
Chapter 4
Time-Delayed Feedback Control: From Simple
Models to Lasers and Neural Systems

Eckehard Schöll, Philipp Hövel, Valentin Flunkert, and Markus A. Dahlem

4.1 Introduction

Over the past decade control of unstable states has evolved into a central issue
in applied nonlinear science [1]. This field has various aspects comprising stabi-
lization of unstable periodic orbits embedded in a deterministic chaotic attractor,
which is generally referred to as chaos control, stabilization of unstable fixed points
(steady states), or control of the coherence and timescales of stochastic motion.
Various methods of control, going well beyond the classical control theory [2–4],
have been developed since the ground-breaking work of Ott, Grebogi, and Yorke
[5] in which they demonstrated that small time dependent changes in the control
parameters of a nonlinear system can turn a previously chaotic trajectory into a
stable periodic motion. One scheme where the control force is constructed from
time-delayed signals [6] has turned out to be very robust and universal to apply and
easy to implement experimentally. It has been used in a large variety of systems
in physics, chemistry, biology, medicine, and engineering [1, 7, 8], in purely tem-
poral dynamics as well as in spatially extended systems [9–25]. Moreover, it has
recently been shown to be applicable also to noise-induced oscillations and patterns
[26–29]. This is an interesting observation in the context of ongoing research on the
constructive influence of noise in nonlinear systems [30–35].

In time-delayed feedback control (time-delay autosynchronization or TDAS) the
control signal is built from the difference s(t) − s(t − τ ) between the present and
an earlier value of an appropriate system variable s. It is non-invasive since the
control forces vanish if the target state (a periodic state of period τ or a steady state)
is reached. Thus the unstable states themselves of the uncontrolled system are not
changed, but only their neighborhood is adjusted such that neighboring trajectories
converge to it, i.e., the control forces act only if the system deviates from the state
to be stabilized. Involving no numerically expensive computations, time-delayed
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feedback control is capable of controlling systems with very fast dynamics still in
real-time mode [36–38]. Moreover, detailed knowledge of the target state is not
required.

An extension to multiple time delays has been proposed by Socolar et al. [39],
who considered multiple delays in form of an infinite series (ETDAS) or an aver-
age of N past iterates (N time-delay autosynchronization or NTDAS) [40] or cou-
pling matrices (generalized ETDAS or GETDAS) [41]. Analytical insight into those
schemes has been obtained by several theoretical studies, e.g., [42–54] as well as
by numerical bifurcation analysis, e.g., [55, 56]. Time-delayed feedback can also
stabilize fixed points using single [48, 49, 57] or multiple delay times [50, 58, 59].
The efficiency of these schemes can be improved by deterministic or stochastic
modulation of the time delay [60].

Recent work has focused, on the one hand, on basic aspects like developing novel
control schemes and gaining analytical insights, and on the other hand, on applica-
tions to optical and electronic systems, including laser diodes, electronic circuits,
and semiconductor nanostructures [18, 61, 62], to chemical and electrochemical
reaction systems [15, 16, 63–70], and to biological and medical systems, includ-
ing the suppression of synchronization as therapeutic tools for neural diseases like
Parkinson and epilepsy [71, 72], and control of cardiac dynamics [73]. In particu-
lar, networks of oscillatory or excitable elements, e.g., neural networks or coupled
laser arrays, have been considered, where time delays naturally arise through signal
propagation and processing times [74–82]. Systems composed of a small number
of coupled oscillatory or excitable elements (lasers or neurons) can be conceived
as network motifs of larger networks. Time-delayed feedback control schemes with
different couplings of the control force have been applied to various models of non-
linear semiconductor oscillators, e.g., impact ionization-driven Hall instability [83],
and semiconductor nanostructures described by an N-shaped [14, 84, 85], S-shaped
[9, 11, 12, 24, 86], or Z-shaped [13] current-field characteristics. In semiconductor
nanostructures complex chaotic spatio-temporal field and current patterns arise in
the form of traveling field domains (for the N type) and breathing or spiking current
filaments (for the S and Z types), which can be stabilized by time-delayed feedback
control.

Time-delayed feedback control has also been applied to purely noise-induced
oscillations and patterns in a regime where the deterministic system rests in a steady
state, and in this way both the coherence and the mean frequency of the oscillations
have been controlled in various nonlinear systems [26–28, 87–91], including chem-
ical systems [92], neural systems [93, 94], laser diodes [95], and semiconductor
nanostructures of N type [96–99] and Z type [100–102]. The control of deterministic
and stochastic spatio-temporal patterns in semiconductor nanostructures by time-
delayed feedback is reviewed elsewhere [62].

In this review we focus on simple models, for which some analytical results
can be obtained in addition to computer simulations, and apply them to a selection
of systems ranging from semiconductor lasers to neurosystems. We will show that
time-delayed feedback control methods have a wider range of applicability than
previously assumed, when applied to unstable steady states and to unstable periodic
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orbits, using generic normal forms. In the case of unstable periodic orbits the often
invoked odd number limitation, which had been believed to impose serious restric-
tions for a long time, has recently been refuted [52]. Further, we will discuss applica-
tions to lasers and coupled neural systems in the framework of the Lang–Kobayashi
laser model and the FitzHugh–Nagumo neuron model. We will demonstrate the sup-
pression and enhancement of synchronization by time-delayed feedback, and point
out some complex scenarios of synchronized in-phase or antiphase oscillations,
bursting patterns, or amplitude death, induced by delayed coupling in combination
with delayed feedback in simple network motifs.

4.2 Time-Delayed Feedback Control of Generic Systems

In this section we review basic properties of time-delayed feedback control, using
simple normal form models which are representative of a large class of nonlinear
dynamic systems [48–50, 52, 54].

4.2.1 Stabilization of Unstable Steady States

Time-delayed feedback methods, which have originally been used to control unsta-
ble periodic orbits [6], provide also a tool to stabilize unstable steady states [57,
103, 58, 59, 48–50, 60]. We present a numerical and analytical investigations of the
feedback scheme using the Lambert function and discuss the extension to multiple
time feedback control (ETDAS).

Other methods to control unstable steady states use the derivative of the current
state as source of a control force [104]. It can be shown, however, that this derivative
control is sensitive to high-frequency oscillations [105] and thus not robust in the
presence of noise. Another control scheme calculates the difference of the current
state to a low-pass filtered version [106].

Here we consider a general dynamic system given by a vector field f [48]:

ẋ = f(x) (4.1)

with an unstable fixed point x∗ ∈ R
n given by f(x∗) = 0. The stability of this fixed

point is obtained by linearizing the vector field around x∗. Without loss of generality,
let us assume x∗ = 0. In the following we will consider the generic case of an
unstable focus for which the linearized equations in center manifold coordinates x, y
can be written as

ẋ = λ x+ ω y (4.2)

ẏ = −ω x+ λ y,

where λ and ω are positive real numbers. They may be viewed as parameters gov-
erning the distance from the instability threshold, e.g., a Hopf bifurcation of system
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(4.1), and the intrinsic eigenfrequency, respectively. For notational convenience,
(4.2) can be rewritten as

ẋ(t) = Ax(t). (4.3)

Alternatively, the components of x(t) can be understood as real and imaginary parts
of a complex variable z(t) = x(t)+ iy(t) so that (4.2) reads ż(t) = (λ+ iω)z(t). The
eigenvalues Λ0 of the matrix A are given by Λ0 = λ ± iω, so that for λ > 0 and
ω �= 0 the fixed point is indeed an unstable focus.

We shall now apply time-delayed feedback control [6] in order to stabilize this
fixed point:

ẋ(t) = Ax(t)− F(t), (4.4)

where F denotes the control force given by

F(t) = K[x(t)− x(t − τ )], (4.5)

with the feedback gain K ∈ R and the time delay τ > 0. In components this yields

ẋ(t) = λ x(t)+ ω y(t)− K[x(t)− x(t − τ )] (4.6)

ẏ(t) = −ω x(t)+ λ y(t)− K[y(t)− y(t − τ )].

The goal of the control method is to change the sign of the real part of the eigen-
value. Figure 4.1 depicts a schematic diagram of the time-delayed feedback loop.
The red color shows the extension of the original Pyragas control including multiple
delays (ETDAS) which will be discussed later on.

h(t) s(t) = g(x(t))

s(t)RF(t − τ)
F(t)

R

K
s(t − τ)

F(t − τ)

d
dtx(t) = f (x(t)) − h(t)

−
+

+
−

Fig. 4.1 Diagram of the time-delay autosynchronization method. x(t) denotes the state of the sys-
tem at time t, s(t) is the control signal, i.e., some component of x(t) measured by g(x(t)), and F(t) is
the control force. The real constants τ , K, and R denote the time delay, the feedback gain, and the
memory parameter, respectively. The function h(t) describes the coupling of F to the dynamical
system x. The extension of the original time-delayed feedback [6] as introduced by Socolar et al.
(see [39], ETDAS) is shown in red color



4 Time-Delayed Feedback Control 89

Since the control force applied to the ith component of the system involves only
the same component, this control scheme is called diagonal coupling [11], which
is suitable for an analytical treatment. Note that the feedback term vanishes if the
unstable steady state is stabilized since x∗(t − τ ) = x∗(t) and y∗(t − τ ) = y∗(t) for
all t, indicating the non-invasiveness of the TDAS method.

Figure 4.2 depicts the dynamics of the controlled unstable focus (λ = 0.5 and
ω = π ) in the (x, y) plane for different values of the feedback gain K. Panels (a)
through (d) correspond to increasing K. The time delay of the TDAS control scheme
is chosen as τ = 1 in all panels. Panel (a) displays the case of the absence of control,
i.e., K = 0, and shows that the system is an unstable focus exhibiting undamped
oscillations on a timescale T0 ≡ 2π/ω = 2. It can be seen from panel (b) that
increasing K reduces the instability. The system diverges more slowly to infinity
indicated by the tighter spiral. Further increase of K stops the unstable behavior
completely and produces periodic motion, i.e., a center [see panel (c)]. The ampli-
tude of the orbit depends on the initial conditions, which are chosen as x = 0.01 and
y = 0.01. For even larger feedback gains, the trajectory becomes an inward spiral
and thus approaches the fixed point, i.e., the focus. Hence the TDAS control scheme
is successful.

An exponential ansatz for x(t) and y(t) in (4.6), i.e., x(t) ∼ exp (Λt) and y(t) ∼
exp (Λt), reveals how the control force modifies the eigenvalues of the system. The
characteristic equation becomes

[Λ+ K
(
1− e−Λτ

)− λ]2 + ω2 = 0, (4.7)
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Fig. 4.2 Control of an unstable focus with λ = 0.5 and ω = π in the configuration space for
different values of the feedback gain K. Panels (a), (b), (c), and (d) correspond to K = 0, 0.2, 0.25,
and 0.3, respectively. The time delay τ of the TDAS control scheme is chosen as 1 corresponding
to τ = T0/2 = π/ω [48]
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so that the complex eigenvalues Λ are given in the presence of a control force by
the implicit equation

λ± iω = Λ+ K
(
1− e−Λτ

)
. (4.8)

Using the Lambert function W, which is defined as the inverse function of g(z) = zez

for complex z [51, 107–111], (4.8) can be solved analytically

Λτ = W
(

Kτe−(λ±iω)τ+Kτ
)
+ (λ± iω)τ − Kτ . (4.9)

Panel (a) of Fig. 4.3 shows the dependence of the largest real part of the complex
eigenvalues Λ upon the time delay τ according to (4.8) and (4.9) for λ = 0.5 and
ω = π . The solid curve corresponds to a feedback gain of K = 0.3, the dashed
curve to K = 0.25, and the dotted curve to K = 0.2. All curves start at Re(Λ) = λ
for τ = 0, i.e., when no control is applied to system. For increasing time delay, the
real part Re(Λ) decreases. It can be seen in the case of K = 0.3 that there exist
values of the time delay for which Re(Λ) becomes negative, and thus the control is
successful. The curve for K = 0.25 shows the threshold case where Re(Λ) becomes
zero for τ = 1, but does not change sign. The TDAS control scheme generates
an infinite number of additional eigenmodes. The corresponding eigenvalues are
the solutions of the transcendental equation (4.8). The real parts of the eigenvalues
all originate from −∞ for τ = 0. Some of these lower eigenvalues are displayed
for K = 0.3. The different branches of the eigenvalue spectrum originate from the
multiple-leaf structure of the complex Lambert function. The real part of each eigen-
value branch exhibits a typical nonmonotonic dependence upon τ which leads to
crossover of different branches resulting in an oscillatory modulation of the largest
real part as a function of τ . Such behavior of the eigenvalue spectrum appears to be
quite general and has been found for various delayed feedback coupling schemes,
including the Floquet spectrum of unstable periodic orbits [11, 86] and applications
to noise-induced motion where the fixed point is stable [26].

The notch at τ = 1 corresponds to Fig. 4.2, so that at this value of τ the solid,
dashed, and dotted curves correspond to panels (d), (c), and (b) of Fig. 4.2, respec-
tively. The notches at larger τ become less pronounced leading to less effective
realization of the TDAS control scheme, i.e., a smaller or no τ interval with negative
Re(Λ).

In the case of an unstable periodic orbit, the optimal time delay is equal to the
period of the orbit to be stabilized. Note that in the case of an unstable steady state,
however, the time delay is not so obviously related to a parameter of the system. We
will see later which combinations of the feedback gain K and the time delay τ lead
to successful control.

Panel (b) of Fig. 4.3 displays the time evolution of x(t) and its time-delayed
counterpart x(t− τ ) in the case of a combination of K = 0.3 and τ = 1 that leads to
successful control as in panel (d) of Fig. 4.2. The x component of the control force
can be calculated from the difference of the two curves and subsequent multiplica-
tion by K. Since x(t) tends to zero in the limit of large t (the system reaches the focus
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Fig. 4.3 (a) Largest real part of the complex eigenvalues Λ vs. τ for λ = 0.5 and ω = π for
different K. Some lower eigenvalues are also displayed for K = 0.3 (green). (b) Time series of
the x component of the unstable focus: the solid line (red) corresponds to x(t) and the dashed line
(green) to the delayed x component x(t − τ ) with τ = 1. The parameters of the unstable focus and
the control scheme are as in panel (d) of Fig. 4.2 [48]

located at the origin), the control force vanishes if the system is stabilized. Thus the
control scheme is non-invasive. Note that the current signal (red) and its delayed
counterpart (green) are in antiphase.

In the following discussion, it is helpful to consider the real and imaginary part
of (4.8) separately in order to gain some analytic information about the domain of
control:

p+ K
[
1− e−pτ cos (qτ )

] = λ (4.10)

q+ Ke−pτ sin (qτ ) = ω

with Λ = p+ iq.
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The calculation can be done analytically for special points by using, for instance,
that p = 0 at the threshold of control. Furthermore, we will present an expansion
around the minimum value of K that reveals further details of the shape of the
domain of control.

At the threshold of control the sign of the real part p of the exponent Λ changes.
Therefore, setting p equal to zero in the real and imaginary parts, respectively, of
(4.10) yields

λ = K
[
1− cos (qτ )

]
(4.11)

and

ω = q+ K sin (qτ ). (4.12)

Since the cosine is bounded between −1 and 1, the following inequality follows
from (4.11):

λ

2
≤ K. (4.13)

Thus a minimum value of K, Kmin = λ/2, for which the control starts, can be
inferred. It corresponds to qτ = (2n + 1)π for n = 0, 1, 2, . . . . It should be noted
that a similar characteristic equation as (4.8) holds for the Floquet exponents of a
unstable periodic orbit, where the lower bound, Kmin = λ/2, of the feedback gain
has been shown to correspond to the flip threshold of control [43, 112].

In order to express the values of the time delay τ that correspond to the minimum
K in terms of the parameters of the uncontrolled system, it is useful to consider
even and odd multiples of π for qτ , i.e., qτ = 2nπ and qτ = (2n + 1)π for
n = 0, 1, 2, . . . . In both cases, the imaginary part of (4.8) leads to q = ω. Hence, in
the latter case, the time delay τ for Kmin = λ/2 becomes

τ = π
ω

(2n+ 1). (4.14)

The last expression can be rewritten using the uncontrolled eigenperiod T0

τ = T0
2n+ 1

2
, (4.15)

where T0 is defined by

T0 = 2π

ω
. (4.16)

This discussion has shown that K = λ/2 and τ = T0(2n+ 1)/2 with n = 0, 1, 2, . . .
correspond to points of successful control in the (K, τ ) plane with minimum feed-
back gain.



4 Time-Delayed Feedback Control 93

For even multiples, i.e., qτ = 2nπ for n = 0, 1, 2, . . . , no control is possible for
finite values of K, since

K − λ
K

= cos (qτ )|qτ=2nπ (4.17)

⇔ 1− λ
K
= 1, (4.18)

which cannot be satisfied for λ �= 0 and finite K. Furthermore, (4.12) yields that for
time delays which are integer multiples of the eigenperiod, i.e., τ = T0n = 2πn/ω
with n = 0, 1, 2, . . . , the control scheme fails for any feedback gain.

Another result that can be derived from (4.8) is a shift of q for increasing K. For
this, taking the square of the real and imaginary part of (4.8) and using trigonomet-
rical identities yields

q = ω ∓√
(2K − λ)λ. (4.19)

Inserting (4.19) into the real part of (4.8) leads to an explicit expression for the
dependence of time delay τ on the feedback gain K at the threshold of stability, i.e.,
the boundary of the control domain p = 0,

K − λ
K

= cos (qτ ) (4.20)

⇔ τ (K) = arccos
(K−λ

K

)

ω ∓√(2K − λ)λ
. (4.21)

In order to visualize the shape of the domain of control we will investigate how
small deviations ε > 0 from Kmin, i.e, K = λ/2 + ε, influence the corresponding
values of the time delay τ . For this, let η > 0 be small and τ = π

ω
(2n + 1) ± η

a small deviation from τ at Kmin. Inserting the expression for K and τ into (4.20)
yields after some Taylor’s expansions:

− 1+ 4

λ
ε = −1+ 1

2

[
ωη ∓ π

ω
(2n+ 1)

√
2λ
√
ε
]2

(4.22)

⇔ η =
[

± 2
√

2

ω
√
λ
+
√

2π

ω2
(2n+ 1)

√
λ

]
√
ε. (4.23)

This equation describes the shape of the domain of control at the threshold of stabi-
lization, i.e., p = 0, near the minimum K value at τ = T0(2n + 1)/2 in the (K, τ )
control plane. Small deviations from τ at Kmin are influenced by the square root of
small deviations from the minimum feedback gain.

Figure 4.4 displays the largest real part of the eigenvalues Λ in dependence on
both the feedback gain K and the time delay τ for ω = π and two different values
of λ and summarizes the results of this section. The values ofΛ are calculated using
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Fig. 4.4 Domain of control in the (K, τ ) plane and largest real part of the complex eigenvalues Λ
as a function of K and τ according to (4.9). The two-dimensional projection at the bottom shows
combinations of τ and K, for which Re(Λ) is negative and thus the control successful [panel (a):
λ = 0.5 and ω = π ; panel (b): λ = 0.1 and ω = π ] [48]

the analytic solution (4.9) of (4.8). The two-dimensional projections at the bottom
of each plot extract combinations of K and τ with negative p, i.e., successful control
of the system. In the absence of a control force, i.e., K = 0, the real part of Λ starts
at λ. Increasing the feedback gain decreases Re(Λ). For K = Kmin = λ/2, the real
part of the eigenvalue reaches 0 for certain time delays, i.e., τ = T0(2n+ 1)/2 with
n = 0, 1, 2, . . . , and then changes sign. Thus, the system is stabilized. For values
of the feedback gain slightly above the minimum value Kmin, the domain of control
shows a square root shape. It can be seen that for time delays of τ = T0n, the largest
real part of the eigenvalues remains positive for any feedback gain. For a smaller
value of λ (Fig. 4.4b), i.e., closer to the instability threshold of the fixed point, the
domains of control become larger.

An example of the combination of minimum feedback gain Kmin = λ/2 and
corresponding time delay τ = T0(2n+1)/2, n = 0, 1, 2, . . . is shown in panel (c) of
Fig. 4.2, where K = λ/2 = 0.25 and τ = T0/2 = π/ω = 1. It describes the control
threshold case between stable and unstable fixed point.
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Socolar et al. introduced an extension of the Pyragas method by taking states into
account which are delayed by integer multiples of τ [39]. This method is known
as extended time-delay autosynchronization or ETDAS. Calculating the difference
between two states which are one time unit τ apart yields the following control
force, which can be written in three equivalent forms:

F(t) = K
∞∑

n=0

Rn [x(t − nτ )− x(t − (n+ 1)τ )] (4.24)

= K

[

x(t)− (1− R)
∞∑

n=1

Rn−1x(t − nτ )

]

(4.25)

= K [x(t)− x(t − τ )]+ RF(t − τ ), (4.26)

where K and τ denote the (real) feedback gain and the time delay, respectively.
R ∈ ( − 1, 1) is a memory parameter that takes into account those states that are
delayed by more than one time interval τ . Note that R = 0 yields the TDAS control
scheme introduced by Pyragas [6].

The first form of the control force, (4.24), indicates the non-invasiveness of the
ETDAS method because x∗(t − τ ) = x∗(t) if the fixed point is stabilized. The third
form, (4.26), is suited best for an experimental implementation since it involves
states further than τ in the past only recursively.

While the stability of the fixed point in the absence of control is given by the
eigenvalues of matrix A, i.e., λ ± iω, one has to solve the following characteristic
equation in the case of an ETDAS control force [50]:

Λ+ K
1− e−Λτ

1− Re−Λτ
= λ± iω. (4.27)

Due to the presence of the time delay τ , this characteristic equation becomes tran-
scendental and possesses an infinite but countable set of complex solutions Λ. For
nonzero memory parameter R, (4.27) must be solved numerically.

Figure 4.5 depicts the dependence of the largest real parts of the eigenvalue Λ
upon the time delay τ according to (4.27) for different memory parameters R and
fixed feedback gain K = 0.3. The dashed, dotted, solid, dash-dotted, and dash-
double-dotted curves (red, green, black, blue, and magenta) of Re(Λ) correspond
to R = −0.7,−0.35, 0, 0.35, and 0.7, respectively. The parameters of the unstable
focus are chosen as λ = 0.1 and ω = π . Note that the time delay τ is given in units
of the intrinsic period T0 = 2π/ω. When no control is applied to the system, i.e.,
τ = 0, all curves start at λ which corresponds to the real part of the uncontrolled
eigenvalue. For increasing time delay, the real part of Λ decreases and eventually
changes sign. Thus, the fixed point becomes stable. Note that there is a minimum of
Re(Λ) indicating strongest stability if the time delay τ is equal to half the intrinsic
period. For larger values of τ , the real part increases and becomes positive again.
Hence, the system loses its stability. Above τ = T0, the cycle is repeated but the
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Fig. 4.5 Largest real part of the complex eigenvalues Λ as a function of τ for different values of
R. The dashed, dotted, solid, dash-dotted, and dash-double-dotted curves (red, green, black, blue,
and magenta) correspond to R = −0.7,−0.35, 0, 0.35, and 0.7, respectively. The parameters of the
unstable focus are chosen as λ = 0.1 and ω = π which yields an intrinsic period T0 = 2π/ω = 2.
The feedback gain K is fixed at KT0 = 0.6 [50]

minimum of Re(Λ) is not so deep. The control method is less effective because the
system has already evolved further away from the fixed point. For vanishing memory
parameter R = 0 (TDAS), the minimum is deepest, however, the control interval,
i.e., values of τ with negative real parts of Λ, increases for larger R. Therefore the
ETDAS control method is superior in comparison to the Pyragas scheme.

Figure 4.6 shows the domain of control in the plane parametrized by the feedback
gain K and time delay τ for different values of R:0, 0.35, 0.7, and −0.35 in panels
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Fig. 4.6 Domain of control in the (K, τ ) plane for different values of R:0, 0.35, 0.7, and −0.35 in
panels (a), (b), (c), and (d), respectively. The grayscale (color code) shows only negative values
of the largest real part of the complex eigenvalues Λ according to (4.27). The parameters of the
system are as in Fig. 4.5 [50]
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(a), (b), (c), and (d), respectively. The grayscale (color code) indicates only negative
values of the largest real parts of the complex eigenvalue Λ. Therefore, Fig. 4.5 can
be understood as a vertical cut through Fig. 4.6 for a fixed value of KT0 = 0.6.
Each panel displays several islands of stability which shrink for larger time delays
τ . Note that no stabilization is possible if τ is equal to an integer multiple of the
intrinsic period T0. The domains of control become larger if the memory parameter
R is closer to 1.

In order to obtain some analytic information of the domain of control, it is helpful
to separate the characteristic equation (4.27) into real and imaginary parts. This
yields using Λ = p+ iq:

K(1− e−pτ cos qτ ) = λ− p− Re−pτ [(λ− p) cos qτ ± (ω − q) sin qτ ] (4.28)

and

Ke−pτ sin qτ = ±(ω − q)+ Re−pτ [(λ− p) sin qτ ± (ω − q) cos qτ ]. (4.29)

The boundary of the domain of controls is determined by a vanishing real part ofΛ,
i.e., p = 0. With this constraint, (4.28) and (4.29) can be rewritten as

K(1− cos qτ ) = λ− R[λ cos qτ ± (ω − q) sin qτ ], (4.30)

K sin qτ = ±(ω − q)+ R[λ sin qτ ± (ω − q) cos qτ ].

At the threshold of control (p = 0, q = ω), there is a certain value of the time
delay, which will serve as a reference in the following, given by

τ = (2n+ 1) π

ω
=

(
n+ 1

2

)
T0, (4.31)

where n is any nonnegative integer. For this special choice of the time delay, the
range of possible feedback gains K in the domain of control becomes largest as can
be seen in Fig. 4.6. Hence, we will refer to this τ value as optimal time delay in the
following. The minimum feedback gain at this τ can be obtained:

Kmin(R) = λ (1+ R)

2
. (4.32)

Extracting an expression for sin (qτ ) from (4.30) and inserting it into the equa-
tion for the imaginary part leads after some algebraic manipulation to a general
dependence of K on the imaginary part q of Λ:

K(q) = (1+ R)
[
λ2 + (ω − q)2

]

2λ
. (4.33)
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Taking into account the multivalued properties of the arcsine function, this yields in
turn analytical expressions of the time delay in dependence on q:

τ1(q) =
arcsin

(
2λ(1− R2)(ω − q)

λ2(1− R2)2 + (ω − q)2(1+ R)2

)
+ 2nπ

q
, (4.34)

τ2(q) =
− arcsin

(
2λ(1− R2)(ω − q)

λ2(1− R2)2 + (ω − q)2(1+ R)2

)
+ (2n+ 1)π

q
,

where n is a nonnegative integer. Together with (4.33), these formulas describe the
boundary of the domain of control in Fig. 4.6. Note that two expressions τ1 and τ2
are necessary to capture the complete boundary.

For a better understanding of effects due to the memory parameter R, it is instruc-
tive to consider the domain of control in the plane parametrized by R and the feed-
back gain K. The results can be seen in Fig. 4.7, where the black, medium gray, dark
gray, and light gray areas (blue, green, red, and yellow) correspond to the domain
of control for λT0 = 0.2, 1, 5, and 10, respectively. The other system parameter is
chosen as ω = π . We keep the time delay constant at τ = T0/2. Note that the
K interval for successful control increases for larger values of R. In fact, while the
original Pyragas scheme, i.e., R = 0, fails for λT0 = 10, the ETDAS method is still
able to stabilize the fixed point. The upper left boundary corresponds to (4.32). The
lower right boundary can be described by a parametric representation which can be
derived from the characteristic equation (4.27):

Fig. 4.7 Domain of control in the (K, R) plane for different values of λ. The black, medium gray,
dark gray, and light gray domains (blue, green, red, and yellow) correspond to λT0 = 0.2, 1, 5, and
10, respectively, as indicated. The time delay is chosen as τ = T0/2 and ω = π [50]
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R = λτ − ϑ tan (ϑ/2)

λτ + ϑ tan (ϑ/2)
, (4.35)

Kτ = ϑ2 + (λτ)2
λτ + ϑ tan (ϑ/2)

, (4.36)

where we used the abbreviation ϑ = (q− ω) τ for notational convenience. The
range of ϑ is given by ϑ ∈ [0,π). A linear approximation leads to an analytic
dependence of R and the feedback gain K given by a function R(K) instead of the
parametric equations (4.35) and (4.36). A Taylor expansion around ϑ = π yields

Kmax(R) = λ
2 + π2

2λ
(R+ 1)+ 2 (R− 1) . (4.37)

Another representation of the superior control ability of ETDAS is depicted in
Fig. 4.8. The domain of control is given in the (K, λ) plan for different values of
R. The light gray, dark gray, medium gray, and black areas (yellow, red, green, and
blue) refer to R = −0.35, 0 (TDAS), 0.35, and 0.7, respectively. The time delay
is chosen as τ = T0/2. One can see that for increasing R, the ETDAS method
can stabilize systems in a larger λ range. However, the corresponding K interval
for successful control can become small. See, for instance, the black (blue) area
(R = 0.7) for large λ. A similar behavior was found in the case of stabilization of an
unstable periodic orbit by ETDAS [112]. We stress that, as in the case of periodic
orbits, the boundaries of the shaded areas can be calculated analytically from the
following expression:

Fig. 4.8 Domain of control in the (K, λ) plane for different memory parameters R. The light gray,
dark gray, medium gray, and black domains (yellow, red, green, and blue) areas correspond to
R = −0.35, 0 (TDAS), 0.35, and 0.7, respectively. The time delay is fixed at τ = T0/2 [50]
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Kτ = (1− R)ϑ

tan (ϑ/2)

[(
1+ R

1− R

)2

+ tan2 (ϑ/2)

]

, (4.38)

λτ = ϑ

tan (ϑ/2)

(
1+ R

1− R

)
, (4.39)

where we used ϑ = (q− ω) τ with ϑ ∈ [0,π ) as in (4.35) and (4.36). The maximum
value for λ, which can be stabilized, is given by the special case ϑ = 0:

λmaxτ = 2
1+ R

1− R
. (4.40)

Extensions to include latency effects associated with the generation and injec-
tion of the feedback signal, low-pass and bandpass filtering in the control loop, and
non-diagonal control schemes incorporating a feedback phase, have been discussed
elsewhere [48, 50].

4.2.2 Asymptotic Properties

It is the purpose of this section to obtain deeper analytical insight into the time-
delayed feedback control of steady states for large delay by relating asymptotic
properties of the eigenvalue spectrum with the exact solutions and by discussing the
shape of the control domain in the space of the control parameters [49].

Three different timescales are of importance in such a control problem: (i) the
inverse divergence rate of trajectories around the unstable fixed point 1/λ, (ii) the
period of undamped oscillations around the fixed point T0 = 2π/ω, where ω is the
oscillation frequency, and (iii) the delay time τ used in the feedback control loop.
Here we consider the case τ  1/λ and study again a generic model equation which
describes an unstable focus above a Hopf bifurcation and is given by (4.6).

Note that, due to the presence of the delay, (4.8) possesses infinitely many solu-
tions. Nevertheless, the stability of the fixed point is determined by a finite number
of critical roots with largest real parts [110]. As a result, the stabilization problem
consists in determining these critical eigenvalues and describing their behavior. In
particular, successful control is achieved by providing conditions in terms of the
control parameters K and τ for which all critical eigenvalues have negative real
parts.

Figure 4.9 shows the real parts of the critical eigenvalues Λ as a function of τ
for different values of K. The insets show the same eigenvalues as curves in the
complex plane parametrized by τ . Note that the eigenvalue originating from the
uncontrolled system (red) is the most unstable one for sufficiently small K and does
not couple to the eigenvalues generated by the delay (see Fig. 4.9 a,b). The count-
able set of eigenvalues generated by the delay originates from ReΛ = −∞ for
τ → 0 and shows the typical nonmonotonic behavior that leads to stability islands
for appropriate τ and K [48]. For larger values of K, the eigenvalue originating from
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Fig. 4.9 Real parts of the complex eigenvalues Λ as a function of τ calculated from the charac-
teristic equation (4.8) for 10 modes with the largest real parts. (a) K = 0.25, (b) K = 0.5, (c)
K = 0.75, and (d) K = 1.0. Inset: eigenmodes Λ in the complex plane for τ ∈ [0, 20]. Red
curves: eigenvalue originating from the uncontrolled system; black curves: eigenmodes created by
the delay control. Parameters: ω = π and λ = 1 [49]

the uncontrolled system is no longer separated from those which are generated by
the delay (see Fig. 4.9 c,d). Moreover, one can observe a scaling behavior of the
real parts of the eigenvalues for large τ in Fig. 4.9(a-c), there is a single eigenvalue
retaining a positive real part, whereas all the other real parts tend to zero for large τ .
The insets show that the eigenvalues in fact accumulate along the imaginary axis.
This observation will be studied in detail in the following.

The scaling behavior of eigenvalues of general linear delay-differential equations
for large delay τ has been analyzed in [113]. In particular, it turns out that one can
distinguish the following.

(a) Strongly unstable eigenvalues Λs which have positive real parts that do not tend
to zero with increasing τ , i.e., Λs → const and ReΛs ≥ δ for some δ > 0 as
τ →∞.

(b) Pseudocontinuous spectrum of eigenvalues Λp with real parts that scale as 1/τ ,

i.e.,Λp = 1
τ
γ + i

(
Ω + 1

τ
ϕ
)
+O

(
1
τ 2

)
with some γ ,Ω , and ϕ. A spectrum with

this scaling behavior and positive real part leads to so-called weak instabilities
(for more details, see [114, 113]).
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In order to obtain the strongly unstable eigenvalues, we insert Λs = const into
(4.8) and assume τ → ∞. Since ReΛs > δ, the exponential term vanishes and we
arrive at the expression for Λs:

Λs = λ− K ± iω,

which holds for λ− K > 0. Thus we obtain the following statement:

(i) For K < λ, there exist two eigenvalues of the controlled stationary state, Λs1
and its complex conjugate Λs2, such that Λs1 → λ − K + iω as τ → ∞. The
real parts of these eigenvalues are positive and, hence, the stationary state is
strongly unstable (cf. Fig. 4.9(a-c)).

In order to obtain the asymptotic expression for the remaining pseudo-
continuous part of the spectrum, we have to insert the scaling Λp = 1

τ
γ +

i
(
Ω + 1

τ
ϕ
)

into (4.8). Up to the leading order we obtain the equation

iΩ + K
(
1− e−γ e−iϕ) = λ± iω, (4.41)

and the additional condition Ω = Ω (m) = 2πm/τ , m = ±1,±2,±3, ..., (4.41)
can be solved with respect to γ (Ω):

γ (Ω) = −1

2
ln

[(
1− λ

K

)2

+
(
Ω ± ω

K

)2
]

. (4.42)

The fact that ReΛp ≈ γ (Ω)/τ and ImΛp ≈ Ω up to the leading order
means that the eigenvalues Λp accumulate in the complex plane along curves
(γ (Ω),Ω), provided that the real axis is scaled as τReΛ. The actual positions
of the eigenvalues on the curves can be obtained by evaluating Ω at points
Ω (m) = 2πm/τ . With increasing τ , the eigenvalues cover the curves densely
[113]. Hence, we obtain the second statement:

(ii) The fixed point of system (4.6) has a set of eigenvalues which behave asymp-

totically as Λp(Ω (k)) = 1
τ
γ (Ω (k)) + i

(
Ω (k) + 1

τ
ϕ(Ω (k))

)
with γ (Ω) given by

(4.42). We have weak instability if the maximum of γ (Ω) is positive, i.e.,

γmax = max
Ω
γ (Ω) = − ln

∣∣∣∣1−
λ

K

∣∣∣∣ > 0,

which is the case for K > λ/2.
Figure 4.10 illustrates the spectrum of the fixed point of system (4.6) for τ = 20.

One can clearly distinguish the two types of eigenvalues. For K < λ/2 (Fig. 4.10a),
the fixed point has a pair of strongly unstable eigenvalues, whereas the pseudocon-
tinuous spectrum is stable. Note that the symbols (red) show the spectrum computed
numerically from the full eigenvalue equation, whereas the dashed lines are the
curves (γ (Ω),Ω) from the asymptotic approximation where the pseudocontinuous
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Fig. 4.10 Numerically computed spectrum of eigenvalues for τ = 20 (asterisks, red). The dashed
lines depict the asymptotic pseudocontinuous spectrum. (a) Strong instability for K = 0.25 (K <
λ/2); (b) K = 0.5 = λ/2, critical case at which the weak instability occurs in addition to the strong
one; (c) K = 0.75 (λ/2 < K < λ), strong and weak instability; (d) K = 1.0 = λ, critical case at
which a strong instability disappears via the singularity of the pseudocontinuous spectrum; and (e)
K = 1.25 (K > λ), weak instability. Parameters: ω = π and λ = 1 [49]

spectrum accumulates for large τ . At K = λ/2 (cf. Fig. 4.10b), the pseudocontinu-
ous spectrum touches the imaginary axis resulting in the appearance of a weak insta-
bility for K > λ/2. This leads to the coexistence of strong and weak instabilities for
λ/2 < K < λ (Fig. 4.10c). At K = λ, the strongly unstable eigenvalues disappear,
being absorbed by the pseudocontinuous spectrum, which develops a singularity at
this moment, cf. Fig. 4.10(d). Finally, for K > λ (Fig. 4.10e), there occurs only a
weak instability induced by the pseudocontinuous spectrum.

After inspecting all possibilities given in Fig. 4.10, we conclude that stabilization
by the feedback control scheme (4.6) always has an upper limit τc such that for
τ > τc it fails. Additionally, we note that for K < λ and large delay, the stationary
state is strongly unstable with the complex conjugate eigenvaluesΛ1.2 = λ−K±iω,
and for K > λ weakly unstable with a large number of unstable eigenvalues given
by (4.41), the real parts of which scale as 1/τ .

Next, we show that strongly delayed feedback can stabilize a fixed point in the
case when the fixed point is sufficiently close to the Hopf bifurcation. In our case
this means that λ is small. In particular, we are going to prove that the delayed
feedback control scheme will be successful even for large delay within the range of
order 1/λ2. We will also provide conditions for successful control.
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For the fixed point, which is close to the Hopf bifurcation, we assume K > λ,
and hence it has an unstable pseudocontinuous spectrum as shown in Fig. 4.10(e).
As λ stays fixed, with increasing τ the curve of the pseudocontinuous spectrum will
be densely filled with the eigenvalues (Ω (m) = 2πm/τ ). The only possibility for
the fixed point to become stable is to assume that λ is also scaled with increasing
τ . Particularly, we will show that in order to achieve control we have to scale it as
λ = λ0ε

2 with fixed λ0 (here for convenience we introduce the small parameter
ε = 1/τ ).

Figure 4.11 illustrates the part of the curve γ (Ω) which may induce an instability
in the system. More precisely, the interval of unstable frequencies isΩ1 < Ω < Ω2,
where Ω1 and Ω2 are given by the zeros of γ (Ω):

Ω1,2 = ω ± K

√

1−
(

1− λ
K

)2

.

For small λ we can approximate this as

Ω1,2 = ω ±
√

2λK. (4.43)

The length of the interval of unstable frequencies is  Ω = Ω2 −Ω1 = 2
√

2λK.
We note that the actual position of the eigenvalues on the curve corresponds to

the values of Ω (m) = 2πmε with any integer m. It is easy to see that the distance
between the frequencies of neighboring eigenvalues Ω (m+1) − Ω (m) = 2πε scales
as ε. Therefore, the control can be successful if λ = λ0ε

2. In this case the length of
the unstable interval is  Ω = 2ε

√
2λ0K and scales also as ε. The control can be

achieved if the length is smaller than the distance between neighboring eigenvalues,

Ω 2

Ω 1

0
(m  +1)

0
(m  )

0
(m  )

0
(m  +1)

γ(Ω)

Ω

0

ω

Ω
Λ

Ω
Λ

Fig. 4.11 Curve of the pseudocontinuous spectrum. The actual position of the complex eigenvalues

Λ = 1
τ
γ + i

(
Ω +O( 1

τ
)
)

on the curve corresponds to Ω (m) = 2πmε, m = ±1,±2,±3, ..., and

ε = 1/τ . The fixed point is stable if the imaginary parts of the eigenvalues are outside of the
interval Ω1 < Ω < Ω2. Such a case with Ω (m0) < Ω1 < Ω2 < Ω

(m0+1) is illustrated, in which
the leading eigenvalues Λ(m0) and Λ(m0+1) have negative real parts [49]
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i.e.,  Ω = 2ε
√

2λ0K < 2πε, leading to

K <
π2

2λ0
. (4.44)

Equation (4.44) gives a necessary condition for successful control.
The relative phase of the delay plays an additional important role. Depending on

this phase, control occurs periodically with τ . In order to quantify this effect, let us
introduce ωτ = 2π/τ to be the frequency associated with the delay. Then the ratio
of the internal frequency ω and ωτ is given by ω/ωτ = γτ mod 1. Here 0 < γτ < 1
measures the detuning from the resonance between the internal frequency and the
delay-induced one. Using this notation and (4.43), we can rewrite

Ω1,2 = m0ωτ + γτωτ ± ε
√

2λ0K = Ω (m0) + ε
(

2πγτ ±
√

2λ0K
)

.

Here m0 is some integer number. The necessary and sufficient condition for the
stability is (cf. Fig. 4.11) Ω (m0) < Ω1 < Ω2 < Ω

(m0+1), which leads to

√
2λ0K < 2π min {γτ , 1− γτ }

or

K <
2π2

λ0
(min {γτ , 1− γτ })2 = 2π2

λ0

(
min

{[ωτ
2π

]

f
, 1−

[ωτ
2π

]

f

})2

, (4.45)

where
[
ωτ
2π

]
f is the fractional part of ωτ2π . Practically, one has also to satisfy K > λ,

but our scaling assumes the smallness of λ. Figure 4.12 shows the domain of control
given by (4.45) for λ = λ0/τ

2.

2 4 6 8 10
τ

0

1

2

3

4

5

K

Fig. 4.12 Shaded region: domain of control in the (τ , K) plane for the fixed point close to the Hopf
bifurcation, given by the asymptotic formula (4.45) for λ = λ0/τ

2. Parameters: ω = π and λ0 = 1
[49]
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In order to return to unscaled parameters, we have to substitute λ0 = λ/ε2 =
λτ 2. Figure 4.13(a) shows the obtained domain of control for fixed small λ = 0.01.
The maximum allowed values of K decrease as 1/τ 2. More precisely, we have

Kmax(τ ) = π2

2λτ 2
. (4.46)

The application of the asymptotic analysis allows to reveal many essential fea-
tures and mechanisms of the stabilization control scheme (4.6) for large delay τ . On
the other hand, the obtained approximations are valid as soon as K is much larger
than λ. Figure 4.13 shows a comparison of the boundaries of the control domain,
which are given by the asymptotic methods and exact analytical formulas derived in
the previous section. Very close to the Hopf bifurcation (λ = 0.01) the agreement
is excellent even at small values of τ (Fig. 4.13a), while for larger λ (Fig. 4.13b)
the deviations become more visible. In addition, the approximate solution does not
give the lower boundary of the control domain for small K which only shows up
in Fig. 4.14. The analytical approach also allows us to identify the “peaks” of the
control domains, which occur at τmax = (2n + 1)π/ω, n = 0, 1, 2, ..., as double
Hopf bifurcation points. The critical time delay, above which control fails, is given
by τc = 2/λ.
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Fig. 4.13 Domain of control in the (τ , K) plane, and largest negative real part of the complex
eigenvalues Λ(K, τ ) (in color code) calculated from the characteristic equation using the Lambert
function [(4.9)]. Dashed lines (blue): asymptotic approximation (4.45) of stability boundary; dotted
lines (blue): approximate maxima (4.46); and solid lines: exact stability boundaries. Parameters:
(a) ω = π , λ = 0.01 and (b) ω = π , λ = 0.1 [49]
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An inspection of the islands of stabilization in Figs. 4.13 and 4.14 reveals that the
absolute value of the real part of the critical eigenvalue, i.e., the eigenvalue which
has the largest real part (but remains negative within those islands), decreases with
increasing τ . Hence, the fixed point becomes less stable, and it is expected that
the system becomes more sensitive to noise and it will be more difficult to realize
stabilization experimentally, if the delay time is chosen several times the system’s
characteristic time T0.

4.2.3 Beyond the Odd Number Limitation of Unstable
Periodic Orbits

In this section we consider the stabilization of periodic orbits by time-delayed
feedback control [52]. Although time-delayed feedback control has been widely
used with great success in real-world problems in physics, chemistry, biology, and
medicine, e.g., [38, 64, 71–73, 115–122], severe limitations are imposed by the
common belief that certain orbits cannot be stabilized for any strength of the con-
trol force. In fact, it has been contended that periodic orbits with an odd number
of real Floquet multipliers greater than unity cannot be stabilized by the Pyragas
method [43, 44, 123–126], even if the simple scheme is extended by multiple delays
in form of an infinite series [39]. To circumvent this restriction more complicated
control schemes, like an oscillating feedback [127], half-period delays for special,
symmetric orbits [128], or the introduction of an additional, unstable degree of
freedom [126, 129], have been proposed. Here, we show that the general limi-
tation for orbits with an odd number of real unstable Floquet multipliers greater
than unity does not hold: stabilization may be possible for suitable choices of the
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feedback matrix [52, 53]. Our example consists of an unstable periodic orbit gen-
erated by a subcritical Hopf bifurcation. In particular, this refutes the theorem in
[44].

Consider the normal form of a subcritical Hopf bifurcation extended by a time-
delayed feedback term:

ż(t) =
[
λ+ i+ (1+ iγ )|z(t)|2

]
z(t)+ b[z(t − τ )− z(t)], (4.47)

with z ∈ C and real parameters λ and γ . Here the Hopf frequency is normalized to
unity. The feedback matrix is represented by multiplication with a complex number
b = bR + ibI = b0eiβ with real bR, bI ,β and positive b0. Note that the nonlinearity
f (λ, z(t)) = [

λ+ i+ (1+ iγ )|z(t)|2] z(t) commutes with complex rotations. There-
fore exp (iϑ)z(t) solves (4.47), for any fixed ϑ , whenever z(t) does. In particular,
nonresonant Hopf bifurcations from the trivial solution z ≡ 0 at simple imaginary

eigenvalues η = iω �= 0 produce rotating wave solutions z(t) = z(0) exp
(

i 2π
T t

)

with period T = 2π/ω even in the nonlinear case and with delay terms. This follows
from uniqueness of the emanating Hopf branches.

Transforming Eq. (4.47) to amplitude and phase variables r, θ using z(t) =
r(t)eiθ(t), we obtain at b = 0

ṙ(t) =
(
λ+ r2

)
r (4.48)

θ̇ (t) = 1+ γ r2. (4.49)

An unstable periodic orbit with r = √−λ and period T = 2π/(1 − γ λ) exists
for λ < 0. This is the orbit we will stabilize. We will call it the Pyragas orbit. At
λ = 0 a subcritical Hopf bifurcation occurs. The Pyragas control method chooses
the delay time τ as τP = nT . This eliminates the feedback term on the orbit, and
thus recovers the original T-periodic solution z(t). In this sense the control method
is non-invasive.

The choice τP = nT defines the local Pyragas curve in the (λ, τ ) plane for any
n ∈ N

τP(λ) = 2πn

1− γ λ = 2πn(1+ γ λ+ . . . ), (4.50)

which emanates from the Hopf bifurcation points λ = 0, τ = 2πn.
Under further nondegeneracy conditions, the Hopf point λ = 0, τ = nT (n ∈

N0) continues to a Hopf bifurcation curve τH(λ) for λ < 0. We determine this
Hopf curve next. It is characterized by purely imaginary eigenvalues η = iω of the
transcendental characteristic equation:

η = λ+ i+ b
(
e−ητ − 1

)
, (4.51)
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which results from the linearization at the steady state z = 0 of the delayed system
(4.47). Separating (4.51) into real and imaginary parts

0 = λ+ b0[ cos (β − ωτ )− cosβ] (4.52)

ω − 1 = b0[ sin (β − ωτ )− sinβ] (4.53)

and using trigonometric identities to eliminate ω(λ) yields an explicit expression for
the multivalued Hopf curve τH(λ) for given control amplitude b0 and phase β:

τH =
± arccos

(
b0 cosβ−λ

b0

)
+ β + 2πn

1− b0 sinβ ±
√
λ(2b0 cosβ − λ)+ b2

0 sin2 β

. (4.54)

Note that τH is not defined in the case of β = 0 and λ < 0. Thus complex b is
a necessary condition for the existence of the Hopf curve in the subcritical regime
λ < 0. Figure 4.15 displays the family of Hopf curves (4.54), and the Pyragas curve
(4.50) n = 1, in the (λ, τ ) plane. In Fig. 4.15(b) the domains of instability of the
trivial steady state z = 0, bounded by the Hopf curves, are marked by light gray
shading (yellow). The dimensions of the unstable manifold of z = 0 are given in
parentheses along the τ -axis in Fig. 4.15(b). By construction, the delay τ becomes
a multiple of the minimum period T of the bifurcating periodic orbits along the
Pyragas curve τ = τp(λ) = nT and the time-delayed feedback term vanishes if the
periodic orbit is stabilized. The inset of Fig. 4.16 displays the Hopf and Pyragas
curves for different values of the feedback b0. These choices of b0 are displayed as
full circles in the main figure. For b0 > bcrit

0 (a) the Pyragas curve runs partly inside
the Hopf curve. With decreasing magnitude of b0 the Hopf curves pull back until the

τ/
T
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(a)

Fig. 4.15 Pyragas (dashed) and Hopf (solid) curves in the (λ, τ ) plane: (a) Hopf bifurcation curves
n = 0, ..., 10 and (b) Hopf bifurcation curves n = 0, 1 in an enlarged scale. Light gray shading
marks the domains of unstable z = 0 and numbers in parentheses denote the dimension of the
unstable manifold of z = 0 (γ = −10, b0 = 0.3, and β = π/4). The time delay is given in units
of the intrinsic timescale T0 of the trivial fixed point, i.e., T0 = 2π [52]
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Fig. 4.16 Change of Hopf curves with varying control amplitude b0. The main figures shows the
complex plane of control gain b. The three values marked by full circles correspond to the insets
(a), (b), and (c), where the Hopf (solid) and Pyragas (dashed) curves are displayed for β = π

4 and
three different choices of b0: (a) b0 = 0.04 > bcrit

0 , (b)b0 = 0.025 ≈ bcrit
0 , and (c) b0 = 0.01 < bcrit

0
(λ = −0.005, γ = −10) [130]

Pyragas curves lie outside (c). At the critical feedback value (b) Pyragas and Hopf
curves are tangent at (λ = 0, τ = 2π ).

Standard exchange of stability results [131], which hold verbatim for delay equa-
tions, then assert that the bifurcating branch of periodic solutions locally inherits
linear asymptotic (in)stability from the trivial steady state, i.e., it consists of stable
periodic orbits on the Pyragas curve τP(λ) inside the shaded domains for small |λ|.
We stress that an unstable trivial steady state is not a sufficient condition for stabi-
lization of the Pyragas orbit. In fact, the stabilized Pyragas orbit can become unsta-
ble again if λ < 0 is further decreased, for instance, in a torus bifurcation. However,
there exists an interval for values of λ in our example for which the exchange of
stability holds. More precisely, for small |λ| unstable periodic orbits possess a single
Floquet multiplier μ = exp (Λτ ) (with 1 < μ < ∞), near unity, which is simple.
All other nontrivial Floquet multipliers lie strictly inside the complex unit circle. In
particular, the (strong) unstable dimension of these periodic orbits is odd, here 1,
and their unstable manifold is two-dimensional. This is shown in Fig. 4.17 panel (a)
top, which depicts solutionsΛ of the characteristic equation of the periodic solution
on the Pyragas curve.

The Floquet exponents of the Pyragas orbit can be calculated explicitly by rewrit-
ing (4.47) in polar coordinates z = r eiθ

ṙ = (λ+ r2) r + b0[ cos (β + θ (t − τ )− θ ) r(t − τ )− cos (β) r] (4.55)

θ̇ = 1+ γ r2 + b0[ sin (β + θ (t − τ )− θ )
r(t − τ )

r
− sin (β)] (4.56)

and linearizing around the periodic orbit according to r(t) = r0 + δr(t) and θ (t) =
Ωt + δθ (t), with r0 =

√−λ and Ω = 1− γ λ (see (4.48)). This yields
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Fig. 4.17 (a) Top: real part of Floquet exponents Λ of the periodic orbit vs. feedback amplitude
b0. Bottom: real part of eigenvalue η of steady state vs. feedback amplitude b0; (b) blowup of (a);
(c) periods; and (d) radii of the periodic orbits vs. b0. The solid and dashed curves correspond to
stable and unstable periodic orbits, respectively. Parameters in all panels: λ = −0.005, γ = −10,
τ = 2π

1−γ λ , and β = π/4 [130]

( ˙δr(t)
˙δθ (t)

)
=

[ −2λ− b0 cosβ b0r0 sinβ
2γ r0 − b0 sinβ r−1

0 −b0 cosβ

](
δr(t)
δθ (t)

)
(4.57)

+
[

b0 cosβ −b0r0 sinβ
b0 sinβr−1

0 b0 cosβ

](
δr(t − τ )
δθ (t − τ )

)
. (4.58)

With the ansatz

(
δr(t)
δθ (t)

)
= u exp (Λt), (4.59)

where u is a two-dimensional vector, one obtains the autonomous linear equation

[−2λ+ b0 cosβ (e−Λτ − 1)−Λ −b0r0 sinβ (e−Λτ − 1)
2γ r0 + b0r−1

0 sinβ (e−Λτ − 1) b0 cosβ (e−Λτ − 1)−Λ
]

u = 0. (4.60)

The condition of vanishing determinant then gives the transcendental characteristic
equation:
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0 = (−2λ+ b0 cosβ (e−Λτ − 1)−Λ) (
b0 cosβ (e−Λτ − 1)−Λ)

(4.61)

−b0r0 sinβ (e−Λτ − 1)
(

2γ r0 + b0r−1
0 sinβ (e−Λτ − 1)

)
(4.62)

for the Floquet exponents Λ which can be solved numerically.
The largest real part is positive for b0 = 0. Thus the periodic orbit is unstable. As

the amplitude of the feedback gain increases, the largest real part of the eigenvalue
becomes smaller and eventually changes sign at the point TC (transcritical bifurca-
tion) in Fig. 4.17. Hence the periodic orbit is stabilized. Note that an infinite number
of Floquet exponents are created by the control scheme; their real parts tend to −∞
in the limit b0→0, and some of them may cross over to positive real parts for larger
b0 (dashed line in Fig. 4.17(a)), terminating the stability of the periodic orbit.

Panel (a) bottom illustrates the stability of the steady state by displaying the
largest real part of the eigenvalues η. The interesting region of the top and bottom
panels where the periodic orbit becomes stable and the fixed point loses stability is
magnified in panel (b).

Figure 4.18 shows the behavior of the Floquet multipliers μ = exp (Λτ ) of the
Pyragas orbit in the complex plane with the increasing amplitude of the feedback
gain b0 as a parameter (marked by arrows). There is an isolated real multiplier cross-
ing the unit circle at μ = 1. This is caused by a transcritical bifurcation in which the
Pyragas orbit collides with a delay-induced stable periodic orbit. In panels (c) and
(d) of Fig. 4.17 the periods and radii of all circular periodic orbits (r = const) are
plotted vs. the feedback strength b0. For small b0 only the initial (unstable) Pyragas
orbit (T and r independent of b0) and the steady state r = 0 (stable) exist. With
increasing b0 a pair of unstable/stable periodic orbits is created in a saddle-node
(SN) bifurcation. The stable one of the two orbits (solid) then exchanges stabil-
ity with the Pyragas orbit in a transcritical bifurcation (TC), and finally ends in a
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Fig. 4.18 Floquet multipliers μ = exp (Λτ ) in the complex plane with the feedback amplitude
b0 ∈ [0, 0.3]. Arrows indicate the direction of increasing b0. Same parameters as in Fig. 4.17 [130]
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subcritical Hopf bifurcation (subH), where the steady state r = 0 becomes unstable.
The Pyragas orbit continues as a stable periodic orbit for larger b0. Except at TC,
the delay-induced orbit has a period T �= τ (see Fig. 4.17c). Note that the respective
exchanges of stability of the Pyragas orbit (TC) and the steady state (subH) occur at
slightly different values of b0. This is also corroborated by Fig. 4.17(b). The mech-
anism of stabilization of the Pyragas orbit by a transcritical bifurcation relies upon
the possible existence of such delay-induced periodic orbits with T �= τ , which was
overlooked in previous works. Technically, the proof of the odd number limitation
theorem in [44] fails because the trivial Floquet multiplier μ = 1 (Goldstone mode
of periodic orbit) was neglected there; F(1) in (14) in [44] is thus zero and not less
than zero, as assumed. At TC, where a second Floquet multiplier crosses the unit
circle, this results in a Floquet multiplier μ = 1 of algebraic multiplicity two.

Next we analyze the conditions under which stabilization of the subcritical peri-
odic orbit is possible. From Fig. 4.15(b) it is evident that the Pyragas curve must
lie inside the yellow region, i.e., the Pyragas and Hopf curves emanating from the
point (λ, τ ) = (0, 2π ) must locally satisfy the inequality τH(λ) < τP(λ) for λ < 0.
More generally, let us investigate the eigenvalue crossings of the Hopf eigenvalues
η = iω along the τ -axis of Fig. 4.15. In particular, we derive conditions for the
unstable dimensions of the trivial steady state near the Hopf bifurcation point λ = 0
in our model (4.47). On the τ -axis (λ = 0), the characteristic equation (4.51) for
η = iω is reduced to

η = i+ b
(
e−ητ − 1

)
, (4.63)

and we obtain two series of Hopf points given by

0 ≤ τA
n = 2π , n (4.64)

0 < τB
n =

2β + 2πn

1− 2b0 sinβ
(n = 0, 1, 2, . . . ). (4.65)

The corresponding Hopf frequencies are ωA = 1 and ωB = 1 − 2b0 sinβ, respec-
tively. Note that series A consists of all Pyragas points, since τA

n = nT = 2πn/ωA.
In the series B the integers n have to be chosen such that the delay τB

n ≥ 0. The case
b0 sinβ = 1/2, only, corresponds to ωB = 0 and does not occur for finite delays τ .

We evaluate the crossing directions of the critical Hopf eigenvalues next, along
the positive τ -axis and for both series. Abbreviating ∂

∂τ
η by ητ the crossing direction

is given by sign(Re ητ ). Implicit differentiation of (4.63) with respect to τ at η = iω
implies

sign(Re ητ ) = −sign(ω) sign( sin (ωτ − β)). (4.66)

We are interested specifically in the Pyragas–Hopf points of series A (marked by
dots in Fig. 4.15), where τ = τA

n = 2πn and ω = ωA = 1. Indeed sign(Re ητ ) =
sign( sinβ) > 0 holds, provided we assume 0 < β < π , i.e., bI > 0 for the



114 E. Schöll et al.

feedback gain. This condition alone, however, is not sufficient to guarantee stability
of the steady state for τ < 2nπ . We also have to consider the crossing direction
sign(Re ητ ) along series B, ωB = 1 − 2b0 sinβ, ωBτB

n = 2β + 2πn, for 0 <
β < π . Equation (4.66) now implies sign(Re ητ ) = sign((2b0 sinβ − 1) sinβ) =
sign(2b0 sinβ − 1).

To compensate for the destabilization of z = 0 upon each crossing of any point
τA

n = 2πn, we must require stabilization (sign(Re ητ ) < 0) at each point τB
n of series

B. If b0 ≥ 1/2, this requires 0 < β < arcsin (1/(2b0)) or π − arcsin (1/(2b0)) <
β < π . The distance between two successive points τB

n and τB
n+1 is 2π/ωB > 2π .

Therefore, there is at most one τB
n between any two successive Hopf points of series

A. Stabilization requires exactly one such τB
n , specifically: τA

k−1 < τ
B
k−1 < τ

A
k for

all k = 1, 2, . . . , n. This condition is satisfied if, and only if,

0 < β < β∗n , (4.67)

where 0 < β∗n < π is the unique solution of the transcendental equation:

1

π
β∗n + 2nb0 sinβ∗n = 1. (4.68)

This holds because the condition τA
k−1 < τB

k−1 < τA
k first fails when τB

k−1 = τA
k .

Equation (4.67) represents a necessary but not yet sufficient condition that the
Pyragas choice τP = nT for the delay time will stabilize the periodic orbit.

To evaluate the remaining condition, τH < τP near (λ, τ ) = (0, 2π ), we expand
the exponential in the characteristic equation (4.51) for ωτ ≈ 2πn, and obtain the
approximate Hopf curve for small |λ|:

τH(λ) ≈ 2πn− 1

bI
(2πnbR + 1)λ. (4.69)

Recalling (4.50), the Pyragas stabilization condition τH(λ) < τP(λ) is therefore
satisfied for λ < 0 if, and only if,

1

bI

(
bR + 1

2πn

)
< −γ . (4.70)

Equation (4.70) defines a domain in the plane of the complex feedback gain b =
bR + ibI = b0eiβ bounded from below (for γ < 0 < bI) by the straight line

bI = 1

−γ
(

bR + 1

2πn

)
. (4.71)

Equation (4.68) represents a curve b0(β), i.e.,
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b0 = 1

2n sinβ

(
1− β

π

)
, (4.72)

which forms the upper boundary of a domain given by the inequality (4.67). Thus
(4.71) and (4.72) describe the boundaries of the domain of control in the complex
plane of the feedback gain b in the limit of small λ. Figure 4.19 depicts this domain
of control for n = 1, i.e., a time delay τ = 2π

1−γ λ . The lower and upper solid curves
correspond to (4.71) and (4.72), respectively. The grayscale displays the numerical
result of the largest real part, wherever negative, of the Floquet exponent, calculated
from linearization of the amplitude and phase equations around the periodic orbit.
Outside the shaded areas the periodic orbit is not stabilized. With increasing |λ|
the domain of stabilization shrinks, as the deviations from the linear approximation
(4.69) become larger. For sufficiently large |λ| stabilization is no longer possible in
agreement with Fig. 4.15(b). Note that for real values of b, i.e., β = 0, no stabiliza-
tion occurs at all. Hence, stabilization fails if the feedback matrix B is a multiple of
the identity matrix. Figure 4.20 compares the control domain for the same value of
|λ| for the representation in the planes of complex feedback b (left) and amplitude
b0 and phase β (right).
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Fig. 4.19 Domain of control in the plane of the complex feedback gain b = b0eiβ for three different
values of the bifurcation parameter λ. The solid curves indicate the boundary of stability in the limit
λ ↗ 0, see (4.71) and (4.72). The shading shows the magnitude of the largest (negative) real part
of the Floquet exponents of the periodic orbit (γ = −10 and τ = 2π

1−γ λ ) [52]

Fig. 4.20 Domain of control in the complex b plane (left) and the (β, b0) plane (right) (λ =
−0.005, γ = −10, and τ = 2π

1−γ λ ) [130]
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4.2.4 Stabilizing Periodic Orbits Near a Fold Bifurcation

Another important example for an unstable periodic orbit which has an odd number
of real Floquet multipliers greater than unity is provided by an orbit generated by a
fold bifurcation of limit cycles. As a paradigm for fold bifurcation of rotating waves
we consider planar systems of the form

ż = g(λ, |z|2)z+ ih(λ, |z|2)z. (4.73)

Here z(t) is a scalar complex variable, g and h are real valued functions, and λ is a
real parameter. Systems of the form (4.73) are S1 equivariant, i.e., eiθ z(t) is a solution
whenever z(t) is for any fixed eiθ in the unit circle S1. In polar coordinates z = reiϕ ,
this manifests itself by the absence of ϕ from the right-hand sides of the resulting
differential equations:

ṙ = g(λ, r2)r,
ϕ̇ = h(λ, r2).

(4.74)

In particular, all periodic solutions of (4.73) are indeed rotating waves, alias har-
monic, of the form

z(t) = reiωt

for suitable nonzero real constants r,ω. Specifically, this requires ṙ = 0 and ϕ̇ = ω:

0 = g(λ, r2),
ω = h(λ, r2).

(4.75)

Fold bifurcations of rotating waves are generated by the nonlinearities

g(λ, r2) = (
r2 − 1

)2 − λ,
h(λ, r2) = γ (r2 − 1)+ ω0.

(4.76)

Our choice of nonlinearities is generic in the sense that g(λ, r2) is the normal form
for a nondegenerate fold bifurcation [132] at r2 = 1 and λ = 0. See Fig. 4.21 for
the resulting bifurcation diagram. We fix coefficients γ ,ω0 > 0.

Using (4.75) and (4.76), the amplitude r and frequency ω of the rotating waves
then satisfy

r2 = 1±√λ, ω = ω0 + γ (r2 − 1) = ω0 ± γ
√
λ. (4.77)

The signs ± correspond to different branches in Fig. 4.21, + unstable and − stable.
Our goal is to investigate delay stabilization of the fold system (4.73) by the

delayed feedback term
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Fig. 4.21 Bifurcation diagram of rotating waves (solid line: stable; dashed line: unstable) of (4.73)
and (4.76) [54]

ż = f (λ, |z|2)z+ b0eiβ [z(t − τ )− z(t)] , (4.78)

with real positive control amplitude b0, delay τ , and real control phase β. Here we
have used the abbreviation f = g + ih. The Pyragas choice requires the delay τ
to be an integer multiple k of the minimum period T of the periodic solution to be
stabilized:

τ = kT . (4.79)

This choice guarantees that periodic orbits of the original system (4.73) with period
T are reproduced exactly and non-invasively by the control system (4.78). The min-
imum period T of a rotating wave z = reiωt is given explicitly by T = 2π/ω. Using
(4.77), (4.79) becomes

τ = 2πk

ω0 ± γ
√
λ

, (4.80)

or, equivalently,

λ = λ(τ ) =
(

2πk − ω0τ

γ τ

)2

. (4.81)

In the following we select only the branch of λ(τ ) corresponding to the τ value
with the + sign, which is associated with the unstable orbit. Condition (4.81) then
determines the kth Pyragas curve in parameter space (τ , λ) where the delayed feed-
back is indeed non-invasive. The fold parameter λ = 0 corresponds to τ = 2πk/ω0
along the kth Pyragas curve. See Fig. 4.22 for the Pyragas curves in the parameter
plane (τ , λ).

For the delay stabilization system (4.78) we now consider τ as the relevant bifur-
cation parameter. We restrict our study of (4.78) to λ = λ(τ ) given by the Pyragas
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Fig. 4.22 The Pyragas curves λ = λ(τ ), corresponding to the unstable branch in Fig. 4.21, in the
parameter plane (τ , λ); see (4.81). Parameters: γ = ω0 = 1 [54]

curve (4.81), because τ = kT is the primary condition for non-invasive delayed
feedback control.

We begin with the trivial case b0 = 0 of vanishing control. For each λ = λ(τ ),
we encounter two rotating waves given by

r2 = 1± 2πk − ω0τ

γ τ
, ω = ω0 ±

(
2πk − ω0τ

τ

)
. (4.82)

The two resulting branches form a transcritical bifurcation at τ = 2πk/ω0. At
this stage, the transcriticality looks like an artifact, spuriously caused by our choice
of the Pyragas curve λ = λ(τ ). Note, however, that only one of the two crossing
branches features minimum period T such that the Pyragas condition τ = kT holds.
This happens along the branch

r2 = 1+ 2πk − ω0τ

γ τ
, ω = 2πk/τ ,

see Fig. 4.23. We call this branch, which corresponds to ‘+’ in (4.82) the Pyragas
branch. The other branch has minimum period T with

kT = πk

ω0τ − πk
τ �= τ ,

except at the crossing point ω0τ = 2πk. The minus branch therefore violates the
Pyragas condition for non-invasive control, even though it has been generated from
the same fold bifurcation.

Our strategy for Pyragas control of the unstable part of the Pyragas branch is
now simple. For a nonzero control amplitude b0, the Pyragas branch persists without
change, due to the non-invasive property τ = kT along the Pyragas curve λ = λ(τ ).
The minus branch, however, will be perturbed slightly for small b0 �= 0. If the
resulting perturbed transcritical bifurcation
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Fig. 4.23 Bifurcation diagram of rotating waves of (4.78) at vanishing control amplitude b0 = 0.
Parameters: T0 = 2π/ω0, ω0 = 1, and γ = 10 [54]

τ = τc (4.83)

moves to the left, i.e., below 2πk/ω0, then the stability region of the Pyragas branch
has invaded the unstable region of the fold bifurcation. Again this refutes the notori-
ous odd number limitation of Pyragas control, see Fiedler et al. [52] and references
therein.

Let τ = τc denote the transcritical bifurcation point on the Pyragas curve λ =
λ(τ ), see (4.81). Let z(t) = rceiωct denote the corresponding rotating wave and
abbreviate ε ≡ r2

c − 1. Conditions for the transcritical bifurcation in (4.78) can
be obtained [54], which yield the following relations between the control amplitude
bc at the bifurcation and ε, τc:

bc = −ε ω0 + γ ε
kπ (γ sinβ + 2ε cosβ)

(4.84)

and

bc = − 2πk − ω0τc

τc

(
1
2γ

2τc sinβ + (2πk − ω0τc) cosβ
) . (4.85)

As follows from (4.84) and (4.85), for small ε, alias for τc near 2kπ/ω0, the
optimal control angle is β = −π/2 in the limit ε → 0, and for fixed k,ω0, γ , ε
this control phase β allows for stabilization with the smallest amplitude |bc|. For
β = −π/2 the relations (4.84) and (4.85) simplify to

bc = ε

kπ

(
ω0

γ
+ ε

)
(4.86)

and

bc = 2

(γ τc)
2 (2kπ − ω0τc) , (4.87)
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respectively. For small b0 > 0 we also have the expansions

ε = −
(

kπ
γ

ω0
sinβ

)
b0 + · · · (4.88)

and

τc = 2πk

ω0
+

(
1

2ω0

(
2kπγ

ω0

)2

sinβ

)

b0 + · · · . (4.89)

for the location of the transcritical bifurcation. In particular, we see that odd number
delay stabilization can be achieved by arbitrary small control amplitudes b0 near the
fold for γ > 0 and sinβ < 0. Note that the stability region of the Pyragas curve
increases if ε = r2

c − 1 > 0, see Fig. 4.21. For vanishing phase angle of the control,
β = 0, in contrast, delay stabilization cannot be achieved by arbitrarily small control
amplitudes b0 near the fold in our system (4.78).

Even far from the fold at λ = 0 and τ = 2kπ/ω0 the above formulas (4.84),
(4.86), and (4.87) hold and indicate a transcritical bifurcation from the (global)
Pyragas branch of rotating waves of (4.78) along the Pyragas curve λ = λ(τ ). This
follows by analytic continuation. Delay stabilization, however, may fail long before
τ = τc is reached. In fact, nonzero purely imaginary Floquet exponents may arise,
which destabilize the Pyragas branch long before τ = τc is reached. This interesting
point remains open.

A more global picture of the orbits involved in the transcritical bifurcation may
be obtained by numerical analysis. Rewriting (4.78) in polar coordinates z = reiϕ

yields

ṙ = [(r2 − 1)2 − λ]r + b0[ cos (β + ϕ(t − τ )− ϕ) r(t − τ )− r cosβ] (4.90)

ϕ̇ = γ (r2 − 1)+ ω0 + b0[ sin (β + ϕ(t − τ )− ϕ) r(t − τ )/r − sinβ]. (4.91)

To find all rotating wave solutions we make the ansatz r = const and ϕ̇ = ω = const
and obtain

0 = (r2 − 1)2 − λ+ b0[ cos (β − ωτ )− cosβ] (4.92)

ω = γ (r2 − 1)+ ω0 + b0[ sin (β − ωτ )− sinβ]. (4.93)

Eliminating r we find a transcendental equation for ω

0 = −γ 2λ+ γ 2b0[ cos (β − ωτ )− cosβ] (4.94)

+ (ω − ω0 − b0[ sin (β − ωτ )− sinβ])2 . (4.95)

One can now solve this equation numerically for ω and insert the result into
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r =
(
ω − ω0

γ
− b0

γ
[ sin (β − ωτ )− sinβ]+ 1

) 1
2

(4.96)

to obtain the allowed radii (discarding imaginary radii).
The orbit which stabilizes the Pyragas branch in the transcritical bifurcation may

be the minus branch or another delay-induced orbit which is born in a fold bifurca-
tion, depending on the parameters. Figure 4.24 displays the different scenarios and
the crossover in dependence on the control amplitude b0. The value of γ is chosen as
γ = 9, 10.5, 10.6, and 13 in panels (a), (b), (c), and (d), respectively. It can be seen
that the Pyragas orbit is stabilized by a transcritical bifurcation T1. As the value of
γ increases, a pair of a stable and an unstable orbit generated by a fold bifurcation
F1 approaches the minus branch (see Fig. 4.24a). On this branch, fold bifurcations
(F2 and F3) occur as shown in Fig. 4.24(b). At γ = 10.6, the fold points of F1 and
F2 touch in a transcritical bifurcation T2 and annihilate (see Fig. 4.24(c, d). Thus,
for further increase of γ , one is left with the stable minus branch and the unstable
orbit, which was generated at the fold bifurcation F3. In all panels the radius of
the Pyragas orbit is not changed by the control. The radius of the minus branch,
however, is altered because the delay time does not match orbit period.

Figure 4.25 shows the region in the (β, b0) plane where the Pyragas orbit is
stable, for a set of parameters. The grayscale (color code) shows only negative val-
ues of the largest real part of the Floquet exponents. One can see that the orbit is
most stable for feedback phases β ≈ −π/2 which agrees with the previous analytic

Fig. 4.24 Radii of stable (solid) and unstable (dashed) rotating wave solutions in dependence on
b0 for different γ . Parameters: ω0 = 1, λ = 0.001, and β = −π/2 [54]
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Fig. 4.25 Domain of stability of the Pyragas orbit. The grayscale (color code) shows only negative
values of the largest real part of the Floquet exponents. Parameters: ω0 = 1, λ = 0.0001, and
γ = 0.1. [54]

Fig. 4.26 Scheme of an integrated tandem laser with optical feedback from an external Fabry–
Perot etalon. Two distributed feedback (DFB) lasers are connected via a passive waveguide section
P. Amplitude K and phase ϕ of the feedback from the FP resonator are controlled by a variable
neutral density filter and a piezo positioning, respectively. ESA: electrical spectrum analyzer. IR
Diode: power measurement [38]

results for small λ. The picture was obtained by linear stability analysis of (4.90)
and (4.91) and numerical solution of the transcendental eigenvalue problem for the
Floquet exponents. It clearly shows that the periodic orbit can be stabilized even
though it has an odd number of real Floquet multipliers greater than unity.

These results of the simple normal form model can be transferred to a more
realistic model of an integrated tandem laser [54], such as the one considered in the
next section, see Fig. 4.26, where time-delayed feedback control is realized by a
Michelson interferometer.

4.3 Time-Delayed Control of Optical Systems

In this section we will consider semiconductor lasers, where time-delayed feedback
control can be readily realized by optical feedback from a mirror or a Fabry–Perot
(FP) resonator, and this allows for controlling systems with very fast dynamics still
in real-time mode.
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4.3.1 Stabilizing Continuous-Wave Laser Emission
by Phase-Dependent Coupling

From a practical point of view, it is often desirable to suppress self-sustained oscil-
lations, i.e., intensity pulsations, in order to stabilize continuous-wave (cw) opera-
tion of lasers [133, 134]. This amounts to stabilizing an unstable fixed point of the
dynamic laser equations.

Here we consider a semiconductor laser device for which control of unstable
steady states by time-delayed feedback control has been demonstrated in theory
and experiment [38]. Recently, multi-section lasers with their complex dynamical
phenomena have opened up new ways in high-speed optical information processing
[135, 136]. Their picosecond response times are too short even for a fast electronic
realization of time-delayed feedback control. All-optical control is thus the only
applicable method so far. The scheme of the setup is shown in Fig. 4.26. An inte-
grated tandem laser [135, 136] is deliberately driven through a Hopf bifurcation
into a self-pulsating regime of operation. Suppression of the pulsations and non-
invasive stabilization of the steady state is achieved by direct optical feedback from
a properly designed external FP etalon. Although proposed one and a half decades
ago [39, 137] and despite of some numerical studies [137–139], such non-invasive
all-optical control approach has not been implemented experimentally until recently
[38]. A novel aspect of our analysis is that it addresses the role of the optical phase
as a specific feature of the FP control configuration.

Optical fields emitted by lasers vary generally as Re{E(t)e−iω0t} where the expo-
nential factor oscillates by orders of magnitude faster than the slow amplitude E(t).
The field fed back from the FP resonator has the same shape and, for feedback
gain K, its amplitude reads as

Eb(t) = Keiϕ
∞∑

n=0

Rneinφ[E(tn)− eiφE(tn+1)], (4.97)

with tn = t − τl − nτ . The delay originates from a single roundtrip between laser
and FP resonator, characterized by the latency time τl, and n round-trips of time τ
within the FP resonator of mirror reflectivity R. Two optical phase shifts ϕ = ω0τl
and φ = ω0τ are associated with these delay times. Non-invasive control requires
optical target states with E(t) = eiφE(t − τ ). Feedback from a FP resonator has
been studied previously, see, e.g., [140–143] and references therein. However, those
configurations rely on maximum feedback are thus strongly invasive.

For steady states E(t) = E0 non-invasiveness means eiφ = 1, i.e., the FP res-
onator must be tuned into resonance. While the FP phase is thus fixed, the latency
is still arbitrary and makes the feedback phase-sensitive. Conventional time-delayed
feedback control corresponds to ϕ = 0. However, in the FP geometry, ϕ is tun-
able by sub-wavelength changes of the laser-FP separation and thus represents an
additional free parameter which all-optical time-delayed feedback control can profit
from. In what follows, this is theoretically demonstrated within the simple generic
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two-variable center-manifold model introduced in Sect. 4.2 [48]. Stabilization of the
cw emission has also been shown within a more specific semiconductor laser model
of Lang–Kobayashi type, including latency, bandpass filtering in the control loop,
and a feedback phase [144].

We consider a nonlinear system closely above a Hopf bifurcation, where it has an
unstable fixed point (focus) whose stability is governed by the complex eigenvalues
λ ± iω (with λ > 0). For simplicity, we restrict ourself to a single FP roundtrip
(n=1) and ignore τl in the slow amplitude dynamics. An extension to multiple time
feedback (ETDAS) is found elsewhere [50]. Linearizing around the fixed point pro-
vides a generic equation for the center-manifold coordinates x, y, corresponding to
the complex field through E = E0 + x+ iy,

(
ẋ
ẏ

)
=

(
λ ω

−ω λ
)(

x
y

)

−K

(
cosϕ − sinϕ
sinϕ cosϕ

)(
x(t)− x(t − τ )
y(t)− y(t − τ )

)
. (4.98)

This equation generalizes the model of (4.6) to phase-sensitive feedback and
shows that such feedback creates non-diagonal coupling terms [145]. The charac-
teristic equation for the complex eigenvalues Λ reads as

Λ+ Ke±iϕ (
1− e−Λτ

) = λ± iω. (4.99)

Note that this characteristic equation can be solved analytically using the Lambert
function, which is defined as the inverse function of g(z) = zez for complex z.

Figure 4.27 shows the domain of control, i.e., Re(Λ) < 0, in dependence on
the parameters ϕ, K, and τ . Unit of time is the intrinsic period T0 = 2π/ω of the
unstable focus and λT0 = 0.2 is chosen in all plots. Panels (a) and (b) represent the
(ϕ, K) plane for fixed values of the time delay τ/T0 = 0.5 and 0.9, respectively. Note
that τ = T0/2 yields a symmetric domain of control with respect to ϕ = 0, which
is the case of diagonal coupling [48]. For values other than this optimal time delay,
the domain of control is distorted and shrinks. In the situation shown in Fig. 4.27
(b), control can no longer be achieved for ϕ = 0, but only for positive phase ϕ > 0.
Panels (c) and (d) show the domain of control in the (ϕ, τ ) plane for fixed feedback
gain KT0 = 1 and 2, respectively. It consists of isolated islands with a horizontal
extension that becomes maximum and symmetric with respect to ϕ = 0 at delays
of τ = (n + 1/2)T0 (n = 0, 1, 2, . . . ). No control is possible for integer τ/T0.
For a range of τ values in between, stabilization can be achieved by appropriately
chosen ϕ. When crossing the islands at fixed ϕ, resonance-type behavior of the
damping rate −Re(Λ) occurs. With increasing n, the size of the islands decreases
so that they eventually disappear at some critical value determined by the feedback
strength K.

These results from the simple generic model have been confirmed by experimen-
tal realization of all-optical non-invasive control by means of time-delayed feed-
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Fig. 4.27 Domain of control in dependence on ϕ, K, and τ with normalization in units of T0 =
2π/ω. The largest real part of the complex eigenvalues Λ is shown in colorcode. (a), (b): Domain
of control in the (ϕ, K) plane for fixed delay τ = T0/2 and 0.9T0, respectively. (c), (d): Domain
of control in the (ϕ, τ ) plane for fixed feedback gain K = 1/T0 and 2/T0, respectively. Fixed
parameter: λ = 0.2/T0 [38]

back from an external Fabry–Perot cavity [38]. They are also in qualitative agree-
ment with simulations of more realistic laser models of Lang–Kobayashi [144] and
traveling-wave type [38, 146].

In conclusion, using phase-dependent feedback, stabilization of the continuous-
wave laser output and non-invasive suppression of intensity pulsations has been
shown. This study demonstrates the crucial importance of the proper choice of
phase of the feedback signal, i.e., of the coupling matrix, which represents a generic
feature of all-optical time-delayed feedback control.

4.3.2 Noise Suppression by Time-Delayed Feedback

In this section we investigate the effects of feedback under the influence of noise
in a semiconductor laser [95]. A laser with feedback from a conventional mirror
can be described by the Lang–Kobayashi equations [147]. Other types of feedback
have also been investigated [143, 148]. One particular feedback realizes the delayed
feedback control by a Fabry–Perot resonator [38, 139, 144]. A schematic view of
this all-optical setup is shown in Fig. 4.28. A fraction of the emitted laser light
is coupled into a resonator. The resonator then feeds an interference signal of the
actual electric field E(t) and the delayed electric field E(t − τ ) (neglecting multiple
reflections) back into the laser.
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Laser

K τ

Resonator

Fig. 4.28 Setup of a laser coupled to a Fabry–Perot resonator realizing the time-delayed feedback
control [95]

Scaling (i) time by the photon lifetime τp ≈ 10−12s, (ii) carrier density (in excess
of the threshold carrier density) by the inverse of the differential gain GN times
τp, and (iii) electric field by (τcGN)−1/2, where τc ≈ 10−9s is the carrier lifetime
(for details see [149]), one obtains a modified set of non-dimensionalized Lang–
Kobayashi equations [139] describing this setup

d

dt
E = 1

2
(1+ iα) n E (4.100)

−eiϕK [E(t)− eiψE(t − τ )]+ FE(t),

T
d

dt
n = p− n− (1+ n) |E|2,

where E is the complex electric field amplitude, n is the carrier density in excess
of the laser threshold, α is the linewidth enhancement factor, K is the feedback
strength, τ is the roundtrip time in the Fabry–Perot resonator, p is the excess pump
injection current, T = τc/τp is the timescale parameter, FE is a noise term describing
the spontaneous emission, and ϕ and φ are optical phases.

The phases ϕ andψ depend on the sub-wavelength positioning of the mirrors. By
precise tuning ϕ = 2πn and ψ = 2πm one can realize the usual Pyragas feedback
control

− K [E(t)− E(t − τ )]. (4.101)

We consider small feedback strength K, so that the laser is not destabilized and no
delay-induced bifurcations occur. A sufficient condition [139] is that

K < Kc = 1

τ
√

1+ α2
. (4.102)

The noise term FE in (4.100) arises from spontaneous emission, and we assume
the noise to be white and Gaussian

〈FE〉 = 0, 〈FE(t) FE(t′)〉 = Rspδ(t − t′), (4.103)

with the spontaneous emission rate

Rsp = β(n+ n0), (4.104)
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where β is the spontaneous emission factor and n0 is the threshold carrier density.
Without noise the laser operates in a steady state (cw emission). To find these steady
state values, we transform (4.100) into equations for intensity I and phase φ by
E = √I eiφ :

d

dt
I = n I − 2K [I −√I

√
Iτ cos (φτ − φ)]+ Rsp + FI(t),

d

dt
φ = 1

2
α n+ K

√
Iτ√
I

sin (φτ − φ)+ Fφ(t), (4.105)

T
d

dt
n = p− n− (1+ n) I,

where Iτ = I(t − τ ), φτ = φ(t − τ ), and

〈FI〉 = 0, 〈Fφ〉 = 0, (4.106)

〈FI(t) Fφ(t′)〉 = 0, (4.107)

〈FI(t) FI(t
′)〉 = 2Rsp I δ(t − t′) (4.108)

〈Fφ(t) Fφ(t′)〉 = Rsp

2I
δ(t − t′). (4.109)

Setting d
dt I = 0, d

dt n = 0, d
dtφ = const, and K = 0 and replacing the noise terms

by their mean values give a set of equations for the mean steady state solutions
I∗, n∗, and φ = ω∗t without feedback (the solitary laser mode). Our aim is now
to analyze the stability (damping rate) of the steady state. A high stability of the
steady state, corresponding to a large damping rate, will give rise to small-amplitude
noise-induced relaxation oscillations whereas a less stable steady state gives rise to
stronger relaxation oscillations. Linearizing (4.105) around the steady state X(t) =
X∗ + δX(t), with X(t) = (I, φ, n), gives

d

dt
X(t) = U X(t)− V [X(t)− X(t − τ )]+ F(t), (4.110)

with

U =
⎡

⎣
n∗ 0 I∗ + β
0 0 1

2α− 1
T (1+ n∗) 0 − 1

T (1+ I∗)

⎤

⎦ , (4.111)

(4.112)

V = diag(K, K, 0), (4.113)

where diag(...) denotes a 3× 3 diagonal matrix, and

F = (FI , Fφ , 0). (4.114)
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The Fourier transform of (4.110) gives

X̂(ω) = [iω − U + V (1− e−iωτ )]−1
︸ ︷︷ ︸

≡M

F̂(ω). (4.115)

The Fourier-transformed covariance matrix of the noise is

〈F̂(ω) F̂(ω′)†〉 = 1

2π
diag(2RspI∗,

Rsp

2I∗
, 0) δ(ω − ω′), (4.116)

with the adjoint †. The matrix-valued power spectral density S(ω) can then be
defined through

S(ω) δ(ω − ω′) = 〈X̂(ω) X̂(ω)†〉 (4.117)

and is thus given by

S(ω) = 1

2π
M diag(2RspI∗,

Rsp

2I∗
, 0) M†. (4.118)

The diagonal elements of the matrix S are the power spectrum of the intensity SδI ,
the phase Sδφ , and the carrier density Sδn. The frequency power spectrum is related
to the phase power spectrum Sδφ(ω) by [150]:

Sδφ̇(ω) = ω2 Sδφ(ω). (4.119)

The laser parameters we consider in the following are typical values for a single
mode distributed feedback (DFB) laser operating close to threshold [139, 150].

Figures 4.29 and 4.30 display the intensity and the frequency power spectra,
respectively, for different values of the delay time τ , obtained analytically from
the linearized equations (left) and from simulations of the full nonlinear equa-
tions (right). All spectra have a main peak at the relaxation oscillation frequency
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Fig. 4.29 Analytical (left) and numerical (right) results for the power spectral density SδI(ω) of the
intensity for different values of the delay time τ . Parameters: p = 1, T = 1000, α = 2, β = 10−5,
n0 = 10, and K = 0.002. (A typical unit of time is the photon lifetime τp = 10−11s, corresponding
to a frequency of 100 GHz) [95]
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Fig. 4.30 Analytical (left) and numerical (right) results for the power spectral density Sδφ(ω) of
the frequency for different values of the delay time τ . Parameters: p = 1, T = 1000, α = 2,
β = 10−5, n0 = 10, and K = 0.002 [95]

ΩRO ≈ 0.03. The higher harmonics can also be seen in the spectra obtained from
the nonlinear simulations. The main peak decreases with increasing τ and reaches a
minimum at

τopt ≈ TRO

2
= 2π

2ΩRO
≈ 100. (4.120)

With further increases of τ , the peak height increases again until it reaches approxi-
mately its original maximum at τ≈TRO. A small peak in the power spectra indicates
that the relaxation oscillations are strongly damped. This means that the fluctuations
around the steady state values I∗ and n∗ are small. Figure 4.31 displays exemplary
time series of the intensity with and without feedback. The time series with feedback
shows much less pronounced stochastic fluctuations.

Next, we study the variance of the intensity distribution as a measure for the
oscillation amplitude:
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Fig. 4.31 Intensity time series without (top panel) and with (bottom panel) control. Parameters:
p = 1, T = 1000, α = 2, β = 10−5, n0 = 10, and τ = 100 ≈ T0/2 [95]
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Fig. 4.32 Variance of the intensity I vs. the delay time. Parameters: p = 1, T = 1000, α = 2,
β = 10−5, n0 = 10, and K = 0.002 [95]
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Fig. 4.33 Probability distribution of the intensity I with and without the resonator (simulations).
Parameters: p = 1, T = 1000, α = 2, β = 10−5, n0 = 10, and K = 0.002 [95]

 I2 ≡
〈
(I − 〈I〉)2

〉
. (4.121)

Figure 4.32 displays the variance as a function of the delay time. The variance is
minimum at τ ≈ TRO/2, thus for this value of τ the intensity is most steady and
relaxation oscillations excited by noise have a small amplitude.

Figure 4.33 displays the intensity distribution of the laser without (dashed) and
with (solid) optimal control. The time-delayed feedback control leads to a narrower
distribution and less fluctuations.

In conclusion, by tuning the cavity roundtrip time of the feedback loop to half
the relaxation oscillation period, τopt ≈ TRO/2, noise-induced oscillations in a semi-
conductor laser can be suppressed to a remarkable degree.

4.4 Time-Delayed Control of Neuronal Dynamics

In this section we study the effect of time-delayed feedback in neural systems [94].
Time delays can occur in the coupling between different neurons due to signal
propagation or in a self-feedback loop, e.g., due to neurovascular coupling in the
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brain. Moreover, time-delayed feedback loops might be deliberately implemented
to control neural disturbances, e.g., to suppress undesired synchrony of firing neu-
rons in Parkinson’s disease or epilepsy [71, 72]. Here we model the neurons in the
framework of the FitzHugh–Nagumo model [151, 152], which is a simple paradigm
of excitable dynamics. Time-delayed feedback control of noise-induced oscillations
was demonstrated in a single excitable FitzHugh–Nagumo system [26, 27, 89, 91].
The simplest network configuration displaying features of neural interaction con-
sists of two coupled excitable systems. In two coupled FitzHugh–Nagumo systems
two situations are studied: (i) stochastic synchronization of instantaneously coupled
neurons under the influence of white noise and controlled by local time-delayed
feedback [93, 153] and (ii) the emergence of antiphase oscillations in delay-coupled
neurons and complex scenarios induced by the additional application of time-
delayed self-feedback such as transitions from synchronized in-phase to antiphase
oscillations, bursting patterns, or amplitude death [94, 154]. In spatially extended
neuronal media time-delayed feedback as well as nonlocal spatial coupling has also
been studied, and it has been shown that pulse propagation in a reaction–diffusion
system can be suppressed by appropriate choice of the space or timescales of the
feedback [22, 23], which suggests failure of feedback as a common mechanism for
spreading depolarization waves in migraine aura and stroke. However, in the present
section we restrict ourselves to spatially homogeneous coupled FitzHugh–Nagumo
systems.

4.4.1 Model of Two Coupled Neurons

In order to grasp the complicated interaction between billions of neurons in large
neural networks, those are often lumped into groups of neural populations each of
which can be represented as an effective excitable element that is mutually coupled
to the other elements [145, 72]. In this sense the simplest model which may reveal
features of interacting neurons consists of two coupled neural oscillators. Each of
these will be represented by a simplified FitzHugh–Nagumo system, which is often
used as a paradigmatic generic model for neurons, or more generally, excitable sys-
tems [34].

Neurons are excitable units that can emit spikes or bursts of electrical signals,
i.e., the system rests in a stable steady state, but after it is excited beyond a thresh-
old, it emits a pulse. In the following, we consider electrically coupled neurons
(Fig. 4.34 a) modeled by the FitzHugh–Nagumo system in the excitable regime:

ε1u̇1 = u1 − u3
1

3
− v1 + C[u2(t − τ )− u1(t)]

v̇1 = u1 + a+ D1ξ1(t)

ε2u̇2 = u2 − u3
2

3
− v2 + C[u1(t − τ )− u2(t)]

v̇2 = u2 + a+ D2ξ2(t), (4.122)
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Fig. 4.34 (a) Scheme of two axo-axonally coupled neurons (pyramidal cells coupled by an elec-
trical synapse) [155]. (b) Two mutually coupled neural populations (delay τ , coupling constant C)
with feedback control loop (delay τK , coupling constant K) and noise input D1, D2 [94]

where the subsystems u1, v1 and u2, v2 correspond to single neurons (or neuron
populations), which are linearly coupled with coupling strength C. The variables
u1 and u2 are related to the transmembrane voltage and v1 and v2 refer to various
quantities connected to the electrical conductance of the relevant ion currents. Here
a is an excitability parameter whose value defines whether the system is excitable
(a > 1) or exhibits self-sustained periodic firing (a < 1), ε1 and ε2 are the timescale
parameters that are usually chosen to be much smaller than unity, corresponding to
fast activator variables u1, u2 and slow inhibitor variables v1, v2.

The synaptic coupling between two neurons is modeled as a diffusive coupling
considered for simplicity to be symmetric [156–158]. More general delayed cou-
plings are considered in [159]. The coupling strength C summarizes how informa-
tion is distributed between neurons. The mutual delay τ in the coupling is motivated
by the propagation delay of action potentials between the two neurons u1 and u2.
Time delays in the coupling must be considered particularly in the case of high-
frequency oscillations.

Each neuron is driven by Gaussian white noise ξi(t) (i = 1, 2) with zero mean
and unity variance. The noise intensities are denoted by parameters D1 and D2.

Besides the delayed coupling we will also consider delayed self-feedback in the
form suggested by Pyragas [6], where the difference s(t)−s(t−τK) of a system vari-
able s (e.g., activator or inhibitor) at time t and at a delayed time t−τK , multiplied by
some control amplitude K, is coupled back into the same system (Fig. 4.34b). Such
feedback loops might arise naturally in neural systems, e.g., due to neurovascular
coupling that has a characteristic latency or due to finite propagation speed along
cyclic connections within a neuron sub-population or they could be realized by
external feedback loops as part of a therapeutical measure, as proposed in [72]. This
feedback scheme is simple to implement, quite robust, and has already been applied
successfully in a real experiment with time-delayed neurofeedback from real-time
magnetoencephalography (MEG) signals to humans via visual stimulation in order
to suppress the alpha rhythm, which is observed due to strongly synchronized neural
populations in the visual cortex in the brain [160]. One distinct advantage of this
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method is its non-invasiveness, i.e., in the ideal deterministic limit the control force
vanishes on the target orbit, which may be a steady state or a periodic oscillation
of period τ . In the case of noisy dynamics the control force, of course, does not
vanish but still remains small, compared to other common control techniques using
external periodic signals, for instance, in deep brain stimulation to suppress neural
synchrony in Parkinson’s disease [161].

The phase portrait and the nullclines of a single FitzHugh–Nagumo system with-
out noise and feedback are shown in Fig. 4.35(a). The fixed point A is a stable focus
or node for a > 1 (excitable regime). If the system is perturbed well beyond point
A′ (see inset), it performs a large excursion A→ B→ C→ D→ A in phase space
corresponding to the emission of a spike (Fig. 4.35b). At a = 1 the system exhibits
a Hopf bifurcation of a limit cycle, and the fixed point A becomes an unstable focus
for a < 1 (oscillatory regime).

In the following we choose the excitability parameter a = 1.05 in the excitable
regime close to threshold. If noise is present, it will occasionally kick the system
beyond A′ resulting in noise-induced oscillations (spiking).
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Fig. 4.35 Excitable dynamics of a single FitzHugh–Nagumo system: (a) phase portrait (u1, v1)
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inhibitor v1(t) (green). The colored dots A, B, C, and D mark corresponding points on panels (a)
and (b). The inset in (b) shows a blowup of the phase portrait near A. Parameters: ε1 = 0.01,
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4.4.2 Control of Stochastic Synchronization

We shall first consider two coupled FitzHugh–Nagumo systems as in (4.122) albeit
without delay in the coupling (τ = 0). Noise can induce oscillations even though the
fixed point is stable. The noise sources then play the role of stimulating the excitable
subsystems. Even if only one subsystem is driven by noise, it induces oscillations
of the whole system through the coupling. In this subsection, we consider two non-
identical neurons, described by different timescales ε1 = 0.005 and ε2 = 0.1, and
set the noise intensity D2 in the second subsystem equal to a small value, D2 = 0.09,
in order to model some background noise level. Depending on the coupling strength



134 E. Schöll et al.

C and the noise intensity D1 in the first subsystem, the two neurons show weak,
moderate, or strong stochastic synchronization [93].

If feedback is applied to one of the two interacting subsystems [93, 153], i.e.,
locally, the dynamical equations are given by:

ε1 u̇1 = u1 − u3
1

3
− v1 + C (u2 − u1) ,

v̇1 = u1 + a+ K [v1(t − τ )− v1(t)]+ D1 ξ (t), (4.123)

ε2 u̇2 = u2 − u3
2

3
− v2 + C (u1 − u2) ,

v̇2 = u2 + a+ D2 ξ2(t), (4.124)

where subsystems (4.123) and (4.124) represent two different neurons, and local
feedback with strength K and delay time τ is applied to the first subsystem.

There are various measures of the synchronization of coupled systems [162].
For instance, one can consider the average interspike intervals (ISI) of each subsys-
tem, i.e., 〈T1〉 and 〈T2〉, calculated from the u variable of the respective subsystem.
Their ratio 〈T1〉/〈T2〉 is a measure of frequency synchronization. Other measures for
stochastic synchronization are given by the phase synchronization index [93] or the
mean phase synchronization intervals [153].

First, we consider subsystems (4.123) and (4.124) with D1 = 0.6 and C = 0.2,
which corresponds to a moderately synchronized uncontrolled system. We aim to
find out if the feedback can make the subsystems more, or less, synchronous, and
their global dynamics more or less coherent. In particular, we are interested if per-
fect 1:1 synchronization can be induced by the local feedback or if the existing
synchronization can be destroyed. The ratio of ISIs and the synchronization index
γ1,1 are shown by color code in Fig. 4.36 for a large range of the values of the
feedback delay τ and strength K. The lighter areas are associated with the stronger
1:1 synchronization, and the values at K = 0 and at τ = 0 characterize the original
state of the system without feedback. As seen from Fig. 4.36, the locally applied
delayed feedback is able to move the system’s state closer to the 1:1 synchronization
with suitable feedback parameters. On the other hand, for τ ≈ 2.5 (black area), 1:1
synchronization is suppressed.

Next, we consider weakly synchronized subsystems (4.123) and (4.124) that are
further from the 1:1 synchronization region under the influence of the controlling
feedback. For D1 = 0.6 and C = 0.1, the ratio of ISIs and the synchronization index
γ1,1 are shown by color code in Fig. 4.37. Again, the stochastic synchronization can
be strongly modulated by changing the delay time, i.e., one can either enhance or
suppress synchronization by appropriate choice of the local feedback delay.

Finally, for the system that is very well synchronized from the beginning at
D1 = 0.15 and C = 0.2 again delayed feedback can either enhance or suppress
synchronization (Fig. 4.38). In view of applications, where neural synchronization
is often pathological, e.g., in Parkinson’s disease or epilepsy, it is interesting to note
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Fig. 4.36 Effect of delayed feedback on frequency and phase synchronizations between the two
subsystems at D1 = 0.6 and C = 0.2 (moderate synchronization). (a) Ratio of average interspike
intervals 〈T1〉/〈T2〉 from the two systems and (b) synchronization index γ1,1 vs. the control strength
K and the time delay τ [93]

Fig. 4.37 Same as Fig. 4.36 for D1 = 0.6 and C = 0.1 (weak synchronization) [93]
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Fig. 4.38 Same as Fig. 4.36 for D1 = 0.15 and C = 0.2 (strong synchronization) [93]

that there are cases where a proper choice of the local feedback control parameters
leads to desynchronization of the coupled system (dark regions in all three figures).

4.4.3 Dynamics of Delay-Coupled Neurons

In this section we study the influence of a delay in the coupling of two neurons
[94, 154], rather than a delayed self-feedback (K = 0). We set the noise terms in
(4.122) equal to zero, D1 = D2 = 0, but consider a time delay τ in the coupling.
In the deterministic system the delayed coupling plays the role of a stimulus which
can induce self-sustained oscillations in the coupled system even if the fixed point
is stable. In this sense the delayed coupling has a similar effect as the noise term in
the previous section. Here the bifurcation parameters for delay-induced bifurcations
are the coupling parameters C and τ .

In the following we shall choose symmetric timescales ε1 = ε2 = ε = 0.01 and
fix a = 1.05, where each of the two subsystems has a stable fixed point and exhibits
excitability.

The unique fixed point of the system is symmetric and is given by u∗ ≡
(u∗1, v∗1, u∗2, v∗2), where u∗i = −a and v∗i = a3/3 − a. Linearizing (4.122) around
the fixed point u∗ by setting u(t) = u∗ + δu(t), one obtains:

δu̇ = 1

ε

⎛

⎜⎜
⎝

ξ −1 0 0
ε 0 0 0
0 0 ξ −1
0 0 ε 0

⎞

⎟⎟
⎠ δu(t)+ 1

ε

⎛

⎜⎜
⎝

0 0 C 0
0 0 0 0
C 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ δu(t − τ ), (4.125)
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where ξ = 1− a2 − C. The ansatz

δu(t) = eλtu, (4.126)

where u is an eigenvector of the Jacobian matrix, leads to the characteristic equation
for the eigenvalues λ:

(1− ξλ+ ελ2)2 − (λCe−λτ )2 = 0, (4.127)

which can be factorized giving

1− ξλ+ ελ2 ± λCe−λτ = 0. (4.128)

This transcendental equation has infinitely many complex solutions λ. The real
parts of all eigenvalues are negative throughout, i.e., the fixed point of the cou-
pled system remains stable for all C. This can be shown analytically for a > 1 by
demonstrating that no delay-induced Hopf bifurcation can occur. Substituting the
ansatz λ = iω into (4.128) and separating into real and imaginary parts yields for
the imaginary part

ξ = ±C cos (ωτ ). (4.129)

This equation has no solution for a > 1 since |ξ | = a2 − 1+ C > C, which proves
that a Hopf bifurcation cannot occur.

Delay-induced oscillations in excitable systems are inherently different from
noise-induced oscillations. The noise term continuously kicks the subsystems out
of their respective rest states and thus induces sustained oscillations. Instantaneous
coupling without delay then produces synchronization effects between the individ-
ual oscillators [93, 153]. For delayed coupling the case is entirely different. Here the
impulse of one neuron triggers the other neuron to emit a spike, which in turn, after
some delay, triggers the first neuron to emit a spike. Hence self-sustained periodic
oscillations can be induced without the presence of noise (Fig. 4.39). It is evident
that the oscillations of the two neurons have a phase lag of π . The period of the
oscillations is given by T = 2(τ + δ) with a small quantity δ > 0.

In order to understand this additional phase shift δ, we shall now consider in
detail the different stages of the oscillation as marked in Fig. 4.35. Due to the small
value of ε  1 there is a distinct timescale separation between the fast activators
and the slow inhibitors, and a single FitzHugh–Nagumo system performs a fast hor-
izontal transition A → B, then travels slowly approximately along the right stable
branch of the u1 nullcline B→C (firing), then jumps back fast to D, and returns
slowly to the rest state A approximately along the left stable branch of the u1 null-
cline (refractory phase). If a is close to unity, these four points are approximately

given by A = (− a,−a+ a3
1

3 ), B = (2,− 2
3 ), C = (1, 2

3 ), and D = (− 2, 2
3 ). A rough

estimate for A′ is (a− 2,−a+ a3
1

3 ). The two slow phases B→ C and D→ A can be

approximated by v1 ≈ u1 − u3
1

3 and hence v̇1 ≈ u̇1(1− u2
1) = u1 + a which gives
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Fig. 4.39 Delay-induced oscillations. (a), (b): Time series of both subsystems (red solid lines:
activator ui, green solid lines: inhibitor vi, and black dashed lines: fixed point values of activator
and inhibitor). (c), (d): Phase portraits of activators (c) and inhibitors (d). Parameters: a = 1.05,
ε = 0.01, C = 0.5, and τ = 3 [94]

u̇1 = u1 + a

1− u2
1

, (4.130)

which can be solved analytically, describing the firing phase (+) and the refractory
phase (−):

∫ u

±2
dx1

1− u2
1

u1 + a
= (a2 − 1) ln

a± 2

a+ u
− a(± 2− u)+ 2− u2

2
= t. (4.131)

Integrating from B to C gives the firing time

Tf =
∫ 1

2
dx1

1− u2
1

u1 + a
= (a2 − 1) ln

a+ 2

a+ 1
− a+ 3

2
. (4.132)

For ε = 0.01, a = 1.05 the analytical solution is in good agreement with the
numerical solution in Fig. 4.35(b), including the firing time Tf = 0.482 (analytical
approximation: 0.491).

For a rough estimate, in the following we shall approximate the spike by a rect-
angular pulse

u1(t) ≈
{

2 if t < Tf ,
−a if t ≥ Tf .

(4.133)
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If the first subsystem is in the rest state, and a spike of the second subsystem
arrives at t = 0 (after the propagation delay τ ), we can approximate the initial
dynamic response by linearizing u1, v1 around the fixed point (u∗1, v∗1) and approx-
imating the feedback by a constant impulse during the firing time Tf . The fast
dynamic response along the u1 direction is then given by

εδu̇1 = ξδu1 + 2C (4.134)

with ξ < 0. This inhomogeneous linear differential equation can be solved with the
initial condition u1(0) = −a:

u1(t) = −a+ 2C

|ξ | (1− e−
|ξ |
ε

t). (4.135)

Note that this equation is not valid for large t since (i) the linearization breaks down,
and (ii) the pulse duration Tf is exceeded. For small t (4.135) can be expanded as

u1(t) = −a+ 2C

ε
t, (4.136)

which is equivalent to neglecting the upstream flow field −|ξ |δu1 in (4.134) near
the stable fixed point A compared to the pulling force 2C of the remote spike which
tries to excite the system toward B. Once the system has crossed the middle branch
of the u1 nullcline at A′, the intrinsic flow field accelerates the trajectory fast toward
B, initiating the firing state. Therefore there is a turn-on delay δ, given by the time
the trajectory takes from A to A′, i.e., u1(δ) ≈ a− 2, according to (4.136):

δ = (a− 1)
ε

C
. (4.137)

Since the finite rise time of the impulse has been neglected in our estimate, the exact
solution δ is slightly larger and does not vanish at a = 1.

With increasing a the distance A−A′ increases and so does δ. The small additional
phase shift δ between the spike u1(t) and the delayed pulse u2(t − τ ) results in a
non-vanishing coupling term at the beginning and at the end of the spike u1(t). It is
the reason (i) that the spike is initiated and (ii) that it is terminated slightly before
the turning point of the u1 nullcline. The latter effect becomes more pronounced if
a is increased or τ is decreased (Fig. 4.40). Both lead to a shift of the initial starting
point of the spike emission on the left branch of the nullcline toward D, and hence to
a longer distance up to the middle branch of the nullcline which has to be overcome
by the impulse u2, hence to a larger turn-on delay δ, and therefore to an earlier
termination of the spike u1. This explains that the firing phase is shortened, and the
limit cycle loop is narrowed from both sides with increasing a or decreasing τ , see
Fig. 4.40. In the case of a = 1.05 and τ = 3 (Fig. 4.40 a), the delay time is large
enough for the two subsystems to nearly approach the fixed point A before being
perturbed again by the remote signal. If the delay time becomes much smaller, e. g.,
for τ = 0.8 (Fig. 4.40 b), the excitatory spike of the other subsystem arrives while
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Fig. 4.40 Phase portraits of delay-coupled excitable system (u1, v1) for different delay times τ
(trajectories: solid blue and nullclines: dashed black). (a) τ = 3 (δ = 0.009) and (b) τ = 0.8
(δ = 0.015). Other parameters: a=1.05, ε=0.01, and C=0.5 [94]

the first system is still in the refractory phase, so that it cannot complete the return
D→ A to the fixed point. In this case, a in (4.137) has to be substituted by a larger
value ã with a < ã < 1.7 in order to get a better estimate of δ. Note that without the
phase shift δ the coupling term C[u2(t − τ )− u1(t)] would always vanish in the 2τ
periodic state.

Next, we shall investigate conditions upon the coupling parameters C and τ
allowing for limit cycle oscillations. On one hand, if τ becomes smaller than some
τmin, the impulse from the excitatory neuron arrives too early to trigger a spike, since
the system is still early in its refractory phase. On the other hand, if C becomes too
small, the coupling force of the excitatory neuron is too weak to excite the system
above its threshold and pull it far enough toward B.

In Fig. 4.41 the regime of oscillations is shown in the parameter plane of the
coupling strength C and coupling delay τ . The oscillation period is color coded.
The boundary of this colored region is given by the minimum coupling delay τmin
as a function of C. For large coupling strength, τmin is almost independent of C,
with decreasing C it sharply increases, and at some small minimum C no oscilla-
tions exist at all. At the boundary, the oscillation sets in with finite frequency and
amplitude as can be seen in the insets of Fig. 4.41 which show a cut of the parameter
plane at C = 0.8. The oscillation period increases linearly with τ . The mechanism
that generates the oscillation is a saddle-node bifurcation of limit cycles (see inset
(b) of Fig. 4.41), creating a pair of a stable and an unstable limit cycle. The unstable
limit cycle separates the two attractor basins of the stable limit cycle and the stable
fixed point.

4.4.4 Delayed Self-Feedback and Delayed Coupling

In this section we consider the simultaneous action of delayed coupling and delayed
self-feedback [94]. Here we choose to apply the self-feedback term symmetrically
to both activator equations, but other feedback schemes are also possible:
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ε1u̇1 = u1 − u3
1

3
− v1 + C[u2(t − τ )− u1(t)]+ K[u1(t − τK)− u1(t)]

v̇1 = u1 + a

ε2u̇2 = u2 − u3
2

3
− v2 + C[u1(t − τ )− u2(t)]+ K[u2(t − τK)− u2(t)]

v̇2 = u2 + a. (4.138)

By a linear stability analysis similar to Sect. 4.4.3 it can be shown that the fixed
point remains stable for all values of K and τK in the case of a > 1, as without self-
feedback. Redefining ξ = 1− a2 −C−K, one obtains the factorized characteristic
equation

1− ξλ+ ελ2 = λKe−λτK ± λCe−λτ (4.139)

Substituting the Hopf condition λ = iω and separating into real and imaginary parts
yields for the imaginary part

− ξ = K cos (ωτK)± C cos (ωτ ) (4.140)

This equation has no solution for a > 1 since |ξ | = a2 − 1+ C + K > C + K.
The adopted form of control allows for the synchronization of the two cells

not only for identical values of τ and τK but also generates an intricate pattern
of synchronization islands or stripes in the control parameter plane (Fig. 4.42)
corresponding to single-spike in-phase and antiphase oscillations with constant
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interspike intervals, see also Fig. 4.43(a–d). Further, for adequately chosen param-
eter sets of coupling and self-feedback control, we observe effects such as bursting
patterns (Fig. 4.43f) and oscillator death (Fig. 4.43e). In addition to these effects,
there exists a control parameter regime in which the self-feedback has no effect on
the oscillation periods (shaded yellow).

Figure 4.42 shows the control parameter plane for coupling parameters of the
uncontrolled system in the oscillatory regime (C = 0.5 and τ = 3). We observe
three principal regimes: (i) control has no effect on the oscillation period (yellow),
although the form of the stable limit cycle is slightly altered (Fig. 4.43a); (ii) islands
of in-phase and antiphase synchronization (color coded, see Fig. 4.43 (b–d)); and
(iii) oscillator death (black) Fig. 4.43 e).

Figure 4.44 shows the average phase synchronization time as a function of the
coupling delay τ and self-feedback delay τK for fixed K = 0.5. The bright straight
rays at rational τK/τ indicate long intervals during which both subsystems remain
synchronized. A particularly long average synchronization time is found if the two
delay times are equal.

In conclusion, we have shown that delayed feedback from other neurons or
self-feedback from the same neuron can crucially affect the dynamics of coupled
neurons. In the case of noise-induced oscillations in instantaneously coupled neural
systems, time-delayed self-feedback can enhance or suppress stochastic synchro-
nization, depending upon the delay time. In the case of delay-coupled neurons
without driving noise sources, the propagation delay of the spikes fed back from
other neurons can induce periodic antiphase oscillations for sufficiently large cou-
pling strength and delay times. If self-feedback is applied additionally, synchronous
zero-lag oscillations can be induced in some ranges of the control parameters, while
in other regimes antiphase oscillations or oscillator death as well as more complex
bursting patterns can be generated.
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Fig. 4.44 Average phase
synchronization time (color
coded) in the control
parameter plane of coupling
delay τ and self-feedback
delay τK . Other parameters:
a = 1.3, ε = 0.01, C = 0.5,
and K = 0.5 [94]
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