
1
Genetic Watermarking for Copyright

Protection

Hsiang-Cheh Huang1, Chi-Ming Chu2, and Jeng-Shyang Pan2

1 National University of Kaohsiung,
Kaohsiung 811, Taiwan, R.O.C.
huang.hc@gmail.com

http://hchuang.ee.nuk.edu.tw/
2 National Kaohsiung University of Applied Sciences,

Kaohsiung 807, Taiwan, R.O.C.
jspan@cc.kuas.edu.tw

http://bit.kuas.edu.tw/~jspan

Summary. Applications for robust watermarking is one of the major
branches in digital rights management (DRM) systems. Based on existing
experiences to assess how good one robust watermarking is, it is generally
agreed that three parameters or requirements, including the quality of water-
marked contents, the survivability of extracted watermark after deliberate or
unintentional attacks, and the number of bits embedded, need to be consid-
ered. However, performances relating to these three parameters conflict with
each other, and the trade off must be searched for. In this chapter, we take
these requirements into consideration, and we can find the optimized com-
bination among the three parameters. With the aid of genetic algorithm, we
design an applicable system that would obtain the good quality, acceptable
survivability, and reasonable capacity after watermarking. Simulation results
present the effectiveness in practical implementation and possible application
of the proposed algorithm.

1.1 Introduction

Multimedia contents are easily spread over the Internet. Due to the ease of
delivery and modification of digital files, the copyrights might be infringed
upon. To deal with this problem, digital rights management (DRM) systems
can prevent users from using such contents illegally [3]. In DRM systems,
encryption and robust watermarking are two major schemes for applica-
tions [6, 7, 10]. By using encryption to protect data, the encrypted digital
contents look like random and noisy patterns, which will cause the eaves-
droppers to suspect the existence of hidden secrets. Furthermore, if one bit
is received erroneously during transmission, part or whole of received data
would not be decrypted, leading to the uselessness of such contents. Under

J.-S. Pan et al. (Eds.): Information Hiding and Applications, SCI 227, pp. 1–19.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

http://hchuang.ee.nuk.edu.tw/
http://bit.kuas.edu.tw/~jspan

2 H.-C. Huang, C.-M. Chu, and J.-S. Pan

the umbrella of watermarking researches, the main goal is to cope with the
deliberately or unintentionally applied modifications, called attacks, and such
a kind of watermarking schemes is regarded as robust watermarking.

On the other hand, watermarking can be classified into two major cate-
gories; one is fragile watermarking (also named data hiding or steganogra-
phy), and the other is robust watermarking. For fragile watermarking, the
watermarked content looks identical to its original counterpart, and it cannot
withstand the slightest modification intentionally or unintentionally, since it
would lead to the result that the embedded watermark gets vanished. From
this viewpoint, fragile watermarking and encryption are similar since they
are vulnerable to modifications. For robust watermarking, the watermarked
contents and their original counterparts look similar, or even identical from
subjective point of view. The major advantage for robust watermarking is
that the watermark embedded can survive even when the watermarked con-
tent gets modified. Thus, we focus on robust watermarking and propose an
applicable solution with optimization techniques in DRM implementation.

In this chapter, we use the digital images to represent the multimedia
contents. It is generally agreed that for one robust watermarking algorithm,
the watermarked image quality (or imperceptibility), the survivability, repre-
sented by the correct rate of extracted watermark (or robustness), and the
number of bits embedded (or capacity), are the three most important factors
to assess how good the algorithm and implementation are. However, some
trade off must be searched for because the three factors conflict with each
other. Here we employ genetic algorithm (GA) [1] to find an optimized solu-
tion numerically that can reach better imperceptibility, more robustness, and
reasonable capacity. The scheme can be directly applicable to DRM systems.

This chapter is organized as follows. In Section 1.2 we point out the need for
optimization in a watermarking system. In Section 1.3 we describe proposed
algorithm by modifying and extending previous works. Two detailed case
studies are presented in Section 1.4, and simulation results are demonstrated
in Section 1.5. Finally, we make conclusions in Section 1.6.

1.2 Watermarking Requirements

As we stated in Section 1.1, the three major requirements for robust water-
marking are imperceptibility, robustness, and capacity. Their interrelation-
ships can be discussed as follows. And we can see why they conflict with each
other, and the tradeoff among the three should be reached with the aid of
optimization techniques.

1.2.1 Watermark Imperceptibility

Watermark imperceptibility refers to whether the viewer can perceive the ex-
istence of embedded watermark or not from subjective point of view [2, 13].

1 Genetic Watermarking for Copyright Protection 3

It also means the quality of the watermarked image, measured by the distor-
tion induced between the watermarked and original images due to watermark
embedding, and it is represented by numerical values such as the Peak Signal-
to-Noise Ratio (PSNR) objectively. The PSNR has the definition in Eq. (1.1).
Let the original image and the watermarked one be X and X ′, respectively,
with image size of M ×N . The PSNR is

PSNR = 10× log10

(
2552

1
M×N

∑M
i=1

∑N
j=1 (X(i, j)−X ′(i, j))2

)
. (1.1)

Larger PSNR values imply less distortions induced, hence the better outcomes
can be reached.

For getting the better imperceptibility, less modification to the original
content is desired. Hence, we can lead to the derivations as follows.

• Embedding more bits induce more distortion into the original image.
Thus, embedding fewer bits, namely, decreasing the capacity, meets the
goal.

• If we set the capacity a constant value, embedding bits into least sig-
nificant bit or higher frequency coefficient would alter the image as less
as possible. However, this would degrade the robustness since the water-
marked image may experiencing filtering and the hidden watermark may
get vanished.

1.2.2 Watermark Robustness

Watermark robustness means the capability that the watermarked media
can withstand deliberate or unintentional media processing, called attacks,
including filtering, resizing, or rotation [6, 7]. There are also benchmarks
to perform attacks [8]. From subjective viewpoint, the extracted watermark
needs to be as similar as the embedded one. And speaking objectively, the
correlation between the two needs to be measured. People often use the bit
correct rate (BCR), with the definition in Eq. (1.2), to assess the robustness of
the watermarking algorithm. The normalized cross-correlation (NC) between
the embedded watermark and the extracted one may also be considered to
assess the survivability for the extracted watermark. Let the embedded and
extracted watermarks be W and W ′, respectively, with size of MW ×NW .
With its ease of calculation, we choose the BCR values to measure the ro-
bustness of extracted watermarks. The BCR is

BCR = 1− 1
MW ×NW

MW∑
i=1

NW∑
j=1

[W (i, j)⊕W ′(i, j)] , (1.2)

where ⊕ denotes the exclusive-or (XOR) operation. The larger the BCR
value, the better the result. To make the algorithm robust, the watermark
needs to be hidden into more important parts, such as the most significant
bits or the low frequency components, in order to resist common attacks.

4 H.-C. Huang, C.-M. Chu, and J.-S. Pan

• In addition to obtaining the larger BCR value, extracted watermark needs
to be recognizable. Based on this standpoint, the capacity should be more
than some pre-determined threshold value.

• Embedding bits into lower frequency coefficient would increase the ro-
bustness. However, this would sacrifice the imperceptibility.

1.2.3 Watermark Capacity

Watermark capacity attributes to the number of bits embedded into the original
media, that is, the size of watermark. We can see that from the results in [11],
embedding more bits into the contents would directly cause the degradation
of the quality of watermarked image. On the contrary, embedding too few bits
may lead to the result that the extracted watermark may hardly be comprehen-
sible even though the watermarked image quality can be guaranteed. Thus, the
watermark capacity needs to be carefully chosen to be meaningful.

• Even though increasing the capacity is desired, the appropriate number of
capacity should lie above some threshold in order to make the extracted
watermark recognizable. On the other hand, embedding too many bits
may sacrifice the imperceptibility. If the increase in capacity is feasible
under the condition that acceptable quality in watermarked image is ob-
tained, using error control codes (ECC) [5] for encoding the watermark is
a able way to meet the requirement.

• Once the capacity is determined, embedding into higher frequency coef-
ficients meets the goal for imperceptibility. On the contrary, embedding
into lower frequency coefficients meets the goal for robustness. Hence,
some trade off must be searched for, and this is the major contribution of
the paper in [12].

1.2.4 Optimization for Requirements

Since there are conflicts among the three requirements described in Secs. 1.2.1
to 1.2.3, we employ the optimization technique for finding the better outcome.
First, the fitness function should be designed. Next, parameters relating to
the optimization technique should be carefully chosen.

From the above discussions, we lead to the results that better impercepti-
bility, more robustness, and the reasonable number of capacity are all required
for designing the algorithm. For measuring imperceptibility, we use PSNR of
watermarked image to serve as an objective measure. In evaluating robustness,
after applying some deliberate attacks [2], we calculate the BCR. For measur-
ing capacity, we count the average number of bits, C, embedded into one 8× 8
block, since we are going to embed the watermark with discrete cosine trans-
form (DCT). The fitness function for training at iteration i can be defined:

fi = PSNRi + λ1 · 1
n

n∑
k=1

BCRk,i + λ2 · Ci. (1.3)

1 Genetic Watermarking for Copyright Protection 5

The first term, PSNRi, denotes the imperceptibility. In the second term, be-
cause we expect to cope with n different attacks, we calculate the robustness
after certain attacks, BCRk,i, respectively, and the average of these BCR val-
ues is served as the robustness measure. In the third term, Ci implies the ca-
pacity. Because PSNR values are usually more than 30 dB, the BCR values lie
between 0 and 1, and the capacity can be set to 1 to 4 bits per block after con-
sidering practical situations, and the average capacity must lie between 1 and
4 bit/block, we find that values corresponding to the three components lie into
various ranges because of their inherent characteristics.Thus, we introduce two
weighting factors,λ1 and λ2, into the fitness function. The main reason is to bal-
ance the effects and contributions from these three factors. And the goal of our
optimization algorithm is to find the maximum value in Eq. (1.3).

Figure 1.1 is the conceptual illustration of robust watermarking with GA
optimization. Original image X is the input. At the beginning, we set the
number of iteration for training. In the training process, for every population
in GA, the number of bits for embedding into every 8×8 block of the original
image, one after another, is decided first, and the watermark capacity is
regarded as one of the three parts in the fitness function. Next, the watermark
is embedded into the original images, namely, the populations in GA, and
the PSNR values of watermarked images are obtained. Finally, we apply n
different attacks, for instance, JPEG compression for every population, and
we try to extract the embedded watermarks from every attacked image. The
BCR values between the embedded and extracted watermarks under different
attacks are obtained. After calculating the fitness function, we proceed with
this process in the next iteration until meeting the terminating condition.
Finally, the optimized, watermarked image, Y , and associated secret key,
key1, are delivered to the reception side.

1.3 Proposed Algorithm

We employ genetic algorithm (GA) for optimizing the three requirements
above. GA is constituted of three major steps: selection, crossover , and mu-
tation [1]. Based on the fitness function in Eq. (1.3) and the dashed box on
the left side of the flow graph in Figure 1.1, we propose an integration of our
watermarking scheme with GA procedures.

1.3.1 Preprocessing in GA

GA is a process to emulate the natural selection. We need to have populations
for training in GA to perform the three steps. The number of populations is
generally chosen to be an even number to ease the operation of the crossover
step.

Every population is composed of chromosomes. The chromosome is a bi-
nary string, and the binary representation denotes the positions for water-
mark embedding in one block. It has variable length, which depends on the

6 H.-C. Huang, C.-M. Chu, and J.-S. Pan

X ��
��

�
��

�
��

�
��

Final

iteration?
�No Capacity

selection
� Watermark

embedding
�Xi

� � �

�
Attack #1

�X
′
1,i

Watermark

extraction

�W
′
1,i

BCR

calculation

� � �

� � �

� � �

�
Attack #n

�X
′
n,i

Watermark

extraction

�W
′
n,i

BCR

calculation
�

�

�

��

�
PSNR

calculation

� �

PSNRiCi

BCR1,i

BCRn,i

Fitness evaluation

with Eq. (1.3)

�

Selection

�

Crossover

�

Mutation

�

GA

building

blocks

Yes

� Watermarked

image

�
�

Y

key1

Fig. 1.1. Building blocks of watermarking with GA-based optimization schemes

watermark capacity decided. By concatenating the binary string of every
block in the image, we obtain one population in GA. Because we perform
8 × 8 DCT for watermark embedding [12], we have 64 DCT coefficients,
ranging between 0 and 63, and these coefficients are represented with a 6-bit
string, in one block. If the size of original image is W×H , and let the maximal
capacity be Cmax bit/block, the length of the population is W

8 × H
8 ×6×Cmax

bits. For certain blocks that are embedded fewer bits than Cmax, considering
the practicability in implementation, the remaining parts of the chromosome
are replaced by consecutive bits of 0’s. The size of original image is 512×512
and that of the binary watermark is 128× 128 in this chapter. Hence, Cmax

is set to be 128×128

(512
8 × 512

8) = 4 bit/block.

1.3.2 Deciding the Capacity in One Iteration

After considering practical implementations in GA in Sec. 1.3.1,Cmax = 4. And
the capacity for every 8 × 8 block is variable, ranging between 1 to 4 bits per
block. After calculation of 8×8DCT, 64 DCT coefficients can be produced, and
the range lies between 0 and 63, where 0 denotes the DC coefficient, i denotes
the ith AC coefficients, 1 ≤ i ≤ 63 for watermark embedding.

For clearly explaining our implementation, we describe an instance as fol-
lows. If the capacity C = 3 for a certain block, and suppose that the 19th,
28th and 43th coefficients are selected, then the chromosome in this block
is represented by a 24-bit string 010011 011100 101011 000000, where the
18 bits in the first three segments denote the position, and the final 6 bits

1 Genetic Watermarking for Copyright Protection 7

represent the remaining positions that are not selected, which are intention-
ally inserted to ease the implementation. At the first training iteration, all
the AC coefficients are randomly selected for watermark embedding.

1.3.3 Embedding Watermark with DCT

We modify conventional schemes [12] for DCT-based watermarking to embed
the binary watermark.

Step 1. Perform DCT on original image: 8× 8 DCT is performed on the en-
tire 512 × 512 image. For one block, it leads to one DC coefficient, pre-
sented by coefficient 0, and 63 AC coefficients, presented by coefficients
1 to 63.

Step 2. Determine the capacities and positions: The goal of our algorithm is
to search for the proper positions for embedding based on decided ca-
pacity, leading to a trade off among the three requirements and suitable
positions.

Step 3. Obtain the threshold for embedding: The average values of DC and
other 63 AC coefficients among the 512

8 × 512
8 , or 4096 blocks are served

as the thresholds for watermark embedding.
Step 4. Embedding the watermark: The thresholds in Step 3 sre represented

by a vector a = [a0, a1, · · · , a63], where a denotes the average value.
The DC coefficient is prohibited for embedding. And we use the vector
r =

[
a0
a1

, a0
a2

, · · · , a0
a63

]
to serve as the reference for modifying the AC

coefficients, where r denotes the ratio between DC and AC coefficients.
Embedding of watermark meets one of the two situations below.
• If bit 0 is embedded, the AC coefficient in selected position is modified.

If it is larger than the reference value in r, it is decreased to be smaller
than the corresponding element in r by a parameter δ. If not, the value
is kept unchanged.

• If bit 1 is embedded, the coefficient is modified to be in contrary with
the previous condition.

Step 5. Perform the inverse DCT on modified coefficients: Inverse DCT is
calculated to obtain the watermarked image. The corresponding posi-
tions for watermark embedding are also recorded, and the PSNR of the
watermarked image can be obtained.

1.3.4 Choosing Proper Attacks

For verifying robust watermarking, applying attacks to watermarked image
is necessary. However, attacks need to be properly selected such that the
attacked images still retain its meaningfulness and commercial value. For
instance, image cropping attack is unsuitable since too much information
would be discarded, and subjective image quality is degraded. Here, we choose
three kinds of attacks [8], namely, JPEG compression with different quality

8 H.-C. Huang, C.-M. Chu, and J.-S. Pan

factors (QF), low-pass filtering (LPF), and median filtering (MF), to perform
the attacks. Attacked images look similar to their original counterpart after
applying these properly selected attacks. The BCR values after experiencing
these attacks are calculated, and the average of these values are included into
the fitness function.

1.3.5 Extracting the Watermark

Let the watermarked image Y in Figure 1.1, after applying attack, be denoted
by Z. We calculate the DCT of the attacked image Z, and generate the new
reference value r′ by following Step 4 in Sec. 1.3.3. The extracted watermark
bit is determined by one of the two situations below.

• If the selected coefficient divided by the average of DC value in Z is
smaller than its corresponding coefficient in r′, we decide the extracted
watermark bit to be 0;

• If the selected coefficient divided by the average of DC value in Z is larger
than its corresponding coefficient in r′, we decide the extracted watermark
bit to be 1.

1.3.6 Evaluating Fitness

We gather the average capacity C in Sec. 1.3.2, calculate the PSNR in Step
5 of Sec. 1.3.3, and obtain the average of BCR in Secs. 1.3.4 and 1.3.5, and
then combine them altogether to calculate the fitness value with Eq. (1.3).
Every population corresponds to one fitness value in the training iteration.

1.3.7 GA Procedures

The generated binary strings are ready for GA procedures. In this chapter,
the number of populations is 10. The selection rate is 0.5, meaning that only
the 5 populations with higher fitness values are kept for the next iteration,
and the remaining 5 are produced by the crossover operation. The muta-
tion rate is 0.1, meaning that 10% of all the bits are randomly selected and
intentionally flipped. The main theme for GA is to search for the proper co-
efficient positions for watermark embedding, leading to the associated secret
key, key1. The secret key can be delivered with the scheme in [9]. Weight-
ing factor λ1 is set to be between 0 and 200, and its counterpart λ2 is set
to range between 0 and 50 in the GA training process. The parameter for
altering the selected DCT coefficients in Step 4 in Sec. 1.3.3, δ, is fixed to 5.
The major reason for choosing these values is to balance the effects from the
three requirements, because we would like to have equal contribution from
the three requirements to some extent. Based on this setting, fitness value
from the three weighted requirements can lie among the following ranges:

1 Genetic Watermarking for Copyright Protection 9

• PSNR part: from 30 to 55, observed from simulation results;
• BCR part multiplied by weighting factors: from 0 to 200, because BCR ∈

[0, 1] and λ1 ∈ [0, 200];
• capacity part multiplied by weighting factors: from 0 to 200, because

C ∈ [1, 4] and λ2 ∈ [0, 50].

Results with these different combinations of weighting factors are verified in
Sec. 1.5.

1.3.8 The Stopping Condition

Once the number of training iterations in GA is reached, the optimization
process is stopped. The population with the largest fitness value in the final
iteration is the optimized watermarked image. Corresponding secret key with
this image is also delivered to the receiver [9].

1.4 Case Studies in Optimized Embedding

1.4.1 Fixed Embedding Capacity

We choose the test image bridge with the picture size of 512×512, illustrated
in Figure 1.2(a). The binary watermark with the size of 128×128 is prepared,
shown in Figure 1.2(b). In Figure 1.2, the width and height between the two
images are carefully chosen to be 4 : 1. And we will compare with the results
shown in [12]. Because in [12], authors used normalized correlation (NC) to
represent the watermark robustness, and we use BCR here, hence we show
extracted watermarks for subjective evaluation in Figure 1.3. Both [12] and
here we denote imperceptibility by using PSNR, we make comparisons in
Table 1.1. Based on the settings by including JPEG quantization tables with
watermarking in [12] for reference, we obtain reasonable results with the
algorithm proposed in this chapter.

We choose the JPEG attack with quality factor QF = 80 to validate the
proposed algorithm. The weighting factors, λ1 and λ2 in Eq. (1.3), are set
to λ1 = 50 and λ2 = 0, respectively. The main reason for setting λ2 = 0 is
that we can manually adjust the capacity to see the performances between
imperceptibility and robustness. First, we compare the extracted watermarks
in Figure 1.3. Figure 1.3(a) shows the one with capacity of 4 bit/block. Fig-
ure 1.3(b)–(d) illustrate those with capacity of 3, 2, 1 bit/block, respectively,
leading to the watermark size of 128×96, 128×64, and 128×32. Figure 1.3(a)
can be clearly perceived, and the BCR value is high. We can also see that in
Figure 1.3(b), the capacity is 3 bit/block, and only the upper three quarters
can be recognized. The bottom quarter is intentionally set to bit 0 for com-
parison. Figure 1.3(c) and (d) also have similar phenomena. For embedding
3 or 4 bit/block, similar BCR values can be obtained. When decreasing the

10 H.-C. Huang, C.-M. Chu, and J.-S. Pan

(a) Original bridge image (b) Watermark

Fig. 1.2. (a) The original bridge image with size 512 × 512. (b) The binary wa-
termark with size 128 × 128.

capacity to 2 or 1 bit/block, the BCR values grow. However, even though
the BCR values are high enough, decreasing the capacity leads to be less
meaningful in the extracted watermarks.

Table 1.1 makes comparison between our scheme and that in [12]. We can
see that comparable results can be obtained. When we lower the embedded
capacity, the PSNR values get higher. This is because less DCT coefficients
get modified, and it proves our discussions in Sec. 1.2.

Table 1.1. Comparisons of capacity (in bit/block) and imperceptibility, repre-
sented by PSNR (in dB), between our algorithm and existing one

Scheme Capacity Imperceptibility

Existing ([12]) 4 bit/block 34.79 dB

Proposed 4 bit/block 33.95 dB
3 bit/block 35.24 dB
2 bit/block 37.57 dB
1 bit/block 40.50 dB

1 Genetic Watermarking for Copyright Protection 11

In Figure 1.4, we present the number of embedded positions that is associ-
ated with the results in Figure 1.2. Due to the JPEG compression attack that
tends to discard the higher frequency coefficients, lower to middle frequency
coefficients, namely, AC2 and AC18, are mostly embedded. Moreover, with
the values indicated on the vertical axis, we can see that the total number of
embedded bits decreases from Figure 1.4(a) to Figure 1.4(d).

From the data in Figure 1.3, Figure 1.4, and Table 1.1 above, we can find
out that the three requirements have their own characteristics inherently, and
they influence on another. By taking the watermark capacity into account,
we have more flexibility in the design of algorithm.

1.4.2 Variable Embedding Capacity

Considering the fitness function in Eq. (1.3), we choose λ1 = 50 and λ2 = 15
for the detailed case study among the three requirements. The main reason
for choosing such values is to balance the contributions from all the three
requirements. Regarding to the attacking schemes, the JPEG compression
with QF = 80 is chosen for verifying our algorithm in this case study. More-
over, attacking schemes with the 3×3 low-pass filtering (LPF), and the 3×3
median filtering (MF), are also examined, and results are depicted in Sec. 1.5.
In GA, we choose 20 populations with selection rate of 0.5 and mutation rate
of 0.1 for optimization.

After training for 100 iterations under the preliminary for better imper-
ceptibility and better robustness under the JPEG attack, we obtain the op-
timized output with PSNR = 45.91 dB in Figure 1.5, and we can hardly

(a) 128 × 128 bits (b) 128 × 96 bits
BCR = 0.9232 BCR = 0.9224

(c) 128 × 64 bits (d) 128 × 32 bits
BCR = 0.9430 BCR = 0.9739

Fig. 1.3. (a)–(d) Extracted watermarks with capacities 4, 3, 2, and 1 bit/block,
respectively

12 H.-C. Huang, C.-M. Chu, and J.-S. Pan

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

DCT band number, top 4: AC
2
 → AC

18
 → AC

1
 → AC

13

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 4 bit/block, with optimized results

0 10 20 30 40 50 60
0

50

100

150

200

250

300

DCT band number, top 3: AC
2
 → AC

9
 → AC

3

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 3 bit/block, with optimized results

(a) 4 bit/block, mostly embedded: (b) 3 bit/block, mostly embedded:
AC2 → AC18 → AC1 → AC13 AC2 → AC9 → AC3

0 10 20 30 40 50 60
0

50

100

150

200

250

DCT band number, top 2: AC
2
 → AC

5

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 2 bit/block, with optimized results

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

DCT band number, top 1: AC
2

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 1 bit/block, with optimized results

(c) 2 bit/block, mostly embedded: (d) 1 bit/block, mostly embedded:
AC2 → AC5 AC2

Fig. 1.4. The histogram between embedding DCT coefficients and the number
of bits embedded. (a)–(d) Embedding coefficients with capacity 4, 3, 2, and 1
bit/block, respectively.

differentiate the differences between the original image and the watermarked
one subjectively. Regarding to the watermark robustness in addition to the
JPEG attack, we also employ two other attacking schemes altogether on the
watermarked image to see whether our attack can survive after other attacks
or not. For making comparisons conveniently, we put the embedded water-
mark again in Figure 1.6(a). And we can see that BCR = 0.9603 for JPEG
attack in Figure 1.6(b), BCR = 0.7128 for LPF attack in Figure 1.6(c), and
BCR = 0.7469 for MF attack in Figure 1.6(d).

It is easily comprehended that in this case, we can obtain better imper-
ceptibility and it can successfully resist the JPEG attack. However, it cannot
survive under other attacks, such LPF and MF due to the fact that the BCR
after JPEG attack is included into the fitness function in GA in Eq. (1.3),

1 Genetic Watermarking for Copyright Protection 13

Fig. 1.5. Watermarked output, PSNR = 45.91 dB

watermark JPEG attack, BCR = 0.9603
(a) (b)

LPF attack, BCR = 0.7128 MF attack, BCR = 0.7469
(c) (d)

Fig. 1.6. Comparisons of embedded watermark and extracted ones after different
attacks. From subjective viewpoint, (c) and (d) do not survive well under LPF
and MF attacks. (a) Embedded watermark containing 128 × 128 = 16384 bits. (b)
Extracted from JPEG attack. (c) Extracted from LPF attack. (d) Extracted from
MF attack.

14 H.-C. Huang, C.-M. Chu, and J.-S. Pan

0 10 20 30 40 50 60
0

50

100

150

200

250

300

DCT band number, top 4: AC
16

 → AC
14

 → AC
43

 → AC
2

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 3.4285 bit/block, with optimized results

Fig. 1.7. The histogram between embedding DCT coefficients and the number of
bits embedded. AC16 and AC14 are the top-two coefficients for embedding, and a
total of 14043 bits, or 3.4285 bit/block, are embedded.

but others are not. With this observation, when coping with several different
attacks, all the extracted BCR values need to be integrated into the fitness
function. For clearly representing the effects under various capacities, in the
extracted watermark, bit 0 and bit 1 are denoted by black and white pixels,
respectively, while those in the remaining parts are intentionally denoted by
grey pixels. This phenomena can be seen from Figure 1.6(b) to Figure 1.6(d).
On the one hand, the watermark extracted from JPEG-attacked image, shown
in Figure 1.6(b), can be clearly recognizable, and the BCR value is very high.
On the other hand, the watermark extracted from LPF- and MF-attacked
image, illustrated in Figures 1.6(c) and (d), respectively, can hardly be rec-
ognized, and also the BCR values are not high enough. This result is reason-
able because we focus on the JPEG attack, and Figure 1.6(b) verifies this
phenomenon.

Next, we check the histogram for embedding coefficients in Figure 1.7, and
we find that a total of 14043 bits are embedded. For measuring impercep-
tibility, objective value is acceptable and most parts for watermarking are
invisible. For evaluating robustness, the BCR value is high enough, while the
extracted watermark is easily recognized under JPEG attack. For embedding
positions, the 16th and 14th coefficients (or AC16 and AC14, respectively)
are embedded mostly, which follows the concept of embedding into ‘middle
frequency bands’ proposed in literature [2, 12].

1.5 Simulation Results

1.5.1 Selection of Weighting Factors

Besides the case study depicted in Sec. 1.4, we provide more results with
our experiments as follows. Table 1.2 demonstrates the performances among

1 Genetic Watermarking for Copyright Protection 15

imperceptibility, robustness, and capacity, and the two DCT coefficients that
are mostly embedded, under a variety of weighting factors. These results are
obtained after 100 training iterations in GA, with selection rate of 0.5 and
mutation rate of 0.1. We perform lots of experiments based on the preliminary
conditions that λ1 ∈ [0, 200] and λ2 ∈ [0, 50], and we present results with 15
of all the experiments in Table 1.2. These experiments can be classified into
three categories:

1. fixing the robustness factor λ1 to 50, and varying the capacity factor λ2

from 10 to 30 with a stepsize of 5.
2. fixing the robustness factor λ1 to 100, and varying the capacity factor λ2

from 10 to 30 with a stepsize of 5.
3. fixing the robustness factor λ1 to 150, and varying the capacity factor λ2

from 10 to 30 with a stepsize of 5.

From the numerical values in Table 1.2, and the subjective evaluation from
Figure 1.9, we observe that by increasing the weighting factor of capacity, we
can see that the average capacity gets increased, while the BCR values gets
somewhat reduced. PSNR values fluctuate a bit, but comparing to the original
image, they remain objectively unnoticed in the watermarked parts. It is
because of the embedding position selected after GA optimization. According
to the data presented in Figure 1.8, the best embedding bands also lie in low
to middle frequency bands.

Table 1.2. Comparisons of imperceptibility (in dB), robustness, and capacity (in
bit/block) with different weighting factors

PSNR BCR BCR BCR Capacity The two Factors
(dB) (JPG) (LPF) (MF) (bit/block) best bands λ1 λ2

45.46 0.9161 0.7897 0.8484 3.3364 AC4 → AC2 50 10

44.34 0.9013 0.7199 0.8103 3.7200 AC4 → AC2 50 15

43.23 0.8838 0.6698 0.7695 3.9302 AC1 → AC12 50 20

43.01 0.8820 0.6611 0.7599 3.9819 AC7 → AC4 50 25

42.95 0.8824 0.6598 0.7588 3.9941 AC1 → AC2 50 30

41.58 0.9349 0.8799 0.9011 2.8264 AC4 → AC1 100 10

40.98 0.9402 0.8268 0.8959 3.1804 AC1 → AC4 100 15

40.94 0.9308 0.7875 0.8681 3.5144 AC4 → AC1 100 20

40.33 0.9118 0.7374 0.8375 3.7473 AC4 → AC1 100 25

39.92 0.9058 0.7054 0.8167 3.8752 AC1 → AC4 100 30

40.78 0.9421 0.8762 0.9181 2.7021 AC4 → AC2 150 10

39.94 0.9530 0.8871 0.9215 2.8979 AC4 → AC2 150 15

39.90 0.9534 0.8683 0.9131 3.1506 AC4 → AC1 150 20

39.55 0.9420 0.8304 0.8994 3.3611 AC1 → AC4 150 25

38.99 0.9332 0.7838 0.8702 3.5781 AC4 → AC1 150 30

16 H.-C. Huang, C.-M. Chu, and J.-S. Pan

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

DCT band number, top 4: AC
4
 → AC

2
 → AC

7
 → AC

5

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 3.7200 bit/block, with optimized results

(a) λ1 = 50 and λ2 = 15

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

DCT band number, top 4: AC
1
 → AC

4
 → AC

2
 → AC

7

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 3.1804 bit/block, with optimized results

(b) λ1 = 100 and λ2 = 15

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

DCT band number, top 4: AC
4
 → AC

2
 → AC

1
 → AC

7

oc
cu

rr
en

ce
s

DCT band vs. number of embedded bits, 2.8979 bit/block, with optimized results

(c) λ1 = 150 and λ2 = 15

Fig. 1.8. Comparisons of the histograms of embedding coefficients with different
weighting factors in Eq. (1.3)

1 Genetic Watermarking for Copyright Protection 17

JPEG attack, LPF attack, MF attack,
BCR = 0.9013 BCR = 0.7199 BCR = 0.8103

(a) Results with λ1 = 50 and λ2 = 15

JPEG attack, LPF attack, MF attack,
BCR = 0.9402 BCR = 0.8268 BCR = 0.8959

(b) Results with λ1 = 100 and λ2 = 15

JPEG attack, LPF attack, MF attack,
BCR = 0.9530 BCR = 0.8268 BCR = 0.8959

(c) Results with λ1 = 150 and λ2 = 15

Fig. 1.9. Comparisons of the extracted watermarks and BCR values with different
weighting factors in Eq. (1.3)

Furthermore, we can easily see that the BCR values after LPF attack are
much lower than their counterparts after MF and JPEG attacks. To alleviate
this problem, the weighting factor associated with robustness, λ1, should
be increased to enhance the contribution from the robustness in the fitness
function. Comparing the three sets of data with (λ1, λ2) = (50, 15), (100, 15),
and (150, 15) for instance, we observe that by simply increasing the value
of λ1, both the resulting PSNR and capacity get decreased. Figure 1.9 also
demonstrate this observation from subjective point of view.

Summing up, the weighting factors need to be carefully chosen based on
twofold. The first is that contributions from the different requirements are
supposed to have nearly equal contribution. The second is that both the
watermarked image and extracted watermark need to be recognized from
subjective point of view.

18 H.-C. Huang, C.-M. Chu, and J.-S. Pan

Table 1.3. Comparisons of imperceptibility (in dB), robustness, and capacity (in
bit/block) with different a combination of attacks. Weighting factors are set to be
(λ1, λ2) = (50, 10). To simplify the representation, we use the abbreviations of J,
L, and M to represent JPEG, LPF, and MF, respectively.

Attack PSNR BCR BCR BCR Capacity The two
(dB) (JPG) (LPF) (MF) (bit/block) best bands

J 45.91 0.9603 0.7128 0.7469 3.4285 AC16 → AC14

L 46.44 0.9194 0.8380 0.7963 3.2273 AC1 → AC4

M 43.45 0.9058 0.7947 0.8486 3.3423 AC1 → AC4

J & L 46.45 0.9262 0.8395 0.7955 3.1863 AC4 → AC1

J & M 43.56 0.9107 0.7500 0.8718 3.3145 AC1 → AC4

L & M 46.21 0.9058 0.7947 0.8486 3.3081 AC4 → AC2

J & L & M 45.46 0.9196 0.7897 0.8484 3.3364 AC4 → AC2

1.5.2 Combination of Various Attacks

Based on the building blocks in Figure 1.1, algorithm designer can choose dif-
ferent attacks for making optimization. We show the combination of various
attacks with GA in Table 1.3 as follows.

In Table 1.3, we list all the seven combinations from the three independent
attacks with the weighting factors of λ1 = 50 and λ2 = 10. The BCR values,
shown in italics, are not optimized based on the type of attacks. For instance,
for the results with JPEG-type attack in the first row, numerical values for
BCR(LPF) and BCR(MF) are shown in italics, because only BCR(JPG) is opti-
mized. Because we embed the watermark into DCT coefficients, it seems that
our algorithm tends to resist JPEG attack inherently. Therefore, in the first
three rows, we can see that BCR values after JPEG attacks are high enough,
and we need to take the LPF or MF attack into optimization to obtain the
improved BCR values. In the fourth to sixth rows, we can see that only the
BCR values with selected attacks perform better. In the last row, because
we calculate the average BCR value in the fitness function in Eq. (1.3), if we
choose all the three attacks altogether, BCR(JPG) tends to perform better
inherently. Therefore, the two remaining BCR values may get decreased, and
we can see that the numerical results present this phenomenon.

Summing up, our algorithm tends to resist JPEG attack based on its char-
acteristics. And we may suggest to ignore the JPEG attack during the opti-
mization process. By choosing the combination of LPF and MF attacks into
the fitness function, acceptable results can be reached.

1.6 Conclusions

In this chapter, we discussed about the optimization of robust watermarking
with genetic algorithms. By finding trade-offs among robustness, capacity,
and imperceptibility, we design a practical fitness function for optimization.

1 Genetic Watermarking for Copyright Protection 19

We observe that the three requirements conflict with one another, thus, by
applying GA, we can obtain the optimized outcome. Simulation results depict
the improvements of our algorithm, hence the implementation of copyright
protection system, and it is directly extendable to cope with a variety of
attacks in the benchmarks. Since the capacity can be set variable here, cor-
responding results perform better than those in literature [12] with fixed wa-
termarking capacity. In addition, the weighting factors in the fitness function
play an important role in the design of algorithm. Properly selected weighting
factors can lead to better results in overall performance. Other schemes, such
as employing ECC into the watermark, can be considered to be integrated
into our implementation to obtain better performance with a slight increase
in watermark encoding and decoding.

References

1. Gen, M., Cheng, R.: Genetic Algorithms and Engineering Design. Wiley, New
York (1997)

2. Huang, H.C., Pan, J.S., Huang, Y.H., Wang, F.H., Huang, K.C.: Progressive
watermarking techniques using genetic algorithms. Circuits, Systems, and Sig-
nal Processing 26, 671–687 (2007)

3. Koenen, R.H., Lacy, J., Mackay, M., Mitchell, S.: The long march to interop-
erable digital rights management. Proc. of the IEEE 92, 883–897 (2004)

4. Macq, B., Dittmann, J., Delp, E.J.: Benchmarking of image watermarking al-
gorithms for digital rights management. Proc. of the IEEE 92, 971–984 (2004)

5. Morelos-Zaragoza, R.H.: The Art of Error Correcting Coding, 2nd edn. Wiley,
New York (2006)

6. Pan, J.S., Huang, H.C., Jain, L.C. (eds.): Intelligent Watermarking Techniques,
pp. 3–38. World Scientific Publishing Company, Singapore (2004)

7. Pan, J.S., Huang, H.C., Jain, L.C., Fang, W.C. (eds.): Intelligent Multimedia
Data Hiding. Springer, Heidelberg (2007)

8. Petitcolas, F.A.P.: Stirmark benchmark 4.0 (2004),
http://www.petitcolas.net/fabien/watermarking/stirmark/

9. Piva, A., Bartolini, F., Barni, M.: Managing copyright in open networks. IEEE
Internet Comput. 6, 18–26 (2002)

10. Shehab, M., Bertino, E., Ghafoor, A.: Watermarking relational databases using
optimization-based techniques. IEEE Trans. on Knowledge and Data Engineer-
ing 20, 116–129 (2008)

11. Shieh, C.S., Huang, H.C., Wang, F.H., Pan, J.S.: An embedding algorithm
for multiple watermarks. Journal of Information Science and Engineering 19,
381–395 (2003)

12. Shieh, C.S., Huang, H.C., Wang, F.H., Pan, J.S.: Genetic watermarking based
on transform domain techniques. Patt. Recog. 37, 555–565 (2004)

13. Wang, S., Zheng, D., Zhao, J., Tam, W.J., Speranza, F.: An image quality
evaluation method based on digital watermarking. IEEE Trans. Circuits and
Systems for Video Technology 17, 98–105 (2007)

http://www.petitcolas.net/fabien/watermarking/stirmark/

	Genetic Watermarking for Copyright Protection
	Introduction
	Watermarking Requirements
	Watermark Imperceptibility
	Watermark Robustness
	Watermark Capacity
	Optimization for Requirements

	Proposed Algorithm
	Preprocessing in GA
	Deciding the Capacity in One Iteration
	Embedding Watermark with DCT
	Choosing Proper Attacks
	Extracting the Watermark
	Evaluating Fitness
	GA Procedures
	The Stopping Condition

	Case Studies in Optimized Embedding
	Fixed Embedding Capacity
	Variable Embedding Capacity

	Simulation Results
	Selection of Weighting Factors
	Combination of Various Attacks

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

