm

‖D̃u‖2
L2(R+)∧L2(R+) := 2

∫ ∞

0

∫ ∞

0

(D̃u(s, t))2dsdt, (7.6.7)

where
D̃u(s, t) =

1
2
(∇sut −∇tus), s, t ∈ R+, u ∈ U .

The next result is analog to Proposition 4.1.4.
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Lemma 7.6.6. We have the commutation relation

D̃uδ̃(v) = δ̃(∇uv) + 〈u, v〉L2(R+), (7.6.8)

u, v ∈ C∞c (R+), between D̃ and δ.

Proof. We have

D̃uδ̃(v) = −
∞∑

k=1

v̇(Tk)
∫ Tk

0

usds

= −δ̃
(
v̇·
∫ ·

0

usds

)
−
∫ ∞

0

v̇(t)
∫ t

0

usdsdt

= δ̃(∇uv) + 〈u, v〉L2(R+),

by (7.6.3). �
As an application we obtain a Skorohod type isometry for the operator δ̃.

Proposition 7.6.7. We have for u ∈ U :

IE
[
|δ̃(u)|2

]
= IE
[
‖u‖2

L2(R+)

]
+ IE
[∫ ∞

0

∫ ∞

0

∇sut∇tusdsdt

]
.

(7.6.9)

Proof. Given u =
n∑

i=1

hiFi ∈ U we have

IE
[
δ̃(hiFi)δ̃(hjFj)

]
= IE
[
FiD̃hi δ̃(hjFj)

]

= IE
[
FiD̃hi(Fj δ̃(hj) − D̃hjFj)

]

= IE
[
(FiFjD̃hi δ̃hj + Fiδ̃(hj)D̃hiFj − FiD̃hiD̃hjFj)

]

= IE
[
(FiFj〈hi, hj〉L2(R+) + FiFj δ̃(∇hihj) + Fiδ̃(hj)D̃hiFj − FiD̃hiD̃hjFj)

]

= IE
[
(FiFj〈hi, hj〉L2(R+) + D̃∇hi

hj (FiFj) + D̃hj (FiD̃hiFj) − FiD̃hiD̃hjFj)
]

= IE
[
(FiFj〈hi, hj〉L2(R+) + D̃∇hi

hj (FiFj) + D̃hjFiD̃hiFj

+Fi(D̃hj D̃hiFj − D̃hiD̃hjFj))
]

= IE
[
(FiFj〈hi, hj〉L2(R+) + D̃∇hi

hj (FiFj) + D̃hjFiD̃hiFj

+FiD̃∇hj
hi−∇hi

hjFj)
]

= IE
[
(FiFj〈hi, hj〉L2(R+) + FjD̃∇hi

hjFi + FiD̃∇hj
hiFj + D̃hjFiD̃hiFj)

]
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= IE
[
FiFj〈hi, hj〉L2(R+) + Fj

∫ ∞

0

D̃sFi

∫ ∞

0

∇thj(s)hi(t)dtds

+Fi

∫ ∞

0

D̃tFj

∫ ∞

0

∇shi(t)hj(s)dsdt

+
∫ ∞

0

hi(t)D̃tFjdt

∫ ∞

0

hj(s)D̃sFids

]
,

where we used the commutation relation (7.6.8). �
Proposition (7.6.7) is a version of the Skorohod isometry for the operator δ̃
and it differs from from Propositions 4.3.1 and 6.5.4 which apply to finite
difference operators on the Poisson space.
Finally we state a Weitzenböck type identity on configuration space under
the form of the commutation relation

D̃δ̃ + δ̃D̃ = ∇∗∇ + IdL2(R+),

i.e. the Ricci tensor under the Poisson measure is the identity IdL2(R+) on
L2(R+) by comparison with (7.6.1).

Theorem 7.6.8. We have for u ∈ U :

IE
[
|δ̃(u)|2

]
+ IE
[
‖D̃u‖2

L2(R+)∧L2(R+)

]
(7.6.10)

= IE
[
‖u‖2

L2(R+)

]
+ IE
[
‖∇u‖2

L2(R+)⊗L2(R+)

]
.

Proof. Relation (7.6.10) for u =
n∑

i=1

hiFi ∈ U follows from Relation (7.6.7)

and Proposition 7.6.7. �

7.7 Chaos Interpretation of Time Changes

In this section we study the Poisson probabilistic interpretation of the opera-
tors introduced in Section 4.8. We refer to Section 5.8 for their interpretation
on the Wiener space. We now prove that ∇�+D is identified to the operator
D̃ under the Poisson identification of Φ and L2(B).

Lemma 7.7.1. On the Poisson space, ∇� satisfies the relation

∇�t (FG) = F∇�t G+G∇�t F −DtFDtG, t ∈ R+, F,G ∈ S. (7.7.1)

Proof. We will use the multiplication formula for multiple Poisson stochastic
integrals of Proposition 6.2.5:



278 7 Local Gradients on the Poisson Space

In(f◦n)I1(g) = In+1(f◦n ◦ g) + n〈f, g〉In−1(f◦n−1) + nIn((fg) ◦ f◦n−1),

f, g ∈ L4(R+). We first show that

∇�t (In(f◦n)I1(g)) = In(f◦n)∇�t I1(g)+I1(g)∇�t In(f◦n)−DtI1(g)DtIn(f◦n),

t ∈ R+, when f, g ∈ C1
c (R+) and 〈f, f〉L2(R+) = 1. Indeed, we have

In(f◦n)∇�t I1(g) + I1(g)∇�t In(f◦n)
= −In(f◦n)I1(g′1[t,∞)) − nI1(g)In((f ′1[t,∞)) ◦ f◦(n−1))

= −n
(
In+1((f ′1[t,∞)) ◦ f◦(n−1) ◦ g) + (n− 1)In((fg) ◦ (f ′1[t,∞)) ◦ f◦(n−2))

+In((gf ′1[t,∞)) ◦ f◦(n−1)) + 〈f ′1[t,∞), g〉L2(R+)In−1(f◦(n−1))

+(n− 1)〈f, g〉L2(R+)In−1((f ′1[t,∞)) ◦ f◦(n−2))
)

−In+1((g′1[t,∞)) ◦ f◦n) − nIn((g′1[t,∞)f) ◦ f◦(n−1))

−n〈g′1[t,∞), f〉L2(R+)In−1(f◦(n−1))

= −nIn+1((f ′1[t,∞)) ◦ f◦(n−1) ◦ g) − In+1((g′1[t,∞)) ◦ f◦n)

−n(n− 1)In((f ′1[t,∞)) ◦ (fg) ◦ f◦(n−2))

−nIn((gf ′1[t,∞)) ◦ f◦(n−1)) − nIn((fg′1[t,∞)) ◦ f◦(n−1))

+nf(t)g(t)In−1(f◦(n−1)) − n(n− 1)〈f, g〉L2(R+)In−1((f ′1[t,∞)) ◦ f◦(n−2))

= ∇�t
(
In+1(f◦n ◦ g) + nIn(f◦(n−1) ◦ (fg)) + n〈f, g〉L2(R+)In−1(f◦(n−1))

)

+nf(t)g(t)In−1(f◦(n−1))
= ∇�t (In(f◦n)I1(g)) +DtI1(g)DtIn(f◦n), f, g ∈ C1

c (R+).

We now make use of the multiplication formula for Poisson stochastic inte-
grals to prove the result on S by induction. Assume that (7.7.1) holds for
F = In(f◦n) and G = I1(g)k for some k ≥ 1. Then, using the product rule
Proposition 4.5.2 or Proposition 6.4.8 for the operator Dt we have

∇�t (In(f◦n)I1(g)k+1)
= I1(g)∇�t (In(f◦n)I1(g)k) + In(f◦n)I1(g)k∇�t I1(g)

−DtI1(g)Dt(I1(g)kIn(f◦n))
= I1(g)

(
I1(g)k∇�t In(f◦n) + In(f◦n)∇�t

(
I1(g)k

)
−Dt

(
I1(g)k

)
DtIn(f◦n)

)

+In(f◦n)I1(g)k∇�t I1(g) −DtI1(g)
(
I1(g)kDtIn(f◦n)

+In(f◦n)Dt

(
I1(g)k

))
−DtI1(g)DtI1(g)kDtIn(f◦n)

= I1(g)k+1∇�t In(f◦n) + In(f◦n)∇�t
(
I1(g)k+1

)
−Dt

(
I1(g)k+1

)
DtIn(f◦n),

t ∈ R+. �
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Proposition 7.7.2. We have the identity

D̃ = D + ∇�

on the space S.

Proof. Lemma 7.7.1 shows that (∇� +D) is a derivation operator since

(∇�t +Dt)(FG) = ∇�t (FG) +Dt(FG)
= F∇�t G+G∇�t F −DtFDtG+Dt(FG)
= F (∇�t +Dt)G+G(∇�t +Dt)F, F,G ∈ S.

Thus it is sufficient to show that

(Dt + ∇�t )f(Tk) = D̃f(Tk), k ≥ 1, f ∈ C1
b (R). (7.7.2)

Letting π[t denote the projection

π[tf = f1[t,∞), f ∈ L2(R+),

we have

(Dt + ∇�t )f(Tk) = (Dt + ∇�t )
∑

n∈N

1
n!
In(fk

n)

=
∑

n≥1

1
(n− 1)!

In−1(fk
n(·, t)) −

∑

n≥1

1
(n− 1)!

In(π[t ⊗ Id⊗(n−1)∂1f
k
n)

=
∑

n∈N

1
n!
In

(
fk

n+1(·, t) − nπ[t ⊗ Id⊗(n−1)∂1f
k
n

)
,

where Id : L2(R+) → L2(R+) is the identity operator. Now,

fk
n+1(t, t1, . . . , tn) − nπ[t ⊗ Id⊗(n−1)∂1f

k
n(t1, . . . , tn)

= αk
n+1(f)(t1 ∨ · · · ∨ tn ∨ t)

−1{t<t1∨···∨tn}
(
αk

n(f ′) + αk
n+1(f)

)
(t1 ∨ · · · ∨ tn)

= αk
n+1(f)1{t1∨···∨tn<t} − αk

n(f ′)(t1 ∨ · · · ∨ tn)1{t1∨···∨tn>t}
= αk

n(−f ′[t)(t1 ∨ · · · ∨ tn),

which coincides with n-th term, in the chaos expansion of −1[0,Tk]f
′(Tk) by

Proposition 7.4.3, k ∈ N, n ≥ 1. Hence Relation (7.7.2) holds and we have
D + ∇� = D̃. �
Since both δ and δ̃ = δ + ∇⊕ coincide with the Itô integral on adapted
processes, it follows that ∇⊕ vanishes on adapted processes. By duality this
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implies that the adapted projection of ∇� is zero, hence by Proposition 7.7.2,
D̃ is written as a perturbation of D by a gradient process with vanishing
adapted projection.

7.8 Notes and References

The notion of lifting of the differential geometry on a Riemannian manifold
X to a differential geometry on ΩX has been introduced in [3], and the in-
tegration by parts formula (7.1.2) can be found been obtained therein, cf.
also [16]. In Corollary 7.1.7, our pointwise lifting of gradients allows us to
recover Theorem 5-2 of [3], page 489, as a particular case by taking expec-
tations in Relation (7.1.5). See [20], [93], [106], for the locality of D̃ and δ̃.
See [2] and [30] for another approaches to the Weitzenböck formula on con-
figuration spaces under Poisson measures. The proof of Proposition 7.6.7 is
based on an argument of [43] for path spaces over Lie groups. The gradient
D̃ is called “damped” in reference to [44], cf. Section 5.7. The gradient D̃ of
Definition 7.2.1 is a modification of the gradient introduced in [23], see also
[36]. However, the integration by parts formula of [23] deals with processes of
zero integral only, as in (7.3.6). A different version of the gradient D̄, which
solves the closability issue mentioned at the end of Section 7.3, has been used
for sensitivity analysis in [71], [117], [118]. The combined use of Dn and D̃ for
the computation of the chaos expansion of the jump time Td, d ≥ 1, and the
Clark representation formula for D̃ can be found in [102]. The construction
of D̃ and D can also be extended to arbitrary Poisson processes with adapted
intensities, cf. [32], [104], [105].



Chapter 8

Option Hedging in Continuous Time

Here we review some applications to mathematical finance of the tools
introduced in the previous chapters. We construct a market model with jumps
in which exponential normal martingales are used to model random prices.
We obtain pricing and hedging formulas for contingent claims, extending the
classical Black-Scholes theory to other complete markets with jumps.

8.1 Market Model

Let (Mt)t∈R+ be a martingale having the chaos representation property of
Definition 2.8.1 and angle bracket given by d〈M,M〉t = α2

tdt. By a modifi-
cation of Proposition 2.10.2, (Mt)t∈[0,T ] satisfies the structure equation

d[M,M ]t = α2
tdt+ φtdMt.

When (φt)t∈[0,T ] is deterministic, (Mt)t∈[0,T ] is alternatively a Brownian mo-
tion or a compensated Poisson martingale, depending on the vanishing of
(φt)t∈[0,T ].
Let r : R+ −→ R and σ : R+ −→ (0,∞) be deterministic non negative
bounded functions. We assume that 1 + σtφt > 0, t ∈ [0, T ]. Let (At)t∈R+

denote the price of the riskless asset, given by

dAt

At
= rtdt, A0 = 1, t ∈ R+, (8.1.1)

i.e.

At = A0 exp
(∫ t

0

rsds

)
, t ∈ R+.

For t > 0, let (Sx
t,u)u∈[t,T ] be the price process with risk-neutral dynamics

given by

dSx
t,u = rtS

x
t,udu+ σuS

x
t,u−dMu, u ∈ [t, T ], Sx

t,t = x,

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 8,
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 8.1 Sample trajectory of (St)t∈[0,T ]

cf. Relation 2.13.5. Recall that when (φt)t∈R+ is deterministic we have

Sx
t,T = x exp

(∫ T

t

σuαuiudBu +
∫ T

t

(ru − φuλuσu − 1
2
iuσ

2
uα

2
u)du

)

×
k=NT∏

k=1+Nt

(1 + σTk
φTk

), (8.1.2)

0 ≤ t ≤ T , with St = S1
0,t, t ∈ [0, T ]. Figure 8.1 shows a sample path of

(St)t∈[0,T ] when the function (it)t∈[0,T ] takes values in {0, 1}, with S0 = 10,
σt = 10, and αt = 1, t ∈ [0, T ].
Let ηt and ζt be the numbers of units invested at time t, respectively in the as-
sets (St)t∈R+ and (At)t∈R+ . The value of the portfolio Vt at time t is given by

Vt = ζtAt + ηtSt, t ∈ R+. (8.1.3)

Definition 8.1.1. The portfolio Vt is said to be self-financing if

dVt = ζtdAt + ηtdSt. (8.1.4)

The self-financing condition can be written as

Atdζt + Stdηt = 0, 0 ≤ t ≤ T

under the approximation d〈St, ηt〉 � 0.
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Let also

Ṽt = Vt exp
(
−
∫ t

0

rsds

)
and S̃t = St exp

(
−
∫ t

0

rsds

)

denote respectively the discounted portfolio price and underlying asset price.

Lemma 8.1.2. The following statements are equivalent:

i) the portfolio Vt is self-financing,
ii) we have

Ṽt = Ṽ0 +
∫ t

0

σuηuS̃udMu, t ∈ R+, (8.1.5)

iii) we have

Vt = V0 exp
(∫ t

0

rudu

)
+
∫ t

0

σuηu exp
(∫ t

u

rudu

)
SudMu, (8.1.6)

t ∈ R+.

Proof. First, note that (8.1.5) is clearly equivalent to (8.1.6). Next, the self-
financing condition (8.1.4) shows that

dVt = ζtdAt + ηtdSt

= ζtAtrtdt+ ηtrtStdt+ σtηtStdMt

= rtVtdt+ σtηtStdMt,

t ∈ R+, hence

dṼt = d

(
exp
(
−
∫ t

0

rsds

)
Vt

)

= −rt exp
(
−
∫ t

0

rsds

)
Vtdt+ exp

(
−
∫ t

0

rsds

)
dVt

= exp
(
−
∫ t

0

rsds

)
σtηtStdMt, t ∈ R+,

i.e. (8.1.5) holds. Conversely, if (8.1.5) is satisfied we have

dVt = d(AtṼt)

= ṼtdAt +AtdṼt

= ṼtAtrtdt+ σtηtStdMt

= Vtrtdt+ σtηtStdMt

= ζtAtrtdt+ ηtStrtdt+ σtηtStdMt

= ζtdAt + ηtdSt,

hence the portfolio is self-financing. �



284 8 Option Hedging in Continuous Time

8.2 Hedging by the Clark Formula

In the next proposition we compute a self-financing hedging strategy leading
to an arbitrary square-integrable random variable F , using the Clark formula
Proposition 4.2.3.
Proposition 8.2.1. Given F ∈ L2(Ω), let

ηt =
exp
(
−
∫ T

t
rsds
)

σtSt
IE[DtF |Ft], (8.2.1)

ζt =
exp
(
−
∫ T

t rudu
)

IE[F |Ft] − ηtSt

At
, t ∈ [0, T ]. (8.2.2)

Then the portfolio (ηt, ζt)t∈[0,T ] is self-financing and yields a hedging strategy
leading to F , i.e. letting

Vt = ζtAt + ηtSt, 0 ≤ t ≤ T,

we have

Vt = exp

(
−
∫ T

t

rudu

)
IE[F |Ft], (8.2.3)

0 ≤ t ≤ T . In particular we have VT = F and

V0 = exp

(
−
∫ T

0

rudu

)
IE[F ].

Proof. Applying (8.2.2) at t = 0 we get

IE[F ] exp

(
−
∫ T

0

rudu

)
= V0,

hence from (8.2.2), the definition (8.2.1) of ηt and the Clark formula we obtain

Vt = ζtAt + ηtSt

= exp

(
−
∫ T

t

rudu

)
IE[F |Ft]

= exp

(
−
∫ T

t

rudu

)(
IE[F ] +

∫ t

0

IE[DuF |Fu]dMu

)

= V0 exp
(∫ t

0

rudu

)
+ exp

(
−
∫ T

t

rudu

)∫ t

0

IE[DuF |Fu]dMu

= V0 exp
(∫ t

0

rudu

)
+
∫ t

0

ηuσuSu exp
(∫ t

u

rsds

)
dMu, 0 ≤ t ≤ T,
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and from Lemma 8.1.2 this also implies that the portfolio (ηt, ζt)t∈[0,T ] is
self-financing. �
The above proposition shows that there always exists a hedging strategy
starting from

V0 = IE[F ] exp

(
−
∫ T

0

rudu

)
.

Conversely, since there exists a hedging strategy leading to

ṼT = F exp

(
−
∫ T

0

rudu

)
,

then by (8.1.5), (Ṽt)t∈[0,T ] is necessarily a martingale with initial value

Ṽ0 = IE[ṼT ] = IE[F ] exp

(
−
∫ T

0

rudu

)
.

We now consider the hedging of European call option with payoff F =
(ST − K)+ using the Clark formula in the setting of deterministic struc-
ture equations. In this case the next proposition allows us to compute the
hedging strategy appearing in (8.2.1).
Proposition 8.2.2. Assume that φt ≥ 0, t ∈ [0, T ]. Then for 0 ≤ t ≤ T we
have

IE[Dt(ST −K)+|Ft] = IE
[
itσtS

x
t,T1[K,∞)(Sx

t,T )

+
jt
φt

(σtφtS
x
t,T − (K − Sx

t,T )+)1[ K
1+σt

,∞)(S
x
t,T )
]

x=St

.

Proof. By Lemma 4.6.2, using Definition 4.6.1 and Relation (4.6.4) we have,
for any F ∈ S,

DtF = DB
t F +

jt
φt

(T φ
t F − F ), t ∈ [0, T ]. (8.2.4)

We have T φ
t ST = (1 + σtφt)ST , t ∈ [0, T ], and the chain rule DBf(F ) =

f ′(F )DBF , cf. Relation (5.2.1), holds for F ∈ S and f ∈ C2
b (R). Since S

is an algebra for deterministic (φt)t∈[0,T ], we may approach x → (x − K)+

by polynomials on compact intervals and proceed e.g. as in [97], p. 5-13. By
dominated convergence, F = (ST −K)+ ∈ Dom (D) and (8.2.4) becomes

Dt(ST −K)+ = itσtST1[K,∞)(ST ) +
jt
φt

((1 + σtφt)ST −K)+ − (ST −K)+),

0 ≤ t ≤ T . The Markov property of (St)t∈[0,T ] implies

IE
[
DB

t (ST −K)+|Ft

]
= itσt IE

[
Sx

t,T1[K,∞)(Sx
t,T )
]
x=St

,
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and

jt
φt

IE[(T φ
t ST −K)+ − (ST −K)+|Ft]

=
jt
φt

IE
[
((1 + σtφt)Sx

t,T −K)+ − (Sx
t,T −K)+

]
x=St

=
jt
φt

IE
[
((1 + σtφt)Sx

t,T −K)1[ K
1+σtφt

,∞)(S
x
t,T )
]

x=St

− jt
φt

IE
[
(Sx

t,T −K)+1[K,∞)(Sx
t,T )
]
x=St

=
jt
φt

IE
[
σtφtS

x
t,T1[ K

1+σtφt
,∞)(S

x
t,T ) + (Sx

t,T −K)1[ K
1+σtφt

,K](S
x
t,T )
]

x=St

=
jt
φt

IE
[
σtφtS

x
t,T1[ K

1+σtφt
,∞)(S

x
t,T ) − (K − Sx

t,T )+1[ K
1+σtφt

,∞](S
x
t,T )
]

x=St

=
jt
φt

IE
[
(σtφtS

x
t,T − (K − Sx

t,T )+)1[ K
1+σtφt

,∞)(S
x
t,T )
]

x=St

.

�
If (φt)t∈[0,T ] is not constrained to be positive then

IE[Dt(ST −K)+|Ft] = itσt IE
[
Sx

t,T1[K,∞)(Sx
t,T )
]
x=St

+
jt
φt

IE
[
σtφtS

x
t,T1[ K

1+σtφt
,∞)(S

x
t,T ) + (Sx

t,T −K)1[ K
1+σtφt

,K](S
x
t,T )
]

x=St

,

with the convention 1[b,a] = −1[a,b], 0 ≤ a < b ≤ T . Proposition 8.2.2 can
also be proved using Lemma 3.7.2 and the Itô formula (2.12.4).

In the sequel we assume that (φt)t∈R+ is deterministic and

dMt = itdBt + φt(dNt − λtdt), t ∈ R+, M0 = 0,

as in Relation (2.10.4).

Next we compute

exp

(
−
∫ T

0

rsds

)
IE
[
(ST −K)+

]

in terms of the Black-Scholes function

BS(x, T ; r, σ2;K) = e−rT IE[(xerT−σ2T/2+σWT −K)+],

where WT is a centered Gaussian random variable with variance T .
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Proposition 8.2.3. The expectation

exp

(
−
∫ T

0

rsds

)
IE
[
(ST −K)+

]

can be computed as

exp

(
−
∫ T

0

rsds

)
IE
[
(ST −K)+

]

= exp (−Γ0(T ))
∞∑

k=0

1
k!

∫ T

0

· · ·
∫ T

0

BS

(
S0 exp

(
−
∫ T

0

φsγsσsds

)
i=k∏

i=1

(1 + σtiφti) , T ;RT ,
Γ0(T )
T

;K

)

γt1 · · · γtk
dt1 · · · dtk.

Proof. Similarly to Proposition 3.7.3 we have

IE
[
e−TRT (ST −K)+

]
=
∞∑

k=0

IE
[
e−TRT (ST −K)+|NT = k

]
P(NT = k),

with

P(NT = k) = exp(−Γ0(T ))
(Γ0(T ))k

k!
, k ∈ N.

Conditionally to {NT = k}, the jump times (T1, . . . , Tk) have the law

k!
(Γ0(T ))k

1{0<t1<···<tk<T}γt1 · · ·γtk
dt1 · · · dtk,

since the process (NΓ−1
0 (T )t

)t∈R+ is a standard Poisson process. Hence, con-
ditionally to

{N(Γ−1
0 (Γ0(T ))) = k} = {NT = k},

its jump times (Γ0(T1), . . . , Γ0(Tk)) have a uniform law on [0, Γ0(T )]k. We
then use the fact that (B̃t)t∈R+ and (Nt)t∈R+ are also independent under P

since (rt)t∈R+ is deterministic, and the identity in law

ST
law= S0XT exp

(
−
∫ T

0

φsλsσsds

)
k=NT∏

k=1

(1 + σTk
φTk

) ,
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where

XT = exp

(
TRT − Γ0(T )/2 +

(
Γ0(T )
T

)1/2

WT

)
,

and WT is independent of N . �

8.3 Black-Scholes PDE

As in the standard Black-Scholes model, it is possible to determine the
hedging strategy in terms of the Delta of the price in the case (rt)t∈R+ is
deterministic.
Let the function C(t, x) be defined by

C(t, St) = Vt

= exp

(
−
∫ T

t

rudu

)
IE[(ST −K)+ | Ft]

= exp

(
−
∫ T

t

rudu

)
IE[(ST −K)+ | St], t ∈ R+.

cf. (8.2.3). An application of the Itô formula leads to

dC(t, St) =
(
∂C

∂t
+ rtSt

∂C

∂x
+

1
2
∂2C

∂x2
itα

2
tS

2
t σ

2
t + λtΘC

)
(t, St)dt

+Stσt
∂C

∂x
(t, St)dMt+(C(t, St(1 + σtφt))−C(t, St)) (dNt−λtdt)

(8.3.1)

where

ΘC(t, St) = C(t, St(1 + σtφt)) − C(t, St) −
∂C

∂x
(t, St)Stσtφt.

The process

C̃t := C(t, St) exp
(
−
∫ t

0

rsds

)

= exp

(
−
∫ T

0

rudu

)
IE[(ST −K)+ | Ft]

= Ṽt
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is a martingale from Propositions 2.5.8 and 8.2.1-(ii), with

dC̃t = ηtdS̃t (8.3.2)

= σtηtStdMt

= itσtηtStdBt + σtφtηtSt(dNt − λtdt),

from Lemma 8.1.2. Therefore, by identification of (8.3.1) and (8.3.2),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rtC(t, St) =

(
∂C

∂t
+ rtSt

∂C

∂x
+

1

2
itα

2
t S2

t σ2
t
∂2C

∂x2
+ λtΘC

)
(t, St),

ηtσtStdMt = Stσt
∂C

∂x
(t, St)dMt+(C(t, St(1 + σtφt))−C(t, St)) (dNt − λtdt) .

Therefore, by identification of the Brownian and Poisson parts,
⎧
⎪⎨

⎪⎩

itηtStσt = itStσt
∂C

∂x
(t, St)

jtηtStσtφt = C(t, St(1 + σtφt)) − C(t, St).

(8.3.3)

The term ΘC(t, St) vanishes on the set

{t ∈ R+ : φt = 0} = {t : i(t) = 1}.

Therefore, (8.3.3) reduces to

ηt =
∂C

∂x
(t, St),

i.e. the process (ηt)t∈R+ is equal to the usual Delta (8.3) on {t ∈ R+ : it = 1},
and to

ηt =
C(t, St(1 + φtσt)) − C(t, St)

Stφtσt

on the set {t ∈ R+ : it = 0}.
Proposition 8.3.1. The Black-Scholes PDE for the price of a European call
option is written as

∂C

∂t
(t, x) + rtx

∂C

∂x
(t, x) +

1
2
α2

tx
2σ2

t

∂2C

∂x2
(t, x) = rtC(t, x),

on {t : φt = 0}, and as

∂C

∂t
(t, x) + rtx

∂C

∂x
(t, x) + λtΘC(t, x) = rtC(t, x),

on the set {t ∈ R+ : φt �= 0}, under the terminal condition C(T, x) =
(x−K)+.
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8.4 Asian Options and Deterministic Structure

The price at time t of an Asian option is defined as

IE

⎡

⎣e−
∫

T
t

rsds

(
1
T

∫ T

0

Sudu−K

)+ ∣∣∣Ft

⎤

⎦ .

The next proposition provides a replicating hedging strategy for Asian
options in the case of a deterministic structure equation. Following [74],
page 91, and [13], we define the auxiliary process

Yt =
1
St

(
1
T

∫ t

0

Sudu−K

)
, t ∈ [0, T ]. (8.4.1)

Proposition 8.4.1. There exists a measurable function C̃ on R+ × R such
that C̃(t, ·) is C1 for all t ∈ R+, and

StC̃(t, Yt) = IE

⎡

⎣
(

1
T

∫ T

0

Sudu−K

)+ ∣∣∣Ft

⎤

⎦.

Moreover, the replicating portfolio for an Asian option with payoff

(
1
T

∫ T

0

Sudu −K

)+

is given by (8.1.3) and

ηt =
1
σt

e−
∫ T

t
rsds
(
C̃(t, Yt)σt (8.4.2)

+(1 + σtφt)
(
jt
φt

(
C̃

(
t,

Yt

1 + σtφt

)
− C̃(t, Yt)

)
− itσtYt∂2C̃(t, Yt)

))
.

Proof. With the above notation, the price at time t of the Asian option
becomes

IE
[
e−
∫ T

t
rsdsST (YT )+

∣∣∣Ft

]
.

For 0 ≤ s ≤ t ≤ T , we have

d (StYt) =
1
T
d

(∫ t

0

Sudu−K

)
=
St

T
dt,
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hence
StYt

Ss
= Ys +

1
T

∫ t

s

Su

Ss
du.

Since Su/St is independent of St by (8.1.2), we have, for any sufficiently
integrable payoff function H ,

IE
[
H (STYT )

∣∣∣Ft

]
= IE

[
H

(
StYt +

1
T

∫ T

t

Sudu

) ∣∣∣Ft

]

= IE

[
H

(
xy +

x

T

∫ T

t

Su

St
du

)]

y=Yt, x=St

.

Let C ∈ C2
b (R+ × R

2) be defined as

C(t, x, y) = IE

[
H

(
xy +

x

T

∫ T

t

Su

St
du

)]
,

i.e.
C(t, St, Yt) = IE

[
H (STYT )

∣∣∣Ft

]
.

When H(x)= max(x, 0), since for any t ∈ [0, T ], St is positive and
Ft-measurable, and Su/St is independent of Ft, u ≥ t, we have:

IE
[
H (STYT )

∣∣∣Ft

]
= IE
[
ST (YT )+

∣∣∣Ft

]

= St IE

[(
YT

ST

St

)+ ∣∣∣Ft

]

= St IE

⎡

⎣
(
Yt +

1
T

∫ T

t

Su

St
du

)+ ∣∣∣Ft

⎤

⎦

= St IE

⎡

⎣
(
y +

1
T

∫ T

t

Su

St
du

)+
⎤

⎦

y=Yt

= StC̃(t, Yt),

with

C̃(t, y) = IE

⎡

⎣
(
y +

1
T

∫ T

t

Su

St
du

)+
⎤

⎦ .

We now proceed as in [13], which deals with the sum of a Brownian motion
and a Poisson process. From the expression of 1/St given by (8.1.2) we have
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d

(
1
St

)
=

1
St−

((
−rt +

α2
tσ

2
t

1 + σtφt

)
dt− σt

1 + σtφt
dMt

)
,

hence by (2.12.4), Itô’s formula and the definition (8.4.1) of Yt, we have

dYt = Yt

(
−rt +

α2
tσ

2
t

1 + σtφt

)
dt+

1
T
dt− Yt−σt

1 + σtφt
dMt.

Assuming that H ∈ C2
b (R) and applying Lemma 3.7.2 we get

IE
[
DtH (STYT )

∣∣∣Ft

]
= LtC(t, St, Yt)

= it

(
σtSt−∂2C(t, St, Yt) −

Ytσt

1 + σtφt
∂3C(t, St, Yt)

)
(8.4.3)

+
jt
φt

(
C

(
t, St− + σtSt− , Yt− − Ytσt

1 + σtφt

)
− C(t, St− , Yt−)

)
,

where Lt is given by (2.12.5). Next, given a family (Hn)n∈N of C2
b functions,

such that |Hn(x)| ≤ x+ and |H ′n(x)| ≤ 2, x ∈ R, n ∈ N, and converging
pointwise to x→ x+, by dominated convergence (8.4.3) holds for C(t, x, y) =
xC̃(t, y) and we obtain:

IE

⎡

⎣Dt

(
1
T

∫ T

0

Sudu −K

)+ ∣∣∣Ft

⎤

⎦ = itC̃(t, Yt)σtSt

+St

(
jt
φt

(
C̃

(
t,

Yt

1 + σtφt

)
− C̃(t, Yt)

)
− itσtYt∂2C̃(t, Yt)

)

+Stσtφt

(
jt
φt

(
C̃

(
t,

Yt

1 + σtφt

)
− C̃(t, Yt)

)
− itσtYt∂2C̃(t, Yt)

)
.

�
As a particular case we consider the Brownian motion model, i.e. φt = 0, for
all t ∈ [0, T ], so it = 1, jt = 0 for all t ∈ [0, T ], and we are in the Brownian
motion model. In this case we have

ηt = e−
∫ T

t
rsds
(
−Yt∂2C̃(t, Yt) + C̃(t, Yt)

)

= e−
∫

T
t

rsds

(
St

∂

∂x
C̃

(
t,

1
x

(
1
T

∫ t

0

Sudu−K

))

|x=St

+ C̃(t, Yt)

)

=
∂

∂x

(
xe−

∫
T
t

rsdsC̃

(
t,

1
x

(
1
T

∫ t

0

Sudu−K

)))

|x=St

, t ∈ [0, T ],

which can be denoted informally as a partial derivative with respect to St.
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8.5 Notes and References

See e.g. [74] and [135] for standard references on stochastic finance, and [97]
for a presentation of the Malliavin calculus applied to continuous markets.
The use of normal martingales in financial modelling has been first considered
in [35]. The material on Asian options is based on [70] and [12]. Hedging
strategies for Lookback options have been computed in [15] using the Clark-
Ocone formula.



Chapter 9

Appendix

This appendix shortly reviews some notions used in the preceding chapters.
It does not aim at completeness and is addressed to the non-probabilistic
reader, who is referred to standard texts, e.g. [67], [119] for more details.

9.1 Measurability

Given a sequence (Yn)n∈N of random variables, a random variable F on a
probability space (Ω,F ,P) is said to be Fn-measurable if it can be written
as a function

F = fn(Y0, . . . , Yn)

of Y0, . . . , Yn, where fn : R
n+1 → R. This defines a filtration (Fn)n≥−1 as

F−1 = {∅, Ω}

and
Fn = σ(Y0, . . . , Yn), n ≥ 0,

where σ(Y0, . . . , Yn) is the smallest σ-algebra making Y0, . . . , Yn measurable.
The space of Fn-measurable random variables is denoted by L0(Ω,Fn,P).

9.2 Gaussian Random Variables

A random variable X is Gaussian with mean μ and variance σ2 if and only
if its characteristic function satisfies

IE[eiαX ] = eiαμ−α2σ2/2, α ∈ R.

From e.g. Corollary 16.1 of [67] we have the following.

N. Privault, Stochastic Analysis in Discrete and Continuous Settings,
Lecture Notes in Mathematics 1982, DOI 10.1007/978-3-642-02380-4 9,
c© Springer-Verlag Berlin Heidelberg 2009

295
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Proposition 9.2.1. Let X1, . . . , Xn be an orthogonal family of centered
Gaussian variables, i.e.

IE[XiXj] = 0, 1 ≤ i �= j ≤ n.

Then (X1, . . . , Xn) is a vector of independent random variables.

9.3 Conditional Expectation

Consider (Ω,F ,P) a probability space and G ⊂ F a sub σ-algebra of F .
The conditional expectation IE[F | G] of F ∈ L2(Ω,F ,P) given G can be
defined as the orthogonal projection of F on L2(Ω,G,P) for the scalar product
〈F,G〉 := IE[FG], hence it satisfies

IE[G(F − IE[F | G])] = 0, G ∈ L2(Ω,G,P).

The conditional expectaction has the following properties

a) IE[IE[F | F ] | G] = IE[F | G] if G ⊂ F .
b) IE[GF | G] = G IE[F | G] if G is G-measurable and sufficiently integrable.
c) IE[f(X,Y ) | F ] = IE[f(X, y)]y=Y if X , Y are independent and Y is
F -measurable.

Property (a) is referred to as the tower property.
The Jensen inequality states that for ϕ any convex function ϕ : R

d → R
d

we have

ϕ(IE[F ]) ≤ IE[ϕ(F )]. (9.3.1)

9.4 Martingales in Discrete Time

Consider (Fn)n∈N an increasing family of sub σ-algebra of F . A discrete time
square-integrable martingale with respect to (Fn)n∈N is a family (Mn)n∈N of
random variables such that

i) Mn ∈ L2(Ω,Fn,P), n ∈ N,
ii) IE[Mn+1 | Fn] = Mn, n ∈ N.

Then the process
(Y0 + · · · + Yn)n≥0
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is a martingale with respect to its own filtration defined as

F−1 = {∅, Ω}

and
Fn = σ(Y0, . . . , Yn), n ≥ 0,

if and only if the sequence (Yn)n∈N satisfies

IE[Yn | Fn−1] = 0, n ∈ N.

Proposition 9.4.1. Let F ∈ L2(Ω). Then (IE[F | Fn])n∈N converges to
F a.s.

Proof. This is a consequence of the martingale convergence theorem, cf. e.g.
Theorem 27.1 in [67]. �

9.5 Martingales in Continuous Time

Let (Ω,F ,P) be a probability space and (Ft)t∈R+ a filtration, i.e. an increas-
ing family of sub σ-algebras of F . We assume that (Ft)t∈R+ is continuous on
the right, i.e.

Ft =
⋂

s>t

Fs, t ∈ R+.

Definition 9.5.1. A stochastic process (Mt)t∈R+ such that IE[|Mt|2] < ∞,
t ∈ R+, is called an Ft-martingale if

IE[Mt|Fs] = Ms, 0 ≤ s < t.

The martingale (Mt)t∈R+ is said to be square-integrable when E[|Mt|2] <∞,
t ∈ R+.
A process (Xt)t∈R+ is said to have independent increments if Xt − Xs is
independent of σ(Xu : 0 ≤ u ≤ s), 0 ≤ s < t.

Proposition 9.5.2. Every integrable process (Xt)t∈R+ with centered inde-
pendent increments is a martingale with respect to the filtration

Ft := σ(Xu : u ≤ t), t ∈ R+,

it generates.
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9.6 Markov Processes

Let C0(Rn) denote the class of continuous functions tending to 0 at infinity.
Recall that f is said to tend to 0 at infinity if for all ε > 0 there exists a
compact subset K of R

n such that |f(x)| ≤ ε for all x ∈ R
n \K.

Definition 9.6.1. An R
n-valued stochastic process, i.e. a family (Xt)t∈R+

of random variables on (Ω,F ,P), is a Markov process if for all t ∈ R+ the
σ-fields

F+
t := σ(Xs : s ≥ t)

and
Ft := σ(Xs : 0 ≤ s ≤ t).

are conditionally independent given Xt.

This condition can be restated by saying that for all A ∈ F+
t and B ∈ Ft we

have
P(A ∩B | Xt) = P(A | Xt)P(B | Xt),

cf. Chung [25]. This definition naturally entails that:

i) (Xt)t∈R+ is adapted with respect to (Ft)t∈R+ , i.e. Xt is Ft-measurable,
t ∈ R+, and
ii) Xu is conditionally independent of Ft given Xt, for all u ≥ t, i.e.

IE[f(Xu) | Ft] = IE[f(Xu) | Xt], 0 ≤ t ≤ u,

for any bounded measurable function f on R
n.

Processes with independent increments provide simple examples of Markov
processes.
The transition kernel μs,t associated to (Xt)t∈R+ is defined as

μs,t(x,A) = P(Xt ∈ A | Xs = x) 0 ≤ s ≤ t.

The transition operator (Ps,t)0≤s≤t associated to (Xt)t∈R+ is defined as

Ps,tf(x) = IE[f(Xt) | Xs = x] =
∫

Rn

f(y)μs,t(x, dy), x ∈ R
n.

Letting ps,t(x) denote the density of Xt −Xs we have

μs,t(x,A) =
∫

A

ps,t(y − x)dy, A ∈ B(Rn),

and
Ps,tf(x) =

∫

Rn

f(y)ps,t(y − x)dy.
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Next we assume that (Xt)t∈R+ is time homogeneous, i.e. μs,t depends only
on the difference t− s, and we will denote it by μt−s. In this case the family
(P0,t)t∈R+ is denoted by (Pt)t∈R+ and defines a transition semigroup associ-
ated to (Xt)t∈R+ , with

Ptf(x) = IE[f(Xt) | X0 = x] =
∫

Rn

f(y)μt(x, dy), x ∈ R
n.

It satisfies the semigroup property

PtPsf(x) = IE[Psf(Xt) | X0 = x]
= IE[IE[f(Xt+s) | Xs] | X0 = x]]
= IE[IE[f(Xt+s) | Fs] | X0 = x]]
= IE[f(Xt+s) | X0 = x]
= Pt+sf(x).

9.7 Tensor Products of L2 Spaces

Let (X,μ) and (Y, ν) denote measure spaces. Given f ∈ L2(X,μ) and g ∈
L2(Y, ν), the tensor product f⊗g of f by g is the function in L2(X×Y, μ⊗ν)
defined by

(f ⊗ g)(x, y) = f(x)g(y).

In particular, the tensor product fn ⊗ gm of two functions fn ∈ L2(X,σ)⊗n,
gm ∈ L2(X,σ)⊗m, satisfies

fn ⊗ gm(x1, . . . , xn, y1, . . . , ym) = fn(x1, . . . , xn)gm(y1, . . . , ym),

(x1, . . . , xn, y1, . . . , ym) ∈ Xn+m. Given f1, . . . , fn ∈ L2(X,μ), the symmetric
tensor product f1 ◦ · · · ◦ fn is defined as the symmetrization of f1 ⊗ · · · ⊗ fn,
i.e.

(f1 ◦ · · · ◦ fn)(t1, . . . , tn) =
1
n!

∑

σ∈Σn

f1(tσ(1)) · · · fn(tσ(n)), t1, . . . , tn ∈ X,

(9.7.1)
where Σn denotes the set of permutations of {1, . . . , n}. Let now L2(X)◦n

denote the subspace of L2(X)⊗n = L2(Xn) made of symmetric functions fn

in n variables. As a convention, L2(X)◦0 is identified to R. From (9.7.1), the
symmetric tensor product can be extended as an associative operation on
L2(X)◦n.
The tensor power of order n of L2([0, T ],Rd), n ∈ N, d ∈ N

∗, is

L2([0, T ],Rd)⊗n � L2([0, T ]n, (Rd)⊗n).
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For n = 2 we have (Rd)⊗2 = R
d ⊗ R

d � Md,d(R) (the linear space of square
d× d matrices), hence

L2([0, T ],Rd)⊗2 � L2([0, T ]2,Md,d(R)).

More generally, the tensor product (Rd)⊗n is isomorphic to R
dn

. The generic
element of L2([0, T ],Rd)⊗n is denoted by

f = (f (i1,...,in))1≤i1,...,in≤d,

with f (i1,...,in) ∈ L2([0, T ]n).

9.8 Closability of Linear Operators

The notion of closability for operators in normed linear spaces consists in
some minimal hypotheses ensuring that the extension of a densely defined
linear operator is consistently defined.

Definition 9.8.1. A linear operator T : S → H from a normed linear space
S into a normed linear space H is said to be closable on H if for every
sequence (Fn)n∈N ⊂ S such that Fn → 0 and TFn → U in H, one has
U = 0.

The following proposition is proved by the linearity of T .

Proposition 9.8.2. Assume that T is closable. If (Fn)n∈N and (Gn)n∈N con-
verge to F ∈ Dom (T ) and (TFn)n∈N and (TGn)n∈N converge respectively to
U and V in H, then U = V .

Proof. Indeed, under the above assumptions, (T (Fn −Gn))n∈N converges to
U − V , hence U = V by the closability condition. �
Next we define the domain of a closable operator.

Definition 9.8.3. Given a closable operator T : S → H, let Dom (T ) de-
note the space of functionals F for which there exists a sequence (Fn)n∈N

converging to F and such that (TFn)n∈N converges to G ∈ H.

It follows from Proposition 9.8.2 that the extension of T to Dom (T ) is well-
defined if T is closable, as in the following definition.

Definition 9.8.4. Given T : S → H a closable operator and F ∈ Dom (T ),
we let

TF = lim
n→∞TFn,

where (Fn)n∈N denotes any sequence converging to F and such that (TFn)n∈N

converges in H.



References

1. K. Aase, B. Øksendal, N. Privault, and J. Ubøe. White noise generalizations of
the Clark-Haussmann-Ocone theorem with application to mathematical finance.
Finance and Stochastics, 4(4):465–496, 2000.

2. S. Albeverio, A. Daletskii, and E. Lytvynov. De Rham cohomology of configu-
ration spaces with Poisson measure. J. Funct. Anal., 185(1):240–273, 2001.

3. S. Albeverio, Yu. G. Kondratiev, and M. Röckner. Analysis and geometry on
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58. C. Houdré, V. Pérez-Abreu, and A.S. Üstünel. Multiple Wiener-Itô integrals:
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62. Y. Hu, A.S. Üstünel, and M. Zakai. Tangent processes on Wiener space. J. Funct.
Anal., 192(1):234–270, 2002.

63. Z.Y. Huang and J.A. Yan. Introduction to infinite dimensional stochastic
analysis, volume 502 of Mathematics and its Applications. Kluwer Academic
Publishers, Dordrecht, 2000.

64. N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Pro-
cesses. North-Holland, 1989.



304 References

65. P. Imkeller. Malliavin’s Calculus and Applications in Stochastic Control and
Finance, volume 1 of IMPAN Lecture Notes. Polish Academy of Sciences, 2008.

66. Y. Ito. Generalized Poisson functionals. Probab. Theory Related Fields, 77:1–28,
1988.

67. J. Jacod and Ph. Protter. Probability essentials. Springer-Verlag, Berlin, 2000.
68. Y.M. Kabanov. On extended stochastic integrals. Theory of Probability and its

Applications, XX(4):710–722, 1975.
69. Y. El Khatib. Contributions to the study of discontinuous markets via the Malli-
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T. Lindstrøm, B. Øksendal, and A. S. Üstünel, editors, Proceedings of the Fourth
Oslo-Silivri Workshop on Stochastic Analysis, volume 8 of Stochastics Mono-
graphs, Oslo, 1993. Gordon and Breach.

92. D. Nualart. The Malliavin Calculus and Related Topics. Probability and its
Applications. Springer-Verlag, 1995.

93. D. Nualart and E. Pardoux. Stochastic calculus with anticipative integrands.
Probab. Theory Related Fields, 78:535–582, 1988.

94. D. Nualart and J. Vives. Anticipative calculus for the Poisson process based
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116. N. Privault, J.L. Solé, and J. Vives. Chaotic Kabanov formula for the Azéma
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152. M. Yor. Sur les intégrales stochastiques optionnelles et une suite remarquable
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