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Abstract. In this paper we present our work on the Random Forest (RF) family
of classification methods. Our goal is to go one step further in the understanding
of RF mechanisms by studying the parametrization of the reference algorithm
Forest-RI. In this algorithm, a randomization principle is used during the tree
induction process, that randomly selects K features at each node, among which
the best split is chosen. The strength of randomization in the tree induction is
thus led by the hyperparameter K which plays an important role for building ac-
curate RF classifiers. We have decided to focus our experimental study on this
hyperparameter and on its influence on classification accuracy. For that purpose,
we have evaluated the Forest-RI algorithm on several machine learning problems
and with different settings of K in order to understand the way it acts on RF per-
formance. We show that default values of K traditionally used in the literature
are globally near-optimal, except for some cases for which they are all significa-
tively sub-optimal. Thus additional experiments have been led on those datasets,
that highlight the crucial role played by feature relevancy in finding the optimal
setting of K.

Keywords: Supervised Learning, Ensemble Method, Random Forests, Decision
Trees.

1 Introduction

Random Forest is a family of classifier ensemble methods that use randomization to
produce a diverse pool of individual classifiers, as for Bagging [1] or Random Sub-
spaces methods [2]. It can be defined as a generic principle of classifier ensemble that
uses L tree-structured base classifiers {h(x, Θk), k = 1, ...L} where {Θk} is a fam-
ily of independent identically distributed random vectors, and x is an input data. The
particularity of this kind of ensemble is that each decision tree is built from a random
vector of parameters. A Random Forest can be built for example by randomly sampling
a feature subset for each decision tree (as in Random Subspaces), and/or by randomly
sampling a training data subset for each decision tree (as in Bagging). Since they have
been introduced in 2001, RFs have been studied in many ways, theoretically as well
as experimentally [3,4,5,6,7,8]. In most of those works, it has been shown that RFs are
particularly competitive with one of the most efficient learning principles, i.e. boost-
ing [4,8]. However, the mechanisms that explain the good performance of RFs are not
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clearly identified and one has to admit that it is still a complex task for the practitioner
to take full benefits of the potential of those methods. For example considering the ref-
erence RF method called Forest-RI, introduced by Breiman in [4] (see section 2), an
important hyperparameter has been identified : the number K of features randomly se-
lected at each node during the tree induction process. Yet, in those research works that
have experimented this method, the value of K is arbitrarily or empirically set, and
sometimes without any theoretical nor experimental justification.

In this paper we propose to go one step further in the understanding of RF mecha-
nisms, by studying the parametrization of the reference algorithm Forest-RI. We pro-
pose to study the influence of the hyperparameter K on the classification accuracy, in
order to empirically distinguish parametrization rules or tendencies, according to some
characteristics of the classification problem. The final goal is to give elements to the
practitioner in order to help him building RFs that accurately suit to the specificities
of a classification problem. For that purpose we have experimented on several machine
learning datasets the algorithm Forest-RI with different settings of K in order to study
their influence on accuracy. We show that default values of K traditionally used in the
literature are globaly near-optimal, except for some cases for which they are all sig-
nificatively sub-optimal. We have then studied the relation between the nature of the
feature space and RF performance, by studying feature relevancy. We highlight the cru-
cial role played by feature relevancy in finding the optimal setting of K .

The paper is thus organized as follows: we recall in section 2 the Forest-RI prin-
ciples and related works on its experimentation; in section 3, we describe our exper-
imental protocol, the datasets used, and the results obtained with different settings of
the hyperparameter K. We finally draw some conclusions and future works in the last
section.

2 The Forest-RI Algorithm

One can see Random Forests as a family of methods, made of different decision tree en-
semble induction algorithms, such as the Breiman Forest-RI method often cited as the
reference algorithm in the literature [4]. In this algorithm the Bagging principle is used
with another randomization technique called Random Feature Selection. The training
step consists in building an ensemble of decision trees, each one trained from a boot-
strap sample of the original training set — i.e. applying the Bagging principle — and
with a decision tree induction method called Random Tree. This induction algorithm,
usually based on the CART algorithm [9], modifies the splitting procedure for each
node, in such a way that the selection of the feature used for the splitting criterion is
partially randomized. That is to say, for each node, a feature subset is randomly drawn,
from which the best splitting criterion is then selected as in traditionnal tree induction
algorithms. To sum up, in the Forest-RI method, a decision tree is grown by using the
following process :

– Let N be the size of the original training set. N instances are randomly drawn with
replacement, to form the bootstrap sample, which is then used to build the tree.

– Let M be the dimensionality of the original feature space, and K a preliminary
fixed hyperparameter so that K ∈ [1, M ]. For each node of the tree, a subset of
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K features is randomly drawn without replacement, among which the best split is
then selected.

– The tree is thus built to reach its maximum size. No pruning is performed.

In this process the tree induction is directed by a single hyperparameter, i.e. the num-
ber K of randomly selected features. This number allows to introduce more or less
randomization in the induction. Whereas this hyperparameter seems to be critical to
induce accurate RF [3], no research work has been specifically devoted to the study of
its setting and its real influence on performance, and only a few have empirically dealt
with this issue.

In [6] for example, Geurts et al. have proposed a new method of RF induction, called
Extras-Trees for Extremely Randomized Tree Ensemble, that modifies the Forest-RI
algorithm to accentuate the randomization. Here the Random Feature Selection is still
used but modified so that the best splitting criterion selection is one step further random-
ized. The authors have designed their experimental protocol to study the influence of K
on performance. Even if this method is partly different from the Forest-RI algorithm,
this work allows to draw some intuitions on the Random Forest behavior according to
K . It highlights for example that its default setting K =

√
M , where M stands for the

size of the original feature set, is most of times closed to the optimal setting, at least for
the Extras-Trees method and on several representative datasets.

When introducing RF formalism, Breiman studied performance according to K [4].
In these experiments, a large number of RF has been grown on three datasets, for which
the test set error rate has been monitored. Actually only one of those three experiments
was really concerned by the Forest-RI algorithm, since the two others have been run
with an induction algorithm that uses feature combinations as splitting criterions, in-
stead of single features. Hence, even if some tendencies can be intuitively guessed,
those experiments do not allow to conclude on RF behavior according to the setting
of K . We also noticed that in his Forest-RI experiments, Breiman decided to use two
values of K : 1 and log2M + 1. While the first value is intuitively interesting since it
corresponds to a decision tree induction that selects in a fully random manner the split-
ting criterion among features for each node, the second one seems to be more arbitrary
or at least is not justified.

In [3], a serie of tests with Forest-RI has been led on the well-known MNIST hand-
written digit recognition dataset [10]. An interval of values of K has been found for
which best accuracies have been reached; this interval does not contain neither K = 1
nor K = M but contains the two values K =

√
M and K = log2(M) + 1. However

we think that their primary conclusions need to be confirmed with a more rigourous
experimental protocol and with several different machine learning datasets.

Finally, implementation and experimentation of the Forest-RI algorithm require to
fix the value of the hyperparameter K but there actually does not exist any theoretical
rule that can be used to fix it. As mentioned previously, only arbitrary default values
are proposed in the literature and nothing guarantees that these values are close to the
optimal setting. Thus one of the goal of the work presented in this paper is to bring
elements of RF mechanism understanding by focusing on the hyperparameter K and
on the way it acts on RF accuracy. For that purpose we have led a set of experiments
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that are described in the following section. Notice that in the rest of this paper, the
term Random Forest (RF) will always stand for a forest induced with the Forest-RI
algorithm.

3 Investigating the Influence of Hyperparameter K on Accuracy

The hyperparameter K denotes the number of features randomly selected at each node
during the tree induction process. It must be set with an integer in the interval [1..M ],
where M stands for the dimensionality of the feature space. This number thus controls
the strength of the randomization in the feature selection process, in such a way that
the smaller the value of K , the stronger the randomization. In the case where K = 1
for example, each split (i.e. the feature used as splitting criterion) of the tree structure
is randomly selected among all the available features. On the contrary, where K =
M , no randomization is introduced in the split selection and each tree is thus grown
following a traditional tree induction process. In this particular case, randomization is
thus introduced only through the bagging principle. The main idea of our experiments
is to study RF accuracy according to hyperparameter K , on several kinds of machine
learning problems. We first describe in the following subsection the datasets used. We
then detail our experimental protocol and results in the next two subsections.

3.1 Datasets

The description of the 12 datasets that have been used for these experiments is sum-
murized in Table 1. 9 of these datasets have been selected from the UCI repository
[11], because they concern different machine learning issues in terms of number of
classes, number of features and number of samples. Three additionnal datasets on differ-
ent handwritten digit recognition problems have been used: (i) the well-known MNIST
database [10] with a 85 multiresolution density feature set (1+2×2+4×4+8×8)built
from greyscale mean values as explained in [3]; (ii) Digits and DigReject both described
in [12], on which a 330-feature set has been extracted, made from three state-of-the-art
kinds of descriptors, i.e. a 117-statistical/structural feature set [13], a 128-feature set
extracted from the chaincode (contour-based) [14], and the same 85-feature set as for
MNIST.

Table 1. Dataset description

Dataset # Samples # Features # Classes Dataset # Samples # Features # Classes

Digits 38142 330 10 Mfeat-karhunen 2000 64 10
DigReject 14733 330 2 Mfeat-zernike 2000 47 10
Letter 20000 16 26 MNIST 60000 84 10
Madelon 2600 500 2 Musk 6597 166 2
Mfeat-factors 2000 216 10 Pendigits 10992 16 10
Mfeat-fourier 2000 76 10 Segment 2310 19 7
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3.2 Experimental Protocol

Our experiments aim at studying the evolution of RF accuracy according to different
values of K . For all the RF induced in our experiments, the number of trees has been
set to 100. This choice is based on an experimental work presented in [3], in which
it has been shown that it is a reasonable value to grow an accurate RF. Moreover our
goal is not here to reach intrinsic optimal performance. First, each dataset has been
randomly split into training and testing subsets, as explained in the previous section.
This splitting procedure has been repeated 50 times, so that 50 different training sets
and testing sets are thus available, each respectively containing two thirds and one third
of the original dataset. We denote by Ti = (Tri, T si) such a split, with i ∈ [1..50] and
where Tri and Tsi stand respectively for the training set and the testing set. Then, for
each Ti, the Forest-RI algorithm has been run for each value of K in [1..M ], where M
stands for the total number of features. However, mainly for computational reasons, the
definition domain of K has been sampled for some of the datasets for which the size of
the feature space is too large, so that values of K have been picked at regular intervals
between 1 and M . In the rest of this paper we denote by M ′ the number of values of
K that have been tested for each dataset. Table 2 summarizes the number of runs in
these experiments, according to the values of K and the number of splits. Algorithm
1 summarizes the whole experimental protocol applied to each dataset. This procedure
outputs a table of 50 × M ′ error rates according to different values of K , and for each
dataset. Those results are presented and discussed in the next subsection.

Table 2. Numbers of runs for evaluating RF performance according to K

Dataset M M ′ = # values of K tested for each Ti total # of runs

Digits 330 M
10

+ 1 = 34 34× 50 = 1700

DigReject 330 M
10

+ 1 = 34 34× 50 = 1700

Letter 16 16 16× 50 = 800

Madelon 500 M
10

+ 1 = 51 51× 50 = 2550

Mfeat-factors 216 M
3

+ 1 = 73 73× 50 = 3650

Mfeat-fourier 76 76 76× 50 = 3800

Mfeat-karhunen 64 64 64× 50 = 3200

Mfeat-zernike 47 47 47× 50 = 2350

Mnist 84 M
2

+ 1 = 43 43× 50 = 2150

Musk 166 M
3

+ 1 = 56 56× 50 = 2800

Pendigits 16 16 16× 50 = 800

Segment 19 19 19× 50 = 950

Total 586 29100

3.3 Results

Table 3 presents the results obtained with the experimental protocol detailed in Algo-
rithm 1. With this protocol, a table of 50 × M ′ error rates with respect to K is first
obtained for each dataset. These series of error rates have been averaged so that to each
dataset correspond M ′ accuracies, i.e. one mean value for every K , and the standard
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Algorithm 1. Experimental Protocol 1
INPUT: N : number of samples in the original dataset.
INPUT: M : number of features in the original dataset.

OUTPUT: ε[50][M ′]: 2D table used for storing each error rate obtained with Forest-RI.
for i ∈ [1..50] do

Randomly draw without replacement 2
3
× N samples from the original dataset to form

a training subset Tri. The remaining samples form the testing subset Tsi, the couple
(Tri, T si) is denoted Ti.

for each k in [1..M ] do
H(k) ← Grow a Random Forest with the Forest-RI algorithm, with L = 100 and K =
k, on the training set Tri.

ε(i, k)← Test the resulting RF on the testing set Tsi.

end for
end for

deviation values have also been computed. Table 3 details some of those results ac-
cording to five particular values of K . The first of those values, in the second column,
corresponds to the ”optimal” value of K , noted K∗, that is to say the value of K , among
all the tested values, for which the maximum average accuracy has been reached. The
second and third values correspond to K =

√
M and K = log2M + 1 which are often

used as default settings in the literature (see section 2). The two last columns present
error rates for K = 1 and K = M . The number in brackets for columns 2, 3 and 4,
represents the value of K that is either obtained from the experiments (K∗ in column
2) or fixed for the experiments (

√
M in column 3 or log2(M) + 1 in column 4).

A first observation made from Table 3 is that the four particular values K =
√

M ,
K = log2(M) + 1, K = 1 and K = M rarely exactly correspond to the best
parametrization of K . K∗ is

√
M for only 2 of the 12 datasets (Mfeat-zernike and

Table 3. Mean error rates for the different algorithms

Dataset K∗ K√
M Klog2(M)+1 K1 KM

Digits 2.18± 0.12 (11) 2.20 ± 0.13 (18) 2.19± 0.12 (9) 2.61± 0.13 3.25 ± 0.19

DigReject 7.15 ± 0.34 (181) 7.70 ± 0.34 (18) 7.80± 0.35 (9) 9.02± 0.32 7.27 ± 0.30

Letter 4.16± 0.28 (3) 4.23 ± 0.23 (4) 4.30± 0.26 (5) 5.21± 0.27 7.33 ± 0.47

Madelon 17.60 ± 1.60 (261) 30.48 ± 1.94 (22) 34.54 ± 1.26 (10) 45.94± 1.57 18.60 ± 1.91

Mfeat-fac 3.56± 0.71 (10) 3.57 ± 0.58 (15) 3.58± 0.73 (9) 4.27± 0.72 4.61 ± 0.76

Mfeat-fou 16.81 ± 1 (19) 17.11 ± 1.05 (9) 17.25 ± 1.02 (7) 22.18± 1.19 18.66 ± 1.33

Mfeat-kar 4.30± 0.68 (6) 4.33 ± 0.69 (7) 4.30± 0.68 (6) 7.14± 0.83 8.38 ± 1.11

Mfeat-zer 22.26 ± 1.06 (7) 22.26 ± 1.06 (7) 22.56 ± 1.02 (5) 23.86± 0.90 24.87 ± 1.33

MNIST 5.06± 0.14 (24) 5.17 ± 0.14 (10) 5.32± 0.17 (8) 6.54± 0.17 6.54 ± 0.28

Musk 2.34± 0.34 (88) 2.40 ± 0.29 (13) 2.50± 0.26 (8) 4.03± 0.32 2.48 ± 0.34

Pendigits 0.97± 0.17 (4) 0.97 ± 0.17 (4) 1.01± 0.17 (5) 1.15± 0.18 1.50 ± 0.23

Segment 2.36± 0.53 (5) 2.44 ± 0.44 (4) 2.36± 0.53 (5) 3.23± 0.50 2.71 ± 0.56
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Pendigits), log2(M)+1 for only 2 of them (Mfeat-karhunen and Segment), and is never
equal to 1 nor to M . Those settings are even sometimes quite far from the K∗ value, as
for the Madelon, DigRejects, MNIST and Musk datasets. One could conclude from this
that it is not advised to systematically use one of those default settings of K and that it
is necessary to further investigate a way to supply a better rule of parametrization. How-
ever, by examining standard deviation values and differences between results obtained
for two settings of K closed from each other, we were wondering if this conclusion was
correct. We can see from table 3 that they are most of the time of the same order. If
we thus consider that values of K closed from each other produce classifiers statiscally
equivalent in terms of accuracy, K =

√
M can be considered as a good setting for K

— at least close to the optimal setting — for 8 of the 12 datasets. Of course this state-
ment needs to be experimentally investigated and proved, by performing a statistical
test of significance such as the McNemar test for example. Nevertheless we think that
it is reasonnable to deduce from our results that K =

√
M is a good compromise for

the parametrization of K .
Figure 1 presents our results as curves of averaged error rates with respect to values

of K . On this figure one can first observe that all the curves exhibit the same global
variation, that is to say a decreasing followed by an increasing when K increases. This
confirms the primary conclusions drawn in [3], in which it has been found that the
extrema values for K , i.e. K = 1 and K = M , are not advised to be used for building
an accurate RF with Forest-RI. However, this common behavior strongly differs from
a dataset to another in a more detailed analysis of the curves. We can distinguish three
trends of variation in these 12 diagrams: for 5 of them (Mfeat-factors, Mfeat-fourier,
Mfeat-karhunen, Mfeat-zernike and Digits) the minimum error rate is reached for a
small value of K (marked with circles in the figure) and the increase of the curves from
this point till K = M is monotonical and almost linear; for 4 of them (Letter, Mnist,
Pendigits and Segment) the trend is almost the same but with a more parabolical shape;
for 3 of them (DigReject, Madelon and Musk) this increase of the curves is quasi null,
and the minimum error rate is reached for a larger value of K (i.e. greater than M

2 ).
These different behaviours are quite difficult to explain only with some characteristics
of the datasets such as the number of classes or the number of features. Geurts et al.
in [6] suggest that the nature of the features could explain some particularity of their
Extra-Trees behavior for some particular cases. They conjecture that the more features
that are irrelevant, the larger the value of K∗, since a higher value of K would lead
to a better chance of filtering out the irrelevant variables. This statement has led us to
focus on the relevancy of features for explaining accuracy variation according to values
of K . For that purpose we have decided to evaluate the relevancy of each feature by
measuring the information gain with respect to the class. In general terms, the expected
information gain is the change in information entropy from a prior state to a state that
takes some information [15]. It is often used in decision tree induction as criterion for
node split selection. For our experiments, information gain has been measured for all the
features on each Tri of each dataset. In that way, 50 × M values of information gain
have been computed for each dataset. Figure 2 synthesizes those results as curves of
cumulative number of features with respect to information gain values, so that each dot
of the curves indicates the number of features for which the information gain is smaller
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Fig. 1. Mean error rates with respect to values of K. The minimum error rates are marked on each
diagram.

than or equal to the corresponding value on the x-axis. This representation allows to
simultaneously observe the relevancy of all the features and gives an idea of how many
of them are irrelevant. One can observe on this figure that values of information gain
are globally greater (typically higher than 0.1) for datasets for which values of K∗ are
small regarding to M, as this is the case for exemple for Digits, Mfeat-Factors and
Mfeat-Karhunen for which K∗ is lower than M

10 . On the contrary, for the three datasets
for which K∗ is higher than M

2 (DigReject, Madelon and Musk), the information gain
values are always lower than about 0.1. This seems to prove that relevancy of features
strongly explains the accuracy variation according to values of K .

The choice of K actually leans on a compromise between two needs : (i) to force,
via randomness, the tree induction process to diversify choices of splitting criteria in or-
der to induct trees different from each other (ii) to choose relevant features for splitting
criteria in order to induct trees performant enough. A too strong randomization of the
split selection produces trees that globally do not suit the problem enough, while not
randomizing ”enough” creates trees that tend to overfit the training data, and thus make
them be similar from each other in terms of predictions. K acts thus as a trade-off for
balancing performance and diversity of trees in the ensemble. However we believe that
the impact on performance of the ”amount” of randomization used in the split selec-
tion process, strongly depends on the global relevancy of features. If there are too few
relevant features, the randomization will rapidly make the tree accuracy decrease, and
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Fig. 2. Cumulative number of features with respect to information gain values

thus rapidly deteriorate the ”individual performance of the trees versus the ensemble
diversity” trade-off. On the contrary a large amount of strongly relevant features facil-
itates the overfitting of trees and weakens the randomization effects in split selection.
We believe that this is the reason why the three datasets for which values of information
gain are small (DigRejects, Madelon and Musk), present error rate curves that do not
significantly raise for increasing values of K . Consequently we think that the relevancy
of features is an important property that should be taken into account for determining a
parametrization rule for the Forest-RI algorithm.

4 Conclusions

Investigations on RF parametrization have been presented in this paper, that have fo-
cused on the number K of features randomly selected at each node during the tree in-
duction. This hyperparameter allows to control the strengh of the randomization in the
split selection, in such a way that the smaller the value of K , the stronger the random-
ization. In this work several experiments have been led with the Forest-RI algorithm on
different machine learning datasets and with different settings of K , in order to study its
influence on RF performance. We have firstly shown that default settings traditionally
used in the literature do not allow to produce the best possible RF in terms of accuracy,
in a majority of cases. However our results illustrate that one of them, i.e. K =

√
M
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with M being the dimensionality of the feature space, is a reasonnable setting to in-
duct near-optimal RF. This statement should obviously be experimentally confirmed
through the use of statistical test of significance such as the McNemar test for deter-
mining whether or not significant improvement can be made with an optimal setting
of K in comparison with K =

√
M . In a second part of this experimental work we

have focused on the relevancy of features to determine whether or not it could explain
the accuracy variation according to K . We have shown that this property is crucial for
finding the best setting of K since it can strongly modify the randomization effect of
the random split selection procedure. As a consequence we think that the relevancy of
features is an important property that should be taken into account for determining a
parametrization rule for the Forest-RI algorithm. Our future works will focus on this
open issue.
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