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Abstract. The one class support vector machine (OCSVM) is a widely
used approach to one class classification, the problem of distinguising
one class of data from the rest of the feature space. However, even with
optimal parameter selection, the OCSVM can be sensitive to overfitting
in the presence of noise. Bagging is an ensemble method that can reduce
the influence of noise and prevent overfitting. In this paper, we propose a
bagging OCSVM using kernel density estimation to decrease the weight
given to noise. We demonstrate the improved performance of the bagging
OCSVM on both simulated and real world data sets.

1 Introduction

In binary classification, it is typically assumed that training data is available
for both classes. However, in some real world applications, there is little or
no data available for one of the classes. For example, in the diagnosis of rare
diseases, there are many healthy patients but few sick patients to collect data
from. Therefore, one class is represented well (positive class), but the other
class is not represented well or at all (negative class). One class classification
is the partially unsupervised learning problem of training on positive data only
and distinguishing the positive class from the rest of the feature space, which
comprises all possible negative classes. One class classifiers decide to either accept
or reject a given point into the positive class [13].

There are two main types of one class classifiers. Density methods estimate
the probability distribution of the positive class and accept points that have a
high probability of belonging to the positive class. Boundary methods estimate a
boundary that encloses the positive class and accept points inside the boundary.
Although density methods provide information about the entire structure of
the positive class, boundary methods often perform better since they solve a
fundamentally easier problem [13]. In particular, the one class support vector
machine (OCSVM), a boundary method adapting the support vector machine
(SVM) to one class classification [12,11], has become one of the most widely used
one class classifiers.
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Although the OCSVM has been applied widely, the estimated boundary can
be sensitive in practice [10]. When the training data is noisy and contains many
outliers near or in the negative class, the OCSVM will estimate a large boundary
that encloses areas of the feature space where the positive class has low density,
resulting in many false positives [6]. This can be highly problematic for many
applications where the number of false positives must be kept to a minimum.
For example, the accidental diagnosis of a sick patient as healthy may result
in death. Optimal parameter selection can tighten the estimated boundary to
a certain extent [15], but ideally the OCSVM should be modified in order to
decrease the influence of outliers on the estimated boundary.

One way of viewing the sensitivity of the OCSVM to outliers is that the
OCSVM is unstable. Although the estimated boundary robustly encloses the
positive class, the introduction of outliers can arbitrarily expand the estimated
boundary. Bagging is an ensemble method that combines multiple unstable clas-
sifiers trained on resampled data to produce an improved classifier [3]. Bagging
has been applied to other unstable one class classifiers such as one class decision
trees [9] with success. Other types of ensemble methods, such as combining dif-
ferent one class classifiers [14] and training on different sets of features [8], have
been applied to the OCSVM with success. However, since the OCSVM has been
traditionally viewed as stable, bagging OCSVM has not been explored to our
knowledge.

In this paper, we propose a bagging OCSVM using weights determined by
kernel density estimation. Our bagging OCSVM combines the advantages of
density methods, boundary methods, and bagging. The OCSVM is still used to
estimate a boundary, but kernel density estimation is used to find outliers and
bagging is used to decrease the influence of outliers on the estimated boundary.
Our bagging OCSVM is inspired by the recent success of combining density and
boundary methods [5]. We demonstrate that the bagging OCSVM tightens the
estimated boundary and reduces false positives on both simulated and real world
data sets. The rest of the paper is organized as follows. In Section 2, we describe
the OCSVM. In Section 3, we describe the bagging OCSVM. In Section 4, we
experimentally compare the normal and bagging OCSVM. In Section 5, we give
our final remarks.

2 One Class Support Vector Machines

The OCSVM, as formulated in [11], estimates a set that encloses most of a
given sample of m points {xi}m

i=1,xi ∈ IRd. Each point xi is transformed by
a map φ : IRd → K from the feature space IRd into a high dimensional kernel
space K generated by the kernel k(x,y). The kernel corresponds to an inner
product in the kernel space through k(x,y) = 〈φ(x), φ(y)〉. The OCSVM finds
a hyperplane in the kernel space that separates the data from the origin with
maximum margin. If no such hyperplane exists, slack variables ξi allow for some
points to be within the margin (outliers) and a free parameter ν ∈ [0, 1] controls
the cost of such violations. In general, ν provides an upper bound on the fraction
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of outliers [11]. The hyperplane in the kernel space induces a nonlinear surface
in the feature space.

More precisely, the OCSVM solves the quadratic program

min
w,ξ,ρ

1
2
‖w‖2 +

1
νm

m∑

i=1

ξi − ρ

s.t. 〈w, φ(xi)〉 ≥ ρ − ξi, i = 1, . . . , m

ξi ≥ 0, i = 1, . . . , m (1)

where w is the normal vector to the hyperplane and ρ is the margin. The
quadratic program can be solved efficiently by sequential minimal optimization
(SMO) of its dual form [11]. The decision function

g(x) = sign(〈w, φ(x)〉 − ρ) (2)

determines whether a given point x is in (positive) or out (negative) of the
estimated set.

In practice, a Gaussian kernel

k(x,y) = exp
(
−‖x− y‖2

2σ2

)
(3)

with a width parameter σ is used and is the only kernel that has been successfully
applied to the OCSVM [11]. The Gaussian kernel maps the data into the same
orthant in the kernel space, justifying the principle of separating the data from
the origin. The OCSVM with a Gaussian kernel is equivalent to the support
vector domain description (SVDD) [12], which finds a hypersphere in the kernel
space that encloses the data with minimum volume.

Optimal selection of σ is critical to the performance of the OCSVM, since it
controls the shape of the estimated boundary. When σ is not selected properly
and distances are inhomogeneous, the estimated boundary is often elongated and
encloses large, empty areas of the feature space. Selecting σ using methods such
as kernel whitening [15] can tighten the estimated boundary to a certain extent.
However, when there are many outliers in the data, tuning σ alone is not sufficient
to create a compact estimated boundary [6]. Therefore, the OCSVM should be
modified in order to tighten the estimated boundary and exclude outliers.

3 Weighted Bagging

Bagging is a popular ensemble method that trains each classifier in the ensemble
on a resampled version of the training data [3]. Given training data of m points
X = {xi}m

i=1, a bootstrap sample Y is generated by drawing m points randomly
with replacement from X with probability weight w(i) for point xi. In classical
bagging, all points are given the same probability weight w(i) = 1/m. Each
bootstrap sample is the same size as the training data, but some points from the
training data can either be left out or repeated multiple times. An ensemble of n
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classifiers is formed by training a classifier on n bootstrap samples. New points
are typically classified by a simple majority vote of the ensemble.

More precisely, the bagging algorithm is:

1. Generate n bootstrap samples of m points {Yj}n
j=1 from X with probability

weights w(i).
2. For j = 1, . . . , n, train a classifier gj on the bootstrap sample Yj .
3. Classify new points using the majority vote of the ensemble {gj}n

j=1.

Bagging is only useful when the classifier is unstable and small changes to
the training data in the bootstrap samples can create large changes in the
classifier [1]. The OCSVM is unstable in the sense that the estimated boundary
expands greatly in the presence of outliers. However, the OCSVM is also stable
in the sense that the estimated boundary always encloses the positive class.

Directly applying bagging to the OCSVM is not useful since the OCSVM is
stable for the majority of the training data. Bagging only tightens the estimated
boundary when outliers are excluded from the bootstrap samples. However, since
all points are given the same probability weight, outliers are likely to be included
in many of the bootstrap samples. Bagging will still exclude some outliers from
the bootstrap samples by chance, but the estimated boundary will not be very
robust. Since we want to exclude outliers from the bootstrap samples, we should
give outliers lower probability weight. We propose to give probability weights to
points based on how close they are to the positive class.

Kernel density estimation is a popular nonparametric method to estimate the
probability distribution of the training data [7]. The kernel density estimator is
a sum of Gaussian kernels at each point in the training data

f(x) =
m∑

j=1

1
(2π)d/2σdm

k(x,xj). (4)

We could use the kernel density estimate as the probability weight w(i) = f(xi)
for point xi. However, kernel density estimation in multiple dimensions can be
unreliable. Therefore, a more suitable probability weight would be a measure of
how well the kernel density estimator fits the training data.

We use an iterative method from [4] based on cross validation of a weighted
kernel density estimator to determine the probability weights. Instead of boosting
up probability weights for outliers, we boost them down. Initially, all points are
given the same probability weight. At iteration k, given the probability weights
wk(i), the weighted kernel density estimator is

fk(xi) =
m∑

j=1

wk(i)
(2π)d/2σd

k(xi,xj) (5)

and the leave one out weighted kernel density estimator is

f ′
k(xi) =

m∑

j=1

wk(i)
(2π)d/2σd

k(xi,xj)I(j �= i). (6)
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The probability weights are updated by adding the log odds ratio of the weighted
kernel density estimate to the leave one out weighted kernel density estimate.

More precisely, the probability weight algorithm is:

1. Initialize with uniform probability weights by w0(i) = 1/m.
2. For k = 1, . . . , n, update the probability weights by

wk(i) = wk−1(i) + log
(

fk−1(xi)
f ′

k−1(xi)

)
.

3. Invert and normalize the final probability weights by

w(i) =
(

1
wn(i)

)
/

⎛

⎝
m∑

j=1

1
wn(j)

⎞

⎠ .

The final probability weights will be low for points in the negative class and high
for points in the positive class.

4 Experiments

We compared the normal and bagging OCSVM on both simulated and real
world data sets. All experiments were performed in MATLAB on a standard
personal computer. We used the SMO algorithm from [11] as implemented in
the LIBSVM library to solve the OCSVM. We selected σ for each data set
using a simple grid search as in [6] to maximize the number of negative points
outside the estimated boundary plus the number of positive points inside the
estimated boundary. We used n = 10 samples in bagging and k = 5 iterations in
determining the probability weights for all data sets. We used the same ν and
σ values for each individual OCSVM in the ensemble as the normal OCSVM.
The bagging OCSVM was significantly more computationally intensive than the
normal OCSVM due to the kernel density estimation step, but was still fast
enough to be used practically. Typical runtimes for the bagging OCSVM were
less than a minute.

First, we evaluated the normal and bagging OCSVM on three simulated data
sets similar to those used in [6]:

– Square noise contains 450 points and 2 features. First, 400 points were
drawn randomly from the square {(x, y) : x ∈ [0.4, 2.6], y ∈ [0.4, 0.6] ∪
[2.4, 2.6]} ∪ {(x, y) : x ∈ [0.4, 0.6] ∪ [2.4, 2.6], y ∈ [0.4, 2.6]}. Next, 50 points
of noise were drawn randomly from the area {(x, y) : x ∈ [0, 3], y ∈ [0, 3]}.
We set ν = 1/9 and σ = 0.35.

– Line noise contains 450 points and 2 features. First, 400 points were drawn
randomly from the line {(x, y) : x = y, x ∈ [0, 3], y ∈ [0, 3]}. Next, 50 points
of noise were drawn randomly from the area {(x, y) : x ∈ [0, 3], y ∈ [0, 3]}.
We set ν = 1/9 and σ = 0.35.
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– Sphere contains 450 points and 2 features. All 450 points were drawn from
a bivariate Gaussian distribution with mean (1.5, 1.5) and variance 0.1. We
set ν = 1/10 and σ = 2.

The estimated boundaries of the normal and bagging OCSVM are shown in
Figure 1. On the Square noise and Line noise data sets, the bagging OCSVM

Fig. 1. Estimated boundaries of the normal (left) and bagging (right) OCSVM on the
Square noise (top), Line noise (middle), and Sphere (bottom) data sets



Ensembles of One Class Support Vector Machines 187

performs much better than the normal OCSVM. The estimated boundary of the
normal OCSVM is influenced by outliers and encloses large areas of the feature
space with low density, including disconnected areas of the feature space. On the
other hand, the estimated boundary of the bagging OCSVM tightly encloses the
shapes of the positive class in the feature space. Therefore, the bagging OCSVM
appears to be less sensitive than the normal OCSVM to noise. On the Sphere
data set, the bagging OCSVM performs similarly to the normal OCSVM. There-
fore, the bagging OCSVM does not appear to arbitrarily tighten the estimated
boundary. Although we chose the ν values optimally according to the proportion
of noise, we found that adjusting the ν values only shrunk or expanded the esti-
mated boundaries uniformly for both the normal and bagging OCSVM.

In order to determine whether the probability weights alone are sufficient
to eliminate outliers without bagging, we removed 50 points with the lowest
probability weights from the Square noise and Line noise data sets and trained
a normal OCSVM. The amount of outliers removed corresponds to the amount
of added noise. The estimated boundaries of the normal OCSVM are shown in
Figure 2. Although the estimated boundaries of the normal OCSVM improved
significantly after outlier removal, the probability weights are not necessarily
reliable for outlier detection. In regions of the feature space where the data is
sparse, the probability weights are low, so thresholding can lead to discontinuities
in the estimated boundary. In particular, the estimated boundary for the Square
noise data set contains a gap in the top side. Therefore, sampling from a weighted
distribution in bagging appears to be important for averaging out sparse regions
of the data.

Next, we evaluated the performance of the normal and bagging OCSVM on
three real world data sets from the UCI Machine Learning Repository:

– USPS contains 256 features and 2651 points (821 positive class, 1830 neg-
ative class). The data set was randomly partitioned into a training data set

Fig. 2. Estimated boundaries of the normal OCSVM on the Square noise (left) and
Line noise (right) data sets after outlier removal



188 A.D. Shieh and D.F. Kamm

Table 1. Performance of the normal and bagging OCSVM on the USPS, Breast cancer,
and Ionosphere data sets

Data set FPR TPR
Normal Bagging Difference

USPS 0% 45.2% 49.7% +4.5%
1% 61.6% 65.0% +3.4%
5% 75.7% 78.5% +2.8%
10% 89.8% 92.7% +2.9%

Breast cancer 0% 67.2% 88.9% +21.7%
1% 82.0% 89.8% +7.8%
5% 86.1% 90.2% +4.1%
10% 93.0% 92.2% −0.8%

Ionosphere 0% 8.8% 18.4% +9.6%
1% 28.0% 37.6% +9.6%
5% 58.4% 60.0% +1.6%
10% 87.2% 90.4% +3.2%

of 644 points and a test data set of 2007 points (177 positive class, 1830
negative class). We set σ = 1.

– Breast cancer contains 10 features and 683 points (444 positive class, 239
negative class). The data set was randomly partitioned into a training data
set of 200 points and a test data set of 483 points (244 positive class, 239
negative class). We set σ = 1.

– Ionosphere contains 34 features and 351 points (225 positive class, 126
negative class). The data set was randomly partitioned into a training data
set of 100 points and a test data set of 251 points (125 positive class, 126
negative class). We set σ = 16.

We used the true positive rate (TPR) and false positive rate (FPR) as our
performance metrics. Since ν is an upper bound on the FPR, we varied ν in
order to control the FPR. However, varying ν was not sufficient to compute
a full receiver operating characteristic (ROC) curve since the FPR was always
below 25%. In real world applications of one class classification, the target FPR is
typically very low since there are large consequences for false positives. Therefore,
we compared the TPR of the normal and bagging OCSVM at four typical target
FPRs of 0%, 1%, 5%, and 10% as in [8]. The TPRs of the normal and bagging
OCSVM are shown in Tables 1 and 2.

The bagging OCSVM achieves higher TPRs than the normal OCSVM for
almost all target FPRs on all data sets, suggesting that real world data sets
are noisy enough that tightening the estimated boundary is important. The
performance improvement of the bagging OCSVM is highest for low target FPRs.
For a target FPR of 0%, the difference in TPR for the bagging OCSVM ranges
from +4.5% to +21.7%. As the target FPR increases, the performance of the
bagging OCSVM approaches that of the normal OCSVM, probably because
tightening the estimated boundary becomes less important than enclosing all
of the positive class. For a target FPR of 10%, the difference in TPR for the
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Table 2. Performance of the normal and bagging OCSVM on the noisy versions of the
USPS, Breast cancer, and Ionosphere data sets

Data set FPR TPR
Normal Bagging Difference

USPS 0% 32.2% 38.4% +6.2%
1% 48.6% 53.1% +4.5%
5% 68.4% 73.4% +5.0%
10% 81.9% 84.7% +2.8%

Breast cancer 0% 56.1% 83.6% +27.5%
1% 59.8% 86.9% +27.1%
5% 66.8% 87.3% +20.5%
10% 78.3% 87.8% +9.5%

Ionosphere 0% 0.0% 11.2% +11.2%
1% 25.6% 36.0% +10.4%
5% 56.8% 58.4% +1.6%
10% 59.2% 60.0% +0.8%

bagging OCSVM ranges from −0.8% to +3.2%. Therefore, the bagging OCSVM
appears to be well suited for applications of one class classification that require
a low target FPR.

In order to further evaluate the robustness, noisy versions of the data sets
were generated by randomly swapping 25% of the points in the training data set
with points in the test data set. The performance improvement of the bagging
OCSVM was even larger on the noisy versions of the data sets, suggesting that
tightening the estimated boundary is especially important in the presence of
noise. The noisy versions of the training data sets contained points from both
the positive class and the negative class, which probably expanded the estimated
boundaries of the normal OCSVM. The performance of the bagging OCSVM is
not as sensitive to noise since the bagging OCSVM decreases the weight given
to points far from the positive class. Therefore, the bagging OCSVM appears to
be well suited for unlabeled training data.

5 Conclusion

In this paper, we proposed a bagging OCSVM using weights determined by kernel
density estimation to tighten the estimated boundary of the normal OCSVM,
which can be sensitive to noise. We demonstrated that the estimated boundary
of the bagging OCSVM fits the shape of the positive class well on three simulated
data sets and that the bagging OCSVM achieves significantly higher TPRs than
the normal OCSVM on three real data sets at common target FPRs. The bagging
OCSVM is especially useful for applications of one class classification that require
low target FPRs, such as the diagnosis of rare diseases.

Acknowledgments. The authors would like to thank the anonymous reviewers,
whose comments helped improve the manuscript.
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