
Toward a Catalogue of Architectural Bad Smells

Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic

University of Southern California, Los Angeles, CA, USA
{joshuaga,dpopescu,gedwards,neno}@usc.edu

Abstract. An architectural bad smell is a commonly (although not al-
ways intentionally) used set of architectural design decisions that neg-
atively impacts system lifecycle properties, such as understandability,
testability, extensibility, and reusability. In our previous short paper, we
introduced the notion of architectural bad smells and outlined a few com-
mon smells. In this paper, we significantly expand upon that work. In
particular, we describe in detail four representative architectural smells
that emerged from reverse-engineering and re-engineering two large in-
dustrial systems and from our search through case studies in research
literature. For each of the four architectural smells, we provide illustra-
tive examples and demonstrate the smell’s impact on system lifecycle
properties. Our experiences indicate the need to identify and catalog ar-
chitectural smells so that software architects can discover and eliminate
them from system designs.

1 Introduction

As the cost of developing software increases, so does the incentive to evolve and
adapt existing systems to meet new requirements, rather than building entirely
new systems. Today, it is not uncommon for a software application family to be
maintained and upgraded over a span of five years, ten years, or longer. However,
in order to successfully modify a legacy application to support new functionality,
run on new platforms, or integrate with new systems, evolution must be carefully
managed and executed. Frequently, it is necessary to refactor [1], or restructure
the design of a system, so that new requirements can be supported in an efficient
and reliable manner.

The most commonly used way to determine how to refactor is to identify
code bad smells [2] [1]. Code smells are implementation structures that neg-
atively affect system lifecycle properties, such as understandability, testability,
extensibility, and reusability; that is, code smells ultimately result in maintain-
ability problems. Common examples of code smells include very long param-
eter lists and duplicated code (i.e., clones). Code smells are defined in terms
of implementation-level constructs, such as methods, classes, parameters, and
statements. Consequently, refactoring methods to correct code smells also oper-
ate at the implementation level (e.g., moving a method from one class to another,
adding a new class, or altering the class inheritance hierarchy).

While detection and correction of code smells is one way to improve system
maintainability, some maintainability issues originate from poor use of software

R. Mirandola, I. Gorton, and C. Hofmeister (Eds.): QoSA 2009, LNCS 5581, pp. 146–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Toward a Catalogue of Architectural Bad Smells 147

architecture-level abstractions — components, connectors, styles, and so on —
rather than implementation constructs. In our previous work [3], we introduced
the notion of architectural bad smells and identified four representative smells.
Architectural bad smells are combinations of architectural constructs that induce
reductions in system maintainability. Architectural smells are analogous to code
smells because they both represent common “solutions” that are not necessarily
faulty or errant, but still negatively impact software quality. In this paper, we
expand upon the four smells identified in our previous work by describing them
in detail and illustrating their occurence in case studies from research literature
and our own architectural recovery [4] [5] and industrial maintenance efforts.

The remainder of this paper is organized as follows. Section 2 explains the
characteristics and significance of architectural smells. Section 3 summarizes re-
search efforts in related topics. Section 4 introduces two long-term software main-
tenance efforts on industrial systems and case studies from research literature
that we use to illustrate our four representative architectural smells. Section 5
describes our four architectural smells in detail, and illustrates the impact of
each smell through concrete examples drawn from the systems mentioned in
Section 4. Finally, Section 6 provides closing discussion and insights.

2 Definition

In this section, we define what constitutes an architectural smell and discuss the
important properties of architectural smells.

We define a software system’s architecture as “the set of principal design
decisions governing a system” [6]. The system stakeholders determine which
aspects are deemed to be “principal.” In practice, this usually includes (but is
not limited to) how the system is organized into subsystems and components,
how functionality is allocated to components, and how components interact with
each other and their execution environment.

The term architectural smell was originally used in [7]. The authors of [7] de-
fine an architectural smell as a bad smell, an indication of an underlying problem,
that occurs at a higher level of a system’s granularity than a code smell. How-
ever, we found that this definition of architectural smell does not recognize that
both code and architectural smells specifically affect lifecycle qualities, not just
any system quality. Therefore, we define architectural smells as a commonly used
architectural decision that negatively impacts system lifecycle qualities. Archi-
tectural smells may be caused by applying a design solution in an inappropriate
context, mixing combinations of design abstractions that have undesirable emer-
gent behaviors, or applying design abstractions at the wrong level of granularity.
Architectural smells must affect lifecycle properties, such as understandability,
testability, extensibility, and reusability, but they may also have harmful side
effects on other quality properties like performance and reliability. Architectural
smells are remedied by altering the internal structure of the system and the be-
haviors of internal system elements without changing the external behavior of
the system. Besides defining architectural smells explicitly in terms of lifecycle



148 J. Garcia et al.

properties, we extend, in three ways, the definition of architectural smell found
in [7].

Our first extension to the definition is our explicit capture of architectural
smells as design instances that are independent from the engineering processes
that created the design. That is, human organizations and processes are orthog-
onal to the definition and impact of a specific architectural smell. In practical
terms, this means that the detection and correction of architectural smells is not
dependent on an understanding of the history of a software system. For example,
an independent analyst should be able to audit a documented architecture and
indicate possible smells without knowing about the development organization,
management, or processes.

For our second extension to the definition, we do not differentiate between
architectural smells that are part of an intended design (e.g., a set of UML
specifications for a system that has not yet been built) as opposed to an imple-
mented design (e.g., the implicit architecture of an executing system). Further-
more, we do not consider the non-conformance of an implemented architecture
to an intended architecture, by itself, to be an architectural smell because an
implemented architecture may improve maintainability by violating its intended
design. For example, it is possible for an intended architecture of a system to
include poor design elements, while the (non-conforming) implemented architec-
ture replaces those elements with better solutions.

For our last extension, we attempt to facilitate the detection of architectural
smells through specific, concrete definitions captured in terms of standard ar-
chitectural building blocks — components, connectors, interfaces, and configu-
rations. Increasingly, software engineers reason about their systems in terms of
these concepts [8,6], so in order to be readily applicable and maximally effec-
tive, our architectural smell definitions similarly utilize these abstractions (see
Section 5). The definition in [7] does not utilize explicit architectural interfaces
or first-class connectors in their smells.

In many contexts, a design that exhibits a smell will be justified by other
concerns. Architectural smells always involve a trade-off between different prop-
erties, and the system architects must determine whether action to correct the
smell will result in a net benefit. Furthermore, refactoring to reduce or eliminate
an architectural smell may involve risk and almost always requires investment
of developer effort.

3 Related Work

In this section, we provide an overview of four topics that are directly related to
architectural smells: code smells, architectural antipatterns, architectural mis-
matches, and defects.

The term code smells was introduced by Beck and Fowler [2] for code struc-
tures that intuitively appear as bad solutions and indicate possibilities for code
improvements. For most code smells, refactoring solutions that result in higher
quality software are known. Although bad smells were originally based on sub-
jective intuitions of bad code practice, recent work has developed ways to detect



Toward a Catalogue of Architectural Bad Smells 149

code smells based on metrics [9] and has investigated the impact of bad smells
using historical information [10]. As noted in Section 1, code smells only apply
to implementation issues (e.g., a class with too many or too few methods), and
do not guide software architects towards higher-level design improvements.

Closely related to code smells are antipatterns [11]. An antipattern describes
a recurring situation that has a negative impact on a software project. Antipat-
terns include wide-ranging concerns related to project management, architecture,
and development, and generally indicate organizational and process difficulties
(e.g., design-by-committee) rather than design problems. Architectural smells,
on the other hand, focus on design problems that are independent of process
and organizational concerns, and concretely address the internal structure and
behavior of systems. The general definition of antipatterns allows both code
and architectural smells to be classified as antipatterns. However, antipatterns
that specifically pertain to architectural issues typically capture the causes and
characteristics of poor design from a system-wide viewpoint (e.g., stove-piped
systems). Therefore, not all architectural antipatterns are defined in terms of
standard architectural building blocks (e.g., vendor lock-in). Defining architec-
tural smells in terms of standard architectural building blocks makes it possi-
ble to audit documented or recovered architecture for possible smells without
needing to understand the history of a software system. Furthermore, architec-
tural antipatterns can negatively affect any system quality, while architectural
smells must affect lifecycle properties.

Another concept similar to architectural smells is architectural mismatch [12].
Architectural mismatch is the set of conflicting assumptions architectural ele-
ments may make about the system in which they are used. In turn, these con-
flicting assumptions may prevent the integration of an architectural element
into a system. Work conducted in [13] and [14] has resulted in a set of concep-
tual features used to define architectural designs in order to detect architectural
mismatch. While instructive to our work, architectural mismatch research has
focused heavily on the functional properties of a system without considering the
effects on lifecycle properties.

Finally, defects are similar to architectural smells. A defect is a manifestation
of an error in a system [15]. An error is a mental mistake made by a designer
or developer [15]. In other words, a defect is an error that is manifested in
either a requirements, design, or implemented system that is undesired or unin-
tended [16]. Defects are never desirable in a software system, while smells may
be desirable if a designer or developer prefers the reduction in certain lifecycle
properties for a gain in other properties, such as performance.

4 Systems under Discussion

Our experience with two long-term software projects brought us to the realiza-
tion that some commonly-used design structures adversely affect system main-
tainability. In this section, we introduce these projects by summarizing their
context and objectives. Later in the paper, we utilize specific examples from
these projects to illustrate the impact of architectural bad smells.



150 J. Garcia et al.

Maintenance of large-scale software systems includes both architectural re-
covery and refactoring activities. Architectural recovery is necessary when a
system’s conceptual architecture is unknown or undocumented. Architectural
refactoring is required when a system’s architecture is determined to be unsatis-
factory and must be altered. We discovered architectural bad smells during both
an architectural recovery effort (summarized in Section 4.1) and an architectural
refactoring effort (summarized in Section 4.2). To substantiate our observations,
we found further examples of architectural bad smells that appear in recovery
and refactoring efforts published in the research literature.

4.1 Grid Architecture Recovery

An extensive study of grid system [17] implementations contributed to our collec-
tion and insights of architectural smells. Grid technologies allow heterogeneous
organizations to solve complex problems using shared computing resources. Four
years ago, we conducted a pilot study [18] in which we extracted and studied
the architecture of five widely-used grid technologies and compared their ar-
chitectures to the published grid reference architecture [17]. We subsequently
completed a more comprehensive grid architecture recovery project and recently
published a report [5] on the architectures of eighteen grid technologies, includ-
ing a new reference architecture for the grid. The examined grid systems were
developed in C, C++, or Java and contained up to 2.2 million SLOC (Source
Lines of Code). Many of these systems included similar design elements that
have a negative effect on quality properties.

Figure 1 shows the identified reference architecture for the grid. A grid sys-
tem is composed of four subsystem types: Application, Collective, Resource, and

Fig. 1. Structural View of the Grid Reference Architecture



Toward a Catalogue of Architectural Bad Smells 151

Fabric. Each subsystem type is usually instantiated multiple times. An Appli-
cation can be any client that needs grid services and is able to use an API
that interfaces with Collective or Resource components. The components in the
Collective subsystem are used to orchestrate and distribute data and grid jobs
to the various available resources in a manner consistent with the security and
trust policies specified by the institutions within a grid system (i.e., the virtual
organization). The Resource subsystem contains components that perform indi-
vidual operations required by a grid system by leveraging available lower-level
Fabric components. Fabric components offer access capabilities to computational
and data resources on an individual node (e.g., access to file-system operations).
Each subsystem type uses different interaction mechanisms to communicate with
other subsystems types, as noted in Figure 1. The interaction mechanisms are
described in [5].

4.2 MIDAS Architecture Refactoring

In collaboration with an industrial partner, for the last three years we have been
developing a lightweight middleware platform, called MIDAS, for distributed
sensor applications [19] [20]. Over ten software engineers in three geographi-
cally distributed locations contributed to MIDAS in multiple development cycles
to address changing and growing requirements. In its current version, MIDAS
implements many high-level services (e.g., transparent fault-tolerance through
component replication) that were not anticipated at the commencement of the
project. Additionally, MIDAS was ported to a new operating system (Linux) and
programming language (C++), and capabilities tailored for a new domain (mo-
bile robotics) were added. As a consequence, the MIDAS architecture was forced
to evolve in unanticipated ways, and the system’s complexity grew substantially.
In its current version, the MIDAS middleware platform consists of approximately

Fig. 2. System Stack Layers in MIDAS



152 J. Garcia et al.

100 KSLOC in C++ and Java. The iterative development of MIDAS eventu-
ally caused several architectural elements to lose conceptual coherence (e.g., by
providing multiple services). As a consequence, we recently spent three person-
months refactoring the system to achieve better modularity, understandability,
and adaptability. While performing the refactoring, we again encountered archi-
tectural structures that negatively affected system lifecycle properties.

Figure 2 shows a layered view of the MIDAS middleware platform. The bot-
tom of the MIDAS architecture is a virtual machine layer that allows the mid-
dleware to be deployed on heterogeneous OS and hardware platforms efficiently.
The host abstraction facilities provided by the virtual machine are leveraged
by the middleware’s architectural constructs at the layer above. These archi-
tectural constructs enable a software organization to directly map its system’s
architecture to the system’s implementation. Finally, these constructs are used
to implement advanced distributed services such as fault-tolerance and resource
discovery.

4.3 Studies from Research Literature

Given the above experiences, we examined the work in architectural recovery
and refactoring published in research literature [4] [21] [22] [23], which helped us
to understand architectural design challenges and common bad smells. In this
paper, we refer to examples from a case study that extracted and analyzed the
architecture of Linux [4]. In this study, Bowman et al. created a conceptual archi-
tecture of the Linux kernel based on available documentation and then extracted
the architectural dependencies within the kernel source code (800 KSLOC). They
concluded that the kernel contained a number of design problems, such as un-
necessary and unintended dependencies.

5 Architectural Smells

This section describes four architectural smells in detail. We define each architec-
tural smell in terms of participating architectural elements — components, con-
nectors, interfaces, and configurations. Components are computational elements
that implement application functionality in a software system [24]. Connectors
provide application-independent interaction facilities, such as transfer of data
and control [25]. Interfaces are the interaction points between components and
connectors. Finally, configurations represent the set of associations and relation-
ships between components and/or connectors. We provide a generic schematic
view of each smell captured in one or more UML diagrams. Architects can use
diagrams such as these to inspect their own designs for architectural smells.

5.1 Connector Envy

Description. Components with Connector Envy encompass extensive intera-
ction-related functionality that should be delegated to a connector. Connectors



Toward a Catalogue of Architectural Bad Smells 153

ComponentA

Communication
Library

<<import>>

ProcessingInterfaceA

ProcessingInterfaceB

ComponentB

process
+ process(Type P)
-  convert(Type P)

PublicInterface

process(Type P){
  b = new CoreClassB();
  b.processCoreConcern
         (convert(P));
}

+ processCoreConcern 
   (ConcernType P)

CoreClassB

a b

Fig. 3. The top diagram depicts Connector Envy involving communication and facil-
itation services. The bottom diagram shows Connector Envy involving a conversion
service.

provide the following types of interaction services: communication, coordination,
conversion, and facilitation [25]. Communication concerns the transfer of data
(e.g., messages, computational results, etc.) between architectural elements. Co-
ordination concerns the transfer of control (e.g., the passing of thread execution)
between architectural elements. Conversion is concerned with the translation of
differing interaction services between architectural elements (e.g., conversion of
data formats, types, protocols, etc). Facilitation describes the mediation, opti-
mization, and streamlining of interaction (e.g., load balancing, monitoring, and
fault tolerance). Components that extensively utilize functionality from one or
more of these four categories suffer from the Connector Envy smell.

Figure 3a shows a schematic view of one Connector Envy smell, where
ComponentA implements communication and facilitation services. ComponentA
imports a communication library, which implies that it manages the low-level
networking facilities used to implement remote communication. The naming,
delivery and routing services handled by remote communication are a type of
facilitation service.

Figure 3b depicts another Connector Envy smell, where ComponentB per-
forms a conversion as part of its processing. The interface of ComponentB called
process is implemented by the PublicInterface class of ComponentB. PublicInter-
face implements its process method by calling a conversion method that trans-
forms a parameter of type Type into a ConcernType.

Quality Impact and Trade-offs. Coupling connector capabilities with compo-
nent functionality reduces reusability, understandability, and testability. Reusab-
ility is reduced by the creation of dependencies between interaction services and
application-specific services, which make it difficult to reuse either type of service
without including the other. The overall understandability of the component de-
creases because disparate concerns are commingled. Lastly, testability is affected
by Connector Envy because application functionality and interaction function-
ality cannot be separately tested. If a test fails, either the application logic or
the interaction mechanism could be the source of the error.

As an example, consider a MapDisplay component that draws a map of the
route followed by a robot through its environment. The component expects po-
sition data to arrive as Cartesian coordinates and converts that data to a screen
coordinate system that uses only positive x and y values. The MapDisplay suffers



154 J. Garcia et al.

from Connector Envy because it performs conversion of data formats between
the robot controller and the user interface. If the MapDisplay is used in a new,
simulated robot whose controller represents the world in screen coordinates,
the conversion mechanism becomes superfluous, yet the MapDisplay cannot be
reused intact without it. Errors in the displayed location of the robot could arise
from incorrect data conversion or some other part of the MapDisplay, yet the
encapsulation of the adapter within the MapDisplay makes it difficult to test
and verify in isolation.

The Connector Envy smell may be acceptable when performance is of higher
priority than maintainability. More specifically, explicitly separating the inter-
action mechanism from the application-specific code creates an extra level of
indirection. In some cases, it may also require the creation of additional threads
or processes. Highly resource-constrained applications that use simple interac-
tion mechanisms without rich semantics may benefit from retaining this smell.
However, making such a trade-off simply for efficiency reasons, without consid-
ering the maintainability implications of the smell, can have a disastrous cumu-
lative effect as multiple incompatible connector types are placed within multiple
components that are used in the same system.

Example from Industrial Systems. The Gfarm Filesystem Daemon (gfsd)
from a grid technology called Grid Datafarm [26] is a concrete example of a
component with Connector Envy that follows the form described in Figure 3.
The gfsd is a Resource component and runs on a Resource node as depicted in
Figure 1. The gfsd imports a library that is used to build the lightweight remote
procedure call (RPC) mechanism within the gfsd. This built-in RPC mechanism
provides no interfaces to other components and, thus, is used solely by the gfsd.
While the general schematic in Figure 3 shows only an instance of communication
and facilitation, this instance of the smell also introduces coordination services
by implementing a procedure call mechanism. The interfaces of the gfsd provide
remote file operations, file replication, user authentication and node resource
status monitoring. These interfaces and the gfsd ’s RPC mechanism enable the
notification, request, and P2P interactions shown in Figure 1 that occur across
Resource nodes in Grid Datafarm.

Reusability, modifiability, and understandability are adversely affected by the
Connector Envy smell in the gfsd. The reusability effects of Connector Envy can
be seen in a situation where a new Resource component, called Gfarm work-
flow system daemon (gwsd), that provides workflow-based services is added to
Grid Datafarm. The RPC mechanism within the gfsd is built without interfaces
that can be made available to other components, hence the RPC mechanism
cannot be used with the gwsd. Understandability is reduced by the unneces-
sary dependencies between the gfsd ’s application-specific functionality (e.g., file
replication, local file operations, etc.) and RPC mechanism. The combination
of application-specific functionality and interaction mechanisms throughout the
functions of the gfsd enlarge the component in terms of function size, number
of functions, and shared variables. Both modifiability and understandability are



Toward a Catalogue of Architectural Bad Smells 155

adversely affected by having the overwhelming majority of the gfsd ’s functions
involve the use or construction of Grid Datafarm’s RPC mechanism.

It is possible that since grid technologies need to be efficient, the creators of
Grid Datafarm may have intentionally built a gfsd with Connector Envy in order
to avoid the performance effects of the indirection required for a fully separated
connector. Another fact to consider is that Grid Datafarm has been in use for at
least seven years and has undergone a significant number of updates that have
expanded the gfsd ’s functionality. This has likely resulted in further commingling
of connector-functionality with application-specific functionality.

5.2 Scattered Parasitic Functionality

Description. Scattered Parasitic Functionality describes a system where mul-
tiple components are responsible for realizing the same high-level concern and,
additionally, some of those components are responsible for orthogonal concerns.
This smell violates the principle of separation of concerns in two ways. First, this
smell scatters a single concern across multiple components. Secondly, at least one
component addresses multiple orthogonal concerns. In other words, the scattered
concern infects a component with another orthogonal concern, akin to a parasite.
Combining all components involved creates a large component that encompasses
orthogonal concerns. Scattered Parasitic Functionality may be caused by cross-
cutting concerns that are not addressed properly. Note that, while similar on the
surface, this architectural smell differs from the shotgun surgery code smell [2]
because the code smell is agnostic to orthogonal concerns.

Figure 4 depicts three components that are each responsible for the same
high-level concern called SharedConcern, while ComponentB and ComponentC
are responsible for orthogonal concerns. The three components in Figure 4 can-
not be combined without creating a component that deals with more than one
clearly-defined concern. ComponentB and ComponentC violate the principle of
separation of concerns since they are both responsible for multiple orthogonal
concerns.

Quality Impact and Trade-offs. The Scattered Parasitic Functionality smell
adversely affects modifiability, understandability, testability, and reusability. Us-
ing the concrete illustration from Figure 4, modifiability, testability, and under-
standability of the system are reduced because when SharedConcern needs to be

access

ComponentA

+ SharedConcern
ClassA

ComponentB

+ SharedConcern
+ ConcernB

ClassB

ComponentC

+ SharedConcern
+ ConcernC

ClassC

Fig. 4. The Scattered Parasitic Functionality occurring across three components



156 J. Garcia et al.

changed, there are three possible places where SharedConcern can be updated
and tested. Another facet reducing understandability is that both ComponentB
and ComponentC also deal with orthogonal concerns. Designers cannot reuse the
implementation of SharedConcern depicted in Figure 4 without using all three
components in the figure.

One situation where scattered functionality is acceptable is when the Shared-
Concern needs to be provided by multiple off-the-shelf (OTS) components whose
internals are not available for modification.

Example from Industrial Systems. Bowman et al.’s study [4] illustrates an
occurrence of Scattered Parasitic Functionality in the widely used Linux oper-
ating system. The case study reveals that Linux’s status reporting of execution
processes is actually implemented throughout the kernel, even though Linux’s
conceptual architecture indicates that status reporting should be implemented
in the PROC file system component. Consequently, the status reporting func-
tionality is scattered across components in the system. This instance of the smell
resulted in two unintended dependencies on the PROC file system, namely, the
Network Interface and Process Scheduler components became dependent on the
PROC file system.

The PROC file system example suffers from the same diminished lifecycle
properties as the notional system described in the schematic in Figure 4. Mod-
ifiability and testability are reduced because updates to status reporting func-
tionality result in multiple places throughout the kernel that can be tested or
changed. Furthermore, understandability is decreased by the additional associ-
ations created by Scattered Parasitic Functionality among components.

The developers of Linux may have implemented the operating system in this
manner since status reporting of different components may be assigned to each
one of those components. Although it may at first glance make sense to distribute
such functionality across components, more maintainable solutions exist, such
as implementing a monitoring connector to exchange status reporting data or
creating an aspect [27] for status reporting.

5.3 Ambiguous Interfaces

Description. Ambiguous Interfaces are interfaces that offer only a single, gen-
eral entry-point into a component. This smell appears especially in event-based
publish-subscribe systems, where interactions are not explicitly modeled and
multiple components exchange event messages via a shared event bus. In this
class of systems, Ambiguous Interfaces undermine static dependency analysis for
determining execution flows among the components. They also appear in systems
where components use general types such as strings or integers to perform dy-
namic dispatch. Unlike other constructs that reduce static analyzability, such as
function pointers and polymorphism, Ambiguous Interfaces are not programming
language constructs; rather, Ambiguous Interfaces reduce static analyzability at
the architectural level and can occur independently of the implementation-level
constructs that realize them.



Toward a Catalogue of Architectural Bad Smells 157

ComponentA process

+ process(GeneralType P)

PublicInterface

process(GeneralType P){
  if (P.type == TypeA) {...}
  if (P.type == TypeB) {...}
  ...

Fig. 5. An Ambiguous Interface is implemented using a single public method with a
generic type as a parameter

Two criteria define the Ambiguous Interface smell depicted in Figure 5. First,
an Ambiguous Interface offers only one public service or method, although its
component offers and processes multiple services. The component accepts all
invocation requests through this single entry-point and internally dispatches to
other services or methods. Second, since the interface only offers one entry-
point, the accepted type is consequently overly general. Therefore, a component
implementing this interface claims to handle more types of parameters than it
will actually process by accepting the parameter P of generic type GeneralType.
The decision whether the component filters or accepts an incoming event is part
of the component implementation and usually hidden to other elements in the
system.

Quality Impact and Trade-offs. Ambiguous Interfaces reduce a system’s
analyzability and understandability because an Ambiguous Interface does not
reveal which services a component is offering. A user of this component has to
inspect the component’s implementation before using its services. Additionally,
in an event-based system, Ambiguous Interfaces cause a static analysis to over-
generalize potential dependencies. They indicate that all subscribers attached
to an event bus are dependent on all publishers attached to that same bus.
Therefore, the system seems to be more widely coupled than what is actually
manifested at run-time. Even though systems utilizing the event-based style
typically have Ambiguous Interfaces, components utilizing direct invocation may
also suffer from Ambiguous Interfaces. Although dependencies between these
components are statically recoverable, the particular service being invoked by
the calling component may not be if the called component contains a single
interface that is an entry point to multiple services.

The following example helps to illustrate the negative effect of the wide cou-
pling. Consider an event-based system containing n components, where all com-
ponents are connected to a shared event bus. Each component can publish events
and subscribes to all events. A change to one publisher service of a component
could impact (n− 1) components, since all components appear to be subscribed
to the event, even if they immediately discard this event. A more precise in-
terface would increase understandability by narrowing the number of possible
subscribers to the publishing service. Continuing with the above example, if each
component would list its detailed subscriptions, a maintenance engineer could
see which m components (m ≤ n) would be affected by changing the specific



158 J. Garcia et al.

publisher service. Therefore, the engineer would only have to inspect the change
effect on m components instead of n − 1. Often times, components exchange
events in long interactions sequences; in these cases, the Ambiguous Interface
smell forces an architect to repeatedly determine component dependencies for
each step in the interaction sequence.

Example from Industrial Systems. A significant number of event-based mid-
dleware systems suffer from the form of Ambiguous Interface smell depicted in
Figure 5. An example of a widely used system that follows this design is the
Java Messaging Service (JMS) [28]. Consumers in JMS receive generic Message
objects through a single receive method. The message objects are typically cast
to specific message types before any one of them is to be processed. Another
event-based system that acts in this manner is the Information Bus [29]. In this
system, publishers mark the events they send with subjects and consumers can
subscribe to a particular subject. Consumers may subscribe to events using a
partially specified subject or through wild-cards, which encourage programmers
to subscribe to more events then they actually process.

The event-based mechanism used by MIDAS conforms to the diagram in
Figure 5. In the manner described above, MIDAS is able to easily achieve dy-
namic adaptation. Through the use of DLLs, MIDAS can add, remove, and
replace components during run-time, even in a highly resource-constrained sen-
sor network system. As mentioned in Section 4.2, we have recently spent three
person-months refactoring the system to achieve better modularity, understand-
ability, and adaptability. During the refactoring, determining dependencies and
causality of events in the system was difficult due to the issues of over-generalized
potential dependencies described above. An extensive amount of recovery needed
to be done to determine which dependencies occur in what context.

5.4 Extraneous Adjacent Connector

Description. The Extraneous Adjacent Connector smell occurs when two con-
nectors of different types are used to link a pair of components. Eight types
of connectors have been identified and classified in the literature [25]. In this
paper, we focus primarily on the impact of combining two particular types of
connectors, procedure call and event connectors, but this smell applies to other
connector types as well. Figure 6 shows a schematic view of two components
that communicate using both a procedure call connector and an event-based
connector.

In an event-based communication model, components transmit messages,
called events, to other components asynchronously and possibly anonymously.
In Figure 6, ComponentA and ComponentB communicate by sending events to
the SoftwareEventBus, which dispatches the event to the recipient. Procedure
calls transfer data and control through the direct invocation of a service interface
provided by a component. As shown in Figure 6, an object of type ClassB in
ComponentB communicates with ComponentA using a direct method call.



Toward a Catalogue of Architectural Bad Smells 159

ComponentA

<<Connector>>
SoftwareEventBus

ComponentB

+ operation()

ClassA

+ operation()

ClassB

...
a = new ClassA();
a.operation();
...

send

receive receive

send

<<call>>

Fig. 6. The connector SoftwareEventBus is accompanied by a direct method invocation
between two components

Quality Impact and Trade-offs. An architect’s choice of connector types may
affect particular lifecycle properties. For example, procedure calls have a positive
affect on understandability, since direct method invocations make the transfer
of control explicit and, as a result, control dependencies become easily trace-
able. On the other hand, event connectors increase reusability and adaptability
because senders and receivers of events are usually unaware of each other and,
therefore, can more easily be replaced or updated. However, having two archi-
tectural elements that communicate over different connector types in parallel
carries the danger that the beneficial effects of each individual connector may
cancel each other out.

While method calls increase understandability, using an additional event-
based connector reduces this benefit because it is unclear whether and under
what circumstances additional communication occurs between ComponentA and
ComponentB. For example, it is not evident whether ComponentA functionality
needs to invoke services in ComponentB. Furthermore, while an event connec-
tor can enforce an ordered delivery of events (e.g., using a FIFO policy), the
procedure call might bypass this ordering. Consequently, understandability is
affected, because a software maintenance engineer has to consider the (often un-
foreseen and even unforeseeable) side effects the connector types may have on
one another.

On the other hand, the direct method invocation potentially cancels the pos-
itive impact of the event connector on adaptability and reusability. In cases
where only an event connector is used, components can be replaced during sys-
tem runtime or redeployed onto different hosts. In the scenario in Figure 6,
ComponentA’s implementation cannot be replaced, moved or updated during
runtime without invalidating the direct reference ComponentB has on ClassA.

This smell may be acceptable in certain cases. For example, standalone desk-
top applications often use both connector types to handle user input via a GUI.
In these cases, event connectors are not used for adaptability benefits, but to
enable asynchronous handling of GUI events from the user.

Example from Industrial Systems. In the MIDAS system, shown in
Figure 2, the primary method of communication is through event-based connec-
tors provided by the underlying architectural framework. All high-level services
of MIDAS, such as resource discovery and fault-tolerance were also



160 J. Garcia et al.

implemented using event-based communication. While refactoring as described
in Section 4.2, we observed an instance of the Extraneous Adjacent Connector
smell. We identified that the Service Discovery Engine, which contains resource
discovery logic, was directly accessing the Service Registry component using
procedure calls. During the refactoring an additional event-based connector for
routing had to be placed between these two components, because the Fault Tol-
erance Engine, which contains the fault tolerance logic, also needed access to the
Service Registry. However, the existing procedure call connector increased the
coupling between those two components and prevented dynamic adaptation of
both components.

This smell was accidentally introduced in MIDAS to solve another challenge
encountered during the implementation. In the original design, the Service Dis-
covery Engine was broadcasting its events to all attached connectors. One of
these connectors enabled the Service Discovery Engine to access peers over a
UDP/IP network. This instance of the Extraneous Adjacent Connector smell
was introduced so that the Service Discovery Engine could directly access the
Service Registry, avoiding unnecessary network traffic. However, as discussed,
the introduced smell instance caused the adaptability of the system to decrease.

6 Conclusion

Code smells have helped developers identify when and where source code needs
to be refactored [2]. Analogously, architectural smells tell architects when and
where to refactor their architectures. Architectural smells manifest themselves
as violations of traditional software engineering principles, such as isolation of
change and separation of concerns, but they go beyond these general principles
by providing specific repeatable forms that have the potential to be automati-
cally detected. The notion of architectural smells can be applied to large, complex
systems by revealing opportunities for smaller, local changes within the architec-
ture that cumulatively add up to improved system quality. Therefore, architects
can use the concept (and emerging catalogue) of smells to analyze the most rel-
evant parts of an architecture without needing to deal with the intractability of
analyzing the system as a whole.

Future work on architectural smells includes a categorization of architectural
smells, architectural smell detection and correction processes, and tool support
to aid in those processes. A categorization of architectural smells would include
an extensive list of smells and an analysis of the impact, origins, and ways
to correct the smells. Architectural smells may be captured in an architectural
description language, which would allow conceptual architectures to be analyzed
for smells before they are implemented. Correction of smells would include the
inception of a set of architectural refactoring operations and the provision of tools
to help recommend particular operations for detected smells. In attempting to
repair architectures of widely-used systems, the authors of [23] identified a set
of operations that can be used as a starting point for determining a complete
set of architectural refactoring operations. By trying to correct some of the



Toward a Catalogue of Architectural Bad Smells 161

architectural smells we found in both our own and others’ experiences, such as
[4] [21] [22] [23], we hope to identify other architectural refactoring operations
and determine which operations are relevant to particular smells.

Acknowledgments

This material is based upon work sponsored by Bosch RTC. The work was
also sponsored by the National Science Foundation under Grant numbers ITR-
0312780 and SRS-0820170.

References

1. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Transactions on
Software Engineering (January 2004)

2. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Reading (1999)

3. Garcia, J., Daniel Popescu, G.E., Medvidovic, N.: Identifying Architectural Bad
Smells. In: 13th European Conference on Software Maintenance and Reengineering
(2009)

4. Bowman, I., Holt, R., Brewster, N.: Linux as a case study: its extracted software
architecture. In: Proc. of the 21st International Conference on Software Engineering
(1999)

5. Mattmann, C.A., Garcia, J., Krka, I., Popescu, D., Medvidovic, N.: The anatomy
and physiology of the grid revisited. Technical Report USC-CSSE-2008-820, Univ.
of Southern California (2008)

6. Taylor, R., Medvidovic, N., Dashofy, E.: Software Architecture: Foundations, The-
ory, and Practice. John Wiley & Sons, Chichester (2008)

7. Lippert, M., Roock, S.: Refactoring in Large Software Projects: Performing Com-
plex Restructurings Successfully. Wiley, Chichester (2006)

8. Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging disci-
pline. Prentice-Hall, Inc., Upper Saddle River (1996)

9. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws.
In: Proc. of the 20th IEEE International Conference on Software Maintenance
(2004)

10. Lozano, A., Wermelinger, M., Nuseibeh, B.: Assessing the impact of bad smells us-
ing historical information. In: 9th International Workshop on Principles of Software
Evolution (2007)

11. Brown, W.J., Malveau, R.C., McCormick III, H.W., Mowbray, T.J., Wiley, J.,
Sons, I.: AntiPatterns - Refactoring Software, Architectures, and Projects in Crisis.
Wiley, New York (1998)

12. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to
build systems out of existing parts. In: Proc. of the 17th International Conference
on Software Engineering (1995)

13. Gacek, C.: Detecting Architectural Mismatches During Systems Composition. PhD
thesis, Univ. of Southern California (1998)

14. Abd-Allah, A.: Composing heterogeneous software architectures. PhD thesis, Uni-
versity of Southern California (1996)



162 J. Garcia et al.

15. Roshandel, R.: Calculating architectural reliability via modeling and analysis. In:
Proc. of the 26th International Conference on Software Engineering (2004)

16. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Reading
(1995)

17. Foster, I., et al.: The anatomy of the grid: Enabling scalable virtual organizations.
International Journal of High Performance Computing Applications 15(3) (2001)

18. Mattmann, C., Medvidovic, N., Ramirez, P., Jakobac, V.: Unlocking the Grid.
In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.,
Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 322–336. Springer, Heidelberg
(2005)

19. Malek, S., Seo, C., Ravula, S., Petrus, B., Medvidovic, N.: Reconceptualizing a
family of heterogeneous embedded systems via explicit architectural support. In:
Proc. of the 29th International Conference on Software Engineering (2007)

20. Seo, C., Malek, S., Edwards, G., Popescu, D., Medvidovic, N., Petrus, B., Ravula,
S.: Exploring the role of software architecture in dynamic and fault tolerant per-
vasive systems. In: International Workshop on Software Engineering for Pervasive
Computing Applications, Systems and Environments (2007)

21. Godfrey, M.W., Lee, E.H.S.: Secrets from the monster: Extracting mozilla’s soft-
ware architecture. In: Proc. of the Second International Symposium on Construct-
ing Software Engineering Tools (2000)

22. Gröne, B., Knöpfel, A., Kugel, R.: Architecture recovery of apache 1.3 – a case
study. In: Proc. of the International Conference on Software Engineering Research
and Practice 2002 (2002)

23. Tran, J., Godfrey, M., Lee, E., Holt, R.: Architectural repair of open source soft-
ware. In: 8th International Workshop on Program Comprehension (2000)

24. Shaw, M., et al.: Abstractions for software architecture and tools to support them.
IEEE Transactions on Software Engineering (1995)

25. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software con-
nectors. In: Proc. of the 22nd International Conference on Software Engineering
(2000)

26. Tatebe, O., Morita, Y., Matsuoka, S., Soda, N., Sekiguchi, S.: Grid datafarm ar-
chitecture for petascale data intensive computing. In: Proc. of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (2002)

27. Kiczales, G., Hilsdale, E.: Aspect-Oriented Programming. Springer, Heidelberg
(2003)

28. Haase, K.: Java message service tutorial (2002)
29. Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The Information Bus: an architecture

for extensible distributed systems. In: Proc. of the 14th ACM Symposium on Op-
erating Systems Principles (1994)


	Toward a Catalogue of Architectural Bad Smells
	Introduction
	Definition
	Related Work
	Systems under Discussion
	Grid Architecture Recovery
	MIDAS Architecture Refactoring
	Studies from Research Literature

	Architectural Smells
	Connector Envy
	Scattered Parasitic Functionality
	Ambiguous Interfaces
	Extraneous Adjacent Connector

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




