
Chapter 7
Global Convergent Dynamics of Delayed Neural
Networks

Wenlian Lu and Tianping Chen

7.1 Introduction

Artificial neural networks arise from the research of the configuration and function
of the brain. As pointed out in [79], the brain can be regarded as a complex non-
linear parallel information processing system with a concept of neuron as a basic
functional unit. Compared with modern computer, the processing speed of a single
neuron is 5–6 times slower than that of a single silicic logic gate but the brain has
a processing speed 109 times faster than any computer due to a huge quantity of
synapses that interconnect neurons. Based on this viewpoint, scientists proposed a
network model to describe the function and state of the brain called neural networks.
In short, a neural network is a computing network that accomplishes given tasks by
connecting a large number of simple computing units. The most important charac-
teristic of neural networks is the ability to learn. Reference [75] defined learning as
the process through which the neural network adjusts its parameters using informa-
tion of its circumstances via a simulating process. Many learning algorithms have
been proposed in the past decades, for example, error-correction learning, Hebbian
learning [52], competitive learning [47], and Boltzmann learning [1].

In particular, [2] proposes a definition of artificial neural network. Neural net-
work is a large-scale parallel distributed processing system, which can learn and
employ knowledge and satisfies that (1) knowledge is obtained by learning (learn-
ing algorithm); (2) knowledge is stored in the interconnection weights of the net-
work. Since neural networks have many advantages, for instance, the ability to solve
nonlinear problems, adaptability, fault tolerance, and mass computability, they have
been one of the focal research topics for the last 50–60 years.

References [53, 36, 37] proposed multi-layered neuronal perceptron model which
can approximate any continuous function. This model can be formulated as
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f (x1, x2, . . . , xn) ≈
n∑

i=1

Cig

⎛

⎝
m∑

j=1

ξijxj + θi

⎞

⎠ , (7.1)

where xi denotes the state variable of neuron i and g( · ) is a certain nonlinear acti-
vation function. Furthermore, [22, 23] proved that this model can approximate any
nonlinear function and operator. This is the theoretical basis of neural networks.

References [35, 47] proposed a competitive and cooperative model to generate
self-organized and self-adaptive neural networks, which can be modeled as an ODE
system:

dxi

dt
= ai(xi)

[
− di(xi)+

n∑

j=1

tijgj(xj)+ Ii

]
, i = 1, . . . , n,

which is named Cohen–Grossberg neural network and widely used in pattern recog-
nition, signal processing, and associative memory. Here, xi(t) denotes the state vari-
able of the i-th neuron, di( · ) represents the self-inhibition function with which the
i-th neuron will reset its potential to the resting state in isolation when disconnected
from the network, tij denotes the strength of j-th neuron on the i-th neuron, gi( · )
denotes the activation function of i-th neuron, Ii denotes the external input to the i-th
neuron, and ai( · ) denotes the amplification function of the i-th neuron.

References [54, 57] developed a computing method using recurrent networks
based on energy functions, which is called Hopfield neural network:

dxi

dt
= −dixi +

n∑

j=1

tijgj(xj)+ Ii, i = 1, . . . , n,

which has been applied to solve some combinatorial optimization problems such as
the traveling salesman problem.

As pointed out by [51], the common characteristic is that each neural network
model can be regarded as a class of nonlinear signal-flow graphs. As indicated in
Fig. 7.1, xi denotes the state of neuron i, yi = φi(xi) denotes the output of neuron i by
a nonlinear activation function φi( · ), tij denotes the weight of interconnection from
neuron j to i, and Ii is the external input. Hence, neural networks are in fact a class of
nonlinear dynamical systems due to the nonlinearity of the activations. The compu-
tation developed from neural networks is a self-adaptive distributed method based
on a learning algorithm. The key point of success of an algorithm lies on whether
the dynamical flow converges to a given equilibrium or manifold. So, dynamical
analysis of neural networks is the first step for the expected applications.

In practice, time delays inevitably occur due to the finite switching speed of
the amplifiers and communication time. Moreover, to process moving images, one
must introduce time delays in the signals transmitted among the cells [25]. Neu-
ral networks with time delays have much more complicated dynamics due to the
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Fig. 7.1 Signal-flow graph

incorporation of delays. These neural networks can be modeled by the following
delayed differential equations:

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijfj
(
xj(t − τij)

)+ Ii,

i = 1, . . . , n, (7.2)

where bij denotes the delayed feedback of the j-th neuron on the i-th neuron and
τij denotes the transmission delay from neuron j to i. If the activation functions
concerned with delayed or without delayed terms are the same, i.e., fj = gj, j =
1, . . . , n, then this model can be formulated as

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τij))+ Ii,

i = 1, . . . , n.

One can see that this model contains cellular neural networks [32, 33] as a special
case. If τij = τ is uniform, it has the following form:

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii,

i = 1, . . . , n.

Also, the delayed Cohen–Grossberg neural networks can be written as

dxi(t)

dt
= ai(xi)

[
− dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii

]
,

i = 1, . . . , n, (7.3)

a special form.
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Research of delayed neural networks with varying self-inhibitions, interconnec-
tion weights, and inputs is an important issue, because in many real-world appli-
cations, self-inhibitions, interconnection weights, and inputs vary with time. Thus,
we also study the delayed neural networks with a more general form, which is first
introduced in [26]:

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)gj(xj(t)) +
n∑

j=1

∫ ∞

0
fj(xj(t − s))dsKij(s)

+Ii(t), i = 1, . . . , n,

where dsKij(t, s), i, j = 1, . . . , n, are Lebesgue–Stieltjes measures with respect to s,
which denotes the delayed terms. For example, if dsKij(t, s) has the form bijδτij (t −
s)ds, one obtains (7.2). More details about the descriptions of the models will be
discussed in the following sections.

In this chapter, we study the global convergent dynamics of a class of delayed
neural networks. The models are rather general, including Hopfield neural networks,
Cohen–Grossberg networks, cellular neural networks, as well as the case of discon-
tinuous activation functions. The purpose of this chapter is not only to present the
existing results but also to illustrate the methodologies used in obtaining and prov-
ing these results. These methodologies could be utilized or extended in analysis of
global convergent dynamics of other models or general delayed differential systems.

Two mathematical problems must be solved. One is the existence of a static orbit:
an equilibrium, a periodic orbit, or an almost periodic orbit. Ordinarily, this can
be investigated by the fixed point theory. In addition, in this chapter we use novel
methods. We study the system of the derivative of the delayed Hopfield neural net-
works instead and conclude that the global exponential stability of the derivative
can lead the global exponential stability of the intrinsic neural networks. Moreover,
the existence of periodic or almost periodic orbits can be handled by regarding it
as a clustering orbit of any trajectory. The second problem is the stability of such
a static orbit. This is investigated by designing a suitable Lyapunov functional. We
should point out that it is not the theorems but the ideas of Lyapunov and Lyapunov–
Krasovskii stability theory that is used to prove global stability. The main results and
proofs in this chapter come from our recent literature [19–21, 30, 63, 65–68].

We organize this chapter as follows. In Sect. 7.2, we discuss the stability of
delayed neural networks. We study the periodicity and almost periodicity in Sect. 7.3.
In Sect. 7.4, we investigate the convergence analysis of delayed neural networks
with discontinuous activation functions. We present reviews of literature on this
topic and compare them with the results in Sect. 7.5.

We first present the notation used in this chapter. ‖·‖ denotes the norm of a vector
in some sense. In particular, ‖v‖2 for a vector v = (v1, . . . , vn)� denotes the 2-norm,

i.e., ‖v‖2 =
√∑n

i=1 |vi|2 and ‖v‖1 = ∑n
i=1 |vi|. For some positive vector ξ =

(ξ1, . . . , ξn)�, we denote ‖v‖{ξ ,∞} = maxi ξ
−1
i |vi| and ‖v‖{ξ ,1} = ∑n

i=1 ξi|vi|. The
norm of a matrix is induced by the definition of the norm of vectors. C([a, b], Rn)
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denotes the class of continuous functions from [a, b] to R
n. The norm of x( · ) ∈

C([a, b], Rn) is denoted by ‖x( · )‖ = maxa≤t≤b ‖x(t)‖ for some vector norm ‖ · ‖.
We write a+ = max{a, 0} for a real number a. The spectral set of a square matrix
A is denoted by λ(A). Among them, λmin(A) and λmax(A) denote the minimum and
maximum one, respectively, if all eigenvalues of A are real. For a matrix A, A�
denotes its transpose and As denotes its symmetric part, i.e., As = (A+ A�)/2. For
a matrix A ∈ R

n,n, A > 0 denotes that A is positive definite, with similar definitions
for the notations A ≥ 0, A < 0, and A ≤ 0. For two matrices A, B ∈ R

n,n, A > B
denotes A − B > 0; similarly with A ≥ B, A < B, and A ≤ B. R

n+ denotes the
first orthant, R

n+ = {x = (x1. . . . , xn)�: xi > 0, ∀ i = 1, . . . , n}. For a matrix
A = (aij)n

i,j=1 ∈ R
n,n, |A| denotes the matrix (|aij|)n

i,j=1. Finally, sign( · ) denotes the
signature function.

7.2 Stability of Delayed Neural Networks

In this section we will study the global stability of delayed neural networks. The
basic mathematical method is the theory of functional differential equations. For
more details, we refer interested readers to [49]. The study of stability of these
differential systems contains two main contents: (1) existence of an equilibrium
and (2) global attractivity of this equilibrium as done in previous literature. We
study the delayed Hopfield neural network (7.2) and the delayed Cohen–Grossberg
neural network (7.3) and prove that under several assumptions, diagonal dominant
conditions can lead the global stability.

7.2.1 Preliminaries

Before presenting the main results, we provide a brief review of necessary theoreti-
cal preliminaries.

7.2.1.1 Functional Differential Equations (FDE)

Delayed neural networks can be modeled as a class of functional differential equa-
tions, which have the following general forms:

dx

dt
= f (xt). (7.4)

Here, x(t) ∈ R
n, xt(θ ) = x(t+ θ ), θ ∈ [− τ , 0], where τ > 0 can even be infinite,

f ( · ) is a function in C([ − τ , 0], Rn). A solution of the system (7.4) with initial
condition φ ∈ C([ − τ , 0], Rn) is a smooth x(t) satisfying (1) x(θ ) = φ(θ ) for all
θ ∈ [− τ , 0] and (2) (7.4) holds for all t ≥ 0. As pointed out in [49], local Lipschitz
continuity of f ( · ) can guarantee the existence and uniqueness of the solution of the
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system (7.4). In addition, if the solution is bounded, then the solution exists for the
whole time interval.

Stability of (7.4) is with respect to an equilibrium. An equilibrium x∗ ∈ R
n is a

solution of the equation

f (x∗) = 0, (7.5)

i.e., xt( · ) is picked as a constant function. Stability is then defined as follows.

Definition 7.1 Equation (7.4) is said to be globally stable if for any initial condition
φ ∈ C([ − τ , 0], Rn), the corresponding solution x(t) satisfies limt→∞ x(t) = x∗.
Moreover, if there exist some M > 0 and ε > 0 such that ‖x(t)−x∗‖ ≤ M exp (−εt)
for all t ≥ 0, (7.4) is said to be globally exponentially stable. If there exist some
M > 0 and γ > 0 such that ‖x(t) − x∗‖ ≤ Mt−γ for all t ≥ 0, (7.4) is said to be
globally stable in power rate.

In this chapter, we use Lyapunov functional methods to study the global stability
of the equilibrium. Actually, we do not directly cite Lyapunov stability theorem for
FDEs but use the underlying idea. We design a suitable functional which is zero
if and only if xt = x∗, give conditions to guarantee that it decreases through the
system, and directly prove that the Lyapunov functional converges to zero. Also, we
use the idea of Lyapunov–Krasovskii theory instead of the theorem, which can be
cited as the following simple lemma:

Lemma 7.2 Let x(t) be a solution of the system (7.4) with the initial time t0 > 0 and
φ(t) = ‖xt( · )‖. If at each t∗ with φ(t∗) = ‖x(t∗)‖, we have

d‖x(t)‖
dt

|t=t∗≤ −ηφ(t∗)+M(t∗) (7.6)

for some positive continuous function M(t∗), then φ(t) ≤ max{M(t)/η,φ(t0)} for all
t ≥ t0.

Proof We prove it by discussing the following two cases.
Case 1: φ(t0) ≤ M(t0)/η. We can prove φ(t) ≤ M(t)/η for all t ≥ t0. In fact, if

there exists some t1 > t0 such that φ(t1) = M(t1) for the first time, then φ(t) is non-
increasing at t1. Otherwise, if φ(t) is strictly increasing at t1, then φ(t1) = ‖x(t1)‖
and ‖x(t)‖ is strictly increasing at t1, which by (7.6) is impossible. Hence, φ(t) will
never increase beyond M(t).

Case 2: φ(t0) > M(t0)/η. Then, φ(t) is decreasing in a small right neighborhood
of t0. If at some t1 > T0, φ(t1) ≤ M(t1)/η, then it reduces to Case 1. Otherwise, φ(t)
keeps decreasing.

In both cases, it can be concluded that φ(t) ≤ max{M(t)/η,φ(t0)}. �

7.2.1.2 Matrix Theory

A matrix T ∈ R
n,n is said to be Lyapunov diagonally stable (LDS) if there exists a

positive definite diagonal matrix D ∈ R
n,n such that DT + T�D is positive definite.
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Lemma 7.3 (See Lemma 2 in [41]) Let D and G be positive definite diagonal matri-
ces and T ∈ R

n,n. If DG−1 − T is LDS, then for any positive definite diagonal
matrix D̄ ≥ D and nonnegative definite diagonal matrix 0 ≤ K ≤ G, we have
det(D̄− TK) �= 0.

A nonsingular matrix C ∈ R
n,n with cij ≤ 0, i, j = 1, . . . , m, i �= j, is said to be

an M-matrix if all elements of C−1 are nonnegative.

Lemma 7.4 ([11]) Let C = (cij) ∈ R
n,n be a nonsingular matrix with cij ≤ 0,

i, j = 1, . . . , n, i �= j. Then the following statements are equivalent.

1. C is an M-matrix;
2. All the successive principal minors of C are positive;
3. C� is an M-matrix;
4. The real parts of all eigenvalues are positive;
5. There exists a vector ξ = (ξ1, ξ2, . . . , ξn)� with ξi > 0, i = 1, . . . , n, such that

every component of ξ�C is positive, or every component of Cξ is positive;
6. C is LDS;
7. For any two diagonal matrices P = diag{p1, p2, . . . , pn},

Q = diag{q1, q2, . . . , qn}, where pi > 0, qi > 0, i = 1, . . . , n, PCQ is an
M-matrix.

The following lemma states the Schur Complement.

Lemma 7.5 (Schur Complement [13]) The following Linear Matrix Inequality (LMI)

[
Q(x) S(x)
S�(x) R(x)

]
> 0,

where Q(x) = Q�(x), R(x) = R�(x), and S(x) depend affinely on x, is equivalent to

R(x) > 0 and Q(x)− S(x)R−1(x)S�(x) > 0.

7.2.1.3 Nonlinear Complimentary Problems

To discuss the existence and uniqueness of the equilibrium, we give a brief review
on Nonlinear Complementarity Problem (NCP).

Definition 7.6 For a continuous function f (x) = (f1(x), . . . , fn(x))�:Rn+ → R
n, an

NCP is to find xi, i = 1, . . . , n, satisfying

xi ≥ 0, fi(x)− Ii ≥ 0, xi(fi(x)− Ii) = 0 for all i = 1, . . . , n. (7.7)

Define a function F(x):Rn → R
n

F(x) = f (x+)+ x−,
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where

x+i =
{

xi, xi ≥ 0
0, otherwise,

x−i =
{

xi, xi ≤ 0
0, otherwise

for i = 1, . . . , n.

The following lemma gives a sufficient and necessary condition for the solvabil-
ity of a NCP.

Lemma 7.7 (Theorem 2.3 in [76]) The NCP (7.7) has a unique solution for every
I ∈ R

n if and only if F(x) is norm-coercive, i.e.,

lim‖x‖→∞‖F(x)‖ = ∞,

and F(x) is locally one-to-one.

7.2.1.4 Descriptions of Activations

The activation functions in these models are assumed to be Lipschitz continuous.

Definition 7.8 A continuous function g(x) = (g1(x1), . . . , gn(xn))�:Rn → R
n is

said to belong to the function class H1{G1, . . . , Gn} for some positive numbers
G1, . . . , Gn if |gi(ξ ) − gi(ζ )| ≤ Gi|ξ − ζ | for all ξ , ζ ∈ R and i = 1, . . . , n. If,
in addition, each gi( · ) is monotonously increasing, then g is said to belong to the
function class H2{G1, . . . , Gn}.

7.2.2 Delayed Hopfield Neural Networks

In this section we study the following delayed differential system:

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijfj(xj(t − τij))+ Ii,

i = 1, . . . , n. (7.8)

Different from the ordinary way to handle this topic, we do not first prove the
existence of the equilibrium but derive it with global stability. Instead of directly
studying the system (7.8), we consider its derivative system with respect to ẋ and
prove that under several diagonal dominant conditions, ẋ converges to zero exponen-
tially. This in fact implies that x(t) converges to some equilibrium globally expo-
nentially. This idea comes from [18–20] and can be summarized in the following
theorems.

Theorem 7.9 Suppose that g(x) = (g1(x), . . . , gn(x))� ∈ H2{G1, . . . , Gn} and
f (x) = (f1(x), . . . , fn(x))� ∈ H1{F1, . . . , Fn}. If there are positive constants ξ1, . . . , ξn
such that
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− ξjdj + [ξjajj +
∑

i �=j

ξi|aij|]+Gj +
n∑

i=1

ξi|bij|Fj < 0, j = 1, . . . , n, (7.9)

then the system (7.8) is globally exponentially stable.

Proof According to the condition, there exists some α > 0 such that

ξj(− dj + α)+ [ξjajj +
∑

i �=j

ξi|aij|]+Gj +
n∑

i=1

ξi|bij|eατij Fj ≤ 0

for all j = 1, . . . , n. Let vi(t) = ẋi(t) and y(t) = eαtv(t). Then, for almost every t ≥ 0,
we have

dyi(t)

dt
= (− di + α)yi(t)+

n∑

j=1

aijg
′
j(xj(t))yj(t) (7.10)

+
n∑

j=1

bijf
′
j (xj(t − τij))eατij yj(t − τij), i = 1, . . . , n.

Define the following candidate Lyapunov functional

L(t) =
n∑

i=1

ξi|yi(t)| +
n∑

i,j=1

ξi|bij|
∫ t

t−τij
eα(s+τij)|f ′j (xj(s))||vj(s)|ds. (7.11)

Differentiating L(t) gives

L̇(t) =
n∑

i=1

ξisign{yi(t)}
{

(− di + α)yi(t)+
n∑

j=1

aijg
′
j(xj(t))yj(t)

+
n∑

j=1

bijf
′
j (xj(t − τij))eατij yj(t − τij)

}
+

n∑

i,j=1

ξi|bij|eα(t+τij)

| f ′j (xj(t))||vj(t)| −
n∑

i,j=1

ξi|bij||f ′j (xj(t − τij))|eαt|vj(t − τij)|

≤
n∑

j=1

{
ξj(− dj + α)+

⎡

⎣ξjajj +
∑

i �=j

ξi|aij|
⎤

⎦

+
Gj +

n∑

i=1

ξi|bij|eατijFj

}
|yj(t)|

≤ 0.

Therefore, L(t) is bounded and
∑n

i=1 ξi|ẋi(t)| = O(e−αt). By Cauchy convergence
principle, there exists an equilibrium point x∗ = (x∗1, . . . , x∗1)�, such that
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n∑

i=1

ξi|xi(t)− x∗i | = O(e−αt). (7.12)

Uniqueness of the equilibrium point can be proved by defining another candidate
Lyapunov functional

L(t) =
n∑

i=1

ξi|xi(t)− x∗i | +
n∑

i,j=1

|bij|ξi
∫ t

t−τij
eα(s+τij)|fj(xj(s))− fj(x

∗
j )|ds

and differentiating it similarly as done above. This completes the proof. �

Another result comes from another Lyapunov functional for y(t).

Theorem 7.10 Suppose that g(x) = (g1(x), . . . , gn(x))� ∈ H2{G1, . . . , Gn} and
f (x) = (f1(x), . . . , fn(x))� ∈ H1{F1, . . . , Fn}. If there are positive constants ξ1, . . . , ξn
such that

− ξidi + ξia+ii Gi +
N∑

j=1,j �=i

ξj|aij|Gj +
n∑

j=1

ξj|bij|Fj < 0, j = 1, . . . , n, (7.13)

then the system (7.8) is globally exponentially stable.

Proof Let vi(t) and y(t) be defined in the same way as in the proof of Theorem 7.9.
Define

‖y(t)‖{ξ ,∞} = max
i=1,...,n

ξ−1
i ‖yi(t)‖, ϕ(t) = sup

0≤s<τ
‖y(t − s)‖{ξ ,∞}.

Denoting i0 = i0(t) by ξ−1
i0
|yi0 (t)| = ‖y(t)‖{ξ ,∞}, we have

ξi0
d‖y(t)‖{ξ ,∞}

dt
= sign(xi0 (t))

dyi0

dt

= sign(xi0 (t))

{
− (di0 − α)yi0 + ai0i0 g

′
i0 (xi0 (t))yi0 (t)

+
n∑

j=1,j �=i0

g
′
j(yj)(t)yj(t)+

n∑

j=1

bijf
′
j (xj(t − τij))yj(t − τij)eατij

}

≤ [− (di0 − α)ξi0 + a+i0i0
Gi0ξi0 ]ξ−1

i0
|yi0 (t)| +

N∑

j=1,j �=i0

|ai0j|Gjξjξ
−1
j |yj(t)|

+
N∑

j=1

Fjξj|bi0j|ξ−1
j |yj(t − τi0j)|eατij .
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If ϕ(t) is strictly monotone increasing at t = t∗, then ϕ(t∗) = ‖x(t∗)‖{ξ ,∞} and we
have

ξi0
d‖y(t)‖{ξ ,∞}

dt
≤

{
− (di0 − α)ξi0 + a+i0i0

Gi0ξi0 +
n∑

j=1,j �=i0

|ai0j|Gjξj

+
n∑

j=1

Fjξj|bi0j|eατi0 j

}
‖y(t)‖{ξ ,∞} ≤ 0,

which implies that ‖y(t)‖{ξ ,∞} is bounded according to Lemma 7.2, i.e., maxi ξ
−1
i|ẋi(t)| = O(e−αt). By the Cauchy convergence principle, there exists an equilibrium

point x∗ = (x∗1, . . . , x∗n)� such that maxi ξ
−1
i |xi(t)− x∗i | = O(e−αt). The uniqueness

of the equilibrium point can be proved by arguments similar to those used in the
proof of the previous theorem. �

A direct corollary can be obtained in the M-matrix term.

Corollary 7.11 Suppose that g(x) = (g1(x), . . . , gn(x))� ∈ H1{G1, . . . , Gn} and
f (x) = (f1(x), . . . , fn(x))� ∈ H1{F1, . . . , Fn}. Let G = diag{G1, . . . , Gn} and
F = diag{F1, . . . , Fn}. If −D+ |A|G+ |B|F is a M-matrix, then the system (7.8) is
globally exponentially stable.

So far we have studied the exponential stability of delayed Hopfield neural net-
works with constant delays. However, in many cases the time delays are temporally
variant. Then the delayed system can be formulated as

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))

+
n∑

j=1

bijfj(xj(t − τij(t)))+ Ii, i = 1, . . . , n. (7.14)

For the case of bounded delays, i.e., τij(t) ≤ τ for all i, j = 1, . . . , n and t ≥ 0,
the method in the proof of Theorem 7.10 can be used and the same results can
be obtained. However, the case of unbounded delays needs further investigation.
It should be pointed out that most of the literature is concerned with stability of
delayed neural networks with unbounded delays, which always assumes τ̇ij(t) < 1.
Reference [30] presented a novel analysis with a weaker assumption τij(t) < t,
which includes τ̇ij < 1 as a special case. The result can be summarized as follows.

Theorem 7.12 Suppose τij(t) ≤ μt for some 0 < μ < 1 and all t ≥ 0, g( · ) ∈
H1{G1, . . . , Gn}, and f (·) ∈ H1{F1, . . . , Fn}. If there are positive constants ξ1, . . . , ξn
such that

− ξidi +
n∑

j=1

ξj|aij|Gj +
n∑

j=1

ξj|bij|Fj < 0, i = 1, . . . , n, (7.15)
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then the system (7.14) has a unique equilibrium x∗ which is globally stable in power
rate, i.e., there exists some γ > 0 such that

‖x(t)− x∗‖ = O(t−γ )

Proof Under the condition (7.15), according to the results in Theorem 7.10, there
exists an equilibrium point x∗ = (x∗1, . . . , x∗n)� for the system (7.14). Moreover,
there exists a scalar γ > 0 and a sufficiently large T , such that for all t > T ,

(
−di + γ

t

)
ξi +

n∑

j=1

ξj|aij|Gj + (1− μ)−γ
n∑

j=1

ξj|bij|Fj < 0,

i = 1, . . . , n. (7.16)

We always assume t > T afterward.
Let x(t) be a solution of the system (7.8). Define z(t) = tγ (x(t)− x∗) and

M2(t) = sup
s≤t
‖z(s)‖{ξ ,∞}. (7.17)

We will prove that M2(t) is bounded. For any t0 with ‖z(t0)‖{ξ ,∞} = M2(t0), letting
it0 = it0 (t0) be such an index that |ξ−1

it0
zit0

(t0)| = ‖z(t0)‖{ξ ,∞}, we have

{d|zit0
(t)|

dt

}

t=t0

= sign{zit0
(t0)}ξit0

(
−dit0

+ γ
t0

)
ξ−1

it0
zit0

(t0)

+sign{zit0
(t0)}tγ0

{ n∑

j=1

ait0 j

[
gj(uj(t0))− gj(v

∗
j )

]

+
n∑

j=1

bit0 j

[
fj
(

uj(t0 − τit0 j(t0))
)
− fj(v

∗
j )

]}

≤
{
ξit0

(
−dit0

+ γ
t0

)
+

n∑

j=1

ξj|ait0 j|Gj

}
‖z(t0)‖{ξ ,∞}

+
n∑

j=1

ξj|bit0 j|Fj

[
t0

t0 − τit0 j(t0)

]γ
ξ−1

j |zj

(
t0 − τit0 j(t0)

)
|

≤
{
ξit0

(
−dit0

+ γ
t0

)
+

n∑

j=1

ξj|ait0 j|Gj

+
n∑

j=1

ξj|bit0 j|Fj

{
t0

t0 − τit0 j(t0)

}γ}
M2(t0)
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≤
{
ξit0

(
−dit0

+ γ
t0

)

+
n∑

j=1

ξj|ait0 j|Gj + (1− μ)−γ
n∑

j=1

ξj|bit0 j|Fj

}
M2(t0)

< 0.

By Lemma 7.2, we can conclude that M2(t) is bounded, which implies that ‖u(t)−
v∗‖{ξ ,∞} = O(t−γ ), which completes the proof. �

We give a numerical example to verify the theoretical results. We consider the
following system

ẋ(t) = −5x(t)+ x(t − τ (t)), (7.18)

where τ (t) ≤ μt, with μ = 0.5. The power convergence is shown in Fig. 7.2.
The slope of the straight line is approximately −2.3221, which means that x(t) ≈
O(t−2.3217). The theoretical result is x(t) ≈ O(t−γ ), where γ ≈ − log 5

log (1−μ) =
− log 5

log (0.5) ≈ 2.3219, which agrees well with the numerical result.

−5 0 5 10
−25

−20

−15

−10

−5

0

log(t)

lo
g(

x(
t)

)

Fig. 7.2 Illustration of power stability. Slope of the straight line is −2.3221

7.2.3 Delayed Cohen–Grossberg Competitive and Cooperative
Networks

We consider delayed Cohen–Grossberg neural networks with a uniform delay,
which can be formalized as follows:
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dxi(t)

dt
= ai(xi(t))

[
− di(xi)+

n∑

j=1

aijgj(x(t)) +
n∑

j=1

bijgj(xj(t − τ ))+ Ii

]
,

i = 1, . . . , n. (7.19)

This model is very general, and includes a large class of existing neural field and
evolution models. For instance, assuming that ai(ρ) = 1 for all ρ ∈ R and i =
1, . . . , n, then it is the famous Hopfield neural network, which can be written as

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii, i = 1, . . . , n

with di(ρ) = diρ for given di > 0, i = 1, . . . , n. It also includes the famous Volterra–
Lotka competitive-cooperation equations:

dxi

dt
= Aixi

(
Ii −

n∑

j=1

aijxj

)
, i = 1, . . . , n

with ai(ρ) = Aiρ, for all ρ > 0 and given Ai > 0, and gi(ρ) = ρ, i = 1, . . . , n.
Most existing results in the literature are based on the assumption that the amplifier
function ai( · ) is always positive (see [29, 71, 82]). But in the original papers [35,
46, 47] this model was proposed as a kind of competitive-cooperation dynamical
system for decision rules, pattern formation, and parallel memory storage. Here, the
state of the neuron xi might be the population size, activity, or concentration, etc., of
the i-th species in the system, which is always nonnegative for all time. To guarantee
the positivity of the states, one should assume ai(ρ) > 0 for all ρ > 0 and ai(0) = 0
for all i = 1, . . . , n.

The purpose of this section is to study the convergent dynamics of the delayed
Cohen–Grossberg neural networks without assuming the strict positivity of ai( · ),
symmetry of the connection matrix, or boundedness of the activation functions, but
with considering a time delay. Hereby, we focus our study of the dynamical behav-
ior on the first orthant: R

n+ = {(x1, . . . , xn)� ∈ R
n: xi ≥ 0, i = 1, . . . , n} and

introduce the concept of R
n+-global stability, which means that all trajectories are

initiated in the first orthant R
n+ instead of the whole space R

n. We point out that an
asymptotically stable nonnegative equilibrium is closely related to the solution of a
Nonlinear Complementary Problem (NCP). Based on the Linear Matrix Inequality
(LMI) technique (for more details on LMI, see [13]) and NCP theory (for more
details on NCP, we refer to [76]), we give a sufficient condition for existence and
uniqueness of nonnegative equilibrium. Moreover, the R

n+-global asymptotic stabil-
ity and exponential stability of the equilibrium are investigated. The main results of
this section comes from [67].

Let x(t) = (xi(t), x2(t), . . . , xn(t))�, d(x) = (di(xi), d2(x2), . . . , dn(xn))�, g(x) =
(g1(x1), g2(x2), . . . , gn(xn))�, a(x) = diag{a1(x1), a2(x2), . . . , an(xn)}, A = (aij)n

i,j=1,
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B = (bij)n
i,j=1 ∈ R

n,n, and I = (I1, I2, . . . , In)�. Then, the system (7.19) can be
rewritten in the matrix form:

dx(t)

dt
= a(x)

[
− d(x)+ Ag(x(t))+ Bg(x(t − τ ))+ I

]
. (7.20)

For the amplifier and activation functions, we give the following assumptions:

(i) a( · ) ∈ A1; that is, every ai(ρ) is continuous with ai(0) = 0, and ai(ρ) > 0,
whenever ρ > 0;

(ii) a( · ) ∈ A2; that is, a( · ) ∈ A1, and for any ε > 0,
∫ ε

0 dρ/ai(ρ) = +∞ for all
i = 1, . . . , n;

(iii) a( · ) ∈ A3; that is, a( · ) ∈ A1, and for any ε > 0,
∫∞
ε
ρ dρ/ai(ρ) = +∞ for

all i = 1, . . . , n;
(iv) a( · ) ∈ A4; that is, a( · ) ∈ A1, and for any ε > 0,

∫ ε
0 ρ dρ/ai(ρ) < +∞ for all

i = 1, . . . , n;
(v) d( · ) ∈ D; that is, di( · ) is continuous and satisfies [di(ξ )−di(ζ )]/(ξ−ζ ) ≥ Di,

for all ξ �= ζ , where Di are positive constants, i = 1, . . . , n, and g( · ) belongs
to H2{G1, . . . , Gn} for some Gi > 0, i = 1, . . . , n.

First, we define positive solutions componentwise.

Definition 7.13 A solution x(t) of the system (7.20) is said to be a positive solution
if for every positive initial condition φ(t) > 0, t ∈ [ − τ , 0], the trajectory x(t) =
(x1(t), . . . , xn(t))� satisfies xi(t) > 0 for all t ≥ 0 and i = 1, . . . , n.

Lemma 7.14 (Positive Solution) If a( · ) ∈ A2, then the solution of the system (7.20)
is a positive solution.

Proof Assume that the initial value φ(t) = (φ1(t), . . . ,φn(t))� satisfies φi(t) > 0
for i = 1, . . . , n and t ∈ [ − τ , 0]. Suppose for some t0 > 0 and some index i0,
xi0 (t0) = 0. Then, the assumption a( · ) ∈ A2 leads

∫ t0

0

[
− di(xi(t))+

n∑

j=1

aijgj(xj(t))+
n∑

j=1

bijgj(xj(t − τ ))+ Ii

]
dt

=
∫ t0

0

ẋi(t)dt

ai(xi(t))
= −

∫ φi(0)

0

dρ

ai(ρ)
= −∞,

which is impossible due to the continuity of xi( · ) on [0, t0]. Hence, xi(t) �= 0 for all
t ≥ 0 and i = 1, . . . , n. This implies that xi(t) > 0 for all t ≥ 0 and i = 1, . . . , n. �

By this lemma we can actually concentrate on the first orthant R
n+. If a( · ) ∈ A1,

then any equilibrium in R
n+ of the system (7.19) is a solution of the equations

xi[fi(x)− Ii] = 0, i = 1, . . . , n, (7.21)



212 W. Lu and T. Chen

where fi(x) = di(xi)−∑n
j=1 (aij+ bij)gj(xj), i = 1, . . . , n. Even though (7.21) might

possess multiple solutions, we can show that an asymptotically stable nonnegative
equilibrium is just a solution of a nonlinear complementary problem (NCP).

Proposition 7.15 Suppose a( · ) ∈ A1. If x∗ = (x∗i , . . . , x∗n)� ∈ R
n+ is an asymp-

totically stable equilibrium of the system (7.20), then it must be a solution of the
following nonlinear complementary problem (NCP):

x∗i ≥ 0, fi(x
∗)− Ii ≥ 0, x∗i (fi(x

∗)− Ii) = 0, i = 1, . . . , n, (7.22)

where fi(x) = di(xi)−
n∑

j=1
(aij + bij)gj(xj), i = 1, . . . , n.

Proof Suppose that x∗ ∈ R
n+ is an asymptotically stable equilibrium of the system

(7.20). Then x∗i > 0 or x∗i = 0. In case x∗i > 0, we have fi(x∗i ) − Ii = 0. If x∗i = 0,
we claim that fi(x∗i )− Ii ≥ 0. Otherwise, if fi0 (x∗)− Ii0 < 0 for some index i0, then
ẋi0 (t) = ai(xi0 (t))[ − fi0 (xi0 (t)) + Ii0 ] > (1/2)ai(xi0 (t))[ − fi0 (x∗) + Ii0 ] > 0 when
xi0 (t) is sufficiently close to x∗, which implies that xi0 (t) will never converge to 0.
Therefore, x∗ is unstable. �

Thus, we can propose a definition of a nonnegative equilibrium of the system
(7.20).

Definition 7.16 x∗ is said to be a nonnegative equilibrium of the system (7.20) in the
NCP sense, if x∗ is the solution of the Nonlinear Complementarity Problem (NCP)
(7.22); moreover, if x∗i > 0, for all i = 1, . . . , n, then x∗ is said to be a positive
equilibrium of system (7.20). In this case, x∗ must satisfy

d(x∗)− (A+ B)g(x∗)+ I = 0, x∗i > 0, i = 1, . . . , n,

where 0 = (0, . . . , 0)� ∈ R
n.

Definition 7.17 A nonnegative equilibrium x∗ of the system (7.20) in the NCP sense
is said to be R

n+-globally asymptotically stable if for any positive initial condition
φi(t) > 0, t ∈ [ − τ , 0] and i = 1, . . . , n, the trajectory x(t) of the system (7.20)
satisfies lim

t→∞ x(t) = x∗. Moreover, if there exist constants M > 0 and ε > 0 such

that

‖x(t)− x∗‖ ≤ Me−εt, t ≥ 0,

then x∗ is said to be R
n+-exponentially stable.

So, we discuss the existence and uniqueness of the nonnegative equilibrium in
the NCP sense.

Theorem 7.18 (Existence and Uniqueness of Nonnegative Equilibrium) Suppose
a( · ) ∈ A2, d( · ) ∈ D, and g( · ) ∈ H2{G1, . . . , Gn} for Gi > 0, i = 1, . . . , n.
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Let D = diag{D1, . . . , Dn} and G = diag{G1, . . . , Gn}. If there exists a positive
definite diagonal matrix P = diag{P1, P2, . . . , Pn} such that

{
P[DG−1 − (A+ B)]

}s

> 0, (7.23)

then for each I ∈ R
n, there exists a unique nonnegative equilibrium of the system

(7.20) in the NCP sense.

The proof is given in the Appendix.
The following corollary is a direct consequence of Theorem 7.18.

Corollary 7.19 Suppose a( · ) ∈ A2, d( · ) ∈ D, and g( · ) ∈ H2{G1, . . . , Gn} for
Gi > 0, i = 1, . . . , n . Let D = diag{D1, . . . , Dn} and G = diag{G1, . . . , Gn}. If
there exist a positive definite diagonal matrix P and a positive definite symmetric
matrix Q such that

[
2PDG−1 − PA− A�P− Q −PB

−B�P Q

]
> 0, (7.24)

then for each I ∈ R
n, there exists a unique nonnegative equilibrium for the system

(7.20) in the NCP sense.

Let x∗ be the nonnegative equilibrium of the system (7.20) in the NCP sense and
y(t) = x(t)− x∗. Thus, the system (7.19) can be rewritten as

dyi(t)

dt
= a∗i (yi(t))

[
− d∗i (yi(t))+

n∑

j=1

aijg
∗
j (yj(t))+

n∑

j=1

bijg
∗
j (yj(t − τ ))+ Ji

]

or in matrix form

dy(t)

dt
= a∗(y(t))

[
− d∗(y(t))+ Ag∗(y(t))+ Bg∗(y(t − τ ))+ J

]
, (7.25)

where for i = 1, . . . , n, a∗i (s) = ai(s+x∗i ), a∗(y) = diag{a∗1(y1), . . . , a∗n(yn)}, d∗i (s) =
d∗i (s + x∗i ) − d∗i (x∗i ), d∗(y) = [d∗1(y1), . . . , d∗n(yn)]�, g∗i (s) = g∗i (s + x∗i ) − g∗i (x∗i ),
g∗(y) = [g∗1(y1), . . . , g∗n(yn)]�, and

Ji =
⎧
⎨

⎩
−di(x∗i )+

n∑

j=1
(aij + bij)gj(x∗j )+ Ii x∗i = 0

0 x∗i > 0
J = (J1, . . . , Jn)�.

Since x∗ is the nonnegative equilibrium of (7.20) in the NCP sense, i.e., the solu-
tion of NCP (7.7), Ji ≤ 0 holds for all i = 1, . . . , n which implies that g∗i (yi(t))Ji ≤ 0
for all i = 1, . . . , n and t ≥ 0.
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Theorem 7.20 (Rn+-Global Asymptotic Stability of the Nonnegative Equilibrium)
Suppose a( · ) ∈ A2

⋂
A3

⋂
A4, d( · ) ∈ D, and g( · ) ∈ H2{G1, . . . , Gn} for Gi > 0,

i = 1, . . . , n. Let D = diag{D1, . . . , Dn} and G = diag{G1, . . . , Gn}. If there exist
a positive definite diagonal matrix P = diag{P1, . . . , Pn} and a positive definite
symmetric matrix Q such that

[
2PDG−1 − PA− A�P− Q −PB

−B�P Q

]
> 0, (7.26)

then the unique nonnegative equilibrium x∗ for the system (7.20) in the NCP sense
is R

n+-globally asymptotically stable.

Proof Without loss of generality, we assume x∗i = 0, i = 1, 2, . . . , p and x∗i > 0,
i = p + 1, . . . , n for some integer p. By the assumptions A3 and A4, it can be seen
that

∫ yi(t)

0

ρdρ

a∗i (ρ)
< +∞,

∫ +∞

0

ρdρ

a∗i (ρ)
= +∞,

∫ yi(t)

0

g∗i (ρ)dρ

a∗i (ρ)
< +∞

for i = 1, . . . , n and t ≥ 0. By inequality (7.26), there exists β > 0 such that

Z =
⎡

⎣
2βD −βA −βB
−βA� 2PDG−1 − PA− A�P− Q −PB
−βB� −B�P Q

⎤

⎦ > 0.

Let

V(t) = 2β
n∑

i=1

∫ yi(t)

0

ρdρ

a∗i (ρ)
+ 2

n∑

i=1

Pi

∫ yi(t)

0

g∗i (ρ)dρ

a∗i (ρ)
+

∫ t

t−τ
g∗�(y(s))Qg∗(y(s))ds.

It is easy to see that V(t) is positive definite and radially unbounded. Noting
g∗i (yi(t))Ji ≤ 0, we have

dV(t)

dt
= 2β

n∑

i=1

yi(t)

[
− d∗i (yi(t))+

n∑

j=1

aijg
∗
j (yj(t))+

n∑

j=1

bijg
∗
j (yj(t − τ ))+ Jj

]

+2
n∑

i=1

Pig
∗
i (yi(t))

[
− d∗i (yi(t))+

n∑

j=1

aijg
∗
j (yj(t))+

n∑

j=1

g∗j (yj(t − τ ))+ Jj

]

+g∗�(y(t))Qg∗(y(t))− g∗�(y(t − τ ))Qg∗(y(t − τ ))

≤ −2β

[
y�(t)Dy(t)− y�(t)Ag∗(y(t))− y�(t)Bg∗(y(t − τ ))

]

−2
[
g∗�(y(t))PDG−1g∗(y(t))− g∗�(y(t))PBg∗(y(t))
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−g∗�(y(t))PBg∗(y(t − τ ))
]

+g∗�(y(t))Qg∗(y(t))− g∗�(y(t − τ ))Qg∗(y(t − τ ))

= −[y�(t), g∗�(y(t)), g∗�(y(t − τ ))]Z

⎡

⎣
y(t)

g∗(y(t))
g∗(y(t − τ ))

⎤

⎦ ≤ −δy�(t)y(t),

where δ = λmin(Z) > 0. Therefore, limt→∞ ‖y(t)‖2 = 0. This completes the
proof. �

In the following, we present a numerical example to verify the theoretical results
obtained above and compare the convergent dynamics of the Cohen–Grossberg
neural systems with an amplification function which is always positive versus an
amplification function which is only positive in the first orthant. A result for positive
amplification function was provided in [28, 69].

Theorem 7.21 Suppose that g ∈ H2{G1, G2, ..., Gn} and there exists α > 0 such that
ai(ρ) > α for any ρ ∈ R and i = 1, . . . , n. If there exist a positive definite diagonal
matrix P and a positive definite matrix Q such that inequality (7.26) holds, then
for each I ∈ R

n, the system (7.20) has a unique equilibrium point that is globally
exponentially stable.

Consider the dynamical behavior of the following two systems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt = x1(t)

[
− 6x1(t)+ 2g(x1(t))− g(x2(t))

+3g(x1(t − 2))+ g(x2(t − 2))+ I1

]

dx2(t)
dt = x2(t)

[
− 6x2(t)− 2g(x1(t))

+3g(x2(t))+ 1
2 g(x1(t − 2))+ 2g(x2(t − 2))+ I2

]
,

(7.27)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1(t)
dt = 1

|u1(t)|+1

[
− 6u1(t)+ 2g(u1(t))

−g(u2(t))+ 3g(u1(t − 2))+ g(u2(t − 2))+ I1

]

du2(t)
dt = 1

|u2(t)|+1

[
− 6u2(t)− 2g(u1(t))

+3g(u2(t))+ 1
2 g(u1(t − 2))+ 2g(u2(t − 2))+ I2

]
,

(7.28)

where g(ρ) = (1/2)(ρ + arctan (ρ)) and I = (I1, I2)� is the constant input that will
be determined below. Furthermore,

D = 6×
[

1 0
0 1

]
, G =

[
1 0
0 1

]
, A =

[
2 −1
−2 3

]
, B =

[
3 1
1
2 2

]
.
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By the Matlab LMI and Control Toolbox, we obtain

P =
[

0.2995 0
0 0.3298

]
, Q =

[
1.0507 0.3258
0.3258 0.9430

]
.

The eigenvalues of

Z =
[

2PDG−1 − PA− A�P− Q −PB
−B�P Q

]

are 2.6490, 1.1343, 0.5302, and 0.0559, which implies that Z is positive definite.
By Theorem 7.20, for any I ∈ R

2, the system (7.27) has a unique nonnegative
equilibrium x∗ in the NCP sense which is R

2+-globally asymptotically stable. By
Theorem 7.21, for any I ∈ R

2, system (7.28) has a unique equilibrium x0, which is
globally asymptotically stable in R

2.
In case I = (1, 0.1)�, the equilibria of the system (7.27) are (0, 0)�, (0.7414, 0)�,

(0, 0.0992)�, and (0.7414,−0.7062)�. Among them, x∗ = (0.7414, 0)� is the non-
negative equilibrium of the system (7.27) in the NCP sense and x0 = (0.7414,
−0.7062) is the unique equilibrium of the system (7.28). Pick initial condition
φ1(t) = (7/2)( cos (t) + 1) and φ2(t) = e−t, for t ∈ [ − 2, 0]. Figure 7.3 shows
that the solution of the system (7.27) converges to x∗ = (0.7414, 0)�, while the
solution of the system (7.28) converges to x0 = (0.7414,−0.7062)
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Fig. 7.3 Dynamical behavior of systems (7.27) and (7.28) with I = (1, 0.1)�
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7.3 Periodicity and Almost Periodicity of Delayed Neural
Networks

In this section, we discuss a large class of delayed neural networks with time-
varying inhibitions, interconnection weights, and inputs which can be periodic or
almost periodic. We will prove that under several diagonal dominant conditions,
the periodic or almost periodic system has at least one periodic or almost periodic
solution, respectively, which is globally stable. Moreover, the equilibrium of the
delayed neural networks with constant coefficients can be regarded as a periodic
orbit with arbitrary period.

We consider a rather general delayed system,

dui

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

∫ ∞

0
fj(uj(t − τij − s))dsKij(t, s)+ Ii(t), i = 1, . . . , n (7.29)

or

dui

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

∫ ∞

0
fj(uj(t − τij(t)− s))dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.30)

where for any fixed t, dsKij(t, s) are Lebesgue–Stieltjes measures with respect to s.
This model contains many delayed recurrent neural network models as special

cases. For example, if dsKij(t, tk) = bk
ij(t) for 0 < t1 < · · · tm <∞ and dsKij(t, s) =

0 for s �= tk, we obtain the following system with multi-discrete delays,

dui

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bk
ij(t)fj(uj(t − τij(t)− tk))+ Ii(t), i = 1, 2, . . . , n. (7.31)

Instead, if dsKij(t, s) = bij(t)kij(s)ds, then we have the following system with dis-
tributed delays,
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dui(t)

dt
= −di(t)ui(t)+

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bij(t)
∫ ∞

0
kij(s)fj(uj(t − τij(t)− s))ds+ Ii(t), i = 1, 2, . . . , n.

(7.32)

From [49], one can see that if the activation functions gi( ·) and fi( ·) are Lipschitz
continuous, then the system has a unique solution for any bounded continuous initial
condition.

Periodicity and almost periodicity are defined as follows.

Definition 7.22 A vector-valued function x(t): R→ R
n is said to be periodic if there

exists ω > 0 such that x(t + ω) = x(t) for all t ∈ R. In this case, ω is called the
period of x(t). The function x(t) is said to be almost periodic on R if for any ε > 0, it
is possible to find a real number l = l(ε) > 0, such that for any interval with length
l(ε), there exists a number ω = ω(ε) in this interval such that ‖x(t+ ω)− x(t)‖ < ε
for all t ∈ R.

The key problem of this section is to prove the existence of a periodic or almost
periodic solution. Different from the existing literature, which uses Mawhin coin-
cidence degree theory (see [44]), we use two methods to prove existence. The first
method is to regard the periodic solution as a fixed point of a Poincaré–Andronov
map [63]. A basic result is the famous Brouwer fixed point theorem [60].

Lemma 7.23 A continuous map T over a compact subsetΩ of a Banach space such
that T(Ω) ⊂ Ω has at least one fixed point, namely, there exists ω∗ ∈ Ω such that
T(ω∗) = ω∗.

The second method is to regard the periodic or almost periodic solution as a limit
of a solution of (7.29). See [27].

The global stability of such periodic or almost periodic solutions is studied by
Lyapunov and Lyapunov–Krasovskii methods.

7.3.1 Delayed Periodic Hopfield Neural Networks

Considering the system (7.30), we give the following hypotheses.

B1:

(1) di(t), aij(t), bij(t), Ii(t), τij(t):R+ → R are continuous functions, and dsKij(t, s)
is continuous in the sense that limh→∞

∫∞
0 |dsKij(t + h, s) − dsKij(t, s)| = 0

for all i, j = 1, . . . , n; they are all periodic functions with period ω > 0, i.e.,
di(t + ω) = di(t), aij(t) = aij(t + ω), bij(t) = bij(t + ω), Ii(t) = Ii(t + ω),
τij(t+ω) = τij(t), and dKij(t+ω, s) = dsKij(t, s) for all t > 0 and i, j = 1, . . . , n.

(2) g( · ) ∈ H2{G1, . . . , Gn} and f ( · ) ∈ H1{F1, . . . , Fn} for some positive constants
Gi and Fi, i = 1, . . . , n;
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(3) the initial condition x(θ ) = φ(θ ), θ ∈ (−∞, 0] satisfies thatφ∈C((−∞, 0], Rn)
is bounded.

The following result is concerned with the Poincaré–Andronov map.

Theorem 7.24 Suppose that the hypotheses B1 above are satisfied. If there exist
positive constants ξ1, ξ2, . . . , ξn such that for all ω ≥ t > 0,

− ξidi(t)+
n∑

j=1

ξjGj|aij(t)| +
n∑

j=1

ξjFj

∫ ∞

0
|dsKij(t, s)| < 0,

i = 1, 2, . . . , n, (7.33)

then the system (7.30) has at least one ω-periodic solution v(t). In addition, if there
exists a constant α such that for all ω ≥ t > 0,

−ξi(di(t)− α)+
n∑

j=1

ξjGj|aij(t)|

+
n∑

j=1

ξjFje
ατij

∫ ∞

0
eαs|dsKij(t, s)| ≤ 0, i = 1, 2, . . . , n, (7.34)

then for any solution x(t) = (x1(t), . . . , xn(t)) of (7.30),

‖x(t)− v(t)‖ = O(e−αt) t→∞. (7.35)

Proof Pick a constant M satisfying M > J/η, where

J = max
i

max
t

{ n∑

j=1

|aij(t)|Cj +
n∑

j=1

Dj

∫ ∞

0
|dsKij(t, s)| + |Ii(t)|

}

and let C = C((−∞, 0], Rn) be the Banach space with norm

‖φ‖ = sup
{−∞<θ≤ω}

‖φ(θ )‖{ξ ,∞}.

Denote

Ω = {x(θ ) ∈ C:‖x(θ )‖ ≤ M, ‖ẋ(θ )‖ ≤ N},

where N = (α+β+γ )M+c, α = maxi supt |di(t)|ξ−1
i , β = maxi,j supt |aij(t)|ξ−1

i Gj,
γ = maxi,j supt

∫∞
0 |dsKij(t, s)|Fjξ

−1
i , and c = maxi sup0≤t<ω |Ii(t)|ξ−1

i . It is easy
to check that Ω is a convex compact set.
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Now, define a map T from Ω to C by

T:φ(θ )→ x(θ + ω,φ),

where x(t) = x(t,φ) is the solution of the system (7.29) with the initial condition
xi(θ ) = φi(θ ), for θ ∈ (−∞, 0] and i = 1, . . . , n.

In the following, we will prove that TΩ ⊂ Ω , i.e., if φ ∈ Ω , then x ∈ Ω . To do
that, we define the following function

M(t) = sup
s∈(−∞,0]

‖x(t + s)‖{ξ ,∞}.

It is easy to see that ‖x(t)‖{ξ ,∞} ≤ M(t). Therefore, what we need to do is to prove
M(t) ≤ M for all t > 0.

Assume that t0 ≥ 0 is the smallest value such that ‖x(t0)‖{ξ ,∞} = M(t0) = M, and
‖x(t)‖{ξ ,∞} ≤ M if t < t0. Let i0 be an index such that ξ−1

i0
|xi0 (t)| = ‖x(t0)‖{ξ ,∞}.

Then, direct calculations give

{
d|xi0 (t)|

dt

}

t=t0

≤ sign(xi0 (t0))

{
− di0 (t0)xi0 (t0)+

n∑

j=1

ai0j(t0)gj(xj)

+
n∑

j=1

∫ ∞

0
fj(xj(t0 − τi0j(t0)− s))dsKi0j(t0, s)+ Ii0 (t0)

}

≤
[
− di0ξit0

+
n∑

j=1

|ai0j(t0)|Gjξj

]
‖x(t0)‖{ξ ,∞}

+
n∑

j=1

Fjξj

∫ ∞

0
‖x(t0 − τi0j(t0)− s)‖{ξ ,∞}|dsKi0j(t0, s)| + J

≤
[
− di0ξi0 +

n∑

j=1

|ai0j(t0)|Gjξj

+
n∑

j=1

Fjξj

∫ ∞

0
|dsKi0j(t0, s)|

]
M(t0)+ J

≤ −ηM(t0)+ J = −ηM + J < 0,

which implies that ‖x(t)‖{ξ ,∞} can never exceed M. Thus, ‖x(t)‖{ξ ,∞} ≤ M(t) ≤
M for all t > t0. Moreover, it is easy to see that ‖ẋ(θ + ω)‖ ≤ N. Therefore,
TΩ ⊂ Ω . By Lemma 7.23, there exists φ∗ ∈ Ω such that Tφ∗ = φ∗. Hence
x(t,φ∗) = x(t, Tφ∗), i.e., x(t,φ∗) = x(t + ω,φ∗), which is an ω-periodic solution of
the system (7.30).

Now, we prove that inequality (7.34) leads to the global attractivity of the peri-
odic solution. Let x̄(t) = [x(t)− v(t)] and z(t) = eαtx̄(t). We have
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dzi(t)

dt
= −(di(t)− α)zi(t)+ eαt

{ n∑

j=1

aij(t)

[
gj(xj(t))− gj(vj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t − τij(t)− s))− fj(vj(t − τij(t)− s))

]
dsKij(t, s)

}
.

Therefore,

d|zi(t)|
dt

≤ −(di(t)− α)|zi(t)| +
n∑

j=1

|aij(t)|Gj|zj(t)|

+
n∑

j=1

Fje
ατij(t)

∫ ∞

0
eαs|zj(t − τij(t)− s)||dsKij(t, s)|

≤
[
− ξi(di(t)− α)+

n∑

j=1

ξj|aij(t)|Gj

]
‖z(t)‖{ξ ,∞}

+
n∑

j=1

ξjFje
ατij(t)

∫ ∞

0
eαs|zj(t − τij(t)− s)||dsKij(t, s)|.

By the same approach used before, we can prove that z(t) is bounded. That is, x̄(t) =
O(e−αt). This completes the proof of the theorem. �

7.3.2 Delayed Periodic Cohen–Grossberg Competitive
and Cooperative Neural Networks

In this section, we investigate the following delayed Cohen–Grossberg neural
network:

dxi(t)

dt
= −ai(xi(t))

⎡

⎣di(xi(t))−
n∑

j=1

cij(t)gj(xj(t))

−
n∑

j=1

∫ ∞

0
fj(xj(t − s))dsKij(t, s)+ Ii(t)

⎤

⎦ , i = 1, . . . , n, (7.36)

where xi(t) denotes the state variable of neuron i, all coefficients satisfy the condition
B1, d(x) = (d1(x1), . . . , dn(xn))� ∈ D as defined in Sect. 7.2.3, and the amplification
functions ai( · ), i = 1, . . . , n, might satisfy some of the assumptions A1−4 defined in
Sect. 7.2.3. The initial condition is xi(θ ) = φi(θ ), θ ∈ (−∞, 0] for some continuous
bounded positive functions φi( · ) ∈ C(−∞, 0]. The main results come from [21].
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By Lemma 7.14, the assumption A2 implies that for positive, bounded, and
continuous initial conditions, the trajectory of the system (7.36) is always positive.
Moreover, we can obtain its boundedness.

Lemma 7.25 Assume the hypotheses B1, and suppose further that a( · ) ∈ A2 and
d(·) ∈ D. If there exist constants ξi > 0, i = 1, . . . , n, such that for all i = 1, 2, . . . , n
and 0 ≤ t < ω,

− γiξi +
n∑

j=1

|cij(t)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0
|dsKij(t, s)| < 0, (7.37)

then any solution x(t) of the system (7.36) is bounded.

Proof First, by Lemma 7.14, any solution of (7.36) under positive initial conditions
is globally positive. Since cij(t) are continuous and periodic with period ω, dsKij(t, s)
are ω-periodic with respect to t, and there exists a constant η > 0 with

η = min
i

min
0≤t<ω

⎧
⎨

⎩
γiξi −

n∑

j=1

|cij(t)|Gjξj −
n∑

j=1

Fjξj

∫ ∞

0
|dsKij(t, s)|

⎫
⎬

⎭
.

So, we have

−γiξi +
n∑

j=1

|cij(t)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0
|dsKij(t, s)| ≤ −η < 0.

Let M(t) = maxs≤t ‖x(s)‖{ξ ,∞}. Clearly, M(t) is nondecreasing and ‖x(t)‖{ξ ,∞} ≤
M(t). Denote

H = sup
0<t≤ω

max
i

⎧
⎨

⎩
|di(0)| + |I∗i | +

n∑

j=1

c∗ij|gj(0)| +
n∑

j=1

|fj(0)|
∫ ∞

0
|dsKij(t, s)|

⎫
⎬

⎭
.

Now, we can prove that M(t) ≤ max{M(0), H/η}. For any t0 ≥ 0 with M(t0) =
‖x(t0)‖{ξ ,∞}, let i0 be the index with ‖x(t0)‖{ξ ,∞} = |xi0 (t0)|ξ−1

i0
. Note that the

assumptions imply that, for i = 1, . . . , n,

|gi(s)| ≤ Gi|s| + |gi(0)|, |fi(s)| ≤ Fi|s| + |fi(0)|, s ∈ R,

and

sign(s)di(s) ≥ γi|s| + sign(s)di(0), s ∈ R.

Hence, we have
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{
d

dt
|xi0 (t)|

}

t=t0

= ai0 (xi0 (t0))sign(xi0 (t0))[− bi0 (xi0 (t0))

+
n∑

j=1

ci0j(t0)gj(xj(t0))

+
n∑

j=1

∫ ∞

0
fj(xj(t0 − s))dsKi0j(t0, s)+ Ii0 (t0)]

≤ ai0 (xi0 (t0))
[
−γi0ξi0 |xi0 (t0)|ξ−1

i0
+

n∑

j=1

|ci0j(t0)|Gjξj|xj(t0)|ξ−1
j

+|bi0 (0)| + |Ii0 (t0)| +
n∑

j=1

Fjξj

∫ ∞

0
|xj(t0 − s)|ξ−1

j |dsKi0j(t0, s)|

+
n∑

j=1

|ci0j(t)||gj(0)| +
n∑

j=1

|fj(0)|
∫ ∞

0
|dsKi0j(t0, s)|

⎤

⎦

≤ ai0 (xi0 (t0))

⎧
⎨

⎩

⎡

⎣−γi0ξi0 +
n∑

j=1

|ci0j(t0)|Gjξj

+
n∑

j=1

Fjξj

∫ ∞

0
|dsKi0j(t0, s)|

⎤

⎦ ‖x(t0)‖{ξ ,∞} + H

⎫
⎬

⎭

≤ ai0 (xi0 (t0))(− η‖x(t0)‖{ξ ,∞} + H) = ai0 (xi0 (t0))(− ηM(t0)+ H).

This implies M(t) ≤ max{M(t0), H/η} according to Lemma 7.2. So, x(t) is bounded.
This completes the proof. �

Thus, we can give the main result of this section.

Theorem 7.26 Assume the hypotheses B1, and suppose further that a( · ) ∈ A2
and d( · ) ∈ D. If there exist constants ζi > 0, i = 1, 2, . . . , n, such that for all
i = 1, 2, . . . , n and 0 ≤ t < ω,

− ζiγi +
n∑

j=1

|cji(t)|ζjGi +
n∑

j=1

ζjFi

∫ ∞

0
|dKji(s)| < 0, (7.38)

then the system (7.36) has a nonnegative periodic solution with period ω which is
globally asymptotically stable.

Proof First, inequality (7.38) implies that inequality (7.37) holds owing to the
M-matrix theory (see Lemma 7.4). By Lemma 7.14, any solution of the sys-
tem (7.36) with a positive, bounded, and continuous initial condition is globally
positive. Let
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−λ = max
i

sup
0≤t<ω

⎧
⎨

⎩
−ζiγi +

n∑

j=1

|cji(t)|ζjGi +
n∑

j=1

ζjFi

∫ ∞

0
|dKji(s)|

⎫
⎬

⎭
.

The conditions stated in the theorem implies that λ > 0.
For a specific positive solution x(t) of system (7.36), let ui(t) = xi(t + ω) −

xi(t), and vi(t) =
∫ xi(t+ω)

xi(t)
1/ai(ρ) dρ, i = 1, 2, . . . , n. Note that ai( · ) is continuous,

ai(ρ) > 0 when ρ > 0, and xi is positive and bounded, thus
∫ xi(t+ω)

xi(t)
1/ai(ρ) dρ

exists. By the mean-value theorem for integrals, vi(t) = 1/ai(ξ )(xi(t+ω)− xi(t)) =
(1/ai(ξ ))ui(t), where ξ ∈ [ min{xi(t), xi(t+ω)}, max{xi(t), xi(t+ω)}]. Since ai(x) > 0
when x > 0, we have sign(vi(t)) = sign(ui(t)).

Direct calculations give

dvi(t)

dt
= 1

ai(xi(t + ω))

{
dxi(s)

ds

}

s=t+ω
− 1

ai(xi(t))

{
dxi(s)

ds

}

s=t

= −di(xi(t + ω))+
n∑

j=1

cij(t + ω)gj(xj(t + ω))

+
n∑

j=1

∫ ∞

0
fj(xj(t + ω − s))dsKij(t + ω, s)− Ii(t + ω)

−
⎡

⎣−di(xi(t))+
n∑

j=1

cij(t)gj(xj(t))+
n∑

j=1

∫ ∞

0
fj(xj(t − s))dsKij(t, s)− Ii(t)

⎤

⎦

= −
⎛

⎝di(xi(t + ω))− di(xi(t))+
n∑

j=1

cij(t)(gj(xj(t + ω))− gj(xj(t))

⎞

⎠

+
n∑

j=1

∫ ∞

0
(fj(xj(t + ω))− fj(xj(t)))dsKij(t, s),

and

d

dt
|vi(t)| = sign(vi(t))

{
− (di(xi(t + ω))− di(t))

+
n∑

j=1

cij(t)(gj(xj(t + ω))− gj(xj(t)))

+
n∑

j=1

∫ ∞

0
(fj(xj(t + ω))− fj(xj(t)))dsKij(t, s)

}

≤ −γi|ui(t)| +
n∑

j=1

|cij(t)|Gj|uj(t)| +
n∑

j=1

∫ ∞

0
Fj|uj(t − s)||dKij(t, s)|.
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Define

L(t) =
n∑

i=1

ζi|vi(t)| +
n∑

i,j=1

ζiFj

∫ ∞

0

∫ t

t−s
|uj(ρ)|dρ|dKij(s)|.

Differentiating L(t) along the trajectory x(t) of system (7.36) gives

dL(t)

dt
≤

n∑

i=1

ζi

⎡

⎣−γi|ui(t)| +
n∑

j=1

|cij(t)|Gj|uj(t)| +
n∑

j=1

∫ ∞

0
Fj|uj(t − s)||dKij(s)|

⎤

⎦

+
n∑

i,j=1

ζiFj

[∫ ∞

0
|uj(t)||dKij(s)| −

∫ ∞

0
|uj(t − s)||dKij(s)|

]

=
n∑

i=1

⎡

⎣−ζiγi +
n∑

j=1

|cji(t)|ζjGi

⎤

⎦ |ui(t)| +
n∑

i,j=1

ζjFi

∫ ∞

0
|ui(t − s)||dKji(s)|

+
n∑

i,j=1

ζjFi

∫ ∞

0
|ui(t)||dKji(s)| −

n∑

i,j=1

ζjFi

∫ ∞

0
|ui(t − s)||dKji(s)|

=
n∑

i=1

⎡

⎣−ζiγi +
n∑

j=1

|cji(t)|ζjGi +
n∑

j=1

ζjFi

∫ ∞

0
|dKji(s)|

⎤

⎦ |ui(t)| ≤ −λ‖u(t)‖1.

Since L(t) ≥ 0, integrating both sides of (7.39) from 0 to∞ gives

∫ ∞

0

n∑

i=1

|ui(t)|dt ≤ 1

λ
L(0) < +∞, (7.39)

which implies

∞∑

n=1

∫ ω

0
‖x(t + nω)− x(t + (n− 1)ω)‖1dt < +∞.

By the Cauchy convergence principle, we have that x(t + nω) converges in L1[0,ω]
as n→∞. Since x(t) is bounded, ai(xi(t)), i = 1, 2, . . . , n, are also bounded and x(t)
is uniformly continuous. Then, the sequence {x(t + nω)} is uniformly bounded and
equicontinuous. Thus, by the Arzéla–Ascoli theorem, there exists a subsequence
{x(t+ nkω)} converging on any compact set of R. Denote its limit by x∗(t). We have
that x∗(t) is also the limit of {x(t + nω)} in L1[0,ω], i.e.,

lim
n→∞

∫ ∞

0
‖x(t + nω)− x∗(t)‖dt = 0.
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Then, we have that ‖x(t + nω)− x∗(t)‖ → 0 uniformly on [0,ω]. Similarly, ‖x(t +
nω)− x∗(t)‖ → 0 uniformly on any compact set of R.

We next prove that x∗(t) is a nonnegative periodic solution with period ω. Since

x∗(t + ω) = lim
n→∞ x(t + (n+ 1)ω) = lim

n→∞ x(t + nω) = x∗(t),

we have that x∗(t) is periodic with period ω. Then, replacing x(t) with x(t + nkω) in
system (7.36) and letting k→∞ give

dx∗i (t)

dt
= −ai(x

∗
i (t))

⎡

⎣di(x
∗
i (t))−

n∑

j=1

cij(t)gj(x
∗
j (t))

−
n∑

j=1

∫ ∞

0
fj(x
∗
j (t − s))dsKij(t, s)+ Ii(t)

⎤

⎦ , i = 1, . . . , n.

Hence, x∗(t) is a solution of the system (7.36). Let t = t1 + nω, where 0 ≤ t1 < ω.
Then, ‖x(t)−x∗(t)‖ = ‖x(t1+nω)−x∗(t1)‖. The uniform convergence of {x(t+nω)}
on [0,ω] implies that

lim
t→∞‖x(t)− x∗(t)‖ = 0. (7.40)

Finally, we prove that any positive solution of the system (7.36) converges
to x∗(t). Suppose that y(t) is another positive solution of system (7.36) and let
ui(t) = yi(t) − xi(t), vi(t) =

∫ yi(t)
xi(t)

1/ai(ρ)dρ, i = 1, . . . , n. The same arguments
above yield limt→∞ ‖y(t)− x(t)‖ = 0. In conjunction with (7.40), we conclude that
limt→∞ ‖x(t)− x∗(t)‖ = 0, completing the proof. �

7.3.3 Delayed Almost Periodic Hopfield Neural Networks

In this section, we investigate the dynamical system (7.30) with almost periodic
coefficients. The main results come from [65]. At this stage, we give the following
set of hypotheses.

B2:

(1) The activation functions g, f satisfy g( · ) ∈ H2{G1, G2, . . . , Gn} and f ( · ) ∈
H1{F1, F2, . . . , Fn} for some positive constants;

(2) di(t), aij(t), τij(t), and Ii(t) are continuous, di(t) ≥ di > 0 and τij ≥ 0 for
i, j = 1, 2, . . . , n;

(3) For any s ∈ R, Kij(t, s): t �→ Kij(t, s) is continuous in the same sense as in B1,
and for any t ∈ R, dKij(t, s): s �→ dKij(t, s) is a Lebesgue–Stieltjes measure, for
all i, j = 1, 2, . . . , n;
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(4) For any ε > 0, there exists l = l(ε) > 0, such that every interval [α,α + l]
contains at least one number ω for which |di(t + ω) − di(t)| < ε, |aij(t + ω) −
aij(t)| < ε, |Ii(t + ω) − Ii(t)| < ε, |τij(t + ω) − τij(t)| < ε, and

∫∞
0 |dKij(t +

ω, s)− dKij(t, s)| < ε for all i, j = 1.2. . . . , n and t ∈ R.
(5) |dKij(t, s)| ≤ |dKij(s)|, and for some ε > 0,

∫∞
0 eεs|dKij(s)| <∞ .

It can be seen that under Item 4 in this assumption, di(t), aij(t), Ii(t), and τij(t) are
almost periodic functions. Therefore, they are all bounded. We also denote |a∗ij| =
sup{t∈R} |aij(t)|, |b∗ij| = sup{t∈R} |bij(t)|, |I∗i | = sup{t∈R} |Ii(t)|, τ ∗ij = sup{t∈R} τij(t),
i, j = 1, . . . , n, which are surely finite due their almost periodicity.

Before stating the main result, we need several lemmas for the proof of the main
theorem.

Lemma 7.27 Suppose that the hypotheses B2 are satisfied. If there exist ξi > 0,
i = 1, . . . , n, and η > 0 such that

− di(t)ξi +
n∑

j=1

|aij(t)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0
|dKij(t, s)| < −η < 0 (7.41)

for all t > 0 and i = 1, . . . , n, then any solution x(t) of the system (7.29) is bounded.

Proof Define M(t) = maxs≤t ‖x(s)‖{ξ ,∞}. It is obvious that ‖x(t)‖{ξ ,∞} ≤ M(t), and
M(t) is nondecreasing. We will prove that M(t) ≤ max{M(0), (2/η)Î}, where

Î = max
i

{
|I∗i | +

n∑

j=1

[
|a∗ij||gj(0)| + |b∗ij||fj(0)|

]}
.

Fix t0 such that ‖x(t0)‖{ξ ,∞} = M(t0) = maxs≤t0 ‖x(s)‖{ξ ,∞}. In this case, let it0 be
such an index that ξ−1

it0
|xit0

(t0)| = ‖x(t0)‖{ξ ,∞}. Then, noting that |gj(s)| ≤ Gj|s| +
|gj(0)| and |fj(s)| ≤ Fj|s| + |fj(0)| for j = 1, . . . , n and s ∈ R, we have

{
d

dt
|xit0

(t)|
}

t=t0

= sign(xit0
(t0))

[
− dit0

(t0)xit0
(t0)+

n∑

j=1

ait0 j(t0)gj(xj(t0))

+
n∑

j=1

∫ ∞

0
fj(xj(t0 − τit0 j(t0)− s))dKit0 j(t0, s)+ Iit0

(t0)

]

≤ −dit0
(t0)|xit0

(t0)|ξ−1
it0
ξit0
+

n∑

j=1

|ait0 j(t0)|Gj|xj(t0)|ξ−1
j ξj

+
n∑

j=1

Fjξj

∫ ∞

0
|xj(t0 − τit0 j(t0)− s)|ξ−1

j |dKit0 j(t0, s)| + |Iit0
(t0)|
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+
n∑

j=1

|ai0j(t)||gj(0)| + |bi0j(t)||fj(0)|

≤ −dit0
(t0)ξit0 +

n∑

j=1

[
|ait0 j(t0)|Gjξj + Fjξj

∫ ∞

0
|dKit0 j(t0, s)|‖x(t0)‖{ξ ,∞}

]
+ Î

≤ −η‖x(t0)‖{ξ ,∞} + Î = −ηM(t0)+ Î, (7.42)

which implies M(t) ≤ max{M(0), (2/η)Î} for all t > 0 according to Lemma 7.2.
This proves that x(t) is bounded. The lemma is proved. �

Lemma 7.28 Suppose that the hypotheses B2 are satisfied. If there exist ξi > 0,
i = 1, 2, . . . , n, β > 0, and η > 0 such that for all t > 0,

− di(t)ξi +
n∑

j=1i

|aij(t)|Gjξj +
n∑

j=1

Fjξje
βτ∗ij

∫ ∞

0
eβs|dKij(t, s)| < −η, (7.43)

then for any ε > 0, there exist T > 0 and l = l(ε) > 0, such that every interval
[α,α+ l ] contains at least one number ω for which the solution x(t) of system (7.30)
satisfies

‖x(t + ω)− x(t)‖{ξ ,∞} ≤ ε for all t > T . (7.44)

Proof Let

εi(ω, t) = −[di(t + ω)− di(t)]xi(t + ω)+
n∑

j=1

[aij(t + ω)− aij(t)]gj(xj(t + ω))

+
n∑

j=1

∫ ∞

0
[fj(xj(t − τij(t + ω)+ ω − s))− fj(xj(t − τij(t)+ ω − s))]dKij(t + ω, s)

+
n∑

j=1

∫ ∞

0
fj(xj(t − τij(t)+ ω − s))d[Kij(t + ω, s)− Kij(t, s)]+ [Ii(t + ω)− Ii(t)].

Lemma 7.27 tells that x(t) is bounded. Thus, the right side of (7.30) is also bounded,
which implies that x(t) is uniformly continuous. Therefore, by the fourth item in
assumption B2, for any ε > 0, there exists l = l(ε) > 0 such that every interval
[α,α + l], α ∈ R, contains an ω for which |εi(ω, t)| ≤ (1/2)ηε, for all t ∈ R and
i = 1, 2, . . . , n.
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Denote zi(t) = xi(t + ω)− xi(t). We have

dzi(t)

dt
= −di(t)zi(t)+

n∑

j=1

aij(t)[gj(xj(t + ω))− gj(xj(t))]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t + ω − τij(t)− s))− fj(xj(t − τij(t)− s))

]
dKij(t, s)

+εi(ω, t).

Let it be such an index that ξ−1
it
|zit (t)| = ‖z(t)‖{ξ ,∞}. Differentiating eβs|zit (s)| gives

d

ds

{
eβs|zit (s)|

}∣∣∣∣
s=t
= βeβt|zit (t)| + eβtsign(zit (t))

{
− dit (t)zit (t)

+
n∑

j=1

aitj(t)

[
gj(xj(t + ω))− gj(xj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t + ω − τit j(t)− s))− fj(xj(t − τit j(t)− s))

]
dKitj(t, s)

+εit (ω, t)

}

≤ eβt
{
− [dit (t)− β]|zit (t)|ξ−1

it
ξit +

n∑

j=1

|aitj(t)|Gj|zj(t)|ξ−1
j ξj

+
n∑

j=1

Fjξj

∫ ∞

0
|zj(t − τit j(t)− s)|ξ−1

j e−β(τit j(t)+s)eβ(s+τ∗ij )|dKitj(t, s)|
}

+1

2
ηεeβt.

Using arguments similar to those in the proof of Lemma 7.27, let

Ψ (t) = max
s≤t

{
eβs‖z(s)‖{ξ ,∞}

}
. (7.45)

For any t0 > 0 with Ψ (t0) = eβt0‖z(t0)‖{ξ ,∞}, we have d{eβt|zit (t)|}/dt|t=t0 ≤
−ηΨ (t0)+ 1

2ηεe
βt. From Lemma 7.2, this implies that there must exist T > 0 such

that ‖z(t)‖{ξ ,∞} ≤ ε for all t > T . �

Thus, we obtain the main theorem.

Theorem 7.29 Suppose that the hypotheses B2 are satisfied. If there exist ξi > 0,
i = 1, 2, . . . , n, β > 0, and η > 0 such that the inequality
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− [di(t)− β]ξi +
n∑

j=1

|aij(t)|Gjξj+
n∑

j=1

Fjξje
βτ∗ij

∫ ∞

0
eβs|dKij(t, s)| < −η,

i = 1, . . . , n (7.46)

holds for all t > 0, then the system (7.30) has a unique almost periodic solution
v(t) = (v1(t), . . . , vn(t))�, and for any solution x(t) = (x1(t), . . . , xn(t))� of (7.30),
one has

‖x(t)− v(t)‖ = O(e−βt). (7.47)

Proof εi,k(t) is defined as in the proof of Lemma 7.28. From the hypotheses B2 and
the boundedness of u(t), we can select a sequence {tk} → ∞ such that |εi,k(t)| ≤ 1/k
for all i,t. Since {x(t + tk)}∞k=1 are uniformly bounded and equicontinuous, by the
Arzela–Ascoli lemma and the diagonal selection principle, we can select a subse-
quence tkj of tk, such that x(t + tkj) (for convenience, we still denote by x(t + tk))
uniformly converges to a continuous function v(t) = [v1(t), v2(t), . . . , vn(t)]� on any
compact subset of R.

Now, we prove v(t) is a solution of system (7.30). In fact, by Lebesgue dominated
convergence theorem, for any t > 0 and δt ∈ R, we have

vi(t + δt)− vi(t) = lim
k→∞

[
ui(t + δt + tk)− ui(t + tk)

]

= lim
k→∞

∫ t+δt

t

{
− di(σ + tk)ui(σ + tk)+

n∑

j=1

aij(σ + tk)gj(uj(σ + tk))

+
n∑

j=1

∫ ∞

0
fj(uj(σ + tk − τij(σ + tk)− s))dKij(σ + tk, s)+ Ii(σ + tk)

}
dσ

=
∫ t+δt

t

{
− di(σ )vi(σ )+

n∑

j=1

aij(σ )gj(vj(σ ))

+
n∑

j=1

∫ ∞

0
fj(vj(σ − τij(σ )− s))dKij(σ , s)+ Ii(σ )

}
dσ + lim

k→∞

∫ t+δt

t
εi,k(s)dσ

=
∫ t+δt

t

{
− di(σ )vi(σ )+

n∑

j=1

aij(σ )gj(vj(σ ))

+
n∑

j=1

∫ ∞

0
fj(vj(σ − τij(σ )− s))dKij(σ , s)+ Ii(σ )

}
dσ ,

which implies
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dvi

dt
= −di(t)vi(t)+

n∑

j=1

aij(t)gj(uj(t))

+
∫ ∞

0
fj(uj(t − τij(t)− s))dKij(t, s)+ Ii(t),

i.e., v(t) is a solution of the system (7.30).
Second, we prove that v(t) is an almost periodic function. By Lemma 7.28, for

any ε > 0, there exist T > 0 and l = l(ε) > 0, such that every interval [α,α + l]
contains at least one number ω for which |xi(t+ω)− xi(t)| ≤ ε, for all t > T . Then
we can find a sufficient large K ∈ N such that for any k > K and all t > 0, we have
|xi(t+ tk + ω)− xi(t+ tk)| ≤ ε. Let k→∞, we have |vi(t+ ω)− vi(t)| ≤ ε, for all
t > 0. In other words, v(t) is an almost periodic function.

Finally, we prove that every solution x(t) of the system (7.30) converges to v(t)
exponentially with rate β.

Denote y(t) = x(t)− v(t). We have

dyi(t)

dt
= −di(t)yi(t)+

n∑

j=1

aij(t)
[
gj(xj(t))− gj(vj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(xj(t − τij(t)− s))− fj(vj(t − τij(t)− s))

]
dKij(t, s).

Let it be an index such that |yit (t)| = ξit‖y(t)‖{ξ ,∞}. Differentiating eβs|yit (s)|, we
have

d

ds

{
eβs|yit (s)|

}∣∣∣∣
s=t
= βeβt|yit (t)| + eβtsign(yit (t))

{
− dit (t)yit (t)

+
n∑

j=1

aitj(t)[gj(xj(t))− gj(vj(t))]

+
n∑

j=1

[fj(xj(t − τit j(t)− s))− fj(vj(t − τit j(t)− s))]dKitj(t, s)

}

≤ eβt
{
− [dit − β]|yit (t)|ξ−1

it
ξit +

n∑

j=1

|aitj(t)|Gj|yj(t)|ξ−1
j ξj

+
n∑

j=1

Fjξj

∫ ∞

0
|yj(t − τit j(t)− s)|ξ−1

j e−β(s+τit j(t))eβ(s+τ∗it j)|dKitj(t, s)|
}

(7.48)

Define Δ(t) = maxs≤t{eβs‖y(s)‖{ξ ,∞}}. Fix t0 such that Δ(t0) = eβt0‖y(t0)‖{ξ ,∞}.
Inequality (7.48) becomes d{eβt|yi0 (t)|}/dtt=t0 ≤ −ηΔ(t0) ≤ 0. By Lemma 7.2, this
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implies that Δ(t) ≤ Δ(0) for all t ≥ 0 and ‖y(t)‖{ξ ,∞} ≤ Δ(0)e−βt. In other words,
‖x(t)− v(t)‖{ξ ,∞} ≤ Δ(0)e−βt. The theorem is proved. �

Since periodic functions are a special case of almost periodic functions, the
results in this section can easily be used to obtain the criterion guaranteeing the
existence of a periodic trajectory and its global stability for the case when coef-
ficients are all periodic with a uniform period. Hence, the following theorem is a
direct consequence of Theorem 7.29.

Theorem 7.30 Suppose that the hypotheses B1 are satisfied. If there exist positive
constants ξ1, . . . , ξn and β > 0 such that

− ξi[di − β]+
n∑

j=1

|aij(t)|ξjGj+
n∑

j=1

ξiFje
βτ∗ij

∫ ∞

0
eβs|dK̄ij(s)| < 0,

i = 1, . . . , n, (7.49)

then the system (7.29) has a unique periodic solution v(t) = (v1(t), . . . , vn(t))�, and
for any solution x(t) = (x1(t), . . . , xn(t))� of (7.29), one has |x(t)− v(t)| = O(e−βt)
as t→∞.

Moreover, consider the following system with constant coefficients:

dui

dt
= −diui(t)+

n∑

j=1

aijgj(uj(t))+
n∑

j=1

∫ ∞

0
fj(uj(t − τij − s))dsKij(s)

+Ii, i = 1, . . . , n, (7.50)

where dsKij(s) denotes the Lebesgue–Stieltjes measures, i, j = 1, . . . , n. Since a
constant can be regarded as a function with arbitrary period, we have the following
result.

Theorem 7.31 Suppose g( · ) ∈ H1{G1, . . . , Gn} and f ( · ) ∈ H1{F1, . . . , Fn}. If there
are positive constants ξ1, . . . , ξn and β > 0 such that

− ξi[di − β]+
n∑

j=1

|aij|ξjGj +
n∑

j=1

ξjFje
βτij

∫ ∞

0
eβs|dKij(s)|Fj < 0, i = 1, . . . , n,

(7.51)
then the system (7.50) is globally exponentially stable.

7.4 Delayed Neural Network with Discontinuous Activations

So far, all discussions and results have been based on the assumption that the activa-
tion functions are Lipschitz continuous. As pointed in [40], a brief review on some
common neural network models reveals that neural networks with discontinuous
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activation functions are of importance and arise frequently in practice. For example,
consider the classical Hopfield neural networks with graded response neurons (see
[54]). The standard assumption is that the activations are used in the high-gain limit
where they closely approach discontinuous and comparator functions. As shown in
[54, 57], the high-gain hypothesis is crucial to make negligible the connection to the
neural network energy function of the term depending on neuron self-inhibitions,
and to favor binary output formation, as in a hard comparator function like sign(s).

A conceptually analogous model based on hard comparators are discrete-time
neural networks discussed in [50]. Another important example concerns the class
of neural networks introduced in [59] to solve linear and nonlinear programming
problems. Those networks exploit constraint neurons with diode-like input–output
activations. Again, in order to guarantee satisfaction of the constraints, the diodes
are required to possess a very high slope in the conducting region, i.e., they should
approximate the discontinuous characteristic of an ideal diode (see [31]). When
dealing with dynamical systems possessing high-slope nonlinear elements, it is
often advantageous to model them with a system of differential equations with dis-
continuous right-hand side, rather than studying the case where the slope is high but
of finite value (see [85]).

In this section, we consider the following delayed dynamical system:

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)gj(xj(t))

+
n∑

j=1

∫ ∞

0
gj(xj(t − s))dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.52)

with discontinuous activations gj for both delayed and undelayed terms. A special
form with a uniform discrete delay is

dx(t)

dt
= −Dx(t)+ Ag(x(t))+ Bg(x(t − τ ))+ I, (7.53)

when rewritten in matrix form. We introduce the concept of a solution in the Filippov
sense for the system (7.52) and prove its existence by the idea introduced in [48].
We construct a sequence of delayed systems in which the activations have high
slope and converge to the discontinuous activations. First, we prove that under diag-
onal dominance conditions, the sequence of solutions has at least a subsequence
converging to a solution of the system (7.52) with discontinuous activations by a
well-known diagonal selection argument. Second, we consider the system (7.53).
Without assuming the boundedness and the continuity of the neuron activations, we
present sufficient conditions for the global stability of neural networks with time
delay based on linear matrix inequalities and discuss their convergence. Third, we
discuss the system (7.52) with almost periodic coefficients. We use the Lyapunov
functional method to obtain an asymptotically almost periodic solution which leads
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to the existence of an almost periodic solution [84]. We also use the Lyapunov
functional to obtain the global exponential stability of this almost periodic solution.
Furthermore, from the proof of the existence and uniqueness of the solution, we
can conclude that each solution sequence of the system with high-slope activations
which converge to the discontinuous activations will actually converge to the unique
solution of the system (7.52) with discontinuous activations in the Filippov sense.
The main results come from [64, 66].

7.4.1 Preliminaries

In this section, we introduce the definitions and lemmas on nonsmooth and varia-
tional analysis, report some definitions and existing results on differential
inclusions, and based on those results, give the mathematical description for the
generalized neural network model to be studied.

7.4.1.1 Nonsmooth Analysis of Single-Valued Functions

Here, we introduce some necessary definitions and lemma on nonsmooth and vari-
ational analysis. We refer interested readers to [34, 80] for more details on these
topics.

A single-valued function f : R
n → R is said to be strictly continuous at x̄ ∈ R

n if
the value lipf (x̄) := lim supx,x′→x̄, x �=x′ |f (x)− f (x′)|/‖x− x′‖ is finite. If f is strictly
continuous at each x̄ ∈ R

n, then f is said to be strictly continuous in R
n. A strictly

continuous function f :Rn → R is said to be (Clarke) regular at x ∈ R
n if there exists

the usual one-sided directional derivative f ′(x, v) = limρ↘0 [f (x + ρv) − f (x)]/ρ
for all v ∈ R

n and it equals to the generalized directional derivative f o(x, v) =
lim supy→x,t↘0 [f (y + tv) − f (y)]/t. f is said to be regular in R

n if f is regular on
each x ∈ R

n. For a strictly continuous function f :Rn → R, the Clarke’s generalized
gradient of f at x ∈ R

n, which can be used to handle gradient flow on nonsmooth
functions, can be written as

∂f = {p ∈ R
n: f o(x, v) ≥ 〈p, v〉, ∀ v ∈ R

n}.

A point x0 ∈ R
n is said to be a critical point of f if 0 ∈ ∂f (x0), and crit(f ) denotes

the set of critical points of f .
The following chain rule for nonsmooth functions is very important for later

arguments.

Lemma 7.32 (Chain Rule, Theorem 2.3.9 in [34]) If x(t):R+ → R
n is locally abso-

lutely continuous and a single-valued function f :Rn → R is strictly continuous and
regular in R

n, then the derivative d
dt f (x(t)) exists for almost all t ≥ 0 and

d

dt
f (x(t)) = 〈p, ẋ(t)〉, for all p ∈ ∂f (x(t)),

for almost all t ≥ 0.
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7.4.1.2 Set-Valued Map

We introduce some definitions and lemmas for set-valued and variational analysis.
We refer the interested readers to [5, 80] for more details.

Suppose E ⊂ R
n. Then x �→ F(x) is called a set-valued map from E ↪→ R

n, if to
each point x of a set E ⊂ R

n, there corresponds a non-empty set F(x) ⊂ R
n. A set-

valued map F with non-empty values is said to be upper semicontinuous (u.s.c. for
short) at x0 ∈ E, if for any open set N containing F(x0), there exists a neighborhood
M of x0 such that F(M) ⊂ N. F(x) is said to have closed (convex, compact) image,
if for each x ∈ E, F(x) is closed (convex, compact).

7.4.1.3 Description of the Solution of the Model

Consider the following system:

dx

dt
= f (x), (7.54)

where f ( · ) is not continuous. Reference [39] proposed the following definition of
the solution for the system (7.54).

Definition 7.33 Let φ be a set-valued map given by

φ(x) =
⋂

δ>0

⋂

μ(N)=0

co

[
f (O(x, δ)− N)

]
, (7.55)

where co(E) is the closure of the convex hull of some set E, O(x, δ) = {y ∈ R
n:‖y−

x‖ ≤ δ}, and μ(N) is the Lebesgue measure of the set N. A solution of the Cauchy
problem for (7.54) with initial condition x(0) = x0 is an absolutely continuous
function x(t), t ∈ [0, T), which satisfies x(0) = x0, and the differential inclusion

dx

dt
∈ φ(x), a.e. t ∈ [0, T). (7.56)

Furthermore, [4, 6, 48] have proposed the following functional differential inclu-
sion with memory:

dx

dt
(t) ∈ F(t, A(t)x), (7.57)

where F :R× C([− τ , 0], Rn) �→ R
n is a given set-valued map, and

[A(t)x](θ ) = xt(θ ) = x(t + θ ). (7.58)

Inspired by these works, we denote co[gi(s)] = [g−i (s), g+i (s)] and co[g(x)] =
co[g1(x1)]× co[g2(x2)]× · · · × co[gn(xn)], where × denotes the Cartesian product.
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The set-valued map co[g(x)] is always u.s.c., convex, and compact. Thus, we can
define solution of the system (7.52) in the Filippov sense as follows.

Definition 7.34 For a continuous function φ(θ ) = (φ1(θ ), . . . ,φn(θ ))� and a
measurable function λ(θ ) = (λ1(θ ), . . . , λn(θ ))� ∈ co[g(φ(θ ))] for almost all
θ ∈ (−∞, 0], an absolute continuous function x(t) = x(t,φ, λ) = (x1(t), . . . , xn(t))�
associated with a measurable function γ (t) = (γ1(t), . . . , γn(t))� is said to be a
solution of the Cauchy problem for the system (7.52) on [0, T) (T might be∞) with
initial value (φ(θ ), λ(θ )), θ ∈ (−∞, 0], if

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)γj(t)

+ ∫∞
0 γj(t − s)dsKij(t, s)+ Ii(t) a.e. t ∈ [0, T),

γi(t) ∈ co[gi(xi(t))] a.e. t ∈ [0, T),
xi(θ ) = φi(θ ) θ ∈ (−∞, 0],
γi(θ ) = λi(θ ) a.e. θ ∈ (−∞, 0],

(7.59)

for all i = 1, . . . , n.

The solution of the system (7.53) can be defined in the same way.

7.4.1.4 Set-up of Discontinuous Activations

We summarize the set-up of the model with the following assumptions.
C1: Every gi( · ) is nondecreasing and local Lipschizian, except on a set of iso-

lated points {ρi
k}. More precisely, for each i = 1, . . . , n, gi( · ) is nondecreasing and

continuous except on a set of isolated points {ρi
k}, where the right and left limits

g+i (ρi
k) and g−i (ρi

k) satisfy g+i (ρi
k) > g−i (ρi

k). In each compact set of R, gi( · ) has
only finite number of discontinuities. Moreover, ordering the set of discontinuities
as {ρi

k: ρi
k+1 > ρ

i
k, k ∈ Z}, there exist positive constants Gi,k > 0, i = 1, . . . , n,

k ∈ Z, such that |gi(ξ )− gi(ζ )| ≤ Gi,k|ξ − ζ | for all ξ , ζ ∈ (ρi
k, ρi

k+1).
C2: The initial condition φ(θ ) ∈ C(( −∞, 0], Rn) is bounded, and λ(θ ) is mea-

surable and essentially bounded.

7.4.1.5 Viability

Here, we give the conditions guaranteeing the existence of Filippov solution in the
sense (7.59) for the system (7.52). Similar to the idea proposed in [48], the solution
of the system (7.52) in the sense (7.59) can be regarded as an approximation of the
solutions of delayed neural networks with high-slope activations. This is the main
idea of proving the existence and almost periodicity of the solution. More precisely,
define a family of functions Ξ containing f (x) = [f1(x1), f2(x2), . . . , fn(xn)]� ∈
C(Rn, Rn) and satisfying the following properties: (1) every fi( · ) is monotonically
nondecreasing, for i = 1, 2, . . . , n; (2) every fi( · ) is uniformly locally bounded,
i.e., for any compact set Z ⊂ R

n, there exists a constant M > 0 independent of
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f such that |fi(x)| ≤ M for all x ∈ Z and i = 1, . . . , n; (3) every fi( · ) is locally
Lipschitz continuous, i.e., for any compact set Z ⊂ R

n, there exists λ > 0 such that
|fi(ξ )− fi(ζ )| ≤ λ|ξ − ζ | for all ξ , ζ ∈ Z, and i = 1, 2, . . . , n. For any f ∈ Ξ , by the
theory given in [49], the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

duf
i

dt (t) = −di(t)u
f
i (t)+

n∑

j=1
aij(t)σ

f
j (t)+

n∑

j=1

∫∞
0 σ

f
j (t − s)dsKij(t, s)+ Ii(t)

uf
i (θ ) = φi(θ ), θ ∈ (−∞, 0]

σ
f
i (θ ) =

{
λi(θ ), θ ≤ 0

fi(u
f
i (θ )), θ ≥ 0

i = 1, . . . , n

(7.60)
admits a unique solution uf (t) = (u1(t), u2(t), . . . , un(t))� on [0, T), where T might
be∞.

First, we prove that the solutions uf (t) are uniformly bounded with respect to
f ∈ Ξ .

Lemma 7.35 Suppose that the assumptions C1,2 and B2 hold. If there exist constants
ξi > 0, i = 1, . . . , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t)+
n∑

j=1,j �=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| < 0 (7.61)

for all t ≥ 0 and i = 1, . . . , n, then the solutions uf (t) are uniformly bounded with
respect to f ∈ Ξ . That is, there exists M = M(φ, λ) > 0, which is independent
of f ∈ Ξ , such that ‖uf (t)‖{ξ ,1} ≤ M for all f ∈ Ξ and t ≥ 0. Consequently, the
existence interval of uf (t) can be extended to [0,∞).

Proof Let

Vf (t) =
n∑

i=1

ξi

∣∣∣uf
i (t)

∣∣∣ eδt +
n∑

i,j=1

ξi

∫ ∞

0

∫ t

t−s

∣∣∣σ f
j (θ )

∣∣∣ eδ(s+θ)dθ |dK̄ij(s)|.

Differentiating yields

d

dt
Vf (t) =

n∑

i=1

δeδtξi
∣∣∣uf

i (t)
∣∣∣+

n∑

i=1

ξie
δtsign

(
uf

i (t)
){
− di(t)u

f
i (t)

+aii(t)fi
(

uf
i (t)

)
+

n∑

j=1,j �=1

aij(t)fj
(

uf
j (t)

)
+

n∑

j=1

∫ ∞

0
σ

f
j (t − s)dsKij(t, s)

}

+
n∑

i=1

ξie
δtsign

(
uf

i (t)
)

Ii(t)+
n∑

i,j=1

ξi

∣∣∣fj
(

uf
j (t)

)∣∣∣ eδt
∫ ∞

0
eδs|dK̄ij(s)|
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−
n∑

i,j=1

ξje
δt

∫ ∞

0

∣∣∣σ f
j (t − s)

∣∣∣ |K̄ij(s)|

≤
n∑

i=1

ξi

∣∣∣uf
i (t)

∣∣∣ eδt(− di(t)+ δ)+
n∑

i=1

eδt
∣∣∣fi

(
uf

i (t)
)∣∣∣

{
aii(t)ξi

+
n∑

j=1,j �=i

|aji(t)|ξj +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)|

}
+ eδt Î ≤ eδt Î,

where Î = sup
t≥0
‖I(t)‖{ξ ,1} < +∞. It follows that

‖uf (t)‖{ξ ,1} ≤ e−δtVf (t) = e−δt
[∫ t

0
V̇f (s)ds+ Vf (0)

]

≤ e−δt
∫ t

0
eδsÎds+ e−δtVf (0)

≤ Î

δ
(1− e−δt)+ e−δtVf (0) <

Î

δ
+ Vf (0).

Noting that Vf (0) is independent of f ∈ Ξ , we obtain the uniform boundedness of
the solutions uf (t) by letting M = Î/δ + Vf (0). Moreover, f ( · ) is locally Lipschitz
continuous, and we conclude that the existence interval of the solution u f (t) can be
extended to the infinite interval [0,+∞) according to the results given in [49]. This
lemma is proved. �

Now, for any sequence {gm(x) = (gm
1 (x1), . . . , gm

n (xn))�}m∈N ∈ Ξ satisfying

lim
m→∞ dH(Graph(gm(K)), co[g(K)]) = 0, for all K ⊂ R

n, (7.62)

where dH(·, ·) denotes the Hausdorff metric on R
n; we construct a sequence of

delayed systems with high-slope continuous activations as follows:

dum
i (t)

dt
= −di(t)u

m
i (t)+

n∑

j=1

aij(t)σ
m
j (t)

+
n∑

j=1

∫ ∞

0
σm

j (t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.63)

where um
i (θ ) = φi(θ ), θ ∈ (−∞, 0], and

σm
j (θ ) =

{
λj(θ ), θ ≤ 0

gm
j (uj(θ )), θ > 0

.
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For instance, let {ρk,i} be the set of discontinuous points of gi( · ). Pick a strictly
decreasing sequence {δk,i,m} with limm→∞ δk,i,m = 0 and define Ik,i,m = [ρk,i −
δk.i.m, ρk,i + δk,i,m] such that Ik1,i,m

⋂
Ik2,i,m = ∅ for every k1 �= k2. Then, define

functions gm
i ( · ) as follows:

gm
i (s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gi(s) s /∈ ⋃

k∈Z
Ik,i,m,

gi(ρk,i + δk,i,m)− gi(ρk,i − δk,i,m)

2δk,i,m
[s− ρk,i − δk,i,m]

+gi(ρk,i + δk,i,m) s ∈ Ik,i,m.

It can be seen that the sequence {gm( · )}m∈N ⊂ Ξ satisfies condition (7.62).
We point out that the solution sequence of the system sequence (7.63) converges

to a solution of the system (7.52) in the sense (7.59).

Lemma 7.36 Suppose the assumptions C1,2 and B2 are satisfied. If the condition
(7.61) holds, then for each initial value pair (φ, λ), the system (7.52) has a solution
in the sense of (7.59) on the whole time interval [0,∞).

Proof Lemma 7.35 states that all solutions {um(t)}m∈N are uniformly bounded,
which implies that {u̇m(t)}m∈N is uniformly essentially bounded. By the Arzela–
Ascoli lemma and the diagonal selection principle, we can select a subsequence of
{um(t)}m∈N (still denoted by um(t)) such that um(t) converges uniformly to a con-
tinuous function u(t) on any compact interval of R. Since {u̇m(t)}m∈N is uniformly
essentially bounded, u(t) is Lipschitz continuous on [0, T] for any T > 0. This
implies that u̇(t) exists for almost all t ∈ [0, T] and is bounded almost everywhere
in [0, T].

We claim that {u̇m(t)}m∈N weakly converges to u̇(t) on the space L∞([0, T], Rn).
In fact, since C∞0 ([0, T], Rn is dense in the Banach space L1([0, T], Rn) and is the

conjugate space L∞([0, T], Rn), for each p(t) ∈ C∞0 ([0, T], Rn), we have

∫ �

0
〈u̇m(t)− u̇(t), p(t)〉dt = −

∫ �

0
〈ṗ(t), um(t)− u(t)〉dt.

By the uniform essential boundedness of {u̇m(t)}m∈N and the Lebesgue dominated
convergence theorem, we conclude that {u̇m(t)}m∈N weakly converges to u̇(t) on the
space L∞([0, T], Rn).

By Mazur’s convexity theorem (see p. 120–123 in [83]), for any m, we can
find a finite number of constants αm

l ≥ 0 satisfying
∑∞

l=m α
m
l = 1, such that

limm→∞ ym(t) = u(t), uniformly on [0, T], limm→∞ ẏm(t) = u̇(t), a.e. t ∈ [0, T],
where ym(t) =∑∞

l=m α
m
l ul(t). Let ηm

j (t) =∑∞
l=m α

m
l σ

l
j (uj(t)). Then,

ẏm
i (t) = −di(t)y

m
i (t)+

n∑

j=1

aij(t)η
m
j (t)+

n∑

j=1

∫ ∞

0
ηm

j (t − s)dsKij(t, s)+ Ii(t)

for i = 1, . . . , n.
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Let ϕm(t) = ∫ t
0 η

m(s) ds, which is absolutely continuous and has uniformly
essentially bounded derivative. By the same arguments, we can find γm(t) =∑∞

l=m β
m
l η

l(t) such that limm→∞ γm(t) = γ (t) for almost every t ∈ ( − ∞, T]
and γ (t) is measurable.

Now, denoting zm(t) =
∞∑

l=m
βm

l ym(t), we have

żm
i (t) = −di(t)z

m
i (t)+

n∑

j=1

aij(t)γ
m
j (t)

+
n∑

j=1

∫ ∞

0
γm

j (t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n. (7.64)

Letting m→∞, by the Lebesgue dominated convergence theorem, we obtain

u̇i(t) = −di(t)ui(t)+
n∑

j=1

aij(t)γj(t)

+
n∑

j=1

∫ ∞

0
γj(t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n,

for a.e. t ∈ [0, T]. It remains to prove γ (t) ∈ co[g(u(t))] on t ∈ [0, T]. Since um(t)
converges to u(t) uniformly with respect to t ∈ [0, T] and co[g( · )] is an upper-semi-
continuous set-valued map, for any ε > 0, there exists N > 0 such that gm(um(t)) ∈
O(co[g(u(t))], ε) for all m > N and t ∈ [0, T]. Noting that co[g(u(t))] is convex
and compact, we conclude that γm(t) ∈ O(co[g(u(t))], ε), which implies γ (t) ∈
O(co[g(u(t))], ε) for any t ∈ [0, T]. Because of the arbitrariness of ε, we conclude
that γ (t) ∈ co[g(u(t))], t ∈ [0, T]. Since T is also arbitrary, the solution can be
extended to [0,∞). This completes the proof. �

Similar arguments yield existence of solutions for the system (7.53). The Fil-
ippov solution of the system (7.53) with discontinuous activation functions can be
described as

dx

dt
(t) = −Dx(t)+ Aα(t)+ Bα(t − τ )+ I, for almost all t, (7.65)

where the output α(t) is measurable and satisfies α(t) ∈ co[g(x(t))] for almost all t.

Lemma 7.37 Suppose the assumptions C1,2 satisfied. If there exist P = diag{P1,
P2, . . . , Pn} with Pi > 0, and a positive definite symmetric matrix Q such that

Z =
[−PA− A�P− Q −PB

−B�P Q

]
> 0, (7.66)
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then the system (7.53) has a solution x(t) = (x1(t) . . . , xn(t))� for t ∈ [0,∞).

The details of the proof can be found in [64].

7.4.2 Stability of Equilibrium

In this section, we study the global stability of the system (7.53) in the sense (7.65).
The main results come from [64]. Here, the equilibrium of such system is defined
as follows:

Definition 7.38 (Equilibrium) x∗ is said to be an equilibrium of the system (7.53) if
there exists α∗ ∈ co[g(x∗)] such that

0 = −Dx∗ + Aα∗ + Bα∗ + I.

Definition 7.39 An equilibrium x∗ of the system (7.53) is said to be globally asymp-
totically stable if for any solution x(t) of (7.65), whose existence interval is [0,+∞),
we have

lim
t→∞ x(t) = x∗.

Moreover, x(t) is said to be globally exponentially asymptotically stable, if there
exist constants ε > 0 and M > 0, such that

‖x(t)− x∗‖ ≤ Me−εt.

We first investigate the existence of an equilibrium point. For this purpose, con-
sider the differential inclusion

dy

dt
∈ −Dy(t)+ Tco[g(y(t))]+ I, (7.67)

where y(t) = (y1(t), y2(t), . . . , yn(t))�, D, co[g( · )], and I are the same as those in
the system (7.53). We have the following result.

Lemma 7.40 (Theorem 2 in [64]) Suppose that g( · ) satisfies the assumption C1. If
there exists a positive definite diagonal matrix P such that −PT − T�P is positive
definite, then there exists an equilibrium point of system (7.67), i.e., there exist y∗ ∈
R

n and α∗ ∈ co[g(y∗)], such that

0 = −Dy∗ + Tα∗ + I.

See Appendix B for the proof.
By Lemma 7.40, we can prove the following theorem.
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Theorem 7.41 If there exist a positive definite diagonal matrix P = diag{P1,
P2, . . . , Pn} and a positive definite symmetric matrix Q such that

[−PA− A�P− Q −PB
−B�P Q

]
> 0, (7.68)

then there exists an equilibrium point of system (7.65).

Proof By the Schur Complement Theorem (Lemma 7.5), inequality (7.68) is equiv-

alent to−(PA+A�P) > PBQ−1B�P+Q. By the inequality [Q− 1
2 B�P−Q

1
2 ]�[Q− 1

2

B�P−Q
1
2 ] ≥ 0, one has PBQ−1B�P+Q ≥ PB+B�P. Then, the inequality (7.68)

becomes −P(A+ B)− (A+ B)�P > 0. By Lemma 7.40, there exist an equilibrium
point x∗ ∈ R

n and α∗ ∈ co[g(x∗)] such that

0 = −Dx∗ + (A+ B)α∗ + I, (7.69)

which implies that α∗ is an equilibrium point of system (7.65). �

Suppose that x∗ = (x∗1, x∗2, . . . , x∗n)� is an equilibrium point of the system (7.65),
i.e., there exists α∗ = (α∗1 ,α∗2 , . . . ,α∗n )� ∈ co[g(x)] such that (7.69) is satisfied. Let
u(t) = x(t)− x∗ be a translation of x(t) and γ (t) = α(t)−α∗ be a translation of α(t).
Then u(t) = (u1(t), u2(t), . . . , un(t))� satisfies

du(t)

dt
= −Du(t)+ Aγ (t)+ Bγ (t − τ ), a.e. t ∈ R,

where γ (t) ∈ co[g∗(u(t))], g∗i (s) = gi(s + x∗i ) − γ ∗i , i = 1, 2, . . . , n. To simplify,
we still use gi(s) to denote g∗i (s). Therefore, in the following, instead of the system
(7.65), we will investigate

du(t)

dt
= −Du(t)+ Aγ (t)+ Bγ (t − τ ), a.e. t ∈ R, (7.70)

where γ (t) ∈ co[g(u(t))], g( · ) ∈ Ḡ, and 0 ∈ co[gi(0)], for all i = 1, 2, . . . , n. It
can be seen that the dynamical behavior of (7.65) is equivalent to that of (7.70).
Namely, if there exists a solution u(t) for (7.70), then x(t) = u(t) + x∗ must be a
solution for (7.65); moreover, if all trajectories of (7.70) converge to the origin, then
the equilibrium x∗ must be globally stable for system (7.65) as defined in Definition
7.39.

Theorem 7.42 (Global Exponential Asymptotic Stability) If the matrix inequality
(7.68) and the assumptions C1,2 hold, then the system (7.53) is globally exponentially
stable.
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Proof From the condition (7.68), we can find a sufficiently small ε > 0 such that
the matrix

Z1 =
⎡

⎣
−2D+ εI εA εB
εA� PA+ A�P+ Qeετ PB
εB� B�P −Q

⎤

⎦

is negative definite. Let

V3(t) = eεtu�(t)u(t)+ 2
n∑

i=1

eεtPi

∫ ui(t)

0
gi(ρ) dρ +

∫ t

t−τ
γ (s)�Qγ (s)eε(s+τ ) ds,

with γ (t) = α(t) − α∗. Notice that for pi(s) = ∫ s
0 gi(ρ) dρ, we have ∂cpi(s) = {v ∈

R:g−i (s) ≤ v ≤ g+i (s)}. Differentiating V3(t) by the chain rule (Lemma 7.32) gives

dV3(t)

dt
= εeεtu(t)�u(t)+ 2eεtu�

[
− Du+ Aγ (t)+ Bγ (t − τ )

]

+2eεtγ (t)P

[
− Du(t)+ Aγ (t)+ Bγ (t − τ )

]

+εeεt
n∑

i=1

Pi

∫ ui

0
gi(ρ) dρ − eεtγ�(t − τ )Qγ (t − τ )

+eε(t+τ )γ�(t)Qγ (t). (7.71)

Since ε < mini di, we have ε
∫ ui

0 gi(ρ) dρ ≤ εui(t)γi(t) ≤ diui(t)γi(t) and

dV3(t)

dt
≤ eεt[u�(t), γ�(t), γ�(t − τ )]Z1

⎡

⎣
u(t)
γ (t)

γ (t − τ )

⎤

⎦ ≤ 0.

Then, u(t)�u(t) ≤ V3(0)e−εt and ‖u(t)‖2 ≤ √V3(0)e− ε2 t. That is, ‖x(t) − x∗‖2 ≤√
V3(0)e− ε2 t. This proves the theorem. �

In case g( · ) is continuous, we have the following consequence.

Corollary 7.43 If the condition (7.68) holds and gi( · ) is locally Lipschitz continu-
ous, then there exist ε > 0 and x∗ ∈ R

n such that for any solution x(t) on [0,∞) of
the system (7.53), there exist M = M(φ) > 0 and ε > 0 such that

‖x(t)− x∗‖ ≤ Me−
ε
2 t for all t > 0.

If every x∗i is a continuous point of the activation functions gi( · ), i = 1, . . . , n,
for the outputs we have limt→∞ gi(xi(t)) = gi(x∗i ). Instead, if for some i, x∗i is a
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discontinuous point of the activation function gi( · ), we can prove that the outputs
converge in measure.

Theorem 7.44 (Convergence in measure of output) If the condition (7.68) holds and
g( · ) ∈ Ḡ, then the output α(t) of the system (7.65) converges to α∗ in measure, i.e.,
for all ε > 0 we have limt→∞ μ{t: |α(t)− α∗| ≥ ε} = 0

Proof The condition (7.68) implies that there exists ε > 0 such that the matrix

Z2 =
⎡

⎣
−2D εA εB
εA� PA+ A�P+ εI PB
εB� B�P −Q

⎤

⎦ (7.72)

is negative definite. Let

V5(t) = u�(t)u(t)+ 2
n∑

i=1

Pi

∫ ui

0
gi(ρ) dρ +

∫ t

t−τ
γ (s)�Qγ (s) ds,

with γ (t) = α(t) − α∗, and P, Q, and ε are those in the matrix inequality (7.72).
Differentiate V5(t):

dV5(t)

dt
= 2u�(t)

[
− Du(t)+ Aγ (t)+ Bγ (t − τ )

]
+ 2γ�(t)P

[
− Du(t)+ Aγ (t)

+Bγ (t − τ )

]
+ γ�(t)Qγ (t)− γ�(t − τ )Qγ (t − τ )+ εγ (t)�γ (t)

−εγ (t)�γ (t)

= [u�(t), γ�(t), γ�(t − τ )]Z2

⎡

⎣
u(t)
γ (t)

γ (t − τ )

⎤

⎦− εγ�(t)γ (t)

≤ −εγ�(t)γ (t) (7.73)

Then, V5(t) − V5(0) ≤ −ε ∫ t
0 γ
�(s)γ (s) ds. Since limt→∞ V5(t) = 0, we have∫∞

0 γ�(s)γ (s) ds ≤ −(1/ε)V5(0). For any ε1 > 0, let Eε1 = {t ∈ [0,∞):‖γ (t)‖ >
ε1}. Then,

V5(0)

ε
≥

∫ ∞

0
γ�(s)γ (s)ds ≥

∫

Eε1

γ�(s)γ (s) ≥ ε2
1μ(Eε)

Hence,μ(Eε1 ) <∞. From Proposition 2 in [40], one can see that γ (t), i.e., α(t)−α∗,
converges to zero in measure. �
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7.4.3 Convergence of Periodic and Almost Periodic Orbits

Consider the system (7.52)

dxi(t)

dt
= −di(t)xi(t)+

n∑

j=1

aij(t)gj(xj(t))

+
n∑

j=1

∫ ∞

0
gj(xj(t − s))dsKij(t, s)+ Ii(t), i = 1, . . . , n, (7.74)

with the almost periodic assumption B2. We study the almost periodicity of delayed
neural networks. The main result stated below comes from [68].

Theorem 7.45 Suppose the assumptions C1,2 and B2 are satisfied. Suppose further
that there exist constants ξi > 0, i = 1, . . . , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t)+
n∑

j=1,j �=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| < 0 (7.75)

for all t ≥ 0 and i = 1, . . . , n. Then, (1) for every initial value (φ, λ), the system
(7.74) has a unique solution in the sense of (7.59); (2) there exists a unique almost
periodic solution x∗(t) for the system (7.74), which is globally exponentially stable,
that is, for any other solution x(t) with initial condition (φ, λ), there exists a constant
M = M(φ, λ) > 0 such that

‖x(t)− x∗(t)‖{ξ ,1} ≤ Me−δt

for all t ≥ 0.

Besides the viability proved in Lemma 7.36, we prove this theorem step by step.
Step 1. We show that any solution of the system (7.74) in the sense (7.59) is asymp-
totically stable.

Lemma 7.46 Suppose that the assumptions of Theorem 7.45 are satisfied. For any
two solutions x(t) = x(t,φ, λ) and v(t) = v(t,ψ ,χ ) of the system (7.74) in the
sense of (7.59) associated with the outputs γ (t) and μ(t) and initial value pairs
(φ, λ) and (ψ ,χ ), respectively, there exists a constant M = M(φ,ψ , λ,χ ) satisfying
M(φ,φ, λ, λ) = 0 for all (φ, λ) such that

‖x(t)− v(t)‖{ξ ,1} ≤ Me−δt, t ≥ 0.

Moreover, the solution of the system (7.74) in the sense (7.59) is unique.

Proof Let x(t) = (x1(t), . . . , xn(t))� be a solution of
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d

dt
xi(t) = −di(t)xi(t)+

n∑

j=1

aij(t)γj(t)+
n∑

j=1

∫ ∞

0
γj(t − s)dsKij(t, s)+ Ii(t),

and v(t) = (v1(t), . . . , vn(t))� be a solution of

d

dt
vi(t) = −di(t)vi(t)+

n∑

j=1

aij(t)μj(t)+
n∑

j=1

∫ ∞

0
μj(t − s)dsKij(t, s)+ Ii(t).

Then,

d

dt

[
xi(t)− vi(t)

]
= −di(t)

[
xi(t)− vi(t)

]
+

n∑

j=1

aij(t)

[
γj(t)− μj(t)

]

+
n∑

j=1

∫ ∞

0

[
γj(t − s)− μj(t − s)

]
dsKij(t, s), i = 1, . . . , n.

Let

L1(t) =
n∑

i=1

ξi|xi(t)− vi(t)|eδt

+
n∑

i,j=1

ξj

∫ ∞

0

∫ t

t−s
|γj(θ )− μj(θ )|eδ(s+θ)dθ |dK̄ij(s)|

and M = M(φ,ψ , λ,χ ) = L1(0). By the chain rule (Lemma 7.32), differentiating
the above expression gives

d

dt
L1(t) =

n∑

i=1

δeδtξi|xi(t)− vi(t)| +
n∑

i=1

ξie
δtsign(xi(t)− vi(t))

{
− di(t)[xi(t)− vi(t)]+ aii(t)[γi(t)− μi(t)]

+
n∑

j=1,j �=i

aij(t)[γj(t)− μj(t)]

+
n∑

j=1

∫ ∞

0
[γj(t − s)− μj(t − s)]dsKij(t, s)

}
+

n∑

i,j=1

ξi|γj(t)− μj(t)|

eδt
∫ ∞

0
eδs|dK̄ij(s)| −

n∑

i,j=1

ξje
δt

∫ ∞

0
|γj(t − s)− μj(t − s)||K̄ij(s)|



7 Global Convergent Dynamics of Delayed Neural Networks 247

≤
n∑

i=1

ξi|xj(t)− vj(t)|eδt(− di(t)+ δ)+
n∑

i=1

eδt|γj(t)− μj(t)|
{

aii(t)ξi

+
n∑

j=1,j �=i

|aji(t)|ξj +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)|

}
≤ 0,

which implies ‖x(t) − v(t)‖{ξ ,1} ≤ L1(0)e−δt = M(φ,ψ , λ,χ )e−δt. It is clear that
M(φ,φ, λ, λ) = 0. Therefore, the solution in unique. �

In Lemma 7.36, we have proved that some subsequence of um(t) converges to the
solution u(t). In fact, we can prove that um(t) itself converges to the solution u(t).

Proposition 7.47 Suppose that the assumptions of the Main Theorem 7.45 are satis-
fied. For any function sequence {g̃m(x) = (g̃m

1 (x1), . . . , g̃m
n (xn))�:m = 1, 2, . . . } ⊂ Ξ

satisfying the condition (7.62) on any compact set in Rn, let ũm(t) = [ũm
1 (t), . . . ,

ũm
n (t)]� be the solution of the following system:

dũm
i

dt
= −di(t)ũ

m
i (t)+

n∑

j=1

aij(t)g̃j(ũ
m
j (t))

+
n∑

j=1

∫ ∞

0
σ̃m

j (t − s)dsKij(t, s)+ Ii(t),

ũm
i (θ ) = φi(θ ), θ ∈ [−∞, 0], σ̃m

i (θ ) =
{
λi(θ ), θ ≤ 0
g̃m

i (ũm
i (θ )), θ ≥ 0

, (7.76)

for i = 1, . . . , n, and u(t) = u(t,φ, λ) be the solution of the delayed system (7.74)
in the sense (7.59) with initial value (φ, λ). Then, ũm(t) uniformly converges to u(t)
on any finite time interval [0, T].

Proof First, we prove that um(t) converges to the solution of the delayed system
(7.74) in the sense (7.59) by reduction to absurdity. Assume that there exist T > 0,
ε0 ≥ 0, and a subsequence of integers {mk}k∈N such that

max
t∈[0,T]

‖umk (t)− u(t)‖ ≥ ε0. (7.77)

By the same arguments used in the proof of Lemma 7.36, we can select a subse-
quence {umkl }l≥0 of {umk}k≥0, which converges to a solution v(t) = v(t,φ, λ) of the
delayed system (7.74) in the sense (7.59) uniformly in any finite interval [0, T] with
the initial value (φ, λ). By Lemma 7.46, u(t) = v(t), which leads a contradiction
with inequality (7.77). This completes the proof. �

Remark 7.48 Proposition 7.47 indicates that the solution v(t) = v(t,φ, λ) of the
delayed system (7.74) in the sense (7.59) does not depend on the choice of the
sequence {gm(x)}m∈N ⊂ Ξ satisfying the condition (7.62).
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The following lemma points out that any solution is asymptotically almost
periodic [84].

Lemma 7.49 Suppose that the assumptions of Theorem 7.45 are satisfied. Let
u(t,φ, λ) be a solution of the system (7.74) in the sense of (7.59). For any ε > 0,
there exist T > 0 and l = l(ε) such that any interval [α,α + l] contains an ω such
that

‖x(t + ω)− x(t)‖ξ ≤ ε for all t ≥ T .

Proof We introduce the following auxiliary functions

εi(t,ω) = xi(t + ω)[di(t + ω)− di(t)]+
n∑

j=1

γj(t + ω)[aij(t + ω)− aij(t)]

+
∫ ∞

0

n∑

j=1

γj(t + ω − s)d[Kij(t + ω, s)− Kij(t, s)]

+Ii(t + ω)− Ii(t) (7.78)

for i = 1, . . . , n. From the assumption C2 and the boundedness of x(t) and γ (t), one
can see that for any ε > 0, there exists l = l(ε) > 0 such that every interval [α,α+l]
contains at least one number ω with

∑n
i=1 ξi|εi(t,ω)| < δε/2 for all t ≥ 0. Denote

z(t) = x(t + ω)− x(t). Then,

dzi(t)

dt
= −di(t)zi(t)+

n∑

j=1

aij(t)[γj(t + ω)− γj(t)]

+
n∑

j=1

∫ ∞

0
[γj(t + ω − s)− γj(t − s)]dsKij(t, s)+ εi(t,ω).

Let

L2(t) =
n∑

i=1

ξi|zi(t)|eδt +
n∑

i,j=1

ξi

∫ ∞

0

∫ t

t−s
|γj(θ + ω)− γj(θ )|eδ(θ+s)dθ |dK̄ij(s)|.

Pick a sufficiently large T such that e−δtL2(0) < ε/2 for all t ≥ T . Differentiating
L2(t) gives

dL2(t)

dt
=

n∑

i=1

ξiδe
δt|zi(t)| +

n∑

i=1

ξie
δtsign(zi(t))

{
− di(t)zi(t)

+aii(t)[γi(t + ω)− γi(t)]+
∑

j=1,j �=i

aij(t)[γj(t + ω)− γj(t)]
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+
n∑

j=1

∫ ∞

0
[γj(t + ω − s)− γj(t − s)]dsKij(t, s)+ εi(t,ω)

}

+
n∑

i,j=1

ξie
δt|γj(t + ω)− γj(t)|

∫ ∞

0
eδs|dK̄ij(s)|

−
n∑

i,j=1

ξie
δt

∫ ∞

0
|γj(t + ω − s)− γj(t − s)||dK̄ij(s)|

≤
n∑

i

ξie
δt|zi(t)|(− di(t)+ δ)+

n∑

i=1

|γj(t + ω)− γj(t)|eδt
{
ξiaii(t)

+
∑

j=1,j �=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)|

}
+

n∑

i=1

ξie
δt|εi(t,ω)|

≤ eδt
δ

2
ε, a.e. t ≥ T .

Therefore,

n∑

i=1

ξi|zi(t)| ≤ e−δL2(t) = e−δ
[

L2(0)+
∫ t

0
L̇2(s)ds

]

≤ e−δtL2(0)+ e−δt
∫ t

0
eδsds

δ

2
ε <

ε

2
+ ε

2
= ε

for all t ≥ T , which completes the proof. �

Step 2. Now, we are to prove that the system (7.74) has at least one almost periodic
solution in the sense of (7.59).

Lemma 7.50 Under the assumptions of Theorem 7.45, the system (7.74) has at least
one almost periodic solution in the sense of (7.59).

Proof Let x(t) = x(t,φ, λ) be a solution of system (7.59). Pick a sequence {tk}k∈N
satisfying limk→∞ tk = ∞ and supt≥0

∑n
i=1 ξi|εi(t, tk)| ≤ 1/k, where εi(t, tk), i =

1, . . . , n, are the auxiliary functions (7.78) defined in the proof of Lemma 7.49.
Let xk(t) = x(t+tk) and γ k(t) = γ (t+tk). It is clear that the sequence {x(t+tk)}k∈N

is uniformly continuous and bounded. By the Arzela–Ascoli lemma and the diagonal
selection principle, we can select a subsequence of x(t+tk) (still denoted by x(t+tk)),
which converges to some absolutely continuous function x∗(t) uniformly on any
compact interval [0, T].

In the following, we will prove that x∗(t) is an almost periodic solution of the
system (7.74) in the sense of (7.59). First, we prove that x∗(t) is a solution of the
system (7.74) in the sense of (7.59). With the notations above, we have
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dxi(t + tk)

dt
= −di(t)xi(t + tk)+

n∑

j=1

aij(t)γj(t + tk)

+
n∑

j=1

∫ ∞

0
γj(t + tk − s)dsKij(t, s)+ Ii(t)+ εi(t, tk), i = 1, . . . , n.

With the method used in the proof of Lemma 7.36, we can select a subsequence
from x(t + tk) (still denoted by x(t + tk)) and constants νk

l ≥ 0 with finite νk
l >

0 satisfying
∑∞

l=k ν
k
l = 1 such that (i) vk(t) = ∑∞

l=k ν
k
l x(t + tl) converges to a

Lipschitz continuous function x∗(t) uniformly on [0, T], and {v̇k(t)} converges to
v̇∗(t) for almost all t ∈ [0, T] and (ii) ζ k(t) = ∑∞

l=k ν
k
l γ (t + tl) converges to a

measurable function ζ (t) for almost all t ∈ [0, T].
Moreover, for each k, we have

dvk
i (t)

dt
= −di(t)v

k
i (t)+

n∑

j=1

aij(t)ζ
k
j (t)

+
n∑

j=1

∫ ∞

0
ζ k

j (t − s)dsKij(t, s)+ Ii(t)+ ε̄i(t, k), i = 1, . . . , n,

where ε̄i(t, k) =∑∞
l=k ν

k
l εi(t, tk). Letting k→∞, we obtain

dx∗i (t)

dt
= −di(t)x

∗
i (t)+

n∑

j=1

aij(t)ζj(t)

+
n∑

j=1

∫ ∞

0
ζj(t − s)dsKij(t, s)+ Ii(t), i = 1, . . . , n.

Repeating the proof of Lemma 7.36, we can prove ζ (t) ∈ co[g(x∗(t))], which
means that x∗(t) is a solution of the system (7.74) in the sense of (7.59).

Second, we prove that x∗(t) is almost periodic. By Lemma 7.49, for any ε > 0,
there exist K > 0 and l = l(ε) such that each interval [α,α + l] contains an ω such
that

‖x(t + tk + ω)− x(t + tk)‖{ξ ,1} < ε

for all k ≥ K and t ≥ 0. As k →∞, we conclude that ‖x∗(t + ω)− x∗(t)‖{ξ ,1} < ε
for all t ≥ 0. This implies that x∗(t) is an almost periodic function. The proof is
completed. �
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Now, we can prove the main Theorem 7.45.

Proof By Lemma 7.50, we know that there exists an almost periodic solution for the
system (7.74) in the sense of (7.59). By Lemma 7.46, we have ‖x(t)− x∗(t)‖{ξ ,1} =
O(e−δt).

Finally, we prove that the almost periodic solution of the system (7.74) is unique.
In fact, suppose that x∗(t) and v∗(t) are two almost periodic solutions of the system
(7.74). Applying Lemma 7.46 again, we have ‖v∗(t) − x∗(t)‖{ξ ,1} = O(e−δt). From
[61], one can conclude that v∗(t) = x∗(t). Therefore, the almost periodic solution of
the system (7.74) is unique. This completes the proof. �

Since any periodic function can be regarded as an almost periodic function, all
the results apply to periodic case. Now, replacing assumption B2 with B1, we have
the following result.

Corollary 7.51 Suppose that the discontinuous activations satisfy assumptions C1,2,
and that the hypotheses B1 hold. Suppose further that there exist positive constants
ξi, i = 1, . . . , n, and δ > 0 such that di(t) ≥ δ and

ξiaii(t)+
n∑

j=1,j �=i

ξj|aji(t)| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| < 0

for all t ≥ 0 and i = 1, . . . , n. Then, (1) for each initial data with assumption A3,
the system (7.74) has a unique solution in the sense of (7.59) and (2) there exists
a unique periodic solution x∗(t) for system (7.74), which is globally exponentially
stable.

Furthermore, a constant can be regarded as a periodic function with any period.
Therefore, for the delayed system

dxi(t)

dt
= −dixi(t)+

n∑

j=1

aijgj(xj(t))

+
n∑

j=1

∫ ∞

0
gj(xj(t − s))dsKij(s)+ Ii, i = 1, . . . , n (7.79)

we have the following result.

Corollary 7.52 Suppose that the discontinuous activations satisfy the assumptions
C1,2, and suppose that there exist positive constants ξi, i = 1, . . . , n, and δ > 0 such
that di ≥ δ and

ξiaii +
n∑

j=1,j �=i

ξj|aji| +
n∑

j=1

ξj

∫ ∞

0
eδs|dK̄ji(s)| ≤ 0

for all t ≥ 0 and i = 1, . . . , n. Then, (1) for each initial data satisfying the stated
assumptions, the system (7.79) has a unique solution in sense of (7.59) and (2) the
system (7.79) has a unique equilibrium x∗, which is globally exponentially stable.
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7.5 Review and Comparison of Literature

In the past decades, global stability analysis has been a focal topic in neural network
theory and dynamical systems, with a large literature devoted to it. In this section,
we give a brief review of selected papers and compare them with the results in this
chapter.

The stability of equilibrium of delayed neural networks has been studied in many
papers. For example, [9, 10, 14, 17, 18, 62, 74, 86] and many others. For more
general functional differential equations, see the early works [49, 73] and others.
The approach used in these papers consists of two steps: (1) prove the existence of
the equilibrium and (2) prove its stability. In theorems in Sect. 7.2.2, we unify two
types of delayed dynamical systems and investigate their dynamical behavior and
global convergence. We consider the derivative of the state variable and prove that
it converges to zero exponentially. This implies that the state trajectory converges to
a certain equilibrium exponentially according to the Cauchy convergence principle.

Moreover, in most papers dealing with time-varying delays, the assumption of
bounded delays is necessary, i.e., τij(t) ≤ τ for all i, j = 1, . . . , n and t ∈ R, or
τ̇ij(t) ≤ μ for some 0 ≤ μ < 1, which can guarantee exponential stability under
some additional conditions. However, in this chapter, we have studied stability in
the power rate, which is weaker than exponential rate, but under a milder condition
for the unbounded delays, namely, τij(t) ≤ μt for some 0 ≤ μ < 1.

As for the delayed Cohen–Grossberg neural network (7.19), there is also a large
literature concerned with global stability. However, all the results obtained in these
papers were based on the assumption that amplifier function ai( · ) is always positive
(see [28, 29]; or even greater than some positive number ai( · ) ≥ ai > 0 (see
[16, 71, 82]). In their original papers [35, 46, 47], the authors proposed this model
as a kind of competitive-cooperation dynamical system for decision rules, pattern
formation, and parallel memory storage. Hereby, each state of neuron xi might be
the population size, activity, or concentration, etc., of the i-th species in the sys-
tem, which is nonnegative for all time. Theorem 7.20 gives a sufficient condition
guaranteeing stability in the first orthant.

Periodicity and almost periodicity of delayed neural networks with time-varying
coefficients have attracted much research attention [15, 24, 45, 72, 87, 88]. It should
be pointed out that [87] studied the periodicity of delayed neural network via a
L p-norm-like Lyapunov functional and proved that among the sufficient conditions
according to parameter p ∈ [1,∞], the condition vith L1-norm-like Lyapunov func-
tional would be the best one, i.e., the mildest condition. Most of these papers con-
cerned with periodic delayed neural networks use the Mawhin coincidence degree
theory [44]. We use two different methods to prove existence, as mentioned in Sect.
7.3.3. In [24, 55], the authors presented some results on almost periodic trajectories
and their attractivity of shunting inhibitory cellular neural networks (CNNs) with
delays. In [24], authors proved existence and attractivity of almost periodic solutions
for CNNs with distributed delays and variable coefficients.

In the last few years, several papers have appeared studying neural networks
with discontinuous activations. Reference [40] discussed the absolute stability of
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Hopfield neural networks with bounded and discontinuous activations. Reference
[64] proved the global convergence for Cohen–Grossberg neural networks with
unbounded and discontinuous activations. Also, [42] studied the dynamics of
delayed neural networks and [78] discussed periodic solutions of periodic delayed
neural networks with discontinuous activations and periodic parameters. In all these
papers, the authors use the solution in the Filippov sense to handle differential equa-
tions with discontinuous right-hand side. The concept of the solution in the sense
of Filippov is useful in engineering applications. Since a Filippov solution is a limit
of the solutions of a sequence of ordinary differential equations with continuous
right-hand side, we can model a system which is near a discontinuous system and
expect that the Filippov trajectories of the discontinuous system will be close to the
real trajectories. This approach is of significance in many applications, for instance,
variable structure control, nonsmooth analysis [4, 77, 85]. In fact, the solution in
the Filippov sense satisfies the corresponding differential inclusion induced by the
convex extension of discontinuity.

The generalized viability of differential inclusions was investigated in the text-
books [4, 6]. Periodicity and almost periodicity for differential inclusions or Filip-
pov systems have been studied in the recent decades. Methodologically, the exis-
tence of a periodic solution of a differential inclusion or differential system with
discontinuous right-hand side (despite that some researchers did not study the
Filippov solution) can be proved by fixed point theory, i.e., the periodic bound-
ary condition can be regarded as a fixed point of a certain evolution operator
[12, 38, 56, 70, 72, 89]. Several authors constructed a sequence of differential sys-
tems with continuous right-hand sides having periodic solutions and proved that
the solution sequence converges to a periodic solution of the original differential
inclusion [43, 48]. As for stability, the first approximation was used to deal with
the local asymptotical stability for periodic differential inclusions [81], and Lya-
punov method was extended to handle the global stability [7, 8]. Furthermore, sim-
ilar methods were utilized to study the almost periodic solution of almost periodic
differential inclusions, especially with delays. See [3] and [58] for references.

Appendix

Proof of Theorem 7.18

Proof Let

fi(x) = di(xi)−
n∑

j=1

(aij + bij)gj(xj), i = 1, . . . , n,

f (x) = (f1(x), . . . , fn(x))�,

F(x) = f (x+)+ x−,

where x+ and x− are defined in Definition 7.6.
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According to Lemma 7.7, we only need to prove that F(x) is norm-coercive and
locally univalent (one-to-one). First, we prove F(x) is locally univalent. Let x =
(x1, . . . , xn) ∈ R

n. Without loss of generality, by some rearrangement of the xi, we
can assume xi > 0 if i = 1, . . . , p, xi < 0 if i = p + 1, . . . , m, and xi = 0 if
i = m+ 1, . . . , n, for some integers p ≤ m ≤ n. Moreover, if y ∈ R

n is sufficiently
close to x ∈ R

n, without loss of generality, we can assume

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

yi > 0, i = 1, . . . , p
yi < 0, i = p+ 1, . . . , m
yi > 0, i = m+ 1, . . . , m1
yi < 0, i = m1, . . . , m2
yi = 0, i = m2 + 1, . . . , n,

for some integers m ≤ m1 ≤ m2 ≤ n. It can be seen that

(x+i − y+i )(x−i − y−i ) = 0, i = 1, . . . , n, (7.80)

and

F(x)− F(y) = d(x+)− d(y+)− (A+ B)[g(x+)− g(y+)]+ (x− − y−)

= [D̄− (A+ B)K](x+ − y+)+ (x− − y−),

where D̄ = diag{d̄i, . . . , d̄n} and K = diag{K1, . . . , Kn} with

d̄i =
⎧
⎨

⎩

di(x
+
i )− di(y

+
i )

x+i − y+i
, x+i �= y+i

Di, otherwise
, Ki =

⎧
⎨

⎩

gi(x
+
i )− gi(y

+
i )

x+i − y+i
, x+i �= y+i

Gi otherwise
.

Then, d̄i ≥ Di and Ki ≤ Gi because d( · ) ∈ D and g( · ) ∈ H2{G1, . . . , Gn}.
If F(x)− F(y) = 0, then we have

x− − y− = −[D̄− (A+ B)K](x+ − y+). (7.81)

By (7.80), without loss of generality, we can assume

x+ − y+ =
[

z1
0

]
, x− − y− =

[
0
z2

]
,

where z1 ∈ R
k and z2 ∈ R

n−k, for some integer k. Write

D̄− (A+ B)K =
[

R11 R12
R21 R22

]
,
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where R11 ∈ R
k,k, R12 ∈ R

k,n−k, R21 ∈ R
n−k,k, and R22 ∈ R

n−k,n−k. The equation
(7.81) can be rewritten as

[
0
z2

]
= −

[
R11 R12
R21 R22

] [
z1
0

]
,

which implies R11z1 = 0. From Lemma 7.3, we can conclude that R11 is nonsin-
gular, which implies z1 = 0 and x+ = y+. Similarly, we can prove x− = y−.
Therefore, x = y, which means that F(x) is locally univalent.

Second, we will prove that F(x) is norm-coercive. Suppose that there exists a
sequence {xm = (xm,1, . . . , xm,n)�}∞m=1 such that limm→∞ ‖xm‖2 = ∞. Then, there
exists some index i such that limm→∞ |di(x

+
m,i) + x−m,i| = ∞, which implies that

limm→∞ ‖g(x+m)‖2 = ∞.
Some simple algebraic manipulations lead to

g(x+)�PF(x) =
n∑

i=1

gi(x
+
i )Pidi(x

+
i )− g(x+)�P(A+ B)g(x+)+

n∑

i=1

gi(x
+
i )Pix

−
i

≥ g(x+)�{P[DG−1 − (A+ B)]}sg(x+) ≥ αg(x+)�g(x+),

where α = λmin({P[DG−1 − (A+ B)]}s) > 0. Therefore,

‖F(xm)‖2 ≥ α‖P‖−1
2 ‖g(x+m)‖2 →∞,

which implies that F(x) is norm-coercive. Combining with Lemma 7.7 proves the
theorem. �

Proof of Lemma 7.40

We will prove the existence of equilibrium of the system (7.53) under the assump-
tion C1. We will prove existence of equilibrium for the system (7.53) by the Equi-
librium Theorem [5]. First, we give some necessary definitions concerned with the
equilibrium of a set-valued map.

Definition 7.53 For a convex subset K of R
n, the tangent cone TK(x) to K at x ∈ K

is defined as

TK(x) =
⋃

h>0

K − x

h
, (7.82)

where
⋃

is the closure of the union set.

Proposition 7.54 The necessary and sufficient condition for v ∈ TK(x) is that there
exist hn → 0+ and vn → v as n→+∞, such that x+hnvn ∈ K for all n. Moreover,
if x ∈ int(K), where int(K) is the set of the interior points of K, then Tk(x) = R

n.
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Definition 7.55 (Viability Domain) Let F:X → X be a non-trivial set-valued map.
We say that a subset K ⊂ Dom(F) is a viability domain of F, if for all x ∈ K, we
have F(x)

⋂
TK(x) �= ∅ where Dom(F) is the domain of F.

Definition 7.56 (Equilibrium) x∗ is said to be an equilibrium of a set-valued map
F(x) if 0 ∈ F(x∗).

The following theorem is used below.

Lemma 7.57 (Equilibrium Theorem) (See p. 84 in [5]) Assume that X is a Banach
space and F:X → X is an upper semicontinuous set-valued map with closed convex
image. If K ⊂ X is a convex compact viability domain of F(x), then K contains an
equilibrium x∗ of F(x), i.e., 0 ∈ F(x∗).

Now, we use the Equilibrium Theorem to prove the existence of the equilibrium
of the system (7.53).

Lemma 7.58 Suppose C1 satisfied, and each gi( · ) is non-trivial, Pi > 0, for i =
1, 2, . . . , n. Define

V̄(x) =
∑

i=1

Pi

∫ xi

0
gi(ρ) dρ. (7.83)

For any M > 0, define ΩM = {x:V̄(x) ≤ M}, ∂ΩM = {x:V̄(x) = M}, and

K1 =
{

v = (v1, v2, . . . , vn)� ∈ R
n:

n∑

i=1

viPiγi ≤ 0, for all γi ∈ co[gi(xi)]

}
. (7.84)

Then K1 ⊂ TΩM (x) whenever x ∈ ∂ΩM.

Proof For each x ∈ ∂ΩM , i.e., V̄(x) = M, and v ∈ int(K1) satisfying
∑n

i=1 viPiγi <

0 for all γi ∈ co[gi(xi)]. Let yn = x + hnv, where 0 < hn → 0, as n → +∞. We
will prove that V̄(yn) ≤ M, namely, yn ∈ ΩM .

Denote

γ e
i =

⎧
⎨

⎩

gi(x
+
i ), if vi > 0

gi(x
−
i ), if vi < 0

any value, if vi = 0.
(7.85)

Then we have
∑n

i=1 viPiγi ≤
n∑

i=1
viPiγ

e
i for all γi ∈ co[gi(xi)]. Thus, let ε =

−
n∑

i=1
viPiγ

e
i , which is positive. We have
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V̄(yn)− V̄(x) =
n∑

i=1

Pi

∫ yni

xi

gi(ρ) dρ =
n∑

i=1

Pi

∫ xi+hnvi

xi

gi(ρ) dρ

=
(

n∑

i=1

viPiγ
e
i

)

hn + o(hn) = −εhn + o(hn). (7.86)

If n is large enough, we obtain V̄(yn) < V̄(x) = M, which implies v ∈ TΩM (x), i.e.,
int(K1) ⊂ TΩM (x). Since TΩM (x) is closed, K1 ⊂ TΩM (x). �

Lemma 7.59 (Ky Fan Inequality [5]) Let K be a compact convex subset in a Banach
space X and ϕ:X × X → R be a function satisfying the following
conditions:

(1) For all y ∈ K, x �→ ϕ(x, y) is lower semicontinuous;
(2) For all x ∈ K, y �→ ϕ(x, y) is concave, i.e., for all λi > 0 satisfying

∑n
i λi = 1

and yi ∈ K,

ϕ

(

x,
n∑

i=1

λiyi

)

≥
n∑

i=1

λiϕ(x, yi); (7.87)

(3) For all y ∈ K, ϕ(y, y) ≤ 0.

Then, there exists x̄ ∈ K such that, for all y ∈ K, ϕ(x̄, y) ≤ 0.

Theorem 7.60 Assume C1 and let −T be a Lyapunov diagonally stable (LDS)
matrix. Then there exists an equilibrium x∗ of system (7.53), i.e.,

0 ∈ F(x∗), (7.88)

where F(x∗) = [− d(x∗)+ T co [g(x∗)]+ J].

Proof Because−T is LDS, there exists a diagonal matrix P = diag{P1, P2, . . . , Pn},
with Pi > 0, i = 1, 2, . . . , n, such that (PT)s < 0. Let

V̄(x) =
∑

i=1

Pi

∫ xi

0
gi(ρ) dρ. (7.89)

Case 1: All gi( · ), i = 1, 2, . . . , n, are non-trivial.
It is easy to see that ΩM is a convex compact subset of R

n. Let α = min λ
({−PT}s) > 0, I = ∑n

i=1 [1/(2α)]P2
i J2

i , l = mini Di, and M0 = I/l. In the follow-
ing, we will prove that if M > M0, then ΩM is a viability domain of F(x).

In fact, if x ∈ int(ΩM), then TΩM (x) = R
n and it is easy to see that F(x)

⋂

TΩM (x) = ∅.
Now, we will prove that if x ∈ ∂ΩM , then F(x)

⋂
TΩM (x) = ∅. For this purpose,

we define ϕ(g1, g2):co[g(x)]× co[g(x)] �→ R, as follows:
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ϕ(g1, g2) =
n∑

i=1

g1,iPi

[
− di(xi)+

n∑

j=1

tijg2,j + Ji

]
, (7.90)

where g1 = (g1,1, g1,2, . . . , g1,n)� and g2 = (g2,1, g2,2, . . . , g2,n)�. If we can find
g2 ∈ co[g(x)], such that ϕ(g1, g2) ≤ 0 for all g1 ∈ co[g(x)], then by Lemma 7.57,
we have F(x)

⋂
TΩM (x) �= ∅.

It can be seen that for each g1 ∈ co[g(x)], g2 �→ ϕ(g1, g2) is continuous; for each
g2 ∈ co[g(x)], g1 �→ ϕ(g1, g2) is concave. Moreover, let f = (f1, f2, . . . , fn)�, where
fi ∈ co[gi(x)]. Then it is easy to see that fixi ≥

∫ xi
0 gi(ρ) dρ, which implies

ϕ(f , f ) = −
n∑

i=1

fiPi
di(xi)

xi
xi + f�PTf + f�PJ

≤ −lf�Px− αf�f + f�PJ ≤ −lf�Px− α
2

f�f + I

≤ −lM + I ≤ 0. (7.91)

By Lemma 7.59, we can find ḡ ∈ co[g(x)] such that ϕ(g, ḡ) ≤ 0 for all g ∈ co[g(x)].
Therefore, for each x ∈ ΩM , we have F(x)

⋂
TΩM (x) �= ∅. According to Lemma

7.57, in this case, ΩM contains an equilibrium of F(x).
Case 2: There exist some indices i such that gi(s) = 0 for all s ∈ R.
Without loss of generalization, we can assume that gn(s) = 0 for all s ∈ R

and g1, . . . , gn−1 are non-trivial. Considering x̃ = (x1, x2, . . . , xn−1)�, by the dis-
cussion in Case 1, there exists an equilibrium x̃∗ = (x∗1, x∗2, . . . , x∗n−1)�, such that

0 ∈ −di(x∗i ) + ∑n−1
j=1 tijco[gj(xj)] + Ji for i = 1, . . . , n − 1. That is, there exist

γi ∈ co[gi(x∗i )], for i = 1, 2, . . . , n − 1, such that 0 = −di(x∗i ) +∑n−1
j=1 tijγj + Ji,

i = 1, 2, . . . , n− 1.
It can also be seen that there exists x∗n such that −dn(x∗n)+∑n−1

j=1 tnjγj + Jn = 0.

Therefore, x∗ = (x̃∗, x∗n)� is an equilibrium of F(x). The theorem is proved. �
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