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Abstract. Pattern classification systems are currently used in security
applications like intrusion detection in computer networks, spam filtering
and biometric identity recognition. These are adversarial classification
problems, since the classifier faces an intelligent adversary who adap-
tively modifies patterns (e.g., spam e-mails) to evade it. In these tasks
the goal of a classifier is to attain both a high classification accuracy
and a high hardness of evasion, but this issue has not been deeply in-
vestigated yet in the literature. We address it under the viewpoint of
the choice of the architecture of a multiple classifier system. We pro-
pose a measure of the hardness of evasion of a classifier architecture, and
give an analytical evaluation and comparison of an individual classifier
and a classifier ensemble architecture. We finally report an experimental
evaluation on a spam filtering task.

1 Introduction

Pattern recognition systems, and in particular multiple classifier systems, are
currently used in several security applications like biometric identity recogni-
tion, intrusion detection in computer networks and spam filtering, in which the
task is to discriminate “attack” samples (e.g., a spam e-mail) from “legitimate”
samples (e.g., legitimate e-mails). These kinds of tasks are named adversar-
ial classification problems, since there is an intelligent, adaptive adversary who
tries to camouflage patterns (like spam e-mails) to evade the security system.
Accordingly, in these applications the goal is to attain both a high classifica-
tion accuracy and a high hardness of evasion, which is intuitively related to the
effort required to the adversary to evade the system. However in the machine
learning and pattern recognition literature the issue of the hardness of evasion
in adversarial classification problems has not been deeply and formally investi-
gated yet. Most of the works proposed countermeasures against specific kinds of
attacks for spam filtering and intrusion detection tasks (see for instance [1,2,3]),
and only few of them proposed formal models of adversarial classification tasks
[4,5], or analysed the main issues raised by the application of machine learning
techniques [6]. Therefore, from an engineering viewpoint the design of accurate
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and hard to evade classification systems for security applications is still an open
problem.

In this work we argue that the hardness of evasion has to be taken into ac-
count in two distinct aspects of the design of a pattern recognition system: the
choice of the features and the choice of the classifier architecture. Here we focus
on the latter, and propose a quantitative measure of the hardness of evasion of
a classifier architecture. We then analytically evaluate and compare the hard-
ness of evasion and the accuracy of two specific single classifier and multiple
classifier architectures which are used in many real security systems, and were
supported so far only by intuitive arguments and empirical evidence. In light of
our theoretical findings, we give an experimental evaluation of the accuracy and
hardness of evasion of the considered classifier architectures on a spam filtering
task, using the well known SpamAssassin open source spam filter.

2 Analysis of Multiple Classifier Systems for Adversarial
Classification Tasks

In many classification systems used in security applications, like multimodal
biometric authentication and verification, and intrusion detection in computer
networks, the input features come from heterogeneous sources (for instance, im-
ages of faces and fingerprints). In these cases combining classifiers trained on the
different feature subsets has been proposed as a natural way to design a simpler
and more accurate classification system than a single classifier trained on all the
available features [7,8,9,10]. Few authors proposed the use of MCSs with the
explicit goal of improving the hardness of evasion (see for instance [2]). MCS ar-
chitectures turn out to be used also in commercial and open source security sys-
tems, like the SpamAssassin spam filter (http://spamassassin.apache.org)
and the Snort intrusion detection system (http://www.snort.org). However,
with the only exception of a previous work by the authors [11], the use of MCSs
for improving the hardness of evasion is supported only by intuitive and qualita-
tive motivations, besides experimental evidences, and lack of a clear and sound
theoretical support. In this section we propose a quantitative measure to eval-
uate the hardness of evasion of pattern classification systems, and apply it to
analyse two different classifier architectures which are used in real adversarial
classification tasks and are simple enough to allow for an analytical investigation.

2.1 The Concept of Hardness of Evasion

In security tasks there is a formal and agreed definition of classification accuracy
in terms of the false positive (FP) and the false negative (FN) error rates. In-
stead, there is no formal and agreed definition of hardness of evasion. Intuitively,
it depends on the “difficulty” for an adversary to evade the security system, but
its evaluation depends on the specific task and on the kind of security system.
Our aim is to propose a quantitative definition related to pattern classification
systems. We first point out that in such systems the hardness of evasion can

http://spamassassin.apache.org
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be analysed under two distinct aspects: the feature set, and the way in which
features are combined (namely, the classifier architecture). Indeed, given an “at-
tack” sample, an adversary has to consider two distinct issues: first, which fea-
tures have to be modified, to evade the classifier? Second, how can patterns be
camouflaged, so that the values of the targeted features are modified as desired?
The latter issue is related to the nature of the individual features: the designer
of the classifier should select features that are robust against pattern camou-
flage. However, in the design of a security system it is safer to assume that the
adversary knows which features are used, and that he can always devise a way
to evade them, although with some effort. Moreover, in practice quantifying the
relative effort that is needed to modify different features is often very difficult.
Accordingly, the hardness of evasion should also rely on forcing the adversary to
modify as many features as possible to evade the system. This clearly depends
on how the individual features are combined by the classifier architecture, which
directly leads to the former issue above, namely, which (and how many) features
have to be modified to evade the classifier. Accordingly, the hardness of evasion
of a pattern classifier can be pursued at two distinct levels: the choice of the in-
dividual features, which should be not trivial to modify by pattern camouflage,
and the choice of the classifier architecture, which should force the adversary
to modify as many features as possible to evade the classifier. Although these
choices are not necessarily independent on each other, they can nevertheless be
addressed separately (perhaps in a closed-loop design cycle). In this work, we
focus on the latter issue, namely designing a hard to evade classifier architec-
ture in the sense defined above. To this aim, we give the following quantitative
definition of the hardness of evasion of a classifier architecture:

For a given feature set, the hardness of evasion is defined as the expected
value of the minimum number of features which have to be modified to
evade the classifier.

Accordingly, given two different classifiers A and B trained on the same feature
set, A is harder to evade than B, if the expected minimum number of features
that need to be modified to evade A is higher than the one needed to evade B.

2.2 A Theoretical Analysis of Multiple Classifier Systems for
Adversarial Classification Tasks

In this section we focus on two classifier architectures (a single classifier and a
MCS) used in multimodal biometric systems, in the SpamAssassin anti-spam
filter, and in the Snort intrusion detection system. We will analytically evaluate
and compare their hardness of evasion, defined as in Sect. 2.1, and classification
accuracy. We first construct a model of the classification problem and of the
two architectures, suitable to an analytical investigation. We consider n binary-
valued features taking on the values 0 and 1, denoting respectively the absence
and the presence of a given “attack” characteristic (as happens in Snort, while
in SpamAssassin there are also features related to “legitimate” characteristics,
which take on the values 0 and −1 ). The classifier architectures are shown in
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Fig. 1. The first one is a “monolithic” classifier: a linear combination of the fea-
tures with a decision threshold, as in SpamAssassin. A variant of this architecture
is used by Snort: the logical OR between all features (viewed as boolean values),
where 1 corresponds to true (accordingly, a pattern is labelled as “attack” if at
least one feature detects an attack characteristic). The second one is an ensem-
ble of classifiers trained on disjoint feature subsets, as in multimodal biometric
systems [7,8]. To allow a direct comparison with the monolithic architecture, we
consider an implementation in which the individual ensemble members are linear
classifiers and are combined with the OR logical function. We denote the class
labels as A (“attack”) and L (“legitimate”), and the random feature vector as
X = (x1, ..., xn) ∈ {0, 1}n. To make an analytical evaluation possible, we assume
that features are i.i.d. The (common) class-conditional distribution of each fea-
ture will be denoted as p1A, p0A, p1L and p0L, where p1A = P (Xi = 1|X ∈ A) for
any i = 1, ..., n, and so on (obviously, p1A = 1−p0A and p1L = 1−p0L). We also
consider all the weights of the monolithic linear classifier to be identical. This
is reasonable, given that all features are assumed to have the same discriminant
capability. Without loosing generality, we normalise the weight values to 1 and
consider only a variable threshold t > 0. The decision function sM(x) of the
monolithic classifier can then be written as follows (see Fig. 1, left):

sM(x) =
{

1, if
∑n

i=1 xi − t ≥ 0,
0, otherwise .

(1)

Note that also the OR decision function used by Snort can be written as (1),
provided that t ∈ (0, 1]. These architectures can also be viewed as MCSs, if
features are the decisions of individual classifiers. We also consider the weights
of the individual classifiers of the MCS to be all identical and normalised to 1,
and a common value also for the decision thresholds, denoted with t′. Assuming
further that the n features are uniformly subdivided among the N classifiers
(this requires n to be multiple of N), the decision function of the m-th individual
linear classifier of the MCS (Fig. 1, right) can be written as:

sm
M(x) =

{
1, if

∑n/N
i=1 xm

i − t′ ≥ 0,
0, otherwise ,

(2)

where xm
i is the i-th feature of the m-th classifier. The MCS architecture is

shown in Fig. 1, right.
We now compute the accuracy of the two classifiers above in terms of the FP

and FN rates, as functions of n, N, t, t′, and of the class-conditional feature dis-
tribution. The FP rate is the probability that a legitimate sample is misclassified
as an attack, FP = P (sM(X) = 1|X ∈ L). For the monolithic classifier, from the
definition of sM(x) in (1), this happens if at least �t� features equal 1 for a legiti-
mate pattern. Being the features i.i.d., the corresponding probability is:

FP =
∑n

k=�t�
(
n
k

)
pk
1L × pn−k

0L . (3)

The FN rate equals 1 minus the true positive (TP) rate, which is defined as
P (sM(X) = 1|X ∈ A). This equals the probability that at least �t� features equal
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Fig. 1. The two classifier architectures considered in this work. A single, linear classifier
(left), and an ensemble of linear classifiers combined by the OR logical function (right).
In both cases the weights of the linear combination are assumed to be all identical, and
a normalised value of 1 is considered.

1 for an attack pattern, and can be computed analogously to the FP rate. For
the monolithic classifier one obtains:

TP =
∑n

k=�t�
(
n
k

)
pk
1A × pn−k

0A . (4)

Using the OR decision function instead of a linear combination, the expressions
of FP and TP are the same ones above, with k ranging from 1 to n.

For the MCS, FP is the probability that at least one individual classifier
outputs 1 for a legitimate sample. Each individual classifier is trained on n/N
different i.i.d. features and has the same decision function (2). Their decisions
are thus i.i.d. Denoting the common decision function as s(x), one obtains:

FP =
∑N

m=1

(
N
m

)
P (m classifiers say A ∧ N − m say L|X ∈ L)

=
∑N

m=1

(
N
m

)
[P (s(x) = 1|X ∈ L)]m × [P (s(x) = 0|X ∈ L)]N−m

=
∑N

m=1

(
N
m

) [∑n/N
k=�t′�

(
n/N

k

)
pk
1L × p

n/N−k
0L

]m

×[∑n/N
k=n−�t′�

(
n/N

k

)
pk
0L × p

n/N−k
1L

]N−m

.

(5)

The TP rate of the MCS is the probability that at least one individual classifier
outputs 1 for an attack sample. This can be computed analogously to (5):

TP =
∑N

m=1

(
N
m

) [∑n/N
k=�t′�

(
n/N

k

)
pk
1A × p

n/N−k
0A

]m

×[∑n/N
k=n−�t′�

(
n/N

k

)
pk
0A × p

n/N−k
1A

]N−m

.
(6)

The hardness of evasion was defined as the expected value over the distribution
P(X |X ∈ A) of the minimum number of features that have to be modified in
an attack sample to evade the classifier. We denote with nmin(x) such value for
any sample x, for the monolithic classifier (Fig. 1, left). Since x is labelled as A
when at least �t� features equal 1, denoting with k(x) the number of features
equal to 1 it follows that:

nmin(x) =
{

k(x) − �t� + 1, if k(x) ≥ �t�,
0, otherwise .
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The expected value of nmin(x), denoted as nmin, can be computed as follows:

nmin =
∑n

k=�t� [k − �t� + 1] × P (k features equal 1|X ∈ A)
=

∑n
k=�t� [k − �t� + 1] × (

n
k

) × pk
1A × pn−k

0A .
(7)

To evade the MCS with the OR decision function (Fig. 1, right) it is necessary
to evade all individual classifiers whose output is 1. Denoting with nmin,m(x)
the minimum number of features that have to be modified in the m-th clas-
sifier, for a given attack sample x, the overall minimum number of features
to modify is nmin(x) =

∑N
m=1 nmin,m(x). The expectation is thus given by

nmin =
∑N

m=1 Enmin,m(X)|X∈A [nmin,m(X)]. Since all classifiers are trained on
disjoint subsets of i.i.d. features of the same size n/N and have the same deci-
sion function, the N random variables nmin,m(X), m = 1, ..., N are i.i.d. as well.
Their expectation can be computed exactly as in (7), and thus we obtain:

nmin = N × ∑n/N
k=�t′� [k − �t′� + 1] × (

n/N
k

) × pk
1A × p

n/N−k
0A . (8)

Since an analytical comparison between the above expressions of accuracy and
hardness of evasion is not possible, we give a numerical comparison. To this aim,
we first fix the class-conditional distribution of the features to values that can be
representative of a real adversarial task like spam filtering (taking into account
that features are assumed to be i.i.d.). We chose the values p1A = 0.25 and
p1L = 0.15, namely, each individual feature detects 25% of the attacks and also
erroneously identifies 15% of legitimate samples as attacks. We then evaluate the
accuracy of the monolithic classifier and of the MCS using the receiver operating
characteristic (ROC) curve (namely, the TP rate as a function of the FP rate,
obtained by varying the decision thresholds t and t′). For the monolithic classifier
(Fig. 2, left) we consider different values of the number of features n. As expected
(being the features i.i.d.), the discriminant capability increases for increasing n.
For the chosen values of p1A and p1L, n = 600 is sufficient to obtain nearly zero
FP and FN rates. A realistic accuracy for spam filters is the one for n equal to
about 300. The accuracy of the MCS was evaluated for different values of the
ensemble size N , with n fixed to 300 (Fig. 2, right). It can be seen that the MCS
discriminant capability is lower than that of the monolithic classifier (the MCS
ROC curves are always below the one of the monolithic classifier for n = 300).
The reason is that the individual classifiers of the MCS are much less accurate
than the monolithic one, since they are trained on a lower number (n/N) of
i.i.d. features. This turns out to be true also for different class-conditional feature
distributions. We point out however that this result holds for the case in which
the classifiers are not under attack.

We finally evaluate and compare the hardness of evasion (7) and (8) for
n = 300 features. For a fair comparison between the monolithic classifier and the
MCS we consider a fixed working point on the ROC curve defined by choosing
classifier parameters (the decision thresholds t and t′) that minimise a classifica-
tion cost given by FP + 1

C FN , where C denotes the relative cost of FP and FN
errors. Since in security applications FP errors are more harmful than FN ones,
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Fig. 2. Top-left part of the ROC curves of the monolithic linear classifier for different
feature set sizes n (left), and of the MCS for n = 300 and different ensemble sizes N
(right), for i.i.d. features with class-conditional distribution given by p1A = 0.25 and
p1L = 0.15. The area under the ROC curve (AUC) is also reported.
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Fig. 3. Classification cost FP + 1
C

FN as a function of the hardness of evasion for the
monolithic classifier and four MCS with ensemble size N = 2, ..., 5, n = 300 features,
and four C values. Each dashed line corresponds to a different C value: from top to
bottom, C = 1, 2, 10, 100.

we consider C > 1. The comparison was made for four C values and four MCS
ensemble sizes: C = 1, 2, 10, 100, and N = 2, 3, 4, 5. The corresponding classifica-
tion cost and hardness of evasion are reported in Fig. 3. The comparison between
the monolithic classifier and the MCSs, for any fixed C value, clearly shows that
the monolithic classifier is more accurate at any given operating point when the
adversary does not attack, but it is also easier to evade. Moreover, while the
MCS accuracy decreases for increasing ensemble sizes, the hardness of evasion
increases. Therefore, in the considered classifier architectures there is a trade-off
between the accuracy when the classifier is not under attack, and the hardness
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of evasion. Note also that for increasing C values (namely, when a smaller FP
rate is required), the accuracy of the MCS approaches that of the monolithic
classifier, while the hardness of evasion remains significantly higher.

The analytical results in this section are limited to two classifier architectures,
and hold only under rather strict conditions on the class-conditional feature
distribution. Nevertheless, they allow to provide a first, formal evaluation and
comparison of monolithic classifiers and MCSs in terms of both classification
accuracy and hardness of evasion, and suggest that MCSs can be useful to attain
a higher hardness of evasion than monolithic classifiers. In the next section we
will give an empirical evaluation of these architectures for a spam filtering task,
in light of the analytical results above.

3 Experimental Results

We analytically found in Sect. 2.2 that, when the adversary does not attack, a
linear classifier with identical weights trained on i.i.d. features is more accurate
than an ensemble of linear classifiers with identical weights and decision thresh-
olds trained on disjoint subsets of identical size of the same features, and combined
with the OR logical function, but it is easier to evade. In this section we empirically
evaluate whether this result holds also in a real application where the assumption
of i.i.d. features could be not satisfied. To this aim we considered the SpamAssas-
sin spam filter (version 3.2.5), and the TREC 2007 e-mail corpus, publicly avail-
able at http://plg.uwaterloo.ca/~gvcormac/treccorpus07 and made up of
75,419 real e-mails (25,220 legitimate and 50,199 spam messages) collected be-
tween April 2007 and July 2007.

SpamAssassin can be considered as a linear classifier with several hundred
binary features (rules associated to legitimate or spam e-mail characteristics
take on respectively −1 and 0 values and 1 and 0 values), nine of which are
actually associated to the outputs of a text classifier. The main aim of our ex-
periments was to compare the two classification architectures of Fig. 1. To this
end, we compared the SpamAssassin classifier architecture (a monolithic linear
classifier) with MCSs trained on disjoint subsets of its features and combined
with the OR logical function. However, even disregarding the nine tests asso-
ciated to the text classifier, which exhibit a significantly higher discriminant
capability, the remaining features cannot be considered i.i.d. Their correlation
on the TREC legitimate e-mails ranges in [−0.0045, 0.2821], with 0.0001 mean
and 0.0025 std. dev., while for spam e-mails it ranges in [−0.1867, 0.3265] with
0.0004 mean and 0.0069 std. dev. Their class-conditional distribution is given by
p1A ∈ [0, 0.5588], with 0.0105 mean and 0.0374 std. dev., and by p1L ∈ [0, 0.0600]
with 0.0003 mean and 0.0029 std. dev. To take this into account, we used differ-
ent weights in the linear classifiers. Moreover, the text classifier of SpamAssassin
(which has a continuous-valued output) was considered as one of the individual
classifiers of the MCSs. The experiments were carried out as follows. We consid-
ered only the n = 549 features whose value was not constant over all e-mails of
the TREC corpus. The text classifier was trained on the first 10, 000 e-mails in

http://plg.uwaterloo.ca/~gvcormac/treccorpus07
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Table 1. Mean and standard deviation of the FP and FN rates and of the hardness of
evasion of the monolithic classifier trained on the SpamAssassin features, and of two
MCSs with ensemble size N = 3, 10, trained on disjoint subsets of the same features

FP rate FN rate hardness of evasion

monolithic 0.0061(±0.0024) 0.0363(±0.0084) 1.37(±0.09)
MCS, N = 3 0.0062(±0.0013) 0.0520(±0.0060) 3.01(±0.13)
MCS, N = 10 0.0097(±0.0020) 0.0569(±0.0052) 3.25(±0.22)

chronological order. The next 10, 000 e-mails were used to train the linear classi-
fiers, using a support vector machine (SVM) with the linear kernel (the publicly
available libsvm software was used [12]). The operating point of all individual
classifiers was set by keeping the FP rate below 1%. Two ensemble sizes for the
MCS were considered: N = 3, 10. The 549 features were randomly and uniformly
subdivided among the individual classifiers of the MCS. The accuracy (FP and
FN rates) and the hardness of evasion at the chosen operating point were then
computed on the remaining 55, 419 e-mails, and are reported in Table 1.

Table 1 shows that the considered MCS architecture provides a lower clas-
sification accuracy than the monolithic architecture, when they are not under
attack (both the FP and FN rates of the MCS are slightly higher, and increase
for increasing values of the ensemble size). However the hardness of evasion of
the MCS is higher than the one of the monolithic classifier, and increases for
increasing ensemble size. It is worth noting that this qualitative behaviour is
the same found by our theoretical analysis of Sect. 2.2, although the assump-
tion of i.i.d. features is violated, and the experimental setup does not match the
one considered in Sect. 2.2 since the weights of the individual classifiers are not
identical. In particular, the considered classifier architectures are characterised
by a trade-off between classification accuracy and hardness of evasion: the MCS
architecture can allow to improve the hardness of evasion, although its accuracy
when the system is not under attack can be lower.

4 Conclusions

In this work we addressed for the first time the issue of quantitatively evaluating
the hardness of evasion of a pattern classifier for security applications, and in
particular of multiple classifier systems. We argued that the hardness of evasion
has to be evaluated in two distinct steps of classifier design, namely the choice
of the features and of the classifier architecture. We focused on the latter step,
and proposed a quantitative measure of the hardness of evasion of a classifier
architecture, related to the number of features that should be modified by the
adversary to evade the whole classifier. This allowed us to give an analytical
evaluation and comparison of two classifier architectures which are used in real
security systems, but were motivated so far only by intuitive arguments and
empirical evidence. The analytical results were exploited to give an experimental
evaluation of these architectures in a real case study related to a spam filtering
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task. Our theoretical and experimental results suggest that MCSs can allow
to improve the hardness of evasion, although their classification accuracy can
be lower than that of a single classifier, when the system is not under attack.
Moreover, the experimental results suggest that the validity of our theoretical
conclusions can go beyond the assumptions under which they have been derived.
We believe that the framework proposed in this work can be a starting point to
derive principled guidelines for the design of pattern classifiers for adversarial
classification problems.

References

1. Globerson, A., Roweis, S.T.: Nightmare at test time: robust learning by feature
deletion. In: Cohen, W.W., Moore, A. (eds.) ICML. ACM International Conference
Proceeding Series, vol. 148, pp. 353–360. ACM, New York (2006)

2. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to
harden payload-based anomaly detection systems. In: International Conference on
Data Mining (ICDM), pp. 488–498. IEEE Computer Society, Los Alamitos (2006)

3. Jorgensen, Z., Zhou, Y., Inge, M.: A multiple instance learning strategy for com-
bating good word attacks on spam filters. Journal of Machine Learning Research 9,
1115–1146 (2008)

4. Lowd, D., Meek, C.: Adversarial learning. In: Press, A. (ed.) Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), Chicago, IL (2005)

5. Dalvi, N., Domingos, P., Mausam, S.S., Verma, D.: Adversarial classification. In:
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Seattle, pp. 99–108 (2004)

6. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learn-
ing be secure? In: ASIACCS 2006: Proceedings of the 2006 ACM Symposium on
Information, computer and communications security, pp. 16–25. ACM, New York
(2006)

7. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

8. Ross, A.A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer
Publishers, Heidelberg (2006)

9. Haindl, M., Kittler, J., Roli, F. (eds.): MCS 2007. LNCS, vol. 4472. Springer,
Heidelberg (2007)

10. Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detec-
tion in computer networks. Pattern Recognition Letters 24, 1795–1803 (2003)

11. Biggio, B., Fumera, G., Roli, F.: Evade hard multiple classifier systems. In: Okun,
O., Valentini, G. (eds.) Supervised and Unsupervised Ensemble Methods and Their
Applications. Studies in Computational Intelligence. Springer, Heidelberg (2009)
(in press)

12. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Multiple Classifier Systems for Adversarial Classification Tasks
	Introduction
	Analysis of Multiple Classifier Systems for Adversarial Classification Tasks
	The Concept of Hardness of Evasion
	A Theoretical Analysis of Multiple Classifier Systems for Adversarial Classification Tasks

	Experimental Results
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




