
Chapter 10

Time Series Analysis of Satellite Remote

Sensing Data for Monitoring Vegetation and

Landscape Dynamics of the Dried Sea Bottom

Adjacent to the Lower Amu Darya Delta

Rainer A. Ressl and René R. Colditz

Abstract The Aral Sea region is a rapidly transforming landscape due to the

continuous desiccation process. This study describes the vegetation and landscape

dynamics in the lower Amu Darya Delta and adjacent parts of the dried sea bottom

using MODIS (Moderate Resolution Imaging Spectroradiometer) surface reflec-

tance data and EVI time series for the years 2001–2011. The potential of MODIS

time series for monitoring landscape and vegetation dynamics of the dried sea

bottom adjacent to the lower Amu Darya Delta was evaluated concerning data

availability and spatial and temporal resolution. Two time series with different

quality considerations were generated to subsequently characterize the yearly

changes in the dried part of the sea bed, a simple layerstack (LS) of observations

and quality-filtered and smoothed time series using a double logistic function (DL).

The EVI (Enhanced Vegetation Index) values show a small dynamic inter- and

intra-annual range. The majority of the EVI values fluctuate between �0.2 and

þ0.1, which indicates generally low vegetation dynamics in the desiccated areas.

Looking at the inter-annual behavior of the LS/DL time series plots, the noise of the

data and data fluctuations seem to become less for areas which have been dry for a

longer period. A regional differentiation of the landscape dynamics between the

Eastern and the Western basin of the southern Aral Sea could be observed. The

observation points for the Western basin show a more stable behavior of the EVI

values in comparison to the samples on the Eastern basin as seasonal or inter-annual

flooding is less frequent. A typical pattern as a result of clear vegetation dynamics

could not be observed in the EVI, LS and DL time series plots.
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10.1 Introduction

Remote sensing time series have been widely used for land cover and land use

monitoring at different regional scales. The Advanced Very High Resolution

Radiometer (AVHRR) on board the TIROS-N and NOAA satellites has provided

coarse spatial resolution data since 1981 at different levels of processing (Kidwell

1991; Tucker et al. 2005). Since the end of the millennium additional monitoring

alternatives are available using data of the Sea-viewing Wide Field-of-view Sensor

(SeaWiFS), the Système Pour l’Observation de la Terre – Vegetacion (SPOT

VGT), Environmental Satellite’s (ENVISAT) Advanced Along Track Scanning

Radiometer (AATSR) and Medium Resolution Imaging Spectrometer (MERIS)

instruments as well as the Moderate resolution Imaging Spectroradiometer

(MODIS) on board the Terra (EOS-AM1) and Aqua (EOS- PM1). All systems

have a spatial resolution of 1 km except for MERIS with 300 m and MODIS with

bands of 250 and 500 m spatial resolution but more and better-calibrated bands than

AVHRR. The high temporal resolutions of these imaging sensors have shown to be

useful for describing the temporal dynamics of seasonal changes in vegetation and

land use (Hansen et al. 2000; Ginzburg et al. 2010).

Thenkabail et al. (2005) showed the usefulness of temporally continuous

MODIS data for land cover and land use classification in different river basins.

Ressl et al. (1996, 1998) have demonstrated the applicability of multi-temporal

AVHRR data to monitor and quantify the desiccation process of the Aral Sea and

subsequently the use of these data for crop phenology monitoring and crop water

consumption estimation. However, studies using this sensor were limited because

of the coarse spatial resolution, 1.1 km for local area coverage and 4 km for global

area coverage, and spectral resolution with only five bands. With the launch of the

Aqua and Terra-MODIS satellites essential improvements have been made

concerning the spatial and spectral resolution, the availability of the data and of

derived products in comparison with the NOAA-AVHRR satellite generations. The

instruments acquire each day since 2000 (Terra) and 2002 (Aqua) multiple images

over the study area and therefore provide a favorable data source for multi-temporal

studies and time series analysis. Their improved spatial resolution up to 250 m and

36 spectral bands allow for better product calibration and provide unique

opportunities for regional to global studies. The MODIS data processing system

operationally corrects for radiometric, geometric, and atmospheric issues and offers

a large suite of value-added and modeled products (Justice et al. 2002). In addition,

the facilitated access to data and to standardized products such as the Normalized

Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), Land

Surface Temperature (LST) and Leaf Area Index (LAI), etc. enabled an enhanced

monitoring of the desiccation process of the Aral Sea and associated changes and

landscape dynamics in the surrounding newly-formed dry lands (Micklin 2004,

2007).

Landsat TM data with 30 m spatial resolution and seven bands may seem to be

an interesting alternative but the small satellite swath width of only 180 km requires
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mosaicing of multiple passes and may result in only 2–3 cloud-free coverages per

year. Newer satellite constellations providing multiple satellites in orbit, such as the

Rapideye system (5 satellites) or the DMC multi-nation satellite constellation

combine high spatial resolution with a much more enhanced temporal resolution.

These constellations provide excellent optical data to monitor dynamic processes,

but are commercial systems.

Detailed studies concerning vegetation and landscape dynamics as well as the

botanical diversity of the deltaic plains in the lower Amu Darya River Delta were

carried out by Ptichnikov (2002) and Novikova (1996a, 1997) on the basis of

intensive field work but also using Landsat TM data to provide a synergistic view

of the ecological situation.

More recent studies in the Amu Darya Delta include the landscape dynamics,

ecosystem and crop monitoring studies of Loew et al. (2012) and Conrad

et al. (2007). The former applied multi-temporal MODIS time series of the years

2000, 2004 and 2008 to monitor landscape dynamics for these time intervals and the

latter to derive land cover and land use information and to quantify spatio-temporal

water use patterns.

The main goal of this study is to investigate the usefulness of non-commercial

satellite data time series to monitor general landscape dynamics of the recently

dried seabed of the Aral Sea and adjacent areas in the lower Amu Darya Delta.

In particular the worth of MODIS time series is evaluated and related to the

following issues:

• Qualitative analysis of the inter-annual development of the annually dried seabed

• Qualitative analysis of the intra-annual landscape dynamics using MODIS EVI

products

• Plant succession dynamics monitoring on newly dried seabed with respect to

different time series length (years)

• Analysis of data availability of MODIS time series with respect to data quality

10.2 Study Area

The southern Aral Sea region was selected as the study area to evaluate the

usefulness of MODIS satellite time series to monitor landscape dynamics and

plant succession states. The desiccation process of the Aral Sea is most prominent

in the lower Amu Darya Delta region adjacent to the southern extensions of the

remaining water bodies of the large Aral Sea, which can be divided into theWestern

and Eastern basin. Every year large extents of the former water body are exposed as

newly dry seabed. Numerous studies have documented this dynamic process

through satellite data (Ressl 1996; Micklin 2007) but few studies have investigated

the rate of plant succession and the general landscape dynamics on these very recent

dried-up seabed areas. Studies on areas, that have fallen dry since the early 1960s
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when the desiccation process started, are manifold. Novikova (1996b) provides an

extensive overview on landscape dynamics within these desiccated zones and on

plant succession states and their associated ecology in the lower Amu Darya Delta.

The landscape of the dry seabed is very diverse and usually presents a complex

mixture of sandy and saline soils. Plants actively colonize these slowly developing

ecosystems, where the basis for the plant colonization primarily consists of flora of

the Aral Sea terraces and the surrounding mainland of the Aral Sea. These highly

salt-tolerant halophytes show different strategies towards the regulation of the high

salt content of the solonchak soils.

The continuous process of the succession of the pioneer plants is an important

factor for the stabilization of soils. Due to the vast newly dried seabed of the

southern Aral Sea, every year large areas are exposed to the frequent strong

winds and storms in the region. Thus, this salt desert, occasionally also referred

to as the “Aralkum”, has become the main source for salt and dust storms in the last

decades threatening the health of the population living in the Amu Darya Delta. The

yearly estimates of the salt and dust load range from 40 to 150 million tons per year,

resulting in a major highly negative impact on the fertility of important agricultural

production sites (Glazovskiy 1990).

Reducing the desertification process and stabilizing the surface against wind

erosion is not an easy task. The natural process of plant colonization through

halophytes and xerophytes is slow and can last decades before becoming effective.

Phytomelioration has been increasingly discussed as a means to fight and reduce

desertification in the region. Widespread plantations of adapted desert vegetation,

such as the white and black saxaul (Haloxylon aphyllum) are appraised as favorable

to stabilize the desiccated seafloor. Studies on the natural process of plant succession

on the former seabed show that in the first years after drying, exogenic factors such

as geomorphological and edaphic processes are dominating the ecosystem and

landscape dynamics (Breckle et al. 2012).

10.3 Data and Preprocessing

In this study we employed the vegetation index product (MOD13Q1) with 250 m

spatial resolution and a compositing period of 16 days that is derived from Terra and

Aqua satellite data (Huete et al. 2002; Solano et al. 2010). Data were downloaded for

the period 2001–2011 from the Land Processes Distributed Active Archive Center

(LP DAAC). Besides several ancillary layers such as quality, and angular information

this product contains the Normalized Difference Vegetation Index (NDVI) and

Enhanced Vegetation Index (EVI). It should be noted that Terra and Aqua composites

are generated in phased production, i.e., the first composite of Terra uses the best

observation between January 1st and 16th and Aqua between January 9th and 24th.

Higher-level products such as MOD13 are offered in the form of a global grid where

the Aral Sea region is entirely located in tile h22v04. Data were transformed to the

Transverse Mercator projection centered at 60�E and WGS84 datum using the
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MODIS Reprojection Tool (MRT). For visual interpretation cloud-free daily surface

reflectance composites at 250 m spatial resolution were obtained for each year for

dates between mid-August and mid-September (Vermote et al. 2002; MOD09GQ).

10.4 Methods

10.4.1 Desiccation Range Definition

In order to apply MODIS data time series for the above-mentioned topics firstly the

yearly size of the Eastern and Western basins of the Aral Sea (both water bodies

together composing the large Aral Sea) had to be determined. In order to extract the

maximum dried area for each year, the minimum water extents of the water bodies

for each year were derived. The results are “desiccation fringes”, which represent

the extent of the maximum desiccation process between the 2 years. Time series

data of the last 11 years (2001–2011) were evaluated.

To derive the yearly minimum water extensions, so called “land-water masks”

were calculated on a yearly basis using cloud-free MODIS surface reflectance data

for the months of August and September, which usually reflect the smallest water

body size at the end of the summer season after the highest evaporation impact.

In addition, MODIS EVI products were used, because the water body can be better

distinguished due to the lower index values in comparison to land and vegetation.

Clear water bodies can usually be defined easily by this approach but the transition

zones between water and land are more difficult as a result of the mixed signal

between land and water. This is especially problematic for the Eastern basin due to

the very shallow characteristic of this water body with very small water depths. This

problem is less present in the Western basin due to a much steeper bathymetry and

therefore EVI threshold values could be defined more easily for the land-water

discrimination. Thus, a mixed approach was applied for the extraction of the water

body of the Eastern basin, where the transition zones were defined visually and

afterwards digitized manually complementing the masks for the deeper water bodies.

Secondly, after the derivation of the yearly water masks, four representative

ground points were visually selected along the shorelines of the Western and

Eastern basin within each annual desiccation fringe. Subsequently, these points

were characterized using MODIS data products and associated time series plots.

In order to provide a minimum 3 year observation period for the dried seabed, 2008

was selected as the final year.
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10.4.2 Time Series Generation

A time series is a temporally ordered sequence of observations, commonly sampled

at discrete intervals (Chatfield 2004). In remote sensing there are three broad

categories of time series generation approaches: stacking, filtering and quality

analysis with interpolation (Colditz et al. 2008a). The simplest approach stacks a

number of co-registered satellite images. Since the Earth surface is often obscured

by clouds and other atmospheric constituents or images have missing data, a

number of images are used to form a composite using rules such as the maximum

value (Holben 1986; Roy 2000) and the observation closest to nadir (Huete

et al. 2002). In fact, since the early 1980s maximum value compositing has been

used for time series generation of NOAA-AVHRR data. Techniques needed to be

developed for cross-calibration between AVHRR satellites (Tucker et al. 2005).

Filtering aims at eliminating remaining clouds and smoothing the time series.

Common approaches include Harmonic Analysis for Time Series (HANTS,

Roerink et al. 2000), an iterative approach that compares the original to a smoothed

time series obtained by Fourier transformation and eliminates observations lower

than a user-defined threshold, and Timesat (Jönsson and Eklundh 2004) that

smoothes time series by Savitzky-Golay filtering, and Asymmetric Gaussian and

Double logistic functions.

More recent sensor data and processing chains to derive value-added products,

e.g. for MODIS, provide additional detailed information on the quality of each

observation. The Quality Assessment Science Data Set (QA-SDS) indicates for

each pixel the information about cloudiness, general processing state and other

product-specific limitations (Roy et al. 2002). The Time Series Generator (TiSeG)

analyzes the QA-SDS for all land products and calculates data availability indices

according to user-defined quality specifications (Colditz et al. 2008a). The user may

choose from a number of generic temporal interpolation methods or flag pixels with

low data quality.

Time series of NDVI and EVI were generated combining TiSeG (version 1.3,

Colditz et al. 2008a) and Timesat (version 3.1 beta, Jönsson and Eklundh 2004).

Eight-day time series (2003–2011) were produced assuming alternation between

16-day composites of Terra and Aqua. Although alternation is not necessarily

given, the potential error only relates to time translation but not amplitude and

only the latter is of importance in this study. Two time series of different quality

were generated: a simple stack of observations without data quality analysis and

filtering (in the following denoted as layerstack, LS) and a filtered time series

excluding pixels obscured by clouds or shadow with TiSeG and smoothed by a

double logistic function in Timesat (in the following abbreviated with DL). Timesat

was used with the following parameters: (1) median filter spike method with value

2, (2) forcing to one season, and (3) three iterations for upper envelope fitting with

adaption strength 2. LS and DL time series for the years 2001 and 2002, when only

Terra data were available, were produced apart from the combined Terra/Aqua time
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series. The resulting 16-day composite time series was linearly interpolated to

match the 8-day intervals to simplify further analysis.

10.5 Results and Discussion

10.5.1 Data Quality and Availability for Time Series
Generation

Several studies have highlighted the use of MODIS quality information (Roy

et al. 2002; Neteler 2005; Lunetta et al. 2006; Gao et al. 2008). Colditz

et al. (2008a) compared various quality specifications and concluded that a strict

quality (excluding many observations) may not be able to retain general time series

characteristics due to an insufficient number of valid observations for temporal

interpolation. A comparison between MODIS data versions (collections) concluded

that using the current MODIS collection together with the pixel-level data quality

information yields better and temporally more stable time series than the previous

data collection (Colditz et al. 2008b). More automated time series generation

techniques using MODIS quality information have been recently proposed for the

vegetation index (VI, Colditz et al. 2011) and leaf area index (LAI, Gao et al. 2008;

Yuan et al. 2011).

However, the applied quality specifications for the DL time series excluding

only clouds and shadow are lenient in comparison to many other studies using

MODIS vegetation index data. Colditz et al. (2008a) recommended that at least

clouds, snow/ice and shadow should be excluded for time series over central

Europe. Other studies are based on the usefulness index (UI, Lunetta et al. 2006;

Colditz et al. 2006, 2011), a score that is derived from more detailed quality and

angular information (Solano et al. 2010). Clouds (3) and shadow (2) combine a

score of 5, equal to UI Intermediate or below (in case there are further quality

issues), that is considered lenient (Colditz et al. 2008a) and only meaningful for

areas with substantial quality issues such as tropical Africa (Colditz et al. 2006).

Lunetta et al. (2006), for instance suggest using only observations of UI acceptable

(maximum score 3) for the eastern United States. Although the study site is located

in a dry region with mostly cloud-free observations throughout the summer months

and comparatively little cloudiness during winter, there are substantial quality

issues that are related to the spectral thresholds to define low data quality. Even

though substantially improved, e.g. by a new backup algorithm for the EVI over

high reflectance surfaces in the most recent data collection (Didan and Huete 2006;

Colditz et al. 2008b; Solano et al. 2010), the algorithms still flag very flat specular

surfaces, in particular if there is a salt crust that is often misinterpreted as snow and

ice. Specular surfaces reflect radiation like a mirror if incoming and outgoing angles

are similar. Water surfaces, on the other hand may be confused with shadow, if

located close to a detected cloud.
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Figure 10.1 depicts the proportion of invalid pixels spatially and temporally and

compares two quality specifications: quality analysis QA1 excludes clouds and

shadow and was used to generate the DL time series and QA2 excludes in addition a

UI below fair (score 4) and pixels detected as snow and ice and thus is a typical

setting for mid-latitudinal regions (Colditz et al. 2008a; Lunetta et al. 2006).

Spatially, the comparison shows a much wider distribution of invalid pixels for

QA2, in particular over water surfaces but also for desiccated areas of the Eastern

basin and the developing Aralkum desert. The Amu Darya Delta region in the

southern portion to the former coastline of the year 1960 shows relatively few

invalid pixels also for the QA2 setting. The temporal plot illustrates that less data

are available during the winter months (composite 37 to 11, corresponds to the end

of October until the end of March). That coincides with the period of increased

cloud cover. Setting QA2 more strictly shows higher proportions of invalid pixels

during wintertime, also flagging existing ice on the Aral Sea as well as thin snow

cover on the land. Still, the area proportion and length, especially for potential snow

on the land, is clearly exaggerated.

An issue in time series generation is the length of the data gap to be interpolated

(Colditz et al. 2008a, 2011). Although the period of invalid data between QA1 and

QA2 seems similarly long, the temporal gap for QA1 is shorter for many pixels

because short peaks up to 35 % invalid data soon drop below the 20 % threshold in

Fig. 10.1 Number of invalid pixels in space and time for two quality specifications (Note: QA1

excludes pixels that were identified as cloud and shadow. In addition QA2 excludes pixels flagged

as snow/ice and with a usefulness index below fair (score 4))
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wintertime. This pattern is even better illustrated by the maximum gap statistic that

measures the longest consecutive gap of data and therefore is a useful measure for

the capability to interpolate data temporally. For time series filtered with QA1,

80 % of the data can be processed with a maximum gap of 6 composites (48 days).

Similar measures for QA2 yield a maximum gap of 19 (152 days), that is the entire

winter period as described above. The longest gaps are located in the inundating and

desiccating areas of the Eastern and Western basin and the adjacent Aralkum desert

and less in the permanent water bodies.

10.5.2 Regional Landscape Dynamics as a Consequence
of Desiccation

Figure 10.2 illustrates the water body dynamics within the observed period

2001–2011. The colored lines represent the minimum extent of the water bodies

during each year within the observation period. Clearly the general retreat of both

water bodies can be observed as a consequence of the desiccation process. This

trend is most obvious in the Eastern basin of the southern Aral Sea but is also

observed along the eastern shoreline of the Western basin. Up to the year 2009 a

general decline of the water surface can be documented. Seasonal water surface

fluctuations can be significant and therefore the yearly documented desiccation

refers to the maximum area between the minimum water extent of that year and the

year before. The ranges of the desiccation fringe show a great variance, which is

basically a function of micro-topography/bathymetry and available water inflow as

potential evaporation does not change significantly over the years. Water availabil-

ity is mainly determined by groundwater inflow (fairly constant), precipitation and

surface runoff. The latter shows the largest intra-annual fluctuations, as principally

affected by Amu Darya discharge, irrigation drainage water return flows from

agricultural fields and water received by outflow from the North Aral Sea.

The dynamic of the desiccation process is generally high although less prominent

in certain years such as the years 2002/2003 and 2003/2004. Nevertheless intra-annual

changes in water body extent may be substantial as mentioned before and the yearly

desiccation fringe may not be the result of a linear process but can also be affected by

temporary flooding. The areas of the southern-most extension of the Eastern basin

seem to show the highest landscape dynamics with respect to alternation of flooding

and drying. The already dried seabed of the years prior to 2001 and 2002 were

substantially flooded during the years 2003, 2004, 2005 and even 2010. The large

flooding extensions of varyingmagnitude towards the southmight also be the result of

the changing topography and anthropogenic activities besides the yearly differences

in hydrology. These flood events on the already dried seabed of different temporal

length have consequences on the plant colonization process in these areas and on the

growth dynamics of the sparse vegetation in general.

In the year 2009 for the first time a nearly complete temporary drying up of the

Eastern basin water body was observed. On the other hand, in the following year of
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2010 the same water body of the Aral Sea showed a dramatic increase in surface

size, resulting in a non-permanent flooding of large areas of seabed that dried up in

earlier years. This year (2010) seems to show a rupture of the general desiccation

trend. The Western basin in 2010, nevertheless, shows the smallest surface extent

for the observation period, which was even less than the following year of 2011. It

may be reasonable to conclude that this effect of the opposite desiccation dynamics

of the two water bodies is caused by an exceptional discharge of the Amu Darya to

the Eastern basin as a consequence of high precipitation during the winter month

resulting in a strongly fluctuating hydrology (Breckle and Wucherer 2011).

To characterize these inter- and intra-annual changes concerning temporary

flooding and potential vegetation dynamics, temporal profiles of the time series

data of four annually selected observation points were analyzed. Figure 10.1 shows

the distribution of these points within each desiccation fringe with the respective

color of the shoreline of each individual year (minimum water extent).

10.5.3 Vegetation Index and Time Series for
Landscape Dynamics

A vegetation index is a ratio between two or more spectral bands. In remote sensing

the visual red and the near infrared bands are used to enhance vegetation patterns

because of their high contrast with absorption due to plant pigments (chlorophyll a)

Fig. 10.2 Study area of southern Aral Sea with Western and Eastern basin (Note: The lines

indicate the minimumwater surface area derived fromMODIS surface reflectance images between

mid August and mid September for the respective years (color). The sample locations are indicated

for each year (color) and site (shape). The image in the background shows the near infrared surface

reflectance of September 15th 2011)
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in the visual red band but reflection in the near infrared (Jensen 2007). A vegetation

index such as the widely used Normalized Difference Vegetation Index (NDVI) is

calculated by dividing the difference between the near infrared and the red band by

the sum of both bands (Tucker 1979). The enhanced vegetation index also includes

the blue band and soil correction factors to compensate for atmospheric

disturbances and soil background (Huete et al. 2002). Normalization ensures that

the index ranges between �1 and 1. In practice NDVI and the more recently

developed EVI range between �0.2 and values close to 1. A negative vegetation

index value can be observed over deep water with low sediment content and no

aquatic vegetation. Bare soil shows slightly positive vegetation index values

(0–0.1). Vegetation index values increase with increasing density of green,

photosynthetically-active, healthy vegetation. Very high vegetation index values

(0.8–1) may be measured over tropical regions, and in particular the NDVI begins

to saturate.

Thus vegetation indices have a non-linear relationship to biophysical variables

such as the Leaf Area Index or LAI (Myneni et al. 1997) and biomass (van der Meer

et al. 2000). This saturation for high-biomass and very dense vegetation is

compensated in the EVI that may show highest values of 0.7–0.8 but still with a

non-linear relationship to biophysical variables. Besides, the EVI has been signifi-

cantly improved in the most recent MODIS data collection. For surfaces such as

snow and ice but also salt crusts, there is a high reflectance in the blue band that

causes atmospheric over-correction (Didan and Huete 2006). Instead of using the

Soil Adjusted Vegetation Index (SAVI) as in previous collections, MODIS collec-

tion 5 data employ a 2-band EVI (excluding the blue band), also known as EVI2

(Jiang et al. 2008). This was the main reason for presenting plots of the EVI instead

of the NDVI in this study. However, plots of the NDVI show very similar ranges

and only a few differences in the temporal course over the years.

The EVI DL and LS time series data plots were analyzed to illustrate the

usefulness of MODIS time series to describe dynamic processes in the desiccated

areas. The main interest was to investigate if the rather small vegetation dynamics

on the newly dried seabed can be detected by the spectral sensitivity of the sensor.

The assumption was that early plant succession on the newly desiccated areas might

increase EVI values slightly over the years, which should be reflected in the time

series. The natural process of plant colonization through halophytes and xerophytes

is slow and our interest was to examine if an 11 year observation period would be

sufficient to pick up any plant colonization trends over the entire period and if any

intra-annual changes could be observed. The high temporal resolution of the

MODIS sensor was expected to compensate to some degree for the lower spatial

resolution in comparison to other imaging sensors. On the other hand, it could be

hypothesized that the sparse vegetation would only result in small inter-annual

changes in the EVI values and therefore in limited LS and DL time series value

ranges. Additionally it could be supposed that the time series might eventually be

noisy, as the landscape dynamics is rather high, especially along the Eastern basin

due to the high inter annual fluctuations of the water extent between summer and

winter months. As described above, eventually this results in temporary flooding of
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the already dried seabed, which alters the EVI signal. It could be expected that the

selected observation points along the shorelines within each yearly desiccation

fringe could be affected by these inter annual changes, thus reflecting an associated

yearly landscape dynamic.

10.5.4 General Description of Time Series and Trends

The graphs in Figs. 10.3 and 10.4 depict the EVI time series over 11 years of

analysis (2001–2011). Each plot shows four samples (observation points) that dried

in that year in comparison to the year before (for their spatial location see Fig. 10.1),

except for the samples of 2001 that may have been dry for several years. For each

year the samples were carefully selected at the southeastern shore of the Western

basin (squares in Fig. 10.1, blue line in Figs. 10.3 and 10.4), the western shore of the

Eastern basin (circles, red line), the Amu Darya Delta (triangles, green line), and

the eastern shore of the Eastern basin (pentagons, orange line). The red bar at the

bottom of each graph indicates the period of seabed drying for samples of that year,

i.e. EVI, 2003 in Figs. 10.3 and 10.4 show the plots of samples that fell dry between

2002 and 2003 (minimum water extents in Fig. 10.2), thus the bar begins in 2003.

Samples may inundate again in following years (not indicated by the red bars), as

described before. Figure 10.3 presents the layerstack (LS) compared to Fig. 10.4

that shows the quality-filtered and smoothed double logistic time series (DL).

Before analyzing the plotted time series of Figs. 10.3 and 10.4, one should

consider the very small dynamic range of the vegetation index (EVI) that, with a

few exceptions, only varies between �0.2 and 0.1. Effectively, that describes the

difference between water surfaces and barren land and thus highlights the landscape

dynamics between advancing and retreating sea levels on an intra- and inter-annual

temporal scale. Only one profile in 2001, sampled in the Amu Darya Delta,

increased well above 0.2 (in DL up to 0.35 for the end of 2005 and with plateaus

of 0.25 for the end of 2007 and 2008), that could be interpreted as a typical

vegetation signal.

In comparison to the smooth curves of the DL time series the LS EVI plots show

much noisier patterns with frequent positive and negative peaks with an EVI around

0. However, in relation to the potential range of the EVI (for MODIS the valid range

is between �0.2 and 1) the variability is still small. On the contrary, some features

that are visible in the LS disappear in the DL time series, e.g., some decreases of the

EVI below 0 for the plot of EVI samples of 2006, 2007 and 2008 and in particular

for the end of the year such as for samples of 2002 and the transition between 2003

and 2004. In the DL time series data were filtered for low quality, which mainly

occurs during wintertime (see plot in Fig. 10.1). Applying low weights to those

composites for a longer data gap paired with the strong smoothing characteristic of

the double logistic function causes the DL plot to remain constant, although in

reality the pixel should represent water as indicated by a slightly negative EVI.

Potentially a more local smoothing function, e.g., a local box-car filter could have
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Fig. 10.3 Layerstack (LS) of EVI for samples collected in desiccation fringes of each year (see

Fig. 10.2)

10 Time Series Analysis of Satellite Remote Sensing Data for Monitoring. . . 265



resolved this issue, but initial tests using a localized Savitzky-Golay filter of

Timesat (Jönsson and Eklundh 2004) did not show satisfying results. In many

other cases the DL function decreases for a short period, depending on available

Fig. 10.4 Double logistic (DL) time series of EVI for samples collected in desiccation fringes of

each year (see Fig. 10.2)
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vertexes for modeling during that period. Therefore the result of DL time series

depends on the local temporal data availability by quality-filtered data and the

generalization that was applied by a smoothing algorithm. Thus, the LS and DL

time series have to be used together for the interpretation of landscape dynamics

and desiccation patterns in the Aral Sea region.

A second feature is the displacement of EVI profiles between the end of 2002

and the beginning of 2003 for the DL time series. It should be noted that 2001 and

2002, when only Terra data were available, was processed apart from the period

2003 to 2011 with combined Terra/Aqua data. Although the year at the beginning

and end of the time series were doubled to improve the stability at the temporal

extremes of the time series (Jönsson and Eklundh 2004), also known as shouldering

(Colditz et al. 2008a), fewer available data and a lack of overlap with the next actual

year caused differences in curve fitting of the more global double logistic fitting

function. However, the discontinuity in the time series is small and in most cases

much less than 0.05.

A generalized analysis of plots over all years indicates a slightly positive slope.

In fact, not a single slope showed a negative sign, albeit the increase is small. For

instance the DL time series of the Western basin for the sample of 2007 shows a

slope of 0.000121. The comparison of slopes between LS and DL time series shows

almost constantly higher slopes for LS. This pattern is not surprising because many

spikes were removed in the DL time series that generally were negative for the

years 2001–2005 and became more positive for the period 2006–2011. Still, this

pattern of declines for the earlier years and peaks for the later years during the

winter period is notable in all time series. For instance the EVI samples of 2004

depict drops in the DL and a generally noisy pattern in LS time series for the period

2001–2004. The years 2005–2007 show less clear patterns in the DL but the LS also

depicts a decreasing annual variability with a general tendency for increasing EVI

values. For 2007 onwards most curves show more positive values during winter

than for the rest of the year in DL and also in the LS time series (the exception is the

west shore of the Eastern basin in 2010). The explanation of this pattern could be

the permanent or frequent inundations of the sample points during the high water

extents in the winter period, which causes the drop of EVI values (period

2001–2004). Although the sample became dry in 2004 in the minimum sea level

mask, it may have inundated due to seasonal variations in 2005 and 2006 for shorter

periods that were hardly detected by the DL time series but can still be noted by

decreasing noise in the LS. With a longer distance from varying water levels the

EVI shows a more steady soil signal (EVI between 0 and 0.1).

10.5.5 Particular Features in the Time Series

Despite the generally low dynamic range of the DL and LS time series several

interesting features in the individual time plots can be observed. As already

mentioned above there was an unusual flooding of the Eastern basin of the Aral
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Sea in 2010 resulting in a large extension of the water body southward toward the

Amu Darya Delta. This flooding mostly affected the central part of the Eastern

basin and to a lesser degree the eastern and western shores and even reached the

southern extent of the desiccation fringe of 2001. This effect can be seen in the EVI

2001 LS and DL time series plot within the portion for 2010. Clearly a steep decline

of the EVI between the composites 17 and 41 (equivalent to the period between

early May and mid November) of the year 2010 can be observed. In 2011 the EVI

reaches rapidly positive values again throughout the year, which indicates the

retreat of the exceptional flooding of the year 2010. The observation points of the

years 2002, 2003, 2004 and 2005 appear to be less affected, some actually never

reach negative EVI values, which seems to be consistent with their location as

almost all points were only disturbed slightly during the maximum size increase of

the water body or are located in the margins of the flooding zones. The observation

points of the years of 2006, 2007 and 2008 nevertheless have been heavily affected

by the flooding, which is also clearly reflected in the LS time series plot by a

significant decline of the EVI values of these years in the summer month of 2010.

Similar plot behavior can be observed at the observation points on the west shore of

the Eastern basin, where the EVI drops to negative values in the years 2004, 2005,

2007 and 2008, but with a notable shift towards the beginning of the year. This may

be explained by a larger flood extension towards the western part of the basin during

the winter months.

The observation points collected at the Western basin show a different pattern in

most plots. With the exception of samples from 2003, the samples hardly ever drop

to values below 0 and show a steady curve with comparatively little variation also

in the LS. The reason is the steeper gradient in topography in comparison to the

Eastern basin. Once the samples became dry they are unlikely to inundate once

again because of the steadily decreasing water level. The higher gradient of the

shoreline makes it also less likely that seasonal water level changes can periodically

or episodically flood samples taken at a higher level.

Looking at the intra-annual yearly dynamic of the DL time series, no significant

peaks can be determined which could be related to the phenological activity of the

sparse halophytic and xerophytic vegetation. Most likely is that early plant coloni-

zation during the observation period is not sufficiently dense to alter the EVI in a

substantial way towards positive values. In other words, the MODIS signal in the

desiccation fringes seems to be consistently dominated by the dry and sandy soils

and salt crusts, which does not seem to change in a meaningful way even over the

entire 11-year observation period. Even though plant colonization may progress

over this time period, the MODIS signal appears not to pick up any associated

changes concerning vegetation density or phenology.

Small changes towards the end of each year during the winter months may be

observed in the EVI DL time series plots, but is less obvious in the observation

points in the Amu Darya Delta. These small “peaks” at the end of the year seem to

be surprising and cannot logically be related to a higher vegetation activity during

these months.
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10.6 Conclusions

MODIS time series data were analyzed for the Aral Sea and adjacent Amu Darya

Delta for the years 2001–2011. The main interest was to evaluate the usefulness of

MODIS surface reflectance data as well as 16-day EVI composites (linearly

interpolated to 8-day intervals using phased Terra/Aqua production) for

documenting the desiccation process in the Eastern and Western basin of the

southern Aral Sea and potential vegetation dynamics. For each dried fringe four

observation points were selected to describe the general desiccation trend as well as

associated landscape and vegetation dynamics.

MODIS time series data have proven to be an excellent information source for

analyzing the yearly desiccation process and for the discrimination of yearly newly

dried seabed. As the water bodies of the southern Aral Sea show large inter- and

intra-annual fluctuations, multi-temporal satellite data and products with a high

temporal resolution are needed to quantify these dynamic processes. Through the

combination of Terra/Aqua MODIS data, sufficient time series information can be

provided to describe the water and landscape dynamics, although data has to be

filtered and selected concerning quality. Very lenient quality parameters were

chosen that only excluded clouds and shadows due to particular conditions on

and around the Aral Sea with ice on the water, episodic snow cover during

wintertime and salt flats that are spectrally similar to ice and snow and thus

erroneously flagged by automated MODIS quality assessment algorithms.

Otherwise, commonly used moderate quality specifications that also exclude

snow and ice would have yielded unsatisfying results with respect to the potential

to temporally interpolate data gaps.

The resulting EVI time series were subsequently analyzed using DL and LS

plots. The DL time series provide smoother trends in comparison to the LS time

series, which facilitates interpretation of the data series but may not provide the

same detail as the LS time series, which on the other hand are significantly noisier.

The general desiccation trend can be interpreted in both time series types. Overall,

this landscape dynamic is reflected more clearly at the observation points in the

desiccation fringes of the Western basin in comparison to the Eastern basin. This is

due to the fact that inter- and intra-annual water body fluctuations are less frequent

in the Western basin. More interestingly, particular events such as the prominent

flooding of the year 2010 could be identified quite well in the time series plots

including the impact of this flood on various observation points of the different

years.

MODIS time series data nevertheless showed very limited use to describe

vegetation dynamics on the newly desiccated areas over the 11-year observation

period. Although a consistent and slightly positive trend of the EVI values was

found, this tendency is not obvious enough to relate it to plant colonization

activities. In addition no typical intra-annual plant phenology activity could be

identified from the time series plots. This may be due to the fact that plant

colonization is too slow and scarce within the observation period. Furthermore,
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the high inter- and intra-annual dynamics of the water bodies, in particular of the

Eastern basin of the Aral Sea, complicates plant colonization and growth, as pioneer

species need to withstand repeated partial flooding by highly salinized water in

addition to surviving the other harsh environmental conditions.

Finally, the MODIS sensor is not sufficiently sensitive to pick up small changes

caused by the sparse vegetation as bare soil and sands dominate the signal. Longer

observation periods may result in better outcomes as the vegetation density may

increase with time. In order to compensate for this limitation, time series of satellite

data with higher spatial resolution need to be applied to identify small regional

changes and dynamics such as early plant colonization on the desiccation fringes.

Future studies with recently launched and upcoming satellite missions such as

Rapideye, DMC, Sentinel-2 (ESA, launch 2014), Landsat-8 (launch 2013) will

include the analysis of higher spatial resolution satellite data, to examine if partial

plant colonization can be detected within the desiccation fringes of newly dried

seabed. These systems will overcome limitations in spatial resolution of MODIS

and will enhance the monitoring of landscape dynamics in general and plant

succession dynamics in particular within the Amu Darya Delta and the Aral Sea

region.
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