
Chapter 1
Amplitude Death, Synchrony, and Chimera
States in Delay Coupled Limit Cycle Oscillators

Abhijit Sen, Ramana Dodla, George L. Johnston, and Gautam C. Sethia

1.1 Introduction

In this chapter we will discuss the effects of time delay on the collective states of a
model mathematical system composed of a collection of coupled limit cycle oscilla-
tors. Such an assembly of coupled nonlinear oscillators serves as a useful paradigm
for the study of collective phenomena in many physical, chemical, and biological
systems and has therefore led to a great deal of theoretical and experimental work in
the past [1–6]. Examples of practical applications of such models include simulating
the interactions of arrays of Josephson junctions [7, 8], semiconductor lasers [9, 10],
charge density waves [11], phase-locking of relativistic magnetrons [12], Belousov–
Zhabotinskii reactions in coupled Brusselator models [2, 13–15], and neural oscil-
lator networks for circadian pacemakers [16]. One of the most commonly studied
phenomena is that of synchronization of the diverse frequencies of an oscillator
assembly to a single common frequency. Synchrony was highlighted by Winfree [1]
in a simple model of weakly coupled limit cycle oscillators and further developed by
Kuramoto and others in the context of phase transition models [17, 18]. Research on
synchrony in a variety of coupled and complex systems has seen an explosive growth
in the past few years and has also captured the popular imagination [19] due to its
application to such natural phenomena as the synchronous flashing of a swarm of
fire flies, the chirping of crickets in unison, and the electrical synchrony in cardiac
cells. Apart from synchrony, coupled limit cycle oscillator models are capable of
exhibiting other interesting behavior. For example, if the strength of the interaction
between the oscillators is comparable to the attraction to their own individual limit
cycles, then the original phase-only model of Winfree or Kuramoto is no longer
valid and the amplitudes of the individual oscillators begin to play a role [20–23].
For sufficiently strong coupling and a broad spread in the natural frequencies of the
oscillators, the assembly can suffer an amplitude quenching or death [5, 24, 25]
in which all the oscillators cease to oscillate and have zero amplitudes. Such
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behavior has been observed in experiments of coupled chemical oscillator systems,
e.g., coupled Belousov–Zhabotinskii reactions carried out in coupled tank reac-
tors [26]. Other collective phenomena that these coupled oscillator models display
include partial synchronization, phase trapping, large amplitude Hopf oscillations,
and even chaotic behavior [25, 27]—all of which have been discussed widely in the
literature.

The question we wish to address now is what happens to the collective properties
of the coupled oscillator system when one introduces time delay in the coupling. The
physical motivation for such a modification of the coupling is to simulate the situ-
ation in real-life systems where the interaction between individual oscillators may
not be instantaneous but may be delayed due to finite propagation time of signals.
Time delays can similarly occur in chemical systems due to finite reaction times, and
in biological systems like neuron assemblies, the synaptic integration mechanisms
may provide a natural delay. From a mathematical point of view, one can expect
time delays to have a profound effect on the dynamical characteristics of a single
oscillator. This is well known from the study of single delay differential equations
which show fundamental changes in the nature of solutions and novel effects that are
absent in a non-delayed system. What happens to the collective modes of a coupled
system in the presence of time delay? Surprisingly, there has not been a great deal
of work in this area despite the vast literature on single delay differential equations
and the considerable recent developments in the field of coupled oscillator research.
Some notable exceptions are the works of Schuster and Wagner [28], Niebur et al.
[29], Nakamura et al. [30], and Kim et al. [31], who in the past have looked at
time delay effects in the context of the simple phase-only coupled oscillator mod-
els and found interesting effects like the existence of higher frequency states and
changes in the onset conditions and nature of synchronization. More recently we
have investigated a variety of model systems starting from a simple case of just two
oscillators with a discrete time-delayed coupling to a large number of oscillators
with time-delayed global, local, and non-local couplings [32–37]. Time delay is
found to introduce significant changes in the character and onset properties of the
various collective regimes such as amplitude death and phase-locked states. Some of
the results are novel and somewhat surprising—such as time delay-induced death in
an assembly of identical oscillators or the existence of clustered chimera states—and
may have important applications. With a growing recognition of the significance and
prevalence of time delay in various systems, there is now a considerable increase in
the number of investigations on this topic. The aim of this chapter is to provide
some appreciation of this interesting area of nonlinear dynamical systems through
an exposition of the basic concepts of the field followed by a discussion of some
research results. It is not meant to be a review of the field and the choices of topics
and research results are heavily influenced by our own work.

The chapter is organized as follows. In Sect. 1.2 we develop the basics of the
subject by introducing a minimal collective model consisting of two coupled limit
cycle oscillators that are close to a supercritical Hopf bifurcation. After identifying
the fundamental collective states of this system in the undelayed case we discuss
the effects of a finite time delay on the existence and stability of phase-locked states
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and amplitude death. In Sect. 1.3 we introduce a more complex model consisting of
N-coupled oscillators (N > 2). The oscillators in such a system can be coupled in
various ways: all-to-all (global), nearest neighbor (local), or spatially varying cou-
pling (non-local). We discuss time-delayed collective states in all three systems and
discuss their essential characteristics. Our primary emphasis is on the exploration
of the amplitude death state in all three coupling scenarios. We also investigate
the effect of time delay on a novel state of the non-local system—the so-called
chimera state—consisting of co-existing regions of coherent and incoherent states.
Time delay is seen to impose a spatial modulation of such a state leading to a clus-
tered chimera state. Section 1.4 provides a summary of the main results and some
perspective on the future directions and potential developments of the field.

1.2 A Minimal Collective Model

We begin our exploration of time delay effects on the collective states of coupled
oscillator systems by investigating the dynamics of a minimal model system consist-
ing of just two coupled limit cycle oscillators that are close to a supercritical Hopf
bifurcation. The individual oscillator of this model is chosen to have the nonlinear
normal form of a van der Pol-type equation. The van der Pol equation has a param-
eter that can be varied to take the solution state from a fixed point (a steady state) to
an oscillatory state via a supercritical Hopf bifurcation. To illustrate this, consider
the van der Pol equation in the following form:

ẍ− (a− x2)ẋ+ ω2x = 0. (1.1)

In this and other equations below, the variables x, y, z, ξ , φ, ρ, and θ are functions of
time, though, for simplicity, such a dependence is not explicitly written down, and
a and ω are real parameters. For a < 0, x = 0 is a stable steady state of (1.1), and
a periodic solution emerges as a is increased past 0. For large a these oscillations
acquire the character of relaxation oscillations. Thus, a = 0 is a bifurcation point.
The eigenvalues of the system for a linear perturbation around the origin (λ1,2 = a

2±
i
√
ω2 − a2/4) acquire pure imaginary values (±iω) with dRe(λ1,2)

da = 1
2 > 0 at a = 0.

A normal form of the equation that preserves these properties can be obtained by
doing an appropriate averaging over the fast periodic behavior near the critical point
a = 0. The resulting nonlinear equation has a simpler structure (that is easier to work
with analytically and numerically) and yet maintains the bifurcation characteristics
of the original oscillator equation. To carry out such a reduction we rewrite (1.1) as
a set of two first-order differential equations, ẋ = ωy and ẏ = −ωx + (a − x2)y.
Defining a complex variable z = x + iy, these equations may be written as a single
equation in terms of z:

ż = −iωz+ 1

2

[
a− 1

4
(z+ z̄)2

]
(z− z̄).
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Let z = ξe−iφ . (The negative sign introduced in the phase is of no physical sig-
nificance. The phase flow of the van der Pol is clockwise, but in the biological
phase oscillators where equations of the type θ̇ = ω are common, the phase flow is
anti-clockwise and is in the direction of increasing angle.) Then the following two
equations emerge for the amplitude and the phase:

ξ̇ = (a− ξ2 cos2 φ)ξ sin2 φ,

φ̇ = ω + 1

2
(a− ξ2 cos2 φ) sin (2φ).

We now average these two equations over the phase φ. The right-hand side of the
ξ̇ equation is an even function of φ, and the average over φ from 0 to π results in
(a − ξ2/4)ξ/2. The second term on the right-hand side of the φ̇ equation is an odd
function of φ, and an average over a period of φ makes it zero. We call the averaged
amplitude and the phase ρ and θ . Hence,

ρ̇ =
(

a− 1

4
ρ2

)
ρ

2
, (1.2)

θ̇ = ω. (1.3)

The behavior of the two eigenvalues of this reduced set of equations at a = 0 is
the same as that of (1.1) mentioned before. We can also see this by noting from
(1.2) and (1.3) that the growth of amplitude for very small perturbations around
ρ = 0 is proportional to a/2 and the frequency of such a growth is ω, identical to
the eigenvalue behavior of (1.1). For a positive but near 0, the phase plane orbits
of (1.1) are circular just as those for (1.2) and (1.3), but will become distorted for
large a. Using ρ and θ , a second-order approximation for the amplitude and phase
can be derived that reveals the dependence of the amplitude on the phase and the
phase evolution on the amplitude. But we confine our description to the first-order
approximation. By redefining Z(t) = ρ

2 eiθ , (1.2) and (1.3) can be written as a single
equation in the complex variable Z(t), namely,

Ż(t) = (a+ iω− | Z(t) |2 )Z(t) (1.4)

and which is the final normal form of the equation that we will work with. Equa-
tion (1.4) is also widely known as the Stuart–Landau oscillator. Note that this equa-
tion shows stable oscillations (Z(t) = √aeiωt) for a > 0 with amplitude

√
a and

a stable rest state (Z(t) = 0) for a < 0. The value a = 0 is the supercritical
Hopf bifurcation point. Our minimal model consists of two such oscillators that are
linearly (diffusively) coupled to each other and where the coupling is time delayed.
The model equations are

Ż1(t) = (1+ iω1− | Z1(t) |2 )Z1(t)+ K[Z2(t − τ )− Z1(t)], (1.5)

Ż2(t) = (1+ iω2− | Z2(t) |2 )Z2(t)+ K[Z1(t − τ )− Z2(t)], (1.6)
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where we have chosen a = 1 (so that each oscillator in the uncoupled state is in
the stable limit cycle state), K is the strength of coupling, and τ is a discrete and
constant delay time. As an approximation to a physical system, (1.5) and (1.6) can
be viewed as two nonlinear electronic circuits that are resistively coupled to each
other. We will study the dynamics of the above system in terms of the frequency
difference (Δ =| ω1 − ω2 |), the average frequency (ω̄ = (ω1 + ω2)/2), and the
coupling strength (K) as a function of the time delay parameter τ . In the absence of
time delay, the above set of equations (and its generalizations) have been studied in
detail by Aronson et al. [24] to delineate the bifurcation structures and the existence
of various collective states. In Fig. 1.1 we have redrawn their bifurcation diagram to
illustrate the main features of their analyses. Broadly, the bifurcation diagram may
be divided into three regimes: (1) frequencies are identical, ω1 = ω2 = ω, that is
Δ = 0, (2) frequencies are weakly dissimilar (i.e., 0 < Δ < 2), and (3) frequen-
cies are very dissimilar (i.e., Δ > 2). For identical intrinsic frequencies (Δ = 0),
the coupled oscillators are always synchronized (with no phase delay between the
oscillations). This is the only stable solution for any positive and finite coupling
strength. The level of K determines how fast the synchronized state is attained from
any given set of initial conditions. For weakly dissimilar frequencies (0 < Δ < 2),
the oscillators can be found in two different states: phase drift or phase-locked states.
A critical value of coupling (K > Δ/2) is required to phase-lock the oscillators. In
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Fig. 1.1 Aronson et al.’s [24] bifurcation diagram of (1.5) and (1.6) for τ = 0. The boundaries
of the death state are determined from the eigenvalues of the linearized equations at Z1,2 = 0:
For Δ > 2, K = 1 and κ ≡ K = 1

2 (1 + Δ2/4) define the boundaries. The stable phase-locked
state is the node of symmetric solutions that form a saddle-node pair that emerges on Δ = 2K
and K < 1. The saddle merges with the origin on the thin line, κ . The node has the amplitude

ρ+ =
√

1− K +√
K2 −Δ2/4, Ω = ω̄, and α+ = sin−1 (Δ/2K)
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such phase-locked state, the phase difference between the oscillators is a constant
of time and is determined by the coupling strength and the frequency difference.
For weak coupling in this regime, a phase drift occurs (i.e., θ1 − θ2 is a function of
time and runs from 0 to 2π ). In these two regimes, the amplitude of the oscillators
does not offer any particularly interesting feature. In the third regime (Δ > 2),
however, when the frequency disparity is strong, a third solution, a stable amplitude
death state, can exist in addition to phase drift and phase-locked states. The level
of coupling strength determines the stability of each of these states. For K < 1,
phase drift occurs. For K > (1 + Δ2/4)/2, phase-locking occurs. For intermediate
K, the amplitude of the oscillators becomes zero. This state is nothing but the stable
fixed point state (Z1, 2(t) = 0) and does not exist for phase-only coupled oscillators
(i.e., when the amplitudes of the two oscillators are forced to assume a value of
unity while letting the phases to evolve). This state is a reflection of the effect of
amplitude on the collective oscillations of the coupled oscillators. The boundaries
of various regions can be determined by a stability analysis of these states [24]. We
will now study the effect of finite time delay (τ �= 0) on the characteristics of this
phase diagram.

1.2.1 Time delay effects

We rewrite the model Equations (1.5) and (1.6) in polar coordinates by letting
Z1,2(t) = r1,2eiθ1,2 to get

ṙ1(t) = (1− K − r1(t)2)r1(t)+ Kr2(t − τ ) cos [θ2(t − τ )− θ1(t)], (1.7)

θ̇1(t) = ω1 + K
r2(t − τ )

r1(t)
sin [θ2(t − τ )− θ1(t)], (1.8)

ṙ2(t) = (1− K − r2(t)2)r2(t)+ Kr1(t − τ ) cos [θ1(t − τ )− θ2(t)], (1.9)

θ̇2(t) = ω2 + K
r1(t − τ )

r2(t)
sin [θ1(t − τ )− θ2(t)]. (1.10)

This form is more useful for analysis of periodic states whereas the Cartesian form
is convenient for linear stability studies, and we will utilize either form as per our
needs.

1.2.1.1 Phase-Locked States

Let us consider identical oscillators, that is, Δ = 0, and hence ω1 = ω2 ≡ ω0.
This is also trivially the average frequency ω̄. Without time delay (τ = 0), the
in-phase-locked state is a stable solution. The interactions are instantaneous and do
not depend on time history. Hence, any phase mismatch introduced by way of pertur-
bation is transmitted to both the oscillators instantly. Once the perturbation ceases,
the oscillators resume their oscillations with their natural frequencies. The coupling
coefficient K determines the recovery time window before their natural oscillations
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Fig. 1.2 Numerical solutions of coupled identical (Δ = 0) oscillators ((1.5) and (1.6)) at K = 2,
ω0 = 10. The initial conditions are x1 = 0.3, x2 = 0.5, y1 = 0, y2 = 0. The delay vectors
Z1,2(t) = 0, τ < t < 0. Stable in-phase-locked state is reached quickly for very small or no time
delay. Amplitude death is encountered as τ is increased, and the system emerges into an anti-phase-
locked state for further increments. Our analysis will reveal multiple regions of amplitude death at
larger values of τ

are synchronized. This stable state is also seen in the bifurcation diagram (Fig. 1.1).
The evolution of the real components of the two oscillators in this in-phase-locked
state are illustrated in Fig. 1.2(a).

For finite τ the interactions are non-instantaneous. Earlier studies on phase cou-
pled oscillators that included time delays predicted multiple frequency states where
the oscillators could possess any of several stable frequency states allowed for the
given parameter set. The possibility of such multiple states arising due to time delay
may be seen directly from (1.7), (1.8), (1.9), (1.10), where the dependence of the
derivatives on phases involves sinusoidal functions of τ . We will show that this
dependence will lead to transcendental equations for oscillation frequency and thus
result in multiple frequency states. For identical oscillators, such multiple frequency
states are either in-phase or anti-phase. Multi-stability can occur between in-phase
states, anti-phase states, or between in-phase and anti-phase states. For any given
state, the frequency of oscillation decreases with increasing τ (Fig. 1.3(b)) as also
predicted earlier by other studies [29]. In our example simulating the parameters
allow both in-phase and anti-phase states and they exist in different parameter
regions for τ < 0.3 (Fig. 1.2(c) and Fig. 1.3(b) and (c)).

The fact that we have amplitude evolutions along with the phase evolutions (see
(1.7), (1.8), (1.9), (1.10)) has significance for the existence of these states. The
in-phase state at τ = 0 continues to exist for slightly higher levels of τ , but the
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Fig. 1.3 Numerical simulation results of coupled identical (Δ = 0) oscillators ((1.5) and (1.6))
at K = 2, ω̄ = 10. After initial transients, the amplitudes and frequencies of both the oscillators
become constants in time. The solutions are sinusoidal, but the plotted frequencies are the peaks
of the Fourier spectrum of the time course of x1. The phases of the oscillators are computed using
θ1 = tan−1 (y1/x1) and θ2 = tan−1 (y2/x2). The shaded region is the parameter region of amplitude
death along τ

amplitude of the oscillations decreases until it completely becomes zero (Figs. 1.2(b)
and 1.3(a)). In this state any damped oscillations might still show an in-phase rela-
tionship, but they are transient in nature, and the long-time steady state is the zero
amplitude steady state. In fact as τ is increased, these damped oscillations become
anti-phase, and above a critical τ , the amplitude of these oscillations becomes non-
zero, and a stable anti-phase state emerges (Fig. 1.3). The zero-amplitude state is
the region of stability of Z1, 2 = 0 and is the death state. The boundaries of the death
state seen in Fig. 1.3 (shaded regions) are the boundaries of the ‘death island’ which
will be discussed later.

We will later on derive the boundaries of the death state by using the eigenvalue
analysis. But the emergence of the death and anti-phase solutions and their stability
may be derived simply from an empirical observation of the numerical results of
Fig. 1.3. Numerical simulations reveal the symmetry of the system. In the in-phase
and anti-phase states the amplitudes of both the oscillators are identical and inde-
pendent of time (r1(t) = r2(t) = r∗). Their phase evolutions (not shown) are linear
growths (θ1(t) = Ωt + c1, θ2(t) = Ωt + c2) of time with a frequency (Ω) that may
differ from their intrinsic frequency (ω0). The quantities c1 and c2 are constants in
time and depend on the initial conditions. The phase difference of the oscillators is
measured by | c1 − c2 |. In the in-phase state the phase difference is zero and in the
anti-phase state it is π . For ease of analysis, we will assume that c1 = −α/2 and
c2 = α/2, so that in the in-phase state α = 0 and in the anti-phase state α = π . Let
us first substitute in (1.8) and (1.10) the above observations on the amplitudes:

θ̇1(t) = ω0 + K sin [θ2(t − τ )− θ1(t)], (1.11)

θ̇2(t) = ω0 + K sin [θ1(t − τ )− θ2(t)]. (1.12)

Define φ(t) = θ2(t)− θ1(t) and take the difference of the above two equations to get

φ̇(t) = −2K cos (Ωτ ) sinφ, (1.13)
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Fig. 1.4 Stability of in-phase and anti-phase solutions is decided by the sign of cos (Ωτ ). The
filled phase point is the stable solution in each case. For cos (Ωτ ) > 0 the in-phase solution is
stable, and for cos (Ωτ ) < 0 the anti-phase solution is stable

where we have used the relations θ1(t − τ ) − θ1(t) = θ2(t − τ ) − θ2(t) = −Ωτ
and θ2(t − τ ) − θ1(t − τ ) = θ2 − θ1. These relations are again derived from the
observations that we made above on the phase evolutions in the phase-locked states.
We have not yet specified the phase difference α between the oscillators. So this
phase difference evolution equation applies for both in-phase and anti-phase states
alike. This equation also helps us in understanding the stability of both in-phase and
anti-phase states. For cos (Ωτ ) > 0 (Fig. 1.4(a)), the slope of φ̇ (i.e., the rate of
change of the phase difference) is negative, signifying that any brief perturbation
from this state will decay to that state in time, as also indicated by the directional
flow. Hence, the in-phase state is stable, and the anti-phase state is unstable. But for
cos (Ωτ ) < 0 (Fig. 1.4(b)), the anti-phase state acquires stability and the in-phase
state loses its stability.

Does the in-phase state have to become unstable for the anti-phase state to
become stable, and vice versa? No. In fact both states can co-exist. This is pos-
sible because the frequencies of these two states can be different while still obeying
the stability relations shown in Fig. 1.4. The frequencies are in fact determined by
solving different transcendental equations involving Ω and τ for the two states. To
see this, substitute the in-phase states θ1,2(t) = Ωt (i.e., α = 0) in (1.11) to obtain a
transcendental equation for the in-phase frequencies:

fin(Ω) = Ω − ω0 + K sin (Ωτ ) = 0. (1.14)

Similarly, for the anti-phase states, substituting θ1,2(t) = Ωt∓π/2 in (1.11), another
transcendental equation for Ω is obtained for anti-phase frequencies:

fanti(Ω) = Ω − ω0 − K sin (Ωτ ) = 0. (1.15)

fin and fanti are plotted as a function of Ω in Fig. 1.5 for sample parameter values.
The zeros of these curves are the allowed in-phase or anti-phase frequencies. For
small τ only one solution for each state (marked by dots) could be found, but at
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Fig. 1.5 The allowed values of frequencies for in-phase and anti-phase states are determined by
solving for the zeros of the functions fin(Ω) and fanti(Ω). These two curves plotted as a function of
Ω at τ = 0.1, K = 2, show single solutions for in-phase and anti-phase states (marked by filled
bullets). At large K, the curves show bigger amplitude oscillations and at longer τ they show more
wiggles in any given Ω-window. Both these features help establish multiple frequency states for
both in- and anti-phase states as seen, for example, by the multiple zeros of fin at τ = 1 and K = 5:

larger τ and/or K, multiple zeros could result, correspondingly yielding multiple
frequencies.

The stability of any one state with frequency Ω , as stated above, depends on
the sign of cos (Ωτ ). This stability analysis is illustrated pictorially for an in-phase
and an anti-phase branch in Fig. 1.6. The frequencies of the in-phase and anti-phase
states are obtained by solving f in=0 and f anti=0 and are plotted as a function of τ .
The stable in-phase branch corresponding to cos (Ωτ ) > 0 (Fig. 1.6(a)) and the sta-
ble anti-phase branch corresponding to cos (Ωτ ) < 0 (Fig. 1.6(b)) are marked with
filled dots. The unfilled dots indicate unstable portions of the frequency branches.
We might already have here a bistable region between in-phase and anti-phase states.
However, the amplitudes of each of these states must also be considered and verified
whether these states assume physically acceptable (i.e., real and positive) values.

The amplitude of the in-phase state is obtained by substituting r1(t) = r2(t) = rin
and θ1, 2(t) = Ωt in (1.7):

r2
in = 1− K + K cos (Ωτ ). (1.16)

The right-hand side of this equation is real and positive only when cos (Ωτ ) > 1−
1/K. Since cos (Ωτ ) is a smooth function of its argument, in fact, as τ is increased
the amplitude gradually decreases to 0 on the curve

cos (Ωτ ) = 1− 1

K
(1.17)

and r2
in remains unphysically negative for 0 < cos (Ωτ ) < 1/K − 1 (shown

by the guiding lines in Fig. 1.6(a)). This boundary where the amplitude becomes
0, however, marks the transition of the in-phase state with finite amplitude to a
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Fig. 1.6 Frequency branches of in-phase-locked (a) and anti-phase (b)-locked states obtained by
solving fin = 0 and fanti = 0 at K = 2 and ω0 = 10. The filled circles indicate the stable states
in each case corresponding to the stability conditions shown in Fig. 1.4. The guiding lines enclose
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boundary
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zero-amplitude state or the death state. We will in fact see from eigenvalue analysis
that this is one of the death region (death island) boundaries. We plot the death
boundary τ1(0, K) corresponding to ω0 = 10 (to be derived later) and find an exact
match between a death island boundary and that predicted by the above equation
(Fig. 1.6(c)). Similarly, we examine the amplitude of the anti-phase state by substi-
tuting r1(t) = r2(t) = ranti and θ1, 2(t) = Ωt ∓ π/2 in one of the phase evolution
equations, say (1.8), and obtain

r2
anti = 1− K − K cos (Ωτ ). (1.18)

The right-hand side of this equation is real and positive only when cos (Ωτ ) <
1− 1/K. Again, this function varies smoothly with its argument and becomes zero
on the curve

cos (Ωτ ) = 1

K
− 1 (1.19)

and remains unphysically negative for 1/K − 1 < cos (Ωτ ) < 0 (shown by the
guiding lines in Fig. 1.6(b)). This boundary where the amplitude of the anti-phase
oscillations becomes 0 matches exactly with the boundary τ2(0, K) derived from the
eigenvalue analysis (Fig. 1.6(c)).

1.2.1.2 Amplitude Death

We will now study the amplitude death region and show how to derive these bound-
aries systematically from the characteristic equation. The amplitude death region
is the region of stability of the trivial solution: Z1,2 = 0, and the eigenvalues of
this state determine the boundaries of the amplitude death both for identical and for
non-identical oscillators. The characteristic equation we obtain will be transcenden-
tal in nature and can possess an infinite number of eigenvalues. The amplitude death
region is determined from the parameters in the characteristic equation by insist-
ing that all the eigenvalues have negative real parts. For example, if λ = α + iβ
(where α and β are real) represents all the eigenvalues of the system, the stable
death region is determined by the condition α < 0 and the boundary of the death
region is determined by α = 0. Owing to the fact that we will have a transcendental
characteristic equation (and hence multiple solutions; see, for example, Fig. 1.5),
this death boundary condition results in multiple curves in the parameter space,
leading to the possibility of multiple regions of death state.

The characteristic equation of (1.5) and (1.6) is obtained by linearizing these
equations around Z1, 2 = 0 and substituting Z1, 2(t) = Z1, 2(0)eλt. The resultant
matrix on the right-hand side of the equations is

A =
[

1− K + iω1 Ke−λτ
Ke−λτ 1− K + iω2

]
. (1.20)
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The characteristic equation is nothing but det (A−λI) = 0, where I is the 2× 2 unit
matrix. By expanding this equation, we can write it as the following transcendental
equation:

(a− λ+ iω1)(a− λ+ iω2)− K2e−2λτ = 0, (1.21)

where a = 1 − K. Complete analytical solutions of such transcendental equations
are not generally available, but we can use the equations to obtain critical curves
bounding the stable (death) region. We first show the stable regions between non-
identical oscillators and then derive boundaries for identical oscillators. As outlined
above, we obtain critical curves by seeking that the real parts of the eigenvalues are
zero. On these curves, a pair of eigenvalues cross into right half of the eigenvalue
plane (i.e., a stability switch could take place). Since we already know the region of
stability in the absence of time delay, we increase τ slightly and look for the critical
curves that are nearest to this region. Across these curves, stability of the rest state
is lost, and thus they provide the boundaries of the death region. On the critical
curves, let λ = iβ. Substituting this in the above equation and separating the real
and imaginary components, we obtain (β − ω̄)2 − Δ2/4 − a2 + K2 cos (2βτ ) = 0
and 2a(β − ω̄) − K2 sin (2βτ ) = 0. These two equations may be used to compute
critical curves in (K,Δ) plane by eliminating β. For convenience we write them as
follows:

F = (β − ω̄)/ sin (2βτ ), (1.22)

K ≡ K± = −F ±
√

F2 + 2F, (1.23)

Δ2 = −4a2 + 4(β − ω̄)2 + 4K2 cos (2βτ ). (1.24)

By choosing β from intervals In = (nπ/2τ , (n + 1)π/2τ ), portions of curves are
obtained in (K,Δ) plane. We term these curves as S± depending on the sign being
used to compute K in (1.23). For ω̄ = 10 we show in Fig. 1.7 these critical curves
in the (K,Δ) plane using the interval I0. S+ curves are drawn in dashes and S− in
continuous lines. The shaded region is the amplitude death region. For τ very small,
the region is closer to that of Aronson et al.’s (Fig. 1.1). But as τ is increased, the
region expands toward smaller values of Δ, and for a range of τ values, it displays
amplitude death state along Δ = 0 axis. That is, identical oscillators can exhibit
amplitude death state if appropriate time delay is introduced in their interactions.

We will now be interested in this phenomenon of amplitude death for Δ = 0
and wish to quantify the region of death for various τ by finding the critical curves
that define the boundaries of the death region in (K, τ ) plane. To do this, it is best to
consider (1.21) and substitute ω1 = ω2 = ω0 there. This gives a set of two simpler
characteristic equations

λ = 1− K + iω0 ± Ke−λτ , (1.25)
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Fig. 1.7 Amplitude death region (shaded) shown for three values of τ at ω̄ = 10. The boundaries
are the curves S− (solid lines) and S+ (dashed lines) drawn by eliminating β from (1.22), (1.23)
and (1.24)

which can now be analyzed for critical curves. Again for criticality, substitute
λ = iβ. We obtain, by separating the real and imaginary parts, the following two
equations which can be used to eliminate β and obtain curves, or death island bound-
aries, in (τ , K) plane. Using + sign,

cos (βτ ) = 1− 1

K
, (1.26)

β − ω0 + K sin (βτ ) = 0. (1.27)

These are exactly the same equations we obtained earlier for in-phase-locked states
(1.14), and the condition for amplitude of that state to be zero (1.17), confirming
that the in-phase state indeed emerges from the death state on this critical curve.
Using − sign, we obtain

cos (βτ ) = 1

K
− 1, (1.28)

β − ω0 − K sin (βτ ) = 0. (1.29)
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These are exactly the same equations we obtained earlier for anti-phase-locked
states (1.15), and the condition for amplitude of that state to be zero (1.19), con-
firming that an anti-phase state emerges from the death state on this critical curve.
The value of β can be expressed independently of the sinusoidal function in both
the above cases. Inverting the cosine functions results in multiple values for τ as a
function of K. Each of these curves is a critical curve across which pairs of eigenval-
ues cross into the right half eigenvalue plane. A numerical ordering of these curves
reveals [32, 33] that the death island boundaries are given by

τ1 ≡ τ1(n, K) = nπ + cos−1 (1− 1/K)

ω0 −
√

2K − 1
, (1.30)

τ2 ≡ τ2(n, K) = (n+ 1)π − cos−1 (1− 1/K)

ω0 +
√

2K − 1
. (1.31)

We plot these curves in Fig. 1.8 for ω0 = 30 and shade the regions of amplitude
death. The death regions are multiple in number at this value of ω0. A more detailed
analysis [32, 33] also reveals that the eigenvalues indeed cross these boundaries
from inside to outside as we expect.

1.3 N-Oscillator Models

With the insights gained from the analysis of the minimal model of just two cou-
pled oscillators, we will now try to study the collective states of a more complex
system where we have a large number N of coupled oscillators. When the number
of oscillators is large (N > 2), the mutual coupling can occur in a variety of ways.
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0 0.05 0.1 0.15 0.2
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τ1(0,K) τ1(1,K)
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Fig. 1.8 Two of the three death islands are shown for ω0 = 30
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One simple way is to connect each oscillator to every other oscillator with a con-
stant coupling strength. Such a system is called a globally coupled system or more
commonly as a mean field model. Another widely used coupling scheme is that of
nearest neighbor coupling which is often referred to as diffusive coupling. A more
generalized form of coupling that reduces to the above two in limiting cases is that of
non-local coupling in which the coupling extends over a wider spatial extent but with
a varying strength. In this section we will introduce time delay coupled versions of
all these three models and discuss the effect of time delay on their collective states.
We will restrict ourselves to one-dimensional configurations (for the locally and
non-locally coupled systems) which are simpler to analyze. Our present discussion
will be primarily based on the work carried out in [33, 35–37].

1.3.1 Global Coupling

Making a straightforward generalization of (1.5) and (1.6), one can describe a sys-
tem of N globally coupled Stuart–Landau oscillators (with a linear time-delayed
coupling) by the following set of model equations:

Żj(t) = (1+ iωj− | Zj(t) |2 )Zj(t) + K′

N

N∑

k=1

[Zk(t − τ )− Zj(t)]

− K′

N
[Zj(t − τ )− Zj(t)], (1.32)

where j = 1, . . . , N, K′ = 2K, is the coupling strength and τ is the delay time.
The coupling term on the right-hand side now has a summation up to N, ensuring
coupling of an individual oscillator to every other one in the system, whereas the last
term has been introduced to subtract the self-coupling term from the summation. In
the absence of time delay, such a mean field model has been studied extensively
in the past in [5, 20, 25, 27] in order to delineate the various stationary and non-
stationary states of the system including phase-locked states, amplitude death, phase
drift states, Hopf oscillations, and even chaotic states. We will examine the effect
of time delay on some of these states. For this it is convenient to define an order
parameter, defined as,

Z̄ = Reiφ = 1

N

N∑

j=1

Zj(t), (1.33)

where R and φ denote the amplitude and phase of the centroid. In a large N model
the order parameter provides a time-asymptotic measure of the coherence (collective
aspects) of the system in both a qualitative and a quantitative fashion. When R = 0
(in the large time limit) the system can be considered to be in an incoherent state
whereas R = 1 marks a totally synchronized or ‘phase-locked’ state. Any value
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in between indicates that the system is in a partially synchronized state. The order
parameter is also capable of displaying signatures of non-stationary states like chaos
and large amplitude Hopf oscillations through its temporal behavior [25, 27]. Using
the order parameter, the model equations can be rewritten more compactly as

Żj(t) = (1− K′d + iωj− | Zj(t) |2 )Zj(t)+ K′Z̄(t − τ )− K′

N
Zj(t − τ ), (1.34)

where d = 1− 1/N. We will now study the stability of the origin of these equations
(for examining the amplitude death state) and also discuss the phase-locked states
of the system.

1.3.1.1 Amplitude Death

The stability of the origin can be determined as before by doing a linear perturbation
analysis around Zj = 0 in (1.32). Assuming the perturbations to vary in time as eλt,
the characteristic matrix of (1.32) is given by

B =

⎡

⎢⎢⎢
⎣

l1 f · · · f
f l2 · · · f
...

...
. . .

...
f f · · · lN

⎤

⎥⎥⎥
⎦

, (1.35)

where ln = 1 − K′d + iωn and f = K′
N e−λτ . The eigenvalue problem can also

be cast in terms of another matrix C = B + (K′d − 1)I (with I being the identity
matrix), such that if μ is the eigenvalue of C then it is related to λ by the relation
μ = λ + (K′d − 1). The eigenvalue equation det (C − μI) = 0 can be compactly
expressed as a product of two factors:

[
N∏

k=1

(iωk − μ− f )

]⎡

⎣1+ f
N∑

j=1

1

iωj − μ− f

⎤

⎦ = 0. (1.36)

As discussed by Matthews and Strogatz [38, 27], for the no-delay case, solutions of
the first factor represent the continuous spectrum of the system whereas the second
factor provides the discrete spectrum. The characteristic Equation (1.36) is difficult
to solve analytically or even numerically when N is large. We will confine ourselves
to the case of N identical oscillators where a simple analysis is possible and which
will also allow us to seek a generalization of the N = 2 result discussed in the
previous section. For N identical oscillators the frequency distribution of the system
can be expressed as a delta function

g(ω) = δ(ω − ω0), (1.37)
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where ω0 is the natural frequency of each oscillator. With such a distribution the
eigenvalue equation can be simplified to the form

λ =
{

1− K′d + iω0 + K′de−λτ , 1− K′d + iω0 − K′

N
e−λτ

}
, (1.38)

in which the second eigenvalue has a degeneracy of N − 1. Using both the eigen-
value equations and the procedure described for the N = 2 case, one can obtain the
following set of critical curves:

τa(n, K) =
2nπ + cos−1

[
1− 1

K′d

]

ω0 −
√

2K′d − 1
, (1.39)

τb(n, K) =
2(n+ 1)π − cos−1

[
1− 1

K′d

]

ω0 +
√

2K′d − 1
, (1.40)

τc(n, K) =
2(n+ 1)π − cos−1

[
1−K′d

K′(1−d)

]

ω0 −
√

[K′(1− d)]2 − (K′d − 1)2
, (1.41)

τd(n, K) =
2nπ + cos−1

[
1−K′d

K′(1−d)

]

ω0 +
√

[K′(1− d)]2 − (K′d − 1)2
. (1.42)

In contrast to the N = 2 case, the family of curves is now four instead of two, and
they are functions of the parameter N. It is easy to check that for N = 2, the curves
τa(n, K) and τc(n, K) combine to give τ1(n, K) and τb(n, K) and τd(n, K) combine
to give τ2(n, K) which were obtained in the earlier section. We show some typical
death island regions in Fig. 1.9(a) for various values of N as obtained from the
critical curves (1.39), (1.40), (1.41) and (1.42) with n = 0. The sizes of the islands
are seen to vary as a function of N and to approach a saturated size as N →∞. The
existence of these regions has also been independently confirmed by direct numeri-
cal solution of the coupled oscillator equations [33]. Thus, the phenomenon of time
delay-induced death for identical oscillators happens even for an arbitrarily large
number of oscillators and is a generic property of our coupled oscillator system. As
in the N = 2 case these death islands can also show multiple connectedness for
higher values of ω0 which is a characteristic feature of delay equations.

1.3.2 Nearest Neighbor Coupling

We now look at a local coupling model in which each oscillator is coupled only to
its next nearest neighbor. The summation term on the right-hand side of (1.32) then
collapses to just two terms and the model equations have the form
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Fig. 1.9 Death islands for global and nearest neighbor couplings. (ω0 = 10) (a) Death island
regions for oscillators with global coupling [32, 33]. (b) Death island regions for oscillators with
nearest neighbor coupling. All even number of oscillators have a single death island region that
is independent of the number of oscillators. The odd number of oscillators are bounded by four
curves when N ≤ 13 and two curves otherwise. These two curves merge in the infinite limit with
the curves that represent the even number of oscillators [35]. For N ≤ 13, γ1 = τb(0, K) at Rj = 1,
γ2 = τb(0, K) at Rj=(N+1)/2, δ1 = τa(0, K) at Rj=(N+1)/2, δ2 = τa(1, K) at Rj=1, and for N ≥ 15,
γ1 = τb(0, K) at Rj=1, and δ1 = τa(0, K) at Rj=(N+1)/2

∂Zj

∂t
= (1+ iωj− | Zj |2 )Zj + K[Zj+1(t − τ )− Zj(t)]

+K[Zj−1(t − τ )− Zj(t)], (1.43)

where the notation is as before. We will simplify this model further by considering
only identical oscillators (setting all ωj = ω0) and assuming the oscillators to be
arranged in a closed ring. We choose identical oscillators in order to continue our
exploration of the death state for the case where there is no frequency dispersion
and the ring configuration allows application of periodic boundary conditions when
considering phase-locked states. The model equation then has the form

∂Zj

∂t
= (1+ iω0− | Zj |2 )Zj + K[Zj+1(t − τ )− Zj(t)]

+K[Zj−1(t − τ )− Zj(t)]. (1.44)

Note that unlike the global coupling case there is now a spatial dependence in the
coupling and therefore the geometrical arrangement of the oscillators matters. This
additional dimension introduces new equilibrium states in the system such as trav-
eling waves and in higher dimensions spiral patterns or scroll waves. For τ = 0
one can also make an interesting connection to a well-known nonlinear dynamical
equation, namely the complex Ginzburg–Landau equation (CGLE). To see this one
can take the limit where the spacing between two oscillators, a, goes to zero, so that
Zj = Z(ja)→ Z(x) where x is a continuum variable. Then (1.44) reduces to

∂Z(x, t)

∂t
= (1+ iω0 − |Z(x, t)|2 )Z(x, t)+ K

∂2Z(x, t)

∂x2
, (1.45)
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where K has been rescaled as K/a2. This equation has been widely studied and
has a rich variety of nonlinear solutions that have found a number of interesting
applications.1 We will return to a more generalized form of this equation later in the
chapter. We continue now with the exploration of the amplitude death and phase-
locked solutions of (1.44).

1.3.2.1 Amplitude Death

To obtain the conditions for the existence of the death region and to determine its
location in parameter space, we resort as usual to a linear perturbation analysis about
the origin. Applying periodic boundary conditions (because of the assumed closed
chain configuration) we can get the following eigenvalue equation:

N∏

j=1

(
λ+ 2K − 1− iω0 − Ke−λτUj − Ke−λτUN−1

j

)
= 0,

where Uj = ei2π (j−1)/N are the Nth roots of unity. Since Uj +UN−1
j = Uj +U−1

j =
2 cos [(j− 1)2π/N], the above equation can be further simplified to

N∏

j=1

(
λ+ 2K − 1− iω0 − 2K cos [(j− 1)2π/N]e−λτ

) = 0. (1.46)

The above equation has to be complemented by its conjugate equation in order to
obtain a complete set of eigenvalue equations. We notice that for τ = 0, (1.46)
always admits at least one unstable eigenvalue, namely λ = 1 + iω0. This means
that identical oscillators that are locally coupled cannot have an amplitude death
state in the absence of time delay, an echo of our earlier results for N = 2 and
N globally coupled oscillators. In the presence of finite delay, we adopt the same
standard procedure that we used earlier for the global coupling case, namely that of
determining the marginal stability condition to identify the critical curves. Before
we do that, it is worthwhile pointing out another essential and interesting difference
from the global coupling case, namely, if N is a multiple of 4 then some of the factors
of (1.46) have no explicit τ dependence since for them Rj = 2 cos [(j−1)2π/N] = 0.
Consider the case of N = 4 and j = 2, 4, for which the eigenvalue equation becomes
λ = 1−2K± iω0, and the only criticality condition is then given by K = 1/2. Thus,
the stable region lies on the side of the parameter space that obeys K > 1/2. For
other values of Rj, the death island boundaries can be determined by a marginal

1 In its most general form, the CGL equation is of the form ∂Z(x,t)
∂t = (1 + iω0 − (1 + ib)

|Z(x, t)|2 )Z(x, t)+ K(1+ ia) ∂
2Z(x,t)
∂x2 , where a and b are real quantities.
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stability analysis, and the expressions for the critical curves in the (τ , K) plane are
given by

τa(n, K) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2nπ − cos−1 [(2K − 1)/KRj]

ω0 +
√

K2R2
j − (2K − 1)2

, Rj > 0,

(2n+ 1)π − cos−1 [(2K − 1)/K
∣∣Rj

∣∣ ]

ω0 +
√

K2R2
j − (2K − 1)2

, Rj < 0,
(1.47)

τb(m, K) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2mπ + cos−1 [(2K − 1)/KRj]

ω0 −
√

K2R2
j − (2K − 1)2

, Rj > 0,

(2m+ 1)π + cos−1 [(2K − 1)/K
∣∣Rj

∣∣ ]

ω0 −
√

K2R2
j − (2K − 1)2

, Rj < 0,
(1.48)

where n and m are integers. For a detailed analysis of these curves, which includes
determination of useful bounds on K for ordering and finding the degeneracies of the
critical curves, we refer the reader to [35]. The essential features of the death islands
in this system can be gathered from Fig. 1.9(b), where they have been plotted for
different values of N. One striking difference is that the size and shape of the death
island is now determined by the odd or even property of the number of oscillators
N. For an even number of oscillators there is a single death region, whereas for an
odd number of oscillators the boundary of the death region depends on the value
of N. We illustrate the death states for a sample number of even (N = 4) and
odd (N = 5) nearest neighbor coupled oscillators in Fig. 1.10. The death state for
N = 4 is surrounded by an in-phase state on the left and an anti-phase state that has
neighboring oscillators π out of phase on the right. The death state for N = 5 on
the other hand has an in-phase state on either side. These differences in the death
island widths for even- and odd-numbered oscillators can be traced primarily to the
behavior of the eigenvalues of the lowest permitted perturbation wave numbers. As
N becomes large, the smallest perturbation mode for the N odd case gets closer to π
and the death island boundaries of the two cases become indistinguishable. The size
of the death island, for the odd case, decreases as N increases and finally asymptotes
to the single (N = even) island as N →∞. This asymmetry is intimately related to
the nature of the coupling and as we will see later it disappears when we change the
coupling to a non-local one.

1.3.2.2 Phase-Locked States

As mentioned briefly before, the spatial dependence of the coupling provides for a
larger class of equilibrium states in a dispersively coupled system as compared to
the globally coupled system. In particular plane wave states, which are characterized
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Fig. 1.10 (a) A nearest neighbor coupled network of four identical oscillators showing in-phase,
death, and then anti-phase patterns as τ is increased, K = 2 and ω0 = 10. The initial conditions
are x1 = 0.3, y1 = 0, x2 = 1, y2 = 0, x3 = −0.5, y3 = 0, x4 = −0.9, and y4 = 0. The time
history vectors Z1,2,3,4 = 0. (b) A globally coupled network of five identical oscillators showing
in-phase, death, and in-phase transitions as τ is increased. Time courses of the real parts of Z1,2,3,4,5
are plotted for different τ at K = 5 (different than that in (a)) and ω0 = 10. Initial conditions are
x1 = 1, y1 = 0, x2 = 0.45, y2 = 0, x3 = −0.2, y3 = 0, x4 = −0.61, y4 = 0, x5 = −0.97, and
y5 = 0. The time history vectors Z1,2,3,4,5 = 0

by a frequency as well as a wave number, are one such possibility. Equation (1.44)
admits plane wave solutions of the form

Zj = Rei(jka+ωt), (1.49)

where a is the distance between any two adjacent oscillators and k is the wave
number such that −π ≤ ka ≤ π . The values of ka are discrete due to the con-
straint imposed by the periodic boundary conditions, namely that ZN+1 = Z1 and
Z0 = ZN . This condition requires that we satisfy eiNka = 1 which gives Nka = 2mπ ,
m = 0, 1, . . . , N − 1, that is,

ka = m
2π

N
, m = 0, 1, . . . , N − 1. (1.50)

Thus, the various phase-locked states are now labeled by their characteristic wave
number values. The wave numbers are further related to the frequencies of the states
through a dispersion relation which can be obtained by substituting (1.49) in (1.44):

iω = 1+ iω0 − R2 + 2K
[
cos (ka)e−iωτ − 1

]
. (1.51)

Separating the real and imaginary parts of the above relation we get

ω = ω0 − 2K sin (ωτ ) cos (ka), (1.52)

R2 = 1− 2K + 2K cos (ωτ ) cos (ka). (1.53)
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It is interesting at this point to compare the above dispersion relation to the plane
wave dispersion relation of the CGLE. We can obtain such a dispersion relation by
substituting Z(x, t) = RCGL exp (ikx− iωCGLt) in (1.45) to get

ωCGL = ω0, (1.54)

R2
CGL = 1− K(ka)2, (1.55)

where we have replaced K by its scaled value. Equations (1.54) and (1.55) can also
be obtained from (1.52) and (1.53) by putting τ = 0 and expanding the cos (ka) term
in (1.53) by taking the long wavelength limit of ka
 1. The two sets of dispersion
relations show interesting differences. First of all their domains of validity are dif-
ferent: (1.52) and (1.53) are valid for any arbitrary value of N whereas (1.54) and
(1.55) are strictly valid only in the continuum limit (i.e., N →∞). The ka spectrum
is therefore a continuous one for the CGLE whereas in our model they are discrete
and also depend on the value of N. For τ = 0, (1.52) and (1.54) become identical,
but (1.53) reduces to

R2 = 1− 2K + 2K cos (ka) = 1− 4K sin2 (ka/2). (1.56)

Since R2 > 0 is a necessary condition for a plane wave state to exist, we see that for
a given value of K the domain of existence is considerably reduced in the case of the
CGLE as compared to the discrete model equations. As an example, at K = 1/4, the
discrete model allows all modes from 0 to π to exist, whereas the continuum model
has an upper cutoff at ka = 2.0. For K > 1/4 one has cutoff regions in the discrete
model as well that are defined by the expression

f1 = cos−1 (1− 1/2K) < ka < f2 = 2π − cos−1 (1− 1/2K). (1.57)

From (1.57) it is clear that for K > 1/4 the anti-phase-locked state (ka = π ) is
now no longer a permitted state. In the presence of time delay the existence region
is defined by a more complex relation since it is now not only a function of ka
(for a given value of K) but also depends on ω which is a solution of the transcen-
dental equation (1.52). Thus, time delay can bring about interesting modifications
such as enabling certain forbidden states (of the non-delayed system) to exist and
in general reshaping the existence domain significantly. In addition, as we saw in
the two oscillator model, the transcendental character of the dispersion relation can
introduce additional branches of collective oscillations. A detailed analysis of some
of these features are available in [35]. In Fig. 1.11(a) we have illustrated some of
the salient findings of [35] by showing the existence regions of plane wave states
for some special cases. To delineate the general existence regions which are now
complicated functions of ka, K, and τ , one needs to have a simultaneous solution of
(1.52) and (1.53). To appreciate the constraints imposed by (1.52) in Fig. 1.11(b)
we have plotted the solution (ω vs. ka) for various values of τ and for a fixed
value of ω0 and K. For τ = 0, the values of ka are constrained to be in the range
(|ka|)< cos−1 (1 − 1/2K). At K = 1, the phase-locked patterns that have wave
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Fig. 1.11 (a) Allowed (unshaded) and forbidden (shaded) wave modes in the presence of time
delay for two values of cos (ωτ ). (b) Dispersion relation between allowed wave numbers and the
corresponding frequency shown as τ is gradually increased, K = 1 and ω0 = 10. A range of τ
values is forbidden. (c) A numerical example of out-of-phase state shown for N = 50 oscillators
by plotting the level of the real component of Zj as a function of the oscillator number j [35]

numbers less than π/3 are allowed, and all of them have an identical frequency.
As τ is increased the frequency of oscillation decreases for small τ , and the dis-
persion relation acquires a nonlinear parabolic character. As τ is further increased,
depending on the actual value of K, there are bands in τ values where no modes
exist. The shrinking and disappearance of the dispersion curve at ka = 0 beyond
τ = 0.125 up to τ = 0.2 in the top panel of Fig. 1.11(b) illustrate this phenomenon.
One also notices from the bottom panel of Fig. 1.11(b) that at higher values of τ the
dispersion curves become discontinuous and have bands of forbidden ka regions.

1.3.2.3 Stability of Phase-Locked States

So far we have only discussed the existence conditions for plane wave states of
(1.44) in the parameter domain of the wave number, coupling strength, frequency,
and time delay. We also need to know the stability of such states in order for them
to be excited and sustained in the system. In this section we will carry out a linear
stability analysis of the equilibrium phase-locked solutions discussed in the previous
section. We let

Zj (t) =
[
Rkeiωkt + uj (t)

]
ei(jka), (1.58)

where k = 0, 1, · · · , N − 1, substiute it in (1.44), and carry out an order by order
analysis in the perturbation amplitude uj. In the lowest order we recover the disper-
sion relation (1.51). In the next order, where we retain terms that are linear in the
perturbation amplitude, we get

∂uj (t)

∂t
= (

1+ iω0 − 2R2
k − 2K

)
uj (t)− R2

ke2iωktūj (t)

+K
[
uj+1 (t − τ) eika + uj−1 (t − τ) e−ika

]
(1.59)
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and, taking its complex conjugate,

∂ ūj (t)

∂t
= (

1− iω0 − 2R2
k − 2K

)
ūj (t)− R2

ke−2iωktuj (t)

+K
[
ūj+1 (t − τ) e−ika + ūj−1 (t − τ) eika

]
.

(1.60)

We next multiply (1.59) and (1.60) term by term by ei(jqa) and make use of the
identities

uj±1 (t − τ) e±ikaei(jqa) = uj±1 (t − τ) ei(j±1)qae±i(k−q)a (1.61)

and

ūj±1 (t − τ) e±ikaei(jqa) = ūj±1 (t − τ) ei(j±1)qae±i(k+q)a, (1.62)

and finally sum over j = 0, 1, 2, · · · , N − 1. Introducing adjoint amplitudes wq (t)
and w̃q (t) by the definitions

[
wq (t) , w̃q (t)

] =
N−1∑

j=0

[
uj (t) , ūj (t)

]
ei(jqa), (1.63)

we can arrive at the following set of coupled equations:

dwq (t)

dt
= (

1+ iω0 − 2R2
k − 2K

)
wq (t)− R2

ke2iωktw̃q (t)

+2K cos
[
(k − q) a

]
wq (t − τ)

(1.64)

and

dw̃q (t)

dt
= (

1− iω0 − 2R2
k − 2K

)
w̃q (t)− R2

ke−2iωktwq (t)

+2K cos
[
(k + q) a

]
w̃q (t − τ) .

(1.65)

Now assuming the solutions to be of the form

[
wq (t) , w̃q (t)

] = [
ceiωkt, c̃e−iωkt] eλt, (1.66)

one can, after some straightforward algebra, obtain the following eigenvalue
equation:

λ2 + (a1 + a2)λ+ (a1a2 − R4) = 0, (1.67)
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where

a1 = 2R2 − 1+ 2K − i(ω0 − ω)− 2K cos [(k − q)a]e−(λ+iω)τ , (1.68)

a2 = 2R2 − 1+ 2K + i(ω0 − ω)− 2K cos [(k + q)a]e−(λ−iω)τ . (1.69)

The perturbation wave numbers q are a discrete set that obey the relation

qa = m
2π

N
, m = 0, 1, . . . , N − 1.

Thus, for any given plane wave pattern characterized by a given value of ka, one
needs to examine the eigenvalues of (1.67) at each of the above permitted values of
qa, which is a formidable task for any reasonably large value of N and one needs
to carry out extensive numerical investigations. Some specific examples have been
worked out in [35]. In general, time delay appears to expand the stability domain
of plane wave states allowing for a richer spectrum of states to be sustained in the
system as compared to the no-delay case. For example, the out of phase state (where
each oscillator is π out of phase with its neighbor) which is always unstable in
the absence of time delay can get stabilized for certain values of τ . A numerical
simulation of such an out-of-phase state is shown in Fig. 1.11(c) where the level
of the real part of Zj is plotted as a function of the oscillator number j for N = 50
oscillators.

1.3.3 Non-Local Coupling

While global and local (nearest neighbor) coupling models have received much
attention in the past, [1, 2, 39–41] there is now a growing interest in the collec-
tive dynamics of models with non-local couplings [42–48]. Non-local coupling
implies a form of coupling in which the coupling extends over a wider domain
than the local (nearest neighbor coupling) but with varying (usually diminishing)
coupling strength. The coupling strength can fall off exponentially or in some cases
even change sign with distance (for example, in a Mexican hat fashion). Non-local
coupling can be relevant to a variety of applications such as in the modeling of
Josephson junction arrays [49], chemical oscillators [47, 48, 50], neural networks
for producing snail shell patterns, and ocular dominance stripes [51–53]. They
can also arise in a large class of reaction diffusion systems under certain limiting
assumptions for the diffusion strength and local kinetics such that the dynamics is
governed by an equation which is a non-local generalization of the CGLE [50, 54].
Another interesting and unique feature of a non-locally coupled system is that it
can sustain some unusual collective states in which the oscillators separate into two
groups—one that is synchronized and phase-locked and the other desynchronized
and incoherent [47]. Such a state of co-existence of coherence and incoherence does
not occur in either globally or locally coupled systems and has been named as a
‘chimera’ state by Strogatz [55]. The nature and properties of this exotic collective
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state as well as its potential applications are still not fully explored or understood
and therefore continue to offer exciting future possibilities. In this section we will
explore the effect of time delay on the collective states of a non-locally coupled
system, where in addition to looking at the amplitude death and phase-locked states
we will also discuss the novel ‘chimera’ state.

1.3.3.1 Non-Local Model Equations

We begin by first extending our set of model equations from the previous section
to include non-local time-delayed coupling. Considering again a closed chain of N
identical limit cycle oscillators, we can generalize (1.44) to the following form:

∂Zj

∂t
= (1+ iω0)Zj (t)− |Zj (t) |2Zj (t)+ KQj (t) , (1.70)

where K is the coupling constant, Zj (t) are the complex amplitudes of the oscilla-
tors, j = 0, 1, 2, . . . , (N − 1), and

Zj+nN (t) = Zj (t) , n = 0,±1,±2, . . . (1.71)

The total coupling function acting on the jth oscillator, Qj (t), is given by

Qj(t) = Se,o

∑

{e,o}
e−mκa {[

Zj+m (t − mτ)− Zj (t)
]+ [

Zj−m (t − mτ)− Zj (t)
]}

,

(1.72)
where a is the distance and τ is the time delay between two adjacent oscillators,
respectively. The labels e and o indicate cases in which, respectively, N is even and N
is odd. The two cases must be treated separately. The total coupling function is a sum
over m for pairwise couplings of oscillators and excludes self-coupling. If we com-
pare (1.70) (keeping in mind (1.72)) with the model set of equations for the locally
coupled system (1.44), we notice the following essential differences. The coupling
strength K is now weighted by a factor exp (− mκa) which is distance dependent
and therefore makes the coupling from distant oscillators progressively weaker. The
time delay dependence in the argument of each Zj is likewise a function of mτ
which implies that the amount of time a signal takes to arrive at a given oscillator
location increases linearly as the distance it has to travel from another oscillator.
Physically this amounts to assuming a constant signal velocity v in the system such
that τ = a/v. The exponentially decaying weight factor that we have chosen for this
model can be replaced by other functions to change the nature of coupling, but we
will restrict ourselves to this function as it has been used in some past calculations
[45, 47, 48] that were done in the absence of delay and hence provides a convenient
benchmark for assessing delay effects. The exponential damping coefficient κ pro-
vides a measure of the amount of non-locality in the coupling with κ = 0 being the
global coupling limit. In order that the coupling amplitude be an exponential func-
tion of the distance between coupled oscillators, rather than a truncated exponential



28 A. Sen et al.

function of that distance, it is necessary that the effective coupling range be less
than half the length of the ring. If we denote the length of the ring by 2L, then the
minimum value of κ for which truncation does not occur is the value that yields the
largest value of exp (−κL) that can be considered negligible. It is convenient for this
purpose to adopt the condition κL ≥ 2π , because exp (−2π) = 0.00187. The choice
L = π is particularly convenient for the Fourier analysis of the discrete system
because it yields the primitive basis set ek(m) = exp (imka), where a = (2π/N) and
m, k = 0, 1, 2, . . . , (N − 1). For other choices of L, k and a have different values,
but ka is invariant with respect to the choice of L.

The quantity S{e,o} is a normalization factor. By assigning the value 1 to each cou-
pling term,

[
Zj±m (t − mτ)− Zj (t)

]
, and requiring that the value of the associated

total coupling function is 1, we obtain

S{e,o} =
⎛

⎝2
∑

{e,o}
e−mκa

⎞

⎠

−1

. (1.73)

The correctness of this choice is demonstrated in the case that N = 2 and κ = 0,
where one obtains (1.44) as intended. The form of the normalization factor makes it
possible to express the total coupling function in the simplified form

Qj (t) = S{e,o}
∑

{e,o}
e−mκa [

Zj+m (t − mτ)+ Zj−m (t − mτ)
]− Zj (t). (1.74)

In the case in which N is even, the summation is

∑

e

=
1
2 N∑

m=1

(
1− 1

2
δm, 1

2 N

)
. (1.75)

The quantity in parentheses is introduced to account for the fact that the subscripts
j+ 1

2 N and j− 1
2 N denote the same oscillator.

In the case in which N is odd, the summation is

∑

o

=
1
2 (N−1)∑

m=1

. (1.76)

One obtains for Se the result

Se = 1

2

⎡

⎢
⎣

1− e−κa

e−κa − 1
2 e− 1

2 Nκa − 1
2 e
−
(

1
2 N+1

)
κa

⎤

⎥
⎦ . (1.77)
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In the limit κ → 0, one obtains Se = (N − 1)−1. In that limit and for the case
N = 2, one obtains the correct result, Se = 1. One obtains for So the result

So = 1

2

[
1− e−κa

e−κa − e− 1
2 (N+1)κa

]

. (1.78)

In the limit κ → 0, one obtains So = (N − 1)−1.
It is interesting to also consider the continuum limit of (1.70), (1.71), and (1.72)

in the spirit of what we did for the locally coupled system. This limit can be
achieved by adopting the following procedure: We let the number of oscillators N
increase without limit, i.e., N →∞, but keep the system length 2L unchanged. This
implies that a → 0 but Na = 2L. As before, the discrete variable that denotes the
position of an oscillator, j, is replaced by the continuous variable x (−L ≤ x < L),
so that the discrete oscillator amplitude, Zj (t), becomes the continuous oscillator
amplitude, Z (x, t). The discrete variable that denotes the distance between coupled
oscillators, m, is replaced by the continuous variable 0 ≤ y ≤ L, so that the dis-
crete total coupling function Qj(t) becomes the continuous total coupling function
Q(x, t). Consider first the normalization factors S{e,o}. As the continuous limit is
approached, it is necessary that the range of the non-local coupling be much greater
than the distance between adjacent oscillators, i.e., that κa
 1, which ensures that
exp (−κa) ≈ 1 − κa. The condition κL ≥ 2π , which is necessary to guarantee
that the form of the damping function is an exponential function, rather than a
truncated exponential function, ensures that 1

2 Nκa ≥ 2π , which in turn ensures

that exp
(
− 1

2 Nκa
)

 1. Accordingly, we conclude that in the continuous limit

S{e,o} = 1
2κa. Assuming that the delay time between adjacent oscillators is pro-

portional to the distance between them, we obtain the following relation between
these quantities and σ , the reciprocal of the speed of propagation of delay coupling
in the continuous case: σ = τ/a. In the continuous limit, td, the earlier time at
which a coupling signal originates from position x ± y to reach position x at time
t is td = t − σy. The correspondence between summation in the discrete case and
integration in the continuous case is

∑

{e,o}
a→

∫ L

0
dy.

The condition κL ≥ 2π permits to replace the upper limit of integration, L, by
∞. Thus, we obtain as the continuous limit of (1.70), (1.71) and (1.72)] the set of
equations

∂

∂t
Z (x, t) = (1+ iω0) Z − |Z|2Z + KQ (t) , (1.79)

Z (x+ 2Ln, t) = Z (x, t) n = 0, ±1, ±2, . . . , (1.80)
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and

Q (x, t) =
∫ ∞

0
dy

1

2
κe−κy [

Z (x+ y, t − σy)+ Z (x− y, t − σy)
]

dy. (1.81)

Equation (1.79) is the non-local time-delayed generalization of the complex
Ginzburg–Landau equation. One can also obtain a phase-reduced version of the
above equation in the limit when the coupling between the oscillators is weak. We
then let Z = A exp (iφ(x, t)) and treat the amplitude A to be a constant. In general the
coupling constant K may be complex and can be written as K(1+ ia) = K′ exp (iα)
where a and α are real constants. Substituting for Z in (1.79) and separating the real
and imaginary parts, we get from the imaginary part,

∂φ(x, t)

∂t
= ω0 + K′

∫ L

−L
dy G(x− x′) sin

[
φ(x′, t − σ | x− x′ | )− φ(x, t)+ α] ,

(1.82)
where α = tan−1 (a) and we have chosen the system length to be 2L. In the absence
of time delay (setting σ = 0) equations (1.79) and (1.82) have recently been studied
by a number of authors [47, 48, 50] in the context of chimera states. We will return
to these equation later in this section after we have discussed some aspects of the
death state and phase-locked states in the discrete non-local system.

1.3.3.2 Amplitude Death in the Non-Local System

A linear perturbation analysis about the origin Zj = 0, carried out for (1.70) in the
manner described in the previous section, yields the following eigenvalue equation
for N odd

λj = 1+ iω0 − K + 2KSo

1
2 (N−1)∑

m=1

cos [
2π

N
(j− 1)m]e−m(κa+λjτ ), (1.83)

and likewise for even N one can get

λj = 1+ iω0 − K
[
1+ See−N(κa+λjτ )/2cos (π (j− 1))

]

+2KSe

N/2∑

m=1

cos(
2π

N
(j− 1)m)e−m(κa+λjτ ). (1.84)

Notice the similarities and some essential differences between (1.83) (or (1.84)) and
the individual factors of the eigenvalue equation (1.46) that we derived earlier for
the locally coupled system. In addition to the weight factor exp ( − κa) we also
see that there is a summation over all perturbation wave numbers 2π (j − 1)/N.
One can therefore expect a more complex shape for the island structure compared
to the two or at most four curves for the locally coupled system. The parameter κa



1 Delay Coupled Limit Cycle Oscillators 31

provides a measure of the degree of non-locality—a large κa corresponds to a highly
localized interaction region and a small value of κa implies stronger non-locality.
One can also expect therefore a dependence of the island complexity on the value of
κa. These expectations are indeed borne out [36] when one constructs the stability
islands in the K− τ parameter space by using the marginal stability curves of (1.83)
or (1.84). For the odd N case the marginal curves are defined by the following two
relations:

1− K + 2KSo

(N−1)/2∑

m=1

e−mκa cos (mτβ) cos (
2π

N
(j− 1)m) = 0, (1.85)

ω0 + 2KSo

(N−1)/2∑

m=1

e−mκa sin (mτβ) cos (
2π

N
(j− 1)m) = β, (1.86)

where β = Im(λj). To construct the marginal curves, i.e., to derive a relation
between K and τ one needs to eliminate β from the above two equations. This
is difficult to do analytically but can be accomplished numerically by rewriting the
above equations in the following parametric form:

K = 1

1− 2So
∑(N−1)/2

m=1 e−mκa cos (mx) cos (my)
, (1.87)

τ = x

ω0 + 2K(x)So
∑(N−1)/2

m=1 e−mκa sin (mx) cos (my)
, (1.88)

where x = βτ and y = 2π
N (j − 1). For a given value of κa and N, the idea is to

evaluate K and τ numerically over a range of x values, e.g. (−2π , 0), for a particular
value of y and thereby eliminate β. The evaluation is repeated for each value of
y. The stable region bounded by these curves then constitutes the death island. In
Fig. 1.12(a) we have plotted the lower portions of the islands for two cases, namely
κa = 1, for which the non-locality is strong, and κa = 3, which is close to being a
locally coupled system. As can be seen the lower boundary of the strongly coupled
case is quite complex and is made up of portions of several marginal stability curves
arising from different mode number perturbations. By contrast, for the weakly non-
local case the island region lies between just two curves as shown in Fig. 1.12(b).
Another important difference from the local coupling case is that the island size is
no longer invariant for even N but changes as a function of N.

1.3.3.3 Plane Wave States and their Stability

As in the case of the nearest neighbor coupled system, a non-locally coupled sys-
tem can also sustain plane wave solutions. The plane wave form of the complex
amplitude of the jth oscillator, including a perturbation of order ε, is

Zj (t) =
[
1+ εaj (t)

]
Z0

j (t) , (1.89)
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(a) (b)

Fig. 1.12 (a) The lower portion of a death island for strong non-locality κa = 1, N = 10, for small
K. All the perturbation modes participate in defining the boundary where the curves are labeled by
j = 1, 2, 3... (b) A similar plot for weak non-locality, κa = 3, N = 10 where only two perturbation
modes j = 1 and j = 6 are seen to define the boundary

where

Z0
j (t) = Rkei(jka+ωkt), (1.90)

k = 0, 1, 2, . . . , (N − 1), R2
k is required to be positive, and aj (t) are the complex

amplitudes of the perturbation, which satisfy the periodicity conditions aj+nN (t) =
aj (t) , n = 0,±1,±2, . . . . In general, ωk is complex, but for plane wave equilibria
ωk is required to be real. The quantities R2

k and ωk are determined simultaneously
by solution of a complex dispersion relation obtained at O

(
ε0

)
of a perturbation

expansion in ε. A system of evolution equations for the set of functions aj (t), from
which the linear stability of the equilibria is determined, is obtained at O (ε) of the
perturbation expansion. The dispersion relation for plane wave solutions of (1.70)
is given by the pair of equations

ωk = ω0 + K�
{

Q̃
}

(1.91)

and

R2
k = 1+ K�

{
Q̃
}

, (1.92)

where

Q̃ = S{e,o}
∑

{e,o}
e−m(κa+iωkτ)

(
eimka + e−imka

)
− 1 (1.93)

and the symbols �{}, �{} stand for the real and imaginary parts of the quantity
within the braces. For a given value of k, one determines numerically the values
of ωk that satisfy (1.91). For each set of values of k and ωk, one then determines
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from (1.92) the value of R2
k , which, for an acceptable set of values of k and ωk,

is required to be positive. In the case of vanishing time delay, the quantities Q̃
are independent of ωk, a given value of k determines a single value of ωk, and
the solution of (1.92) and (1.91) for ωk and R2

k is considerably simplified. Having
determined a set of equilibrium states (ωk,Rk), one needs to next determine their
stability from an eigenvalue analysis. The derivation of such an eigenvalue equation
is quite straightforward, if somewhat tedious, and is along the lines of the method
followed for the nearest neighbor case. The analysis of such an equation for large N
is however quite challenging even numerically and remains an open problem at the
present time.

1.3.3.4 Time-Delayed Chimera States

Non-locally coupled oscillator systems can exhibit a remarkable class of patterns
called chimeras, in which identical limit cycle oscillators separate sharply into two
domains, one synchronized and phase-locked and the other desynchronized and
drifting [47]. This peculiar mode, in which coherence and incoherence co-exist
at the same time in a system of oscillators, was first noticed by Kuramoto and
his coworkers [47, 48, 50] in their simulations of the complex Ginzburg–Landau
equation (CGLE) with non-local coupling and was later named a chimera state by
Abrams and Strogatz [55]. In Fig. 1.13(a) we show a typical plot of the chimera
state in the absence of delay obtained from a numerical solution of (1.82) with
σ = 0. One clearly sees two distinct regions—a central region where the phases
of the oscillators are locked to each other and an outer region where they are ran-
domly distributed. The central portion drifts with a certain fixed velocity while the
incoherent part has no fixed velocity. A chimera is a stationary stable pattern that
co-exists with a fully phase-locked coherent state and occurs in a limited parameter

Fig. 1.13 Phase pattern for a typical chimera state. Here K′ = 1, κ = 4.0, α = 1.45, ω = 0, and
N = 257
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regime defined by the coupling strength K′ and the tuning parameter α. Access to
such a state is also dependent on initial conditions and Kuramoto et al. [47] took
special precautions to obtain such solutions numerically. Chimera solutions exist
for both the CGLE and for the reduced phase-only version of the equation. For
convenience we rewrite the phase-reduced NDCGL equation (1.82) once again here
and set K′ = 1 and drop the subscript on ω.

∂

∂t
φ(x, t) = ω −

∫ L

−L
G(x− x′) sin [φ(x, t)− φ(x′, t − τx,x′)+ α] dx′. (1.94)

The kernel G(x − x′) provides a non-local coupling among the oscillators over a
finite spatial range of the order of κ−1, which is chosen to be less than the system
size. The coupling is time delayed through the argument of the sinusoidal interaction
function, namely, the phase difference between two oscillators located at x and x′ is
calculated by taking into account the temporal delay for the interaction signal to
travel the intervening geodesic (i.e., shortest) distance determined as dx,x′ = min
{|x − x′|, 2L − |x − x′|}. The time delay term is therefore taken to be of the form
τx,x′ = dx,x′/v where v is the signal propagation speed.

The question we now ask is whether (1.94) has a chimera solution in the presence
of finite time delay and what it looks like. This problem was addressed in [37]
exploring both numerical solutions of (1.94) and some analytical insights obtained
from the behavior of the order parameter. We first discuss the numerical results
obtained by using the discretized version of (1.94) and employing a large num-
ber of oscillators (typically 257) for the simulation. The set of system parameters
chosen for the simulations were 2L = 1.0, α = 0.9, k−1 = 0.25, ω = 1.1, and
v = 0.09765625 corresponding to a maximum delay time (τmax) in the system
of 5.12. Initially all the oscillators were given uniformly random phases (mirror
symmetric) between 0 and 2π , and the equations were evolved long enough to get
a time-stationary solution. Figure 1.14 provides a comprehensive summary of the
evolution and final state of the time-delayed chimera. Panels (a) and (b) show a
space–time plot of the simulation in the early stages of evolution (starting from
random initial phases) and in the final stages of the formation of a clustered chimera
state, respectively. Panel (c) shows a snapshot of the spatial distribution of the phases
in the final stationary state. We see four coherent regions interspersed by incoher-
ence and also find that the adjacent coherent regions are π out of phase with each
other. Panel (d) is a blowup of the region between x = −0.5 and x = −0.25 giv-
ing an enlarged view of an incoherent region and portions of the adjacent coherent
regions.

To gain a better understanding of the nature of this pattern and of the dynamics
of its formation, it is instructive to adopt a generalized mean field approach and try
to examine the behavior of an averaged quantity like an order parameter of the sys-
tem. Such an approach and formalism was developed by Kuramoto and Battogtokh
[47] to understand the formation of the non-delayed chimera state. For this, we first
rewrite (1.94) in terms of a relative phase θ given by
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Fig. 1.14 (a) The space–time plot of the oscillator phases φ for the parameters 2L = 1.0, κ = 4.0,
1/v = 10.24, ω = 1.1, and α = 0.9 in the early stages of evolution from a random set of initial
phases. Panel (b) shows a later time evolution and panel (c) gives a snapshot of the final stationary
state. Panel (d) is a blowup of the region between x = −0.5 and x = −0.25 giving an enlarged
view of an incoherent region and portions of the adjacent coherent regions

θ (x, t) = φ(x, t)−Ωt, (1.95)

where Ω represents a rotating frame in which the dynamics simplifies as much as
possible and is the constant drift frequency of the phase-locked portions. In terms
of θ (1.94) becomes

∂

∂t
θ (x, t) = ω−Ω−

∫ L

−L
G(x−x′) sin [θ (x, t)−θ (x′, t−τx,x′)+α+Ωτx,x′ ]dx′. (1.96)

Following Kuramoto’s approach [47], we now define a complex order parameter
ReiΘ , in a manner analogous to what we had done for a globally coupled system in
Sect. 1.3.1, as,

R(x, t)eiΘ(x,t) =
∫ L

−L
G(x− x′)ei[θ(x′,t−τx,x′ )−Ωτx,x′ ] dx′. (1.97)

The above order parameter differs from the usual definition for globally coupled
systems in a number of significant ways: The spatial average of eiθ is now weighted
by the coupling kernel G(x− x′), the phase θ is evaluated in a time-delayed fashion,
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and the factor e−iΩτx,x′ adds a complex phase to the kernel G(x− x′). The latter two
features provide a further generalization of Kuramoto’s analysis carried out for a
non-delayed system [47, 48, 55, 56].

In terms of R and Θ , (1.94) can be rewritten as

∂

∂t
θ (x, t) = Δ− R(x, t) sin [θ (x, t)−Θ(x, t)+ α], (1.98)

where Δ = ω − Ω . Equation (1.98) is in the form of a single-phase oscillator
equation driven by a force term which in this case is the mean field force. To obtain
a stationary pattern (in a statistical sense) we require that R and Θ depend only on
space and be independent of time. Under such a circumstance the oscillator popula-
tion can be divided into two classes: those which are located such that R(x) > |Δ|
can approach a fixed point solution (∂θ (x, t)/∂t = 0) and the other oscillators that
have R(x) < |Δ| would not be able to attain such an equilibrium solution. The oscil-
lators approaching a fixed point in the rotating frame would have phase coherent
oscillations at frequencyΩ in the original frame whereas the other set of oscillators
would drift around the phase circle and form the incoherent part.

One can easily solve (1.98) for the motion of the oscillator at each x, subject to the
assumed time-independent values of R(x) andΘ(x). The oscillators with R(x) ≥ |Δ|
asymptotically approach a stable fixed point θ∗, defined implicitly by

Δ = R(x) sin [θ∗ −Θ(x)+ α]. (1.99)

The fact that they approach a fixed point in the rotating frame implies that they are
phase-locked at frequencyΩ in the original frame. On the other hand, the oscillators
with R(x) < |Δ| drift around the phase circle monotonically. To be consistent with
the assumed stationarity of the solution, these oscillators must distribute themselves
according to an invariant probability density ρ(θ ). And for the density to be invari-
ant, the probability of finding an oscillator near a given value of θ must be inversely
proportional to the velocity there. From (1.98), this condition becomes

ρ(θ ) =
√
Δ2 − R2

2π |Δ− R sin (θ −Θ + α)| , (1.100)

where the normalization constant has been chosen such that
∫ π
−π ρ(θ ) dθ = 1 and

R, Θ , and θ are functions of x.
The resulting motions of both the locked and the drifting oscillators must be

consistent with the assumed time-independent values of R(x) andΘ(x). To calculate
the contribution that the locked oscillators make to the order parameter (1.97), we
note that
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sin (θ∗ −Θ + α) = Δ
R

, (1.101)

cos (θ∗ −Θ + α) = ±
√

R2 −Δ2

R
(1.102)

for any fixed point of (1.98). Taking plus sign for the stable fixed point, one can
write

ei(θ∗−Θ+α) =
√

R2 −Δ2 + iΔ

R
(1.103)

which implies that the locked oscillators contribute

∫
dx′G(x− x′)eiθ∗(x′) = e−iα

∫
dx′G(x− x′)ei[Θ(x′)−Ωτx,x′ ]

(√
R2 −Δ2 + iΔ

R

)

(1.104)
to the order parameter (1.97). Here the integral is taken over the portion of the
domain where R(x′) ≥ Δ.

Next, to calculate the contribution from the drifting oscillators, following the
prescription provided by Kuramoto [47, 48] for the undelayed case, we replace
eiθ(x′) in (1.97) with its statistical average

∫ π
−π eiθρ(θ ) dθ . Using (1.100) and contour

integration, one obtains

∫ π

−π
eiθρ(θ )dθ = i

R

(
Δ−

√
Δ2 − R2

)
. (1.105)

The contribution of the drifting oscillators to the order parameter can therefore
be written as

∫
dx′G(x− x′)e−iΩτx,x′

∫ π

−π
eiθρ(θ ) dθ = ie−iα

∫
dx′G(x− x′)

ei[Θ(x′)−Ωτx,x′ ]
(
Δ−√

Δ2 − R2(x′)
R(x′)

)

, (1.106)

where now the integral is over the complementary portion of the domain where
R(x′) < |Δ|. We substitute these solutions of (1.98) for the two classes of oscil-
lators into the integrand on the right-hand side of (1.97) and obtain the following
functional self-consistency condition:

R(x)eiΘ(x) = eiβ
∫ L

−L
G(x− x′)ei[Θ(x′)−Ωτx,x′ ]

(
Δ−√

Δ2 − R2(x′)
R(x′)

)

dx′, (1.107)

where β = π/2 − α. For a chimera state to exist, R, Θ , and Δ must satisfy the
above self-consistency condition. Note that we have three unknowns, and condition
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Fig. 1.15 Variation of Δ with
the iteration number showing
a rapid convergence in the
numerical solution of the
self-consistency
equation (1.107). The system
parameters are identical to
those used in the direct
solution of (1.94)
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(1.107) provides only two equations when we separate its real and imaginary parts.
A third condition can be obtained by exploiting the fact that the equation is invariant
under any rigid rotation Θ(x) → Θ(x) + Θ0. We can therefore specify the value
of Θ(x) at any arbitrary chosen point, e.g., Θ(L) = 0. In [37] (1.107) was solved
numerically by following a three-step iterative procedure consisting of the following
steps: Arbitrary but well-behaved initial guess functions were chosen for R(x) and
Θ(x) and the condition Θ(L) = 0 was used in one of the equations of (1.107) to
obtain a value for Δ. The initial profiles and the Δ value so obtained were then
used to evaluate the right-hand side of (1.107) to generate new profiles for R andΘ .
These were next used to generate a new value of Δ and the procedure was repeated
until a convergence in the value of Δ and the functions R and Θ was obtained.

Figure 1.15 shows the rapid and excellent convergence in Δ to a unique value of
Δ = 0.189 for the solution of (1.107) with system parameters chosen identical to
the ones that were used to obtain a clustered chimera state by a direct solution of
(1.94). The converged spatial profiles of the order parameter (R and Θ) are shown
in Fig. 1.16 and the converged value of Δ is marked in the upper panel by the
horizontal line. The amplitude of the order parameter (R) shows a periodic spa-
tial modulation—peaking at four symmetrically placed spatial locations. The cor-
responding phases of the order parameter are seen to be in anti-phase for adjacent
peaks in R. In between the peaks R is seen to dip to very small values at certain
locations such that R(x) < |Δ| which should correspond to the incoherent drifting
parts of the chimera. To better appreciate the agreement between the direct solutions
of (1.94) and the mean field solutions of (1.107) the results are plotted together
in Fig. 1.17. As is clearly seen the measured order parameter (R and Θ) and Δ
from the direct simulations of (1.94) match well with the results of solving (1.107).
The spatial profile of the phases (φ) of the oscillators as obtained from the direct
simulation of (1.94) is shown in the top panel of Fig. 1.17. One finds four coherent
regions interspersed by incoherence as expected from the results of solving (1.107).
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Fig. 1.16 Spatial profiles of
the amplitude R and the phase
Θ of the order parameter
obtained by solving the
self-consistency equation
(1.107) by an iterative
scheme. The horizontal line
in the upper panel marks the
converged value Δ = 0.189
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Also note that for the no-delay case there is only one peak of the order parameter as
shown in Fig. 1.13(b).

It is appropriate at this juncture to point out some other general features of the
clustered chimera states. Figures 1.16 and 1.17 show that both R and Θ are mirror
symmetric (i.e., R(x) = R( − x),Θ(x) = Θ( − x)), a property that the original
phase equation (1.94) also possesses. Equation (1.94) is also invariant under the
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Fig. 1.17 (a) The phase pattern for a clustered chimera state as obtained by direct simulation of
(1.94). The measured spatial profiles of the order parameter (R and Θ) from these simulations
are shown in panels (b) and (c) as dashed curves and compared with the solutions from the self-
consistency Equation (1.107) shown as solid curves. (d) ω − φ̇ for the oscillators from a direct
simulation of (1.94). The horizontal lines in (b) and (d) mark the converged value of Δ = 0.189
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transformation (φ(x, t) → −φ(x, t), ω → −ω, α → −α) and can have solutions
with such a symmetry as well, namely, traveling wave solutions given by φ(x, t) =
Ωt + πqx/L. In the numerical simulations with a change of the initial conditions
keeping the same system parameters, one can get traveling wave solutions. For the
non-delayed chimera case the co-existent stable state is that of a uniformly coherent
state. The corresponding co-existent state in the time-delayed case is a traveling
wave. In fact, there seems to be a clear correspondence between the number of
clusters of the observed chimera state and the wave number q of the co-existent
traveling wave solution. For the four-cluster chimera of Fig. 1.16 the co-existent
traveling wave has q = 2 and similar results were observed in [37] for six-cluster
(q = 3) and eight-cluster (q = 4) chimera solutions.

To summarize, we see that chimera type solutions do exist in a time-delayed
system of non-locally coupled identical phase oscillators and that time delay leads to
novel clustered states with a number of spatially disconnected regions of coherence
with intervening regions of incoherence. The adjacent coherent regions of this clus-
tered chimera state are found to be in anti-phase relation with respect to each other.
These results are also well understood in terms of the behavior of a generalized
order parameter for the system.

1.4 Summary and Perspectives

In the preceding sections we have shown how time delay can have subtle and
sometimes profound effects on the collective dynamics of a coupled oscillator sys-
tem. Various scenarios have been considered—starting from a simple two-oscillator
model to a system of a large number of oscillators coupled in various ways. Time
delay is introduced in the coupling mechanism and is seen to affect the existence,
stability, and nature of the various collective states. Most of the basic effects asso-
ciated with time delay are well demonstrated by the simple two-oscillator model.
These include the phenomenon of time delay-induced amplitude death of identi-
cal oscillators, the existence of higher frequency oscillatory states, multistability
and the co-existence of in-phase and anti-phase states, and multi-connectedness of
death islands. For large N systems and in the presence of spatial dependence of the
coupling mechanism, one has a wider variety of collective states such as traveling
waves and the peculiar chimera state. Time delay affects the domain of existence
of traveling waves as well as significantly altering their stability properties. The
chimera state acquires a spatial modulation in the presence of time delay whose
periodicity is closely linked to the co-existent stable traveling wave that the system
can support. While the principal features of time-delayed dynamics, as displayed by
the minimal model, are seen to be present in the N-oscillator models, their detailed
analysis gets progressively difficult with increasing complexities of the coupling
mechanisms and coupling topologies. Thus, as we found for the case of traveling
wave states in nearest neighbor coupled as well as in non-locally coupled systems,
the dispersion relations for their equilibrium states are extremely complicated and



1 Delay Coupled Limit Cycle Oscillators 41

demand extensive numerical analysis. The eigenvalue equations for linear stability
are even more complex and do not permit an easy determination of the stability
domains in parameter space. Due to the transcendental nature of these equations,
there is some debate about the practical feasibility of applying some of the standard
stability analysis techniques and this is very much an open area of research for
future investigations. We would also like to remark here that in our analysis we
have restricted ourselves to a very simple model of time delay—either a single fixed
discrete delay or a discrete set of delays for the non-local case. Alternative represen-
tations of time delay are possible, such as the one used by Atay [57] who showed that
the parameter space of amplitude death for the coupled oscillator is enhanced when
the oscillators are connected with time delays distributed over an interval rather
than concentrated at a point. Distributed delays provide for a more realistic model
for the description of larger physical systems where the delay parameter can be
space- or time-dependent or in biological systems where memory effects are impor-
tant. Another limitation of our treatment has been the adherence to a single and
simple kind of a collective model—namely an array of Stuart–Landau oscillators.
Networks of pulse coupled oscillators (also known as integrate and fire models) have
been widely explored in the context of neuronal studies and provide a more realistic
description of such systems. Such systems are also found to be quite sensitive to the
presence of time-delayed coupling, e.g., in enhancing the onset of neural synchrony
[58]. Another area that we have not discussed in this chapter is the response of
the oscillator system to an external time-delayed stimulus. This is an active area of
research today with important applications in neuroscience and control of neural
disorders. The basic idea here is again the influence of a time-delayed feedback
in enhancing or suppressing self-synchronization in an assembly of oscillators. We
have also restricted ourselves to the study of time delay effects on stationary (equi-
librium) states of the system. Their influence can extend to time-dependent states
as well as chaotic dynamics, Hopf oscillations, etc. In fact, the nature of transition
between chaotic and unsynchronized states is to date a poorly understood and open
problem in the study of coupled oscillator systems. Time delay effects, which pro-
vide a sensitive probe by its subtle influence on the behavior of the order parameter,
can prove useful in the further exploration of this problem [33].
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