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Preface

This volume contains the papers of the 20th International Conference on Rewrit-
ing Techniques and Applications (RTA 2009), which was held from June 29 to
July 1, 2009, in Braśılia, Brazil as part of the 5th International Conference on
Rewriting, Deduction, and Programming (RDP 2009) together with the Inter-
national Conference on Typed Lambda Calculi and Applications (TLCA 2009),
the International School on Rewriting (ISR 2009), the 4th Workshop on Logical
and Semantic Frameworks with Applications (LSFA 2009), the 10th Interna-
tional Workshop on Rule-Based Programming (RULE 2009), the 8th Interna-
tional Workshop on Functional and (Constraint) Logic Programming (WFLP
2009), the 9th International Workshop on Reduction Strategies in Rewriting
and Programming (WRS 2009), and the annual meeting of the IFIP Working
Group 1.6 on term rewriting.

RTA is the major forum for the presentation of research on all aspects of
rewriting. Previous RTA conferences were held in Dijon (1985), Bordeaux (1987),
Chapel Hill (1989), Como (1991), Montreal (1993), Kaiserslautern (1995), Rut-
gers (1996), Sitges (1997), Tsukuba (1998), Trento (1999), Norwich (2000),
Utrecht (2001), Copenhagen (2002), Valencia (2003), Aachen (2004), Nara (2005),
Seattle (2006), Paris (2007), and Hagenberg (2008).

For RTA 2009, 22 regular research papers and four system descriptions were
accepted out of 59 submissions. Each paper was reviewed by at least three mem-
bers of the Program Committee, with the help of 94 external reviewers, and an
electronic meeting of the Program Committee was held using Andrei Voronkov’s
EasyChair system. I would like to thank the members of the Program Commit-
tee and the external reviewers for their great work, and Andrei Voronkov for
providing the EasyChair system, which was invaluable in the reviewing process,
the electronic Program Committee meeting, and the preparation of this volume.

The Program Committee decided to split the RTA 2009 best paper award
between the paper “An Explicit Framework for Interaction Nets” by Marc de
Falco, and the paper “From Outermost to Context-Sensitive Rewriting” by Jörg
Endrullis and Dimitri Hendriks.

In addition to the contributed papers, the RTA program contained two invited
talks by Vincent Danos and Johannes Waldmann, and jointly with TLCA 2009
an invited talk by Robert Harper.

Many people helped to make RTA 2009 a success. I would like to thank
in particular the Conference Chair Mauricio Ayala Rincón, the RTA Publicity
Chair Hitoshi Ohsaki, and the local organization team, as well as the sponsors
Universidade de Braśılia, Brazilian Counsel of Technological and Scientific Devel-
opment - CNPq, Brazilian Coordination for the Improvement Higher Education
Personnel - CAPES, and Federal District Research Foundation - FAPDF.

April 2009 Ralf Treinen
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Comparing Böhm-Like Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Jeroen Ketema

The Derivational Complexity Induced by the Dependency Pair
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Georg Moser and Andreas Schnabl

Local Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Jörg Endrullis, Roel de Vrijer, and Johannes Waldmann

VMTL–A Modular Termination Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . 285
Felix Schernhammer and Bernhard Gramlich

Tyrolean Termination Tool 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Martin Korp, Christian Sternagel, Harald Zankl, and
Aart Middeldorp

From Outermost to Context-Sensitive Rewriting . . . . . . . . . . . . . . . . . . . . . 305
Jörg Endrullis and Dimitri Hendriks

A Fully Abstract Semantics for Constructor Systems . . . . . . . . . . . . . . . . . 320
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Automatic Termination

Johannes Waldmann

Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig
Fakultät IMN, PF 30 11 66, D-04251 Leipzig, Germany

Abstract. We give an overview of applications of weighted finite au-
tomata to automatically prove termination of rewriting. Instances of this
approach are: standard and arctic matrix interpretations, and the match
bound technique. These methods have been developed in recent years,
and they are being used by today’s leading automated termination prover
software.

1 Introduction

A rewriting system R defines a relation →R on terms. Considering this as a
model of computation, we are interested in derivations i →∗

R o from input i to
output o. We actually want to obtain some output in finite time, so termination
is a natural requirement: there is no infinite derivation starting from any i.

Another important application of rewriting is equational reasoning. Here one
is concerned with the equivalence defined by the reachability relation↔∗

R. Termi-
nation comes into play since one wants to express this equivalence via a confluent
and terminating rewriting system R′ because this makes the reachability prob-
lem decidable. In fact, this can be seen as the historic motivation for developing
methods for proving termination of rewriting, see Knuth-Bendix completion [24].

In recent years, there are increased efforts to prove termination of programs
(logic, functional, imperative) via transformation to a rewriting termination
problem, or applying methods from rewriting termination to the original
problem.

Special focus is on obtaining termination proofs automatically. Such auto-
matic provers then can be built into tools for completion or program analysis.

The present paper reports on termination methods that use weighted finite
automata. They are being developed since 2003 (match-bound method) and it
was realized only in 2006 (standard matrix method) that they have a uniform
automata theoretic explanation. Once this was understood, the arctic matrix
method could be derived “automatically” in 2007.

There has always been a strong connection between rewriting and the theory of
automata and formal languages. Indeed, formal grammars are rewriting systems
(plus a device for intersection with regular languages to remove remains of inter-
mediate derivation steps since only the result is interesting). Much of the classic
theory then is concerned with equivalent ways of describing sets of descendants
(reachable by applying grammar rules), of which we mention logic (e.g., monadic
second order logic with one successor), algebra (language operations, e.g., regular

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 J. Waldmann

expressions), and (finite) automata (pre-images of homomorphisms into (finite)
algebras).

We list some connections between automata theory and rewriting (grammars):
all the classes of the Chomsky hierarchy are closed w.r.t. intersection with reg-
ular languages, and in fact this can be proved, in each case, by constructing a
grammar of the appropriate type that represents the intersection. More to the
point, some language classes are known to be closed w.r.t. (many-step) rewriting:
e.g., the image of a regular language under a monadic rewriting is again regu-
lar [6]. This result is proved by representing the language by a finite automaton,
and then applying some closure construction.

2 Automata, Rewriting, . . . and Termination?

Indeed this leads us near the topic of the paper. The earliest of the methods
under consideration here, namely match bounds, was obtained around 2002,
when Dieter Hofbauer and the author visited Alfons Geser (then in Hampton/
Virginia), and together were trying to generalize the following well-known ob-
servation on solvable positions in the one-person game Solitaire. The object of
this game is to remove pegs from a board, where one peg jumps over an adjacent
peg, thereby removing it. A one-dimensional board is a string over the alphabet
Σ = {O, X}, where X denotes a cell occupied by a peg, and O denotes an empty
cell. Then a move of the game is an application of a rewrite step w.r.t. the system
S = {XXO → OOX, OXX → XOO}. A solitaire position (a string i ∈ Σ∗) is
solvable if there is a sequence of moves that leads to a position with only one
peg, that is, to a string o in L = O∗XO∗. It is a folklore theorem that the set of
solvable positions is a regular language. In other words, the set of (many-step)
predecessors of L w.r.t.→S is regular. It is not too hard to guess the correspond-
ing regular expression, and verify it by a careful case analysis. Cristopher Moore
and David Eppstein, who give the regular expression in [28], add: “[regularity]
was already shown in 1991 by Thane Plambeck and appeared as an exercise in a
1974 book [Mathematical Theory of Computation] by Zohar Manna”. Exercise
III.5.5 in [4] by Jean Berstel requires to show that the congruence generated by
“one-sided solitaire” XXO → OOX is a rational transduction (thus, regularity
preserving).

Bala Ravikumar in [30] proved regularity of solvable solitaire positions on
two-dimensional boards with fixed height (but unbounded width). He replaced
the guessing of the regular expression by a constructive proof of the theorem
that “the solitaire rewriting system preserves regularity of languages”, and for
the proof he introduced the idea of change heights. For a derivation in a length
(in fact, shape) preserving rewriting system, the change height of a position
measures the number of rewrite steps that touch this position. A system is
change-bounded if there is a global bound on change heights, independent of the
start term and the actual derivation sequence. Ravikumar’s theorem is that each
change-bounded string rewriting system preserves regularity of languages, and
it can be shown that the change bound for the solitaire system is 4. This raised
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the natural question: is there a similar method that works for systems that are
not length-preserving?

Note that at this point, the question was to give a constructive proof that
certain rewriting systems preserve regularity of languages. From the proof, one
could also infer that the rewriting system is terminating, but this was a side
effect. In particular, for the solitaire system, termination is trivial (in each step,
one peg is removed). With the positive answer given by the match bound method,
the side effect of proving termination soon became the main attraction.

Yet we postpone the discussion of match bounds because we try to structure
the paper not historically, but systematically, as follows. In Section 3, we review
automata with weights (in some semiring), as a generalization of classical au-
tomata (which are weighted in the Boolean semiring), and explain in Section 4
in general terms how they can certify termination of rewriting. In Section 5, we
present the “(standard) matrix method” as an instance of automata with weights
in (N, +, ·). For easier exposition, we start with string rewriting. The methods
apply to term rewriting as well. We need weighted tree automata, introduced in
Section 6. Then in Section 7, we show that the method also works for automata
with weights from the arctic semiring ({−∞}∪N, max, +). Using another semir-
ing (N, max, min), we explain the match-bound method in Section 8. We then
turn to the question of how do we actually find such certificates of termination
for given rewrite systems. We discuss the general constraint solving approach
in Section 9, and an automata completion approach that works especially well
for match-bounds in Section 10. We review some open problems in Section 11,
where we refer to the notion of matrix termination hierarchy. We close the pa-
per with Section 12 by showing that weighted automata contribute to recent
developments on derivational complexity of rewriting.

We do not attempt to give a complete and general overview of methods and
techniques in automated termination. We focus on various instances of “matrix
methods”, by explaining them in the weighted automaton setting. Even there,
the presentation will be somewhat biased: we do plan to cover the map, but at
the same time emphasize some “forgotten” ideas and point to ongoing work and
open problems.

3 Weighted Automata . . .

A (classical) finite automaton A = (Σ, Q, I, F, δ) consists of a signature Σ, a
set of states Q, sets I, F ⊆ Q of initial and final states, respectively, and a
transition relation δ ⊆ Q × Σ × Q. We imagine the automaton as a directed
graph on Q. For each (p, c, q) ∈ δ, there is an edge from p to q labelled c. There
may be loops and parallel edges. A path is a connected sequence of edges, and
the label of a path is the word obtained as the concatenation of its edge labels.
Write A(p, w, q) for the statement “there is a path with label w from state p to
state q”. The automaton computes a Boolean-valued function A : Σ∗ → B with
A(w) =

∨
{A(p, w, q) | p ∈ I, q ∈ F}. Paths are combined sequentially and in

parallel. Along a path, all edges must be present (conjunction); while there may
be several paths with identical label, one of which is enough (disjunction).
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This can be generalized: we can replace the Boolean domain (B,∨,∧) with
any other suitable structure. Then, an edge (still labelled with a letter) is not
just present or absent, but it carries a weight, where weights are taken from a
semiring. The semiring provides operations of addition (used in parallel compo-
sition) and multiplication (for sequential composition), and fulfill several axioms
that just map naturally to the idea of composing paths and their weights.

Formally, a W -weighted automaton A consists of (Σ, Q, I, F, δ) where function
δ ⊆ Q×Σ×Q→ W assigns weights to transitions, and the sets of initial (final,
resp.) states are replaced by initial (final, resp.) weight assignments I (F , resp.)
Each path from p to q with label u now has a weight A(p, u, q) ∈ W , computed
as the product of its edge weights. The automaton assigns to a word u ∈ Σ∗ the
value A(u) =

∑
{I(p) · A(p, u, q) · F (q) | p, q ∈ Q}.

It is a nice coincidence that the talk will be given in Brazil: much of to-
day’s knowledge on weighted automata builds on work by Brazilian scientist
Imre Simon (http://www.ime.usp.br/∼is/) who used finite automata over the
(N, min, +) semiring in a decision procedure for the Finite Power Property of reg-
ular languages [31], and other problems in formal languages (for an more recent
overview, see [32]). In fact this semiring was later named with reference to him
the tropical semiring. We use its counterpart, the arctic semiring, in Section 7.

4 . . . for Termination of Rewriting

If the weight semiring W of the automaton A is well-founded w.r.t. some order >,
and A fulfills the following condition w.r.t. a rewriting system R, called global
compatibility: u →R v implies A(u) > A(v), then R is terminating. This is
a trivial statement and it is not effective since in general there seems to be
no way to test global compatibility, since we need to check this condition for all
terms and rewrite steps. We turn this approach into a useful termination method
by giving a local compatibility condition on the automaton that implies global
compatibility and that can be checked effectively, e.g., by inspection of a finite
number of cases. Roughly speaking, the infinite number of rewrite steps of the
system R is partitioned into a finite number of classes by considering all possible
locations of the rewrite step “in the automaton”.

We will strive to formulate local compatibility in such a way that for a given
rewrite system, an automaton that fulfill the conditions can (in principle) be
found by automated constraint solver software. Such an automaton is then in-
deed a (finite) certificate for termination. Its validity can be checked indepen-
dently from the way it was obtained. One application is automated verification of
termination proofs, which is done in a two-step process: the underlying theorems
(local compatibility⇒ global compatibility⇒ termination) for standard [26] and
arctic [25] matrix interpretations have been formalized and proved by Adam
Koprowski and are now part of the Color library of certified termination tech-
niques [5]. Then for each concrete termination certificate, the correct application
of the theorem has to be checked. With our notions of local compatibility, this
is (conceptually) easy, since it consists of checking the solution of a constraint
system, see Section 9.

http://www.ime.usp.br/~is/
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5 Matrix Interpretations

As a first instance of the general scheme, we describe how automata with weights
in the “standard” semiring of natural numbers (N, +, ·) are used for proving
termination of string rewriting. (For term rewriting, see Section 6.)

Example 1. This is the automaton from [21] that helped to sell the matrix
method, because it certifies termination of Z086 = {a2 → bc, b2 → ac, c2 → ab},
which solved an open problem. (Here, Z086 is the name of this problem in the
Termination Problem Data Base (TPDB), where “Z” refers to its author Hans
Zantema.)

1 ���������	1

a:1,c:1

��

Σ:1

��
a:4,c:2

��

b:2

���
��

��
��

��
��

�������	2
c:1

����
��
��
��
��
�

�������	3
Σ:1

�������������
b:2

��

a:1
���

��
��

��
��

��

b:2
����
��
��
��
��
�

�������	5

Σ:1

		1


 �������	4

a:2,c:2

��

Σ:1

�������������

a:2,c:4




For all pairs (p, q) of states, and rules (l → r) ∈ R, we consider the weights
A(p, l, q) andA(p, r, q) computedby the automaton.We requireweak local compat-
ibility everywhere: A(p, l, q) ≥ A(p, r, q), this already ensures that u →R v implies
A(u) ≥ A(v). In the example, we have,e.g., 2 = A(4, bb, 3) ≥ A(4, ac, 3) = 2. �

Additionally, we need a strict decrease in a few well-chosen places. The original
matrix paper [21] treated this with a theory based on positive cones in rings,
which we here present in an automata theoretic setting:

Proposition 2. For any string rewriting system R = {l1 → r1, . . . , ln → rn}
over Σ, and (N, +, ·)-weighted automaton A = (Σ, Q, I, F, δ) that is weakly lo-
cally compatible with R, define the language D ⊆ Σ∗ · {1, . . . , n} ·Σ∗ as

⎧
⎨

⎩
u · k · v | ∃i, p, q, f ∈ Q :

I(i) ≥ 1 ∧ A(i, u, p) ≥ 1
∧ A(p, lk, q) > A(p, rk, q)
∧ A(q, v, f) ≥ 1 ∧F (f) ≥ 1

⎫
⎬

⎭
.

If D = Σ∗ · {1, . . . , n} ·Σ∗, then A is globally compatible with R. This condition
on D is decidable. �

The language D encodes the set of all reachable and productive redex/contra-
ctum positions for which the automaton computes a decrease, so the first part
of the statement is immediate. The second part is seen as follows: if we map 0
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to “false”, and each positive number to “true”, then we have a semiring mor-
phism from (N, +, ·) to (B,∨,∧) that also respects the ordering (where “false” <
“true”). This means the languages {u | A(I, u, p) > 0} and {v | A(q, v, F ) > 0}
are effectively regular. The triplets T = {(p, k, q) | A(p, lk, q) > A(p, rk, q)} can
be found by considering finitely many cases, so the condition can be decided with
methods from classical automata theory. We remark that this involves (roughly)
a check whether a non-deterministic finite automaton accepts Σ∗, which is ex-
pensive (in fact, PSPACE-complete).

Example 1 meets the conditions of the above proposition, since {(1, k, 5) | 1 ≤
k ≤ 3} ⊆ T , e.g., 4 = A(1, bb, 5) > A(1, ac, 5) = 2, and for each u, v ∈ Σ∗ we have
A(1, u, 1) > 0 and A(5, v, 5) > 0 because of the loops in the respective states. We
remark that the paper [21] contains other realizations of strict local compatibility,
but none of them seems to have been used seriously in implementations.

If our goal is proving top termination, e.g., because we applied the depen-
dency pairs transformation [2], then the above scheme can be adapted easily by
restricting u = ε in Proposition 2.

As described in work with Andreas Gebhardt and Dieter Hofbauer [14], these
methods work even in larger semirings like the non-negative rational, algebraic
or real numbers. The natural order > on those domains is not well-founded, so
we replace it by x >ε y ⇐⇒ x > ε + y, for some fixed ε > 0. The nice thing
is that we do not need to change Proposition 2, since we carefully wrote ≥ 1
which is equivalent to > 0 on the naturals, but does the right thing on the dense
domains. Note that we can take

ε = min{d | (l → r) ∈ R, d = A(p, l, q)− A(p, r, q), d > 0}

which is positive since R is finite.

6 Weighted Tree Automata

For easier exposition, so far we only considered string rewriting. Since most “real”
data is (tree-)structured, there is some interest in term rewriting, and we show
how our methods generalize. We need the concept of weighted tree automaton
[10,9]. This is a finite state device that computes a mapping from trees over
some signature into some semiring. This computational model is obtained from
classical (Boolean) tree automata by assigning weights to transitions.

Formally, a W -weighted tree automaton is a tuple A = (Σ, Q, δ, F ) where W
is a semiring, Q is a finite set of states, Σ is a ranked signature, δ is a transition
function that assigns to any k-ary symbol f ∈ Σk a function δf : Qk ×Q → W
and F is a mapping Q → W . The idea is that δf (q1, . . . , qk, q) gives the weight
of the transition from (q1, . . . , qk) to q, and F (q) gives the weight of the final
state q.

The semantics of a weighted tree automaton is defined as follows: a run of
A on a tree t is a mapping from positions of t to states of A, the weight of a
run is the product of the weights of its transitions, and the weight of the term
is the sum of the weight of all its runs. We emphasize here another, equivalent
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approach: the automaton is a Σ-algebra where the carrier set consists of weight
vectors, indexed by states. Let V = (Q → W ) be the set of such vectors. Then
for each k-ary symbol f , the transition δf computes a function [δf ] : V k → V
by [δf ](v1, . . . , vk) = w where

wq =
∑
{δf (q1, . . . , qk, q) · v1,q1 · . . . · vk,qk

| q1, . . . , qk ∈ Q}.

A weighted tree automaton realizes a multilinear algebra: each function [δf ]
is linear in each argument.

In order to use tree automata for automated termination, the local compat-
ibility condition should be easy. Therefore we only consider automata whose
transition functions can be written as sums of unary linear functions. These are
matrices, so we arrive at the notion of matrix interpretation, using functions
V k → V of shape

(v1, . . . , vk) �→M1 · v1 + . . . + Mk · vk + a, (1)

where each Mi is a square matrix, and a is a vector, and all vectors are column
vectors.

The corresponding tree automata are called path-separated because their se-
mantics can be computed as the sum of matrix products along all paths of the
input tree, and the values along different paths do not influence each other.

With these preparations, we can apply the monotone algebra approach [13]
for proving termination of term rewriting, where the algebra is given by a path-
separated weighted tree automaton. The order on the vector domain depends on
the chosen weight semiring, and on the question whether we want closure under
contexts (we don’t need this for top rewriting). In each case, we can take some
modification of the pointwise extension of the semiring order.

We briefly discuss the relation to polynomial interpretations [7], which are a
well-known previous instance of monotone algebras for termination. The distinc-
tive features are that polynomial interpretations can be non-linear while matrix
interpretations are linear, but this is complemented by the fact that polynomial
interpretation use a totally ordered domain (of natural or real numbers) while
the domain for matrix interpretations consists of vectors with the point-wise
ordering, which is non-total.

7 Half-Strict Semirings

The formulation of a sufficient local compatibility condition depends on proper-
ties of the semiring operations. We call an operation ◦ strict w.r.t. an order >
if x1 > x2 implies x1 ◦ y > x2 ◦ y. On naturals, standard addition is strict, and
standard multiplication is strict for y �= 0.

We intend to use the arctic semiring ({−∞}∪N, max, +), and we immediately
notice that the “max” operation is not strict. Still it does have the following
property: x1 > x2 ∧ y1 > y2 implies max(x1, y1) > max(x2, y2). We call this
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half strict, since we need two strict decreases in the arguments to get one strict
decrease in the result.

Now look at one strict decrease for a redex, A(p, l, q) > A(p, r, q), in some
weighted string automaton A. Strict multiplication produces from that a strict
decrease when we apply a context (left and right). The automaton adds the
weight of all paths with identical label. If addition is strict, then one decreasing
path is enough, and that was the idea behind Proposition 2.

Now in the arctic semiring, addition is half-strict, so a sufficient condition
for a global weight decrease is that all redex paths must be decreasing. We can
make an exception for redex paths of weight zero (i.e., “missing” paths), since
the max operation is strict when one argument is −∞. Therefore we compare
arctic weights by x � y ⇐⇒ x > y ∨ x = y = −∞, and arctic vectors by
the pointwise extension of that. Since � is not well-founded, we need to make
sure that we never produce a total weight vector −∞d. This can be achieved
by requiring that the first vector element is “positive” (that is, > −∞). This
restricts the domain of the algebra, so the operations have to respect that. It is
enough to require that the upper left entry of the matrices is positive as well.
We remark here that the focus on the first vector component is just one way of
reaching the goal, and the derivation of a more general criterion in the spirit of
Proposition 2 is left as an exercise.

Example 3. Again, we prove termination of Z086 = {a2 → bc, b2 → ac, c2 → ab}.
The nontrivial dependency pairs are {Aa → Bc, Bb → Ac}. Take the arctic
two-state automaton with transition matrices

[a] =
(

0 3
2 1

)

, [b] =
(

3 2
1 −∞

)

, [c] =
(

0 1
3 2

)

, [A] = [B] = (0 −∞),

where we use a reduced matrix shape for the top symbols (only the transitions
from the initial state). Then we have these weak compatibilities

[a2] =
(

5 4
3 5

)

≥
(

5 4
1 2

)

= [bc], [b2] =
(

6 5
4 3

)

= [ac]

[c2] =
(

4 3
5 4

)

≥
(

4 2
5 4

)

= [ab], [Aa] = (0 3) ≥ (0 1) = [Bc]

and the strict compatibility [Bb] = (3 2) > (0 1) = [Ac]. This allows to remove
one rule and the rest is trivial (counting symbols). �

Another hard termination problem was {b3 → a3, a3 → aba}. Termination could
not be established automatically by any of the programs (nor their authors) tak-
ing part in the competition 2006. Then, Aleksey Nogin and Carl Witty produced
a handwritten proof, that was later generalized to the method of quasi-periodic
interpretations [35]. It is now known that quasi-periodic interpretations of slope
one over unary signatures can be translated into arctic matrix interpretations
(see full version of [25], submitted). In fact, Matchbox used this translation in
the termination competition of 2008.
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We now turn to arctic interpretations for proving termination of term rewrit-
ing. We restrict to path-separated automata, as described earlier. At each posi-
tion of a tree, values from subtrees are added. The redex position might be in any
of the subtrees, and this creates a problem: we want then a decrease of the value
of the tree, but arctic addition is not strict. This rules out the possibility of using
path-separated arctic tree automata for proving full termination. They are still
useful: the subtree problem does not appear when there are no redexes in sub-
trees, and this happens exactly when the redex position is in the root. So, arctic
tree automata are applicable for proving top termination. (Of course there are
non-top redexes but we don’t need a strict decrease when reducing them.) This
plan has been carried out and it is described in [25]. This paper also contains an
extension to arctic numbers “below zero”, i.e., the semiring ({−∞}∪Z, max, +).
Restricting the first component of the vectors to be positive works again.

8 Match Heights

As mentioned in the introduction, the idea of annotating positions in strings by
numbers that give some indication of their rewrite history, derives from Raviku-
mar’s concept of change bounds. The restriction to length-preserving rewriting
can be dropped by considering match-heights instead. Here, the match height
in the contractum is 1 larger than the lowest match-height in the redex. It is
proved in [16] that match-bounded string rewriting systems are terminating, and
effectively preserve regularity of languages.

The relation to weighted automata was explained only some time later [33],
and uses the (N, min, max) semiring. Here, none of the semiring operations is
strict, so we expect complications. And indeed, both semiring addition and semir-
ing multiplication are idempotent, and that means that for any finite weighted
automaton A, the range A(Σ∗) of the automaton’s semantics function is finite.
This also bounds the length of decreasing chains of weights by a constant, and
that in turn bounds the length of derivations of the rewriting system we hoped
the automaton to be strictly compatible with. This seems to rule out the use of
this semiring completely, since every non-empty string rewriting system has at
least linear, thus unbounded derivation lengths.

The solution is: we still apply a local compatibility condition in (N, min, max),
but globally, we use a different semiring (where multiplication is not idempo-
tent): its elements are the finite multisets of N, semiring multiplication is multi-
set union, and semiring addition is the “min” operation w.r.t. the lexicographic
ordering. Note that the multiplicative unit is the empty multiset, and for the ad-
ditive unit we introduce an extra element∞, larger than all others and absorbing
for multiplication.

Now each (N, min, max)-automaton can be lifted to an automaton in this
multiset semiring, by changing each weight w into the multiset weight {w}, and
the value that the automaton computes for some word u is the smallest (in the
above sense) multiset of edge weights of a path labelled u.

The strict local compatibility condition (for the automaton in the original
semiring) reads as expected: we require that for all (l → r) ∈ R, p, q ∈ Q :
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A(p, l, q)� A(p, r, q) where x� y if x > y ∨ x = y = +∞. Basically, we replace
the lexicographic comparison of multisets by the comparison of their respective
maximum elements. That is, we ignore multiplicities.

Example 4. The following automaton is strictly locally compatible with Zan-
tema’s system Z001 = {a2b2 → b3a3}, and the picture (drawn by Dieter Hof-
bauer) is too nice to be omitted here.

I

b34
��

•

b2a2

��

•b2

 •b2



a2
3

��

•
b33a3




a4 �� •

b3

��

a4 �� •

a4

��

b3

��
��
��
��
��
��
��

•

b1a3
1

���������

•

b21

����������
a1 �� • a2 �� •

b2

��

a2
2 �� •

b3

��

•b3

 F #4

��

•

b30a3
0

��

a2
1

����������

•
b31

���������

a2
2

�� •

b22

��

•
b2




a3

�� •

b3

��

a3
�� •

b3

��														

a3

��

We use “edge compression”, e.g., • a2
2→ • really means • a2→ • a2→ • containing

one additional state. The indices on the letters indicate weights. These are from
the semiring (N∪{∞}, min, max), since all “missing edges” have weight∞. The
symbol # is referring to the RFC method, see Section 10. The given automaton
constituted (in 2003) the first automated termination proof for Z001, while only
“hand crafted” proofs were available [34]. �

The above presentation may not look like the standard version of match-bounded
termination, but note that already there we used a multiset argument to bound
lengths of derivations. The approach given here leads to extensions of the stan-
dard method, e.g., for relative termination. Note that the obvious A(p, l, q) ≥
A(p, r, q) for weak local compatibility in the original automaton does not imply
weak compatibility in the lifted automaton. But this can be repaired by replac-
ing ≥ with �′ where x �′ y if x > y ∨ x = y = +∞∨ x = y = −∞. That is,
the “relative rules” must behave like strict rules (decrease weights) except they
may keep the lowest weight (−∞).

Is this useful for proving termination (without relative rules)? It is easy to
show that a sequence of rule removals by relative match-bound proofs still implies
a match-bound on the original system. Even so, the sequence of relative proofs
may be easier to find automatically.
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The idea of termination proofs via height annotations has been applied in term
rewriting. There, one uses (N, min, max)-weighted tree automata, again with a
suitable local compatibility condition, where one has to take into account the
position of variables in rewrite rules, resulting in the concept of roof-bounds [19].

9 Constraint Solving

One method of finding matrix interpretations (weighted automata) is constraint
programming: write down all the properties, and find a satisfying assignment by
some constraint solver software. At top level, the unknowns are the coefficients
of linear functions with the shape of Equation 1, and the constraints relate linear
functions that represent interpretations of left-hand sides and right-hand sides
of rewrite rules. Here, it comes in handy that these functions are closed under
substitution. This is caused by path-separation and would not hold for gen-
eral automata. Constraints for linear functions can be translated to constraints
on matrices; and constraints for matrices can be translated to constraints on
their elements. Here, we arrived at constraints for natural numbers, since all our
semirings use numbers.

Numbers can be represented in binary notation, and numerical constraints
should be formulated in the SMT (satisfiability modulo theories) language QB-
BV (quantifier free bit vector arithmetics). Instead, the numerical constraint is
translated into CNF-SAT and then a SAT solver is applied. It seems strange that
“manual” translation of termination constraints to CNF-SAT should be more
efficient than applying QF-BV solvers. One explanation could be that so far,
the power of matrix termination provers is increased by taking larger matrices,
rather than larger matrix entries. But this may be a self-fulfilling prophecy.

The constraint solver implementation in Matchbox in competition 2006 was
internally dubbed “the one-bit wonder” since it used a bit width of one only.
Today, Matchbox is using carefully optimized CNF-SAT encodings for binary
arithmetics on standard and arctic naturals of bit widths 3 and 4. These were
computed with the help of Peter Lietz. The translation of the Z001 and Z086
constraint systems for matrix dimension 4 and bit width 3 produces ≈ 3000
boolean variables and ≈ 20.000 clauses, of which Minisat [11] eliminates just
one percent and then solves them in a few seconds.

It is an interesting idea to look for (N, min, max) interpretations via constraint
solving. This may prove useful in connection with relative match-bound methods,
see the discussion at the end of Section 8. E.g., we can prove that the TPDB
systems SRS/Zantema06/{15, . . . , 18} are match-bounded. (This seems out of
reach of completion methods.) Why would we want to do this? We could prove
termination by other methods, but match-boundedness gives linear complexity,
see Section 12.

10 Automata Completion

The constraint system that describes local compatibility requires certain in-
equalities between weights of paths in the automaton. We can fix the number of
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states, and then find appropriate edge weights, as described in the previous sec-
tion. Another idea is to start with some candidate automaton, and then extend
it by adding transitions and states, until all constraints are met. The problem is
that additional states lead to additional constraints, and it is not clear how to
organize this into a terminating algorithm.

Example 5. Dieter Hofbauer’s termination prover MultumNonMulta contains a
version of weighted automata completion for the standard semiring (N, +, ·). It
finds the following beautiful proof for (again) Z001 by starting with the redex
path from left to right, and then adding three back edges.

IΣ:1 ��
a:1 �� • a:1 �� • b:1 ��

a:1

�� • b:1 ��

b:1

��

Σ:2

��
F Σ:1

��

�

We discuss (N ∪ {∞}, min, max) now which we need for match-bounds. This
semiring has the interesting property that its zero element (∞, which is neutral
for the “min” operation) is maximal in the natural ordering. Consider local
compatibility constraints A(p, l, q) � A(p, r, q). We claim they can be read as
“for every non-zero redex, there must be a smaller contractum”. Indeed for zero-
weight redexes, the constraint is true by the definition of �.

For a weighted automaton A, denote by supp(A) the set of words that get
non-zero weight. If the weight semiring has zero as its maximum element, then
local compatibility implies that supp(A) is closed under rewriting. Thus if we
know that L ⊆ supp(A) and A is strictly locally compatible with R, then R is
terminating on L. In other words, we have a method for proving local termina-
tion [8]. This allows to do termination proofs by considering right hand sides of
forward closures [16]. They can be computed by the rewriting system

R′ = R ∪ {l1#→ r | (l1l2 → r) ∈ R, l1 �= ε �= l2},

starting with L = rhs(R)#∗, cf. Example 4.
Now, how do we realize the completion of automata? The basic approach is

that whenever A(p, l, q) is nonzero (= present), but A(p, r, q) is zero (= missing),
then we add a fresh path from p to q, labelled r and weighted appropriately.
Several completion results for classical automata are available from the literature.
In simple cases, they prove that the basic approach terminates. This happens,
e.g., for monadic systems, where |r| ≤ 1 and thus we never add states, only
edges, and we will obtain a saturated automaton.

For rules with |r| > 2, this will not work. We should then employ some
heuristics that tries to avoid the creation of too many fresh states [18]. A
similar idea can be applied to tree automata [19] but in its basic version, it
only works for left-linear rewriting. Non-linearities can be handled with quasi-
deterministic automata as described by Martin Korp and Aart Middeldorp in
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[27]. The methods are sound but not complete (they may fail to find compatible
automata). We now describe a complete method for string rewriting.

Instead of a W -weighted automaton A over Σ we can also consider a classical
(Boolean) automaton B over Σ ×W . Local compatibility of A w.r.t. a rewrit-
ing system R then translates into local compatibility of B w.r.t. an annotated
rewriting system RW over Σ ×W . For W = (N, min, max), this annotated sys-
tem contains rules lW → rW such that the maximal annotation in the left is
larger than the maximal annotation in the right. In other words, a rewrite step
deletes the maximal letter. We have an instance of a deleting string rewriting
system [20]: there is a well-founded order on the alphabet such that in reach
rule l → r, there is one letter in l that is larger than each letter in r. Deleting
systems are terminating and preserve regularity of languages. The idea behind
the proof is that for a deleting system R, the rewrite relation →∗

R can be repre-
sented as the composition of two rewrite relations →∗

C ◦ →∗
E over an auxiliary

alphabet, where C is SN ∩ CF (not the French railway, but Strongly Normalizing
and Context-Free: left-hand sides have length 1) and E is inverse context-free
(right-hand sides have length ≤ 1).

The proof is constructive and indeed it was realized in the termination prover
Matchbox (2003). However this implementation was soon outperformed by Hans
Zantema’s implementation of a completion heuristics in Torpa (2004). The sit-
uation was reversed again in 2006 when Jörg Endrullis found a substantial im-
provement for handling deleting systems [12] and implemented it for Jambox:
the auxiliary alphabet can be small and the closures w.r.t. C and E can be
computed in an interleaved manner. This gives us the best of both worlds: the
construction is fast (it can build automata of > 104 states in < 10 seconds) and
it is complete (if a match-bound certificate exists, it will be found). We remark
that this seems to be the only instance of an weighted automata method for ter-
mination where we have a complete construction. This result also implies that
the question “is a given rewriting R system match-bounded by k” is decidable.
When k is not given, decidability remains open.

If we reverse all arrows in a (C, E) decomposition of a deleting system, we
get some results on “inverse match-bounded” rewriting [17]. There should be
a connection to the (N, max, min) semiring, but it is not immediate, e.g., the
above multiset argument does not work, and indeed inverse match-boundedness
does not imply termination, but termination is decidable. We observed [22] that
match-boundedness, inverse match-boundedness, and change-boundedness are
equivalent for length-preserving string rewriting systems. In particular this holds
for the Solitaire rewriting system.

11 Matrix Termination Hierarchy

Typically, a proof of termination is obtained by a sequence of rule removals. In
[15], Andreas Gebhardt and the author propose the notation R S for rewriting
systems R, S with R ⊇ S and (R \ S) is terminating relative to S, that is, from
R, all non-S rules “could be removed”. The relation is indeed transitive, and
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R
∗
∅ implies termination of R. Let M(W, n) be the set of pairs of rewriting

systems (R, S) such that if there is a W -weighted automaton with ≤ n states
that is strictly compatible with R \ S and weakly compatible with S. Thus

(R, S) ∈M(W, n) implies R S and therefore we also write R
M(W,n)

S.
Since M(W, n) is a relation on rewriting systems, we make use of standard

operations on relations like composition, iteration (exponentiation) and (reflexive
and) transitive closure. Then, the collection M(W, n)s is the “matrix termination
hierarchy”. We have some obvious (non-strict) inclusions for the levels of this
hierarchy, considering the embeddings of natural ⊂ rational ⊂ algebraic ⊂ real
numbers (on the non-negative subset, with standard operations and ordering),
and the monotonicity w.r.t. number of states and proof steps. Then, interesting
questions can be raised, like, which levels of the hierarchy are inhabited, which
are decidable, and which of the obvious inclusions are strict.

The paper [15] investigates weight domains that are sub-semirings of R≥0, and
contains some concrete results, like M(N, 0) ⊂ M(N, 1) ⊂ M(N, 2) ⊂ M(N, 3),
and some general statements. E.g., the Amitsur-Levitski-Theorem [23] implies
that the dimension hierarchy is infinite, and investigation of derivation lengths
implies that the proof length hierarchy is infinite. Many questions remain open,
and we did not even start to investigate this hierarchy for non-strict semirings.

12 Weighted Automata for Derivational Complexity

Recent work of Georg Moser et al. revived the idea of extending termination
analysis of rewriting systems towards complexity analysis. Formally, the goal is
to bound lengths of derivations by some function of the size of the starting term.
Weighted automata methods contribute some results here. The basic idea is that
if A is strictly compatible with R, then derivation lengths from t are bounded
by the height of A(t) in the order of the semiring.

For standard matrix interpretations, i.e., path-separated (N, +, ·)-automata,
A(t) is bounded by some exponential function of depth(t), since each matrix
computes a linear function. By restricting the shape of the matrices, this bound
can be lowered, and one instance is that upper triangular matrices give a poly-
nomially bounded interpretation [29].

When we change the semiring, we get even lower bounds: arctic matrix inter-
pretations imply a linear bound, and (N, min, max) interpretations do as well.
This holds even without any restrictions on the matrix shapes. In earlier work,
the space complexity of computations was bounded by max/plus polynomial
quasi-interpretations [1].

One challenge is to lift the “upper triangular” shape restriction for standard
matrix interpretations, and still get polynomial bounds. A nice test case is Z086.
It is widely believed that this system has quadratic derivational complexity, but
it has resisted all attempts to prove this. The interpretation computed by the
automaton in Example 1 is not polynomially bounded, as it contains a cycle
with weight > 1 (in state 3). Perhaps the arctic automaton in Example 3 helps?
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Abstract. Most techniques to automatically disprove termination of
term rewrite systems search for a loop. Whereas a loop implies non-
termination for full rewriting, this is not necessarily the case if one
considers rewriting under strategies. Therefore, in this paper we first
generalize the notion of a loop to a loop under a given strategy. In a
second step we present two novel decision procedures to check whether a
given loop is a context-sensitive or an outermost loop. We implemented
and successfully evaluated our method in the termination prover TTT2.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore,
much effort has been spent on developing and automating powerful techniques for
showing termination of TRSs. An important application area for these techniques
is termination analysis of functional programs. Since the evaluation mechanism
of functional languages is mainly term rewriting, one can transform functional
programs into TRSs and prove termination of the resulting TRSs to conclude
termination of the functional programs [6]. Although “full” rewriting does not
impose any evaluation strategy, this approach is sound even if the underlying
programming language has an evaluation strategy.

But in order to detect bugs in programs, it is at least as important to prove
non-termination of programs or of the corresponding TRSs. Here, the evaluation
strategy cannot be ignored, because a non-terminating TRS may still be termi-
nating when considering the strategy. Thus, in order to disprove termination of
programming languages with strategies, it is important to develop automated
techniques to disprove termination of TRSs under strategies.

Only a few techniques for showing non-termination of TRSs have been in-
troduced so far [4,7,9,10,12]. These techniques can be used to detect loops—a
specific form of derivation which implies non-termination—and are successfully
implemented in many tools (e.g., AProVE[5], Jambox [2], Matchbox [16], NTI [12],
TORPA [17], TTT2 [8]).

If one wants to prove non-termination under strategies then up to now there
are two different approaches. The first one is to directly analyze the loops whether
they also imply non-termination under a given strategy S. This approach was
successfully applied for the innermost strategy in [15] where a decision procedure
was given to determine whether a loop is an innermost loop.
� This author is supported by FWF (Austrian Science Fund) project P18763.
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The second approach is to use a complete transformation τS for strategy
S such that R is terminating under S iff τS(R) is (innermost) terminating.
Then one first applies the transformation and then searches for a loop in τS(R)
afterwards. Here, the methods of [3] and [13,14] are applicable which can be used
to disprove context-sensitive and outermost termination.

Although the second approach of using the transformations [3,13,14] seems
to be a good solution to disprove context-sensitive and outermost termination,
there are two main drawbacks. The first problem is a practical one. Often the
loops ofR are transformed into much longer loops in τS(R) and hence, the search
space for loops may become critical. And even more severe is the problem, that
some loops of R are not even translated to loops in τS(R) and hence, one even
looses power if the search problem for loops is ignored.

Thus, there is still need to extend the first approach—to ensure or even decide
that a given loop is a loop under strategies—to other strategies besides inner-
most. To this end, in this paper we first generalize the notion of a loop and an
innermost loop to a loop under some arbitrary strategy. Then we develop two
new decision procedures for context-sensitive loops and outermost loops.

The paper is structured as follows. In Sect. 2 we recapitulate the required
notions of rewriting and generalize the notion of a loop for rewriting strategies.
Moreover, we present a decision procedure for the question whether a given loop
is a context-sensitive loop. Then in Sect. 3 we show how to formulate the same
question for the outermost strategy as a set of matching problems. How these
matching problems can be transformed to a simpler kind of problems—identity
problems—is the content of Sect. 4. Afterwards, in Sect. 5 we provide a decision
procedure for solvability of identity problems. All of our techniques have been
implemented in the Tyrolean Termination Tool 2 (TTT2) and the empirical results
are presented in Sect. 6, before we conclude in Sect. 7.

A full version of this paper containing all proofs is available at http://
cl-informatik.uibk.ac.at/~griff/experiments/lus.php. This website also
contains details about our experiments.

2 Loops

We only regard finite signatures and TRSs and refer to [1] for the basics of
rewriting. We use �, r, s, t, u, . . . for terms, f, g, . . . for function symbols, x, y, . . .
for variables, σ, μ for substitutions, i, j, k, n,m, o for natural numbers, p, q, . . .
for positions where ε is the root position, and C,D, . . . for contexts. Here, con-
texts are terms which contain exactly one hole �. For contexts, the term C[t]
is like C where � is replaced by t, i.e., �[t] = t and f(s1, . . . , C, . . . , sn)[t] =
f(s1, . . . , C[t], . . . , sn). We write t|p for the subterm of t at position p, i.e., t|ε = t
and f(s1, . . . , sn)|ip = si|p. The set of variables is denoted by V .

Throughout this paper we assume a fixed TRS R and we write t→p s if one
can reduce t to s at position p with R, i.e., t = C[�σ] and s = C[rσ] for some
� → r ∈ R, substitution σ, and context C with C|p = �. Here, the term �σ is
called a redex at position p. The reduction is an outermost reduction, written

http://cl-informatik.uibk.ac.at/~griff/experiments/lus.php
http://cl-informatik.uibk.ac.at/~griff/experiments/lus.php
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t o→p s, iff t contains no redex at a position q above p (written q < p). If the
position is irrelevant we just write → or o→. The TRS R is non-terminating iff
there is an infinite derivation t1 → t2 → . . . . It is outermost non-terminating iff
there is such an infinite derivation using o→ instead of →.

An obvious approach to disprove termination is to search for a loop, i.e., a
derivation where the starting term t is reduced to a term containing an instance
of t, i.e., t→+ C[tμ]. The corresponding infinite derivation is

t→+ C[tμ] →+ C[C[tμ]μ] →+ . . . →+ C[C[. . .C[tμ] . . .μ]μ] →+ . . . (�)

where the derivation t →+ C[tμ] is repeated over and over again. This infinite
derivation (�) is obtained because → is closed under both substitutions and
contexts, also known as stability and monotonicity.

However, in general it is not clear whether (�) also is an infinite derivation if
one considers a specific evaluation strategy S. If this is the case then and only
then we speak of an S-loop.

To formally define an S-loop we first need to make the derivations within
(�) precise. Therefore, we must represent terms like C[C[. . .C[tμ] . . .μ]μ] with-
out using “. . . ”. Moreover, we must know the positions of the reductions since
several strategies—like innermost, outermost, or context-sensitive—only allow
reductions at certain positions. To this end, we define the notion of a context-
substitution which combines insertion into a context with the application of a
substitution.

Definition 1 (Context-substitutions). A context-substitution is a pair
(C, μ) consisting of a context C and a substitution μ. The n-fold application
of (C, μ) to a term t, written t(C, μ)n is defined as follows.

• t(C, μ)0 = t
• t(C, μ)n+1 = C[t(C, μ)nμ]

C

C

C

t
μ

μ

μ

μ

μ

μ

Fig. 1. The term t(C, μ)3

From the definition it is obvious that
in t(C, μ)n the context C is added n-
times above t and t is instantiated
by μn. Note that also the added con-
texts are instantiated by μ. For the
term t(C, μ)3 this is illustrated in Fig. 1.

The following lemma shows that
context-substitutions have similar prop-
erties to both contexts and substitu-
tions.

Lemma 1 (Properties of context-substitutions).

(i) t(C, μ)nμ = tμ(Cμ, μ)n.
(ii) t(C, μ)m(C, μ)n = t(C, μ)m+n.
(iii) If C|p = � then t(C, μ)n|pn = tμn.
(iv) Whenever t→q s and C|p = � then t(C, μ)n →pnq s(C, μ)n.
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Here, property (i) is similar to the fact that C[t]μ = Cμ[tμ], and (ii) expresses
that context-substitutions can be combined just as substitutions where σmσn =
σm+n. Moreover, the property of contexts that C[t]p = t if C|p = � is extended
in (iii), and finally stability and monotonicity of rewriting are used to show in
(iv) that rewriting is closed under context-substitutions.

With the help of context-substitutions we can now describe the infinite deriva-
tion in (�) more concisely. Since t→+ C[tμ] = t(C, μ) we obtain

t(C, μ)0 →+ t(C, μ)(C, μ)0 = t(C, μ)1 →+ . . . →+ t(C, μ)n →+ . . . (��)

Hence, the terms that occur during the derivation are precisely defined and for
every n the positions of the reductions are prefixed by an additional pn where p
is the position of the hole in C, cf. Lemma 1 (iv). In other words, every reduction
takes place at the same position of the subterm tμn of t(C, μ)n.

Now it is natural to define that a derivation t→+ t(C, μ) is called an S-loop
iff all steps in (��) respect the strategy S.1

Definition 2 (S-loops). Let S be a strategy. A loop t1 →q1 t2 →q2 . . . tn →qn

tn+1 = t1(C, μ) with C|p = � is an S-loop iff all reductions ti(C, μ)m →pmqi

ti+1(C, μ)m respect the strategy S for all 1 ≤ i ≤ n and m ≥ 0.

As a direct consequence of Def. 2 one can conclude that every S-loop of a rewrite
system R proves non-termination of R under strategy S.

Example 1. We consider the TRS Rn for arithmetic with n-bit numbers.

p(0) → 0 (1)
p(s(x)) → x (2)

minus(x, 0) → x (3)
minus(x, x) → 0 (4)

minus(x, s(y)) → p(minus(x, y)) (5)

plus(0, y) → y (6)
plus(s(x), y) → s(plus(x, y)) (7)

inf → s(inf) (8)

s2
n

(x) → overflow (9)

Here, the last rule is used to model that an overflow occurred due to the n-bit
restriction. We focus on the loops

t1 = minus(x, inf) → minus(x, s(inf)) → p(minus(x, inf)) = C1(t1, μ1) and
t2 = plus(inf, y) → plus(s(inf), y) → s(plus(inf, y)) = C2(t2, μ2)

where μ1 = μ2 = { }, C1 = p(�), and C2 = s(�). Here, the first loop is an
outermost loop, but the second one is not. The reason for the latter is that in
every iteration one more s is created. Hence, this will lead to a redex w.r.t. Rule
(9). Note that this example will be hard to handle with the transformational
approaches: using [14] creates a TRS where all infinite reductions are non-looping
and [13] is not even applicable due to non-left-linearity of Rule (4).
1 Another natural definition of an S-loop would just require that t(C,μ)n →+

t(C,μ)n+1 are S-derivations for all n. This alternative was already used in the set-
ting of dependency pairs in [4, Footnote 6]. However, there are problems using this
definition which are described in [15, Sect. 2].
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Note that a loop is not only determined by the precise derivation t1 →+ tn+1,
but also by the specific context C that is used. To see this consider the TRS
R = {a → f(a, a), f(f(x, y), z) → b}. Then a → f(a, a) is a looping derivation.
For C = f(a,�) this is an outermost loop. However, for C′ = f(�, a) we do not
obtain an outermost loop since f(a, a) o→ f(f(a, a), a) � o→ f(f(f(a, a), a), a). Hence,
the choice of C is essential.

For automatic non-termination analysis under strategies one main question is
whether a given loop is an S-loop, i.e., whether the loop implies non-termination
even under strategy S. In [15] it was already shown that this question is decidable
for innermost loops.2 There, one has the problem that innermost rewriting is not
stable, although it is monotonic.

In context-sensitive rewriting [11] we have the inverse situation: first, stabil-
ity is given whereas monotonicity is absent. And second, whereas the decision
procedure for innermost loops is quite involved and already known, for context-
sensitive loops we can present a novel decision procedure that is rather straight-
forward, but nevertheless important.

Theorem 1 (Deciding context-sensitive-loops). A loop t →+ C[tμ] is a
context-sensitive loop (using replacement map ν) iff both the derivation t →+

C[tμ] respects the context-sensitive strategy and the hole in C is at a ν-replacing
position.

Proof. Let t1 →q1 t2 →q2 . . . tn →qn tn+1 = t1(C, μ) be a loop where C|p = �.
Then the following statements are all equivalent.

• the loop is a context-sensitive loop
• all ti(C, μ)m →pmqi ti+1(C, μ)m are context-sensitive reductions
• all pmqi are ν-replacing positions of ti(C, μ)m

• p is a ν-replacing position of C and each qi is a ν-replacing position of tiμm

• the hole in C is at a ν-replacing position and the derivation t1 →+ t1(C, μ)
is a context-sensitive derivation �

In the rest of this paper we consider the outermost strategy. As main result we
develop a decision procedure for the question whether a given loop is an outer-
most loop. Note that for outermost rewriting neither stability nor monotonicity
are given. To see this consider the TRS R = {a → a, f(x) → x, g(f(a)) → a}.
Then a o→ a, but f(a) � o→ f(a). Moreover, g(f(x)) o→ g(x), but g(f(a)) � o→ g(a).

The problem of missing stability was already present for innermost loops.
Therefore, many techniques of [15] for innermost loops can be reused for out-
ermost loops, too. However, to handle the missing monotonicity of outermost
rewriting we have to extend these techniques by an additional context. And
these contexts will require significant extensions of the techniques of [15] and
are not so easy to treat as in the context-sensitive case.
2 Note that in [15] one did not regard contexts, i.e., for an innermost loop one just re-

quired that all reductions tiμ
m →qi ti+1μ

m are innermost reductions. However, that
definition of an innermost loop is equivalent to Def. 2 since innermost rewriting (de-
noted by i→) is monotonic. Thus, tiμ

m i→qi ti+1μ
m iff ti(C,μ)m i→pmqi ti+1(C, μ)m.
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3 Deciding Outermost Loops

Recall the definition of an outermost reduction. An outermost reduction of t
at position p requires that there is no redex at a position q above p, i.e., all
subterms t|q with q < p must not be matched by some left-hand side of a rule
in R. Hence, the question of an outermost reduction can be formulated as a
question of matching.

However, we do not have to consider a single outermost reduction but we
want to know whether each reduction of a term t(C, μ)m at position pmq is an
outermost reduction (where C|p = � and q ∈ Pos(t)). Looking at Fig. 1 one
sees that there are two different cases how to obtain a subterm at a position
above pmq that is matched by some left-hand side. First, the subterm may be
a subterm of tμm. Or otherwise, the subterm starts within the context. For the
former case we can reuse the so called matching problems [15, Def. 12] and for the
latter we need an extended version of matching problems containing contexts.

Definition 3 ((Extended) matching problems). A matching problem is a
pair (M, μ) where M is a set of pairs of terms s� �. It is solvable iff there is a
solution (k, σ) such that for all s� � ∈ M the equation sμk = �σ is satisfied.

An extended matching problem is a quintuple (D � �, C, t,M, μ). It is solv-
able iff there is a solution (n, k, σ) such that the equation D[t(C, μ)n]μk = �σ is
satisfied and (k, σ) is a solution to the matching problem (M, μ).

To simplify presentation we write (D � �, C, t, μ) instead of (D � �, C, t,∅, μ)
and we write (s� �, μ) instead of ({s� �}, μ). Moreover, we use the notion
“matching problem” also for extended matching problems.

To check whether t(C, μ)m has a redex above position pmq one can now construct
a set of initial matching problems. Essentially, one considers matching problems
for the subterms of t above q. Additionally, for each subterm of t(C, μ)m that
starts with a subcontext C|p′ of C, we build an extended matching problem.

Definition 4 (Initial matching problems). Let t →q u be a reduction and
(C, μ) be a context-substitution with C|p = �. Then the following initial match-
ing problems are created for this reduction and context-substitution.

• (t|p′ � �, μ) for each �→ r ∈ R and p′ < q
• (C|p′ � �, Cμ, tμ, μ) for each �→ r ∈ R and p′ < p

Example 2. Consider the loop t1 = minus(x, inf) →2 minus(x, s(inf)) = t2 →ε

p(minus(x, inf)) = t1(C, μ) of Ex. 1 where C = p(�) and μ = { }. For the sec-
ond reduction at root position we only build the extended matching problems
MP1� = (p(�) � �, p(�),minus(x, s(inf)), μ) for all left-hand sides � of R. For
the first reduction we obtain the similar extended matching problems MP2� =
(p(�) � �, p(�),minus(x, inf), μ), but additionally we also get the matching prob-
lems MP3� = (minus(x, inf) � �, μ).

The following theorem states that we have setup the right initial matching prob-
lems. If we consider all initial problems of all reductions ti →qi ti+1 of a loop,
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then solvability of one of these problems is equivalent to the property that the
loop is not outermost.

Theorem 2 (Outermost loops and matching problems). Let t→q u and
(C, μ) be given such that C|p = �. All reductions t(C, μ)m →pmq u(C, μ)m are
outermost iff none of the initial matching problems for t →q u and (C, μ) is
solvable.

Proof. We first prove that any solvable initial matching problem shows that there
is at least one reduction of t(C, μ)m at position pmq which is not an outermost
reduction. There are two cases. First, if (t|p′ � �, μ) is solvable, then there is a
solution (k, σ) such that t|p′μk = �σ. Then t(C, μ)k|pkp′ = tμk|p′ = t|p′μk = �σ
shows that there is a redex in t(C, μ)k above pkq. Thus, t(C, μ)k →pkq u(C, μ)k

is not an outermost reduction.
Otherwise, (C|p′ � �, Cμ, tμ, μ) is solvable. Hence, there is a solution (n, k, σ)

such that C|p′ [tμ(Cμ, μ)n]μk = �σ. Here, we show that the term t(C, μ)n+1+k

has a redex at position pkp′ which is above position pn+1+kq:

t(C, μ)n+1+k|pkp′ = t(C, μ)n(C, μ)(C, μ)k |pkp′ = t(C, μ)n(C, μ)μk|p′

= C[t(C, μ)nμ]μk|p′ = C|p′ [t(C, μ)nμ]μk

= C|p′ [tμ(Cμ, μ)n]μk = �σ

For the other direction we show that if some reduction t(C, μ)m at position
pmq is not an outermost reduction, then one of the initial matching problems
must be solvable. So suppose, the reduction of t(C, μ)m is not outermost. Then
there must be some position q′ < pmq such that the corresponding subterm
t(C, μ)m|q′ is a redex �σ. Again, there are two cases.

First, if q′ ≥ pm then q′ = pmp′ where p′ < q as q′ < pmq. Hence, �σ =
t(C, μ)m|q′ = t(C, μ)m|pmp′ = tμm|p′ = t|p′μm. Thus, the initial matching prob-
lem (t|p′ � �, μ) has the solution (m,σ).

In the other case q′ < pm. Thus, we can split the position q′ into pkp′ where
k < m and p′ < p. Moreover, there must be some n ∈ N that satisfies m =
n+ 1 + k. We conclude

�σ = t(C, μ)m|q′ = t(C, μ)n+1+k|pkp′

= t(C, μ)n(C, μ)(C, μ)k |pkp′ = t(C, μ)n(C, μ)μk|p′

= C[t(C, μ)nμ]μk|p′ = C[tμ(Cμ, μ)n]μk|p′

= C|p′ [tμ(Cμ, μ)n]μk.

Thus, the initial matching problem (C|p′ � �, Cμ, tμ, μ) is solvable. �

Note that whenever C = � then there is no initial matching problem which
is an extended matching problem. Hence, by Thm. 2 one can already decide
whether a loop t→+ tμ is an outermost loop by using the techniques of [15] to
decide solvability of matching problems. For example it can be detected that all
matching problems MP3� of Ex. 2 are not solvable.

However, in the general case we also generate extended matching problems.
Therefore, in the next section we develop a novel decision procedure for solvabil-
ity of extended matching problems like MP1� and MP2� of Ex. 2.
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4 Deciding Solvability of Extended Matching Problems

Since extended matching problems are only generated if C �= �, in the following
sections we always assume that C �= �. We take a similar approach to [15]
where we transform each matching problem into �, ⊥, or into solved form. Here
� and ⊥ represent solvability and non-solvability. And if a matching problem is
in solved form then often solvability can immediately be decided. We explain all
transformation rules in detail directly after the following definition.

Definition 5 (Transformation of extended matching problems). Let
MP = (D � �0, C, t,M, μ) be an extended matching problem where M =
{s1 � �1, . . . , sm � �m}. Then MP is in solved form iff each �i is a variable.
Let Vincr = {x ∈ V | ∃n : xμn /∈ V} be the set of increasing variables.

We define a relation ⇒ which simplifies extended matching problems that are
not in solved form. So, let �j = f(�′1, . . . , �

′
m′).

(i) MP ⇒ (Di′ � �′i′ , C, t,M∪ {ti � �′i | 1 ≤ i ≤ m′, i �= i′}, μ) if j = 0 and
D = f(t1, . . . , Di′ , . . . , tm′).

(ii) MP ⇒ (D � �0, C, t, (M\ {sj � �j}) ∪ {ti � �′i | 1 ≤ i ≤ m′}, μ) if j > 0
and sj = f(t1, . . . , tm′).

(iii) MP ⇒ ⊥ if j = 0 and D = g(. . . ) where f �= g.
(iv) MP ⇒ ⊥ if j > 0 and sj = g(. . . ) where f �= g.
(v) MP ⇒ ⊥ if j > 0 and sj ∈ V \ Vincr.
(vi) MP ⇒ (Dμ� �0, Cμ, tμ, {siμ� �i | 1 ≤ i ≤ m}, μ) if j > 0 and sj ∈ Vincr.
(vii) MP ⇒ � if j = 0, D = �, and (M∪{t� �0}, μ) is solvable.
(viii) MP ⇒ (C � �0, Cμ, tμ,M, μ) if j = 0, D = �, and (M∪ {t� �0}, μ) is

not solvable.

Recall that MP = (D � �0, C, t, {s1 � �1, . . . , sm � �m}, μ) is solvable iff there is a
solution (n, k, σ) such thatD[t(C, μ)n]μk = �0σ and siμk = �iσ for all 1 ≤ i ≤ m.
Hence, whenever D �= � or si /∈ V then one can perform a decomposition (Rules
(i) and (ii)) or detect a clash (Rules (iii) and (iv)) as in a standard matching
algorithm.

If sj = x is a non-increasing variable then sjμk will always be a variable.
Thus, Rule (v) correctly returns ⊥. But if sj = x is an increasing variable then
there might be a solution if k > 0. Hence, one can just apply μ once on the whole
matching problem using Rule (vi). Note that in the result of Rule (vi) both t
and C are also instantiated. This reflects the property of context-substitutions
that t(C, μ)nμ = tμ(Cμ, μ)n, cf. Lemma 1.

Whereas Rule (v) and a simplified version of Rule (vi) have already been
present in [15], here we also need two additional rules to handle contexts. Note
that for n = 0 and D = � the term D[t(C, μ)n]μk is just tμk and thus, one
only has to consider a non-extended matching problem. Now, in Rules (vii) and
(viii) there is a case distinction whether this non-extended matching problem is
solvable, i.e., whether n = 0 yields a solution or not. If it is solvable then also a
solution of MP is found and Rule (vii) correctly returns �. If it is not possible
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then there is only one way to continue: apply the context-substitution at least
once, and this is exactly what Rule (viii) does.

Before we formally state the soundness of the transformation rules in Thm. 3
we illustrate their application on the extended matching problems of Ex. 2.

Example 3. We first consider MP1� = (p(�) � �, p(�),minus(x, s(inf)), μ). If �
is not one of the left-hand sides p(0) or p(s(x)) then ⊥ is obtained by Rule
(iii). If one considers � = p(0) then (p(�) � p(0), p(�),minus(x, s(inf)), μ) ⇒
(� � 0, p(�),minus(x, s(inf)), μ) by Rule (i). And as (minus(x, s(inf)) � 0, μ) is
not solvable, Rule (viii) yields (p(�) � 0, p(�),minus(x, s(inf)), μ). Finally, an
application of Rule (iii) returns ⊥ and thereby shows that the matching problem
is not solvable. Since the transformation for � = p(s(x)) also results in ⊥, we
have detected that none of the matching problems MP1� is solvable.

A similar transformation shows that none of the matching problems MP2� is
solvable. Hence, the loop of Ex. 2 is an outermost loop.

Theorem 3 (Soundness and termination of the transformation rules).

(i) If MP ⇒ ⊥ then MP is not solvable.
(ii) If MP ⇒ � then MP is solvable.
(iii) If MP ⇒ MP ′ then MP is solvable iff MP ′ is solvable.
(iv) The relation ⇒ is terminating and confluent.3

Using the above theorem allows us to transform any initial matching prob-
lem into ⊥, �, or into a matching problem in solved form. In the first two
cases solvability is decided, but in the last case we still need a way to ex-
tract solvability. Note that these resulting matching problems are all of the
form MP = (D � x0, C, t, {s1 � x1, . . . , sm � xm}, μ) where each xi ∈ V . Note
that if all xi are different—which is always the case if one considers left-linear
TRSs—then MP is trivially solvable. One just can choose the solution (n, k, σ)
where n = k = 0 and σ = {x0/D[t], x1/s1, . . . , xm/sm}.

The only problem arises if for some i �= j we have xi = xj . Then to choose
σ(xi) = σ(xj) one has to know that siμk = sjμ

k for some k. This so called
identity problem already occurred in [15]. However, if i = 0 then we have to
answer a more difficult question, namely whether D[t(C, μ)n]μk = sjμ

k. This
new kind of problem is introduced as extended identity problem.

Definition 6 ((Extended) identity problems). An identity problem is a
pair (s ≈ s′, μ). It is solvable iff there is some k such that sμk = s′μk.

An extended identity problem is a quadruple (D ≈ s, μ, C, t). It is solvable
iff there is a solution (n, k) such that D[t(C, μ)n]μk = sμk.

We now can transform matching problems in solved form into an equivalent set
of (extended) identity problems.

Theorem 4 (Transforming matching problems into identity prob-
lems). Let MP = (D � x,C, t, {s1 � x1, . . . , sm � xm}, μ) be a matching prob-
lem in solved form. It is solvable iff each of the following identity problems is
solvable.
3 Here we need the assumption C �= �. Otherwise, Rule (viii) would not terminate.
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• (D ≈ si, μ, C, t) where i is the least index such that x = xi.
• (si ≈ sj, μ) for all j where i < j is the least index such that xi = xj.

One might wonder why this theorem is sound as each solution of (si ≈ sj , μ)
might yield a different kij . The key point is that the maximum of all these kij ’s
is a solution for all identity problems (si ≈ sj , μ).

Note that [15] describes a decision procedure for solvability of identity prob-
lems (s ≈ s′, μ). Hence, we can already decide solvability of matching problems
(D � x,C, t,M, μ) in solved form where the variable x does not occur in M.
Nevertheless, for the general case we still need a technique to decide solvability
of extended identity problems. Such a technique is described in the next section.

Example 4. Consider the TRS {f(x) → g(g(x, x), f(s(x))), g(y, y) → a} with the
loop t = f(x) → g(g(x, x), f(s(x))) = t(C, μ) where μ = {x/s(x)} and C =
g(g(x, x),�). One initial matching problem (g(g(x, x),�) � f(x), Cμ, tμ, μ) is
trivially not solvable due to a symbol clash. But the other initial matching prob-
lem (g(g(x, x),�) � g(y, y), Cμ, tμ, μ) is transformed into the matching problem
MP = (� � y, Cμ, tμ, {g(x, x) � y}, μ). By Thm. 4 solvability of MP is equiva-
lent to solvability of the extended identity problem (� ≈ g(x, x), μ, Cμ, tμ).

5 Deciding Solvability of Extended Identity Problems

In this section we describe a decision procedure for solvability of extended iden-
tity problems. To this end we first introduce the notion of a trace.

Definition 7 (Traces). The trace of term t w.r.t. position p is the sequence of
function symbols and indices that are passed when moving from ε to p in t:

trace(p, t) =

{
ε if t = x or p = ε

f i trace(q, ti) if p = iq and t = f(t1, . . . , tn)

The trace of a context C with C|p = � is trace(C) = trace(p, C). The set of all
traces of a term is Traces(t) = {trace(p, t) | p ∈ Pos(t)}.

Lemma 2 (Properties of traces).

(i) trace(pq, C[t]) = trace(C)trace(q, t) if C|p = �
(ii) trace(p, t) = trace(p, tμ) if p ∈ Pos(t)
(iii) trace(pnq, t(C, μ)n) = trace(C)ntrace(q, tμn) if C|p = � and q ∈ Pos(t)
(iv) trace(p, t) ∈ Traces(t) if trace(pq, t) ∈ Traces(t)

In the following algorithm to decide solvability of extended identity problems,
a Boolean disjunction over non-extended identity problems represents solvability
of at least one of these identity problems.

Definition 8 (Decision procedure for extended identity problems). Let
(D ≈ s, μ, C, t) be an extended identity problem where D|q = �, C|p = �.
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(i) if trace(D)trace(C)∗ �⊆
⋃

i∈N
Traces(sμi) =: S then there is some m such

that trace(D)trace(C)m /∈ S; return
∨

n<m (D[t(C, μ)n] ≈ s, μ)
(ii) if trace(C)∗ �⊆

⋃
i∈N

Traces(tμi) then return “not solvable”
(iii) let x be a variable which infinitely often occurs in s|p0 , sμ

1|p1 , sμ
2|p2 , . . .

where each pi is that prefix of qpω which satisfies pi ∈ Pos(sμi); let i be
the minimal number such that sμi|pi = x

(iv) let j be minimal such that tμj |qj = x where qj is that prefix of pω which
satisfies qj ∈ Pos(tμj); if there is no such j then return “not solvable”

(v) return
∨

n≤max(
|pi|−|qqj |

|p| ,j)
(D[t(C, μ)n] ≈ s, μ)

We will explain the algorithm in detail within the proof of the following theorem.
Afterwards, we present algorithms to automate the non-trivial steps.

Theorem 5. The algorithm of Def. 8 is sound and terminates.

Proof. Termination of the algorithm is obvious. We only remark that the dis-
junction in Step (v) is finite, since |p| > 0 by the assumption C �= �.

To show soundness of the algorithm first recall the definition of solvability
of (D ≈ s, μ, C, t). This extended identity problem is solvable iff there is a so-
lution (n, k) such that D[t(C, μ)n]μk = sμk. We observe two properties: first,
whenever (n, k) is a solution then (n, k + k′) is also a solution. And second, if
we fix n then the extended identity problem is solvable iff the identity problem
(D[t(C, μ)n] ≈ s, μ) is solvable. From the second observation we conclude that if
one can bound the value of n, then one can reduce solvability of extended iden-
tity problems to solvability of identity problems and is done. And computing
these bounds on n is basically all the algorithm does (in Steps (i) and (v)).

The first idea to extract a bound is to consider how the term D[t(C, μ)n]μk

grows if n is increased. Looking at Fig. 1 on page 19 or using Lemma 2 we see that
D[t(C, μ)n]μk has the trace trace(D)trace(C)n. Thus, if (n, k) is a solution then
sμk must have the same trace. Hence, if trace(D)trace(C)m /∈

⋃
i∈N

Traces(sμi) =
S then n < m. This proves soundness of Step (i).

So, after Step (i) we can assume trace(D)trace(C)∗ ⊆ S. Hence, if we increase
the k of sμk then this term grows along the (infinite) trace trace(D)trace(C)ω .
Using the first observation we know that for every solution of the extended
identity problem we can increase k arbitrarily. Thus, D[t(C, μ)n]μk (which is
the same term as sμk) also has to contain longer and longer parts of the trace
trace(D)trace(C)ω when increasing k. Hence, whenever the extended identity
problem is solvable then trace(C)∗ ⊆

⋃
i∈N

Traces(tμi) =: T which shows sound-
ness of Step (ii).

If the decision procedure arrives at Step (iii) then both trace(D)trace(C)∗ ⊆ S
and trace(C)∗ ⊆ T , i.e., when increasing k we see no difference of function
symbols of the terms D[t(C, μ)n]μk and sμk along the path qpω. However, there
still might be a difference between D[t(C, μ)n]μk and sμk for each finite value
k. For example, different variables may be used to increase the terms along the
path qpω as in D = �, C = f(�), t = x, s = y, μ = {x/f(x), y/f(y)}. Or one of
the terms is always a bit larger as the other one as in D = �, C = f(�), t =
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f(x), s = x, μ = {x/f(x)}. To detect the situation of different variables, Step
(iv) is used, and the latter situation is done via Step (v).

As we are interested in the variables in Steps (iv) and (v), we first compute
a variable x in Step (iii) which infinitely often occurs along the path qpω in
the terms s, sμ, sμ2, . . . . This variable must exist, since μ has finite domain and
trace(D)trace(C)∗ ⊆ S. This immediately proves soundness of Step (iv) since
wheneverD[t(C, μ)n]μk = sμk then by the first observation we can choose k high
enough such that x = sμk|pk

= D[t(C, μ)n]μk|pk
where pk ≤ qpω, i.e., pk must

be of the form qpnq′ where q′ is a prefix of pω. Thus, x = D[t(C, μ)n]μk|qpnq′ =
t(C, μ)nμk|pnq′ = tμn+k|q′ shows that Step (iv) cannot stop the algorithm with
“not solvable”.

The main idea of Step (v) is as in Step (i) to bound n but now for a different
reason. Observe that whenever we increase n then sμk stays the same whereas
D[t(C, μ)n]μk has the subterm tμn+k which depends on n. And since trace(C)∗ ⊆
T we know that with larger n also the terms tμn+k become larger. Thus, there
must be a limit where the size of sμk is reached and it is of no use to search for
larger values of n. And this limit turns out to be m := max( |pi|−|qqj |

|p| , j) which
proves soundness of Step (v). �

Input: D, C, s, μ
Output: minimal m such that trace(D)trace(C)m /∈ ⋃

i∈N
Traces(sμi) or ∞, otherwise

(1) m := 0, E := D, t := s, S := ∅
(2) if E = f(. . . E′ . . .) and t = f(. . . ) where E|i = E′ then E := E′, t := t|i, goto (2)
(3) if E = g(. . .), t = f(. . .), and g �= f then return m
(4) if E �= � and t = x /∈ Vincr(μ) then return m
(5) if E �= � and t = x ∈ Vincr(μ) then t := tμ, goto (2)
(6) if E = � and t ∈ S then return ∞
(7) if E = � and t /∈ S then S := S ∪ {t}, m := m + 1, E := C, goto (2)

Fig. 2. clash(D, C, s, μ)

For the automation one can use the algorithm of [15] for solvability of non-
extended identity problems. To check whether trace(D)trace(C)∗ ⊆ S in Step
(i) one can check whether clash(D,C, s, μ) = ∞ (cf. Fig. 2) which also delivers
the required number m in case that trace(D)trace(C)∗ �⊆ S. Of course, clash can
also be used for the test in Step (ii) where we call clash(�, C, t, μ).

Theorem 6. The algorithm clash terminates and is sound.

For Step (iii) of the decision procedure the function var∞(s, q, p, μ) in Fig. 3
computes a triple (x, pi, i) such that x infinitely often occurs in the sequence
s|p0 , sμ|p1 , sμ2|p2 , . . . where each pk ∈ Pos(sμk) is the maximal prefix of qp∞

and i is the smallest number such that sμi|pi = x. Note that the precondition is
satisfied, since var∞ is only called if trace(D)trace(C)∗ ⊆

⋃
i∈N

Traces(sμi) which
directly implies qp∗ ⊆

⋃
i∈N
Pos(sμi).



Loops under Strategies 29

Preconditions: p �= ε and qp∗ ⊆ ⋃
j∈N

Pos(sμj)
Input: s, q, p, μ
Output: (x, pi, i) such that x infinitely often occurs in terms sμj along path qpω

where i and pi < qpω are minimal such that sμi|pi = x

(1) i := 0, u := s, pstart := ε, pend := q, S := ∅
(2) if u = x and (x, , pend, ) ∈ S then return (x, pstart

′, i′) where i′ is the smallest value
such that (x, pstart

′, , i′) ∈ S
(3) if u = x and (x, , pend, ) /∈ S then u := uμ, S := S ∪ {(x, pstart, pend, i)}, i := i + 1,

goto (2)
(4) (a) if pend = ε then pend := p

(b) let pend = jp′ and u = f(u1, . . . , un); u := uj , pend := p′, pstart := pstartj, goto (2)

Fig. 3. var∞(s, q, p, μ)

Theorem 7. The algorithm var∞ terminates and is sound.

Preconditions: p �= ε and p∗ ⊆ ⋃
i∈N

Pos(tμi)
Input: x, t, p, μ
Output: (j, q) if j is minimal such that tμj |q = x where q ∈ Pos(tμj) is prefix of pω

or ⊥, if there is no such j

(1) j := 0, u := t, pstart := ε, pend := ε, S := ∅
(2) if u = x then return (j, pstart)
(3) if u = y �= x and (y, pend) ∈ S then return ⊥
(4) if u = y �= x and (y, pend) /∈ S then j := j+1, S := S∪{(y, pend)}, u := uμ, goto (2)
(5) (a) if pend = ε then pend := p

(b) let pend = ip′ and u = f(u1, . . . , un); u := ui, pend := p′, pstart := pstarti, goto (2)

Fig. 4. idx(x, t, p, μ)

Finally, for Step (iv) a small adaptation of var∞ yields the last required algorithm
idx in Fig. 4 to check whether x occurs along pω in some term tμj .

Theorem 8. The algorithm idx terminates and is sound.

Note that both algorithms var∞ and idx become unsound if one only considers
equal variables in the set S, but not equal positions pend.

6 Empirical Results

In the following we first give some details about the actual implementation of
our method and after that empirical results. To find loops, we use unfoldings as
defined in [12], Section 3 (without any refinements mentioned in later sections).
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For efficiency reasons we restrict to non-variable positions. Further we do not
use a combination of forward and backward unfoldings by default. Our basic
method uses the following heuristic to decide the direction of the unfoldings:
For systems that are duplicating but whose inverse is non-duplicating we unfold
backwards. For all other systems we unfold forwards.

In contrast to finding loops for full termination, for a specific strategy S, we
cannot always stop when a loop was found (since it could turn out to be no longer
relevant when switching from full rewriting to S-rewriting). Hence we compute
a lazy list of potential loops that is checked one at a time corresponding to S.
If the checked loop is no S-loop, the next loop is requested (and lazyness makes
sure that the necessary computations are only done after the previous element
dropped out).

For context-sensitive rewriting as well as outermost rewriting we reduce the
search space by filtering the set of unfoldings after each iteration. In both cases
we remove derivations containing rewrite steps that disobey the strategy.

As already mentioned in the introduction there is the transformational ap-
proach for both, context-sensitive rewriting [3] and outermost rewriting [13,14].
In both cases a problem for finding loops, is that the length of an existing loop
may increase dramatically, or even worse, a loop is transformed into a non-
looping infinite derivation.

To evaluate our implementation in TTT2 we used all 291 (214) outermost
examples as well as all 109 (15) context-sensitive examples of version 5.0.2 of the
Termination Problems Data Base.4 Here, in brackets the number of those TRSs
is given, where outermost resp. context-sensitive termination has not already
been proven. The results on these possibly non-terminating TRSs are as follows:

outermost TRSs CSRs
AProVE TrafO TTT2 TTT2

NO score 37 30 191 4
avg. time (msec) 6689 6772 340 38

For outermost rewriting we compare to the sum of non-termination proofs
(NO score) achieved by AProVE and TrafO5 at the January 2009 termination
competition.46 The success of our technique is clearly visible: TTT2 was able
to disprove termination of nearly 90 % of all possible non-terminating TRSs,
including all examples that could be handled by AProVE and TrafO (which use
the transformational approaches of [14] and [13] respectively).

For context-sensitive rewriting we just give the NOs of TTT2 since we are not
aware of any other tool that has disproven context-sensitive termination of a
single TRS. Here, our implementation could at least solve one quarter of the
potentially non-terminating TRSs.

4 http://termcomp.uibk.ac.at
5 http://www.win.tue.nl/~mraffels/trafo.html
6 The numbers for TTT2 differ from those of the competition since the competition

version did not feature the reduction of the search space which is described above.

http://termcomp.uibk.ac.at
http://www.win.tue.nl/~mraffels/trafo.html
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7 Conclusion and Future Work
To prove non-termination of rewriting under strategy S, we first extended the
notion of a loop to an S-loop. An S-loop is an S-reduction with a strong regu-
larity which admits the same infinite reduction as an ordinary loop does for full
rewriting. Afterwards, we developed two novel procedures to decide whether a
given loop is a context-sensitive loop or an outermost loop. It is easy to see that
the conjunction of both procedures decides context-sensitive outermost loops.

Since [6] only describes a way to prove termination of Haskell programs, it
might be an interesting future work to combine our technique for outermost
loops with [6] to also disprove termination of Haskell programs.
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Proving Termination of Integer Term Rewriting�
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and Stephan Falke3

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Dept. of Mathematics & CS, University of Southern Denmark, Odense, Denmark

3 CS Department, University of New Mexico, Albuquerque, NM, USA

Abstract. When using rewrite techniques for termination analysis of
programs, a main problem are pre-defined data types like integers. We
extend term rewriting by built-in integers and adapt the dependency pair
framework to prove termination of integer term rewriting automatically.

1 Introduction

Recently, techniques and tools from term rewriting have been successfully applied
to prove termination automatically for different programming languages, cf. e.g.
[14,27]. The advantage of rewrite techniques is that they are very powerful for al-
gorithms on user-defined data structures, since they can automatically generate
suitable well-founded orders comparing arbitrary forms of terms. But in contrast
to techniques for termination of imperative programs (e.g., [2,3,4,5,6,7,8,24,25]),1

the drawback of rewrite techniques is that they do not support data structures
like integer numbers which are pre-defined in almost all programming languages.
Up to now, integers have to be represented as terms, e.g., using the symbols 0 for
zero, s for the successor function, and pos and neg to convert natural to integer
numbers. Then the integers 1 and −2 are represented by the terms pos(s(0)) resp.
neg(s(s(0))) and one has to add rules for pre-defined operations like +, −, ∗, /, %
that operate on these terms. This representation leads to efficiency problems for
large numbers and it makes termination proofs difficult. Therefore up to now,
termination tools for term rewrite systems (TRSs) were not very powerful for al-
gorithms on integers, cf. Sect. 6. Hence, an extension of TRS termination tech-
niques to built-in data structures is one of the main challenges in the area [26].

To solve this challenge, we extend2 TRSs by built-in integers in Sect. 2 and
adapt the popular dependency pair (DP) framework for termination of TRSs to
integers in Sect. 3. This combines the power of TRS techniques on user-defined
data types with a powerful treatment of pre-defined integers. In Sect. 4, we im-
prove the main reduction pair processor of the adapted DP framework by consid-
ering conditions and show how to simplify the resulting conditional constraints.
� Supported by the DFG grant GI 274/5-2 and by the G.I.F. grant 966-116.6.
1 Moreover, integers were also studied in termination analysis for logic programs [28].
2 First steps in this direction were done in [9], but [9] only integrated natural instead

of integer numbers, which is substantially easier. Moreover, [9] imposed several re-
strictions (e.g., they did not integrate multiplication and division of numbers and
disallowed conditions with mixtures of pre-defined and user-defined functions).

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 32–47, 2009.
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Sect. 5 explains how to transform these conditional constraints into Diophantine
constraints in order to generate suitable orders for termination proofs of integer
TRSs (ITRSs). Sect. 6 evaluates our implementation in the prover AProVE [15].

2 Integer Term Rewriting

To handle integers in rewriting, we now represent each integer by a pre-defined
constant of the same name. So the signature is split into two disjoint subsets F
and Fint. Fint contains the integers Z = {0, 1,−1, 2,−2, . . .}, the Boolean values
B = {true, false}, and pre-defined operations. These operations are classified into
arithmetic operations like + which yield an integer when applied to integers,
relational operations like > which yield true or false when applied to integers,
and Boolean operations like ∧ which yield true or false when applied to Booleans.

Every ITRS implicitly contains an infinite set of pre-defined rules PD in order
to evaluate the pre-defined operations on integers and Booleans. For example,
the set PD contains the rules 2∗21→ 42, 42 � 23→ true, and true∧false → false.

These pre-defined operations can only be evaluated if both their arguments
are integers resp. Booleans. So terms like 1 + x and 1 + true are normal forms.
Moreover, “t/0” and “t % 0” are also normal forms for all terms t. As in most
programming languages, an ITRS R may not have rules � → r where � contains
pre-defined operations or where � ∈ Z ∪ B. The rewrite relation for an ITRS R
is defined by simply considering innermost3 rewriting with the TRS R∪ PD.

Definition 1 (ITRS). Let ArithOp = {+,−, ∗, /, %}, RelOp = {>, �, <,
�, ==, ! =}, and BoolOp = {∧,⇒}.4 Moreover, Fint = Z ∪ B ∪ ArithOp ∪
RelOp∪BoolOp. An ITRS R is a (finite) TRS over F �Fint where for all rules
� → r, we have � ∈ T (F ∪ Z ∪ B,V) and � �∈ Z ∪ B. As usual, V contains all
variables. The rewrite relation ↪→R of an ITRS R is defined as i→R∪PD, where

PD = {n ◦m → q | n, m, q ∈ Z, n ◦m = q, ◦ ∈ ArithOp}
∪ {n ◦m → q | n, m ∈ Z, q ∈ B, n ◦m = q, ◦ ∈ RelOp}
∪ {n ◦m → q | n, m, q ∈ B, n ◦m = q, ◦ ∈ BoolOp}

3 In this paper, we restrict ourselves to innermost rewriting for simplicity. This is not
a severe restriction as innermost termination is equivalent to full termination for
non-overlapping TRSs and moreover, many programming languages already have
an innermost evaluation strategy. Even for lazy languages like Haskell, with the
translation of programs to TRSs in [14], it suffices to show innermost termination.

4 Of course, one could easily include additional junctors like ∨ or ¬ in BoolOp. More-
over, one could also admit ITRSs with conditions and indeed, our implementation
also works on conditional ITRSs. This is no additional difficulty, because condi-
tional (I)TRSs can be automatically transformed into unconditional ones [23]. E.g.,
the ITRS R1 below could result from the transformation of this conditional ITRS:

sum(x, y) → y + sum(x, y + 1) | x � y →∗ true
sum(x, y) → 0 | x � y →∗ false
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For example, consider the ITRSs R1 = {(1), (2), (3)} and R2 = {(4), (5), (6)}.
Here, sum(x, y) computes

∑x
i=y i and log(x, y) computes �logy(x)�.

sum(x, y)→ sif(x � y, x, y) (1) log(x, y)→ lif(x � y ∧ y > 1, x, y) (4)
sif(true, x, y)→ y + sum(x, y + 1) (2) lif(true, x, y)→ 1 + log(x/y, y) (5)
sif(false, x, y)→ 0 (3) lif(false, x, y)→ 0 (6)

The term sum(1, 1) can be rewritten as follows (redexes are underlined):

sum(1, 1) ↪→R1 sif(1 � 1, 1, 1) ↪→R1 sif(true, 1, 1) ↪→R1 1 + sum(1, 1 + 1)
↪→R1 1 + sum(1, 2) ↪→R1 1 + sif(1 � 2, 1, 2) ↪→R1 1 + sif(false, 1, 2)
↪→R1 1 + 0 ↪→R1 1

3 Integer Dependency Pair Framework

The DP framework [1,12,13,16,19] is one of the most powerful and popular meth-
ods for automated termination analysis of TRSs and the DP technique is im-
plemented in almost all current TRS termination tools. Our goal is to extend
the DP framework in order to handle ITRSs. The main problem is that proving
innermost termination of R ∪ PD automatically is not straightforward, as the
TRS PD is infinite. Therefore, we will not consider the rules PD explicitly, but
integrate their handling in the different processors of the DP framework instead.

Of course, the resulting method should be as powerful as possible for term
rewriting on integers, but at the same time it should have the full power of the
original DP framework when dealing with other function symbols. In particular,
if an ITRS does not contain any symbols from Fint, then our new variant of the
DP framework coincides with the existing DP framework for ordinary TRSs.

As usual, the defined symbols D are the root symbols of left-hand sides of
rules. All other symbols are constructors. For an ITRS R, we consider all rules
in R∪PD to determine the defined symbols, i.e., here D also includes ArithOp∪
RelOp∪BoolOp. Nevertheless, we ignore these symbols when building DPs, since
these DPs would never be the reason for non-termination.5

Definition 2 (DP). For all f ∈ D\Fint, we introduce a fresh tuple symbol f �

with the same arity, where we often write F instead of f �. If t=f(t1, ..., tn), let t�

= f �(t1, ..., tn). If � → r ∈ R for an ITRS R and t is a subterm of r with root(t)
∈ D\Fint, then �� → t� is a dependency pair of R. DP(R) is the set of all DPs.

For example, we have DP(R1) = {(7), (8)} and DP(R2) = {(9), (10)}, where

SUM(x, y) → SIF(x � y, x, y) (7) LOG(x, y) → LIF(x � y ∧ y > 1, x, y) (9)
SIF(true, x, y) → SUM(x, y + 1) (8) LIF(true, x, y) → LOG(x/y, y) (10)

The main result of the DP method for innermost termination states that a
TRS R is innermost terminating iff there is no infinite innermost DP (R)-chain.
5 Formally, they would never occur in any infinite chain and could easily be removed

by standard techniques like the so-called dependency graph [1,12].
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This can be adapted to ITRSs in a straightforward way. For any TRS P and
ITRS R, a P-chain is a sequence of variable renamed pairs s1 → t1, s2 →
t2, . . . from P such that there is a substitution σ (with possibly infinite domain)
where tiσ ↪→∗

R si+1σ and siσ is in normal form w.r.t. ↪→R, for all i. Then we
immediately get the following corollary from the standard results on DPs.6

Corollary 3 (Termination Criterion for ITRSs). An ITRS R is terminat-
ing (w.r.t. ↪→R) iff there is no infinite DP (R)-chain.

Termination techniques are now called DP processors and they operate on sets of
DPs (called DP problems).7 A DP processor Proc takes a DP problem as input
and returns a set of new DP problems which have to be solved instead. Proc
is sound if for all DP problems P with an infinite P-chain there is also a P ′ ∈
Proc(P) with an infinite P ′-chain. Soundness of processors is required to prove
termination and to conclude that there is no infinite P-chain if Proc(P) = ∅.

So termination proofs in the DP framework start with the initial DP problem
DP (R). Then the DP problem is simplified repeatedly by sound DP proces-
sors. If all resulting DP problems have been simplified to ∅, then termination
is proved. Many processors (like the well-known (estimated) dependency graph
processor [1,12,13], for example) do not rely on the rules of the TRS, but just on
the DPs and on the defined symbols. Therefore, they can also be directly applied
for ITRSs, since the sets of DPs and of defined symbols are finite and one does
not have to consider the infinitely many rules in PD. One just has to take into
account that the defined symbols also include ArithOp ∪RelOp ∪ BoolOp.

But an adaption is non-trivial for one of the most important processors, the
reduction pair processor. Thus, the main contribution of the paper is to adapt
this processor to obtain a powerful automated termination method for ITRSs.

For a DP problem P , the reduction pair processor generates constraints which
should be satisfied by a suitable order on terms. In this paper, we consider orders
based on integer8 max-polynomial interpretations [11,17]. Such interpretations
suffice for most algorithms typically occurring in practice. The set of max-poly-
nomials is the smallest set containing the integers Z, the variables, and p + q,
p ∗ q, and max(p, q) for all max-polynomials p and q. An integer max-polynomial
interpretation Pol maps every9 n-ary function symbol f to a max-polynomial
6 For Cor. 3, it suffices to consider only minimal chains where all tiσ are ↪→R-termina-

ting [13]. All results of this paper also hold for minimal instead of ordinary chains.
7 To ease readability we use a simpler definition of DP problems than [13], since this

simple definition suffices for the presentation of the new results of this paper.
8 Interpretations into the integers instead of the naturals are often needed for algo-

rithms like sum that increase an argument y until it reaches a bound x. In [17], we
already presented an approach to prove termination by bounded increase. However,
[17] did not consider built-in integers and pre-defined operations on them. Instead,
[17] only handled natural numbers and all operations (like “�”) had to be defined
by rules of the TRS itself. Therefore, we now extend the approach of [17] to ITRSs.

9 This is more general than related previous classes of interpretations: In [17], there
was no “max” and only tuple symbols could be mapped to polynomials with integer
coefficients, and in [11], all ground terms had to be mapped to natural numbers.
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fPol over n variables x1, . . . , xn. This mapping is extended to terms by defining
[x]Pol = x for all variables x and by letting [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . ,
[tn]Pol). One now defines s  Pol t (resp. s �Pol t) iff [s]Pol > [t]Pol (resp.
[s]Pol � [t]Pol) holds for all instantiations of the variables with integer numbers.

For example, consider the interpretation Pol where SUMPol = x1−x2, SIFPol

= x2−x3, +Pol = x1+x2, nPol = n for all n ∈ Z, and �Pol= truePol = falsePol =
0. For any term t and any position π in t, we say that t is �Pol-dependent on π
iff there exist terms u, v where t[u]π �≈Pol t[v]π. Here, ≈Pol = �Pol ∩ �Pol. So
in our example, SIF(b, x, y) is �Pol-dependent on 2 and 3, but not on 1. We say
that a term t is �Pol-increasing on π iff u �Pol v implies t[u]π �Pol t[v]π for all
terms u, v. So clearly, if t is �Pol-independent on π, then t is also �Pol-increasing
on π. In our example, SIF(b, x, y) is �Pol-increasing on 1 and 2, but not on 3.

The constraints generated by the reduction pair processor require that all DPs
in P are strictly or weakly decreasing and all usable rules are weakly decreasing.
Then one can delete all strictly decreasing DPs.

The usable rules [1,16] include all rules that can reduce terms in �Pol-depen-
dent positions of P ’s right-hand sides when instantiating their variables with nor-
mal forms. Formally, for a term with f on a �Pol-dependent position, all f -rules
are usable. Moreover, if f ’s rules are usable and g occurs in the right-hand side of
an f -rule on a �Pol-dependent position, then g’s rules are usable as well. For any
symbol f with arity(f) = n, let dep(f) = {i | 1 � i � n, there exists a term f(t1,
..., tn) that is �Pol-dependent on i}. So dep(SIF) = {2, 3} for the interpretation
Pol above. Moreover, as �Pol is not monotonic in general, one has to require that
defined symbols only occur on �Pol-increasing positions of right-hand
sides.10

When using interpretations into the integers, then  Pol is not well founded.
However,  Pol is still “non-infinitesimal”, i.e., for any given bound, there is
no infinite  Pol-decreasing sequence of terms that remains greater than the
bound. Hence, the reduction pair processor transforms a DP problem into two
new problems. As mentioned before, the first problem results from removing all
strictly decreasing DPs. The second DP problem results from removing all DPs
s → t from P that are bounded from below, i.e., DPs which satisfy the inequality
s � c for a fresh constant c. In Thm. 4, both TRSs and relations are seen as sets
of pairs of terms. Thus, “P \ Pol” denotes {s → t ∈ P | s � Pol t}. Moreover, for
any function symbol f and any TRS S, let RlsS(f) = {� → r ∈ S | root(�) = f}.

Theorem 4 (Reduction Pair Processor [17]). Let R be an ITRS, Pol be
an integer max-polynomial interpretation, c be a fresh constant, and Pbound =
{s→ t ∈ P | s �Pol c}. Then the following DP processor Proc is sound.

10 This is needed to ensure that tσ ↪→∗
R u implies tσ �Pol u whenever t’s usable rules

are weakly decreasing and σ instantiates variables by normal forms. Note that Thm. 4
is a simplified special case of the corresponding processor from [17]. In [17], we also
introduced the possibility of reversing usable rules for function symbols occurring on
decreasing positions. The approach of the present paper can also easily be extended
accordingly and, indeed, our implementation makes use of this extension.
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Proc(P)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{P \ Pol, P \ Pbound }, if P ⊆ �Pol∪  Pol, UR∪PD(P) ⊆ �Pol,
and defined symbols only occur on
�Pol-increasing positions
in right-hand sides of P ∪ UR(P)

{P }, otherwise

For any term t and TRS S, the usable rules US(t) are the smallest set with

• US(x) = ∅ for every variable x and
• US(f(t1, . . . , tn)) = RlsS(f) ∪

⋃
�→r∈RlsS (f) US(r) ∪

⋃
i∈dep(f) US(ti)

For a set of dependency pairs P, its usable rules are US(P) =
⋃

s→t∈P US(t).

For R1, by Thm. 4 we search for an interpretation Pol with s  Pol(∼) t for all
s→ t ∈ DP (R1) = {(7), (8)} and � �Pol r for all � → r ∈ UR1∪PD(DP (R1)) =
{0+1 → 1, 1+1 → 2, −1+1 → 0, . . . , 0 � 0 → true, 1 � 2 → false, . . .}.
However, UR1∪PD(DP (R1)) is infinite and thus, this approach is not suitable
for automation. When using the interpretation with SIFPol = x2 − x3, then
the �-rules would not be usable, because � only occurs on a �Pol-independent
position in the right-hand side of the DP (7). But the desired interpretation
SUMPol = x1 − x2 cannot be used, because in DP (8), the defined symbol +
occurs in the second argument of SUM which is not a �Pol-increasing position.11

To avoid the need for considering infinitely many rules in the reduction pair
processor and in order to handle ITRSs where defined symbols like + occur on
non-increasing positions, we will now restrict ourselves to so-called
I-interpretations where we fix the max-polynomials that are associated with the
pre-defined symbols from Z∪ArithOp. The definition of I-interpretations guar-
antees that we have � ≈Pol r for all rules � → r ∈ PD where root(�) ∈ {+,−, ∗}.
For this reason, one can now also allow occurrences of +, −, and ∗ on non-
increasing positions. Moreover, for I-interpretations we have � �Pol r for all rules
� → r ∈ PD where root(�) ∈ {/, %}. For these latter rules, obtaining � ≈Pol r
with a useful max-polynomial interpretation is impossible, since division and
modulo are no max-polynomials.12

Definition 5 (I-interpretation). An integer max-polynomial interpretation
Pol is an I-interpretation iff nPol = n for all n ∈ Z, +Pol = x1 + x2, −Pol =
11 Nevertheless, Thm. 4 is helpful for ITRSs where the termination argument is not due

to integer arithmetic. For example, consider the ITRS g(x, cons(y, ys)) → cons(x +
y, g(x, ys)). When using interpretations Pol with fPol = 0 for all f ∈ Fint, the rules
� → r ∈ PD are always weakly decreasing. Hence, then one only has to regard finitely
many usable rules when automating Thm. 4. Moreover, if all fPol have just natural
coefficients, then one does not have to generate the new DP problem P \ Pbound. In
this case, one can define s �Pol(∼) t iff [s]Pol (�) [t]Pol holds for all instantiations of the
variables by natural numbers. Thus, in the example above the termination proof is
trivial by using the interpretation with GPol = x2 and consPol = x2 + 1.

12 In principle, one could also permit interpretations fPol containing divisions. But exis-
ting implementations to search for interpretations cannot handle division or modulo.
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x1 − x2, ∗Pol = x1 ∗ x2, %Pol = |x1|, and /Pol = |x1| − min(|x2| − 1, |x1|).
Note that for any max-polynomial p, “ |p|” is also a max-polynomial since this
is just an abbreviation for max(p,−p). Similarly, “min(p, q)” is an abbreviation
for −max(−p,−q). We say that an I-interpretation is proper for a term t if all
defined symbols except +, −, and ∗ only occur on �Pol-increasing positions of t
and if symbols from RelOp only occur on �Pol-independent positions of t.

Now [n/m]Pol is greater or equal to n/m for all n, m ∈ Z where m �= 0 (and
similar for [n % m]Pol).13 Hence, one can improve the processor of Thm. 4 by
not regarding the infinitely many rules of PD anymore. The concept of proper
I-interpretations ensures that we can disregard the (infinitely many) usable rules
for the symbols from RelOp and that the symbols “/” and “%” only have to be
estimated “upwards”. Then one can now replace the usable rules w.r.t. R∪PD
in Thm. 4 by the usable rules w.r.t. R ∪ BO. Here, BO are the (finitely many)
rules for the symbols ∧ and ⇒ in BoolOp, i.e., BO = RlsPD(∧) ∪RlsPD(⇒).

Theorem 6 (Reduction Pair Processor for ITRSs). Let R be an ITRS,
Pol be an I-interpretation, and Pbound be as in Thm. 4. Then Proc is sound.

Proc(P)=

⎧
⎪⎪⎨

⎪⎪⎩

{P \ Pol, P \ Pbound }, if P ⊆ �Pol∪  Pol, UR∪BO(P) ⊆ �Pol,
and Pol is proper for all right-hand
sides of P ∪ UR(P)

{P }, otherwise

Proof. We show that Thm. 6 follows from Thm. 4. In Thm. 6, we only require
that usable rules from R∪BO are weakly decreasing, whereas Thm. 4 considers
usable rules from R∪PD. For any I-interpretation Pol, we have � ≈Pol r for all
� → r ∈ PD with root(�) ∈ {+,−, ∗}. So these rules are even equivalent w.r.t.
≈Pol. Moreover, the rules with root(�) ∈ {/, %} are weakly decreasing w.r.t.
�Pol. The rules with root(�) ∈ RelOp are never contained in UR∪PD(P), because
by properness of Pol, symbols from RelOp only occur on �Pol-independent
positions in right-hand sides of P ∪UR(P) and they do not occur at all in right-
hand sides of PD. Thus, UR∪PD(P) ⊆ �Pol, as required in Thm. 4.

The other difference between Thm. 6 and 4 is that in Thm. 6, +, −, and ∗
may also occur on non-�Pol-increasing positions. But as shown in [17,20], this
is possible since the rules for these symbols are equivalent w.r.t. ≈Pol. �

To solve the DP problem P = {(7), (8)} of R1 with Thm. 6, we want to use
an I-interpretation Pol where SUMPol = x1 − x2 and SIFPol = x2 − x3. Now
there are no usable rules UR∪BO(P), since the +- and �-rules are not included
in R∪BO. The DP (8) is strictly decreasing, but none of the DPs (7) and (8) is
bounded, since we have neither SUM(x, y) �Pol c nor SIF(true, x, y) �Pol c for
any possible value of cPol. Thus, the reduction pair processor would return the
two DP problems {(7)} and {(7), (8)}, i.e., it would not simplify P .
13 Let m �= 0. If |m| = 1 or n = 0, then we have [n/m]Pol = |n|. Otherwise, we obtain

[n/m]Pol < |n|. The latter fact is needed for ITRSs like R2 which terminate because
of divisions in their recursive arguments.



Proving Termination of Integer Term Rewriting 39

4 Conditional Constraints

The solution to the problem above is to consider conditions for inequalities like
s (�)t or s � c. For example, to include the DP (7) in Pbound, we do not have to
demand SUM(x, y) � c for all instantiations of x and y. Instead, it suffices to re-
quire the inequality only for those instantiations of x and y which can be used in
chains. So we require SUM(x, y) � c only for instantiations σ where (7)’s in-
stantiated right-hand side SIF(x � y, x, y)σ reduces to an instantiated left-hand
side uσ for some DP u → v where uσ is in normal form. Here, u → v should
again be variable renamed. As our DP problem contains two DPs (7) and (8),
we get the following two conditional constraints (by considering all possibilities
u→ v ∈ {(7), (8)}). We include (7) in Pbound if both constraints are satisfied.

SIF(x � y, x, y) = SUM(x′, y′) ⇒ SUM(x, y) � c (11)
SIF(x � y, x, y) = SIF(true, x′, y′) ⇒ SUM(x, y) � c (12)

Definition 7 (Syntax and Semantics of Conditional Constraints [17]).
The set C of conditional constraints is the smallest set with14

• {TRUE , s � t, s  t, s = t} ⊆ C for all terms s and t
• if {ϕ1, ϕ2} ⊆ C, then ϕ1 ∧ ϕ2 ∈ C and ϕ1 ⇒ ϕ2 ∈ C

For an I-interpretation Pol, we define which normal substitutions15 σ satisfy
a constraint ϕ ∈ C, denoted “σ |=Pol ϕ”:

• σ |=Pol TRUE for all normal substitutions σ
• σ |=Pol s � t iff sσ �Pol tσ and σ |=Pol s  t iff sσ  Pol tσ
• σ |=Pol s = t iff sσ ↪→∗

R tσ and tσ is a normal form w.r.t. ↪→R
• σ |=Pol ϕ1 ∧ ϕ2 iff σ |=Pol ϕ1 and σ |=Pol ϕ2
• σ |=Pol ϕ1 ⇒ ϕ2 iff σ �|=Pol ϕ1 or σ |=Pol ϕ2

A constraint ϕ is valid (“ |=Pol ϕ”) iff σ |=Pol ϕ for all normal substitutions σ.

Now we refine the reduction pair processor by taking conditions into account.
To this end, we modify the definition of Pbound and introduce P� and P�.

Theorem 8 (Conditional Reduction Pair Processor for ITRSs). Let R
be an ITRS, Pol be an I-interpretation, c be a fresh constant, and let

P� = { s → t ∈ P | |=Pol

∧
u→v∈P (t = u′ ⇒ s� t) }

P� = { s → t ∈ P | |=Pol

∧
u→v∈P (t = u′ ⇒ s t) }

Pbound = { s → t ∈ P | |=Pol

∧
u→v∈P (t = u′ ⇒ s�c) }

14 To simplify the presentation, we neither regard conditional constraints with uni-
versally quantified subformulas nor the simplification of constraints by induction, cf.
[17]. This technique of [17] could be integrated in our approach to also handle ITRSs
where tests are not of the form “s � t” with the pre-defined symbol “�”, but of the
form “ge(s, t)”, where ge is given by user-defined rules in the ITRS. After such an
integration, our approach would subsume the corresponding technique of [17].

15 A normal substitution σ instantiates all variables by normal forms w.r.t. ↪→R.
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where u′ results from u by renaming its variables. Then Proc is sound.

Proc(P) =

⎧
⎪⎪⎨

⎪⎪⎩

{P \ P�, P \ Pbound }, if P� ∪ P� = P, UR∪BO(P) ⊆ �Pol,
and Pol is proper for all right-hand
sides of P ∪ UR(P)

{P }, otherwise

Proof. Thm. 8 immediately follows from Thm. 6 in the same way as [17, Thm.
11] follows from [17, Thm. 8]. �

To ease readability, in Thm. 8 we only consider conditions resulting from two DPs
s→ t and u→v which may follow each other in chains. In our implementation,
we extended this by also regarding conditions resulting from more than two
adjacent DPs and by also regarding DPs preceding s → t in chains, cf. [17].

The question remains how to check whether conditional constraints are valid,
since this requires reasoning about reachability w.r.t. TRSs with infinitely many
rules. In [17], we introduced the rules (I)-(IV) to simplify conjunctions ϕ1∧...∧ϕn

of conditional constraints. These rules can be used to replace a conjunct ϕi by
a new formula ϕ′

i. The rules are sound, i.e., |=Pol ϕ′
i implies |=Pol ϕi. Of course,

TRUE ∧ ϕ can always be simplified to ϕ. Eventually, we want to remove all
equalities “p = q” from the constraints.

I. Constructor and Different Function Symbol
f(s1, ..., sn) = g(t1, ..., tm) ∧ ϕ ⇒ ψ

TRUE
if f is a constructor and f �= g

II. Same Constructors on Both Sides
f(s1, ..., sn) = f(t1, ..., tn) ∧ ϕ ⇒ ψ

s1 = t1 ∧ . . . ∧ sn = tn ∧ ϕ ⇒ ψ
if f is a constructor

III. Variable in Equation

x=q ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x ∈ V and
σ = [x/q]

q=x ∧ ϕ ⇒ ψ

ϕσ ⇒ ψ σ

if x∈ V, q has no
defined symbols,
σ=[x/q]

IV. Delete Conditions
ϕ ⇒ ψ

ϕ′ ⇒ ψ
if ϕ′ ⊆ ϕ

For example, Rule (I) detects that the premise of constraint (11) is unsat-
isfiable: there is no substitution σ with σ |=Pol SIF(x � y, x, y) = SUM(x′, y′),
since SIF is not a defined function symbol (i.e., it is a constructor) and therefore,
SIF-terms can only be reduced to SIF-terms.

Rule (II) handles conditions like SIF(x � y, x, y) = SIF(true, x′, y′) where both
terms start with the same constructor SIF. So (12) is transformed into

x � y = true ∧ x = x′ ∧ y = y′ ⇒ SUM(x, y) � c (13)
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Rule (III) removes conditions of the form “x = q” or “q = x” by applying the
substitution [x/q] to the constraint. So (13) is transformed into

x � y = true ⇒ SUM(x, y) � c (14)

Rule (IV) can omit arbitrary conjuncts from the premise of an implication.
To ease notation, we regard a conjunction as a set of formulas. So their order is
irrelevant and we write ϕ′ ⊆ ϕ iff all conjuncts of ϕ′ are also conjuncts of ϕ. The
empty conjunction is TRUE (i.e., TRUE ⇒ ψ can always be simplified to ψ).

Since [17] did not handle pre-defined function symbols, we now extend the
rules (I)-(IV) from [17] by new rules to “lift” pre-defined function symbols from
RelOp like � to symbols like � that are used in conditional constraints. Similar
rules are used for the other symbols from RelOp. The idea is to replace a condi-
tional constraint like “s � t = true” by the conditional constraint “s � t”. How-
ever, this is not necessarily sound, because s and t may contain defined symbols.
Note that σ |=Pol s � t = true means that sσ ↪→∗

R n and tσ ↪→∗
R m for n, m ∈ Z

with n � m. For any I-interpretation Pol, we therefore have n �Pol m, since
nPol = n and mPol = m. To guarantee that σ |=Pol s � t holds as well, we ensure
that sσ �Pol n and m �Pol tσ. To this end, we require that UR∪BO(s) ⊆ �Pol

and that t contains no defined symbols except +, −, and ∗. An analogous rule
can also be formulated for constraints of the form “s � t = false”.16

V. Lift Symbols from RelOp

s � t = true ∧ ϕ ⇒ ψ

(s � t ∧ ϕ ⇒ ψ) ∧
∧

�→r ∈UR∪BO(s)
� � r

if t contains no defined symbols
except +, −, ∗ and Pol is proper
for s and for all right-hand sides
of UR(s)

By Rule (V), (14) is transformed into

x � y ⇒ SUM(x, y) � c (15)

Similar to the lifting of the function symbols from RelOp, it is also possible to
lift the function symbols from BoolOp. For reasons of space, we only present the
corresponding rules for lifting “∧”, but of course “⇒” can be lifted analogously.

VI. Lift Symbols from BoolOp

s∧ t = true ∧ϕ ⇒ ψ

s = true ∧ t = true ∧ϕ ⇒ ψ

s ∧ t = false ∧ ϕ ⇒ ψ

(s = false∧ϕ ⇒ ψ) ∧ (t = false∧ϕ ⇒ ψ)

To illustrate this rule, consider the constraint “(x � y ∧ y > 1) = true ⇒
LOG(x, y) � c” which results when trying to include the DP (9) of the ITRS R2
in Pbound. Here, Rule (VI) gives “x � y = true∧ y > 1 = true ⇒ LOG(x, y) � c”
which is transformed by Rule (V) into “x � y ∧ y  1 ⇒ LOG(x, y) � c”.

Let ϕ ! ϕ′ iff ϕ′ results from ϕ by repeatedly applying the above inference
rules. We can now refine the processor from Thm. 8.
16 In addition, one can also use rules to perform narrowing and rewriting on the terms

in conditions, similar to the use of narrowing and rewriting in [16].
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Theorem 9 (Conditional Reduction Pair Processor with Inference).
Let Pol be an I-interpretation and c be a fresh constant. For all s → t ∈ P and all
ψ ∈ { s � t, s  t, s � c }, let ϕψ be a constraint with

∧
u→v∈P(t = u′ ⇒ ψ)

! ϕψ. Here, u′ results from u by renaming its variables. Then the processor
Proc from Thm. 8 is still sound if we define P� = {s → t ∈ P | |=Pol ϕs�t },
P� = {s → t ∈ P | |=Pol ϕs�t }, and Pbound = {s→ t ∈ P | |=Pol ϕs�c }.

Proof. It suffices to show the soundness of the rules (I)-(VI): If ϕ ! ϕ′, then
|=Pol ϕ′ implies |=Pol ϕ. Then Thm. 9 immediately follows from Thm. 8.

Soundness of the rules (I)-(IV) was shown in [17, Thm. 14]. For Rule (V), let
|=Pol (s � t ∧ ϕ ⇒ ψ) ∧

∧
�→r ∈UR∪BO(s) � � r and σ |=Pol s � t = true ∧ ϕ. As

explained above, this implies σ |=Pol s � t ∧ ϕ and hence, σ |=Pol ψ, as desired.
For the first variant of (VI), σ |=Pol s ∧ t = true iff sσ ↪→∗

R true and tσ ↪→∗
R

true, i.e., σ |=Pol s= true∧t= true. For the second variant, σ |=Pol s∧t= false im-
plies sσ ↪→∗

R false or tσ ↪→∗
R false, i.e., σ |=Pol s = false or σ |=Pol t = false. �

5 Generating I-Interpretations

To automate the processor of Thm. 9, we show how to generate an I-interpreta-
tion that satisfies a given conditional constraint. This conditional constraint is a
conjunction of formulas like ϕs�t, ϕs�t, and ϕs�c for DPs s → t as well as � � r
for usable rules � → r. Moreover, one has to ensure that the I-interpretation
is chosen in such a way that Pol is proper for the right-hand sides of the DPs
and the usable rules.17 Compared to our earlier work in [11], the only additional
difficulty is that now we really consider arbitrary max-polynomial interpretations
over the integers where [t]Pol can also be negative for any ground term t.

To find I-interpretations automatically, one starts with an abstract I-inter-
pretation. It maps each function symbol to a max-polynomial with abstract co-
efficients. In other words, one has to determine the degree and the shape of
the max-polynomial, but the actual coefficients are left open. For example, for
the ITRS R1 we could use an abstract I-interpretation Pol where SUMPol =
a0 + a1 x1 + a2 x2, SIFPol = b0 + b1 x1 + b2 x2 + b3 x3, and cPol = c0. Here, ai,
bi, and c0 are abstract coefficients. Of course, the interpretation for the symbols
in Z ∪ArithOp is fixed as for any I-interpretation (i.e., +Pol = x1 + x2, etc.).

After application of the rules in Sect. 4, we have obtained a conditional
constraint without the symbol “=”. Now we transform the conditional con-
straint into a so-called inequality constraint by replacing all atomic constraints
“s � t” by “[s]Pol � [t]Pol” and all atomic constraints “s  t” by “[s]Pol �
[t]Pol + 1”. For instance, the atomic constraint “SUM(x, y) � c” is transformed
into “a0+a1 x+a2 y � c0”. Here, the abstract coefficients a0, a1, a2, c0 are implic-
itly existentially quantified and the variables x, y ∈ V are universally quantified.
In other words, we search for values of the abstract coefficients such that the
17 The set of usable rules and thus, the given conditional constraint depends on the I-in-

terpretation (that determines which positions are increasing or dependent). Never-
theless, we showed in [11] how to encode such search problems into a single constraint.
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inequalities hold for all integer numbers x and y. To make this explicit, we add
universal quantifiers for the variables from V . More precisely, if our overall in-
equality constraint has the form ϕ1 ∧ . . . ∧ ϕn, then we now replace each ϕi by
“∀x1 ∈ Z, . . . , xm ∈ Z ϕi” where x1, . . . , xm are the variables from V occur-
ring in ϕi. So the conditional constraint (15) is transformed into the inequality
constraint

∀x ∈ Z, y ∈ Z (x � y ⇒ a0 + a1 x + a2 y � c0 ) (16)

In general, inequality constraints have the following form where Numi is Z or N.

∀x1 ∈ Num1, . . . , xm ∈ Numm p1 � q1 ∧ . . . ∧ pn � qn ⇒ p � q

Now our goal is to transform such inequality constraints further into Dio-
phantine constraints which do not contain any universally quantified variables
x1, . . . , xm anymore. Then one can apply existing methods to search for values
of the abstract coefficients that satisfy the Diophantine constraints.

We already developed such transformation rules in [11]. But [11] was re-
stricted to the case where all universally quantified variables range over N, i.e.,
Num1 = ... = Numm = N. Moreover, [11]’s essential rule to eliminate universally
quantified variables only works if there are no conditions (i.e., n = 0), cf. Rule
(C) below. Thus, we extend the transformation rules from [11]18 by the following
rule which can be used whenever a condition can be transformed into “x � p” or
“p � x” for a polynomial p not containing x. It does not only replace a variable
ranging over Z by one over N, but it also “applies” the condition “x � p” resp.
“p � x” and removes it afterwards without increasing the number of constraints.

A. Eliminating Conditions
∀x ∈ Z, . . . (x � p ∧ ϕ ⇒ ψ)

∀z ∈ N, . . . (ϕ[x/p + z] ⇒ ψ[x/p + z])

∀x ∈ Z, . . . (p � x ∧ ϕ ⇒ ψ)

∀z ∈ N, . . . (ϕ[x/p − z] ⇒ ψ[x/p − z])

if x does not occur in the polynomial p

By Rule (A), the inequality constraint (16) is therefore transformed into

∀y ∈ Z, z ∈ N a0 + a1 (y + z) + a2 y � c0 (17)

To replace all remaining quantifiers over Z by quantifiers over N, we add the
following rule. It splits the remaining inequality constraint ϕ (which may have
additional universal quantifiers) into the cases where y is positive resp. negative.

B. Split
∀y ∈ Z ϕ

∀y ∈ N ϕ ∧ ∀y ∈ N ϕ[y/ − y]

18 For reasons of space, we do not present the remaining transformation rules of [11],
which are applied in our implementation as well. These rules are used to delete
“max” and to eliminate arbitrary conditions, e.g., conditions that are not removed
by Rule (A). Similar transformation rules can for example also be found in [18].
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Thus, Rule (B) transforms (17) into the conjunction of (18) and (19).

∀y ∈ N, z ∈ N a0 + a1 (y + z) + a2 y � c0 (18)
∀y ∈ N, z ∈ N a0 + a1 (−y + z)− a2 y � c0 (19)

If ϕ still has conditions, then a split by Rule (B) often results in unsatisfiable
conditions. To detect them, we use SMT-solvers for linear integer arithmetic
and additional sufficient criteria to detect also certain non-linear unsatisfiable
conditions like x2 < 0, etc. If a condition is found to be unsatisfiable, we delete
the inequality constraint. Note that (18) can be reformulated as

∀y ∈ N, z ∈ N (a1 + a2) y + a1 z + (a0 − c0) � 0

So we now have to ensure non-negativeness of “polynomials” over variables like y
and z that range over N, where the “coefficients” are polynomials like “a1 + a2”
over the abstract variables. To this end, it suffices to require that all these
“coefficients” are � 0 [21]. In other words, now one can eliminate all universally
quantified variables like y, z and transform (18) into the Diophantine constraint

a1 + a2 � 0 ∧ a1 � 0 ∧ a0 − c0 � 0

C. Eliminating Universally Quantified Variables
∀x1∈N, . . . , xm∈N p1 xe11

1 ... xem1
m + ... + pk x

e1k
1 ... x

emk
m � 0

p1 � 0 ∧ . . . ∧ pk � 0
if the pi do not con-
tain variables from V

To search for values of the abstract coefficients that satisfy the resulting Dio-
phantine constraints, one fixes upper and lower bounds for these values. Then we
showed in [10] how to translate such Diophantine constraints into a satisfiability
problem for propositional logic which can be handled by SAT solvers efficiently.
The constraints resulting from the initial inequality constraint (16) are for ex-
ample satisfied by a0 = 0, a1 = 1, a2 = −1, and c0 = 0.19 With these values, the
abstract interpretation a0 +a1 x1 +a2 x2 for SUM is turned into the concrete in-
terpretation x1−x2. With the resulting concrete I-interpretation Pol, we would
have P� = {(8)} and Pbound = {(7)}. The reduction pair processor of Thm. 9
would therefore transform the initial DP problem P = {(7), (8)} into the two
problems P \P� = {(7)} and P \Pbound = {(8)}. Both of them are easy to solve
(e.g., by using Pol′ with SUMPol′ =1, SIFPol′ = 0 and Pol′′ with SUMPol′′ = 0,
SIFPol′′ =1 or by using other processors like the dependency graph).

Our approach also directly works for ITRSs with extra variables on right-
hand sides of rules. Then the rewrite relation is defined as s ↪→R t iff there is a
19 Note that the abstract coefficient c0 can only occur in atomic Diophantine constraints

of the form “p−c0 � 0” where the polynomial p does not contain c0. These constraints
are always satisfied when choosing c0 small enough. Therefore, one does not have
to consider constraints with c0 anymore and one also does not have to determine
the actual value of c0. This is advantageous for ITRSs with “large constants” like
f(true, x) → f(1000 � x, x+ 1), since current Diophantine constraint solvers like [10]
usually only consider small ranges for the abstract coefficients.
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rule � → r ∈ R ∪ PD such that s|π = �σ and t = s[rσ]π , �σ does not contain
redexes as proper subterms, and σ is a normal substitution (i.e., σ(y) is in normal
form also for variables y occurring only in r). Now we can also handle ITRSs
with non-determinism like f(true, x) → f(x > y ∧ x � 0, y). Here, the argument
x of f is replaced by an arbitrary smaller number y. Handling non-deterministic
algorithms is often necessary for termination proofs of imperative programs when
abstracting away “irrelevant” parts of the computation, cf. [4,8,24].

This also opens up a possibility to deal with algorithms that contain “large
constants” computed by user-defined functions. For instance, consider an ITRS
containing f(true, x) → f(ack(10, 10) � x, x + 1) and ack-rules computing the
Ackermann function. With our approach, the ack-rules would have to be weakly
decreasing, cf. Rule (V). This implies ackPol(n, m) � Ackermann(n, m), which
does not hold for any max-polynomial ackPol. But such examples can be handled
by automatically transforming the original ITRS to an ITRS with extra variables
whose termination implies termination of the original ITRS. If s is a ground term
like ack(10, 10) on the right-hand side of a rule and all usable rules of s are non-
overlapping, then one can replace s by a fresh variable y. This variable must then
be added as an additional argument. In this way, one can transform the f-rule
above into the following ones. Termination of the new ITRS is easy to show.

f(true, x)→ f′(true, x, y) f′(true, x, y) → f′(y � x, x + 1, y)

6 Experiments and Conclusion

We have adapted the DP framework in order to prove termination of ITRSs
where integers are built-in. To evaluate our approach, we implemented it in our
termination prover AProVE [15]. Of course, here we used appropriate strate-
gies to control the application of the transformation rules from Sect. 4 and 5,
since these are neither confluent nor equivalence-preserving. We tested our im-
plementation on a data base of 117 ITRSs (including also conditional ITRSs, cf.
Footnote 4). Our data base contains all 19 examples from the collection of [17]
and all 29 examples from the collection20 of [9] converted to integers, all 19 ex-
amples from the papers [2,3,4,5,6,7,8,24,25]21 on imperative programs converted
to term rewriting, and several other “typical” algorithms on integers (including
also some non-terminating ones). With a timeout of 1 minute for each example,
the new version of AProVE with the contributions of this paper can prove ter-
mination of 104 examples (i.e., of 88.9 %). In particular, AProVE succeeds on
all ITRSs mentioned in the current paper. In contrast, we also ran the previous
version of AProVE (AProVE08) and the termination tool TTT2 [22] that do not
support built-in integers on this data base. Here, we converted integers into terms
constructed with 0, s, pos, and neg and we added rules for the pre-defined opera-
tions on integers in this representation, cf. Sect. 1.22 Although AProVE08 won the
20 In these examples, (multi)sets were replaced by lists and those examples where the

use of (multi)sets was essential were omitted.
21 We omitted 4 examples from these papers that contain parallel processes or pointers.
22 In this way, one can always convert DP problems for ITRSs to ordinary DP problems.
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last International Competition of Termination Provers 2008 for term rewriting23

and TTT2 was second, both performed very poorly on the examples. AProVE08
could only prove termination of 24 of them (20.5 %) and TTT2 proved termina-
tion of 6 examples (5.1 %). This clearly shows the enormous benefits of built-in
integers in term rewriting. To access our collection of examples, for details on our
experimental results, and to run the new version of AProVE via a web interface,
we refer to http://aprove.informatik.rwth-aachen.de/eval/Integer/.
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Abstract. We show how polynomial path orders can be employed ef-
ficiently in conjunction with weak innermost dependency pairs to auto-
matically certify polynomial runtime complexity of term rewrite systems
and the polytime computability of the functions computed. The estab-
lished techniques have been implemented and we provide ample experi-
mental data to assess the new method.

1 Introduction

In order to measure the complexity of a (terminating) term rewrite system (TRS
for short) it is natural to look at the maximal length of derivation sequences—
the derivation length—as suggested by Hofbauer and Lautemann in [1]. More
precisely, the runtime complexity function with respect to a (finite and termi-
nating) TRS R relates the maximal derivation length to the size of the initial
term, whenever the set of initial terms is restricted to constructor based terms,
also called basic terms. The restriction to basic terms allows us to accurately
express the runtime complexity of programs through the runtime complexity
of TRSs. In this paper we study and combine recent efforts for the automatic
analysis of runtime complexities of TRSs. In [2] we introduced a restriction of
the multiset path order, called polynomial path order (POP∗ for short) that
induces polynomial runtime complexity if restricted to innermost rewriting. The
definition of POP∗ employs the idea of tiered recursion [3]. Syntactically this
amounts to a separation of arguments into normal and safe arguments, cf. [4].
Furthermore, Hirokawa and the second author introduced a variant of depen-
dency pairs, dubbed weak dependency pairs, that makes the dependency pair
method applicable in the context of complexity analysis, cf. [5,6].

We show how weak innermost dependency pairs can be successfully applied
in conjunction with POP∗. The following example (see [7]) motivates this study.
Consider the TRS Rbits encoding the function λx.#log(x+ 1)$ for natural num-
bers given as tally sequences:

1 : half(0) → 0 4 : bits(0) → 0

2 : half(s(0)) → 0 5: bits(s(0)) → s(0)
3 : half(s(s(x))) → s(half(x)) 6 : bits(s(s(x))) → s(bits(s(half(x))))
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It is easy to see that the TRS Rbin is not compatible with POP∗, even if we
allow quasi-precedences, see Section 4. On the other hand, employing (weak
innermost) dependency pairs, argument filtering, and the usable rules criteria in
conjunction with POP∗, polynomial innermost runtime complexity of Rbin can
be shown fully automatically.

The combination of dependency pairs and polynomial path orders turns out
to be technically involved. One of the first obstacles one encounters is that the
pair (∼>pop∗, >pop∗) cannot be used as a reduction pair, as ∼>pop∗ fails to be closed
under contexts. (This holds a fortiori for safe reduction pairs, as studied in [5].)
Conclusively, we start from scratch and study polynomial path orders in the
context of relative rewriting [8]. Based on this study an incorporation of argu-
ment filterings becomes possible so that we can employ the pair (∼>

π
pop∗, >

π
pop∗) in

conjunction with dependency pairs successfully. Here, >π
pop∗ refers to the order

obtained by combining >pop∗ with the argument filtering π as expected, and

∼>
π
pop∗ denotes the extension of >π

pop∗ by term equivalence, preserving the sep-
aration of safe and normal argument positions. Note that for polynomial path
orders, the integration of argument filterings is not only non-trivial, but indeed
a challenging task. This is mainly due to the embodiment of tiered recursion
in POP∗. Thus we establish a combination of two syntactic techniques for au-
tomatic runtime complexity analysis. The experimental evidence given below
indicates the power and in particular the efficiency of the provided results.

Our next contribution is concerned with implicit complexity theory, see for ex-
ample [9]. A careful analysis of our main result shows that polynomial path or-
ders in conjunction with (weak innermost) dependency pairs even induce polytime
computability of the functions defined by the TRS studied. This result fits well
with recent results by Marion and Péchoux on the use of restricted forms of the de-
pendency pair method to characterise complexity classes like PTIME or PSPACE,
cf. [10]. Both results allow to conclude, based on different restrictions, polytime
computability of the functions defined by constructor TRSs, whose termination
can be shown by the dependency pair method. Note that the results in [10] also
capture programs that admit infeasible runtime complexities, but define functions
that are computable in polytime, if suitable (and non-trivial) program transfor-
mations are used. Such programs are outside the scope of our results. Thus it seems
that our results more directly assess the complexity of the given programs. Note
that our tool provides (for the first time) a fully automatic application of the de-
pendency pair method in the context of implicit complexity theory. Here we only
want to mention that for a variant of the TRS Rbin, as studied in [10], our tool
easily verifies polytime computability fully automatically.

The rest of the paper is organised as follows. In Section 2 we present basic
notions and recall (briefly) the path order for FP from [11]. We then briefly recall
dependency pairs in the context of complexity analysis from [5,6], cf. Section 3.
In Section 4 we present polynomial path orders over quasi-precedences. Our
main results are presented in Section 5. We continue with experimental results
in Section 6, and conclude in Section 7.
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2 The Polynomial Path Order on Sequences

We assume familiarity with the basics of term rewriting, see [12,13]. Let V denote
a countably infinite set of variables and F a signature, containing at least one
constant. The set of terms over F and V is denoted as T (F ,V) and the set of
ground terms as T (F). We write Fun(t) and Var(t) for the set of function symbols
and variables appearing in t, respectively. The root symbol rt(t) of a term t is
defined as usual and the (proper) subterm relation is denoted as � (�). We write
s|p for the subterm of s at position p. The size |t| of a term t is defined as usual
and the width of t is defined as width(t) := max{n,width(t1), . . . ,width(tn)} if
t = f(t1, . . . , tn) and n > 0 or width(t) = 1 else. Let � be a preorder on the
signature F , called quasi-precedence or simply precedence. Based on � we define
an equivalence ≈ on terms: s ≈ t if either (i) s = t or (ii) s = f(s1, . . . , sn),
t = g(t1, . . . , tn), f ≈ g and there exists a permutation π such that si ≈ tπ(i).
For a preorder �, we use �mul for the multiset extension of �, which is again
a preorder. The proper order (equivalence) induced by �mul is written as  mul

(≈mul).
A term rewrite system (TRS for short) R over T (F ,V) is a finite set of

rewrite rules l→ r, such that l /∈ V and Var(l) ⊇ Var(r). We write −→R ( i−→R) for
the induced (innermost) rewrite relation. The set of defined function symbols is
denoted as D, while the constructor symbols are collected in C, clearly F = D∪C.
We use NF(R) to denote the set of normal forms ofR and set Val := T (C,V). The
elements of Val are called values. A TRS is called completely defined if normal
forms coincide with values. We define Tb := {f(v1, . . . , vn) | f ∈ D and vi ∈ Val}
as the set of basic terms. A TRS R is a constructor TRS if l ∈ Tb for all
l→ r ∈ R. Let Q denote a TRS. The generalised restricted rewrite relation Q−→R
is the restriction of −→R where all arguments of the redex are in normal form
with respect to the TRS Q (compare [14]). We define the (innermost) relative
rewriting relation (denoted as i−→R/S) as follows:

i−→R/S := R ∪ S−−−−→∗
S · R ∪ S−−−−→R · R ∪ S−−−−→∗

S ,

Similarly, we set i−→ε
R/S := R ∪ S−−−−→∗

S · R ∪ S−−−−→ε
R · R ∪ S−−−−→∗

S , to define an (innermost)
relative root-step.

A polynomial interpretation is a well-founded and monotone algebra (A, >)
with carrier N such that > is the usual order on natural numbers and all interpre-
tation functions fA are polynomials. Let α : V → A denote an assignment, then
we write [α]A(t) for the evaluation of term t with respect to A and α. A poly-
nomial interpretation is called a strongly linear interpretation (SLI for short)
if all function symbols are interpreted by weight functions fA(x1, . . . , xn) =∑n

i=1 xi + c with c ∈ N. The derivation length of a terminating term s with re-
spect to → is defined as dl(s,→) := max{n | ∃t. s→n t}, where →n denotes the
n-fold application of →. The innermost runtime complexity function rci

R with
respect to a TRS R is defined as rci

R(n) := max{dl(t, i−→R) | t ∈ Tb and |t| � n}.
If no confusion can arise rci

R is simply called runtime complexity function.
We recall the bare essentials of the polynomial path order � on sequences

(POP for short) as put forward in [11]. We kindly refer the reader to [11,2] for
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motivation and examples. We recall the definition of finite approximations �l
k

of �. The latter is conceived as the limit of these approximations. The domain of
this order are so-called sequences Seq(F ,V) := T (F ∪{◦},V). Here F is a finite
signature and ◦ �∈ F a fresh variadic function symbol, used to form sequences.
We denote sequences ◦(s1, . . . , sn) by [s1 · · · sn] and write a :: [b1 · · · bn] for the
sequence [a b1 · · · bn].

Let � denote a precedence. The order �l
k is based on an auxiliary order �l

k.
Below we set ·	l

k := �l
k ∪ ≈, where ≈ denotes the equivalence on terms defined

above. We write {{t1, . . . , tn}} to denote multisets and � for the multiset sum.

Definition 1. Let k, l � 1. The order �l
k induced by � is inductively defined as

follows: s �l
k t for s = f(s1, . . . , sn) or s = [s1 · · · sn] if either

(1) si ·	l
k t for some i ∈ {1, . . . , n}, or

(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm) with f  g or t = [t1 · · · tm], s �l−1
k tj

for all j ∈ {1, . . . ,m}, and m < k + width(s),
(3) s = [s1 · · · sn], t = [t1 · · · tm] and the following properties hold:

– {{t1, . . . , tm}} = N1 � · · · �Nn for some multisets N1, . . . , Nn, and
– there exists i ∈ {1, . . . , n} such that {{si}} �≈mul Ni, and
– for all 1 � i � n such that {{si}} �≈mul Ni we have si �l

k r for all r ∈ Ni,
and m < k + width(s).

Definition 2. Let k, l � 1. The approximation �l
k of the polynomial path order

on sequences induced by � is inductively defined as follows: s �l
k t for s =

f(s1, . . . , sn) or s = [s1 · · · sn] if either s �l
k t or

(1) si �	l
k t for some i ∈ {1, . . . , n},

(2) s = f(s1, . . . , sn), t = [t1 · · · tm], and the following properties hold:
– s �l−1

k tj0 for some j0 ∈ {1, . . . ,m},
– s �l−1

k tj for all j �= j0, and m < k + width(s),
(3) s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼ g and [s1 · · · sn] �l

k [t1 · · · tm], or
(4) s = [s1 · · · sn], t = [t1 · · · tm] and the following properties hold:

– {{t1, . . . , tm}} = N1 � · · · �Nn for some multisets N1, . . . , Nn, and
– there exists i ∈ {1, . . . , n} such that {{si}} �≈mul Ni, and
– for all 1 � i � n such that {{si}} �≈mul Ni we have si �l

k r for all r ∈ Ni,
and m < k + width(s).

Above we set �	l
k := �l

k ∪≈ and abbreviate �k
k as �k in the following. Note that

the empty sequence [ ] is minimal with respect to both orders.
It is easy to see that for k � l, we have �k ⊆ �l and �k ⊆ �l and that s �k t

implies that width(t) < width(s) + k. For a fixed approximation �k, we define
the length of its longest decent as: Gk(t) := max{n | t = t0 �k t1 �k · · · �k tn}.
The following proposition is a reformulation of Lemma 6 in [11].

Proposition 3. Let k ∈ N. There exists a polynomial interpretation A such that
Gk(t) � [α]A(t) for all assignments α : V → N. As a consequence, for all terms
f(t1, . . . , tn) with [α]A(ti) = O(|ti|), Gk(f(t1, . . . , tn)) is bounded by a polynomial
p in the size of t, where p depends on k only.

Note that the polynomial interpretation A employed in the proposition fulfils:
◦A(m1, . . . ,mn) =

∑n
i=1mi + n. In particular, we have [α]A([ ]) = 0.
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3 Complexity Analysis Based on the Dependency Pair
Method

In this section, we briefly recall the central definitions and results established
in [5,6]. We kindly refer the reader to [5,6] for further examples and underly-
ing intuitions. Let X be a set of symbols. We write C〈t1, . . . , tn〉X to denote
C[t1, . . . , tn], whenever rt(ti) ∈ X for all i ∈ {1, . . . , n} and C is a n-hole con-
text containing no symbols from X . We set D� := D ∪ {f � | f ∈ D} with each
f � a fresh function symbol. Further, for t = f(t1, . . . , tn) with f ∈ D, we set
t� := f �(t1, . . . , tn).

Definition 4. Let R be a TRS. If l → r ∈ R and r = C〈u1, . . . , un〉D then
l� → COM(u�

1, . . . , u
�
n) is called a weak innermost dependency pair of R. Here

COM(t) = t and COM(t1, . . . , tn) = c(t1, . . . , tn), n �= 1, for a fresh constructor
symbol c, the compound symbol. The set of all weak innermost dependency pairs
is denoted by WIDP(R).

Example 5. Reconsider the example Rbits from the introduction. The set of weak
innermost dependency pairs WIDP(Rbits) is given by

7 : half�(0) → c1 10: bits�(0) → c3

8 : half�(s(0)) → c2 11: bits�(s(0)) → c4

9: half�(s(s(x))) → half�(x) 12 : bits�(s(s(x))) → bits�(s(half(x)))

We write f
d g if there exists a rewrite rule l→ r ∈ R such that f = rt(l) and g
is a defined symbol in Fun(r). For a set G of defined symbols we denote by R�G
the set of rewrite rules l → r ∈ R with rt(l) ∈ G. The set U(t) of usable rules
of a term t is defined as R�{g | f 
∗

d g for some f ∈ Fun(t)}. Finally, we define
U(P) =

⋃
l→r∈P U(r).

Example 6 (Example 5 continued). The usable rules of WIDP(Rbits) consist of the
following rules: 1 : half(0) → 0, 2 : half(s(0)) → 0, and 3: half(s(s(x))) → half(x).

The following proposition allows the analysis of the (innermost) runtime com-
plexity through the study of (innermost) relative rewriting, see [5] for the proof.

Proposition 7. Let R be a TRS, let t be a basic terminating term, and let
P = WIDP(R). Then dl(t, i−→R) � dl(t�, i−→U(P)∪P). Moreover, suppose P is non-
duplicating and U(P) ⊆ >A for some SLI A. Then there exist constants K,L � 0
(depending on P and A only) such that dl(t, i−→R) � K ·dl(t�, i−→P/U(P))+L · |t�|.
This approach admits also an integration of dependency graphs [15] in the con-
text of complexity analysis. The nodes of the weak innermost dependency graph
WIDG(R) are the elements of P and there is an arrow from s → t to u → v
if there exist a context C and substitutions σ, τ such that tσ i−→∗

R C[uτ ]. Let
G = WIDG(R); a strongly connected component (SCC for short) in G is a maxi-
mal strongly connected subgraph. We write G/≡ for the congruence graph, where
≡ is the equivalence relation induced by SCCs.
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Example 8 (Example 5 continued). G = WIDG(Rbits) consists of the nodes (7)–
(12) as mentioned in Example 5 and has the following shape:

7 9 8 10 12 11

The only non-trivial SCCs in G are {9} and {12}. Hence G/≡ consists of the
nodes [7]≡–[12]≡, and edges ([a]≡, [b]≡) for edges (a, b) in G. Here [a]≡ denotes
the equivalence class of a.

We set L(t) := max{dl(t, i−→Pm/S) | (P1, . . . ,Pm) a path in G/≡, P1 ∈ Src},
where Src denotes the set of source nodes from G/≡ and S = P1 ∪ · · · ∪ Pm−1 ∪
U(P1∪· · ·∪Pm). The proposition allows the use of different techniques to analyse
polynomial runtime complexity on separate paths, cf. [6].

Proposition 9. Let R, P, and t be as above. Then there exists a polynomial p
(depending only on R) such that dl(t�, i−→P/U(P)) � p(L(t�)).

4 The Polynomial Path Order over Quasi-precedences

In this section, we briefly recall the central definitions and results established in
[2,16] on the polynomial path order. We employ the variant of POP∗ based on
quasi-precendences, cf. [16].

As mentioned in the introduction, POP∗ relies on tiered recursion, which is
captured by the notion of safe mapping. A safe mapping safe is a function that
associates with every n-ary function symbol f the set of safe argument positions.
If f ∈ D then safe(f) ⊆ {1, . . . , n}, for f ∈ C we fix safe(f) = {1, . . . , n}.
The argument positions not included in safe(f) are called normal and denoted
by nrm(f). We extend safe to terms t �∈ V . We define safe(f(t1, . . . , tn)) :=
{ti1 , . . . , tip} where safe(f) = {i1, . . . , ip}, and we define nrm(f(t1, . . . , tn)) :=
{tj1 , . . . , tjq} where nrm(f) = {j1, . . . , jq}. Not every precedence is suitable for
>pop∗, in particular we need to assert that constructors are minimal.

We say that a precedence � is admissible for POP∗ if the following is satisfied:
(i) f  g with g ∈ D implies f ∈ D, and (ii) if f ≈ g then f ∈ D if and only
if g ∈ D. In the sequel we assume any precedence is admissible. We extend
the equivalence ≈ to the context of safe mappings: s safe≈ t, if (i) s = t, or (ii)
s = f(s1, . . . , sn), t = g(t1, . . . , tn), f ≈ g and there exists a permutation π so
that si

safe≈ tπ(i), where i ∈ safe(f) if and only if π(i) ∈ safe(g) for all i ∈ {1, . . . , n}.
Similar to POP, the definition of the polynomial path order >pop∗ makes use of
an auxiliary order >pop.

Definition 10. The auxiliary order >pop induced by � and safe is inductively
defined as follows: s = f(s1, . . . , sn) >pop t if either

(1) si ∼>pop t for some i ∈ {1, . . . , n}, and if f ∈ D then i ∈ nrm(f), or

(2) t = g(t1, . . . , tm), f  g, f ∈ D and s >pop tj for all j ∈ {1, . . . ,m}.
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Definition 11. The polynomial path order >pop∗ induced by � and safe is in-
ductively defined as follows: s = f(s1, . . . , sn) >pop∗ t if either s >pop t or

(1) si ∼>pop∗ t for some i ∈ {1, . . . , n}, or
(2) t = g(t1, . . . , tm), f  g, f ∈ D, and

– s >pop∗ tj0 for some j0 ∈ safe(g), and
– for all j �= j0 either s >pop tj, or s
 tj and j ∈ safe(g), or

(3) t = g(t1, . . . , tm), f ≈ g, nrm(s) >mul
pop∗ nrm(t) and safe(s) ∼>

mul
pop∗ safe(t).

Above we set ∼>pop := >pop ∪ safe≈ and ∼>pop∗ := >pop∗ ∪ safe≈. Here >mul
pop∗ and ∼>

mul
pop∗

refer to the strict and weak multiset extension of ∼>pop∗ respectively.
The intuition of >pop is to deny any recursive call, whereas >pop∗ allows pred-

icative recursion: by the restrictions imposed by the mapping safe, recursion
needs to be performed on normal arguments, while a recursively computed re-
sult must only be used in a safe argument position, compare [4]. Note that the
alternative s 
 tj for j ∈ safe(g) in Definition 11(2) guarantees that POP∗

characterises the class of polytime computable functions. The proof of the next
theorem follows the pattern of the proof of the Main Theorem in [2], but the
result is stronger due to the extension to quasi-precedences.

Theorem 12. Let R be a constructor TRS. If R is compatible with >pop∗, i.e.,
R ⊆ >pop∗, then the innermost runtime complexity rci

R induced is polynomially
bounded.

Note that Theorem 12 is too weak to handle the TRS Rbits as the (necessary)
restriction to an admissible precedence is too strong. To rectify this, we analyse
POP∗ in Section 5 in the context of relative rewriting.

An argument filtering (for a signature F) is a mapping π that assigns to
every n-ary function symbol f an argument position i ∈ {1, . . . , n} or a (possibly
empty) list {k1, . . . , km} of argument positions with 1 � k1 < · · · < km � n.
The signature Fπ consists of all function symbols f such that π(f) is some list
{k1, . . . , km}, where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ ,V), also denoted by π:

π(t) =

⎧
⎪⎨

⎪⎩

t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(tk1 ), . . . , π(tkm)) if t = f(t1, . . . , tn) and π(f) = {k1, . . . , km} .

Definition 13. Let π denote an argument filtering, and >pop∗ a polynomial path
order. We define s >π

pop∗ t if and only if π(s) >pop∗ π(t), and likewise s ∼>
π
pop∗ t

if and only if π(s) ∼>pop∗ π(t).

Example 14 (Example 5 continued). Let π be defined as follows: π(half) = 1 and
π(f) = {1, . . . , n} for each n-ary function symbol other than half. Compatibility
of WIDP(Rbits) with >π

pop∗ amounts to the following set of order constraints:

half�(0) >pop∗ c1 bits�(0) >pop∗ c3 half�(s(s(x))) >pop∗ half�(x)

half�(s(0)) >pop∗ c2 bits�(s(0)) >pop∗ c4 bits�(s(s(x))) >pop∗ bits�(s(x))
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In order to define a POP∗ instance >pop∗, we set safe(bits�) = safe(half) =
safe(half�) = ∅ and safe(s) = {1}. Furthermore, we define an (admissible) prece-
dence: 0 ≈ c1 ≈ c2 ≈ c3 ≈ c4. The easy verification of WIDP(Rbits) ⊆ >π

pop∗ is
left to the reader.

5 Dependency Pairs and Polynomial Path Orders

Motivated by Example 14, we show in this section that the pair (∼>
π
pop∗, >

π
pop∗) can

play the role of a safe reduction pair, cf. [5,6]. Let R be a TRS over a signature
F that is innermost terminating. In the sequel R is kept fixed. Moreover, we fix
some safe mapping safe, an admissible precedence �, and an argument filtering
π. We refer to the induced POP∗ instance by >π

pop∗.
We adapt safe to Fπ in the obvious way: for each fπ ∈ Fπ with corresponding

f ∈ F , we define safe(fπ) := safe(f) ∩ π(f), and likewise nrm(fπ) := nrm(f) ∩
π(f). Set Valπ := T (Cπ,V). Based on Fπ we define the normalised signature
Fn

π := {fn | f ∈ Fπ} where the arity of fn is |nrm(f)|. We extend � to Fn
π

by fn � gn if and only if f � g. Let s be a fresh constant that is minimal
with respect to �. We introduce the Buchholz norm of t (denoted as ‖t‖) as a
term complexity measure that fits well with the definition of POP∗. Set ‖t‖ :=
1 + max{n, ‖t1‖, . . . , ‖tn‖} for t = f(t1, . . . , tn) and ‖t‖ := 1, otherwise.

In the following we define an embedding from the relative rewriting relation
i−→ε
R/S into �k, such that k depends only on TRSs R and S. This embedding pro-

vides the technical tool to measure the number of root steps in a given derivation
through the number of descents in �k. Hence Proposition 3 becomes applicable
to establishing our main result. This intuition is cast into the next definition.

Definition 15. A predicative interpretation is a pair of mappings (Sπ ,Nπ) from
terms to sequences Seq(Fn

π ∪ {s},V) defined as follows. We assume π(t) =
f(π(t1), . . . , π(tn)), safe(f) = {i1, . . . , ip}, and nrm(f) = {j1, . . . , jq}.

Sπ(t) :=

{
[ ] if π(t) ∈ Valπ,

[fn(Nπ(tj1), . . . ,Nπ(tjq)) Sπ(ti1) · · · Sπ(tip)] if π(t) �∈ Valπ.

Nπ(t) := Sπ(t) :: BNπ(t)

Here the function BNπ maps a term t to the sequence [s · · · s] with ‖π(t)‖ occur-
rences of the constant s.

As a direct consequence of the definitions we have width(Nπ(t)) = ‖π(t)‖+1 for
all terms t.

Lemma 16. There exists a polynomial p such that Gk(Nπ(t)) � p(|t|) for every
basic term t. The polynomial p depends only on k.

Proof. Suppose t = f(v1, . . . , vn) is a basic term with safe(f) = {i1, . . . , ip}
and nrm(f) = {j1, . . . , jq}. The only non-trivial case is when π(t) �∈ Valπ. Then
Nπ(t) = [u Sπ(vi1 ) · · ·Sπ(vip)] :: BNπ(t) where u = fn(Nπ(vj1), . . . ,Nπ(vjq )).
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Note that Sπ(vi) = [ ] for i ∈ {i1, . . . , iq}. Let A denote a polynomial in-
terpretation fulfilling Proposition 3. Using the assumption ◦A(m1, . . . ,mn) =∑n

i=1mi + n, it is easy to see that Gk(Nπ(t)) is bounded linear in ‖t‖ � |t| and
[α]A(u). As Nπ(vj) = [[] s · · · s] with ‖π(vj)‖ � |t| occurrences of s, Gk(Nπ(vj))
is linear in |t|. Hence from Proposition 3 we conclude that Gk(Nπ(t)) is polyno-
mially bounded in |t|. �

The next sequence of lemmas shows that the relative rewriting relation i−→ε
R/S

is embeddable into �k.

Lemma 17. Suppose s >π
pop∗ t such that π(sσ) ∈ Valπ. Then Sπ(sσ) = [ ] =

Sπ(tσ) and Nπ(sσ) �1 Nπ(tσ).

Proof. Let π(sσ) ∈ Valπ, and suppose s >π
pop∗ t, i.e., π(s) >pop∗ π(t) holds.

Since π(s) ∈ Valπ (and due to our assumptions on safe mappings) only clause
(1) from the definition of >pop∗ (or respectively >pop) is applicable. Thus π(t)
is a subterm of π(s) modulo the equivalence ≈. We conclude π(tσ) ∈ Valπ, and
hence Sπ(sσ) = [ ] = Sπ(tσ). Finally, note that ‖π(sσ)‖ > ‖π(tσ)‖ as π(tσ) is a
subterm of π(sσ). Thus Nπ(sσ) �1 Nπ(tσ) follows as well. �

To improve the clarity of the exposition, we concentrate on the crucial cases
in the proofs of the following lemmas. The interested reader is kindly referred
to [17] for the full proof.

Lemma 18. Suppose s >π
pop t such that π(sσ) = f(π(s1σ), . . . , π(snσ)) with

π(siσ) ∈ Valπ for i ∈ {1, . . . , n}. Moreover suppose nrm(f) = {j1, . . . , jq}. Then
fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) �3·‖π(t)‖ Nπ(tσ) holds.

Proof. Note that the assumption implies that the argument filtering π does
not collapse f . We show the lemma by induction on >π

pop. We consider the
subcase that s >π

pop t follows as t = g(t1, . . . , tm), π does not collapse on
g, f  g, and s >π

pop tj for all j ∈ π(g), cf. Definition 10(2). We set u :=
fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) and k := 3 · ‖π(t)‖ and first prove u �k−1 Sπ(tσ).

If π(tσ) ∈ Valπ, then Sπ(tσ) = [ ] is minimal with respect to �k−1. Thus we
are done. Hence suppose nrm(g) = {j′1, . . . , j′q}, safe(g) = {i′1, . . . , i′p} and let

Sπ(tσ) = [gn(Nπ(tj′1σ), . . . ,Nπ(tj′qσ)) Sπ(ti′1σ) · · · Sπ(ti′pσ)] .

We set v := gn(Nπ(tj′1σ), . . . ,Nπ(tj′qσ)). It suffices to show u �k−2 v and u �k−2
Sπ(tjσ) for j ∈ safe(g). Both assertions follow from the induction hypothesis.

Now consider Nπ(tσ) = [Sπ(tσ) s · · · s] with ‖π(tσ)‖ occurrences of the con-
stant s. Recall that width(Nπ(tσ)) = ‖π(tσ)‖ + 1. Observe that fn  s. Hence
to prove u �k Sπ(tσ) it suffices to observe that width(u) + k > ‖π(tσ)‖ + 1
holds. For that note that ‖π(tσ)‖ is either ‖π(tjσ)‖ + 1 for some j ∈ π(g) or
less than k. In the latter case, we are done. Otherwise ‖π(tσ)‖ = ‖π(tjσ)‖ + 1.
Then from the definition of �k and the induction hypothesis u �3·‖π(tj)‖ Nπ(tjσ)
we can conclude width(u) + 3 · ‖π(tj)‖ > width(Nπ(tjσ)) = ‖π(tjσ)‖ + 1. Since
k � 3 · (‖π(tj)‖+ 1), width(u) + k > ‖π(tσ)‖+ 1 follows. �
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Lemma 19. Suppose s >π
pop∗ t such that π(sσ) = f(π(s1σ), . . . , π(snσ)) with

π(siσ) ∈ Valπ for i ∈ {1, . . . , n}. Then for nrm(f) = {j1, . . . , jq},
(1) fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) �3·‖π(t)‖ Sπ(tσ), and
(2) fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)) :: BNπ(sσ) �3·‖π(t)‖ Nπ(tσ).

Proof. The lemma is shown by induction on the definition of >π
pop∗. Set u =

fn(Nπ(sj1σ), . . . ,Nπ(sjqσ)). Suppose s >π
pop∗ t follows due to Definition 11(2).

We set k := 3 · ‖π(t)‖. Let nrm(g) = {j′1, . . . , j′q} and let safe(g) = {i′1, . . . , i′p}.
Property (1) is immediate for π(tσ) ∈ Valπ, so assume otherwise. We see that

s >π
pop tj for all j ∈ nrm(g) and obtain u �k−1 g

n(Nπ(tj′1σ), . . . ,Nπ(tj′qσ)) as
in Lemma 18. Furthermore, s >π

pop∗ tj0 for some j0 ∈ safe(g) and by induction
hypothesis: u �k−1 Sπ(tj0σ). To conclude property (1), it remains to verify
u �k−1 Sπ(tjσ) for the remaining j ∈ safe(g). We either have s >π

pop tj or
π(si) � π(tj) (for some i). In the former subcase we proceed as in the claim,
and for the latter we observe π(tjσ) ∈ Valπ, and thus Sπ(tjσ) = [ ] follows. This
establishes property (1).

To conclude property (2), it suffices to show width(u :: BNπ(sσ)) + k >
width(Nπ(tσ)), or equivalently ‖π(sσ)‖ + 1 + k > ‖π(tσ)‖. The latter can be
shown, if we proceed similar as in the claim. �

Recall the definition of Q−→R from Section 2 and define Q := {f(x1, . . . , xn) →
⊥ | f ∈ D}, and set v−→R:= Q−→R. We suppose ⊥ ∈ F is a constructor symbol
not occurring in R. As the normal forms of Q coincide with Val, v−→R is the
restriction of i−→R, where arguments need to be values instead of normal forms
of R. From Lemma 17 and 19 we derive an embedding of root steps v−→ε

R.
Now, suppose the step s v−→R t takes place below the root. Observe that π(s) �=

π(t) need not hold in general. Thus we cannot hope to prove Nπ(s) �k Nπ(t).
However, we have the following stronger result.

Lemma 20. There exists a uniform k ∈ N (depending only on R) such that if
R ⊆ >π

pop∗ holds then s v−→ε
R t implies Nπ(s) �k Nπ(t). Moreover, if R ⊆ ∼>

π
pop∗

holds then s v−→R t implies Nπ(s) �	k Nπ(t).

Proof. We consider the first half of the assertion. Suppose R ⊆ >π
pop∗ and s v−→ε

R
t, that is for some rule f(l1, . . . , ln) → r ∈ R and substitution σ : V → Val we
have s = f(l1σ, . . . , lnσ) and t = rσ. Depending on whether π collapses f , the
property either directly follows from Lemma 17 or is a consequence of Lemma
19(2).

In order to conclude the second half of the assertion, one performs induction
on the rewrite context. In addition, one shows that for the special case Sπ(s) ≈
Sπ(t), still ‖π(s)‖ � ‖π(t)‖ holds. From this the lemma follows. �

For constructor TRSs, we can simulate i−→R using v−→R. We extend R with suit-
able rules Φ(R), which replace normal forms that are not values by some con-
structor symbol. To simplify the argument we re-use the symbol ⊥ from above.
We define the TRS Φ(R) as

Φ(R) := {f(t1, . . . , tn) → ⊥ | f(t1, . . . , tn) ∈ NF(R) ∩ T (F) and f ∈ D} .
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Moreover, we define φR(t) := t↓Φ(R). Observe that φR(·) is well-defined since
Φ(R) is confluent and terminating.

Lemma 21. Let R∪ S be a constructor TRS. Define S′ := S ∪ Φ(R ∪ S). For
s ∈ T (F),

s i−→ε
R/S t implies φR∪S(s) v−→ε

R/S′ φR∪S(t) ,

where v−→R/S′ abbreviates v−→∗
S′ · v−→R · v−→∗

S′ .

Proof. It is easy to see that s i−→R t implies φR(s) v−→R · v−→!
Φ(R) φR(t). Suppose

s i−→ε
R/S t, then there exist ground terms u and v such that s i−→∗

S u
i−→ε
R v

i−→∗
S t.

Let φ(t) := φR∪S(t). From the above, φ(s) v−→∗
S′ φ(u) v−→ε

R · v−→∗
S′ φ(v) v−→∗

S′ φ(t)
follows as desired. �

Suppose R ⊆ >π
pop∗ and S ⊆ ∼>

π
pop∗ holds. Together with Lemma 20, the above

simulation establishes the promised embedding of i−→ε
R/S into �k.

Lemma 22. Let R ∪ S be a constructor TRS, and suppose R ⊆ >π
pop∗ and

S ⊆ ∼>
π
pop∗ hold. Then for k depending only on R and S, we have for s ∈ T (F),

s i−→ε
R/S t implies Nπ(φ(s)) �+

k Nπ(φ(t)) .

Proof. Consider a step s i−→ε
R/S t and set φ(t) := φR∪S(t). By Lemma 21 there

exist terms u and v such that φ(s) v−→∗
S∪Φ(R∪S) u

v−→ε
R v v−→∗

S∪Φ(R∪S) φ(t).
Since R ⊆ >π

pop∗ holds, by Lemma 20 Nπ(u) �k1 Nπ(v) follows. Moreover from
S ⊆ ∼>

π
pop∗ together with Lemma 20 we conclude that r1 v−→S∪Φ(R∪S) r2 im-

plies Nπ(r1) �	k2
Nπ(r2). Here we use the easily verified fact that steps using

Φ(R ∪ S) are embeddable into �	k2
. In both cases k1 and k2 depend only on R

and S respectively; set k := max{k1, k2}. In sum we have Nπ(φ(s)) �	∗
k Nπ(u) �k

Nπ(v) �	∗
k Nπ(φ(t)). It is an easy to see that �k · ≈ ⊆ �k and ≈ ·�k ⊆ �k holds.

Hence the lemma follows. �

Theorem 23. Let R ∪ S be a constructor TRS, and suppose R ⊆ >π
pop∗ and

S ⊆ ∼>
π
pop∗ holds. Then there exists a polynomial p depending only R ∪ S such

that for any basic term t, dl(t, i−→ε
R/S) � p(|t|).

Proof. Assume t �∈ NF(R∪S), otherwise dl(t, i−→ε
R/S) is trivially bounded. With-

out loss of generality, we assume that t is ground. As t is a basic term: φR∪S(t) =
t. From Lemma 22 we infer (for some k) dl(t, i−→ε

R/S) � Gk(Nπ(φR∪S(t))) =
Gk(Nπ(t)), such that the latter is polynomially bounded in |t| and the polyno-
mial only depends on k, cf. Lemma 16. Note that k depends only on R∪S. �

Suppose R is a constructor TRS, and let P denote the set of weak innermost
dependency pairs. For the moment, suppose that all compound symbols of P are
nullary. Provided that P is non-duplicating and U(P) compatible with some SLI,
as a consequence of the above theorem paired with Proposition 7, the inclusions
P ⊆ >π

pop∗ and U(P) ⊆ ∼>
π
pop∗ certify that rci

R is polynomially bounded. Observe
that for the application of >π

pop∗ and ∼>
π
pop∗ in the context of P and U(P), we

alter Definitions 10 and 11 such that f ∈ D� is demanded.
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Example 24 (Example 14 continued). Reconsider the TRSRbits, and let P denote
WIDP(Rbits) as drawn in Example 5. By taking the SLI A with 0A = 0, sA(x) =
x+1 and halfA(x) = x+1 we obtain U(P) ⊆ >A and moreover, observe that P is
both non-duplicating and contains only nullary compound symbols. In Example
14 we have seen that P ⊆ >π

pop∗ holds. Similarly, U(WIDP(Rbits)) ⊆ ∼>
π
pop∗ can

easily be shown. From the above observation we thus conclude a polynomial
runtime complexity of Rbits.

The assumption that all compound symbols from P need to be nullary is straight-
forward to lift, but technical. Hence, we do not provide a complete proof here,
but only indicate the necessary changes, see [18] for the formal construction.

Note that in the general case, it does not suffice to embed root steps of
P into �k, rather we have to embed steps of form C[s�1, . . . , s

�
i , . . . , s

�
n] v−→P

C[s�1, . . . , t
�
i , . . . , s

�
n] with C being a context built from compound symbols. As

first measure we require that the argument filtering π is safe [5], that is π(c) =
[1, . . . , n] for each compound symbol c of arity n. Secondly, we adapt the predica-
tive interpretation Nπ in such a way that compound symbols are interpreted as
sequences, and their arguments by the interpretation Nπ. This way, the renewed
embedding requires Nπ(s�i) �k Nπ(t�i) instead of Sπ(s�i) �k Sπ(t�i).

Theorem 25. Let R be a constructor TRS, and let P denote the set of weak
innermost dependency pairs. Assume P is non-duplicating, and suppose U(P) ⊆
>A for some SLI A. Let π be a safe argument filtering. If P ⊆ >π

pop∗ and
U(P) ⊆ ∼>

π
pop∗ then the innermost runtime complexity rci

R induced is polynomi-
ally bounded.

Above it is essential that R is a constructor TRS. This even holds if POP∗ is
applied directly.

Example 26. Consider the TRS Rexp below:

exp(x) → e(g(x)) e(g(s(x))) → dp1(g(x)) g(0) → 0

dp1(x) → dp2(e(x), x) dp2(x, y) → pr(x, e(y))

The above rules are oriented directly by>pop∗ induced by safe and � such that: (i)
the argument position of g and exp are normal, the remaining argument positions
are safe, and (ii) exp  g  dp1  dp2  e  pr  0. On the other hand,Rexp ad-
mits at least exponential innermost runtime-complexity, as for instance exp(sn(0))
normalizes in exponentially (in n) many innermost rewrite steps.

We adapt the definition of >pop∗ in the sense that we refine the notion of defined
function symbols as follows. Let GC denote the least set containing C and all
symbols appearing in arguments to left-hand sides in R. Moreover, set GD :=
F \ GC and set Val := T (GC ,V). Then in order to extend Theorem 25 to non-
constructor TRS it suffices to replace D by GD and C by GC in all above given
definitions and arguments (see [17] for the formal construction). Thus the next
theorem follows easily from combining Proposition 9 and Theorem 25. This
theorem can be extended so that in each path different termination techniques
(inducing polynomial runtime complexity) are employed, see [6] and Section 6.
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Theorem 27. Let R be a TRS. Let G denote the weak innermost dependency
graph, and let F = GD � GC be separated as above. Suppose for every path
(P1, . . . ,Pn) in G/≡ there exists an SLI A and a pair (∼>

π
pop∗, >

π
pop∗) based on

a safe argument filtering π such that (i) U(P1 ∪ · · · ∪ Pn) ⊆ >A (ii) P1 ∪ · · · ∪
Pn−1∪U(P1∪· · ·∪Pn) ⊆ ∼>

π
pop∗, and (iii) Pn ⊆ >π

pop∗ holds. Then the innermost
runtime complexity rci

R induced is polynomially bounded.

Thenext theoremestablishes thatPOP∗ in conjunctionwith (weak innermost)de-
pendency pairs induces polytime computability of the function described through
the analysed TRS. We kindly refer the reader to [18] for the proof.

Theorem 28. Let R be an orthogonal, S-sorted and completely defined con-
structor TRS such that the underlying signature is simple. Let P denote the set
of weak innermost dependency pairs. Assume P is non-duplicating, and suppose
U(P) ⊆ >A for some SLI A. If P ⊆ >π

pop∗ and U(P) ⊆ ∼>
π
pop∗ then the functions

computed by R are computable in polynomial time.

Here simple signature [19] essentially means that the size of any constructor
term depends polynomially on its depth. Such a restriction is always necessary
in this context, compare [18] and e.g. [19]. This restriction is also responsible for
the introduction of sorts.

6 Experimental Results

All described techniques have been incorporated into the Tyrolean Complex-
ity Tool TCT, an open source complexity analyser1. We performed tests on two
testbeds: T constitutes of the 1394 examples from the Termination Problem
Database Version 5.0.2 used in the runtime complexity category of the termina-
tion competition 20082. Moreover, testbed C is the restriction of testbed T to
constructor TRSs (638 in total). All experiments were conducted on a machine
that is identical to the official competition server (8 AMD Opteron R© 885 dual-
core processors with 2.8GHz, 8x8 GB memory). As timeout we use 5 seconds.
We orient TRSs using >π

pop∗ by encoding the constraints on precedence and so
forth in propositional logic (cf. [17] for details), employing MiniSat [20] for find-
ing satisfying assignments. In a similar spirit, we check compatibility with SLIs
via translations to SAT. In order to derive an estimated dependency graph, we
use the function ICAP (cf. [21]).

Experimental findings are summarised in Table 1.3 In each column, we high-
light the total on yes-, maybe- and timeout-instances. Furthermore, we annotate
average times in seconds. In the first three columns we contrast POP∗ as di-
rect technique to POP∗ as base to (weak innermost) dependency pairs. I.e., the
columns WIDP and WIDG show results concerning Proposition 7 together with
Theorem 25 or Theorem 27 respectively.
1 Available at http://cl-informatik.uibk.ac.at/software/tct
2 See http://termcomp.uibk.ac.at
3 See http://cl-informatik.uibk.ac.at/~zini/rta09 for extended results.

http://cl-informatik.uibk.ac.at/software/tct
http://termcomp.uibk.ac.at
http://cl-informatik.uibk.ac.at/~zini/rta09
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Table 1. Experimental Results

polynomial path orders dependency graphs mixed
DIRECT WIDP WIDG P PP M MP

T Yes 46/0.03 69/0.09 80/0.07 198/0.54 198/0.51 200/0.63 207/0.48

Maybe 1348/0.04 1322/0.10 1302/0.14 167/0.77 170/0.82 142/0.61 142/0.63

Timeout 0 3 12 1029 1026 1052 1045

C Yes 40/0.03 48/0.08 55/0.05 99/0.40 100/0.38 98/0.26 105/0.23

Maybe 598/0.05 587/0.10 576/0.13 143/0.72 146/0.77 119/0.51 119/0.54

Timeout 0 3 7 396 392 421 414

In the remaining four columns we assess the power of Proposition 7 and 9 in
conjunction with different base orders, thus verifying that the use of POP∗ in
this context is independent to existing techniques. Column P asserts that the
different paths are handled by linear and quadratic restricted interpretations [5].
In column PP, in addition POP∗ is employed. Similar, in column M restricted
matrix interpretations (that is matrix interpretations [22], where constructors
are interpreted by triangular matrices) are used to handle different paths. Again
column MP extends column M with POP∗. Note that all methods induce poly-
nomial innermost runtime complexity.

Table 1 reflects that the integration of POP∗ in the context of (weak) de-
pendency pairs, significantly extends the direct approach. Worthy of note, the
extension of [2] with quasi-precedences alone gives 5 additional examples. As ad-
vertised, POP∗ is incredibly fast in all settings. Consequently, as evident from
the table, polynomial path orders team well with existing techniques, without
affecting overall performance: note that due to the addition of POP∗ the number
of timeouts is reduced.

7 Conclusion

In this paper we study the runtime complexity of rewrite systems. We combine
two recently developed techniques in the context of complexity analysis: weak
innermost dependency pairs and polynomial path orders. If the conditions of
our main result are met, we can conclude the innermost polynomial runtime
complexity of the studied term rewrite system. And we obtain that the function
defined are polytime computable. We have implemented the technique and ex-
perimental evidence clearly indicates the power and in particular the efficiency
of the new method.
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Abstract. Computation with a term rewrite system (TRS) consists in
the application of its rules from a given starting term until a normal
form is reached, which is considered the result of the computation. The
unique normalization (UN) property for a TRS R states that any starting
term can reach at most one normal form when R is used, i.e. that the
computation with R is unique.

We study the decidability of this property for classes of TRS defined
by syntactic restrictions such as linearity (variables can occur only once
in each side of the rules), flatness (sides of the rules have height at most
one) and shallowness (variables occur at depth at most one in the rules).

We prove that UN is decidable in polynomial time for shallow and
linear TRS, using tree automata techniques. This result is very near to
the limits of decidability, since this property is known undecidable even
for very restricted classes like right-ground TRS, flat TRS and also right-
flat and linear TRS. We also show that UN is even undecidable for flat
and right-linear TRS. The latter result is in contrast with the fact that
many other natural properties like reachability, termination, confluence,
weak normalization, etc. are decidable for this class of TRS.

Introduction

Term rewriting is a Turing-complete model of computation. Computation with
a TRS consists in the application of its rules from a given starting term until a
normal form is reached, i.e. a term that cannot be rewritten any more, which is
usually considered as the result of the computation.

The unique normalization (UN) property for a TRSR states that any starting
term can reach at most one normal form when R is used, i.e. that the compu-
tation with R is unique. This property is hence very desirable when dealing
with TRS as computation models, and therefore it is important to establish the
borders of its decidability.

Other interesting and much studied properties of TRS are reachability
(whether a given term can be derived with a given TRS from another given term),

� The first author was supported by Spanish Min. of Educ. and Science by the FOR-
MALISM project (TIN2007-66523) and by the LOGICTOOLS-2 project (TIN2007-
68093-C02-01).

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 63–77, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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joinability (whether two given terms can be rewritten into one common term),
termination (whether there are no infinite derivations from any starting term),
confluence (whether every two terms derived from a common one can also be
rewritten into another common term), weak normalization (whether every term
can be rewritten into a normal form), uniqueness of normal forms (whether every
term has at most one normal form equivalent to it modulo the equational theory
induced by the TRS), etc. Note that a TRS may satisfy the unique normalization
property and simultaneously unsatisfy the uniqueness of normal forms property.
This is the case of R = {a→ b, a → c, c → c, d→ c, d → e}, where all terms
can reach at most one normal form, but it holds that the normal forms b and c
are equivalent.

In the recent years there has been much progress on determining decidability
of these fundamental properties for several classes of TRS, which are defined by
imposing certain syntactic restrictions on the rules. Some of the restrictions usu-
ally taken into consideration are groundness (no variable appears in the rules),
linearity (variables can occur only once in each side of the rules), flatness (sides
of the rules have height at most one) and shallowness (variables occur at depth
at most one in the rules). When these restrictions refer only to one side of the
rules, then we talk about left-linearity, right-linearity, left-flatness, etc.

Some of the strongest known decidability results are the following. Reacha-
bility and joinability are decidable for right-shallow right-linear TRS [11], and
even for weaker restrictions [15]. Termination is decidable for right-shallow right-
linear TRS [5] and other variants of syntactic restrictions based on the form of
the dependency pairs obtained from a TRS [20]. Confluence is decidable for
shallow right-linear TRS [8], and for right-(ground or variable) TRS [7]. The
weak normalization problem is decidable for left-shallow left-linear TRS [11],
right-shallow linear TRS and shallow right-linear TRS [6]. Uniqueness of normal
forms is decidable in polynomial time for linear shallow TRS [19].

On the negative side, all of these properties have been proved undecidable for
flat TRS [9,10,5,4].

The case of the UN property seems to be more difficult. In [18], a polynomial
time algorithm is given for UN and TRS with ground rules. On the negative side,
UN is undecidable for right-flat and linear TRS [6], for right-ground TRS [16] and
for flat TRS [4]. UN has also been shown undecidable for TRS whose rules have
at most height two and, moreover, they are left-flat, right-linear, noncollapsing,
or linear and noncollapsing in [17]. In [6] the decidability of this problem is left
open for flat right-linear TRS.

In this paper, we provide a polynomial time algorithm for deciding UN for
shallow and linear TRS (Section 2). We also prove (Section 3) undecidability of
UN for flat and right-linear TRS. Our approach for decidability in polynomial
time consists in giving a certain characterization of UN. We essentially show
that UN is equivalent to the fact that certain regular sets of terms can reach
at most one normal form. This characterization can be checked using tree au-
tomata techniques. The proof of undecidability is an adequate adaptation of the
reductions appearing in [5,4].
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1 Preliminaries

Terms Algebra. We use standard notation from the term rewriting litera-
ture [1]. A signature is a finite set Σ =

⋃maxΣ

i=0 Σi of function symbols, with i
being the arity of symbols in Σi. Function symbols of arity 0 are called constants.
Sometimes we denote a signature as {f1 : a1, . . . , fn : an} where each fi is a func-
tion symbol, and each ai is its corresponding arity. Let V be a set disjoint from
Σ whose elements are called variables. The set T (Σ,V) of terms over Σ and V is
defined to be the smallest set containing V and such that f(t1, . . . , tm) ∈ T (Σ,V)
whenever f ∈ Σm and t1, . . . , tm ∈ T (Σ,V). Var(t) denotes the set of variables
occurring in the term t.

The size ‖t‖ of a term t is the number of occurrences of variables and function
symbols in t. The height of a term t, denoted as height(t), is 0 if t is a constant
or a variable, and 1 + max{height(t1), . . . , height (tm)} if t = f(t1, . . . , tm). The
positions of a term t, denoted p, q, are sequences of natural numbers that are
used to identify the location of subterms of t. The set Pos(t) of positions of t is
defined by Pos(t) = {ε} if t is a constant or a variable, and Pos(t) = {ε}∪{1.p |
p ∈ Pos(t1)}∪ . . .∪{m.p | p ∈ Pos(tm)} if t = f(t1, . . . , tm), where ε denotes the
empty sequence and p.q denotes the concatenation of p and q. If t is a term and
p ∈ Pos(t) a position, then t|p is the subterm of t at position p. More formally,
t|ε = t and f(t1, . . . , tm)|i.p = ti|p. We denote by t[s]p (p ∈ Pos(t)) the term that
is like t except that the subterm t|p is replaced by s. More formally, t[s]ε = s and
f(t1, . . . , tm)[s]i.p = f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tm). We can define a partial
order ≤ on Pos(t) by p ≤ q if and only if p is a prefix of q, i.e there is a
sequence p′ such that q = p.p′. We say that two positions p and q are parallel,
denoted p ‖ q, if they are incomparable with respect to ≤. Given a position
p in a term s, the depth of the occurrence s|p in s is |p|. A substitution is a
mapping V → T (Σ,V). Substitutions can also be applied to arbitrary terms
by homomorphically extending its application to variables. The application of
a substitution σ to a term t, denoted as σ(t), is defined as follows for non-
variable terms: σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)). A variable renaming is a
substitution from variables to variables.

Term Rewriting. An extended rewrite rule, denoted �→ r, is a pair of terms
� ∈ T (Σ,V) (the left-hand side) and r ∈ T (Σ,V) (the right-hand side). When
� is not a variable, and every variable occurring in r occurs also in �, � → r
is called a rewrite rule. An extended term rewrite system (extended TRS) R
is a finite set of extended rewrite rules. A term rewrite system (TRS) R is a
finite set of rewrite rules. A term s rewrites to t in one step at position p (by
an extended TRS R), denoted by s −−−→R,p t, if s|p = σ(�) and t = s[σ(r)]p, for
some � → r ∈ R and substitution σ. In this case, s is said to be R-reducible.
Otherwise s is called an R-normal form. The set of R-normal forms is denoted
by NFR. Sometimes we write s −−→R t when p is not important, or s −−−−→R,σ,p t,
for making the used substitution explicit. The transitive closure, and symmetric
and transitive closure of −−→R are denoted as −−→∗R and ←−−→∗R . When s −−→∗R t we
say that t is reachable from s, or that s reaches t. When s ←−−→∗R t we say that
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s and t are equivalent. When there exists a term u reachable from s and t,
we say that s and t are joinable. When there exists a term u reachable from
every term in a set S we say that S is joinable. Given L ⊆ T (Σ), we denote
R∗(L) = {t | ∃s ∈ L, s −−→∗R t}. The size of R is ‖R‖ =

∑
�→r∈R(‖�‖+ ‖r‖).

A term is linear if no variable occurs more than once in it. A term is shallow
if all variables occur at depth at most one. A term is flat if its height is at most
one. A rewrite rule � → r is flat (linear, shallow) if � and r are. A rewrite rule
� → r is right-flat (right-linear, right-shallow) if r is. A rewrite rule � → r is
left-flat (left-linear, left-shallow) if � is. A TRS is flat (linear, shallow) if all its
rules are. A TRS is right-flat (right-linear, right-shallow, left-flat, left-linear, left-
shallow) if all its rules are. A TRS is uniquely normalizing, or satisfies the unique
normalization (UN) property, if for each term s and each two normal forms t1
and t2 reachable from s, t1 = t2 holds.

Tree Automata. A tree automaton (TA) A over a signature Σ is a tuple
(Q,Qf , Δ) where Q is a finite set of nullary state symbols, disjoint from Σ,
Qf ⊆ Q is the subset of final states and Δ is a set of ground rewrite rules
of the form: f(q1, . . . , qm) → q, or q1 → q (ε-transition) where f ∈ Σm, and
q1, . . . , qm, q ∈ Q (q is called the target state of the rule). The size of A is
‖A‖ =

∑
f(q1,...,qm)→q∈Δ(m+ 2) +

∑
q1→q∈Δ(2).

The language of ground terms accepted by a TA A on Σ in a state q is the set
L(A, q) := {t ∈ T (Σ) | t −−→∗

Δ
q}. The language of A is L(A) :=

⋃
q∈Qf L(A, q)

and a subset of T (Σ) is called regular if it is the language of a TA.
We shall use the following classical properties and problems of TA, see [2] for

details.

Proposition 1. Given two TA A1 and A2 over the same signature Σ, one can
construct in polynomial time two TA recognizing respectively L(A1)∪L(A2) and
L(A1)∩L(A2), whose sizes are respectively linear and quadratic in ‖A1‖+‖A2‖.

We will consider the two following decision problems for TA:

Problem: Emptiness. Instance: a TA A; Question: L(A) = ∅?
Problem: Singleton. Instance: a TA A; Question: |L(A)| = 1?

Proposition 2. [2] The emptiness problem is decidable in linear time. The
singleton problem is decidable in polynomial time.

2 Decidability of UN for Shallow and Linear TRS

In this section we prove that UN is decidable in polynomial time for flat and
linear TRS (Theorem 1), and this result is immediately extended to shallow
and linear TRS (Theorem 2). ¿From now on, we assume a fixed signature Σ
and consider the maximal arity maxΣ of its function symbols as a constant.
Hence, when analysing complexity of deciding the UN problem, this value is not
considered as part of the input. This is a common approach when evaluating
complexity for TRS problems (see e.g. the computation of a congruence closure
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for shallow equations [12], or the time complexity given for certain problems
using tree automata techniques [2]) . This is because, in practice, non-constant
function symbols are usually fixed and represent relations with small arity or
functions with few parameters, while constants are not fixed and represent the
input data of the problem.

After proving some technical lemmas about rewrite reduction with flat and
linear TRS in Subsection 2.1, we identify in Subsection 2.2 some necessary and
sufficient conditions for UN of such TRS. Finally, in Subsection 2.3 we show how
the conditions can be decided by reduction to the above tree automata decision
problems.

2.1 Preliminary Results

In this subsection, we first present some technical lemmas concerning the rewrit-
ing sequences with flat and linear TRS which will be useful in the proof of The-
orem 1. They are based on the notion of the use of a position and a derivation
which is roughly a form of the descendant of the position.

Definition 1. Let R be a flat and linear TRS over Σ. Given a derivation s −−→∗R t
and a position p ∈ Pos(s), we define use(p, s −−→∗R t) recursively on the length of
s −−→∗R t as follows:
− If s|p ∈ Σ0, then use(p, s −−→∗R t) := s|p.
− If s|p /∈ Σ0 and s −−→∗R t has length 0, then use(p, s −−→∗R t) is undefined.
− If s|p /∈ Σ0 and s −−→∗R t is of the form s −−−−→

p1,R s′ −−→∗R t for a position p1 such
that p1 ≥ p or p1 ‖ p then use(p, s −−→∗R t) := use(p, s′ −−→∗R t).
− If s|p /∈ Σ0 and s −−→∗R t is of the form s −−−−−→p1,�→r s′ −−→∗R t, where p = p1.i.p2,
and �|i ∈ V, we consider two cases. If �|i does not occur in r, then use(p, s −−→∗R t)
is undefined. Otherwise, if �|i = r|q for some q ∈ Pos(r), then use(p, s −−→∗R t) :=
use(p1.q.p2, s′ −−→∗R t).

Note that all possible cases are considered since R is flat. Moreover, the last one
is well (uniquely) defined since R is linear.

Example 1. Let us consider the following flat and linear TRS
R1 = {x + 0 → x, s(0) → c1, x + c1 → s(x), x + y → y + x, s(c1) → 0}, and
the derivation: ρ1 := 0 + s(0) −−→R1

0 + c1 −−→R1
s(0) −−→R1

c1, and let ρ′1 be
its subderivation starting with 0 + c1. We have use(1, ρ1) = 0 and use(2, ρ1) =
use(2, ρ′1) = c1. �

The following three lemmas can be easily proved by induction on the length of
the rewrite sequences.

Lemma 1. For any flat and linear TRS R, derivation s −−→∗R t, position p ∈
Pos(s) and all constant c, if use(p, s −−→∗R t) = c, then s[c]p −−→∗R t and s|p −−→∗R c.

Lemma 2. For any flat and linear TRS R, derivation s −−→∗R t, position p ∈
Pos(s) such that use(p, s −−→∗R t) is undefined, and all variable x, either s[x]p −−→∗R
t, or there exists a position q ∈ Pos(t) such that s[x]p −−→∗R t[x]q and s|p −−→∗R t|q.
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Lemma 3. For any flat and linear TRS R, derivation s −−→∗R t, position
p ∈ Pos(s) such that s|p is a certain variable x, and all (new) variable w not
occurring in s, either s[w]p −−→∗R t or there exists a position q ∈ Pos(t) such that
t|q = x and s[w]p −−→∗R t[w]q.

2.2 Necessary and Sufficient Conditions for UN

Definition 2. Let R be a flat and linear TRS over Σ. A fork of R is a pair of
terms 〈f(s1, . . . , sn), f(t1, . . . , tn)〉, for a function symbol f ∈ Σn (n ≥ 0), such
that for all i ∈ {1, . . . , n}, either si and ti are the same variable of V, or si is a
constant of Σ0 and ti −−→∗R si, or ti is a constant of Σ0 and si −−→∗R ti.

Example 2. 〈x + (0 + s(0)), x + c1〉 and 〈c1 + x, s(0) + x〉 are forks of the TRS
R1 given in Example 1. �

Proposition 3. A flat and linear TRS R over Σ is UN if and only if for each
fork 〈s, t〉 of R and every R-normal forms s′, t′ such that s −−→∗R s′ and t −−→∗R t′,
it holds s′ = t′.

Proof. First, we show that the condition is necessary for unique normalization
proceeding by contradiction. Assume that there exists a fork 〈s, t〉 and two differ-
ent normal forms s′ and t′ such that s −−→∗R s′ and t −−→∗R t′. It suffices to construct
a term u reaching both s and t in order to prove that R is not uniquely normal-
izing. Let s and t be of the form f(s1, . . . , sn) and f(t1, . . . , tn), respectively. We
construct u = f(u1, . . . , un) as follows. For every i in {1, . . . , n}, if si and ti are
the same variable, then we define ui := si. Otherwise, if si −−→∗R ti then we define
ui := si. Otherwise, ti −−→∗R si holds, and we define ui := ti. It is clear from this
construction that u −−→∗R s and u −−→∗R t hold, and this concludes the proof for the
only if direction.

We prove that the condition is sufficient again by contradiction: we assume
that R is not uniquely normalizing and then prove the existence of a fork not as
in Proposition 3. We choose a term u minimal in size with two distinct normal
forms v and w reachable from u. The term u cannot be a variable, since variables
cannot be rewritten by R. Hence, u = f(u1, . . . , un) for some f ∈ Σn with n ≥ 0.
In order to conclude, it suffices to construct a fork 〈s, t〉 and two different normal
forms s′ and t′ reachable from s and t, respectively.

For the construction of s, t, s′ and t′ we proceed iteratively as follows, by
initializing them, and modifying them along n steps. The invariant is that s′

and t′ are always different normal forms reachable from s, and t, respectively,
and that every s|i and t|i are either both the same variable, or both are u|i, or one
of them is a constant reachable from u|i and the other is u|i, for i ∈ {1, . . . , n}.
At the end of the process, 〈s, t〉 will be a fork.

First, we set s := u, t := u, s′ := v and t′ := w. After that, for each i in
{1, . . . , n}, we modify the values of s, t, s′ and t′ depending on the (un-)definition
of use(i, s −−→∗R s′) and use(i, t −−→∗R t′).

If use(i, s −−→∗R s′) is defined to be a constant c, then, by Lemma 1, s[c]i −−→∗R s′

and s|i −−→∗R c. In this case we just set s := s[c]i and leave s′, t and t′ unchanged.
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The case where use(i, s −−→∗R s′) is undefined but use(i, t −−→∗R t′) is defined to a
constant is solved analogously to the previous one.

If both use(i, s −−→∗R s′) and use(i, t −−→∗R t′) are undefined, let x be a new variable
not occurring in s nor t. By Lemma 2, either s[x]i −−→∗R s′, or there exists a
position q in Pos(s′) such that s[x]i −−→∗R s′[x]q and s|i −−→∗R s′|q. (This is also
analogously true for t and t′.) In any case we set s := s[x]i. In the first case
we leave s′ unchanged and in the second case we let s′ := s′[x]q. We proceed
analogously with t and t′. Note that both s|i and t|i are now the variable x, and
that the new s′ and t′ are also normal forms reachable from s and t, respectively.
But the preservation of the invariant stating that s′ and t′ are still different
requires an explanation. They could only be equal if the same position q has
been replaced to x in both terms, and in such a case, the old values s′|q and
t′|q must be different. This would imply that the old s|i and t|i reach different
normal forms, and hence, u|i can reach two different normal forms. But this
is in contradiction with the fact that u is a minimal term in size reaching two
different normal forms. �

We will use tree automata techniques for checking the condition provided by
Proposition 3. But there is a difficulty: with tree automata, we can recognize
just ground terms, or terms with variables chosen over a finite set of variables
(seen as constants). Fortunately, the condition of Proposition 3 can be simplified
by forcing the fork to contain at most two different variables.

Proposition 4. Let x, y be two distinct variables. A flat and linear TRS R over
Σ is not UN if and only if there exists a fork 〈s, t〉 of R with s, t ∈ T (Σ, {x, y})
and two different R-normal forms s′, t′ such that s −−→∗R s′ and t −−→∗R t′.

For proving Proposition 4 it suffices to apply some variable renaming to the
given fork by making an adequate use of Lemma 3.

Checking the hypotheses of Proposition 4 requires to test an infinite number
of forks. In order to obtain a decision procedure for UN based on the notion of
forks, we need a finite representation of such infinite sets of forks. For this pur-
pose, we generalize Definition 2 of forks with regular sets of terms (Definition 3
below), and generalize Proposition 4 into Proposition 5 accordingly. In the next
definition, we write f(L1, . . . , Ln), where f ∈ Σn and L1, . . . , Ln ⊆ T (Σ,X) for
the set {f(t1, . . . , tn) | t1 ∈ L1, . . . , tn ∈ Ln}.

Definition 3. Let x, y be two fixed different variables. A fork of languages with
respect to a flat and linear TRS R over Σ is a pair 〈L,L′〉 of sets of terms of
T (Σ, {x, y}) where L and L′ have the form f(L1, . . . , Ln) and f(L′

1, . . . , L
′
n),

respectively, and for every i ∈ {1, . . . , n}, either Li = L′
i = {x}, or Li = L′

i =
{y}, or Li = {c} and L′

i = (R−1)∗
(
{c}

)
∩ T

(
Σ, {x, y}

)
, or L′

i = {c} and
Li = (R−1)∗

(
{c}

)
∩ T

(
Σ, {x, y}

)
, for some constant c.

Recall that R−1 is not necessarily a TRS, but it is an extended TRS. The follow-
ing lemma is an immediate consequence of Definition 3 (following the assumption
that the maximal arity of a function symbol in Σ is fixed).
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Lemma 4. The number of forks of languages with respect to a flat and linear
TRS R is polynomial in the size of R.

Proof. A fork of languages is determined by choosing a function symbol in Σn,
and by iterating n times the election of either a constant in Σ0, placed in one
of two component of the fork of languages, or the variable x or the variable y.
Thus, there are at most |Σ| · (2|Σ|+2)maxΣ elections. If Σ (and not only maxΣ)
is fixed then this is a constant. Otherwise, |Σ| can be assumed bounded by ‖R‖,
and hence, this is a polynomial on ‖R‖. �

Proposition 5. A flat and linear TRS R over Σ is UN if and only if for all fork
of languages 〈L,L′〉 with respect to R, if R∗(L)∩NFR �= ∅ and R∗(L′)∩NFR �= ∅,
then R∗(L) ∩NFR = R∗(L′) ∩NFR = {t}, for some term t.

Proposition 5 is a direct consequence of Proposition 4.

2.3 Decision of UN

We show now how to decide the condition of Proposition 5, and thus, how to
decide UN for flat and linear TRS, using tree automata techniques.

Lemma 5. Given a flat and linear TRS R over Σ ∪ {x, y}, there exists a TA
AR on Σ, of size polynomial in the size of R, recognizing NFR ∩ T (Σ, {x, y}).
Moreover, A can be computed in polynomial time.

Proof. We construct a TA AR = (Q,Qf , Δ) where Q = Qf = {qα | α ∈ ((Σ0 ∪
{x, y})∩NFR)}∪{q}, and Δ contains one rule α→ qα for every qα ∈ Q, and one
rule f(q1, . . . , qn) → q for all q1, . . . , qn ∈ Q such that the linear term associated
to f(q1, . . . , qn) by replacing every occurrence of qc by c, for each c ∈ Σ0, and
all occurrences of qx, qy and q by distinct variables, is not reducible by R. The
identity L(AR) = NFR ∩ T (Σ, {x, y}) follows by induction on terms for both
inclusions. The construction of A takes time proportional to its size, which is
O(|Σ| · (|Σ0|+ 3)maxΣ ). �

Note that linearity and flatness are both crucial for the above construction in
the given complexity bounds. First, it is known that when R is not left-linear,
then NFR is not necessarily a TA language. Second, NFR ∩T (Σ, {x, y}) is a TA
language as soon asR is left-linear, but whenR is not flat, there is no polynomial
time construction of a TA for NFR with a polynomial number of states. This
is a consequence of the EXPTIME lower bound for the ground reducibility of a
linear term wrt a linear TRS [3].

The following lemma can be proved using a construction in [13] (Lemma 5.11).

Lemma 6. Given a TA A over Σ ∪ {x, y} and an extended flat and linear
TRS R over Σ, there exists a TA of size polynomial in ‖R‖+ ‖A‖, recognizing
R∗(L(A)

)
∩ T (Σ, {x, y}), which can be constructed in polynomial time.
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There exists a TA construction for larger classes of extended TRS than flat and
linear, like right-shallow and right-linear TRS [11]. We focus on the flat and
linear case here for complexity reasons. Nevertheless, as we shall see later, UN
is undecidable for these larger classes of TRS.

Example 3. The TA A′
0 =

(
{q0, qc1}, {q0}, Δ

)
recognizes

(
R−1

1

)∗({0}) ∩
T (Σ, {x, y}), for the TRS R1 of Example 1, where Δ contains 0 → q0, c1 → qc1 ,
s(q0) → qc1 , s(qc1) → q0, q0 + q0 → q0, qc1 + qc1 → q0, q0 + qc1 → qc1 and
qc1 + q0 → qc1 . �

Now we shall use the above results for the decision of the sufficient condition
for UN given in Proposition 5. The following lemma is a direct consequence of
Lemma 6.

Lemma 7. Let R be a flat and linear TRS over Σ. For each fork of languages
〈L,L′〉 with respect toR, L and L′ are recognized by two TA over Σ∪{x, y} whose
respective sizes are polynomial in the size of R, and which can be constructed in
polynomial time.

Now, we have all the ingredients to prove the main result of the paper.

Theorem 1. UN is decidable in polynomial time for flat and linear TRS.

Proof. Let R be a flat and linear TRS over Σ. We construct first a TA AR over
Σ ∪ {x, y} recognizing NFR ∩ T (Σ, {x, y}), and whose size ‖AR‖ is polynomial
in the size of R, following Lemma 5.

Now, for each fork of languages 〈L,L′〉 with respect to R, we perform the
following test. Let A and A′ be two TA of size polynomial in the size of R,
recognizing respectively L and L′ (constructed according to Lemma 7).

1. Construct two TA recognizing respectively R∗(L) and R∗(L′). According to
Lemma 6, their sizes are polynomial in the size of R.
2. Construct two TA recognizing respectively R∗(L) ∩NFR and R∗(L′) ∩NFR,
using the TA constructed at the above step and the above AR. According to
Proposition 1, the sizes of these two TA are still polynomial in the size of R.
3. If one of the languagesR∗(L)∩NFR or R∗(L′)∩NFR is empty (this emptiness
test is performed in polynomial time, according to Proposition 2) then the test
passes successfully.
4. Otherwise, check whether both languages R∗(L) ∩ NFR and R∗(L′) ∩ NFR
are singleton sets (this test is performed in polynomial time according to Propo-
sition 2). If it is not the case, the test fails. Otherwise, we construct a TA
recognizing their intersection and the test succeeds iff its language is not empty
(the construction and emptiness test can still be performed in polynomial time).

According to Proposition 5, R is UN iff all fork of languages with respect to
R pass the test. According to Lemma 4, there will be a polynomial number of
such tests, and following the above evaluation, each test is performed in poly-
nomial time. Altogether, the upper bound on the complexity of deciding UN is
polynomial. �
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This result can be immediately extended to shallow TRS thanks to the following
proposition given in [19].

Proposition 6. Given a shallow and linear TRS R over Σ, there exists a flat
and linear TRS R′ on an extended signature Σ′ ⊇ Σ such that R′ is UN iff
R is UN. Moreover, the size of R′ is polynomial in the size of R, and can be
computed in polynomial time.

As a consequence of Theorem 1 and Proposition 6 we conclude decidability of
UN in polynomial time for shallow and linear TRS.

Theorem 2. UN is decidable in polynomial time for shallow and linear TRS.

3 Undecidability of UN for Flat and Right-Linear TRS

Some undecidability results for UN have been recalled in the introduction. In
particular, UN is undecidable for right-flat and linear TRS [6]. Thus, the result
of Theorem 1 is no longer valid if we relax the assumption on flatness for the
left-hand sides of rules. In this section, we show that one can neither relax the
assumption on linearity for left-hand sides of rules in Theorem 1. More precisely,
we prove (Theorem 3 below) undecidability of UN for flat and right-linear TRS.
This result is in contrast with other properties like reachability, joinability, con-
fluence, termination and weak normalization which are all decidable for flat and
right-linear TRS [11,8,5,6] (and in some cases for weaker restrictions). The proof
involves a reduction from the Post correspondence problem (PCP) restricted to
nonempty strings over a fixed finite alphabet Γ .

Problem: restricted-PCP (rPCP).
Instance: a sequence of pairs of words 〈u1, v1〉 . . . 〈un, vn〉,

with ∀i ≤ n, ui, vi ∈ Γ ∗ \ ε.
Question: is there a non-empty sequence of indexes 1 ≤ i1, . . . , ik ≤ n

such that ui1 . . .uik
= vi1 . . . vik

?

The rPCP is known to be undecidable [14]. We call solution of a rPCP instance a
non-empty sequence of indexes that gives a positive answer to the above question.

Example 4. The instance of rPCP 〈ab, a〉, 〈c, bc〉 has a solution obtained by
choosing the pairs 1 and 2 consecutively, obtaining abc at both sides. �

In the proof of the undecidability theorem below, we assume a given instance
〈u1, v1〉 . . . 〈un, vn〉 of rPCP that is, ui, vi are nonempty strings over the alphabet
Γ . The j’th symbol of ui and vi, whenever they exist, are denoted by uij and vij
respectively. For the sake of readability, we shall sometimes write terms made of
symbols of arity 0 and 1 as words over the same symbols.

Theorem 3. UN is undecidable for flat and right-linear TRS.
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We shall define a TRS R such that the given rPCP instance has a solution iff R
is not uniquely normalizing. The TRS R is defined as the union of several flat
and right-linear TRS. The role of these sub-TRS is described below, as well as
the signature they are based on.

We will represent the words of Γ ∗ by string terms of T
(
ΣA \ {A}

)
where

ΣA := {γ : 1 | γ ∈ Γ} ∪ {A : 0,⊥ : 0}. These terms are generated by a regular
tree grammar with a single non-terminal symbol (the constant A), and whose
production rules are the rules of the TRS RA below.

RA := {A→ γ(A) | γ ∈ Γ} ∪ {A→ ⊥}

Let L = max (|u1|, . . . , |un|, |v1|, . . . , |vn|), and let ΣU := {Uij : 1 | i ∈
[1..n], j ∈ [1..L]

}
∪ {⊥ : 0} and ΣV := {Vij : 1 | i ∈ [1..n], j ∈ [1..L]

}
∪ {⊥ : 0}.

Intuitively, we associate to a sequence i1, . . . , ik the pair made of the terms
Ui11 . . .Ui1L . . .Uik1 . . .UikL⊥ and Vi11 . . .Vi1L . . .Vik1 . . .VikL⊥, which we call a
carrier of the sequence. The following TRS permits to recover a solution (or
more precisely the terms ui1 . . .uik

and vi1 . . . vik
that must be equal) from a

carrier.

Rs :=
{
Uijx→ uijx

∣
∣ j ∈

[
1..|ui|

]}
∪
{
Uijx→ x

∣
∣ j ∈

[
|ui|+ 1..L

]}

∪
{
Vijx→ vijx

∣
∣ j ∈

[
1..|vi|

]}
∪
{
Vijx→ x

∣
∣ j ∈

[
|vi|+ 1..L

]}

Let us now consider several copies of the terms in carriers of solutions, built
over the following signatures:

Σ′′
U :=

{
U ′′

ij : 1, U ′
ij : 0 | i ∈ [1..n], j ∈ [1..L]

}
∪ {U : 0,⊥ : 0},

Σ′′
V :=

{
V ′′

ij : 1, V ′
ij : 0 | i ∈ [1..n], j ∈ [1..L]

}
∪ {V : 0,⊥ : 0},

ΣP :=
{
Pij : 1, P ′

ij : 0 | i ∈ [1..n], j ∈ [1..L]
}
∪ {P : 0,⊥ : 0}.

The regular grammars generating copies of carriers, using the above (nullary)
non-terminal symbols U , V and P , are called respectively R′′

U , R′′
V and RP .

R′′
U :=

{
U → U ′

i1, U
′
ij → U ′′

ijU
′
i(j+1), U

′
iL → U ′′

iLU, U
′
iL → U ′′

iL⊥∣
∣ i ∈ [1..n], j ∈ [1..L− 1]

}

R′′
V :=

{
V → V ′

i1, V
′
ij → V ′′

ijV
′
i(j+1), V

′
iL → V ′′

iLV, V
′
iL → V ′′

iL⊥∣
∣ i ∈ [1..n], j ∈ [1..L− 1]

}

RP :=
{
P → P ′

i1, P
′
ij → PijP

′
i(j+1), P

′
iL → PiLP, P

′
iL → PiL⊥∣
∣ i ∈ [1..n], j ∈ [1..L− 1]

}

The following TRS casts carrier of solutions into copies.

Rc :=
{
Uijx→ U ′′

ijx, Uijx→ Pijx
∣
∣

Vijx→ V ′′
ijx, Vijx→ Pijx

∣
∣ i ∈ [1..n], j ∈ [1..L]

}

Let us now define the signature

Σ := ΣA ∪ΣU ∪ΣV ∪Σ′′
U ∪Σ′′

V ∪ΣP ∪ {f : 8, 0 : 0, 1 : 0}
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The additional symbols f , 0 and 1 are used in the next crux rewrite rules, which
act as checkers for solutions, in order to ensure the correctness of the reduction.

Rf := {f(U, V, x, y, x, y, x, y) → 0, f(x, y, A, P, x, x, y, y) → 1}

Finally, the last TRS Rn will ensure that 0 and 1 are the only non variable terms
in normal form.

Rn :=
{
c→ c | c ∈ Σ0 \ {0, 1}

}
∪ {h(x) → h(x) | h ∈ Σ1}

∪ {f(x1, x2, x3, x4, x5, x6, x7, x8) → f(x1, x2, x3, x4, x5, x6, x7, x8)}

To summarize, the TRS R on Σ is defined by:

R := RA ∪Rs ∪R′′
U ∪R′′

V ∪RP ∪Rc ∪Rf ∪Rn.

Note that all the rules of R are flat, all the rules of R \ Rf are linear, and the
rules in Rf are right-ground. Theorem 3 follows immediately from Lemmas 15
and 8 below, which ensure respectively the correctness and completeness of the
reduction of the instance rPCP into the non-UN of R.

Lemma 8. If the given rPCP instance has a solution then R is not UN.

Proof. We assume a solution i1, . . . , ik of the rPCP instance, and show that there
exists a term s ∈ T (Σ) such that 0 ←−−∗R s −−→∗R 1. It permits us to conclude since
0 and 1 are R-normal forms.

Let w = ui1 . . .uik
⊥ = vi1 . . . vik

⊥, and let (sU , sV ) be a carrier of the solution,
and s′′U , s′′V , sP be copies defined as follows.

sU := Ui11 . . .Ui1L . . .Uik1 . . .UikL⊥
s′′U := U ′′

i11 . . .U ′′
i1L . . .U ′′

ik1 . . .U ′′
ikL⊥

sP := Pi11 . . .Pi1L . . .Pik1 . . .PikL⊥

sV := Vi11 . . .Vi1L . . .Vik1 . . .VikL⊥
s′′V := V ′′

i11 . . .V ′′
i1L . . .V ′′

ik1 . . .V ′′
ikL⊥

s := f(U, V,A, P, sU , sU , sV , sV )

It is easy to verify U −−−→∗R′′
U
s′′U ←−−∗Rc

sU and V −−−→∗R′′
V
s′′V ←−−∗Rc

sV . Moreover,A, sU
and sV rewrite to w usingRA andRs. Also, P , sU and sV rewrite to sP usingRP

andRc. Therefore, there exist derivations s −−→∗R f(U, V,w, sP , w, sP , w, sP ) −−−→Rf

0 and s −−→∗R f(s′′U , s
′′
V , A, P, s

′′
U , s

′′
U , s

′′
V , s

′′
V ) −−−→Rf

1 and this concludes the
proof. �

Lemma 15 is slightly more difficult and requires some additional definitions and
intermediate lemmas for its proof. For space reasons, they are given below with-
our proof.

Given a word w, we define indexes(w) to be the word obtained by
applying to w the morphism ϕ defined as ϕ(Ui1) = ϕ(U ′′

i1) = ϕ(Vi1) =
ϕ(V ′′

i1) = ϕ(Pi1) = i and ϕ(h) = ε for any other symbol h. Note that
two copies of the same carrier will have the same indexes . We say that
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a word wα is a generator if α is in {U, V,A, P, U ′
ij , V

′
ij , P

′
ij |i ∈ [1..n], j ∈ [1..L]}.

Otherwise, if α is ⊥, we say that wα is a non-generator. We define Σc as the
subset of Σ1 of the unary symbols h for which there exists a collapsing rule
h(x) → x in R, i.e. Σc contains all Uij such that j > |ui|, and all Vij such
that j > |vi|. For any term t define clean(t) recursively as follows. If the top
symbol h of t is in Σc then we define clean(t) = clean(t|1). Otherwise, we define
clean(t) = t. In other words, clean(wα) removes from t the longest prefix of
unary symbols with all them in Σc.

Lemma 9. Let s and t be terms satisfying s −−→∗R t. Then clean(s) −−→∗R clean(t).

Lemma 10. If s −−→∗R U then clean(s) = U ; if s −−→∗R V then clean(s) = V ; if
s −−→∗R A then clean(s) = A; if s −−→∗R P then clean(s) = P .

Lemma 11. A word wα is necessarily a non-generator if both {wα,U} and
{wα,A}, or both {wα, V } and {wα,A}, or both {wα,U} and {wα,P}, or both
{wα, V } and {wα,P} are joinable.

Lemma 12. Let w1⊥ and w2⊥ be two non-generator words. Let α be either U
or V or P . If {w1⊥, w2⊥, α} is R-joinable, then indexes(w1) = indexes(w2).

Lemma 13. Let w1⊥ be a non-generator word joinable with U . Let w2⊥ be a
word reachable from w1⊥ and such that w2 ∈ Γ ∗. If i1, . . . , ik = indexes(w1)
then w2 = ui1 . . .uik

.

The following lemma is the analogous to the previous lemma, but with V ’s and
v’s instead of U ’s and u’s.

Lemma 14. Let w1⊥ be a non-generator word joinable with V . Let w2⊥ be a
word reachable from w1⊥ and such that w2 ∈ Γ ∗. If i1, . . . , ik = indexes(w1)
then w2 = vi1 . . . vik

.

Now, we have all the necessary ingredients for proving Lemma 15.

Lemma 15. If R is not UN then the given rPCP instance has a solution.

Proof. Let s be a term in T (Σ,V), minimal in size, such that s′ ←−−∗R s −−→∗R
s′′ where s′ and s′′ are two distinct R-normal forms. Note that only 0, 1 and
variables are R-normal forms.

The term s is not rooted by a symbol in Σ \ (Σc ∪ {f, 0, 1}): otherwise it
could not reach a R-normal form, because of the rules of Rn and because such
symbols cannot be removed.

Assume that s is rooted by a symbol h in Σc. Thus, s is of the form h(s1) for
some term s1. Then in both derivations s −−→∗R s′ and s −−→∗R s′′, the rule h(x) → x
is applied at the root position. Hence, the term s1 also reaches s′ and s′′ with
R, contradicting the minimality of s.

Assume that s is rooted by 0 or 1 or a variable. It means that s is directly 0 or
1 or a variable. Any of these terms is a normal form, and this is in contradiction
with the fact that s reaches two different R-normal forms.
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From the above observations it follows that s is of the form
f(s1, s2, s3, s4, s5, s6, s7, s8) for some terms s1, . . . , s8. Since no variable is reach-
able from a term of this form (there is no collapsing rule in R with a f at the top
of its left-hand side), we conclude that s′ = 0 and s′′ = 1, or vice-versa. Thus,
the two rules of Rf are applied at the root position in the derivations from s
and we have the following rewrite sequences:

f(s1, s2, s3, s4, s5, s6, s7, s8)

0 ←−−−Rf
f(U, V, s03, s

0
4, s

0
3, s

0
4, s

0
3, s

0
4) f(s11, s

1
2, A, P, s

1
1, s

1
1, s

1
2, s

1
2) −−−→Rf

1

∗
R\Rf

∗
R\Rf

Note that only rewrite steps with f(x1, x2, x3, x4, x5, x6, x7, x8) →
f(x1, x2, x3, x4, x5, x6, x7, x8) occur at the root position in the two above
diagonal rewrite sequences. This implies that each subterm at depth
1 in f(s1, s2, s3, s4, s5, s6, s7, s8) reaches the subterm at depth 1 in
f(U, V, s03, s

0
4, s

0
3, s

0
4, s

0
3, s

0
4) located at the same position, and also the subterm

at depth 1 in f(s11, s
1
2, A, P, s

1
1, s

1
1, s

1
2, s

1
2) located at the same position.

By Lemma 9, we can assume without loss of generality that any subterm
t at depth 1 in any of those three terms satisfies clean(t) = t. Moreover, by
Lemma 10, it follows s1 = U , s2 = V , s3 = A and s4 = P . This implies the
following facts.

– U and s5 are joinable, and s5 and A are joinable, and hence, by Lemma 11,
s5 is a non-generator. Similarly, s6, s7 and s8 are non-generators.

– {U, s5, s6} is joinable, and hence, by Lemma 12, indexes(s5) = indexes(s6).
Similarly, indexes(s7) = indexes(s8), and indexes(s6) = indexes(s8). Let
i1, . . . , ik be indexes of any of them.

– {U, s5} is joinable, and {A, s5} is joinable to a word s03 of the form w⊥ such
that w ∈ Γ ∗. Hence, by Lemma 13, w = ui1 . . .uik

. Similarly, {V, s7} is
joinable, and {A, s7} is joinable to the same s03 = w⊥. Hence, by Lemma 14,
w = vi1 . . . vik

. Thus, ui1 . . .uik
= vi1 . . . vik

.

From the above facts, it follows that i1, . . . , ik is a solution of the given rPCP
instance. �

Conclusion

We have shown that UN is decidable in polynomial time for shallow and linear
TRS (Theorem 2), and is undecidable for flat and right-linear TRS (Theorem 3).
With these results, the problem of decidability of UN for classes of TRS defined
by syntactic restrictions like linearity, flatness or shallowness is essentially closed.
Perhaps, one could still consider this problem for other variants of syntactic
restrictions based on the form of the dependency pairs obtained from a TRS,
like the ones given in [20].
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Abstract. It is known that the first-order theory with a single predicate
→ that denotes a one-step rewriting reduction on terms is undecidable
already for formulae with ∃∀ prefix. Several decidability results exist for
the fragment of the theory in which the formulae start with the ∃ prefix
only. This paper considers a similar fragment for a predicate →p which
denotes the parallel one-step rewriting reduction. We show that the first-
order theory of →p is undecidable already for formulae with ∃7 prefix
and left-linear rewrite systems.

1 Introduction

The first-order one-step parallel rewriting theory is a first-order theory which
has only one relation symbol →p. The logical value of formulae in this theory
is checked in a structure of ground terms over a signature Σ. Two terms s, t
are in the relation →p when s can be rewritten in one parallel step to t using
rewrite rules from a fixed finite set R. It is worth noting that the formulae of the
theory cannot use the equality relation = and function symbols from Σ. There
is also no direct way to express the fact that a particular rewriting is done with
a specific set of rules from R.

The notion of the parallel term rewriting emerged in the studies on computa-
tional frameworks [GKM87]. This model of computation supports the study of
computations in the context of concurrent or parallel programming [AK96]. Effi-
cient implementations of parallel rewriting systems rely on various graph rewrit-
ing techniques which were intensely studied (for an overview see e.g. [Ass00]).
Parallel rewriting has also been used as a basis for the logical framework of
rewriting logic [MOM02] as well as in the context of regular tree languages
[STT97].

The first-order theory of one-step rewriting, but in the non-parallel case, has
been proved to be undecidable by Treinen [Tre96, Tre98]. This result was further
strengthened to work for various weak classes of rewriting systems: linear, shallow
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[STT97, STTT01]; linear, terminating [Vor97, Mar97]; right-ground, terminating
[Mar97]; and finitely-terminating, linear, confluent [Vor02]. The proofs in (most
of) the papers above showed undecidability of ∃∗∀∗ fragment of the theory.
The strongest of them was [Tre96] where already ∃2∀ fragment is undecidable.
However, this was not obtained for a fixed rewrite system. Vorobyov in [Vor02]
showed a fixed system for which ∃∀3 fragment is undecidable.

Despite the negative results in the general case, researchers investigated a spe-
cial case in which the existential formulae of the one-step rewriting theory were
considered. The currently existing results show decidability of certain subclasses
of the theory. The early theorems in [Tis90] imply that the theory is decidable
in the positive case (i.e. for formulae with no negation) in the case of left-linear
right-ground systems. More generally, the existential fragment with the positive
formulae is decidable for arbitrary rewriting systems [NPR97]. The case of for-
mulae with negation lead to a more specific consideration of the problem with
regard to the classes of rewriting rules and resulted in the decidability for quasi-
shallow rewriting systems [CSTT99]; linear, non left-left-overlapping; and non
ε-left-right-overlapping systems [LR99]. Interestingly enough, the whole one-step
rewriting logic is decidable for unary signatures [Jac96].

This paper is organised in the following way. We fix the notation in Section 2.
Subsequently, we present the undecidability proof in Section 3. The presentation
of the proof is divided into two subsections. The first of them (3.1) presents a
slightly modified version of the Turing machine, which is easier to handle in the
proof, and the second (3.2) presents a class of rewriting systems that simulates
the work of the machine which leads to a proof of undecidability of the rewriting
theory we deal with here. We conclude the paper with a discussion in Section 4.

2 Preliminaries

This section recalls preliminary notions used in the rest of the paper and fixes
the notation.

The function symbols belong to signatures which are usually denoted by Σ,
Σ′, etc. Each symbol has its arity. The symbols of non-zero arity in Σ are usually
denoted by letters such as f, g etc. The zero arity symbols are denoted by c, d
etc. Let X be disjoint with Σ. The symbols from X are used as variables and
can be considered to be symbols of arity 0 when forming terms with variables.
The variables are, by convention, written x, y etc. When convenient, we do not
distinguish between terms, and trees labelled with the symbols from Σ or Σ∪X .
The set of all finite ground terms over a signature Σ is denoted by T (Σ). The
set of terms with variables in X is denoted by T (Σ,X). The terms are usually
denoted by small Latin letters such as t, s, u, etc. The set of variables that
occur in a term t is denoted by FV(t). A substitution can replace occurrences
of variables in a term t with some other terms. Substitutions are usually noted
as S, T etc. and the result of the application of a substitution S to a term t is
written as S(t). We denote by C[−1, . . . ,−n] a context which contains n > 0
placeholders (each occurring exactly once). The placeholders may be replaced
by particular terms t1, . . . , tn which is denoted as C[t1, . . . , tn].



80 A. Schubert

In order to address positions in a tree we use sequences of natural numbers.
The addresses are denoted by small Greek letters such as γ, ρ, etc. The root
address (empty sequence) is denoted by ε. The subterm (subtree) of t at an
address γ is denoted by t|γ . We compose addresses so that f(t1, t2)|i·γ = ti|γ for
i = 1, 2. The result of the replacement of the subtree at an address γ in t with
a tree s is denoted by t[γ ← s].

Let R be a finite set of pairs of terms 〈l, r〉 over a signature Σ such that
FV(r) ⊆ FV(l). We call such pairs rewrite rules over Σ and write them l → r.
We say that a term t rewrites to a term s with a rule l → r when there is an
address γ in both t and s and a substitution S such that t = t[γ ← S(l)] and
s = t[γ ← S(r)]. We say that a term t rewrites to a term s (written s→ t) when
t rewrites to s with some rule l → r ∈ R. We say that R is a left-linear rewrite
system in case each variable occurs in l at most once.

2.1 One-Step Parallel Rewriting Theory

This subsection presents the notions concerning the first-order parallel one-step
rewriting theory. We fix a signature Σ which contains at least one symbol of
arity 0.

Definition 1. (definition of →p)
Let R be a set of rewrite rules over Σ. We consider a relational structure AR =
〈T (Σ),→p〉 where the symbol →p represents the one-step parallel rewriting and
is defined as follows: t→p As for t, s ∈ T (Σ) iff there is a context C[−1, . . . ,−k]
with k > 0 such that t = C[t1, . . . , tk] and s = C[s1, . . . , sk] and for i = 1, . . . , k
we have ti → si. Additionally, we use the symbol →p

∗ to denote the reflexive-
transitive closure of →p.

Note that the domain of the structure consists of the terms with no variables.
Therefore, the signatures must be restricted to contain at least one symbol of
arity 0.

The atomic formulae of the first-order one-step parallel rewriting theory are of
the shape x→p y only (no formulae of the form x = y). These atomic formulae
can be combined with ¬,∧ and ∨. Free variables can be bound by quantifiers
∃, ∀. We write x �→p y as a shorthand for ¬x→p y.

It is worth pointing out that the context C used in the definition above has at
least one placeholder. This design choice makes the notion closer to the notion of
the usual one-step rewriting as in both cases at least one rewrite rule is executed.

The existential fragment of the first-order one-step parallel rewriting theory
consists of closed formulae of the form ∃x1 · · · ∃xn.φ where φ does not contain
quantifiers.

The theory of a parallel one-step rewriting is neither stronger nor weaker than
the non-parallel one.

Proposition 1. There is a signature Σ and a term rewriting system R such
that:



The Existential Fragment of the One-Step Parallel Rewriting Theory 81

(1) There is an existential formula φ1, with → as the only predicate, such that
the formula holds in case → is interpreted as the one-step rewriting according to
R and does not hold in case → is interpreted as the parallel one-step rewriting.

(2) There is an existential formula φ2, with → as the only predicate, such
that the formula holds in case → is interpreted as the parallel one-step rewrit-
ing according to R and does not hold in case → is interpreted as the one-step
rewriting.

Proof. Consider the signature Σ = {f, a, b} where f is binary and a, b are con-
stants and a rewrite system R with a rule a→ b.

For the proof of (1) consider a formula ∃xyz.x → y ∧ y → z ∧ ¬x → z. For
the proof of (2) consider a formula ∃xy.x→ y ∧ x→ z ∧ z → y. The details are
left to the reader.

We can also fix a formula and manipulate the rewrite systems:

Proposition 2. There is a signature Σ and a formula φ such that:
(1) There is a rewrite system R1 such that φ holds in case → is interpreted as

the one-step rewriting according to R1 and does not hold in case → is interpreted
as the parallel one-step rewriting.

(2) There is a rewrite system R2 such that φ holds in case → is interpreted
as the parallel one-step rewriting according to R2 and does not hold in case →
is interpreted as the non-parallel one-step rewriting.

Proof. Consider the signature Σ = {f, a, b, c} where f is binary and a, b, c are
constants and a formula

φ = ∃x1x2x3. x1 → x1 ∧ x1 → x2 ∧ x1 → x3∧
¬x2 → x1 ∧ ¬x2 → x2 ∧ x2 → x3 ∧ x3 → x3.

For the proof of (1) consider a rewrite system R1 = {b → a} ∪ {f(a, a) →
f(t, t) | t = a, b, c} ∪ {f(t, t) → f(c, c) | t = a, b, c}. For the proof of (2) consider
a rewrite system R2 = {b → c, f(a, b) → f(a, b), f(a, b) → f(b, b), f(a, b) →
f(c, c), f(c, c) → f(c, c)}.

A deeper relation between the theories requires further investigation. In partic-
ular, we conjecture that

Conjecture 1. There is an effective translation Φ1 which transforms a rewrite
system R1 into a rewrite system Φ1(R1) and an effective translation Ψ1 on first
order formulae such that for each formula φ: φ holds when → is interpreted
as one-step rewriting according to R1 iff Ψ1(φ) holds when → is interpreted as
one-step parallel rewriting according to Φ1(R1).

It is straightforward to prove this conjecture in a more expressive setting in
which we are able to use all the relations respectively →r or →p

r where r is a
rewrite rule from the rewrite system in question. The construction is, however,
not as obvious in the setting we deal with here.
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The main decision problem we deal with in this paper is the following:

Definition 2. (satisfiability problem)
Input: 〈Σ,φ,R〉 where φ is a formula of the first-order one-step parallel rewriting
theory and R is a rewrite system over Σ (Σ contains at least one constant).
Question: Is φ satisfied in the structure AR over the signature Σ?

It is worth pointing out that the construction of Treinen [Tre98] can immediately
be adapted to prove the undecidability of the problem in case of ∃2∀∗ formulae.

3 The Undecidability Construction

We reduce here the halting problem for a special kind of Turing machines —
left-terminal Turing machines — to the validity of existential formulae in the
first-order one-step parallel rewriting logic. Thus we obtain our undecidability.

3.1 Left-Terminal Turing Machines

Let M = 〈Q, qI , Qf , Σ,→M 〉 be a deterministic Turing machine (DTM), where
Q is a set of its states, qI is the initial state, Qf is a set of its final states, Σ is
an alphabet of the Turing machine, and →M : Q×Σ ⇀ Q×Σ ×D is a partial
next step function with D being the set of directions {L,R, S}. We usually write
q, a→M q′, a′, d instead of →M (q, a) = (q′, a′, d). We assume a model in which
the Turing machine tape extends on demand with a cell that contains 0 when
the machine tries to move rightwards while there is no next tape cell.

Definition 3. (left-terminal Turing machine)
We say that DTM M is a left-terminal Turing machine (LTTM) when

1. Σ = {0, 1},
2. for each q such that q, w→M q′, l, d we have d �= S,
3. the final configuration is reached only at the left end of the tape.

The goal of the restriction (1) is to downsize the number of rewrite rules. Thanks
to the restriction (2), we avoid the technical difficulties caused by moves that do
not change the machine tape. The restriction (3) serves to enable a possibility
to check by rewrite rules that the terminal configuration is reached.

A configuration of an LTTM M is a sequence ρ1 · (q, l) · ρ2 where ρ1, ρ2 ∈
Σ∗, l ∈ Σ, and q ∈ Q. The initial configuration of M is a configuration of the
form (qI , l) ·γ where qI is the initial state of M and l ·γ is the input sequence for
the Turing machine. The relation →M extends as usual so that it relates pairs
of configurations.

The equivalence ∼M is the symmetric, reflexive and transitive closure of the
→M relation on configurations; the reflexive and transitive closure of →M on
configurations is denoted →∗

M . Let γ1 be an initial configuration and γn a final
configuration. A sequence γ1, . . . , γn of configurations that is a witness of γ1 ∼M

γn equivalence is called an eq-run. We consider the following equivalence problem
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Definition 4. (the equivalence problem)
Input: An initial configuration (qI , l) · ρ of an LTTM M .
Question: Is there a final configuration (q, l′) · ρ′ where q ∈ Qf , and l′ · ρ′ ∈ Σ∗,
such that (qI , l) · ρ ∼M (q, l′) · ρ′?
We deal with this problem rather than with the reachability problem as it allows
us to express that certain term reductions (e.g. t3 →p t32 for terms in Def. 10)
are not caused by a move of an LTTM we simulate. The following theorem holds:

Theorem 1. (the undecidability of the equivalence)
The equivalence problem for LTTM is undecidable.

Proof. The proof is by a routine technique similar to the proof of undecidability
of Thue systems.

3.2 Rewriting and LTTM

We relate here the term rewriting and the existential fragment of the parallel
rewriting logic.

Definition 5. (existential formula)
Let

φform = x1 �→p x1
φstart = x1 →p x3 ∧ x3 �→p x1 ∧ x3 →p x3 ∧ φloop(3)
φrun = x1 �→p x2 ∧ x2 →p x1 ∧ x2 →p x2 ∧ φloop(2)
φend = x3 →p x2 ∧ x2 �→p x3
φloop(i) = xi →p xi1 ∧ xi1 →p xi ∧ xi1 →p xi2 ∧ xi2 →p xi ∧ xi �→p xi2

The resulting existential sentence is:

φM = ∃x1x2x3x21x22x31x32.φform ∧ φstart ∧ φrun ∧ φend.

To save the notational burden the parameter of the formula φloop is an index.
The formula φform guarantees that the terms we deal with here are appropriate
candidates for encodings of an eq-run. The formula φstart serves to ensure that
a simulation of the LTTM starts with a starting configuration of the machine,
φend to ensure that the simulation ends with a final configuration of the machine,
and at last φrun serves to guarantee that the simulation will obey the transition
rules of the machine. The formulae φloop(2) and φloop(3) ensure that the terms
substituted for x2 and x3 contain special syntactical pattern possible only after
the starting configuration is checked. The dependencies between the variables
x1, x2, x3, x21, x22, x31, . . . , x32 encoded by φM are presented on Fig. 1.

Let us fix an LTTMM . Based on that we construct a signature ΣM , a rewrit-
ing system RM and a sentence φM such that M halts iff φM holds in ARM .

Definition 6. (signature)
Now, we define the signature ΣM of the rewriting system which corresponds to
a LTTM M . It contains the following symbols

f, g of arity 2, ⊥g,⊥1
g,⊥2

g,⊥3
g of arity 1,

⊥f , 0, 1 of arity 0 .
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x1

x2

x3

x21

x22

x31

x32

Fig. 1. The relationships between variables in the existential formula. The nodes rep-
resent corresponding variables, the normal edges (→) represent the relation →p, the
crossed edges ( �→) represent the negation of the relation →p.

Additionally, we use elements of the set Q× {0, 1} as symbols of arity 0 where
Q is the set of states of M .

Note that the restriction (1) from Def. 3 makes possible to use here the symbols
0, 1 only. The intent of the formula φM is to enforce that the term t1 substituted
for x1 contains an encoded eq-run of the LTTM we are interested in. Further-
more, it ensures that the term t3 substituted for x3 will be almost the same
with one exception that ⊥g is replaced with ⊥1

g. The formula φloop(3) guaran-
tees roughly that ⊥1

g actually occurs there. The term t2 substituted for x2 also
contains the symbol which is guaranteed by φloop(2). The loop between x1, x3
and x2 guarantees that t2 differs from t3 so that the terminal configuration at the
top of t3 is deleted from t2. In this way, we obtain the opportunity to compare
subsequent machine moves in the fashion presented on Fig. 2.

Now, we are able to define an encoding of a configuration and an eq-run.

Definition 7. (encoding of configurations)
Let ρ be a configuration ofM . We define the encoding enc(ρ) of the configuration
in the term algebra over the signature from Def. 6 as follows:

– enc(ε) = ⊥f ;
– enc(l · ρ′) = f(l, enc(ρ′)) for l ∈ {1, 0};
– enc((q, l) · ρ′) = f(〈q, l〉, enc(ρ′)) where l ∈ {1, 0}.

Definition 8. (encoding of an eq-run)
Let ρ1, . . . , ρn be an eq-run of M . The term e2t(ρ1, . . . , ρn) is defined as:

– e2t(ρ1) = g(⊥g(t), t), where t = enc(ρ1);
– e2t(ρ1, . . . , ρi) = g(e2t(ρ1 . . . , ρi−1), enc(ρi)).

Given an LTTM M and its initial state qI together with the input word l ·ρ1,
we can define a rewriting system which has the behaviour equivalent to the
behaviour of ∼M on l · ρ1.
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1-st
configuration

x2

n−
1-th

configuration

n−
2-th

configuration
⊥1

g

x1

⊥g

n−
1-th

configuration

n-th
configuration

1-st
configuration

Fig. 2. The mechanism for the next step simulation. The horizontal arrows relate
subterms at the same path in terms substituted for x2 and x1.

Definition 9. (rewrite system)
The rewrite rules can be divided as follows:

1. The rules relevant to the detection of the starting configuration:

[1] ⊥g(enc((qI , l) · ρ1)) → ⊥1
g(enc((qI , l) · ρ1)),

[2] ⊥1
g(x) → ⊥1

g(x), [3] ⊥1
g(x) → g(⊥g(x), x)

where (qI , l) · ρ1, as above, is the initial configuration of M .
2. The rules relevant to detection of the final configuration:

[1] g(g(x, y), f(〈q, l〉, z)) → g(x, y)

where l ranges over {0, 1}, and q ∈ Qf (Qf contains the final states of M).
3. The rules that check the form of an eq-run:

[1] f(f(x, y), z) → f(f(x, y), z), [2] g(x, g(y, z)) → g(x, g(y, z)),
[3] f(g(x, y), z) → f(g(x, y), z), [4] f(x, g(y, z)) → f(x, g(y, z)),
[5] g(f(x, y), z) → g(f(x, y), z), [6] g(x,⊥g(y)) → g(x,⊥g(y)),
[7] f(⊥g(x), y) → f(⊥g(x), y), [8] f(x,⊥g(y)) → f(x,⊥g(y)),
[9] g(c1, x) → g(c1, x), [10] g(x, c2) → g(x, c2),
[11] ⊥g(⊥g(x)) → ⊥g(⊥g(x)), [12] ⊥g(g(x, y)) → ⊥g(g(x, y)),
[13] ⊥g(c2) → ⊥g(c2), [14] f(x, c2) → f(x, c2),
[15] f(⊥f , x) → f(⊥f , x), [16] ⊥i

g(x) → ⊥i
g(x) for i = 1, 2, 3,

[17] g(g(x, f(〈q, l〉, y)), f(〈q, l〉, z)) → g(g(x, f(〈q, l〉, y)), f(〈q, l〉, z))

where c1 ranges over all symbols of arity 0, c2 over all symbols of arity 0
except from ⊥f , l ranges over {0, 1}, and q ranges over Qf .
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4. The rules which check that an eq-run obeys the state transitions: all the
rules of the form

[1] f(〈q1, l1〉, f(l2, x)) → f(l3, f(〈q2, l2〉, x)),
[2] f(〈q1, l1〉,⊥f) → f(l3, f(〈q2, 0〉,⊥f)) (1)

in case q1, l1 →M q2, l3, R where q1, q2 ∈ Q, l1, l2, l3 ∈ {0, 1}; and rules of
the form

[3] f(l1, f(〈q1, l2〉, x)) → f(〈q2, l1〉, f(l3, x)), (2)

in case q1, l2 →M q2, l3, L where q1, q2 ∈ Q, l1, l2, l3 ∈ {0, 1} (note that this is
the place where the point 2 of the definition of LTTM is used). Additionally,
all the rules of the form t1 → t2 where t2 → t1 occurs in (1) or (2) above.

5. The rules that enable the existence of the loops defined by φloop(i):

[1] ⊥i
g(x) → ⊥i′

g (x), [2] ⊥2
g(x) → ⊥1

g(x)

where i = 1, 2, 3 and i′ = (i mod 3) + 1.

Note that we repeat some rules to make the classification of the rules more
intuitive.

Now that we see the rewriting system, we can prove one direction of the
equivalence between the rewriting and the LTTMs.

Definition 10. (terms that satisfy φM)
We can now define the terms t1, t2, t3, t31, t32, t21, t22 which are used to satisfy
the formula φM :

– t1 = e2t(ρ1, . . . , ρn),
– t2 = e2t(ρ1, . . . , ρn−1)[γ ← ⊥1

g(t)] where e2t(ρ1, . . . , ρn−1)|γ = ⊥g(t),
– t3 = t1[γ ← ⊥1

g(t)] where t1|γ = ⊥g(t),
– t21 = t2[γ ← ⊥2

g(t)] where γ is such that t2|γ = ⊥1
g(t),

– t22 = t2[γ ← ⊥3
g(t)] where γ is such that t2|γ = ⊥1

g(t),
– t31 = t3[γ ← ⊥2

g(t)] where γ is such that t3|γ = ⊥1
g(t),

– t32 = t3[γ ← ⊥3
g(t)] where γ is such that t3|γ = ⊥1

g(t).

Note one particular difference between t1 and t2. The topmost configuration en-
coded in t1 is ρn while the topmost configuration encoded in t2 is ρn−1. Therefore,
the reduction t2 →p t1 must relate the encoding of the configuration ρn−1 to
the encoding of ρn. The way t1 and t2 are defined implies that this relationship
generalises to ρi−1 and ρi for each i = 1, . . . , n. The relationship indeed holds
after the encoding as the steps of the machine can be simulated by the term
rewriting with help of the rules in the group (4.) of Def. 9. This is also the place
where the strength of the parallel rewriting is used. As no path to a configuration
encoding is a prefix of a path to another configuration encoding, we can fire all
the rewrites pertinent to a move of the machine M at the same time.

Lemma 1. (from runs of machines to witnesses of the formula)
If ρ1, . . . , ρn is a run of an LTTM M then terms t1, t2, t3, t21, t22, t31, t32 from

Def. 10 substituted for x1, x2, x3, x21, x22, x31, x32 respectively witness that the
formula φM holds.
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Proof. The proof is by a routine case analysis.
The reduction t1 →p t1 is guaranteed not to hold as the only rules which

enable the self-rewriting are: in the group (3.) and (1.)[3]. At the same time
none of the patterns in the left-hand sides of the rules occur in t1. This proves
that φform holds.

For the reductions in φstart, the reduction t1 →p t3 is guaranteed by the rule
(1.)[1]. The reduction t3 →p t3 is guaranteed by the rule (1.)[2]. The reduction
t3 →p t1 is impossible as the only way to dispose of the symbol ⊥1

g is either to
use the rule (1.)[3], but then the number of gs must increase, or to use a rule in
(5.)[1], but then you cannot get back ⊥g. The positive rewrites in the subformula
φloop(3) are possible because of the rules in (5.). The (negative) rewrite t3 →p t32
is impossible as there is no rule which is able to change ⊥1

g to ⊥3
g. This proves

that φstart holds.
For the reductions in φrun, the reduction t1 →p t2 is impossible as there is no

way to change g(⊥g(s1), s2) in t1 to ⊥1
g(s3) in t2. Indeed, the only rewrite rule

which has ⊥g on the left-hand side and is not a self-rewrite rule is (1.)[1]. This,
however, does not change the number of gs on the path to ⊥1

g. Therefore, this
rule cannot change g(⊥g(s1), s2) to ⊥1

g(s3).
The reduction t2 →p t1 is possible because t2|(1i)2 represents the configuration

of M one step before the configuration represented by t1|(1i)2 and the rules in
the group (4.) can be applied at an appropriate position in t2 to obtain the
corresponding part of t1 (see Fig. 2. Moreover, the rule (1.)[3] can be used to
transform ⊥1

g(s4) to g(⊥g(s4), s4). The rewrites in the subformula φloop(2) hold
for the reasons similar to the case of φloop(3). This proves that φrun holds.

For the reductions in φend, the reduction t3 →p t2 is possible by the rules in
(2.) while the reduction t2 →p t3 is impossible as the only rule which increases
the number of occurrences of the symbol g is the rule (1.)[3], but this rule can
be applied only at one place in t2 (as there is only one occurrence of ⊥1

g), but
then it is impossible to obtain t3 as t3 contains ⊥1

g which is removed by the rule.
Thus φend holds. The further details are left for the reader.

The lemma above establishes one direction of the relation between M and φM .
In order to establish the other direction we have to define several forms of terms
which can be enforced by certain graph structures expressed in the formula φM .
We start with the forms which can be enforced by means of the subformula
x �→p x (this constrains the term substituted for x so that certain local patterns
are forbidden). The rules in Def. 9 cause that this leads to shapes close to
encodings of configurations and runs. We start with a form which corresponds
to configurations.

Definition 11. (pseudo-configuration form)
The set of terms in pseudo-configuration form is defined inductively as the

smallest set that contains terms: ⊥f , and f(c, t) where c ∈ Q × {0, 1} ∪ {0, 1}
and t is in pseudo-configuration form.

Now, we define the form which corresponds to runs of a machine.
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Definition 12. (pseudo-run form)
The set of terms in pseudo-run form is defined inductively as the smallest set
that contains terms:

1. ⊥g(t) where t is in pseudo-configuration form,
2. g(t1, t2) where the subterm t1 is in pseudo-run form and t2 is in pseudo-

configuration form

and in which the pattern g(g(x, f(〈q, l〉, y)), f(〈q, l〉, z)) does not occur where
q ∈ Q and l ∈ {0, 1}.

The terms in weak pseudo-run form are defined as above, but the final re-
quirement about the pattern is dropped. A term is in (weak) ⊥1

g-pseudo-run
form when after replacing symbols ⊥1

g with ⊥g it is in (weak) pseudo-run form.

We have to consider the weak forms as the rules in the group (4.) in Def. 9
may transform a term in pseudo-run form into one where the forbidden pattern
occurs. The forms with ⊥1

g are introduced as the rule (1.)[1], which checks that
the initial configuration occurs in a term, replaces the symbol ⊥g with ⊥1

g.
The defined below x1-form is the form which is exactly enforced by the sub-

formula x �→p x. The x∗-form is a general term to capture all the possible forms
of terms that can be substituted for x1, x2, and x3 in φM .

Definition 13. (x1-form and x∗-form)
We say that a term t is in x1-form when it is either a constant, or is in pseudo-
configuration form, or is in pseudo-run form.

A term t is in x∗-form when it is either in x1-form or is in weak ⊥1
g-pseudo-run

form.

We have now a bunch of technical lemmas that relate the topological structures
in the formula φM with the forms defined above. The proofs of these lemmas are
by a routine case analysis combined with induction. We reproduce one of the
proofs here to give the reader the general idea.

We start with a characterisation of terms that cannot be reduced to them-
selves. This is expressed by the subformula φform of φM .

Lemma 2. (formula and pseudo-run form)
A term t satisfies the formula x �→p x iff t is in x1-form.

The following lemma characterises both the reduction in formulae φloop(i) for
i = 2, 3 and the reductions between x1, x3 and x2. This lemma requires in its
proof the use of the ∼M relation instead of →∗

M .

Lemma 3. (loop and the pseudo-configuration form)
If t is in pseudo-configuration form then there are no t1, t2 such that the sub-

stitution S = {x∗ := t, x∗1 := t1, x∗2 := t2} satisfies the formula

x∗ →p x∗1 ∧ x∗1 →p x∗2 ∧ x∗2 →p x∗ ∧ x∗ �→p x∗2.

The following lemma characterises the reductions of pseudo-configuration and
weak pseudo-run terms.
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Lemma 4. (reduction of the pseudo-configuration and -run forms)
(1) Let t1 be in pseudo-configuration form. If t1 →p t2 then t2 is in pseudo-

configuration form.
(2) Let t1 be in weak pseudo-run form. If t1 →p t2 then t2 is in weak pseudo-run
form or in weak ⊥1

g-pseudo-run form.

The following lemma gives us a tool to enforce that the reduction x1 →p x3
results in a term substituted for x3 which contains ⊥1

g.

Lemma 5. (reduction in a loop)
If t is in weak pseudo-run form then there are no t1, t2 such that the substitution
S = {x∗ := t, x∗1 := t1, x∗2 := t2} satisfies the formula φloop(∗).

The following lemma gives us a tool to enforce that the reduction x2 →p x3
does not lose ⊥1

g.

Lemma 6. (on x∗-form)
Let t1 →p t2. If t1 is in x∗-form and there are t21 and t22 such that the substi-

tution S = {x∗ := t2, x∗1 := t21, x∗2 := t22} satisfies the formula φloop(∗) then
t2 is in weak ⊥1

g-pseudo-run form.

The following lemma constructs an eq-run of M based on the witnesses for
φM .

Lemma 7. (from witnesses of the formula to eq-runs of machines)
Let R be a rewriting system from Def. 9 constructed for an LTTM M . If the

formula φM from Def. 5 holds for the rewriting with R, then there is an eq-run
of M .

Proof. Let t1, t2, t3, t21, t22, t31, t32 be the witnesses that the formula φM holds.
The terms t1, t2 and t3 are pairwise different as making any of the pair equal
would result in impossible situation that both t →p t and t �→p t hold. Since
t1 �→p t1, we obtain by Lemma 2 that t1 is in pseudo-run form or pseudo-
configuration form, or is a constant. It cannot be a constant since we have
t1 →p t3 and there is no rewriting rule which applied to a constant on the left-
hand side. Moreover, t1 cannot be in pseudo-configuration form as then Lemma 3
applied to t1 would be contradicted by the rewrites between t2 and t3 enforced
by φM . Thus, t1 may only be in pseudo-run form.

Lemma 6 implies that t2 and t3 are in weak ⊥1
g-pseudo-run form. This implies

that the reduction t1 →p t3 must be done with the use of the rule (1.)[1] from
Def. 9. As t2 is in the weak ⊥1

g-pseudo-run form and t1 in pseudo-run form the
reduction t2 →p t1 must use the rule (1.)[3] (the only rules which dispose of ⊥1

g

are (1.)[3] and 5[1], but the latter does not lead to the pseudo-run form). Since
the rule (1.)[3] increases the number of gs on the leftmost branch, one of the
rewrites t1 →p t3 →p t2 →p t1 must decrease it. The only rules that decrease
the number of gs are the rules from (2.). This, however, can be used only in
the rewriting t3 →p t2 as otherwise the use of the rule (1.)[3] in t2 →p t1 is
impossible as well as the use of (1.)[1] in t1 →p t3.

Let γ be the address where a rule from (2.) is applied to t3 in t3 →p t2. Let
ti|γ·1n2 = un

i where i = 1, 2, 3. The terms un
i are in pseudo-configuration form
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(we conclude that by Lemma 4(1) applied to un
1 and then to un

3 ). This means
that only the rules in the group (4.) can be applied to them. Additionally, we
have the dependencies ui

1 →p
∗ ui

3 = ui−1
2 →p

∗ u
i−1
1 (ui

3 = ui−1
2 as the rule from

(2.) is applied at γ in t3 →p t2, and γ is a prefix of all the paths which point to
ui

j). This justifies that ui
1 →p

∗ u
i−1
1 . Let γ ·1m+1 be the address of ⊥1

g in t3. Note
that um

1 is the encoding of an initial configuration, as the rule (1.)[1] is used in
t1 →p t3. The term um

1 is a properly formed encoding of a configuration which is
guaranteed by the rule (1.)[1] applied in t1 →p t3. By induction on i we obtain
that all pseudo-configuration forms um−i

1 are proper encodings as well as that
um−i−1

1 ∼M um−i
1 . This is because the rules in (4.) directly encode forward and

backward transitions of M . Further, we obtain by the downwards induction on
i that each ui

1 is in the relation ∼M with um
1 . The application of a reduction

from (2.) in t3 →p t2 enforces that u0
3 represents a final configuration of M by

the point (3) of Def. 3. In this way, we obtain from a solution of the formula φM

two configurations ρ1, ρ2 such that ρ1 is the initial one, ρ2 is the final one and
ρ1 ∼M ρ2 holds.

As the result of this lemma and Lemma 1 we obtain the theorem:

Theorem 2. (translation between machines and rewrite systems)
For each LTTM M and its initial configuration ρ there is a (left-linear) rewrite
system R such that ρ ∼M ρ′ for some final configuration ρ′ iff the formula φM

holds.

Theorem 3. (the undecidability of one-step parallel rewriting
theory)
There is no algorithm that given a signature Σ, an existential formula φ, and

a rewrite system R over Σ can decide if φ is satisfied in the parallel rewriting
structure AR from Def. 1. In particular, the existential fragment of the theory
of one-step parallel rewriting is undecidable.

This holds even if φ is restricted to contain at least 7 quantifiers and R to be
left-linear.

4 Discussion

The rewrite rules of the form t→ t in [Tre98] have been criticised. The current
paper uses such rules. It is an open question if this can be avoided in case of
the theory we consider here. Still, I conjecture this can be avoided with help of
more complicated graphs specified by the formula φM . I also conjecture that a
more complicated graphs would be able to prove that the theory is undecidable
when positive atomic formulae are used exclusively.

Vorobyov in [Vor02] distinguishes weak and strong undecidability for this
kind of theory. The strong one holds when the undecidability is proved for a
fixed rewriting system while weak holds in other cases. In the sense, this paper
presents the weak undecidability. However, the current construction works with
a fixed formula. I conjecture that the strong version in the Vorobyov’s sense also
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holds for the existential fragment of the theory. I did not prove this strong version
as the plans of such constructions that I could develop were very complicated.

The paper [CSTT99] uses a one-step rewriting theory with → predicate re-
placed by predicates →r, one for each rewriting rule r. The main result of the
current paper can be straightforwardly adapted to this version of the theory
even in case of Vorobyov’s strong sense.

As the parallel term rewriting does not differ from the traditional one on unary
signatures, we also obtain the decidability in the case considered in [Jac96]. We
conjecture that the cases of the theory considered in [NPR97, CSTT99] are
decidable, too.

The notion of concurrent rewriting defined in [GKM87] is more liberal and
allows rewrites in case one occurrence of a redex is under another one. The
current proof can be adapted to that notion, however the argument is more
involved. The construction in the current paper does not adapt easily to the
notions of maximal concurrent rewriting and numerically maximal concurrent
rewriting defined in [GKM87]. However, we conjecture that with a bigger effort
it can be accommodated to prove undecidability for these notions, too.

One more interesting point concerns the connection between the second-order
unification and the rewriting. These problems are strongly related as shown in pa-
pers [NPR97, NTT00, LV00]. The positive existential theory of parallel one-step
rewriting can be reduced to finding non-trivial solutions to special form flex-flex
second-order unification equations. This can be achieved by a straightforward
adaptation of the construction from [NPR97]. The current paper uses negative
formulae so it does not prove the undecidability of the problem. This, however,
rises the question if the positive fragment of the parallel one-step rewriting is
decidable.
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Abstract. We have developed an automated confluence prover for term
rewriting systems (TRSs). This paper presents theoretical and technical
ingredients that have been used in our prover. A distinctive feature of
our prover is incorporation of several divide–and–conquer criteria such
as those for commutative (Toyama, 1988), layer-preserving (Ohlebusch,
1994) and persistent (Aoto & Toyama, 1997) combinations. For a TRS
to which direct confluence criteria do not apply, the prover decomposes
it into components and tries to apply direct confluence criteria to each
component. Then the prover combines these results to infer the (non-
)confluence of the whole system. To the best of our knowledge, an auto-
mated confluence prover based on such an approach has been unknown.

1 Introduction

Termination and confluence are considered to be central properties of term
rewriting systems. Recently, automation of termination proving has been widely
investigated in the literature. On the other hand, automation of confluence prov-
ing has not been well-known. Numerous results have been obtained on prov-
ing the confluence of term rewriting systems [5,7,11,12,14,16,17,18,20], but little
work is reported on automation or an integration of these results on a conflu-
ence prover. This motivates us to develop a fully-automated confluence prover. A
distinctive feature of our prover is incorporation of several divide–and–conquer
criteria such as those for commutative [16], layer-preserving [9] and persistent [2]
combinations. We present theoretical and technical ingredients that have been
used in our prover, design of the system, and some experimental results.

2 Preliminaries

This section fixes some notions and notations used in this paper. We refer to [3]
for omitted definitions.

The sets of function symbols and variables are denoted by F and V . We
denote by F(t) and V(t) the sets of function symbols and variables occurring in
a term t. The symbol in t at a position p is written as t(p). The root position
is denoted by ε. The (proper) subterm relation is denoted by � (�). A rewrite
rule l → r is a pair of terms l and r such that l /∈ V and V(l) ⊇ V(r). It is

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 93–102, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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collapsing if r ∈ V and left-linear if no variable occurs more than twice in l.
Rewrite rules are identified modulo variable renaming. A term rewriting system
(TRS for short) is a finite set of rewrite rules. We put F(l→ r) = F(l) ∪ F(r),
V(l → r) = V(l) ∪V(r) and F(R) =

⋃
l→r∈R F(l→ r).

A rewrite step s →R,p t is defined by s/p = lσ and t = s[rσ]p for some
l → r ∈ R and substitution σ. We omit subscripts R and/or p if they are not
important. The subterm s/p of s is the redex of the rewrite step s→p t. A term
s is in normal form if s → t for no term t. The set of normal forms is denoted
by NF(R). A rewrite step s →p t is said to be innermost when any u � s/p is
in normal form. An innermost rewrite step is written as s →i t. The reflexive
transitive closure (reflexive closure) of a relation → is denoted by ∗→ (resp. =→).
We define ∗→ i and =→ i similarly. A term s is in head normal form if there exists
no redex t such that s ∗→ t. The set of head normal forms is denoted by HNF(R).
A normal form (head normal form) of s is a term t ∈ NF(R) (resp. t ∈ HNF(R))
such that s ∗→ t. A normal form of s is denoted by s↓. Similarly, an innermost
normal form of s is denoted by s↓i which is obtained by replacing → by →i.
We use ◦ for the composition of relations. Terms s and t are joinable (innermost
joinable) if s ∗→ ◦ ∗← t (s ∗→ i◦ ∗← i t, respectively.) A TRS R is confluent
(locally confluent) or Church–Rosser if s ∗← ◦ ∗→ t (resp. s ← ◦ → t) implies
s and t are joinable. A TRS R is terminating (innermost-terminating) if there
exists no infinite rewrite sequence s1 → s2 → s3 → · · · (s1 →i s2 →i s3 →i · · · ,
respectively). A development rewrite step −→◦ [9] is inductively defined as follows:
(1) =→ ⊆ −→◦ , (2) si −→◦ ti (1 ≤ i ≤ n) implies f(s1, . . . , sn) −→◦ f(t1, . . . , tn), or
(3) s −→◦ t if s/p = lσ, s[rσ′]p = t and σ(x) −→◦ σ′(x) for any x ∈ V .

Let s, t be terms whose variables are disjoint. The term s overlaps on t (at
position p) when there exists a non-variable subterm u = t/p of t such that u
and s are unifiable. Let l1 → r1 and l2 → r2 be rewrite rules w.l.o.g. whose
variables are disjoint. Suppose that l1 overlaps on l2 at position p. Let σ be
the most general unifier of l1 and l2/p. Then the term l2[l1]σ yields a peak
l2[r1]σ ← l2[l1]σ → r2σ. The pair 〈l2[r1]σ, r2σ〉 is called the critical pair obtained
by the overlap of l1 → r1 on l2 → r2 at position p. In the case of self-overlap
(i.e. when l1 → r1 and l2 → r2 are identical modulo renaming), we do not
consider the case p = ε. It is an outer critical pair if p = ε; else an inner
critical pair. The set CPin(l1 → r1, l2 → r2) (CPout(l1 → r1, l2 → r2)) is
the set of inner critical pairs (outer critical pairs, respectively) obtained by the
overlap of l1 → r1 on l2 → r2. For TRSs R1 and R2 the set CPin(R1,R2)
of inner critical pairs are defined by

⋃
l1→r1∈R1

⋃
l2→r2∈R2

CPin(l1 → r1, l2 →
r2). CPout(R1,R2) is defined similarly. We set CP(R1,R2) = CPin(R1,R2) ∪
CPout (R1,R2), CPα(R) = CPα(R,R) (α ∈ {in, out}) and CP(R) = CPin(R)∪
CPout (R). A TRS R is overlay if CPin(R) = ∅. Note that 〈s, t〉 ∈ CPout(R) iff
〈t, s〉 ∈ CPout (R).

3 Direct Methods

In this section, we explain direct methods employed in our confluence prover.
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Proposition 1 (Knuth–Bendix’s criterion[8]). A terminating TRS R is
confluent if and only if s↓ = t↓ for all 〈s, t〉 ∈ CP(R).

Thus it is decidable whether a terminating TRS R is confluent or not. Hence
termination proving take an important part of the confluence proving procedure.
Termination, however, is undecidable property of TRSs and we should take into
account the case where the prover fails to prove termination of terminating TRSs.

Since termination implies innermost-termination, it is natural to expect that
innermost-termination proving is more powerful than termination proving. This
is especially true for recent termination tools based on dependency pairs (see
e.g. [4]). This motivates the following criterion mentioned by Ohlebusch [10]
pp.125–126, which can be easily proved by Theorem 3.23 of Gramlich [6].

Theorem 1 (Gramlich–Ohlebusch’s criterion). For innermost-terminating
overlay TRS R, R is confluent if and only if s↓i = t↓i for all 〈s, t〉 ∈ CP(R).

Thus for overlay TRSs, one can safely switch the termination proof to the
innermost-termination proof and try Gramlich–Ohlebusch’s criterion instead of
Knuth–Bendix’s criterion.

When our confluence prover fails to detect (innermost) termination, our prover
next checks several sufficient confluence conditions.

Proposition 2 (Huet–Toyama–van Oostrom’s criterion[20]). A left-linear
TRS R is confluent if (1) s −→◦ t for all 〈s, t〉 ∈ CPin(R) and (2) s −→◦ ◦ ∗← t for
all 〈s, t〉 ∈ CPout (R).

Because u ∗→ v is undecidable in general, we use u −→◦ v instead, i.e. our prover
checks (2′) s −→◦ ◦←−◦ t for all 〈s, t〉 ∈ CPout(R) in the place of (2). The check
of the following criterion is approximated in a similar way.

Proposition 3 (Huet’s strong-closedness criterion[7]). A linear TRS R
is confluent if s =→ ◦ ∗← t and s ∗→ ◦ =← t for all 〈s, t〉 ∈ CP(R).

So far there is no mechanism of detecting non-confluence of non-terminating
TRSs. Therefore, we add a simple non-confluence check based on the following
easy observation.

Theorem 2 (A simple non-confluence criterion). If there exist terms s′, t′

such that s ∗→ s′ and t ∗→ t′ for some 〈s, t〉 ∈ CP(R) which satisfy either (1)
s′, t′ ∈ NF(R) and s′ �= t′; or (2) s′, t′ ∈ HNF(R) and s′(ε) �= t′(ε). Then R is
not confluent.

Since it is undecidable whether a term s is in head normal form, our prover
checks a simple sufficient criterion s(ε) �∈ {l(ε) | l→ r ∈ R} instead.

4 Divide and Conquer Methods

When all of direct methods fail to prove the (non-)confluence of the TRS, our
prover next tries to infer it using divide–and–conquer approach. Several criteria
to infer the (non-)confluence of a TRS from that of its subsystems are known
[1,2,9,15,16,17].
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4.1 Persistent Decomposition

The first decomposition method our prover tries is the one based on the persis-
tency [23], which is an extension of the direct-sum decomposition [15].

Definition 1 (persistent property[23]). A property P is said to be persistent
if P holds for a many-sorted TRS R if and only if P holds for its underlying
unsorted TRS Θ(R). Here Θ is the operation that forget the sort information.

Proposition 4 (persistency of confluence[2]). Confluence is a persistent
property of TRSs.

Let us describe how persistency of confluence is used to show the confluence of
a TRS from its subsystems.

Let S be a set of sorts. A sort attachment τ is a mapping F → S∗ such that
arity(f) = n implies τ(f) ∈ Sn+1, which is written as f : α1 × · · · ×αn → α0. A
sort attachment τ is consistent with a TRS R if for any l → r ∈ R, l and r are
well-sorted under τ with the same sort. For any term t well-sorted under τ , let
tτ be the many-sorted term sorted by τ . Any sort attachment τ consistent with
R induces a many-sorted TRS Rτ = {lτ → rτ | l → r ∈ R}. Let us denote by
Tτ the set of many-sorted terms, by Tτ

α the set of many-sorted terms of sort α,
and let Tτ

�α = {t ∈ Tτ | t � u for some u ∈ Tτ
α}. For any set A of terms closed

under rewrite steps, let us write Conf(A) iff s →∗ ◦ ←∗ t for any s, t ∈ A such
that s←∗ ◦→∗ t. By persistency, Conf(T(F , V )) iff Conf(Tτ ) iff Conf(Tτ

α) for
any sort α. Because any rewrite rule that can be applied to a term of sort α
is in Rτ ∩ (Tτ

�α)2, we have Conf(Tτ
α) iff Rτ ∩ (Tτ

�α)2 is confluent. Since the
confluence of any set A of unsorted terms implies confluence of {tτ | t ∈ A}, R
is confluent iff Θ(Rτ ∩ (Tτ

�α)2) is confluent for any α ∈ S. Thus the following
persistent criterion is obtained.

Definition 2 (persistent decomposition). Let R be a TRS and τ a sort
attachment consistent with R. Then max({Θ(Rτ ∩ (T�α)2) | α ∈ S}) is said to
be a persistent decomposition of R. Here max is the operation of taking maximal
(w.r.t. subset relation) sets. We write R = R1⊕τ · · · ⊕τ Rn if {R1, . . . ,Rn} is a
persistent decomposition of R. A persistent decomposition is said to be minimal
if each components has no persistent decomposition.

Theorem 3 (persistent criterion). A TRS R = R1⊕τ · · ·⊕τ Rn is confluent
if and only if so is each Ri.

Example 1 (confluence proof by persistency decomposition). Let

Ra =

⎧
⎨

⎩

f(a(x), x) → f(x, a(x)) g(b(x), y) → g(a(a(x)), y)
f(b(x), x) → f(x, b(x)) g(c(x), y) → y
a(x) → b(x)

⎫
⎬

⎭
.

The direct methods do not apply to Ra, because Ra is neither terminating nor
left-linear. Consider the attachment τ on S = {0, 1, 2} such that f : 0 × 0 → 1,
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a : 0 → 0, b : 0 → 0, c : 0 → 0, and g : 0 × 2 → 2. Then we have the following
persistent decomposition of Ra:

Ra1 =

⎧
⎨

⎩

f(a(x), x) → f(x, a(x))
f(b(x), x) → f(x, b(x))
a(x) → b(x)

⎫
⎬

⎭
, Ra2 =

⎧
⎨

⎩

a(x) → b(x)
g(b(x), y) → g(a(a(x)), y)
g(c(x), y) → y

⎫
⎬

⎭
.

Ra1 is confluent by Knuth–Bendix’s criterion and Ra2 is confluent by Huet–
Toyama–van Oostrom’s criterion. Thus the confluence of Ra follows from the
persistency of confluence. �

Since a most general sort attachment consistent with a TRS is unique (modulo
renaming of sorts), we know that a minimal persistent decomposition of R is
unique. Since the smaller a component of persistent decomposition becomes, the
easier it becomes to prove confluence of that component. Thus it suffices to com-
pute the minimal persistent decomposition and try to prove (non-)confluence of
each components. Furthermore, since the persistency is a necessary and sufficient
criterion, if non-confluence is detected in any component then non-confluence of
the whole TRS is concluded.

4.2 Layer-Preserving Decomposition

The second decomposition method our prover tries is the one based on the
(composable) layer-preserving combination [9]. In what follows, D(l → r) =
{l(ε), r(ε)}, \ and � stand for the set difference and disjoint union.

Definition 3 (layer-preserving[9]). A pair 〈R1,R2〉 of TRSs is said to be a
layer-preserving combination if there exists a partition D1 � D2 � C of function
symbols such that (1) for any α ∈ R1 \ R2, D(α) ⊆ D1 and F(α) ⊆ D1 ∪ C (2)
for any α ∈ R2 \ R1, D(α) ⊆ D2 and F(α) ⊆ D2 ∪ C (3) for any α ∈ R1 ∩ R2,
F(α) ⊆ C. If 〈R1,R2〉 is a layer-preserving combination the union R1 ∪ R2 is
denoted by R1 R2.

Based on the definition of layer-preserving combination given above we define
the layer-preserving decomposition as follows.

Definition 4 (layer-preserving decomposition). A set {R1, . . . ,Rn} (n ≥
1, Ri �= ∅) of TRSs is said to be a layer-preserving decomposition of R (denoted
by R = R1  · · · Rn) if R = R1 ∪ · · · ∪ Rn and 〈Ri,Rj〉 is a layer-preserving
combination for i �= j. A layer-preserving decomposition is said to be minimal
if each component has no layer-preserving decomposition.

Proposition 5 (layer-preserving criterion[9]). A TRS R = R1  · · · Rn

is confluent if and only if so is each Ri.

Example 2 (confluence proof by layer-preserving decomposition). Let

Rb =
{

f(x, a(g(x))) → g(f(x, x)) a(x) → x
f(x, g(x)) → g(f(x, x)) h(x) → h(a(h(x)))

}
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It is clear that the direct methods do not apply to Rb. Taking the partition
of function symbols as D1 = {f, g},D2 = {h}, C = {a}, we have the following
layer-preserving decomposition of Rb:

Rb1 =

⎧
⎨

⎩

f(x, a(g(x))) → g(f(x, x))
f(x, g(x)) → g(f(x, x))
a(x) → x

⎫
⎬

⎭
, Rb2 =

{
a(x) → x
h(x) → h(a(h(x)))

}

.

Rb1 is confluent by Knuth–Bendix’s criterion and Rb2 is confluent by Huet–
Toyama–van Oostrom’s criterion. Thus the confluence of Rb follows from the
layer-preserving criterion. �

Note that the layer-preserving decomposition does not apply to Ra in Example 1
because of a collapsing rule. Similarly, the persistent decomposition does not
apply to Rb in Example 2 because the only possible sort attachment is on a
single sort. Thus, the two decompositions are incomparable.

One can show that a minimal layer-preserving decomposition is unique. Same
as the case of persistent decomposition, it suffices to compute the minimal layer-
preserving decomposition and if non-confluence is detected in any component
then non-confluence of the whole TRS is concluded.

4.3 Commutative Decomposition

The third and last decomposition method our prover tries is the one based on
commutation [13].

Definition 5 (commutation[13]). TRSs R1 and R2 commute if ∗←R1 ◦
∗→R2

⊆ ∗→R2 ◦
∗←R1 . If R1 and R2 commute then their union R1 ∪R2 is denoted by

R1 R2.

Definition 6 (commutative decomposition). A set {R1, . . . ,Rn} (n ≥ 1,
Ri �= ∅) of TRSs is said to be a commutative decomposition of R (denoted by
R = R1  · · ·  Rn) if R = R1 ∪ · · · ∪ Rn and Ri,Rj commute for i �= j.
A commutative decomposition is said to be minimal if each component has no
commutative decomposition.

Proposition 6 (commutativity criterion[13]). A TRS R = R1  · · ·  Rn

is confluent if so is each Ri.

Since the commutativity criterion is merely a sufficient criterion, unlike previous
two decompositions, it can not be used to infer the non-confluence from that of
its subsystems. Moreover, since non-left-linear rules destroy commutativity, the
commutative decomposition is restricted to left-linear TRSs.

Commutativity of TRSs is undecidable in general but a sufficient condition
is known [16]. Our prover employs a slightly more general condition which is
obtained by extending the proof of [20] along the line of [16]1.
1 The detailed proof can be found in [22].
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Proposition 7 (sufficient condition for commutativity[22]). Left-linear
TRSs R1 and R2 commute if (1) s −→◦ R2 t for any 〈s, t〉 ∈ CPin(R1,R2), and
(2) s −→◦ R1 ◦

∗←R2 t for any 〈t, s〉 ∈ CP(R2,R1).

Condition (2) is undecidable and our prover uses a condition s −→◦ R1 ◦←−◦ R2 t

instead of the condition s −→◦ R1 ◦
∗←R2 t.

Example 3 (confluence proof by commutative decomposition). Let

Rc =
{

f(x) → g(x) f(x) → h(f(x))
h(f(x)) → h(g(x)) g(x) → h(g(x))

}

.

Neither the direct methods nor the previous decomposition methods apply to
Rc. One can divide Rc into the following Rc1 and Rc2 which commute from
Proposition 7.

Rc1 =
{

f(x) → g(x)
h(f(x)) → h(g(x))

}

, Rc2 =
{

f(x) → h(f(x))
g(x) → h(g(x))

}

.

Rc1 is confluent by Knuth–Bendix’s criterion and Rc2 is confluent by Huet–
Toyama–van Oostrom’s criterion. Thus, the confluence of Rc follows from the
commutativity criterion. �

Contrast to the persistent or layer-preserving decompositions, a minimal com-
mutative decomposition is not unique. Furthermore, unlike the previous two
decompositions, it does not always hold that a smaller decomposition is more
useful to prove confluence [22], i.e. there is an example that can be proved by a
non-minimal commutative decomposition but minimal ones fail.

5 Implementation and Experiments

We have implemented a confluence prover ACP (Automated Confluence Prover)
in SML/NJ; the length of codes is about 14,000 lines2. It has a command line
interface which takes an argument to specify a filename containing a TRS spec-
ification in TPDB3 format. Several options are supported so that partial combi-
nations of decompositions can be tested. An external termination prover can be
specified in the place of an internal termination prover.

The overview of the prover is illustrated in Figure 1. Procedure Direct consists
of the direct methods explained in Section 1. If Direct fails (i.e. neither confluence
nor non-confluence is detected), then the prover finds the minimal persistent
decomposition R = R1⊕τ · · ·⊕τRn. If the decomposition is not proper (i.e. n =
1) then the prover tries a minimal layer-preserving decomposition to R = R1. If

2 A heap image of ACP that can be loaded into an SML/NJ runtime system, ex-
amples used for the experiments, and details of experiments can be obtained from
http://www.nue.riec.tohoku.ac.jp/tools/acp/

3 http://www.lri.fr/˜marche/tpdb/
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R overlay? terminating?
n

innermost
terminating?

y

innermost
locally confluent?

y

CR/NON-CR
y/n

locally
confluent?

y

sufficient
conditions?

n

n

CR/NON-CR

y/n
y

Procedure Direct

Find persistent decomposition R = R1 ⊕τ · · · ⊕τ Rn

and apply Direct to each Ri

n

Find layer-preserving decomposition Ri = Ri1  · · ·  Rim

and apply Direct to each Rij

failing Ri

Find commutative decomposition Rij = Rij1 � · · · � Rijl

and apply Direct to each Rijk

failing Rij

failing Rijk as R

Fig. 1. Overview of ACP

the decomposition is proper (i.e. n > 1) then the prover applies the procedure
Direct to each components R1, . . . ,Rn. For each component Ri on which Direct
fails, then the prover tries a minimal layer-preserving decomposition and so on.
When the direct methods and successive three kinds of proper decompositions
fail, the prover aborts the proof of (non-)confluence of (that component of) the
system. Furthermore, if there is another possibility of decompositions then the
prover backtracks and tries another decomposition.

For the experiment, we prepare a collection of 103 examples extracted from
the literatures on confluence. We have tested confluence proving using various
combinations of decomposition techniques. All tests have been performed in a
PC equipped with Intel Xeon processors of 2.66GHz and a memory of 7GB.

The table below summarizes our experimental results. d, p, l, c, c’ stand for
direct methods, (minimal) persistent decomposition, (minimal) layer-preserving
decomposition, minimal commutative decomposition, (possibly non-minimal)
commutative decomposition, respectively.
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d dp dl dc dc’ dpl dpc dpc’ dlc dlc’ dplc dplc’
success (CR) 30 35 34 41 43 37 47 49 46 47 49 50
success (NON-CR) 13 13 13 13 13 13 13 13 13 13 13 13
failure 60 55 56 49 47 53 43 41 44 43 41 40
timeout (60 sec.) 0 0 0 0 0 0 0 0 0 0 0 0
total time (sec.) 4.1 4.4 4.8 7.0 33.6 4.9 8.1 30.9 7.6 34.2 8.1 34.4

It is seen that decomposition techniques are effective to prove confluence, al-
though it is ineffective to prove non-confluence. Each decomposition techniques
succeeds to prove confluence of some different examples. Commutative decom-
position is costly but most powerful of three decompositions.

6 Conclusion

We have presented an automated confluence prover ACP for TRSs, in which
divide–and–conquer approach based on the persistent, layer-preserving, commu-
tative decompositions is employed. To the best of our knowledge, an automated
confluence prover based on such an approach has been unknown. We believe that
our approach is useful to integrate different (non-)confluence criteria to prove
the (non-)confluence of large systems.

The previous version of our confluence prover has been described in [22]. The
new version is different in the following points in particular: new direct crite-
ria (Gramlich–Ohlebusch’s criterion, Huet’s strong-closedness criterion, a simple
non-confluence criterion) are added; the direct-sum decomposition is replaced
with the persistent decomposition; the layer-preserving decomposition is added;
the algorithm for computing commutative decompositions is changed to improve
the efficiency.

There are still many confluence criteria which are not included in our prover—
for example, stronger sufficient criteria for left-linear TRSs (e.g. [11,12,18]), the
decreasing diagram technique (e.g. [19,21]) and decision procedures for some
subclass of TRSs (e.g. [5,14]). It is our future work to include these criteria and
make the system more powerful.
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Abstract. We consider the problem of intruder deduction in security
protocol analysis: that is, deciding whether a given message M can be
deduced from a set of messages Γ under the theory of blind signatures
and arbitrary convergent equational theories modulo associativity and
commutativity (AC) of certain binary operators. The traditional formu-
lations of intruder deduction are usually given in natural-deduction-like
systems and proving decidability requires significant effort in showing
that the rules are “local” in some sense. By using the well-known trans-
lation between natural deduction and sequent calculus, we recast the
intruder deduction problem as proof search in sequent calculus, in which
locality is immediate. Using standard proof theoretic methods, such as
permutability of rules and cut elimination, we show that the intruder de-
duction problem can be reduced, in polynomial time, to the elementary
deduction problems, which amounts to solving certain equations in the
underlying individual equational theories. We further show that this re-
sult extends to combinations of disjoint AC-convergent theories whereby
the decidability of intruder deduction under the combined theory reduces
to the decidability of elementary deduction in each constituent theory.
Although various researchers have reported similar results for individual
cases, our work shows that these results can be obtained using a system-
atic and uniform methodology based on the sequent calculus.

Keywords: AC convergent theories, sequent calculus, intruder deduc-
tion, security protocols.

1 Introduction

One of the fundamental aspects of the analysis of security protocols is the model
of the intruder that seeks to compromise the protocols. In many situations, such
a model can be described in terms of a deduction system which gives a formal ac-
count of the ability of the intruder to analyse and synthesize messages. As shown
in many previous works (see, e.g., [2,6,7,9]), finding attacks on protocols can
often be framed as the problem of deciding whether a certain formal expression
is derivable in the deduction system which models the intruder capability. The
latter is sometimes called the intruder deduction problem, or the (ground) reach-
ability problem. A basic deductive account of the intruder’s capability is based
on the so-called Dolev-Yao model, which assumes perfect encryption. While this

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 103–117, 2009.
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model has been applied fruitfully to many situations, a stronger model of intrud-
ers is needed to discover certain types of attacks. A recent survey [11] shows that
attacks on several protocols used in real-world communication networks can be
found by exploiting algebraic properties of encryption functions.

The types of attacks mentioned in [11] have motivated many recent works
in studying models of intruders in which the algebraic properties of the oper-
ators used in the protocols are taken into account [1,7,9,10,13,17]. In most of
these, the intruder’s capability is usually given as a natural-deduction-like de-
ductive system. As is common in natural deduction, each constructor has a rule
for introducing the constructor and one for eliminating the constructor. The
elimination rule typically decomposes a term, reading the rule top-down: e.g., a
typical elimination rule for a pair 〈M, N〉 of terms is:

Γ ! 〈M, N〉
Γ ! M

Here, Γ denotes a set of terms, which represents the terms accumulated by the
intruder over the course of its interaction with participants in a protocol. While
a natural deduction formulation of deductive systems may seem “natural” and
may reflect the meaning of the (logical) operators, it does not immediately give
us a proof search strategy. Proof search means that we have to apply the rules
bottom up, and as the above elimination rule demonstrates, this requires us to
come up with a term N which might seem arbitrary. For a more complicated
example, consider the following elimination rule for blind signatures [5,15,16].

Γ ! sign(blind(M, R), K) Γ ! R

Γ ! sign(M, K)

The basis for this rule is that the “unblinding” operation commutes with signa-
ture. Devising a proof search strategy in a natural deduction system containing
this type of rule does not seem trivial. In most of the works mentioned above,
in order to show the decidability results for the natural deduction system, one
needs to prove that the system satisfies a notion of locality, i.e., in searching for
a proof for Γ ! M , one needs only to consider expressions which are made of
subterms from Γ and M. In addition, one has to also deal with the complication
that arises from the use of the algebraic properties of certain operators.

In this work, we recast the intruder deduction problem as proof search in
sequent calculus. A sequent calculus formulation of Dolev-Yao intruders was
previously used by the first author in a formulation of open bisimulation for
the spi-calculus [19] to prove certain results related to open bisimulation. The
current work takes this idea further to include richer theories. Part of our mo-
tivation is to apply standard techniques, which have been well developed in
the field of logic and proof theory, to the intruder deduction problem. In proof
theory, sequent calculus is commonly considered a better calculus for studying
proof search and decidability of logical systems, in comparison to natural de-
duction. This is partly due to the so-called “subformula” property (that is, the
premise of every inference rule is made up of subterms of the conclusion of the
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rule), which in most cases entails the decidability of the deductive system. It is
therefore rather curious that none of the existing works on intruder deduction
so far uses sequent calculus to structure proof search. We consider the ground
intruder deduction problem (i.e., there are no variables in terms) under the class
of AC-convergent theories. These are equational theories that can be turned into
convergent rewrite systems, modulo associativity and commutativity of certain
binary operators. Many important theories for intruder deduction fall into this
category, e.g., theories for exclusive-or [7,9], Abelian groups [9], and more gen-
erally, certain classes of monoidal theories [10].

We show two main results. Firstly, we show that the decidability of intruder
deduction under AC-convergent theories can be reduced, in polynomial time, to
elementary intruder deduction problems, which involve only the equational theo-
ries under consideration. Secondly, we show that the intruder deduction problem
for a combination of disjoint theories E1, . . . , En can be reduced, in polynomial
time, to the elementary deduction problem for each theory Ei. This means that
if the elementary deduction problem is decidable for each Ei, then the intruder
deduction problem under the combined theory is also decidable. We note that
these decidability results are not really new, although there are slight differences
and improvements over the existing works (see Section 7). Our contribution is
more of a methodological nature. We arrive at these results using rather standard
proof theoretical techniques, e.g., cut-elimination and permutability of inference
rules, in a uniform and systematic way. In particular, we obtain locality of proof
systems for intruder deduction, which is one of the main ingredients to decid-
ability results in [9,7,13,12], for a wide range of theories that cover those studied
in these works. Note that these works deal with a more difficult problem of de-
ducibility constraints, which models active intruders, whereas we currently deal
only with passive intruders. As future work, we plan to extend our approach to
deal with active intruders.

The remainder of the paper is organised as follows. Section 2 presents two
systems for intruder theories, one in natural deduction and the other in sequent
calculus, and show that the two systems are equivalent. In Section 3, the sequent
system is shown to enjoy cut-elimination. In Section 4, we show that cut-free
sequent derivations can be transformed into a certain normal form. Using this
result, we obtain another “linear” sequent system, from which the polynomial
reducibility result follows. Section 5 discusses several example theories which can
be found in the literature. Section 6 shows that the sequent system in Section 2
can be extended to cover any combination of disjoint AC-convergent theories,
and the same decidability results also hold for this extension. Detailed proofs
can be found in an extended version of the paper.1

2 Intruder Deduction Under AC Convergent Theories

We consider the following problem of formalising, given a set of messages Γ and
a message M , whether M can be synthesized from the messages in Γ. We shall
1 Available from http://arxiv.org/abs/0804.0273

http://arxiv.org/abs/0804.0273
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write this judgment as Γ ! M. This is sometimes called the ‘ground reachability’
problem or the ‘intruder deduction’ problem in the literature.

Messages are formed from names, variables and function symbols. We shall
assume the following sets: a countably infinite set N of names ranged over by a,
b, c, d, m and n; a countably infinite set V of variables ranged over by x, y and
z; and a finite set ΣC = {pub, sign, blind, 〈., .〉, {.}.} of symbols representing the
constructors. Thus pub is a public key constructor, sign is a public key encryp-
tion function, blind is the blinding encryption function (as in [15,16,5]), 〈., .〉 is
a pairing constructor, and {.}. is the Dolev-Yao symmetric encryption function.
Additionally, we also assume a possibly empty equational theory E, whose sig-
nature is denoted with ΣE . We require that ΣC ∩ ΣE = ∅.2 Function symbols
(including constructors) are ranged over by f , g and h. The equational theory
E may contain at most one associative-commutative function symbol, which we
denote with ⊕, obeying the standard associative and commutative laws. We re-
strict ourselves to equational theories which can be represented by terminating
and confluent rewrite systems, modulo the associativity and commutativity of
⊕. We consider the set of messages generated by the following grammar

M, N := a | x | pub(M) | sign(M, N) | blind(M, N)
| 〈M, N〉 | {M}N | f(M1, . . . , Mk).

The message pub(M) denotes the public key generated from a private key M ;
sign(M, N) denotes a message M signed with a private key N ; blind(M, N)
denotes a message M encrypted with N using a special blinding encryption;
〈M, N〉 denotes a pair of messages; and {M}N denotes a message M encrypted
with a key N using a Dolev-Yao symmetric encryption. The blinding encryption
has a special property that it commutes with the sign operation, i.e., one can
“unblind” a signed blinded message sign(blind(M, r), k) using the blinding key
r to obtain sign(M, k). This aspect of the blinding encryption is reflected in its
elimination rules, as we shall see later. We denote with V (M) the set of variables
occurring in M . A term M is ground if V (M) = ∅. We shall be mostly concerned
with ground terms, so unless stated otherwise, we assume implicitly that terms
are ground (the only exception is Proposition 2 and Proposition 3).

We shall use several notions of equality so we distinguish them using the
following notation: we shall write M = N to denote syntactic equality, M ≡
N to denote equality modulo associativity and commutativity (AC) of ⊕, and
M ≈T N to denote equality modulo a given equational theory T . We shall
sometimes omit the subscript in ≈T if it can be inferred from context.

Given an equational theory E, we denote with RE the set of rewrite rules for E
(modulo AC). We write M →RE N when M rewrites to N using one application
of a rewrite rule in RE . The definition of rewriting modulo AC is standard and
is omitted here. The reflexive-transitive closure of →RE is denoted with →∗

RE
.

We shall often remove the subscript RE when no confusion arises. A term M is
in E-normal form if M �→RE N for any N. We write M↓E to denote the normal
2 This restriction means that intruder theory such as homomorphic encryption is ex-

cluded. Nevertheless, it still covers a wide range of intruder theories.



A Proof Theoretic Analysis of Intruder Theories 107

form of M with respect to the rewrite system RE , modulo commutativity and
associativity of ⊕. Again, the index E is often omitted when it is clear which
equational theory we refer to. This notation extends straightforwardly to sets,
e.g., Γ↓ denotes the set obtained by normalising all the elements of Γ. A term
M is said to be headed by a symbol f if M = f(M1, . . . , Mk). M is guarded if
it is either a name, a variable, or a term headed by a constructor. A term M is
an E-alien term if M is headed by a symbol f �∈ ΣE. It is a pure E-term if it
contains only symbols from ΣE , names and variables.

A context is a term with holes. We denote with Ck[] a context with k-hole(s).
When the number k is not important or can be inferred from context, we shall
write C[. . .] instead. Viewing a context Ck[] as a tree, each hole in the context
occupies a unique position among the leaves of the tree. We say that a hole
occurrence is the i-th hole of the context Ck[] if it is the i-th hole encountered
in an inorder traversal of the tree representing Ck[]. An E-context is a context
formed using only the function symbols in ΣE . We write C[M1, . . . , Mk] to de-
note the term resulting from replacing the holes in the k-hole context Ck[] with
M1, . . . , Mk, with Mi occuping the i-th hole in Ck[].

Natural deduction and sequent systems. The standard formulation of the judg-
ment Γ ! M is usually given in terms of a natural-deduction style inference
system, as shown in Figure 1. We shall refer to this proof system as N and
write Γ �N M if Γ ! M is derivable in N . The deduction rules for Dolev-Yao
encryption is standard and can be found in the literature, e.g., [6,9]. The blind
signature rules are taken from the formulation given by Bernat and Comon-
Lundh [5]. Note that the rule signE assumes implicitly that signing a message
hides its contents. An alternative rule without this assumption would be

Γ ! sign(M, K)
Γ ! M

The results of the paper also hold, with minor modifications, if we adopt this
rule.

A sequent Γ !M is in normal form if M and all the terms in Γ are in normal
form. Unless stated otherwise, in the following we assume that sequents are in
normal form. The sequent system for intruder deduction, under the equational
theory E, is given in Figure 2. We refer to this sequent system as S and write
Γ �S M to denote the fact that the sequent Γ ! M is derivable in S.

Unlike natural deduction rules, sequent rules also allow introduction of terms
on the left hand side of the sequent. The rules pL, eL, signL, blindL1, blindL2,
and gs are called left introduction rules (or simply left rules), and the rules
pR, eR, signR, blindR are called right introduction rules (or simply, right rules).
Notice that the rule gs is very similar to cut, except that we have the proviso
that A is a subterm of a term in the lower sequent. This is sometimes called
analytic cut in the proof theory literature. Analytic cuts are not problematic as
far as proof search is concerned, since it still obeys the sub-formula property.

We need the rule gs because we do not have introduction rules for function
symbols in ΣE , in contrast to natural deduction. This rule is needed to “abstract”
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M ∈ Γ
Γ � M

id
Γ � {M}K Γ � K

Γ � M
eE

Γ � M Γ � K
Γ � {M}K

eI

Γ � 〈M, N〉
Γ � M

pE
Γ � 〈M, N〉

Γ � N
pE

Γ � M Γ � N
Γ � 〈M, N〉 pI

Γ � sign(M, K) Γ � pub(K)
Γ � M

signE
Γ � M Γ � K
Γ � sign(M, K)

signI

Γ � blind(M, K) Γ � K

Γ � M
blindE1

Γ � M Γ � K
Γ � blind(M, K)

blindI

Γ � sign(blind(M, R), K) Γ � R

Γ � sign(M, K)
blindE2

Γ � M1 · · · Γ � Mn

Γ � f(M1, . . . , Mn)
fI , where f ∈ ΣE

Γ � N
Γ � M

≈, where M ≈E N

Fig. 1. System N : a natural deduction system for intruder deduction

E-alien subterms in a sequent (in the sense of the variable abstraction technique
common in unification theory, see e.g., [18,4]), which is needed to prove that
the cut rule is redundant. For example, let E be a theory containing only the
associativity and the commutativity axioms for ⊕. Then the sequent a, b !
〈a, b〉⊕ a should be provable without cut. Apart from the gs rule, the only other
way to prove this is by using the id rule. However, id is not applicable, since no
E-context C[...] can obey C[a, b] ≈ 〈a, b〉⊕a because E-contexts can contain only
symbols from ΣE and thus cannot contain 〈., .〉. Therefore we need to “abstract”
the term 〈a, b〉 in the right hand side, via the gs rule:

a, b ! a
id

a, b ! b
id

a, b ! 〈a, b〉
pR

a, b, 〈a, b〉 ! 〈a, b〉 ⊕ a
id

a, b ! 〈a, b〉 ⊕ a
gs

The third id rule instance (from the left) is valid because we have C[〈a, b〉, a] ≡
〈a, b〉 ⊕ a, where C[., .] = [.]⊕ [.].

Provability in the natural deduction system and in the sequent system are re-
lated via the standard translation, i.e., right rules in sequent calculus correspond
to introduction rules in natural deduction and left rules corresponds to elimi-
nation rules. The straightforward translation from natural deduction to sequent
calculus uses the cut rule.

Proposition 1. The judgment Γ ! M is provable in the natural deduction sys-
tem N if and only if Γ↓ ! M↓ is provable in the sequent system S.

3 Cut Elimination for S

We now show that the cut rule is redundant for S.
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M ≈E C[M1, . . . , Mk]
C[ ] an E-context, and M1, . . . , Mk ∈ Γ

Γ � M
id

Γ � M Γ, M � T

Γ � T
cut

Γ, 〈M, N〉, M, N � T

Γ, 〈M, N〉 � T
pL

Γ � M Γ � N
Γ � 〈M, N〉 pR

Γ, {M}K � K Γ, {M}K , M, K � N

Γ, {M}K � N
eL

Γ � M Γ � K
Γ � {M}K

eR

Γ, sign(M, K), pub(L), M � N

Γ, sign(M, K), pub(L) � N
signL, K ≡ L Γ � M Γ � K

Γ � sign(M, K)
signR

Γ, blind(M, K) � K Γ, blind(M, K), M, K � N

Γ, blind(M,K) � N
blindL1

Γ � M Γ � K
Γ � blind(M, K)

blindR

Γ, sign(blind(M, R), K) � R Γ, sign(blind(M, R), K), sign(M, K), R � N

Γ, sign(blind(M, R),K) � N
blindL2

Γ � A Γ, A � M

Γ � M
gs,A is a guarded subterm of Γ ∪ {M}

Fig. 2. System S : a sequent system for intruder deduction

Definition 1. An inference rule R in a proof system D is admissible for D if for
every sequent Γ ! M derivable in D, there is a derivation of the same sequent
in D without instances of R.

The cut-elimination theorem for S states that the cut rule is admissible for S.
Before we proceed with the main cut elimination proof, we first prove a basic
property of equational theories and rewrite systems, which is concerned with a
technique called variable abstraction [18,4].

Given derivation Π , the height of the derivation, denoted by |Π |, is the length
of a longest branch in Π. Given a normal term M , the size |M | of M is the
number of function symbols, names and variables appearing in M.

In the following, we consider slightly more general equational theories than
in the previous section: each AC theory E can be a theory obtained from a
disjoint combination of AC theories E1, . . . , Ek, where each Ei has at most one
AC operator ⊕i. This allows us to reuse the results for a more general case later.

Definition 2. Let E be a disjoint combination of AC convergent theories E1,
. . . , En. A term M is a quasi-Ei term if every Ei-alien subterm of M is in
E-normal form.

For example, let E = {h(x, x) ≈ x}. Then h(〈a, b〉, c) is a quasi E-term, whereas
h(〈a, b〉, 〈h(a, a), b〉) is not, since its E-alien subterm 〈h(a, a), b〉 is not in its E-
normal form 〈a, b〉. Obviously, any E normal term is a quasi Ei term.

In the following, given an equational theory E, we assume the existence of
a function vE , which assigns a variable from V to each ground term such that
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vE(M) = vE(N) if and only if M ≈E N. In other words, vE assigns a unique
variable to each equivalence class of ground terms induced by ≈E .

Definition 3. Let E be an equational theory obtained by disjoint combination of
AC theories E1, . . . , En. The Ei abstraction function FEi is a function mapping
ground terms to pure Ei terms, defined recursively as follows:

FEi(u) =

⎧
⎨

⎩

u, if u is a name,
f(FEi(u1), . . . , FEi(uk)), if u = f(u1, . . . , uk) and f ∈ ΣEi ,
vE(u), otherwise.

It can be easily shown that the function FEi preserves the equivalence relation
≡. That is, if M ≡ N then FEi(M) ≡ FEi(N).

Proposition 2. Let E be a disjoint combination of E1, . . . , En. If M is a quasi
Ei term and M →∗

RE
N , then N is a quasi Ei term and FEi(M)→∗

RE
FEi(N).

Proposition 3. Let E be a disjoint combination of E1, . . . , En. If M and N are
quasi Ei terms and FEi(M)→∗

RE
FEi(N), then M →∗

RE
N.

We now show some important proof transformations needed to prove cut elim-
ination, i.e., in an inductive argument to reduce the size of cut terms. In the
following, when we write that a sequent Γ ! M is derivable, we mean that it is
derivable in the proof system S, with a fixed AC theory E.

Lemma 1. Let Π be a derivation of M1, . . . , Mk ! N. Then for any M ′
1, . . . ,

M ′
k and N ′ such that Mi ≡ M ′

i and N ≡ N ′, there is a derivation Π ′ of
M ′

1, . . . , M
′
k ! N ′ such that |Π | = |Π ′|.

Lemma 2. Let X and Y be terms in normal form and let f be a binary con-
structor. If Γ, f(X, Y ) ! M is cut-free derivable, then so is Γ, X, Y ! M .

The more interesting case in the proof of Lemma 2 is when Γ, f(X, Y ) ! M
is proved by an application of the id rule where f(X, Y ) is active. That is, we
have C[f(X, Y ), M1, . . . , Mk] ≈E M, where M1, . . . , Mk ∈ Γ , for some E-context
C[..]. Since M is in normal form, we have

C[f(X, Y ), M1, . . . , Mk]→∗ M. (1)

There are two cases to consider in the construction of a proof for Γ, X, Y ! M. If
f(X, Y ) occurs as a subterm of M or Γ , then we simply apply the gs rule (bottom
up) to abstract the term f(X, Y ) and then apply the id rule. Otherwise, we use
the variable abstraction techniques (Proposition 2 and Proposition 3) to abstract
f(X, Y ) from the rewrite steps (1) above, and then replace its abstraction with
X to obtain: C[X, M1, . . . , Mk] →∗ M. That is, the id rule is applicable to the
sequent Γ, X, Y ! M , with X taking the role of f(X, Y ).

Lemma 3. Let X1, . . . , Xk be normal terms and let Π be a cut-free derivation
of Γ, f(X1, . . . , Xk)↓ ! M , where f ∈ ΣE . Then there exists a cut-free derivation
Π ′ of Γ, X1, . . . , Xk ! M.



A Proof Theoretic Analysis of Intruder Theories 111

Lemma 4. Let M1, . . . , Mk be terms in normal form and let C[. . .] be a k-
hole E-context. If Γ, C[M1, . . . , Mk] ↓ ! M is cut-free derivable, then so is
Γ, M1, . . . , Mk ! M .

One peculiar aspect of the sequent system S is that in the introduction rules for
encryption functions (including blind signatures), there is no switch of polarities
for the encryption key. For example, in the introduction rule for {M}K , both on
the left and on the right, the key K appears on the right hand side of a premise
of the rule. This means that there is no exchange of information between the
left and the right hand side of sequents, unlike, say, typical implication rules in
logic. This gives rise to an easy cut elimination proof, where we need only to
measure the complexity of the left premise of a cut in determining the cut rank.

Theorem 1. The cut rule is admissible for S.

4 Normal Derivations and Decidability

We now turn to the question of the decidability of the deduction problem Γ ! M.
This problem is known already for several AC theories, e.g., exclusive-or, abelian
groups and their extensions with a homomorphism axiom [1,7,9,12,13]. What we
would like to show here is how the decidability result can be reduced to a more
elementary decision problem, defined as follows.

Definition 4. Given an equational theory E, the elementary deduction prob-
lem for E, written Γ �E M , is the problem of deciding whether the id rule is
applicable to the sequent Γ ! M (by checking whether there exists an E-context
C[. . .] and terms M1, . . . , Mk ∈ Γ such that C[M1, . . . , Mk] ≈E M).

Note that as a consequence of Proposition 2 and Proposition 3, in checking
elementary deducibility, it is enough to consider the pure E equational problem
where all E-alien subterms are abstracted, i.e., we have

C[M1, . . . , Mk] ≈E M iff C[FE(M1), . . . , FE(Mk)] ≈E FE(M).

Our notion of elementary deduction corresponds roughly to the notion of “recipe”
in [1], but we note that the notion of a recipe is a stronger one, since it bounds
the size of the equational context.

The cut free sequent system does not strictly speaking enjoy the “sub-formula”
property, i.e., in blindL2, the premise sequent has a term which is not a subterm
of any term in the lower sequent. However, it is easy to see that, reading the rules
bottom up, we only ever introduce terms which are smaller than the terms in the
lower sequent. Thus a naive proof search strategy which non-deterministically
tries all applicable rules and avoids repeated sequents will eventually terminate.
This procedure is of course rather expensive. We show that we can obtain a better
complexity result by analysing the structures of cut-free derivations. Recall that
the rules pL, eL, signL, blindL1, blindL2 and gs are called left rules (the other rules
are right rules).
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Γ �R M

Γ � M
r

Γ, {M}K , M, K � N

Γ, {M}K � N
le, where Γ, {M}K �R K

Γ, 〈M, N〉, M, N � T

Γ, 〈M, N〉 � T
lp

Γ, sign(M, K), pub(L), M � N

Γ, sign(M, K), pub(L) � N
sign, K ≡ L

Γ, blind(M, K), M, K � N

Γ, blind(M, K) � N
blind1, where Γ, blind(M, K) �R K

Γ, sign(blind(M, R), K), sign(M, K), R � N

Γ, sign(blind(M, R), K) � N
blind2,

where Γ, sign(blind(M, R),K) �R R.

Γ, A � M

Γ � M
ls, where A is a guarded subterm of Γ ∪ {M} and Γ �R A.

Fig. 3. System L: a linear proof system for intruder deduction

Definition 5. A cut-free derivation Π is said to be a normal derivation if it
satisfies the following conditions:

1. no left rule appears above a right rule;
2. no left rule appears immediately above the left-premise of a branching left

rule (i.e., all left rules except pL and signL).

Proposition 4. If Γ !M is derivable then it has a normal derivation.

In a normal derivation, the left branch of a branching left rule is provable using
only right rules and id. This means that we can represent a normal derivation as
a sequence (reading the proof bottom-up) of sequents, each of which is obtained
from the previous one by adding terms composed of subterms of the previous
sequent, with the proviso that certain subterms can be constructed using right-
rules. Let us denote with Γ �R M the fact that the sequent Γ ! M is provable
using only the right rules and id. This suggests a more compact deduction system
for intruder deduction, called system L, given in Figure 3.

Proposition 5. Every sequent Γ ! M is provable in S if and only if it is
provable in L.

We now show that the decidability of the deduction problem Γ �S M can
be reduced to decidability of elementary deduction problems. We consider a
representation of terms as directed acyclic graphs (DAG), with maximum sharing
of subterms. Such a representation is quite standard and can be found in, e.g.,
[1], so we will not go into the details here.

In the following, we denote with st(Γ ) the set of subterms of the terms in
Γ. In the DAG representation of Γ , the number of distinct nodes in the DAG
representing distinct subterms of Γ co-incides with the cardinality of st(Γ ). A
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term M is a proper subterm of N if M is a subterm of N and M �= N. We denote
with pst(Γ ) the set of proper subterms of Γ , and we define

sst(Γ ) = {sign(M, N) |M, N ∈ pst(Γ )}.

The saturated set of Γ , written St(Γ ), is the set

St(Γ ) = Γ ∪ pst(Γ ) ∪ sst(Γ ).

The cardinality of St(Γ ) is at most quadratic in the size of st(Γ ). If Γ is repre-
sented as a DAG, one can compute the DAG representation of St(Γ ) in polyno-
mial time, with only a quadratic increase of the size of the graph. Given a DAG
representation of St(Γ ∪ {M}), we can represent a sequent Γ ! M by associat-
ing each node in the DAG with a tag which indicates whether or not the term
represented by the subgraph rooted at that node appears in Γ or M . Therefore,
in the following complexity results for deducibility problem Γ �S M (for some
proof system S), we assume that the input consists of the DAG representation of
the saturated set St(Γ ∪{M}), together with approriate tags in the nodes. Since
each tag takes only a fixed amount of space (e.g., a two-bit data structure should
suffice), we shall state the complexity result w.r.t. the size of St(Γ ∪ {M}).

Definition 6. Let Γ �D M be a deduction problem, where D is some proof sys-
tem, and let n be the size of St(Γ ∪{M}). Let E be the equational theory associ-
ated with D. Suppose that the elementary deduction problem in E has complexity
O(f(m)), where m is the size of the input. Then the problem Γ �D M is said
to be polynomially reducible to the elementary deduction problem �E if it has
complexity O(nk × f(n)) for some constant k.

A key lemma in proving the decidability result is the following invariant property
of linear proofs.

Lemma 5. Let Π be an L-derivation of Γ ! M. Then for every sequent Γ ′ ! M ′

occurring in Π, we have Γ ′ ∪ {M ′} ⊆ St(Γ ∪ {M}).

The existence of linear size proofs then follows from the above lemma.

Lemma 6. If there is an L-derivation of Γ ! M then there is an L-derivation
of the same sequent whose length is at most |St(Γ ∪ {M})|.

Another useful observation is that the left-rules of L are invertible; at any point
in proof search, we do not lose provability by applying any left rule. Polynomial
reducibility of �L to �E can then be proved by a deterministic proof search
strategy which systematically tries all applicable rules.

Theorem 2. The decidability of the relation �L is polynomially reducible to the
decidability of elementary deduction �E .

Note that in the case where the theory E is empty, we obtain a ptime decision
procedure for intruder deduction with blind signatures.
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5 Some Example Theories

We now consider several concrete AC convergent theories that are often used
in reasoning about security protocols. Decidability of intruder deduction under
these theories has been extensively studied [1,7,9,10,13,17]. These results can be
broadly categorized into those with explicit pairing and encryption constructors,
e.g., [9,17], and those where the constructors are part of the equational theories,
e.g., [1,10]. For the latter, one needs explicit decryption operators with, e.g., an
equation like dec({M}N , N) ≈M. Decidability results for these deduction prob-
lems are often obtained by separating elementary deducibility from the general
deduction problem. This is obtained by studying some form of normal deriva-
tions in a natural deduction setting. Such a reduction, as has been shown in the
previous section, applies to our calculus in a more systematic fashion.

Exclusive-or. The signature of this theory consists of a binary operator ⊕ and a
constant 0. The theory is given by the axioms of associativity and commutativity
of ⊕ together with the axiom x⊕x ≈ 0 and x⊕0 ≈ x. This theory can be turned
into an AC convergent rewrite system with the following rewrite rules:

x⊕ x→ 0 and x⊕ 0→ x.

Checking Γ �E M can be done in PTIME, as shown in, e.g., [7].

Abelian groups. The exclusive-or theory is an instance of Abelian groups, where
the inverse of an element is the element itself. The more general case of Abelian
groups includes an inverse operator, denoted with I here. The equality theory
for Abelian groups is given by the axioms of associativity and commutativity,
plus the theory {x⊕0 ≈ 0, x⊕ I(x) ≈ 0}. The equality theory of Abelian groups
can be turned into a rewrite system modulo AC by orienting the above equalities
from left to right, in addition to the following rewrite rules:

I(x⊕ y)→ I(x)⊕ I(y) I(I(x)) → x I(0)→ 0.

One can also obtain an AC convergent rewrite system for an extension of Abelian
groups with a homomorphism axiom involving a unary operator h: h(x ⊕ y) =
h(x)⊕ h(y). In this case, the rewrite rules above need to be extended with

h(x⊕ y)→ h(x) ⊕ h(y) h(0)→ 0 h(I(x)) → I(h(x)).

Decidability of elementary deduction under Abelian groups (with homomor-
phism) can be reduced to solving a system of linear equations over some semirings
(see [12] for details).

6 Combining Disjoint Convergent Theories

We now consider the intruder deduction problem under a convergent AC theory
E, which is obtained from the union of pairwise disjoint convergent AC theories
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E1, . . . , En. Each theory Ei may contain an associative-commutative binary op-
erator, which we denote with ⊕i. We show that the intruder deduction problem
under E can be reduced to the elementary deduction problem of each Ei.

Given a term M = f(M1, . . . , Mk), where f is a function symbol (i.e., a
constructor, an equational symbol or ⊕), the terms M1, . . . , Mk are called the
immediate subterms of M. Given a term M and a subterm occurrence N in M ,
we say that N is a cross-theory subterm of M if N is headed with a symbol
f ∈ ΣEi and it is an immediate subterm of a subterm in M which is headed by
a symbol g ∈ ΣEj , where i �= j. We shall also refer to N as an Eij-subterm of
M when we need to be explicit about the equational theories involved.

Throughout this section, we consider a sequent system D, whose rules are
those of S, but with id replaced by the rule below left and with the addition of
the rule below right where N is a cross-theory subterm of some term in Γ ∪{M}:

M ≈E C[M1, . . . , Mk]
C[ ] an Ei-context, and M1, . . . , Mk ∈ Γ

Γ ! M
idEi

Γ ! N Γ, N !M

Γ ! M
cs

The analog of Proposition 1 holds for D. Its proof is a straightforward adap-
tation of the proof of Proposition 1.

Proposition 6. The judgment Γ ! M is provable in the natural deduction sys-
tem N , under theory E, if and only if Γ ↓ ! M ↓ is provable in the sequent
system D.

Cut elimination also holds for D. Its proof is basically the same as the proof
for S, since the “logical structures” (i.e., those concerning constructors) are the
same. The only difference is in the treatment of abstracted terms (the rules gs
and cs). In D we allow abstraction of arbitrary cross-theory subterms, in addition
to guarded subterm abstraction. The crucial part of the proof in this case relies
on the variable abstraction technique (Proposition 2 and Proposition 3), which
applies to both guarded subterm and cross-theory subterm abstraction.

Theorem 3. The cut rule is admissible for D.

The decidability result for S also holds for D. This can be proved with straight-
forward modifications of the similar proof for S, since the extra rule cs has the
same structure as gs in S. It is easy to see that the same normal forms for S also
holds for D, with cs considered as a left-rule. It then remains to design a linear
proof system for D. We first define the notion of right-deducibility: The relation
Γ �RD M holds if and only if the sequent Γ ! M is derivable in D using only
the right rules. We next define a linear system for D, called LD, which consists
of the rules of L defined in the previous section, but with the proviso Γ �R M
changed to Γ �RD M , and with the additional rule:

Γ, R ! M

Γ !M
lcs

where R is a cross-theory subterm of some term in Γ ∪ {M} and Γ �RD R.
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Proposition 7. A sequent Γ ! M is provable in D if and only if it is provable
in LD.

The notion of polynomial reducibility is slightly changed. Suppose each elemen-
tary deduction problem in Ei is bounded by O(f(m)). Let m be the size of
St(Γ ∪ {M}). Then the deduction problem Γ �D M is polynomially reducible
to �E1 , . . . , �En if it has complexity O(mkf(m)), for some constant k.

Theorem 4. The decidability of the relation �LD is polynomially reducible to
the decidability of elementary deductions �E1 , . . . , �En .

7 Conclusion and Related Work

We have shown that decidability of the intruder deduction problem, under a
range of equational theories, can be reduced to the simpler problem of elementary
deduction, which amounts to solving equations in the underlying equational
theories. This reduction is obtained in a purely proof theoretical way, using
standard techniques such as cut elimination and permutation of inference rules.

There are several existing works in the literature that deal with intruder
deduction. Our work is more closely related to, e.g., [9,12,17], in that we do not
have explicit destructors (projection, decryption, unblinding), than, say, [1,10].
In the latter work, these destructors are considered part of the equational theory,
so in this sense our work slightly extends theirs to allow combinations of explicit
and implicit destructors. A drawback for the approach with explicit destructors
is that one needs to consider these destructors together with other algebraic
properties in proving decidability, although recent work in combining decidable
theories [3] allows one to deal with them modularly. Combination of intruder
theories has been considered in [8,3,14], as part of their solution to a more
difficult problem of deducibility constraints which assumes active intruders. In
particular, Delaune, et. al., [14] obtain results similar to what we have here
concerning combination of AC theories. One difference between these works and
ours is in how this combination is derived. Their approach is more algorithmic
whereas our result is obtained through analysis of proof systems.

It remains to be seen whether sequent calculus, and its associated proof tech-
niques, can prove useful for richer theories. For certain deduction problems, i.e.,
those in which the constructors interact with the equational theory, there does
not seem to be general results like the ones we obtain for theories with no inter-
action with the constructors. One natural problem where this interaction occurs
is the theory with homomorphic encryption, e.g., like the one considered in [17].
Another interesting challenge is to see how sequent calculus can be used to
study the more difficult problem of solving intruder deduction constraints, e.g.,
like those studied in [9,7,13].
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Flat and One-Variable Clauses for Single Blind Copying
Protocols: The XOR Case
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Abstract. In cryptographic protocols with the single blind copying restriction,
at most one piece of unknown data is allowed to be copied in each step of the
protocol. The secrecy problem for such protocols can be modeled as the satisfia-
bility problem for the class of first-order Horn clauses called flat and one-variable
Horn clauses, and is known to be DEXPTIME-complete. We show that when an
XOR operator is additionally present, then the secrecy problem is decidable in
3-EXPTIME. We also note that replacing XOR by the theory of associativity-
commutativity or by the theory of Abelian groups, or removing some of the syn-
tactic restrictions on the clauses, leads to undecidability.

1 Introduction

Cryptographic protocols are rules for exchange of messages between participants over
an insecure network, and are meant to ensure security objectives like secrecy, authenti-
cation, etc. The messages exchanged are built from basic data like identities, public and
private keys, and random numbers, by applying cryptographic operations like encryp-
tion, decryption and hashing. Because of the difficulty of detecting subtle flaws in even
simple looking protocols, automated verification of such protocols has received consid-
erable interest. This is commonly done under the well-known Dolev-Yao model [12]
which in particular includes the perfect-cryptography assumption, which treats crypto-
graphic operations as black boxes, thus allowing a symbolic analysis of protocols.

Since the general verification problem is undecidable, many researchers have tried
to obtain decidability results by identifying reasonable conditions on the protocols. One
common approach is to bound the number of allowed sessions of the protocol. In this
case the secrecy problem becomes co-NP-complete [15]. This however helps us to de-
tect only some of the security flaws. To certify a protocol, we need to consider un-
bounded number of possibly interleaved executions of the protocol, possibly with other
safe abstractions, i.e. those which do not miss any flaws. A common safe abstraction
is to allow only a bounded number of nonces, i.e. random numbers, to be used in in-
finitely many sessions. The secrecy problem still remains undecidable, though becomes
decidable if message size is also bounded [13].

Instead of bounding message size, Comon-Lundh and Cortier [5,8] introduced the
single blind copying restriction. Intuitively this restriction means that in each step in-
volving receiving and sending of a message by a participant, at most one piece of data is
blindly copied by the participant. This is a restriction often satisfied by protocols in the
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literature. Such protocols are conveniently modeled by first-order Horn clauses called
flat and one-variable clauses. Comon-Lundh and Cortier showed that this class can be
decided in 3-EXPTIME. We further showed in previous work [16] that the problem is
in fact DEXPTIME-complete.

Another line of work is a partial weakening of the perfect cryptography assumption,
by taking into account algebraic properties of operations. Examples of such operations
are exclusive-or (XOR) and modular exponentiation. Other properties of operations
which occur commonly are associativity-commutativity and the Abelian group laws.
On the one hand, such properties sometimes are necessary for the correct behavior of
protocols, and on the other hand, certain flaws can be missed if our analysis ignores
these properties. A detailed survey of such protocols and decision results about them
can be found in [10]. Under the bounded sessions assumption, the verification problem
has been shown to be decidable in presence of various operations like XOR and mod-
ular exponentiation [2,3,7]. In the case of unbounded number of sessions, we run into
undecidability issues as in the case without algebraic properties. In this paper we show
however that if the single blind copying protocols considered above are further allowed
to use an XOR operator, then the secrecy problem is decidable in 3-EXPTIME.

The paper is organized as follows. We define our class of protocols as well as flat
and one-variable clauses in Section 2. Various related classes as well as undecidability
results are discussed in Section 2.2. To present our decision procedure we start in Sec-
tion 3 by presenting some useful results on unification in presence of the XOR theory.
Our main algorithm and its analysis are then presented in Section 4.

2 Modeling and Some Undecidability Results

We fix an infinite set X = {x1, x2, . . .} of variables and a signature Γ = {f, g, . . .} of
finitely many function symbols, each with a fixed arity. We assume Γ to contain the bi-
nary symbol ⊕, representing the XOR operator, and the nullary symbol 0, representing
the unit of this binary operator. Terms built over these variables and symbols are de-
fined as usual. Recall that a congruence relation ≡ is an equivalence relation such that
f(s1, . . . , si, s, si+1, . . . , sn) ≡ f(s1, . . . , si, t, si+1, . . . , sn) whenever s ≡ t. The
XOR-equivalence relation =XOR on terms is defined as usual as the smallest congru-
ence relation satisfying the following properties for all terms s, t, u.

s⊕ (t⊕ u) =XOR (s⊕ t)⊕ u (associativity) s⊕ 0 =XOR s (the unit axiom)
s⊕ t =XOR t⊕ s (commutativity) s⊕ s =XOR 0 (nil-potence)

Given a finite set of predicates, each with a fixed arity, atoms are of the form
P (t1, . . . , tn) where ti are terms and P is a predicate. Literals are either positive lit-
erals +A (or simply A) or negative literals −A, where A is an atom. The relation
=XOR is extended to atoms and literals as usual. We also write M ∈XOR S to mean
that M =XOR N for some N with N ∈ S. Similarly we define ⊆XOR. S1 =XOR S2
means that S1 ⊆XOR S2 and S2 ⊆XOR S1. Clauses are finite disjunction of literals,
also thought of as the set of those literals. Horn clauses are those in which at most
one positive literal occurs which is then called the head. The remaining literals in the
Horn clause compose the body of the clause. Definite clauses are those with exactly



120 H. Seidl and K.N. Verma

one positive literal, and negative clauses are those with no positive literal. The clauses
A ∨ −A1 ∨ . . . ∨ −An and −A1 ∨ . . . ∨ −An are also written as A⇐ A1 ∧ . . . ∧An

and ⇐ A1 ∧ . . .∧An respectively. Substitutions σ are functions from a finite set domσ

of variables, called the domain of σ, to terms. Mσ denotes the application, defined as
usual, of substitution σ to M , where M is a term, atom, literal, clause or a set of such
objects. This is well-defined if the domain of σ contains the set of variables occurring
inM , denoted fv(M). Terms, atoms, literals and clauses are ground if they do not con-
tain variables, and substitutions are ground if they map all variables in their domain to
ground terms.

An interpretation H is a set of ground atoms such that if P (s1, . . . , sn) ∈ H and
si =XOR ti for 1 ≤ i ≤ n then P (t1, . . . , tn) ∈ H . H satisfies a set S of clauses if
for every clause C ∈ S and every ground substitution σ, either some A ∈ H with +A
occurring in Cσ, or some A /∈ H with −A occurring in Cσ. H is then called a model
of S. S is satisfiable if it has a model. A satisfiable set of Horn clauses always has a
least (w.r.t. the subset relation) model, and a set of definite clauses is always satisfiable.
If some P (t) is in the least model then we also say that P (t) holds, or P accepts t. The
latter terminology is based on the view of P as an automaton-state (see e.g. [4], Chapter
7). The least model of a set S of definite clauses is in fact the smallest interpretation
H such that if A ⇐

∧n
i=1 Ai ∈ S, if σ is a ground substitution, and if Aiσ ∈ H for

1 ≤ i ≤ n then Aσ ∈ H . Hence corresponding to every element A of the least model
we have a finite tree-shaped justification. Each node in the tree represents a justification
step where some clause and substitution are used to obtain an atom, based on the atoms
at the children nodes. The root node produces the atom A. This tree will be called a
derivation of A.

It is also possible to view Horn clauses as definite clauses. To do this, we choose a
fresh nullary predicate ⊥. Then a set S of Horn clauses is satisfiable iff ⊥ is not in the
least model of the set S′ of definite clauses, where S′ consists of the definite clauses of
S, together with the clauses ⊥⇐

∧n
i=1Ai for every negative clause ⇐

∧n
i=1 Ai of S.

A term, atom, literal or a clause M is called one-variable if it contains at most one-
variable. In particular, there is no restriction on the number of times this variable occurs
inM . A clause C is called flat if it is of the form∨m

i=1±iPi(fi(x1
i , . . . , x

ni

i )) ∨
∨n

j=1±′
jQj(xj)

where m,m ≥ 0, and for 1 ≤ i ≤ m we have {x1
i , . . . , x

ni

i } = fv(C) and fi �= ⊕.
Here ±,±i are elements of {+,−}. We define the class C⊕1 to consist of sets of the
form

S ∪ {I(x1 ⊕ x2) ⇐ I(x1) ∧ I(x2)}
where S is a set of one-variable Horn clauses and flat Horn clauses. C⊕1 is the class that
we are interested in in this paper. Note that in the last clause the same predicate appears
three times, and we have only one such clause in the set. This clause will be called the
addition clause of the set, and I will be called the addition predicate. The XOR operator
is not allowed in flat clauses. There is however no restriction on the occurrences of the
XOR operator in one-variable clauses. Finally note that flat clauses and addition clauses
contain only unary predicates, but no such restriction has been put on one-variable
clauses. However encoding atoms P (t1, . . . , tn) as atoms P ′(fn(t1, . . . , tn)) for fresh
P ′ and fn ensures that restricting one-variable clauses to contain only unary predicates
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causes no loss of generality. Hence in this paper we will consider only unary predicates
and nullary predicates (the latter will be introduced later for technical purposes).

2.1 Protocols

Terms represent messages exchanged in protocols. We assume that Γ also contains
binary symbols 〈 , 〉, { } , [ ] representing pairing, and symmetric encryption and
asymmetric encryption of messages respectively. Symmetric encryption means that the
same key (which could be an arbitrary term) is used for encryption and decryption. For
asymmetric encryption we consider finitely many constantsK representing encryption
keys, and we correspondingly have constantsK−1 representing decryption keys. A pro-
tocol rule is of the form r1, . . . , rn −→ swhere s and all ri are messages, possibly non-
ground. This rule denotes sending out of message s after receipt of messages r1, . . . , rn.
A protocol is a finite set of protocol rules. The assumption of single blind copying then
says that each protocol rule contains at most one variable (which may occur anywhere
any number of times in that rule). Any protocol rule can be executed any number of
times. The adversary has full control over the network: all messages received by agents
are actually sent by the adversary and all messages sent by agents are actually received
by the adversary. The adversary can obtain new messages from messages he knows,
e.g. by performing encryption and decryption. Accordingly we choose a unary predi-
cate I to model messages known to the adversary. The protocol rule r1, . . . , rn −→ s is
translated to the clause I(s) ⇐ I(r1)∧ . . .∧ I(rn). Under the assumption of single blind
copying it is clear that this is a one-variable clause. We need further clauses to express
adversary capabilities. The clauses

I({x1}x2) ⇐ I(x1) ∧ I(x2)
I([x1]x2) ⇐ I(x1) ∧ I(x2)

I(x1) ⇐ I({x1}x2) ∧ I(x2)
I(x1) ⇐ I([x1]x2) ∧ I1(x2) I1(K) ⇐ I(K−1)

express the encryption and decryption abilities of the adversary. The last clause is added
for all (finitely many) keysK used for asymmetric encryption. We have similar clauses
for his pairing and unpairing abilities. All these are clearly flat clauses. The adversary’s
knowledge of other data c like agent’s names, public keys, etc are expressed by clauses
I(c). In the presence of an XOR operator, we also have the clause

I(x1 ⊕ x2) ⇐ I(x1) ∧ I(x2)
Clearly we need only one such clause and the same predicate occurs three times in the
clause, as required by the class C⊕1 . A message M is known to the intruder if I(M) is
in the least model of the set of clauses. A message is secret if it is not known to the
intruder. To check secrecy of M , we add clause −I(M) and check satisfiability of the
resulting clause set. Our protocol model is similar to that of [1] and of several other
works. It is suitable for Horn-clause based analysis, and also allows several possible
abstractions, all safe in the sense that no security flaws are missed by the analysis.

Example 1. The following is a modified version of the example protocol of [5], written
in informal notation (”X → Y : M” represents sending
of message M from agent X to agent Y ). SAB is some
confidential data which A wants to send to B, KB is the
public key of B, and N1 andN2 are fresh nonces chosen

A→ B : {N1}KB

B → A : N1 ⊕N2

A→ B : N2 ⊕ S
by A and B respectively. We are interested in the secrecy of SAB . To formalize the



122 H. Seidl and K.N. Verma

protocol in our notation, we follow [6] to choose two honest agents h1 and h2 and a
dishonest agent d. For each pair u �= v of agents we create protocol rules

−→ {n1
uv}Kv {x1}Kv −→ x1 ⊕ n2

uv x1 −→ x1 ⊕ n1
uv ⊕ Suv

This is based on the (safe) abstraction of using a single constantn1
uv in place of infinitely

many different nonces chosen by u in those sessions in which u starts a session with
v, and similarly for n2

uv. However in this formalization Sh1h2 is not secret. Since we
do a safe abstraction, this merely indicates the possibility of a security flaw. We now
consider a milder abstraction and use the following rules in place of the above.

−→ {n1
uv}Kv {x1}Kv −→ x1 ⊕ n2

uv(x1) x1 −→ x1 ⊕ n1
uv ⊕ Suv

Now the nonce chosen by v is n2
uv(x), which is a function of the received nonce x

(this is inspired from [1]). In this formalization, Sh1h2 is a secret, meaning that the flaw
in the former formalization was introduced by the abstraction. Both formalizations are
single blind copying protocols, and hence can be dealt with using our techniques. �

2.2 Related classes

We now consider some related classes of protocols, whose study is also proposed
in [5,8]. Firstly we consider the cases where some other equational theory instead of
XOR is used. We consider the theories AC, ACU and the theory AG of Abelian groups.
The ACU theory is obtained by removing the nil-potence axiom from the XOR theory,
i.e. we have the associativity axiom s ⊕ (t ⊕ u) =ACU (s ⊕ t) ⊕ u, the commutativity
axiom s ⊕ t =ACU t ⊕ s and unit axiom s ⊕ 0 =ACU s. AC is obtained by removing
the unit axiom from ACU. AG is obtained from ACU by adding an additional axiom
s ⊕ −s =AG 0 where − is a unary symbol. We will see that if any of these theories
is considered in place of the XOR theory, then we get undecidability, for the protocol
analysis problem as well as for the satisfiability problem for the clauses. For the sake
of this discussion, note that interpretations and satisfiability, as defined above w.r.t. the
=XOR relation should be redefined for the new relations =ACU and others. In this and in
later sections, we sometimes treat s and t as the same object when s =AC t. We write
Σn

i=1si to mean s1 ⊕ . . .⊕ sn. For n = 0 it denotes 0. We write nt to mean Σn
i=1t.

To start with we show that one-variable clauses in presence of the ACU theory be-
come undecidable. We do this by encoding two-counter automata, in the style of [17].
We can conveniently define a two-counter automaton using Horn clauses. Transitions
are clauses of the following form for arbitrary predicates P,Q.

P (f(x1), x2) ⇐ Q(x1, x2) (increment first counter)
P (x1, g(x2)) ⇐ Q(x1, x2) (increment second counter)
P (x1, x2) ⇐ Q(f(x1), x2) (decrement first counter)
P (x1, x2) ⇐ Q(x1, g(x2)) (decrement second counter)
P (0, x2) ⇐ Q(0, x2) (zero test on first counter)
P (x1, 0) ⇐ Q(x1, 0) (zero test on second counter)

A configuration is of the form P (fm(0), gn(0)) with m,n ≥ 0. A two-counter au-
tomaton is a finite set of transitions together with a configuration (representing the ini-
tial configuration of the machine). The set of reachable configurations of a two-counter
automaton is defined to be the least model of its set of transitions together with the
clause P (s, t) where P (s, t) is the initial configuration.
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Checking whether a given configuration is reachable in a given two-counter automa-
ton is undecidable. We now reduce it to satisfiability of one-variable clause sets modulo
ACU. We encode configurations P (fm(0), gn(0)) as P (ma ⊕ nb) where a and b are
nullary symbols. The first, third and fifth clause above are then translated as the follow-
ing clauses, and the second, fourth and sixth clauses are translated similarly:
P (x1 ⊕ a) ⇐ Q(x1) P (x1) ⇐ Q(x1 ⊕ a) P (x1) ⇐ Q(x1) ∧ zero1(x1)
where zero1 is a fresh auxiliary predicate corresponding to the first counter being zero.
Accordingly we add clauses zero1(0) and zero1(x1 ⊕ b) ⇐ zero1(x1).

Corresponding to the initial configuration P (fm(0), gn(0)) we add clause P (ma ⊕
nb), and for the configuration P (fp(0), gq(0)) whose reachability we want to check,
we add the clause −P (pa⊕ qb). Then unsatisfiability of this clause set is equivalent to
reachability of the given configuration. A similar encoding works for AC and AG. In
case of AG we have to explicitly prevent counters becoming negative during transitions.
Hence the decrement of the first counter is translated as P (x1) ⇐ Q(x1⊕a)∧valid(x1)
where the fresh auxiliary predicate valid corresponds to valid configurations. Hence we
add clauses valid(0), valid(x1 ⊕ a) ⇐ valid(x1) and valid(x1 ⊕ b) ⇐ valid(x1).

Theorem 1. Let E be the theory AC, ACU or AG. Then satisfiability of sets of one-
variable clauses modulo E is undecidable. In particular the satisfiability for the class
C⊕1 modulo E is undecidable.

We also note that a similar undecidability results can be obtained for other theories e.g.
those modeling associativity and commutativity of multiplication of exponents in the
modular exponentiation operation.

We note that the above undecidability result can also be proved for the protocols,
by reducing satisfiability of one-variable clauses to secrecy of protocols. The idea is
same as the one used in [13,16] for proving lower bounds. Consider given some set of
one-variable clauses. We choose a public data c, i.e. which is known to the adversary,
and a symmetric key K not known to the adversary. Encode atoms P (t) as messages
{〈P, t〉}K , by treating P as some data. Corresponding to every clause P (t) ⇐ P1(t1)∧
. . .Pn(tn) for n ≥ 1 we create the rule {〈P1, t1〉}K , . . . , {〈Pn, tn〉}K −→ {〈P, t〉}K .
Corresponding to every clause ⇐ P1(t1) ∧ . . . ∧ Pn(tn) for n ≥ 1 we create the rule
{〈P1, t1〉}K , . . . , {〈Pn, tn〉}K −→ {c}K . The intuition is to let the adversary know
messages {P,M}K exactly when P (M) is in the least model, and to let him know
{c}K exactly when the clause set is unsatisfiable. This works because the adversary
cannot decrypt messages encrypted with K . He also cannot encrypt messages with K .
He can only forward messages encrypted with K . Then secrecy of {c}K is equivalent
to satisfiability of the clause set.

Theorem 2. Let E be the theory AC, ACU or AG. Secrecy of cryptographic protocols
with single blind copying is undecidable in presence of the theory E .

Returning to the XOR theory, we now consider relaxing the condition that only one
addition clause I(x ⊕ y) ⇐ I(x) ∧ I(y) is allowed. Let the class C⊕2 consist of sets
of one-variable Horn clauses, flat Horn clauses and clauses of the form P (x ⊕ y) ⇐
Q(x) ∧R(y). Note that P,Q,R need not be equal, and any number of such clauses are
allowed in a set. This is another class whose decidability is conjectured in [5,8]. We
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again show how to encode two counter automata. Configurations P (fm(0), gn(0)) are
encoded as P (fm(a) ⊕ gn(b)). The increment transition P (f(x1), x2) ⇐ Q(x1, x2) is
translated to following clauses which use fresh auxiliary predicates and symbol f′.
is1(a) is1(f(x1)) ⇐ is1(x1) is2(b) is2(g(x1)) ⇐ is2(x1)
Qinc1(x1 ⊕ x2) ⇐ Q(x1) ∧ inc1(x2) inc1(x1 ⊕ f′(x1)) ⇐ is1(x1)

Qcheck1(x1) ⇐ Qinc1(x1) ∧ check1(x1)
check1(x1 ⊕ x2) ⇐ isf ′(x1) ∧ is2(x2) isf ′(f′(x1))

Pfin(x1 ⊕ x2) ⇐ Qcheck1(x1) ∧ fin1(x2) fin1(f′(x1)⊕ f(x1))
P (x1) ⇐ Pfin(x1) ∧ check(x1) check(x1 ⊕ x2) ⇐ is1(x1) ∧ is2(x2)

If Q accepts fm(a) ⊕ gn(b) then Qinc1 should accept f′(fm(a)) ⊕ gn(b) since inc1
accepts fm(a)⊕ f′(fm(a)). HoweverQinc1 also accepts other unnecessary terms which
are not of the form f′(x) ⊕ gn(b) (e.g. fm(a) ⊕ gn(b) ⊕ fm+1(a) ⊕ f′(fm+1(a))).
We filter these out and f′(fm(a)) ⊕ gn(b) is accepted at Qcheck1. We then finish the
increment operation by accepting the term f(fm(a)) ⊕ gn(b) at Pfin. Pfin again
accepts some bad terms not representing valid configurations. These are filtered out and
f(fm(a)) ⊕ gn(b) is accepted at P . Decrement transitions are translated using similar
ideas. Zero test P (0, x2) ⇐ Q(0, x2) is translated to clause P (x1) ⇐ Q(x1) ∧ is2(x1).

Theorem 3. Satisfiability for the class C⊕2 modulo XOR is undecidable.

To avoid undecidability, we may consider restricting the above clauses by enforcing that
P = Q = R in the above clause. In other words, we allow arbitrarily many clauses of
the form P (x1 ⊕ x2) ⇐ P (x1) ∧ P (x2). This is the class C⊕ considered in [5,8]. To be
precise, C⊕ allows the flat and one-variable clauses to be non-Horn. Compared to C⊕,
our class C⊕1 differs in two respects:

– non-Horn flat and one-variable clauses are not allowed in C⊕1 .
– only one clause of the form P (x1 ⊕ x2) ⇐ P (x1) ∧ P (x2) is allowed in C⊕1 .

An algorithm for the class C⊕ is proposed in [8,5] where a non-elementary time com-
plexity upper bound is claimed for the satisfiability problem (and consequently for the
protocol verification problem). The proof seems to have some problems, as confirmed
to us by V. Cortier [9]. Hence decidability of the class C⊕ is open to the best of our
knowledge. Instead we focus on the restricted class C⊕1 which suffices for the modeling
of protocols. The decision procedure for C⊕1 presented in this paper means that decid-
ability of the protocol verification problem for single blind copying protocols with XOR
can indeed be shown, and in fact a triple exponential complexity upper bound can also
be obtained. Our techniques do not seem to apply for the class C⊕ even if only Horn
clauses are considered. A key idea we use for showing the 3-EXPTIME upper bound is
decomposition of one-variable terms into simpler terms. We introduced this idea in [16]
for the non-XOR case, and generalize it in this paper to the XOR case.

Other related work. Several other work deal with classes of protocols and of Horn
clauses in the presence of XOR [11,14,17,18,19]. These are incomparable to the class
of single blind copying protocols with XOR, and to the class C⊕1 . In [17,18,19], decid-
ability and complexity of classes of Horn clauses modulo various algebraic properties
including XOR are presented. In the absence of equational theories, these classes corre-
spond to one-way and two-way alternating tree automata, in the style of [4] (see Chapter
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7). Compared to C⊕1 , the two-way automata clauses contain only linear terms, but allow
clauses of the form P1(x⊕y) ⇐ P2(x)∧P3(y) without any restriction. A decision pro-
cedure for XOR-based key management schemes is presented in [11]. Compared to the
class studied here, they forbid nested encryption in protocol steps, but allow more than
one variables in protocol steps. In [14], again following the approach based on Horn
clauses, the verification problem for a general class of protocols with XOR is reduced
to that of protocols without XOR. The syntax of protocols is restricted in such a way
that the XOR operator is never applied to two non-ground terms. Hence although the
protocol steps of [14] may contain more than one variables, terms like f(x)⊕ g(x) are
forbidden but are allowed in our one-variable clauses. For example, the two formaliza-
tions of the protocol in Example 1 lie in our class but the second one (which turned out
to be necessary for showing secrecy) cannot be dealt with by [14]. Hence the reduction
of [14], combined with the decidability result on single blind copying protocols without
XOR, still does not yield the decidability results which we prove here. The goal of [14]
is not to obtain new decidability results, but to use tools like ProVerif [1] which are
efficient in practice in the non-XOR case.

3 Results on Unification

If M is a term, literal, clause, or sets of terms or literals, and if fv(M) ⊆ {x} then
we also write M [x] to emphasize this. M [t] then denotes Mσ where σ = {x �→ t}.
This is extended to sets as usual. Hence for sets X and Y of one-variable terms we
define X [Y ] = {s[t] | s ∈ X, t ∈ Y }. We also write M ◦ N to mean M [N ]. Define
Xn = {s1 ◦ . . . ◦ sn | each si ∈ X},X0 = {x},X∗ =

⋃
n≥0X

n, X ⊕ Y = {s⊕ t |
s ∈ X, t ∈ Y }, nX = {s1⊕ . . .⊕sn | each si ∈ X}, andΣX =

⋃
n≥0 nX . {t}⊕M

will also be written t⊕M . Trivial terms are those of the form x ⊕ g for some variable
x and some ground term g. Trivial literals are those of the form ±P (x ⊕ g) and trivial
clauses are those containing only trivial literals. Terms are viewed as trees, and positions
or nodes in the trees are sequences of strictly positive integers, as usual. The root node
is denoted by the empty sequence λ. The term occurring at a position π in a term t is
denoted as t|π . The symbols ⊕ and 0 are equational. Other symbols are free, and are
denoted using f, g, . . .. If M is a symbol (resp. a set of symbols) then an M -term is a
term containing M (resp. a symbol from M ) at the root, and an M -position in a term
is a position labeled with M (resp. a symbol from M ). The notions of free terms, free
positions, equational terms and equational positions are defined accordingly. Given a
term t, if π is a position in t then a⊕-child of π is a position δ such that δ is not labeled
with ⊕, π ≤ δ, and for every π ≤ δ′ < δ, δ′ is labeled with ⊕. In this case, π is the
⊕-parent of δ. If δ1 and δ2 are mutually distinct ⊕-children of π then δ1 and δ2 are
⊕-siblings. A summand of a term t is a term at a⊕-child of λ in t. The subterm relation
on terms is defined on terms modulo =AC.

– t is a subterm of t.
– If s is a subterm of some ti then s is a subterm of f(t1, . . . , tn) where f is free.
– If s is a subterm of t and if t is not a ⊕-term then s is a subterm of t⊕ u.

Hence a ⊕ b is not a subterm of a ⊕ b ⊕ c. We say that s is a strict subterm of t if
t =ACU u ⊕ f(s1, . . . , sn) for some free f and s is a subterm of some si. A term is
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ACU-normal if it has no subterm of the form u⊕0. A term t is XOR-normal (or simply
normal) if it has no two ⊕-sibling positions π1 and π2 with t|π1 = t|π2 . We will denote
by t⇓ the ACU-normal form of a term t and by t↓ the XOR-normal form of a term t,
both unique upto =AC.

Unifiers and most general unifiers (mgus) are defined w.r.t. the XOR theory as usual.
Note that mgus need not be unique, unlike in the non-XOR case. A substitution σ is
trivial if xσ =XOR y ⊕ g for some ground term g. A trivial instance of a term, clause,
or substitutionM is of the formMσ where σ is trivial. Note that if substitution σ1 is a
trivial instance of σ2 then σ2 is also a trivial instance if σ1. When defining mgus, it is
unnecessary to include all trivial instances. We will arbitrarily choose some of them to
keep and leave others. Unifying two distinct one-variable terms with the same variable
produces ground unifiers of a simple form.

Lemma 1. Let s and t be two normal one-variable terms such that s[x] �= t[x]. For
every unifier σ of s[x] and t[x], we have xσ ∈XOR ΣG where G is the set of ground
subterms of s and t.

Contrary to what is conjectured in [8], there can be more than one unifier in the case
above. For example, the terms f(x)⊕ f(x⊕ a) and f(a)⊕ f(0) have {x �→ a} as well
as {x �→ 0} as unifiers. In the above result, the summands are in fact strict subterms of
s and t, under a simple condition. This is stated below.

Lemma 2. Let s and t be two normal one-variable terms such that s[x] �= t[x] and
(s[x]⊕ t[x])↓ is non-ground and non-trivial. Then any unifier σ of s[x] and t[x] satisfies
xσ ∈XOR ΣG where G is the set of free ground strict subterms of s and t.

For a term t, ‖t‖ denotes the maximum depth at which variables appear in t, and is
defined as ‖x‖ = 1 for all variables x, ‖t‖ = 0 when t is ground, ‖t1 ⊕ t2‖ =
max{‖t1‖, ‖t2‖}, and ‖f(t1, . . . , tn)‖ = 1 + maxn

i=1‖ti‖ when f is free and at
least one ti is non-ground. The depth ‖L‖ of a literal L is defined as ‖P‖ = 0 if
P is a nullary predicate, and ‖P (t)‖ = ‖t‖. The depth of a clause is defined as
‖
∨n

i=1 Li‖ = maxn
i=1 ‖Li‖, and is 0 for the empty clause. As stated by Lemma 1, two

one-variable terms over the same variable cannot be made equal except by a ground
substitution. Consequently, the ‖.‖ operator has the following nice property w.r.t. one-
variable terms.

Lemma 3. ‖s[t[x]]↓ ‖ = ‖s[x]‖+ ‖t[x]‖ − 1 for normal non-ground terms s and t.

We now consider unification of one-variable terms not sharing variables.

Lemma 4. Let s and t be normal one-variable terms with x �= y and s[x] �= t[y], and
σ a most general unifier of s[x] and t[y]. Let G be the set of ground subterms of s and
t, and Ng the set of non-ground subterms of s and t. Then one of the following is true.

– xσ ∈XOR Ng[y]⊕ΣG and yσ = y,
– yσ ∈XOR Ng[x]⊕ΣG and xσ = x,
– xσ, yσ ∈XOR (ΣNg)[ΣG]
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It is interesting to note that {x �→ y} need not be the only mgu of s[x] and t[y], even
when s[x] = t[x]. For example f(x) ⊕ f(x ⊕ a) and f(y) ⊕ f(y ⊕ a) have {x �→ y}
as well as {x �→ y ⊕ a} as mgus.

We are now ready to define decomposition of one-variable terms. We did this in [16]
for the non-XOR case, and generalize it now to the XOR case. We think of one-variable
terms as strings like f1(x)◦f2(x)◦f3(x) and f1(x)◦a. To unify two strings, we match
the two initial symbols, and then unify the remaining parts. A non-ground non-trivial
one variable term s[x] is reducible if there are one-variable terms s1 and s2, with s1↓
and s2↓ both non-ground and non-trivial, such that s[x] =XOR s1[x] ◦ s2[x]. Otherwise
it is called irreducible. In the analogy with strings, irreducible terms are like symbols of
the strings. The term x⊕ f(x) is irreducible. The term t = h(x⊕ f(x))⊕ x⊕ f(x) is
reducible because t = (h(x)⊕x)◦(x⊕f(x)). Viewing terms as composed of irreducible
terms is critical for obtaining a 3-EXPTIME upper bound, since a linear bound on ‖.‖
of terms generated only gives a non-elementary upper bound. The following result says
that mgus of irreducible terms are trivial or ground.

Lemma 5. Let s[x] and t[y] be non-ground irreducible normal terms. Let G be the set
of ground subterms of s and t, andNg the set of non-ground subterms of s and t. Then
mgus σ of s[x] and t[y] are of the following form.

– xσ ∈XOR y ⊕ΣG and yσ = y.
– xσ, yσ ∈XOR (ΣNg)[ΣG].

Proof. We consider the three cases in the conclusion of Lemma 4. In the third case the
proof is done. In the first case, if xσ is non-trivial then we get s[xσ] = t[y] which is a
contradiction since t is irreducible. Similarly in the second case, yσ = x ⊕ g, xσ = x
for some g ∈ ΣG. But then σ is an instance of {x �→ y ⊕ g, y �→ y} which is also a
unifier and can hence be chosen as the unifier instead. �

Now for the rest of the paper, we fix a set S0 of clauses with S0 ∈ C⊕1 . We will show
how to decide satisfiability of S0. We assume all terms occurring in S0 are normal. Let
G be the set of normal forms of finite summations of ground subterms of terms occur-
ring as arguments of predicates in S0 and G1 = {f(s1, . . . , sm) | some g(t1, . . . , tn) ∈
G with {s1, . . . , sm} = {t1, . . . , tm}, f and g both free}. Let Ngr be the set of non-
ground non-trivial irreducible terms t[x] ⊕ g such that there is some non-ground term
s[x] such that t[s] is a subterm of a term occurring as an argument of a predicate in S0,
and g ∈ G. Note that if u is an irreducible term then u⊕ g is irreducible for all ground
g. Let Ngs be the set of non-ground subterms of terms in Ngr. Let G2 = (ΣNgs)[G] and
Ngr1 = {f(t1, . . . , tn) | g(s1, . . . , sm) ∈ Ngr and {t1, . . . , tn} = {s1, . . . , sm}}.
Note that if {t1, . . . , tn} = {s1, . . . , sm} and if g(s1, . . . , sm) is irreducible then
f(t1, . . . , tn) is also irreducible, where f and g are free. The above sets are defined
modulo renaming of variables.

Example 2. Let clause P (f(h(x) ⊕ a, h(x) ⊕ g(h(x)))) ⇐ Q(x ⊕ b ⊕ f ′(b, b, c)) be
in S0. Then terms a, b, c, f ′(b, b, c), b ⊕ f ′(b, b, c), a ⊕ f ′(b, b, c), a ⊕ b ⊕ c,. . . are
present in G. Terms f ′(b, b, c), f ′(c, b, c), f(b, c),. . . are present in G1. Ngr contains
terms like f(x ⊕ a, x ⊕ g(x)), x ⊕ g(x), h(x), g(x), g(x) ⊕ f ′(b, b, c). Ngr1 contains
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terms like f(x ⊕ a, x ⊕ g(x)), f(x ⊕ g(x), x ⊕ a), f ′(x ⊕ g(x), x ⊕ g(x), x ⊕ a). If
the clause R(f(x, h(h(x)))) is in S0 then f(x, h(h(x))) ∈ Ngr, h(h(x)) ∈ Ngs but
h(h(x)) /∈ Ngr. �

We note some useful properties of these sets.

– The terms in Ngr ∪ Ngr1 are irreducible.
– The sets G, G1, G2, Ngr and Ngr1 are of exponential size.
– ΣG =XOR G, Ngr⊕ G =XOR Ngr, and Ngs ⊆XOR Ngr∗.
– Subterms of terms in G are again in G.
– Ground subterms of terms in Ngr,Ngr∗,Ngr1,Ngr1[Ngr∗] are in G.
– Strict subterms of terms in G1 are in G

Let K = maxC∈S0‖C‖, i.e. the maximal variable depth of the clauses in the input set.
We introduce the following kinds of terms which will occur in clauses generated by the
normalization algorithm of the next section. Recall that we view one-variable terms as
sequences of irreducible terms. The first idea is to consider clauses having just these
sequences. But since irreducible terms can also have ground unifiers, we also need to
consider the appropriate ground instances of these terms. The irreducible terms in our
case are those from Ngr. However interaction between flat and one-variable clauses also
produces irreducible terms in Ngr1. For example let s[x] = f(x, g(x)) and t[x] = h(x)
be both in Ngr. Given clauses P (x) ⇐ Q(s[t[x]]) and Q(f(y, z)) ⇐ R(f ′(y, y, z)),
the normalization algorithm of the next section will produce clause P (x) ⇐ R(s′[t[x]])
where s′[x] = f ′(x, x, g(x)) ∈ Ngr1. Let NG be the set of terms having non-ground
normal forms. We now define

Ov = Ngr1[Ngr∗] Gov = Ov ◦ G2

Ov� = {s ∈ Ov | ‖s‖ ≤ K} Gov� = Ov� ◦ G2
T1 = Σ(Ov ∪ {x1} ∪ G) ∩ NG T2 = Σ(Gov ∪ G1)
T �

1 = Σ(Ov� ∪ {x1} ∪ G) ∩ NG T �
2 = Σ(Gov� ∪ G1)

F = set of terms of the form f(x1, . . . , xn) with free f T3 = F⊕ G
The terms with bounded depth have been defined above in order to show that we pro-
duce only those finitely many terms. Note that if σ unifies s and t then sσ⊕ tσ =XOR 0.
In the following lemma we generalize this situation to n terms, i.e. when we have
Σn

i=1siσ =XOR 0. This is an important technical lemma which helps us in dealing
with the addition clause. Intuitively the lemma says that in such a situation, with some
exceptions, we must have maximal (w.r.t. ‖.‖) summands u and v of some si and si′
respectively, such that uσ =XOR vσ. The exceptions occur when some summands of
some si ∈ T1 get canceled out using the nil-potence axiom, or when some term in F
unifies with some free term.

Lemma 6. Let n ≥ 1 and si ∈ T1∪T2∪T3 be non-trivial normal terms for 1 ≤ i ≤ n,
mutually renamed apart, and σ a substitution such that

∑n
i=1 siσ =XOR 0. For each i,

let si =
∑ki

j=1 s
j
i such that each sji is non-equational. Let si �= 0 for some i. Then one

of the following is true, where xi is the free variable of si whenever si ∈ T1.

– for some i, si ∈ T1 and xiσ ∈ G2.
– for some i, i′, j, j′, i �= i′, we have si, si′ ∈ T1 ∪ T2, sjiσ =XOR s

j′
i′ σ, ‖sji‖ = ‖si‖

and ‖sj
′

i′ ‖ = ‖si′‖.
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– for some i �= i′, we have si, si′ ∈ T3, sji , s
j′
i′ ∈ F and sjiσ =XOR s

j′
i′ σ.

– si = u⊕ g with u ∈ F and g ∈ G for some i such that uσ ∈ G1 ∪ Ngr1[G2] or uσ
is an instance of uσ′ for some σ′ such that uσ′ ∈ Ngr1.

4 The Normalization Algorithm

We present a normalization algorithm for deciding satisfiability, i.e. the algorithm will
produce an equivalent (w.r.t. least model) set of simple clauses called normal clauses
on which decision problems become easy. Using the idea of Section 2, we consider
only definite clauses. Satisfiability is equivalent to the nullary predicate ⊥ not being
present in the least model. This also means that our algorithm should deal with nullary
predicates, and in fact we will need several more nullary predicates in our algorithm.

Blocks are conjunctions B[x] of the form
∧n

i=1 Pi(x ⊕ gi) with n ≥ 1 and each
gi ∈ G. We introduce a fresh nullary predicate B̂ for each block B. Here blocks are
considered modulo renaming of variables and modulo =XOR on terms. We further in-
troduce fresh nullary predicates P̂ (t) for every predicate P and every t ∈ T2, again
considered modulo =XOR. Let P0 be the set of these fresh nullary predicates as well as
any nullary predicates originally present in S0. We slightly generalize the syntax of flat
and one-variable clauses to now allow nullary predicates. Accordingly we define Smax

to consist of definite clauses of the following form.

– the addition clause I(x1 ⊕ x2) ⇐ I(x1) ∧ I(x2)
– one-variable clauses C ∨D whereD ⊆ ±P0 and C ⊆ ±P(T �

1 ∪ T
�
2 ),

– clauses C ∨ D where D ⊆ ±P0 and C is a clause with at least one non-trivial
literal, each literal of C is of the form±P (x⊕g) with g ∈ G, or of the form±P (t)
with t ∈ T3 and fv(t) = fv(C).

Above, M(N) denotes a set of atoms for a set M of predicates and a set N of terms,
and is defined as usual. The sets −N,±N denote sets of literals for sets N of atoms,
and are defined as usual. We have bounded the depth of one-variable terms in order to
obtain our complexity upper bound. The third kind of clause above is called a complex
clause. These are similar to flat clauses, but we disallow clauses like P (x1) ⇐ Q(x2),
and allow ground summands in the arguments of predicates. The following kinds of
clauses are called normal.

– addition clause
– trivial clauses of the form P (x⊕ g) ⇐

∧n
i=1 I(x⊕ gi)

– clauses A⇐
∧n

i=1 Ai in which ‖A‖ > ‖Ai‖ for all i.

Let S1 = S0 ∪ {P̂ (t) ⇐ P (t) | t ∈ T2} ∪ {B̂ ⇐ B | B is a block}. We can see
that if H is the least model of S0 thenH ′ is the least model of S1 whereH ′ consists of
the atoms in H together with the atoms P̂ (t) for all P (t) ∈ H with t ∈ T2, as well as
atoms B̂ where B =

∧n
i=1 Pi(x ⊕ gi) and there is some t such that Pi(t⊕ gi) ∈ H for

all i. In particular⊥ ∈ H ′ iff ⊥ ∈ H .
The normalization algorithm uses a saturation procedure which adds more and more

clauses, hopefully of simpler form, until all necessary normal clauses have been added.
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The saturation steps are as follows. Note that all steps other than Step 1 just add new
clauses, and they can be applied in some arbitrary order. However Step 1 replaces a
clause by another clause, and it is also eager, i.e. no other step can be applied as long as
this step is applicable.

1. LetB2 be a non-empty conjunction
∧n

i=1 Pi(x⊕gi), and letA⇐ B1 be non-ground
and not containing variable x. Clause A ⇐ B1 ∧ B2 is then eagerly replaced by
A⇐ B1 ∧ B̂2.

2. Let C be non-ground and t ground. From clause C ∨−P (t) we obtain C ∨−P̂ (t).
3. Let P be a nullary predicate. From clauses C ∨ −P and P we obtain C.
4. Let p ≥ 1. From the clause I(x ⊕ g) ⇐

∧p
i=1 I(x ⊕ gi) we obtain the clause

I(g1 ⊕ g) ⇐
∧p

i=1
̂I(g1 ⊕ gi).

5. Let p ≥ 1 and A be a ground atom (possibly a nullary predicate). From clause
A⇐

∧p
i=1 I(x⊕ gi) we obtain A⇐

∧p
i=1 I(g1 ⊕ gi).

6. From C[x] we obtain C[g] where C is a one-variable clause and g ∈ G2.
7. From complex clause C in which a term f(x1, . . . , xn) appears, we obtain Cσ,

provided f(x1, . . . , xn)σ ∈ Ngr1 ∪ G1 ∪ Ngr1[G2].
8. Let C1 = C′

1 ∨ P (s) and C2 = −P (t) ∨ C′
2 be complex or one-variable clauses,

‖P (s)‖ = ‖C1‖, ‖P (t)‖ = ‖C2‖, and σ be a mgu of s and t. From C1 and C2 we
obtain C′

1σ ∨ C′
2σ.

9. Let u ↓=ACU u1 ⊕ u2, s ↓=ACU s1 ⊕ s2, u1 be free, ‖u1‖ ≥ ‖u2‖, s1 be free,
‖s1‖ ≥ ‖s2‖, and σ be a mgu of u1 and s1. Let ‖I(u)‖ ≥ ‖C1‖ and ‖I(s)‖ ≥ ‖C2‖.
From clauses C1 ∨ −I(u) and I(s) ∨ C2 we obtain C1σ ∨−I(u2 ⊕ s2)σ ∨ C2σ.

10. Let u ↓=ACU u1 ⊕ u2, s ↓=ACU s1 ⊕ s2, u1 be free, ‖u1‖ ≥ ‖u2‖, s1 be free,
‖s1‖ ≥ ‖s2‖, ‖u‖ ≥ ‖C1‖ and ‖s‖ ≥ ‖C2‖ and and σ be a mgu of u1 and s1.
From clauses I(u) ∨ C1 and I(s) ∨C2 we obtain I(u2 ⊕ s2)σ ∨ C1σ ∨ C2σ.

Step 5 explains why our techniques work for the class C⊕1 but not for the more general
class C⊕ of [5,8]. While clauses like P (x⊕ a) ⇐ Q(x⊕ b)∧R(x⊕ c) are easy to deal
with when {I} �= {P,Q,R}, clauses like I(x⊕a) ⇐ I(x⊕b)∧ I(x⊕c) are problematic.
Fortunately, in presence of the addition clause, this is equivalent to the ground clause

I(b ⊕ a) ⇐ I(0) ∧ I(b ⊕ c) which can then be replaced by I(b ⊕ a) ⇐ Î(0) ∧ ̂I(b ⊕ c).
On the other hand, if we allowed clauses Ii(x ⊕ y) ⇐ Ii(x) ∧ Ii(y) for i = 1, 2, 3 then
the clause I1(x⊕ a) ⇐ I2(x ⊕ b) ∧ I3(x⊕ c) is difficult to deal with.

As is usual for saturation procedures, correctness of the rules is easy to show, since
the new clauses are essentially logical implications of the old clauses. Steps 1 and 2 are
correct because of the new clauses added to S0 to obtain S1. Steps 9 and 10 deal with
addition clauses, and are essentially as used in [5,8]. But instead of resolution based
reasoning as in [5,8], we analyze the derivation trees, and use Lemma 6 to reason about
XOR of arbitrary number of terms. For example, given clauses P (x) ⇐ I(f(x) ⊕ x)
and I(f(y) ⊕ g(y)) ⇐ R(y), Step 9 gives us the clause P (x) ⇐ I(x ⊕ g(x)) ∧ R(x).
Given clauses I(f(x)⊕a) ⇐ P (x) and I(f(g(y))⊕h(y)) ⇐ Q(g(y)), Step 10 gives us
the clause I(h(y)⊕ a) ⇐ P (g(y)) ∧Q(g(y)). In both cases the new clause is a logical
implication of the given clauses together with the addition clause I(x⊕y) ⇐ I(x)∧I(y).

Lemma 7 (Correctness). Let S1 ⊆ S ⊆ Smax. Let S′ be obtained from S by applying
one of Steps 1- 10. Then S and S′ have the same least model.
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We next show that new clauses produced are of the right form. The essential idea is
that we always choose maximal (w.r.t ‖.‖) terms for unification, so that the clauses C
produced have bounded ‖C‖.

Lemma 8 (Preservation of syntax). Let S ⊆ Smax. Let S′ be obtained from S by
applying one of Steps 2- 10 followed by applications of Step 1 as long as possible. Then
S′ ⊆ Smax.

Our strategy now is to apply the saturation steps to add clauses of Smax to S1. This
is continued till no new clauses can be added. The process must end because Smax is
clearly finite. Let Ssat be the saturated set produced in this way. In Ssat, the non-normal
clauses are redundant, i.e. have no impact on derivability of atoms.

Lemma 9 (Completeness). Let the set Ssat be saturated. Then any derivationΔ of an
atom using clauses of Ssat can be transformed to a derivation Δ0 of the same atom
involving only normal clauses of Ssat.

A typical example case in usual completeness proofs is application of a normal clause
Q(f(x)) ⇐ R(x) followed by application of a non-normal clause P (h(y)) ⇐
Q(f(g(y))). But the saturated set should then contain P (h(y)) ⇐ R(g(y)) which can
be applied instead of the above two clauses to get a smaller derivation. Steps 9 and 10
are meant especially for the class C⊕1 . They deal with the case where an atom I(

∑n
i=1 ti)

is derived from derivations of I(ti), 1 ≤ i ≤ n using n− 1 applications of the addition
clause. Lemma 6 helps us to deal with the unifications involved in this case.

Recall that ⊥ is in the least model of S0 iff it is in the least model of S1. And the
latter holds iff ⊥ is in the least model of Ssat. But in the latter case, there must be
a normal derivation of ⊥ which means that ⊥ ∈ Ssat. Hence we just need to check
whether ⊥ ∈ Ssat. To analyze the time complexity of our algorithm we see that the
sets Ov�,Gov�,G,G1,G2 and F are each of exponential size. Hence the sets T �

1 , T
�
2 , T3

are each of doubly exponential size. Nullary predicates are also doubly exponentially
many. Hence Smax is of triple exponential size.

Theorem 4. Satisfiability for the class C⊕1 is in 3-EXPTIME.

Corollary 1. Secrecy for single blind copying protocols with XOR is in 3-EXPTIME.

5 Conclusion

The precise complexity of satisfiability for the class C⊕1 , and of secrecy for single blind
copying protocols with XOR, is still open. Both problems are DEXPTIME-complete in
absence of the XOR theory. The 3-EXPTIME upper bound shown here means that the
price of adding the XOR theory is low. In comparison adding any of the theories AC,
ACU or AG leads to undecidability. Similar behavior is observed when studying two-
way alternating tree automata, where alternation leads to undecidability in presence of
theories AC, ACU and AG, but has not too high a complexity in presence of the theory
XOR [18]. We also showed how the idea of decomposing one-variable terms can be
generalized to the XOR case to obtain a low complexity upper bound for the satisfiabil-
ity problem. This technique is of independent interest for automated deduction.
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Abstract. We consider the problem of deciding the security of crypto-
graphic protocols for a bounded number of sessions, taking into
account some algebraic properties of the security primitives, for instance
Abelian group properties. We propose a general method for deriving de-
cision algorithms, splitting the task into 4 properties of the rewriting
system describing the intruder capabilities: locality, conservativity, finite
variant property and decidability of one-step deducibility constraints.
We illustrate this method on a non trivial example, combining sev-
eral Abelian Group properties, exponentiation and a homomorphism,
showing a decidability result for this combination.

1 Introduction

Following the work of [7,12,16,18] and many others, for a bounded number of
protocol instances (sessions), the existence of attacks on some security properties
(such as secrecy) of cryptographic protocols can be expressed as the existence of
solutions of deducibility constraints. In this setting, the messages are abstracted
by terms in some quotient term algebra. The semantics of deducibility constraints
depends on an equational theory, that represents the intruder capabilities and the
algebraic properties of the cryptographic primitives. Given such an equational
theory E and assuming a fixed (bounded) number of sessions, we may guess an
interleaving of actions of the given sessions. Then the security problem can be
formulated as follows:

Input: given a sequence of variables {x1, . . . , xn} and an increasing sequence
of finite sets of terms T1 ⊆ . . . ⊆ Tn (representing the increasing intruder’s
knowledge) such that V ar(Ti) ⊆ {x1, . . . , xi−1}, and terms u1, v1, . . . , un, vn,

Question: do there exist contexts C1, . . . , Cn and an assignment σ such that

C1[T1]σ =E x1σ ∧ . . . ∧Cn[Tn]σ =E xnσ ∧ u1σ =E v1σ ∧ . . .∧ unσ =E vnσ?

The equations ui = vi represent the tests performed by the agents. The variables
xi correspond to the terms forged by the intruder; as they occur in ui, vi, they
must pass the tests of honest agents. The contexts C1, . . . , Cn correspond to the
computations (the recipes) of the attacker. We will give several examples.
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As E-unification is a special case, the decidability of E-unifiability is a nec-
essary condition for the decidability of deducibility constraints. This is not suf-
ficient, as, for instance, when E = AGh, unification modulo E is decidable and
unitary, while deducibility constraints are undecidable [11].

There are several equational theories for which deducibility constraints are
decidable (in NP in most cases). This is the case for the so-called Dolev-Yao
theory [17], for exclusive or [4,9], for some theories partially modeling modular
exponentiation [5,18], etc. There are also a few results for classes of equational
theories: combination results [6,7] and monoidal theories [12]. We were faced
however with a case study that does not fall into the scope of any of these
general results. In this example, we need to model more properties of modular
exponentiation, otherwise there is no honest execution of the protocol [3].

This particular example of application turns out to be non-trivial. We do
not want however to build a new theory, only for this specific example. That
is why, in the present paper, we try to draw some general method for solving
deducibility constraints, in the presence of algebraic properties. We assume first
that the equational theory is defined by an AC-convergent term rewriting system
R. Then we decompose the problem into 4 tasks:

Locality: if there is a context C such that C[T ] ∗−→
R
t and t is in normal form,

then C can be chosen such that, for any subterm C′ of C, C′[T ]↓ belongs to
an a priori computable set of terms D(T, t). This yields (depending on the
notion of subterm) decision algorithms for the “passive attacks” (given T, t,
is there a C such that C[T ]↓ = t)

Conservativity: amounts, in the Dolev-Yao case, to the “small attack prop-
erty”: if there is a solution to the constraint C, then there is another solution
σ in which the subterms of xσ are instances of the subterms of C. This is the
core of the decidability proof of [17]. In the case of other algebraic properties,
the situation is more complicated as we have to replace the syntactic notion
of subterms with a semantic one [7].

Finite variants: this property of a (AC) rewrite system is a slight generaliza-
tion of (AC)-basic narrowing termination. It states that instantiation and
rewriting can be commuted: it is possible to anticipate possible reductions
triggered by instantiations. As shown in [8], this is satisfied by most equa-
tional theories that are relevant to security protocols. There are however
important exceptions, such as homomorphism properties (typically AGh).

Pure deducibility constraints: are deducibility constraints in which the con-
texts Ci that are applied to the left members, are restricted to be pure, i.e.
to have only leaves as proper subterms. For a standard definition of sub-
terms, this can occur only when Ci consists of a single function symbol. In
the case of disjoint combinations [6], pure contexts consist of symbols of a
single component theory .

We follow a similar approach as in [12]. However, in that paper, the authors
only consider monoidal theories, together with Dolev-Yao rules. For instance,
modeling modular exponentiation could not fall in the scope of [12], as (at least)



Protocol Security and Algebraic Properties 135

two associative-commutative symbols are necessary. The idea then would be,
following [7], to use hierarchical combination results. However, our case study is
not a hierarchical combination.

We borrow ideas from both papers and try to give a constraint solving pro-
cedure that can be applied to both hierarchical combinations and to our case
study EP (Electronic Purse): both EP and the well-moded systems of [7] satisfy
conservativity and EP is local. Then, together with the finite variant property,
this allows us to reduce deducibility constraints to pure deducibility constraints
(Section 3.4). Then we focus in the section 4 on pure deducibility constraint
solving. This problem has much in common with combination problems. We do
not provide however a general solution, but only consider our case study, trying
to emphasize the main steps of this combination method.

Many proofs (including non trivial ones) are missing in this paper and can be
found in [1].

2 Rewriting and Security

2.1 Term Rewriting

We use classical notations and terminology from [13] on terms, unification,
rewrite systems. We only give here the less standard definitions. F is a set
of function symbols with their arity. Fac ⊆ F is a set of associative and com-
mutative (AC in short) symbols. They are considered as varyadic. The sets of
terms T (F , X) and T (F) are defined as usual, except that we assume flattening:
these algebras are rather quotients by the AC congruence for some symbols. Ev-
erywhere, equality has to be understood modulo AC. Replacements of subterms
may require flattening the terms. top(t) is the root symbol of t.

A substitution σ = {x1 �→ t1, . . . , xn �→ tn} maps each variable xi to ti and all
other variables to themselves. It is extended to an endomorphism of T (F , X).

Many functions from terms to terms (resp. from terms to sets of terms) are
extended without mention to sets of terms by f(S) def= {f(t) | t ∈ S} (resp.
f(S) def=

⋃
t∈S f(t)) and to substitutions: f({x1 �→ t1, . . . , xn �→ tn}) def= {x1 �→

f(t1), . . . , xn �→ f(tn)} (resp. f({x �→ t1, . . . , xn �→ tn}) def= f({t1, . . . , tn})).
A term rewriting system R is convergent modulo AC(Fac) if it is terminating

and Church Rosser modulo AC(Fac). In such a case, s↓ is the normal form of
the term s w.r.t. R (and modulo AC).

We often use the notation of contexts: C[T ] or ζ[T ] when T = (t1, . . . , tn) is a
sequence of terms. C, ζ are actually terms whose variables belong to {x1, . . . , xn}
and C[T ] is another notation for C{x1 �→ t1, . . . , xn �→ tn}. The ordering on
terms in T is only relevant to match the appropriate variable xi: when we ab-
stract the actual names xi (as in the notation C[T ]), we do not need to precise
the ordering on terms in T and therefore, by abuse of notation, we use C[T ]
when T is a set (and not a sequence).
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2.2 A Relevant Equational Theory

We will consider the following equational theory as a guideline in the paper.
The set of function symbols FEP = {exp, h,+, J+, e+, �, J�, e�, •, J•, e•} can be
interpreted in the integers: exp is the (binary) exponentiation, h is some fixed-
base exponentiation, + is the addition, � and • both represent multiplication.
We carefully chose the function symbols and designed an equational theory that
includes sufficiently many arithmetic properties, so that the protocol can be
executed [3], yet avoiding distributivity axioms that would yield undecidability.
The introduction of two function symbols for the multiplication simplifies the
proofs of Sections 4, 3.2, but we do not know if it is necessary.

For each ◦ ∈ {+, �, •}, RAG(◦) is the rewrite system modulo AC(◦):

x ◦ e◦ → x x ◦ J◦(x) → e◦
J◦(x) ◦ J◦(y) → J◦(x ◦ y) J◦(e◦) → e◦
J◦(J◦(x)) → x J◦(x) ◦ x ◦ y → y

J◦(x) ◦ J◦(y) ◦ z → J◦(x ◦ y) ◦ z J◦(x ◦ y) ◦ x→ J◦(y)
J◦(x ◦ y) ◦ x ◦ z → J◦(y) ◦ z J◦(J◦(x) ◦ y) → x ◦ J◦(y)

We define REP = R0 ∪RAG(+) ∪RAG(�) ∪RAG(•), where:

R0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp(h(x), y) → h(x � y) J•(h(x)) → h(J+(x))
exp(exp(x, y), z) → exp(x, y � z) h(e+) → e•

h(x) • h(y) → h(x+ y) J•(h(x) • y) → h(J+(x)) • J•(y)
h(x) • h(y) • z → h(x+ y) • z exp(e•, x) → h(e+ � x)

exp(x, e�) → x

Lemma 1. REP is convergent modulo AC(+, �, •).

This has been mechanically verified using CiME [10].

2.3 Semantic Subterms

Splitting a problem, for instance an equational theory, into subproblems, requires
to gather together the symbols from the individual theories. This yields a notion
of semantic subterms in which a pure term (resp. pure context ) is a term t whose
only subterms are its leaves and t itself. This notion must not be too rough,
otherwise it does not yield any simplification. For instance, in the extreme case,
if we define the semantic subterms as the leaves of a term, then every term is
pure and we don’t gain anything. On the other side, every rule of the rewriting
system must have pure members (we have to decide to which subproblem it will
belong).

A typical example of semantic subterms is given by a mode assignment as in
[7]. We do not have space to describe it in detail here. Anyway, in our case study
there is no appropriate mode assignment: they all yield a too rough notion of
subterm in which, for instance, exp(u, v) would not be a subterm of exp(u, v)•w.
That is why we need another (refined) definition of semantic subterms for our
example.
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The set of subterms of t is defined recursively from its immediate subterms
(called factors): SubEP (t) def= {t} ∪ SubEP (FactEP (t)). We now focus on the
definition of factors.

Intuitively, the factors retrieve the “alien” subterms. The factors of both sides
of the rules in REP must be variables. Roughly, in the following definition, we
carry a state (the index of Fact) that memorizes which part of a member of a
rule has been recognized so far. For instance a+ b is a factor of (a+ b) • u, since
there is no rule that can break a + b without removing first the •. a + b is not
a factor of h(a+ b) • u since, depending on u, this can be rewritten into a term
h(a+ b+ v) • w, of which a+ b is not a subterm.

Definition 1 (EP-Factors,�). We let FactEP (t) = Fact�(t)(t) where Factf
and �(t) are defined as follows (we let ◦ be any symbol in {+, �, •}):
– �(t) = ◦, if top(t) ∈ {◦, e◦, J◦}, �(h(t)) = •, if �(t) = + and �(h(t)) = exp,

if �(t) = �. In all other cases, �(t) = top(t).
– Fact◦(C◦[t1, . . . , tn]) =

⋃n
i=1 Fact◦(ti) if C◦ ∈ T ({◦, J◦, e◦},X )

– Fact•(h(t)) = Fact+(t) and, in all other cases, Fact◦(t) = {t} if �(t) �= ◦
– Factexp(exp(u, v)) = Factexp(u)∪Fact�(v), Factexp(h(u)) = Fact�(u) and,

in all other cases, Factexp(t) = {t} if �(t) �= exp
– For other function symbols f , Factf (f(t1, ..., tn)) = {t1, . . . , tn} and Factf (t)

= {t} if top(t) �= f .

Example 1. FactEP (exp(h(a � b), c � d)) = {a, b, c, d}; FactEP (h(a � b) •h(a+ c) •
(a+ d)) = {a � b, a, c, a+ d}.

2.4 Deducibility Constraints

Definition 2 (Constraint systems). A deducibility constraint system C is a
finite set of equations S between terms of T (F , X), together with a finite sequence

of deducibility constraints {T1
?
! x1, . . . , Tn

?
! xn}, where each Ti is a finite set

of terms in T (F , X), x1, . . . , xn are distinct variables and such that:

Origination: V ar(Ti) ⊆ {x1, . . . , xi−1}, for all 1 ≤ i < n.
Monotonicity: Ti ⊆ Ti+1, for all 1 ≤ i < n.

Monotonicity expresses that an attacker never forgets any message. Origination
expresses the commitment of the intruder to some message at each protocol step.
Note that some variables of S may not belong to {x1, . . . , xn}.

Example 2. The following is not a constraint system, as it violates the origina-
tion property: ⎧

⎨

⎩

a, b
?
! z z = x+ y

a, b, x
?
! y

S1 =

⎧
⎨

⎩

a
?
! x x = h(y + a)

a, x • h(b)
?
! y
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is a constraint system. This corresponds to an agent expecting a message that
matches h(y + a) and replying h(y + a) • h(b). Then we ask which values of y
can be deduced.

All function symbols in F are public (i.e. available to the intruder), except some
secret data, modeled by the constants from a set Cpriv .

Definition 3 (Solution). A recipe is any context ζ ∈ T (F \ Cpriv , X): this
corresponds to the attacker’s sequences of actions.

A substitution σ is a solution (resp. a pure solution) of the constraint system
C if its domain contains all the free variables of C and

– for every s = t ∈ S, sσ↓ = tσ↓
– For every T

?
! s ∈ C, there is a recipe (resp. a pure recipe) ζ such that

ζ[Tσ]↓ = sσ↓

Example 3. Consider the system S1 of example 2. From a
?
! x, x is assigned a

term constructed on a and public function symbols. Then, from x = h(y + a),
the same property must hold for y. If b ∈ Cpriv, we cannot use x • h(b) in the
second constraint: the solutions assign to y any term whose only private constant
symbol is a and then assign h(yσ + a)↓ to x.

We are interested in the satisfiability of constraints systems: “is there an attack
on the protocol ?”.

3 The Four Main Properties

3.1 Locality

(Generalized) Locality relies on the notion of semantic subterms and on a func-
tion D that may add or remove a few contexts. D is defined by a finite set of
replacement rules ui �→ vi, 1 ≤ i ≤ n. Then D(t) = {viθ | t = uiθ}.

Definition 4. A rewriting system R is local w.r.t. D and Sub() if, for every
recipe C, every finite set of terms T in normal form, there is a recipe ζ such
that ζ[T ]↓ = C[T ]↓ and, ∀ζ′ ∈ Sub(ζ), ζ′[T ]↓ ∈ D(Sub(T )) ∪ D(Sub(ζ[T ]↓)).

In words: if t can be deduced from T , then there is a recipe ζ such that ζ[T ]↓ = t
and, adding the pure components of ζ one-by-one and normalizing at each step,
we stay close to the subterms of T and t. The notion of “closeness” is provided
by D. Since we can compute beforehand all terms that are close to subterms of
T or t, the locality can be used for solving the passive attacker problem: “given
T, t in normal form, is there a recipe ζ such that ζ[T ]↓ = t?”: we saturate by
pure deducibility the set of terms that are close to a subterm of T or t.

The equational theories that are relevant to security are local [4,7,9,12]. In
the EP case, we showed a locality property, for another notion of subterm [3].
Here, DEP is defined by the replacements {x �→ x;x �→ h(x);h(x) �→ x}.
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Lemma 2. EP is local (w.r.t. SubEP () and DEP ).

Example 4. Let T = {h(h(a) + J+(b)), b} and let t = h(h(a) � b). The smallest
recipe ζ s.t. ζ[T ]↓ = t is ζ = exp(x1 • h(x2), x2). If we consider ζ′ = x1 •
h(x2) ∈ SubEP (ζ), we get ζ′[T ]↓ = h(h(a)), which is not in SubEP (T )∪SubEP (t).
However, ζ′[T ]↓ ∈ DEP (SubEP (T ))

3.2 Conservativity

Example 5. Let T1 = {a, b}, T2 = {a, b, c, x + a} and consider the deducibility
constraint :

a, b
?
! x ∧ a, b, c, x+ a

?
! y

and a solution σ = {x �→ a � b; y �→ b + c}. There is a recipe in normal form
ζ = ((x4 + J+(x1)) � J�(x1)) + x3 such that ζ[T2]σ↓ = yσ (remember that xi

refers to the ith element in the list of terms):

ζ[T2]σ = (((x + a+ J+(a)) � J�(a)) + c)σ → ((x � J�(a)) + c)σ → b+ c

The last redex however is an overlap between ζ[T2]↓ and σ. It consists in retriev-
ing some subterm of xσ (here b). This is an un-necessarily complicated way of
getting b: there is a simpler recipe ζ′ = x2 + x3 that would yield also yσ.

Roughly, the subterms of xσ can be obtained from T1, hence, by monotonicity,
they can be obtained from T2: there is a ζ′ such that ζ′[T2]σ↓ = yσ and such
that no rewriting step retrieves a subterm from xσ. This is what conservativity
formalizes. However, in general, we may need to retrieve some subterms of xσ,
but only along fixed paths, specified by a function D.

We assume again a function D that is defined by a finite set of replacement rules
(it does not need to be the same as for locality).

Definition 5. E is conservative (w.r.t. D and Sub()) if, for any satisfiable
deducibility constraint system C, there is a solution σ such that Sub(Cσ↓) ⊆
D(Sub(C)σ↓).

Lemma 3. EP is conservative w.r.t. DEP and SubEP ().

The proof of this lemma is non-trivial and requires several intermediate steps
that we cannot display here (see [1] for more details). The main ideas are
the following: assume that σ is a solution of C and t ∈ SubEP (xσ), t /∈ DEP

(SubEP (C)σ↓). Then we replace t with an arbitrary constant c, yielding again
a solution. Roughly, if ζ[T ]σ↓ = xσ, then replacing t with c in both members is
possible, and yields ζ[T ]σ′↓ = xσ′, except when t or some u ∈ DEP (t) occurs in
the derivation, i.e. when, for some ζ′ ∈ Sub(ζ), ζ′[T ]σ↓ ∈ DEP (t). Then we show
that we can construct another recipe for the term u, in which all private con-
stants, which are irrelevant in the derivation ζσ↓ = u, are replaced with public
constants.
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Example 6. DEP is necessary in Lemma 3:

C =

⎧
⎨

⎩

h(a+ b) • c
?
! x

h(a+ b) • c, exp(x • J•(c), c � d)
?
! y y = h(z � d)

σ = {x �→ h(a + b) • c, y �→ h((a + b) � c � d), z �→ (a + b) � c} is a solution.
t = a+ b ∈ SubEP (Cσ↓). t ∈ DEP (SubEP (C))σ↓\SubEP (C)σ↓

The proof given in [1] actually covers classes of equational theories and semantic
subterms, of which EP and well-moded systems of [7] are instances.

3.3 Finite Variant Property

This notion is introduced in [8]. It states that possible reductions on instances
of t can be anticipated: they are instances of the finite variants of t. A typical
example in which we get finite variants are rewrite systems for which (basic)
narrowing terminates. More examples are available in [8,14].

Definition 6. An AC-convergent rewrite system R has the finite variant prop-
erty, if, for any term t, there is a finite set of terms V (t) = {tθ1↓, . . . , tθk↓} such
that ∀σ.∃θ, ∃u ∈ V (t).tσ↓ = uθ.

The monoidal theories do not have necessarily this property: an equation h(x+
y) = h(x)+h(y) cannot be oriented in any way that yields a finite set of variants
for both h(x) and x+ y. In [7] there is an hypothesis called “reducibility of the
theory”, that is similar to (but weaker than) the finite variant property.

Lemma 4. EP has the finite variant property.

Example 7. Consider the term x+ J+(a). Its finite variants (for EP ) are e+ =
(a+J+(a))↓, y = (y+a+J+(a))↓,J+(a) = (e+ +J+(a))↓, J+(y+a) = (J+(y)+
J+(a))↓, x + J+(a). Note that orienting the inverse rule in the other direction,
though yielding an AC-convergent rewrite system for Abelian group, would not
yield the finite variant property, as noticed in [8].

3.4 A Decision Algorithm for Deducibility Constraints

A Pure deducibility constraint is a deducibility constraint, of which only pure
solutions are considered (see Definition 3).

Theorem 1. If E is local, conservative and has the finite variant property, then
the satisfiability of deducibility constraints is reducible to the satisfiability of pure
deducibility constraints.

Proof sketch: We assume w.l.o.g. that the functions D for conservativity and
locality are identical (this may require merging the two sets of replacements).

Let C be the constraint system and σ be a solution of C. By conservativity,
C has a solution σ1 such that Sub(Cσ1↓) ⊆ D(Sub(C)σ1↓). Thanks to the finite
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variant property, there is a variant Cθ1↓ such that Sub(C)σ1↓ ⊆ Sub(Cθ1↓)σ2
for some substitution σ2 such that σ1 = θ1σ2. Then C is satisfiable iff some
system CS1 = Cθ1↓ has a solution σ2 such that Sub(C)σ1↓ ⊆ D(Sub(CS1)σ2).

Now, we pull the substitution out of the scope of D as follows. If D is defined
by the replacements ui �→ vi, we guess which patterns ui might be introduced
by the substitution σ2. Let θ2 be a substitution such that, for every x, xθ2 is a
renaming of some term in Sub(u1, . . . , un). C is satisfiable iff some CS2 = CS1θ2
has a solution σ3 such that D(Sub(CS1)σ2) ⊆ D(Sub(CS2))σ3.

By locality, the intermediate steps in the proofs can be assumed to belong to
D(Sub(Cσ1↓)) ⊆ D(D(Sub(CS2))σ3). As before, we pull out σ3: there is a sub-
stitution θ3, and CS3 = CS2θ3 such that D(Sub(Cσ1↓)) ⊆ D(D(Sub(CS3)))σ4,
for some σ4. Then, we non-deterministically choose θ = θ1θ2θ3, add to the equa-
tional part of C the equations x = xθ for each variable of C. Then, we guess
which terms in D(D(Sub(CS3))) are deducible, and in which order: we insert

some deducibility constraints (iteratively) replacing Ti

?
! xi ∧ Ti+1

?
! xi+1 with

a system

Ti

?
! xi ∧ Ti

?
! z1 ∧ Ti, z1

?
! z2 ∧ . . . ∧ Ti+1, z1, . . . , zm

?
! xi+1

where z1, . . . , zn are new variables and z1 = v1 ∧ . . . ∧ zm = vm is added to the
equational part, for the guessed v1, . . . , vm ∈ D(D(Sub(CS3))).

By locality, any solution of the original system can be extended to the new
variables into a pure solution of the resulting system. �

Example 8. Consider the deducibility constraint (a, b, c ∈ Cpriv) in EP:

C =

⎧
⎨

⎩

a � b
?
! x

a � b, exp(x, c), J�(b � c), h(a) + c
?
! y

σ = {x �→ h(a � b); y �→ a} is a solution. Let us see the branch of the above
transformation yielding a pure constraint of which an extension of σ is a solution.

First, we compute a variant, guessing that x = h(z) and the normal form of
exp(x, c) is h(z�c). Next, we guess the identity for θ2, θ3 and we guess which terms
in {a, b, c, z, h(a), h(b), h(c), h(z)} ⊆ D(D(SubEP (CS3))) are deducible and in
which order. For instance we get the pure system:

C′ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a � b
?
! x x = h(z)

a � b, exp(x, c), J�(b � c), h(a) + c
?
! z1 z1 = h(a)

a � b, exp(x, c), J�(b � c), h(a) + c, z1
?
! z2 z2 = c

a � b, exp(x, c), J�(b � c), h(a) + c, z1, z2
?
! y

σ′ = σ � {z1 �→ h(a); z2 �→ c} is a pure solution of C′: we use the pure recipes
exp(x2, x3), x4 + J+(x5), x1 ∗ J�(x3 � x6) to obtain respectively z1σ′, z2σ′, yσ′.
(Each time xi is replaced with the ith term in Tj)
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4 Pure Deducibility Constraints

In this section, we consider only the case study EP . We first fix the pure recipes
in this case. Then, we can guess, for each elementary constraint, which type of
recipe is used and we rely on a combination method.

W.r.t. classical combination methods, there are two additional difficulties.
First, we cannot introduce new variables for abstracting subterms, as we might
lose the origination property of the constraints, without which pure deducibility
constraints become undecidable [2]. Second, the theories are not disjoint nor
hierarchical: we cannot carelessly generate constraints in theory 2 while solving
constraints in theory 1. Compared with [7], we do not have a bound on the
number of steps performed in a higher theory.

Instead of abstracting with new variables, we show in Lemma 6 that, when
�(uσ↓) �= �(u), there must be another, strictly smaller (w.r.t. a well chosen
ordering ≥), term v in DEP (SubEP (C)) such that uσ↓ = vσ↓. Then we add
u = v to the equational part of the constraint and replace u with v everywhere.
Moreover, ≥ is defined in such a way that the resulting system still satisfies orig-
ination. After successive replacements, we “stabilize” the root symbol, allowing
to fix the alien subterms in each individual constraint.

The rest of this section is devoted to the proof of the following theorem. The
complexity can be derived from a careful analysis of each step.

Theorem 2. For the equational theory EP , pure deducibility constraints can be
decided in NP .

4.1 Reduction to Three Recipe Types

We consider 3 basic types of deducibility constraints: T
?
!◦ x for ◦ ∈ {+, �, •}.

A solution of such a constraint is a substitution σ such that

– if ◦ ∈ {+, �}, then there is a ζ◦ ∈ T ({◦, J◦, e◦},X ) such that ζ◦[T ]σ↓ = xσ

– if ◦ = •, then there exist ζ• ∈ T ({•, J•, e•},X ), ζ+ ∈ T ({+, J+, e+},X ) such
that ζ•[T ]σ • h(ζ+[T ])σ↓ = xσ.

We further restrict the pure deducibility constraints, reducing again the relevant
recipes. Let a basic deducibility constraint be a conjunction of equations and of a

deducibility constraint T1
?
!◦1 x1, . . . , Tn

?
!◦n xn (still satisfying origination and

monotonicity).

Lemma 5. For any deducibility constraint C, we can effectively compute a finite
set of basic deducibility constraints C1, . . . , Cn such that the set of solutions of
C is the union of the solutions of C1, . . . , Cn.

To prove this, we first note that there are only 6 possible pure recipe types and
reduce three of them to basic deducibility constraints.
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Example 9. Let a, b
?
! x and consider the (non-basic) pure recipe exp(x1, ζ�).

Replacing x1 with a, we get the basic constraint a, b
?
!� y ∧ x = exp(a, y).

Similarly, if the pure recipe is h(ζ◦) (◦ ∈ {+, �}), we get a, b
?
!◦ y ∧ x = h(y).

In addition, we will split
?
!•:T

?
!• x becomes [T ;T ]

?
!• x and, by definition,

σ is a solution of [T1;T2]
?
!• x if there are pure recipes ζ1• and ζ2+ such that

ζ1• (T1σ) • h(ζ2+(T2σ))↓ = xσ.

4.2 Guessing Top Symbols and Equalities

We wish to guess the head function symbol of a term (after instantiation and
normalization). Such guesses are recorded using additional constraints H(u) ∈
St, where St is either a finite set of function symbols or “Others”. We also write
H(u) = f instead of H(u) ∈ {f}.

A substitution σ satisfies H(u) ∈ St if �(uσ↓) ∈ St.σ satisfies H(u) ∈
“Others” if uσ↓ is a constant, not occurring in REP .

For each variable x in C, we guess a constraint H(x) = f . By abuse of
notation, we let �(x) be f when the constraint system contains H(x) = f .

As in combination procedures, we also guess all equalities between terms in
DEP (SubEP (C)). Such guesses are recorded by adding equalities to the equa-
tional part of the constraint. After this step, we may only consider solutions σ
such that, for any u, v ∈ DEP (SubEP (C)), if uσ↓ = vσ↓, then u =Eq(C) v: all
identities that are triggered by the substitution applications are already conse-
quences of the equational part Eq(C) of C.

4.3 Stabilizing the Root Symbol

If x, y ∈ V ar(C), we let x  C y if, for every constraint T
?
! x ∈ C, y is a

variable of T . This defines an ordering -C , thanks to the origination property.
It is extended to symbols of F by x  C f for x ∈ V ar(C), f ∈ F and f  C h for
f ∈ F \ {h}. Then ≥ is the multiset path ordering [13] on the precedence -C .

When the top symbol of a subterm is not stable by substitution and normal-
ization, it equals a smaller subterm of the system:

Lemma 6. For every u ∈ SubEP (C) and every solution θ, if �(uθ↓) �= �(u),
there is a v ∈ DEP (SubEP (C)) s.t. v < u and uθ↓ = vθ↓.

Now, we perform the following transformation: for every u ∈ SubEP (C) such
that u =Eq(C) t and t ∈ DEP (SubEP (C)) and u > t, replace u with t in the left
sides of deducibility constraints. Since equalities have been guessed, by lemma
6, after iterating the above replacements, the root symbols are stable, and the
resulting system is still a constraint system, thanks to the definition of ≥.
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Example 10.
a • b, c

?
!+ x

a • b, c, x+ J+(c)
?
!• y

⎫
⎬

⎭
⇒

⎧
⎨

⎩

a • b, c
?
!+ x

a • b, c
?
!• y

Assume xσ = a • b + c. Then the equality x + J+(c) = a • b is part of the
equations of C and, since x+J+(c) > a• b, the transformation yields the system
on the right.

4.4 Eliminating Variables from Left Hand Sides: Reducing
Deducibility Constraints to Linear Diophantine Equations

At this stage, we could consider the alien subterms in the Ti’s as constants
and translate the deducibility constraints into Diophantine systems. This yields
however non-linear Diophantine equations, as shown in [2]: we need to rely on
origination and the Abelian group properties for further simplifications.

Let Ti

?
!◦ xi be a constraint of C. In this step, we eliminate variables from

Fact◦(Ti), if they are headed with ◦ and introduced by a ◦ constraint.1

Let ◦ ∈ {+, �, •}, Ti

?
!◦ xi (resp. [Ti, Ti]

?
!• xi) in C. We define fv◦i (u) as

follows: we let X ◦
i be the set of variables xj , j < i such that �(xj) = ◦ and Tj

?
!◦

xj ∈ C (resp. [Tj, Tj ]
?
!• xj ∈ C) and u = ζ◦[xi1 , . . . , xik

, u1, . . . , um] be such

that Fact◦(u) ∩ X ◦
i = {xi1 , . . . , xik

}. Then fv◦i (u)
def= ζ◦[e◦, . . . , e◦, u1, . . . , um]↓.

If ◦ ∈ {+, �} and Ti

?
!◦ xi ∈ C, we replace every u ∈ Ti with fv◦i (u). If ◦ = •

and [Ti, Ti]
?
!• xi ∈ C, we replace any u = u′ • h(u′′) in the first copy of Ti with

fv•i (u′) • h(fv+
i (u′′)) and every u in the second copy with fv+

i (u).

Example 11. An instance of the above transformation is:

a
?
! x ∧ a, b+ x

?
! y =⇒ a

?
! x ∧ a, b

?
! y

This preserves the solutions: if ζ+ is such that ζ+[a, b+xσ]↓ = yσ, then, rebuild-
ing xσ from a, we can build a new recipe ζ′+ such that ζ′+[a, b] = yσ. Conversely,
we can build ζ+ from ζ′+ by subtracting xσ when necessary. These ideas were
already applied to deduction constraints modulo Abelian groups in [18].

Similarly x1 • a • h(x2 + b) would be replaced with a • h(b), if �(x1) = • and
�(x2) = +.

The left hand sides of deducibility constraints might no longer be linearly ordered
by inclusion, but we no longer need this property in further sections.

Lemma 7. The above transformations preserve the solutions and result in a
basic constraint C′ such that:
1 We can prove actually that the variables that are headed with ◦ and not introduced

by a ◦ constraint have been eliminated in the previous step.
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– if Ti

?
!◦ xi ∈ C′ and ◦ ∈ {+, �}, then for every x ∈ Fact◦(Ti), �(x) �= ◦.

– if [T ′
i , T

′′
i ]

?
!• xi ∈ C′, then:

• for every x ∈ Fact+(T ′′
i ), �(x) �= +.

• for every u = u1 • . . .un • h(v1 + . . . + vm) ∈ T ′
i such that Fact•(u) =

{u1, . . . , un, v1, . . . , vm}, for every x ∈ X , x ∈ {u1, . . . , un} ⇒ �(x) �= •
and x ∈ {v1, . . . , vm}⇒ �(x) �= +.

4.5 Turning Deduction Constraints into Linear Diophantine
Equations

We do the following transformation of deducibility constraints into equations.
This transformation is possible and correct by lemmas 6 and 7. For ◦ ∈ {+, �},

∑

i

t1i , . . . ,
∑

i

tni
?
!◦ x =⇒ x =

∑

i,j

λjt
j
i

if, ∀i, j.�(tji ) �= ◦ and λ1, . . . , λn are new formal integer variables, representing
the number of times each term is selected in the recipe.

For
?
!•, we use here a multiplicative notation for • and an additive one for +:

[ (
∏

i t
1
i ) • h(

∑
i u

1
i ), . . . , (

∏
i t

n
i ) • h(

∑
i u

n
i ) ;

∑
i v

1
i , . . . ,

∑
i v

m
i ]

?
! x

⇒

⎧
⎨

⎩

x = x1 • h(x2)
x1 =

∏n
j=1

∏
i(t

j
i )

λj

x2 =
∑n

j=1
∑

i λju
j
i +

∑m
j=1

∑
i μjv

j
i

If ∀i, j.�(tji ) /∈ {•, h} & �(uj
i ),�(vj

i ) �= + and λ1, . . . , λn, μ1, . . . , μm are integer
variables.

Example 12.
[ a • h(2b), a3 • b ; 2a+ 3b, 2b ]

?
!• x

is turned into x = x1 • h(x2), x1 = aλ1 • a3λ2 • bλ2 = aλ1+3λ2 • bλ2 , x2 =
2λ1b+ 2μ1a+ 3μ1b+ 2μ2b = 2μ1a+ (2λ1 + 3μ1 + 2μ2)b.

4.6 Solving the System of Equations

We now have to solve a system of equations E = E1 ∪ E2, where E1 contains
equations of the form x = Σ◦λiαiti, H(ti) �= ◦ and E2 is a set of usual equa-
tions. After applying the finite variant property, our procedure for solving E is
similar to unification procedures in the union of disjoint theories, except that we
have in addition the linear Diophantine equations coming from the deducibility
constraints. We recall here very briefly the main steps.

Step 1: apply the finite variant property. Equations modulo EP are re-
duced to equations in a combination of 3 AC theories.
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Step 2: guess equalities, theories and an occurrence ordering. Since new
equalities can be introduced in step 1, we guess once more the equalities be-
tween the subterms of E.

Step 3: turn the system into linear diophantine equations. The equations
modulo AC yield linear Diophantine systems. That is where constraints of E1
are inserted. After the above steps, equations in E1 are of the form:

β1u1 ◦ . . . ◦ βmum = λ1α1t
′
1 ◦ . . . ◦ λnαnt

′
n, ∀i.H(t′i) �= ◦

Since equalities have been guessed, we can simplify the equations and turn
it into a linear system. For instance, if ◦ = + and ui =

∑n
j=1 u

i
jt

′
j :

α1λ1 = β1μ
1
1 + . . . + βmμ

m
1 + γ1 ∧ . . . ∧ αnλn = β1μ

1
n + . . . + βmμ

m
n + γn

5 Conclusion

We gave a general method for deciding deducibility constraints in the presence of
algebraic properties of security primitives and apply it to a non-trivial example:
from Theorems 1 and 2, we deduce:

Theorem 3. In the case of the equational theory EP , deducibility constraints
are decidable (in NP).

There is still much to do. First, we need to undestand better the combination
mechanism of section 4. We chose to explain the steps of the procedure in some
detail here since we feel that there should be some more general mechanism,
that would be applicable to other combination problems. Next, though we have
general conditions on the semantic subterms and on the rewriting systems, that
imply conservativity, we did not display these conditions here, since we feel
that there should be simpler conditions. For instance, it should be possible,
from the rewrite system, to automatically infer the definition of subterms, in
such a way that we get conservativity. This is an ambitious goal, as it would
yield a systematic way of splitting an equational theory into (non disjoint, yet
combinable) equational theories.
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10. Contejean, E., Marché, C.: Cime: Completion modulo e. In: Ganzinger, H. (ed.)
RTA 1996. LNCS, vol. 1103, pp. 416–419. Springer, Heidelberg (1996)

11. Delaune, S.: An undecidability result for AGh. Theoretical Computer Science 368(1-
2), 161–167 (2006)

12. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis
for monoidal equational theories. Information and Computation 206(2-4), 312–351
(2008)

13. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243–309. North-Holland, Ams-
terdam (1990)

14. Escobar, S., Meseguer, J., Sasse, R.: Effectively checking the finite variant property.
In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 79–93. Springer, Heidelberg
(2008)

15. Kolaitis, P. (ed.): Eighteenth Annual IEEE Symposium on Logic in Computer
Science, Ottawa, Canada. IEEE Computer Society, Los Alamitos (2003)

16. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proc. 8th ACM Conference on Computer and Communica-
tions Security (2001)

17. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is np-complete. In: Proc. 14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia (June 2001)

18. Shmatikov, V.: Decidable analysis of cryptographic protocols with products and
modular exponentiation. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp.
355–369. Springer, Heidelberg (2004)



YAPA: A Generic Tool for Computing Intruder
Knowledge�
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Abstract. Reasoning about the knowledge of an attacker is a necessary
step in many formal analyses of security protocols. In the framework of
the applied pi calculus, as in similar languages based on equational logics,
knowledge is typically expressed by two relations: deducibility and static
equivalence. Several decision procedures have been proposed for these
relations under a variety of equational theories. However, each theory
has its particular algorithm, and none has been implemented so far.

We provide a generic procedure for deducibility and static equiva-
lence that takes as input any convergent rewrite system. We show that
our algorithm covers all the existing decision procedures for convergent
theories. We also provide an efficient implementation, and compare it
briefly with the more general tool ProVerif.

1 Introduction

Understanding security protocols often requires reasoning about the information
accessible to an online attacker. Accordingly, many formal approaches to secu-
rity rely on a notion of deducibility [18,19] that models whether a piece of data,
typically a secret, is retrievable from a finite set of messages. Deducibility, how-
ever, does not always suffice to reflect the knowledge of an attacker. Consider
for instance a protocol sending an encrypted Boolean value, say, a vote in an
electronic voting protocol. Rather than deducibility, the key idea to express con-
fidentiality of the plaintext is that an attacker should not be able to distinguish
between the sequences of messages corresponding to each possible value.

In the framework of the applied pi-calculus [3], as in similar languages based
on equational logics [10], indistinguishability corresponds to a relation called
static equivalence: roughly, two sequences of messages are statically equivalent
when they satisfy the same algebraic relations from the attacker’s point of view.
Static equivalence plays an important role in the study of guessing attacks
(e.g. [1,5,13]), as well as for anonymity properties and electronic voting pro-
tocols (e.g. [17]). In several cases, this notion has also been shown to imply
the more complex and precise notion of cryptographic indistinguishability [1,8],
related to probabilistic polynomial-time Turing machines.
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R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 148–163, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



YAPA: A Generic Tool for Computing Intruder Knowledge 149

We emphasize that both deducibility and static equivalence apply to obser-
vations on finite sets of messages, and do not take into account the dynamic
behavior of protocols. Nevertheless, deducibility is used as a subroutine by many
general decision procedures [12,11]. Besides, it has been shown that observational
equivalence in the applied pi-calculus coincides with labeled bisimulation [3], that
is, corresponds to checking a number of static equivalences and some standard
bisimulation conditions.

Deducibility and static equivalence rely on an underlying equational theory
for axiomatizing the properties of cryptographic functions. Many decision pro-
cedures [2,14] have been proposed to compute these relations under a variety
of equational theories, including symmetric and asymmetric encryptions, signa-
tures, exclusive OR, and homomorphic operators. However, except for the class
of subterm convergent theories [2], which covers the standard flavors of encryp-
tion and signature, each of these decision results introduces a new procedure,
devoted to a particular theory. Even in the case of the general decidability cri-
terion given in [2], we note that the algorithm underlying the proof has to be
adapted for each theory, depending on how the criterion is fulfilled.

Perhaps as a consequence of this fact, none of these decision procedures has
been implemented so far. Up to our knowledge the only tool able to verify static
equivalence is ProVerif [9,10]. This general tool can handle various equational
theories and analyze security protocols under active adversaries. However termi-
nation of the verifier is not guaranteed in general, and protocols are subject to
(safe) approximations.

The present work aims to fill this gap between theory and implementation
and propose an efficient tool for deciding deducibility and static equivalence in
a uniform way. It is initially inspired from a procedure for solving more gen-
eral constraint systems related to active adversaries and equivalence of finite
processes, presented in [5], with corrected extended version in [6] (in French).
However, due to the complexity of the constraint systems, this decision proce-
dure was only studied for subterm convergent theories, and remains too complex
to enable an efficient implementation.

Our first contribution is to provide and study a generic procedure for check-
ing deducibility and static equivalence, taking as input any convergent theory
(that is, any equational theory described by a finite convergent rewrite system).
We prove the algorithm sound and complete, up to explicit failure cases. Note
that (unfailing) termination cannot be guaranteed in general since the problem
of checking deducibility and static equivalence is undecidable, even for conver-
gent theories [2]. To address this issue and turn our algorithm into a decision
procedure for a given convergent theory, we provide two criteria. First, we de-
fine a syntactic criterion on the rewrite rules that ensures that the algorithm
never fails. This criterion is enjoyed in particular by any convergent subterm
theory, as well as the theories of blind signature and homomorphic encryption.
Termination often follows from a simple analysis of the rules of the algorithm:
as a proof of concept, we obtain a new decidability result for deducibility and
static equivalence for the prefix theory, representing encryption in CBC mode.
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Second, we provide a termination criterion based on deducibility: provided that
failure cannot occur, termination on a given input is equivalent to the existence
of some natural finite representation of deducible terms. As a consequence, we
obtain that our algorithm can decide deducibility and static equivalence for all
the convergent theories previously known to be decidable [2].

Our second contribution is an efficient implementation of this generic proce-
dure, called YAPA. After describing the main features of the implementation, we
report several experiments suggesting that our tool computes static equivalence
faster and for more convergent theories than the general tool ProVerif [9,10].
Because of space constraints, proofs are in an extended version of this paper [7].

2 Preliminaries

2.1 Term Algebra

We start by introducing the necessary notions to describe cryptographic mes-
sages in a symbolical way. For modeling cryptographic primitives, we assume
a given set of function symbols F together with an arity function ar : F → N.
Symbols in F of arity 0 are called constants. We consider a set of variables X
and a set of additional constants W called parameters. The (usual, first-order)
term algebra generated by F over W and X is written F [W ∪X ] with elements
denoted by T, U, T1 . . . More generally, we write F ′[A] for the least set of terms
containing a set A and stable by application of symbols in F ′ ⊆ F .

We write var(T ) (resp. par(T )) for the set of variables (resp. parameters) that
occur in a term T . These notations are extended to tuples and sets of terms in the
usual way. The set of positions (resp. subterms) of a term T is written pos(T ) ⊆
N∗ (resp. st(T )). The subterm of T at position p ∈ pos(T ) is written T |p. The
term obtained by replacing T |p with a term U in T is denoted T [U ]p.

A (finite, partial) substitution σ is a mapping from a finite subset of variables,
called its domain and written dom(σ), to terms. The image of a substitution is its
image as a mapping im(σ) = {σ(x) | x ∈ dom(σ)}. Substitutions are extended
to endomorphisms of F [X ∪ W ] as usual. We use a postfix notation for their
application. A term T (resp. a substitution σ) is ground iff var(T ) = ∅ (resp.
var(im(σ)) = ∅).

For our cryptographic purposes, it is useful to distinguish a subset Fpub of F ,
made of public function symbols, that is, intuitively, the symbols made avail-
able to the attacker. A recipe (or second-order term) M , N , M1. . . is a term in
Fpub[W∪X ], that is, a term containing no private (non-public) function symbols.
A plain term (or first-order term) t, r, s, t1. . . is a term in F [X ], that is, contain-
ing no parameters. A (public, ground, non-necessarily linear) n-ary context C
is a recipe in Fpub[w1, . . . , wn], where we assume a fixed countable subset of pa-
rameters {w1, . . . , wn, . . .} ⊆ W . If C is a n-ary context, C[T1, . . . , Tn] denotes
the term obtained by replacing each occurrence of wi with Ti in C.
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2.2 Rewriting

A rewrite system R is a finite set of rewrite rules l → r where l, r ∈ F [X ]
and var(r) ⊆ var(l). A term S rewrites to T byR, denoted S →R T , if there exist
l → r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ and T = S[rσ]p.
We write→+

R for the transitive closure of→R,→∗
R for its reflexive and transitive

closure, and =R for its reflexive, symmetric and transitive closure.
A rewrite system R is convergent if is terminating, i.e. there is no infinite

chains T1 →R T2 →R . . ., and confluent, i.e. for every terms S, T such that
S =R T , there exists U such that S →∗

R U and T →∗
R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗
R S

and S is R-reduced then S is a R-reduced form of T . When this reduced form
is unique (in particular if R is convergent), we write S = T ↓R.

2.3 Equational Theories

We equip the signature F with an equational theory represented by a set of equa-
tions E of the form s = t with s, t ∈ F [X ]. The equational theory E generated
by E is the least set of equations containing E that is stable under the axioms of
congruence (reflexivity, symmetry, transitivity, application of function symbols)
and under application of substitutions. We write =E for the corresponding rela-
tion on terms. Equational theories have proved very useful for modeling algebraic
properties of cryptographic primitives [2,15].

We are particularly interested in theories E that can be represented by a
convergent rewrite system R, i.e. theories for which there exists a convergent
rewrite system R such that the two relations =R and =E coincide. The rewrite
systemR—and by extension the equational theory E— is subterm convergent if,
in addition, we have that for every rule l → r ∈ R, r is either a subterm of l or a
ground R-reduced term. This class encompasses the one of the same name used
in [2], the class of dwindling theories used in [4], and the class of public-collapsing
theories introduced in [16].

Example 1. Consider the signature Fenc = {dec, enc, 〈 , 〉, π1, π2}. The sym-
bols dec, enc and 〈 , 〉 are functional symbols of arity 2 that represent respectively
the decryption, encryption and pairing functions, whereas π1 and π2 are func-
tional symbols of arity 1 that represent the projection function on the first and
the second component of a pair, respectively. The equational theory of pairing
and symmetric (deterministic) encryption, denoted by Eenc, is generated by the
equations Eenc = {dec(enc(x, y), y) = x, π1(〈x, y〉) = x, π2(〈x, y〉) = y}.

Motivated by the modeling of the ECB mode of encryption, we may also
consider an encryption symbol that is homomorphic with respect to pairing:

Ehom = Eenc ∪
{

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

}

.

If we orient the equations from left to right, we obtain two rewrite systems Renc

andRhom. Both rewrite systems are convergent, onlyRenc is subterm convergent.
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From now on, we assume a given equational theory E represented by a con-
vergent rewrite system R. A symbol f is free if f does not occur in R. In order
to model (an unbounded number of) random values possibly generated by the
attacker, we assume that Fpub contains infinitely many free public constants. We
will use free private constants to model secrets, for instance the secret keys used
to encrypt a message. Private (resp. public) free constants are closely related to
bound (resp. free) names in the framework of the applied pi calculus [3]. Our
formalism also allows one to consider non-constant private symbols.

3 Deducibility and Static Equivalence

In order to describe the cryptographic messages observed or inferred by an at-
tacker, we introduce the following notions of deduction facts and frames.

A deduction fact is a pair, written M 
 t, made of a recipe M ∈ Fpub[W ∪X ]
and a plain term t ∈ F [X ]. Such a deduction fact is ground if var(M, t) = ∅. A
frame, denoted by letters ϕ, Φ, Φ0. . . , is a finite set of ground deduction facts.
The image of a frame is defined by im(Φ) = {t | M 
 t ∈ Φ}. A frame Φ is
one-to-one if M1 
 t, M2 
 t ∈ Φ implies M1 = M2.

A frame ϕ is initial if it is of the form ϕ = {w1 
 t1, . . . , w� 
 t�} for some
distinct parameters w1, . . . , w� ∈ W . Initial frames are closely related to the
notion of frames in the applied pi-calculus [3]. The parameters wi can be seen
as labels that refer to the messages observed by an attacker. Given such an
initial frame ϕ, we denote by dom(ϕ) its domain dom(ϕ) = {w1, . . . , w�}. If
par(M) ⊆ dom(ϕ), we write Mϕ for the term obtained by replacing each wi

by ti in M . If in addition M is ground then t = Mϕ is a ground plain term.

3.1 Deducibility, Recipes

Classically (see e.g. [2]), a ground term t is deducible modulo E from an initial
frame ϕ if there exists M ∈ Fpub[dom(ϕ)] such that Mϕ =E t. This corresponds
to the intuition that the attacker may compute (infer) t from ϕ. For the purpose
of our study, we generalize this notion to arbitrary frames, and even sets of
(non-necessarily ground) deduction facts φ, using the notations 
φ and 
E

φ.

Definition 1 (deducibility). Let φ be finite set of deductions facts, for in-
stance a frame. We say that M is a recipe of t in φ, written M 
φ t, iff there
exist a (public, ground, non-necessarily linear) n-ary context C and some de-
duction facts M1 
 t1, . . . , Mn 
 tn in φ such that M = C[M1, . . . , Mn] and
t = C[t1, . . . , tn]. In that case, we say that t is syntactically deducible from φ,
also written φ ! t.

We say that M is a recipe of t in φ modulo E, written M 
E
φ t, iff there exists

a term t′ such that M 
φ t′ and t′ =E t. In that case, we say that t is deducible
from φ modulo E, written φ !E t.

We note that M 
ϕ t is equivalent to Mϕ = t when ϕ is an initial frame and
when t (or equivalently M) is ground.
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Example 2. Consider the equational theory Eenc given in Example 1. Let ϕ =
{w1 
 〈enc(s1, k), enc(s2, k)〉, w2 
 k} where s1, s2 and k are private constant
symbols. We have that 〈w2, w2〉
ϕ 〈k, k〉, and dec(proj1(w1), w2) 
Eenc

ϕ s1.

3.2 Static Equivalence, Visible Equations

Deducibility does not always suffice for expressing the knowledge of an attacker.
In particular, it does not account for the partial information that an attacker
may obtain about secrets. This issue motivates the study of visible equations
and static equivalence [3], defined as follows.

Definition 2 (static equivalence). Let ϕ be an initial frame. The set of vis-
ible equations of ϕ modulo E is defined as

eqE(ϕ) = {M �� N |M, N ∈ Fpub[dom(ϕ)], Mϕ =E Nϕ}
where �� is a dedicated commutative symbol. Two initial frames ϕ1 and ϕ2 with
the same domain are statically equivalent modulo E, written ϕ1 ≈E ϕ2, if their
sets of visible equations are equal, i.e. eqE(ϕ1) = eqE(ϕ2).

This definition is in line with static equivalence in the applied pi calculus [3].
For the purpose of finitely describing the set of visible equations eqE(ϕ) of an
initial frame, we introduce quantified equations of the form ∀z1, . . . , zq.M �� N
where z1, . . . , zq ∈ X , q ≥ 0 and var(M, N) ⊆ {z1, . . . , zq}. In the following,
finite sets of quantified equations are denoted Ψ , Ψ0,. . . We write Ψ |= M �� N
when the ground equation M �� N is a consequence of Ψ in the usual, first-order
logics with equality axioms for the relation �� (that is, reflexivity, symmetry,
transitivity and compatibility with symbols in Fpub). When no confusion arises,
we may refer to quantified equations simply as equations. As usual, quantified
equations are considered up to renaming of bound variables.

Example 3. Consider again the equational theory Eenc given in Example 1. Let
ϕ1 = {w1 
 enc(c0, k), w2 
 k} and ϕ2 = {w1 
 enc(c1, k), w2 
 k} where c0,
c1 are public constants and k is a private constant. Let Ψ1 = {enc(c0, w2) ��
w1} and Ψ2 = {enc(c1, w2) �� w1}. We have that Ψi |= eqEenc

(ϕi) for i = 1, 2.
Hence, eqEenc

(ϕ1) �= eqEenc
(ϕ2) and the two frames ϕ1 and ϕ2 are not statically

equivalent. However, it can be shown that {w1
enc(c0, k)} ≈Eenc {w1
enc(c1, k)}.

4 Main Procedure

In this section, we describe our algorithms for checking deducibility and static
equivalence on convergent rewrite systems. After some additional notations, we
present the core of the procedure, which consists of a set of transformation rules
used to saturate a frame and a finite set of quantified equations. We then show
how to use this procedure to decide deducibility and static equivalence, provided
that saturation succeeds.

Soundness and completeness of the saturation procedure are detailed in Sec-
tion 5. We provide sufficient conditions on the rewrite systems to ensure success
of saturation in Section 6.
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4.1 Decompositions of Rewrite Rules

Before stating the procedure, we introduce the following notion of decomposition
to account for the possible superpositions of an attacker’s context with a left-
hand side of rewrite rule.

Definition 3 (decomposition). Let n, p, q be non-negative integers. A (n, p, q)-
decomposition of a term l (and by an extension of any rewrite rule l → r)
is a (public, ground, non-necessarily linear) context D ∈ Fpub[W ] such that
par(D) = {w1, . . . , wn+p+q} and l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] where

– l1, . . . , ln are mutually-distinct non-variable terms,
– y1, . . . , yp and z1, . . . , zq are mutually-distinct variables, and
– y1, . . . , yp ∈ var(l1, . . . , ln) whereas z1, . . . , zq �∈ var(l1, . . . , ln).

A decomposition D is proper if it is not a parameter (i.e. D �= w1).

Example 4. Consider the rewrite rule dec(enc(x, y), y) → x. This rule admits
two proper decompositions up to permutation of parameters:

– D1 = dec(enc(w1, w2), w2) where n = 0, p = 0, q = 2, z1 = x, z2 = y;
– D2 = dec(w1, w2) where n = 1, p = 1, q = 0, l1 = enc(x, y) and y1 = y.

4.2 Transformation Rules

To check deducibility and static equivalence, we proceed by saturating an initial
frame, adding some deduction facts and equations satisfied by the frame. We
consider states that are either the failure state ⊥ or a couple (Φ, Ψ) formed by a
one-to-one frame Φ in R-reduced form and a finite set of quantified equations Ψ .

Given an initial frame ϕ, our procedure starts from an initial state associated
to ϕ, denoted by Init(ϕ), obtained by reducing ϕ and replacing duplicated terms
by equations. Formally, Init(ϕ) is the result of a procedure recursively defined
as follows: Init(∅) = (∅, ∅), and assuming Init(ϕ) = (Φ, Ψ), we have

Init(ϕ � {w 
 t}) =

{
(Φ, Ψ ∪ {w �� w′}) if there exists some w′ 
 t↓R ∈ Φ

(Φ ∪ {w 
 t↓R}, Ψ) otherwise.

The main part of our procedure consists in saturating a state (Φ, Ψ) by means
of the transformation rules described in Figure 1. The A rules are designed
for applying a rewrite step on top of existing deduction facts. If the resulting
term is already syntactically deducible then a corresponding equation is added
(rule A.1); or else if it is ground, the corresponding deduction fact is added to the
state (rule A.2); otherwise, the procedure may fail (rule A.3). The B rules are
meant to add syntactically deducible subterms (rule B.2) or related equations
(rule B.1). For technical reasons, rule A.1 is parametrized by a function Ctx
with values of the form M or ⊥, and satisfying the following properties:

(a) if φ ! t↓R, then for any Ψ and α, Ctx(φ !?
R t, Ψ, α) �= ⊥;
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A. Inferring deduction facts and equations by context reduction

Assume that

l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] is a proper decomposition of (l → r) ∈ R
M1 
 t1, . . . , Mn+p 
 tn+p ∈ Φ
(l1, . . . , ln, y1, . . . , yp) σ = (t1, . . . , tn+p)

1. If there exists M = Ctx(Φ ∪ {z1 
 z1, . . . , zq 
 zq} �?
R rσ, Ψ, (l, r, D, σ)), then

(Φ, Ψ) =⇒ (Φ, Ψ ∪ {∀z1, . . . , zq.D[M1, . . . , Mn+p, z1 . . . , zq] �� M}) (A.1)

2. Else, if (rσ)↓R is ground, then

(Φ, Ψ) =⇒ (Φ ∪ {M0 
 (rσ)↓R},
Ψ ∪ {∀z1, . . . , zq.D[M1, . . . , Mn+p, z1 . . . , zq] �� M0}) (A.2)

where M0 = D[M1, . . . , Mn+p, a, . . . , a] for some fixed public constant a.

3. Otherwise, (Φ, Ψ) =⇒ ⊥ (A.3)

B. Inferring deduction facts and equations syntactically

Assume that M0 
 t0, . . . , Mn 
 tn ∈ Φ t = f(t1, . . . , tn) ∈ st(t0) f ∈ Fpub

1. If there exists M such that (M 
 t) ∈ Φ,

(Φ, Ψ) =⇒ (Φ, Ψ ∪ {f(M1, . . . , Mn) �� M}) (B.1)

2. Otherwise, (Φ, Ψ) =⇒ (Φ ∪ {f(M1, . . . , Mn) 
 t}, Ψ) (B.2)

Fig. 1. Transformation rules

(b) if M = Ctx(φ !?
R t, Ψ, α) then there exist M ′ and s such that Ψ |= M �� M ′,

M ′ 
φ s and t →∗
R s. (This justifies the notation φ !?

R t used to denote a
specific deducibility problem.)

Note that a simple choice for Ctx(φ !?
R t, Ψ, α) is to solve the deducibility

problem φ !? t↓R in the empty equational theory, and then return a corre-
sponding recipe M , if any. (This problem is easily solved by induction on t↓R.)
Yet, optimizing the function Ctx is a nontrivial task: on the one hand, letting
Ctx(φ !?

R t, Ψ, α) �= ⊥ for more values φ, t, Ψ , α makes the procedure more
likely to succeed; on the other hand, it is computationally more demanding. We
explain in Section 6.1 the choice of Ctx made in our implementation.

We write =⇒∗ for the transitive and reflexive closure of =⇒. The definitions
of Ctx and of the transformation rules ensure that whenever S =⇒∗ S′ and S is
a state, then S′ is also a state, with the same parameters unless S′ = ⊥.

Example 5. Consider the frame ϕ1 previously described in Example 3. We can
apply rule A.1 as follows. Consider the rewrite rule dec(enc(x, y), y) → x, the
decomposition D2 given in Example 4 and t1 = enc(c0, k). We have Init(ϕ1) =
(ϕ1, ∅) =⇒ (ϕ1, {dec(w1, w2) �� c0}). In other words, since we know the key k
through w2, we can check that the decryption of w1 by w2 leads to the public
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constant c0. Next we apply rule B.1 as follows: (ϕ1, {dec(w1, w2) �� c0}) =⇒
(ϕ1, {dec(w1, w2) �� c0, enc(c0, w2) �� w1}). No more rules can then modify the
state.

Main theorem. We now state the soundness and the completeness of the trans-
formation rules provided that a saturated state is reached, that is, a state S �= ⊥
such that S =⇒ S′ implies S′ = S. The technical lemmas involved in the proof
are detailed in Section 5.

Theorem 1 (soundness and completeness). Let E be an equational theory
generated by a convergent rewrite system R. Let ϕ be an initial frame and (Φ, Ψ)
be a saturated state such that Init(ϕ) =⇒∗ (Φ, Ψ).

1. For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have
Mϕ =E t ⇔ ∃N, Ψ |= M �� N and N 
Φ t↓R

2. For all M , N ∈ Fpub[par(ϕ)∪X ], we have that Mϕ =E Nϕ ⇔ Ψ |= M �� N .

While the saturation procedure is sound and complete, it may not terminate, or
fail if rule A.3 becomes the only applicable rule. In Section 6, we explore several
sufficient conditions to prevent failure and ensure termination.

4.3 Application to Deduction and Static Equivalence

Decision procedures for deduction and static equivalence follow from Theorem 1.

Algorithm for deduction. Let ϕ be an initial frame and t be a ground term. The
procedure for checking ϕ !E t runs as follows:

1. Apply the transformation rules to obtain (if any) a saturated state (Φ, Ψ)
such that Init(ϕ) =⇒∗ (Φ, Ψ);

2. Return yes if there exists N such that N 
Φ t↓R (that is, the R-reduced
form of t is syntactically deducible from Φ); otherwise return no.

Algorithm for static equivalence. Let ϕ1 and ϕ2 be two initial frames. The pro-
cedure for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated states
(Φ1, Ψ1) and (Φ2, Ψ2) such that Init(ϕi) =⇒∗ (Φi, Ψi), i = 1, 2;

2. For {i, j} = {1, 2}, for every equation (∀z1, . . . , z�.M �� N) in Ψi, check that
Mϕj =E Nϕj — that is, in other words, (Mϕj)↓R = (Nϕj)↓R;

3. If so return yes ; otherwise return no.

5 Soundness and Completeness of the Saturation

The proof of Theorem 1 is based on three main lemmas. First, the transformation
rules are sound in the sense that, along the saturation process, we add only
deducible terms and valid equations with respect to the initial frame.
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Lemma 1 (soundness). Let ϕ be an initial frame and (Φ, Ψ) be a state such
that Init(ϕ) =⇒∗ (Φ, Ψ). Then, we have that

1. M 
Φ t ⇒ Mϕ =E t for all M ∈ Fpub[dom(ϕ)] and t ∈ F [∅];
2. Ψ |= M �� N ⇒ Mϕ =E Nϕ for all M, N ∈ Fpub[dom(ϕ) ∪ X ].

The next two lemmas are dedicated to the completeness of B and A rules,
respectively. Lemma 2 ensures that saturated states account for all the syntactic
equations possibly visible. Lemma 3 deals with the reduction of a deducible term
along the rewrite system R. Using that R is convergent, this allows us to prove
that every deducible term from a saturated frame is syntactically deducible.

Lemma 2 (completeness, syntactic equations). Let (Φ, Ψ) be a state, and
M , N be two terms such that M 
Φ t and N 
Φ t for some term t. Then there
exists (Φ′, Ψ ′) such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′) using B rules and Ψ ′ |= M �� N .

Lemma 3 (completeness, context reduction). Let (Φ, Ψ) be a state and M ,
t, t′ be three terms such that M 
Φ t and t →R t′. Then, either (Φ, Ψ) =⇒∗ ⊥
or there exist (Φ′, Ψ ′), M ′ and t′′ such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′), M ′ 
Φ′ t′′ with
t′ →∗

R t′′, and Ψ ′ |= M �� M ′.
Besides, in both cases, the corresponding derivation from (Φ, Ψ) can be chosen

to consist of a number of B rules, possibly followed by one instance of A rule
involving the same rewrite rule l → r as the rewrite step t→R t′.

6 Termination and Non-failure

In the previous section, we proved that saturated frames yield sound and com-
plete characterizations of deducible terms and visible equations of their initial
frames. Yet, the saturation procedure may still not terminate, or fail due to
rule A.3. In this section, we study different conditions on the rewrite system R
so that failure never happens and/or termination is ensured.

6.1 A Syntactic Criterion to Prevent Failure

Our first criterion is syntactic and ensures that the algorithm never fails. It is
enjoyed by a large class of equational theories, called layered convergent.

Definition 4 (layered rewrite system). A rewrite system R, and by exten-
sion its equational theory E, are layered if there exists an ascending chain of
subsets ∅ = R0 ⊆ R1 ⊆ . . . ⊆ RN+1 = R (N ≥ 0), such that for every
0 ≤ i ≤ N , for every rule l → r in Ri+1 −Ri, for every (n, p, q)-decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], one of the following two conditions holds:
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(i) var(r) ⊆ var(l1, . . . , ln);
(ii) there exist C0, C1, . . . , Ck and s1, . . . , sk such that

– r = C0[s1, . . . , sk];
– for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in

zero or one step of rewrite rule in head position along Ri.

In the latter case, we say that the context C = C0[C1, . . . , Ck] is associated to the
decomposition D of l → r. Note that C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]→∗

Ri
r.

Proposition 1. Assume that the function Ctx in use is maximal: for every
φ and t, if there exists s such that φ ! s and t →∗

R s, then for any Ψ , α,
Ctx(φ !?

R t, Ψ, α) �= ⊥. Then, provided that R is layered convergent, there exists
no state (Φ, Ψ) from which (Φ, Ψ) =⇒ ⊥ is the only applicable derivation.

Practical considerations. Unfortunately, such a maximal Ctx is too inefficient
in practice as one has to consider the syntactic deducibility problem φ !? s for
every t→∗

R s. This is why we rather use the following lighter implementation:

– for every index 0 ≤ i ≤ N , and every rule l → r in Ri+1 − Ri, if l =
D[l1, . . . , ln, y1, . . . , yp+q] is a (n, p, q)-decomposition satisfying condition (ii)
above for some (arbitrarily chosen) associated context C, then, for every φ
and σ such that φ ! lσ, we let

Ctx(φ !?
R rσ, Ψ, (l, r, D, σ)) = C[M1, . . . , Mn+p+q]

where the Mk are fixed recipes such that (Mi 
 liσ) ∈ φ for 1 ≤ i ≤ n and
(Mn+j 
 yjσ) ∈ φ for 1 ≤ j ≤ p + q;

– otherwise, if φ ! t↓R, we let Ctx(φ !?
R t, Ψ, α) be some fixed M such that

M 
φ t↓R;
– in any other case, we let Ctx(φ !?

R t, Ψ, α) = ⊥.

Using similar ideas as for the proof of Proposition 1, we can show that, for any
convergent rewrite system R, this choice of Ctx is compatible with property (b)
of Subsection 4.2, and more generally with completeness, as long as, during sat-
uration, the transformation rules A involve the rewrite rules of Ri with greater
priority than those of Rj , i < j. Moreover, when R is additionally layered, this
definition ensures that the procedure never fails. Indeed, using the notations of
Figure 1, Ctx(Φ ∪ {z1 
 z1, . . . , zq 
 zq} !?

R rσ, Ψ, (l, r, D, σ)) = ⊥ implies that
(ii) is false on D, thus (i) var(r) ⊆ var(l1, . . . , ln) holds and (rσ)↓R is ground.

Example 6. Any convergent subterm rewrite system R is layered convergent.
Indeed, let N = 0 and R1 = R. For any l → r in R and for every decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], the term r is a subterm of l, thus either
r = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] for some context C, or r is a subterm of
some li thus var(r) ⊆ var(l1, . . . , ln).
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Example 7. Other examples are provided by the theory of homomorphism Ehom

defined in Section 2.3 as well as the convergent theories of blind signatures Eblind

and prefix encryption Epref defined by the following sets of equations.

Eblind = Eenc ∪
{

unblind(blind(x, y), y) = x
unblind(sign(blind(x, y), z), y) = sign(x, z)

}

Epref = Eenc ∪
{

pref(enc(〈x, y〉, z)) = enc(x, z)
}

The theory Eblind models primitives used in e-voting protocols [17]. The prefix
theory represents the property of many chained modes of encryption (e.g. CBC)
where an attacker can retrieve any encrypted prefix out of a ciphertext.

Let us check for instance that the prefix theory Epref is layered. Let N = 1, R1
be the rewrite system obtained from Eenc by orienting the equations from left to
right, and R2 = R1 ∪ {pref(enc(〈x, y〉, z))→ enc(x, z)}. The rewrite rules of R1
satisfy the assumptions since R1 forms a convergent subterm rewrite system.
The additional rule pref(enc(〈x, y〉, z)) → enc(x, z) admits three decompositions
up to permutation of parameters:

– l = pref(l1), in which case var(r) ⊆ var(l1);
– l = pref(enc(l1, z)), in which case enc(π1(l1), z)→R1 r;
– l = pref(enc(〈x, y〉, z)), in which case r = enc(x, z).

Verifying that the convergent theories Ehom and Eblind are layered is similar.

6.2 Termination

In the previous subsection, we described a sufficient criterion for non-failure. To
obtain decidability for a given layered convergent theory, there remains only to
provide a termination argument. Such an argument is generally easy to develop
by hand as we illustrate on the example of the prefix theory. For the case of
existing decidability results from [2], such as the theories of blind signature and
homomorphic encryption, we also provide a semantic criterion that allows us to
directly conclude termination of the procedure.

Proving termination by hand. To begin with, we note that B rules always ter-
minate after a polynomial number of steps. Let us write �=⇒n for the relation
made of exactly n strict applications of rules (S �=⇒ S′ iff S =⇒ S′ and S �= S′).

Proposition 2. For every states S = (Φ, Ψ) and S′ such that S
�=⇒n S′ using

only B rules, n is polynomially bounded in the size of im(Φ).

This is due to the fact that frames are one-to-one and that the rule B.2 only adds
deduction facts M 
 t such that t is a subterm of an existing term in Φ. Hence,
for proving termination, we observe that it is sufficient to provide a function s
mapping each frame Φ to a finite set of terms s(Φ) including the subterms of
im(Φ) and such that rule A.2 only adds deduction facts M
t satisfying t ∈ s(Φ).

For subterm theories, we obtain polynomial termination by choosing s(Φ) to
be the subterms of im(Φ) together with the ground right-hand sides of R.
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Proposition 3. Let E be a convergent subterm theory. For every S = (Φ, Ψ) and
S′ such that S

�=⇒n S′, n is polynomially bounded in the size of im(Φ).

To conclude that deduction and static equivalence are decidable in polynomial
time [2], we need to show that the deduction facts and the equations are of poly-
nomial size. This requires a DAG representation for terms and visible equations.
For our implementation, we have chosen not to use DAGs for the sake of simplic-
ity (and perhaps efficiency) since DAGs require much heavier data structures.
However, similar techniques as those described in [2] would apply to implement
our procedure using DAGs.

For proving termination of the prefix theory, we let s(Φ) be the minimal
set containing Φ, closed by subterm and such that enc(t1, k) ∈ s(Φ) whenever
enc(〈t1, t2〉, k) ∈ s(Φ). We then deduce that deduction and static equivalence are
decidable for the equational theory Epref , which is a new decidability result.

A criterion to ensure termination. We now provide a semantic criterion that
more generally explains why our procedure succeeds on theories previously known
to be decidable [2]. This criterion intuitively states that the set of deducible terms
from any initial frame ϕ should be equivalent to a set of syntactically deducible
terms. Provided that failures are prevented and assuming a fair strategy for rule
application, we prove that this criterion is a necessary and sufficient condition
for our procedure to terminate.

Definition 5 (fair derivation). An infinite derivation (Φ0, Ψ0) =⇒ . . . =⇒
(Φn, Ψn) =⇒ . . . is fair iff along this derivation,

(a) B rules are applied with greatest priority, and
(b) whenever a A rule is applicable for some instance (l → r, D, t1, . . . , tn, . . .),

eventually the same instance of rule is applied during the derivation.

Fairness implies that any deducible term is eventually syntactically deducible.

Lemma 4. Let S0 = (Φ0, Ψ0) =⇒ . . . =⇒ (Φn, Ψn) =⇒ . . . be an infinite fair
derivation from a state S0. For every ground term t such that Φ0 !E t, either
(Φ0, Ψ0) =⇒∗ ⊥ or there exists i such that Φi ! t↓R.

Proposition 4 (criterion for saturation). Let ϕ be an initial frame such that
Init(ϕ) �=⇒∗ ⊥. The following conditions are equivalent:

(i) There exists a saturated couple (Φ, Ψ) such that Init(ϕ) =⇒∗ (Φ, Ψ).
(ii) There exists a (finite) initial frame ϕs such that for every term t, t is

deducible from ϕ modulo E iff t↓R is syntactically deducible from ϕs.
(iii) There exists no fair infinite derivation starting from Init(ϕ).

Together with the syntactic criterion described in Section 6.1, this criterion
(Property (ii)) allows us to prove decidability of deduction and static equiv-
alence for layered convergent theories that belong to the class of locally stable
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theories defined in [2]. As a consequence, our procedure always saturates for the
theories of blind signatures and homomorphic encryption since those theories
are layered and have been proved locally stable [2]. Other examples of layered
convergent theories enjoying this criterion can be found in [2] (e.g. a theory of
addition).

7 Implementation: The YAPA Tool

YAPA is an Ocaml implementation1 of the saturation procedure presented in
Section 4, using by default the optimized function Ctx defined in Section 6, and
a fair strategy of rule application (see Definition 5).

The tool takes as input an equational theory described by a finite convergent
rewrite system, as well as frame definitions and queries. A few optimizations may
be activated for subterm theories, e.g. to accelerate normalization. The procedure
starts by computing the decompositions of the rewrite system. Provided that the
rewrite rules are given in an order compatible with the sets R0 ⊆ . . . ⊆ RN+1
of Definition 4, it is able to recognize (fully or partially) layered theories and to
pre-compute the associated contexts C related to condition (ii) of this definition,
and exploited by the function Ctx in use for eliminating failure cases.

We have conducted several experiments on a PC Intel Core 2 Duo at 2.4 GHz
with 2 Go RAM for various equational theories (see below) and found that YAPA
provides an efficient way to check static equivalence and deducibility.

Equational
theory

Eenc

n = 10
Eenc

n = 14
Eenc

n = 16
Eenc

n = 18
Eenc

n = 20 Eblind Epref Ehom Eadd

Execution time < 1s 1,7s 8s 30s < 3min < 1s < 1s < 1s < 1s

For the case of Eenc, we have run YAPA on the frames ϕn = {w1 
 t0n, w2 

c0, w3 
 c1} and ϕ′

n = {w1 
 t1n, w2 
 c0, w3 
 c1}, where ti0 = ci and tin+1 =
〈enc(tin, ki

n), ki
n〉, i ∈ {0, 1}. These examples allow us to increase the (tree, non-

DAG) size of the distinguishing tests exponentially, while the sizes of the frames
grow linearly. Despite the size of the output, we have observed satisfactory per-
formances for the tool. We have also experimented YAPA on several convergent
theories, e.g. Eblind, Ehom, Epref and the theory of addition Eadd defined in [2].

In comparison with the tool ProVerif [9,10], here instrumented to check static
equivalences, our test samples suggest a running time between one and two or-
ders of magnitude faster for YAPA. Also we did not succeed in making ProVerif
terminate on the two theories Ehom and Eadd. Of course, these results are not
entirely surprising given that ProVerif is tailored for the more general (and dif-
ficult) problem of protocol (in)security under active adversaries. In particular
ProVerif’s initial preprocessing of the rewrite system appears more substantial
than ours and does not terminate on the theories Ehom and Eadd (although ter-
mination is guaranteed for linear or subterm-convergent theories [10]).

1 Freely available at http://www.lsv.ens-cachan.fr/∼baudet/yapa/

http://www.lsv.ens-cachan.fr/~baudet/yapa/
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Altogether, these results suggest that YAPA significantly improves the state of
the art for checking deducibility and static equivalence under convergent theories,
both from practical and theoretical perspectives.
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Abstract. Streams are infinite sequences over a given data type. A
stream specification is a set of equations intended to define a stream.
We propose a transformation from such a stream specification to a TRS
in such a way that termination of the resulting TRS implies that the
stream specification admits a unique solution. As a consequence, prov-
ing such well-definedness of several interesting stream specifications can
be done fully automatically using present powerful tools for proving TRS
termination.

1 Introduction

Streams are among the simplest data types in which the objects are infinite. We
consider streams to be maps from the natural numbers to some data type D. The
basic constructor for streams is the operator ‘:’ mapping a data element d and a
stream s to a new stream d : s by putting d in front of s. Using this operator we
can define streams by equations. For instance, the stream zeros only consisting
of 0’s can be defined by the single equation zeros = 0 : zeros. More complicated
streams are defined using stream functions. For instance, the boolean Fibonacci
stream Fib is defined1 to be the fixpoint of the function f defined by

f(0 : σ) = 0 : 1 : f(σ), f(1 : σ) = 0 : f(σ).

It turns out that Fib = 0 : c for the stream c defined by c = 1 : f(c). Although
these stream definitions are extremely simple, the resulting streams are typi-
cally non-periodic and have remarkable properties. For instance, one can make
a turtle visualization (see also http://www.win.tue.nl/~hzantema/str.html)
as follows. Choose an initial drawing direction and traverse the elements of the
stream Fib as follows: if the symbol 0 is read then the drawing direction is
moved 30 degrees to the right; if the symbol 1 is read then the drawing direction
is moved 150 degrees to the left. In both cases after doing so a line of unit length
is drawn. Then after 200.000 steps the following picture is obtained.
1 In [1] it is called infinite Fibonacci word. It can also be defined as the limit of the

strings φi where φ1 = 1, φ2 = 0, φi+2 = φi+1φi for i ≥ 1, showing the relationship
with Fibonacci numbers.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 164–178, 2009.
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Streams have been studied extensively, e.g. in [1]. In this paper we consider
stream specifications consisting of a set of equations like above we did for the
Fibonacci stream. We address the most fundamental question one can think of:
does such a set of equations admits a unique solution as constants and functions
on streams? This is not always the case. For instance, every f mapping x : σ to
x : c for any constant stream c satisfies the stream specification

f(x : σ) = x : g(f(σ)), g(x : σ) = σ,

where g is the tail function removing the first element of the stream.
Intuitively this notion of well-definedness is closely related to termination of

the process of unfolding definitions. The past ten years showed up a remarkable
progress in techniques and implementations for proving termination of rewrite
systems [2,5,9]. One of the objectives of this paper is to exploit this power for
proving well-definedness of stream specifications. In our approach we introduce
fresh operators head and tail intended to observe streams. We present a transfor-
mation of the specification to its observational variant. This is a TRS mimicking
the stream specification in such a way that head or tail applied on any stream
constant or stream function can always be rewritten. This transformation is
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straightforward and easy to implement; an implementation for boolean stream
specifications, both in Windows an Linux, together with several examples, is
found in http://www.win.tue.nl/~hzantema/str.zip.

The main result of this paper states that if the observational variant of a
specification is terminating, then the specification admits a unique solution.
It turns out that for several interesting cases termination of the observational
variant of a specification can be proved by termination tools like AProVE [4]
or TTT2 [7]. This provides a new technique to prove well-definedness of stream
specifications fully automatically, applying for cases where earlier approaches
fail. Our main result appears in two variants:

– a variant restricting to ground terms for general stream specifications (The-
orem 1), and

– a variant generalizing to all streams for stream specifications not depending
on particular data elements (Theorem 2).

By an example we show that the approach does not work for general stream
specifications and functions applied on all streams. Moreover, we show that our
technique is not complete: the fixpoint definition of the Fibonacci stream as
we just gave is a well-defined stream specification for which the observational
variant is non-terminating.

Proving well-definedness in stream specification is closely related to prov-
ing equality of streams. A standard approach for this is co-induction [11]: two
streams or stream functions are equal if a bisimulation can be found between
them. Finding such an arbitrary bisimulation is a hard problem in the general
setting, but restricting to circular co-induction [6] finding this automatically is
tractable. A strong tool doing so is Circ [8]. The tool Circ focuses on proving
equality, but proving well-definedness of a function f can also be proved by
equality as long as the equations for f are orthogonal: take a copy f ′ of f with
the same equations, and prove f = f ′. For many examples this works well, but
there are also small stream specifications for which our approach succeeds in
proving well-definedness and Circ fails. Conversely our approach can be used
to prove equality of two streams: if one stream satisfies the specification of the
other one, and this specification is well-defined, then the streams are equal. The
input format of Circ differs from what we call stream specifications: head and tail
are already building blocks and the Circ input is essentially the same as what
we call the observational variant.

Another closely related topic is productivity of stream specifications, as studied
by [3]. Productive stream specifications are always well-defined. Conversely we
will give an example (Example 4) of a stream specification that is well-defined,
but not productive. Our format of stream specifications is strongly inspired by
[3]. In [3] a technique is developed for establishing productivity fully automat-
ically for a restricted class of stream specifications. In particular, only a very
mild type of nesting in the right hand sides of the rule is allowed. Our technique
typically applies where these restrictions do not hold.
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Both stream equality [10] and productivity [12] have been proved to be Π0
2 -

complete, hence undecidable. By similar Turing machine construction the same
is expected to hold for stream well-definedness.

This paper is structured as follows. In Section 2 we present the basics of
stream specifications and their models. In Section 3 we define the transformation
of a stream specification to its observational variant. In Section 4 we present
and prove the main theorem: if the observational variant is terminating then
restricted to ground terms the specification has a unique model. In Section 5 we
show that this restriction to ground terms may be removed in case the stream
specification is data independent: left hand sides of rules do not contain data
values. In Section 6 we discuss fixpoints and prove incompleteness. We conclude
in Section 7.

2 Streams: Specifications and Models

In stream specifications we have two sorts: s (stream) and d (data). We assume
the set D of data elements to consist of the unique normal forms of ground terms
over some signature Σd with respect to some terminating orthogonal rewrite
system Rd over Σd. Here all symbols of Σd are of type dn → d for some n ≥ 0.
We assume a particular symbol : having type d × s → s. For giving the actual
stream specification we need a set Σs of stream symbols, each being of type
dn×sm → s for n,m ≥ 0. Now terms of sort s are defined inductively as follows:

– a variable of sort s is a term of sort s,
– if f ∈ Σs is of type dn×sm → s, u1, . . . , un are terms over Σd and t1, . . . , tm

are terms of sort s, then f(u1, . . . , un, t1, . . . , tm) is a term of sort s,
– if u is a term over Σd and t is a term of sort s, then u : t is a term of sort s.

As a notational convention variables of sort d will be denoted by x, y, terms of
sort d by u, ui, variables of sort s by σ, τ , and terms of sort s by t, ti.

Definition 1. A stream specification (Σd, Σs, Rd, Rs) consists of Σd, Σs, Rd as
given before, and a set Rs of rewrite rules of the shape

f(u1, . . . , un, t1, . . . , tm) → t,

where

– f ∈ Σs is of type dn × sm → s,
– for every i = 1, . . . , n the term ui is either a variable of sort d or ui ∈ D,
– for every i = 1, . . . ,m the term ti is either a variable of sort s, or ti = x : σ

where x is a variable of sort d and σ is a variable of sort s,
– t is any term of sort s,
– every ground term of sort s being in normal form with respect to Rd matches

with the left hand side of exactly one rule from Rs.
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Due to these requirements Rs ∪ Rd is orthogonal. Sometimes we call Rs a
stream specification: in that case Σd, Σs consist of the symbols of sort d, s,
respectively, occurring in Rs, and Rd = ∅. Rules � → r in Rs are often written
as � = r.

Example 1. For specifying the Thue Morse sequence the data elements are 0, 1,
and a data operation not is used. The data rewrite system Rd consists of the two
rules not(0) → 1 and not(1) → 0. The rewrite system Rs consists of the rules

morse → 0 : zip(inv(morse), tail(morse)) tail(x : σ) → σ
inv(x : σ) → not(x) : inv(σ) zip(x : σ, τ) → x : zip(τ, σ)

Definition 1 is closely related to the definition of stream specification in [3]. In
fact there are two differences:

– We want to specify streams for every ground term of sort s, while in [3] there
is a designated constant to be specified.

– The restriction on left hand sides is stronger than the exhaustiveness from
[3]. However, by introducing fresh symbols and rules for defining these fresh
symbols, every stream specification in the format of [3] can be unfolded to
a stream specification in our format.

For instance, the function f in the introduction to define the Fibonacci stream
does not meet our requirements since the argument 0 : σ in the left hand side
f(0 : σ) is not of the right shape. Introducing a fresh symbol g and unfolding
yields

f(x : σ) = g(x, σ) g(0, σ) = 0 : 1 : f(σ)
g(1, σ) = 0 : f(σ)

satisfying our format.
Stream specifications are intended to specify streams for the constants in Σs,

and stream functions for the other elements of Σs. The combination of these
streams and stream functions is what we will call a stream model.

More precisely, a stream over D is a map from the natural numbers to D.
Write Dω for the set of all streams over D. In case of D = ∅ we have Dω = ∅; in
case of #D = 1 we have #Dω = 1. So in non-degenerate cases we have #D ≥ 2.

It seems natural to require that stream functions in a stream model are defined
on all streams. However, it turns out that several desired properties do not hold
when requiring this. Therefore we allow stream functions to be defined on some
set S ⊆ Dω for which every ground term can be interpreted in S.

Definition 2. A stream model is defined to consist of a set S ⊆ Dω and a set
of functions [f ] for every f ∈ Σs, where [f ] : Dn × Sm → S if the type of f is
dn × sm → s.

For a ground term u over Σd write NF(u) for its Rd-normal form. For f ∈ Σd

and u1, . . . , un ∈ D we define [f(u1, . . . , un)] = NF(f(u1, . . . , un)). We write Ts
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for the set of ground terms of sort s. For t ∈ Ts the stream interpretation [t] in
the stream model (S, ([f ])f∈Σs) is defined inductively by:

[f(u1, . . . , un, t1, . . . , tm)] = [f ]([u1], . . . , [un], [t1], . . . , [tm]) for f ∈ Σs

[u : t](0) = [u]
[u : t](i) = [t](i− 1) for i > 0

for all ground terms u, ui of sort d and all ground terms t, ti of sort s.
So in a stream model:

– every data operator is interpreted by its corresponding term constructor,
after which the result is reduced to normal form,

– every stream operator f is interpreted by the given function [f ], and
– the operator : applied on a data element d and a stream s is interpreted by

putting d on the first position and shifting every stream element of s to its
next position.

Definition 3. A stream model (S, ([f ])f∈Σs) is said to satisfy a stream specifi-
cation (Σd, Σs, Rd, Rs) if [�ρ] = [rρ] for every rule �→ r in Rs and every ground
substitution ρ. We also say that the specification admits the model.

Now we can express the desired well-definedness of a stream specification more
precisely: there is exactly one stream model (S, ([f ])f∈Σs) satisfying the stream
specification for which S = {[t] | t ∈ Ts}. This is not always the case: if #D > 1
and Rs consists of the rule c → c there is not a unique [c] since every stream
satisfies the specification. Less trivial is the boolean stream specification

c = 0 : f(c), f(x : σ) = σ,

in which [f ] can be chosen to be the tail function and [c] be any stream starting
with 0, showing non-uniqueness of stream models.

3 The Observational Variant

In this paper we define a transformation Obs transforming the original TRS
Rs to its observational variant Obs(Rs). The basic idea is that the streams are
observed by two auxiliary operator head and tail, of which head picks the first
element of the stream and tail removes the first element from the stream, and
that for every t ∈ Ts of type stream both head(t) and tail(t) can be rewritten by
Obs(Rs).

The main result of this paper is that if Obs(Rs) ∪ Rd is terminating for a
given specification (Σd, Σs, Rd, Rs), then it admits a unique model (S, ([f ])f∈Σs)
satisfying S = {[t] | t ∈ Ts}. As a consequence, the specification uniquely defines
a corresponding stream [t] for every t ∈ Ts.

We define Obs(Rs) in two steps. First we define P(Rs) obtained from Rs by
modifying the rules as follows. By definition every rule of Rs is of the shape

f(u1, . . . , un, t1, . . . , tm) → t
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where for every i = 1, . . . ,m the term ti is either a variable of sort s, or ti = x : σ
where x is a variable of sort d and σ is a variable of sort s. In case ti = x : σ
then in the left hand side of the rule the subterm ti is replaced by σ, while in
the right hand side of the rule every occurrence of x is replaced by head(σ) and
every occurrence of σ is replaced by tail(σ).

For example, the zip rule in Example 1 will be replaced by

zip(σ, τ) → head(σ) : zip(τ, tail(σ)).

Now we are ready to define Obs.

Definition 4. Let (Σd, Σs, Rd, Rs) be a stream specification. Let P(Rs) be de-
fined as above. Then Obs(Rs) is the TRS over Σd∪Σs∪{:, head, tail} consisting
of

– the two rules
head(x : σ) → x, tail(x : σ) → σ,

– for every rule in P(Rs) of the shape �→ u : t the two rules

head(�) → u, tail(�) → t,

– for every rule in P(Rs) of the shape �→ r with root(r) �= : the two rules

head(�) → head(r), tail(�) → tail(r).

Example 2. For the TRS Rs given in Example 1 we rename the symbol tail by
tail0 in order to keep the symbol tail for the fresh symbol introduced in the Obs
construction. Then the TRS Obs(Rs) consists of the following rules:

head(x : σ) → x head(tail0(σ)) → head(tail(σ))
tail(x : σ) → σ tail(tail0(σ)) → tail(tail(σ))

head(morse) → 0 head(zip(σ, τ)) → head(σ)
tail(morse) → zip(inv(morse), tail(morse)) tail(zip(σ, τ)) → zip(τ, tail(σ))

head(inv(σ)) → not(head(σ))
tail(inv(σ)) → inv(tail(σ))

Together with the rules not(0) → 1 and not(1) → 0 from Rd this TRS is termi-
nating as can easily be proved fully automatically by AProVE [4] or TTT2 [7].
As a consequence, the result of this paper states that the specification uniquely
defines a stream for every ground term of type s, in particular for morse.

4 The Main Theorem

We start this section by presenting our main theorem.

Theorem 1. Let (Σd, Σs, Rd, Rs) be a stream specification for which the TRS
Obs(Rs)∪Rd is terminating. Then the stream specification admits a unique model
(S, ([f ])f∈Σs) satisfying S = {[t] | t ∈ Ts}.
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Before proving the theorem we show by an example why it is essential to restrict
to S = {[t] | t ∈ Ts} rather than choosing S = Dω. A degenerate example is
obtained if there are no constants of sort s, and hence Ts = ∅. More interesting
is the following.

Example 3. Let the boolean stream specification consist of Rd = ∅ and Rs con-
sisting of the following rules:

c→ 1 : c g(0, σ) → f(σ)
f(x : σ) → g(x, σ) g(1, σ) → 1 : f(σ)

So f tries to remove all 0’s from its argument. For streams containing infinitely
many 0’s this may be problematic. Note that by the symbols c, :, 0 and 1 only the
streams with finitely many 0’s can be constructed, for ground terms this problem
does not arise. Indeed the TRS Obs(Rs) ∪ Rd is terminating, and by Theorem
1 the specification admits a unique model (S, ([f ])f∈Σs) satisfying S = {[t] | t ∈
Ts}. However, when extending to all streams the function [f ] : Dω → Dω is
not uniquely defined, even if we strengthen the requirement of [�ρ] = [rρ] for all
rules �→ r and all ground substitutions ρ to an open variant in which the σ’s in
the rules are replaced by arbitrary streams. Write ones and zeros for the streams
only consisting of ones, resp. zeros. Two distinct models [·]1 and [·]2 satisfying
the stream specification are defined by:

[c]1 = [f ]1(s) = [g]1(u, s) = ones for all s ∈ Dω, u ∈ D,

and [c]2 = [f ]2(s) = [g]2(u, s) = ones for u ∈ D and streams s containing
infinitely many ones, and [f ]2(s) = 1n : zeros, [g]2(u, s) = [f ]2(u : s) for u ∈ D
and streams s containing n <∞ ones.

Now we arrive at the proof of Theorem 1. The plan of the proof is as follows.

– First we construct a function [·]1 : Ts → Dω, and choose S1 = {[t]1 | t ∈ Ts}.
– Next we show that if [ti]1 = [t′i]1 for i = 1, . . . ,m, then

[f(u1, . . . , un, t1, . . . , tm)]1 = [f(u1, . . . , un, t
′
1, . . . , t

′
m)]1,

by which [f ]1 is well-defined and we have a model (S1, ([f ]1)f∈Σs).
– We show this model satisfies the specification.
– We show no other model (S, ([f ])f∈Σs) satisfies the specification and S =
{[t] | t ∈ Ts}.

First we define [t]1 ∈ Dω for any t ∈ Ts. Since elements of Dω are functions
from N to D, a function [t]1 ∈ Dω is defined by defining [t]1(n) for every n ∈ N.
Due to the assumption of the theorem the TRS Obs(Rs) ∪ Rd is terminating.
According to the definition of stream specification the TRS Rs∪Rd is orthogonal,
and by the construction Obs the TRS Obs(Rs) ∪Rd is orthogonal too. So every
ground term of sort d has a unique normal form with respect to Obs(Rs) ∪Rd.

Assume such a normal form contains a symbol from Σs ∪ {:}. Choose such
a symbol with minimal position, that is, closest to the root. Since the term is
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of sort d, this symbol is not the root. Hence it has a parent. Due to minimality
of position, this parent is either head or tail. Due to the shape of the rules of
Obs(Rs), a rule of Obs(Rs) is applicable on this parent position, contradicting
the normal form assumption. So the normal form only contains symbols from
Σd. Since it is also a normal form with respect to Rd, such a normal form is an
element of D. Now for t ∈ Ts and n ∈ N we define

[t]1(n) = the normal form of head(tailn(t)) with respect to Obs(Rs)∪Rd,

in this way defining [t]1 ∈ Dω .

Lemma 1. Let Obs(Rs) ∪Rd be terminating. Let f ∈ Σs of type dn × sm → s.
Let u1, . . . , un ∈ D and t1, . . . , tm, t′1, . . . , t

′
m ∈ Ts satisfying [ti]1 = [t′i]1 for

i = 1, . . . ,m. Then

[f(u1, . . . , un, t1, . . . , tm)]1 = [f(u1, . . . , un, t
′
1, . . . , t

′
m)]1.

Proof. First we extend the definition of [·]1 to all ground terms over Σs∪Σd∪{:
, head, tail}. For ground terms t of sort s we define it by [t]1(n) = the normal
form of head(tailn(t)) with respect to Obs(Rs) ∪ Rd, and for ground terms u of
sort d we define [u]1 to be the normal form of u with respect to Obs(Rs) ∪ Rd.
We prove the following claim.

Claim 1: Let [t]1 = [t′]1 for t, t′ ∈ Ts. Let T be a ground term over
Σs ∪ Σd ∪ {:, head, tail} of sort s containing t as a subterm. Let T ′ be
obtained from T by replacing zero or more occurrences of the subterm t
by t′. Then

[head(T )]1 = [head(T ′)]1.

Let > be the well-founded order on ground terms being the strict part of ≥
defined by

v ≥ v′ ⇐⇒ v′ is a subterm v′′ such that v →∗
Obs(Rs)∪Rd

v′′.

We prove the claim for every such term head(T ) by noetherian induction on >.
Claim 1 is trivial if t = T , so we may assume that T = f(u1, . . . , un, t1, . . . , tm)

such that t occurs in u1, . . . , un, t1, . . . , tm, and either f ∈ Σs ∪ {:, tail}, and
T ′ = f(u′1, . . . , u

′
n, t

′
1, . . . , t

′
m). For every subterm of ui of the shape head(· · ·) we

may apply the induction hypothesis, yielding [ui]1 = [u′i]1 = di for all i, defining
di ∈ D.

In case the root of T is not tail we rewrite

head(T ) →∗
Obs(Rs)∪Rd

head(f(d1, . . . , dn, t1, . . . , tm)

by the rule head(f(· · ·)) → · · · in Obs(Rs), yielding a term U of sort d. The only
way such a term can contain t as a subterm is by U = C[head(V1), . . . , head(Vk)]
where t is a subterm of some of the Vi and C is composed from Σd. By the induc-
tion hypothesis we obtain [head(Vi)]1 = [head(V ′

i )]1 for V ′
i obtained from Vi by
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replacing zero ore more occurrences of t by t′. Hence [head(T )]1 =
C[head(V1), . . . , head(Vk)]]1 = C[head(V ′

1), . . . , head(V ′
k)]]1 = [head(T ′)]1.

In case the root of T is tail then write T = taili(f(· · ·)) →∗
Obs(Rs)∪Rd

taili(f(d1, . . . , dn, t1, . . . , tm) for f ∈ Σs ∪ {:}. This can be rewritten by the
rule tail(f(· · ·)) → · · · in Obs(Rs), yielding V . On the same position using the
same rule we can rewrite T ′ →Obs(Rs) V

′ for V ′ obtained from V by replacing
one ore more occurrences of t by t′. Applying the induction hypothesis gives
[head(V )]1 = [head(V ′)]1 yielding

[head(T )]1 = [head(V )]1 = [head(V ′)]1 = [head(T ′)]1,

concluding the proof of Claim 1.

Claim 2: Let [t]1 = [t′]1 for t, t′ ∈ Ts. Let T be a ground term over
Σs ∪ Σd ∪ {:, head, tail} of sort s containing t as a subterm. Let T ′ be
obtained from T by replacing one or more occurrences of the subterm t
by t′. Then [T ]1 = [T ′]1.

Claim 2 easily follows from Claim 1 and the observation

[T ]1 = [T ′]1 ⇐⇒ ∀i ∈ N : [head(taili(T )]1 = [head(taili(T ′)]1.

Now the lemma follows by applying Claim 2 and replacing ti by t′i successively
for i = 1, . . . ,m. �

Define S1 = {[t]1 | t ∈ Ts}. For any f ∈ Σs of type dn×sm → s for u1, . . . , un ∈ D
and t1, . . . , tm, t′1, . . . , t′m ∈ Ts we now define [f ]1 : Dn × Sm → S by

[f ]1(u1, . . . , un, [t1], . . . , [tm]) = [f(u1, . . . , un, t1, . . . , tm)]1;

Lemma 1 implies that this is well-defined: the result is independent of the choice
of the representants in [ti]1. So (S1, ([f ]1)f∈Σs) is a model.

Next we will prove that it satisfies the specification, and essentially is the only
one doing so.

Lemma 2. Let �→ r ∈ Rs and let ρ be a substitution. Then

– there is a term t such that head(�ρ) →∗
Obs(Rs)

t and head(rρ) →∗
Obs(Rs)

t,
and

– there is a term t such that tail(�ρ) →∗
Obs(Rs)

t and tail(rρ) →∗
Obs(Rs)

t.

Proof. Let f be the root of �. Define ρ′ by σρ′ = xρ : σρ for every argument
of the shape x : σ of f in �, and ρ′ coincides with ρ on all other variables.
Then head(�ρ) = �′ρ′ for some rule in �′ → r′ in Obs(Rs). Now a common
reduct t of r′ρ′ and head(rρ) is obtained by applying the rule head(x : σ) → x
zero or more times. This yields head(�ρ) = �′ρ′ →Obs(Rs) r

′ρ′ →∗
Obs(Rs)

t and
head(rρ) →∗

Obs(Rs)
t. The argument for tail(�ρ) and tail(rρ) is similar. �
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Lemma 3. The model (S1, ([f ]1)f∈Σs) satisfies the specification (Σd, Σs, Rd, Rs).

Proof. We have to prove that [�ρ]1(i) = [rρ]1(i) for every rule � → r in Rs,
every ground substitution ρ and every i ∈ N. By definition [�ρ]1(i) is the unique
normal form with respect to Obs(Rs) ∪ Rd of head(taili(�ρ)), and [rρ]1(i) is the
similar normal form of head(taili(rρ)). Now the lemma follows from Lemma 2.

�

For concluding the proof of Theorem 1 we have to prove that (S1, ([f ]1)f∈Σs)
is the only model satisfying the specification (Σd, Σs, Rd, Rs) and S = {[t] | t ∈
Ts}. This follows from the following lemma.

Lemma 4. Let (S, ([f ])f∈Σs) be any model satisfying (Σd, Σs, Rd, Rs), and t ∈
Ts. Then [t] = [t]1.

Proof. By definition in the model for u ∈ D and s ∈ S we have

([:](u, s))(0) = u, ([:](u, s))(i) = s(i− 1) for i > 0.

In the original stream specification the symbols head, tail do not occur, for these
fresh symbols we now define functions [head] and [tail] on streams s by

[head](s) = s(0), ([tail](s))(i) = s(i+ 1) for i ≥ 0.

If S �= Dω then it is not clear whether [tail](s) ∈ S for every s ∈ S. Therefore
we extend S to Dω and define [f ](· · ·) to be any arbitrary value if at least one
argument is in Dω \ S; note that for the model satisfying the specification we
only required [�ρ] = [rρ] for ground substitutions to Ts by which these junk
values do not play a role.

Due to the definitions of [:], [head] and [tail] this extended model satisfies the
equations

E =

⎧
⎨

⎩

head(x : σ) = x
tail(x : σ) = σ

σ = head(σ) : tail(σ)

that is, for ρ mapping x to any term of sort d and σ to any term of sort s we
have [�ρ] = [rρ] for every �→ r ∈ E . From the definition of Obs(Rs) it is easily
checked that any innermost step t →Obs(Rs) t

′ on a ground term t is either an
application of one of the first two rules of E , or it is of the shape

t→∗
E ·→Rs ·→∗

E t
′

where due to the innermost requirement the redex of the →Rs step does not
contain the symbols head or tail so is in Ts. Since the model is assumed to satisfy
the specification (Σd, Σs, Rd, Rs), we conclude that [t] = [t′] for every innermost
ground step t→Obs(Rs) t

′.
For the lemma we have to prove that [t](i) = [t]1(i) for every i ∈ N. By

definition [t]1(i) is the normal form with respect to Obs(Rs)∪Rd of head(taili(t)).
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Now consider an innermost Obs(Rs)∪Rd-reduction of head(taili(t)) to [t]1(i). By
the above observation and the definitions of [head] and [tail] we conclude that

[t](i) = [head(taili(t))] = [[t]1(i)] = [t]1(i),

the last step since [t]1(i) ∈ D. This concludes the proof, both of the lemma and
Theorem 1. �

We conclude this section by an example of a well-defined stream specification
that is not productive.

Example 4. Choose Σs = {c, f, g}, Σd = {0, 1}, Rd = ∅, and Rs consists of the
following rules:

c = 1 : c
f(x : σ) = g(f(σ))
g(x : σ) = c.

Then this is a valid stream specification for which Obs(Rs) is terminating, as can
be shown by AProVE [4] or TTT2 [7]. Hence by Theorem 1 there is a unique
model. So the ground term f(c) has a unique interpretation: the stream only
consisting of 1’s. However, f(c) is not productive.

So the TRS Rs is not suitable to compute the interpretation of f(c). Instead
one can use outermost reduction with respect to P(Rs), where P(Rs) is the TRS
introduced in the definition of Obs(Rs).

5 Data Independent Stream Functions

The reason that in Theorem 1 we have to restrict to models satisfying S =
{[t] | t ∈ Ts}, as we saw in Example 3, is in the fact that computations may be
guarded by data elements in left hand sides of rules. Next we show that we also
get well-definedness for stream functions defined on all streams in case the left
hand sides of the rule do not contain data elements.

Theorem 2. Let (Σd, Σs, Rd, Rs) be a stream specification for which the TRS
Obs(Rs) ∪ Rd is terminating and the only subterms of left hand sides of Rs

of sort d are variables. Then the stream specification admits a unique model
(S, ([f ])f∈Σs) satisfying S = Dω.

Proof. (sketch) We have to prove that for any f ∈ Σs of type dn × sm → s the
function [f ] : Dn× (Dω)m → Dω is uniquely defined. For doing so we introduce
m fresh constants c1, . . . , cm of sort s. Let k ∈ N and u1, . . . , un ∈ D. Due to
termination and orthogonality of Obs(Rs) ∪Rd, the term

head(tailk(f(u1, . . . , un, c1, . . . , cm)))

has a unique normal for with respect to Obs(Rs)∪Rd. Since it is of sort d, due to
the shape of the rules it is a ground term of sort d overΣd∪{head, tail, c1, . . . , cm},
that is, a ground term T composed fromΣd and terms of the shape head(taili(cj))
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for i ∈ N and j ∈ {1, . . . ,m}. For this observation it is essential that left
hand sides do not contain non-variable terms of sort d: terms of the shape
f(head(· · ·), . . .) should be rewritten.

Let N be the greatest number i for which T has a subterm of the shape
head(taili(cj)). Let s1, . . . , sm ∈ Dω. Define tj = sj(0) : sj(1) : · · · : sj(N) : σ.
Since head(tailk(f(u1, . . . , un, c1, . . . , cm))) rewrites to T , the term
head(tailk(f(u1, . . . , un, t1, . . . , tm))) rewrites to T ′ obtained from T by replac-
ing every subterm of the shape head(taili(cj)) by head(taili(tj)). Observe that
head(taili(tj)) rewrites to sj(i) ∈ D. So ([f ](u1, . . . , un, s1, . . . , sm))(k) has to
be the Rd-normal form of the ground term over Σd obtained from T by re-
placing every subterm of the shape head(taili(cj)) by sj(i) ∈ D. Since this fixes
([f ](u1, . . . , un, s1, . . . , sm))(k) for every k, this uniquely defines [f ]. �

Example 5. It is easy to see that for the standard stream functions zip, even and
odd defined by

even(x : σ) = x : odd(σ), odd(x : σ) = even(σ), zip(x : σ, τ) = x : zip(τ, σ),

there exists f : Dω → Dω for every data set D satisfying

f(x : σ) = x : zip(f(even(σ)), f(odd(σ))),

namely the identity. By Theorem 2 we can conclude it is the only one, since for
Rd = ∅ and Rs consisting of the above four rules, the resulting TRS Obs(Rs) is
terminating as can be proved by AProVE [4] or TTT2 [7]. Both [3] and [11] fail
to prove that the identity is the only stream function satisfying the equation for
f . By essentially choosing Obs(Rs) as the input and adding information about
special contexts, the tool Circ [8] is able to prove that f is the identity.

6 Fixpoints

Several streams are defined as fixpoints of stream functions, like the Fibonacci
stream as given in the introduction. In our format it can be presented as the
stream specification Rs consisting of the rules

Fib = f(Fib) g(0, σ) = 0 : 1 : f(σ)
f(x : σ) = g(x, σ) g(1, σ) = 0 : f(σ).

The TRS Obs(Rs) is not terminating since it allows the reduction

head(Fib) → head(f(Fib)) → head(g(head(Fib), tail(Fib))).

However, now we will polish Rs to R′
s such that Obs(R′

s) is terminating, by which
well-definedness of both R′

s and Rs can be concluded. This shows incompleteness
of Theorem 1: the stream specification Rs admits a unique model but Obs(Rs)
is not terminating.
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Assume some model satisfies Rs; for simplicity we identify ground terms with
their interpretations in the model. Then Fib = f(Fib) = g(· · ·) = 0 : c for some
stream c. Using this equality Fib = 0 : c we obtain

0 : c = Fib = f(Fib) = f(0 : c) = 0 : 1 : f(c),

so c = 1 : f(c). So the model also satisfies R′
s which is obtained from Rs by

replacing the first rule Fib = f(Fib) by the two rules Fib = 0 : c and c = 1 : f(c).
However, R′

s again satisfies our format and Obs(R′
s) is terminating as can be

proved by AProVE [4] or TTT2 [7]. So by Theorem 1 R′
s admits a unique model,

which is by construction the only model for Rs too.
This technique of modifying the stream specification is generally applicable. If

our technique fails for proving well-definedness of a stream specification, we can
analyze the specified streams by applying the rules and deriving new equalities
from which a modified stream specification can be composed. If our technique
succeeds in proving well-definedness of the modified specification, conclusions
can be drawn about the original one.

In general, stream functions may have zero, one or several fixpoints. For in-
stance, the boolean stream function f defined by

f(0 : σ) = 0 : 1 : f(σ), f(1 : σ) = 1 : 0 : f(σ),

has two fixpoints: the Thue Morse stream morse from Example 1 and its inverse.
Proving that there are exactly two can be done as follows. Assumem is a fixpoint
starting with 0, so m = 0 : c. Then 0 : c = m = f(m) = f(0 : c) = 0 : 1 : f(c),
so c = 1 : f(c). By adding the rules m = 0 : c and c = 1 : f(c) we have a stream
specification Rs for which termination of Obs(Rs) can be proved. So there is
exactly one fixpoint of f starting with 0, and by symmetry there is exactly one
fixpoint of f starting with 1.

7 Conclusions

We presented a technique by which well-definedness of stream specifications like

f(0 : σ) = 1 : f(σ)
f(1 : σ) = 0 : f(f(σ)

c = 1 : c

can be proved fully automatically, where a tool like Circ [8] fails, and the pro-
ductivity tool [3] fails to prove productivity of f(c). The main idea is to prove
well-definedness by proving termination of a transformed system Obs(Rs), in
this way exploiting the power of present termination provers.

We observed that productivity of the stream specification can not be con-
cluded from termination of Obs(Rs); we leave as a challenge to find syntactic
criteria on the stream specification by which this can be concluded.
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Modularity of Convergence in Infinitary
Rewriting

Stefan Kahrs

University of Kent, Department of Computer Science, Canterbury CT2 7NF

Abstract. Properties of Term Rewriting Systems are called modular iff
they are preserved under disjoint union, i.e. when combining two Term
Rewriting Systems with disjoint signatures. Convergence is the property
of Infinitary Term Rewriting Systems that all reduction sequences con-
verge to a limit. Strong Convergence requires in addition that no redex
position in a reduction sequence is used infinitely often.

In this paper it is shown that Strong Convergence is a modular prop-
erty, lifting a restriction from a known result by Simonsen, and that
Convergence is modular for non-collapsing Infinitary Term Rewriting
Systems.

1 Introduction

Modular properties of Term Rewriting are properties that are preserved under
(and reflected by) the disjoint union of signatures. They are of particular interest
to reason about rewrite systems by divide and conquer. Examples of modular
properties are: confluence, weak normalisation, simple termination; examples of
non-modular properties are: strong normalisation, strong confluence.

One aspect of Term Rewriting is that it can be viewed as a computational
model for Functional Programming. Lazy Functional Programming exhibits a
phenomenon that ordinary Term Rewriting does not really capture: reductions
that converge to an infinite result in infinitely many steps. Partly for that reason,
the concept of Infinitary Term Rewriting was devised in [2]; technically, it arises
from the finite version by equipping the signature with a metric dm and using
as its universe of terms Term(Σ), the metric completion of the metric space
(Ter(Σ), dm). In this paper, we are only concerned with the metric d∞ (which
goes back to [1]) which sets the distance d∞(t, t′) to 2−k where k is the length of
the shortest position at which the two terms t and t′ have different subterm-roots.
This also coincides with a straightforward co-inductive definition of infinitary
terms [7].

Infinitary Term Rewriting views transfinite reductions as reduction sequences
that are also convergent sequences, w.r.t. its metric. An iTRS is called convergent
iff all its reduction sequences converge.

There are few positive results about convergence in the literature, instead
research has focussed on strong convergence which in addition requires that
redex positions in a reduction sequence cannot stay short.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 179–193, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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It is known that strong normalisation is not modular for finitary Term Rewrit-
ing Systems. The well-known counter example from [12] has a strongly normalising
TRS with rule F (0, 1, x) → F (x, x, x), and another one with rules G(x, y) → x,
G(x, y) → y; their combination fails to be strong normalising as the term
F (0, 1, G(0, 1)) reduces to itself in three steps. For the discrete metric strong con-
vergence and strong normalisation coincide and therefore modularity of strong
convergence can fail for other term metrics than d∞. The example also shows that
“finite convergence”, the convergence of all reduction sequences starting from a
finite term, fails to be modular in both weak and strong form [10].

This paper proves that strong convergence is a modular property, and that
convergence is modular in the absence of collapsing rules. This generalises similar
claims by Simonsen [10] about left-linear systems. Moreover, in the case of con-
vergence his proof sketch has a gap as it assumes that the sequences in principal
subterm positions of the combined system are eventually reduction sequences.
This may be true for left-linear systems but it requires proof.

The modularity proofs work by contradiction, constructing a non-converging
reduction sequence in one of the original systems from a non-converging one
in the combined system. For strong convergence that proof strategy works di-
rectly. For convergence, this is much more complex (especially in the presence
of non-left-linear rules): if a reduction sequence is converging but not strongly
converging then the top layer “remains active” throughout the sequence and
in particular it can rearrange its principal subterms. However, these rearrange-
ments are strongly constrained by the fact that the iTRS associated with the
top layer is itself converging. In particular, the subterms at a principal position
in the limit form a so-called focussed sequence; these have peculiar properties:
(i) any infinite subsequence of a focussed sequence contains an infinite reduction
sequence; (ii) any non-converging focussed sequence contains a non-converging
reduction sequence.

2 Basic Definitions and Results about Convergence

A sequence in a metric space (M,d) is a continuous function f : α→M , where
α is an ordinal (w.r.t. the usual order topology). It is called open if α is a limit
ordinal, otherwise it is closed.

An open sequence f : α→M diverges iff it cannot be extended to a sequence
f ′ : α+ 1 →M where ∀γ < α. f ′(γ) = f(γ).

A subsequence of f is a strictly monotonic and continuous function g : β → α.
g is called cofinal [3] iff ∀γ. γ < α ⇒ ∃ζ.ζ < β. g(ζ) ≥ γ. We say that a
subsequence g converges iff the sequence f ◦ g does. Clearly, an open sequence
converges iff all its subsequences do. Note: (i) cofinal subsequences compose: if
g is a cofinal subsequence of f and h a cofinal subsequence of g then g ◦ h is
a cofinal subsequence of f ; (ii) subsequences are strictly normal functions on
ordinals [8], i.e. their application distributes over suprema.

A sequence f converges to c iff it stays eventually within any neighbourhood
of c. Thus, if f does not converge to c then there is a neighbourhood B of c and
a cofinal subsequence g of f such that B and the range of f ◦ g are disjoint.
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A metric abstract reduction system (short: MARS) is a structure (M,d,→) such
that (M,d) is a metric space and (M,→) an abstract reduction system, i.e. → is
a binary relation onM . Aside: despite sharing the acronym, this definition differs
from the one originallyused by Kennaway [5], as that requires additional structure.

A reduction sequence in a MARS (M,d,→) is a sequence f : α → M such
that ∀β.β + 1 < α⇒ f(β) → f(β + 1). Notice that being a sequence entails the
continuity of f .

Proposition 1. If the open sequence f : α → M diverges and (M,d) is a
complete metric space then there is an ε > 0 such that ∀β < α. ∃γ, γ′. β ≤ γ <
γ′ < α ∧ d(f(γ), f(γ′)) ≥ ε.

Proof. Suppose there was no such ε. We can construct a Cauchy-sequence an by
choosing an = f(βn) where βn is the smallest ordinal such that the f -image of
[βn, α) is a set with diameter no bigger than 1/n. Completeness of (M,d) means
that an has a limit a, and we can extend f to f ′ with f ′(α) = a as the condition
also ensures that f ′ is continuous at α. Thus f did not diverge. �

A MARS is called convergent iff all its open reduction sequences converge. Oth-
erwise we call it divergent.

Weak reduction �w of a MARS is defined as follows: t �w u iff there exists
a closed reduction sequence f : α+1 →M with f(0) = t and f(α) = u. Clearly,
the relation �w is transitive. We also write �ww for the weak reduction of
the MARS (M,d,�w). Moreover, we call reduction sequences of the MARS
(M,d,�w) weak reduction sequences of the original MARS (M,d,→).

Proposition 2. Let (M,d,→) be a convergent MARS.
If t �ww u then t �w u.

Proof. We can prove the result by induction on the indexing ordinal α of the
witnessing sequence f : α+ 1 →M for t �ww u. The base case α = 0 is trivial
and if α is a successor ordinal the result follows by the induction hypothesis and
transitivity of �w.

Otherwise, α is a limit ordinal. For any β < α we have t �ww f(β) and thus by
the induction hypothesis t �w f(β). This reduction has an associated indexing
function gβ : γβ →M . The increasing sequence of ordinals γβ (with β approaching
α) must converge to some ordinal γ [9, page 290]. W.l.o.g. we can assume that this
is a limit ordinal as otherwise almost all reductions in the image of f would be
empty. Moreover the functions gβ agree on their common domain. In their limit
they thus extend to a function g : γ → M which is an open reduction sequence.
As the original MARS is convergent g can be extended to a closed sequence g′ :
γ + 1 → M ; since both f(α) and g′(γ) are limits of the sequence f(β) with β
approaching α we must have g′(γ) = f(α) and the result follows. �
It is easiest to explain the meaning of Proposition 2 by showing how the property
fails if we drop the condition that (M,d,→) is convergent. Consider the following
example, given as an infinitary string rewriting system:

{BE → CSE, AC → AB, BS → SB, SC → CS}
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In this system we have for any n:

ABSnE →∗ ASnBE → ASnCSE →∗ ACSn+1E → ABSn+1E

Thus ABSnE →∗ ABSn+1E and also ABSnE �w ABSn+1E. Starting from
n = 0 we get ABE �ww ABS∞ as the result is the limit of all ABSnE.
However, we do not have ABE �w ABS∞ as intermediate reduction results
in the sequences for ABSnE �w ABSn+1E will change the B to an S. The
example does not contradict the proposition as the system is not converging: we
have ABSnE �w AS

nBE �w ABS
n+1E �w . . ..

Aside: the converse does not hold, i.e. it is possible that �w and �ww coincide
without (M,d,→) being convergent — e.g. we can choose → = M ×M .

Proposition 3. Let (M,d,→) be a convergent MARS.
Then (M,d,�w) is also convergent.

Proof. Using the same construction as in the proof of Proposition 2 we can
expand an open �w-reduction into an open →-reduction. The convergence as-
sumption gives us a limit to the latter which must also be a limit to the former.

�
Corollary 1. A MARS is convergent if and only if all its weak reduction se-
quences converge.

Proof. If the MARS is not convergent then the result follows because any re-
duction sequence is also a weak reduction sequence. Otherwise Proposition 3
applies. �

Given a MARS (M,d,→) and a sequence f : α→M , the predicate Focf,α on α
is defined as follows:

Focf,α(β) ⇐⇒ ∀γ. α > γ ≥ β ⇒ ∃ζ. α > ζ ∧ ∀κ. α > κ ≥ ζ ⇒ f(γ) �w f(κ)

We have: (i) if Focf,α(β) then Focf,α(γ) for all γ ≥ β; (ii) if Focf,α(β) then
∃γ > β. f(β) �w f(γ). The sequence f is called focussed iff ∃β. Focf,α(β).

In words: a sequence is focussed iff every of its elements sufficiently close to α
weakly reduces to all its elements sufficiently close to α. In particular, all weak
reduction sequences are focussed, but not vice versa.

Of interest are specifically open focussed sequences. If a focussed sequence is
closed, i.e. if α = α′ + 1 for some α′ then because of the possible choice κ = α′,
the condition Focf,α(β) can be simplified to: ∀γ. α > γ ≥ β ⇒ f(γ) �w f(α′),
i.e. every sufficiently late occurring element of the sequence weakly reduces to
the last element.

Proposition 4. Every cofinal subsequence g of a focussed sequence f has itself
a cofinal subsequence h such that f ◦ g ◦ h is a cofinal weak reduction sequence.

Proof. First notice that this is trivial if f is closed, because g would be forced to
include the last element of f (as g is cofinal), and it would suffice if h is singleton,
picking that last element. Otherwise, the input domain of f is a limit ordinal α.
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Let f : α→M be focussed and let g : μ→ α be the cofinal subsequence. We
construct a strictly monotonic h′ : α→ μ+ 1 as follows.

h′(0) = min{ν | Focf,α(g(ν))}
h′(γ + 1) = min{ζ | ζ > h′(γ) ∧ f(g(h′(γ))) �w f(g(ζ))}

h′(λ) = lim
γ<λ

h′(γ)

If for some limit ordinal λ < α we have h′(λ) = μ then h = h′|λ. Otherwise μ
does not appear in the range of h′ and we can set h = h′.

The focussed property ensures that the minima on the right-hand sides are
minima of non-empty sets, which both implies that h is strictly increasing and
that f ◦ g ◦ h is a reduction sequence.

To show that the map h is cofinal two cases need to be considered. First,
if its domain is λ �= α then that was because μ = h′(λ) = limγ<λ h

′(γ) =
limγ<λ h(γ), showing that h is cofinal. Otherwise, h = h′ and its domain is α.
Assume limγ<α h(γ) = μ′ < μ. Then, using basic facts about strictly normal
functions on ordinals [8,3], we can derive a contradiction:

α = lim
γ<α

γ ≤ lim
γ<α

g(h(γ)) = g( lim
γ<α

h(γ)) = g(μ′) < α

Thus, the assumption was wrong and h is cofinal. The subsequence g ◦ h is also
cofinal, because cofinal maps are preserved by composition. �

One could say that within a focussed sequence the �w relation is like an almost
full relation [11, page 811]. What complicates the situation though is that we
are dealing with transfinite sequences. In particular, to relate the convergence
of f to that of one of its subsequences we need that the subsequence is cofinal;
without that property the subsequence could converge to a limit that has no
bearings on the overall convergence.

For example, given rulesA→ S(A), B → S(B), F (x, x) → S(F (x, x)) we have
an open reduction f : ω+ω→ Ter∞(Σ) commencing in F (A,B) and converging
to S∞. f contains an infinite subsequence that converges to F (S∞, S∞), but this
subsequence is not cofinal. Any cofinal subsequence of f would also converge to
S∞ .

Proposition 5. A MARS converges iff all its focussed sequences converge.

Proof. Since all weak reduction sequences are focussed the ⇐ implication follows
from Corollary 1. Now suppose f : α→M is a divergent focussed sequence; from
it, we need to construct a divergent reduction sequence, and by Corollary 1 it
suffices if it is a weak reduction sequence.

We can apply Proposition 4 to f , using the identity function id : α → α as
the cofinal subsequence. This gives us a cofinal subsequence hc : β → α such
that gc = f ◦ hc is a weak reduction sequence.

If gc is divergent we are done. Otherwise it converges to a limit c. Since f
diverges it does not converge to c. Thus there is a proper subsequence s of f
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such that the values in the range of f ◦s are outside some neighbourhood B of c.
Again, we can apply Proposition 4, this time to f and s. This gives us a cofinal
subsequence he : β′ → α such that ge = f ◦ he is a weak reduction sequence.

If ge is divergent we are done. Otherwise it converges to a limit e �= c. Then
we can construct a third sequence h : α→ α+ 1 as follows:

h(0) = hc(0)
h(γ + 1) = min{ζ > h(γ) | hγ(ζ′) = ζ ∧ f(h(γ)) �w f(ζ)}

h(λ) = lim
γ<λ

h(γ)

In the second equation the function hγ is either hc or he, depending on whether
γ is even or odd. As in the proof of Proposition 4 we obtain the required cofinal
reduction subsequence by constraining the domain of h to λ, if necessary. That
sequence cannot converge because the distance between subsequent elements
converges to d(c, e). �

Note: the proof could be generalised to reduction systems over topological spaces
that are Hausdorff, as the final argument only rests upon that c and e have dis-
joint neighbourhoods. Whether the result could be generalised further to topo-
logical spaces that are not Hausdorff is not clear.

3 Infinitary Term Rewriting

For the basic definitions of infinitary term rewriting we refer to [6]. Summarised
briefly: the set Ter∞(Σ) of infinite terms arises as the metric completion of
the metric space (Ter(Σ), d∞), where the metric d∞ is inductively defined
on finite terms as d∞(t, u) = 1 if t and u have different roots, and otherwise
d∞(F (t1, . . . , tn), F (u1, . . . , un)) = 1

2 ·max1≤i≤n(d∞(ti, ui)). Rewrite rules have
the form l → r where l is a non-variable term and all variables in r occur in l;
usually, infinite left-hand sides are not permitted in rules, but there is no need
to exclude them for the purposes of this paper.

The notions of contexts and substitutions (and their applications) can be
lifted in a canonical way from their finite counterparts [4]. An inifinitary Term
Rewriting System (iTRS) is given by a signature Σ and a set of rewrite rules
R. The single-step reduction relation →R arises as usual by closing R under
substitution application and context application.

For selecting the subterm at position p of a term t we use the notation t/p.
We totalise this partial function by setting t/p = x if p /∈ Pos(t) which allows to
extend this notation pointwise to sequences: (f/p)(α) = f(α)/p.

Proposition 6. Let (Ter∞(Σ), d∞,→R) be the MARS of an iTRS R. If f :
α→ Ter∞(Σ) is a divergent sequence then there is a position p such that ∀β <
α. ∃γ, γ′. β ≤ γ < γ′ < α ∧ d∞(f(γ)/p, f(γ′)/p) = 1.

Proof. As Ter∞(Σ) is complete Proposition 1 applies. Because all distances in
Ter∞(Σ) are negative powers of 2 there are only finitely many distances greater
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or equal than any ε and thus there is a smallest n such that d∞(f(γ), f(γ′)) =
2−n occurs for γ and γ′ arbitrarily close to α. This means that all subterm
positions q with |q| < n are eventually fixed. However, once they are fixed there
are only finitely many positions of length n. At least one of those must be affected
in any neighbourhood of α and this is the mentioned p. �

This result is specific to metric d∞ (modulo homeomorphism). The reason is
this: any metric dm is determined by its behaviour on finite terms. Any Cauchy-
sequence in (Ter(Σ), dm) is also Cauchy in (Ter (Σ), d∞); if the converse holds
then Term(Σ) and Ter∞(Σ) are homeomorphic; any counterexample would also
be a counterexample to the proposition. This claim only assumes that other met-
rics dm are defined as term metrics [4], i.e. by induction on the term structure.

An iTRS is strongly converging iff for all open reduction sequences of length
α no redex position p is reduced arbitrarily close to α. Equivalent to this [13] is
the notion of top-termination, i.e. that no reduction sequence contracts a root
redex infinitely often.

It is possible to define the property without referring to redex positions
though: the indirected version of an iTRSs R is defined as follows. Its signa-
ture is that of R extended by a fresh unary function symbol I; for each rule
l → r in R it has a rule l → I(r); in addition, it has the rule I(x) → x. We
modify the metric d∞ to set d∞(I(t), I(u)) = d∞(t, u).

Proposition 7. An iTRS is strongly converging iff its indirected version is
converging.

Proof. Any reduction sequence f of the original iTRS can be mapped into a re-
duction sequence f ′ of the indirected version by splitting the step into two parts,
where the second part removes the just introduced I-symbol. If f is not top-
terminating then f ′ fails to converge, as it would have infinitely many changes
of root-symbol.

Dually, a reduction sequence g of the indirected version can be mapped into
a (shorter) sequence g+ of the original system, by removing all I-symbols. How-
ever, g can only fail to converge by an infinitely often occurring function symbol
change at some minimal position p. That means though that g must apply rules
other than I(x) → x at position p infinitely often, and thus g+ would apply
those rules at p or higher infinitely often which means that g+ is not strongly
converging. �

4 Counterexamples and Near Counterexamples

In this section we will be looking at examples that show why the modularity
results for convergence come with side conditions.

Particulary problematic w.r.t. convergence are collapsing rules, i.e. rules that
have a variable as their right-hand side. An iTRS immediately fails to be strongly
convergent if a collapsing rule is present. The reason is this: any such rule takes
the form C[x, . . . , x] → x, the equation t = C[t, . . . , t] has a (unique) solution in
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Ter∞(Σ), and t λ→ t gives an infinite reduction sequence with contractions at
the root.

The weaker notion of convergence can coexist with collapsing rules, but barely:
if C[x] →∗ x holds for any other contexts C[ ] than those of the form C[y] =
Fn(y) (for varying n but fixed F ) then such an iTRS is not convergent either.
In particular, the presence of two rules F (x) → x and G(x) → x means that
the terms t = F (G(t)), u = G(F (u)) reduce to each other and thus give rise to
a non-converging reduction sequence. The example also shows that convergence
(on its own) is not a modular property.

Convergence can also be broken if only one of the two systems has a collapsing
rule. Example: system R has rule G(H(x)) → G(x), system S has the rule
F (x) → x. In the combined system there is the term t = F (H(t)) and the
non-convergent reduction G(t) → G(H(t)) → G(t).

Most of the time we can observe convergence (or its absence) at ω-indexed
reduction sequences. In the presence of non-left-linear rules this can be rather
different though. Example [13]:

{E → S(E), F → S(F ), G(x, x) → G(E,F )}

This fails to converge, but this failure first occurs at ω2-indexed reduction se-
quences. We have G(E,F ) →∗ G(Sn(E), Sm(F )) for any m,n and thus in the
limit G(E,F ) �w G(S∞, S∞) → G(E,F ). This does not provide any conver-
gence problems at ordinals of the form ω · k though; however, when we attempt
to extend a reduction sequence to ω2 we find both G(E,F ) and G(S∞, S∞) in
the image of the reduction sequence at any of its neighbourhoods.

In the previous example we had E →∗ Sn(E) for any n, and E �w S∞ in
the limit. However, one can have an iTRS with the former but not the latter
property, e.g. if we replace the first rule by these four:

{E → Z, E → H(E), H(Z) → S(Z), H(S(x)) → S(S(x))}

Patterns like this complicate the reasoning about (weak) convergence, because
in a combined system an outer layer may place in a position p different reducts
of E, and thus the term in position p could converge at a limit to S∞, showing
that a principal subterm at a limit may not be a reduct of an earlier principal
subterm. For example, this happens if we combine this system with the following:

{J(K(x, y)) → J(y)}

Let t = K(E, t) and u = K(S∞, u): we have J(t) �w J(u); E is the only
principal subterm of J(t) and it does not reduce to any of the principal subterms
of J(u). However, this second iTRS already fails to converge: given the term
s = K(J(K(x, y)), s) we can construct the non-converging sequence J(s) →
J(K(J(y)), s) → J(s).
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5 Definitions and Observations Useful for Both Proofs

The first definition is taken from [4]: A family of equivalence relations
p∼ (indexed

by positions p) is inductively defined as follows:

t
λ∼ u

F (t1, . . . , tn)
i·q∼ F (u1, . . . , un) ⇐= ti

q∼ ui

When studying the disjoint union of term rewriting systems R and S it is useful
to split a term into layers of the participating systems, and distinguish its prin-
cipal subterms. The principal subterm positions of a term t, PPos(t) ⊂ Pos(t)
have the following properties: p is principal if (i) the root of t/p is a function
symbol belonging to a different signature than the root of t; (ii) no proper prefix
of p is principal. The top positions of a term t, TPos(t) ⊂ Pos(t) are defined as
follows: TPos(t) = {p ∈ Pos(t) | ∀q. q ≺ p ⇒ q /∈ PPos(t)}. Thus top positions
are either parallel to principal subterms or their prefixes.

The top layer of a term is comprised of all the positions reachable from the
root without a change of signature, and is thus “cut off” at its principal subterm
positions. This leaves the layer with gaps at the cut-off points; therefore, the top
layer is technically defined as the function that recreates a term if suitable fill
material for the gaps is provided: The top-layer of a term t is a function #t$ with
type (PPos(t) → Ter∞(Σ)) → Ter∞(Σ) where we write #t$ξ for the application
of #t$ to a function ξ : PPos(t) → Ter∞(Σ). The top layer has the following
properties: above principal subterm positions it agrees with t:

∀ξ. ∀p ∈ PPos(t). t
p∼ #t$ξ

In positions parallel to principal subterms, t and #t$ coincide:

∀ξ. ∀q ∈ Pos(t). (∀p ∈ PPos(t). q||p) ⇒ t/q = #t$ξ/q

And in principal subterm positions themselves the gaps are filled with the
function ξ:

∀p ∈ PPos(t). #t$ξ/p = ξ(p).

The standard notation [11] for layers is C[[t1, . . . , tn]]. The main reason for de-
parting from that is that the top-layer of an infinitary term may have infinitely
many principal subterm positions, and the #t$ notation avoids the need for ac-
cessing them through an indexing set by using PPos(t) itself instead.

The (possibly infinite) rank of an infinitary term t is defined as follows:

rank(t) = sup{1 + rank(t/p) | p ∈ PPos(t)}

We can define a distance between top-layers: d(#t$, #u$) = d∞(#t$kx, #u$kx)
where kx is the function that constantly returns x, where x is a fresh variable.

From now the reasoning will be about the disjoint union of two non-collapsing
iTRSs R and S with rewrite relation →RS and combined signature Σ, and for



188 S. Kahrs

the top layer of any reduction (step or sequence) it is assumed that it is situated
in system R, with signature ΣR.

In the following we will be using a construction in which all principal subterms
of a term t at finite rank n are replaced by a fixed term u, t[n↘ u]. Formally:

t[0↘ u] = u

t[n+ 1↘ u] = #t$ξ where ξ(p) = t/p[n↘ u]

This notation is also extended to sequences of terms: if f : α → Ter∞(Σ) is
continuous then f [n↘ u] : α→ Ter∞(Σ) is defined pointwise as

f [n↘ u](β) = f(β)[n↘ u]

Notice that the function t �→ t[n↘ u] is non-expansive [4] and therefore preverses
the continuity of the sequence.

Lemma 1. Let f : α → Ter∞(Σ) be a reduction sequence. Let u ∈ Ter∞(Σ)
and n ∈ N be arbitrary. Then the sequence f [n↘ u] is a reduction sequence of
the reflexive closure of →RS .

Proof. The absence of collapsing rules means that principal subterm replacement
at level n commutes with reduction steps at higher level, even for contraction of
non-left-linear redexes. Limits are also preserved by continuity of the construc-
tion. Reduction steps at lower level become reflexive steps. �
Any reduction sequence of the MARS (M,d,→=) can be turned into a (possibly
shorter) reduction sequence of (M,d,→). Thus, the presence of reflexive steps
in f [n↘ u] is merely a technicality. The full generality of lemma 1 will be used
later for lemma 6; of special interest is the case n = 1:

Corollary 2. Let f : α→ Ter∞(Σ) be a reduction sequence. Let u ∈ Ter∞(ΣR).
Then f [1↘ u] is a reduction sequence of the reflexive closure of →R.

Proof. As all terms of the sequence are by construction ΣR-terms each →RS-
step is a →R-step. �
over the signature of We define the principal positions of a reduction sequence
f : α→ Ter∞(Σ) as follows:

PPos(f) =
⋃

β<α

⋂

β<γ<α

PPos(f(γ))

Lemma 2. Let f : α → Ter∞(Σ) be an open reduction sequence. If R is con-
vergent then the top layers of f converge to some top layer #u$ where PPos(u) =
PPos(f).

Proof. Since the iTRS of the top layer is convergent then so is f [1↘ x], for some
fresh variable x, and let its limit be t. Let c be any non-variable term in the other
iTRS then by substitutivity of weak convergence we also have f [1 ↘ x][c/x] =
f [1 ↘ c] �w t[x/c], and we can set u = t[x/c] since #u$ does not depend on
the choice of c. Clearly, any principal position in t[x/c] must be principal for
f(β)[1 ↘ c] for all γ in the open interval (β, α) for some β. �
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6 Modularity of Convergence

In the example section we have seen how a top-layer can through rearrangement
of its principal subterms interfere with the convergence at subterm positions.
However, the example that rearranged principal subterms “in a substantial way”
was divergent.

We will show that this is not an accident. The idea behind this is the following:
if f is an open reduction sequence then so is g = f [1 ↘ l] and if l is a term
belonging to the (converging) top-layer then g must converge. Moreover, if l → r
(in the interesting case l �= r) then g must still converge if we interleave it with
the occasional reduction of l → r, provided we preserve non-left-linear redexes
along the way. It is impossible to have both l and r occur infinitely often in a
fixed position p, because that would create a divergence with diameter of at least
d∞(l, r) · 2−|p|. That means that two situations are ruled out: (i) that the top-
layer reduction drags eventually infinitely many different subterms into position
p — as in f [1↘ l] each l could be reduced once it appears in position p; (ii) at
the same time infinitely many terms appearing in position p are “descendants”
of a principal subterm t and infinitely many others are not. In that case we would
create a non-converging sequence by reducing the l in the corresponding place
to t in f [1 ↘ l], as all the terms corresponding to descendants would change to
r while the others stay l. With both these scenarios ruled out one can show that
the sequence of subterms in position p must converge.

These ideas will be formalised in a slightly different way that avoids the trac-
ing of redexes and the rather cumbersome notion of “descendant” — which is
problematic anyway for non-strong reductions [10].

A predicate sequence is an ordinal-indexed sequence of predicates s on terms
such that β ≤ γ ∧ t �w u ∧ s(γ)(u) ⇒ s(β)(t). The idea is to use a predicate
sequence alongside a reduction sequence of the same length.

Let f : α → Ter∞(Σ) be a reduction sequence and p be an ω-sequence
of positive integers. The function fp : α → Ter∞(Σ) → B maps ordinals to
predicates on terms, and is defined as follows:

fp(β)(t) ⇐⇒ ∃γ. β ≤ γ < α ∧ p ∈ PPos(f(γ)) ∧ t �w f(γ)/p

The predicate fp is true for terms that weakly reduce to terms appearing in
principal position p later in the sequence.

Lemma 3. fp is a predicate sequence.

Proof. Assume β ≤ γ and t �w u and fp(γ)(u). fp(γ)(u) means that there is
a ζ ≥ γ such that p is a principal position in f(ζ) and u �w f(ζ)/p. In order
to show that fp(β)(t) we can choose the same ζ as the witness; β ≤ ζ holds
because β ≤ γ ≤ ζ; t �w f(ζ)/p holds because t �w u �w f(ζ)/p, and �w is
transitive. �

Another predicate sequence we shall be using is not dependent on the ordinal,
and defined as: kt(β)(u) ⇐⇒ ¬(t �w u). Thus kt is constantly true for all
terms that are not reducts of t.



190 S. Kahrs

Lemma 4. kt is a predicate sequence.

Proof. Let r �w s and kt(γ)(s). Thus ¬(t �w s). To show kt(β)(r) we need to
show ¬(t �w r). But t �w r gives t �w r �w s and so by transitivity of �w

the contradiction t �w s. �
Given a rule l → r in R and a predicate sequence s we define a dependent
function ξs : Πt : Ter∞(Σ).α→ PPos(t) → Ter∞(Σ) as follows:

ξs(t)(β)(p) =

{
l if s(β)(t/p)
r otherwise

Proposition 8. Distributive properties of ξs w.r.t. subterm selection and sub-
stitution application in top positions:

∀p ∈ TPos(t). #t$ξs(t)(β)/p = #t/p$ξs(t/p)(β)

∀u ∈ Ter∞(ΣR). #σ(u)$ξs(σ(u))(β) = σ′(u)
where ∀x. σ′(x) = #σ(x)$ξs(σ(x))(β)

Proof. The first property is trivially proven by induction on the length of p. The
second is a corollary, because if u ∈ Ter∞(ΣR) (i.e. only using function symbols
from the signature of the top layer) then all variable positions in u become top
positions in σ(u). �
The function ξs is used to create reducts of t[1 ↘ l] by reducing some of the l to
r, guided by the predicate sequence. In particular, it is used to replace principal
subterms in a reduction sequence.

Proposition 9. The fundamental properties of the function ξs are:

t→RS u⇒ #t$ξs(t)(β) →=
R #u$ξs(u)(β)

β ≤ γ ⇒ #t$ξs(t)(β) �w #t$ξs(t)(γ)

Proof. First property: let q be the redex position. At positions p parallel to q,
t

p∼ u thus also #t$ξs(t)(β)
p∼ #u$ξs(u)(β).

If p 1 q for some p ∈ PPos(t) then certainly p ∈ PPos(u) and #t$ξs(t)(β) and
#u$ξs(u)(β) also coincide in all positions that are prefixes of p. At position p itself
these two terms have either l or r. If ξs(u)(β)(p) = r then there is nothing to
show, as both l →=

R r and r →=
R r. If ξs(u)(β)(p) = l then we know by the

definition of ξs that s(β)(u/p) holds. Since we know t/p →RS u/p we can use
the predicate sequence property of s to establish s(β)(t/p). This means by the
definition of ξs that ξs(t)(β)(p) = l, and therefore #t$ξs(t)(β) = #u$ξs(u)(β) as the
terms also agree in position p.

Otherwise the redex q is a top position, t/q = σ(v), u/q = σ(w) for some rule
v → w in R. Using Proposition 8 we get: #t$ξs(t)(β) = C′[σ′(v)] and #u$ξs(u)(β) =
C′[σ′(w)] for some context C′ and some substitution σ′.

So in particular: #t$ξs(t)(β) = C′[σ′(v)] →R C
′[σ′(w)] = #u$ξs(u)(β).

The reason for the second property is that s(β) ⇐ s(γ); consequently, fewer
(but not more) principal subterms might be set to l; again, all these can be
reduced to r — this might require ω steps, if the top layer of t is infinite. �
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Given an open reduction sequence f : α → Ter∞(Σ) and a predicate sequence
s we write #f$s : α → Ter∞(Σ) for the function defined as follows (here n is a
finite ordinal and λ a limit ordinal or 0):

#f$s(λ+ 2 · n) = #f(λ+ n)$ξs(f(λ+n))(λ+n)

#f$s(λ+ 2 · n+ 1) = #f(λ+ n)$ξs(f(λ+n))(λ+n+1)

This definition may require some explanation

1. Because f is open, α is a limit ordinal and thus λ+ n < α implies λ + n+
n+ 1 < α, for finite n. Hence α remains as the domain for #f$s.

2. That the case distinction into even and odd ordinals is well-defined and
covers all cases follows from the normal-form theorem for ordinals [9, page
323].

3. The purpose of this definition is the following. A single reduction step f(β) →
f(β + 1) of the original sequence is split into two stages:

#f(β)$ξs(f(β))(β) �w #f(β)$ξs(f(β))(β+1) →=
R #f(β + 1)$ξs(f(β+1))(β+1)

This follows from Proposition 9. Thus the function #f$s is a weak reduction
sequence.

4. As all terms in #f$s belong to system R the sequence must be convergent
— the same argument also explains why #f$s must be continuous at limit
ordinals λ < α, i.e. why it is a proper sequence.

Lemma 5. Let f : α → Ter∞(Σ) be an open reduction sequence and let R be
convergent. Let p ∈ PPos(f). Then the sequence f/p is focussed.

Proof. First notice that #f$fp converges. By construction, that sequence has an
l in position p for all even ordinals (including limits), but it reduces that l to
r whenever the corresponding subterm in f fails to have any more reducts in
position p. This cannot happen arbitrarily close to α, so there is a cut-off point
β after which all f(γ)/p have reducts f(κ)/p, for some κ > γ.

Now assume, for some ζ > β there was no cut-off point φ such that for
all ψ ≥ φ, f(ζ)/p �w f(ψ)/p. Then we could construct the weak reduction
sequence #f$kf(ζ)/p

in R. This replaces all weak reducts of f(ζ)/p in principal
positions by r and all other principal subterms by l. By the assumption and the
previous observation we have both l and r occurring at p arbitrarily close to α
which contradicts convergence. Hence the assumption was wrong and f must be
focussed. �

This result means together with the previous propositions about focussed se-
quences that if reductions in principal subterm positions would converge then
so would the reduction as a whole. But why would they converge? We need an
argument that ensures that we can reason inductively.

Lemma 6. If the combined system has a divergent reduction sequence then it
also has a divergent reduction sequence in which all terms have finite rank.
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Proof. Let f : α → Ter∞(Σ) be that divergent reduction sequence. By Propo-
sition 6 there is a position which changes infinitely often, and we assume p to
be one such of minimal length. Clearly, this position is always within the first
|p| ranks for all terms of the sequence. We can form f [|p| + 1 ↘ x] for some
fixed variable x which by Lemma 1 is also a reduction sequence. Moreover, f(β)
and f [|p| + 1 ↘ x](β) have the same function symbols up to rank |p|. Thus
the same position p still exhibits infinitely many changes of function symbols in
f [|p|+ 1↘ x], and all terms in that sequence have maximum rank |p|. �

The lemma does not hold in the presence of collapsing rules. For example, if
F (x) → x and G(x) → x are the two systems R and S then we already know that
this is not convergent. However, that combination has no divergent reduction of
terms with finite rank. What breaks the proof in the presence of collapsing rules is
the (lack of) commutation of rewrite steps with principal subterms replacement
at rank |p|+ 1.

The purpose of the lemma is that we can now argue about non-converging
reductions by induction on the rank.

Theorem 1. If two non-collapsing iTRSs R and and S are convergent then so
is their disjoint union.

Proof. By Lemma 6 this can be proved by induction on the minimum required
rank for the initial term. The base case is trivial.

Let f : α → Ter∞(Σ) be an open reduction sequence. If it diverges then by
Proposition 6 one position q must witness the divergence infinitely often, and by
Lemma 2 this must be below some principal position p of the limit of the top
layer. By Lemma 5 the subterm sequence in position p is focussed.

By the induction hypothesis, reductions at lower rank are convergent. Thus
Proposition 5 applies and the subterm sequence in position p must converge,
contradicting the earlier assumption about q. Thus f converges itself. �

7 Modularity of Strong Convergence

Simonsen showed [10] that top-termination (and thus strong convergence) is a
modular property of left-linear iTRSs. Left-linearity is indeed an unnecessary
constraint:

Theorem 2. The disjoint union of two strongly converging iTRSs is a strongly
converging iTRS.

Proof. Strong convergence implies that the contributing iTRSs are non-
collapsing, hence the previous results about convergence apply. According to
[13] an iTRS is strongly converging if and only if it contains no reduction se-
quence that reduces a root redex infinitely often. Suppose f was such a sequence.
But f [1↘ x] resides in the iTRS R of the top layer; as the construction preserves
all top layer reductions it also preserves all root reductions which contradicts the
premise that R is strongly converging. �
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8 Conclusion

It has been shown that strong convergence is a modular property of iTRSs, and
weak convergence a modular property of non-collapsing iTRSs. Otherwise, the
iTRSs involved can have various usually undesirable properties: non-left-linear
rules, infinite left-hand sides, and infinitely many rules are all permitted.

The proof for strong convergence is perfectly straightforward — of the results
about weak convergence it really only relied upon Lemmas 1 and 2. The proof
for weak convergence is comparatively complex.

At the heart of that is a consideration that the reductions in the top layer
are limited in the way they can rearrange the principal subterms, in particular
that the principal subterms in a fixed position must form a focussed sequence.
Moreover, abstract reduction systems are converging iff their focussed sequences
do, and both observations together give the result.

This is apparently the first non-trivial positive result about weak convergence
in the literature. Perhaps even more importantly, the proof of the result offers
new tools to deal with weak convergence directly.
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Abstract. We address the problem of cyclic termgraph rewriting. We
propose a new framework where rewrite rules are tuples of the form
(L, R, τ, σ) such that L and R are termgraphs representing the left-hand
and the right-hand sides of the rule, τ is a mapping from the nodes of
L to those of R and σ is a partial function from nodes of R to nodes
of L. The mapping τ describes how incident edges of the nodes in L
are connected in R, it is not required to be a graph morphism as in
classical algebraic approaches of graph transformation. The role of σ
is to indicate the parts of L to be cloned (copied). Furthermore, we
introduce a notion of heterogeneous pushout and define rewrite steps
as heterogeneous pushouts in a given category. Among the features of
the proposed rewrite systems, we quote the ability to perform local and
global redirection of pointers, addition and deletion of nodes as well as
cloning and collapsing substructures.

1 Introduction

Complex data-structures built by means of records and pointers, can formally be
represented by termgraphs [2,15,18]. Roughly speaking, a termgraph is a first-
order term with possible sharing and cycles. The unravelling of a termgraph
is a rational term. Termgraph rewrite systems constitute a high-level frame-
work which allows one to describe, at a very abstract level, algorithms over
data-structures with pointers. Thus avoiding, on the one hand, the cumbersome
encodings which are needed to translate graphs (data-structures) into trees in
the case of programming with first-order term rewrite systems and, on the other
hand, the many classical errors which may occur in imperative languages when
programming with pointers.

Transforming a termgraph is not an easy task in general. Many different
approaches have been proposed in the literature which tackle the problem of
termgraph transformation. The algorithmic approach such as [2,8] defines in de-
tail every step involved in the transformation of a termgraph by providing the
� This work has been partly funded by the project ARROWS of the French Agence

Nationale de la Recherche.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 194–208, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



A Heterogeneous Pushout Approach to Term-Graph Transformation 195

corresponding algorithm; for our purpose, this approach is too close to imple-
mentation techniques. In [1], equational definition of termgraphs is exploited
to define termgraph transformation. These transformations are obtained up to
bisimilar structures (two termgraphs are bisimilar if they represent the same
rational term). Unfortunately, bisimilarity is not a congruence in general, e.g.,
the lengths of two bisimilar but different circular lists are not bisimilar.

A more abstract approach to graph transformation is the algebraic one, first
proposed in the seminal paper [10]. It defines a rewrite step using the notion
of pushouts. The algebraic approach is quite declarative. The details of graph
transformations are hidden thanks to pushout constructs. There are mainly two
different algebraic approaches, namely the double pushout (DPO) and the single
pushout (SPO) approaches, which can be illustrated as follows:

L

m
��

K
l��

d
��

r �� R

m′
��

G D
l′�� r′

�� H

L

m
��

l
�� R

m′
��

G
l′

�� H

Double pushout: a rewrite step Single pushout: a rewrite step

In the DPO approach [10,5], a rule is defined as a span, i.e., as a pair of graph
morphisms L← K → R. A graph G rewrites into a graph H if and only if there
exists a morphism (a matching) m : L → G, a graph D and graph morphisms
d,m′, l′, r′ such that the left and the right squares in the diagram above for a
DPO step are pushouts. In general, D is not unique, and sufficient conditions
may be given in order to ensure its existence, such as dangling and identification
conditions. Since graph morphisms are completely defined, the DPO approach is
easy to grasp, but in general this approach fails to specify rules with deletion of
nodes, as witnessed by the following example. Let us consider the reduction of
the term f(a) by means of the rule f(x) → f(b). This rule can be translated into
a span f(x) ← K → f(b) for some graph K. When applied to f(a), because of
the pushout properties, the constant a must appear in D, hence in H , although
f(b) is the only desired result for H , in the context of term rewriting.

In the SPO approach [17,12,13,9], a rule is a partial graph morphism L→ R.
When a (total) graph morphism m : L→ G exists, G rewrites to H if and only
if the square in the diagram above for a SPO step is a pushout. This approach is
appropriate to specify deletion of nodes thanks to partial morphisms. However,
in the case of termgraphs, some care should be taken when a node is deleted.
Indeed, deletion of a node causes automatically the deletion of its incident edges.
This is not sound in the case of termgraphs since each function symbol should
have as many successors as its arity.

In this paper, we investigate a new approach to the definition of rewrite steps
for cyclic termgraphs. We are interested in rewrite steps such that H is obtained
from G by performing one of the six following kinds of actions: (i) addition of
new nodes, (ii) redirection of particular edges, (iii) redirection of all incoming
edges of a particular node, (iv) deletion of nodes, (v) cloning of nodes, and (vi)
collapsing of nodes. In order to deal with these features in a single framework,
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we propose a new algebraic approach to define such rewrite steps. Our approach
departs from the SPO and the DPO approaches. A rewrite rule is defined as a
tuple (L,R, τ, σ) such that L and R are termgraphs, respectively the left-hand
side and the right-hand side of the rule, τ is a mapping from the nodes of L into
the nodes of R (τ needs not be a graph morphism) and σ is a partial function
from the nodes of R into the nodes of L. Roughly speaking, τ(p) = n indicates
that incoming edges of p are to be redirected towards n and σ(n) = p indicates
that node n should be instantiated as p (parameter passing). We show that
whenever a matching m : L → G exists, then the termgraph G rewrites into a
termgraphH . We define the termgraphH as an initial object of a given category,
generalizing the definition of a pushout. We call it a heterogeneous pushout.

The paper is organized as follows. In section 2 we introduce the basic defini-
tions of graphs and morphisms considered in the paper. In section 3, we give the
definition of rewriting, and we illustrate our approach through several examples
in section 4. A comparison with related work is done in section 5, and concluding
remarks are given in section 6.

2 Graphs

In this section are given some basic definitions. We assume the reader is familiar
with category theory. The missing definitions may be consulted in [14].

Throughout this paper, a signature Ω is fixed. Each operation symbol ω ∈ Ω
is endowed with an arity ar(ω) ∈ N. For each set X , the set of strings over X
is denoted X∗, and for each function f : X → Y , the function f∗ : X∗ → Y ∗

is defined by f∗(x1 . . .xn) = f(x1) . . . f(xn). In addition, we denote by Set the
category of sets.

Definition 1 (Graph). A termgraph, or simply a graph G = (N ,D,L,S) is
made of a set of nodes N and a subset of labeled nodes D ⊆ N , which is the
domain for a labeling function L : D → Ω and a successor function S : D → N ∗,
such that for each labeled node n, the length of the string S(n) is the arity of the
operation L(n). For each labeled node n the fact that ω = L(n) is written n :ω,
and each unlabeled node n may be written as n :•, so that the symbol • is a kind
of anonymous variable. A graph homomorphism, or simply a graph morphism
g : G → H, where G = (NG,DG,LG,SG) and H = (NH ,DH ,LH ,SH) are
graphs, is a function g : NG → NH which preserves the labeled nodes and the
labeling and successor functions. This means that g(DG) ⊆ DH , and for each
labeled node n, LH(g(n)) = LG(n) and SH(g(n)) = g∗(SG(n)) (the image of an
unlabeled node may be any node). This yields the category Gr of graphs.

Definition 2 (Node functor). The node functor | − | : Gr → Set maps each
graph G = (N ,D,L,S) to its set of nodes |G| = N and each graph morphism
g : G → H to its underlying function |g| : |G| → |H |. In this paper, it is also
called the underlying functor.

We may denote g instead of |g| since the node functor is faithful, which means
that a graph morphism is determined by its underlying function on nodes. The
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faithfulness of the node functor implies that a diagram of graphs is commutative
if and only if its underlying diagram of sets is commutative.

The graphic functions and the strictly graphic functions, as defined now, can
be seen as “weak” graph morphisms. They will be used in section 3 to relate
graphs involved in a rewrite step.

Definition 3 (Graphic functions). Let G and H be graphs and γ : |G|→ |H |
a function. For each node n of G, γ is graphic at n if either n is unlabeled or
both n and γ(n) are labeled, LH(γ(n)) = LG(n) and SH(γ(n)) = γ∗(SG(n)).
And γ is strictly graphic at n if either both n and γ(n) are unlabeled or both n
and γ(n) are labeled, LH(γ(n)) = LG(n) and SH(γ(n)) = γ∗(SG(n)). For each
set of nodes Γ of G, γ is graphic (resp. strictly graphic) on Γ if γ is graphic
(resp. strictly graphic) at every node in Γ .

Example 1. Let us consider the following graphs G1 and G2:

G1 : 1 : f

��







�� ����
���

2 : • 3 : • 4 : nil

G2 : a : f

�����
��

�� ��


b : nil c : • d : •

Let γ : |G1|→ |G2| be the function defined by γ = {1 �→ a, 2 �→ b, 3 �→ c, 4 �→ d}.
It is easy to check that γ is strictly graphic on {1, 3}, is graphic but not strictly
graphic on {1, 2, 3}, and is not graphic on {1, 2, 3, 4}.

It should be noted that the property of being graphic (resp. strictly graphic) on
Γ involves the successors of the nodes in Γ , which may be outside Γ . In addition,
it is clear that a function γ : |G|→ |H | underlies a graph morphism g : G→ H
if and only if it is graphic on |G|. The next straightforward result will be useful.

Lemma 1. Let G, H, H ′ be graphs and let γ : |G| → |H |, γ′ : |G| → |H ′|,
η : |H |→ |H ′| be functions such that γ′ = η ◦ γ. Let Γ be a set of nodes of G. If
γ is strictly graphic on Γ and γ′ is graphic on Γ , then η is graphic on γ(Γ ).

3 Rewriting

Roughly speaking, in the context of graph rewriting, a rewrite rule has a left-
hand side graph L and a right-hand side graph R, and a rewrite step applied to
a graph G with an occurrence of L returns a graph H with an occurrence of R,
by replacing L by R in G. The meaning of this “replacement” is quite clear for
the nodes, as well as for the edges of G that connect two nodes outside L. When
a labeled node p in G outside L has its i-th successor p′ inside L, then p must
have some i-th successor n′ in H . For this purpose, we introduce a function τ (τ
for “target”) from the nodes of L to the nodes of R, and we decide that n′ must
be τ(p′). On the other hand, when a labeled node p in G inside L has an i-th
successor p′, then we may require that some node n′ in H has the same label as
p and has as its i-th successor either p′, if it is outside L, or τ(p′) otherwise; then
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n′ is called a τ -clone of p. Since each node in L may have an arbitrary number of
clones (maybe no clone at all), and a node in R cannot be a clone of more than
one node in L, this is specified thanks to a partial function σ (σ for “source”)
from the nodes of R to the nodes of L, which maps the clones of p to p. Partial
functions are denoted with the symbol “⇀”, the domain of a partial function σ
is denoted Dom(σ), and the composition of partial functions is defined as usual.
The main result is theorem 1: under relevant definitions and assumptions, for
each rewrite rule T and matching m there is a heterogeneous pushout of T and
m, which can be built explicitly from a pushout of sets.

Definition 4 (Clones). Let G and H be graphs and τ : |G|→ |H | a function.
Then p∈|H | is a τ -clone of q∈|G| when: p is labeled if and only if q is labeled, and
then LH(p) = LG(q) and SH(p) = τ∗(SG(q)). It is not required that p = τ(q).

Definition 5 (Rewrite rule). A rewrite rule is a tuple (L,R, τ, σ) made of two
graphs L and R, a function τ : |L| → |R| and a partial function σ : |R| ⇀ |L|
such that each node n in the domain of σ is unlabeled or is a τ-clone of σ(n).
A morphism of rewrite rules, from T = (L,R, τ, σ) to T1 = (L1, R1, τ1, σ1) is
a pair of graph morphisms (m, d) with m : L → L1 and d : R → R1 such that
|d| ◦ τ = τ1 ◦ |m|, d(Dom(σ)) ⊆ Dom(σ1) and |m| ◦ σ = σ1 ◦ |d| on Dom(σ).

In this paper, the illustrations take place either in the category Set of sets or in
a heterogeneous framework where the points stand for graphs, the solid arrows
for graph morphisms and the dashed arrows for functions on nodes. So, a rewrite
rule T = (L,R, τ, σ) will be illustrated as:

L τ
���������� R

σ

	 �������

In order to ease the reading of the examples, a rule is depicted as L R . In
addition, each node n in R in the image of τ is named n = x, y, . . . |w where
x, y, . . . are the names of the nodes in L such that τ(x) = τ(y) = . . . = n and
where σ(n) = w. Whenever n is not in the image of τ then it is named n = x|w
where the name x is new (i.e., x does not appear in L) and where σ(n) = w. In
both cases, the “|w” part is omitted when n is not in the domain of σ.

Example 2 (if-then-else). The following rewrite rules define the “if-then-else”
operator as it behaves in classical imperative languages. We assume that the
three arguments of an “if-then-else” expression may be shared.

2 : true 1 : if
��

��

	
���
��

3 : • 4 : •

2|2 : true

1, 3|3 : • 4|4 : •

2 : false 1 : if
��

��

	
���
��

3 : • 4 : •

2|2 : false

3|3 : • 1, 4|4 : •

The definition of τ ensures that the “if-then-else” expression is replaced by its
value τ(3) = 1, 3|3 (resp. τ(4) = 1, 4|4). The definition of σ indicates that
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the value of the “if-then-else” is its second (resp. third) argument specified by
σ(1, 3|3) = 3 (resp. σ(1, 4|4) = 4). Notice that if σ were defined as the empty
function, the “if-then-else” expression would evaluate to an unlabeled node. In
addition, in both rules, we have σ(2|2) = 2 which ensures, in case node 2 is
shared, that its incident edges remain unchanged after a rewrite step. Finally,
the reader may verify that these two rules are sufficient to handle all possible
cases, even when the arguments of an “if-then-else” expression are shared, thanks
to the conditions on matching substitutions given later in definition 8.

It can be noted that each graph morphism t : L→ R determines a rewrite rule
where τ = |t| and σ is defined nowhere. In this case, for each graph morphism
m : L→ G the pushout of t and m in the category Gr, when it exists, is the
initial object in the category of cones over t and m. Let us adapt this definition
to any rewrite rule T =(L,R, τ, σ) and any graph morphism m :L→G.

Definition 6 (Heterogeneous cone). Let T = (L,R, τ, σ) be a rewrite rule
and m : L→ G a graph morphism. A heterogeneous cone over T andm is a tuple
(H, τ1, d, σ1) made of a graph H, a function τ1 : |G| → |H |, a graph morphism
d : R→ H and a partial function σ1 : |H |⇀ |G| such that T1 = (G,H, τ1, σ1) is
a rewrite rule, (m, d) : T → T1 is a morphism of rewrite rules, τ1 is graphic on
|G| − |m(L)| and n1 is a τ1-clone of σ1(n1) for each n1 in the domain of σ1.

L τ
����������

m

��

R

d

��

σ

� �������

G τ1
���������� H

σ1

� �������

A morphism of heterogeneous cones over T and m, say h : (H, τ1, d, σ1) →
(H ′, τ ′1, d

′, σ′1), is a graph morphism h : H → H ′ such that |h|◦τ1 = τ ′1, h◦d = d′,
h(Dom(σ1)) ⊆ Dom(σ′1) and σ′1 ◦ |h| = σ1 on Dom(σ1).

This yields the category CT,m of heterogeneous cones over T and m.

Definition 7 (Heterogeneous pushout). Let T = (L,R, τ, σ) be a rewrite
rule and m : L → G a graph morphism. A heterogeneous pushout of T and m
is an initial object in the category CT,m of heterogeneous cones over T and m.

When a heterogeneous pushout exists, its initiality implies that it is unique up
to an isomorphism of heterogeneous cones. In theorem 1 we prove the existence
of a heterogeneous pushout of T andm under some injectivity assumption onm.

Definition 8 (Matching). A matching with respect to a rewrite rule T =
(L,R, τ, σ) is a graph morphism m : L → G such that if m(p) = m(p′) for dis-
tinct nodes p and p′ in L then τ(p) and τ(p′) are in Dom(σ) and m(σ(τ(p))) =
m(σ(τ(p′))) in G.
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Proposition 1. Let T = (L,R, τ, σ) be a rewrite rule and m : L→ G a match-
ing with respect to T . Then the pushout of τ and |m| in Set:

|L| τ
��

|m|
��

|R|
δ
��

|G| τ1
�� H

satisfies H = τ1(Γ ) + δ(Δ) + δ(Σ) where Γ = |G| − |m(L)|, Σ = Dom(σ),
Δ = |R| − Σ and: the restriction of τ1 : Γ → τ1(Γ ) is bijective, the restriction
of δ : Δ→ δ(Δ) is bijective, and the restriction of δ : Σ → δ(Σ) is such that if
δ(n) = δ(n′) for distinct nodes n and n′ in Σ then m(σ(n)) = m(σ(n′)) in G.
In addition, there is a unique partial function σ1 : H ⇀ |G| with domain δ(Σ)
such that |m| ◦ σ = σ1 ◦ δ.

Proof. Clearly H = τ1(Γ ) + δ(|R|) and the restriction of τ1 : Γ → τ1(Γ ) is
bijective. If δ(n) = δ(n′) for distinct nodes n and n′ in R, then there is a chain
from n to n′ made of pieces like this one:

ñ p�τ�� � |m|
�� p1 p′

�|m|
�� � τ �� ñ′

with ñ, ñ′ ∈ |R|, p, p′ ∈ |L|, p1 ∈ |G|, and it can be assumed that ñ �= ñ′ and
p �= p′. Since m is a matching, ñ and ñ′ are in Σ and m(σ(ñ)) = m(σ(ñ′)). The
decomposition of H follows. Now, let n1 ∈ δ(Σ) and let us choose some n ∈ Σ
such that n1 = δ(n). If σ1 exists, then σ1(n1) = σ1(δ(n)) = m(σ(n)). On the
other hand, if n′ ∈ Σ is another node such that n1 = δ(n), then we have just
proved thatm(σ(n)) = m(σ(n′)), so thatm(σ(n)) does not depend on the choice
of n, it depends only on n1. So, there is a unique σ1 : H⇀ |G| as required, it is
defined by σ1(n1) = m(σ(n)) for any n ∈ Σ such that n1 = δ(n).

Proposition 2. Let m : L → G be a matching with respect to a rewrite rule
T = (L,R, τ, σ). The pushout of τ and |m| in Set, with σ1 as in proposition 1,
underlies a heterogeneous cone over T and m.

Proof. First, let us define a graph H with set of nodes H. By exploiting proposi-
tion 1, and with the same notations, a graph H with set of nodes H is defined by
imposing that τ1 is strictly graphic on Γ , that δ is strictly graphic on Δ, and that
each node n1 ∈ δ(Σ) is a τ1-clone of q1, where q1 = σ1(n1). Now, let us prove that
δ underlies a graph morphism d : R → H . Since δ is graphic on Δ, we have to
prove that δ is also graphic onΣ. Let n ∈ Σ and n1 = δ(n). If n is unlabeled there
is nothing to prove, otherwise let q = σ(n), then q is labeled, LR(n) = LL(q) and
SR(n) = τ∗(SL(q)). Then m(q) = m(σ(n)) = σ1(δ(n)) = q1, and from the fact
that m is a graph morphism we get LL(q) = LG(q1) and |m|∗(SL(q)) = SG(q1).
The definition of H imposes LG(q1) = LH(n1) and τ∗1 (SG(q1)) = SH(n1). Al-
together, LR(n) = LH(n1) and SH(n1) = (τ∗1 (|m|∗(SG(q))) = δ∗(τ∗(SG(q))) =
δ∗(SR(n)), so that indeed δ is also graphic on Σ. Finally, it is easy to check that
this yields a heterogeneous cone over T and m.
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Theorem 1. Given a rewrite rule T = (L,R, τ, σ) and a matching m : L → G
with respect to T , the heterogeneous cone (m, d) : T → T1 over T and m defined
in proposition 2 is a heterogeneous pushout of T and m.

Proof. As in proposition 2, let T1 = (G,H, τ1, σ1). Let us consider any hetero-
geneous cone (m, d′) : T → T ′

1 over T and m, with T ′
1 = (G′, H ′, τ ′1, σ

′
1). Since

(m, d) underlies a pushout of sets, there is a unique function η : |H | → |H ′|
such that η ◦ |d| = |d′| and η ◦ τ1 = τ ′1. Let Σ = Dom(σ) and Σ1 = Dom(σ1).
Because the node functor is faithful, the result will follow if we can prove that
η(Σ1) ⊆ Σ′

1 and σ′1 ◦ η = σ1 on Σ1, and that η underlies a graph morphism.
We have η(Σ1) = η(d(Σ)) = d′(Σ) ⊆ Σ′

1, and for each n1 ∈ Σ1, let n ∈ Σ
such that n1 = d(n), then on one hand σ′1(η(n1)) = σ′1(η(d(n))) = σ′1(d

′(n)) =
m(σ(n)) and on the other hand σ1(n1) = σ1(d(n)) = m(σ(n)), hence as re-
quired σ′1(η(n1)) = σ1(n1). In order to check that η underlies a graph mor-
phism h : H → H ′, we use the decomposition of H from proposition 1 and
the construction of the heterogeneous cone (m, d) in proposition 2. It follows
immediately from lemma 1 that η is graphic on τ1(Γ ) and also on d(Δ). Let
us prove that η is graphic on Σ1. Let n1 ∈ Σ1, q1 = σ1(n1) and n′1 = η(n1).
Then q1 = σ′1(n

′
1) because σ′1 ◦ η = σ1. So, n1 is a τ1-clone of q1 and n′1 is a

τ ′1-clone of the same node q1. This means that LH′ (n′1) = LG(q1) = LH(n1) and
that SH′(n′1) = (τ ′1)

∗(SG(q1)) = η∗(τ∗1 (SG(q1))) = η∗(n1). So, η is graphic on
Σ1, and since d(Σ) ⊆ Σ1, it follows that η is graphic on d(Σ). Altogether, η is
graphic on the whole of |H |, which means that η = |h| for a graph morphism
h : H → H ′. This concludes the proof.

Definition 9 (Rewrite step). Given a rewrite rule T = (L,R, τ, σ) and a
matching m :L→G with respect to T , the corresponding rewrite step builds the
graph morphism d :R→H, obtained from the heterogeneous pushout of T and m.

Example 3 (Cloning data-structures). Here are two rules for cloning natural
numbers, encoded with succ and zero. These rules can be generalized to any
data-structure as presented in section 5.

1 :clone �� 2 :zero 1:zero 2 :zero
1:clone �� 2 :succ

��

3:•

1:succ
��

2 :succ
��

4 :clone �� 3|3:•

The first rule takes care of the cloning of zero. Given a matching m : L → G,
since τ(1) = 1 this rule redirects all edges in G with target m(1 : clone) to
edges in H with target d(1 : zero), and since τ(2) = 2 the edges in G with
target m(2 : zero) remain “unchanged” in H , in the sense that their target is
d(2 : zero). The second rule takes care of the cloning of the non-zero naturals.
Since σ(3|3) = 3, the label and successors of the node m(3) in G will be “the
same as” the label and successors of the node d(3|3) in H . Notice that, in this
case, it would not be allowed to define σ(4) = 2 because node 4 in R is labeled
by clone and node 2 in L is labeled by succ, thus breaking the τ -clone condition.
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Let us represent a rewrite step from G to H performed by a rewrite
rule (L,R, τ, σ) as in the figure opposite, with the same notations as
above regarding node names in the right-hand side of the rule. When
the matching, m, is injective on nodes we denote m(p) = p.

L R
G H

Example 4. Let us consider the “rule” f(x) → g(x, x). In our framework, this
rule may be translated to several different rules according to the way g(x, x) is
represented as a termgraph and to the way the functions τ and σ are defined.
For instance, here are two different rules and their application to the termgraph
1 : f(2 : a), with the matching preserving the names of the nodes. The second
rule provides two clones 2|2 : a and 3|2 : a in H to the node 2 : a in G.

1 : f
��

2 : •

1 : g

��

2|2 : •
1 : f

��

2 : a

1 : g

��

2|2 : a

1 : f

��

2 : •

1 : g

�� ����
���

2|2 : • 3|2 : •
1 : f

��

2 : a

1 : g

�� ����
���

2|2 : a 3|2 : a

Since the rewriting of termgraphs with heterogeneous pushouts relies on a
pushout on the underlying nodes (proposition 1), and also because of the condi-
tion on matching (definition 8), there is an obvious relation between the size of
the rewritten termgraph and the size of the original termgraph, for each rewrite
step. Moreover, this relation can be inferred at the level of rules. So, one can
analyze memory usage of a program simply by inspecting its rules. Proposi-
tion 3, where " denotes the cardinal, states this formally. Therefore, if the size
of a termgraph is considered as the measure of the memory used (thus putting
aside unreachability issues), then it is possible to statically compute, for each
rule separately, the amount of memory needed, or freed, by a rewriting step.

Proposition 3. Let T = (L,R, τ, σ) be a rewrite rule, m : L → G a matching
and d : R→ H the result of the rewrite step. Then "|H | − "|G| = "|R| − "|L|.

4 Examples

In this section, we provide several examples illustrating our framework. For bet-
ter readability, when rewriting a termgraph G into H , the description of σ1 in
the graph H will now be omitted.

Example 5 (Insertion in a circular list). Here is a rule for the insertion of an
element at the head of a circular list of size greater than one. In the left-hand
side of this rule, node 2 is the head of the list, and node 4 is the last element of
the list. The pointer from node 4 to the head of the list is moved from 2 (in L)
to a new node 1, 2 (in R). The definition of τ is such that all pointers to the
head of the list are moved from 2 to 1, 2. We apply the rule on a circular list of
four items. We note c and i for cons and insert, respectively.
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1: i
��

�� 2 :c
��

�� 3:• 4 :c
��

�	

1′ :• 2′ :• 4′ :•

1, 2 :c
��

�� 5:c
��

�� 3|3:• 4|4 :c
��

�

1′|1′ :• 2′|2′ :• 4′|4′ :•
0:h

�� ����
�

1: i
��

�� 2 :c
��

�� 3:c
��

�� 6:c
��

�� 4 :c
��

��

1′ :e 2′ :a 3′ :b 6′ :c 4′ :d

0:h
�� ��

1, 2 :c
��

�� 5:c
��

�� 3:c
��

�� 6:c
��

�� 4 :c
��

��

1′ :e 2′ :a 3′ :b 6′ :c 4′ :d

Example 6 (Appending linked lists). We now consider two rules for the opera-
tion “+” which appends, in place, two linked lists. The lists are built with the
constructors cons and nil.

1 :+
��

�� 3:•

2 :nil

1, 2, 3|3:•
1:+

��

�� 5:•

2 :cons
��

�� 3:•

4 :•

1:+′

�� ����
���

�� 5|5:•

2|2 :cons
��

�� 3|3:•

4|4 :•

The first rule above takes care of the base case, when the first argument is nil.
The second rule says that when the first argument of + is a non-empty list, then
an auxiliary function “+′” of arity 3 is called. The role of this function is to go
through the first list until its end and to concatenate the two lists by pointer
redirection. The following three rules define the operation +′.

1 :+′

��

��

����
���

4 :•

2 :cons
��

�� 3 : nil

5 :•

1, 2|2 :cons
��

�� 3, 4|4 :•

5|5:•

1:+′

�� ����
��

�� 6:•

2 :• 3:cons
�����

�
��

5:• 4 :nil

3 :cons ��

��

4, 6|6:•

5|5:• 1, 2|2 :•

1:+′

�� ����
���

�� 8 :•

2 :• 3:cons ��

��

4 :cons ��

��

5:•

6:• 7 :•

1:+′

�� �����
�����

�����
�� 8|8 :•

2|2 :• 3:cons
��

�� 4 :cons
��

�� 5|5:•

6|6:• 7|7 :•

The first rule considers the case when the first list consists of one element. The
second rule defines the case when the last element of the first list is reached. In
this case, the edge 3 → 4 in L is redirected as 3 → 4, 6|6 in R, which is the head
of the second list to append. The overall result of the operation +′ is the node
τ(1) = 1, 2|2, which is the head of first list. The third rule performs the traversal
of the first list.

Example 7 (Memory freeing). In this example we show how we can free the
memory used by the “cons” nodes of a circular list. As we are concerned with
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termgraphs where every function symbol has a fixed arity, it is not allowed
to create dangling pointers nor to remove useless pointers. This constraint is
expressed by the fact that every node in a left-hand side L must have an image
in the right-hand side R by τ . The operation free has two arguments. The first
one is a particular node labeled by a constant null, it is dedicated to be the target
of the edges which were pointing to the freed nodes. The second argument of
free is the list of cells to be freed. Here is a rule for defining the operation free
in the case of a list with at least two elements. We illustrate its application on a
list of length two. Notice that pointers incoming to nodes 3 and 5 are redirected
towards node 2 in H .

1 : free
��

�� 3:cons
��

�� 4 :•

2 :null 5 :•

1: free
��

�� 4|4 :•

2, 3:null 5|5:•
0:h ��

��

��������
�������

�������
��� 1: free

��

�� 3:cons
��

�� 4 :cons
��

��

2 :null 5 :a 6:b

0:h ��

����
���

�����
����

����
��� 1: free

��

�� 4 :cons
��	
���

���

5:a 2 :null 6 :b

For lists with one element, there are two cases to be considered. The first rule
specifies the case where the last element of the list is obtained after freeing other
elements of the list. We illustrate the rewrite step on the graph obtained earlier
(up to renaming of nodes). The second rule deals with the special case of circular
lists of size one.

1 : free
��

�� 3:cons
�����

��
��

2 :null 4 :•

1, 2, 3:null

4|4 :•
0:h ��

��


�����
����

����
�� 1: free

��

�� 3:cons

��	
���
��

2 :null 4 :b

0:h

��
�� ��

4 :b 2 :null

1 : free ��

��

3:cons

��

��

2 :null 4 :•

1, 2, 3:null

4|4 :•

Example 8 (Memory usage analysis). Predicting memory usage of an algorithm
can be of great interest for many applications, especially those involved within
embedded systems. There exist several methods to analyse memory usage. For
example, in [11], a very powerful method based on a type system enriched with
resource annotations has been proposed. The authors succeeded in analysing
several examples, but failed to tackle a program which flattens a list of lists.
As an application of proposition 3, we show how our framework can be used
to analyse the memory usage of such an algorithm. The program which flattens
a list of lists, consists of the following rules, the first one is for the base case
(the empty list) and the second rule deals with a non-empty list of lists. Here +
stands for the append operator and +′ for its auxiliary operator, as in example 6.

1 :flat
��

2 :nil

1, 2 :nil 1 :flat
��

3:•

2 :cons ��

������
4 :•

1, 2 :+
��

�� 5:flat
��

3|3:• 4|4 :•
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Thus, memory usage by flattening a list can be analyzed considering seven rules:
two for flat, two for + and three for +′. Inspection of the recursion rules for the
three functions shows that the number of nodes is unchanged. The halt case rule
for flat frees one memory cell. The halt case rules, both for + and +′, free two
memory cells. Now, simple reasoning on the rules involved in the evaluation of
flat shows that flat(�) frees exactly 2|�|+ 1 memory cells, where |�| is the size of
the list �. Indeed, there is one halt case for flat, and for each element of � there
is one halt case for + or another one for +′.

5 Related Work

Cloning is also one of the features of the sesqui-pushout approach to graph
transformation [4]. In this approach, a rule is a span L ← K → R and the
application of a rule to a graph G can be illustrated by the same figure as for
a DPO step (as in the introduction), where the right-hand side is a pushout
as in the DPO approach but the left-hand side is a pullback, and moreover
it is a final pullback complement. The graphs considered in [4] are defined as
G = (V,E, src :E → V, tgt :E → V ) where V and E are the sets of vertices
and edges respectively, and the connections of edges are defined by the functions
src (source) and tgt (target). Nodes are not endowed with arities and thus they
may have an arbitrary amount of outgoing edges. This fact, together with the
use of final pullback complements, makes the sesqui-pushout approach different
from our framework. We illustrate this difference through the cloning of nodes.
According to the sesqui-pushout approach, the cloning of a node is, roughly
speaking, performed by copying a node together with all its incident edges (in-
coming and outgoing edges). In our framework, a node is copied only with its
outgoing edges. Let us consider for instance the termgraph h(f(2 :a), 2) in which
the subgraph f(2 : a) is supposed to be transformed into g(2, 3) where nodes 2
and 3 are clones of 2 :a. Then according to our framework, this transformation
can be achieved by means of the following rule. The application of this rule to
h(f(2 :a), 2) yields the graph h(g(2 :a, 3:a), 2).

2 :• 1:f�� 2|2 :• 1:g�� �� 3|2 :•

Using the sesqui-pushout approach, we get a rule of the following shape.

2 : • 1 : f�� �� K �� 2 : • 1 : g�� �� 3 : •

Indeed, K should encode the cloning of the instance of node 2 as well as the
replacement of f by g, thus K should include at least three unlabeled nodes.
The application of this rule to h(f(2 :a), 2) yields the graph h(g(2 :a, 3:a), 2, 3),
where the operation h has three arguments, because each of the clones 2 :a and
3:a requires the cloning of all incoming edges.

Cloning has also been subject of interest in [6]. The authors considered rewrite
rules of the form S := R where S is a star, i.e., S is a (nonterminal) node
surrounded by its adjacent nodes together with the edges that connect them.
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Rewrite rules which perform the cloning of a node have been given in [6, Def. 6].
These rules show how a star can be removed, kept identical to itself or copied
(cloned) more than once. Here again, unlike our framework, the cloning does
not care about the arity of the nodes and, as in the case of the sesqui-pushout
approach, a node is copied together with all its incoming and outgoing edges.
If we consider the termgraph h(f(2 :a), 2) again and clone twice the node 2 :a,
then according to [6] we get the graph h(f(2 :a, 3 :a), 2, 3) where both h and f
have augmented their arity when copying the incoming edges to the clone 3:a.

A categorical framework dedicated to cyclic termgraph transformation can be
found in [3] where the authors propose, following [16], a 2-categorical presenta-
tion of termgraph rewriting. They almost succeed in representing the full opera-
tional view of termgraph rewriting as defined in [2], but they differ on rewriting
circular redexes. For example, the application of the rewrite rule f(x) → x on
the termgraph n : f(n) yields the same termgraph (i.e., n : f(n)) according to
[2] but yields an unlabeled node, say p :•, according to [3]. With our definition
of rewrite rules, it is possible to encode exactly the algorithmic approach [2] by
simply stating that node n,m|m is a clone of node m in the rule:

n :f �� m :• n,m|m :•

In general, term rewriting and termgraph rewriting do not coincide [15]. How-
ever, thanks to its cloning facilities, our framework can simulate term rewriting
in the case of left linear term rewrite systems. Indeed, a term rewrite rule l → r
where l is a linear term (i.e., variables in l occur only once in l), can be trans-
formed into a rule (L,R, τ, σ) where L = l2L(l) and R = r2R(r) are termgraphs
corresponding respectively to l and r, by the transformations l2L and r2R defined
below. Notice that the transformation of the right-hand side takes into account
the cloning of variable instances, this happens when a right-hand side is not
linear. The aim of τ , when simulating term rewriting, consists in indicating the
replacement of the root of L by that of R, i.e., τ(root(L)) = root(R). The im-
ages via τ of the remaining nodes are not significant, so that τ(|L|) = root(R) is
a possible choice for τ . The function σ indicates the parts that should be cloned,
it plays an important role in encoding the use of variables in the right-hand
side. Every occurrence of a variable x in r corresponds to a non labeled node
p : • in R. In this case, by definition of rewrite rules, x appears in l and thus
a corresponding non labeled node px : • appears in L, thus we state that p is a
clone of px by σ(p) = px. Now we define the transformation functions l2L and
r2R.

– If c is a constant then l2L(c) = p :c and r2R(c) = p :c where node p is new.
– If f is an operation and the ti’s are terms then l2L(f(t1, . . . , tn) = p :
f(l2L(t1), . . . , l2L(tn)) and r2R(f(t1, . . . , tn) = p : f(r2R(t1), . . . , r2R(tn))
where node p is new.

– If x is a variable then
• l2L(x) = px :• where node px is new
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• r2R(x) = p :• for the first occurrence of x in r where node p is new and
σ(p) = px, while r2R(x) = q :clone(p :•) otherwise, where nodes p and q
are new and σ(p) = px.

For example, the term rewrite rule f(x, y) → g(x, x) is transformed as:

1 :f
�� ��



2x :• 3y :•

1, 2, 3:g
�� ����

���

4|2x :• 5:clone �� 6|2x :•

When applying a matching substitution m over the right-hand side r of a
term rewrite rule, for every variable x of the left-hand side m constructs as
many copies of the instance m(x) as the number of occurrences of x in r. The
aim of q :clone(p :•) in the definition of r2R(x) is to mimic the application of a
matching substitution on the right-hand side m(r). The function clone builds a
copy of its argument, it can be defined for all operators of a given signature as
follows, where c is a constant and f is an operation of arity n. We write →∗

CLONE

the rewrite relation induced by the following rules.

1 :clone
��

2 :c

1|2 :•

2 :c

α :clone
��

β :f
��


 ��



1:• . . . n :•

β :f
���� ��

  
α :f

��


 ��!!
!

1|1:• . . . n|n :• 1′ :clone
��

. . . n′ :clone
��

1′′|1:• . . . n′′|n :•

Proposition 4. Let R be a left linear term rewrite system built over a signature
Ω. Let T (R) be the termgraph rewrite system made of the rewrite rules which
define the function clone over the operation symbols in Ω, together with the
transformations of the rules l → r in R. Let t be a ground term. If t→R t

′ then
there exists a termgraph G1 such that l2L(t) →T (R) G1 →∗

CLONE l2L(t
′).

The proof of this proposition is quite obvious, because the term t is assumed
to be ground. However, reduction of non linear terms is not allowed by the given
transformations. Indeed, variables cannot be cloned by transformation l2L (but
only renamed). For example l2L(f(x, x)) is the termgraph 1 : f(2x : •, 3x : •),
which is not a sound translation of f(x, x). For the instances of nodes 2x and 3x

are not supposed to be isomorphic.

6 Conclusion
In this paper, we have proposed a new way to define termgraph rewrite rules,
and we have defined a rewrite step as a heterogeneous pushout in an appro-
priate category. The proposed rewrite systems offer the possibility to transform
cyclic termgraphs either by performing local edge redirections or global edge
redirections, as defined following a DPO approach in [7], and in addition, it
provides new features such as cloning or deleting nodes. Future work includes
the generalization of the proposed systems to other graphs less constrained than
termgraphs.
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An Explicit Framework for Interaction Nets
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Abstract. Interaction nets are a graphical formalism inspired by Lin-
ear Logic proof-nets often used for studying higher order rewriting e.g.
β-reduction. Traditional presentations of interaction nets are based on
graph theory and rely on elementary properties of graph theory. We give
here a more explicit presentation based on notions borrowed from Gi-
rard’s Geometry of Interaction: interaction nets are presented as partial
permutations and a composition of nets, the gluing, is derived from the
execution formula. We then define contexts and reduction as the context
closure of rules. We prove strong confluence of the reduction within our
framework and show how interaction nets can be viewed as the quotient
of some generalized proof-nets.

1 Introduction

Interaction nets were introduced by Yves Lafont in [Laf90] as a way to extract a
model of computation from the well-behaved proof-nets of multiplicative linear
logic. They have since been widely used as a formalism for the implementation of
reduction strategies for the λ-calculus, providing an intuitive way to do explicit
substitution [Mac98][MP98][Lip03].

Interaction nets are easy to present: a net is made of cells

A

with a fixed number of connection ports, depicted as big dots on the picture,
one of which is distinguished and called the principal port of the cell, and of free
ports, and of wires between those ports such that any port is linked by exactly
one wire. Then we define reduction on nets by giving rules of the form

s2s1 → s2s1R(s1, s2)

where the two cells in the left part are linked by their principal ports and the
box in the right part is a net with the same free ports as the left part. Such a
rule can be turned into a reduction of nets: as soon as a net contains the left
part we replace it with the right part.
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Even though this definition is sufficient to work with interaction nets, it is
too limited to reason on things like paths or observational equivalence. One of
the main issues comes from the fact that we do not really know what a net is.
The situation is quite similar for graphs: we cannot study them relying using
drawings only without being deceived by our intuition. Thus, we are inclined to
give a precise definition of a graph as a binary relation or as a set of edges.

The main issue to give such a definition for interaction nets is that it should
cope with reduction. As an example consider a graph-like construction over ports
and a rule

s2s1 → s2s1

Can it be applied to the interaction net s2s1 ? If we are rigorous the

left part of the rule is not exactly contained in this net as is not contained in

. Perhaps we could consider this last wire as composed of three smaller ones
and two temporary ports like in and the whole net after reduction would

be s2s1 . But then, to get back a real interaction nets we would have

to concatenate all those wires and erase the temporary ports, which would give
us the net . We will refer to this process of wire concatenation as port
fusion.

There are many works giving definitions of interaction nets giving a rigorous
description of reduction. Nevertheless, they all share a common point: they deal
either implicitly or externally with port fusion. In the seminal article [Laf90] a
definition of nets as terms with paired variables is given, it is further refined
in [FM99]. In this framework an equivalence relation on variables deals with
port fusion. In [Pin00] a concrete machine is given where the computation of
the equivalence relation is broken into many steps. A rigorous approach sharing
some tools with ours is given in [Vau07], port fusion is done there by an external
port rewriting algorithm.

Therefore, we raise the following question: can we give a definition of interac-
tion nets allowing a simple and rigorous description of reduction encompassing
port fusion, and upon which we can prove results like strong confluence? This is
the aim of this paper.

Our proposition is based on the following observation. When we plug the right
part of a rule in a net, new wires are defined based on a back and forth process
between the original net and this right part. Such kind of interaction is key
to the geometry of interaction [Gir89] or game semantics [AJM94, HO00]. The
untyped nature of interaction nets makes the former a possible way to express
them. To be able to do so we need to express an interaction net as some kind
of partial permutation and use a composition based on the so-called execution
formula. Such presentation of multiplicative proof-nets has been made by Jean-
Yves Girard in [Gir87]. If we try to think about the fundamental actions one
needs to be able to do on interaction nets, it is quite clear that we can distinguish
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a wire action consisting in going from one port to another along a wire and the
cell action consisting in going from one cell port to another inside the same cell.
Those two actions lead to the description of a net as a pair of permutations.
One might ask whether it is possible in some case to faithfully combine this pair
in only one permutation, a solution to this question is what one could call a
geometry of interaction.

The issue of port fusion is not inherent to interaction nets and can be found
in other related frameworks. Diagram rewriting [Laf03] uses a well-behaved un-
derlying category allowing mathematically the straightening of wires. But this
is not free: the presentation is now vertically directed and lack the ease of defi-
nition of interaction nets for describing programs. Another work related to this
problem is the presentation of multiplicative proof-nets by Hughes in [Hug05]
where the author presents proof-nets as functions with a composition based on a
categorical construction associated to traced monoidal categories [JSV96] which
has been used to analyse Girard’s geometry of interaction [AJ92, HS06]. A large
part of our framework could be seen as a special case of a similar general cate-
gorical construction. Indeed, we are using the same tool as in those semantics,
but our specialization to the partial injections of integers allows us to work on
syntax and to stay in a completely untyped world.

2 Permutations and Partial Injections

We give here the main definitions and constructions that are going to be central
to our realization of interaction nets. Those definitions are standard in the partial
injections model of geometry of interaction [Gir87, DR95] or in the definition of
the traced monoidal category PInj [HS06].

2.1 Permutations

We recall that a permutation of a set E is any bijection acting on E and we write
S(E) for the set of these permutations. For σ ∈ S(E) we call order the least
integer n such that σn = idE , for x ∈ E we write Orbσ(x) = {σi(x) | i ∈ N} and
we call it the orbit of x, we write Orbs(σ) for the orbits of σ. If o is an orbit we
write |o| for its size.

We write (c1, . . . , cn) for the permutation sending ci to ci+1, for i < n, cn to
c1 and being the identity elsewhere, we call it a cycle of length n which is also
its order. Any permutation is a compound of disjoint cycles.

Let σ be a permutation of E and L any set, we say that σ is labelled by L if
we have a function lσ : Orbs(σ) → L. We say that σ has pointed orbits if it is
labelled by E and ∀o ∈ Orbs(σ) we have lσ(o) ∈ o. Remark that an orbit is a
sub-cycle and thus, having pointed orbits means that we have chosen a starting
point in those sub-cycles.

2.2 Partial Injections

A partial injection (of integers) f is a bijection from a subset dom(f) of N, called
its domain, to a subset codom(f) of N, called its codomain. We write f : A � B
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to say that f is any partial injection such that dom(f) = A and codom(f) = B.
We write f� for the inverse of this bijection viewed as a partial injection. We
call partial permutation a partial injection f such that dom(f) = codom(f).

2.3 Execution

Let f be a partial injection and E′, F ′ ⊆ N. We write f �E′
F ′ for the partial

injection of domain {x ∈ E′ ∩ domf | f(x) ∈ F ′} ans such that f �E′
F ′ (x) = f(x)

where it is defined. We have

f �E′
F ′ : f−1(F ′) ∩ E′ � f(E′) ∩ F ′

If E = F and E′ = F ′ we write f�E′ = f �E′
E′ .

When dom(f) ∩ dom(g) = ∅ and codom(f) ∩ codom(g) = ∅, we say that f
and g are disjoint and we define the sum f + g and the associated refining order
≺ as expected. We have dom(f + g) = dom(f) � dom(g) where � is the disjoint
union.

Property 1. Let f : A�B � C �D and g : D � B a situation depicted by the

following diagram
A �B C �D

f

g
.

i For all n ∈ N, the partial injection from A to C

Exn(f, g) = f �A
C + (fgf)�A

C + · · ·+ (f(gf)n)�A
C

is well defined.
ii (Exn(f, g))n∈N is an increasing sequence of partial injections with respect to
≺, whose limit, the increasing union, is noted Ex(f, g).

iii If dom(f) is finite the sequence (Exn(f, g))n is stationary and

Ex(f, g) : A� C

Fig. 1 gives a graphical presentation of execution.

Proof. i) To assert the validity of the sum all we have to have show is that
∀i �= j ∈ N :

(f(gf)i)(A) ∩ (f(gf)j)(A) ∩ C = ∅
(f(gf)i)−1(C) ∩ (f(gf)j)−1(C) ∩A = ∅

Suppose there is a x ∈ (f(gf)i)(A) ∩ (f(gf)j)(A) ∩ C, we set y and z ∈ A
such that x = f(gf)i(y) = f(gf)j(z). We can further suppose that i < j, and
we have y = (gf)j−i(z) ∈ B, which is contradictory as y ∈ A and A ∩B = ∅.

The other equality is proved in the same way.
ii) Let n ≤ m ∈ N and x ∈ dom(Exn(f, g)), by definition of the sum

there exists a unique k such that Exn(f, g)(x) = (f(gf)k)(x). But then x ∈
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A B

C D

f f gf fg f g

Fig. 1. Representation of Ex(f, g) with the notations of property 1

dom(Exm(f, g)) and the uniqueness of k asserts that Exm(f, g)(x) = (f(gf)k)(x).
Thus, Exm(f, g) is a refinement of Exn(f, g).

iii) Suppose there is a x ∈ A − dom(Ex(f, g)), then we should have for
all k, (f(gf)k)(x) ∈ D or else Ex(f, g)(x) would be defined. But D being fi-
nite, there exists n ≤ m such that (f(gf)n)(x) = (f(gf)m)(x) and we get
x = (gf)m−n(x) ∈ B which is contradictory. A simple argument on cardinal
show then that codom(Ex(f, g)) = C. �

Theorem 2 (Associativity of execution).

Let A �B � C D � E � F
f

g

h

be three partial injections.

We have ∀n ∈ N

Exn(Exn(f, g), h) = Exn(f, g + h) = Exn(Exn(f, h), g)

and thus
Ex(Ex(f, g), h) = Ex(f, g + h) = Ex(Ex(f, h), g)

Proof. Let p ∈ dom(Exn(f, g + h)), there exists m ≤ n ∈ N such that

Exn(f, g + h)(p) = f((g + h)f)m(p)
= (f(gf)i1)h . . .h(f(gf)ik)(p) with i1 + · · ·+ ik + k − 1 = m

= (Exn(f, g)hExn(f, g) . . .hExn(f, g))(p)
= (Exn(f, g)(hExn(f, g))k−1)(p)
= Exn(Exn(f, g), h)(p)

By commutativity of + we get the other equality. These equalities are directly
transmitted to Ex. �
This theorem is of utter significance, it is a completely localized version of
Church-Rosser property. Indeed, we will see later that confluence results are
corollary of this theorem.
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2.4 w-Permutations and Ex-Composition

We call w-permutation an involutive partial permutation of finite domain.
Let σ and τ be disjoint w-permutations and let f be a partial injection with

dom(f) ⊆ dom(σ) and codom(f) ⊆ dom(τ). We call the Ex0-composition of σ
and τ along f the partial permutation

σ
f�0 τ = Ex(σ + τ, f + f�)

τ

τ

f + f�

σσ

(σ
f�0 τ)(i)

i

Fig. 2. Representation of the Ex0-composition σ
f�0 τ

Fig. 2 gives a representation of this composition.

Property 3. σ
f�0 τ is a w-permutation.

Proof. Let x be an element of dom(σ + τ), there exists n such that (σ
f�0

τ)(x) = (f + f�)[(σ + τ)(f + f�)]n(x). Note that (f + f�)� = f + f� and
(σ+τ)� = σ+τ , and thus, we have ((f +f�)[(σ+τ)(f +f�)]n)� = [(f+f�)(σ+

τ)]n(f + f�) = (f + f�)[(σ + τ)(f + f�)]n. So (σ
f�0 τ)2(x) = x. �

To define the final Ex-composition we want to recover the fix-points hidden by
Ex in order to get the usual notion of loops. Suppose that there is an x0 such
that:

x0
σ+τ−−−→ y0

f+f�

−−−→ x1 . . .
σ+τ−−−→ yn

f+f�

−−−→ xn = x0

Everything being involutive, this loop is reversible and we get a new loop

y0
f+f�

←−−− x1 . . .
σ+τ←−−− yn

f+f�

←−−− x0
σ+τ←−−− y0

We say that the set {x0, y0, . . . , xn−1, yn} forms a double orbit, and we it can be
fully reconstructed from any of its element. Therefore, recall that all this points
are integers, and let R be a set comprised of the least element of each double
orbit. We can define the Ex-composition, written σ

f� τ , extending σ
f�0 τ on

R by (σ
f� τ)(r) = r for r ∈ R.

We can now give a direct corollary of theorem 2, stating some kind of asso-
ciativity for the Ex-composition.
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Corollary 4. Let σ, τ, ρ be pairwise disjoint w-permutations with

dom(σ) = A � B � C

dom(τ) = D � E � F

dom(ρ) = G � H � I

f

g

h

We have σ
f+g� (τ h� ρ) = (σ

f� τ)
g+h� ρ = (σ

g� ρ)
f+h� τ . When h = 0 we

get σ
f+g� (τ + ρ) = (σ

f� τ)
g� ρ = (σ

g� ρ)
f� τ .

3 The Statics of Interaction Nets

We fix a countable set S, whose elements are called symbols, and a function
α : S → N, the arity. We will define nets atop N and in this context an integer
will be called a port.

Definition 5. An interaction net is an ordered pair R = (σw , σc) where:

– σw is a w-permutation. We write Pl(R) for the fixed points of σw and P (R)
for the others.

– σc is a partial permutation of P (R) with pointed orbits and labelled by S in
such a way that ∀o ∈ Orbs(σc), |o| = α(l(o)) where l is the labelling function.

The elements of Pl(R) are called loops and the other orbits of σw, which are
necessarily of length 2, are called wires. The domain of σw is called the carrier
of the net. We write Pc(R) = dom(σc), whose elements are called cell ports, and
Pf (R) = P (R)− Pc(R), whose elements are called free ports.

An orbit of σc is called a cell. We write pal for the pointing function of σw.
Let c be a cell, pal(c) is its principal port and for i < |c| the element (σi

c ◦pal)(c)
is its ith auxiliary port.

Note that a port is present in exactly one wire and at most one cell.

3.1 Representation

Nets admit a very natural representation. We shall draw a cell of symbol A as
a triangle A where the principal port is the dot on the apex and auxiliary

ports are lined up on the opposing edge. We draw free ports as points. To finish
the drawing we add a line between any two ports connected by a wire, and draw
circles for loops.

As an example consider the net R = (σw , σc) with

σw = (1)(2 3)(4 5)(6 7)(8 9) and σc = (
•
4 3)A(

•
5 6 7)B
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where permutations are given by cycle decomposition and (
•
c1 c2 . . . cn)S is a

cell of point c1 and symbol S. This net will have the representation

1 A B
2 3 4 5 7

6

8

9

3.2 Morphisms of Nets and Renaming

Definition 6. Let R = (σw, σc) and R′ = (σ′w, σ′c) be two interaction nets. The
function f : P (R) �→ P (R′) is a morphism from R to R′ iff

f ◦ σw = σ′w ◦ f, f(Pc(R)) ⊆ Pc(f(R′)),

∀p ∈ Pc(R), (f ◦ σc)(p) = (σ′c ◦ f)(p),
and ∀o ∈ Orbs(σc) we have (f ◦pal)(o) = (pal ◦ f)(o) and l(o) = (l ◦ f)(o). When
f is the identity on Pf (R) it is said to be an internal morphism.

Let us detail a bit more this definition. We note that for any two partial
permutations σ and τ , the equation f ◦ σ = τ ◦ f induces that a o ∈ Orbs(σ) is
mapped to an element f(o) ∈ Orbs(τ) such that |f(o)| is a divisor of |o|.

In this case a loop is sent to a loop, a wire to a loop or a wire, and a cell to
another cell. The last two equations say that the principal port of cell is mapped
to a principal port, and symbols are preserved. So a cell is mapped to a cell of
same arity, and each port is mapped to the same type of port. Moreover only a
wire linking free ports can be mapped to a loop or any kind of wire. As soon as
the wire is linking one cell port the third condition on the morphism must send
it to a wire of the same type.

With this remark, it is natural to call renaming (resp. internal renaming)
an isomorphism (resp. internal isomorphism). An isomorphism class captures
interaction nets as they are drawn on paper. On the other hand, an internal
isomorphism class corresponds to interaction nets drawn where we have also
given distinct names to free ports, hence the name internal. This is an important
notion because the drawing is the same as Whereas the drawing

a b

c d
is different from

c

ba
d

.

Remark 7. Given the fact that nets have finite carriers we can always consider
that two nets have disjoint carriers up to renaming.

4 Tools of the Trade

4.1 Gluing and Cutting

Definition 8. Let R = (σw, σc) and R′ = (σ′w, σ
′
c) be two nets with disjoint

carriers 1 and let f : Pf (R) ↪→ Pf (R′). We call gluing of R and R′ along f the

net R
f� R′ = (σw

f� σ′w, σc + σ′c).
1 Which is not a loss of generality thanks to remark 7.
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From this definitions we get the following obvious facts:

P (R
f� R′) = (P (R)− dom(f)) � (P (R′)− codom(f))

Pc(R
f� R′) = Pc(R) � Pc(R′)

Pf (R
f� R′) = (Pf (R)− dom(f)) � (Pf (R′)− codom(f))

R
f� R′ = R′ f�

� R

For the special case of gluing where f = 0 we have R 0� R′ = (σw +σ′w, σc +σ′c),
we write this special kind of gluing R+R′, it is the so-called parallel composition
of the two nets. Fig. 3 gives a representation of gluing.

Property 9. If R = R
f� R′ then f = 0 and R′ = 0 = (0, 0). If 0 = R

f� R′

then f = 0 and R = R′ = 0.

Proof. We will only prove the first assertion, the second being similar. It is a
direct consequence of the previous facts, R′ must have no cells, no free ports and
no loops. The only net having this property is the empty net 0. �
We can get some kind of associativity property for gluing.

Property 10. Let R = (σw , σc), S = (τw, τc) and T = (ρw, ρc) be nets of
disjoint carriers and let f, g and h be partial injections satisfying the diagram of
corollary 4 with respect to σw, τw and ρw.

We have R
f+g� (S h� T ) = (R

f� S)
g+h� T = (R

g� T )
f+h� S.

Proof. The wire part of the equality is a restriction of corollary 4 and the cell
part is the associativity of +. �

The following corollary will often be sufficient.

Corollary 11. If we have a decomposition R0 = R
f� (S

g� T ) then there

exists fS , fT such that R0 = (R
fS� S)

g+fT� T .

We can use the gluing to define dually the notion of cutting a subnet of an
interaction net.

Definition 12. Let R be a net, we call cutting of R a triple (R1, f, R2) such

that R = R1
f� R2. Any net R′ appearing in a cutting of R is called a subnet

of R, noted R′ ⊆ R.

R R′
f

−→ R
f� R′

Fig. 3. Representation of the gluing of two interaction nets



218 M. de Falco

f

R1

R2

(a)

f

R1

R2

(b)

Fig. 4. Representation of two special cuttings: (a) a cutting of a single wire and (b)
a cutting of a loop

The Fig. 4 gives an example of cutting. The fact that we can cut many times a
wire or that we can divide a loop in many wires hints at the complexity behind
these definitions.

Property 13. The relation ⊆ is an ordering of nets.

Proof. The relation ⊆ is reflexive: R = R 0� 0 and thus, R ⊆ R.
It is antisymmetric: let R1 and R2 be nets such that R1 ⊆ R2 and R2 ⊆ R1.

We have R1 = R2
f� R′

2 and R2 = R1
g� R′

1.

So R2 = (R2
f� R′

2)
g� R′

1. By applying the corollary 11 we get R2 = R2
f1�

(R′
2

g+f2� R′
1). and by applying the property 9 twice we get R′

2 = R′
1 = 0. So

R1 = R2.
And it is transitive: let R ⊆ S ⊆ T , then S = R

f� R′ and T = S
g� S′, so

T = (R
f� R′)

g� S′. By applying the corollary 11 we have T = R
f1� (R′ g+f2�

S′), that is to say R ⊆ T . �

4.2 Interfaces and Contexts

To define reduction by using the subnet relation, it would be easier if we could
refer implicitly to the identification function in a gluing. As an intuition, consider
terms contexts with multiple holes, to substitute completely such contexts we
could give a function from holes to terms and fill them accordingly. But a more
natural definition would be to give a distinct number to each hole and to fill
based on a list of terms. The substitution would give the first term to the first
hole, and so on. The following definition is a direct transposition of this idea in
the framework of interaction nets.

Definition 14. We call interface of a net R a subset I = {p1, . . . , pn} of Pf (R)
together with a linear ordering, the length of the order chain p1 < · · · < pn is
called the size. We say that R contains the interface I, noted I ⊂ R. An interface
is canonical if it contains all the free ports of a net.

Let I and I ′ be disjoint interfaces of the same net, we write II ′ the union
of these subsets ordered by the concatenation of the two order chains. Precisely
x ≤II′ y ⇐⇒ x ≤I y or x ≤I′ y or x ∈ I ∧ y ∈ I ′.

Let I and I ′ be two interfaces of same order, there exists one and only order-
preserving bijection from I to I ′ that we write ρ(I, I ′) and call the chord between
I and I ′.
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We call context a couple (R, I) where I is an interface contained in the net
R, it is written RI .

Let RI and R′I′
be two contexts with interfaces of same order, we write

RI � R′I′
= R

ρ(I,I′)� R′

In the following when we write RI � R′I′
we implicitly assume that I and

I ′ are of same size.
We now can state commutativity of gluing directly, the proof being trivial.

Property 15 (Commutativity of gluing). RI � R′I′
= R′I′

� RI

The following trivial fact asserts that any gluing can be seen as a context gluing.

Fact 16. Let R
f� R′ be a gluing, there exist interfaces I ⊂ R and I ′ ⊂ R′ of

same order such that R
f� R′ = RI � R′I′

.

Corollary 17. R1 ⊆ R ⇐⇒ ∃I1, R2, I2 such that R = R1
I1 � R2

I2

We can now restate the corollary 11 with interfaces:

Corollary 18. For all nets R,S, T and interfaces I, J,K,L, there exists inter-
faces I ′, J ′,K ′, L′ such that

RI � (SJ � TK)
L

= (RI′ � SJ′
)
L′

� TK′

5 Dynamics

Definition 19. Let s1 and s2 be symbols. We call interaction rule for (s1, s2) a
couple (Rr

Ir , Rp
Ip) where

Rr =

(
(b c)(a1 b1) . . . (an bn)(c1 d1) . . . (cm dm),

(
•
b b1 . . . bn)s1 (

•
c c1 . . . cm)s2

)

and Ir and Ip are both canonical – comprised of all free ports – and of same size.

Let R = (Rr
Ir , Rp

Ip) be a rule we call reduction by R the binary relation R−→
on nets such that for all renaming α and β, and for all net S with S = RI �
α(Rr)

α(Ir) we set S R−→ S′ where S′ = RI � β(Rp)
β(Ip).

The net Rr has the representation s2s1 . Remark that the reduction

is defined as soon as a net contains a renaming of the redex Rr. This reduction
appears to be non-deterministic but it is only the expansion of a deterministic
reduction to cope with all possible renamings.
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Property 20. Let R be a net and R1, R2 be two interaction rules applicable
on R on distinct redexes such that R1

R1←−− R R2−−→ R2 and all the ports both in
R1 and R2 are also in R. There exists a net R′ such that R1

R2−−→ R′ R1←−− R2.

Proof. For i = 1, 2, set Ri = (Rr,i
Ir,i , Rp,i

Ip,i). The shape of redexes allow us to
assert that if they are distinct then they are disjoint. As R contains both a redex
α1(Rr,1) and a redex α2(Rr,2), then we can deduce that α1(Rr,1)+α2(Rr,2) ⊆ R.
More precisely we have

R = (α1(Rr,1) + α2(Rr,2))
α1(Ir,1)α2(Ir,2) � R0

I

We get
R1 = (β1(Rp,1) + α2(Rr,2))

β1(Ip,1)α2(Ir,2) � R0
I

for a renaming β1, and the same kind of expression for R2. It is straightforward
to check that the net

R′ = (β1(Rp,1) + β2(Rp,2))
β1(Ip,1)β2(Ip,2) � R0

I

satisfies the conclusion by applying property 10. The very existence of this net
relies on the disjointness of the βi(Rp,i) which is ensured by the hypothesis on
ports contained in both R1 and R2. �

Corollary 21. Let L be a set of rules such that for any pair of symbols there is
at most one rule over them. The reduction L−→=

⋃
R∈L

R−→ is strongly confluent
up to a renaming.

By up to a renaming we mean that we might have to rename one of the nets
in a critical pair before joining them. This is due to the disjointness condition
in property 20. Remark that we can always substitute one of the branch of the
critical pair by another instance of the same rule on the same redex in such a
way that this condition is ensured.

6 Interaction Nets are the Ex-Collapse of Axiom/Cut
Nets

We introduce now a notion of nets lying between proof-nets of multiplicative
linear logic and interaction nets. When we plug directly two interaction nets a
complex process of wire simplification occurs. When we plug two proof-nets we
only add special wires called cuts and we have an external notion of reduction
performing such simplification. In this section we define nets with two kinds
of wires: axioms and cuts. Those nets allow us to give a precise account of the
folklore assertion that interaction nets are a quotient of multiplicative proof-nets.

6.1 Definition and Juxtaposition

Definition 22. An Axiom/Cut net, AC net for short, is a tuple R=(σA, σC , σc)
where:
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– σA and σC are w-permutations of finite domain included in P, such that
dom(σC) ⊆ dom(σA), σC has no fixed points and if (a b) is an orbit of σC

then there exists c �= a and d �= b such that (c a) and (b d) are orbits of σA

We write Pl(R) for the fixed points of σA and P (R) = dom(σA)−dom(σC)−
Pl(R).

– σc is an element of S(Pc(R)), where Pc(R) ⊆ P (R), has pointed orbits and
is labelled by S in such a way that ∀o ∈ Orbs(σc), |o| = α(l(o)) where l is the
labelling function.

The orbits of σC , called cuts, are some kind of undirected unary cells linking
orbits of σA, called axioms.

We directly adapt the representation of interaction nets to AC nets by dis-
playing σc as double edges. For example the AC net R = (σA, σC , σc) with

σA = (1 2)(3 4)(5 6), σC = (2 3), σc = (
•
4 5)s

will be represented by s .
We can adapt most of the previous definitions for those nets, most importantly

free ports, interfaces and contexts. The nice thing about AC nets is that they
yield a very simple composition.

Definition 23. Let RI = (σA, σC , σc) and R′I′
= (τA, τC , τc) be two contexts

on AC nets with disjoint carriers, with I = i1 > · · · > in and I ′ = i′1 > · · · > i′n.
We call juxtaposition of RI and R′I′

the AC net

RI ↔ R′I′
= (σA + τA, σC + τC + (i1 i′1) . . . (in i′n), σc + τc)

The juxtaposition is from the logical point of view a generalized cut, and its
interpretation in terms of permutation is exactly the definition made by Jean-
Yves Girard in [Gir87].

6.2 Ex-collapse

Property 24. Let R = (σA, σC , σc) be an AC net and f : P ↪→ P be such that
dom(σC) = dom(f) and codom(f) ∩ dom(σA) = ∅.

The couple (σA
f� f ◦ σC ◦ f�, σc), is an interaction net.

It does not depend on f and we call it the Ex-collapse of R, noted Ex(R).

For the definition of the Ex-composition to be correct, we have to delocalize
σC to a domain disjoint from dom(σA). The Ex-collapse amounts to replace
any maximal chain a1

σA−−→ b1
σC−−→ a2 . . . bn−1

σA−−→ an by a chain a1
σA−−→

b1
f−→ f(b1)

f◦σC◦f�

−−−−−−→ f(a2)
f�

−→ . . . bn−1
σA−−→ an and then to compute the Ex-

composition to get a1
σA

f�σC−−−−−−→ an.
Proof. It comes from the definitions of the Ex-composition and from
property 3. �
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Property 25. For each interaction net R there exists a unique AC net R′ of
the form (σA, 0, σc) such that Ex(R′) = R. R′ is said to be cutfree.

Proof. If R = (τw, τc) we only have to take R′ = (τw , 0, τc). Uniqueness comes
from the fact that σ 0� 0 = σ. �

Definition 26. Let R and R′ be two AC nets, we say that R and R′ are Ex-
equivalent, noted R �∼ R′ when Ex(R) = Ex(R′).

We have an obvious correspondence between juxtaposition and gluing.

Property 27. Ex(RI ↔ R′I′
) = Ex(R)I � Ex(R′)I′

Therefore we can claim that

Interaction nets are the quotient of AC nets by �∼ .

7 Conclusion

We could not include all of the possible extensions of our framework in this
paper. Most of this results can be found in [dF09]. We have: 1) a double-pushout
approach to reduction by mean of the category of interaction nets and morphisms
(2) a rigorous definition of boxes as a partial labelling of cells (3) definitions of
paths in a net, path reduction and proofs that the path reduction is strongly
confluent (4) a full implementation in Haskell.
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[DR95] Danos, V., Regnier, L.: Proof-nets and the Hilbert space. In: Girard, J.-Y.,
Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathemati-
cal Society Lecture Note Series, vol. 222. Cambridge University Press, Cam-
bridge (1995)

[FM99] Fernandez, M., Mackie, I.: A calculus for interaction nets. In: Nadathur, G.
(ed.) PPDP 1999. LNCS, vol. 1702, pp. 170–187. Springer, Heidelberg (1999)

[Gir87] Girard, J.-Y.: Multiplicatives. In: Lolli (ed.) Logic and Computer Science:
New Trends and Applications, Torino, pp. 11–34. Università di Torino. Ren-
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Abstract. This paper gives an extension of Dual Calculus by introducing induc-
tive types and coinductive types. The same duality as Dual Calculus is shown
to hold in the new system, that is, this paper presents its involution for the new
system and proves that it preserves both typing and reduction. The duality be-
tween inductive types and coinductive types is shown by the existence of the
involution that maps an inductive type and a coinductive type to each other. The
strong normalization in this system is also proved. First, strong normalization in
second-order Dual Calculus is shown by translating it into second-order symmet-
ric lambda calculus. Next, strong normalization in Dual Calculus with inductive
and coinductive types is proved by translating it into second-order Dual Calculus.

1 Introduction

Dual Calculus DC is a type system which represents computation induced by cut elimi-
nation in the classical sequent calculus LK by using terms and their reduction [16,17].
DC has two nice properties: computation in classical logic, and duality.
DC can formalize computation in classical logic such as catch/throw and continuation

in the same way as other systems based on classical logic such as λμ-calculus [11] and
λμμ̃ [3].
DC faithfully inherits the duality of the classical sequent calculus LK. DC is based

on only negation, conjunction, and disjunction. In LK, conjunction and disjunction are
mapped to each other by the involution which maps A to ¬A. This property holds also
in DC. By this transformation, the sequent A1, . . . , An � B1, . . . , Bm is mapped to the
sequent ¬B1, . . . ,¬Bm � ¬A1, . . . ,¬An in LK. In DC, an antecedent gives typing of
coterms which mean computation of continuation, and a succedent gives typing of terms
which give ordinary computation. In DC, this transformation is extended to terms and
coterms and they are mapped to each other. Other computational systems do not have
this duality since they are based on implication.
DC enables us to show the duality in a clear syntactic way. The duality in computa-

tion in classical logic has been studied in category theory by investigating control cate-
gory [14]. The duality between ordinary computation and computation of continuation,
the duality between call-by-value computation and call-by-name computation [14], and
the duality between the fixed point operator and the loop operator [5] have been shown.
DC enables us to prove those results in a type system in a clear syntactic way. More-
over DC enables us also to study (1) reduction, (2) non-extensional systems without
η-rules, and (3) direct extension to programming languages. Wadler [16,17] showed the

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 224–238, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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duality between ordinary computation and computation of continuation, and the dual-
ity between call-by-value computation and call-by-name computation in a syntactical
way by using Dual Calculus. Kimura [6] showed the duality between the fixed point
operator and the loop operator in a type system by using Dual Calculus. The first author
of this paper showed the duality of reduction between call-by-value computation and
call-by-name computation in λμ-calculus by using DC [7] to answer the open question
presented in the invited talk at RTA2005 [17].

Inductive definitions are important in both mathematical logic and computer science.
Inductive definitions strengthen expressiveness of logical systems [2]. They are indis-
pensable in programming and program verification [10,13] for handling recursive data
structures such as lists and trees, and specification of recursive programs. Coinduc-
tive definitions are also important since they can represent streams, infinite trees, and
bisimulation [15].

This paper presents Dual Calculus DCμν with inductive types and coinductive types.
Our main results are: (1) the duality between inductive types and coinductive types with
reduction, (2) strong normalization in DCμν, and (3) strong normalization in second-
order Dual Calculus DC2.

The duality between inductive definitions and coinductive definitions is known only
for definition mechanism. Inductive definition formalizes the least formula B satisfying
B ↔ A[B/X] where A, B are formulas, the variable X occurs only positively in A,
and A[B/X] is obtained from A by replacing X by B. Coinductive definition formalizes
the greatest formula C satisfying C ↔ A[C/X]. The duality for definition mechanism
between inductive definition and coinductive definition is expressed by the fact that B is
equivalent to ¬D where D is the greatest formula satisfying D ↔ ¬A[D/X]. However,
its duality for reduction has not been investigated yet. We will extend this known duality
from types to both terms and their reduction.

In category theory, inductive definitions are represented by initial algebras and coin-
ductive definitions are represented by terminal coalgebras [4], and their duality is known.
This paper shows the duality in a clear syntactical way by using a type system.

[9] discussed an intuitionistic sequent calculus with inductive definitions and
coinductive definitions and showed its cut elimination theorem. Our cut elimination
procedure is not closed in an intuitionistic fragment because we require that our cut
elimination procedure respects the duality of classical logic. Our cut elimination for
inductive types is the same as theirs, and on the other hand our cut elimination for
coinductive types is different from theirs because of the duality.

In order for proving strong normalization, we will first present second-order Dual
Calculus DC2 and show its strong normalization by interpreting it in second-order sym-
metric lambda-calculus [12]. Then strong normalization of DCμν is proved by interpret-
ing it in DC2 by using second-order coding of inductive and coinductive types.

Section 2 gives a definition of DC and states its duality. Section 3 introduces DCμν
and shows its duality. Section 4 gives examples. In section 5, we give DC2 and show its
strong normalization. Section 6 proves strong normalization for DCμν.

2 Dual Calculus DC

This section defines Dual Calculus DC and states its duality. This system is obtained
from the original Dual Calculus given in [16] by removing reduction strategies in
reduction rules.
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Definition 1 (Types and Expressions of DC). Let X, Y, Z, . . . range over type variables,
A, B, . . . range over types, x, y, z, . . . range over variables, and α, β, γ, . . . range over co-
variables. We assume a bijection (−)′ between variables and covariables, which satisfies
x′′ = x and α′′ = α. An expression (denoted by D, E, . . .) is either a term (denoted by
M,N, . . .), a coterm (denoted by K, L, . . .), or a statement (denoted by S , T, . . .). We
define them as follows:

Types A � X | A ∧ A | A ∨ A | ¬A,
Expressions D � M | K | S ,
Terms M � x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S ).α,
Coterms K � α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S ),
Statements S � M • K.
(S ).α binds the covariable α in S . x.(S ) binds the variable x in S . We will use [ / ]

for substitution. For example, the substitution S [M/x] denotes the statement obtained
from S by replacing x by M.

A ∧ B denotes a cartesian product. A ∨ B denotes a disjoint sum. ¬A is the type of
a continuation program which returns an answer when it gets the input of type A. A
variable means an ordinary variable. A covariable means an output port and gets some
value after computation. A term represents an ordinary computation which becomes a
value and puts values at output ports after computation. 〈M,N〉 means a pair. 〈M〉inl
and 〈M〉inr mean the left injection and the right injection to a disjoint sum, respec-
tively. When [K]not gets its input, it gives the input to K and computes K. (S ).α is
an abstraction of S by α. It computes S and its value is the value at the output port α.
A coterm represents continuation which puts values at output ports after computation
when it gets its input. [K, L] gets the input of a disjoint sum. If the input is 〈M〉inl, it
gives M to K and computes K. If the input is 〈M〉inr, it gives M to L and computes
L. fst[K] gets the input of a cartesian product. If the input is 〈M,N〉, then it gives M
to K and computes K. snd[K] also gets the input of a cartesian product. If the input is
〈M,N〉, then it gives N to K and computes K. not〈M〉 gets a continuation as its input.
It gives M to the continuation and computes the continuation. x.(S ) is an abstraction
of S by x. If it gets the input, it puts the input in x and computes S . M • K means the
computation of K with the input M.

A typing judgment (denoted by J) of DC takes either the form Γ � Δ M : A, the
form K : A Γ � Δ, or the form Γ S � Δ, where Γ denotes a context x1 : A1, . . . , xn : An

that is a set of variable declarations, and Δ denotes a cocontext α1 : B1, . . . , αm : Bm

that is a set of covariable declarations. We will call M, K, and S a principal expression
in those judgments.

The typing judgment x1 : A1, . . . , xn : An � α1 : B1, . . . , αm : Bm M : A means that
when each xi has a value of type Ai, and M is computed, then M returns a value of type
A or some αi gets a value of type Bi. The judgment K : A x1 : A1, . . . , xn : An � α1 :
B1, . . . , αm : Bm means that when each xi has a value of type Ai, some input of type A
is given to K, and K is computed, then some αi gets a value of type Bi. The judgment
x1 : A1, . . . , xn : An S � α1 : B1, . . . , αm : Bm means that when each xi has a value of
type Ai and S is computed, then some αi gets a value of type Bi.

The typing rules are given in Figure 1. If we erase terms, coterms, statements, and
the symbol |, the system becomes equivalent to the classical sequent calculus LK.

Definition 2 (Reduction). The reduction relation −→DC is defined as the compatible
closure of the following reduction rules:
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Γ, x : A � Δ x : A
(AxR)

α : A Γ � Δ, α : A
(AxL)

Γ � Δ M : A Γ � Δ N : B

Γ � Δ 〈M,N〉 : A ∧ B
(∧R)

K : A Γ � Δ L : B Γ � Δ
[K, L] : A ∨ B Γ � Δ (∨L)

Γ � Δ M : A

Γ � Δ 〈M〉inl : A ∨ B
(∨R1)

K : A Γ � Δ
fst[K] : A ∧ B Γ � Δ (∧L1)

Γ � Δ M : B

Γ � Δ 〈M〉inr : A ∨ B
(∨R2)

K : B Γ � Δ
snd[K] : A ∧ B Γ � Δ (∧L2)

K : A Γ � Δ
Γ � Δ [K]not : ¬A

(¬R)
Γ � Δ M : A

not〈M〉 : ¬A Γ � Δ (¬L)

Γ S � Δ, α : A

Γ � Δ (S ).α : A
(IR)

Γ, x : A S � Δ
x.(S ) : A Γ � Δ (IL)

Γ � Δ M : A K : A Γ � Δ
Γ M • K � Δ (Cut)

Fig. 1. Typing rules of DC

(β∧1) 〈M,N〉 • fst[K] −→DC M • K, (β∨1) 〈M〉inl • [K, L] −→DC M • K,
(β∧2) 〈M,N〉 • snd[K] −→DC N • K, (β∨2) 〈M〉inr • [K, L] −→DC M • L,
(β¬) [K]not • not〈M〉 −→DC M • K,
(βR) (S ).α • K −→DC S [K/α], (βL) M • x.(S ) −→DC S [M/x],
(ηR) (M • α).α −→DC M, (ηL) x.(x • K) −→DC K,

where x and α are fresh in (ηL) and (ηR), respectively.

For simplicity we do not assume any reduction strategy in this system.
The type of an expression is preserved by reduction.

Proposition 1 (Subject reduction of DC). (1) If Γ � Δ M : A and M −→DC N, then
Γ � Δ N : A holds.

(2) If K : A Γ � Δ and K −→DC L, then L : A Γ � Δ holds.
(3) If Γ S � Δ and S −→DC T, then Γ T � Δ holds.

They are shown simultaneously by induction on M, K, and S .
The following duality transformation extends the duality in the sequent calculus LK

to terms, coterms, and statements.

Definition 3 (Duality Transformation). The duality transformation (−)◦ from DC into
itself is defined for types, terms, coterms, and statements as follows:

(X)◦ = X, (¬A)◦ = ¬(A)◦,
(A ∧ B)◦ = (A)◦ ∨ (B)◦, (A ∨ B)◦ = (A)◦ ∧ (B)◦,
(x)◦ = x′, (α)◦ = α′,
(〈M,N〉)◦ = [(M)◦, (N)◦], ([K, L])◦ = 〈(K)◦, (L)◦〉,
(〈M〉inl)◦ = fst[(M)◦], (fst[K])◦ = 〈(K)◦〉inl,
(〈M〉inr)◦ = snd[(M)◦], (snd[K])◦ = 〈(K)◦〉inr,
([K]not)◦ = not〈(K)◦〉, (not〈M〉)◦ = [(M)◦]not,
((S ).α)◦ = α′.((S )◦), (x.(S ))◦ = ((S )◦).x′, (M • K)◦ = (K)◦ • (M)◦.
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Note that a type and a statement are mapped to themselves. A term and a coterm are
mapped to each other.

We also define transformation for judgments. If Γ is x1 : A1, . . . , xn : An, then (Γ)◦
is defined as (x1)◦ : (A1)◦, . . . , (xn)◦ : (An)◦. If Δ is α1 : B1, . . . , αm : Bm, then (Δ)◦ is
defined as (α1)◦ : (B1)◦, . . . , (αm)◦ : (Bm)◦. The judgment (Γ � Δ M : A)◦ is de-
fined as (M)◦ : (A)◦ (Δ)◦ � (Γ)◦. The judgment (K : A Γ � Δ)◦ is defined as
(Δ)◦ � (Γ)◦ (K)◦ : (A)◦. The judgment (Γ S � Δ)◦ is defined as (Δ)◦ (S )◦ � (Γ)◦.

This duality transformation is shown to preserve typing and reduction, and to be an
involution. This transformation is a homomorphism for this system in the sense that
it preserves typing and reduction. An important feature of DC is its duality by this
transformation. A term is dual to a coterm by this homomorphism.

Proposition 2 (Duality of DC). (1) If J is provable in DC, then (J)◦ is provable in DC.
(2) D −→DC E implies (D)◦ −→DC (E)◦.
(3) ((A)◦)◦ = A, ((D)◦)◦ = D, and ((J)◦)◦ = J hold for any type A, expression D,

and judgment J.

(1) is proved by induction on the proof. (2) is proved by case analysis. (3) is proved by
induction on types and expressions.
Remark. This transformation maps dual reduction rules to each other. That is, if
D −→DC E is the reduction rules (β∧1), (β∧2), (β∨1), (β∨2), (β¬), (βR), (βL), (ηR),
and (ηL), then (D)◦ −→DC (E)◦ is the reduction rules (β∨1), (β∨2), (β∧1), (β∧2), (β¬),
(βL), (βR), (ηL), and (ηR), respectively.

Implication ⊃ can be defined by ¬ and ∨ in the same way as [16].

Definition 4. We write A ⊃ B for ¬A ∨ B. We also write λx.M for (〈[x.(〈M〉inr •
γ)]not〉inl • γ).γ. We also write N@K for [not〈N〉,K].

@ means the application in λ-calculus. The following holds from the definition.

Proposition 3. The following typing inference rules and reduction rule are derivable.

Γ, x : A � Δ M : B
Γ � Δ λx.M : A ⊃ B

(⊃ R)
Γ � Δ M : A K : B Γ � Δ

M@K : A ⊃ B Γ � Δ (⊃ L)

(β ⊃) λx.M • (N@K) −→DC M[N/x] • K

3 Dual Calculus DCμν with Inductive and Coinductive Types

In this section, we present DCμν, which is an extension of DC with inductive types and
coinductive types. We first extend the definition of types of DC to inductive types μX.A
and coinductive types νX.A, and then extend expressions and reduction.

Definition 5. The set of type variables is written by TyVars. We define the types of
DCμν (denoted by A, B, . . .) as follows:

A � X | A ∧ A | A ∨ A | ¬A | μX.A | νX.A
where μX.A and νX.A are defined when the type variable X is in Pos(A), and the set
Pos(A) of positive type variables in the type A and the set Neg(A) of negative type
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variables in the type A are defined as follows: Pos(X) = TyVars, Neg(X) = TyVars\
{X}, Pos(A1 ∧ A2) = Pos(A1 ∨ A2) = Pos(A1)∩Pos(A2), Neg(A1 ∧ A2) = Neg(A1 ∨
A2) = Neg(A1)∩Neg(A2), Pos(¬B) = Neg(B), Neg(¬B) = Pos(B), Pos(μX.B) =
Pos(νX.B) = Pos(B)∪ {X}, Neg(μX.B) = Neg(νX.B) = Neg(B)∪ {X}. μX.A and νX.A
bind X in A.

A positive type variable in A does not occur negatively in A in the usual sense. A nega-
tive type variable in A does not occur positively in A.

The inductive types and the coinductive types mean the least fixed points and the
greatest fixed points respectively in the set theoretical semantics, where types are inter-
preted by sets, A ∧ B is interpreted by the cartesian product of the sets A and B, A ∨ B
is interpreted by the disjoint sum of the sets A and B, ¬A is interpreted by the set of
functions from the set A to the empty set. Let P be the function which maps the set V
to the set A[V/X]. Then μX.A and νX.A are interpreted by the least fixed point and the
greatest fixed point of the monotone function P respectively. Let μ be μX.A and ν be
νX.A. They will have the following properties: (a) A[μ/X] ⊆ μ, (b) A[B/X] ⊆ B implies
μ ⊆ B, (c) ν ⊆ A[ν/X], and (d) B ⊆ A[B/X] implies B ⊆ ν. Based on this meaning, we
will introduce terms, coterms, and their reduction for inductive and coinductive types
in the same way as [8].

Definition 6. The terms, coterms, and statements of DCμν are defined as follows:

M � x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S ).α | inμX.A〈M〉 | coitrA
x 〈M,M〉,

K � α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S ) | outνX.A[K] | itrA
α[K,K],

S � M • K.

itrA
α[K, L] binds α in K. coitrA

x 〈M,N〉 binds x in M.

inμX.A〈M〉 and itrA
α[K, L] are the expressions for inductive types. inμX.A maps an element

of type A[μX.A/X] to that of μX.A. itrB
α[K, L] is an iterator having the input of type

μX.A where L is a postprocessor after iteration. When it gets the input of type μX.A,
first a value of type A[μX.A/X] is computed according to the input, next a value of type
A[B/X] is computed by recursive invocation of the iterator, then it is given to K and K is
computed to get a value of type B, and finally the value is given to L and L is computed.
Dually, outνX.A[K] and coitrA

x 〈M,N〉 are defined for coinductive types. outνX.A maps an
element of type νX.A to that of A[νX.A/X]. When it gets the input of type νX.A, first the
input is transformed into a value of type A[νX.A/X], then the value is given to K, and
finally K is computed. coitrB

x 〈M,N〉 is a coiterator of type νX.A. It transforms N of type
B into a value of νX.A according to M. Type annotations will be necessary for defining
reduction rules.

Definition 7. The typing rules of DCμν are defined by those of DC and the following
rules:
Γ � Δ M : A[μX.A/X]

Γ � Δ inμX.A〈M〉 : μX.A
(μR)

K : A[B/X] Γ � Δ, α : B L : B Γ � Δ
itrB
α[K, L] : μX.A Γ � Δ (μL)

K : A[νX.A/X] Γ � Δ
outνX.A[K] : νX.A Γ � Δ (νL)

Γ, x : B � Δ M : A[B/X] Γ � Δ N : B

Γ � Δ coitrB
x 〈M,N〉 : νX.A

(νR)

The duality transformation can be extended from DC to DCμν.
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Definition 8 (Duality Transformation). The duality transformation for types, terms,
coterms, and statements of DCμν is defined by those of DC and the following equations:

(μX.A)◦=νX.(A)◦, (νX.A)◦ = μX.(A)◦,
(inμX.A〈M〉)◦ = outνX.(A)◦ [(M)◦], (outνX.A[K])◦ = inμX.(A)◦ 〈(K)◦〉,
(itrA
α[K, L])◦ = coitr(A)◦

α′ 〈(K)◦, (L)◦〉, (coitrA
x 〈M,N〉)◦ = itr(A)◦

x′ [(M)◦, (N)◦].
Our reduction rules for inductive and coinductive types will be defined so that they

correspond to cut elimination in the corresponding logical system LK. In the following
proof figures, we will write μ, ν, and A[B] for μX.A, νX.A, and A[B/X] respectively. In
the logical system, when the cut formula is an inductive type, cut elimination reduces
the proof ....

Γ � Δ, A[μ]
Γ � Δ, μ (μR)

....
A[B], Γ � Δ, B

....
B, Γ � Δ

μ, Γ � Δ (μL)

Γ � Δ (Cut)

to the proof

....
Γ � Δ, A[μ]

....
A[B], Γ � Δ, B B, Γ � Δ, B

μ, Γ � Δ, B (μL)
....

A[μ], Γ � Δ, A[B]

....
(A[B], Γ � Δ, B)

....
(B, Γ � Δ)....

A[B],A[μ], Γ � Δ
A[μ], Γ � Δ (Cut)

Γ � Δ (Cut)

When the cut formula is a coinductive type, cut elimination reduces a proof in a dual
way to the above reduction.

When we have a function λx.M from A to B and the variable X is in Pos(C), we
can define the function from C[A/X] to C[B/X] by extending λx.M. We will use
mapX.C

A,B,x.M{N} so that this function maps z to mapX.C
A,B,x.M{z}. We will define mapX.C

A,B,x.M{N}
by induction on the measure ||C||X for a type C and a type variable X, which is defined
by induction on C as follows: If X is not free in A, then ||A||X = 0. In the other cases, we
assume that some X occurs in A. ||X||X = 1. ||A ∧ B||X = ||A ∨ B||X = ||A||X + ||B||X + 1.
||¬A||X = ||A||X + 1. ||μY.A||X = ||νY.A||X = ||A||X + ||A||Y + 1.

Note that if X is not free in B and we have X � Y, then ‖ A ‖X = ‖ A[B/Y] ‖X.

Definition 9. Assume a type variable X and types A, B,C are given and X is is not free
in A and B. For a variable x and terms M and N, we define the term mapX.C

A,B,x.M{N} by
induction on ‖C ‖X as follows:

mapX.X
A,B,x.M{N} = (N • x.(M • α)).α,

mapX.C
A,B,x.M{N} = N (X does not occur in C),

mapX.C∧D
A,B,x.M{N} = 〈 mapX.C

A,B,x.M{(N • fst[α]).α}, mapX.D
A,B,x.M{(N • snd[β]).β} 〉,

mapX.C∨D
A,B,x.M{N} = (N • [ y.(〈mapX.C

A,B,x.M{y} 〉inl • γ), z.(〈mapX.D
A,B,x.M{z} 〉inr • γ) ]).γ,

mapX.¬C
A,B,x.M{N} = [ z.(N • not〈 mapX.C

B,A,x.M{z} 〉 ) ]not,

map
X.μY.C
A,B,x.M{N} = ( N • itrμB

α [ z.( inμB〈 mapX.C[μB/Y]
A,B,x.M { z } 〉 • α ), β ] ).β,

mapX.νY.C
A,B,x.M{N} = coitrνA

z 〈 mapX.C[νA/Y]
A,B,x.M { (z • outνA[α]).α }, N 〉,
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where we write μB and νA for μY.C[B/X] and νY.C[A/X], respectively. For a covariable
α and coterms K and L, we also define

mapX.C
A,B,α.K{L} = (mapX.(C)◦

(B)◦ ,(A)◦ ,α′.(K)◦ {(L)◦})◦.
Note that ||μY.C||X > ||C[μB/Y]||X and ||μY.C||X > ||C[νA/Y]||X hold since X is not free in
μB and νA. We cannot replace C[μB/Y] by C in the definition of mapX.μY.C

A,B,x.M{N} because
of the type annotation for in. For readability, we sometimes write mapX.C

A,B,x{M,N} and
mapX.C

A,B,α{K, L} for mapX.C
A,B,x.M{N} and mapX.C

A,B,α.K{L}, respectively.

Proposition 4. Assume X is in Pos(C) and Neg(D). The following are derivable:

Γ, x : A � Δ | M : B

Γ, z : C[A/X] � Δ | mapX.C
A,B,x.M{z} : C[B/X]

Γ, x : B � Δ | M : A

Γ, z : D[A/X] � Δ | mapX.D
A,B,x.M{z} : D[B/X]

K : A Γ � Δ, α : B

mapX.C
A,B,α.K{β} : C[A/X] Γ � Δ, β : C[B/X]

K : B Γ � Δ, α : A

mapX.D
A,B,α.K{β} : D[A/X] Γ � Δ, β : D[B/X]

They are proved by induction on ||C||X and ||D||X.

Definition 10. We define the one-step reduction relation −→DCμν of DCμν as the com-
patible closure of the reduction rules of DC and the following reduction rules:

(βμ) inμX.C〈M〉 • itrA
α[K, L] −→DCμν M • mapX.C

μX.C,A,β{ itrA
α[K, β], K[L/α] },

(βν) coitrA
x 〈M,N〉 • outνX.C[K] −→DCμν mapX.C

A,νX.C,z{ coitrA
x 〈M, z〉, M[N/x] } • K.

This system has subject reduction. That is, when we replace DC by DCμν in the state-
ment of Proposition 1, the statement holds also for DCμν.

The following duality transformation (−)◦ preserves typing and reduction, and is an
involution in DCμν. This is proved similarly to Proposition 2.

Theorem 1 (Duality of DCμν). (1) If J is provable in DCμν, then (J)◦ is provable in
DCμν.

(2) D −→DCμν E implies (D)◦ −→DCμν (E)◦ for any expressions D and E.
(3) ((A)◦)◦ = A, ((D)◦)◦ = D, and ((J)◦)◦ = J hold for any type A, expression D, and

judgment J of DCμν.

Proposition 5. If D −→DCμν E is the rules (βμ) and (βν), then (D)◦ −→DCμν (E)◦ is (βν)
and (βμ) respectively.

We have shown the duality of inductive types and coinductive types. Theorem 1 shows
that the duality transformation is a homomorphic involution. The description of a type is
defined as the set of the type itself, its terms, its coterms, and their reduction. The duality
transformation maps the description of an inductive type and that of a coinductive type
to each other. That is, (1) Definition 8 shows that the inductive type μX.A is mapped
to the coinductive type νX.(A)◦, the term constructed by in for the inductive type is
mapped to the coterm constructed by out for the coinductive type, and the coterm
constructed by itr for the inductive type is mapped to the term constructed by coitr for
the coinductive type. (2) Proposition 5 shows that the cut elimination of the inductive
type is mapped to the cut elimination of the coinductive type, (3) the coinductive type
is mapped to the inductive type in a similar way to (1) and (2).
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Remark. We cannot define our typing system by using

K : C[A/X] Γ � Δ, α : A

itrA
α[K, β] : μX.C Γ � Δ, β : A

(μL′)

instead of the typing rule (μL). If we used (μL′), the set of terms would not be closed
under substitution, because itrA

α[K, L] would not have typing rules for it and hence it
would not be a term, though it is obtained from itrA

α[K, β] by substituting L for β.

4 Examples

In this section we show some examples of inductive and coinductive types in DCμν.
Let X0 be a distinguished type variable. We use the following abbreviations: � =

¬X0 ∨ X0, ⊥ = ¬X0 ∧ X0, and ∗ = λx.x.
The type Nat of natural numbers can be represented by:

Nat = μX.(� ∨ X), 0 = inNat〈 〈∗〉inl 〉, succ〈M〉 = inNat〈 〈M〉inr 〉,
where 0 is the zero and succ is the successor. We can prove Γ � Δ 0 : Nat. We can
also prove Γ � Δ succ〈M〉 : Nat from Γ � Δ M : Nat. The n-th natural number
ñ is represented by succ〈succ〈. . . succ〈0〉 . . .〉〉 (n times of succ). We will write
M[ /x]n(N) for M[M[. . . [M[N/x]/x] . . . /x]/x] (n times of M). We define a coterm
ItrB[F,N,K] of type Nat by itrB

α

[
[y.(N • α), x.(F • (x@α))],K

]
, where y is not free in

N, F has type B ⊃ B, and N and K are of type B. When the coterm ItrB[F,N,K] gets
ñ as its input, it computes n-time iterations of applying the function F to N, and passes
the output to K. We reduce ñ • ItrB[λx.M,N,K] to M[ /x]n(N) • K.

The type List(A) of lists of elements of type A is represented by:

List(A) = μX.(� ∨ (A ∧ X)),
nil = inList(A)〈 〈∗〉inl 〉, cons〈M,Nl〉 = inList(A)〈 〈 〈M,Nl〉 〉inr 〉.

nil is the empty list and cons is the list constructor. In DCμν, Γ � Δ nil : List(A)
is provable. Γ � Δ cons〈M,Nl〉 : List(A) is also provable from Γ � Δ M : A and
Γ � Δ Nl : List(A).

We can also define the type Stream(A) of streams of elements of type A by:

Stream(A) = νX.(A ∧ X),
cons〈M,Ns〉 = coitrA∧Stream(A)

x 〈 〈π1(x), (π2(x) • outStream(A)[α]).α〉, 〈M,Ns〉 〉,
hd[K] = outStream(A)[ fst[K] ], tl[L] = outStream(A)[ snd[L] ],

where π1(M) is the first projection of M defined by (M • fst[α]).α, and π2(M) is the
second projection of M defined by (M • snd[α]).α. The term cons〈M,Ns〉 constructs a
new stream from a given element M and a given stream Ns. The coterm hd[K] receives
the first element from a given stream and gives it to K. The coterm tl[L] removes the
first element from a given stream and gives the resulting stream to L. We can prove
Γ � Δ cons〈M,Ns〉 : Stream(A) from Γ � Δ M : A and Γ � Δ Ns : Stream(A).
We can also prove hd[K] : Stream(A) Γ � Δ from K : A Γ � Δ. We can also prove
tl[L] : Stream(A) Γ � Δ from L : Stream(A) Γ � Δ. We reduce cons〈M,Ns〉 •
hd[K] to M •K. We also reduce cons〈M,Ns〉 •tln+1[hd[K]] to Ns•tln[hd[K]], where
tln[hd[K]] is defined by tl[tl[. . .tl[ hd[K] ] . . .]] (n times of tl).
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Proposition 6. Nat is dual to Stream(⊥), that is, (Nat)◦ = Stream(⊥), (0)◦ =
hd[(∗)◦], and (succ〈M〉)◦ = tl[(M)◦] hold.

We can understand this duality as follows. � means the singleton set {∗}. ⊥ means the
type of a program that returns some answer after computation with the input ∗ since⊥ is
equivalent to ¬�. Natmeans the infinite disjoint sum�+�+�+ . . .. Stream(⊥) means
the infinite cartesian product ⊥ × ⊥ × ⊥ × . . .. Since a term in Stream(⊥) is equivalent
to a coterm in Nat, when the term gets some natural number and is computed, it returns
some answer. When the term gets the natural number ñ, since ñ is ∗ in the n-th � in
�+� + . . ., the term in the n-th ⊥ in ⊥×⊥× . . . is given the input ∗ and it is computed
to give some answer.

By using the duality of DCμν, inductive types can be defined by using coinductive
types, and coinductive types are defined by inductive types. That is, μX.A is equivalent
to ¬νX.(A)◦ and νX.A is equivalent to ¬νX.(A)◦. This is because the behavior of term
M and coterm K of type A are simulated by the term [(M)◦]not and coterm not〈(K)◦〉
of type ¬(A)◦ respectively. For example, the type Nat′ of natural numbers and the type
Stream′(A) of streams can be also defined as Nat′ = ¬νX.(⊥ ∧ X) and Stream′(A) =
¬μX.((A)◦ ∨ X) respectively.

5 Second-Order Dual Calculus DC2

We introduce a second-order extension DC2 of DC. We will prove its strong normaliza-
tion by interpreting it in the second-order symmetric λ-calculus.

Definition 11. An expression is defined to be strongly normalizing if there does not
exist any infinite reduction sequence starting from the expression.

First, we define a second-order extension DC2 of DC.

Definition 12 (DC2). The types, terms, coterms, and statements of DC2 are defined by:
Types A� X | A ∧ A | A ∨ A | ¬A | ∀X.A | ∃X.A,
Terms M � x | 〈M,M〉 | 〈M〉inl | 〈M〉inr | [K]not | (S ).α | 〈M〉a | 〈M〉e,
Coterms K � α | [K,K] | fst[K] | snd[K] | not〈M〉 | x.(S ) | a[K] | e[K],
Statements S � M • K.
The typing rules and reduction rules (denoted by −→DC2) of DC2 are defined by

extending the rules of DC with the following rules:

Γ � Δ M : A
Γ � Δ 〈M〉a : ∀Z.A

(∀R)
K : A[B/X] Γ � Δ
a[K] : ∀X.A Γ � Δ (∀L)

Γ � Δ M : A[B/X]
Γ � Δ 〈M〉e : ∃X.A

(∃R)
K : A Γ � Δ

e[K] : ∃Z.A Γ � Δ (∃L)

(β∀) 〈M〉a • a[K] −→DC2 M • K, (β∃) 〈M〉e • e[K] −→DC2 M • K,

where Z is not free in Γ and Δ in (∀R) and (∃L). We write −→+
DC2 to denote the transitive

closure of −→DC2.

We have the new constructors a and e, which are trivial witnesses for the quantifiers at
the level of expressions, so that the system has subject reduction.



234 D. Kimura and M. Tatsuta

This system has subject reduction. That is, when we replace DC by DC2 in the state-
ment of Proposition 1, the statement holds also for DC2.

Remark. If we did not have those new constructors, the subject reduction would fail. If
we chose the following (∀R′) and (∀L′) instead of (∀R) and (∀L),

Γ � Δ M : A
Γ � Δ M : ∀Z.A

(∀R′)
K : A[B/X] Γ � Δ
K : ∀X.A Γ � Δ (∀L′)

then the following would be a counter-example for subject reduction: we would have
Γ (x • fst[α]).α • β � Δ where Γ is x : X ∧ Y, Δ is β : ∀Z.X, and Z � X, Y, but would
not have Γ x • fst[β] � Δ, though (x • fst[α]).α • β is reduced to x • fst[β].

In other systems such as λμ-calculus [11], the constructor a is not necessary for
subject reduction while the constructor e is necessary for it. In our system, since ∀ and
∃ are dual, the constructor a is also necessary for subject reduction.

Next we give a definition of the second-order symmetric λ-calculus Sλ2 [12]. The
symmetric λ-calculus is introduced by Barbanera and Berardi [1] as a classical exten-
sion of the λ-calculus. Strong normalization of its second-order extension Sλ2 is proved
by Parigot [12].

Definition 13 (Sλ2). We define the second-order symmetric λ-calculus Sλ2. The types
of Sλ2 are either the special type ⊥ or m-types (denoted by τ, σ, . . .) given by:

τ� X | X⊥ | τ × τ | τ + τ | ∀X.τ | ∃X.τ

where X, Y, . . . range over type variables. ∀X.τ and ∃X.τ bind X in τ. The negation (τ)⊥
of τ is defined by: (X)⊥ = X⊥, (τ × σ)⊥ = (τ)⊥ + (σ)⊥, (∀X.τ)⊥ = ∃X.(τ)⊥,
(X⊥)⊥ = X, (τ + σ)⊥ = (τ)⊥ × (σ)⊥, (∃X.τ)⊥ = ∀X.(τ)⊥.

x, y, . . ., α, β, . . . range over variables. The terms of Sλ2, denoted by t, u, . . ., are de-
fined by t� x | inj1(t) | inj2(t) | 〈t, t〉 | t ∗ t | λx.t | a(t) | e(t).

The one-step reduction relation −→Sλ2 of Sλ2 is defined as the compatible closure of
the following rules:

(βr) (λx.t) ∗ u −→Sλ2 t[u/x], (βl) u ∗ (λx.t) −→Sλ2 t[u/x],
(β×+1) 〈t1, t2〉 ∗ inj1(u) −→Sλ2 t1 ∗ u, (β+×1) inj1(u) ∗ 〈t1, t2〉 −→Sλ2 u ∗ t1,
(β×+2) 〈t1, t2〉 ∗ inj2(u) −→Sλ2 t2 ∗ u, (β+×2) inj2(u) ∗ 〈t1, t2〉 −→Sλ2 u ∗ t2,
(β∀∃) a(t) ∗ e(u) −→Sλ2 t ∗ u, (β∃∀) e(u) ∗ a(t) −→Sλ2 u ∗ t,
(ηr) λy.(y ∗ t) −→Sλ2 t, (ηl) λy.(t ∗ y) −→Sλ2 t,

where y is not free in t in (ηl) and (ηr).
A typing context (denoted by Γ, Δ) is a finite set and of the form x1 : τ1, . . . , xn : τn.

A judgment of Sλ2 takes either the form Γ � t : τ or Γ � t : ⊥. The typing rules of Sλ2
is defined as follows:

Γ, x : τ � x : τ
(Ax)

Γ, x : τ � t : ⊥
Γ � λx.t : (τ)⊥

(abs)
Γ � t : (τ)⊥ Γ � u : τ

Γ � t ∗ u : ⊥ (app)

Γ � t : τi

Γ � inji(t) : τ1 + τ2
(+i) (i = 1, 2)

Γ � t : τ Γ � u : σ
Γ � 〈t, u〉 : τ × σ (×)

Γ � t : τ
Γ � a(t) : ∀X.τ

(∀)
(X is not free in Γ)

Γ � t : τ[σ/X]
Γ � e(t) : ∃X.τ

(∃)
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Theorem 2 (Strong normalization of Sλ2 [12]). Every typable term is strongly nor-
malizing in Sλ2.

The following translation maps DC2 to Sλ2.

Definition 14. Let A be a type of DC2. The type (A)† of Sλ2 is defined as follows:

(X)† = X, (A ∧ B)† = (A)† × (B)†, (∀X.A)† = ∀X.(A)†,
(¬A)† = ((A)†)⊥, (A ∨ B)† = (A)† + (B)†, (∃X.A)† = ∃X.(A)†.

Let D be an expression of DC2. The term (D)† of Sλ2 is defined by:

(x)† = x, ((S ).α)† = λα.(S )†, (α)† = α, (x.(S ))† = λx.(S )†,
(〈M〉a)† = a((M)†), (〈M〉e)† = e((M)†),
(e[K])† = a((K)†), (a[K])† = e((K)†),
(〈M〉inl)† = inj1((M)†), (fst[K])† = inj1((K)†),
(〈M〉inr)† = inj2((M)†), (snd[K])† = inj2((K)†),
(〈M,N〉)† = 〈(M)†, (N)†〉, ([K, L])† = 〈(K)†, (L)†〉,
([K]not)† = (K)†, (not〈M〉)† = λx.((M)† ∗ x), (M • K)† = (M)† ∗ (K)†.

We define the translation of not〈M〉 by using η-expansion, so that all reductions in DC2
are simulated in Sλ2.

(Γ)† and ((Δ)†)⊥ are defined as x1 : (A1)†, . . . , xn : (An)† and
α1 : ((B1)†)⊥, . . . , αm : ((Bm)†)⊥ respectively if Γ is x1 : A1, . . . , xn : An, and Δ is
α1 : B1, . . . , αm : Bm. For a judgment J of DC2, the judgment (J)† of Sλ2 is defined as
follows: The judgment (Γ � Δ M : A)† is defined as (Γ)†, ((Δ)†)⊥ � (M)† : (A)†. The
judgment (K : A Γ � Δ)† is defined as (Γ)†, ((Δ)†)⊥ � (K)† : ((A)†)⊥. The judgment
(Γ S � Δ)† is defined as (Γ)†, ((Δ)†)⊥ � (S )† : ⊥.

This translation preserves provability and one-step reductions.

Proposition 7. (1) If J is provable in DC2, then (J)† is provable in Sλ2.
(2) D −→DC2 E implies (D)† −→Sλ2 (E)†.

Proof. (1) is shown by induction on the proof of J. (2) is shown by induction on the
definition of −→DC2. �

We can obtain strong normalization of DC2 from the above proposition.

Theorem 3 (Strong normalization of DC2). Every typable expression is strongly nor-
malizing in DC2.

Proof. Assume there is an infinite reduction sequence D = D0 −→DC2 D1 −→DC2
. . . starting from D. From Proposition 7, (D)† is typable in Sλ2, and (D)† −→Sλ2

(D1)† −→Sλ2 . . . is an infinite reduction sequence. This contradicts Theorem 2. �

6 Strong Normalization of DCμν

In this section, we prove strong normalization in DCμν. We will give the second-order
encoding of DCμν in DC2, and show that one-step reduction in DCμν is translated to one
or more step reduction in DC2.

We use the following degree of expressions in DCμν for defining the second-order
coding of inductive and coinductive types.
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Definition 15. Let D be an expression in DCμν. ||D|| is defined by: ||x|| = ||α|| =
0, ||〈M,N〉|| = ||coitrA

x 〈M,N〉|| = max(||M||, ||N||), ||M • K|| = max(||M||, ||K||),
||[K, L]|| = ||itrA

α[K, L]|| = max(||K||, ||L||), ||(S ).α|| = ||x.(S )|| = ||S ||, ||〈M〉inl|| =
||〈M〉inr|| = ||not〈M〉|| = ||M||, ||inμX.A〈M〉|| = ||M|| + ||A||X + 1, ||fst[K]|| =
||snd[K]|| = ||[K]not|| = ||K||, ||outνX.A[K]|| = ||K|| + ||A||X + 1.
|D| is defined by: |x| = |α| = 0, |〈M,N〉| = |coitrA

x 〈M,N〉| = |M|+|N|+1, |M•K| =
|M| + |K| + 1, |[K, L]| = |itrA

α[K, L]| = |K| + |L| + 1, |(S ).α| = |x.(S )| = |S | + 1,
|〈M〉inl| = |〈M〉inr| = |not〈M〉| = |inμX.A〈M〉| = |M| + 1, |fst[K]| = |snd[K]| =
|[K]not| = |outνX.A[K]| = |K| + 1.

The degree deg(D) of the expression D is defined as the triple (||D||, |D|, n) where
n = 1 if D is of the form coitrA

x 〈M,N〉 or outνX.A[K], and otherwise n = 0. We also
define the order of degrees by the lexicographic order.

|D| is the number of constructors in the expression D. ||D|| is the maximum summation
of (||A||X + 1) for inμX.A〈M〉 and outνX.A[K] in paths in D. We have ||E|| ≤ ||D|| and
|E| < |D| when the expression E is a proper subexpression of D. The degree satisfies the
following properties.

Lemma 1. (1) ||D|| = ||(D)◦|| and |D| = |(D)◦| hold.
(2) || mapX.A

B,C,x{M,N} || ≤ ||M|| + ||N|| + ||A||X holds.

(3) deg(inμX.A〈M〉) > deg( mapX.A
μX.A,Y,α{ x.(y • (x@α)), β }) holds.

Proof. (1) They are shown by induction on D. (2) The claim is shown by induction on
||A||X. (3) The claim is proved by using (2). �

We present the second-order encoding for DCμν. We will write λ(x, α).S for
λx.((S ).α). Then (λ(x, α).S ) • (N@K) is reduced to S [N/x][K/α].

Definition 16 (Translation (−) from DCμν into DC2). Let A be a type of DCμν. The
type A of DC2 is defined as follows:

X = X, A ∧ B = A ∧ B, μX.A = ∀X.((A ⊃ X) ⊃ X),
¬A = ¬A, A ∨ B = A ∨ B, νX.A = ∃X.(¬(¬A ∧ X) ∧ X),

where ⊃ is defined in Definition 4. For an expression D of DCμν, the expression D of
DC2 is defined by induction on deg(D) as follows:

x = x, α = α, (S ).α = (S ).α, x.(S ) = x.(S ),
〈M,N〉 = 〈M,N〉, [K, L] = [K, L],
〈M〉inl = 〈M〉inl, fst[K] = fst[K],
〈M〉inr = 〈M〉inr, snd[K] = snd[K],
[K]not = [K]not, not〈M〉 = not〈M〉, M • K = M • K,

itrA
α[K, L] = a[ ( λ(x, α).(x • K) )@L ],

inμX.A〈M〉 = 〈 λ(y, β).(y • ( (QY [X.A] • RM{y, γ}).γ@β )) 〉a,
where QY [X.A] is defined as λy.λ(z, β).( z • mapX.A

μX.A,Y,α{ x.(y • (x@α)), β } ) ,
and RM{N,K} is defined as ( λ(x, α).(x • a[N@α]) )@(M@K) ,

coitrA
x 〈M,N〉 = (itr(A)◦

x′ [(M)◦, (N)◦])◦, outνX.A[K] = (inμX.(A)◦ 〈(K)◦〉)◦.
We also define the translation of judgments. The context Γ is defined as

x1 : A1, . . . , xn : An if Γ is x1 : A1, . . . , xn : An. The cocontext Δ is defined as
α1 : B1, . . . , αm : Bm if Δ is α1 : B1, . . . , αm : Bm. The judgment Γ � Δ M : A is defined
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as Γ � Δ M : A. The judgment K : A Γ � Δ is defined as K : A Γ � Δ. The judgment
Γ S � Δ is defined as Γ S � Δ.

The next lemma shows that this translation commutes with (−)◦.
Lemma 2. ( A )◦ = (A)◦, ( D )◦ = (D)◦, and ( J )◦ = (J)◦ hold.

The claim for D is proved by induction on deg(D).
The next proposition says the translation (−) preserves provability.

Proposition 8. If J is provable in DCμν, then J is provable in DC2.

This is shown by induction on the degree of the principal expression in J.

Lemma 3. A[B/X] = A[B/X], D[M/x] = D[M/x], and D[K/α] = D[K/α] hold.

The first claim is shown by induction on A. The second and the third claims are shown
by induction on deg(D).

The translation (−) maps one-step reduction to one or more steps of reduction.

Proposition 9. For expressions D and E of DCμν, D −→DCμν E implies D −→+
DC2 E.

Proof. First we show the claim without (βμ) nor (βν) by induction on −→DCμν with
Lemma 3. Next, by using this and Lemma 3, we show the claim of this proposition by
induction on −→DCμν. We consider cases according to the reduction rule.

Case (βμ). We have inμX.A〈M〉 • itrB
α[K, L] = inμX.A〈M〉 • itrB

α[K, L] =

〈λ(y, β).(y • ((QY[X.A] • RM{y, γ}).γ@β))〉a • a[(λ(x.α).(x • K))@L] −→DC2
(λ(y, β).(y • ((QY[X.A] • RM{y, γ}).γ@β))) • ((λ(x.α).(x • K))@L) −→+

DC2

(λ(x.α).(x • K)) • ((QY[X.A] • RM{λ(x.α).(x • K), γ}).γ@L) −→+
DC2 (QY[X.A] •

RM{λ(x.α).(x • K), γ}).γ • K[L/α] −→DC2 QY [X.A] • RM{λ(x.α).(x • K),K[L/α]} =
QY [X.A] • RM{λ(x.α).(x • K),K[L/α]} by Lemma 3. The last expression
equals QY [X.A] • ((λ(x1, α1).(x1 • a[λ(x.α).(x • K)@α1]))@(M@K[L/α])) =

QY [X.A] • ((λ(x1, α1).(x1 • itrB
α[K, α1]))@(M@K[L/α])) = (λy.λ(z, γ).(z •

mapX.A
μX.A,Y,β{x.(y • (x@β)), γ})) • ((λ(x1, α1).(x1 • itrB

α[K, α1]))@(M@K[L/α])) −→DC2
(λ(z, γ).(z • mapX.A

μX.A,Y,β{x.(y • (x@β)), γ}[λ(x1, α1).(x1 • itrB
α[K, α1])/y])) •

(M@K[L/α]) = (λ(z, γ).(z • mapX.A
μX.A,Y,β{x.((λ(x1, α1).(x1 • itrB

α[K, α1])) • (x@β)), γ})) •
(M@K[L/α]) by Lemma 3. It reduces by −→+

DC2 to (λ(z, γ).(z •
mapX.A

μX.A,Y,β{itrB
α[K, β], γ})) • (M@K[L/α]) by the first claim. It reduces by −→+

DC2

to M • mapX.A
μX.A,Y,β{itrB

α[K, β],K[L/α]} by Lemma 3.
Case (βν) is similar to Case (βμ). Other cases are shown straightforwardly. �

Finally, we complete a proof of strong normalization of DCμν.

Theorem 4 (Strong normalization of DCμν). Every typable expression of DCμν is
strongly normalizing.

Proof. Assume that D is typable in DCμν and there is an infinite reduction sequence
D −→DCμν D1 −→DCμν . . . starting from D. Then D is typable in DC2 by Proposition
8 and D −→+

DC2 D1 −→+DC2 . . . is an infinite reduction sequence starting from D by
Proposition 9. This contradicts Theorem 3.
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Abstract. Extending the infinitary rewriting definition of Böhm-like
trees to infinitary Combinatory Reduction Systems (iCRSs), we show
that each Böhm-like tree defined by means of infinitary rewriting can
also be defined by means of a direct approximant function. In addition,
we show that counterexamples exists to the reverse implication.

1 Introduction

In λ-calculus, a Böhm tree defines a denotational semantics based on syntax.
Essentially, a Böhm tree of a term can been seen as an infinite normal form of
the term, omitting subterms that do not ‘compute’ anything.

What constitutes a term that ‘computes’ something is not universally deter-
mined. Within λ-calculus three alternatives exist: the head normal forms [2, 3],
the weak head normal forms [4, 5], and the root-stable terms [6]. These define,
besides the Böhm trees, the Lévy-Longo trees and the Berarducci trees. As a
result, abstract definitions have appeared that are parameterized over the set of
terms ‘computing’ something. These are the so-called Böhm-like trees [1].

The abstract definitions can be divided into two classes, based on the concrete
definition taken as a starting point. One is based on infinitary rewriting [7, 8];
the other is based on so-called direct approximants [1, 9, 10].

Infinitary Rewriting. Within this class, a Böhm-like tree is a normal form,
albeit not in the original (finite) system but in an infinite system. The infinite
system extends the finite one with infinite terms and infinite reductions. Rules
are added rewriting terms not ‘computing’ anything — the meaningless terms
— to a fresh nullary symbol ⊥. Pivotal are a number of conditions on the set of
meaningless terms guaranteeing that each term has a unique normal form.

Direct Approximants. Within this class, terms are partially ordered by adding
a fresh nullary function symbol ⊥. The direct approximant function — the pa-
rameterized component — replaces by ⊥ any subterm that either reduces to a
redex or does not ‘compute’ anything. This yields a normal form that approxi-
mates the Böhm-like tree. The tree is obtained by gathering the direct approxi-
mants of all the reducts of a term and taking the least upper bound. Pivotal are
a number of conditions on the direct approximant function guaranteeing that
the least upper bound exists.
� This paper extends earlier unpublished work from the author’s Ph.D. thesis [1].
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We show that the direct approximant approach is more expressive than the in-
finitary rewriting one in the context of Combinatory Reduction Systems (CRSs):
Each Böhm-like tree defined by means of infinitary rewriting can also be defined
by means of a direct approximant function. The reverse, however, does not hold.

Overview. In Sect. 2 we give some preliminaries, mostly regarding infinitary
Combinatory Reduction Systems (iCRSs). In Sect. 3 we extend to iCRSs the
infinitary rewriting approach to Böhm-like trees. In Sect. 4 we compare, after
shortly reviewing direct approximants. Finally, in Sect. 5 we conclude.

2 Preliminaries

We outline some basic facts concerning iCRSs; see [11, 12, 13] for more detailed
accounts. Throughout, we denote the first infinite ordinal by ω, and arbitrary
ordinals by α, β, γ, etc. By N we denote the natural numbers including zero.

Terms and Substitutions. Let Σ be a signature with each element of finite
arity. Moreover, assume a countably infinite set of variables and, for each finite
arity, a countably infinite set of meta-variables — countably infinite sets suffice
given ‘Hilbert hotel’-style renaming.

Infinite terms are usually defined by metric completion [11]. Here, we give the
shorter, but equivalent, definition from [12]:

Definition 2.1. The set of meta-terms is defined by interpreting the following
rules coinductively, where s and s1, . . . , sn are again meta-terms:

1. each variable x is a meta-term,
2. if x is a variable, then [x]s is a meta-term,
3. if Z is an n-ary meta-variable, then Z(s1, . . . , sn) is a meta-term, and
4. if f ∈ Σ is n-ary, then f(s1, . . . , sn) is a meta-term.

The set of finite meta-terms, a subset of the set of meta-terms, is the set induc-
tively defined by the above rules. A term is a meta-term without meta-variables.
A context is a meta-term over Σ ∪{�} and a partial meta-term is a meta-term
over Σ⊥ = Σ ∪ {⊥}, with � and ⊥ fresh nullary function symbols.

We consider (meta-)terms modulo α-equivalence. A meta-term of the form [x]s is
called an abstraction; a variable x in s is called bound in [x]s. Meta-terms with
meta-variables only occur in rewrite rules; rewriting itself is defined over terms.

Partial meta-terms are partially ordered where ⊥ � s for each partial meta-
term s and such that term formation is monotonic modulo α-equivalence [7, 1].

The set of positions [11] of a meta-term s, denoted Pos(s), is a set of finite
strings over N, with each string denoting the ‘location’ of a subterm in s. If p
is a position of s, then s|p is the subterm of s at position p. The length of p is
denoted by |p|. There exists a well-founded order < on positions: p < q iff p is a
proper prefix of q. The concatenation of positions p and q is denoted by p · q.
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A valuation [14], denoted σ̄, substitutes terms for meta-variables in meta-
terms and is defined by coinductively interpreting the rules of valuations for
CRSs [11]. In CRSs, applying a valuation to a meta-term yields a unique term.
This is not the case for iCRSs [11]. To alleviate this problem, the set of meta-
terms satisfying the so-called ‘finite chains property’ is defined in [11]:

Definition 2.2. Let s be a meta-term. A chain in s is a sequence of (context,
position)-pairs (Ci[�], pi)i<α, with α ≤ ω, such that for each (Ci[�], pi) there
exists a term ti with Ci[ti] = s|pi and pi+1 = pi · q where q is the position of the
hole in Ci[�]. A chain of meta-variables in s is such that for each i < α it holds
that Ci[�] = Z(t1, . . . , tn) with tj = � for exactly one 1 ≤ j ≤ n.

The meta-term s is said to satisfy the finite chains property if no infinite
chain of meta-variables occurs in s.

Remark that � only occurs in Ci[�] if i + 1 < α, otherwise Ci[�] = s|pi .
The meta-term [x1]Z1([x2]Z2(. . . [xn]Zn(. . .))) e.g. satisfies the finite chains prop-
erty, while Z(Z(. . . Z(. . .))) does not. Finite meta-terms always satisfy the finite
chains property. The following is shown in [11]:

Proposition 2.3. Let s be a meta-term satisfying the finite chains property and
let σ̄ be a valuation. There is a unique term that is the result of applying σ̄ to s.

Rewriting. Recall that a pattern is a finite meta-term each meta-variable of
which has distinct bound variables as arguments and that a meta-term is closed
if all variables occur bound [14].

Definition 2.4. A rewrite rule is a pair of closed meta-terms (l, r), denoted
l → r, with l a finite pattern of the form f(s1, . . . , sn) and r satisfying the finite
chains property such that all meta-variables that occur in r also occur in l.

An infinitary Combinatory Reduction System (iCRS) is a pair C = (Σ, R)
with Σ a signature and R a set of rewrite rules.

Left-linearity and orthogonality are defined as for CRSs [14] (left-hand sides of
rewrite rules are finite). A rewrite rule is collapsing if the root of its right-hand
side is a meta-variable. Moreover, a pattern is fully-extended, if, for each meta-
variable Z and abstraction [x]s with an occurrence of Z in its scope, x is an
argument of that occurrence of Z; a rewrite rule is fully-extended if its left-hand
side is and an iCRS is fully-extended if all its rewrite rules are.

Definition 2.5. A rewrite step is a pair of terms (s, t) denoted s → t and
adorned with a context C[�], a rewrite rule l → r, and a valuation σ̄ such that
s = C[σ̄(l)] and t = C[σ̄(r)]. The term σ̄(l) is called an l → r-redex and occurs
at position p and depth |p| in s, where p is the position of the hole in C[�].

A position q of s occurs in the redex pattern of the redex at position p if q ≥ p
and if there does not exist a position q′ with q ≥ p · q′ such that q′ is the position
of a meta-variable in l.

Above, σ̄(l) and σ̄(r) are well-defined, as both left- and right-hand sides of
rewrite rules satisfy the finite chains property (left-hand sides as they are finite).
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We say that a redex s overlaps a term t at position p, if p occurs in the redex
pattern of s and s|p = t [7]. Moreover a redex and a rewrite step are collapsing
if the employed rewrite rule is. Using rewrite steps, we define reductions:

Definition 2.6. A transfinite reduction with domain α > 0 is a sequence of
terms (sβ)β<α such that sβ → sβ+1 for all β + 1 < α. For each sβ → sβ+1, let
dβ denote the depth of the contracted redex. The reduction is strongly convergent
if α is a successor ordinal and if for every limit ordinal γ ≤ α it holds that sβ

converges to sγ and dβ tends to infinity in case β approaches γ from below.

Consider the rules a → a and f(Z)→ g(f(Z)). The reduction

f(a)→ g(f(a)) → · · · → gn(f(a))→ · · · gω ,

with gω denoting g(g(. . . g(. . .))), is strongly convergent. The reduction

f(a)→ f(a)→ · · · → f(a)→ · · ·

is not strongly convergent, as each contracted redex occurs at depth 1.
By s �α t, resp. s �≤α t, we denote a strongly convergent reduction of

length α, resp. of length at most α. By s � t, resp. s →∗ t, we denote a strongly
convergent reduction of arbitrary length, resp. of finite length.

Across strongly convergent reductions we assume that a position that occurs in
the redex pattern of a contracted redex does not have any descendants; likewise
for residuals [11]. We write P/(s � t) for the descendants of a set of positions
P ⊆ Pos(s) across a strongly convergent reduction s � t and U/(s � t) for the
residuals of a set U of subterms of s across s � t.

Below, we appeal to a number of properties of iCRSs. The first is compression:

Theorem 2.7 (Compression [11]). For every fully-extended, left-linear iCRS,
if s �α t, then s �≤ω t.

A term s is hypercollapsing, resp. root-active, if for all s � t there exists a
t � t′ such that t′ is a collapsing redex, resp. a redex. We write s ∼hc t if
t can be obtained from s by replacing hypercollapsing subterms in s by other
hypercollapsing subterms.

Let ∼ be an equivalence relation. Confluence modulo ∼ means that if s � s′

and t � t′ with s ∼ t, then s′ � s′′ and t′ � t′′ with s′′ ∼ t′′. For ∼hc we have:

Theorem 2.8. Given a fully-extended, orthogonal iCRSs, the relation ∼hc is
an equivalence relation and the system is confluent modulo ∼hc.

The above is shown in [12] under assumption that rewrite rules have finite right-
hand sides; in [13] the result is extended to allow for infinite right-hand sides.

3 Infinitary Rewriting

We extend the infinitary rewriting approach to Böhm-like trees from [7, 8] to
fully-extended, orthogonal iCRSs. Given an iCRS and a set of so-called mean-
ingless terms, this means we define a confluent and normalising rewrite system.
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Following the pattern laid down in [7, 8], we start in Sect. 3.1 by stating a
number of axioms for sets of meaningless terms. Assuming some of the axioms,
we consider ‘meaningful’ terms in Sect. 3.2 and we define Böhm-like trees in Sect.
3.3. In Sect. 3.4, we construct a set of partial terms given a set of terms and
show the axioms are preserved. Finally, in Sect. 3.5, we consider some examples,
some of which employ the construction from the Sect. 3.4.

3.1 Axioms

To state our axioms, assume U is a set of terms. We call the terms in this set
meaningless ; intuitively they are not supposed to ‘compute’ anything.

Let s and t be terms with P ⊆ Pos(s) such that s|p ∈ U for each p ∈ P .
We write s →U

P t, resp. s ↔U
P t, if t can be obtained from s by replacing the

subterms at positions in P by arbitrary terms, resp. by terms from U . Remark
that↔U is reflexive and symmetric, i.e. s ↔U

P s and s ↔U
P t iff t↔U

P s. We write
s →U t and s ↔U t if the set of positions is irrelevant or clear from the context.

The considered axioms stem from [8] and are as follows:

Residuals If s � t and s|p ∈ U , then t|q ∈ U for all q ∈ p/(s � t).
Overlap If a redex s overlaps a term in U , then s ∈ U .
Root-activeness If s is root-active, then s ∈ U .
Hypercollapsingness If s is hypercollapsing, then s ∈ U .
Indiscernability If s ↔U t, then s ∈ U iff t ∈ U .

Intuitively, residuals and overlap state, resp., that no information can be ob-
tained about meaningless terms by reducing them or by placing them in a
context. All root-active terms, which includes all hypercollapsing terms, reduce
indefinitely at the root and do not become stable. Hence, it is reasonable to
consider these terms to be meaningless. This will also guarantee the existence
of normal forms later on. Indiscernability states that the identities of the mean-
ingless subterms of a meaningless term are irrelevant.

Indiscernability coincides with transitivity, as shown in [8, Lemma 12.9.17]:

Lemma 3.1. A set U satisfies indiscernability iff ↔U is transitive.

Hence, in case U satisfies indiscernability, ↔U is an equivalence relation.
The next lemma introduces two derived axioms describing the simulation of

one reduction by another. These axioms are used extensively in the remainder.

Lemma 3.2. In a fully-extended, left-linear iCRS, if U satisfies residuals and
overlap, then for s � s′:

Simulation if s →U t, there exists a term t′ such that t � t′ and s′ →U t′, and
Bisimulation if s ↔U t, there exists a term t′ such that t � t′ and s′ ↔U t′.

Proof (Sketch). By ordinal induction on the length of s � s′, using fully-
extendedness and left-linearity. Employ the fact that each subterm in U has
a residual — a redex pattern either occurs fully inside or fully outside a subterm
in U by overlap — and the fact that each residual of a subterm in U is in U —
by residuals. �
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3.2 Meaningful Terms

Meaningless subterms can occur in the reducts of a term s — even without s
having meaningless subterms itself. In such a case, s cannot be called completely
meaningful. Contrary, any term not possessing this property can be considered
meaningful. Following [7] and assuming an iCRS C and set of terms U , we define:

Definition 3.3. A term s is totally meaningful if no subterm of any reduct of
s occurs in U .

With the help of totally meaningful terms, we can express the intuition that
meaningless terms should be “computational irrelevant” [7]:

Definition 3.4. The set U is called generic, if for every s ∈ U and context
C[�] reduction of C[s] to a totally meaningful term implies reduction of C[t] to
a totally meaningful term for every term t.

Simulation is a sufficient criterion for genericity to hold:

Theorem 3.5 (Genericity). If C is fully-extended and left-linear and U satis-
fies simulation, then U is generic.

Proof. Let C[s] � s′ with s ∈ U and s′ totally meaningful. If t is arbitrary, then
C[s]→U C[t]. Hence, by simulation a term t′ exists such that s′ →U t′. Since s′

is totally meaningful, s′ = t′ and genericity follows. �

Above, “computational irrelevancy” is expressed employing reduction. Alter-
natively, it can be expressed employing conversion; in which case we define [7]:

Definition 3.6. The iCRS C is relative consistent given U , if s (�·↔U ·�)∗ t
implies s (�·�)∗ t for all totally meaningful terms s and t.

To show that relative consistency holds under the assumption of certain ax-
ioms, we first state a confluence theorem:

Theorem 3.7 (Confluence). If C is fully-extended and orthogonal and U sat-
isfies bisimulation, hypercollapsingness, and indiscernability, then C is confluent
modulo U .

The proof is similar to that of [7, Lemma 23], observing Lemma 3.1 and using
bisimulation instead of [7, Lemma 21]. Lemma 14 in [7] is Theorem 2.8.

We can now show relative consistency. Remark that the assumed axioms are
much stronger than in the case of genericity.

Theorem 3.8 (Relative Consistency). If C is fully-extended and orthogonal
and U satisfies bisimulation, hypercollapsingness, and indiscernability, then C is
relatively consistent given U .

Proof. Let s (�·↔U ·�)∗ t, with s and t totally meaningful. By induction on
the number of changes in the direction of the rewrite relation in s (�·↔U ·�)∗ t
and Theorem 3.7 there exist terms s′ and t′ such that s � s′ ↔U t′ � t. Hence,
since s and t are totally meaningful, s′ = t′ and the result follows. �



Comparing Böhm-Like Trees 245

3.3 Böhm-Like Trees

In this section, we define Böhm-like trees by means of infinitary rewriting. The
definition proceeds in two steps. In the first, we define an iCRS that extends
the iCRS whose Böhm-like trees we want to define. In the second step, we give
sufficient criteria — in the form of our axioms — implying that the defined iCRS
is confluent and normalising. Confluence and normalisation imply that each term
has a unique normal form, the Böhm-like tree of that term.

We assume that our set of meaningless terms is a set of partial terms, we
denote this set by U⊥. In the next section, we show how to obtain such a set of
partial terms from a set of (non-partial) terms.

Our iCRS and Böhm-like tree are defined as follows:

Definition 3.9. The Böhm-like iCRS of an iCRS C = (Σ, R) and a set of
partial terms U⊥ is a pair B = (Σ⊥, R∪B) with B = {b→⊥ ⊥ | b ∈ U⊥, b �= ⊥}.

A rewrite step in B is a pair of partial terms (s, t) denoted s → t and adorned
with a context C[�] and a rule l → r ∈ R or a rule b →⊥ ⊥ ∈ B such that:

– s = C[σ̄(l)] and t = C[σ̄(r)] with σ̄ a valuation, or
– s = C[b] and t = C[⊥].

A Böhm-like tree of a partial term s is a normal form of s with respect to B.

Remark that the definition of rewrite steps deviates slightly from the usual one;
no valuation is employed in case the rule originates from B. Reduction-wise
nothing changes; we employ strongly convergent reductions.

Writing s �R t for a reduction in case all rewrite rules originate from the set
R, we have the following:

Lemma 3.10. Given a fully-extended, left-linear iCRS and a set U⊥:

1. if U⊥ satisfies root-activeness, then every term has a Böhm-like tree, and
2. if U⊥ satisfies residuals, then s � t implies s �R · �⊥ t.

The proof of the first part, resp. of the second part, is identical to that of [7,
Theorem 1], resp. [7, Lemma 27].

The following now suffices to ensure that each (partial) term has a unique
Böhm-like tree.

Theorem 3.11. Given a fully-extended, orthogonal iCRS, if U⊥ satisfies resid-
uals, overlap, root-activeness, and indiscernability and if ⊥ ∈ U⊥, then B is
confluent and every term has a unique Böhm-like tree.

The proof is similar to that of [7, Theorem 2], using Lemma 3.10 instead of
Theorem 1 and Lemma 27 in [7], Theorem 2.8 instead of Lemma 14 in [7], and
Lemma 3.1 instead of Lemma 15 in [7].

In case the Böhm-like tree of a term s is uniquely defined by the set U⊥, we
denote it by BLT∞(s). The following is immediate by the previous theorem:



246 J. Ketema

Corollary 3.12 (Congruence). Given a fully-extended, orthogonal iCRS, if
U⊥ satisfies residuals, overlap, root-activeness, and indiscernability and if ⊥ ∈
U⊥, then for all terms s and t and each context C[�] it holds that BLT∞(s) =
BLT∞(t) implies BLT∞(C[s]) = BLT∞(C[t]).

Remark 3.13. Overlap can be replaced by bisimulation in the above theorem.
Doing so, we can prove uniqueness of Böhm-like trees for certain iCRSs and sets
U⊥ where overlap does occur.

Consider for example the rule:

f(g(Z))→ f(Z)

and the set
U⊥ = {gn(⊥), f(gω) | n ∈ N} .

Residuals, root-activeness, and indiscernability follow easily. Concerning bisimu-
lation, the only interesting case is f(gn+1(⊥)) → f(gn(⊥)) with f(gn+1(⊥))↔U

f(gm(⊥)). As gn(⊥) ∈ U for all n ∈ N, we have the following diagram:

f(gn+1(⊥))

��

�� U �� f(gm(⊥))

f(gn(⊥)) �� U �� f(gm(⊥))

Thus, bisimulation holds. As 0 ∈ N, we also have ⊥ ∈ U⊥. Hence, we find that
every term has a unique Böhm-like tree although U⊥ does not satisfy overlap.

3.4 Extending U with ⊥

Assume we have at our disposal an iCRS C = (Σ, R) and a set of (non-partial)
terms U . We next define a set of partial terms U⊥ ⊇ U [7]. The set is defined in
such a way that each of the axioms satisfied by U is also satisfied by U⊥. The
construction slightly simplifies some of our examples in the next section.

Definition 3.14. A ⊥-instance of a partial term s is a term t obtained by replac-
ing every ⊥ in s by a term in U , i.e. s ←U

P t, where P = {p ∈ Pos(s) | s|p = ⊥}.
The set U⊥ is the union of {⊥} and the set of partial terms each of which has

a ⊥-instance in U .

Note that if t is a ⊥-instance of s, then s � t; the reverse does not necessarily
hold. Explicit inclusion of ⊥ in U⊥ only makes difference in case U is empty, we
then have U⊥ = {⊥}. Otherwise, ⊥ is included automatically as each term in U
is a ⊥-instance of ⊥. Inclusion of {⊥} is needed in light of Theorem 3.11.

As promised, we have the following:

Lemma 3.15. For each of residuals, overlap, root-activeness, hypercollapsing-
ness, and indiscernability, if U satisfies the property, then so does U⊥.

Each property in the lemma follows easily; see [7, Lemma 25]. Roughly, we
are required to show that each considered partial term has a ⊥-instance in U .
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3.5 Examples

We consider three interesting sets of meaningless terms from [7] defining Böhm-
like trees. We show that in the higher-order case these sets also define Böhm-like
trees. The sets are those of the root-active, opaque, and Huet-Lévy undefined
terms.

Root-Active. As argued above, root-active terms are essentially meaningless.
Hence, it is interesting to consider the set solely consisting of these terms. This
set defines a Böhm-like tree, given a fully-extended, orthogonal iCRS.

Recall from [15] that a term is root-active iff a perpetual reduction starts from
it, i.e. a reduction with an infinite number of root-steps. We have:

Proposition 3.16. Let s and t be terms. If s is root-active and s ↔U t, then t
is root-active.

Proof (Sketch). Since a term is root-active iff it has a perpetual reduction start-
ing from it, consider a perpetual reduction S starting from s and define a per-
petual reduction starting from t. To do so, omit those steps from S that occur
inside subterms that are residuals of subterms replaced in s ↔U t. �

Employing the above, we have the following:

Proposition 3.17. The root-active terms satisfy residuals, overlap, root-active-
ness, and indiscernability.

Proof. Residuals and overlap follow by orthogonality. Root-activeness is imme-
diate by definition. Indiscernability follows by Proposition 3.16. �

The root-active terms also satisfy hypercollapsingness, as every hypercollaps-
ing term is root-active. Simulation and bisimulation follow by Lemma 3.2. Hence,
genericity and relative consistency also follow. By Lemma 3.15, each term has
a Böhm-like tree with respect to the set each partial terms each of which has a
⊥-instance that is root-active.

Opaque. Similar to root-activeness, opaqueness takes an axiom as its starting
point, in this case overlap. We again assume a fully-extended, orthogonal iCRS.

Definition 3.18. A closed term s is opaque iff no term to which s reduces is
overlapped by a redex at a non-root position. A term is opaque iff every closed
substitution instance is.

The above definition stems from [7]. The definition in [16], i.e. that a term s
is opaque iff no term reachable from s is overlapped by a redex at a non-root
position, cannot be the intended one, as it is not closed under substitution in
case of λ-calculus. For example, the open term x would then be opaque, while
the substitution instance λy.y is not, as it is a subterm of (λy.y)z.

We have the following; the proof is identical to the one in Sect. 8.1.3 of [7]:
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Proposition 3.19. The set of opaque terms satisfies residuals, overlap, root-
activeness, and indiscernability.

The opaque terms also satisfy hypercollapsingness, as every hypercollapsing
term is root-active. Simulation and bisimulation follow by Lemma 3.2. Hence,
genericity and relative consistency also follow. By Lemma 3.15, each term has
a Böhm-like tree with respect to the set each partial terms each of which has a
⊥-instance that is opaque.

Huet-Lévy Undefined. As shown in [7, Sect. 8.1.4], the Huet-Lévy TRS —
a starting point for the direct approximant approach [10, 1] — can be used to
define a set of meaningless terms. This approach extends to CRSs, assuming a
fully-extended, orthogonal CRS C, i.e. only allowing finite terms and reductions.

Definition 3.20. The Huet-Lévy CRS of C is defined as HL = (Σ⊥, HL), with:

HL = {d→ ⊥ | d a partial pattern} ∪ {l → ⊥ | l → r ∈ R} ,

where a partial pattern d is any pattern ⊥ �= d � l with l → r ∈ R such that no
valuation σ̄ exists with σ̄(d) = σ̄(l).

By the definition, Huet-Lévy CRSs are orthogonal, because C is orthogonal,
and without collapsing rules. We easily obtain the following:

Proposition 3.21. The Huet-Lévy CRS HL of C is confluent. Any finite partial
term s has a unique normal form ωHL(s) and for all finite partial terms s and t:

1. ωHL(s) � s,
2. if a redex occurs at position p in s, then ωHL(s) � s[⊥]p, and
3. if s → t, then ωHL(s) � ωHL(t),

We can now define the following two sets:

U f
HL = {s a finite partial term | ∀s →∗ t : ωHL(t) = ⊥}

UHL = {s | ∀s � t and u � t : u ∈ U f
HL}

Proposition 3.22. The terms in UHL satisfies residuals, overlap, root-active-
ness, and indiscernability.

Proof. Overlap, resp. residuals, follows by orthogonality of the CRS, resp. of the
Huet-Lévy CRS. Root-activeness follows by Proposition 3.21(2).

In the case of indiscernability, consider s ↔UHL t with s ∈ UHL and let t � t′.
By bisimulation, which follows from Lemma 3.2, there exists a reduction s � s′

such that s′ ↔UHL t′. Consider any finite partial term ut � t′. As s′ ↔UHL t′, we
have a finite partial term us � s′ such that us ↔U f

HL ut. Since us and ut are finite
and us ↔U f

HL ut, there exists a finite partial term u such that us →∗ u ∗← ut,
employing the reduction rules of the Huet-Lévy CRS. Hence, as s ∈ UHL implies
us →∗ ⊥, we have ut →∗ ⊥ and indiscernability follows. �
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The set UHL also satisfies hypercollapsingness, as every hypercollapsing term is
root-active. Simulation and bisimulation follow by Lemma 3.2. Hence, genericity
and relative consistency also follow. Moreover, as ⊥ ∈ UHL, each term has a
Böhm-like tree with respect to UHL.

Remark 3.23. The definition of the set UHL differs from the one in [7], which
requires an additional nullary function symbol. It is easily shown that UHL and
the set defined in [7] yield exactly the same Böhm-like tree for each term.

Remark 3.24. Consider the CRS encoding of the β-rule from λ-calculus:

app(lam([x]Z(x)), Z ′) → Z(Z ′)

This rule yields the following Huet-Lévy CRS:

app(lam([x]Z(x)), Z ′)→ ⊥
app(lam(⊥), Z ′)→ ⊥

app(⊥, Z ′)→ ⊥

Any term that is the encoding of a term from λ-calculus is in UHL iff the term
does not have a weak head normal form, i.e. the λ-term does not reduce to a term
of the form λx.s or xs1s2 . . . sn. Hence, UHL defines the Lévy-Longo tree [4,5,17].

This means that not only the opaque terms define an iTRS analogue of Lévy-
Longo trees, as stated in [16], but so does UHL. The set of opaque terms and
UHL do not need to coincide: Consider a ruleless CRS. All terms are opaque,
while UHL = {⊥}. Thus, the question whether an analogue of the Lévy-Longo
tree exists for TRSs [10] does not have a unique answer.

4 Comparison

Having defined Böhm-like trees by means of infinitary rewriting, we can now
compare this approach with the direct approximant approach. To do so, we first
recall the direct approximant definition for CRSs from [9].

Definition 4.1. Let C = (Σ, R) be an orthogonal CRS. A direct approximant
function is a map ω on finite partial terms, such that for all terms s and t:

1. ω(s) � s,
2. if a redex occurs at position p in s, then ω(s) � s[⊥]p, and
3. if s → t, then ω(s) � ω(t),

where ω(s) is called the direct approximant of s.

Hence, ωHL, as defined in Sect. 3.5, is a direct approximant function.
The definition only concerns CRSs and not iCRSs. As such, our comparison

only concerns the Böhm-like trees of finite terms. Since each pair that defines a
CRS also defines an iCRS, with the reductions of the CRS forming a subset of
the reductions of the iCRS, this does not pose any obstacle in our comparison.

In the current context, Böhm-like trees are defined as follows:
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Definition 4.2. Let s be a finite partial term. The Böhm-like tree of s with
respect to ω, denoted BLT(s), is defined as:

BLT(s) =
⊔
{ω(t) | s →∗ t} .

The set {ω(t) | s →∗ t} is directed by confluence and the third clause of the
direct approximant definition. Hence, the least upper bound exists.

Usually, BLT(s) is defined by means of downward closure instead of the least
upper bound [9, 10, 1], with the (infinite) terms being defined by means of ideal
completion. However, downward closure and the least upper bound coincide in
case of ideals. Replacing downward closure by the least upper bound allows us
to avoid the introduction of (infinite) terms by means of ideal completion, using
the isomorphic definition of terms given in Sect. 2 [1].

Obviously, each finite partial term has a unique Böhm-like tree. Moreover,
Böhm-like trees are preserved under rewriting:

Theorem 4.3. If s →∗ t, with s and t finite, then BLT(s) = BLT(t).

Proof. Let s →∗ t. By confluence of C there exists for every s →∗ s′ and t→∗ t′

a partial term u such that s′ →∗ u ∗← t′. Hence, by the third clause of Definition
4.1 and the definition of Böhm-like trees we have BLT(s) = BLT(t). �

4.1 From Infinitary Rewriting to Direct Approximants

Assume C = (Σ, R) is a fully-extended, orthogonal CRS and U is a set of mean-
ingless terms satisfying residuals, overlap, root-activeness, and indiscernability
such that ⊥ ∈ U . We show that we can define a direct approximant function such
that for each finite term we have that the Böhm-like tree it defines is identical
to the Böhm-like tree we would obtain by means of infinitary rewriting.

We first define a map:

Definition 4.4. The map ωU on finite partial terms is defined for each term s
as the largest term t, with respect to the prefix order, such that t � s[⊥]p for all
p ∈ Pos(s) with s|p either transfinitely reducible to a redex or to term in U .

We now show:

Lemma 4.5. The map ωU defines a direct approximant function.

Proof. We consider each of the clauses of Definition 4.1 in turn:

1. That ωU(s) � s is immediate by the definition of ωU .
2. That ωU(s) � s[⊥]p for all p ∈ Pos(s) if redex occurs at p in s, follows by

the fact that ωU(s) � s[⊥]p if s|p transfinitely reduces to a redex.
3. That s → t implies ωU(s) � ωU(t), follows, as for each position p parallel or

above the contracted redex (in both s and t), we have that s|p transfinitely
reduces to a redex or to term in U if t|p does. �
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Write BLT∞
U for the Böhm-like tree defined by the Böhm-like iCRS B of C

and U and write BLTU for the tree defined by ωU . We show our main result, i.e.
coincidence of BLT∞

U and BLTU . The proof effectively defines a bisimulation.

Theorem 4.6. If s is a finite partial term, then BLTU (s) = BLT∞
U (s).

Proof. Given a finite partial term s, we show by induction on positions p that p ∈
Pos(BLTU(s)) iff p ∈ Pos(BLT∞

U (s)) and root(BLTU(s)|p) = root(BLT∞
U (s)|p).

Obviously, if p is the root position, it is a position of both Böhm-like trees.
Moreover, if p = q · i, then p is a position of both Böhm-like trees given that
q is such a position, with root(BLTU (s)|q) = root(BLT∞

U (s)|q) of arity n and
0 ≤ i ≤ n, considering [x] to be a unary function symbol for every variable x.
This leaves to show for each position p that root(BLTU (s)|p) = root(BLT∞

U (s)|p).
Suppose root(BLTU (s)|p) = f . Either f = ⊥ or f �= ⊥. If f = ⊥, we have

by definition of ωU for every s →∗ t with p ∈ Pos(ωU (t)) that t|p transfinitely
reduces to a redex or term in U . The first implies t|p is root-active and, whence,
in U . Thus, root(BLT∞

U (s)|p) = ⊥, as t|p transfinitely reduces to a term in U and
p ∈ Pos(ωU (t)). In case f �= ⊥, s →∗ t with p ∈ Pos(ωU (t)) and root(ωU (t)|p) =
f by definition of ωU . Hence, again by definition of ωU , t|p neither transfinitely
reduces to a redex nor to term in U , implying root(BLT∞

U (s)|p) = f .
Now suppose root(BLT∞

U (s)|p) = f . As before, either f = ⊥ or f �= ⊥. In
case f = ⊥, there exists by Lemma 3.10(2) and compression a reduction s →∗ t
such that p ∈ Pos(t), all t|q with q < p not reducible to a redex of B, and
t|p transfinitely reducible to a term in U . Hence, by definition of ωU , we have
p ∈ Pos(ωU(t)) and ωU(t)|p = ⊥, which implies root(BLTU (s)|p) = ⊥. In case
f �= ⊥, there exists by Lemma 3.10(2) and compression a finite partial term t
such that t|q with q ≤ p not reducible to a redex of B. Hence, root(ωU (t)) = f ,
which implies root(BLTU (s)|p) = f .

Hence, root(BLTU (s)|p) = f iff root(BLT∞
U (s)|p) = f , as required. �

4.2 From Direct Approximants to Infinitary Rewriting

Although a Böhm-like tree defined by a direct approximant function exists for
every Böhm-like tree defined by a set of meaningless terms, the reverse does not
hold. To see this, recall congruence holds for every Böhm-like tree defined by a
set of meaningless terms (see Corollary 3.12). Congruence does not necessarily
hold for Böhm-like trees defined by direct approximant functions. Consider e.g.
the fully-extended, orthogonal CRS consisting of the following two rewrite rules:

IsEmpty(nil) → true

IsEmpty(x : xs) → false

Moreover, consider the following rules, forming a confluent and terminating CRS:

IsEmpty(xs) → ⊥
nil→ ⊥
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The map ω assigning to each term its normal form with respect to the last two
rules defines a direct approximant function for the CRS consisting of the first
two rules. However, the Böhm-like tree defined by ω is not congruent:

BLT(⊥) = ⊥ = BLT(nil) ,

but placed in the context IsEmpty(�):

BLT(IsEmpty(⊥)) = IsEmpty(⊥) �= true = BLT(IsEmpty(nil)) .

Hence, a class of Böhm-like trees exists that can be defined by means of direct
approximant functions, but not by means of a set of meaningless terms.

In the remainder we consider two Böhm-like trees defined by direct approxi-
mant functions which we have sets of meaningless terms that do define the same
Böhm-like trees: the Berarducci-like trees and the Huet-Lévy trees.

Berarducci-Like Trees. Define ωBeL(s) as the largest term t with respect to
� such that t � s[⊥]p iff the subterm at position p in s reduces to a redex. Given
a fully-extended, orthogonal CRS, it is easily shown that ωBeL defines a direct
approximant function; the one associated with Berarducci-like trees.

We show for every fully-extended, orthogonal CRS C = (Σ, R) that its Be-
rarducci-like tree and the Böhm-like tree defined by the set of root-active terms
(see Sect. 3.5) coincide for every finite partial term.

Denote the set of terms each of which has a ⊥-instance that is a root-active
term by UBeL. Moreover, denote by BLT∞

BeL the Böhm-like tree defined by UBeL
and denote by BLTBeL the Berarducci-like tree. We show that BLT∞

BeL and
BLTBeL are identical as maps on the finite partial terms. We start with a lemma:

Lemma 4.7. Let U be defined as:

U = {s is a partial term | s either root-active or s � ⊥} .

It holds that U = UBeL.

Proof. We show UBeL ⊆ U and U ⊆ UBeL. Thus, suppose s ∈ UBeL. By definition
of UBeL, there exists for s a ⊥-instance t that is root-active. The subterms re-
placed by ⊥ either contribute or do not contribute to t being root-active. In case
the subterms contribute, we have by orthogonality that s � ⊥. In case they do
not contribute, we have by orthogonality that s is root-active. Hence, s ∈ U .

That U ⊆ UBeL follows by orthogonality when we replace each ⊥ in every term
of U by a closed root-active term. In case no root-active term exists, U = {⊥}
and we are done immediately. �

We can now prove:

Theorem 4.8. If s is a finite partial term, then BLT∞
BeL(s) = BLTBeL(s).
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Proof. Let ωUBeL be defined according to Definition 4.4, with UBeL assuming
the rôle of U . By Lemma 4.7, compression, the observation that UBeL is closed
under transfinite expansion, and Definition 4.4, we have that ωUBeL replaces by
⊥ precisely every maximal subterm that reduces to a redex — note that s � ⊥
either has a redex at the root or s = ⊥. Hence, ωUBeL = ωBeL and, by Theorem
4.6, we have for each finite partial term s that BLT∞

BeL(s) = BLTBeL(s). �

Huet-Lévy Trees. By Proposition 3.21, the Huet-Lévy CRS of a fully-ex-
tended, orthogonal CRS C defines a direct approximant function and, hence, a
Böhm-like tree, the Huet-Lévy tree.

Denote by BLT∞
HL the Böhm-like tree defined by UHL and by BLTHL the Huet-

Lévy tree. We show that BLT∞
HL and BLTHL are identical as maps on the finite

partial terms.

Theorem 4.9. If s is a finite partial term, then BLT∞
HL(s) = BLTHL(s).

Proof. Suppose s is a finite partial term and let ωUHL be defined according to
Definition 4.4, with UHL assuming the rôle of U . By definition of ωUHL , the
subterms of s that either transfinitely reduce to a redex or term in UHL are
replaced by ⊥. Hence, by definition of UHL, all replaced subterms of s have ⊥ as
their Huet-Lévy direct approximant.

If ωUHL(s) does not replace a certain subterm by ⊥, then the subterm does
not reduce to a redex. Moreover, by definition of UHL the subterm reduces in a
finite number of steps to a term with a Huet-Lévy direct approximant unequal
to ⊥. Hence, by orthogonality there exists a term t and a reduction s →∗ t such
that ωUHL(s) � ωHL(t).

By the facts from the first paragraph and by orthogonality of the Huet-Lévy
CRS, we also have ωHL(s) � ωUHL(s). Hence, BLTUHL(s) = BLTHL(s) and by
Theorem 4.6 we obtain BLT∞

HL(s) = BLTHL(s). �

5 Conclusion

Somewhat remarkably, there is a difference between the infinitary rewriting ap-
proach to Böhm-like trees and the direct approximant approach: Each Böhm-like
tree defined by infinitary rewriting coincides with a Böhm-like tree defined by a
direct approximant function but the reverse is not the case. The difference seems
to be due to the infinitary rewriting approach yielding congruent Böhm-like trees
(see Corollary 3.12).

To enable our comparison, we extended to iCRSs the infinitary rewriting ap-
proach to Böhm-like trees. Contrary to most of the previous theory developed
for iCRSs, no serious complications arise due to iCRSs being higher-order. How-
ever, as noted by Van Oostrom (private communication), a number of reasonable
Böhm-like trees cannot be defined due to the overlap axiom (see Remark 3.13).

At least two questions remain: First, can either the infinitary rewriting ap-
proach be extended or the direct approximant approach be restricted as to ob-
tain coincidence between the two approaches? Second, can the overlap axiom be
replaced by some new axiom as to allow certain forms of overlap?
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2. Lévy, J.J.: Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
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Abstract. We study the derivational complexity induced by the (basic)
dependency pair method. Suppose the derivational complexity induced
by a termination method is closed under elementary functions. We show
that the derivational complexity induced by the dependency pair method
based on this termination technique is the same as for the direct tech-
nique. Therefore, the derivational complexity induced by the dependency
pair method based on lexicographic path orders or multiset path orders
is multiple recursive or primitive recursive, respectively. Moreover for
the dependency pair method based on Knuth-Bendix orders, we obtain
that the derivational complexity function is majorised by the Ackermann
function. These characterisations are essentially optimal.

1 Introduction

In order to assess the complexity of a terminating term rewrite system (TRS
for short) it is natural to look at the maximal length of derivation sequences, as
suggested by Hofbauer and Lautemann in [1]. More precisely, the derivational
complexity function with respect to a terminating TRS R relates the length of
the longest derivation sequence to the size of the initial term. For direct termi-
nation methods a considerable number of results establish essentially optimal
upper bounds on the growth rate of the derivational complexity function. See
e.g. [2,3] for recent results in this direction. However, for transformation tech-
niques like semantic labelling [4] or the dependency pair method [5] the situation
changes drastically. Apart from the trivial case of labelling with finite models,
only partial results are known. With respect to semantic labelling, [6] establishes
bounds on the derivation length of TRS, when natural numbers are used as la-
bels and termination is shown via the Knuth-Bendix order (KBO). And recently
in [7,8] the derivation length induced by the basic dependency pair method is
investigated. Still in both cases only restricted variants of semantic labelling or
the dependency pair method could be analysed, compare [6,7,8].

In this paper we investigate the derivational complexity induced by the ba-
sic dependency pair method based on reasonably strong base orders. Suppose
the class of derivational complexity functions induced by a direct termination
method is closed under elementary functions. Then we show that the derivational
� This research is partly supported by FWF (Austrian Science Fund) project P20133.
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complexity induced by the dependency pair method based on this termination
technique is the same as for the direct technique. More precisely we show that
the derivational complexity of a TRS whose termination is established via the
dependency pair method combined with some base order is triple exponential
in the derivational complexity induced by the base order directly. Moreover, we
present an example which shows that at least two of the three exponentials in
our upper bound can actually be reached.

It should be emphasised that the notion of dependency pair method studied
here amounts to the original technique as introduced by Arts and Giesl [5] (see
also [9]). Consider the following TRS R1 taken from [10]:

1: (x × y) × z → x × (y × z) 3 : (x + y) × z → (x × z) + (y × z)
2 : z × (x + f(y)) → g(z, y) × (x + a)

Due to rule 2, termination of R1 cannot be concluded by the lexicographic
path order (LPO), cf. [10]. On the other hand, termination follows easily by the
dependency pair method based on LPO, if we use argument filtering.

The gist of our result is that for this standard application of the dependency
pair method the derivational complexity induced by LPO directly (which is
multiple recursive, cf. [11]) bounds the derivation lengths admitted by the in-
vestigated TRS R1. From this we can conclude that the derivational complexity
function of R1 is multiple recursive. Analogous results hold if we employ the
multiset path order (MPO) or KBO as base order. Moreover the thus obtained
upper bounds are still tight, which essentially follows from the tight characteri-
sation of the derivational complexity by the indicated base orders [11,12,13].

Note the challenges of such an investigation: In order to estimate the deriva-
tion length of R1 we only consider the derivation length induced by the base
order. This implies that we use an upper bound on the maximal number of
dependency pair steps to bound the length of derivations. It remains open to
what extent such a result holds in general, i.e., beyond the basic dependency
pair method. The challenge of such an endeavour is most prominent if we allow
an iterative use of the dependency pair transformation as for example in the
recursive SCC algorithm (see [9]) or the dependency pair framework (see [14]).
It is well-known that two iterations of the recursive SCC algorithm based on
the subterm criterion (see [15]) suffice to show termination of (the standard for-
mulation of) the Ackermann function. See also [16] for a like minded example.
Clearly in this context a triple exponential function is by far not sufficient to
bound the difference between the derivational complexity of the TRS and the
derivational complexity induced by the base method directly.

The rest of this paper is organised as follows. In Section 2 we present basic
notions and starting points of the paper. Section 3 introduces suitable notions
to trace an implicit dependency pair derivation in a given derivation over a
TRS. Our main result is proved in Section 4, while Section 5 presents the above
mentioned example on the lower bound. Finally, we conclude in Section 6.
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2 Dependency Pairs

We assume familiarity with the basics of term rewriting, see [17,18]. Below we
recall the bare essentials of the basic dependency pair method as put forward
in [5], but at least nodding acquaintance with [5] or [9] will prove helpful.

Let V denote a countably infinite set of variables and F a signature. The set
of terms over F and V is denoted by T (F ,V). The (proper) subterm relation is
denoted as � (�). The root symbol (denoted as rt(t)) of a term t is either t itself,
if t ∈ V , or the symbol f , if t = f(t1, . . . , tn). The set of positions Pos(t) of a
term t is defined as usual. We write p � q (p < q) to denote that p is a (proper)
prefix of q, and p ‖ q if neither p � q nor q � p. The subterm of t at position p is
denoted as t|p. We write PosF (t) (PosV(t)) for the set of positions p such that
F (V) contains rt(tp). The size |t| and the depth dp(t) of a term t are defined
as usual (e.g., |f(a, x)| = 3 and dp(f(a, x)) = 1). To simplify the exposition, we
often confuse terms and their tree representations. I.e., we call a maximal set of
positions B in a term t such that for no q, q′ ∈ B, we have q ‖ q′, a branch of t.

Let R be a finite TRS over F . We write →R (or simply →) for the induced
rewrite relation. If we wish to indicate the redex position p and the applied
rewrite rule l → r in a reduction from s to t, we write s →p,l→r t. The set
of defined function symbols is denoted as D, while the constructor symbols are
collected in C. The n-fold composition of → is denoted as→n and the derivation
length of a term s with respect to a finitely branching, well-founded binary rela-
tion → on terms is defined as dl(s,→) := max{n | ∃t s →n t}. The derivational
complexity function of R is defined as: dcR(n) = max{dl(t,→R) | |t| � n}.

In analogy to dcR we define functions tracing the depth or size. The poten-
tial depth of a term s with respect to → is defined as follows: pdp(s,→) :=
max{dp(t) | s →∗ t} and the induced depth growth function (with respect to R)
is defined as dpgR(n) := max{pdp(t,→R) | |t| � n}. The potential size psz(s,→)
of a term s and the size growth function szgR(n) are defined similarly.

We recall the central notions of the dependency pair method, see [5,9]. Let t
be a term. We set t� := t if t ∈ V , and t� := f �(t1, . . . , tn) if t = f(t1, . . . , tn).
Here f � is a new n-ary function symbol called dependency pair symbol. For a
signature F , we define F � = F ∪ {f � | f ∈ F}. The set DP(R) of dependency
pairs of a TRS R is defined as {l� → u� | l → r ∈ R, u � r, rt(u) ∈ D, l � u}.

Proposition 1 ([5,9]). A TRS R is terminating if and only if there exists no
infinite derivation of the form t�1 →∗

R t�2 →DP(R) t�3 →∗
R . . . such that for all

i > 0, t�i is terminating with respect to R.

Proposition 1 gives rise to the dependency pair complexity function:

DPcR(n) := max{dl(t�,→DP(R)/R) | |t| � n} ,

where we write →DP(R)/R for →∗
R · →DP(R) · →∗

R, cf. [19]. Now, we fix the
notion of basic dependency pair method. An argument filtering (for a signature
F) is a mapping π that assigns to every n-ary function symbol f ∈ F an argu-
ment position i ∈ {1, . . . , n} or a (possibly empty) list [i1, . . . , im] of argument
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positions with 1 � i1 < · · · < im � n. The signature Fπ consists of all function
symbols f such that π(f) is some list [i1, . . . , im], where in Fπ the arity of f
is m. Every argument filtering π induces a mapping from T (F ,V) to T (Fπ,V),
also denoted by π:

π(t) =

⎧
⎪⎨

⎪⎩

t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1 ), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

A reduction pair (	, ) consists of a rewrite preorder 	 and a compatible well-
founded order  which is closed under substitutions. Here compatibility means
the inclusion 	 ·  · 	 ⊆  .

Proposition 2 ([5,9]). A TRS R is terminating if and only if there exist an
argument filtering π and a reduction pair (	, ) such that π(DP(R)) ⊆  and
π(R) ⊆ 	.

Let R be a terminating TRS. In the sequel we show that the derivational com-
plexity function dcR is bounded triple exponentially in the dependency pair com-
plexity function DPcR. For that we mainly bound the depth growth function of
R exponentially in DPcR. As the maximal length of a nonlooping derivation is
exponentially bounded in the size of the occurring terms and the latter is expo-
nentially bounded in their depth, our result then follows. In order to prove the
main step we analyse the shape of a potential derivation over R∪DP(R) in the
light of a given R-derivation. This is the purpose of the next section.

3 Progenitor and Progeny

We introduce a specific generalisation of the notion of descendant of a position p
which we call progeny. Recall the definition of descendants (see [18, Chapter 4]).
Let A : s →p′,l→r t be a rewriting step, and let p ∈ Pos(s). Then the descendants
of p in t (denoted by p \A) are defined as follows:

p \A =

⎧
⎪⎨

⎪⎩

{p} if p < p′ or p ‖ p′,

{p′q3q2 | r|q3 = l|q1} if p = p′q1q2 with q1 ∈ PosV(l),
∅ otherwise

In our situation, we also want to keep track of redex positions, not just of posi-
tions in the context or the substitution of the rewrite rule. This intuition is cast
into the following definition.

Definition 3. Let A : s →p′,l→r t be a rewriting step, and let p ∈ Pos(s). Then
the progenies of p in t (denoted by p � A) are:

p � A =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{p} if p < p′ or p ‖ p′,

{p′q3q2 | r|q3 = l|q1} if p = p′q1q2 with q1 ∈ PosV(l),
{p′q2 | r|q2 = l|q1} if p = p′q1 with q1 ∈ PosF(l) \ {ε},
{pq1 | r|q1 � l ∧ q1 ∈ PosF (r)} if p = p′
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Fig. 1. A derivation, its progeny relation and redex positions

If q ∈ p�A, then we also say that p is a progenitor of q in s. We denote the set of
progenitors of q in s by A�q. For a set P ⊆ Pos(s), we define P�A =

⋃
p∈P p�A.

Note that the distinction between the last two cases corresponds to the exclusion
of rules l� → u� from DP(R) where u � l, see Section 2.

Example 4. Consider the TRS R1 from Section 1 and let t1 = (x × y) × (z +
f(w)), t2 = x × (y × (z + f(w))), and t3 = x × (g(y, w) × (z + a)). We have
the derivation A : t1 → t2 → t3, cf. Figure 1. Redex positions are marked by
circles, the progeny relation is marked by dotted and dashed lines (the two kinds
of lines will be distinguished in Example 15 below). For clarity progeny relations
between variables have been omitted.

Lemma 5. Let R be a TRS, let A : s →R t, let p ∈ Pos(s), and let q ∈ Pos(t).
If q ∈ p � A and rt(t|q) ∈ D, then rt(s|p) ∈ D and (s|p)� →=

R∪DP(R) (t|q)�.

Proof. Suppose that A is s →p′,l→r t. If p < p′ or p ‖ p′, then by definition, we
have p = q and thus (s|p)� →=

R (t|q)�. On the other hand, if p = p′, then there
exists q1 ∈ PosF (r) such that q = p′q1. Moreover, t|q � s|p. By assumption
rt(t|q) ∈ D and thus we obtain (s|p)� →DP(R) (t|q)�. Finally, if p > p′, then by
definition, we have s|p = t|q. Then (trivially) (s|p)� →=

R (t|q)�. �

Lemma 6. Let A : s →p′,l→r t be a rewriting step. Then for every q ∈ Pos(t),
we have A � q �= ∅.

Proof. If q < p′ or q ‖ p′, then A � q = {q}. If q = p′q1, q1 ∈ PosF (r), and
t|q � s|p′ , then A � q = {p′}. If q = p′q1, q1 ∈ PosF (r), and t|q � s|p′ , then
there is some p1 such that s|p′p1 = t|q, so p′p1 ∈ A � q. Last, if q = p′q1q2
and q1 ∈ PosV(r), then there is some p1 such that s|p′p1 = t|p′q1 . Therefore,
p′p1q2 ∈ A � q. �
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Definition 3 and Lemmata 5 and 6 extend to derivations in the natural way:

Definition 7. Let A : s →∗ t be a derivation, and let p ∈ Pos(s). Then the
progenies of p in t (also denoted by p � A) are defined as follows:

– If A is the empty derivation, then p � A = {p}.
– Otherwise, we can split A into A1 : s → s′ and A2 : s′ →∗ t. Then p � A =

(p � A1) � A2.

We say p is a progenitor of q if p ∈ A � q, which holds if q ∈ p � A. Moreover,
we have q ∈ P � A if and only if q ∈ p � A for some p ∈ P .

The next lemma follows by straightforward induction using Lemmata 6 and 5.

Lemma 8. Let A : s →∗ t be a derivation, and let p ∈ Pos(s), q ∈ Pos(t).
Then the set A � q of progenitors of q is not empty. Moreover if q ∈ p � A with
rt(t|q) ∈ D, then rt(s|p) ∈ D and (s|p)� →∗

R∪DP(R) (t|q)�.

Using Lemma 8, we can extract derivations over R∪DP(R) from a given deriva-
tion in a TRS R using positions connected by the progeny relation.

Definition 9. Let R be a TRS, let t1, . . . , tn be terms, and let p1, . . . , pn be posi-
tions in t1, . . . , tn, respectively, such that rt(tn|pn) ∈ D, and for all 1 � i � n−1,
we have Ai : ti →R ti+1 and pi+1 ∈ pi � Ai. Then we call A : (t1|p1)� →∗

R∪DP(R)

(tn|pn)� the implicit dependency pair derivation with respect to t1, . . . , tn and
p1, . . . , pn. We denote the number of DP(R)-steps in A as DPl(A).

Note that Definition 9 is well-defined, due to Lemma 8.

Example 10 (continued from Example 4). The implicit dependency pair deriva-
tion with respect to t1, t2, t3 and ε, 2, 2 is given as follows:

t�1 →DP(R1) y ×� (z + f(w)) →DP(R1) g(y, w) ×� (z + a) .

Lemma 11. Let A : s →p′,l→r t be a rewriting step. Let q, q′ ∈ Pos(t). If q � q′,
then for any p0 ∈ A � q, there exists p′0 ∈ A � q′ such that p0 � p′0.

Proof. According to Definition 3, there are four cases for q′.

– If q′ < p′ or q′ ‖ p′, then also q < p′ or q ‖ p′. Therefore, A � q = {q} and
A � q′ = {q′}.

– If q′ = p′q′1, q′1 ∈ PosF (r), and r|q′
1

� l, then either q < p′, or q = p′q1,
q1 ∈ PosF(r), and r|q1 � l. We have A � q = {p0} and A � q′ = {p′} with
p0 = q or p0 = p′.

– If q′ = p′q′1, q′1 ∈ PosF (r), and r|q′
1

� l, then A � q′ = {p′q′2 | q′2 ∈ PosF (l) ∧
r|q′

1
= l|q′

2
}. Three cases from Definition 3 are applicable for q. Suppose

q < p′, then A � q = {q}, and q < p′ � p′q′2 for any q′2 ∈ PosF(l). If
q = p′q1, q1 ∈ PosF(r), and r|q1 � l, then A � q = {p′}. Last, if q = p′q1,
q1 ∈ PosF (r), and r|q1 � l, then A � q = {p′q2 | q2 ∈ PosF(l) ∧ r|q1 = l|q2}.
We have q′ = qq′3, so for any p′q2 ∈ A � q, also p′q2q

′
3 ∈ A � q′.
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– Otherwise, q′ = p′q′1q
′
2 with q′1 ∈ PosV(r). Then A � q′ = {p′q′3q′2 | r|q′

1
=

l|q′
3
}. Except for q ‖ p′, all cases in Definition 3 can happen for q. Suppose

q < p′, then A � q = {q}, and q < p′ < p′q′3q
′
2 for any q′3 ∈ PosV(l). If

q = p′q1, q1 ∈ PosF (r), and r|q1 � l, then A � q = {p′}. For the next case,
suppose q = p′q1, q1 ∈ PosF(r), and r|q1 � l. Then A � q = {p′q2 | q2 ∈
PosF(l) ∧ r|q1 = l|q2}. We have q′ = qq′4q

′
2, so for any p′q2 ∈ A � q, also

p′q2q
′
4q

′
2 ∈ A � q′. Otherwise, q = p′q′1q2. Then A � q = {p′q3q2 | r|q′

1
= l|q3}.

We have q′2 = q2q
′
4, hence for any p′q3q2 ∈ A � q, also p′q3q

′
2 ∈ A � q′.

�

Note that each position in a term may have several progenitors:

Example 12. Consider the TRS R2 consisting of the single rule f(x, x) → g(x),
and the rewrite step A : f(0, 0)→R2 g(0). Then A � 1 = {1, 2}.

We restrict the progenies and progenitors to a single branch in each term. The
definition rests on the idea that for a derivation A : s →∗ t and a main branch
B′ in t it is possible to find a main branch B in s such that each position q ∈ B′

has a (unique) progenitor in B; see the picture below for an illustration:

s t

∗

In the following definition, the restriction to the leftmost of all candidate posi-
tions is arbitrary and can be suitably replaced. Note that its second clause is
well-defined by Lemmata 8 and 11.

Definition 13. Let A : t1 →∗ tn denote a derivation built up from the rewrite
steps Ai : ti → ti+1 for i = 1, . . . , n− 1. Then the main branch of each term in
A is inductively defined:

– The main branch of tn is the leftmost branch of maximal length in tn.
– Suppose the main branch of ti+1 is denoted as Bi+1, 1 � i � n − 1. Then

consider all branches b in ti such that for every q ∈ Bi+1, the set of pro-
genitors Ai � q of q has nonempty intersection with b. The leftmost of these
branches is the main branch of ti, denoted as Bi.

The next definition specialises progenies and progenitors to the main branch.

Definition 14. Let A′ : s → t be a rewriting step, let p ∈ Pos(s), and let B and
B′ be branches in s and t. Then the set of main progenies of p in t (with respect
to A′) (denoted as p �B

B′ A′) is defined as follows:

p �B
B′ A′ =

{
∅ if p /∈ B

B′ ∩ p � A′ if p ∈ B
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We naturally extend this definition to derivations, analogous to Definition 7. If
the (main) branches B and B′ are clear from context, we write p � A′ instead
of p �B

B′ A′. If q ∈ p � A′, then we also say that p is a main progenitor of q in s
(with respect to A′). We denote the set of main progenitors of q in s by A′ � q.
For a set P ⊆ Pos(s′), we define P � A′ =

⋃
p∈P p � A′.

Example 15 (continued from Example 4). Consider the derivation A again. The
“central” branch of each term in Figure 1 is its main branch, and the dashed
lines denote the main progeny relation.

Lemma 16. Let A : u →∗ s →n t→∗ w be a derivation, and denote A′ : s →n t.
Let B(s) (B(t)) denote the main branch of s (t) in A. Then for any q ∈ B(t),
the main progenitor of q in the branch B(s) is unique, i.e., |A′ � q| = 1.

Proof. By Definition 13, q has at least one main progenitor in s. We show that
there exists at most one by induction on n. For n = 0 the claim is trivial. Hence
assume n > 0 and let A′ : s → t′ →n−1 t. Let B(t′) denote the main branch in
t′ with respect to A. By induction hypothesis there exists a unique position q1
in B(t′) such that (t′ →n−1 t) � q = {q1}. Let A′′ : s →p′,l→r t′ denote the first
rewrite step in A′. Suppose q1 < p′ or q1 ‖ p′. Then by definition A′′ �q1 = {q1}.
Hence the main progenitor of q in B(s) is unique. On the other hand suppose
q1 = p′q2 with q2 ∈ PosF (r) such that r|q2 � l. Then A′′�q1 = {p′} and A′ � q is
a singleton as it should be. Now suppose q1 = p′q2 with q2 ∈ PosF (r) such that
r|q2 � l. Then by definition A′′ � q1 = {p′p1 | p1 ∈ PosF (l) ∧ l|p1 = r|q2}. Note
that A′ � q = A′′ � q1 ∩B(s), which is again a singleton. Finally, if q1 = p′q2q3
with q2 ∈ PosV(r), then A′′ � q1 = {p′p1q3 | p1 ∈ PosV(l) ∧ l|p1 = r|q2}. As
before, the intersection of the latter set with B(s) is a singleton. Hence the main
progenitor of q in B(s) is unique. This concludes the inductive proof. �

Lemma 17. We assume the same notation as in Lemma 16. For any p ∈ B(s)
such that rt(s|p) ∈ C∪V, we have |p � A′| � 1, i.e., the number of main progenies
for a position, whose root is non-defined is at most 1.

Proof. By induction on n. It suffices to consider the case n > 0, so A′ : s →
t′ →n−1 t. Let A′′ : s →p′,l→r t′ denote the first rewrite step in A′. If p < p′ or
p ‖ p′, then p � A′′ = {p}. If p > p′, then for any q1 ∈ p�A′′, we have s|p = t′|q1 ,
so again, p � A′′ ∩ B(t′) is a singleton. In all three cases, the claim follows by
induction hypothesis as rt(s|p) = rt(t|q1). This concludes the proof, as the case
p = p′ is impossible. Otherwise, we derive a contradiction to the assumption
that the root of s|p is not a defined symbol. �

4 Dependency Pairs and Complexity

In this section, we relate the dependency pair complexity and the derivational
complexity of a TRS. As mentioned above the main step is to show that the
depth growth of a TRS is bounded by a single exponential in its dependency
pair complexity. In the sequel, we fix a finite TRSR and a derivation A : t1 →∗ tn
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over R such that B1, . . . , Bn denote the main branches with respect to A. We
can view the main progeny relation as a graph, called progenitor graph. The
nodes of a progenitor graph are pairs (ti, p) representing positions p in terms in
A that are directly affected by dependency pair steps. Each edge corresponds
to a dependency pair step (and possibly a number of R-steps) in an implicit
dependency pair derivation. Each connected component of the progenitor graph
is a tree whose height is bounded by the number of dependency pair steps. Using
the exponential relationship between the height of this tree and its number of
leaves, we bound the depth of the final term in A exponentially in the length of
the largest implicit dependency pair derivation, entailing our main result.

Definition 18. The progenitor graph of A is defined as follows.

– The nodes are all pairs (ti, p) such that p ∈ Bi, rt(ti|p) ∈ D, and either i = 1
or the single element of (ti−1 → ti) � p and the redex position in the rewrite
step ti−1 → ti coincide.

– There is an edge from (ti, p) to (tj , q) whenever i < j, (ti →∗ tj) � q = {p},
and for all i � k < j − 1, the single element of (tk →∗ tj) � q and the redex
position in the rewrite step tk → tk+1 do not coincide.

Note that, due to the definition of the set of nodes in a progenitor graph, the
single element of (tj−1 → tj) � q and the redex position in the rewrite step
tj−1 → tj do coincide in the second clause of Definition 18.

Example 19. Consider the derivation A from Example 4 again. Its progenitor
graph is shown below:

(t1, ε)

(t1, 1)

(t2, ε)

(t2, 2) (t3, 2)

Lemma 20. If there is an edge from (ti, p) to (tj , q) in G, then there is a deriva-
tion (ti|p)� →∗

R (tj−1|p1)
� →DP(R) (tj |q)�.

Proof. By definition, q ∈ p � (ti →∗ tj). Therefore, by Lemma 8, we have the
implicit dependency pair derivation A′ : (ti|p)� →∗

R∪DP(R) (tj |q)�. We have
(tj−1 → tj) � q = {p1}, where by definition p1 is the redex position of the step
tj−1 → tj . Therefore, the last step of A′ is a DP(R)-step (see also the last clause
of Definition 3). Note that for i � k < j− 1, the single element of (tk →∗ tj) � q
and the redex position in tk → tk+1 do not coincide. Hence, if there are rewrite
steps before the last step, these are R-steps and the lemma follows. �

The next lemma shows, when specialised to the conditions in the first clause of
Definition 18, that only nodes which do not contribute to the branching of the
progenitor graph, are left out by the definition.

Lemma 21. Let p ∈ Bi and q ∈ Bj such that i < j and (ti →∗ tj) � q = {p}. If
for all i � k � j − 1, the single element of (tk →∗ tj) � q and the redex position
in the rewrite step tk → tk+1 do not coincide, then p � (ti →∗ tj) = {q}.
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Proof. We show the lemma by induction on j−i. If i = j then the claim trivially
holds. Otherwise, the derivation ti →∗ tj can be split to ti → ti+1 →∗ tj . Let
p′ be the redex position in ti → ti+1. If p ‖ p′, p < p′, or p > p′, then as in
Lemma 17, |p � (ti → ti+1)| � 1, and the lemma follows by induction hypothesis.
The last case is again impossible, since by assumption, p and p′ do not coincide.

�

From now on, let G be the progenitor graph of A. In the next lemmata, we show
the properties which allow us to bound dp(tn) in the height of G. First, we prove
that almost each position in Bn is “covered” by a node in G. Next, we show that
each node in G can only cover c positions in Bn, and finally, we show that the
branching factor of G is at most c, where c := max{2} ∪ {dp(r) | l → r ∈ R}.

Lemma 22. For every q ∈ Bn, there either exists p ∈ B1 such that rt(t1|p) ∈
C∪V and A � q = {p}, or there exists a node (ti, p) in G where q ∈ p � (ti →∗ tn)
and for any successor node (tj , p1) of (ti, p) in G, we have q /∈ p1 � (tj →∗ tn).

Proof. By Lemma 16, A � q = {p} for some p ∈ B1. If rt(t1|p) ∈ C ∪ V , the first
alternative of the lemma holds. If rt(t1|p) ∈ D, then (t1, p) ∈ G. Therefore, there
exists a maximal natural number k such that (tk, p2) ∈ G and q ∈ p2 � (tk →∗ tn)
for some p2 ∈ Bk, so the second alternative of the lemma holds for (tk, p2). �

Lemma 23. For every node (ti, p) in G, there are at most c many positions
q ∈ Bn such that q ∈ p � (ti →∗ tn), but for any successor node (tj , p1) of
(ti, p), we have q /∈ p1 � (tj →∗ tn).

Proof. If there is no i � k < n such that the redex position of the step tk → tk+1
and an element of p � (ti →∗ tk) coincide, then it follows from Lemma 21 that
|p � (ti →∗ tn)| � 1. Otherwise, let k be the smallest number such that k � i
and p � (ti →∗ tk) = {p2}, where p2 is the redex position of tk → tk+1. By
Definitions 3 and 14, |p2 � (tk → tk+1)| � c. For each p3 ∈ p2 � (tk → tk+1), if
rt(tk+1|p3) ∈ D, then (tk+1, p3) is a successor node of (ti, p), and the condition
q /∈ p3 � (tk+1 →∗ tn) is violated for any main progeny q of p3. On the other hand,
if rt(tk+1|p3) ∈ C∪V , then by Lemma 17, |p3 � (tk+1 →∗ tn)| � 1. Thus, in total,
there are at most c many elements in p � (ti →∗ tn) meeting our assumption. �

The following example illustrates the role of Lemma 23.

Example 24. Let R3 be the TRS consisting of the single rewrite rule

d(S(x)) → S(S(d(x))) .

Let t1 = d(S(S(0))), t2 = S(S(d(S(0)))), and t3 = S(S(S(S(d(0))))). We have the
derivation A : t1 → t2 → t3 and the following progenitor graph:

(t1, ε) (t2, 11) (t3, 1111)

Note that G leaves out all function symbols S above the d in each term. However,
by Lemma 23, the number of positions in the last term of A which are hidden
in this way is only linear in the size of the progenitor graph.
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Lemma 25. Every node in G has at most c many successor nodes.

Proof. Let (ti, p) be a node in G. If there is no i � j < n such that the redex
position of the step tj → tj+1 and an element of p � (ti →∗ tj) coincide, then
(ti, p) has no successor node, so the claim holds. Otherwise, let j be the smallest
number greater than i such that p � (ti →∗ tj) = {q}, where q is the redex
position of tj → tj+1. By Definitions 3 and 14, |q � (tj → tj+1)| � c. Hence,
(ti, p) has at most c many successor nodes. �

Now we are ready to prove our main lemma.

Lemma 26. For every finite and terminating TRS R, there exists a constant C

such that for all terms s, we have pdp(s,→R) � |s|·2C·max{dl((s′)�,→DP(R)/R)|s′�s}.

Proof. We show the lemma by proving that for any derivation A : s →∗
R t, there

exists a derivation A′ : (s′)� →∗
R∪DP(R) (t′)� with s′ � s and dp(t) � |s|·cDPl(A′)+2

(recall c = max{2} ∪ {dp(r) | l → r ∈ R}). Let k be the number of defined
symbols in the main branch of s. The main branch of t consists of dp(t) + 1
many positions, all of which have to fulfil one of the two properties outlined in
Lemma 22. By Lemma 17, the first case applies to at most dp(s) + 1 − k many
positions, so for the dp(t) − dp(s) + k other positions, the second case applies.
By Lemma 23, each node in the progenitor graph G of A can cover at most c

many of those positions, so G has to contain at least dp(t)−dp(s)+k
c many nodes.

There are k many connected components (trees) in G, hence the largest one of
them contains at least

dp(t)− dp(s) + k

kc
,

many nodes. Let d be the smallest natural number such that

dp(t)− dp(s) + k

kc
� cd−1 .

By Lemma 25, this means that there exists a leaf in the largest tree of G whose
distance from the root is at least d − 2: recall that any c-ary tree of height
d − 3 has at most cd−2−1

c−1 � cd−2 many nodes (here the height of a tree is the
number of edges on the longest path from the root to a leaf). Moreover, by
Lemma 20, this path in the graph induces a derivation A′ : (s′)� →∗

R∪DP(R) (t′)�

with DPl(A′) � d− 2 and s � s′. Reformulating the inequality above yields

dp(t) � k · cd + dp(s)− k � (dp(s) + 1) · cd � |s| · cd ,

so A′ is indeed the derivation we are looking for. �

The main factor of the faster growth of dp(tn) compared to the height of G is
the difference between the height and the size of G. This becomes apparent in
our next example, where G is a full binary tree.
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Example 27. Consider the TRS R4 consisting of the single rewrite rule

f(S(x), y) → f(x, f(x, y)) .

Let t1 = f(S(S(0)), 0), t2 = f(S(0), f(S(0), 0)), t3 = f(0, f(0, f(S(0), 0))), and
t4 = f(0, f(0, f(0, f(0, 0)))). We have the derivation A : t1 → t2 → t3 → t4. The
progenitor graph of A is shown below.

(t1, ε) (t2, ε)

(t2, 2)

(t3, ε)

(t3, 2)

(t4, 22)

(t4, 222)

Perhaps counter-intuitively in the context of the dependency pair method, the
connected component of G with the greatest height need not be the component
with the root (t1, ε). All that is left to show is that the derivational complexity
of a finite and terminating TRS is bounded double exponentially in its depth
growth. This can be achieved by two easy observations.

Lemma 28. Let R be a finite and terminating TRS. Then there exists a con-
stant C such that for every term t, we have

dl(t,→R) � 22C·pdp(t,→R)

Proof. We show that there exist constants D and E, such that for all terms t,
the inequalities psz(t,→R) � 2D·pdp(t,→R) and dl(t,→R) � 2E·psz(t,→R) hold.

1. For any term t, we have |t| � kdp(t)+1, where k is the maximum arity of any
function symbol in the signature. This proves the first inequality.

2. On the other hand, by assumption the signature F of R is finite. Moreover
without loss of generality the considered derivation in R is ground. Hence
we can build only 2E·m different terms of size at most m, where E depends
only on F . This proves the second inequality. �

Based on Lemmata 26 and 28 we obtain our main theorem.

Theorem 29. For any finite and terminating TRS R, dcR(n) � 22n·2O(DPcR(n))

.

An order  on terms is G-collapsible for a TRS R if s →∗
R∪DP(R) t and s  t

implies G(s, ) > G(t, ) for a mapping G into N. Let (	, ) be a reduction pair
for R. Then (	, ) is called collapsible if there is a mapping G such that  is
G-collapsible for R.

Theorem 30. Let R be a finite TRS, let (	, ) be a collapsible reduction pair
with π(R) ⊆ 	 and π(DP(R)) ⊆  for some argument filtering π. Assume there
exists a class of number-theoretic functions C closed under elementary functions
and for some f ∈ C, and any term t, G(π(t�), ) � f(|t|). Then dcR ∈ C.



The Derivational Complexity Induced by the Dependency Pair Method 267

Proof. By assumption there exists a mapping G that binds the number of de-
pendency pair steps in any π(R) ∪ π(DP(R))-derivation. Thus

dl(π(t�),→π(DP(R))/π(R)) � G(π(t�), ) � f(|t|) . (1)

Moreover it is easy to see that for any derivation in R ∪ DP(R), there is a
derivation in π(R) ∪ π(DP(R)) which contains the same number of dependency
pair steps. Hence, we obtain

dl(t�,→DP(R)/R) � dl(π(t�),→π(DP(R))/π(R)) .

Combining this with (1) and Theorem 29 we obtain dcR(n) � 22n·2a·f(n)

. By
assumption the complexity class C is closed under elementary functions. In par-
ticular there exists g ∈ C such that dcR(n) � g(n). Thus the theorem follows. �

5 The Lower Bound

By Theorem 29, the derivational complexity of a TRS R is bounded triple ex-
ponentially in its dependency pair complexity. This yields an upper bound. The
following TRS establishes a double exponential lower bound.

Example 31. Consider the following TRS R5, extending the TRS R4:

1: f(S(x), y) → f(x, f(x, y)) 2 : f(0, x)→ c(x, x)

We show that R5 has linear dependency pair complexity, but admits deriva-
tions of double exponential length. Let F 0

m(x) = x, Fn+1
m (x) = f(Sm(0), Fn

m(x)),
C0(x) = x, and Cn+1(x) = c(Cn(x), Cn(x)). Now, consider the starting term
F 1

n(0). As can be easily seen, this term rewrites to F 2n

0 (0) in 2n − 1 steps using
rule 1. Now, we can use rule 2 and an outermost strategy to reach C2n

(0) in
22n −1 steps, so dcR5 is at least double exponential. On the other hand consider
DP(R5):

3: f�(S(x), y) → f�(x, f(x, y)) 4 : f�(S(x), y) → f�(x, y)

We define a (very restricted) polynomial interpretationA as follows: f�A(x, y) = x,
SA(x) = x+1, fA(x, y) = cA(x, y) = 0A = 0, whereR5 ⊆ 	A and DP(R5) ⊆ >A,
and (	A, >A) forms a reduction pair. Thus DPcR5 is at most linear.

Note that from the proof of Theorem 29 one can distill the following three
facts, where each of them is responsible for one of the exponentials in the upper
bound:

– The number of leaves in a progenitor graph may be exponential in its height.
– The size of a term may be exponential in its depth.
– The number of terms of size n is exponential in n.

Observe that for an optimal example, we would have to utilise all three criteria,
while the just given TRS R5 utilises only the first two criteria. At this point, it
seems impossible to enumerate enough terms of exponential depth and double
exponential size so that this is possible. Hence, we conjecture that the upper
bound given in Theorem 29 can be improved to double exponential.
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6 Conclusion

In this paper we have shown that the derivational complexity of a TRS R is
bounded triple exponentially in its dependency pair complexity. Moreover we
have presented an example showing that the relationship is at least double ex-
ponential. Furthermore, we conjecture that the upper bound can be improved
to a double exponential bound.

The basic dependency pair method [5] forms the basis of our investigations. In
particular we allow argument filtering for the dependency pairs. A similar result
can be shown for dependency graphs, but we need to replace the triple exponential
correspondence by an even faster growing (but still elementary) correspondence,
as shown in the extended version of this paper [20]. Future workwill concentrate on
establishing better bounds for the studied variants, and analysing the derivational
complexity induced by further refinements of the dependency pair method.

To summarise the contribution of this paper, we apply Theorem 30 to three
well-studied simplification orders: LPO, MPO and KBO. Recall that the deriva-
tional complexity induced by LPO or MPO is multiple recursive or primitive
recursive, respectively, cf. [11,12]. Clearly these function classes are closed under
elementary functions. Hence by Theorem 30 we obtain that the derivational com-
plexity induced by the basic dependency pair method based on LPO (MPO) is
multiple recursive (primitive recursive). On the other hand for a TRS R compat-
ible with KBO we have that dcR belongs to Ack(O(n), 0), cf. [13]. Thus applying
the theorem in the context of KBO yields that the derivational complexity func-
tion induced by the dependency pair method based on KBO is majorised by
the Ackermann function. Recall that in all three cases the bounds are tight
(see [11,12,13]) and using the same examples, we obtain tightness of the here
established bounds.

To conclude, we consider a version of the Ackermann function, introduced by
Hofbauer [21] in a slightly simpler way, which we denote as R6.

i(x) ◦ (y ◦ z)→ f(x, i(x)) ◦ (i(i(y)) ◦ z) i(x) → x

i(x) ◦ (y ◦ (z ◦ w)) → f(x, i(x)) ◦ (z ◦ (y ◦ w)) f(x, y) → x

Note that R6 is not simply terminating and the derivational complexity of R6
dominates the Ackermann function. (The latter follows by the same argument
as in [21].) However, termination can be shown easily by the basic dependency
pair method in conjunction with argument filtering and KBO.

There are nine dependency pairs. For the argument filtering π, we set π(f) =
π(f�) = π(i�) = 1, π(i) = [1], and π(◦) = π(◦�) = [1, 2]. To apply Proposition 2 we
use the reduction pair (�π

KBO, >π
KBO) induced by the admissible weight function

w with w0 = 1, w(◦) = w(◦�) = 1, and w(i) = 0, together with the precedence
i  ◦, ◦�. Hence, by Theorem 30 the derivational complexity of R6 belongs to
Ack(O(n), 0) and this bound is optimal, compare [13].
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Abstract. The characterization of termination using well-founded
monotone algebras has been a milestone on the way to automated ter-
mination techniques, of which we have seen an extensive development
over the past years. Both the semantic characterization and most known
termination methods are concerned with global termination, uniformly of
all the terms of a term rewriting system (TRS). In this paper we consider
local termination, of specific sets of terms within a given TRS.

The principal goal of this paper is generalizing the semantic character-
ization of global termination to local termination. This is made possible
by admitting the well-founded monotone algebras to be partial. We show
that our results can be applied in the development of techniques for prov-
ing local termination. We give several examples, among which a verifiable
characterization of the terminating S-terms in CL.

1 Introduction

Along with the growing influence of computers in every part of human society,
program verification and termination analysis have become an important branch
of computer science. This is the more so since the outbreak of the financial crisis,
which has sparked a sharp increase in the demand for efficient and affordable
termination tools. An important contribution to the development of automated
methods for proving termination has turned out to be the characterization of
termination using well-founded monotone algebras.

Both the semantic characterization and most known termination methods are
concerned with global termination, uniformly of all the terms of a TRS. This is
remarkable, as termination is prima facie a property of individual terms. More in
general, one may consider the termination problem for an arbitrary set of terms
of a TRS. We call this the local termination problem.

A typical area where termination techniques are applied is that of program
verification. The termination problems naturally arising in program verification
are local termination problems: the central interest is termination of a program
when started on a valid input. For example in logic programming (e.g. Prolog),
local termination has been a central field of research over the past years. Local
termination problems of Haskell programs have been considered in [13] and [8].

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 270–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In [13], a tableau calculus is devised to show termination of sets of terms of
the form f a1 . . . an with the ai’s in normal form. In [8], a transformation from
Haskell programs into dependency pair problems [2] is given, which then in turn
are solved using methods for global termination.

Surprisingly, for TRSs not much work is known about local termination. We
mention the method of match-bounded string rewriting [7], which can be used
to prove local termination for sets of strings generated by a regular automaton.
Indeed, this method can be viewed as an instance of the semantic framework we
develop in this paper.

Local termination is of special interest when dealing with specific classes of
terms within a TRS that is known to be non-terminating. Examples of such
TRSs are combinatory logic (CL) and encodings of recursive program schemes
or Turing machines. The well-known halting problem for Turing machines is a
local termination problem. Clearly, this holds for the blank tape halting problem
which just asks for termination on the blank tape. On the first glance the uniform
halting problem – asking for termination on all inputs – might seem to be global.
However, this is a local termination problem as well, since Turing machines are
started in a distinguished initial state and admit only one head to work on the
tape. In this paper we will use CL and the halting problem for Turing machines
to illustrate some of our results (Examples 3.7, 6.7, 6.8, 7.7 and 7.8).

Outline. In Section 3 we generalize the semantic characterization from global ter-
mination to local termination based on monotone partial Σ-algebras. This estab-
lishes a first, important step towards the development of automatable techniques
for proving local termination. In Section 4 we extend this to relative termination,
obtaining a characterization using extended monotone partial Σ-algebras.

For global termination it is common practice to stepwise simplify the proof
obligation by removing rules. For local termination (the strictly decreasing) rules
cannot simply be removed as they influence the set of reachable terms. We need
to impose weak conditions on the ‘removed’ rules, see Section 5.

Having developed the general framework, in the remaining two sections we
look for fruitful instances of partial monotone algebras, suitable for automation.

In Section 6 we consider the case that the family of the set of terms for which
we want to prove local termination can be described by a partial model. A variant
of semantic labeling [17] can then be used to transform the local termination
problem into a global termination problem, and the available provers for global
termination can be applied. A famous instance is the fragment of combinatory
logic based on the single combinator S, this we consider at the end of Section 6.

In Section 7 we combine the partial variant of the quasi-models of [17] with
monotone algebras to obtain partial monotone algebras. Partial quasi-models are
roughly deterministic tree automata [4] equipped with a relation ≥ on the states
which guarantees that the language of the automaton is closed under rewriting.
Thereby we obtain partial monotone algebras that can successfully be applied
for proofs of local termination. Indeed, this method can be automated and, as
a matter of fact, we have devised an implementation, which is available via the
web page: http://infinity.few.vu.nl/local/.
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2 Preliminaries

Term rewriting. A signature Σ is a non-empty set of symbols, each having a
fixed arity, given by a map � : Σ → N. Let Σ be a signature and X a set of
variable symbols. The set Ter(Σ,X ) of terms over Σ and X is the smallest set
satisfying: X ⊆ Ter(Σ,X ), and f(t1, . . . , tn) ∈ Ter(Σ,X ) if f ∈ Σ with arity n
and ∀i(1 ≤ i ≤ n) : ti ∈ Ter(Σ,X ). We use x, y, z, . . . to range over variables.
Furthermore we use ≡ for syntactical equality of terms. The set of positions
Pos(t) ⊆ N∗ of a term t ∈ Ter(Σ,X ) is defined as follows: Pos(f(t1, . . . , tn)) =
{⊥} ∪ {ip | 1 ≤ i ≤ �(f), p ∈ Pos(ti)} and Pos(x) = {⊥} for variables x ∈ X .

A substitution σ is a map σ : X → Ter(Σ,X ). For a term t ∈ Ter(Σ,X )
we define tσ as the result of replacing each x ∈ X in t by σ(x). Formally,
tσ is inductively defined by xσ := σ(x) for variables x ∈ X and otherwise
f(t1, . . . , tn)σ := f(t1σ, . . . , tnσ). Let � be a fresh symbol, � �∈ Σ∪X . A context
C is a term from Ter(Σ,X ∪ {�}) containing precisely one occurrence of �. By
C[s] we denote the term Cσ where σ(�) = s and σ(x) = x for all x ∈ X .

A term rewriting system (TRS) R over Σ and X is a set of pairs 〈�, r〉 ∈
Ter(Σ,X ), called rewrite rules and written as � → r, for which the left-hand
side � is not a variable, � �∈ X , and all variables in the right-hand side r occur
in � as well, Var(r) ⊆ Var(�). Let R be a TRS. For terms s, t ∈ Ter(Σ,X ) we
write s →R t (or briefly s → t) if there exists a rule � → r ∈ R, a substitution
σ and a context C ∈ Ter(Σ,X ∪ {�}) such that s ≡ C[�σ] and t ≡ C[rσ]. The
reflexive-transitive closure of→ is denoted as �. We call→ the one-step rewrite
relation induced by R and � the many-step rewrite or reduction relation. If
t � t′ then we call t′ an (R)-reduct of t.

Definition 2.1. Let R be a TRS over Σ and T ⊆ Ter (Σ,X ) a set of terms.
The family FamR(T ) of T is the set of subterms of R-reducts of terms t ∈ T .

Partial functions. For partial functions f : A1 × . . .× An ⇀ A and a1 ∈ A1,
. . . , an ∈ An we call f(a1, . . . , an) defined and write f(a1, . . . , an)

⏐
% whenever

〈a1, . . . , an〉 is in the domain of f . Otherwise f(a1, . . . , an) is called undefined
and we write f(a1, . . . , an)

&
⏐. We use the same terminology and notation for

composite expressions involving partial functions. Between such expression we
use Kleene equality: exp1 3 exp2 means that either both exp1↑ and exp2↑, or
exp1↓ and exp2↓ and exp1 = exp2 . Note that an expression can only be defined
if all its subexpressions are.

Definition 2.2. Let A be a set and R a relation on A. We define two properties
of an n-ary partial function f with respect to R.

(i) f is closed if for every a, b ∈ A we have:

f(. . . , a, . . .)
⏐
% & a R b ⇒ f(. . . , b, . . .)

⏐
%

(ii) f is monotone if for every a, b ∈ A we have:

f(. . . , a, . . .)
⏐
% & f(. . . , b, . . .)

⏐
% & a R b ⇒ f(. . . , a, . . .) R f(. . . , b, . . .)
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The functions that we consider will be typically both closed and monotone, which
can be rendered briefly as:

f(. . . , a, . . .)
⏐
% & a R b ⇒ f(. . . , a, . . .) R f(. . . , b, . . .)

By writing something like exp1 R exp2 we imply that exp1 and exp2 are defined.

3 Local Termination

We devise a complete characterization of local termination based on an exten-
sion of the monotone algebra approach of [6]. The central idea is the use of
monotone partial algebras, that is, the operations of the algebras are allowed to
be partial functions. This idea was introduced in [5], where these algebras have
been employed to obtain a complete characterization of local infinitary strong
normalization. First we give the definition of local termination:

Definition 3.1. Let R be a TRS over Σ, and T ⊆ Ter (Σ,X ) a set of terms.
Then R is called terminating (or strongly normalizing) on T , denoted SNR(T ),
if no term t ∈ T admits an infinite rewrite sequence t ≡ t1 →R t2 →R . . .. We
write SNR for termination on the set of all terms Ter(Σ,X ).

We give the definition of a partial algebra:

Definition 3.2. A partial Σ-algebra 〈A, [·]〉 consists of a non-empty set A and
for each n-ary f ∈ Σ a partial function [f ] : An ⇀ A, the interpretation of f .

Given a partial Σ-algebra A = 〈A, [·]〉 and a (partial) assignment of the
variables, α : X ⇀ A, we can give an interpretation [t, α] of terms t ∈ Ter(Σ,X ),
which, however, will not always be defined. So the interpretation is a partial
function from terms and partial assignments to A, inductively defined by:

[x, α] 3 α(x)
[f(t1, . . . , tn), α] 3 [f ]([t1, α], . . . , [tn, α])

For ground terms t ∈ Ter(Σ, ∅) we write [t] for short.
A set T ⊆ Ter(Σ, ∅) is called defined if for all t ∈ T we have [t]

⏐
%.

Definition 3.3. A monotone partial Σ-algebra 〈A, [·], 〉 is a partial Σ-algebra
〈A, [·]〉 equipped with a binary relation  on A such that:

(i)  is well-founded,
(ii) for every f ∈ Σ the function [f ] is closed and monotone with respect to  .

Remark 3.4. One could also work with monotone total instead of partial alge-
bras, by adding an “undefined” element ⊥ to the domain. Then defining ⊥ to be
maximal, ⊥  a for every a ∈ A \ {⊥}, monotonicity of a function will automat-
ically entail closedness. In order to get full correspondence with our framework
of partial algebras, we would in this set-up only consider strict functions.

Definition 3.5. For a monotone partial Σ-algebra A = 〈A, [·], 〉 we define the
TRS R over Σ to be decreasing (with respect to  ) if for all � → r ∈ R and every
assignment α we have the implication [�, α]

⏐
% ⇒ [�, α]  [r, α].
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The following theorem gives a complete characterization of local termination in
terms of monotone partial algebras.

Theorem 3.6. Let R be a TRS over Σ, and T ⊆ Ter(Σ, ∅). Then SNR(T )
holds if and only if there exists a monotone partial Σ-algebra A = 〈A, [·], 〉
such that T is defined, and R is decreasing.

Proof. Follows from the more general Theorem 4.5 by Remark 4.2. �
To keep the presentation simple, the theorem characterizes local termination for
sets of ground terms T ⊆ Ter (Σ, ∅) only. Indeed, the theorem can easily be
generalized to sets of open terms by, instead of just a monotone partial algebra,
additionally requiring a variable assignment α. A set of terms T is then called
defined if for that α we have [t, α]

⏐
% for every t ∈ T .

Example 3.7. We consider the S combinator with the rewrite rule Sxyz → xz(yz)
from combinatory logic, that is, @(@(@(S, x), y), z)→ @(@(x, z), @(y, z)) in first
order notation. The S combinator is well-known to be globally non-terminating,
however we have local termination on certain sets of terms, for example the set of
“flat” S-terms, T := {Sn | n ∈ N, n ≥ 1}, where S1 := S and Sn+1 := @(Sn, S).

We prove strong normalization on T using the monotone partial Σ-algebra
A = 〈A, [·], 〉, where A := {s} ∪ N and the interpretation [·] is given by:

[S] := s [@](s, s) := 0 [@](0, n) := n + 1 [@](n, s) := 2 · n + 1

for all n ∈ N and [@](x, y)
&
⏐ for all other cases. Let be the natural order > on N;

that is, s is neither source nor target of a  step. Then well-foundedness of  
and monotonicity of [@] are obvious, and T is defined. We have [Sxyz, α]

⏐
% only

if α(x) = s and α(z) = s; then we obtain:

[Sxyz, α] = 3  1 = [xz(yz), α] for α(y) = s

[Sxyz, α] = 2 · α(y) + 3  2 · α(y) + 2 = [xz(yz), α] for α(y) ∈ N

Hence Sxyz → xz(yz) is decreasing and we conclude termination on T .

4 Local Relative Termination

We define local relative termination.

Definition 4.1. Let R, S be TRSs over Σ, and T ⊆ Ter(Σ,X ) a set of terms.
Then the TRS R is called terminating (or strongly normalizing) relative to S
on T , denoted SNR/S(T ), if there exists no term t ∈ T that admits an infinite
rewrite sequence t ≡ t1 →R∪S t2 →R∪S . . . containing an infinite number of →R

steps. We write SNR/S for relative termination on all terms Ter (Σ,X ).

Remark 4.2. Termination of R relative to S on T is equivalent to termination
of the relation →R / →S := �S · →R ·�S on T . Furthermore we have SNR(T )
if and only if SNR/∅(T ).

Definition 4.3. An extended monotone partial Σ-algebra 〈A, [·], ,5〉 is a
monotone partial Σ-algebra 〈A, [·], 〉 with an additional binary relation 5 on
A for which the following two conditions hold:
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(i)  · 5 ⊆  and  ⊆ 5 (compatibility),
(ii) for every f ∈ Σ the function [f ] is closed and monotone with respect to 5.

Then a TRS S over Σ is called weakly decreasing if for all �→ r ∈ S and every
assignment α such that [�, α]

⏐
% we have [�, α] 5 [r, α].

Lemma 4.4. Let 〈A, [·], ,5〉 be an extended monotone partial Σ-algebra and
let R and S be TRSs over Σ such that R is decreasing and S weakly decreasing.
Furthermore, assume for s ∈ Ter(Σ, ∅) that [s]

⏐
%. Then we have the implica-

tions: (i) s →R t ⇒ [s]  [t] and (ii) s →S t ⇒ [s] 5 [t].

Proof. The proofs of (i) and (ii) are similar, we just prove (ii). Let s →S t, that
is, we have � → r ∈ S, substitution σ and context C such that s ≡ C[�σ] and
t ≡ C[rσ]. Since [s]

⏐
% and �σ is a subterm also [�σ]

⏐
%, so [�, α] 5 [r, α], as S is

weakly decreasing. Then using closedness and monotonicity of the interpretations
[f ] of all function symbols f ∈ Σ we obtain [s] 5 [t]. �
We give a complete characterization of local relative termination in terms of
extended monotone partial algebras.
Theorem 4.5. Let R and S be TRSs over Σ, and T ⊆ Ter(Σ, ∅) a set of terms.
Then SNR/S(T ) holds if and only if there exists an extended monotone partial
Σ-algebra A = 〈A, [·], ,5〉 such that the set T is defined, R is decreasing, and
S is weakly decreasing.

Proof. For the ‘only if’-part assume that SNR/S(T ) holds. Let A = 〈A, [·], ,5〉
where A := FamR∪S(T ) and the interpretation of a function symbol f ∈ Σ is
defined by [f ](t1, . . . , tn) := f(t1, . . . , tn) if f(t1, . . . , tn) ∈ A, and [f ](t1, . . . , tn)

&
⏐

otherwise. The relations 5 and  are defined by 5 := �R∪S ∩ (A×A) and
 := (→R ·�R∪S) ∩ (A×A).

We verify that A is an extended monotone partial Σ-algebra. First note that
 · 5 ⊆  and  ⊆ 5 hold by definition. Suppose that  would not be well-
founded. Then there exists t ∈ FamR∪S(T ) admitting an infinite →R · �R∪S

rewrite sequence, contradicting SNR/S(T ). For f ∈ Σ we show that [f ] is closed
and monotone with respect to  (for 5 the reasoning is the same). Consider
s, t ∈ A with s  t. Whenever [f ](. . . , s, . . .)

⏐
% we have also [f ](. . . , t, . . .)

⏐
% and

[f ](. . . , s, . . .)  [f ](. . . , t, . . .) as a consequence of the closure of rewriting under
contexts. Hence A is an extended monotone partial Σ-algebra.

The set T is defined, since for every term s ∈ T we have [s]
⏐
% by definition.

It remains to be proved that R and S are respectively decreasing and weakly
decreasing. We only consider R, as the reasoning for S is the same. Let � → r ∈ R
and α : X → A such that [�, α]

⏐
%. Then [�, α] ≡ �α →R rα ≡ [r, α]. Then

[�, α]  [r, α] because both [�, α] ∈ A and [r, α] ∈ A.
For the ‘if’-part assume that A := 〈A, [·], ,5〉 fulfilling the requirements of

the theorem is given. Assume SNR/S(T ) would not hold. Then there exists t0 ∈ T
which admits an infinite →R∪→S rewrite sequence t0 → t1 → . . . containing an
infinite number of →R-steps. By Lemma 4.4 this sequence then would give rise
to an infinite  ∪ 5 sequence: [t0] ( ∪5) [t1] ( ∪5) . . . containing infinitely
many  steps. Using compatibility  ·5 ⊆  we can remove the intermediate 5
steps, yielding an infinite  sequence, contradicting well-foundedness of  . �
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Example 4.6. We consider a simple example to illustrate the method:

R = {a → b} S = {b→ b, f(b)→ f(a)} T = {a}

Global relative termination SNR/S does not hold. However on T the rule a → b
is terminating relative to the other rules. We can prove this using the extended
monotone partial Σ-algebra A = 〈A, [·], ,5〉 where A = {0, 1}, 1  0 and 5 is
the union of  and equality. The interpretations are given by: [a] = 1, [b] = 0
and [f ](x)

&
⏐ for all x ∈ A. Then T is defined, R is decreasing ([a] = 1 > 0 = [b]),

and S is weakly decreasing ([b] = 0 ≥ 0 = [b] and [f(b)]
&
⏐). Hence we conclude

SNR/S(T ) by an application of Theorem 4.5.

See further Example 7.7 in Section 7 for a non-trivial example.

5 Stepwise Removal of Rules

For termination proofs it is common practice to weaken the proof obligation
stepwise by removing rules. The idea is to find interpretations such that a part
R′ ⊆ R of the rules is decreasing and the remaining rules are weakly decreasing.
Then for termination of R it suffices to prove termination of the rules in the
complement R \R′. We would also like to have this possibility for proofs of local
termination. However, for local termination we cannot simply remove (and then
forget about) the strictly decreasing rules, as the following example illustrates.

Example 5.1. Consider the set T = {a} in the TRS with the following rules:

a → b b → b c → c

We define a monotone partial Σ-algebra 〈A, [·], 〉 by A = N, [a] = 1, [b] = 0
and [c]

&
⏐, taking for  the natural order > on N. Then a → b is decreasing

since [a] > [b], and for b → b we have [b] = [b]. However, removing the strictly
decreasing rule a → b is not sound, since the resulting TRS is terminating on T .

Let us briefly elaborate on the following theorem which enables us to remove
rules stepwise. Assume that the goal is proving that R is terminating relative
to S on T , that is, SNR/S(T ). We start with zero knowledge: SN∅/R∪S(T ). We
search for an interpretation that makes a part R′ ⊆ R of the rules decreasing and
the remaining rules in R ∪ S weakly decreasing. Then the rules in R′ can only
be applied finitely often: SNR′/((R\R′)∪S)(T ). But how to proceed? As we have
seen above, we cannot simply forget about the rules R′, but need to take into
account their influence on the family FamR∪S(T ). A possible and theoretically
complete solution would be to require these rules to be weakly decreasing. How-
ever, for practical applicability this requirement seems too strict as it imposes
heavy restrictions on the termination order. We propose a different approach,
which allows the ‘removed’ rules R′ to arbitrarily change, even increase, the
interpretation of the rewritten terms, as long as rewriting defined terms yields
defined terms again. For this purpose we introduce a relation � on A, with
respect to which the already removed rules have to be weakly decreasing.
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Theorem 5.2. Let R, R′ and U be TRSs over Σ, and T ⊆ Ter(Σ, ∅) such that
SNU/(R∪R′)(T ) holds. Then SN(U∪R′)/R(T ) holds if and only if there exists an
extended monotone partial Σ-algebra A = 〈A, [·], ,5〉 and a relation � on A
such that the set T is defined, R′ is decreasing, R is weakly decreasing, and:

– U is decreasing with respect to �,
– for every f ∈ Σ the function [f ] is closed and monotone with respect to �.

Proof. Straightforward extension of the proof of Theorem 4.5. The ‘only if’-part
follows immediately by taking � :=  . For the ‘if’-part consider an infinite
reduction t1 → t2 → . . . with t1 ∈ T . Then since U is decreasing with respect to
� we conclude ∀i ∈ N. [ti]

⏐
% and by SNU/(R∪R′)(T ) we can cut off the prefix of

the sequence containing the finitely many U steps. �
For an application of the theorem see Examples 7.7 and 7.8 in Section 7.

6 Via Models from Local to Global Termination

In this section we describe an easy transformation from local to global termi-
nation based on an adaptation of semantic labeling [17]. For this purpose we
generalise the concept of models from [17] to partial models. Whenever the lan-
guage T for which we are interested in termination can be described by a partial
model, that is, T = {t | [t]

⏐
%}, then semantic labeling allows for a simple, com-

plete transformation from local to global termination. Here complete means that
the original system is locally terminating on T if and only if the transformed,
labeled system is globally terminating.

First, we generalise the models from [17] to partial models. A model for a
TRS R is a Σ-algebra 〈A, [·]〉 such that [�, α] = [r, α] for every rule � → r ∈ R
and every interpretation α : Var(�)→ A of the variables.

Definition 6.1. Let R be a TRS over Σ. A partial model A := 〈A, [·]〉 for R is
a partial Σ-algebra A, such that [�, α]

⏐
% ⇒ [�, α] = [r, α] for every � → r ∈ R

and α : Var(�)→ A.

Thus the condition [�, α] = [r, α] of models is only required if the interpretation
of the left-hand side is defined, that is, [�, α]

⏐
%. In other words, rewriting may

turn an undefined term into a defined term, but not the other way around.

Definition 6.2. Let A = 〈A, [·]〉 be a partial model. Then the language L(A)
of A is defined as L(A) = {t ∈ Ter(Σ, ∅) | [t]

⏐
%}.

We define a variant of semantic labeling where each symbol is labeled by the
tuple of the values of its arguments.
Definition 6.3. Let Σ be a signature, and A := 〈A, [·]〉 be a partial Σ-algebra.
For t ∈ Ter(Σ,X ) and α : Var(t) → A such that [t, α]

⏐
%, the labeling labA(t, α)

of t with respect to α is defined as follows:

labA(x, α) := x

labA(f(t1, . . . , tn), α) := f [t1,α],...,[tn,α](labA(t1, α), . . . , labA(tn, α)) .

over the signature labA(Σ) = {fλ | f ∈ Σ, λ ∈ A�(f) s.t. [f ](λ)
⏐
%}
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In order to obtain a complete transformation we need to restrict the models to
their core, that is, those elements that are interpretations of ground terms.

Definition 6.4. Let A = 〈A, [·]〉 be a partial Σ-algebra. Then the core Ac ⊆ A
of A is is the smallest set such that [f ](a1, . . . , an) ∈ Ac whenever f ∈ Σ and
a1, . . . , an ∈ Ac with [f ](a1, . . . , an)

⏐
%. We say that A is core if A = Ac.

By construction of the core we have Ac = {[t] | t ∈ Ter(Σ, ∅), [t]
⏐
%}. The

restriction of a model to its core does not change its language, thus in the sequel
we can without loss of generality assume that all models are core.

We have arrived at the transformation from local to global termination. The
rules are labeled as known from semantic labeling with the exception that labeled
rules are thrown away if the interpretation of their left-hand side is undefined.

Definition 6.5. Let R be a TRS over Σ, and A = 〈A, [·]〉 a partial Σ-algebra.
We define the labeling of R as the TRS labA(R) over the signature labA(Σ) by:

labA(R) := {labA(�, α)→ labA(r, α) | �→ r ∈ R, α : Var(�)→ A s.t. [�, α]
⏐
%} .

A TRS is collapsing if it contains rules of the form � → x. Such collapsing rules
can be eliminated by replacing them with all �σf → xσf for every f ∈ Σ where
σf (x) = f(x1, . . . , xn) with x1, . . . , xn pairwise different, fresh variables.

Theorem 6.6. Let R be a non-collapsing TRS over Σ, and A = 〈A, [·]〉 a core
partial model for R. Then R is locally terminating on L(A) if and only if labA(R)
is globally terminating.

Proof. We introduce types for labA(R) over the sorts A. For every symbol fλ ∈
labA(Σ) with λ = 〈a1, . . . , a�(f)〉 we define fλ to have input sorts 〈a1, . . . , an〉 and
output sort [f ](a1, . . . , an). Then [12, Proposition 5.5.24] with non-collapsingness
of labA(R) yields that labA(R) is terminating if and only if all well-sorted terms
are terminating. Since A is core there exists a well-sorted ground term for every
sort in A. Thus by application of a ground substitution we can assume that all
rewrite sequences contain only ground terms, and the set of well-sorted ground
terms is exactly the language L(A) of the model A. �
To apply Theorem 6.6 for proving local termination of R on a set of terms T
we have to find a partial model A for R such that T ⊆ L(A). Then global
termination of labA(R) implies local termination of R on T . If moreover we have
Fam(T ) = L(A), then the transformation is complete, that is, the converse
implication holds as well.

Example 6.7. We revisit Example 3.7 on the S combinator with T = {Sn | n ∈
N}. We choose the partial model A = 〈A, [·]〉, where A = {0, 1, 2} and the
interpretation is defined by: [S] = 0, [@](0, 0) = 1, [@](1, x) = 2 for all x ∈ A,
[@](2, 0) = 2, and ↑ otherwise. Then T ⊆ L(A) and a short proof even shows
that Fam(T ) = L(A). The labeling labA({Sxyz → xz(yz)}) is:

@2,0(@1,0(@0,0(S, x), y), z)→ @1,1(@0,0(x, z), @0,0(y, z))

@2,0(@1,1(@0,0(S, x), y), z)→ @1,2(@0,0(x, z), @1,0(y, z))

@2,0(@1,2(@0,0(S, x), y), z)→ @1,2(@0,0(x, z), @2,0(y, z)) .
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The other labeled rules are thrown out as their left-hand side is undefined. Global
termination of the transformed system can be shown by the recursive path order.

The Set of Normalizing S-Terms

Here, we consider the fragment CL(S) of CL consisting only of the S combinator.
We are aiming at a formal verification of the following proposition:

Proposition 6.8 ([16]). The set of normalizing S-terms is a rational language.

The next lemma follows easily by considering the Nerode congruence [4].

Lemma 6.9. For each TRS R with SN(t)⇔WN(t) for every term t ∈ Ter(Σ, ∅),
the minimal complete deterministic bottom-up tree automaton for the language of
normalizing terms is a model for R. Its reachable part is a partial model.

In particular this applies for CL(S) since it is orthogonal and non-erasing. The
corresponding automaton B is finite (it has 39 states) and can be constructed from
the grammar given in [16]. We have formally verified the model property and that
the language of B contains all normalizing terms in the proof assistant Coq [1].
For proving that CL(S) is terminating on the language of B we have transformed
the local into a global termination problem using Definition 6.5. The resulting
TRS contains 1800 rules which are globally terminating, as can be shown using the
DP transformation with SCC decomposition [2] together with simple projections
and the subterm criterion [9]. We are currently working on the verification of the
termination proof in Coq. Information on the ongoing development can be found
at http://www.imn.htwk-leipzig.de/$\sim$waldmann/cl-s/.

7 Quasi-models for Local Termination

In Sections 3–5 we have devised a characterization of local termination in terms
of monotone partial algebras. While this gives the general method, for the pur-
pose of obtaining automatable methods we still lack concrete, fruitful instances
of these algebras. For global termination, instances of monotone algebras are
well-known. This raises the natural question whether we can transform a given
monotone algebra for global termination in such a way to obtain a partial mono-
tone algebra for local termination.

In this section we present one such approach. We extend quasi-models [17] to
partial quasi-models and then combine these with (ordinary) monotone algebras.
The quasi-models are roughly deterministic tree automata that are closed under
rewriting. We then search for such an automaton which accepts the starting
language T together with a monotone algebra such that the rewrite rules are
decreasing on the language of the automaton. In this way monotone algebras for
global termination carry over to local termination and we obtain an automatable
method that is applicable for proofs of local termination.

First we give the definition of extended μ-monotone algebras as known from
global termination of context-sensitive TRSs, see [11,6]. A mapping μ : Σ → 2N

is called a replacement map (for Σ) if for all f ∈ Σ we have μ(f) ⊆ {1, . . . , �(f)}.
Let 〈A, [·]〉 be a Σ-algebra and μ a replacement map. For symbols f ∈ Σ we say

http://www.imn.htwk-leipzig.de/$sim $waldmann/cl-s/
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that the interpretation [f ] : A�(f) → A is μ-monotone with respect to  if for
every a, b ∈ A and i ∈ μ(f) with a  b we have: f( . . .︸︷︷︸

i−1

, a, . . .︸︷︷︸
�(f)−i

)  f(. . . , b, . . .) .

Definition 7.1. Let μ be a replacement map for Σ. An extended μ-monotone
Σ-algebra 〈A, [·], ,5〉 is a Σ-algebra 〈A, [·]〉 equipped with two binary relations
 , 5 on A for which the following three conditions hold:

(i)  is well-founded,
(ii)  · 5 ⊆  and  ⊆ 5 (compatibility), and
(iii) for every f ∈ Σ the function [f ] is μ-monotone with respect to  and 5.

We extend quasi-models to partial quasi-models:

Definition 7.2. Let R be a TRS over Σ. A partial quasi-model A := 〈A, [·],≥〉
for R consists of a Σ-algebra 〈A, [·]〉, a partial order ≥ on A such that:

(i) [�, α]
⏐
%⇒ [�, α] ≥ [r, α] for every � → r ∈ R and α : Var(�)→ A, and

(ii) the function [f ] is closed and monotone with respect to ≥ for every f ∈ Σ.

A quasi-model A = 〈A, [·],≥〉 may contain elements a ∈ A for which [t] = a
implies that t is a normal form. For a given quasi-model the set of these, which
we denote by Anf (R), can be computed (see below Definition 7.3). We can exploit
this knowledge as follows: if a certain argument of a symbol f ∈ Σ is always a
normal form, then the interpretation [f ] of f does not need to be monotonic for
this argument position. The following definition gives an algorithm for computing
the set Anf (R). Elements that are interpretations [�, α] of left-hand sides in R
cannot belong to this set. Moreover if a �∈ Anf (R) and b = [f ](. . . , a, . . .) then we
conclude b �∈ Anf (R). This is formalized as follows:

Definition 7.3. Let R be a TRS over Σ, and A = 〈A, [·]〉 a partial Σ-algebra.
The normal forms Anf (R) of A are the largest set Anf (R) ⊆ Ac such that [�, α] �∈
Anf (R) for every � → r ∈ R and every α : Var(�) → Ac, and [f ](a1, . . . , an) �∈
Anf (R) for every f ∈ Σ, ai �∈ Anf (R) and a1, . . . , an ∈ Ac.

Then by construction we obtain the following lemma:

Lemma 7.4. Anf (R) is the set of all elements a ∈ Ac such that for all terms
t ∈ Ter(Σ, ∅) it holds: [t] = a implies that t is a normal form with respect to R.

As mentioned above the interpretations do not need to be monotonic in argument
positions which are normal forms. We formalize this by defining a replacement
map for the the labeling labA(R) of R which does not contain argument positions
that are in normal form.

Definition 7.5. Let R be a TRS over Σ, and A = 〈A, [·]〉 a partial Σ-algebra.
Let the replacement map μnf (R) be defined for every symbol fλ ∈ labA(Σ) with
λ = 〈a1, . . . , a�(f)〉 as follows: μnf (R)(fλ) = {1, . . . , �(f)} \ {i | ai ∈ Anf (R)}.
As an instance of Theorem 5.2 we obtain a method for stepwise rule removal
for local termination that is based on a combination of partial quasi-models and
extended monotone algebras.
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Theorem 7.6. Let R, R′ and U be TRSs over Σ, and T ⊆ Ter(Σ, ∅) a set of
terms such that SNU/R∪R′(T ) holds. Furthermore let A = 〈A, [·],≥〉 be a partial
quasi-model for R ∪R′ ∪ U with T ⊆ L(A), and B = 〈B, [·]B, ,5〉 an extended
μnf (R∪R′)-monotone (labA(Σ))-algebra such that:

(i) the rules in labA(R′) are decreasing:

[�, α]  [r, α] for all � → r ∈ labA(R′) and α : Var(�) → B ,

(ii) the rules in labA(R) are weakly decreasing:

[�, α] 5 [r, α] for all � → r ∈ labA(R) and α : Var(�)→ B , and

(iii) for all f ∈ Σ, a1 a a2 ∈ A�(f), a ≥ a′ ∈ A, and b1, . . . , b�(f) ∈ B:

[fa1 a a2 ]B(b1, . . . , b�(f)) 5 [fa1 a′ a2 ]B(b1, . . . , b�(f)) .

Then SN(U∪R′)/R(T ) holds.

Proof (Theorem 7.6). We construct an extended monotone partial Σ-algebra
C = 〈C, [·]C , C ,5C〉 fulfilling the requirements of Theorem 5.2. Let C = A×B,
and define 〈a1, b1〉  C 〈a2, b2〉 ⇐⇒ a1 �∈ Anf (R∪R′) & a1 ≥ a2 & b1  b2 and
〈a1, b1〉 5C 〈a2, b2〉 ⇐⇒ a1 �∈ Anf (R∪R′) & a1 ≥ a2 & b1 5 b2. Note that
the μnf (R∪R′)-monotonicity is implemented by excluding elements 〈a1, b1〉 with
a1 ∈ Anf (R∪R′) from being sources of  ∪ 5 steps. Then for every symbol f ∈ Σ:
[f ]C(〈a1, b1〉, . . . , 〈a�(f), b�(f)〉) = 〈[f ]A(a1, . . . , a�(f)), [fa1,...,a�(f) ]B(b1, . . . , b�(f))〉
if [f ]A(a1, . . . , a�(f))

⏐
%, and ↑ otherwise. Finally, we define the relation � on C

by 〈a1, b1〉 � 〈a2, b2〉 ⇐⇒ a1 ≥ a2. Now it is straightforward to check that all
requirements of Theorem 5.2 are fulfilled, and we conclude SN(U∪R′)/R(T ). �

Let us briefly elaborate on the theorem. As an instance of Theorem 5.2, The-
orem 7.6 is applicable for proving local termination as well as local relative
termination. We start without knowledge SN∅/R∪S(T ) and stepwise ‘remove’
rules, more precisely, we move rules from the right side to the left side of the
slash ‘/’. If we reach the goal SNR/S(T ), then the proof has been successful.

The use of partial quasi-models for R ∪ R′ ∪ U with T ⊆ L(A) guarantees
that the language we consider is closed under rewriting. The set R′ is the set of
strictly decreasing rules that we are aiming to remove. The μnf (R∪R′)-monotone
labA(Σ)-algebra B then has the task to make all labeled rules stemming from
R′ strictly decreasing, and from R weakly decreasing. Then we conclude that
R′ ∪ U is terminating relative to R on T .

Example 7.7 (Klop, see [3], Exercise 7.4.7). Example 3.7 can be generalized to
include the combinator K, which has the reduction rule Kxy → x. The initial lan-
guage of flat S, K-terms is T = (S|K)∗; for example SSKS = (((SS)K)S). The par-
tial model presented in Example 6.7 can be extended to a partial quasi-model for
this generalized example by fixing [K] = 0 and 2 > 0, 2 > 1. Note that this is not
a model due to [Kxy, α] = 2 > 0 = [x, α] for α = λz.0. For the complete proof,
employing this quasi model, we refer to: http://infinity.few.vu.nl/local/.

http://infinity.few.vu.nl/local/
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The second example illustrates the stepwise rule removal.

Example 7.8. We implement a Turing machine which does the following. Initially
it puts two boxes X left and right of its head and afterwards alternately runs
left and right between the boxes, each time moving them one position further:

wwXwRwwwwwXww � wwXwwwwwwRXww

→ wwXwwwwwwLwXw � wwXLwwwwwwwXw

→ wXwRwwwwwwwXw � . . .

This is implemented by TRS R consisting of the following rules:

wSw → XRX Rw → wR RXw → LwX RX�→ FX�

wL → Lw wXL→ XwR �XL→ �XR

wF → Fw wXF → XwR �XF → finish .

where all symbols apart form finish (which is a constant) are unary, but have
been written without parenthesis for the purpose of compactness. Note that the
TRS is basically obtained using the standard translation of Turing machines to
string rewriting systems, see further [15].

While the Turing machine is terminating on every input, the TRS R fails
to be globally terminating. The reason is that R allows for configurations with
multiple heads working at the same time on the same tape:

�XRXwFX�→ �XLwXFX�→ �XLXwRX�→2 �XRXwFX�→ . . .

We will prove that R is locally terminating on all terms containing arbitrary
occurrences of the symbols �, w and at most one occurrence of S, that is, the
language given by T = {�, w}∗ S {�, w}∗finish. As the first step we remove the
rules wSw → XRX and �XF → finish using a quasi-model consisting of only
one element, accepting all terms, and the interpretation [w]B(x) = [�]B(x) =
x + 1 whereas all other symbols are interpreted as λx.x.

Second, we use a partial quasi-model A = 〈A, [·],≥〉 where A = {0, 1}, 0 ≥ 0,
1 ≥ 1, [finish] = 0 and the other interpretations are given in the table:

x [w](x) [X ](x) [R](x) [L](x) [F ](x) [�](x) [S](x)
0 0 1 ↑ ↑ ↑ 0 0
1 1 0 1 1 1 ↑ ↑

As required by the theorem A is a partial quasi-model for R including the two
removed rules U = {wSw → XRX, �XF → finish} (without them T would be
a normal form). We use this quasi-model together with the extended monotone
labA(Σ)-algebra B = 〈N, [·]B, ,5〉 where  and 5 are the usual orders > and
≥ on N, respectively. The interpretation [·]B is [finish]B = 7, [w0]B(x) = 2 ·x+1,
[w1]B(x) = 2 ·x, [X0]B(x) = [X1]B(x) = x, [R1]B(x) = 2 · x, [L1]B(x) = 2 · x+ 1,
[F 1]B(x) = 2 · x, [�0]B(x) = 2 · x, and [S0]B(x) = 5 · x + 6. Then R′ consists of
the following rules: RXw → LwX , wL → Lw, wXL → XwR, �XL → �XR,
and wXF → XwR. Then labA(R′) is strictly decreasing with respect to B. For
instance consider the rule RXw → LwX . The labeling R1X0w0 → L1w1X0 is
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in labA(R′) and its interpretation in B is: R1X0w0(x) = 4 · x + 2 > 4 · x + 1 =
L1w1X0(x). The labeling R0X1w1 → L0w0X1 is not in labA(R′) since its left-
hand side is undefined with respect to A, thus we can ignore this rule. Analogous
it can be verified that all rules in labA(R \R′) are weakly decreasing in B. Since
> is the empty relation on A the third condition of Theorem 7.6 holds trivially.

The three remaining rules Rw → wR, wF → Fw, and RX� → FX� are
even globally terminating. This corresponds to taking a quasi-model which has
only one state and accepts all terms together with the corresponding termination
order which proves global termination. Hence we have proven SNR(T ) by three
consecutive applications of Theorem 7.6.

Finally, we give a theorem that allows to remove rules and forget about them. We
need to be sure that these rules do not influence the family. This is guaranteed
if all terms in the family are normal forms with respect to these rules.

Theorem 7.9. Let R, R′ and S be TRSs over Σ, and T ⊆ Ter(Σ, ∅). Moreover
let A = 〈A, [·],≥〉 be a partial quasi-model for R ∪ R′ ∪ S with T ⊆ L(A) such
that for all rules � → r ∈ R′ and α : Var(�) → A we have [�, α]

&
⏐ (the left-hand

side is undefined). Then SNR/S(T ) implies SNR∪R′/S(T ).

Proof. From FamR∪R′∪S(T ) ⊆ L(A) together with [�, α]
&
⏐ for all � → r ∈ R′

and α it follows that the rules in R′ are not reachable. All terms in Fam(T ) are
normal forms with respect to R′. Hence we can ignore these rules. �
Example 7.10. Consider the TRS R consisting of the following four rules:

f(s(s(x))) → f(o(x)) o(s(s(x))) → s(s(o(x))) o(0) → 0 o(s(0)) → s(s(s(0)))

The TRS is not terminating: f(s(s(s(0)))) → f(o(s(0))) → f(s(s(s(0)))) → . . ..
However, the function f is terminating when applied to an even number, that
is, the language T = {f(s2·n(0)) | n ∈ N}. We choose A = 〈{0, 1}, [·],≥〉 where
[0] = 0, [s](0) = 1, [s](1) = 0, [o](0) = 0, [o](1)

&
⏐, [f ](0) = 0 and [f ](1)

&
⏐. Then A

is a partial quasi-model with T ⊆ L(A). We have [o(s(0)), α]
&
⏐ (for all α), thus

the rule o(s(0)) → s(s(s(0))) is never applicable and can be removed.

8 Conclusion

We mention some directions of ongoing and future work.
We intend to generalize the characterization of local termination to context-

sensitive rewriting [11], using μ-monotonic, partial Σ-algebras; and also to top
termination, using weakly extended, monotone, partial Σ-algebras [2,6].

It seems quite feasible to formalize and verify the characterization of the set
of terminating S-terms in CL from Example 6.8 in the proof assistant Coq.

Methods using transformations from certain properties, like liveness proper-
ties [10] or outermost termination [14], to termination usually give rise to local
termination problems. That is, termination is of interest only for those terms
which are in the image of the transformation. For example, we noted that the
transformation in [14] gives rise to a language which can be described by a par-
tial model. Then it suffices to show completeness of the transformation to local
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termination, and employing Theorem 6.6 we obtain a complete transformation
to global termination for free.
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Abstract. The automated analysis of termination of term rewriting sys-
tems (TRSs) has drawn a lot of attention in the scientific community dur-
ing the last decades and many different methods and approaches have
been developed for this purpose. We present VMTL (Vienna Modular
Termination Laboratory), a tool implementing some of the most recent
and powerful algorithms for termination analysis of TRSs, while provid-
ing an open interface that allows users to easily plug in new algorithms
in a modular fashion according to the widely adopted dependency pair
framework. Apart from modular extensibility, VMTL focuses on ana-
lyzing the termination behaviour of conditional term rewriting systems
(CTRSs). Using one of the latest transformational techniques, the result-
ing restricted termination problems (for unconditional context-sensitive
TRSs) are processed with dedicated algorithms.

1 Introduction and Overview

During the last decade, remarkable progress has been made in the field of termi-
nation analysis of term rewriting systems. Despite termination being an undecid-
able property of TRSs, increasingly sophisticated methods have been developed
to prove it for given systems. From these efforts several tools have emerged
that are capable of proving termination (semi) automatically (a list of currently
available tools can be obtained from the official website of the termination com-
petition [18].)

The currently most powerful tools implement the dependency pair framework
of [8] based on the idea of dependency pair analysis of [3]. This approach has
at least two advantages. First, it seems to be the most powerful one, which
is indicated by the latest results of a yearly termination competition ([18]).
Second, the pure dependency pair framework is strictly modular, which means
that concrete (correct) methods to prove termination within this framework can
be combined, added and removed arbitrarily, without affecting the correctness
of the tool. Thus, it is easy to extend tools implementing this framework by new
methods (called dependency pair processors in the terminology of [8]).

VMTL (currently available in Version 1.1, cf. http://www.logic.at/vmtl/)
is a new termination tool that implements the dependency pair framework and
focuses on openness, modularity and extensibility. It is easily extensible by new
� The author has been supported by the Austrian Academy of Sciences under grant

22.361.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 285–294, 2009.
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dependency pair processors, while providing the main technical infrastructure
of termination tools such as thread and processor scheduling, timeout handling,
input parsing, output formatting etc. In addition, VMTL contains implementa-
tions of several well-known methods of proving termination within the depen-
dency pair framework. These include

– a dependency graph processor used for decomposing dependency pair prob-
lems into strongly connected components of an estimated dependency graph
(the estimation described in [1, Section 4.1] is used),

– a reduction pair processor using recursive path orderings with status based
on [1, Theorem 21],

– a reduction pair processor based on polynomial interpretations featuring
linear and simple mixed polynomials, with coefficients from N and constants
from Z,

– forward and backward narrowing as well as instantiation processors (see
below resp. [17, Section 6] for more details), and

– a size-change principle processor based on results from [19].

The set of implemented processors (in particular the inclusion of the size change
principle processor) was chosen to optimize the power of VMTL with respect to
proving termination of conditional term rewriting systems. Moreover, all of these
processors are “context-restriction aware” in VMTL which means that they are
sound for both context-sensitive and standard termination problems.

The two reduction pair processors are implemented via reduction to satisfi-
ability problems and utilizing external SAT solvers, as it is state-of-the-art at
the time of writing. Benchmarks of VMTL on the set of TRSs used in the latest
termination competition can be found below.

Another focus during the development of VMTL was applicability to (and
suitability for) conditional term rewriting systems (CTRSs). Termination of such
CTRSs is usually verified by transforming them into ordinary TRSs and deriving
termination of the CTRSs from termination of the transformed TRSs. VMTL
provides a public interface that allows users to plug in such transformations.
Moreover, it includes a recent one ([17]) that transforms CTRSs into context-
sensitive (unconditional) TRSs.

VMTL is also capable of proving termination of context-sensitive term rewrit-
ing systems (CSRSs). For this task the refined context-sensitive dependency pair
approach of [1] (cf. also [2]) is used. Using context-sensitive dependency pairs,
and their property that they coincide with context-free (i.e., standard) depen-
dency pairs for context-free (i.e., ordinary) term rewriting systems, allows VMTL
to treat every TRS as CSRS and analogously treat every standard dependency
pair problem as context-sensitive one. Still, the use of dedicated DP processors
for each kind of problem is possible in VMTL (see Section 4.1 below).

2 Preliminaries

We assume familiarity with the basic concepts and notations of term rewrit-
ing and context-sensitive rewriting (cf. e.g. [4,5,12]). As we will briefly discuss
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VMTL’s approach to prove operational termination of deterministic conditional
term rewriting systems (DCTRSs) in Section 5, we introduce some basic notions
regarding conditional term rewriting.

Conditional rewrite systems consist of conditional rules l → r ⇐ c, with c of
the form s1 →∗ t1, . . . , sn →∗ tn such that l is not a variable and V ar(r) ⊆
V ar(l)∪ V ar(c). In the following we are concerned with deterministic 3-CTRSs
(DCTRSs), which have the additional property that for each conditional rule
l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn it holds that V ar(si) ⊆ V ar(l) ∪

⋃i−1
j=1 V ar(tj).

Deterministic 3-CTRSs are arguably the most general class of CTRSs for which
termination analysis makes sense, as in non-deterministic CTRSs arbitrary in-
stantiations of extra variables usually entail that the system is not (effectively
[16] / operationally [13]) terminating.

The conditional rewrite relation induced by a CTRS R is inductively defined
as follows: R0 = ∅, Rj+1 = {σl → σr | l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn ∈
R, σsi →∗

Rj
σti for all 1 ≤ i ≤ n}, and →R=

⋃
j≥0 →Rj . In contrast to ordinary

term rewriting systems well-foundedness of the induced rewrite relation is not
an adequate notion of termination for CTRSs. The proof-theoretic notion of
operational termination has turned out to be adequate to guarantee finiteness
of derivations in CTRSs (cf. [13,17] for details).

Given a CSRS R = (Σ, R) with replacement map μ, the relation of context-
sensitive narrowing (written �μ

R) is defined as t �μ
R s if there is a replacing

non-variable position p in t such that t|p and l unify (where l → r ∈ R and where
we assume that t and l do not share any variables) with mgu θ and s = θ(t[r]p).
We say that s is a one-step, context-sensitive narrowing of t.

2.1 The Context-Sensitive Dependency Pair Framework

The dependency pair framework of [8] resp. [1] basically reduces termination
problems to problems of proving finiteness of so-called dependency pair problems.

We call a triple (P,R, μ), where P and R are TRSs and μ is a replacement
map for the combined signatures of P and R, a (context-sensitive) dependency
pair problem (CS-DP-problem).1 Such a problem is finite if P terminates relative
to (R, μ) where →P steps may only occur as root steps and →R,μ steps may
only occur strictly below the root.

Within the dependency pair framework these problems are analyzed by so-
called dependency pair processors.

A CS-dependency pair processor is a function Proc that takes as input a CS-
DP-problem and returns either a set of CS-dependency pair problems or “no”.
We call a CS-DP-processor sound if finiteness of all CS-DP-problems in Proc(d)
implies finiteness of the input CS-DP-problem d. A CS-DP-processor is complete
if for all CS-DP-problems d, d is infinite whenever Proc(d) is “no” or Proc(d)
contains an infinite CS-DP-problem.

For further details regarding the dependency pair framework we refer to [8].

1 Initially, P consists of the (context-sensitive) dependency pairs of (R, μ) or R, re-
spectively, cf. [1,3].
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Fig. 1. Snapshot of the VMTL web interface after specifying a particular proof strategy

3 User Interface

VMTL provides a command line interface for batch execution and a web inter-
face that eases configuration and extension. Figure 1 shows a screenshot of the
web interface, after specifying a particular proof strategy. It contains fields for
entering a TRS or alternatively uploading a file. VMTL exclusively accepts the
input format specified for the termination competition. On the right-hand side
the user can define the strategy, i.e., the order in which processors are applied,
together with time constraints to be satisfied. At the bottom there are two fields
allowing the user to upload new customized dependency pair processors and
transformations, respectively.

3.1 User Defined Strategies

Since dependency pair processors often modify and simplify dependency pair
problems, it is crucial to apply them in a reasonable order. Moreover, some
processors are more time consuming than others. Thus, in order to achieve the
goal of proving termination as quickly as possible, it is important to have a good
strategy for processor application. VMTL allows the user to fully configure this
strategy. It provides the following degrees of freedom in its specification.

– Dependency pair processors can be arbitrarily ordered.
– Time limits can be imposed on dependency pair processors.
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– Dependency pair processors can be executed repeatedly (which can be help-
ful for instance for narrowing processors).

– Dependency pair processors can be hierarchically grouped to an arbitrary
depth. Each group can be given a time limit. In case of contradicting time
limits the shortest one is used.

– Execution of (groups of) dependency pair processors can be parallelized.

The semantics of parallelism in VMTL is that if one of the parallel branches
finishes the termination (or non-termination) proof, the whole execution stops
immediately and the proof is presented to the user. Otherwise, if all parallel
branches fail to prove termination, the termination proof continues according to
the strategy with the dependency pair problems derived before the start of the
parallel execution or with any of the problems derived in the parallel paths, de-
pending on which of these problems is the “most simple” one. This is determined
by a configurable measure function on dependency pair problems. By default,
this function compares the size of the problems to determine the “most simple”
one.

Graphically, a strategy is represented in VMTL as a tree, where each node
can either be a dependency pair processor, or a “Group node”. Group nodes are
used to build groups of processors or other groups, cf. Figure 1.

VMTL provides a default strategy that turned out to be a reasonable com-
promise between power and efficiency, which allows users to test systems for
termination without manually specifying a proof strategy. This standard strat-
egy was also used in the benchmarks below.

4 VMTL API

VMTL provides a public java programming interface that allows a user to easily
build extensions. There are three basic functionalities that can be extended.

– New dependency pair processors can be added.
– New transformations, from (conditional/context-sensitive) TRSs to (context-

sensitive) TRSs, can be added.
– New plug-ins for output formatting can be added.

4.1 Adding New Dependency Pair Processors

VMTL provides two interfaces DPProcessor and ContextSensitiveDpProcessor
from which one has to be implemented by the user depending on whether the
processor takes context-restrictions into account or not. In case DPProcessor is
implemented, VMTL will make sure that the processor is not applied to context-
sensitive dependency pair problems (even if the processor occurs in the strat-
egy). Note that each context-sensitive DP processor is trivially a context-free one
(as context-free DP problems can be seen as special cases of context-sensitive
ones), thus ContextSensitiveDpProcessor is a “subinterface” (in an object ori-
ented sense) of DPProcessor. See e.g. [10, Example 3] for a justification that
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context-free dependency pair processors (for instance using usable rules) may in
general not be applied to context-sensitive dependency pair problems.

Technically, a user-defined processor is given a dependency pair problem (that
has possibly been processed by other processors before) and a set of (processor)
parameters from VMTL and is required to return a set of derived dependency
pair problems. In VMTL, the datastructure of a dependency pair problem con-
sists of two sets of rewrite rules and a replacement map according to the definition
in Section 2.1. Additionally, in VMTL it contains a subsignature (cf. [17, Section
6]) and several additional flags (in particular one for position-based strategies
such as innermost rewriting and one for completeness indicating whether infin-
ity of the dependency pair problem implies non-termination of the initial rewrite
system).

4.2 Adding New Transformations

Adding transformations to VMTL can be accomplished by implementing the
interface TrsToTrsTransformation. Transformations in VMTL are not restricted
to ones that transform conditional systems. The interface can be used to perform
arbitrary preprocessing steps, such as semantic labelling etc. (this is the reason
why the interface is not called CtrsToTrsTransformation). However, in case ter-
mination of a conditional rewrite system is to be proved, a transformation is
mandatory. If none is specified by the user, VMTL will use the context-sensitive
unraveling transformation of [6,15,17].

4.3 Customizing Output Formatting

The proof information, that is accumulated by VMTL, and the used dependency
pair processors are represented in a simple native markup language, providing
basic structuring and formatting tags. From this intermediate representation the
actual (human or machine) readable output is created by so-called OutputWriter
objects. Out of the box, VMTL only supports HTML output. However, the
user may extend VMTL by additional OutputWriters through the OutputWriter
interface and can thereby provide additional support for proof certification (see
e.g. [11]).

5 Termination of CTRSs

In ([17]) it was shown that when verifying (operational) termination of a CTRS
by transformation, it is sufficient to prove termination of the transformed system
only on a restricted set of terms. This idea is incorporated in VMTL by extending
(context-sensitive) dependency pair problems as defined in [8] by an additional
component representing a sub-signature, which identifies the set of terms for
which termination is to be shown.

In VMTL the following context-sensitive version ([17]) of an unraveling trans-
formation ([14,16]) is included.
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Definition 1. (context-sensitive unraveling of DCTRSs) Let R be a DCTRS
(R = (Σ, R)). For every rule α : l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn we use n
new function symbols Uα

i (i ∈ {1, . . . , n}). Then α is transformed into a set of
unconditional rules in the following way:

l → Uα
1 (s1, V ar(l))

Uα
1 (t1, V ar(l)) → Uα

2 (s2, V ar(l), EV ar(t1))...
Uα

n (tn, V ar(l), EV ar(t1), . . . , EV ar(tn−1)) → r

Here V ar(s) denotes an arbitrary but fixed sequence of the set of variables of
the term s. Let EV ar(ti) be V ar(ti) \ (V ar(l) ∪

⋃i−1
j=1 V ar(tj)). Abusing nota-

tion, by EV ar(ti) we mean an arbitrary but fixed sequence of the variables in the
set EV ar(ti). Any unconditional rule of R is transformed into itself. The trans-
formed system Ucs(R) = (U(Σ), U(R)) is obtained by transforming each rule of
R where U(Σ) is Σ extended by all new function symbols. The replacement map
μU(Σ) is given by μU(Σ)(f) = {1, . . . , ar(f)} for all f ∈ Σ and μU(Σ)(f) = {1}
for all f ∈ U(Σ) \Σ.

For this transformation it turns out that termination of the transformed TRS
on original terms, i.e., on terms over the original signature of the conditional
system, is sufficient (and indeed equivalent) to derive (operational) termination
of the DCTRS (cf. [17, Theorems 4, 5 and Corollary 3]). In particular, this means
that potential infinite reduction sequences issuing from (non-original) terms built
over the extended signature of the transformed system may be ignored.

This generalizes previous results of [6] and [15]. In [6] general termination of
Ucs(R) was used as a sufficient condition for operational termination of R (how-
ever, there the transformation dealt with a wider class of conditional systems). In
[15] it was shown that derivations (from original terms to original terms) in the
transformed system correspond to derivations in the original conditional systems
if the reduction in the transformed system follows a certain reduction strategy.
We refer to [17] for a more thorough discussion of our above characterization
result for operational termination of DCTRSs.

VMTL takes advantage of these facts by adapting its narrowing processors.
Inside the dependency pair framework a narrowing processor basically exploits
the fact that in a dependency pair chain the reduction sequence between two
dependency pairs must be non-empty if the right-hand side of the first pair does
not unify with the left-hand side of the second one. The (forward) narrowing
processor then anticipates the possible first steps of this reduction sequence that
affect the right-hand side of the first dependency pair l → r and replaces the
latter by new pairs θ1l → r1, . . . , θnl → rn where {r1, . . . , rn} is the set of
(context-sensitive) one-step narrowings of r and θi are the involved mgu’s.

According to [17, Definitions 10–13, Theorems 7–10], only a subset of these
narrowings need to be considered. Although heuristics are needed to approximate
the relevant terms here, this helps to counter the explosion of the number of
dependency pairs one often has to deal with when using narrowing processors.
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6 Implementation Details and Benchmarks

VMTL (version 1.1) is entirely written in Java. The core module (i.e., without
user interface) contains approximately 11.500 lines of code. MiniSat ([7]) is used
as SAT solver.

Currently, there is no dedicated category for conditional TRSs in the termina-
tion problem database. Still, a few conditional TRSs are contained in it. Table 1
shows the benchmarks of VMTL and AProVE (Version 1.2)2 on these examples,
extended by further examples taken from [9,14,16]. Numbers in parentheses of
the “Successful Proofs” column mean successful disproofs of termination. All ex-
periments had a time limit of 60 seconds and were performed on an Intel E8500
(3.16 GHz) with 4GB of RAM under Ubuntu Hardy Heron (32 Bit) using java
6 Build 13.

Table 1. Benchmarks on conditional TRSs

Tool Successful Proofs Number of Systems
VMTL 19(3) 24

AProVE 14(2) 24

Table 2. Benchmarks on standard TRSs from the TPDB

Tool Successful Proofs Number of Systems
VMTL 629(106) 1391

AProVE 1226(231) 1391
TTT2 970(178) 1391

Jambox 810(60) 1391

Table 3. Benchmarks on context-sensitive TRSs from the TPDB

Tool Successful Proofs Number of Systems
VMTL 72(2) 109

AProVE 94(0) 109
MU-TERM 82(0) 109

For several examples used in the table, proving termination heavily depends
on the methods described in [17, Section 6].

Tables 2 and 3 show the performance of VMTL on the set of standard TRSs
and the set of context-sensitive ones, respectively, from the TPDB. More de-
tails regarding all benchmarks, including execution times and actual termination
proofs can be found on the VMTL homepage3.
2 Newer versions of AProVE as well as other termination tools do not seem to support

proper deterministic conditional rewrite systems (i.e., DCTRS with extra variables).
3 http://www.logic.at/vmtl/
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Note that apart from the restricted set of proof methods available in VMTL,
the inferior performance for standard and context-sensitive TRSs is due to the
strict modularity. Strategies in VMTL cannot be history-aware, which for in-
stance prevents using methods like safe narrowing from [8]. In addition, the
proof strategy cannot be adapted to certain classes of TRSs such as applicative
ones.

7 Conclusion, Related and Future Work

We introduced the termination tool VMTL that provides an easily extensible
implementation of the dependency pair framework. In particular, interfaces for
dependency pair processors, preprocessing steps (e.g. transformations) and out-
put preparation are available. VMTL is supposed to support researchers in the
field of termination analysis, who do not have direct access to one of the existing
termination tools. Using VMTL they may relatively easily try out and evaluate
their ideas without having to build their own implementation from scratch. The
system also comprises implementations of some standard termination analysis
methods, that should make it even easier to obtain useful benchmarks. Moreover,
VMTL provides implementations of state-of-the-art methods for the termination
analysis of conditional and context-sensitive rewrite systems.

Regarding conditional rewrite systems, VMTL provides the infrastructure to
follow the transformational approach of [17], that reduces the problem of proving
(operational) termination of CTRSs to the problem of proving termination of
a (transformed context-sensitive) TRS on a restricted set of terms. A simple
method to exploit these results is realized in terms of two generalized narrowing
processors, that enable VMTL to prove termination on original terms even if
general termination does not hold.

Many of the currently developed termination tools follow the dependency pair
framework. Although VMTL is not yet competitive for standard and context-
sensitive TRSs, we see at least two points that distinguish VMTL from other
existing tools:

– VMTL provides open and easily accessible interfaces for extensions.
– VMTL provides dedicated methods for the termination analysis of condi-

tional rewrite systems that go beyond reduction to standard termination
problems.

Future extensions of VMTL may provide means for an even more fine-grained
guidance of proof attempts through a more powerful strategy language (adding
for instance non-determinism). Moreover, an extension to new classes of rewrite
systems and termination problems (e.g. higher-order rewrite systems and in-
nermost/outermost or relative termination) and programming languages (e.g.
Haskell) as input is desirable.
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Abstract. This paper describes the second edition of the Tyrolean Ter-
mination Tool—a fully automatic termination analyzer for first-order
term rewrite systems. The main features of this tool are its (non-)ter-
mination proving power, its speed, its flexibility due to a strategy lan-
guage, and the fact that the source code of the whole project is freely
available. The clean design together with a stand-alone OCaml library
for term rewriting, make it a perfect starting point for other tools con-
cerned with rewriting as well as experimental implementations of new
termination methods.

Keywords: term rewriting, termination, automation.

1 Introduction

Termination of term rewrite systems (TRSs) is an undecidable property. Never-
theless a vast number of methods have been developed to determine termination,
many of which are suitable for implementation. This paper summarizes the main
design issues, features, and successes of the Tyrolean Termination Tool 2 (TTT2
for short), the completely redesigned successor of the award winning1 Tyrolean
Termination Tool (TTT) [10]. TTT2 is a tool for automatically proving termination
of TRSs, based on the dependency pair framework [7,8, 10,22]. It incorporates
several novel methods like increasing interpretations, a modular match-bound
technique, uncurrying, and outermost loops, which are not (yet) available in
other termination provers. It produces readable output and has a simple web in-
terface. Precompiled binaries, sources and documentation of TTT2 are available
at

http://cl-informatik.uibk.ac.at/software/ttt2/

In contrast to its predecessor, TTT2 is open source; published under terms of the
GNU Lesser General Public License. This work refers to version 1.0 of the tool.

The remainder of the paper is organized as follows. In the next section we de-
scribe how TTT2 can be used from the command line and sketch its web interface.

� This research is supported by FWF (Austrian Science Fund) project P18763.
1 Best paper award, RTA 2003.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 295–304, 2009.
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Section 3 explains the strategy language of TTT2, which gives the user full control
over the implemented termination methods. Some of the available termination
techniques are listed in Section 4. In Section 5 we discuss the performance of our
tool in light of the latest issue of the termination competition before addressing
ongoing and future work in Section 6. We conclude in Section 7.

2 Design

The tool is written in OCaml2 and consists of about 30,000 lines of code. Ap-
proximately 13% are dedicated to provide some general useful functions and
data structures. Another 24% are used to implement the rewriting library which
deals with terms and rules. The biggest fragment—about 49%—is used to im-
plement termination methods and the strategy language. The rest (about 14%)
is concerned with input and output. Since our tool provides several techniques
that modify a termination problem by transforming it into different problem do-
mains, TTT2 interfaces the SAT solver MiniSat [2] and the SMT solver Yices [1].
For interfacing C code the third party contribution CamlIDL3 is needed. The
use of monads to implement the strategy language and several other parts of the
tool, allow a clean and abstract treatment of the internal prover state in a purely
functional way. Additionally, monads facilitate changes (like the integration of a
new termination method).

Besides the actual termination prover, we provide the following libraries:

• util extends the functionality of several modules from the standard OCaml
library. Furthermore modules for graph manipulation, advanced process and
timer handling, as well as monads are included.

• parsec is an OCaml port of the Haskell parsec4 library, i.e., the implemen-
tation of a functional combinator parser library.

• rewriting provides types and functions dealing with terms, substitutions,
contexts, TRSs, etc. The functionality is not only aimed at termination, e.g.,
the computation of overlaps and normal forms is also supported.

• logic provides an OCaml interface that abstracts over the two constraint
solvers MiniSat and Yices. To this end arithmetical formulas are encoded in
an intermediate datatype. When solving the constraints the user specifies
the back-end. In the case of MiniSat, additional information (how many bits
are used to represent numbers and intermediate results) can be provided. Af-
terwards the propositional formula is transformed into conjunctive normal
form by a satisfiability-preserving transformation [19]. Yices, on the other
hand, does neither require the number of bits as a parameter nor the trans-
formation due to built-in support for linear arithmetic and formulas not in
conjunctive normal form.

• processors collects the numerous (non-)termination methods.
• ttt2 contains the strategy language and connects the preceding libraries.

2 http://caml.inria.fr/
3 http://caml.inria.fr/pub/old_caml_site/camlidl/
4 http://legacy.cs.uu.nl/daan/parsec.html

http://caml.inria.fr/
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2.1 Command Line Interface

In order to run TTT2 from the command line, the user can either download the
source code from the TTT2 web page and install it following the installation
guidelines or alternatively download the binary of the latest version of TTT2.
After a successful installation, TTT2 can be started via the command

./ttt2 [options] <file> [timeout]

where [options] denotes a list of command line options, <file> specifies the
name of the file containing the TRS of which termination should be proved, and
[timeout]—a floating point number—defines the time limit for proving termi-
nation of the given TRS. The TRS must adhere to the termination problem
database format.5 The timeout is optional. To get a complete list of the com-
mand line options of TTT2 either read the documentation provided on the tool’s
homepage or execute the command ./ttt2 --help.

2.2 Web Interface

The web interface of TTT2 allows the user to play around with some termina-
tion methods and an automatic strategy. The design is intentionally simple to
abstract from the challenging task to provide a fast and powerful automatic
strategy.

3 The Strategy Language

As mentioned in the introduction, TTT2 is designed according to the dependency
pair framework which ensures that all methods are implemented in a modular
way. In order to combine these methods in a flexible manner, TTT2 provides a
strategy language. In the following the most important constructs of this language
are explained. For further information please consult the online documentation.

3.1 Syntax

The operators provided by the strategy language can be divided into three
classes: combinators, iterators, and specifiers. Combinators are used to combine
two strategies whereas iterators are used to repeat a given strategy a designated
number of times. In contrast, specifiers are used to control the behavior of strate-
gies. The most common combinators are the infixes ‘;’, ‘|’, and ‘||’. The most
common iterators are the postfixes ‘?’, ‘+’, and ‘*’. The most common specifier
is ‘[f]’ (also written postfix), where f denotes some floating point number. In
order to obtain a well-formed strategy s, these operators have to be combined
according to the grammar

s ::= m | (s) | s;s | s|s | s||s | s? | s+ | s* | s[f]
5 http://www.lri.fr/~marche/tpdb/format.html

http://www.lri.fr/~marche/tpdb/format.html
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where m denotes any available method of TTT2 (possibly followed by some flags).
In order to avoid unnecessary parentheses, the following precedence is used:
?, +, *, [f] > ; > |, ||.

3.2 Semantics

In the remainder of this section we use the notion termination problem to de-
note a TRS, a dependency pair problem (DP problem), or a relative termination
problem. We call a termination problem terminating if the underlying TRS (DP
problem, relative termination problem) is terminating (finite, relative terminat-
ing). A strategy works on a termination problem. Whenever TTT2 executes a
strategy, internally, a so called proof object is constructed which represents the
actual termination proof. Depending on the shape of the resulting proof object
after applying a strategy s, we say that s succeeded or s failed.

This should not be confused with the possible answers of the prover: YES, NO,
and MAYBE. Here YES means that termination could be proved, NO indicates a
successful non-termination proof, and MAYBE refers to the case when termination
could neither be proved nor disproved. On success of a strategy s it depends
on the internal proof object whether the final answer is YES or NO. On failure,
the answer always is MAYBE. Based on the two possibilities success or failure, the
semantics of the strategy operators is as follows.

The combinator ‘;’ denotes sequential composition. Given two strategies s
and s′ together with a termination problem P , s;s′ first tries to apply s to P .
If this fails, then also s;s′ fails, otherwise s′ is applied to the resulting termi-
nation problem, i.e., the strategy s;s′ fails, whenever one of s and s′ fails. The
combinator ‘|’ denotes choice. Different from sequential composition, the choice
s|s′ succeeds whenever at least one of s or s′ succeeds. More precisely, given the
strategy s|s′, TTT2 first tries to apply s to P . If this succeeds, its result is the
result of s|s′, otherwise s′ is applied to P . The combinator ‘||’ is quite similar
to the choice combinator and denotes parallel execution. That means given the
strategy s||s′, TTT2 runs s and s′ in parallel on the termination problem P . As
soon as at least one of s and s′ succeeds, the resulting termination problem is
returned. This can be seen as a kind of non-deterministic choice, since on si-
multaneous success of both s and s′, it is more or less arbitrary whose result is
taken.

Example 1. Consider the following strategy:

dp;edg;sccs;(bounds -dp || (matrix -wm | kbo -af))

In order to prove termination of a TRS R using this strategy, TTT2 first com-
putes the dependency pairs P of R using the dp processor (thereby transforming
the initially supplied TRS into a DP problem). After that the estimated depen-
dency graph and the strongly connected components of the DP problem (P ,R)
are computed, resulting in a set of DP problems {(P1,R), . . . , (Pn,R)}. Finally,
to conclude that the DP problem (P ,R) is finite and hence that the TRS R
is terminating, TTT2 tries to prove finiteness of each DP problem (Pi,R) with
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1 � i � n by running the match-bound technique and a combination of the ma-
trix method and the Knuth-Bendix order in parallel. Note that the substrategy
matrix -wm | kbo -af first applies the matrix method to a given termination
problem and on failure, applies the Knuth-Bendix order. Here the flag -wm indi-
cates that weakly monotone interpretations are used and the flag -af specifies
that argument filterings should be considered when computing the ordering.

Next we describe the iterators ‘?’, ‘+’, and ‘*’. The strategy s? tries to apply
the strategy s to a termination problem P . On success its result is returned,
otherwise P is returned unmodified, i.e., s? applies s once or not at all to P
and always succeeds. The iterators ‘+’ and ‘*’ are used to apply s recursively
to P until P cannot be modified any more. The difference between ‘+’ and ‘*’
is that s* always succeeds whereas s+ only succeeds if it can prove or disprove
termination of P . In other words, s* is used to simplify problems, since it applies
s until no further progress can be achieved and then returns the latest problem.
In contrast ‘+’ requires the proof attempt to be completed.
Example 2. We extend the strategy of the previous example by adding the iter-
ator ‘+’ and two new methods:

uncurry?;poly -ib 2 -ob 4*;
dp;edg;(sccs;(bounds -dp || (matrix -wm | kbo -af)))+

To prove termination of a TRS R, TTT2 performs the following steps. At first
uncurrying is applied. Since this method works only for applicative TRSs, the
iterator ‘?’ is added in order to avoid that the whole strategy fails if R is not
an applicative system. After that polynomial interpretations with two input bits
(coefficients) and four output bits (intermediate results) are used to simplify
the given TRS. (Restricting the values for intermediate computations results
in efficiency gains.) The iterator ‘*’ ensures that a maximal number of rewrite
rules is removed by applying the method as often as possible. Finally, after
the computation of the dependency pairs and the estimated dependency graph,
TTT2 tries to prove finiteness of the given DP problems, by applying the strategy
sccs;(bounds -dp || (matrix -wm | kbo -af)) recursively.
At last we explain the specifier ‘[f]’ which denotes timed execution. Given a
strategy s and a timeout f , s[f] tries to modify a given termination problem P
for at most f seconds. If s does not succeed or fail within f seconds (wall clock
time), s[f] fails. Otherwise s[f] succeeds and returns the termination problem
that remains after applying s to P .

Example 3. To ensure that the strategy of the previous example is executed for
at most 5 seconds we add the specifier ‘[5]’. In addition we limit the time spend
by the match-bound technique to 1 second.

(uncurry?;poly -ib 2 -ob 4*;
dp;edg;(sccs;(bounds -dp[1] || (matrix -wm | kbo -af)))+)[5]

Using this strategy, TTT2 has at most 5 seconds to prove termination of a given
TRS R and in each iteration 1 second is available to simplify termination prob-
lems using the match-bound technique. If the 5 seconds expire, the execution is
aborted immediately.
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3.3 Specification and Configuration

In order to call TTT2 with a certain strategy, the flag --strategy (or alternatively
the short form -s) has to be set. For convenience it is possible to call TTT2
without specifying any strategy. In this case a predefined strategy is used (for
details execute ./ttt2 --help). Note that the user is responsible for ensuring
soundness of the strategy, e.g., applying the processors in correct order.

Example 4. To call TTT2 with the strategy of Example 3, the following command
is used: ./ttt2 -s ’(uncurry?;poly -ib 2 -ob 4*; ...)[5]’ <file>. Al-
ternatively, one could also remove the outermost time limit of the strategy and
pass it as an argument to TTT2. In that case the command looks as follows:
./ttt2 -s ’(uncurry?;poly -ib 2 -ob 4*; ...)’ <file> 5.

Since strategies can get quite complex (e.g., the strategy used in the November
2008 termination competition consists of about 100 lines), TTT2 provides the
opportunity to specify a configuration file. This allows to abbreviate and connect
different strategies. By convention strategy abbreviations are written in capital
letters. To tell TTT2 which configuration file should be used, the flag --conf (or
the short form -c) followed by the file name has to be set.

Example 5. Consider the strategy of Example 3. In order to call TTT2 with this
strategy we write a configuration file ttt2.conf containing the following lines:

[Abbreviations]
PRE = uncurry?;poly -ib 2 -ob 4*
PARALLEL = (bounds -dp[1] || (matrix -wm | kbo -af))
AUTO = (PRE;dp;edg;(sccs;PARALLEL)+)[5]

It is important to note that abbreviations are not implicitly surrounded by paren-
theses since this allows more freedom in abbreviating expressions. To tell TTT2
that the strategy AUTO of the configuration file ttt2.conf should be used the
following flags have to be specified: ./ttt2 -c ttt2.conf -s AUTO <file>.

4 A Selection of Implemented Techniques

In this section some characteristic methods of TTT2 are presented.

Bounds. TTT2 provides the match-bound technique [5] which uses tree automata
techniques to prove termination of a TRS on a particular language (in general
the set of all ground terms). To increase the applicability of the match-bound
technique, TTT2 was the first tool that incorporated it—in a fully modular way—
into the dependency pair framework [14]. Moreover, match-bounds can be used
to prove complexity results. It is well-known that match-bounds imply linear
derivational complexity for non-duplicating systems [5].

KBO. TTT2 employs the most sophisticated implementations of the Knuth-
Bendix ordering. The proof obligations are formulated as a propositional formula
(set of pseudo boolean constraints, linear arithmetic constraints) [24] and then
solved by MiniSat (MiniSat+,Yices).
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Loops. Besides techniques from [18], for string rewrite systems (SRSs) loops
are searched with the help of SAT solving. After fixing parameters such as
the maximal length of words and the maximal length of the non-terminating
sequence, loops are encoded in propositional logic [25]. Additionally, based on
the approach from [18], a novel idea [23] allows to check whether a given
loop also is an outermost loop, i.e., a loop under the outermost reduction
strategy.

Matrices. TTT2 implements matrix [12, 3] and arctic [13] interpretations. Our
tool uses higher dimensions than competitors which sometimes results in very
short and elegant termination proofs. A direct termination proof by arctic ma-
trices yields linear derivational complexity and direct matrix interpretations (of
triangular shape) [15] give polynomial upper bounds.

Polynomials. Apart from polynomial interpretations over different carriers (nat-
ural numbers, integers, rationals), additional power is achieved by allowing ap-
proximations of minimum and maximum operations [4]. Furthermore, techniques
from [26] allow an increase in the constant part of the interpretation for some
rules.

Root-Labeling. TTT2 was the first tool that incorporated root-labeling within the
dependency pair framework [21]. As a result, in 2007 it was the first automated
tool that could prove termination of an SRS with non-primitive recursive deriva-
tion length (Zantema/z090). Since root-labeling preserves derivational complex-
ity it is a viable transformation for proofs of complexity.

Uncurrying. TTT2 incorporates uncurrying for non-proper systems [9] similar to
its predecessor TTT. Furthermore it integrates the method within the depen-
dency pair framework [11]. This makes it a very strong tool on the subclass of
applicative systems. Due to the fact that reductions in the uncurried system are
strictly longer compared to the original system, upper bounds for complexity
considerations are not affected by this transformation.

5 TTT2 in Action

It goes without saying that TTT2 is not the only tool for proving termination
of rewrite systems. Since 2004 some of these automated termination analyzers
compete against each other in regular competitions.6 In the following paragraphs
we compare our tool with some of the other systems that participated in the
latest editions of the international termination competition.7 TTT2 participated
in three categories with the aim to show its flexibility and speed.

6 http://termination-portal.org/wiki/Termination_Competition
7 http://termcomp.uibk.ac.at/

http://termination-portal.org/wiki/Termination_Competition
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SRS Standard. TTT2 won this category in front of AProVE [6] and Jambox.8

The main reason was that we used matrix and arctic interpretations of higher
dimensions than AProVE and Jambox. Proofs were found for the systems Trafo/
un02, Trafo/un15, Trafo/un17, and the randomly generated Waldmann07b/
size-12-alpha-3-num-469 which could not be handled by any other tool (also
not in previous competitions).

TRS Standard. TTT2 finished second behind AProVE but in front of Jambox. The
main emphasis was put on speed. TTT2 could (dis)prove termination of 970 TRSs
out of 1391 TRSs in less than ten minutes. That means, it could handle 79% of
the systems AProVE could answer but in just 10% of the time.

TRS Outermost. TTT2 could solve twice as much systems as each of the three
competitors. While all other tools employed transformations that allowed to use
methods designed for full termination, TTT2 integrated a direct approach for
finding loops under a specific strategy [23].

TTT2 is not only successful on its own. Two derivatives of TTT2 were involved in
other categories of the competition, namely CaT9 (which was developed by the au-
thors) and TCT[16] (an independent tool, built on top of the basic components of
TTT2). TCTwas the first tool dedicated to proving complexity certificates. The aim
of CaT was just to show how helpful it is to start from the basis of a well-designed
termination prover; the additional implementation effort took a single day. CaT
won both categories (Derivational Complexity – Full Rewriting and Derivational
Complexity – Innermost Rewriting) in which it participated. Another tool that
builds on TTT2 is MKBTT [20], which implements multi-completion using exter-
nal termination provers. Experimental results revealed that due to thousands of
calls to the external prover, a fast one is preferable over a powerful one. This
observation inspired our configuration of TTT2 for the TRS Standard category
in the November 2008 competition where we used less than 10% of the allowed
time, to show how many problems could be solved in a strongly limited amount
of time.

6 Future Work

Two main goals for the near future are: the improvement of the output produced
by TTT2 and the formalization and certification of (non-)termination methods.
Concerning the output we plan to transform the internal proof objects into XML.
Afterwards it should be possible to convert this XML format into either human
readable output or a proof format suitable for automatic certification. For the
second goal a parallel project addresses the formalization of rewriting (IsaFoR,
Isabelle Formalization of Rewriting) in the theorem prover Isabelle/HOL [17].

8 http://joerg.endrullis.de/
9 http://cl-informatik.uibk.ac.at/software/cat/
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This formalization deals with rewriting in general and (non-)termination based
on the dependency pair framework in particular. In order to be usable for au-
tomated certification of proofs generated by a termination tool, we employ Is-
abelle’s code-generation facilities to export verified Haskell code. This results in
the program CeTA10 (Certification of Termination Analysis), capable of certifying
(non-)termination proofs.

7 Conclusion

In this paper we described the termination prover TTT2, the successor of the well-
known Tyrolean Termination Tool. We presented its strategy language, some of
its characteristic methods, and we compared TTT2 with other termination provers
to show its flexibility and versatility. We conclude the paper by listing what we
believe to be the main attractions of TTT2:

• it is open source,
• it provides a strategy language which allows to configure it for all possible

applications,
• it benefits from multi-core architecture due to support for parallelism,
• it is one of the fastest and most powerful termination provers, and
• it provides stand-alone libraries for parsing, rewriting, and logic.

Acknowledgments. We thank Nao Hirokawa for providing the sources of TTT
and Sarah Winkler for writing a first interface for MiniSat.
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18. Payet, É.: Loop detection in term rewriting using the eliminating unfoldings. The-
oretical Computer Science 403(2-3), 307–327 (2008)

19. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation.
Journal of Symbolic Computation 2(3), 293–304 (1986)

20. Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termi-
nation tools (system description). In: Armando, A., Baumgartner, P., Dowek, G.
(eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 306–312. Springer, Heidelberg
(2008)

21. Sternagel, C., Middeldorp, A.: Root-labeling. In: Voronkov, A. (ed.) RTA 2008.
LNCS, vol. 5117, pp. 336–350. Springer, Heidelberg (2008)

22. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen, Available as technical report AIB-2007-17 (2007)

23. Thiemann, R., Sternagel, C.: Loops under strategies. In: Treinen, R. (ed.) RTA
2009. LNCS, vol. 5595, pp. 17–31. Springer, Heidelberg (2009)

24. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. Journal of Automated
Reasoning (2009), doi:10.1007/s10817-009-9131-z

25. Zankl, H., Middeldorp, A.: Nontermination of string rewriting using SAT. In: Hof-
bauer, D., Serebrenik, A. (eds.) WST 2007, pp. 56–59 (2007)

26. Zankl, H., Middeldorp, A.: Increasing interpretations. Annals of Mathematics and
Artificial Intelligence (to appear, 2009)



From Outermost to Context-Sensitive Rewriting

Jörg Endrullis and Dimitri Hendriks

Vrije Universiteit Amsterdam
{joerg,diem}@few.vu.nl

Abstract. We define a transformation from term rewriting systems
(TRSs) to context-sensitive TRSs in such a way that termination of
the target system implies outermost termination of the original system.
For the class of left-linear TRSs the transformation is complete. Thereby
state-of-the-art termination methods and automated termination provers
for context-sensitive rewriting become available for proving termination
of outermost rewriting. The translation has been implemented in Jam-
box, making it the most successful tool in the category of outermost
rewriting of the last edition of the annual termination competition.

1 Introduction

Termination is a key aspect of program correctness, and therefore a widely
studied subject in term rewriting and program verification. While termina-
tion is undecidable in general, various automated techniques have been de-
veloped for proving termination. One of the most powerful techniques is the
method of dependency pairs [2]. Recently [1], this method has been generalized
to context-sensitive TRSs, thereby significantly extending the class of context-
sensitive TRSs for which termination can be shown automatically. Context-
sensitive rewriting [6] is a restriction on term rewriting where rewriting in some
fixed arguments of function symbols is disallowed. It offers a flexible paradigm to
analyze properties of rewrite strategies, in particular of (lazy) evaluation strate-
gies employed by functional programming languages.

In this paper context-sensitive rewriting is the target formalism for a transfor-
mational approach to the problem of outermost termination, that is, termination
with respect to outermost rewriting. Outermost rewriting is a rewriting strat-
egy where a redex may be contracted as long as it is not a proper subterm of
another redex occurrence. The main reason for studying outermost termination
is its practical relevancy: lazy functional programming languages like Miranda,
Haskell or Clean, are based on outermost rewriting as an evaluation strategy,
and in implementations of rewrite logic such as Maude and CafeOBJ, outermost
rewriting can be specified. Consider the TRS R0 consisting of the following rules:

a → f(a) f(f(x)) → b (R0)

Clearly, this system is not terminating as witnessed by the infinite rewrite se-
quence a → f(a) → f(f(a)) → f(f(f(a))) → . . ., but it is outermost terminat-
ing. Indeed, the third step in the infinite sequence is not an outermost step, since

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 305–319, 2009.
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the contraction takes place inside another redex. The only (maximal) outermost
rewrite sequence the term a admits is a → f(a) → f(f(a)) → b.

Our contribution is a transformation of arbitrary TRSs into context-sensitive
TRSs (μTRSs) in such a way that rewriting in the μTRS corresponds to out-
ermost rewriting in the original TRS. As a result advanced termination tech-
niques for μTRSs become applicable for proving outermost termination, and
automated termination provers for μTRSs can directly (without modification,
only preprocessing) be used for proving outermost termination. Our transfor-
mation is complete for the class of quasi left-linear TRSs (a generalized form of
left-linear TRSs, see [8]), that is, termination of the resulting μTRS is equivalent
to outermost termination of the original system.

The transformation is comprised of a variant of semantic labeling [12]. In
semantic labeling the function symbols in a term are labeled by the interpretation
of their arguments (or a label depending on these values) according to some
given semantics. We employ semantic labeling in order to mark symbols at redex
positions, and we obtain a μTRS by defining a replacement map that disallows
rewriting inside arguments of marked symbols.

We illustrate our use of semantic labeling by the TRS R0 from the first page.
We choose the algebra A0 = 〈{0, 1}, [·]〉 where the interpretation indicates the
presence of the symbol f , thus [a] = [b] = 0, and [f ](x) = 1 for x ∈ {0, 1}. Then
we write f� if the value of its argument is 1, and just f if the value is 0. The
symbol a is always marked, and b never is. If f is marked it corresponds to a redex
position with respect to the rule f(f(x)) → b. For example the term f(f(f(a)))
is labeled as f�(f�(f(a�))). We obtain a μTRS by forbidding rewriting inside
the argument of the symbol f�; since a� is a constant, there is nothing to be
forbidden. Then for correctly labeled terms, rewriting inside redex positions is
disallowed, corresponding to the outermost rewriting strategy. In order to rewrite
labeled terms we have to label the rules of the TRS. By labeling R0 with the
algebra A0 we obtain the μTRS R0:

a� → f(a�) f�(f(x)) → b f�(f�(x)) → b (R0)

which has two instances of the second rule, one for each possible value of x.
Now, despite the fact that the original TRS is outermost terminating, the

transformed μTRS R0 admits an infinite rewrite sequence:

a� → f(a�) → f(f(a�)) → f(f(f(a�))) → . . . (1)

The reason is that the term f(f(a�)) is not correctly labeled, as the root symbol
f should have been marked. In [12] this problem is avoided by allowing labeling
only with ‘models’. Roughly, an algebra is a model if left- and right-hand sides
of all rewrite rules have equal interpretations. However, this requirement is too
strict for the purpose of marking redexes, because contraction of a redex at a
position p may create a redex above p in the term tree, as witnessed by (1). In
fact, for R0 there exists no model which is able to distinguish between redex
and non-redex positions. The rewrite step f(a) → f(f(a)) creates a redex at the
top. The term f(a) is not a redex, and therefore its root symbol f should not
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be marked. On the other hand f(f(a)) is a redex and so the outermost f has
to be marked. The change of the labeling of a context (here f(�)) implies that
the interpretation of its arguments a and f(a) cannot be the same. Therefore
we cannot require the rule a → f(a) to preserve the interpretation.

For this reason, we generalize the concept of model, and relax the requirement
[�] = [r] to ∃n. [C[�]] = [C[r]] for all contexts C of depth n. Thus rules are
allowed to change the interpretation as long as the effect is limited to contexts
of a bounded depth. Algebras satisfying this weaker requirement, which we call
‘C-models’, are strong enough to recognize redex positions. In particular, the
algebra A0 given above is a C-model for the system R0. As demonstrated by the
rewrite sequence (1) in the μTRS R0, for C-models it is no longer sufficient to
simply label the rules: an application of the rule a� → f(a�) in the term f(a�)
creates the invalid labeled term f(f(a�)). In order to preserve correct labeling,
we sometimes need to extend the rewrite rules by putting contexts around their
left- and right-hand sides. Using the C-model A0, our algorithm transforms R0
into the μTRS 6π

A0
(R0), which truthfully simulates outermost rewriting of R0:

f (a�) → f�(f (a�)) top(f�(f (x))) → top(b)
top(a�) → top(f (a�)) top(f�(f�(x))) → top(b)

(6π
A0

(R0))

We explain this magical transformation. The rule f(a�) → f�(f(a�)) is obtained
from prepending the context f(�) to a → f(a). This enables correct updating
of the labeling of the context during rewriting. Because we still have to allow
rewrite steps a → f(a) of the original TRS at the top of a term, we extend
the signature with a unary function symbol top which represents the top of
a term. Thus when prepending contexts we include top(�), giving rise to the
rule top(a�) → top(f(a�)). The necessity of the symbol top becomes especially
apparent when considering the rule f(f(x)) → b. Here prepending the context
f(�) is not even an option since f(f(f(x))) → f(b) is not an outermost rewrite
step; this rule can only be applied at the top of a term. Hence we get the two
rules displayed on the right, one for each possible interpretation of the variable x.

Semantic labeling has the nice property that it does not complicate termina-
tion proofs. Although semantic labeling increases the search space, termination
proofs for the unlabeled system carry over to the labeled one. That is, whenever
R′ is a labeling of a TRS R and A = 〈A, [·], ,5〉 is a monotone Σ-algebra [4]
which proves termination of R, then extending [·] to the labeled signature Σ′

by [fλ] = [f ] for every f ∈ Σ and label λ, yields a monotone Σ′-algebra which
proves termination of R′. Consequently our transformation, based on a variant
of semantic labeling, also does not complicate termination proofs. On the con-
trary, the labeled systems often allow for simpler proofs arising from the enriched
signature which provides more freedom for the choice of interpretations, see [12].

Semantic labeling possibly creates extra copies of rules, and our extension
might even create more copies: one for each context that has to be prepended.
Despite of this fact, the implementation of our transformation in the termination
prover Jambox performs efficiently on the set of examples from the Termination
Problem Database (TPDB [10]).
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score average time

Jambox 72 (93.5%) 4.1s

TrafO 46 (59.7%) 8.1s

AProVE 27 (35.0%) 10.8s

Fig. 1. Results of proving outermost termination in the competition of 2008

Jambox was best in proving termination in the category of outermost rewrit-
ing of the termination competition of 2008 [10], see Figure 1. With an average
time of 4.1 seconds per termination proof, Jambox was also faster than the other
participants, providing empirical evidence for the efficiency of our transforma-
tion. Not listed in Figure 1 is TTT2, which did not prove outermost termination,
but performed best in disproving outermost termination.

The secret behind the efficiency of Jambox is threefold: First, we construct and
minimize the algebras employed for marking redex positions, see Sections 4 and 5.
Secondly, we try two labeling strategies: minimal and maximal. Minimal labeling
is very efficient and contributes to 75% of the success of Jambox. In order to
have a complete transformation we also employ maximal labeling. Both labelings
are described in Section 6. Thirdly, we combine labeling and context extension
into what we call ‘dynamic labeling’, where contexts are prepended depending
on the interpretation of the variables. This is formalized in Section 3. All these
optimizations minimize the number of rules and their size in the transformed
μTRS, which is important to keep a manageable search space.

Related work. Cariboo [5] deals with outermost termination using a stand-alone
approach based on induction. The very idea for a transformational approach
to outermost termination comes from [8]. There the signature is enriched with
unary symbols top, up, and down and the TRS is extended with ‘anti-matching’
rules such that down(t) is a redex if and only if t is not a redex with respect
to the original TRS. The idea is that the symbol down is moved down in the
term tree as long as no redex is encountered. Once a redex is encountered, a
rewrite step is performed, and the symbol down is replaced by up, which then
moves upwards again to the top of the term, marked by top. This transformation
is implemented in TrafO. Based on a similarly elegant idea, Thiemann [11] de-
fines a complete transformation from outermost to innermost rewriting, which
is implemented in AProVE. For traversal to the redex positions, rules of the
form down(isRedex(f(. . .))) → f(. . . , down(isRedex(. . .)), . . .) are used. In order
to simulate outermost rewriting and to prevent from moving inside redexes, rules
isRedex(�) → up(r) are added for every rule � → r of the original TRS. Then, by
the innermost rewriting strategy, the latter rules have priority over the traver-
sal rules, whenever an original redex is encountered. The simplicity of both
approaches is attractive, but the yo-yoing effect in the resulting TRSs makes
that the original outermost rewrite steps are ‘hidden’ among a vast amount of
auxiliary steps. This increases derivational complexity, and makes it hard for
automated termination provers to find proofs for the transformed systems.
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2 Preliminaries

For a general introduction to term rewriting and to context-sensitive rewriting,
the reader is referred to [9] and [6], respectively. Here we repeat some of the
main definitions, for the sake of completeness, and to fix notations.

A signature Σ is a non-empty set of symbols each having a fixed arity, given
by a mapping 
 : Σ → N. Given Σ and a set X of variables, the set Ter (Σ,X ) of
terms over Σ is the smallest set satisfying: X ⊆ Ter(Σ,X ), and f(t1, . . . , tn) ∈
Ter(Σ,X ) if f ∈ Σ of arity n and ti ∈ Ter(Σ,X ) for all 1 ≤ i ≤ n. We
use x, y, z, . . . to range over variables, and write Var(t) for the set of variables
occurring in a term t. Usually we leave X implicit and write Ter(Σ) for the set
of terms over Σ and a fixed, countably infinite set of variables X . The set of
positions Pos(t) ⊆ N∗ of a term t ∈ Ter(Σ) is defined as follows: Pos(x) = {ε}
for variables x ∈ X and Pos(f(t1, . . . , tn)) = {ε}∪{ip | 1 ≤ i ≤ 
f, p ∈ Pos(ti)}.
We write t(p) to denote the root symbol of t|p, the subterm of t rooted at p, and
we write root(t) for the root symbol of t, that is root(t) = t(ε).

A substitution σ is a map σ : X → Ter(Σ,X ) from variables to terms. For
terms t ∈ Ter(Σ,X ) and substitutions σ, tσ is inductively defined by xσ = σ(x)
if x ∈ X , and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) otherwise. Let � be a fresh symbol,
i.e. � �∈ Σ∪X . A context C is a term from Ter (Σ,X ∪{�}) containing precisely
one occurrence of �. By C[s] we denote the term Cσ where σ(�) = s and
σ(x) = x for all x ∈ X . The depth of a context C is defined as the length |p| of
the position p at which � resides, that is, the position p such that C(p) = �.

A term rewriting system (TRS) over Σ is a set R of pairs 〈�, r〉 ∈ Ter(Σ,X )2,
called rewrite rules and written as � → r, for which the left-hand side � is
not a variable (� �∈ X ) and all variables in the right-hand side r occur in �:
Var(r) ⊆ Var(�). For a TRS R we define →R, the rewrite relation induced by
R as follows. For terms s, t ∈ Ter(Σ,X ) we write s →R t, or just s → t if R is
clear from the context, if there exists a rule � → r ∈ R, a substitution σ and a
context C ∈ Ter(Σ,X ∪ {�}) such that s = C[�σ] and t = C[rσ]; we sometimes
write s →R,p r to explicitly indicate the rewrite position p, i.e. when C(p) = �.
Then s outermost rewrites to t at a position p ∈ Pos(s), denoted by s out→R,p t, if
s →R,p t and for all positions p′ that are a proper prefix of p: s|p′ is not a redex.

A mapping μ : Σ → 2N is called a replacement map (for Σ) if for all f ∈ Σ
we have μ(f) ⊆ {1, . . . , 
f}. A context-sensitive term rewriting system (μTRS)
is a pair 〈R,μ〉 consisting of a TRS R and a replacement map μ. The set of μ-
replacing positions Posμ(t) of a term t ∈ Ter(Σ,X ) is defined by Posμ(x) = {ε}
for x ∈ X and Posμ(f(t1, . . . , tn)) = {ε} ∪ {ip | i ∈ μ(f), p ∈ Posμ(ti)}. In
context-sensitive term rewriting only redexes at μ-replacing positions are con-
tracted: s μ-rewrites to t, denoted s →R,μ t, whenever s →R,p t with p ∈ Posμ(s).

A Σ-algebra 〈A, [·]〉 consists of a non-empty set A and for each n-ary f ∈ Σ
a function [f ] : An → A, called the interpretation of f . Given an assignment α :
X → A, the interpretation of terms t ∈ Ter(Σ) is defined by: [x, α] = α(x) and
[f(t1, . . . , tn), α] = [f ]([t1, α], . . . , [tn, α]). For substitutions σ : X → Ter(Σ,X ),
we write [σ, α] for the function λx.[σ(x), α]. For ground terms t ∈ Ter(Σ, ∅) and
substitutions σ : X → Ter(Σ, ∅) we write [t] and [σ] for short, respectively.
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3 Transformation by Dynamic Labeling

In outermost rewriting the only redexes which are allowed to be rewritten are
those which are not nested within any other redex occurrence. We represent this
strategy by context-sensitive rewriting by using semantic labeling: we mark the
symbols which are the root of a redex in order to disallow rewriting within that
redex. We first recall the definition of semantic labeling and models from [12],
and then generalize these to fit our purpose.

Definition 3.1 ([12]). Let Σ be a signature. A semantic labeling 〈A, [·], π〉 con-
sists of a Σ-algebra 〈A, [·]〉 and a family π = {πf}f∈Σ of functions πf : A�f → Λf

where, for each f ∈ Σ, Λf is a finite and non-empty set of labels. For a term
t ∈ Ter(Σ) and α : Var(t) → A, an interpretation of its variables, we define the
labeling lab(t, α) of t with respect to α inductively as follows:

lab(x, α) = x ,

lab(f(t1, . . . , tn), α) = fπf ([t1,α],...,[tn,α])(lab(t1, α), . . . , lab(tn, α)) .

For ground terms t ∈ Ter(Σ, ∅) we just write lab(t). Let R be a TRS over
Σ. The semantic labeling of R is the TRS lab(R) over the labeled signature
lab(Σ) = {fλ | f ∈ Σ, λ ∈ Λf}, defined by:

lab(R) = {lab(�, α) → lab(r, α) | � → r ∈ R , α : Var(�) → A} .

Term labeling satisfies the following useful property; see [12] for a proof.

Lemma 3.2 ([12]). Let 〈A, [·]〉 be a Σ-algebra, α : X → A, σ : X → Ter(Σ),
and σ(x) = lab(σ(x), α). Then lab(tσ, α) = lab(t, [σ, α])σ, for all t ∈ Ter(Σ).

The Σ-algebra of a semantic labeling has to satisfy certain constraints in order
to obtain that a TRS is terminating if and only if its labeled version is. In [12]
the algebra has to be a ‘model’: A Σ-algebra 〈A, [·]〉 is called a model of a TRS R
if for all rules � → r ∈ R and assignments of variables α : Var(�) → A we have
that [�, α] = [r, α]. In the introduction we explained why this notion of model is
too restrictive for our purpose. In order to be able to distinguish between redex
and non-redex positions we introduce C-models, a generalization of models.

Definition 3.3. A C-model for a TRS R is a Σ-algebra 〈A, [·]〉 such that for
every rule � → r ∈ R there exists n ∈ N such that for every context C of depth n
and assignment α : X → A we have [C[�], α] = [C[r], α]. When n ∈ N is minimal
for a rule � → r with respect to this property, we call n the C-depth for � → r.

As this definition suggests, it is possible to use a C-model A to transform a
TRS R by prepending contexts to its rules in such a way that A becomes a
model for the transformed system R̃, and then perform semantic labeling. But
then, from the labeled version lab(R̃), every rule that contains a marked (redex)
symbol within the context that was prepended to the rule in the construction
of R̃ has to be removed again, as it would enable a rewrite step which is not
outermost.

We choose for a different approach which we call ‘dynamic labeling’. We step-
wise extend rules by contexts, only when needed and dependent on the variable
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interpretation used for the semantic labeling. For different interpretations of the
variables usually different context depths are necessary for achieving equal inter-
pretations of left- and right-hand side. In each extension step we check whether
a candidate symbol is a redex symbol, and, if it is, this symbol is excluded from
prepending. Here, by a redex symbol we mean a labeled symbol which indicates
the presence of a redex in the original system (at the same position). Dynamic
labeling is more efficient in that both the number and the size of the rules of
the resulting μTRS are smaller than in the ‘static’ version. We explain dynamic
labeling by means of the TRS R1 consisting of the rules:

f(g(x)) → f(f(g(x))) f(f(f(x))) → x (R1)

and the algebra A1 = 〈A1, [·]〉 where A1 = {g, f0, f1, f2} and where the inter-
pretation of the symbols is defined by [g](x) = g for all x ∈ A1, [f ](g) = f1 and
[f ](fi) = fmin(i+1,2) for i = 0, 1, 2. Let further 〈A1, π〉 be the semantic labeling
where π labels the symbols with the interpretations of their arguments. Then
the symbols fg and ff2 are redex symbols, corresponding to redex positions with
respect to the first and the second rule of R1, respectively. The algebra A1 is a
C-model where for the first rule the C-depth is 1, and for the second rule it is 2.

We iteratively construct sets P0, P1, . . ., until Pi+1 = Pi for some i. The initial
set P0 consists of pairs 〈� → r, α〉 for each rule � → r, and each interpretation
α : Var(�) → A1 of the variables. Then, in each step, Pi+1 is obtained from Pi

by replacing every pair 〈� → r, α〉 of Pi for which the interpretation of the left-
hand side differs from the right-hand side ([�, α] �= [r, α]), by the pairs 〈C[�] →
C[r], α′〉 for every flat context C (see (2) on the next page) and every extension
α′ : Var(C[�]) → A1 of α, such that the root of the labeled, extended left-hand
side lab(C[�], α′) is not a redex symbol. Among the flat contexts to prepend we
include top(�) to cater for the case that the rule is applied at the top of the
term. For R1 the initial set P0 is:

P0 =
{
〈f(g(x)) → f(f(g(x))), λx.a〉 , 〈f(f(f(x))) → x, λx.a〉 | a ∈ A1

}
.

The only element 〈� → r, α〉 of P0 such that [�, α] = [r, α] is 〈f(f(f(x))) →
x, λx.f2〉. For this pair no context needs to be prepended. The other pairs have
to be replaced by their context extensions, and thus P1 consists of:

〈C[f(g(x))] → C[f(f(g(x)))], λx.a〉 , for all a ∈ A1, C ∈ {top(�), f(�), g(�)},
〈f(f(f(x))) → x, λx.f2〉 ,

〈C[f(f(f(x)))] → C[x], λx.a〉 , for all a ∈ A1 \ {f2}, C ∈ {(top)�, g(�)}.

In the last line the context f(�) is excluded, because the labeled left-hand side
of the rule would contain the redex symbol ff2 within the prepended context,
and thus the step would not be outermost. Due to the outermost strategy, the
original rule is only applicable under a context C[g(�)] (where C does not con-
tain any redexes) or at the top of a term. Now for all (4 · 3 + 1 + 3 · 2 = 19)
pairs of P1 left- and right-hand side have equal interpretations, and the iterative
construction is ended. We define 6A1(R1) = P1, and call this set the ‘dynamic
context extension’ of R1 with respect to A1.
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Secondly, the dynamic extension 6A1(R1) is labeled using the family π which
returns for each symbol f a label consisting of the interpretation of its arguments,
i.e., πf (a1, . . . , a�f ) = 〈a1, . . . , a�f 〉. Then the desired μTRS 6π

A1
(R1), which we

call the dynamic labeling of R1, consists of the rules lab(�, α) → lab(r, α) for
every 〈� → r, α〉 ∈ 6A1(R1), with the replacement map μ defined by μ(f) = ∅
if f ∈ {fg, ff2}, and μ(f) = {1, . . . , 
f} otherwise, for all f ∈ lab(Σ).

We now formalize dynamic labeling. For the remainder of this section we fix an
arbitrary TRS R over Σ, and let A = 〈A, [·]〉 be a C-model for R. We assume top
to be a fresh symbol (top �∈ Σ) representing the top of a term, and abbreviate
Σtop = Σ ∪ {top}. We extend A to a Σtop-algebra by choosing an arbitrary
but fixed element a ∈ A and defining the interpretation of top as the constant
function [top] = λx.a. Furthermore, we let 〈A, π〉 be a semantic labeling, and
Σred ⊆ lab(Σ) a subset of the labeled signature, called the set of redex symbols.
The definition makes use of flat contexts fresh for t ∈ Ter(Σtop):

C�
t =

{
f(x1, . . . , xj−1, �, xj+1, . . . , x�f ) | f ∈ Σtop, j ∈ {1, . . . , 
f}

}
(2)

where x1, x2, . . . ∈ X such that xi �∈ Var(t). Furthermore, for partial functions
f, g : S ⇀ T with disjoint domains, we write f+g for the union of f and g, defined
by (f + g)(x) = f(x) if x ∈ dom(f), and (f + g)(x) = g(x) if x ∈ dom(g).

Definition 3.4. The dynamic context extension of R, denoted by 6A(R), is
defined as the fixed point of the following construction of sets P0, P1, . . ., that
is, 6A(R) = Pi as soon as Pi+1 = Pi for some i. The initial set is defined by:

P0 = { 〈� → r, α〉 | � → r ∈ R, α : Var(�) → A } ,

and for i = 0, 1, . . . the set Pi+1 is obtained from Pi by replacing every pair
〈� → r, α〉 such that [�, α] �= [r, α], or r ∈ X ,1 by all pairs in 6(� → r, α) where:

6(� → r, α) =
{
〈C[�] → C[r], α + β〉

∣
∣ C ∈ C�

	 , β : Var(C) → A,

root(lab(C[�], α + β)) �∈ Σred } .

Then, the dynamic labeling of R is the μTRS 〈6π
A(R), μ〉 consisting of:

6π
A(R) =

{
lab(�, α) → lab(r, α) | 〈� → r, α〉 ∈ 6A(R)

}
,

and the replacement map μ, defined by μ(f) = ∅ if f ∈ Σred , and μ(f) =
{1, . . . , 
f} otherwise, for all f ∈ lab(Σtop). Whenever the set Σred , which de-
termines the replacement map, is clear from the context, we write 6π

A(R) as a
shorthand for 〈6π

A(R), μ〉.

Notice that the construction of 6A(R) is guaranteed to terminate because of
the assumption that A is a C-model.

We come to the first main theorem, stating that outermost ground termination
of R is implied by termination of the transformed system 6π

A(R).
1 The condition r �∈ X eliminates collapsing rules. This is used in the proof of Thm. 6.5,

which states completeness. Without this condition, the transformation is still sound
(Thm. 3.7). Nota bene: in the TRS R1 worked out before, r �∈ X is not used.
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For the remainder of this section, we assume that the set Σred ⊆ lab(Σ) contains
redex symbols only, that is, for all ground terms t and p ∈ Pos(t):

lab(t)(p) ∈ Σred implies that t|p is a redex with respect to R (‡)

Lemma 3.5. Let s, t ∈ Ter(Σ, ∅) be ground terms and p ∈ Pos(s) such that
s out→R,p t. Then for all proper prefixes q of 1p we have lab(top(s))(q) �∈ Σred .

Proof. If q = ε, this follows from topλ �∈ Σred for any label λ. If q �= ε, then
lab(top(s))(q) = lab(s)(q′) with q′ a proper prefix of p, and if lab(s)(q′) ∈ Σred ,
then by assumption (‡) the term s contains a redex at position q′, quod non. �

The following lemma states that any outermost ground rewrite step in R can
be transformed into a rewrite step in 6π

A(R). For ground substitutions σ : X →
Ter(Σ, ∅) define σ(x) = lab(xσ).

Lemma 3.6. Let s, t ∈ Ter(Σ, ∅) be ground terms such that s out→R t. Then:

lab(top(s)) →�π
A(R) lab(top(t)) .

Proof. Assume s out→R,p t for some position p ∈ Pos(s). Then there exists a rule
� → r ∈ R, a context C with C(p) = � and a ground substitution σ such that
s = C[�σ] and t = C[rσ]. We consider the construction of the dynamic context
extension from Definition 3.4, and prove by induction that for all i = 0, 1, . . .
there exists a context Ci which is a prefix of top(C), a ground substitution σi, and
terms �i, ri such that top(s) = Ci[�iσi], top(t) = Ci[riσi] and 〈�i → ri, [σi]〉 ∈ Pi.
For the base case we have 〈�0 → r0, [σ0]〉 ∈ P0 with �0 = �, r0 = r, σ0 = σ, and
C0 = top(C). For the induction step we assume the existence of Ci, σi, and
〈�i → ri, [σi]〉 ∈ Pi with the above properties. If [�i, [σi]] = [ri, [σi]] and ri �∈ X
then by definition 〈�i → ri, [σi]〉 ∈ Pi+1, and so we are done. For the remaining
cases [�i, [σi]] �= [ri, [σi]] and ri ∈ X , we first show that Ci �= �. If [�i, [σi]] �=
[ri, [σi]] and Ci = � , then �iσi = top(s) and riσi = top(t), and hence root(�i) =
root(ri) = top, contradicting [�i, [σi]] �= [ri, [σi]] (recall that the interpretation
of top is constant). Furthermore, we have ri ∈ X only if i = 0, and then Ci =
top(C) �= �. Thus we have Ci = D[D′σ′] for some context D, flat context D′ ∈
C�

	i
and substitution σ′. We choose Ci+1 = D, �i+1 = D′[�i], ri+1 = D′[ri], and

σi+1 = σi +σ′. It remains to be shown that 〈�i+1 → ri+1, [σi+1]〉 ∈ Pi+1. For this
it suffices to prove that root(lab(�i+1, [σi+1])) �∈ Σred . We have Ci+1[�i+1σi+1] =
top(s). Let q be the position such that Ci+1(q) = �. Then, by Lemma 3.2 we
obtain root(lab(�i+1, [σi+1])) = root(lab(�i+1σi+1)) = top(lab(s))(q). Note that
q is a proper prefix of 1p, and so lab(s)(q′) �∈ Σred by Lemma 3.5.

Let i ∈ N be such that Pi+1 = Pi. By the result above we have 〈�i → ri, [σi]〉
∈ 6A(R), with [�iσi] = [riσi], and then lab(�i, [σi]) → lab(ri, [σi]) ∈ 6π

A(R) by
definition. Let τ and υ be defined by τ(�) = �iσi, υ(�) = riσi, and τ(x) =
υ(x) = x for x ∈ X . Then we have that lab(Ci, [τ ]) = lab(Ci, [υ]) since [τ ] = [υ].
Let E = lab(Ci, [τ ]). We get lab(top(s)) = lab(Ci[�iσi]) = lab(Ciτ) = Eτ =
E[lab(�iσi)] = E[lab(�i, [σi])σi] and lab(top(t)) = . . . = E[lab(ri, [σi])σi], by
Lemma 3.2. Then, by Lemma 3.5 we have lab(top(s)) →�π

A(R) lab(top(t)). �
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Theorem 3.7. R is outermost ground terminating if 6π
A(R) is terminating.

Proof. Assume R admits an infinite outermost rewrite sequence t1
out→R t2

out→R

t3
out→R . . .. Then from Lemma 3.6 it follows that6π

A(R) allows an infinite rewrite
sequence: lab(top(t1)) →�π

A(R) lab(top(t2)) →�π
A(R) lab(top(t3)) →�π

A(R) . . .. �

Theorem 3.7 is about outermost ground termination. This is not a restriction
because by adding a fresh constant 0 and a fresh unary symbol s, outermost
ground termination coincides with outermost termination:

Lemma 3.8. The TRS R over the signature Σ is outermost terminating if and
only if R over the signature Σ ∪ {s, 0} is outermost ground terminating. �

4 Constructing Suitable Algebras

In this section we construct C-models that are able to recognize redex positions
with respect to left-linear rules. The construction of C-models is similar to the
construction of a deterministic tree automaton (DTA) for recognizing left-linear
redexes. A DTA is a Σ-algebra 〈A, [·]〉 with a distinguished set AF ⊆ A of final
states. A term t is accepted by the automaton whenever [t] ∈ AF . The difference
with the construction of a DTA is that for the construction of a C-model we do
not distinguish final and non-final states, but instead have a family of functions
isRedexf : A�f → Bool for indicating the presence of a redex.

Definition 4.1. A redex-algebra A = 〈A, [·], isRedex〉 is a Σ-algebra 〈A, [·]〉 with
a family {isRedexf}f∈Σ of functions isRedexf : A�f → Bool . The language of A
is the set L(A) = {f(t1, . . . , tn) ∈ Ter(Σ, ∅) | isRedexf ([t1], . . . , [tn]) = true}.

By this separation of tasks our approach allows for smaller algebras, because,
intuitively, the algebra needs to ‘remember’ only the subterms t1,. . . ,tn and not
f(t1, . . . , tn) itself. To see this, consider the single-rule system:

f(g(x)) → a .

A tree automaton recognizing redex positions for this TRS needs at least three
states: one for indicating a redex f(g(. . .)), one for g(. . .), and one garbage state.
For redex-algebras two states suffice: one state for g(. . .) and one for garbage.
Then isRedexf (g(. . .)) = true and false , otherwise.

The ‘core’ of a redex-algebra consists of all interpretations of ground terms:

Definition 4.2. Let A = 〈A, [·], isRedex〉 be a redex-algebra over Σ. The core of
A is the redex-algebra Ac = 〈Ac, [·]c, isRedexc〉 where Ac is the smallest set such
that [f ](a1, . . . , an) ∈ Ac whenever f ∈ Σ and a1, . . . , an ∈ Ac, and where [·]c and
isRedex c are the restrictions of [·] and isRedex to Ac, respectively. Furthermore
we say that A is core whenever A = Ac.

Lemma 4.3. Let A = 〈A, [·], isRedex〉 be a redex-algebra over Σ. Then for every
a ∈ Ac there exists a ground term t ∈ Ter(Σ, ∅) with [t] = a. �
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We now describe a syntactical construction of redex-algebras. The idea is to
build Σ-algebras that ‘remember’ proper subterms of left-hand sides. Given this
interpretation, the isRedex functions decide whether a redex is present. We first
define some auxiliary functions.

Let⊥ be a fresh symbol,⊥ �∈ Σ, and define T = Ter(Σ∪{⊥}, ∅). The function
cut : Ter(Σ,X ) → T is defined such that cut(t) is the result of replacing all
variables in t by ⊥. We define match : T ×T → Bool such that match(s, t) = true
if s can be obtained from t by replacing subterms of t by ⊥, and match(s, t) =
false, otherwise. Let further merge(s, t) be the ‘most general common instance’ of
s and t, that is, merge : T ×T ⇀ T is defined by: merge(⊥, t) = t, merge(t,⊥) =
t, and merge(f(s1, . . . , sn), f(t1, . . . , tn)) = f(merge(s1, t1), . . . ,merge(sn, tn)),
and undefined whenever there exists a position p ∈ Pos(s) such that s(p) ∈ Σ,
t(p) ∈ Σ, and s(p) �= t(p). Finally we define shrink : T × 2T → T such that
shrink (s, T ) is the largest t ∈ T (with respect to the number of symbols) such
that match(t, s) is true. Note that shrink (s, T ) is well-defined whenever T is
closed under merge and ⊥ ∈ T : whenever two terms t1 �= t2 of equal size match
s then merge(t1, t2) is larger and matches s.

Definition 4.4. Let R be a TRS. The redex-algebra for R is the core of the
redex-algebra 〈A, [·], isRedex〉, where A is the smallest set such that ⊥ ∈ A and

– t ∈ A for every proper subterm t of cut(�) with � a linear left-hand side of R ,
– merge(s, t) ∈ A whenever s, t ∈ A and merge(s, t) is defined.

Then [·] is defined by [f ](t1, . . . , tn) = shrink(f(t1, . . . , tn), A). And, for every
f ∈ Σ we define isRedexf (t1, . . . , tn) = true if f(t1, . . . , tn) is an instance of a
linear left-hand side of R, and isRedexf (t1, . . . , tn) = false , otherwise.

Example 4.5. Consider the term rewriting system R consisting of the rules:

c(c(c(x))) → a , c(c(a)) → c(c(c(c(a)))) .

By Definition 4.4 we obtain A = {c(c(⊥)), c(⊥),⊥, c(a), a}. Here [a] = a, [c](a) =
c(a), [c](c(a)) = c(c(⊥)) and [c](c(c(⊥))) = c(c(⊥)). Thus the elements ⊥ and
c(⊥) are not part of the core and hence not of the redex-algebra for the TRS.
Here we have isRedexc(c(a)) = isRedexc(c(c(⊥))) = true, and false otherwise.

Example 4.6. We compute the domain of the redex-algebra for the TRS:

f(x, y) → a(f(c(x), y)) , a(f(c(c(x)), y)) → e ,
f(x, y) → b(f(x, c(y))) , b(f(x, c(c(y)))) → e .

The subterms of cut(�) of linear left-hand sides � are: S = {⊥, f(c(c(⊥)),⊥),
f(⊥, c(c(⊥))), c(c(⊥)), c(⊥) }. The closure of S under merge yields the domain:
A = S ∪ {f(c(c(⊥)), c(c(⊥)))}.

Lemma 4.7. Let R be a TRS over Σ and A the redex-algebra for R. Then for
all ground terms t ∈ Ter(Σ, ∅) we have t ∈ L(A) if and only if t is a redex with
respect to a left-linear rule in R.
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The proof proceeds by induction over the term structure. The ‘only if’-part is
crucial for soundness of our transformation, whereas the ‘if’-part is needed for
completeness for left-linear TRSs.

5 Minimizing Algebras

In this section we are concerned with the minimization of redex-algebras. The
algorithm is similar to the minimization of deterministic tree automata, see [3].
For the set of 291 TRSs of the outermost termination competition of 2008 [10],
the redex-algebras constructed according to Definition 4.4 have an average size of
4.6 elements. After an application of the minimization algorithm described here,
the average size falls to 3.4, a reduction of 27%. This reduction has a polynomial
influence on the number of rules of the transformed system.

Definition 5.1. Core redex-algebras A1, A2 are equivalent if L(A1) = L(A2).

For a given core redex-algebra we now construct a minimal equivalent algebra.
The difference to the minimization of tree automata from [3] lies in the initial
equivalence E0. For tree automata E0 consists of two partitions, the final and
the non-final states. In our setting two states are initially equivalent if they
cannot be distinguished using the isRedex functions. In general this can yield
any number of partitions between 1 and |A|.

Definition 5.2. Let A = 〈A, [·], isRedex〉 be a core redex-algebra over Σ. We
define equivalence relations Ei for i ∈ N on the elements of A. Initially two
elements a, b ∈ A are equivalent, a E0 b, if isRedexf (x, a, y) = isRedexf (x, b, y)
for all symbols f ∈ Σ, j ∈ {1, . . . , 
f}, x ∈ Aj−1, and y ∈ A�f−j. Then for
i = 0, 1, . . . and a, b ∈ A we define a Ei+1 b to be the conjunction of a Ei b
and [f ](x, a, y) Ei [f ](x, b, y) for all f ∈ Σ, j ∈ {1, . . . , 
f}, x ∈ Aj−1, and
y ∈ A�f−j . We stop when Ei+1 = Ei for some i ∈ N. Then we define E = Ei.

For a ∈ A we use #a$ to denote the equivalence class of a with respect to E.
The minimized redex-algebra is defined by Amin = 〈E, [·]E , isRedexE〉 where for
every f ∈ Σ we define [f ]E : E�f → E by [f ]E(#a1$, . . . , #an$) = #f(a1, . . . , an)$,
and isRedexE

f : E�f → Bool by isRedexE
f (#a1$, . . . ,#an$) = isRedexf (a1, . . . , an).

Lemma 5.3. Let A be a core redex-algebra, then A is equivalent to Amin . �

Example 5.4. We consider the TRS R consisting of the following three rules:

f(i(a)) → a , f(j(a)) → a , f(a) → a .

The redex-algebra for R is A = {a, i(a), j(a),⊥} with the interpretation [a] = a,
[i](a) = i(a), [j](a) = j(a), and the interpretation is ⊥ in all non-listed cases;
isRedexf (x) = true for all x �= ⊥, and false, otherwise.

The minimization algorithm starts with E0 = {{a, i(a), j(a)}, {⊥}} as initial
equivalence, since⊥ can be distinguished from the other elements due to [f ](⊥) =
false. The first iteration of the algorithm yields E1 = {{a}, {i(a), j(a)}, {⊥}} as
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[i](a) = i(a) whereas [i](i(a)) = [i](j(a)) = ⊥. The elements i(a) and j(a) are
indistinguishable, and so in the second iteration we obtain E2 = E1. Thus the
elements i(a) and j(a) are identified and we obtain an algebra that has one
element less than the algebra we started with.

6 Two Versions of Dynamic Labeling

In the previous sections we have constructed and minimized redex-algebras for
recognizing redex positions. For completing the transformation we still need to
define how the symbols are labeled. In this section we introduce two labelings
that arise naturally: minimal and maximal labeling. In minimal labeling symbols
are marked with a � if they correspond to redex positions and stay unlabeled
otherwise. This labeling creates a small signature and thereby results in a small
number of rules of the transformed system.

In the sequel we fix R to be a TRS over Σ and 〈A, isRedex〉 with A = 〈A, [·]〉
the minimized redex-algebra for R.

Definition 6.1. The minimal labeling for R is the semantic labeling 〈A, π〉 de-
fined for every f ∈ Σtop by πf (a1, . . . , a�f) = � if isRedexf (a1, . . . , a�f) = true,
and πf (a1, . . . , a�f ) = ε, otherwise; the redex symbols are Σred = {f� | f ∈ Σ}.

Theorem 6.2. Let 〈A, π〉 and Σred be the minimal labeling for R. Then R is
outermost ground terminating if 6π

R(A) is terminating.

Proof. An application of Theorem 3.7 together with Lemmas 4.7 and 5.3. �

Minimal labeling is sound and efficient, but it is not complete:

Example 6.3. The following term rewriting system is outermost terminating:

inf (x) → cons(x, inf (s(x))) cons(s(x), y) → nil (R2)

The minimized redex-algebra for R2 is A2 = 〈A2, [·]〉 with A2 = {s,⊥}, [s](x) =
s, [inf ](x) = [cons ](x, y) = ⊥, and [nil ] = ⊥. With minimal labeling we have
πcons(s, x) = � and πinf (x) = � for all x ∈ A2, and unmarked (ε) otherwise. The
dynamic labeling 6π

A2
(R2) of R2 w.r.t. 〈A2, π〉 consists of the following rules, the

first two of which arise from the inf -rule, with α(x) = ⊥, and α(x) = s resp.:

inf �(x) → cons(x, inf �(s(x))) ,
inf �(x) → cons�(x, inf �(s(x))) ,

cons�(s(x), y) → nil .

with μ(inf �) = μ(cons�) = ∅. But now 6π
A2

(R2) admits an infinite derivation:

inf �(x) → cons(x, inf �(s(x))) → cons(x, cons(s(x), inf �(s(s(x))))) → . . . .

The third term is labeled incorrectly, as the inner cons should be marked. The
reason is that in the second step, instead of the first inf �-rule, the second should
have been applied; however, the left-hand side inf �(x) contains too little infor-
mation to ‘decide’ what the labeling of the right-hand side should be.
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This motivates the use of maximal labeling for which correct labeling is preserved
under rewriting. Symbols are labeled with the interpretation of their arguments:

Definition 6.4. The maximal labeling for R is the semantic labeling 〈A, π〉 de-
fined for every f ∈ Σtop by: Λf = A�f , πf (a1, . . . , a�f ) = 〈a1, . . . , a�f〉 together
with the redex symbols Σred = {f 〈a1,...,a�f 〉 | isRedexf (a1, . . . , a�f ) = true}.
Maximal labeling is sound for all TRSs, and complete for quasi-left linear TRSs.
A TRS R is called quasi left-linear if every non-linear left-hand side of a rule in
R is an instance of a linear left-hand side from R.
Theorem 6.5. Let 〈A, π〉 with Σred be the maximal labeling for R. Then R is
outermost ground terminating if 6π

R(A) is terminating. Moreover, if R is quasi
left-linear, the reverse direction holds as well.

Proof. The first claim is a consequence of Theorem 3.7 and Lemmas 4.7 and 5.3.
For the second claim, let R be quasi left-linear. Assume that R is outermost
terminating but 6π

A(R) is not terminating. We introduce types for 6π
A(R) over

the sorts A ∪ {top}. For every fλ ∈ lab(Σtop) with λ = 〈a1, . . . , a�f 〉 we define
fλ to have input sorts 〈a1, . . . , an〉 and output sort [f ](a1, . . . , an), except for
top for which we fix output sort top. An adaptation of [7, Proposition 5.5.24] for
μTRSs together with non-collapsingness of 6π

A(R) yields the existence of a well-
sorted infinite 6π

R(A) rewrite sequence τ . By Lemma 4.3 we have a ground term
for every sort in A. Thus by applying a ground substitution to τ we get a well-
sorted infinite ground term rewrite sequence τ ′. Well-sortedness implies correct
labeling: for every well-sorted term t ∈ Ter(lab(Σtop), ∅) there exists a term
t′ ∈ Ter(Σtop, ∅) such that t = lab(t′). Moreover, by well-sortedness the symbol
top can only occur at the top of a term; without loss of generality we assume
that every term in τ ′ has top as root. Hence to arrive at a contradiction it suffices
to show that for all terms s, t ∈ Ter(Σ, ∅) with lab(top(s)) →�π

R(A) lab(top(t))
we have s out→R t. By construction, every rule in 6π

R(A) is a context extension
plus labeling of a rule in R. Let ρ : s →R t be the corresponding step. What
remains to be shown is that ρ is an outermost step. Assume there would be a
redex u above the rewrite position. Then by Lemma 4.7 we have u ∈ L(AR)
where AR is the redex-algebra for R (Definition 4.4). From Lemma 5.3 it follows
that u ∈ L(A) as A is the minimization of AR. By definition of maximal labeling
we get root(lab(u)) ∈ Σred . But then this symbol must be in lab(top(s)), either
above the applied 6π

R(A) rule or within the prepended context. Both cases yield
a contradiction: the former since μ(root(lab(u))) = ∅ would prohibit the μ-step,
and the latter since we do not prepend symbols from Σred . �
Example 6.6. We revisit Example 6.3, but this time we use maximal labeling:

inf ⊥(x) → cons⊥,⊥(x,inf s(s⊥(x))) , inf s(x) → conss,⊥(x,inf s(ss(x))) ,

conss,⊥(s⊥(x), y) → nil , conss,⊥(ss(x), y) → nil ,

conss,s(s⊥(x), y) → nil , conss,s(ss(x), y) → nil ,

with μ(inf ⊥) = μ(inf s) = μ(conss,⊥) = μ(conss,s) = ∅. This μTRS is indeed
terminating as opposed to the μTRS constructed in Example 6.3.



From Outermost to Context-Sensitive Rewriting 319

7 Discussion

For arbitrary TRSs our transformation (including the construction of C-models)
is sound, and for quasi left-linear TRSs it is complete (see Theorem 6.5). The
redex-algebra we construct recognizes redexes with respect to left-linear rules. As
a consequence, in the μTRS 6π

A(R) rewriting is forbidden only inside such redex
positions. This corresponds to a weakening of the outermost rewriting strategy:
contraction of redexes is allowed as long as they are not strictly contained in a
redex occurrence with respect to a left-linear rule. We stress that our transfor-
mation with maximal labeling is complete for termination with respect to this
rewrite strategy for all TRSs.

An open question is whether there are interesting labelings between minimal
and maximal. In particular, are there more efficient complete labelings? Here
efficiency is measured in the size of the signature and the number of rules of the
transformed system. In Example 6.6 it would have been sufficient to label cons
with the interpretation of the left argument, saving two symbols and two rules
of the transformed system.

References

1. Alarcón, B., Emmes, F., Fuhs, C., Giesl, J., Gutiérrez, R., Lucas, S., Schneider-
Kamp, P., Thiemann, R.: Improving Context-Sensitive Dependency Pairs. In:
LPAR 2008. LNCS, vol. 5330, pp. 636–651. Springer, Heidelberg (2008)

2. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236, 133–178 (2000)

3. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
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Abstract. Constructor-based term rewriting systems are a useful sub-
class of TRS, in particular for programming purposes. In this kind of
systems constructors determine a universe of values, which are the ex-
pected output of the computations. Then it would be natural to think of
a semantics associating each expression to the set of its reachable values.
Somehow surprisingly, the resulting semantics has poor properties, for it
is not compositional nor fully abstract when non-confluent systems are
considered. In this paper we propose a novel semantics for expressions in
constructor systems, which is compositional and fully abstract (with re-
spect to sensible observation functions, in particular the set of reachable
values for an expression), and therefore can serve as appropriate basis for
semantic based analysis or manipulation of such kind of rewrite systems.

1 Introduction

Constructor based term rewriting systems (or simply constructor systems, CS
in short) are an important subclass of term rewriting systems (TRS). The use
of CS for programming has been frequently connected to the requirement of
confluence. But by these days many proposals (see e.g.[13,3,10,9,11]) drop the
requirement of confluence and/or termination.

On the other hand, it is widely accepted that an adequate semantics con-
stitutes an excellent companion to any programming language. In the case of
CS, an ‘obvious’ notion of semantics comes from defining the denotation of an
expression e as the set of values reachable from e by rewriting. The notion of
‘values’ could be made concrete in different manners: constructor terms, outer
constructor part of expressions or normal forms. Two questions arise:
– Is the semantics compositional? In our case: is the semantics of an expression
determined by the semantics of its subexpressions?
– Does it capture observational equivalence? That is: for two semantically equiv-
alent expressions e, e′, is it ensured that we will observe the same behavior when
e, e′ are put in the same context? This depends on a criterion of what can be
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observed from an expression. In the constructor discipline point of view, one is
mostly interested again in observing which constructor terms (or outer stable
constructor part) can be reached by rewriting.

Somehow surprisingly, the answer to both questions is negative for the ‘obvi-
ous’ semantics:

Example 1. Consider the constructors a, b, c, d and the non-confluent program

f(c(X)) → d(X, X) choice(X, Y ) → X choice(X, Y ) → Y

The expressions e ≡ c(choice(a, b)) and e′ ≡ choice(c(a), c(b)) reach by rewriting
exactly the same constructor values, namely c(a) and c(b). However, this does
not ensure that e, e′ behave the same when put in the same context. For instance,
f(e) can be rewritten to the constructor values d(a, a), d(a, b), d(b, a), d(b, b) while
f(e′) only to d(a, a) and d(b, b). More in general, this works starts by remarking
that knowing the constructor values of an expression e is not enough information
to know the constructor values of C[e] for any given context C. The same example
shows that the remark remains true if we replace ‘constructor value’ by ‘normal
form’ or ‘outer constructor part’. Using standard terminology (see Sect. 4 for
definitions) all those semantics are not compositional, sound nor fully abstract.

The aim of our work can be made clear now: to define a semantics for CS that
is fully abstract (compositionality and soundness will come along the way) wrt
the observability criterion of reachable constructor terms.

Our starting insight is that, to recover compositionality, the semantics must
not collect a flat set of reachable values, like is {c(a), c(b)} for c(choice(a, b)),
but rather a more structured and ‘packaged’ representation, where constructors
can be applied to sets, as to reflect more appropriately the matching capa-
bilities of expressions. In our example, and disregarding for the moment some
technical details, the denotation of c(choice(a, b)) will be the singleton ‘package’
{c({a, b})}, reflecting the fact that c(choice(a, b)) can match c(X) without reduc-
ing choice(a, b), while the denotation of choice(c(a), c(b)) will be the two-element
package {c({a}), c({b})}. Technically, things will be a bit more complicated (see
Sect. 3), in particular due to the possibility of non-termination, that will require
expressing some kind of partial values in the semantics.

Related work. Not too much attention has been paid to the issue of seman-
tics of TRS, at least when compared to the huge amount of research in the
fields of TRS and of semantics of programming languages in general. There are
nevertheless some works to be mentioned.

In [7], Boudol develops a deep theory of the space of computations of left-
linear TRS and provides a computational semantics based on continuous al-
gebras. However, his semantics still associates an expression with a flat set of
(possibly infinite) values, thus presenting the problems of our Ex. 1. Moreover,
[6,16] demonstrate that there are problems with achieving full abstraction for
non-terminating non-deterministic systems, if the semantics is based on fixpoints
and infinite (limit) values (our semantics will avoid them). In [2] a compositional
semantics for conditional TRS is presented. Compositionality is understood in
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a different sense, related to the issue of joining programs. In addition, the con-
sidered programs are canonical (confluent and terminating). In [1], an abstract
diagnosis scheme for functional programs modeled as TRS is developed, based on
some notions of semantics that again collect results of individual computations.
The semantics characterization of narrowing given in [12] includes a semantics
for TRS, but most of the interesting results are for confluent ones. On the other
hand, the cited papers give a more general treatment of variables, which have a
passive role in our paper, behaving almost as constants.

With respect to the nesting of sets inside constructor symbols, a similar idea
appears in [4], to improve the efficiency of functional logic computations, in [8]
as part of the design of a functional programming implementation of functional
logic languages, and in [14] as a mean for programming with non-determinism
in a Haskell-like ambient. All these works are much more oriented to practice,
far from the aims and results of our present work. Moreover, the setting is
not the same: functional logic programming for the two first (with a call-time
choice semantics [10], having essential differences with standard rewriting) and
functional programming for the last one. In [5], sets of reachable values for CS
are computed; however, only topmost constructor symbols are collected and
furthermore systems must be confluent and terminating.

The rest of the paper is organized as follows. Sect. 2 contains some prelimi-
naries about TRS. Sect. 3 is the technical core of the paper, where our seman-
tics is defined and many strong properties are proved. In Sect. 4 we discuss in
detail the question of full abstraction. Finally Sect. 5 discusses potential uses
of our semantics and outlines future work. Omitted proofs can be found at
http://gpd.sip.ucm.es/fraguas/papers/rta2009Long.pdf.

2 Preliminaries

We assume a first order signature Σ = DC ∪ FS, where DC and FS are two
disjoint sets of constructor and function symbols resp., all them with associated
arity. We write DCn (FSn resp.) for the set of constructor (function) symbols
of arity n, and also Σn for any symbol of the signature of arity n. We also
assume a numerable set V of variables. As usual notations we write c, d, . . .
for constructors, f, g, . . . for functions and X, Y, . . . for variables. The set Exp
of expressions is defined as Exp 7 e ::= X | h(e1, . . . , en), where X ∈ V ,
h ∈ Σn and e1, . . . , en ∈ Exp. The set CTerm of constructed terms (or c-terms)
is defined like Exp, but with h restricted to DCn (so CTerm ⊆ Exp).1 We
will write e, e′, . . . for expressions and t, s, . . . for c-terms. The set of variables
occurring in an expression e will be denoted as var(e). The notation o stands
for tuples of any kind of syntactic objects along the paper.

We consider also the extended signature Σ⊥ = Σ ∪ {⊥}, where ⊥ is a new 0-
arity constructor symbol that stands for the undefined value. Over this signature
1 We use the terminology Exp (for general expressions) instead of the more usual

Term in order to highlight the syntactic (and semantic) difference with CTerm
(data values).

http://gpd.sip.ucm.es/fraguas/papers/rta2009Long.pdf
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we define the sets Exp⊥ and CTerm⊥ of partial expressions and c-terms resp.
The intended meaning is that Exp and Exp⊥ stand for evaluable expressions,
i.e., expressions that can contain function symbols, while CTerm and CTerm⊥
stand for data terms representing total and partial values resp. The shell |e| of
an expression e represents its outer constructed part and is defined as: |X | = X ;
|c(e1, . . . , en)| = c(|e1|, . . . , |en|); |f(e1, . . . , en)| = ⊥. Substitutions θ ∈ Subst are
mappings θ : V → Exp, that extend naturally to θ : Exp → Exp.

One-hole contexts are defined as Cntxt 7 C ::= [ ] | h(e1, . . . , C, . . . , en), with
h ∈ Σn. The application of a context C to an expression e, written by C[e], is de-
fined inductively as [ ][e] = e and h(e1, . . . , C, . . . , en)[e] = h(e1, . . . , C[e], . . . , en).

The approximation ordering 8 is defined on expressions as the least partial
ordering satisfying: i) ⊥8 e for all e ∈ Exp⊥, and ii) e 8 e′ ⇒ C[e] 8 C[e′] for
all e, e′ ∈ Exp⊥, C ∈ Cntxt .

A constructor system P (CS, also called program along this paper) is a set of
rewrite rules of the form f(t) → e where f ∈ FSn, e ∈ Exp, var(e) ⊆ var(t),
and t is a linear n-tuple of c-terms, where linearity means that variables occur
only once in t. Given a program P , its associated rewrite relation →P is defined
as: C[lθ] →P C[rθ] for any context C, rule l → r ∈ P and θ ∈ Subst . We write
∗→P for the reflexive and transitive closure of the relation →P . In the following,

we will usually omit the reference to P .

3 A Semantics for CS

In this section we present our proposed semantics, which has a logic flavor as it
is based on a proof calculus. The use of proof calculi to specify the semantics
of rewriting formalisms is not unfrequent. Two well-known cases correspond to
the frameworks of rewriting logic [15] and CRWL [10]. We have been inspired
by the philosophy of the latter, according to the following roadmap:
• We first identify the ‘finite pieces’ of which the denotation of expressions

should be made of. These will be the s-cterms introduced in 3.1, capturing
technically the idea of ’packaging sets below constructor’ mentioned in Sect. 1.
• Then, we devise in Sect. 3.2 a proof calculus able to prove statements of the

form e � st expressing that st is a finite approximation of the denotation of e.
Technically, expressions will be generalized to s-expressions.
• The proof calculus induces a natural notion of denotation of an expres-

sion: the set of its provable approximations. Working with finite approximations
makes it unnecessary to use a background of cpo’s and powerdomains. This was
found greatly convenient in the CRWL framework, and it is even more so in
our case, where recursive nestings of constructors and sets occur. Moreover, it is
known ([6,16]) that an approach based on semantic domains with infinite (limit)
elements and using fixpoint techniques has technical limitations.
• If the proof calculus is designed to have a ‘compositional’ aspect, then one

can expect compositionality of the resulting semantics, and the proof calculus
is in itself a great aid to prove it. We have pursued this design principle in our
proof calculus; as a result, and we have been able to prove compositionality and
other relevant properties of the semantics (Sect. 3.2).
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• Now, since our aim is to develop a new semantics for standard rewriting, it is
essential to show that our semantics is indeed related to rewriting: this is done
in Sect. 3.3 by correctness and completeness results.
• Finally, with all the previous results and an extra little effort, we are able to

prove full abstraction of our semantics (Sect. 4).

3.1 SCTerms: The Pieces of the Semantics

In this section we define new syntactic notions (of expressions, cterms, etc) in
order to pack different values coming from non deterministic reductions at the
syntactic level, by introducing sets in the corresponding syntax. Values become
s-cterms that must be defined in mutual recursion with elemental s-cterms:

ESCTerm 7 est ::= X | c(st1, . . . , stn)
for X ∈ V , c ∈ DCn, st1, . . . , stn ∈ SCTerm

SCTerm 7 st ::= ∅ | {est1, . . . , estn}
for n > 0, est1, . . . , estn ∈ ESCTerm

Thus, an s-cterm is a finite set of elemental s-cterms, that are variables or con-
structors applied to s-cterms. The aim of these values is to capture the reduc-
tion of a non deterministic expression like c(choice(a, b)) into the single value
{c({a, b})}. With the same idea, but allowing also function symbols, we define
elemental s-expressions and s-expressions as:

ESExp 7 ese ::= X | h(se1, . . . , sen)
for X ∈ V , h ∈ Σn, se1, . . . , sen ∈ SExp

SExp 7 se ::= ∅ | {ese1, . . . , esen}
for n > 0, ese1, . . . , esen ∈ ESExp

In the inductive definitions of SCTerm and SExp, the base case ∅ could be
hidden in the brace notation {est1, . . . , estn} just permitting n = 0 (in fact, we
will do it sometimes). We prefer to emphasize the presence of ∅, playing the role
of the undefined value (similar to ⊥ for Exp in Sect. 2). Therefore s-cterms and
s-expressions should be understood as partial. Total s-expressions and s-cterms
would not use ∅, but they do not play any significant role in the following.

We can flatten an s-expression se to obtain the set flat(se) of partial expres-
sions “contained” in it: flat(∅) = {⊥} and flat(se) =

⋃
ese∈se flat(ese) if se �= ∅,

where the flattening of elemental s-expressions is defined as: flat(X) = {X} and
flat(h(se1, . . . , sen)) = {h(e1, . . . , en)|ei ∈ flat(sei) for i = 1..n}. Notice that
flat(se) is always non-empty.

The set SSubst of s-substitutions consists of mappings σ : V → SExp having
a finite domain, where dom(σ) = {X | σ(X) �= {X}}. Notice that s-substitutions
replace variables by s-expressions (which are sets), and some care must be taken
when extending s-substitutions to ESExp and SExp:

σ : ESExp → SExp
Xσ = σ(X)
h(se)σ = {h(seσ)}

σ : SExp → SExp
{ese1, . . . , esen}σ =

⋃
i∈{1..n} eseiσ
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The set SCSubst of s-csubstitutions consists of mappings σ : V → SCTerm with
a finite domain, that extend to ESCTerm and SCTerm analogously to the case
of s-substitutions. One hole (elemental) s-contexts are defined as:

sCntxt 7 sC ::= [ ] | {. . . , h(. . . , sC, . . .), . . .} with h ∈ Σ and sC ∈ sCntxt

The application of a context to an s-expression is defined in the natural way.
Notice that s-contexts allow the hole to be only in the place of a sub-s-expression.
For example, the possible s-contexts of {Y, c({X})} are [ ] and {Y, c([ ])}, but
not {[], c({X})} nor {Y, []}.

The preorder 8 is defined for s-expressions as the least preorder satisfying:
se 8 se′ if ∀ese ∈ se.∃ese′ ∈ se′ such that ese 8 ese′, where for elemen-
tal s-expressions 8 is defined as the least preorder such that: X 8 X for any
X ∈ V and h(se1, . . . , sen) 8 h(se′1, . . . , se

′
n) iff sei 8 se′i for i = 1..n. For

s-substitutions, the preorder is defined as σ 8 σ′ if σ(X) 8 σ′(X) for all X ∈ V .
Programs remain as defined in Sect. 2. The proof calculus of the next section

needs to use function rules transformed into the new syntactical framework of
s-expressions. For this purpose we define the transformation of e ∈ Exp into an
s-expression ẽ ∈ SExp as: ⊥̃ = ∅; X̃ = {X} for any X ∈ V ; ˜h(e1, . . . , en) =
{h(ẽ1, . . . , ẽn)}, with h ∈ Σn. The transformation C̃ of a context C is defined in
the natural way, so that it verifies C̃[e] = C̃[ẽ]. On the other hand, σ̃ is defined
as σ̃(X) = σ̃(X), for σ ∈ Subst.

3.2 A Proof Calculus

Our goal in this section is to devise a proof calculus that specifies which SCTerms
correspond to a given expression under a given CS. Inspired by the CRWL proof
calculus of [10], to achieve a compositional aspect of the calculus expressions are
evaluated in an innermost way, and the use of any transitivity rule is avoided. By
the use of partial s-cterms as values, the ‘compositional’ innermost procedure of
the calculus does not enforce strictness of functions, which is essential to achieve
completeness of our semantics wrt term rewriting even for non-terminating CS.

Besides, during parameter passing the variables in the program rules will be
instanciated with partial s-cterms. Then it is possible to end up evaluating ex-
pressions with some SCTerm “inside” (as a subexpression), even when starting
the computation from an ordinary e ∈ Exp. So, instead of dealing only with ex-
pressions from Exp, our calculus will compute the partial s-cterms corresponding
to any given partial s-expression. Finally, the mapping ˜ will be used in combi-
nation with our logic to get the SCTerms corresponding to a given Exp.

To be precise, our proof calculus will prove reduction statements of the form
se � st with se ∈ SExp and st ∈ SCTerm, expressing that st represents a
finite approximation to one of the possible structured sets of values for se.

The calculus is presented in Fig. 1. Rule E (empty) allows us to avoid the
evaluation of any expression, in order to get a non-strict semantics. Rules RR
(restricted reflexivity) and DC (decomposition) work with singleton sets and
allow us to reduce any variable to itself, and to decompose the evaluation of
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(E) se � ∅ (RR) {X} � {X} if X ∈ V

(DC)
se1 � st1 . . . sen � stn

{c(se1, . . . , sen)} � {c(st1, . . . , stn)} if c ∈ CS

(More)
se � st1 . . . se � stn

se � st1 ∪ . . . ∪ stn

(Less)
{esa1} � st1 . . . {esam} � stm

{ese1, . . . , esen} � st1 ∪ . . . ∪ stm

if n ≥ 2, m > 0, for any
{esa1, . . . , esam} ⊆ {ese1, . . . , esen}

(ROR)
se1 � p̃1θ . . . sen � p̃nθ r̃θ � st

{f(se1, . . . , sen)} � st
if (f(p1, . . . , pn) → r) ∈ P
θ ∈ SCSubst

Fig. 1. A proof calculus for constructor systems

a constructor-rooted elemental s-expression. Rule More allows us to compute
more than one value for an s-expression, and to collect these values together. Rule
Less allows us to discard some elemental s-expressions from the s-expression un-
der evaluation. Finally rule ROR (run-time2 outer reduction) expresses that to
evaluate a function call we must first evaluate its arguments to get an instance
of a program rule, perform parameter passing (by means of an SCSubst θ) and
then reduce the instantiated right-hand side. The use of SCSubsts is fundamen-
tal to get the exact behaviour of term rewriting, because then the branching
information associated to the computation of each p̃iθ is not lost in some kind
of flattening to a set of c-terms, but kept into the structured representation of
SCTerms.

We write P ! se � st to express that se � st is derivable in our calculus
under the CS P . The denotation of an s-expression se under P is defined as
[[se]]P = {st ∈ SCTerm | P ! se � st}. In the following we will usually omit
the reference to P .
Example 2. Consider the CS of Ex. 1. We can use our calculus to prove the
statement ˜f(c(choice(a, b))) � d̃(a, b) (some steps have been omitted for the
sake of conciseness, and choice is abbreviated to ch):

{a} � {a} DC {b} � ∅ E
. . .

{a} � {a}
{ch({a}, {b})} � {a} ROR

. . .

{ch({a}, {b})} � {b} ROR

{ch({a}, {b})} � {a, b} More

{c({ch({a}, {b})})} � {c({a, b})} DC
(∗)

{d({a, b}, {a, b})} � {d({a}, {b})} DC

˜f(c(ch(a, b))) ≡ {f({c({ch({a}, {b})})})} � {d({a}, {b})} ≡ d̃(a, b)
ROR

where (∗) is the derivation:

{a} � {a} DC

{a, b} � {a} Less
. . .

{a, b} � {b}
{d({a, b}, {a, b})} � {d({a}, {b})} DC

2 The prefix ‘run-time’ comes from ‘run-time choice’, a term often applied ([13,10]) to
the parameter passing mechanism of term rewriting.
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On the other hand, d̃(a, b) is not a correct value for ˜f(choice(c(a), c(b))), be-

cause in that expression the evaluation of ˜choice(c(a), c(b)) has to be performed
in order to get a value matching the argument of the left-hand side of the only
rule for f , and the only matching values for it are c̃(a), c̃(b) and {c(∅)}, as for
example {c({a}), c({b})} does not match c̃(X).

Notice that, structurally, a denotation [[se]] is a possibly infinite set of s-cterms,
Infinite denotations might appear with non-terminating programs. Notice, how-
ever, that the elements are s-cterms that are, by construction, finite objects.
Thus, we avoid the presence of infinite values as elements of denotations, escap-
ing from the problems mentioned in [6,16].

As we anticipated above, even when proving a reduction ẽ � t̃ for e ∈ Exp
and t ∈ CTerm, we may find premises of the shape se � st for se ∈ SExp, st ∈
SCTerm, because the substitutions used for parameter passing in ROR may
introduce sets in r̃θ, as we can see in the second premise of the first application
of ROR, in Ex. 2. But in fact the kind of s-expressions that we may find in
the proof for some reduction for an expression is more restricted. It is easy to
prove that in any proof for any statement ẽ � st with e ∈ Exp we have that
in any premise se′ � st′ for it, se ∈ trSExp, a set defined as trSExp 7 tr ::=
st | {h(tr1, . . . , trn)}, with st ∈ SCTerm, h ∈ Σ, tr1, . . . , trn ∈ trSExp.
This suggests that we could have defined our logic to prove reductions se � st
with se ∈ trSExp and st ∈ SCTerm only, but we think that it is more profitable
to define it to deal with the more general case of se ∈ SExp. First of all, then we
get a logic that can handle a more general kind of syntactic objects, and therefore
that could be used to express other formalism apart from term rewriting. We
could slightly modify the rule ROR to accept not only CSs but in general “s-
expression rewriting systems” (sCSs), consisting of rules {f(st1, . . . , stn)} � se.
This way the original formulation of ROR becomes a particular case of the new
version, that works with CSs adapted to sCSs by means of .̃ This would be
similar to what is done in [17] to express term rewriting, term graph rewriting
and noncopying rewriting by means of the more general framework of marked
term rewriting. We consider this an interesting possible subject of future work.
On the other hand, working with reductions of s-expressions allows us to for-
mulate more general and powerful results about the semantics, like the polarity
property stated below, which become easier to prove because of their generality
(that provides stronger induction hypotheses), and that can be then easily ap-
plied to the more restricted case. In all the results of this and the next section
we assume a given CS and omit mentioning it.

Proposition 1 (Polarity). Let se, se′ ∈ SExp, st, st′ ∈ SCTerm. If se 8 se′

and st′ 8 st then st ∈ [[se]] implies st′ ∈ [[se′]].

Our semantics also enjoys the following monotonicity property related to s-
substitutions. It is formulated for the preorder 8 and also for the preorder �
over SSubst, defined by σ � σ′ iff ∀X ∈ V , [[σ(X)]] ⊆ [[σ′(X)]].
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Proposition 2 (Monotonicity of substitutions). Let se ∈ SExp, σ, σ′ ∈
SSubst. If σ � σ′ or σ 8 σ′ then [[seσ]] ⊆ [[seσ′]].

One of the most important properties of our logic is its compositionality, a prop-
erty very close to the DET-additivity property for algebraic specifications of [13],
which will be one of the keys for full abstraction.

Theorem 1 (Compositionality). For all sC ∈ sCntxt, se ∈ SExp,

[[sC[se]]] =
⋃

st∈[[se]]

[[sC[st]]]

As a consequence: [[se]] = [[se′]] ⇔ ∀sC. [[sC[se]]] = [[sC[se′]]].
Regarding closedness under susbtitutions, as we use SCSubst for parameter
passing it is natural to have closedness of reductions under this type of sub-
stitutions. Besides, as rewriting is closed under Subst it is expected to have
some kind of closedness for Subst too. But in general it is not true that for any
st ∈ SCTerm, σ ∈ SSubst we have stσ ∈ SCTerm, therefore it makes no sense
to expect that se � st implies seσ � stσ, as the reductions in our logic are
from SExp to SCTerm. Nevertheless we still can say something about that, as
we can see in the following property.

Proposition 3 (Closedness under substitutions). Let se ∈ SExp and st ∈
[[se]]. Then: a) ∀θ ∈ SCSubst, stθ ∈ [[seθ]]. b) ∀σ ∈ SSubst, [[stσ]] ⊆ [[seσ]].

All these properties are powerful tools to reason about the denotation of s-
expressions. And this reasoning power is transferred to the term rewriting uni-
verse through the adequacy results that we will see in the next section, thus
opening paths for the development of new reasoning techniques for CSs.

3.3 Relation with Rewriting

The nice properties of our logic will be useless unless they are accompanied by
strong adequacy results with respect to the term rewriting relation. We first
address the completeness of our logic, i.e., that the semantics of any expression
captures any c-term reachable from it by rewriting. As a first result we have:

Proposition 4. For all e, e′ ∈ Exp, if e →∗ e′ then [[ẽ′]] ⊆ [[ẽ]].

The keys for its proof are Th. 1 and the following Lemma 1, expressing that
any reduction seσ � st needs to use only a finite amount of the information
contained in σ, formalized through the notion of denotation of an SSubst, defined
as [[σ]] = {θ ∈ SCSubst | ∀X ∈ V , σ(X) � θ(X)}.
Lemma 1. Let σ ∈ SSubst, se ∈ SExp, st ∈ SCTerm. If seσ � st then there
exists θ ∈ [[σ]] such that seθ � st.

Now we can apply Prop. 4 to get the following strong completeness result.

Theorem 2 (Completeness). For all e, e′ ∈ Exp, t ∈ CTerm,
a) e →∗ e′ implies |̃e′| ∈ [[ẽ]] b) e →∗ t implies t̃ ∈ [[ẽ]]
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� 
 ⊆ CS × SCTerm × Exp
P � st 
 e if ∀est ∈ st,P � est 
 e

� 
 ⊆ CS × ESCTerm× Exp
P � X 
 e if P � e →∗ X
P � c(st) 
 e if P � e →∗ c(e) for some e

such that ∀ei ∈ e,P � sti 
 ei

Fig. 2. Domination relation

Proof. For a), it is easy to prove that ∀e ∈ Exp, ẽ � |̃e|, by induction on the
structure of e. But then |̃e′| ∈ [[ẽ′]] ⊆ [[ẽ]] by Prop. 4. For b), just notice that
∀t ∈ CTerm, |t| ≡ t, and so ẽ � |̃t| ≡ t̃, by a).

We also want our logic to be correct, in the sense that the semantics of any
expression does not compute more c-terms than those reachable by rewriting.
One key ingredient will be the domination relation 
 defined in Fig. 2 (we will
omit the prefix “P !” when deducible from the context). With this relation we
try to transfer to the rewriting world the finer distinction between sets of values
that the structured representation of SCTerm allows us to perform. This way
under the CS of Ex. 1 we have {c({a, b})}
 c(choice(a, b)) but not {c({a, b})}

choice(c(a), c(b)). The domination relation 
 has a strong relation with our
semantics, as stated in the following result:

Lemma 2 (Domination). For all e ∈ Exp, st ∈ SCTerm: st ∈ [[ẽ]] iff st 
 e.

Notice that 
 only talks about reductions for ẽ with e ∈ Exp, and so it
cannot be used to formulate properties like those seen in Sect. 3.2, although
it inherits them through Lemma 2. But he good thing about 
 is that it
already has a strong connection with rewriting, as it is defined by means of
rewriting derivations. Hence we can perform a simple induction on the structure
of SCTerm and ESCTerm to prove the following result, which uses the notion
of flattening defined in Sect. 3.1.

Lemma 3. Let st ∈ SCTerm, est ∈ ESCTerm, e ∈ Exp, and assume t ∈
flat(st). If st 
 e then e →∗ e′ for some e′ ∈ Exp such that t 8 |e′|.
And now we are ready to state and prove our main correctness result.

Theorem 3 (Correctness). Let e ∈ Exp, st ∈ SCTerm, t ∈ CTerm⊥:
a) If st∈ [[ẽ]] and t∈flat(st), then e→∗ e′ for some e′∈Exp such that t8|e′|.
b) If t̃ ∈ [[ẽ]], then e →∗ e′ for some e′ ∈ Exp such that t 8 |e′|.
c) Besides, in a) or b), if t ∈ CTerm, then e →∗ t.

Proof. We get a) just chaining Lemma 2 and Lemma 3. Concerning b), we can
prove that ∀t ∈ CTerm⊥, f lat(t̃) = {t} by induction on CTerm⊥, and chain it
with a). Finally c) is a consequence of a) and b), because if t ∈ CTerm then it
is maximal wrt 8, hence t 8 |e′| implies t ≡ |e′|. But that implies there is no ⊥
in |e′|, therefore e′ ∈ CTerm and e′ ≡ |e′| ≡ t, and so e →∗ e′ ≡ t.

Correctness is the point where left linearity of programs is essential. Without left
linearity, the results of Sect. 3.2 still hold, but the semantics becomes incorrect
wrt rewriting. For instance, if P ≡ {f(X, X) → a} and e ≡ f(a, b) then it can
be shown that ã ∈ [[ẽ]] but e �→∗ a, contradicting Th. 3.
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4 Full Abstraction

The semantics [[se]]P of Sect. 3 is defined for s-expressions, but induces naturally
a notion of semantics for ordinary expressions e ∈ Exp:

[[e]]PS = [[ẽ]]P (= {st ∈ SCTerm|ẽ � st})

In this section we discuss full abstraction in the context of CS and show that [[ ]]S
achieves it, in contrast to semantics directly based on sets of results, informally
described in Sect. 1. In a fully abstract semantics, two expressions have the same
semantics if and only if they are observationally indistinguishable. For this to
be meaningful, one must choose a criterion of observability. The problem of full
abstraction was first investigated by Plotkin [18] for PCF (a simple functional
programming language), and since then is a standard topic when dealing with
program semantics (see e.g. [19]). It is common to adjust its definition to the
characteristics of the language under consideration. In the context of functional-
like programming languages like PCF the condition for full abstraction is usually
stated as:

[[e]] = [[e′]] ⇔ O(C[e]) = O(C[e′]), for any context C (1)

where O is the observation function of interest. Programs do not need to be men-
tioned, because programs and expressions can be identified by contemplating the
evaluation of e under P as the evaluation of a large λ-expression or let-expression
embodying P and e. Contexts pose no problems either. In our case, since pro-
grams (CS ) are kept different from expressions, some care must be taken. It
might happen that P has not enough syntactical elements and rules to build
interesting distinguishing contexts. For instance, if in Ex. 1 we drop the defini-
tion of f , then we cannot built a context that distinguishes c(choice(a, b)) from
choice(c(a), c(b)). This would imply that soundness or full abstraction would not
be intrinsic to the semantics, but would depend on the program. What we need
is requiring the right part of (1) to hold for all contexts that might be obtained
by extending P with new auxiliary functions. To be more precise, we say that P ′

is a safe extension of (P , e) if P ′ = P ∪ P ′′, where P ′′ does not include defining
rules for any function symbol occurring in P or e. Any sensible notion of se-
mantics should verify [[e]]P = [[e]]P

′
when P ′ safely extends (P, e). This happens

indeed for all the semantics considered below.
Things are now prepared to give the following definition:

Definition 1 (Observations, full abstraction).
(a) A semantic function (a semantics, in short) is a function [[ ]] associating a
semantic value (taken from a set D) to each expression e under a given program
P. We write [[e]]P for such value.
(b) An observation function is a function O associating a set of observation
values (or observables, taken from a set Obs) to each expression e under a given
program P. We write OP(e) for it.
(c) A semantics is fully abstract wrt O iff for any P and e, e′ ∈ Expr, the
following two conditions are equivalent:
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(i) [[e]]P = [[e′]]P (ii) OP′
(C[e])=OP′

(C[e′]) for any P ′ safely extending
(P , e) , (P , e′) and any C built with the signature of P ′.

In words: semantic equality is equivalent to observational indistinguishability.
(d) A notion weaker than full abstraction is: a semantics is sound wrt O iff the
condition (i) above implies the condition (ii).
In words: semantic equality implies observational indistinguishability.
(e) A semantics is compositional iff for any P and e, e′ ∈ Expr, the following
two conditions are equivalent:
(i) [[e]]P =[[e′]]P (ii) [[C[e]]]P =[[C[e′]]]P for any C built with the signature of P.

In words: the semantics of an expression depends only on the semantics of its
subexpressions. Notice that (ii) ⇒ (i) holds trivially (take C = [ ]).

In the next definition we collect some notions of semantics and observables for
the case of CS. Our new contributed semantics are [[ ]]S and [[ ]]S′ ; the rest are
the ‘obvious’ semantics of Sect. 1. As usual, we omit the program P in notations.

Definition 2 (Semantics and observations for CSs).
We consider the following semantics for expressions e ∈ Exp:

[[e]]rw = {e′ |e →∗ e′} [[e]]nf = {e′ |e →∗ e′, e′in normal form}
[[e]]t = {t ∈ CTerm|e →∗ t} [[e]]t⊥={t ∈ CTerm⊥ |∃e′.(e →∗ e′∧ t 8 |e′|)}
[[e]]S = [[ẽ]] [[e]]S′ =

⋃
st∈[[e]]S

st.

and two observation functions for expressions: Ot(e) = [[e]]t and Ot⊥(e) = [[e]]t⊥ .

Some remarks:

• It is clear that [[e]]t ⊆ [[e]]nf ⊆ [[e]]rw, and also [[e]]t ⊆ [[e]]t⊥ .
• Notice that some of the sets above can play at the same time the role of

semantic values and of observation values.
• [[e]]S was introduced earlier in this section. [[e]]S′ is a simplified variant, making

more readable the semantics of expressions, because [[e]]S is a set of finite sets
of ests, while [[e]]S′ is simply a set of ests. However [[ ]]S has been technically
more convenient for proving properties of the semantics, due to its more direct
connection to the proof calculus. Both semantics are essentially the same:

Proposition 5. For any e, e′ ∈ Exp, [[e]]S = [[e′]]S ⇔ [[e]]S′ = [[e′]]S′

The next result shows that, although Ot,Ot⊥ define different observations, it is
irrelevant which is chosen, as far as full abstraction is concerned.

Proposition 6. Assume a given semantics [[ ]]. Then:

[[ ]] is fully abstract wrt Ot ⇔ [[ ]] is fully abstract wrt Ot⊥ .

Now we show that the first four semantics, [[]]rw , [[ ]]nf , [[ ]]t, [[ ]]t⊥ do not have
good properties, as was informally discussed in Sect. 1. We use Ot in the result
but, according to the previous result, Ot⊥ could be used instead.
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Proposition 7.

(a) [[ ]]rw, [[ ]]nf , [[ ]]t, [[ ]]t⊥ are not fully abstract wrt Ot.
(b) Moreover, [[ ]]nf , [[ ]]t, [[ ]]t⊥ are not compositional, nor sound wrt Ot .
(c) [[ ]]nf ([[ ]]t resp.) remains not compositional nor sound wrt Ot even if pro-
grams are restricted to be confluent (confluent and terminating, resp.).

Proof. (a) For [[ ]]nf , [[ ]]t, [[ ]]t⊥ , (a) is implied by (b). For [[ ]]rw, just add a new
function g(X) → f(X) to Ex. 1. It is easy to see that f(a) and g(a) are
contextually indistinguishable wrt Ot, but [[f(a)]]rw �= [[g(a)]]rw.

(b) Example 1 of Sect. 1 serves for all the three semantics.
(c) For [[ ]]nf , consider the program {f → f, g → c(f), h(c(X)) → a}. We have

[[f ]]nf = [[g]]nf = ∅, but [[h(f)]]nf = ∅ �= {a} = [[h(g)]]nf , proving at the
same time not compositionality and unsoundness. For [[ ]]t, replace the above
program by {f → h(a), g → c(f), h(c(X)) → a}.

Finally, we show that our semantics do not present those problems.

Theorem 4 (Compositionality and full abstraction of [[ ]]S).

[[ ]]S and [[ ]]S′ are compositional and fully abstract wrt Ot and Ot⊥ .

Proof. We prove the results for [[ ]]S and Ot. For [[ ]]S′ and Ot⊥ , just use propo-
sitions 5 and 6. Compositionality follows from definition of [[ ]]S and composi-
tionality of [[ ]] (Th. 1).
For full abstraction, let P be any CS, and e, e′ ∈ Expr. We must prove:

[[e]]PS = [[e′]]PS ⇔ ∀P ′, C .OP′
t (C[e]) = OP′

t (C[e′])
where P ′ ranges over safe extensions of (P , e) and (P , e′), and C over contexts
built with the signature of P ′.
⇒ Assume [[e]]PS = [[e′]]PS . Since P ′ is a safe extension, we know that [[e]]P

′
S =

[[e′]]P
′

S . We prove OP′
t (C[e]) ⊆ OP′

t (C[e′]) (the other inclusion is similar). Let
t ∈ OP′

t (C[e]), which means C[e] →∗
P′ t. By Th. 2, t̃ ∈ [[C[e]]]P′

S = [[C[e′]]]P′
S , where

the last equality is justified by compositionality. Then, since t ∈ flat(t̃), we con-
clude from Th. 3 that C[e′] →∗

P′ t, that is, t ∈ OP′
t (C[e′]), as desired.

For the other implication we need two auxiliary constructions enabling to build
a context that distinguishes two expressions having different semantics:

• Given st ∈ SCTerm, we define a c-term ŝt ‘mirroring’ st as follows:

∅̂ = 〈 〉0 {̂X} = X (X ∈ V) ̂{c(sti)} = c(ŝti)
̂{est1, . . . , estn} = 〈{̂est1}, . . . , {̂estn}〉n (n > 1)

where 〈 〉n (n ≥ 0) are new tuple-forming constructor symbols. It is assumed
here that SCTerm, ESCTerm are equipped with any standard ordering.
• Given st ∈ SCTerm, the program Pst defines new functions fst, . . . as follows:

f∅(X) → 〈 〉0 f{X}(U) → U (X ∈ V) f{c(sti)}(c(Ui)) → c(fsti(Ui))
f{est1,...,estn}(U) → 〈f{est1}(U), . . . , f{estn}(U)〉n (n > 1)

The roles of ŝt,Pst are made clear by the following lemma:
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Lemma 4. For any P , st, e: st ∈ [[e]]PS ⇔ fst(e) →∗
P′ ŝt, where P ′ ≡ P ∪ Pst.

We can now proceed with the proof of the pending implication.
⇐ Assume that OP′

t (C[e]) = OP′
t (C[e′]) for any safe extension P ′ and context

C. We prove [[e]]PS ⊆ [[e′]]PS (the other inclusion is similar). Let st ∈ [[e]]PS . Let P ′ ≡
P∪Pst, which is a safe extension of (P, e), (P, e′). Lemma 4 ensures fst(e) →∗

P′ ŝt,
which means ŝt ∈ OP′

t (fst(e)). Now, since P ′ is a safe extension, observational
equivalence of e, e′ implies ŝt ∈ OP′

t (fst(e′)), which means fst(e′) →∗
P′ ŝt. Again

by Lemma 4, we conclude that st ∈ [[e′]]PS , as desired.

5 Conclusions

In this paper we have provided a semantics for constructor systems that is fully
abstract with respect to natural notions of observation that extract the outer
constructor part of outcomes as relevant information of computations. To the
best of our knowledge, this is the first time that full abstraction has been achieved
for this class of programs and observations. Along the way to this result we have
made some contributions: after noticing that ‘obvious’ semantics directly based
on rewrite sequences lack compositionality, our main insight has been that it can
be recovered by recursively packaging sets of results below constructor symbols.
That insight has been realized at the technical level by introducing s-cterms as
suitable semantic values, and giving a proof calculus able to derive reachable
s-cterms from a given expression. Previous to full abstraction, we have proved a
bunch of good properties of the semantics: polarity, compositionality, closedness
under substitutions, correctness and completeness with respect to rewriting.

We expect our semantics to be a useful tool for CS-based program ma-
nipulation. We remark that, for instance, to justify the correctness of a CS-
transformation by proving preservation of reachable values could be incorrect if
transformations are to be used locally. Our semantics could be a better option,
as illustrated by the following simple example: consider a program piece made of
the rules f → c(g), g → e, g → e′, where e, e′ are expressions that costly reduce
to a, b respectively. A ‘obvious’ partial evaluation might suggest replacing f ’s
definition by the optimized one f → c(a), f → c(b), leading to a transformed
program P ′, presumably equivalent to P . This is wrong: if P defines also h by
the rule h(c(X)) → d(X, X), then h(f) behaves different with both definitions
of f . This is detected in our semantics (using e.g. the variant [[ ]]S′ of Def. 2),
because [[f ]]PS′ 7 c({a, b}) �∈ [[f ]]P

′
S′ . Imagine, however, that the original program

piece was f → g, g → c(e), g → c(e′). In this case, the ‘obvious’ partial eval-
uation of f would lead again to f → c(a), f → c(b). Is this right now? Yes,
because [[f ]]PS′ = [[f ]]P

′
S′ , and full abstraction of [[ ]]S′ makes the rest. A deeper

investigation of these issues is planned for the future.
There are other aspects not yet accomplished that can be subject of fu-

ture work. We plan to investigate full abstraction for other notions of obser-
vations, in two different senses: by giving a more active role to variables (as
happens in [2,1,12]) taking into account that, for instance, variables can be
subject of narrowing substitutions; and by replacing our ‘may-convergent’ or
‘angelic’ view of non-determinism (in which two expressions may have the same
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semantics even if one admits divergent reductions while the other does not) by a
‘must-convergence’ view where divergence plays a role. Dropping the constructor
restriction is also interesting, replacing the role of constructor values by appropri-
ate alternatives. Finally, incorporating s-expressions to the syntax of programs,
as discussed in Sect. 3.2, could lead to more expressive programs.
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Artalejo, M.: An approach to declarative programming based on a rewriting logic.
J. of Logic Programming 40(1), 47–87 (1999)

11. Hanus, M.: Multi-paradigm declarative languages. In: Dahl, V., Niemelä, I. (eds.)
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Abstract. Most of the standard pleasant properties of term rewriting
systems are undecidable; to wit: local confluence, confluence, normaliza-
tion, termination, and completeness.

Mere undecidability is insufficient to rule out a number of possibly
useful properties: For instance, if the set of normalizing term rewriting
systems were recursively enumerable, there would be a program yielding
“yes” in finite time if applied to any normalizing term rewriting system.

The contribution of this paper is to show (the uniform version of)
each member of the list of properties above (as well as the property of
being a productive specification of a stream) complete for the class Π0

2 .
Thus, there is neither a program that can enumerate the set of rewrit-
ing systems enjoying any one of the properties, nor is there a program
enumerating the set of systems that do not.

For normalization and termination we show both the ordinary ver-
sion and the ground versions (where rules may contain variables, but
only ground terms may be rewritten) Π0

2 -complete. For local confluence,
confluence and completeness, we show the ground versions Π0

2 -complete.

1 (Uniform) Undecidability in Term Rewriting

It is well-known that almost all of the usual nice-to-have properties of term
rewriting systems are undecidable [11,2,18], in particular normalization, termina-
tion, local confluence, confluence, and completeness are undecidable, even when
rewrite steps are allowed only on ground terms.

Upon inspection, many of the proofs used for undecidability employ reduction
from well-known undecidable problems that are semidecidable—technically, the
problems are “only” Σ0

1-complete—the canonical examples being (1) the Halting
Problem: the set of integers m encoding pairs m = 〈M, n〉 such that Turing
machine M halts on input n, and (2) the Post Correspondence Problem (PCP)
[18, Ch.5].

A standard fact is that Σ0
1 contains exactly the recursively enumerable sets;

hence, if some property is proven undecidable via a reduction from, say, PCP,
it could still be possible that the set of objects enjoying the property could be

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 335–349, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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recursively enumerable, hence semi-decidable. In rewriting, two simple examples
of such a property are (1) for each term rewriting system (TRS) R, the set of
terms that have an R-normal form, and (2) the set of TRSs R for which there
exists at least one term having a normal form.

However, it would go against all common sense that, say, the set of all (finite)
TRSs that are terminating should be semi-decidable: We know that TRSs may
simulate Turing machines, and validating whether all terms of some specific TRS
are terminating intuitively must consist of checking an infinite number of terms
for each TRS, thus requiring an infinite amount of work to validate termination.

The purpose of this paper is to show that several of the usual nice-to-have
properties of TRSs are Π0

2 -complete. As neither any semi-decidable set, nor a
co-semi-decidable set can be Π0

2 -hard, we thus corroborate the above intution.
We consider so-called uniform decision problems: All problems consist of de-

ciding whether a given TRS has some property. This is in contrast to the non-
uniform or local problems where, given a pair 〈R, s〉R consisting of a TRS R and
a term s of R, the problem consists of deciding whether s satisfies some property
under R-reduction.

We have endeavoured to show Π0
2 -completeness of the properties when only

ground terms may be rewritten. This is not to be confused with decision problems
for ground TRS where, in addition, all rules are ground—in that case, many of
the properties are decidable [9,12,4]. Furthermore, for the properties of local
confluence and confluence, we have succeeded in proving Π0

2 -completeness only
in the case of ground terms.

Our results depend crucically on the finiteness of all systems and alphabets
considered; allowing for systems with, say, an infinite number of rules would
propel hardness into the low tiers of the analytical hierarchy instead.

2 Preliminaries

Term rewriting systems (TRSs) (Σ, R) are defined in the usual way [11,18], as
is the set of terms. In this paper, Σ and R will always be finite. We usually
suppress the alphabet Σ and refer to the TRS merely by the set of rules R.

Definition 1. A constructor TRS is a TRS (Σ, R) where Σ = F ∪ C with
F ∩ C = ∅ (F is called the set of defined symbols, C the set of constructor
symbols), and such that every rewrite rule l → r ∈ R satisfies l = f(t1, . . . , tn)
with f ∈ F and t1, . . . , tn are terms over the signature C (that is, contain no
defined symbols). When the alphabet Σ is presupposed, we usually refer to the
TRS (Σ, R) merely by R. The TRS (R)0 consists of the rules of R, but only
ground terms may be rewritten. If s is a term, the set of positions of s and
notion of subterm at a position are defined as usual. We denote the subterm at
position p of s by s|p, and denote the term obtained by replacing the subterm s|p
in s by term t by s[t]p. The depth of a rewrite step is the length of the position
of the redex contracted. If n ≥ 0, we write s|≤n = t|≤n if s|≤n and t|≤n are
identical up to and including all positions of length n.
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Definition 2. A TRS R is normalizing (WN) if every term has a normal form,
terminating (SN) if all maximal reduction sequences from all terms are finite,
locally confluent (WCR) if, for every fork t ← s → t′ there exists a join t →∗

s′
∗ ← t′, confluent (CR) if, for every fork t∗ ← s →∗ t′ there exists a join

t→∗ s′
∗ ← t′, and complete (COM) if R is both terminating and confluent.

We say that R is ground-WN (resp. -SN,-WCR,-CR,-COM) if R is WN on
ground terms, that is, if (R)0 is WN (resp. SN, WCR, CR,COM).

We presuppose basic knowledge of primitive recursive functions and primitive
recursive predicates, see e.g. [13]. The reader without prior knowledge may sim-
ply view primitive recursive functions as those functions that are computable
using for-loops, but without unconstrained recursion or iteration.

It is easy to see that there are primitive recursive functions en- and decoding
each (finite) TRS as an integer, en- and decoding pairs of integers, en- and
decoding finite reduction sequences in a given TRS as an integer, and checking
whether a given sequence of rewrite steps are allowed by the TRS. For ease of
notation, we overload the symbols 〈·〉 to mean any primitive recursive encoding
and 〈x〉R to mean a primitive recursive encoding of x in TRS R, as appropriate
by context. Thus, 〈s0 → s1 → · · · → sm〉R is the integer encoding the reduction
s0 → s1 → · · · → sm in TRS R, and 〈R〉 is an integer encoding the TRS R.

2.1 Turing Machines

We refer to standard textbooks [13,16] for a standard treatment of Turing ma-
chines. We introduce basic notation:

Definition 3. A (deterministic, single-tape, binary alphabet) Turing machine
M is a triple (Q, {1, 0, �}, δ) where

– Q is a finite set of states containing at least two distinct states qsand qh.
– {1, 0, �} is the set of tape symbols where � is interpreted as “blank”.
– δ is a partial function from Q × {1, 0, �} to Q × {1, 0, �} × {L, R} and is

called the transition relation. L represents a move to the left and R a move
to the right.

We assume that for every q �= qh and every s ∈ {1, 0, �}, δ(q, s) is defined (if
δ(q, s) is undefined, the machine has halted, and we may wlog. add δ(q, s) →
(qh, �, L) without affecting the halting behaviour of the machine). Furthermore,
we assume wlog. that the machine never returns to its starting state, i.e. that if
δ(q, s) = (q′, s′, D), then q′ �= qs.

Definition 4. A configuration of a Turing machine M is a triple wqw′ where
q is a state of M , w and w′ are the tape contents to the left and right of the tape
head (we assume the head is on the first cell of w′), and we assume that w and
w′ contain only a finite number of non-blank symbols.

A start configuration of M is a configuration wqw′ where q = qs, w contains
only blanks, and w′ consists of a finite number of consecutive 1s (that is, the
Turing machine is in the start state, there is a unary representation of a natural
number to the right of the tape head, and nothing else on the tape).



338 J.G. Simonsen

2.2 The Arithmetical Hierarchy and Π0
2

Recall that the arithmetical (or Kleene) hierarchy is a classification of formulae
of first-order (Peano) arithmetic; in particular, a formula φ is a Π0

2 -formula (or
∀∃-formula) if it is logically equivalent to a formula on the form ∀n∃k.P (n, k, x)
where P (n, k, x) is a primitive recursive predicate.

Definition 5. The class Π0
2 comprises of all subsets K of the natural numbers

such that there is a Π0
2 -formula that is valid exactly on the elements of K.

Details on Π0
2 and other classes of the arithmetical hierarchy may be found

in [13]. Note that replacing the demand that P (n, k, x) be primitive recursive
by “P (n, k, x) is a decidable predicate” does not change the class Π0

2 . As with
complexity classes such as P and NP , we may define the relation ≤m (many-one
reducibility) on Π0

2 :

Definition 6. The set A many-one reduces to set B, written A ≤m B, if there
exists a Turing machine M that on input x ∈ N outputs φM (x) such that
φM (x) ∈ B iff x ∈ A. We say that B is Π0

2 -hard if every A ∈ Π0
2 satisfies

A ≤m B), and that B is Π0
2 -complete if B ∈ Π0

2 and B is Π0
2 -hard.

Intuitively, a Π0
2 -hard set is at least as difficult to decide as any other set in Π0

2 .
Ordinarily, the notion of Turing reducibility ≤T is used in connection with Π0

2 ;
it is easy to see that A ≤m B implies A ≤T B, whence our hardness results also
holds in the setting of ≤T .

Definition 7. uniform is the set of (Gödel numbers of) Turing machines that
reach the halting state from all configurations.

totality is the set of (Gödel numbers of) Turing machines that reach the
halting state from all start configurations.

Thus, membership in uniform requires that M halts on any configuration (even
ones unreachable from the start state), while membership in totality requires
that M halts when run on any natural number.

Proposition 1. Both uniform and totality are Π0
2 -complete.

Proof. Standard. See e.g. [13, Ch. 13–14] for totality, and [8] for uniform.
�

By standard results for the arithmetical hierarchy, no Π0
2 -hard set is semi-

decidable, nor is it co-semi-decidable.

3 Encoding Turing Machines

The paper uses three encodings of Turing machines M . Of these encodings, the
first—Δ(M)—is the standard encoding of M as an orthogonal TRS from [18,
Ch. 5], itself a clever variation of the idea in [9]. The second encoding—Δg(M)—
adds a number function symbols and rules to Δ(M) to handle the ground-WCR
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and ground-CR properties and is, by construction, non-orthogonal. The third
encoding—Δs(M)—extends Δ(M) by letting certain function symbols take an
extra argument (which is unchanged by the rewrite rules) and adding two new
simple rules, obtaining an orthogonal constructor TRS.

We now give the encoding Δ(M) of [18, Ch. 5]. A Turing machine M is
encoded as a TRS Δ(M) as follows: Each state q ∈ Q of the machine M is coded
as a binary function symbol q. The alphabet of Δ(M) furthermore contains unary
function symbols 1, 0 and � corresponding to the elements of the tape alphabet
of M , and a nullary function symbol 
 representing an infinite stretch of blanks
(
 may thus be thought of as an “endmarker” demarcating the finite part of the
tape containing non-blank symbols). A word w ∈ {0, 1, �}∗ is translated into a
term φ(w) by setting φ(ε) � 
 (where ε is the empty word), and φ(bw) � b(φ(w))
for b ∈ {1, 0, �} and w ∈ {1, 0, �}∗. When b1, . . . , bn are unary function symbols
and t is a term, we write b1b2 · · · bnt instead of b1(b2(· · · (bn(t)))). A configuration
w1qw2 of M is translated to the Δ(M)-term q(φ(reverse(w1)), φ(w2)) where
reverse(w1) is w1 reversed. For ease of notation, we suppress φ and reverse and
write q(w1, w2).

The rules of the encoding is given in Figure 1.

Rewrite rules induced by transition rules of the Turing machine M (ΔN(M)):

(L/R)-move rewrite rules (for each q ∈ Q, a ∈ {0, 1, �})
δ(q, b) = (q′, b′, R) q(x, by) → q′(b′x, y)
δ(q, b) = (r′, b′, L) q(ax, by) → q′(x, ab′y)

Extra rules (ΔE(M)):

(L/R)-move extra rewrite rules (for each q ∈ Q, a ∈ {0, 1, �})
δ(q, �) = (q′, b′, R) q(x, 
) → q′(b′x, 
)
δ(q, b) = (q′, b′, L) q(
, by) → q′(
, �b′y)

δ(q, �) = (q′, b′, L)
q(ax,
) → q′(x, ab′
)
q(
,
) → q′(
,�b′
)

Δ(M) = ΔN(M) ∪ ΔE(M)

Fig. 1. Encoding Δ(M) of a Turing machine M

It is straightforward to show that for all Turing-machine configurations α, β
of M , we have (1) if M moves from α M to β in one move and term s represents
α, then there is a term t with s → t and such that t represents β, respectively
(2) if term s represents α and s → t, then there is a configuration β such that
M moves from α to β in one step and t represents β [18, Exercise 5.3.3].

For later use, we note the following fortuitous property of Δ(M):

Proposition 2. Call any ground term of Δ(M) restricted if it is on the form
q(s, s′) where s and t contain no occurrence of any q ∈ Q. Then any restricted



340 J.G. Simonsen

ground term represents a configuration of M , and if Δ(M) admits an infinite
reduction starting from some term, there is a restricted ground term t having an
infinite reduction

Proof. Straightforward. See e.g. [18, Exercise 5.3.3] or [11, Exercise 2.2.12]. �

Corollary 1. Δ(M) is both SN and ground-SN iff M halts on all configurations.

Proof. If there is a configuration wqw′ on which M does not halt, then there is
an infinite Δ(M)-reduction starting from the ground term q(w, w′), showing that
Δ(M) is neither SN, nor ground-SN. If M halts on all configurations, suppose
for the purpose of contradiction that Δ(M) were not SN. By Proposition 2
there is a restricted ground term t having an infinite reduction. But by the same
proposition, any restricted ground term represents a configuration wqw′ of M ,
entailing that M does not halt on wqw′, a contradiction. �

Corollary 2. Δ(M) is both WN and ground-WN iff M halts on all
configurations.

Proof. As the previous corollary. �

3.1 Adding Rules for Ground-WCR and CR: the Encoding Δg(M)

For the purpose of proving ground-WCR and ground-CR Π0
2 -hard, we shall

need to extend the encoding Δ(M). We extend the alphabet of Δ(M) with two
new function symbols: the nullary symbol fail and the binary symbol A, and
we extend the rules of Δ(M) with a number of new rules shown in Figure 2.
The rules are specifically designed for (1) making it possible to rewrite ground
terms that do not represent a configuration of M to the constant fail, and for
(2) creating a fork fail ← A(w, w′) → q(w, w) that has no corresponding join
unless M reaches the halting state from configuration wqw′.

New rewrite rules (Δc(M)):
→c-rules (for each q ∈ Q)

0q(y, z) →c fail q(q′(x, y), z) →c fail
1q(y, z) →c fail q(x, q′(y, z)) →c fail
�q(y, z) →c fail q(fail, y) →c fail

0fail →c fail q(x,fail) →c fail
1fail →c fail A(x, y) →c fail
�fail →c fail A(x, y) →c q(x, y)

qh(x, y) →c fail

Δg(M) = Δ(M) ∪ Δc(M)

Fig. 2. Encoding Δg(M) for handling (local) confluence for ground terms
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Remark 1. Observe that if q(w, w′) is a term representing a configuration wqw′

of M and q �= qh, then q(w, w′) contains no Δc(M)-redex (in particular, q(w, w′)
does not contain any occurrence of fail). Furthermore, observe that if q(s, t) is
a restricted ground term containing no occurrence of fail or A, and if q(s, t) →∗

q′(s′, t′), then q′(s′, t′) contains no occurrence of fail or A: this is easily seen
by the fact that A does not occur on any right-hand side of any rule and the
fact that fail can only be introduced in one step by a Δc(M)-redex; as q(s, t)
is restricted ground, the only Δc(M)-redex possible in q(s, t) →∗ q′(s′, t′) is in
the final term, and only if q′ = qh.

Finally, note that if q(s, t) is a restricted ground term containing no occurrence
of fail or A, Δg(M) enjoys the same simulation properties as Δ(M). �

Proposition 3. If s → t by an application of a Δc(M)-redex at depth d ≥ 1 in
s, then t reduces to fail in at most d steps.

Proof. Straightforward induction on d. �

Proposition 4. Δg(M) is ground-SN iff M halts on all configurations.

Proof. Straightforward analysis appealing to the fact that Δ(M) is SN iff M
halts on all configurations and the fact that Δc(M) can only create an Δ(M)-
redex by the rules in {A(x, y)→c q(x, y) : q ∈ Q}. �

Proposition 5. The only ground normal form of Δg(M) is fail.

Proof. Straightforward case analysis using the fact that any ground term that
does not represent a configuration of M will either be fail or contain a Δc(M)-
redex. �

Proposition 6. Δg(M) is ground-WCR iff M halts on all configurations.

Proof. We proceed as follows.

– “⇒”: By contraposition. Suppose there is a configuration wqw′ on which
M does not halt. Then there is a restricted ground term q(w, w′) that rep-
resents wqw′ (hence contains no occurrence of fail or A), and there is an
infinite reduction A(w, w′) →c q(w, w′) → q′(s, s′) → q′′(s′′, s′′′) → · · ·. By
assumption, no M -step ever reaches the halting state, whence no reduct
of q(w, w′) can contain an occurrence of qh . Furthermore, by Remark 1,
no reduct of q(w, w′) contains any occurrence of fail or A, whence no
term in q(w, w′) → q′(s, s′) → q′′(s′′, s′′′) → · · · can reduce to fail. But
A(w, w′) →c fail and A(w, w′) →c q(w, w′), showing that Δg(M) is not
ground-WCR (and not WCR).

– “⇐”: Suppose M halts on all configurations, hence that Δg(M) is ground-
SN by Proposition 4 . Thus, for any fork t ← s → t′, both t and t′ have
normal forms tf and t′f . As s is ground, so are t and t′, and Proposition 5
yields tf = t′f = fail, whence t→∗ fail∗← t′, as desired.

�
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Corollary 3. Δg(M) is ground-CR iff M halts on all configurations.

Proof. If Δg(M) is ground-CR, it is in particular ground-WCR, hence by Propo-
sition 6 M terminates on all inputs. Conversely, if M terminates on all inputs,
Propositions 6 and 4 yield that Δg(M) is WCR and SN, respectively. Confluence
of Δg(M) follows by Newman’s Lemma. �

Corollary 4. Δg(M) is ground-COM iff M halts on all configurations.

Proof. By Proposition 4 and Corollary 3. �

We postpone the final encoding of M , Δs(M), to Section 5.

4 Π0
2 -Completeness of the Standard Properties

In the below, we consider ternary primitive recursive predicates P (n, k, l) in Π0
2 -

formulae ∀n∃k.P (n, k, l) where l is thus the only free variable. As all the decision
problems we consider take a TRS as “input”, the variable l will always be an
integer encoding a TRS R. In all predicates P (n, k, l), P decodees integers n and
k to terms of R or finite R-reductions, and perform simple checks. For ease of
notation, instead of referring explicitly to l, we will use the obvious shorthands
〈·〉R and 〈·, ·〉R in the predicates.

4.1 (Ground-)Local Confluence

The usual “easy” proofs of undecidability of (local) confluence employ reductions
from the (local) word problem for semi-groups (which is in Σ0

1 and hence is
not Π0

2 -complete), see e.g. [18]. More detailed analyses reveal that neither the
uniform problem of whether a TRS is ground-WCR, nor the local problem of
whether a term in a TRS is ground-WCR or ground-CR is semi-decidable [10].
However, even with these results, (ground-)WCR or (ground-)CR could still be
co-semi-decidable. We will rule out this possibility by proving both problems
Π0

2 -complete using Δg(M). We do not know if our results can be extended to
encompass WCR and CR: the encoding Δg(M) is not sufficient to do the trick
as non-ground terms that do not represent configurations of M may be normal
forms of Δg(M), rendering our proof methods unapplicable.

Proposition 7. WCR and ground-WCR are both Π0
2 -properties of TRSs.

Proof. Using the primitive recursive en- and decoding of finite reduction se-
quences as integers, we may write the property of the TRS (Σ, R) being locally
confluent as:

∀n∃k.

(
n = 〈s → s′, s → s′′〉R ⇒
k = 〈s′ → s′1 → · · · → s′l, s

′′ → s′′1 → · · · → s′′m〉R

)

�

Theorem 1. Deciding whether a TRS is ground-WCR is Π0
2 -complete.
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Proof. There is clearly a recursive procedure transforming a description of a
Turing machine M into the finite TRS Δg(M). By Proposition 6, this is a many-
one reduction from uniform to the set of TRSs that are ground-WCR, showing
that deciding whether a given TRS is (−)0wcr is Π0

2 -hard. Completeness now
follows from Proposition 7. �

4.2 (Ground-)Confluence

In analogy to WCR, we have:

Proposition 8. CR and ground-CR are both Π0
2 -properties.

Proof. As with local confluence we may write the property of TRS (Σ, R) being
confluent as:

∀n∃k.

(
n = 〈s → s1 → · · · → sl, s → s′1 → · · · → s′m〉R ⇒
k = 〈sl → sl+1 → · · · → sl+r, s

′
m → s′m+1 → · · · → s′m+p〉R

)

�

Theorem 2. Deciding whether a TRS is ground-CR is Π0
2 -complete.

Proof. By Corollary 3 and Proposition 8, reasoning as in the proof of Theorem 1.
�

4.3 Normalization

Both WN and SN have previously been shown Π0
2 -hard, even though the results

were never explicitly stated—in fact, the encoding Δ(M) and its use in [18] to
prove SN undecidable is in fact a reduction from uniform to SN. We explicitly
state the results below.

Proposition 9. WN and ground-WN are both Π0
2 -properties of TRSs.

Proof. The predicate “term s is a normal form of (finite) TRS R” is primitive
recursive; we write nf(s)R for the predicate. Using primitive recursive en- and
decoding of terms and finite reductions sequences, we may write the property of
TRS (Σ, R) being normalizing as:

∀n∃k. (n = 〈s〉R ⇒ (k = 〈s → s1 → · · · → sm〉R ∧ nf(sm)R))

�

Theorem 3. Deciding whether a TRS is WN (resp. ground-WN) is Π0
2 -complete.

Proof. By Corollary 2 and Proposition 9, reasoning as in the proof of Theorem 1.
�
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4.4 Termination

Unlike the previous properties, a technical snag of proving Π0
2 -completeness of

termination is to show that the problem is included in Π0
2 : Termination means

that for all terms s, there are no infinite reduction sequences starting from s.
Neither this phrasing, nor the phrasing using finiteness of maximal reductions,
is amenable to putting in ∀∃-form. We work around this problem by appealing
to König’s Lemma.

Definition 8. Let s be a term. The derivation tree of s is the (possibly infinite)
rooted tree G(s) such that (i) level 0 in the tree contains the term s, and (ii) for
n ≥ 0, the nodes of level n + 1 are such that, for each node s at level n, there is
a node t at level n + 1 and an edge from s to t iff s → t.

Nodes at level n + 1 are not shared, that is, a term t may occur as several
different nodes if it is a reduct of several different terms at level n.

Proposition 10. The term s is terminating iff G(s) is finite.

Proof. G(s) is finitely branching as each term has a finite number of reducts.
König’s Lemma now yields that G(s) is infinite iff there exists an infinite path
in G(s). By construction of G(s), s is terminating iff there exists an infinite path
in G(s), concluding the proof. �

Observe that any finite tree labeled with terms over alphabet Σ can be en- and
decoded as an integer by a primitive recursive function. If G is such a finite tree,
we shall denote by 〈G〉R its encoding. Checking that 〈G〉R encodes the derivation
tree G(s) of a term s is again primitive recursive as the first n levels of G(s) may
be generated by a primitive recursive procedure: Exhaustively try all rules in
the term rewriting system R on all positions of s to obtain level 1 in the graph
and proceed iteratively until n levels have been processed. Given 〈G〉R, obtain
its maximum depth n by a straightforward search, then generate G(s) to depth
n and call the result G(s)|n. We then have G = G(s) iff all leaves in G(G)|n
are normal forms and G = G(G)|n. Let the primitive recursive predicate that
G = G(s) be P (〈s〉R, 〈G〉R)—note that 〈R〉 is a suppressed third variable of P .

Proposition 11. SN and ground-SN are both Π0
2 -properties.

Proof. Using 〈G〉R we may write the property of TRS (Σ, R) being terminating
as:

∀n∃k. (n = 〈s〉R ∧ k = 〈G〉R ∧ P (n, k))

For ground-SN, all that needs to be changed is to change the encoding 〈·〉R
from arbitrary terms to ground ones. �

Theorem 4. Deciding whether a TRS is SN (resp. ground-SN) is Π0
2 -complete.

Proof. By Corollary 1 and Proposition 11, reasoning as in the proof of
Theorem 1. �
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4.5 Completeness

Theorem 5. Deciding whether a TRS is ground-COM is Π0
2 -complete.

Proof. If A and B are both sets in Π0
2 , then so is A∩B. Thus, by Propositions 8

and 11, ground-COM is a Π0
2 -property. Hardness of ground-COM follows from

the fact that Δc(M) is ground-SN and ground-CR iff M halts on all configura-
tions by Proposition 4 and Corollary 3. �

5 Π0
2 -Completeness of Productivity (of Stream

Specifications)

A stream specification is intuitively a program that lazily outputs a list. If such
a program, when run for a sufficient amount of time, always outputs “the next”
element of the list, it is called productive. A substantial amount of work aims
at establishing sufficient conditions for establishing the productivity of stream
specifications [5,15,17,3,7,6]. It is well-known folklore—and almost self-evident—
that the problem of establishing whether a stream specification is productive
is undecidable. Some of the recent literature on stream definitions employ a
complicated but clean notion of stream specification stratified into data, function
and stream layer and using many-sorted rewriting [7,6]. Here, we consider the
more generic approach where a specification is simply a constructor TRS with a
designated symbol for the stream.

Definition 9. A stream specification is a pair ((F ∪ C, R), S) consisting of a
constructor TRS (F ∪ C, R) and a designated nullary defined symbol S ∈ F .
The stream specification is said to be productive if S has an infinite constructor
normal form, that is, if there exists an infinite reduction S →∗ t1 →∗ t2 →∗ · · ·
such that increasingly larger prefixes of the terms tn consist solely of construc-
tor symbols. The stream specification is said to be orthogonal if (F ∪ C, R) is
orthogonal.

We note that several “streams” may be defined by the same definition; however
we are only interested in one of these, namely the one designated by S. Most lit-
erature on productivity focuses specifically on the case where the data modelled
are truly streams of bits, that is, C = Cs � {:,0,1}. We note that the hardness
proof below specifically uses only Cs—in fact, uses only {:,1}—thus showing
that even a very restricted constructor alphabet corresponding to a classical
“lazy list of bits” implies Π0

2 -hardness. A full account of infinite (constructor)
terms is beyond the scope of this paper, and we refer to [1,18]. For our purposes,
the reader need only consider the set of infinite (constructor) terms over Cs, for
example 1:1:1: · · ·. We invariably write the binary symbol : as infix, and if s is
a term, we use 1:1: · · · :1:s as shorthand for 1:(1:(· · ·1(:s))).

We note the following fact about orthogonal constructor TRSs:

Proposition 12. If (F ∪C, R) is orthogonal, then ((F ∪C, R), S) is productive
iff for all n ≥ 0 there is a finite rewrite sequence S →∗ tn where t is a term on
the form C[s1, . . . , sm] with C[x1, . . . , xm] a constructor term of depth n.
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Proof. Straightforward analysis using the fact that (F ∪ C, R) is orthogonal,
hence is confluent, and that no constructor symbol is at the root of the left-hand
side of a rewrite rule l → r ∈ R. �

Example 1. The assumption of orthogonality cannot be omitted from Propo-
sition 12. Consider for instance the below (non-orthogonal) constructor TRS
(constructor symbols are boldface):

⎧
⎪⎪⎨

⎪⎪⎩

S → a(b)
a(b) → a(a(b))
a(b) → c(b)

a(c(x)) → c(c(x))

⎫
⎪⎪⎬

⎪⎪⎭

For every n ≥ 1 we have S →∗ c(c(· · · (c
︸ ︷︷ ︸

n

(b)))) which is a constructor normal

form. However, S has no infinite constructor normal form. �

Proposition 13. Productivity of orthogonal stream specifications is a
Π0

2 -property.

Proof. Observe that there is a primitive recursive function that, when input n
and an integer j encoding some term s checks whether s contains only constructor
symbols up to depth n (simply use a top-down iteration on s up to depth n).
Let P (n, j, l) be the primitive recursive predicate checking whether the above is
true for orthogonal stream specification l = 〈((F ∪ C, R), S)〉R.

Thus,
∀n∃k.

(
k = 〈S → s1 → · · · → sm〉R ∧ P (n, 〈sm〉, l)

)

is a Π0
2 -formula which, by Proposition 12 is true iff ((F ∪C, R), S) is productive.

�

We change the encoding of Turing machines M slightly to accomodate produc-
tivity; the new encoding is shown in Figure 3.Each state q is now encoded by
a ternary function symbol such that in q(s, t, t′), s and t are the contents of
the left and right part of the tapes as usual, and t′ represents the “current”
input being processed by M . We change the rules of Figure 1 by letting the
third argument t′ of each q(s, t, t′) be identical in left- and right-hand sides
(that is, the argument is unchanged by applying any of the rules). We add two
new rules: the rule qh(x, y, z) → 1:qs(
, 1z, 1z) that “produces” 1, and the rule
S → qs(
, 1
, 1
) that initiates the computation. Thus, the translation Δs(M)
of M produces a stream specification ((F ∪ C, R), S) where S is a some fresh
symbol, F = {S} ∪ {0, 1, �, 
}∪Q where Q contains a ternary symbol for each
state of M , where C = {0,1, :} (where the nullary constructor symbols 0 and 1
are not to be confused with the unary defined symbols 0 and 1), and R is the
set of rules obtained in Figure 3.

Remark 2. Call a ground term of Δs(M) restricted if it is on the form q(w, w′, t)
with q �= qh and where w, w, t terms over F such that no q occurs in w, w′, or t.
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Rewrite rules induced by transition rules of the Turing machine M (Δ′
N(M)):

(L/R)-move rewrite rule (for each q ∈ Q, a ∈ {0, 1�})
δ(q, b) = (q′, b′, R) q(x, sy, z) → q′(b′x, y, z)
δ(q, b) = (q′, b′, L) q(ax, by, z) → q′(x, ab′y, z)

Extra rules (Δ′
E(M))):

(L/R)-move extra rewrite rules (for each q ∈ Q, a ∈ {0, 1�))
δ(q, �) = (q′, b′, R) q(x, 
, z) → q′(b′x, 
, z)
δ(q, b) = (q′, b′, L) q(
, by, z) → q′(
, �b′y, z)

δ(q, �) = (q′, b′, L)
q(ax,
, z) → q′(x, ab′
, z)
q(
,
, z) → q′(
,�b′
, z)

New rules for transitions from the halting state (Δ′p(M)):

new rules for stream productivity)
qh(x, y, z) → 1:qs(
, 1z, 1z)

S → qs(
, 1
, 1
)

Δs(M) = Δ′
N (M) ∪ Δ′

E(M) ∪ Δ′
p(M)

Fig. 3. Encoding Δs(M) of Turing machines for stream productivity

As Δs(M) is contructed exactly as Δ(M), bar Δ′
p(M) and the increased arity

of the state symbols q, we immediately see that if α and β are configurations of
M such that M moves from α to β and q(w, w′, t) represents α, then there is
a term s′ with s → s′, and if q(w, w, t) represents configuration α and s → s′,
then s′ represents a configuration β such that M moves from α to β. �

Proposition 14. (S, Δs(M)) is productive iff M halts on all inputs.

Proof. Reason as follows:

– “⇒”: The only possible reduction from S is S → qs(
, 1
, 1
). By inspec-
tion of the rules, the only way of replacing a function symbol by a constructor
is by application of the rule qh(x, y, z)→ 1:qs(
, 1z, 1z). Thus, the only pos-
sibly infinite constructor normal form of S is 1:1:1: · · ·. We show by induction
on n ≥ 1 that:

S → qs(
, 1
, 1
)
→∗ qh(s1, t1, 1
)
→ 1 : qs(
, 11
, 11
)
→∗ 1: · · ·1︸ ︷︷ ︸

n−1

:qh(s2, t2, 1n
)

→∗ 1: · · · :1︸ ︷︷ ︸
n

:qs(
, 1n+1
, 1n+1
)

The base case n = 1 follows immediately by inspection of the rules of Δs(M):
The only way to obtain a term on the form 1:s is by an application of the rule
qh(x, y, z) → 1:qs(
, 1z, 1z). As qs(
, 1
, 1
) is a restricted ground term,
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every rewrite step of Δs(M) that is not of rule qh(x, y, z) → 1:qs(
, 1z, 1z)
or S → qs(
, 1
, 1
) simulates a step of M . Hence, there is a reduction
S → qs(
, 1
, 1
)→∗ qh(s1, t1, 1
)→ 1 : qs(
, 11
, 11
), as desired.

For the case n > 1, the induction hypothesis yields that:

S →∗ 1: · · · :1︸ ︷︷ ︸
n−1

:qs(
, 1n
, 1n
)

By Proposition 12, productivity of Δs(M) yields that S →∗ 1: · · · :1︸ ︷︷ ︸
n

:t for

some term t, and orthogonality (hence confluence) of Δs(M) yields that
1: · · · :1:qs(
, 1n, 1n) and 1: · · · :1:t have a common reduct which, as Δs(M)
is a constructor TRS must be on the form 1: · · · :1︸ ︷︷ ︸

n

:t′ for some term t′. Thus,

we have qs(
, 1n, 1n) → 1:t′, and reasoning as in the base case, we obtain
qs(
, 1n, 1n)→∗ qh(s′, s′′, 1n+1
)→ 1:qs(
, 1n+1
, 1n+1
).

Thus, for all n, we have qs(
, 1n
, 1n
) →∗ 1:qh(s′n, s′′n, 1n+1
) by a
reduction that uses no rules from Δ′

p(M). As each step in the reduction
simulates a step of M , we conclude that M halts on all inputs.

– “⇐”: If M halts on all inputs, we have in particular for all n ≥ 1 that
qs(
, 1n
, 1n
)→∗ qh(sn, tn, 1n
) for terms sn, tn, and hence that:

1: · · · :1︸ ︷︷ ︸
n−1

:qs(
, 1n
, 1n
)→∗ 1: · · · :1︸ ︷︷ ︸
n−1

:qh(sn, tn, 1n
)

→ 1: · · · :1︸ ︷︷ ︸
n

:qs(
, 1n+1
, 1n+1
)

for all n ≥ 1. Hence, S reduces to the infinite normal form 1:1: · · ·, as desired.
�

Proposition 15. Deciding whether an orthogonal stream specification is pro-
ductive is Π0

2 -hard.

Proof. By reduction from totality. Obviously, there is an effective procedure
transform a description of any Turing machine M into the stream specification
(S, Δs(M)). The result now follows by Proposition 14. �

Theorem 6. Deciding whether an orthogonal stream specification is productive
is Π0

2 -complete.

Proof. By Propositions 13 and 15, reasoning as in the proof of Theorem 1. �

In the proof of membership of Π0
2 (Proposition 13, we have crucially employed

the assumption of orthogonality. We do not know if productivity of arbitrary
stream specifications is in Π0

2 . Roşu has proved that deciding equality of streams
is Π0

2 -complete (in an equational setting, but his result carries over to orthogonal
stream specifications) [14]; it is also unknown whether that result holds for non-
orthogonal stream specifications.
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Abstract. The Description Logic EL has recently drawn considerable
attention since, on the one hand, important inference problems such as
the subsumption problem are polynomial. On the other hand, EL is used
to define large biomedical ontologies. Unification in Description Logics
has been proposed as a novel inference service that can, for example, be
used to detect redundancies in ontologies. The main result of this paper
is that unification in EL is decidable. More precisely, EL-unification is
NP-complete, and thus has the same complexity as EL-matching. We
also show that, w.r.t. the unification type, EL is less well-behaved: it
is of type zero, which in particular implies that there are unification
problems that have no finite complete set of unifiers.

1 Introduction

Description logics (DLs) [5] are a family of logic-based knowledge representa-
tion formalisms, which can be used to represent the conceptual knowledge of
an application domain in a structured and formally well-understood way. They
are employed in various application domains, such as natural language process-
ing, configuration, databases, and biomedical ontologies, but their most notable
success so far is the adoption of the DL-based language OWL [15] as standard
ontology language for the semantic web.

In DLs, concepts are formally described by concept terms, i.e., expressions
that are built from concept names (unary predicates) and role names (binary
predicates) using concept constructors. The expressivity of a particular DL is
determined by which concept constructors are available in it. From a semantic
point of view, concept names and concept terms represent sets of individuals,
whereas roles represent binary relations between individuals. For example, using
the concept name Woman, and the role name child, the concept of all women
having a daughter can be represented by the concept term

Woman � ∃child.Woman,

and the concept of all women having only daughters by

Woman � ∀child.Woman.

Knowledge representation systems based on DLs provide their users with various
inference services that allow them to deduce implicit knowledge from the explic-
itly represented knowledge. For instance, the subsumption algorithm allows one to
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determine subconcept-superconcept relationships. For example, the concept term
Woman subsumes the concept term Woman� ∃child.Woman since all instances of
the second term are also instances of the first term, i.e., the second term is al-
ways interpreted as a subset of the first term. With the help of the subsumption
algorithm, a newly introduced concept term can automatically be placed at the
correct position in the hierarchy of the already existing concept terms.

Two concept terms C, D are equivalent (C ≡ D) if they subsume each other,
i.e., if they always represent the same set of individuals. For example, the terms
∀child.Rich � ∀child.Woman and ∀child.(Rich �Woman) are equivalent since the
value restriction operator (∀r.C) distributes over the conjunction operator (�). If
we replaced the value restriction operator by the existential restriction operator
(∃r.C), then this equivalence would no longer hold. However, for this operator,
we still have the equivalence

∃child.Rich � ∃child.(Woman � Rich) ≡ ∃child.(Woman � Rich).

The equivalence test can, for example, be used to find out whether a concept
term representing a particular notion has already been introduced, thus avoid-
ing multiple introduction of the same concept into the concept hierarchy. This
inference capability is very important if the knowledge base containing the con-
cept terms is very large, evolves during a long time period, and is extended and
maintained by several knowledge engineers. However, testing for equivalence of
concepts is not always sufficient to find out whether, for a given concept term,
there already exists another concept term in the knowledge base describing the
same notion. For example, assume that one knowledge engineer has defined the
concept of all women having a daughter by the concept term

Woman � ∃child.Woman.

A second knowledge engineer might represent this notion in a somewhat more
fine-grained way, e.g., by using the term Female � Human in place of Woman.
The concept terms Woman � ∃child.Woman and

Female � Human � ∃child.(Female �Human)

are not equivalent, but they are meant to represent the same concept. The
two terms can obviously be made equivalent by substituting the concept name
Woman in the first term by the concept term Female �Human. This leads us to
unification of concept terms , i.e., the question whether two concept terms can
be made equivalent by applying an appropriate substitution, where a substitu-
tion replaces (some of the) concept names by concept terms. Of course, it is
not necessarily the case that unifiable concept terms are meant to represent the
same notion. A unifiability test can, however, suggest to the knowledge engineer
possible candidate terms.

Unification in DLs was first considered in [9] for a DL called FL0, which
has the concept constructors conjunction (�), value restriction (∀r.C), and
the top concept (�). It was shown that unification in FL0 is decidable and
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ExpTime-complete, i.e., given an FL0-unification problem, we can effectively
decide whether it has a solution or not, but in the worst-case, any such de-
cision procedure needs exponential time. This result was extended in [7] to a
more expressive DL, which additional has the role constructor transitive clo-
sure. Interestingly, the unification type of FL0 had been determined almost a
decade earlier in [1]. In fact, as shown in [9], unification in FL0 corresponds to
unification modulo the equational theory of idempotent Abelian monoids with
several homomorphisms. In [1] it was shown that, already for a single homomor-
phism, unification modulo this theory has unification type zero, i.e., there are
unification problems for this theory that do not have a minimal complete set of
unifiers. In particular, such unification problems cannot have a finite complete
set of unifiers.

In this paper, we consider unification in the DL EL. The EL-family consists
of inexpressive DLs whose main distinguishing feature is that they provide their
users with existential restrictions (∃r.C) rather than value restrictions (∀r.C) as
the main concept constructor involving roles. The core language of this family is
EL, which has the top concept, conjunction, and existential restrictions as con-
cept constructors. This family has recently drawn considerable attention since,
on the one hand, the subsumption problem stays tractable (i.e., decidable in
polynomial time) in situations where FL0, the corresponding DL with value re-
strictions, becomes intractable: subsumption between concept terms is tractable
for both FL0 and EL, but allowing the use of concept definitions or even more
expressive terminological formalisms makes FL0 intractable [2,16,4], whereas it
leaves EL tractable [3,13,4]. On the other hand, although of limited expressive
power, EL is nevertheless used in applications, e.g., to define biomedical ontolo-
gies. For example, both the large medical ontology Snomed ct1 and the Gene
Ontology2 can be expressed in EL, and the same is true for large parts of the
medical ontology Galen [18]. The importance of EL can also be seen from the
fact that the new OWL 2 standard3 contains a sub-profile OWL 2 EL, which is
based on (an extension of) EL.

Unification in EL has, to the best of our knowledge, not been investigated
before, but matching (where one side of the equation(s) to be solved does not
contain variables) has been considered in [6,17]. In particular, it was shown in
[17] that the decision problem, i.e., the problem of deciding whether a given EL-
matching problem has a matcher or not, is NP-complete. Interestingly, FL0 be-
haves better w.r.t. matching than EL: for FL0, the decision problem is tractable
[8]. In this paper, we show that, w.r.t. the unification type, FL0 and EL be-
have the same: just as FL0, the DL EL has unification type zero. However,
w.r.t. the decision problem, EL behaves much better than FL0: EL-unification
is NP-complete, and thus has the same complexity as EL-matching.

In the next section, we define the DL EL and unification in EL more formally.
In Section 3, we recall the characterisation of subsumption and equivalence in

1 http://www.ihtsdo.org/snomed-ct/
2 http://www.geneontology.org/
3 See http://www.w3.org/TR/owl2-profiles/
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EL from [17], and in Section 4 we use this to show that unification in EL has
type zero. In Section 5, we show that unification in EL is NP-complete, and in
Section 6 we point out that our results for EL-unification imply that unification
modulo the equational theory of semilattices with monotone operators [19] is
NP-complete and of unification type zero.

More information about Description Logics can be found in [5], and about
unification theory in [12].

2 Unification in EL

First, we define the syntax and semantics of EL-concept terms as well as the
subsumption and the equivalence relation on these terms.

Starting with a set Ncon of concept names and a set Nrole of role names,
EL-concept terms are built using the concept constructors top concept (�),
conjunction (�), and existential restriction (∃r.C). The semantics of EL is defined
in the usual way, using the notion of an interpretation I = (DI , ·I), which
consists of a nonempty domain DI and an interpretation function ·I that assigns
binary relations on DI to role names and subsets of DI to concept terms, as
shown in the semantics column of Table 1.

Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept � �I = DI

conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C � D CI ⊆ DI

equivalence C ≡ D CI = DI

The concept term C is subsumed by the concept term D (written C 8 D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C 8 D and D 8 C, i.e., iff CI = DI holds for all
interpretations I. The concept term C is strictly subsumed by the concept term
D (written C � D) iff C 8 D and C �≡ D.

A concept definition is of the form A
.= C where A is a concept name and

C is a concept term. A TBox T is a finite set of concept definitions such that
no concept name occurs more than once on the left-hand side of a concept
definition in T . The TBox T is called acyclic if there are no cyclic dependencies
between its concept definitions. The interpretation I is a model of the TBox
T iff AI = CI holds for all concept definitions A

.= C in T . Subsumption
and equivalence w.r.t. a TBox are defined as follows: C 8T D (C ≡T D) iff
CI ⊆ DI (CI = DI) holds for all models I of T . Subsumption and equivalence



354 F. Baader and B. Morawska

w.r.t. an acyclic TBox can be reduced to subsumption and equivalence of concept
terms (without TBox) by expanding the concept terms w.r.t. the TBox, i.e., by
replacing defined concepts (i.e., concept names occurring on the left-hand side of
a definition) by their definitions (i.e., the corresponding right-hand sides) until
all defined concepts have been replaced. This expansion process may, however,
result in an exponential blow-up [10].

In order to define unification of concept terms, we first introduce the notion
of a substitution operating on concept terms. To this purpose, we partition
the set of concepts names into a set Nv of concept variables (which may be
replaced by substitutions) and a set Nc of concept constants (which must not
be replaced by substitutions). Intuitively, Nv are the concept names that have
possibly been given another name or been specified in more detail in another
concept term describing the same notion. The elements of Nc are the ones of
which it is assumed that the same name is used by all knowledge engineers (e.g.,
standardised names in a certain domain).

A substitution σ is a mapping from Nv into the set of all EL-concept terms.
This mapping is extended to concept terms in the obvious way, i.e.,

– σ(A) := A for all A ∈ Nc,
– σ(�) := �,
– σ(C �D) := σ(C) � σ(D), and
– σ(∃r.C) := ∃r.σ(C).

Definition 1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . . Cn, Dn are EL-concept terms. The substitution σ
is a unifier (or solution) of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ
is called solvable or unifiable.

When we say that EL-unification is decidable (NP-complete), then we mean
that the following decision problem is decidable (NP-complete): given an EL-
unification problem Γ , decide whether Γ is solvable or not.

As usual, unifiers can be compared using the instantiation preorder ≤•. Let
Γ be an EL-unification problem, V the set of variables occurring in Γ , and σ, θ
two unifiers of this problem. We define

σ ≤• θ iff there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 2. Let Γ be an EL-unification problem. The set of substitutions M is
called a complete set of unifiers for Γ iff it satisfies the following two properties:

1. every element of M is a unifier of Γ ;
2. if θ is a unifier of Γ , then there exists a unifier σ ∈ M such that σ ≤• θ.

The set M is called a minimal complete set of unifiers for Γ iff it additionally
satisfies

3. if σ, θ ∈M , then σ ≤• θ implies σ = θ.
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The unification type of a given unification problem is determined by the existence
and cardinality of such a minimal complete set.

Definition 3. Let Γ be an EL-unification problem. This problem has type uni-
tary (finitary, infinitary) iff it has a minimal complete set of unifiers of cardi-
nality 1 (finite cardinality, infinite cardinality). If Γ does not have a minimal
complete set of unifiers, then it is of type zero.

Note that the set of all unifiers of a given EL-unification problem is always a
complete set of unifiers. However, this set is usually infinite and redundant (in
the sense that some unifiers are instances of others). For a unitary or finitary
EL-unification problem, all unifiers can be represented by a finite complete set of
unifiers, whereas for problems of type infinitary or zero this is no longer possible.
In fact, if a problem has a finite complete set of unifiers M , then it also has a
finite minimal complete set of unifiers, which can be obtained by iteratively
removing redundant elements from M . For an infinite complete set of unifiers,
this approach of removing redundant unifiers may be infinite, and the set reached
in the limit need no longer be complete. This is what happens for problems of
type zero. The difference between infinitary and type zero is that a unification
problem of type zero cannot even have a non-redundant complete set of unifiers,
i.e., every complete set of unifiers must contain different unifiers σ, θ such that
σ ≤• θ.

When we say that EL has unification type zero, we mean that there exists
an EL-unification problem that has type zero. Before we can prove that this is
indeed the case, we must first have a closer look at equivalence in EL.

3 Equivalence and Subsumption in EL

In order to characterise equivalence of EL-concept terms, the notion of a reduced
EL-concept term is introduced in [17]. A given EL-concept term can be trans-
formed into an equivalent reduced term by applying the following rules modulo
associativity and commutativity of conjunction:

C � �→ C for all EL-concept terms C

A �A → A for all concept names A ∈ Ncon

∃r.C � ∃r.D → ∃r.C for all EL-concept terms C, D with C 8 D

Obviously, these rules are equivalence preserving. We say that the EL-concept
term C is reduced if none of the above rules is applicable to it (modulo asso-
ciativity and commutativity of �). The EL-concept term D is a reduced form
of C if D is reduced and can be obtained from C by applying the above rules
(modulo associativity and commutativity of �). The following theorem is an easy
consequence of Theorem 6.3.1 on page 181 of [17].

Theorem 1. Let C, D be EL-concept terms, and Ĉ, D̂ reduced forms of C, D,
respectively. Then C ≡ D iff Ĉ is identical to D̂ up to associativity and commu-
tativity of �.
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This theorem can also be used to derive a recursive characterisation of subsump-
tion in EL. In fact, if C 8 D, then C � D ≡ C, and thus C and C � D have
the same reduced form. Thus, during reduction, all concept names and existen-
tial restrictions of D must be “eaten up” by corresponding concept names and
existential restrictions of C.

Corollary 1. Let C = A1 � . . . � Ak � ∃r1.C1 � . . . � ∃rm.Cm and D = B1 �
. . .�B	�∃s1.D1� . . .�∃sn.Dn, where A1, . . . , Ak, B1, . . . , B	 are concept names.
Then C 8 D iff {B1, . . . , B	} ⊆ {A1, . . . , Ak} and for every j, 1 ≤ j ≤ n, there
exists an i, 1 ≤ i ≤ m, such that ri = sj and Ci 8 Dj.

Note that this corollary also covers the cases where some of the numbers k, �, m, n
are zero. The empty conjunction should then be read as �. The following lemma,
which is an immediate consequence of this corollary, will be used in our proof
that EL has unification type zero.

Lemma 1. If C, D are reduced EL-concept terms such that ∃r.D 8 C, then C
is either �, or of the form C = ∃r.C1 � . . .� ∃r.Cn where n ≥ 1; C1, . . . , Cn are
reduced and pairwise incomparable w.r.t. subsumption; and D 8 C1, . . . , D 8 Cn.
Conversely, if C, D are EL-concept terms such that C = ∃r.C1 � . . .�∃r.Cn and
D 8 C1, . . . , D 8 Cn, then ∃r.D 8 C.

In the proof of decidability of EL-unification, we will make use of the fact that
the inverse strict subsumption order is well-founded.

Proposition 1. There is no infinite sequence C0, C1, C2, C3, . . . of EL-concept
terms such that C0 � C1 � C2 � C3 � · · · .

Proof. We define the role depth of an EL-concept term C as the maximal nesting
of existential restrictions in C. Let n0 be the role depth of C0. Since C0 8 Ci

for i ≥ 1, it is an easy consequence of Corollary 1 that the role depth of Ci is
bounded by n0, and that Ci contains only concept and role names occurring in
C0. In addition, it is known that, for a given natural number n0 and finite sets
of concept names C and role names R, there are, up to equivalence, only finitely
many EL-concept term built using concept names from C and role names from
R and of a role depth bounded by n0 [11]. Consequently, there are indices i < j
such that Ci ≡ Cj . This contradicts our assumption that Ci � Cj . �

4 An EL-Unification Problem of Type Zero

To show that EL has unification type zero, we exhibit an EL-unification problem
that has this type.

Theorem 2. Let X, Y be variables. The EL-unification problem Γ := {X �
∃r.Y ≡? ∃r.Y } has unification type zero.
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Proof. It is enough to show that any complete set of unifiers for this problem
is redundant, i.e., contains two different unifiers that are comparable w.r.t. the
instantiation preorder. Thus, let M be a complete set of unifiers for Γ .

First, note that M must contain a unifier that maps X to an EL-concept
term not equivalent to � or ∃r.�. In fact, consider a substitution τ such that
τ(X) = ∃r.A and τ(Y ) = A. Obviously, τ is a unifier of Γ . Thus, M must contain
a unifier σ such that σ ≤• τ . In particular, this means that there is a substitution λ
such that ∃r.A = τ(X) ≡ λ(σ(X)). Obviously, σ(X) ≡ � (σ(X) ≡ ∃r.�) would
imply λ(σ(X)) ≡ � (λ(σ(X)) ≡ ∃r.�), and thus ∃r.A ≡ � (∃r.A ≡ ∃r.�), which
is, however, not the case.

Thus, let σ ∈ M be such that σ(X) �≡ � and σ(X) �≡ ∃r.�. Without loss of
generality, we assume that C := σ(X) and D := σ(Y ) are reduced. Since σ is a
unifier of Γ , we have ∃r.D 8 C. Consequently, Lemma 1 yields that C is of the
form C = ∃r.C1 � . . .� ∃r.Cn where n ≥ 1, C1, . . . , Cn are reduced and pairwise
incomparable w.r.t. subsumption, and D 8 C1, . . . , D 8 Cn.

We use σ to construct a new unifier σ̂ as follows:

σ̂(X) := ∃r.C1 � . . . � ∃r.Cn � ∃r.Z
σ̂(Y ) := D � Z

where Z is a new variable (i.e., one not occurring in C, D). The second part of
Lemma 1 implies that σ̂ is indeed a unifier of Γ .

Next, we show that σ̂ ≤• σ. To this purpose, we consider the substitution λ
that maps Z to C1, and does not change any of the other variables. Then we
have λ(σ̂(X)) = ∃r.C1 � . . . � ∃r.Cn � ∃r.C1 ≡ ∃r.C1 � . . . � ∃r.Cn = σ(X) and
λ(σ̂(Y )) = D � C1 ≡ D = σ(Y ). Note that the second equivalence holds since
we have D 8 C1.

Since M is complete, there exists a unifier θ ∈M such that θ ≤• σ̂. Transitivity
of the relation ≤• thus yields θ ≤• σ. Since σ and θ both belong to M , we have
completed the proof of the theorem once we have shown that σ �= θ. Assume
to the contrary that σ = θ. Then we have σ ≤• σ̂, and thus there exists a
substitution μ such that μ(σ(X)) ≡ σ̂(X), i.e.,

∃r.μ(C1) � . . . � ∃r.μ(Cn) ≡ ∃r.C1 � . . . � ∃r.Cn � ∃r.Z. (1)

Recall that the concept terms C1, . . . , Cn are reduced and pairwise incomparable
w.r.t. subsumption. In addition, since σ(X) = ∃r.C1 � . . .�∃r.Cn is reduced and
not equivalent to ∃r.�, none of the concept terms C1, . . . , Cn can be equivalent
to �. Finally, Z is a concept name that does not occur in C1, . . . , Cn. All this
implies that ∃r.C1 � . . . � ∃r.Cn � ∃r.Z is reduced. Obviously, any reduced form
for ∃r.μ(C1)� . . .�∃r.μ(Cn) is a conjunction of at most n existential restrictions.
Thus, Theorem 1 shows that the above equivalence (1) actually cannot hold.

To sum up, we have shown that M contains two distinct unifiers σ, θ such
that θ ≤• σ. Since M was an arbitrary complete set of unifiers for Γ , this shows
that this unification problem cannot have a minimal complete set of unifiers. �
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5 The Decision Problem

Before we can describe our decision procedure for EL-unification, we must in-
troduce some notation. An EL-concept term is called an atom iff it is a concept
name (i.e., concept constant or concept variable) or an existential restriction
∃r.D. Obviously, any EL-concept term is (equivalent to) a conjunction of atoms,
where the empty conjunction is �. The set At(C) of atoms of an EL-concept
term C is defined inductively: if C = �, then At(C) := ∅; if C is a concept name,
then At(C) := {C}; if C = ∃r.D then At(C) := {C} ∪ At(D); if C = C1 � C2,
then At(C) := At(C1) ∪ At(C2).

Concept names and existential restrictions ∃r.D where D is a concept name or
� are called flat atoms. The EL-unification problem Γ is flat iff it only contains
equations of the following form:

– X ≡? C where X is a variable and C is a non-variable flat atom;
– X1 � . . . �Xm ≡? Y1 � . . . � Yn where X1, . . . , Xm, Y1, . . . , Yn are variables.

By introducing new concept variables and eliminating �, any EL-unification
problem Γ can be transformed in polynomial time into a flat EL-unification
problem Γ ′ such that Γ is solvable iff Γ ′ is solvable. Thus, we may assume
without loss of generality that our input EL-unification problems are flat. Given
a flat EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn}, we call the atoms
of C1, D1, . . . , Cn, Dn the atoms of Γ .

The unifier σ of Γ is called reduced (ground) iff, for all concept variables X oc-
curring in Γ , the EL-concept term σ(X) is reduced (does not contain variables).
Obviously, Γ is solvable iff it has a reduced ground unifier. Given a ground uni-
fier σ of Γ , we consider the set At(σ) of all atoms of σ(X), where X ranges over
all variables occurring in Γ . We call the elements of At(σ) the atoms of σ.

Given EL-concept terms C, D, we define C >is D iff C � D. Proposition 1
says that the strict order >is defined this way is well-founded. This order is
monotone in the following sense.

Lemma 2. Let C, D, D′ be EL-concept terms such that D >is D′ and C is
reduced and contains at least one occurrence of D. If C′ is obtained from C by
replacing all occurrences of D by D′, then C >is C′.

Proof. We prove the lemma by induction on the size of C. If C = D, then
C′ = D′, and thus C = D >is D′ = C′. Thus, assume that C �= D. In this
case, C obviously cannot be a concept name. If C = ∃r.C1, then D occurs in
C1. By induction, we can assume that C1 >is C′

1, where C′
1 is obtained from

C1 by replacing all occurrences of D by D′. Thus, we have C = ∃r.C1 >is

∃r.C′
1 = C′ by Corollary 1. Finally, assume that C = C1 � . . . � Cn for n >

1 atoms C1, . . . , Cn. Since C is reduced, these atoms are incomparable w.r.t.
subsumption, and since D occurs in C we can assume without loss of generality
that D occurs in C1. Let C′

1, . . . , C
′
n be respectively obtained from C1, . . . , Cn

by replacing every occurrence of D by D′, and then reducing the concept term
obtained this way. By induction, we have C1 >is C′

1. Assume that C �>is C′.
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Since the concept constructors of EL are monotone w.r.t. subsumption 8, we
have C 8 C′, and thus C �>is C′ means that C ≡ C′. Consequently, C =
C1 � . . . � Cn and the reduced form of C′

1 � . . . � C′
n must be equal up to

associativity and commutativity of �. If C′
1 � . . . � C′

n is not reduced, then
its reduced form is actually a conjunction of m < n atoms, which contradicts
C ≡ C′. If C′

1� . . .�C′
n is reduced, then C1 >is C′

1 implies that there is an i �= 1
such that Ci ≡ C′

1. However, then Ci ≡ C′
1 � C1 contradicts the fact that the

atoms C1, . . . , Cn are incomparable w.r.t. subsumption. �

We use the order >is on EL-concept terms to define a well-founded order on
ground unifiers. Since >is is well-founded, its multiset extension >m is also well-
founded. Given a ground unifier σ of Γ , we consider the multiset S(σ) of all
EL-concept terms σ(X), where X ranges over all concept variables occurring in
Γ . For two ground unifiers σ, θ of Γ , we define σ  θ iff S(σ) >m S(θ). The
ground unifier σ of Γ is minimal iff there is no ground unifier θ of Γ such that
σ  θ. The following proposition is an easy consequence of the fact that  is
well-founded.

Proposition 2. Let Γ be an EL-unification problem. Then Γ is solvable iff it
has a minimal reduced ground unifier.

In the following, we show that minimal reduced ground unifiers of flat EL-
unification problems satisfy properties that make it easy to check (with an NP-
algorithm) whether such a unifier exists or not.

Lemma 3. Let Γ be a flat EL-unification problem and γ a minimal reduced
ground unifier of Γ . If C is an atom of γ, then there is a non-variable atom D
of Γ such that C ≡ γ(D).

Proof. Since γ is ground, C is either a concept constant or an existential re-
striction. First, assume that C = A for a concept constant A, but there is no
non-variable atom D of Γ such that A ≡ γ(D). This simply means that A does
not occur in Γ . Let γ′ be the substitution obtained from γ by replacing every
occurrence of A by �. Since equivalence in EL is preserved under replacing con-
cept names by �, and since A does not occur in Γ , it is easy to see that γ′ is
also a unifier of Γ . However, since γ  γ′, this contradicts our assumption that
γ is minimal.

Second, assume that C = ∃r.C1, but there is no non-variable atom D of Γ
such that C ≡ γ(D). We assume that C is maximal (w.r.t. subsumption) with
this property, i.e., for every atom C′ of γ with C � C′, there is a non-variable
atom D′ of Γ such that C′ ≡ γ(D′). Let D1, . . . , Dn be all the atoms of Γ
with C 8 γ(Di) (i = 1, . . . , n). By our assumptions on C, we actually have
C � γ(Di) and, by Lemma 1, the atom Di is also an existential restriction
Di = ∃r.D′

i (i = 1, . . . , n). The conjunction D̂ := γ(D1) � . . . � γ(Dn) obviously
subsumes C. We claim that this subsumption relationship is actually strict. In
fact, if n = 0, then D̂ = �, and since C is an atom, it is not equivalent to
�. If n ≥ 1, then C = ∃r.C1 5 ∃r.γ(D′

1) � . . . � ∃r.γ(Dn) would imply (by
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Corollary 1) that there is an i, 1 ≤ i ≤ n, with C1 5 γ(D′
i). However, this would

yield C = ∃r.C1 5 ∃r.γ(D′
i) = γ(Di), which contradicts the fact that C � γ(Di).

Thus, we have shown that C � D̂. The substitution γ′ is obtained from γ by
replacing every occurrence of C by D̂. Lemma 2 implies that γ  γ′. Thus, to
obtain the desired contradiction, it is sufficient to show that γ′ is a unifier of Γ .

First, consider an equation of the form X ≡? E in Γ , where X is a variable
and E is a non-variable flat atom. If E is a concept constant, then γ(X) = E, and
thus γ′(X) = γ(X), which shows that γ′ solves this equation. Thus, assume that
E = ∃r.E′. Since γ is reduced, we actually have γ(X) = ∃r.γ(E′). If C occurs in
γ(E′), then each replacement of C by D̂ in γ(E′) is matched by the corresponding
replacement in γ(X). Thus, in this case γ′ again solves the equation. Finally,
assume that C = γ(X). But then C ≡ γ(E) for a non-variable atom E of Γ ,
which contradicts our assumption on C.

Second, consider an equation of the form X1� . . .�Xm ≡? Y1� . . .�Yn where
X1, . . . , Xm, Y1, . . . , Yn are variables. Then L := γ(X1�. . .�Xm) and R := γ(Y1�
. . .�Yn) reduce to the same reduced EL-concept term J . Let L′, R′, J ′ be the EL-
concept terms respectively obtained from L, R, J by replacing every occurrence
of C by D̂. We prove that L′ = γ′(X1� . . .�Xm) and R′ = γ′(Y1� . . .�Yn) both
reduce to J ′, which shows that γ′ solves this equation. It is enough to show that
the reductions are invariant under the replacement of C by D̂. Obviously, all the
interesting reductions are of the form E1�E2 → E1 where E1, E2 are existential
restrictions such that E1 8 E2. Since γ is reduced, we can assume that E1, E2
are reduced. Let E′

1, E
′
2 be respectively obtained from E1, E2 by replacing every

occurrence of C by D̂. We must show that E′
1 � E′

2 reduces to E′
1. For this,

it is enough to show that E′
1 8 E′

2. Assume that an occurrence of C in E1 is
actually needed to have the subsumption E1 8 E2. Then there is an existential
restriction C′ in E2 such that C 8 C′. If C = C′, then both are replaced by D̂,
and thus this replacement is harmless. Otherwise, C � C′. Since C′ is an atom
of γ, maximality of C yields that there is a non-variable atom D′ of Γ such that
C′ ≡ γ(D′). Now C � C′ ≡ γ(D′) implies that there is an i, 1 ≤ i ≤ n, such
that D′ = Di. Thus, C′ is actually one of the conjuncts of D̂, which again shows
that replacing C by D̂ is harmless. Thus, we have shown that E′

1 8 E′
2, which

completes the proof of the lemma. �
The next proposition is an easy consequence of this lemma.

Proposition 3. Let Γ be a flat EL-unification problem and γ a minimal reduced
ground unifier of Γ . If X is a concept variable occurring in Γ , then γ(X) ≡ �
or there are non-variable atoms D1, . . . , Dn (n ≥ 1) of Γ such that γ(X) ≡
γ(D1) � . . . � γ(Dn).

Proof. If γ(X) �≡ �, then it is a non-empty conjunction of atoms, i.e., there are
atoms C1, . . . , Cn (n ≥ 1) such that γ(X) = C1 � . . . �Cn. Then C1, . . . , Cn are
atoms of γ, and thus Lemma 3 yields non-variable atoms D1, . . . , Dn of Γ such
that Ci ≡ γ(Di) for i = 1, . . . n. Consequently, γ(X) ≡ γ(D1) � . . . � γ(Dn). �
This proposition suggests the following non-deterministic algorithm for deciding
solvability of a given flat EL-unification problem Γ :
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1. For every variable X occurring in Γ , guess a finite, possibly empty, set SX

of non-variable atoms of Γ .
2. We say that the variable X directly depends on the variable Y if Y occurs

in an atom of SX . Let depends on be the transitive closure of directly de-
pends on. If there is a variable that depends on itself, then the algorithm
returns “fail.” Otherwise, there exists a strict linear order > on the variables
occurring in Γ such that X > Y if X depends on Y .

3. We define the substitution σ along the linear order >:
– If X is the least variable w.r.t. >, then SX does not contain any variables.

We define σ(X) to be the conjunction of the elements of SX , where the
empty conjunction is �.

– Assume that σ(Y ) is defined for all variables Y < X . Then SX only
contains variables Y for which σ(Y ) is already defined. If SX is empty,
then we define σ(X) := �. Otherwise, let SX = {D1, . . . , Dn}. We define
σ(X) := σ(D1) � . . . � σ(Dn).

4. Test whether the substitution σ computed in the previous step is a unifier
of Γ . If this is the case, then return σ; otherwise, return “fail.”

This algorithm is trivially sound since it only returns substitutions that are
unifiers of Γ . In addition, it obviously always terminates. Thus, to show correct-
ness of our algorithm, it is sufficient to show that it is complete.

Lemma 4 (completeness). If Γ is solvable, then there is a way of guessing
in Step 1 subsets SX of the non-variable atoms of Γ such that the depends on
relation determined in Step 2 is acyclic and the substitution σ computed in Step 3
is a unifier of Γ .

Proof. If Γ is solvable, then it has a minimal reduced ground unifier γ. By
Proposition 3, for every variable X occurring in Γ we have γ(X) ≡ � or there
are non-variable atoms D1, . . . , Dn (n ≥ 1) of Γ such that γ(X) ≡ γ(D1) �
. . . � γ(Dn). If γ(X) ≡ �, then we define SX := ∅. Otherwise, we define SX :=
{D1, . . . , Dn}.

We show that the relation depends on induced by these sets SX is acyclic, i.e.,
there is no variable X such that X depends on itself. If X directly depends on Y ,
then Y occurs in an element of SX . Since SX consists of non-variable atoms of
the flat unification problem Γ , this means that there is a role name r such that
∃r.Y ∈ SX . Consequently, we have γ(X) 8 ∃r.γ(Y ). Thus, if X depends on X ,
then there are k ≥ 1 role names r1, . . . , rk such that γ(X) 8 ∃r1. · · · ∃rk.γ(X).
This is clearly not possible since γ(X) cannot be subsumed by an EL-concept
term whose role depth is larger than the role depth of γ(X).

To show that the substitution σ induced by the sets SX is a unifier of Γ ,
we prove that σ is equivalent to γ, i.e., σ(X) ≡ γ(X) holds for all variables X
occurring in Γ . The substitution σ is defined along the linear order >. If X is the
least variable w.r.t. >, then SX does not contain any variables. If SX is empty,
then σ(X) = � ≡ γ(X). Otherwise, let SX = {D1, . . . , Dn}. Since the atoms Di

do not contain variables, we have Di = γ(Di). Thus, the definitions of SX and
of σ yield σ(X) = D1 � . . . �Dn = γ(D1) � . . . � γ(Dn) ≡ γ(X).
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Assume that σ(Y ) ≡ γ(Y ) holds for all variables Y < X . If SX = ∅, then
we have again σ(X) = � ≡ γ(X). Otherwise, let SX = {D1, . . . , Dn}. Since the
atoms Di contain only variables that are smaller than X , we have σ(Di) ≡ γ(Di)
by induction. Thus, the definitions of SX and of σ yield σ(X) = σ(D1) � . . . �
σ(Dn) ≡ γ(D1) � . . . � γ(Dn) ≡ γ(X). �
Note that our proof of completeness actually shows that, up to equivalence, the
algorithm returns all minimal reduced ground unifiers of Γ .

Theorem 3. EL-unification is NP-complete.

Proof. NP-hardness follows from the fact that EL-matching is NP-complete [17].
To show that the problem can be decided by a non-deterministic polynomial-
time algorithm, we analyse the complexity of our algorithm. Obviously, guessing
the sets SX (Step 1) can be done within NP. Computing the depends on relation
and checking it for acyclicity (Step 2) is clearly polynomial.

Steps 3 and 4 are more problematic. In fact, since a variable may occur in
different atoms of Γ , the substitution σ computed in Step 3 may be of exponential
size. This is actually the same reason that makes a naive algorithm for syntactic
unification compute an exponentially large most general unifier [12]. As in the
case of syntactic unification, the solution to this problem is basically structure
sharing. Instead of computing the substitution σ explicitly, we view its definition
as an acyclic TBox. To be more precise, for every concept variable X occurring
in Γ , the TBox Tσ contains the concept definition X

.= � if SX = ∅ and
X

.= D1 � . . . � Dn if SX = {D1, . . . , Dn} (n ≥ 1). Instead of computing σ in
Step 3, we compute Tσ. Because of the acyclicity test in Step 2, we know that
Tσ is an acyclic TBox. The size of Tσ is obviously polynomial in the size of Γ ,
and thus this modified Step 3 is polynomial. It is easy to see that applying the
substitution σ is the same as expanding the concept terms C, D w.r.t. the TBox
Tσ. This implies that, for every equation C ≡? D in Γ , we have C ≡Tσ D iff
σ(C) ≡ σ(D). Thus, testing whether σ is a unifier of Γ can be reduced to testing
whether C ≡Tσ D holds for every equation C ≡? D in Γ . Since subsumption
(and thus equivalence) in EL w.r.t. acyclic TBoxes can be decided in polynomial
time [3],4 this completes the proof of the theorem. �

6 Unification in Semilattices with Monotone Operators

Unification problems and their types were originally not introduced for Descrip-
tion Logics, but for equational theories [12]. In this section, we show that the
above results for unification in EL can actually be viewed as results for an
equational theory. As shown in [19], the equivalence problem for EL-concept
terms corresponds to the word problem for the equational theory of semilattices
with monotone operators. In order to define this theory, we consider a signa-
ture ΣSLmO consisting of a binary function symbol ∧, a constant symbol 1, and
finitely many unary function symbols f1, . . . , fn. Terms can then be built using
these symbols and additional variable symbols and free constant symbols.
4 Of course, the polynomial-time subsumption algorithm does not expand the TBox.
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Definition 4. The equational theory of semilattices with monotone operators
is defined by the following identities:

SLmO := {x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x} ∪
{fi(x ∧ y) ∧ fi(y) = fi(x ∧ y) | 1 ≤ i ≤ n}

A given EL-concept term C using only roles r1, . . . , rn can be translated into
a term tC over the signature ΣSLmO by replacing each concept constant A by
a corresponding free constants a, each concept variable X by a corresponding
variable x, � by 1, � by ∧, and ∃ri by fi. For example, the EL-concept term
C = A � ∃r1.� � ∃r3.(X � B) is translated into tC = a ∧ f1(1) ∧ f3(x ∧ b).
Conversely, any term over the signature ΣSLmO can be translated back into an
EL-concept term.

Lemma 5. Let C, D be EL-concept term using only roles r1, . . . , rn. Then C ≡
D iff tC =SLmO tD.

As an immediate consequence of this lemma, we have that unification in the
DL EL corresponds to unification modulo the equational theory SLmO . Thus,
Theorem 2 implies that SLmO has unification type zero, and Theorem 3 implies
that SLmO-unification is NP-complete.

Corollary 2. The equational theory SLmO of semilattices with monotone oper-
ators has unification type zero, and deciding solvability of an SLmO-unification
problem is an NP-complete problem.

7 Conclusion

In this paper, we have shown that unification in the DL EL is of type zero
and NP-complete. There are interesting differences between the behaviour of EL
and the closely related DL FL0 w.r.t. unification and matching. Though the
unification types coincide for these two DLs, the complexities of the decision
problems differ: FL0-unification is ExpTime-complete, and thus considerably
harder than EL-unification. In contrast, FL0-matching is polynomial, and thus
considerably easier than EL-matching, which is NP-complete.

It is well-known that there is a close connection between modal logics and
DLs [5]. For example, the DL ALC, which can be obtained by adding negation
to EL or FL0, corresponds to the basic (multi-)modal logic K. Decidability of
unification in K is a long-standing open problem. Recently, undecidability of
unification in some extensions of K (for example, by the universal modality)
was shown in [20]. The undecidability results in [20] also imply undecidability of
unification in some expressive DLs (e.g., SHIQ). The unification types of some
modal (and related) logics have been determined by Ghilardi; for example in
[14] he shows that K4 and S4 have unification type finitary. Unification in sub-
Boolean modal logics (i.e., modal logics that are not closed under all Boolean
operations, such as the modal logic equivalent of EL) has, to the best of our
knowledge, not been considered in the modal logic literature.
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Abstract. First-order term unification is an essential concept in areas
like functional and logic programming, automated deduction, deductive
databases, artificial intelligence, information retrieval, compiler design,
etc. We build upon recent developments in general grammar-based com-
pression mechanisms for terms, which are more general than dags and
investigate algorithms for first-order unification of compressed terms.

We prove that the first-order unification of compressed terms is de-
cidable in polynomial time, and also that a compressed representation of
the most general unifier can be computed in polynomial time.

We use several known results on the used tree grammars, called single-
ton tree grammars (STG)s, like polynomial time computability of several
subalgorithmms: certain grammar extensions, deciding equality of repre-
sented terms, and generating the preorder traversal. An innovation is a
specialized depth of an STG that shows that unifiers can be represented
in polynomial space.

1 Introduction

Solving equations is an important task in any mathematically founded science
and deserves thorough investigations. In general, solving an equation s

.= t con-
sists of finding a substitution σ for variables occurring in both expressions s and
t such that σ(s) = σ(t). The range of the variables, the kind of expressions s
and t, and their semantics, as well as the semantics of = depend on the context.
By restricting some parameters we obtain the well-known first-order term unifi-
cation problem, where the expressions s and t are terms with variables standing
for terms, function symbols are uninterpreted, and = is interpreted as syntactic
equality. Therefore, the term unification problem asks for a substitution σ that
maps the variables to first-order terms such that σ(s) and σ(t) are syntactically
equal. For example, the first-order unification instance f(f(x2, x2), f(x3, x3))

.=
f(x1, x2) has a solution 〈x1 �→ f(f(x3, x3), f(x3, x3)), x2 �→ f(x3, x3)〉. First-
order unification is efficiently solvable [MM82, BS01], and an essential algorithm
� The first two authors were supported by Spanish Min. of Educ. and Science by

the FORMALISM project (TIN2007-66523) and by the LOGICTOOLS-2 project
(TIN2007-68093-C02-01).
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in areas like functional and logic programming, automated deduction, deductive
databases, artificial intelligence, information retrieval, compilers, etc.

However, many of the applications in the areas mentioned above deal with
large data-objects. For this reason, some kind of internal succinct representation
of terms is required in order to guarantee computability in an environment with
a limited amount of resources. Therefore, it is important to reconsider complex-
ity issues for the original problem and its variants applied to compressed input
terms. In recent years there has been an increase of interest in compression
mechanisms based on grammar representation, since other mechanisms can in
general be efficiently simulated. These compression techniques were initially used
for words [Pla95, Loh06, Lif07], and led to important results in string process-
ing, with applications [HSTA00, GM02, LR06] in software/hardware verification,
information retrieval, and bioinformatics. In that sense, Straight-Line Programs
(SLP) or the equivalent formalism of Singleton Context Free Grammars (SCFG)
are now a widely accepted formalism for text compression. Later, grammar-
based compression was extended to terms/trees [BLM05, SS05, CDG+97] with
applications on XML tree structure compression [BLM05] and XPATH [LM05].
STG-based compressors have already been developed [MMS08]. Essentially, an
SCFG, i.e. a context free grammar where all nonterminals generate a single-
ton language, is used for representing single words, and similarly, every non-
terminal in a singleton tree grammar (STG) represents one tree. An STG
can succinctly represent terms/trees which are exponentially big in size and
height. Efficient algorithms have been developed for checking whether two com-
pressed inputs represent the same word/term [Pla95, Loh06, Lif07], and for
finding occurrences of one of them within the other (fully compressed pat-
tern matching)[KRS95, KPR96, MST97, Lif07]. Recently, it was shown that
tree grammars using multi-hole-contexts are polynomially equivalent to STGs
[LMSS09]. STGs have also been used for complexity analysis of unification
algorithms in [LSSV06b, LSSV06a], and the matching problem [GGSS08].

In this paper, we prove that first-order unification is decidable in polynomial
time even when the input is compressed using STGs. Our algorithm generates
the most general unifier in polynomial time and represents it again with an STG.

1.1 Outline of the Algorithm

The global structure of the algorithm is rather standard (see [Rob65]). Given
two terms s and t, we look for a minimal position p where s and t differ. If s
and t contain different function symbols at p, then we terminate stating that
they are not unifiable. Otherwise, one of s or t, say s, contains a variable x at p.
If x properly occurs in the subterm of t at p, then we terminate, again stating
non-unifiability. Otherwise, we replace x by the subterm of t at p everywhere,
and re-start the process again, until both s and t become equal, in which case
we state unifiability.

The difficulties are induced by the task of performing all the operations men-
tioned above on the compressed representation of terms and positions. Positions
are usually represented as sequences of integers, each one indicating the selected
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child at each level from the root. Since STGs may represent terms with an expo-
nential height, we also need to deal with compressed representations of positions
in terms. In [LSSV06b, LSSV04, GGSS08], SCFGs are already used for this
purpose.

We prove that all the needed operations can be performed in polynomial time
with respect to the compressed representation of the terms with STG. Many
of these operations can be done by an adequate use of previous results, since
operations such as computing subterms, asking for the occurrence of a variable
symbol in a certain subterm, or computing prefixes and suffixes of positions
and contexts are known to be efficiently computable [GGSS08]. These basic
operations on STGs and SCFGs are presented in Section 3.1. In [BLM05] it
was shown how to succinctly represent the preorder traversal word of a word
represented by an STG using an SCFG. Since we need to find a position where
s and t differ, an option is to consider the first different symbol in s and t found
while traversing them in preorder. To compute it, we represent the preorder
traversals of s and t with words ws and wt compressed with an SCFG, find
the first index i where ws and wt differ, and obtain p from i. We show how to
perform all of these operations efficiently in Section 3.2.

We also need to apply substitutions once a variable is isolated. Performing a
replacement of a first-order variable x by a term u is easily representable with
STGs by simply transforming x into a non-terminal of the grammar and adding
rules such that it generates u. However, since successive replacements of variables
by subterms modify the initial terms, we have to show that this does not produce
an exponential space increase of the grammar, since the depth of the grammar
may be doubled after each of these operations. To this end, we develop a notion
of restricted depth, showing that it is preserved along the execution, and that
the size increase at each step can be bounded by this restricted depth, which is
shown in Section 3.3. This improves upon the proof techniques used for showing
polynomiality of the first-order matching algorithm on compressed terms.

2 Preliminaries

A signature is a set F along with a function ar : F → N. Members of F are
called function symbols, and ar(f) is called the arity of the function symbol f .
Function symbols of arity 0 are called constants. Let X be a set disjoint from
F whose elements are called variables. The set T (F ,X ) of terms over F and
X is defined to be the smallest set containing X and having the property that
f(t1, . . . , tm) ∈ T (F ,X ) whenever f ∈ F , m = ar(f) and t1, . . . , tm ∈ T (F ,X ).

The size |t| of a term t is the number of occurrences of variables and function
symbols in t. The height of a term t is 0 if t is a constant or a variable, and 1+
max{height(t1), . . . , height(tm)} if t = f(t1, . . . , tm). The preorder traversal of
a term t, denoted pre(t), is the word defined recursively by pre(f(t1, . . . , tm)) =
f ·pre(t1) · · · pre(tm). Positions of a term t, denoted p, q, are sequences of natural
numbers that are used to identify the position of subterms of t. The length of
a position p is denoted by |p|. The set Pos(t) of positions of t is defined by
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Pos(t) = {λ} if t is a constant or a variable, and Pos(t) = {λ} ∪ {1 · p | p ∈
Pos(t1)} ∪ . . . ∪ {m · p | p ∈ Pos(tm)} if t = f(t1, . . . , tm), where λ denotes the
empty sequence and p · q, or simply pq, denotes the concatenation of p and q.
If t is a term and p a position, then t|p is the subterm of t at position p. More
formally defined, t|λ = t and f(t1, . . . , tm)|i·p = ti|p. We denote by t[s]p the
term that is like t except that the subterm t|p is replaced by s. More formally
defined, t[s]λ = s and f(t1, . . . , tm)[s]i·p = f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tm). We
can define a partial order ≤ on Pos(t) by p ≤ q if and only if p is a prefix of
q, i.e there is a sequence p′ such that q = p · p′. We say that positions p and
q are disjoint if they are incomparable with respect to ≤. A substitution is a
mapping σ : X → T (F ,X ). Substitutions can also be applied to arbitrary terms
by homomorphically extending them by σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)).

Intuitively, contexts are terms with a single occurrence of a hole [·] into which
terms (or other contexts) may be inserted. We denote contexts by upper case
letters C, D. We can provide a formal definition by considering a context to be
a term in an extended signature that includes a single extra constant symbol
[·]. Then, if C and D are contexts and s is a term, CD and Cs represent the
term that is like C except that the occurrence of [·] is replaced by D and s,
respectively. If D1 = D2D3 for contexts Di, then D2 is called a prefix of D1, and
D3 is called a suffix of D1. The position of the hole in a context C is called hole
path, and denoted hp(C), and its length is denoted as |hp(C)|.

Definition 2.1. A singleton context-free grammar (SCFG) G is a 3-tuple
〈N , Σ, R〉, where N is a set of non-terminals, Σ is a set of symbols, and R
is a set of rules of the form N → α where N ∈ N and α ∈ (N ∪Σ)∗. The sets
N and Σ must be disjoint, |{N → α ∈ R | α ∈ (N ∪Σ)∗}| = 1 for all N in N ,
and the SCFG must be non-recursive, i.e., the transitive closure >+

G generated
by all N >G M if N → α1Mα2 ∈ R must be terminating. The word generated
by a non-terminal N of G, denoted by wG,N or wN when G is clear from the
context, is the word in Σ∗ reached from N by successive applications of the rules
of G.

Usual definitions of SCFG require it to be in Chomsky normal form. We do not
keep this restriction to ease the presentation. But note that our SCFG can be
converted into the more standard ones by a linear transformation.

Definition 2.2. A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN , Σ, R), where T N is a set of tree/term non-terminals, or non-
terminals of arity 0, CN is a set of context non-terminals, or non-terminals
of arity 1, and Σ is a signature of function symbols (the terminals), such that
the sets T N , CN , and Σ are pairwise disjoint. The set of non-terminals N is
defined as N = T N ∪ CN . The rules in R may be of the form:

– A→ f(A1, . . . , Am), where A, Ai ∈ T N , and f ∈ Σ with ar(f) = m.
– A→ C1A2 where A, A2 ∈ T N , and C1 ∈ CN .
– C → [·] where C ∈ CN .
– C → C1C2, where Ci ∈ CN .
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– C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am), where A1, . . . , Ai−1,
Ai+1, . . . , Am ∈ T N , C, Ci ∈ CN , and f ∈ Σ with ar(f) = m.

– A→ A1, (λ-rule) where A and A1 are term non-terminals.

Let N1 >G N2 for two non-terminals N1, N2, iff N1 → t, and N2 occurs in t.
The STG must be non-recursive, i.e. the transitive closure >+

G must be terminat-
ing. Furthermore, for every non-terminal N there is exactly one rule having N
as left-hand side. Given a term t with occurrences of non-terminals, the deriva-
tion of t by G is an exhaustive iterated replacement of the non-terminals by the
corresponding right hand sides. The result is denoted as wG,t. In the case of a
non-terminal N we also say that N generates wG,N . We will write wN when G
is clear from the context.

Note that we use Σ instead of F to also allow first-order variables as constants
in Σ, which are not in F . λ-rules are not necessary for compression. However,
they will be useful when applying substitutions of variables to terms represented
by STGs.

Definition 2.3. The size |G| of an STG (SCFG) G is the sum of the
sizes of its rules, where the size of a rule N → α is 1 + |α|. The depth
within G of a non-terminal N is defined recursively as depth(N) := 1 +
max{depth(N ′) | N ′ is a non-terminal occurring in α where N → α ∈ G} and
the empty maximum is assumed to be 0. The depth of a grammar is the maximum
of the depths of all non-terminals, denoted as depth(G).

Term dags can efficiently be represented in STGs by considering an empty set
of context non-terminals, which corresponds to the commonly used implemen-
tation of dags by adjacency lists. However, STG-represented terms may have
exponential depth in the size of the grammar in contrast to dags, which only
allow for a linear depth in the (notational) size of the dags.

Example 2.4. Let G = {{A, A1}, {C′, C0, C1, C2, . . . , Cn−1, Cn}, {f, a, x}, R},
where R = {A → CnA1, A1 → x, C0 → f(C′), C′ → [·], C1 → C0C0, C2 →
C1C1, . . . , Cn → Cn−1Cn−1}.
depth(G) = depth(A) = n + 3. The term non-terminal A of G represents the
term wG,A = f2n

(x), whose height and size are exponential with respect to |G|.

Plandowski [Pla95] proved decidability in polynomial time of the word problem
for SCFG, i.e., given an SCFG P and two non-terminals A and B of P , to decide
whether wP,A = wP,B . The best complexity for this problem has been recently
obtained by Lifshits [Lif07] with time O(|P |3). In [BLM05, SS05]) Plandowski’s
result is generalized to STG. Since the result in [BLM05] is based on a linear
reduction from terms to words and a direct application of Plandowski’s result,
it also holds using the Lifshits result. Hence, we have the following.

Theorem 2.5. ([Lif07, BLM05]) Given an STG G, and two tree non-terminals
A, B from G, it is decidable in time O(|G|3) whether wA = wB.

We will use more specific information from Lifshits’ work [Lif07].
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Lemma 2.6. [Lif07] Let G be an SCFG. Then a data structure can be computed
in time O(|G|3) which allows to answer to the following question in time O(|G|):
given two non-terminals N1 and N2 of G and an integer value k, does wN1 occur
in wN2 at position k?

The unification problem is a generalization of the word problem, since it allows
occurrences of variables and substituting them in order to satisfy equality.

Definition 2.7. The first-order unification problem with STG has an STG G
representing first-order terms and contexts as input, plus two term non-terminals
As and At of G representing terms s = wG,As and t = wG,At. Its decisional ver-
sion asks whether s and t are unifiable. In the affirmative case, its computational
version asks for a representation of the most general unifier.

Example 2.8. Let G = ({At, As, A, B, A′, B′}, {C0, C1, C2, C3, C4, C
′, D},

{g, f, a, x}, R), where R = {At → g(B, A), As → g(A, A), A → C4[A′], C4 →
C3C3, C3 → C2C2, C2 → C1C1, C1 → C0C0, C0 → f(C′), C′ → [·], A′ → a B →
D[B′], D → C3C2, B

′ → x}, be an STG. Note that wG,At = g(f12(x), f16(a)),
and wG,As = g(f16(a), f16(a)). Hence, 〈G, As, At〉 is an instance of first-order
unification with STG. The goal is to find a substitution σ such that σ(wG,As) =
σ(wG,At).

3 Basic Operations with STG and SCFG

Usual term unification algorithms need to compute subterms, apply substitu-
tions, look for the difference between two terms, look for the occurrences of a
certain variable, etc. We need to perform these operations when the input terms
are represented by an STG. We use SCFGs for concisely representing positions
of a term represented with an STG. For clarity we call the non-terminals of this
SCFG position non-terminals.

3.1 Known Results

We give a list of operations which are known to be computable in linear time
for a given STG G generating terms, and an SCFG P generating positions.

– For every position non-terminal p of P and non-terminal N of G, the numbers
|wp| and |wN | are computable in time O(|P |) and O(|G|), respectively.

– An SCFG HG can be computed in time O(|G|) for G such that, for every
context non-terminal C ∈ G, there exists a position non-terminal HC of HG

which generates hp(wC). Moreover, the depth of every HC is the same as
the one of its corresponding C, and depth(HG) ≤ depth(G).

– Given a position non-terminal p of P and a number l ≤ |wp|, the SCFG P
can be extended in time O(|P |) with depth(p) new non-terminals such that
one of them, called p′ generates the prefix (suffix) of wp of length l. More-
over, depth(p′) ≤ depth(p), and the new SCFG P ′ satisfies depth(P ′) =
depth(P ).
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We present in detail the case of the extension of G generating a certain suffix
of wC , for a context non-terminal C of G given in [GGSS08], as a definition here.

Definition 3.1. Let G be an STG and let C be a context non-terminal of G.
Let l be a natural number such that l ≤ |hp(wC)|. Then, we define Suff(G, C, l)
as an extension of G recursively as follows.

– If l = 0, then Suff(G, C, l) := G. In the next cases we assume l > 0.
– If (C → C1C2) ∈ G and l < |hp(wC1)|. Then Suff(G, C, l) includes

Suff(G, C1, l), which contains a non-terminal C′
1 generating the suffix of

wC1 with |hp(wC′
1
)| = |hp(wC1)| − l, plus the rule C′ → C′

1C2, where C′ is
an additional new non-terminal.

– If (C → C1C2) ∈ G and l ≥ |hp(wC1)|, then, with l′ := l − |hp(wC1)|, we
define Suff(G, C, l) as Suff(G, C2, l

′).
– If (C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am)) ∈ G, then we define

Suff(G, C, l) as Suff(G, Ci, l− 1).
– In any other case Suff(G, C, l) is undefined.

Lemma 3.2. Let G be an STG describing first-order terms and contexts. Let
C be a context non-terminal of G, and let l be a natural number such that l ≤
|hp(wC)|.

Then, G′ = Suff(G, C, l) is computable in time O(|G|), it adds at most
depth(C) new context non-terminals, and one context non-terminal C′ of G′

generates the suffix of wC with |hp(wC′)| = |hp(wC)| − l. Moreover, for every
new non-terminal N , depthG′(N) ≤ depthG(C), and depth(G′) = depth(G).

Extending G to generate wN |wp , for a non-terminal N of G and a non-terminal
position p of P , is known to be computable in polynomial time. This was shown
in [GGSS08]. We present such an extension as a definition here.

Definition 3.3. Let G be an STG describing first-order terms and contexts, and
let P be an SCFG describing positions. Let p be a position non-terminal of P and
N a non-terminal of G. We recursively define pExt(G, N, p, P ) as an extension
of G as follows.

– If wp = λ (the empty word), then pExt(G, N, p, P ) := G. In the next cases
we assume wp �= λ.

– If (N → C1N2) ∈ G and wp < hp(wC1), then pExt(G, N, p, P ) includes
Suff(G, C1, |wp|), which contains a non-terminal C′

1 generating the suffix of
wC1 with |hp(wC′

1
)| = |hp(wC1)| − |wp|, plus the rule N ′ → C′

1N2, where N ′

is an additional new non-terminal.
– If (N → C1N2) ∈ G and wp is disjoint from hp(wC1), then

pExt(G, N, p, P ) := pExt(G, C1, p, P ).
– If (N → C1N2) ∈ G and hp(wC1) ≤ wp, then extend P with depth(p) new

non-terminals where one of them called p′ generates the suffix of wp of length
|wp| − |hp(wC1)|, and define pExt(G, N, p, P ) := pExt(G, N2, p

′, P ).
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– If (N → f(N1, . . . , Nm)) ∈ G, and i ≤ wp with 1 ≤ i ≤ m, then ex-
tend P with depth(p) new non-terminals where one of them called p′ gen-
erates the suffix of wp of length |p| − 1, and define pExt(G, N, p, P ) :=
pExt(G, Ni, p

′, P ).
– In any other case pExt(G, N, p, P ) is undefined.

Lemma 3.4. Let G be an STG describing first-order terms and contexts, and
P be an SCFG describing positions. Let p be a position non-terminal of P , and
N a non-terminal of G.

It can be checked in time O((|G| + |P |)4) if wp is a valid position of wN .
Moreover, G′ = pExt(G, N, p, P ) is computable in time O((|G| + |P |)4), it

adds at most depth(N) new non-terminals, and one non-terminal of G′ gen-
erates wN |wp . Furthermore, for every new non-terminal N ′, depthG′(N ′) ≤
depthG(N), and depth(G′) = depth(G).

3.2 Finding the First Different Position of Two Terms

Given two terms s and t, represented by term non-terminals As and At of an STG
G, we show how to efficiently construct a succinct SCFG P with a position non-
terminal p generating the word wp, which represents the first different position
of s and t, i.e. the first one with a different root symbol found when we traverse
them in preorder. Recall that such a word is a position in s and t, thus a sequence
of integers. The SCFG P is obtained in three steps detailed in the next three
subsections. We first construct an SCFG PreG with non-terminals Ps and Pt

generating the preorder traversals pre(s) and pre(t) of s and t, respectively.
This is based on the ideas of [BLM05]. Then, given Ps and Pt, we describe a
procedure to efficiently compute the first index k in which pre(s) and pre(t)
differ. Finally, given the index k we show how to construct the desired SCFG P .

Computing the preorder traversal of a term. Two arbitrary different trees
may have the same preorder traversal, but when they represent terms over a fixed
signature where the arity of every function symbol is fixed, the preorder traversal
is unique for every term. Given a term t, there is a natural bijective mapping
between the indexes {1, . . . , |pre(t)|} of pre(t) and the positions Pos(t) of t,
which associates every position p ∈ Pos(t) to the index i ∈ {1, . . . , |pre(t)|} you
find at root(t|p) while traversing the tree in preorder. We can recursively define
the two mappings pIndex(t, p) → {1, . . . , |pre(t)|} and iPos(t, i) → Pos(t) as
follows. pIndex(t, λ) = 1, pIndex(f(t1, . . . , tm), i.p) = (1 + |t1| + . . . + |ti−1|) +
pIndex(ti, p), iPos(t, 1) = λ, and iPos(f(t1, . . . , tm), 1+ |t1|+ . . .+ |ti−1|+k) =
i.iPos(ti, k) for 1 ≤ k ≤ |ti|.

In [BLM05] it is shown how to construct, from a given STG G, an SCFG PreG

representing the preorder traversals of the terms generated by G. We reproduce
that construction here, presented in Figure 1 as a set of rules indicating, for
each term non-terminal A and its rule A → α of G, which rule PA → α′ of PreG

is required in order to make the non-terminal PA of PreG satisfy wPreG,PA =
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A → f(A1, . . . , Am) ⇒ PA → fPA1 . . .PAm

A → C1A2 ⇒ PA → LC1PA2RC1

A → A1 ⇒ PA → PA1

C → C1C2 ⇒
{ LC → LC1LC2

RC → RC2RC1

C → f(A1, . . . , Ai−1, Ci, Ai+1, . . . , Am) ⇒
{LC → fPA1 . . .PAi−1LCi

RC → RCiPAi+1 . . .PAn

C → [·] ⇒
{ LC → λ
RC → λ

Fig. 1. Generating the Preorder Traversal

Fig. 2. Algorithm for the Index of the First Difference

pre(wG,A). To this end, for each context non-terminal C of G we also need non-
terminals of PreG generating the preorder traversal to the left of the hole (LC),
and the preorder traversal to the right of the hole (RC).

It is straightforward to verify by induction on the depth of G that, for every
term non-terminal A of G, the corresponding newly generated non-terminal PN

of PreG generates pre(wN ).

Example 3.5. (Continuation of Example 2.8) The SCFG PreG obtained by
applying the rules of Figure 1 to the STG G of Example 2.8 is {PAt →
gPBPA,PAs → gPAPA,PA → LC4PA′RC4 ,PA′ → a,PB → LDPB′RD,LD →
LC3LC2 ,RD → RC2RC3 ,PB′ → x,LC4 → LC3LC3 ,LC3 → LC2LC2 ,LC2 →
LC1LC1 ,LC1 → LC0LC0 ,LC0 → fLC′ ,LC′ → λ,RC′ → λ,RC0 → RC′ ,RC1 →
RC0RC0 ,RC2 → RC1RC1 ,RC3 → RC2RC2 ,RC4 → RC3RC3}. Note that
wPAt

= gf12xf16a and wPAs
= gf16af16a.

Computing the first different position of two words. Given two non-
terminals p1 and p2 of an SCFG P , we want to find the first position k where
wp1 and wp2 are different. In order to solve this problem, a linear search over
the generated words is not a good idea, since their sizes may be exponentially
big with respect to the size of P . But we can take advantage from Lemma 2.6 to
make it faster. Thus, assume that the pre-computation of Lemma 2.6 has been
done (in time O(|P |3)), and hence we can answer whether a given wp1 occurs in
a given wp2 at a certain position in time O(|P |).

For finding the first different position between p1 and p2, we can assume
|wp1 | ≤ |wp2 | without loss of generality. Moreover, we also assume wp1 �=
wp2 [1 . . . |wp1 |] (with w[i] we denote the symbol occurring at position i in the
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(N → α) ∧ (k = 1)
PN,k → λ

(N → f(N1, . . . , Nm)) ∧ (1 + |wN1 | + . . . + |wNi−1 | = k′ < k ≤ k′ + |wNi |)
PN,k → iPNi,k−k′

(N → C1N2) ∧ (1 < k ≤ |wLC1
|)

PN,k → PC1,k

(N → C1N2) ∧ (k′ = |wLC1
| < k ≤ |wLC1

| + |wN2 |)
PN,k → HC1PN2,k−k′

(N → C1N2) ∧ (|wLC1
| + |wN2 | < k) ∧ (k′ = |wN2 |)

PN,k → PC1,k−k′+1

Fig. 3. Construction of the SCFG generating the position corresponding to the k-th
index in pre(wN )

word w, and with w[i . . . j] we denote the subword of w at position i and length
j − i + 1). Note that this condition is necessary for the existence of a different
position between wp1 and wp2 , and that this will be the case when p1 and p2
generate the preorder traversals of different trees. Finally, we can assume that
P is in Chomsky Normal Form. Note that, if this was not the case, we can force
this assumption with a linear time and space transformation.

We generalize our problem to the following question: given two non-terminals
p1 and p2 of P and an integer k′ satisfying k′+ |wp1 | ≤ |wp2 | and wp1 �= wp2 [(k′+
1) . . . (k′ + |wp1 |)], which is the smallest k ≥ 1 such that wp1 [k] is different from
wp2 [k′ + k]? (Note that we recover the original question by fixing k′ = 0).

This generalization is solved efficiently by the recursive algorithm given in
Figure 2, as can be shown inductively on the depth of p1. By Lemma 2.6, each
call takes time O(|P |), and at most depth(P ) calls are executed. Thus, the most
expensive part of computing the first different position of wp1 and wp2 is the
pre-computation given by Lemma 2.6, that is, O(|P |3).
Lemma 3.6. Let P be an SCFG of size n, and let p1, p2 be non-terminals of P
such that wp1 �= wp2 . The first position k where wp1 and wp2 differ is computable
in time O(|P |3).
Example 3.7. (Continuation of Example 3.5) The SCFG PreG is not in Chomsky
Normal Form, but it is easy to adapt the algorithm of Figure 2 to this case. Thus,
if we execute an adapted version of index(PAt ,PAs ,0,PreG), the following se-
quence of calls is produced: index(PAt ,PAs , 0, PreG), index(PB,PAs , 1, PreG),
index(PB′ ,PAs , 13, PreG). The the third call returns 1, the second one returns
13, and the first one returns 14, which corresponds to the first different position
of wAs and wAt .

Computing the first different position of two terms. Using the index k
from the previous subsection, we want to compute the SCFG P with a non-
terminal p generating the word wp, which represents the first different position
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of s and t. Generalizing this, for a given non-terminal N of G and a given
positive natural number k, we want to construct an SCFG with a non-terminal
PN,k generating the position of the symbol corresponding to the k-th index of
pre(wN ). In particular, PAt,k is the p we are looking for. We show how to do
that again with a set of inference rules in Figure 3. These inference rules have
to be understood to act on demand, i.e. they are executed to generate new non-
terminals if those non-terminals have been demanded by other inference rules, or
correspond to the initially demanded PAt,k. Note that we make use here of the
SCFG HG, which can be constructed in linear time as commented in Section 3.1.

It is again straightforward to check, by induction on depth(N), that every
PN,k generates iPos(wN , k). Note that the grammar rule of every of such PN,k

demands the existence of a grammar rule for at most one new PN ′,k′ , and the
corresponding N ′ satisfies depth(N ′) < depth(N). Therefore, at most depth(G)
of the inference rules are executed for constructing PAt,k.

The following lemma is a consequence of the three previous subsections.

Lemma 3.8. Let G be an STG, and let As and At be term non-terminals of
G such that wAs �= wAt . Then, an SCFG P with a position non-terminal p
generating the first different position in wAs and wAt can be computed in time
O(|G|3). Moreover, |P | ≤ |G| and depth(P ) ≤ depth(G).

Example 3.9. (Continuation of Example 3.7) We compute now an SCFG P with
a position non-terminal PAs,14 generating the position in wAs that corresponds
to the 14th index in its preorder traversal. We use the fact that the SCFG HG pre-
sented in Section 3.1, can be constructed in linear time. The set of rules of HG is
{HC4 → HC3HC3 ,HC3 → HC2HC2 ,HC2 → HC1HC1 ,HC1 → HC0HC0 ,HC0 →
1HC′ ,HC′ → λ,HD → HC3HC2}. We construct P using the inference system
presented in this section with the STG G, N = As, and k = 14. The set of
rules of P is {PAs,14 → 1PA,13,PA,13 → PC4,13,PC4,13 → HC3PC3,5,PC3,5 →
HC2PC2,1,PC2,1 → λ}. Note that wPAs,14 = 11814λ = 113.

3.3 Application of Substitutions and a Notion of Restricted Depth

Term unification algorithms usually apply substitutions when one variable is
isolated. We need to emulate such applications when the terms are represented
with STGs. In an STG, first-order variables are terminals of arity 0. Replacing
a first-order variable X can be emulated by transforming X into a term non-
terminal and adding the necessary rules for making X generate the replaced
value. We define this notion of application of a substitution as follows.

Definition 3.10. Let G be an STG. Let X be a terminal representing a first-
order variable and let A be a term non-terminal of G, respectively. Then,
{X �→ A}(G) is defined as the STG obtained by adding the rule X → A to
G, and converting X into a term non-terminal.

Example 3.11. (Continuation of Example 3.9) We now apply three operations
to the STG G given as input. We first extend G using the pExt construction
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presented in Definition 3.3 such that a new non-terminal, called A′
s, generates

wAs |wPAs,14
. Then, we need to check that the variable x does not occur in wA′

s
,

which can be done in linear time.Finally, we perform the substitution {x �→
A′

s}(G) as stated in Definition 3.10. The set of rules of the obtained grammar G′

after the pExt construction and this assignment is {x→ A′
s,A

′
s → C2A′, At →

g(B, A), As → g(A, A), A → C4[A′], C4 → C3C3, C3 → C2C2, C2 → C1C1, C1 →
C0C0, C0 → f(C′), C′ → [·], A′ → a B → D[B′], D → C3C2, B

′ → x}. The
rules marked with bold correspond to the added non-terminals with respect
to the initial STG G. Note that wG′,A′

s
= wG,As |wP,PAs,14

= wG,As |113 =
f4(a), and thus, wG′,At = g(f12(wG′,x), f16(a)) = g(f12(wG′,A′

s
), f16(a)) =

g(f12f4(a), f16(a)) = g(f16(a), f16(a)) = wG′,As . Hence, we state unifiability.
The solution σ is represented in the STG G′.

When one or more substitutions of this form are applied, in general the depth
of the non-terminals of G might increase. In order to see that the size increase
is polynomially bounded along several substitution operations when unifying,
we need a new notion of depth called Vdepth, which does not increase after
an application of a substitution. It allows us to bound the final size increase of
G. The notion of Vdepth is similar to the notion of depth, but it is 0 for the
non-terminals N belonging to a special set V satisfying the following condition.

Definition 3.12. Let G = (T N , CN , Σ, R) be an STG, and let V be a subset
of T N ∪Σ. We say that V is a λ-set for G if for each term non-terminal A in
V , the rule of G of the form A→ α is a λ-rule.

Definition 3.13. Let G = (T N , CN , Σ, R) be an STG and let V be a λ-set
for G. For every non-terminal N of G, the value VdepthG,V (N), denoted also
as VdepthV (N) or Vdepth(N) when G and/or V are clear from the context, is
defined as follows (recall the convention that max(∅) = 0).

Vdepth(N) := 0 for N ∈ V
Vdepth(N) := 1 + max{Vdepth(N ′) | N ′ is a non-terminal occurring in α,

where N → α ∈ G}, otherwise.

The Vdepth of G is the maximum of the Vdepth of its non-terminals.

The idea is to make V to contain all first-order variables, before and after convert-
ing them into term non-terminals. The following lemma is completely straight-
forward from the above definitions, and states that a substitution application
does not modify the Vdepth provided X ∈ V for the substitution X �→ A.

Lemma 3.14. Let G, V be as in the above definition. Let X ∈ V be a terminal
of G of arity 0, and let A be a term non-terminal of G. Let G′ be {X �→ A}(G).
Then, for any non-terminal N of G it holds that VdepthG′(N) = VdepthG(N).

We also need the fact that Vdepth does not increase due to the construction of
pExt(G, A, p, P ) from G. This is stated by the following two lemmas.
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Fig. 4. Unification Algorithm of STG-Compressed Terms

Lemma 3.15. Let G be an STG, let C be a context non-terminal of G, let V
be a set of terminals and term non-terminals of G, let l be a natural number
smaller than |hp(wC)|, and let G′ be Suff(G, C, l).

Then, for every non-terminal N of G it holds that VdepthG(N) =
VdepthG′(N), and for every new non-terminal N in G′ and not in G, it holds
that VdepthG′(N) ≤ VdepthG(C). Moreover, the number of new added non-
terminals is bounded by VdepthG(N).

Lemma 3.16. Let G be an STG and P an SCFG, let N be a non-terminal
of G, let V be a λ-set for G, let p be a position non-terminal of P such that
wp ∈ Pos(wN ), and let G′ be pExt(G, N, p, P ).

Then, for every non-terminal N ′ of G it holds that VdepthG(N ′) =
VdepthG′(N ′), and for every new non-terminal N ′′ in G′ and not in G, it holds
that VdepthG′(N ′′) ≤ VdepthG(N). Moreover, the number of new added non-
terminals is bounded by VdepthG(N).

4 A Polynomial Time Algorithm for First-Order
Unification with STG

From a high level perspective the structure of our algorithm given in Figure 4
is very simple and rather standard. Most algorithms for first-order unification
are variants of the above scheme. They represent the terms with directed acyclic
graphs (dags), implemented somehow, in order to avoid the space explosion due
to the repeated instantiation of variables by terms. In our setting, those terms
are represented by STGs. In fact, the input is an STG G, and two term non-
terminals As and At representing s and t, respectively. In the previous section
we have already seen how to perform the basic required operations on STGs:
look for the first position p satisfying that root(s|p) and root(t|p) are different,
construct the term t|p, and replace the variable x = s|p by t|p everywhere.

The algorithm runs in polynomial time due to the following observations.
Let n and m be the initial value of depth(G) and |G|, respectively. We define
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V to be the set of all the first-order variables at the start of the execution
(before any of them has been converted into a non-terminal). Hence, at this point
Vdepth(G) = n. The value Vdepth(G) is preserved to be n along the execution
of the algorithm thanks to Lemmas 3.14 and 3.16. Moreover, by Lemma 3.16, at
most n new non-terminals are added at each step. Since at most |V | steps are
executed, the final size of G is bounded by m + |V |n. Each execution step takes
time at most O(|G|4). Thus we have proved:

Theorem 4.1. First-order unification of two terms represented by an STG can
be done in polynomial time (O(|V |(m + |V |n)4), where m represents the size
of the input STG, n represents the depth, and V represents the set of different
first-order variables occurring in the input terms). This holds for the decision
question, as well as for the computation of the most general unifier, whose com-
ponents are represented by the final STG.

5 Conclusion and Further Research

We presented an instantiation-based first-order unification algorithm, that can
be immediately executed on the compressed representation of large terms and
runs in polynomial time on the size of the representation.

Further research is to investigate extensions of first-order unification on com-
pressed terms, and to investigate optimizations. Perhaps it is possible to show an
improved upper bound. We believe that our techniques could be useful to decide
the one context unification problem in NP when the input is represented by an
STG. This problem has been solved for plain terms as input in [GGSST08].

Acknowledgement. We thank Markus Lohrey for valuable discussions on the
subject of this paper.
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Abstract. Maude is a high-performance reflective language and system support-
ing both equational and rewriting logic specification and programming for a wide
range of applications, and has a relatively large worldwide user and open-source
developer base. This paper introduces novel features of Maude 2.4 including sup-
port for unification and narrowing. Unification is supported in Core Maude, the
core rewriting engine of Maude, with commands and metalevel functions for
order-sorted unification modulo some frequently occurring equational axioms.
Narrowing is currently supported in its Full Maude extension. We also give a
brief summary of the most important features of Maude 2.4 that were not part of
Maude 2.0 and earlier releases. These features include communication with ex-
ternal objects, a new implementation of its module algebra, and new predefined
libraries. We also review some new Maude applications.

1 Introduction

Maude is a language and a system based on rewriting logic [7]. Maude modules are
rewrite theories, while computation with such modules corresponds to efficient deduc-
tion by rewriting. Because of its logical basis and its initial model semantics, a Maude
module defines a precise mathematical model. This means that Maude and its formal
tool environment can be used in three, mutually reinforcing ways: as a declarative pro-
gramming language, as an executable formal specification language, and as a formal
verification system.

The first version of Maude was publicly released at the beginning of 1999 and pre-
sented at RTA’99 [5]; four years later, Maude 2.0 was introduced at RTA’03 [6]. The
new and improved features since Maude 2.0 include: built-in AC unification; narrowing;

� M. Clavel has been partially supported by MICINN grants TIN2005-09207-C03-03 and
TIN2006-15660-C02-01, and by CAM program S-0505/TIC/0407. F. Durán has been partially
supported by MICINN grant TIN2008-03107 and Junta de Andalucı́a P06-TIC2250 and P07-
TIC3184. S. Escobar has been partially supported by MICINN grant TIN2007-68093-C02-02,
Integrated Action HA 2006-0007, and Generalitat Valenciana GVPRE/2008/113. P. Lincoln’s
effort partially supported by NSF grant CNS-0749931. N. Martı́-Oliet has been partially sup-
ported by MICINN grant TIN2006-15660-C02-01 and CAM program S-0505/TIC/0407.

R. Treinen (Ed.): RTA 2009, LNCS 5595, pp. 380–390, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Unification and Narrowing in Maude 2.4 381

object-message fairness and communication with external objects; a new implementa-
tion at the core level of its module algebra; new predefined libraries of parameterized
data types; and a linear Diophantine equation solver.

Unification is built-in in Core Maude 2.4. Currently, narrowing is available in Full
Maude [12,7], an extension of Maude written in Maude itself by taking advantage of
its reflective capabilities. It has been used as a testbed for prototyping new features:
parameterization [12], strategies [20], unification [7], and so on; and as a key component
to build various formal tools by reflection (see Section 5).

There are several functional-logic programming languages based on narrowing (see,
e.g., http://www.informatik.uni-kiel.de/˜mh/FLP/implementations.html).
How-ever, we are not aware of any other programming language supporting AC-
narrowing, or combining narrowing with all the other features that Maude provides.

The releases of Maude since Maude 2.0 have added many other new features and
improvements that cannot be described here. We refer the reader to the Maude docu-
mentation [8] for more details. The LNCS book on Maude [7] contains many additional
examples and explanations, as well as information on applications and tools. However,
the book only covers up to Maude 2.3, and therefore does not cover features like AC
unification and narrowing. The Maude system, its documentation, and related papers
and applications are available from its website at http://maude.cs.uiuc.edu.

2 Unification

Unification is a fundamental deductive mechanism used in many automated deduction
tasks. It is also very important in combining the paradigms of functional programming
and logic programming. Furthermore, in the context of Maude, unification can be very
useful to reason not only about equational theories, but also about rewrite theories.
In this section, we explain how order-sorted unification modulo frequently occurring
equational axioms is currently supported in Maude 2.4.

Although the most general equational theories supported by Maude are membership
equational theories, to obtain practical unification algorithms, allowing us to effectively
compute the solutions of an equational unification problem, it is important to restrict
ourselves to order-sorted equational theories. Furthermore, for an arbitrary set of equa-
tions no unification algorithm may be known; even if one is known, the number of
solutions may be infinite. This suggests a hybrid approach, in which we take advantage
of Maude’s structuring of a module’s equations into equational axioms Ax, such as as-
sociativity, and/or commutativity, and/or identity, and equations E , which are assumed
to be confluent and terminating modulo Ax. We can then consider order-sorted equa-
tional theories of the form (Σ,E ∪Ax) and decompose the E ∪Ax-unification problem
into two problems: one of Ax-unification, and another of E∪Ax-unification that uses an
Ax-unification algorithm as a subroutine. The point is that only Ax-unification needs to
be built-in at the level of Core Maude’s C++ implementation for efficiency purposes.
Instead, E ∪Ax-unification can then be implemented in Maude itself. Since the axioms
Ax are well-known and unification algorithms exist for them, the task of building in
efficient Ax-unification algorithms, although difficult, becomes manageable.

Unlike unsorted syntactic unification, which always either fails or has a single most
general unifier, order-sorted syntactic unification is not unitary, that is, there is in

http://www.informatik.uni-kiel.de/~mh/FLP/implementations.html
http://maude.cs.uiuc.edu
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general no single most general unifier. What exists (if Σ is finite) is a finite minimal
complete set of syntactic unifiers. For some commonly occurring theories having a uni-
fication algorithm, such as associativity of a binary function symbol, it is well-known
that unification is not finitary. However, for other theories, such as commutativity (C)
or associativity-commutativity (AC), unification is finitary, both when Σ is unsorted and
order-sorted (and finite). Maude 2.4 provides an order-sorted Ax-unification algorithm
for all order-sorted theories (Σ,E ∪Ax) such that:

– the signature Σ is preregular modulo Ax [7];
– the axioms Ax associated to function symbols are as follows:

• there can be arbitrary function symbols and constants with no attributes;
• the iter equational attribute can be declared for some unary symbols;
• the comm or assoc comm attributes can be declared for some binary function

symbols, but no other equational attributes can be given for such symbols.

Explicitly excluded are theories with binary function symbols having either: (i) the
id:, left id:, or right id: attributes; or (ii) the assoc attribute without the comm
one; or (iii) a combination of (i) and (ii). The reason for excluding the assoc attribute
without comm is the already-mentioned fact that associative unification is not finitary.
The reason for excluding for the moment the id:, left id:, and right id: attributes
is that they are collapse equations (one of the terms in the equation is a variable),
requiring a more complex way of combining their unification algorithms. However,
Ax-unification, where Ax includes such id:, left id:, and right id: attributes, is
currently supported in Full Maude by narrowing (see Section 3).

If we give to Maude a unification problem in a functional module fmod (Σ,E ∪Ax)
endfm, then the equations E are ignored and we get a complete set of order-sorted
unifiers modulo the theory (Σ,Ax). To deal with E ∪Ax-unification, other methods, that
use the Ax-unification algorithm as a component, can later be defined (see Section 5).

Maude provides a unification command of the form:

unify [n] in ModId : t1 =? t ′1 /\ . . . /\ tk =? t ′k .

where k ≥ 1, n is an optional argument providing a bound on the number of unifiers,
and ModId is the name of the module or theory in which the unification takes place.

The use of a bound on the number of unifiers, as well as the use of the AC operator
+ in the predefined NAT module, plus the fact that even small AC-unification problems

can generate a large number of unifiers are all illustrated by the following command:

Maude> unify [10] in NAT : X:Nat + X:Nat + Y:Nat =? A:Nat + B:Nat .
Solution 1
X:Nat --> #1:Nat + #2:Nat + #4:Nat
Y:Nat --> #3:Nat + #5:Nat
A:Nat --> #1:Nat + #1:Nat + #2:Nat + #3:Nat
B:Nat --> #2:Nat + #4:Nat + #4:Nat + #5:Nat
...
Solution 10
X:Nat --> #1:Nat + #2:Nat
Y:Nat --> #3:Nat
A:Nat --> #1:Nat + #1:Nat
B:Nat --> #2:Nat + #2:Nat + #3:Nat
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Notice that in each assignment X --> t in a unifier, the variables appearing in the term t
are always fresh variables of the form #n:Sort. Assuming that no bound on the number
of unifiers is specified by the user, Maude will compute a complete set of order-sorted
unifiers modulo Ax, for Ax a set of supported equational axioms. However, there is no
guarantee that the computed set of unifiers is minimal, that is, some of the unifiers in
the computed set may be redundant, since they could be obtained as instances (modulo
Ax) of other unifiers in the set.

Order-sorted unification is NP-complete in general because Boolean algebra can be
encoded as an order-sorted free theory signature and hence satisfiability can be reduced
to an order-sorted free theory unification problem. In practice, reasonable performance
can be obtained using a Binary Decision Diagram technique to compute sorts for free
variables occurring in unsorted unifiers. Furthermore in the AC case, sort information
can be pushed into the unsorted unification algorithm and used to prune the Diophantine
basis and the choice of subsets drawn from such a basis [13].

The unification theory combination framework and AC unification algorithm are
based on [4] while the Diophantine system solver used by the AC algorithm is based
on [10]. The unification algorithm has been thoroughly tested (by S. Escobar and R.
Sasse) using CiME [11] as an oracle, and has shown better average performance than
CiME on the same problems.

Much of Maude’s functionality is supported in its metalevel, so that it becomes avail-
able by reflection [7]. Unification is reflected in by the following descent functions:

op metaUnify : Module UnificationProblem Nat Nat ˜> UnificationPair? .

op metaDisjointUnify :

Module UnificationProblem Nat Nat ˜> UnificationTriple? .

The key difference between metaUnify and metaDisjointUnify is that the latter
assumes that the variables in the left- and right-hand unificands are to be considered
disjoint even when they are not so, and it generates each solution to the given unification
problem not as a single substitution, but as a pair of substitutions, one for left unificands
and the other for right unificands. This functionality is very useful for applications, such
as critical-pair checking or narrowing (see Section 3), where a disjoint copy of the terms
or rules involved must always be computed before unification is performed.

Since it is convenient to reuse variable names from unifiers in new problems, for ex-
ample in narrowing, this is allowed via the third argument, which is the largest number
n appearing in a unificand metavariable of the form #n:Sort. Then the fresh metavari-
ables in the computed unifiers will all be numbered from n + 1 on.

Results are returned using the following constructors:

subsort UnificationPair < UnificationPair? .

subsort UnificationTriple < UnificationTriple? .

op {_,_} : Substitution Nat -> UnificationPair [ctor] .

op {_,_,_} : Substitution Substitution Nat -> UnificationTriple [ctor] .

The Nat component is the largest n occurring in a fresh #n:Sort metavariable. In this
way, the next invocation of the function can use this parameter to make sure that the
new variables generated are always fresh.

Examples illustrating the use of these metalevel functions can be found in [8].
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3 Narrowing

Narrowing generalizes term rewriting by allowing free variables in terms (as in logic
programming) and by performing unification instead of matching in order to (non–
deterministically) reduce a term.

At each narrowing step, one must choose which subterm of the subject term, which
rule of the specification, and which instantiation on the variables of the subject term
and the rule’s lefthand side is going to be considered. Given an order-sorted rewrite
theory (Σ,Ax,R) where R is a set of unconditional rewrite rules such that the lefthand
sides are non-variable terms and the rules are explicitly Ax-coherent [22], and Ax is a
set of axioms such that a finitary Ax-unification procedure is available in Maude, the
R,Ax-narrowing relation is defined as t �σ,p,R,Ax t ′ iff there is a non-variable position
p of t, a (possibly renamed) rule l → r in R, and a unifier σ ∈ Unif Ax(t|p, l) such that
t ′ = σ(t[r]p). Full Maude supports a version of narrowing with simplification. That is,
given an order-sorted rewrite theory (Σ,Ax∪E,R) where R and Ax are defined as above
and E are the remaining equations, the combined relation (�σ,p,R,Ax;→!

E,Ax) is defined

as t �σ,p,R,Ax;→!
E,Ax t ′′ iff t �σ,p,R,Ax t ′, t ′ →∗

E,Ax t ′′, and t ′′ is E,Ax-irreducible. Note
that this combined relation may be incomplete, i.e., given a reachability problem of the
form t →∗ t ′ and a solution σ (i.e., σ(t) →∗

R,E∪Ax σ(t ′)), the relation �σ,p,R,Ax;→!
E,Ax

may not be able to find a more general solution. The reason is that the equations E
should also be executed by narrowing instead of rewriting to ensure completeness under
appropriate conditions (see [22] and Section 5).

The user can enter in Full Maude a search command of the form:

search [n,m] in ModId : t1 SearchArrow t2 .

where: n and m are optional arguments providing, respectively, a bound on the number
of desired solutions and the maximum depth of the search; ModId is the module where
the search takes place; t1 is the starting non-variable term, which may contain variables;
t2 is the term specifying the pattern that has to be reached, with variables possibly shared
with t1; SearchArrow is an arrow indicating the form of the narrowing proof from t1 until
t2 (˜>1 for a narrowing proof consisting of exactly one step; ˜>+ for a proof of one or
more steps; ˜>* for a proof of none, one, or more steps; and ˜>! to indicate that only
strongly irreducible final states are allowed, i.e., states that cannot be further narrowed).

Consider, for example, the following Petri-net-like specification of a vending ma-
chine to buy apples (a) or cakes (c) with dollars ($) and/or quaters (q):

(mod VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op __ : Money Money -> Money [assoc comm] .
subsort Money Item < Marking .
op __ : Marking Marking -> Marking [assoc comm] .
op <_> : Marking -> State .
ops $ q : -> Coin [format (r! o)] .
ops a c : -> Item [format (b! o)] .
var M : Marking .
rl [buy-c] : < $ > => < c > .
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rl [buy-c] : < M $ > => < M c > .
rl [buy-a] : < $ > => < a q > .
rl [buy-a] : < M $ > => < M a q > .
rl [change]: < q q q q > => < $ > .
rl [change]: < M q q q q > => < M $ > .

endm)

We can use the narrowing search command to answer the question: Is there any com-
bination of one or more coins that returns exactly an apple and a cake? This is done
by searching for states that have a variable of sort Money instead of sort Marking at the
starting term and match a corresponding pattern at the end.

Maude> (search [,4] in VENDING-MACHINE : < M:Money > ˜>* < a c > .)
Solution 1
M:Money --> $ q q q
Solution 2
M:Money --> q q q q q q q

Note that we must restrict the depth, because narrowing does not terminate for this
reachability problem even though the above two solutions are indeed the only solutions.

Narrowing-based reachability analysis is also available at the metalevel by using the
following metaNarrowSearch function.

op metaNarrowSearch :

Module Term Term Substitution Qid Bound Bound -> ResultTripleSet .

If a non-identity substitution is provided in the fourth argument, then any computed
substitution must be an instance of the provided one, i.e., we can restrict the computed
narrowing sequences to some concrete shape. The Qid metarepresents the appropriate
search arrow, similar to the metaSearch command (see [8, Section 11.4.6]). For the
bounds, the first one is the number of computed solutions, and the second one is the
maximum length of the narrowing sequences, i.e., the depth of the narrowing tree.

Unification modulo identity: The id-unify command. As described in Section 2,
Maude 2.4 provides an order-sorted Ax-unification algorithm for all order-sorted theo-
ries (Σ,E ∪Ax) such that Σ is preregular and Ax can include any combination of equa-
tional axioms for a function symbol except the id:, left id:, right id:, and assoc
without comm. If a theory (Σ,Ax) contains the id:, left id:, or right id: attributes
in Ax (but not assoc without comm), we can perform unification modulo Ax as follows:

1. we decompose Ax into a disjoint union Ax = Ãx∪Ids, where Ãx does not contain any
id:, left id:, or right id: attribute, and Ids is the set of such extra attributes;

2. we define the rewrite theory (Σ, Ãx,
−→
Ids) where

−→
Ids contains the obvious rules for

each of the equational identity attributes, that is:
– if f has an id: attribute in Ax and [s] is the top sort of f (which we can identify

with the kind), we add rules f (x,e) → x and f (e,x) → x into
−→
Ids, where x is a

variable of sort [s] and e is the identity symbol (if f has also the comm attribute,
only one such rule is needed);
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– Likewise, for f with the left id: (resp. right id:) attribute, we add the rule
f (e,x) → x (resp. f (x,e) → x) into

−→
Ids.

3. based on the idea of “variants” in [9], for the Ax-unification problem t
?= t ′, we

compute the variants of t and the variants of t ′ using narrowing modulo Ãx within
the theory (Σ, Ãx,

−→
Ids) and perform Ãx-unification pairwise among all the variants

of t and t ′ (see [17] for details).

The Full Maude id-unify command implements the above Ax-unification proce-
dure (with Ax = Ãx∪ Ids) using variants.1 Given a module or theory ModId having a set
Ax of equational axioms for the signature Σ such that Σ does not include symbols with
assoc without comm attributes in Ax, Full Maude provides a unification command for
Ax-unification of the form:

id-unify in ModId : t =? t ′ .

where only one unification problem is admitted, in contrast to the unify command, and
such that no limit to the number of unifiers can be specified.

The procedure for equational Ax-unification, where Ax can contain any Maude equa-
tional attribute except assoc without comm, is also available at the metalevel thanks to
the metaACUUnify function.

op metaACUUnify : Module Term Term -> SubstitutionSet .

4 Other Available Features

In this section we briefly mention some of the other features introduced in Maude since
Maude 2.0. More details can be found in the Maude documentation [8,7].

Object-message fairness and external objects. Distributed systems can be modeled
as multisets of entities, coupled by some suitable communication mechanism. In object-
based distributed systems, the entities are objects, each with a unique identity, and the
communication mechanism is message passing. Maude 2.4 supports the modeling of
such systems by providing a predefined CONFIGURATION module and an object-message
fair rewriting strategy that is well suited for executing object system configurations. It
also supports external objects, so that objects inside a Maude configuration can interact
with different kinds of objects outside it. The external objects directly supported are
internet sockets, but through them it is possible to interact with other external objects.

Module algebra. As in other languages in the Clear/OBJ tradition, the abstract syntax
of Maude specifications can be seen as given by module expressions, defining a new
module out of previously defined modules by combining or modifying them according
to a specific set of operations. Maude 2.4 supports module operations for summation,
renaming, and instantiation of parameterized modules. Theories, parameterized mod-
ules, and views are the basic building blocks of parameterized programming.

1 Of course, this is less efficient than built-in Ax-unification. However, a number of useful appli-
cations can be supported in practice even with id-unify (see Section 5).
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New predefined libraries. Maude has a standard library of predefined modules. In ad-
dition to predefined modules providing commonly used data types, such as Booleans,
numbers, strings, and quoted identifiers, that were already available in Maude 2.0, the
following modules are predefined. The RANDOM module provides a pseudo-random num-
ber generator, and the system module COUNTER a “counter” that can be used to generate
new names. These modules can be used together, e.g., to specify probabilistic models
in Maude [7]. For certain applications, it is convenient to have a predefined specifi-
cation for machine integers instead of the arbitrary size integers provided by the INT
module. The parameterized module MACHINE-INT takes a bit-width parameter n ≥ 2,
which must be a power of 2, and defines machine integer operations. For parameterized
programming, several functional theories like TRIV, DEFAULT, STRICT-WEAK-ORDER,
TOTAL-PREORDER, and TOTAL-ORDER are predefined. Also predefined are the modules
LIST, SET, LIST*, and SET*. The WEAKLY-SORTABLE-LIST module, parameterized by
STRICT-WEAK-ORDER, specifies a stable version of the mergesort algorithm, and the
SORTABLE-LIST module sorts lists with respect to the TOTAL-ORDER theory.

5 Some Applications

In this section we review briefly some Maude applications that have been or can be
developed, particularly with the new unification and narrowing infrastructure.

Narrowing-based unification. If we have a dedicated algorithm to solve unification
problems in an order-sorted theory (Σ,Ax), then we can use it as a component to obtain
a unification algorithm for theories of the form (Σ,E∪Ax), provided the equations E are
coherent, confluent and terminating modulo Ax [18]. We just need to add to (Σ,E ∪Ax)
a new constant tt, a binary symbol eq, and equations of the form eq(x,x) = tt (one for
each top sort in Σ, with x of that top sort). Then we can reduce an E ∪Ax-unification

problem t
?= t ′ to the narrowing reachability problem eq(t, t ′) �∗ tt modulo Ax in the

theory extending (Σ,E ∪Ax) with these new operators, and equations.
The computation of E ∪Ax-unifiers by narrowing modulo Ax yields a complete but

in general infinite set of E ∪Ax-unifiers. When Ax = /0, sufficient conditions are known
ensuring termination of the basic narrowing strategy (see, e.g., [19,1]), and therefore
yielding a finite complete set of E ∪Ax-unifiers. However, for axioms Ax such as AC, it
is well-known that narrowing modulo AC “almost never terminates” and, furthermore,
that basic narrowing is incomplete [25,9]. Based on the idea of “variants” in [9], a com-
plete narrowing strategy modulo Ax called variant narrowing has been proposed in [17].
Furthermore, in [16] sufficient checkable conditions on (Σ,E ∪Ax) have been given en-
suring that the E ∪Ax-unification algorithm provided by variant narrowing modulo Ax
is finitary, even though variant narrowing modulo Ax may still not terminate in spite of
such conditions. A Maude-based narrowing library that uses the current built-in unifi-
cation algorithm as a component has been developed by S. Escobar.

Symbolic reachability analysis in rewrite theories. A rewrite theory, say R = (Σ,E∪
Ax,R), specified in Maude as a system module, describes a concurrent system whose
states are E∪Ax-equivalence classes of ground terms, and whose local concurrent tran-
sitions are specified by the rules R. When formally analyzing the properties of R , an
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important problem is ascertaining for specific patterns t and t ′ the symbolic reachabil-
ity problem (∃X) t −→∗ t ′ with X the set of variables appearing in t and t ′. As shown
in [22], provided the rewrite theory R = (Σ,E ∪Ax,R) is topmost (that is, all rewrites
take place at the root of a term), or, as in the case of AC rewriting of object-oriented
systems, R is “essentially topmost,” and the rules R are coherent with E modulo Ax,
narrowing with the rules R modulo the equations E ∪Ax gives a constructive, sound,
and complete method to solve reachability problems of the form (∃X) t −→∗ t ′.

Of course, narrowing with R modulo E ∪Ax requires performing E ∪Ax-unification
at each narrowing step, which as explained above can itself be performed by narrowing
with the equations E modulo Ax, provided E is coherent, confluent, and terminating
modulo Ax. Therefore, in performing symbolic reachability analysis in a rewrite the-
ory R = (Σ,E ∪ Ax,R) there are usually two levels of narrowing and two levels of
unification: narrowing with R modulo E ∪Ax for reachability, and narrowing with E
modulo Ax for unification modulo E ∪Ax. This is exactly the approach taken in the
Maude-NPA protocol analyzer [14], where cryptographic protocols are formally spec-
ified as rewrite theories of the form R = (Σ,E ∪Ax,R), and the formal reachability
analysis is performed in a backwards way, from an attack state to an initial state. This
just means that we perform standard (forwards) reachability analysis with the rewrite
theory R −1 = (Σ,E ∪Ax,R−1), where R−1 = {r −→ l | (l −→ r) ∈ R}. The equational
theory E ∪Ax typically specifies the algebraic properties of the cryptographic functions
used in the given protocol, for example, public key encryption and decryption, exclusive
or, modular exponentiation, and so on, which often have the finite variant property [9].

Solving a symbolic reachability problem (∃X) t −→∗ t ′ corresponds to falsifying an
invariant, namely, that all states reachable from t are in the complement of the instances
of t ′. The paper [15] shows how narrowing can be used to perform a more general
symbolic model checking, not just for invariants, but for temporal logic formulas.

Building Formal Tools Reflectively in Maude. Another important application area is
the development of formal tools by reflection. This can be done directly in Core Maude
using the META-LEVEL module, or in Full Maude as a language extension.The Maude
book [7] describes many such tools: the Maude inductive theorem prover, Church-
Rosser checker, coherence checker, sufficient completeness checker, termination tool,
real-time Maude tool, and several others. Some recent new tools are the Maudeling
and MOMENT-2 tools, for formal specification and analysis in model-based software
engineering [23,3], the already mentioned Maude-NPA [14], and a model checker for
the linear temporal logic of rewriting [2]. With metalevel support for unification and
narrowing, new formal tools can be built in the near future.

The Rewriting Logic Semantics Project. An important and very active area of Maude
applications is based on the idea of giving formal semantics to a programming lan-
guage L as a rewrite theory RL = (ΣL ,EL ,RL ), where ΣL defines the syntax and
the semantic types of L , EL the deterministic semantics, and RL the concurrent se-
mantics (see [21,24]). Specifying RL in Maude as a system module yields not only
an L-interpreter, but also an L-model checker that can perform sophisticated program
analysis.
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