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Abstract. This paper examines the benefits that information theory
can bring to the study of multiple classifier systems. We discuss rela-
tionships between the mutual information and the classification error of
a predictor. We proceed to discuss how this concerns ensemble systems,
by showing a natural expansion of the ensemble mutual information into
“accuracy” and “diversity” components. This natural derivation of a di-
versity term is an alternative to previous attempts to artificially define
a term. The main finding is that diversity in fact exists at multiple or-
ders of correlation, and pairwise diversity can capture only the low order
components.

1 Introduction

Information Theory sparked a revolution in the practice of electronic commu-
nications [1] and has since been successfully applied in countless fields, from
anthropology to biology to cosmology. In the last decade or so, it has found
significant uptake in Machine Learning. Suppose there is a message Y , encoded
and sent to us by a friend through a communications channel, that we receive
as a signal X . We would like to decode the received signal X , and recover the
correct message Y ; that is, we will perform a decoding operation, Ŷ = g(X). In
Machine Learning terms, we imagine that the friend transmitting the message
has access to a particular object, for which Y is the correct class label. They ‘en-
code’ the object as a feature vector X . Our task is to decode that feature vector
and recover the correct class label, using our predictor function g(·). Using this
analogy, information theory provides us with a language and a set of mathemat-
ical tools to analyze the situation. One of the most interesting observations it
can provide is a bound on the error of our predictor, dependent on the chosen
features X . This bound, known as Fano’s inequality, applies for any predictor:
be it a simple decision stump, or a nonlinear support vector machine.

We can also use information theory to understand multiple classifier systems.
To make the link, consider the received signal X not to be a set of features, but
as a set of classifier outputs, which we will use to form an ensemble. In this case,
the predictor g(·) corresponds to the ensemble combiner function. In this work

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 344–353, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



An Information Theoretic Perspective on Multiple Classifier Systems 345

we investigate the link in detail, in particular addressing the notion of ensemble
diversity.

This paper is structured as follows. Section 2 provides a tutorial introduction
to the basics of information theory, including the lesser known concept of multi-
variate mutual information. Section 3 describes how an understanding for the
concept of diversity can naturally emerge as an expansion of the ensemble mutual
information. Section 4 uses this result to characterize and explain the behaviors
of Adaboost versus Bagging, sections 5 and 6 present related work and conclude
with a look ahead to what advantages this approach might bring to MCS.

2 Background

In this section we review the required elements of information theory, and their
relation to Machine Learning. Due to space limitations this is necessarily brief;
for an extended treatment the reader might consult reference [2] or [3].

2.1 Information Theory Basics

The fundamental unit of information theory is the entropy of a random vari-
able [1]. The entropy, denoted H(X), quantifies the uncertainty present in the
distribution of X . It is defined1 as,

H(X) = −
|X|∑

i=1

p(xi) log p(xi). (1)

The base of the logarithm is arbitrary, but decides the “units” of the entropy.
When using base 2, the units are ‘bits’, when using base e, the units are ‘nats’.
To compute this, we need an estimate of the distribution p(X). This is estimated
by frequency counts from data, that is p(xi) = #xi

N , the fraction of observations
taking on value xi from the total number of observations N .

If the distribution is highly biased toward one particular event x ∈ X , i.e.
little uncertainty over the outcome, then the entropy is low. If all events are
equally likely, i.e. maximum uncertainty over the outcome, then H(X) is max-
imal2. Following the rules of standard probability theory, entropy can also be
conditioned on other events. The conditional entropy of X given Y is denoted,

H(X |Y ) = −
|Y |∑

j=1

p(yj)
|X|∑

i=1

p(xi|yj) log p(xi|yj). (2)

This can be thought of as the amount of uncertainty remaining in X after we
learn the outcome of Y .
1 In this work we restrict ourselves to discrete RVs, and note z log(z) → 0 with z → 0.
2 In general, 0 ≤ H(X) ≤ log(|X|).
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Fig. 1. Illustration of various information theoretic quantities

We can now define the Mutual Information between X and Y , i.e. the amount
of information shared by X and Y , as follows.

I(X ; Y ) = H(X) − H(X |Y )

=
∑

X

∑

Y

p(xy) log
p(xy)

p(x)p(y)
. (3)

It should be noted that Mutual Information is symmetric, i.e. I(X ; Y )=I(Y ; X).
The relation between all these quantities can be seen in figure 1. The Mutual
Information can also be conditioned on other events—the conditional mutual
information is,

I(X1; X2|Y ) = H(X1|Y ) − H(X1|X2Y )

=
∑

Y

p(y)
∑

X1

∑

X2

p(x1x2|y) log
p(x1x2|y)

p(x1|y)p(x2|y)
. (4)

This can be thought of as the information still shared between X1 and X2 after
the value of Y is revealed. The conditional mutual information will emerge as a
particularly important property in understanding the message of this paper.

2.2 Relationship to Machine Learning

Suppose there is a message Y , that was sent through a communications channel,
and we received the value X . We would like to decode the received value X , and
recover the correct Y . That is, we will perform a decoding operation, Ŷ = g(X).
In ML terms: Y is the original (unknown) class label distribution, X is the
particular set of features chosen to represent the problem, and g is our predictor.
The set of features chosen may or may not be sufficient to perfectly recover Y ;
that is, there may be an error in prediction. Information theory can provide a
bound on p(Ŷ �= Y ), for any predictor g.
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Fig. 2. Fano’s inequality [4] provides a lower bound on the Bayes rate, while Hellman-
Raviv [5] provides the upper bound. Picking features to reduce conditional entropy
(equivalent to maximising mutual information) causes this bound to be minimized.

The error of predicting target variable Y from input X is tightly bounded by
two inequalities [4,5]. The bounds state,

H(Y ) − I(X ; Y ) − 1
log(|Y |) ≤ p(g(X) �= Y ) ≤ 1

2
H(Y |X). (5)

In order to maximise the chances of our predictor guessing the correct class label,
we should have maximum I(X ; Y ). Given the definition (3), this is equivalent to
minimizing H(Y |X), illustrated in figure 2. As the mutual information I(X ; Y )
grows, the bound is minimized—whether or not the bound can be reached de-
pends on the ability of our classifier, i.e. the function g(X).

For example, if the conditional entropy is measured to be H(Y |X) = 0.4, then
the minimum error rate by any classifier lies in the range [0.079, 0.2]. In other
words, no classifier can possibly achieve better than error 0.079 with features
X , and there exists a classifier that can achieve at least error 0.2. It should be
noted that, in real ML problems, since we only ever have access to a sample of X
(not the full distribution) this is in practice an estimated bound on the training
error. We will investigate relations to the the generalization error in section 4.

We have now covered the basic properties of information theory. To complete
the background necessary for this paper, we now briefly review the lesser-known
topic of multi-variate mutual information.

2.3 Multi-variate Mutual Information

While Shannon’s mutual information I(X ; Y ) measures dependence between a
pair of variables, the multivariate form, known as Interaction Information [6],
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can account for dependencies among multiple variables. For a set of size 2, the
Interaction Information reduces to Shannon’s definition. For three random vari-
ables, the Interaction Information is

I({X1, X2, X3}) = I(X1; X2|X3) − I(X1; X2), (6)

that is, a difference of the conditional mutual information and the simple mutual
information. The case for n variables is defined recursively. A full treatment of
this advanced topic is not possible given the limited space; for more information
the reader is referred to reference [7]. The interaction information turns out to be
useful in understanding the nature of ensemble diversity, which we will explore
in the following section.

3 Mutual Information and Ensemble Classifiers

One of the long-standing problems in the MCS literature is to understand the na-
ture of ensemble diversity. We know that ensemble members should exhibit some
level of accuracy.We also know that ensemble members should not be identical, ex-
hibiting some level of diversity. However, quantifying these statements has proved
challenging [8]. In this section we take an information theoretic perspective.

3.1 Why Is Diversity So Elusive?

To answer this question [9] we return to one of the most well-known results
in the MCS literature concerning the diversity issue. Tumer & Ghosh [10] re-
lated the ensemble classification error to the correlations between the individual
predictor outputs. They showed that the error of a linearly combined ensem-
ble could be decomposed neatly into accuracy and diversity components. This
exemplary early work sparked much effort to find the corresponding accuracy-
diversity terms for a majority voting ensemble. A fundamental message of this
work is that we should not expect the majority vote ensemble error to similarly
decompose into additive accuracy-diversity terms.

The neat situation in [10] is due to the linearity of the combination opera-
tor, and bias-variance properties of the squared loss function. When we have a
nonlinear combination operator, and a zero-one loss function, the situation is
more complicated. It is well appreciated that there exists no unique definition
of bias and variance for zero-one loss. In the same fashion, there is no unique
definition of covariance (diversity) with this loss function; instead, the literature
has spawned a myriad of diversity definitions [8] with desirable and undesirable
properties.

It is often the case in Machine Learning to use a surrogate loss function, and
minimise that instead of the actual one of interest. Adaboost is the prime exam-
ple of this—the distribution updates in the algorithm do not directly minimise
classification error, but instead minimize a surrogate, an exponential loss which
bounds the classification loss. In this way, when the exponential loss is small,
we can be guaranteed the classification loss will also be at least as small. In the
following section we take a similar approach, remembering that the classification
error rate can be bounded by the mutual information, using Fano’s inequality.
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3.2 A ‘Natural’ Definition of Diversity

In this section we show a diversity term emerges naturally when we measure
the ensemble mutual information. This draws on a recent result in the feature
selection literature [7], described and adapted for the MCS community in the
Appendix. For a set of classifiers S = {X1, ..., XM}, remembering that our ob-
jective is to maximise I(X1:M ; Y ), we have the expansion,

I(X1:M ; Y ) =
M∑

i=1

I(Xi; Y ) −
∑

X⊆S

|X|=2..M

I({X}) +
∑

X⊆S

|X|=2..M

I({X}|Y ). (7)

The expansion consists of three terms. The first,
∑M

i=1 I(Xi; Y ) is the sum of
each individual classifier’s mutual information with the target. Since the mutual
information is actually only a bound on the accuracy, not the actual accuracy,
it is misleading to say this is an ‘accuracy’ term. Instead, we refer to the first
term as the relevancy of a classifier output to the target. The final combination
function g will determine if this provides good accuracy in combination with the
other classifiers.

The second contains terms of the form I({X}) and is independent of the class
label Y , and so is the closest analogy to the (now almost mythical) concept of
‘diversity’. It measures the interaction information among all possible subsets of
classifiers, drawn from the ensemble. We refer to this as the ensemble redun-
dancy. Notice this term is subtractive from the overall mutual information. A
large value of I({X}) indicates strong correlations between the classifiers, and
reduces the value of I(X1:M ; Y ), and hence the overall achievable accuracy.

The third contains terms of the form I({X}|Y ) and is a function of the class
label Y . This therefore does not correspond to the folklore definition of ‘diver-
sity’, that it should be a function solely of the classifier outputs. We call this the
conditional redundancy. Notice that this term is additive to the ensemble mutual
information. While it is commonly accepted that we should have low correla-
tions between ensemble members, this term indicates that we in fact need strong
class-conditional correlations. The balance between these conditional and uncon-
ditional terms is similar to aiming for a small within-class variance (maximizing
the dependency I({X}|Y )) and a large between-class variance (minimizing the
dependency I({X})).

3.3 Low-Order and High-Order Diversity

We have found that through an expansion of the ensemble mutual information,
terms which we might call ‘diversity’ appear naturally. The redundancy is a
traditional diversity term, and the conditional redundancy is the same form but
conditioned on the class label. The sum of these two values is what we refer to
as the “diversity” of the classifier set. It should be noted that the summations
in eq(7) are over all possible subsets of classifiers drawn from the ensemble. We
can expand this sum over subsets, to give us a breakdown of diversity,
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I(X1:M ; Y ) =
M∑

i=1

I(Xi; Y ) −
∑

|X|=2

I({X}) +
∑

|X|=2

I({X}|Y )

−
∑

|X|=3

I({X}) +
∑

|X|=3

I({X}|Y )

− . . . + . . .

−
∑

|X|=M

I({X}) +
∑

|X|=M

I({X}|Y ).

This breakdown has the form,

I(X1:M ; Y ) = Individual Mutual Info + 2-way diversity (pairwise)
+ 3-way diversity
+ ...-way diversity
+ M-way diversity

where the diversity measure is the multivariate mutual information. This ex-
pansion reflects the true complexity of the accuracy-diversity issue. Diversity is
not simply a pairwise measure between classifiers, such as the Q-statistics or the
Double-Fault measures. Diversity in fact exists on numerous levels of interaction
between the classifiers.

4 Monitoring Low-Order Diversity Components

In the previous section we showed that diversity exists at multiple levels of
correlation within an ensemble. If the classifiers were statistically independent,
then all diversity terms would be zero, and we would have simply I(X1:M ; Y ) =∑M

i=1 I(Xi; Y ). If the classifiers only exhibited pairwise interactions, the break-
down be as above but omitting the 3-way and above diversity terms. This as-
sumption of pairwise interactions gives us,

I(X1:M ; Y ) ≈
M∑

i=1

I(Xi; Y ) −
M∑

j=1

M∑

k=j+1

I(Xj , Xk) +
M∑

j=1

M∑

k=j+1

I(Xj , Xk|Y ) (8)

The ensemble information is thus approximated by a sum of the relevancy, the
pairwise redundancy, and the pairwise conditional redundancy. In figures 3, 4,
and 5 we monitor these three components to characterize the behavior of Ad-
aboost and Bagging. All information measurements are made on training data,
and used to explain the performance on test data. Examining the pairwise com-
ponents we find Adaboost succeeds by decreasing redundancy, but has no effect
on the conditional term. Bagging has no effect on either, reflected in the poor
test error. Further comment is provided in the figure captions.
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Fig. 3. Adaboost (left) and Bagging (right) errors using decision stumps on the Breast
Cancer data. Graphs show standard deviation over ten trials of 2-fold cross validation.

Fig. 4. The Relevancy-Diversity tradeoff. On the left we see the average relevancy of
Adaboost classifiers decreases over time, but the diversity component compensates this
by also rising. On the right, Bagging maintains almost constant classifier relevancy and
very low diversity, explaining the poor test error in figure 3.

Fig. 5. Second order components of the ensemble mutual information. Adaboost (left)
decreases the redundancy of its classifiers, though maintains constant conditional re-
dundancy. Bagging (right) allows the redundancy to rise very slightly at small ensemble
size, but has no significant effect on either component.
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5 Related Work

Meynet and Thiran [11] suggest a heuristic cost function, designed to balance
ensemble accuracy with diversity. The cost function consists of two information
theoretic terms. The first is simply the average mutual information between each
ensemble member and the class label, which they call the Information Theoretic
Accuracy, ITA = 1

M

∑M
i=1 I(Xi; Y ). The second is the reciprocal of the average

pairwise mutual information between ensemble members, which they call the
Information Theoretic Diversity,

ITD =
( 1(

M
2

)
M∑

j=1

M∑

k=j+1

I(Xj ; Xk)
)−1

. (9)

Thus, the task is to simultaneously maximise ITA and ITD, though it is clear
that a tradeoff will occur between the two. The authors represent the tradeoff
by a second-order polynomial: the Information Theoretic Score is defined,

ITS = (1 + ITA)3.(1 + ITD) (10)

Comparing the form of ITA and ITD to the results in section 3.2, it is clear
that ITS includes two of the necessary components to take account of pair-
wise interactions between ensemble members. The final term necessary is the
class-conditional I(Xi; Xj|Y ), and the higher-order terms are assumed zero.
The main difference between this heuristic and the current work is that ITS
was hand-designed, whereas we have shown a natural derivation of a diversity
term.

6 Conclusion

This paper examined the issue of ensemble diversity from an information the-
oretic perspective. A major advantage of information theoretic criteria is they
capture higher order statistics of the data. In contrast, the squared error criterion
can capture only second-order statistics. The main finding was an expansion of
the ensemble mutual information which naturally involves “accuracy” and “di-
versity” component, although diversity is shown to exist at several levels, having
low and high order elements.

The advantage of this approach is that g(·) can be any function, that is,
any ensemble combiner function. In this paper we showed preliminary results
with the majority vote combiner, as this has traditionally been of most interest
regarding the ‘diversity’ question. Extensions to this work might assess how
effective different combiner functions are at ‘decoding’ the information contained
in the ensemble.
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Appendix: Expansion of the Ensemble Mutual Information

Theorem 1
Given a set of classifiers S = {X1, ..., XM}, and a class label Y , their Shannon
mutual information can be expanded as

I(X1:M ; Y ) =
∑

T⊆S

I({T ∪ Y }), |T | ≥ 1. (11)

That is, the Shannon Mutual Information between X1:M and Y expands into a
sum of Interaction Information terms. Note that

∑
T⊆S should be read, “sum

over all possible subsets T drawn from S”.

Proof: See ref [7].

Example: As an illustrative example for an ensemble of size M = 3, the Shannon
information between the joint variable X1:3 and a target Y can be re-written as

I(X1:3; Y ) = I({X1, Y }) + I({X2, Y }) + I({X3, Y })
+I({X1, X2, Y }) + I({X1, X3, Y }) + I({X2, X3, Y })
+I({X1, X2, X3, Y }). (12)

Each term can then be separated into class unconditional I({X}) and condi-
tional I({X}|Y ) according to the standard definition of interaction information.
This gives us the expansion found in the main body of this paper.
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