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Preface

These proceedings are a record of the Multiple Classifier Systems Workshop,
MCS 2009, held at the University of Iceland, Reykjavik, Iceland in June 2009.
Being the eighth in a well-established series of meetings providing an interna-
tional forum for the discussion of issues in multiple classifier system design, the
workshop achieved its objective of bringing together researchers from diverse
communities (neural networks, pattern recognition, machine learning and statis-
tics) concerned with this research topic.

From more than 70 submissions, the Program Committee selected 54 papers
to create an interesting scientific program. The special focus of MCS 2009 was
on the application of multiple classifier systems in remote sensing. This partic-
ular application uses multiple classifiers for raw data fusion, feature level fusion
and decision level fusion. In addition to the excellent regular submission in the
technical program, outstanding contributions were made by invited speakers
Melba Crawford from Purdue University and Zhi-Hua Zhou of Nanjing Univer-
sity. Papers of these talks are included in these workshop proceedings. With the
workshop’s application focus being on remote sensing, Prof. Crawford’s expertise
in the use of multiple classification systems in this context made the discussions
on this topic at MCS 2009 particularly fruitful.

As usual, the workshop would not have been possible without the help of
many individuals and organizations. First of all, our thanks go to the members
of the MCS 2009 Program Committee, whose expertise and dedication helped
us create an interesting event that marks the progress made in this field over
the last two years and aspires to chart its future research. The help of Shirley
Hankers from the University of Surrey, who administered the submitted papers
review, and of Björn Waske from the University of Iceland, who compiled the
camera-ready manuscripts into a well-structured volume deserve a particular
mention. The co-sponsorship of the event by the International Association for
Pattern Recognition and its Technical Committee TC1: Statistical Techniques
in Pattern Recognition, the IEEE Geoscience and Remote Sensing Society, the
IEEE Iceland Section, the University of Iceland, the University of Cagliari and
the University of Surrey is greatly appreciated and gratefully acknowledged.

June 2009 Jón Atli Benediktsson
Josef Kittler

Fabio Roli



Organization

The MCS 2009 was organized by the Faculty of Electrical and Computer Engi-
neering of the University of Iceland in assossiation with the Center for Vision,
Speech and Signal Processing of the University of Surrey, UK and the Depart-
ment of Electrical and Electronic Engineering of the University of Cagliari, Italy.

Program Committee

Conference Chairs: Jón Atli Benediktsson (University of Iceland, Iceland)
Josef Kittler (University of Surrey, UK)
Fabio Roli (University of Cagliari, Italy)

Scientific Committe

J.K. Aggarwal (USA)
J. Chanussot (France)
S. Bengio (USA)
L. Bruzzone (Italy)
H. Bunke (Switzerland)
G. Chollet (France)
L.P. Cordella (USA)
R.P.W. Duin (The Netherlands)
G. Fumera (Italy)
C. Furlanello (Italy)
J. Ghosh (USA)
V. Govindaraju (USA)
M. Haindl (Czech Republic)

T.K. Ho (USA)
A. Jain (USA)
N. Intrator (Israel)
L.I. Kuncheva (UK)
N. Oza (USA)
P. Paclik (The Netherlands)
R. Polikar (USA)
S. Raudys (Lithuania)
A. Ross (USA)
A. Sharkey (UK)
B. Waske (Iceland)
T. Windeatt (UK)
Z.-H. Zhou (China)

Sponsoring Institutions

– International Association for Pattern Recognition and its Technical
Committee TC1: Statistical Techniques in Pattern Recognition

– IEEE Geoscience and Remote Sensing Society, the IEEE Iceland Section
– University of Iceland
– University of Cagliari
– University of Surrey



Table of Contents

ECOC, Boosting and Bagging

The Bias Variance Trade-Off in Bootstrapped Error Correcting Output
Code Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Raymond S. Smith and Terry Windeatt

Recoding Error-Correcting Output Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Sergio Escalera, Oriol Pujol, and Petia Radeva

Comparison of Bagging and Boosting Algorithms on Sample and
Feature Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Satoshi Shirai, Mineichi Kudo, and Atsuyoshi Nakamura

Multi-class Boosting with Class Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . 32
Goo Jun and Joydeep Ghosh

MCS in Remote Sensing

Hybrid Hierarchical Classifiers for Hyperspectral Data Analysis . . . . . . . . 42
Goo Jun and Joydeep Ghosh

Multiple Classifier Combination for Hyperspectral Remote Sensing
Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Peijun Du, Wei Zhang, and Hao Sun

Ensemble Strategies for Classifying Hyperspectral Remote Sensing
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Xavier Ceamanos, Björn Waske, Jón Atli Benediktsson,
Jocelyn Chanussot, and Johannes R. Sveinsson

Unbalanced Data and Decision Templates

Optimal Mean-Precision Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
David M.J. Tax, Marco Loog, and Robert P.W. Duin

A Multiple Expert Approach to the Class Imbalance Problem Using
Inverse Random under Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Muhammad Atif Tahir, Josef Kittler, Krystian Mikolajczyk, and
Fei Yan

Decision Templates Based RBF Network for Tree-Structured Multiple
Classifier Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Mohamed Farouk Abdel Hady and Friedhelm Schwenker



VIII Table of Contents

Stacked Generalization and Active Learning

Efficient Online Classification Using an Ensemble of Bayesian Linear
Logistic Regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Narayanan U. Edakunni and Sethu Vijayakumar

Regularized Linear Models in Stacked Generalization . . . . . . . . . . . . . . . . . 112
Sam Reid and Greg Grudic

Active Grading Ensembles for Learning Visual Quality Control from
Multiple Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Davy Sannen and Hendrik Van Brussel

Multiple Classifier Systems for Adversarial Classification Tasks . . . . . . . . 132
Battista Biggio, Giorgio Fumera, and Fabio Roli

Concept Drift, Missing Values and Random Forest

Incremental Learning of Variable Rate Concept Drift . . . . . . . . . . . . . . . . . 142
Ryan Elwell and Robi Polikar

Semi-supervised Co-update of Multiple Matchers . . . . . . . . . . . . . . . . . . . . . 152
Luca Didaci, Gian Luca Marcialis, and Fabio Roli

Handling Multimodal Information Fusion with Missing Observations
Using the Neutral Point Substitution Method . . . . . . . . . . . . . . . . . . . . . . . . 161

David Windridge, Norman Poh, Vadim Mottl,
Alexander Tatarchuk, and Andrey Eliseyev

Influence of Hyperparameters on Random Forest Accuracy . . . . . . . . . . . . 171
Simon Bernard, Laurent Heutte, and Sébastien Adam
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The Bias Variance Trade-Off in Bootstrapped
Error Correcting Output Code Ensembles

Raymond S. Smith and Terry Windeatt

Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford,
Surrey GU2 7XH, UK

{Raymond.Smith,T.Windeatt}@surrey.ac.uk

Abstract. By performing experiments on publicly available multi-class
datasets we examine the effect of bootstrapping on the bias/variance be-
haviour of error-correcting output code ensembles. We present evidence
to show that the general trend is for bootstrapping to reduce variance
but to slightly increase bias error. This generally leads to an improve-
ment in the lowest attainable ensemble error, however this is not always
the case and bootstrapping appears to be most useful on datasets where
the non-bootstrapped ensemble classifier is prone to overfitting.

1 Introduction

When considering the errors made by statistical pattern classifiers it is useful to
group them under three headings. Firstly there is the unavoidable error, known
as Bayes error, which is caused by noise in the process that generates the pat-
terns. A second source of error is variance; this is caused by the sensitivity of a
learning algorithm to the chance details of a particular training set and causes
slightly different training sets to produce classifiers that give different predic-
tions for some patterns. Thirdly there are errors caused by bias in a learning
algorithm; here the problem is that the classifier is unable, for whatever reason,
to adequately model the class decision boundaries in the pattern feature space.
When training a classifier there is often a tradeoff between bias and variance [10]
so that a high value of one implies a low value of the other.

A successful approach to constructing multi-class classifiers has proved to be
that of error-correcting output code (ECOC) ensembles [7,11]. In this approach
the multi-class problem is decomposed into a series of 2-class problems, or di-
chotomies, and a separate base classifier trained to solve each one. These 2-class
problems are constructed by repeatedly partitioning the set of target classes into
pairs of super-classes so that, given a large enough number of such partitions,
each target class can be uniquely represented as the intersection of the super-
classes to which it belongs. The classification of a previously unseen pattern is
then performed by applying each of the base classifiers so as to make decisions
about the super-class membership of the pattern. Redundancy can be introduced
into the scheme by using more than the minimum number of base classifiers and
this allows errors made by some of the classifiers to be corrected by the ensemble

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 1–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 R.S. Smith and T. Windeatt

as a whole. It has been shown [12,14] that ECOC reduces both bias and variance
when compared with a single multi-class classifier.

A generally desirable property of multiple classifier systems (MCS), of which
ECOC is an example, is that there should be diversity among the individual clas-
sifiers in the ensemble [4,17]. By this is meant that the errors made by component
classifiers should, as far as possible, be uncorrelated so that the error correcting
properties of the ensemble can have maximum effect. One way of achieving this
is to apply bootstrapping to the training set so that each base classifier is trained
on a unique bootstrap replicate. These are created from the original training set
by repeated sampling with replacement. This creates a training set which has, on
average, 63% of the patterns in the original set but with some patterns repeated
to form a training set of the same size.

When bootstrapping is used in a majority voting ensemble of identical classi-
fiers it leads to the technique of bagging [2]. This is known to reduce variance at
the cost of increased bias [3,8], particularly when using an unstable classifier such
as MLP. The situation with ECOC bootstrapping is somewhat analogous to a
bagged ensemble; the difference, however, is that in the latter case each classifier
is trained to solve an identical problem, whereas the ECOC base classifiers are
trained to solve different sub-problems.

One of the advantages of the ECOC approach is that it makes it possible to
perform multi-class classification by using base classifier algorithms that are more
suited to solving 2-class problems. Examples include support vector machines
(SVMs) [5] and multi-layer perceptron (MLP) neural networks [1]. In this paper
we investigate experimentally three types of base classifier, namely single hidden
layer MLPs, Gaussian kernel SVMs and polynomial kernel SVMs. Each of these
base classifier types can be regarded as being controlled by two main parameters
which respectively control the capacity and the training strength of the learning al-
gorithm. The term capacity [5] refers to the ability of an algorithm to learn a train-
ing set with low or zero training error. By training strength we mean the amount of
effort that is put into training the classifier to learn the details of a given training
set. Intuitively, high capacity tends to imply a low bias and high training strength
tends to imply high variance. For a given dataset and learning algorithm therefore,
there is often a tradeoff between the values of these two parameters.

2 Kohavi-Wolpert Definition of Bias and Variance

The statistical concepts of bias, variance and noise originally emerged from re-
gression theory. In this context they can be defined in such a way that the
squared loss can be expressed as the sum of noise, bias2 and variance. The goal
of generalising these concepts to classification problems, using a 0-1 or other
loss function, has proved elusive and several alternative definitions have been
proposed (see [12] for a summary). In fact it is shown in [12] that, for a general
loss function, these concepts cannot be defined in such a way as to possess all
desirable properties simultaneously. For example the different sources of error
may not be additive, or it may be possible for variance to take negative values.
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In this study we adopt the Kohavi-Wolpert definitions [13]. Let X be a random
variable representing input patterns and Y a random variable representing the
target classes. Consider a learning algorithm L which, given a training set T ,
produces a classification function L (T ) which maps X to Y . Then the Kohavi-
Wolpert definitions of bias, variance and total error are given by the following
equations:

bias2
x =

1

2

∑
y∈Y

[
P̂Y,X (Y = y|X = x) − P̂T (L (T ) (x) = y)

]2
− Dx (1)

variancex =
1

2

[
1 −

∑
y∈Y

P̂T (L (T ) (x) = y)2
]

+ Dx (2)

Dx =
1

2

∑
y∈Y

P̂T (L (T ) (x) = y)
[
1 − P̂T (L (T ) (x) = y)

]
/ (NT − 1) (3)

errorx = P̂Y,X (L (T ) (x) �= Y |X = x) = bias2 + variance (4)

Here P̂Y,X (Y = y|X = x) is the empirical probability that the actual class
of pattern x is y; in practice this takes the value 1 for a particular value of y
and 0 for all others. P̂T (L (T ) (x) = y) is the empirical probability, taken over a
collection of NT training sets, that the learning algorithm produces a classifier
that assigns pattern x to target class y. Dx is a de-biasing term which ensures
that the estimates of bias2

x and variancex are reliable for small values of NT . The
ability to apply this correction is one of the advantages of the Kohavi-Wolpert
definitions; for example in [13] it is shown to lead to stable results using just 10
sample training sets.

Another advantage of the above definitions is that they give an additive de-
composition of error. A major problem, however, is that there is no separate
allowance for Bayes error. The rationale for this is that, on realistic datasets,
this component of error cannot be estimated because the sampling is rarely dense
enough to allow the probabilities of different classes to be estimated at a fixed
value of x (a method for overcoming this problem has, however, been proposed in
[12]). In effect, the Bayes error component is absorbed into the bias2 term, thus
giving a value which is biased too high. In this study, however, we are interested
only in changes to bias and variance as the base classifier parameters are varied,
and so this issue does not affect the conclusions of the paper.

3 ECOC Base Classifier Parameters

As noted in section 1, we wish to characterise the base classifier parameters as
those which control the capacity of the classifier and those which control the
training strength. In the case of single hidden layer MLPs, a natural choice is to
take the number of hidden nodes and the number of training epochs respectively.

For SVM base classifiers note that the objective function to be minimised
during training [5] has the form ‖w‖2 + C

∑
i ξi where w is the weight vector

to be computed, C is a cost parameter and ξi are slack variables. The value
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of C controls the tradeoff between exactly fitting the training data (by driving
the ξi towards zero) and maximising the margin (by driving ‖w‖ towards zero).
It follows that C fulfils the role of the training strength parameter, with high
values leading to the training set being modelled more precisely.

The choice of capacity parameter for SVMs depends on the kernel function
being used. The Gaussian kernel has the form exp

(
− 1

2σ2 ‖x − y‖2
)

where σ

controls the diameter of the sphere of influence around each support vector. For
this kernel 1/σ2 is a suitable choice for the capacity parameter (the inverse is
taken in order to ensure that capacity increases as the parameter value increases).
Some pictorial examples of the effect of varying C and σ can be found in [16].
For the polynomial kernel function (x · y + 1)d the capacity is determined by
the degree parameter d.

4 Experiments

In this section we present the results of performing classification experiments
on 11 multi-class datasets obtained from the publicly available UCI repository
[15]. The characteristics of these datasets in terms of size, number of classes and
number of features are given in table 1.

Table 1. Experimental datasets showing the number of patterns, classes, continuous
and categorical features

Dataset Num. Num. Cont. Cat.
Patterns Classes Features Features

dermatology 366 6 1 33
ecoli 336 8 5 2
glass 214 6 9 0
iris 150 3 4 0

segment 2310 7 19 0
soybean 683 19 0 35
thyroid 7200 3 6 15
vehicle 846 4 18 0
vowel 990 11 10 1

waveform 5000 3 40 0
yeast 1484 10 7 1

For each dataset, ECOC ensembles of size 200 were constructed using each
of three base classifier types and a range of base classifier capacity and training
strength parameters. Each such combination was repeated 10 times with different
randomly chosen stratified training sets and different randomly generated ECOC
coding matrices; for neural network base classifiers another source of random
variation was the initial network weights. In each run the data was normalised
to make the training set have zero mean and unit variance. The ECOC code
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matrices were constructed in such a way as to have balanced numbers of 1s and
0s in each column. Training sets were based on a 20/80 training/test set split.
Each experiment was repeated with and without bootstrapping being applied to
the construction of the individual base-classifier training sets. In total this led
to 27,900 experimental runs being performed. For each unique combination of
parameters and algorithms, the Kohavi-Wolpert bias2, variance and total error
were calculated in accordance with Eqns. 1 to 4 over the 10 randomised runs.

The base classifier types employed were single-hidden layer MLP neural net-
works using the Levenberg-Marquardt training algorithm, SVMs with Gaussian
kernel and SVMs with polynomial kernel. The neural networks were constructed
as a single hidden layer of perceptrons, with the number of nodes ranging from 2
to 16 and the number of training epochs from 2 to 1024. For Gaussian SVMs the
width parameter σ was varied between 1 and 8, whilst for polynomial SVMs de-
grees of 1,2,3 and 4 were used. The cost parameter of SVMs was varied between
10−3 and 103. In all cases, apart from polynomial degrees, the base classifier
parameters were varied in geometric progression.

For reference purposes a complete list of the lowest ensemble errors obtained
in these experiments, for each base classifier type, is given in Table 2.

Table 2. The lowest percentage ensemble error values obtained using three types of
ECOC base classifier. Error values are shown with the application of bootstrapping
(BS) and without (BS).

Neural Gaussian Polynomial
Dataset Network SVM SVM

BS BS BS BS BS BS

dermatology 3.3 4.8 2.9 2.9 2.8 3.2
ecoli 16.8 18.3 15.1 15.0 15.7 16.0
glass 36.2 36.8 35.5 35.3 37.2 38.0
iris 4.8 5.1 5.0 5.7 5.5 5.3

segment 4.0 4.0 5.7 5.7 5.7 6.1
soybean 9.7 9.3 8.4 7.8 8.3 8.2
thyroid 2.7 2.6 2.7 2.8 2.9 3.4
vehicle 20.9 22.1 22.1 22.2 23.1 23.5
vowel 23.2 21.3 21.3 20.9 26.4 25.9

waveform 14.9 16.7 14.3 14.4 14.4 14.5
yeast 41.9 41.4 41.2 41.1 42.0 42.0

4.1 Bias-Variance Tradeoff

Some representative examples of the bias-variance behaviour observed in these
experiments are illustrated in Fig. 1. Here the effect is shown, both with and
without bootstrapping, of increasing the training strength parameter for various
datasets and base classifier types. For each graph the base classifier capacity
parameter is fixed at the optimal value obtained on the test set for the given
dataset.
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Fig. 1. Some example ensemble test-set bias, variance and total error curves as the
ECOC base classifier training strength parameter is varied. These are shown with and
without the application of bootstrapping during ensemble construction. ’B’ and ’N’
respectively mark the positions of minimum error with and without bootstrapping.
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A number of observations can be made about Fig. 1. We discuss first examples
(b) to (e) where it can be seen that, as expected, there is a general tendency
for the bias2 to decrease and the variance to increase as the training strength
increases. The effect of bootstrapping on variance is to lessen this increase, par-
ticularly for higher values of the training strength parameter. It can be observed
that there is a tendency for bootstrapping to slightly increase the bias2 error, al-
though the effect is usually small and the curves generally lie very close to each
other. It is noteworthy that the bootstrapped variance and total error curves
tend to level out at a lower value than the non-bootstrapped versions; this in-
dicates that bootstrapping makes the ensemble more resistant to overfitting the
data at high training strengths.

At some point there is an optimal tradeoff between bias and variance where
the total error is minimised. The position of the optimum may vary depending
on whether bootstrapping is used or not (e.g. (c) and (d)) or it may be the same
in both cases (e.g. (b) and (e)). Whether bootstrapping reduces the total error
depends on the values of bias2 and variance at the optimal tradeoff points. In
examples (b) to (d) the variance reduction induced by bootstrapping is sufficient
to lead to a significant overall reduction in error despite any slight increase in
bias. The benefit of bootstrapping tends to be lower, or even negative, however
when the optimal bias/variance tradeoff occurs at low training strengths; this is
because, as in case (e), the divergence between the variance curves is insufficient,
at this point, to significantly impact the total error.

The behaviour observed on some datasets, for example case (a) of Fig. 1, can
be different from that described above. Here the ECOC classifier does not exhibit
a pronounced tendency to overfit the data at high training strengths (as in cases
(b) to (e)) and, as a result, variance is not reduced by bootstrapping. In fact,
in example (a) both the bias2 and variance curves of the bootstrapped ensemble
lie slightly above those of the non-bootstrapped version, so bootstrapping leads
to an overall increase in total error.

4.2 Bootstrapping vs. Non-bootstrapping

In section 4.1 we examined the classification behaviour of ECOC ensembles un-
der conditions of identical base classifier capacity and varying training strengths.
In order to compare the performance of bootstrapped versus non-bootstrapped
ensembles, however, it is necessary to look at them under optimal conditions
and this may require the base classifier capacity, as well as training strength, to
be different. The examples of Fig. 1 were chosen from cases where the optimal
capacity was found to be the same for both types of ensemble, but this is not al-
ways the case. Due perhaps to its more stochastic behaviour, the neural network
base classifier was found to be particularly prone to this phenomenon, with only
3 out of the 11 datasets requiring the same capacity parameter. For example on
the yeast dataset this classifier was optimal at 4 nodes and 16 training epochs
when bootstrapping was used but 8 nodes and 8 epochs when not.
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Fig. 2. The effect of bootstrapping on ECOC for three types of base classifier. Figures
show the relative percentage change in the lowest attainable ensemble Kohavi-Wolpert
test error components that result from bootstrapping. Negative values imply that boot-
strapping leads to a reduction.

Table 3. The average, over 11 datasets, of the effect of applying bootstrapping to
ECOC. Figures show the mean percentage relative change in the lowest attainable en-
semble Kohavi-Wolpert test error measures. Negative values imply that bootstrapping
leads to a reduction.

Base Classifier Total Bias2 Variance
Neural Network -4.22 4.12 -11.05
Gaussian SVM -0.36 5.44 -6.18

Polynomial SVM -2.78 1.77 -6.38

Fig. 2 shows the relative percentage change1 in test-set bias2, variance and
total error which resulted when the bootstrapped ensemble was compared with
the non-bootstrapped version at their respective points of minimum total error.
It can be seen from this that the general pattern is for bootstrapping to reduce
variance but to increase bias and that this leads to a net reduction in total
error. This pattern of behaviour is confirmed by Table 3 which shows the relative
percentage changes averaged over the 11 datasets. There are, however, deviations
from this pattern for individual datasets. For example dermatology, when using

1 By relative percentage change we mean the value 100 (v − vBS) /v where v and vBS

are measured without and with bootstrapping respectively.
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the neural network or polynomial SVM base classifiers, leads to the bias2 at
the point of bootstrapped minimum total error being significantly less than that
obtained when bootstrapping is not applied.

5 Discussion and Conclusions

The main contribution of this paper to our understanding of ensemble clas-
sifiers is to shed light on how the bootstrapping of ECOC ensembles affects
performance, not just in terms of overall classification error, but also how that
error breaks down into its bias and variance components. Evidence has been
presented to show that bootstrapping generally tends to lessen the impact of
variance when compared with non-bootstrapped ensembles. This tends to be
particularly noticeable at high values of the training strength parameter, lead-
ing to a reduced tendency to overtrain. The relative reduction in variance is,
however, often achieved at the expense of a slight increase in the bias2 com-
ponent - a pattern of behaviour that is reminiscent of that observed in bagged
ensembles [8].

Whilst the net effect of bootstrapping is usually to reduce the overall error
that can be attained at optimal base classifier parameter settings, this is not
universally the case and bootstrapping appears to be most useful on datasets
for which the non-bootstrapped ensemble is prone to overfitting. This is to be
expected since the latter type of dataset implies that variance error plays a more
prominent role in determining the ensemble error.

Future work will be directed towards characterising more precisely the rela-
tionship between the properties of the dataset and the effect of ECOC boot-
strapping. For example, when the available dataset is small, as with iris, it is
likely that further reducing the base classifier training data by bootstrapping
may lead to the introduction of bias. This cannot be the complete explanation,
however, as increases in bias can also be observed on larger datasets such as
thyroid and segment. Further investigation is required and it is hoped that this
will lead to a theory that predicts when bootstrapping is advantageous.
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Abstract. One of the most widely applied techniques to deal with multi-
class categorization problems is the pairwise voting procedure. Recently,
this classical approach has been embedded in the Error-Correcting Out-
put Codes framework (ECOC). This framework is based on a coding
step, where a set of binary problems are learnt and coded in a matrix,
and a decoding step, where a new sample is tested and classified ac-
cording to a comparison with the positions of the coded matrix. In this
paper, we present a novel approach to redefine without retraining, in a
problem-dependent way, the one-versus-one coding matrix so that the
new coded information increases the generalization capability of the sys-
tem. Moreover, the final classification can be tuned with the inclusion
of a weighting matrix in the decoding step. The approach has been val-
idated over several UCI Machine Learning repository data sets and two
real multi-class problems: traffic sign and face categorization. The results
show that performance improvements are obtained when comparing the
new approach to one of the best ECOC designs (one-versus-one). Fur-
thermore, the novel methodology obtains at least the same performance
than the one-versus-one ECOC design.

1 Introduction

Recently, significant amount of robust binary classifiers have been proposed in
the bibliography with very high performance, such as Support Vector Machines,
Neural Networks, Adaboost [1], etc. However, the extension of many binary clas-
sifiers to the multi-class case, where N possible categories appear, is a hard task.
In this sense, a common strategy consists of defining a set of binary problems,
which are combined in a Multiple Classifier system.

Error-Correcting Output Codes (ECOC) were defined as a framework to com-
bine binary problems in order to deal with the multi-class case [2]. This frame-
work is based on two main steps. At the first step, named coding, a set of binary
problems (dichotomizers) are defined based on the learning of different sub-
partitions of classes by means of a base classifier. Then, each of the partitions
is embedded as a column of a coding matrix M , which rows correspond to the
codewords codifying each class. At the second step, named decoding, a new data
sample that arrives to the system is tested, and a codeword formed as a result of
the output of the binary problems is obtained. This test codeword is compared
with each class codeword based on a given decoding measure, and a classifica-
tion prediction is obtained for the new object. Unlike the voting procedure, the

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 11–21, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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information provided by the ECOC dichotomizers are shared among classes in
order to obtain a precise classification decision, being able to reduce either the
variance as the bias produced by the learners [3].

When Dietterich et. al. defined the binary ECOC framework in [2], all posi-
tions from the coding matrix M belonged to the {+1,−1} symbols. It makes all
classes to be considered by each dichotomizer as a member of one of both possible
partitions of classes that define each binary problem. In this case, the one-versus-
all and dense random ECOC approaches were defined [2]. Afterwards, Allwein
et. al. in [4] defined the ternary ECOC, where the positions of the coding matrix
M can be either +1, -1 or 0, and the sparse random and one-versus-one (pairwise
voting) designs could be defined in the ECOC framework. In this case, the zero
symbol means that a given class is not considered in the learning process of a
particular dichotomizer. The huge set of possible bi-partitions of classes from this
ternary ECOC framework has recently suggested the use of problem-dependent
designs as well as new decoding strategies[5][6][7][8][9].

Concerning the one-versus-one ECOC strategy, it codifies the splitting of each
possible pair of classes as a dichotomizer, which results in N(N − 1)/2 binary
problems for an N -class problem. This number is usually larger in comparison
with the linear tendency of the rest of ECOC designs. Although this suggests
larger training times, the individual problems that we need to train on are sig-
nificantly smaller, and if the training algorithm scales superlinearly with the
training set size, it is actually possible to save time. Moreover, the problems to
be learnt are usually easier, since the classes have less overlapping. For all these
reasons, the one-versus-one ECOC design tends to obtain better results than the
rest of ECOC designs in real multi-class problems[5][7].

In this paper, we focus on the one-versus-one coding matrix design. Our goal
is to look for a better coding of the matrix without retraining the classifiers
involved. Training data are used in a problem-dependent way for updating the
zero positions to +1 or -1 symbols if a higher classification performance can be
achieved. Observe the 4-classes problem shown in Fig. 1(a). A decision bound-
ary of a non-linear classifier has been obtained in the learning process of the
dichotomizer h1 that splits classes c1 and c2. The point of this article is that
without the necessity of retraining the classifier, the same decision boundary
can be used to give a prediction hypothesis about class c3. On the other hand,
note that the use of this decision boundary to classify class c4 may result in a
random decision function. Using this information, we recode the classical
problem-independent one-versus-one into a problem-dependent one-versus-one
design extending the trained classifier on new classes for the binary classifier for
which the dichotomizer is relevant. The design is possible thanks to a new weight-
ing procedure that takes into account the performance of the dichotimizers at
the decoding step [7]. Moreover, the approach requires almost the same training
and testing computational complexity than the classical one (since retraining of
classifiers is not required).

The paper is organized as follows: Section 2 describes the recoded problem-
dependent one-versus-one approach. Section 3 evaluates the methodology over
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a set of UCI data sets and two real multi-class problems: traffic sign and faces
categorization. Finally, section 4 concludes the paper.

2 Recoded One-versus-One ECOC

In this section, we present a problem-dependent redefinition of the classical one-
versus-one ECOC design. The one-versus-one ECOC technique is defined in the
ternary ECOC framework MN×M ∈ {−1, 0, +1}, being M a coding matrix of
N rows (as the number of classes), M the number of columns (dichotomizers
to be learnt, where M = N(N − 1)/2 in the case of the one-versus-one design),
{−1, +1} symbols codify the class membership, and the zero symbol ignores a
particular class for a given dichotomizer. Each column of the matrix M corre-
sponds to the ith binary problem hi, which splits a pair of classes using a given
base classifier. Figure 1(b) codifies a coding matrix M for a 4-class problem. The
white positions correspond to the symbol +1, the black positions to the symbol
-1, and the grey positions to the zero symbol. Note that this design is indepen-
dent from the problem-domain. Once the set of binary problems h = {h1, .., hM}
is learnt, a new test sample ρ that arrives to the system is tested applying the set
h, and a test codeword x1×M ∈ {−1, +1} is obtained. Afterwards, a decoding
function d(x, yj) is used to compare the test codeword x with each codeword
yj (jth row from M) codifying class cj . Finally, the classification prediction
corresponds to the class cj which corresponding codeword yj minimizes d.

In the one-versus-one ECOC design, only 2M from the NM possible posi-
tions are coded to {−1, +1} symbols, which corresponds to a (1 − 2/N) · 100
percentage of positions coded to zero. Note that the zero symbol does not give
class membership information for its corresponding dichotomizer. Then, it could
happen that if some of these positions coded to zero are re-coded to +1 or -1
without the need of re-training the dichotomizers, the final performance could
be improved almost without increasing the training cost.

2.1 RECOC Coding

Given the training data C = {C1, .., CN}, where Ci is the data belonging to
class ci, and M the one-versus-one coding matrix, the set of dichotomizers
h = {h1, .., hM} is learnt applying a base classifier over the corresponding sub-
sets of C, obtaining the classical one-versus-one ECOC design. In order to update
the coding matrix in a problem-dependent way, for each position M(i, j) = 0, the
corresponding data Ci, i ∈ {1, .., N}, i /∈ (k, l), where ck and cl are the classes
considered by the jth dichotomizer, are tested using hj under the hypothesis
that their membership should be +1. Then, a classification accuracy β is ob-
tained. If the magnitude of β or (1− β) is greater than a performance threshold
α ∈ (0.5, 1], then that position of the coding matrix M is set (recoded) to +1
(or -1), respectively. Otherwise, the value of M(i, j) is kept to zero.

Since we use the training data to modify the positions of M , the one-versus-one
design mutates in a problem-dependent way. Moreover, since the modification of
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the positions of M does not require to retrain the set h, the computational cost
of the coding process is not significantly increased. Table 1 shows the algorithm
for training the Recoding ECOC (RECOC) design. The algorithm codifies the
classical one-versus-one design at the same time that modifies the positions of M
based on the input value of α. Note that in the algorithm, a matrix of weights W
saving the accuracy values β is defined. This matrix will be used at the decoding
process in order to weight the final classification.

Table 1. RECOC learning algorithm

Input: α, C = {C1, .., CN} // Accuracy value and multi-class data
Output: M , W , and set of dichotomizers h = {h1, .., hM}
W N×M := 0, MN×M := 0, cont := 1
for i ∈ {1, .., N − 1}

for j ∈ {i + 1, .., N}
Given a base classifier, learn dichotomizer hcont to split (Ci, Cj)
// Update membership and accuracy
M(i, cont) := +1, W (i, cont) := hcont(Ci, +1)
// Update membership and accuracy
M(j, cont) := −1, W (j, cont) := hcont(Cj ,−1)
for k ∈ {i, .., N}

if k /∈ {i, j}
// Accuracy for class ck considered as class ci (label +1)
β := hcont(Ck, +1)
// Consider the coding matrix position k as +1
if β ≥ α then

// Update membership and accuracy
M(k, cont) := +1, W (k, cont) := β

// Consider coding matrix position k as -1
elseif 1 − β ≥ α then

// Update membership and accuracy
M(k, cont) := −1, W (k, cont) := 1 − β

endif
endif

endfor
cont := cont + 1

endfor
endfor

In order to obtain more precise classification results, we need to know which
values of α are useful to increase the generalization capability of the system, since
some values of α may result in wrong classification predictions. In order to look
for the values of α, cross-validation is applied. For this task, the training data C
is split into a training CT and a validation CV subsets, so that C = CT ∪ CV .
The use of a validation subset helps the system to increase generalization. Thus,
for a set of values α = {α1, .., αk}, algorithm 1 is called. However, the set h is
only learnt once over C at the beginning. At each round, the set CT is used
to mutate the positions of M , and the validation set CV will be used to test
the performance of each M for a particular α. For this last task, a decoding
procedure using the weighting matrix W is proposed next. This step is required
to obtain a successful classification. Finally, the matrix M for which value of α
maximizes the classification performance over CV is selected.

Figure 1 shows an example of a training process for a 4-class problem.
Figure 1(a) shows the non-linear decision boundaries that splits all possible
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Fig. 1. ECOC codification for a 4-class problem: (a) Non-linear decision boundaries
for the 4-class problem, (b) initial one-versus-one ECOC codification, (c) RECOC
codification with α = 0.9, and (d) RECOC codification with α = 1.0

pairs of classes. Figure 1(b) shows the classical one-versus-one design. Figure 1(c)
shows the problem-dependent coding matrix M for α = 0.9. Note that several
positions previously coded to zero are now set to +1 or -1 values since they
achieve an accuracy upon 90% over the training data. Finally, Fig. 1(d) shows
the same process for α = 1.0. Now, less positions satisfy the performance restric-
tions. Note that if the testing of the validation data CV does not take benefits
from the values of α, then, the classical one-versus-one design is selected, and
thus, in the worst case, the recoded problem-dependent approach attains the
same performance than the classical approach.

2.2 RECOC Decoding

In [7], the authors show that to properly decode a ternary ECOC matrix two
biases must be avoided at the decoding step. First, classical decoding strategies
introduce a bias when comparing positions that contain the zero symbol, which
do not give information about meta-class membership. On the other hand, the
addition of the bias produced by the comparison with the zero symbol makes
the codewords to take values from different ranges, which makes the measures
among codewords non-comparable. In this sense, the authors present how to
robustly decode sparse coding matrices where codewords may contain different
number of positions coded to {−1, +1} symbols. This is done by weighting the
final decision so that it avoids the influence of the zero symbol at the same time
that all classes codewords have the same probability of being predicted.

Due to the previous properties, we use a Loss-based decoding [4] weighted by
the weighting matrix W computed at the RECOC coding step to decode the
RECOC matrix M . The approach uses a Loss-function to penalize the miss-
classifications produced by the set of dichotomizers h.
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First, we normalize each row of the weighting matrix W obtained at the
coding step so that MW can be considered as a discrete probability density
function MW (i, j) = W (i,j)∑

M
j=1 W (i,j)

, ∀i ∈ [1, ..., N ], ∀j ∈ [1, ..., M ]. Once we

obtain the normalized weighting matrix MW , we introduce it in a Loss-based
decoding [4]. In this approach, the decoding estimation is obtained by means of a
Loss-based model with a Loss-function L(θ) weighted by MW , where L(θ) = −θ
and θ corresponds to yj

i · hj(ρ): LW (ρ, i) =
∑n

j=1 MW (i, j)L(yj
i · hj(ρ)). The

final classification decision is done by the class ci which corresponding codeword
yi that minimizes the LW function.

3 Results

In order to present the results, first, we discuss the data, methods, measurements,
and experimental settings of the experiments.

• Data: The data used for the experiments consist of eleven multi-class data
sets from the UCI Machine Learning Repository database [10]. We also catego-
rize two real Computer Vision classification problems. First, we use the video
sequences obtained from a Mobile Mapping System [11] to test the methods in a
real traffic sign categorization problem consisting of 36 traffic sign classes. Sec-
ond, 30 classes from the ARFaces [12] data set are classified using the present
methodology.

• Methods : We compare the classical one-versus-one ECOC design with the
RECOC strategy for three base classifiers: Gentle Adaboost [1], Linear Support
Vector Machines [13], and Support Vector Machines with Radial Basis Function
kernel (RBF SV M) [13]. In order to compare the methods at same conditions,
we use a linear Loss-Weighted decoding in both one-versus-one and RECOC
strategies.

• Measurements : To measure the performance of the different strategies, we
apply stratified ten-fold cross-validation and test for confidence interval with a
two-tailed t-test.

• Experimental settings : 50 decision stumps are considered for the Gentle
Adaboost algorithm. The RBF SV M classifier is tuned via cross-validation,
where the σ and regularization parameters are tested from 0.05 increasing per
0.05 up to 1 and from one increasing per 5 up to 150, respectively. For the
RECOC strategy cross-validation is applied, where α is tested from 0.7 increasing
per 0.05 up to 1, and 10% of the training data are used as a validation subset.

3.1 UCI Classification

Table 2 shows the performance results of the one-versus-one ECOC and RECOC
algorithms for the different ECOC base classifiers. For each UCI data set, the
performance obtained by each method is shown. In the cases where RECOC
improves the one-versus-one ECOC results, the selected values of α are shown.
The number of wins, losses, and draws considering the ten experiments of the
ten-fold cross-validation for each data set are also shown in the table. Note that
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Table 2. UCI performances for the different ECOC base classifiers

Gentle Adaboost one-versus-one RECOC α Wins Losses Draws

Balance 87.46 87.46 - 0 0 10
Wine 94.38 94.38 - 0 0 10

Thyroid 95.37 95.37 - 0 0 10
Iris 95.33 95.33 - 0 0 10

Glass 63.10 68.65 0.95 10 0 0
Ecoli 81.29 83.36 0.75 8 2 0

Dermatology 91.76 92.52 0.85 5 0 5
Vowel 57.88 62.73 0.95 9 1 0
Vehicle 57.81 63.57 0.95 9 1 0
Yeast 55.46 56.67 0.95 5 2 3

Segmentation 97.45 97.45 - 0 0 10

Linear SV M one-versus-one RECOC α Wins Losses Draws

Balance 91.64 91.64 - 0 0 10
Wine 95.55 95.55 - 0 0 10

Thyroid 96.71 96.71 - 0 0 10
Iris 98.67 98.67 - 0 0 10

Glass 28.74 37.58 1.00 5 1 4
Ecoli 74.63 74.63 - 0 0 10

Dermatology 94.79 95.07 0.95 1 0 9
Vowel 63.33 64.44 0.95 8 2 0
Vehicle 80.24 80.24 - 0 0 10
Yeast 26.11 37.81 0.95 9 1 0

Segmentation 96.02 96.32 1.00 6 2 2

RBF SV M one-versus-one RECOC α Wins Losses Draws

Balance 97.25 97.41 0.95 1 0 9
Wine 61.31 61.84 1.00 1 0 9

Thyroid 95.35 95.35 - 0 0 10
Iris 96.67 96.67 - 0 0 10

Glass 46.41 46.41 - 0 0 10
Ecoli 86.74 86.74 - 0 0 10

Dermatology 88.80 89.05 0.85 3 0 7
Vowel 54.95 55.76 0.90 4 1 5
Vehicle 72.00 72.12 0.90 1 0 9
Yeast 56.68 56.68 - 0 0 10

Segmentation 95.14 95.25 0.90 2 0 8

in several data sets, RECOC obtains performance improvement for the three base
classifiers. The table shows that the more classes there are, the more significant
the results are. The highest performances are achieved for high values of α (about
0.90-0.95 in most cases). Note that in the worst case, RECOC becomes the
one-versus-one ECOC designs, and it achieves the same performance. Moreover,
looking at the wins and losses of each experiment, one can see that though
in some case the performance improvements of RECOC are no significant, the
number of wins of the ten-fold experiments are statistically significant.

Now, we compare the results obtained by the RECOC approach on the UCI
data sets with the results obtained with the same strategy retraining classifiers.
In Fig. 3 one can see the performance obtained by both classification strategies
for the three different base classifiers. Note that there are no significant differ-
ences among the obtained performances. Moreover, the RECOC strategy obtains
better performance in more cases than using the same coding matrix retraining
classifiers, with far less computational complexity.

3.2 Traffic Sign Categorization

For this experiment, we use the video sequences obtained from the Mobile Map-
ping System [11] to test the classification methodology on a real traffic sign
categorization problem. In this system, the position and orientation of the dif-
ferent traffic signs are measured with video cameras fixed on a moving vehicle.
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(a) (b)

Fig. 2. (a) Traffic sign classes. (b) ARFaces data set classes. Examples from a category
with neutral, smile, anger, scream expressions, wearing sun glasses, wearing sunglasses
and left light on, wearing sun glasses and right light on, wearing scarf, wearing scarf
and left light on, and wearing scarf and right light on.

Table 3. Traffic data set performances

Problem one-versus-one RECOC α Wins Losses Draws
Gentle Adaboost 88.70 88.95 0.95 3 1 6

Linear SV M 88.02 91.23 1.00 4 0 6
RBF SV M 97.44 97.85 0.95 1 0 9

From this system, a set of 36 circular and triangular traffic sign classes are ob-
tained. Some categories from this data set are shown in Fig. 2(a). The data
set contains a total of 3481 samples of size 32×32, filtered using the Weickert
anisotropic filter, masked to exclude the background pixels, and equalized to
prevent the effects of illumination changes. These feature vectors are then pro-
jected into a 100 feature vector by means of PCA. The classification results of
the one-versus-one ECOC and RECOC strategies for the three base classifiers
are shown in Table 3. In this experiment, for all base classifiers, the RECOC
design obtains performance improvements for high values of α.

3.3 ARFaces Classification

The AR Face database [12] is composed of 26 face images from 126 different
subjects (70 men and 56 women). The images have uniform white background.
The database has two sets of images from each person, acquired in two different
sessions, with the following structure: one sample of neutral frontal images, three
samples with strong changes in the illumination, two samples with occlusions
(scarf and glasses), four images combining occlusions and illumination changes,
and three samples with gesture effects. One example of each type is plotted
in Fig. 2(b). For this experiment, we selected all the samples from 30 different
categories (persons).

The classification results of the one-versus-one ECOC and RECOC strategies
for the three base classifiers are shown in Table 4. As in the previous experiments,



Recoding Error-Correcting Output Codes 19

(a) Gentle Adaboost

(b) Linear SV M

(c) RBF SV M

Fig. 3. UCI data sets performance using the recoded matrix with and without
retraining

Table 4. ARFaces data set performances

Problem one-versus-one RECOC α Wins Losses Draws
Gentle Adaboost 65.50 70.06 0.95 6 1 3

Linear SV M 39.41 43.92 0.95 9 1 0
RBFSV M 88.33 88.75 0.95 2 0 8

all base classifiers obtain performance improvements using the RECOC strategy
for high values of α (α = 0.95).

3.4 Discussion

As a final conclusion of the results, we can state that performance improvements
are obtained using the RECOC approach instead of the one-versus-one ECOC.
Note that none of the RECOC experiments for any base classifier obtains inferior
results to the one-versus-one performances.

Concerning the computational complexity of the strategy, the classifiers learnt
at the coding step are not retrained during the RECOC recodification. Thus,
though cross-validation of α should be applied to assure the better performance,
the training cost is not significantly increased. On the other hand, the testing
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time remains the same than in the classical one-versus-one approach since all
classifiers should be applied on the test sample. Moreover, we show that we
obtain similar (even superior) results with the recoded RECOC matrix M than
using the same procedure but retraining classifiers (that is, using the re-coded
positions to re-train again the dichotomizers).

Finally, it is important to bring up that though the recoding strategy has
been performed on the one-versus-one coding matrix, this strategy is directly
applicable to any kind of ternary ECOC design where the symbol zero may
appear.

4 Conclusion

In this paper, we presented a problem-dependent design of Error-Correcting Out-
put Codes to deal with multi-class categorization problems. The method is based
on redefining the classical one-versus-one ECOC design so that the generaliza-
tion of the system is increased. For this task, the training data are analyzed using
the previously learnt binary problems, and the coding matrix is recoded without
the need of retraining classifiers. A weighting matrix is also included in order to
weight the final classification and obtain more precise results. The experimental
evaluation over several UCI Machine Learning repository data sets and two real
multi-class problems: traffic sign and face categorization, show that significant
performance improvements can be obtained. Moreover, our new methodology is
guaranteed by design to achieve at least the one-versus-one performance.
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Abstract. We compared boosting with bagging in different strengths
of learning algorithms for improving the performance of the set of classi-
fiers to be fused. Our experimental results showed that boosting worked
much with weak algorithms and bagging, especially feature-based bag-
ging, worked much with strong algorithms. On the basis of these obser-
vations we developed a mixed fusion method in which randomly chosen
features are used with a standard boosting method. As a result, it was
confirmed that the proposed fusion method worked well regardless of
learning algorithms.

1 Introduction

Recently, classifier fusion is gathering much attention in pattern recognition.
Many studies have been seen in the series of Multiple Classifier Systems work-
shops. The main two streams for classifier fusion are bagging [1] and boosting [2].
Bagging utilizes several subsets of training samples, mainly by resampling, in
order to stabilize classifiers constructed by those subsets. The random subspace
method [3] can be also seen as one of bagging algorithms in the sense that it
stabilizes the set of classifiers. It resamples subsets of features instead of samples.
The boosting also utilizes randomly-resampled subsets of training samples, but
in resampling it weights heavily the samples that were not correctly classified
up to the current stage.

As a general understanding, bagging is effective when the base learning al-
gorithms, producing each (component) classifier with a given training sample
set, have a high ability to explain any set of training samples but are affected
much by a little change of the samples. On the other hand, boosting is effective
for the base learning algorithms with relatively low explanation ability but high
robustness. These things are described in several ways. For examples, with the
words of bias and variance, bagging is effective for algorithms with low bias and
high variance and boosting is effective for algorithms with low variance and high
bias. A great work in this way is seen in Friedman [4]. If we use the words of
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training error and testing error, bagging is effective for algorithms with a large
difference between these two errors and boosting for algorithms with a small
difference. This is important from a practical point of view, because if the differ-
ence is large, we cannot rely on the training error and thus we cannot choose the
best one among some classifiers from their training errors. Then, model selection
should be carried out, but unfortunately any model selection criterion tends to
work poorly for up to a moderate size of training sample sets.

In this paper, we investigated to what degree the above discussion holds. That
is, we evaluated several combinations of methodology (boosting and bagging)
and learning algorithms (simple and complex). To enhance the discussions, we
proposed an integrated algorithm in which samples are reweighted according
to the failure of previous stages and features are reweighted according to the
importance on the chosen subset of samples.

Our conclusions are 1) boosting is effective for simpler algorithms (in this
paper a Plug-in Bayes linear classifier) whose difference between training and
testing errors is small and bagging is effective for more complicated algorithms
(in this paper a support vector machine) whose difference between training and
testing errors is large, 2) Our boosting algorithm, in which random feature sub-
sets are chosen so as to work better for the chosen random subset of samples,
works almost always regardless of base algorithms, and 3) bagging using random
feature subset selection works better than simple bagging on samples.

In the following, we will describe the previous studies on comparison between
boosting and bagging, propose our algorithm as a merger of these two, and then
show the experimental results to have derived the above conclusions.

2 Previous Studies

Simply speaking, boosting strengthens a set of weak classifiers to a stronger
classifier, and bagging weakens a set of strong classifiers to a weaker classifier.
The first insight for boosting is given in the way of reweighting on samples. It
reweights heavily the samples misclassified so far to obtain a better (compo-
nent) classifier on the resampled samples. As a result, the integrated classifier
can perform beyond each of component classifiers even if each one is weak for a
whole set of training samples. On the other hand, bagging produces a combined
classifier, usually by majority vote on component classifiers. Since majority vote
is equivalent to averaging, it can be expected that the variance between com-
ponent classifiers is reduced. As a result, a more smooth decision boundary is
obtained.

In bagging, there are several pieces of evidence showing that random feature
selection (e.g., the random subspace method: RSM) works better than random
sample selection used in the standard bagging [3,5]. This may be explained by the
degree of independence of classifiers [5,6,7]. In general, for majority vote fusion,
it is known that negatively correlated (component) classifiers much contribute
to the improvement of the combined classifier, and even positively correlated
classifiers have a chance for contribution. It is clearly true that randomly cho-
sen small number of features increases the independency more than randomly
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chosen large number of samples. We cannot reduce the sample size to have a
reliable classifier. Feature selection is rather preferable for this goal. Indeed, the
random subspace method (shortly, RSM) is better than a regular bagging (shortly,
Bagging) in many cases. This is also experimentally confirmed by our previous
study [8].

Several observations have been reported in comparison between bagging and
boosting [7,9,10,11]. Skurichina and Doin compared the performance of bagging,
boosting and random subspace method using linear classifiers [7]. They said
that, in the case of n samples and m features, 1) for n/m < 1, all methods
are almost even; 2) for 1 ≤ n/m ≤ 3, bagging and random subspace method
is better than boosting; and 3) for n/m > 3, boosting is better than bagging
and random subspace method. Skurichina and Kuncheva compared bagging with
boosting by the diversity of component classifiers [9]. The divergence shows the
degree of variety of outputs of component classifiers. In general, a higher value
of divergence guarantees more the effectiveness of classifier fusion. In [9], it was
shown that boosting outperforms bagging in both the nearest mean classifiers
and a pseudo Fisher linear classifiers, and the diversity of boosting was larger
than that of bagging. Quinlan also showed that boosting is better than bagging
for C4.5 [10]. In [10], it is also reported that boosting could fail when the error
concentrates on a certain class. In that case, boosting could be even harmful.
Note that these studies use simpler learning algorithms such as linear classi-
fiers and decision trees. For complicated learning algorithms, SVM was tested
in [11]. Even for SVM, it was reported that boosting was better than bagging
for hand-writing digit. These reports show that boosting is mostly better than
bagging, but it is still not clear that in which cases this is true, especially in the
relationship with learning algorithms.

Unfortunately, there is few of studies that compared bagging with boosting
in different learning algorithms. It is important to know which combination is
better than another. Thus, we will compare several combinations in the following.

3 Formulation of Fusion Algorithms

In this section, we provide the notation first and then describe several fusion
algorithms.

3.1 Dataset Description

Let us assume that we are given a training sample set of n training sam-
ples in m-dimensional Euclidean space. We make ready two index sets: I ⊆
I0 = {1, 2, . . . , n} for showing which samples of given n samples were used and
J ⊆ J0 = {1, 2, . . . , m} for showing which features of m given features were used.
That is, |I| samples in |J | features are specified by I and J . In addition, for each
i, we have the correct class label yi. Then a training sample set, with a certain
pair of I and J , chosen from the original sample set X = {xi,j |i = 1, 2, . . . , n, j =
1, 2, . . . , m} is denoted by XI,J = {xi,j |i ∈ I, j ∈ J}. Let φ(x; I, J) = A(XI,J)
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be a (component) classifier designed by a base learning algorithm A and a train-
ing set XI,J . Here, φ(x; I, J) outputs an estimated class label for a given x.
The final classifier is obtained from φ(x; I1, J1), φ(x; I2, J2), . . . , φ(x; IB , JB) by
majority vote (averaging) or by weighted averaging. That is, B component clas-
sifiers are combined into Φ(x) =

∑B
k=1 βkφ(x; Ik, Jk), where βk is the weight of

kth classifier.
The difference between boosting and bagging algorithms can be shown by the

difference of I’s and J ’s. Here, we allow duplications of elements in I but not
in J . This is because some learning algorithms behave differently for a training
sample set with and without duplication. In contrast to this, duplications of
features are always harmful for designing classifiers.

Bagging: I1, I2, . . . , IB (|Ik| = n, k = 1, 2, . . . , B) are chosen from I0 ran-
domly and uniformly with replacement. Jk = J0(k = 1, 2, . . . , B). The com-
bine weights are βk = 1/B(k = 1, 2, . . . , B).
Random Subspace Method: J1, J2, . . . , JB (|Jk| ∼ m/2, k = 1, 2, . . . , B) are
chosen from J0 randomly and uniformly without replacement.Typically, a
half is chosen. Ik = I0(k = 1, 2, . . . , B). The combine weights are βk =
1/B(k = 1, 2, . . . , B).
Adaboost: I1, I2, . . . , IB (|Ik| = n, k = 1, 2, . . . , B) are chosen from I0 ran-
domly according to sample weights {wi}.The weights are updated according
to previous misclassification. Jk = J0(k = 1, 2, . . . , B). The combine weights
{βk} are taken so as to be higher if kth classifier has a smaller training error.

3.2 Base Learning Algorithm

Due to time limitation, we compared only two base learning algorithms. As a rep-
resentative of simple classifiers, we used Plug-in Bayes linear classifier (shortly,
linear). As a representative of strong classifiers, we used support vector ma-
chines (shortly, SVM). It is clear that linear is insufficient for the cases that the
Bayes decision boundary is not linear. Instead, it gains robustness against the
change of training samples. Therefore, overfitting (a large difference between the
training and testing errors) can be avoided. On the other hand, SVM with a kernel
(RBF is chosen in this paper) easily explains all the training samples with the
correct class labels. Therefore, it tends to show overfitting for many problems,
although its maximum margin criterion suppresses the degree low in theory.

4 SF-Boost Algorithm

As described in the preceding sections, it is expected that boosting works in
the direction of increasing the complexity of component classifiers and bag-
ging works in the reverse direction. The random feature selection also works
in reducing the complexity, because a smaller set of features limits more the
representation space of samples. However, it also can work for removing redun-
dant features and, therefore, for bringing reliability on estimation of classifier
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parameters. As a result, it is worth checking the effectiveness of combination of
boosting on samples and bagging (random selection) on features. We call it a
boosting with bidirectional weighting on Sample and Feature (shortly, SF-Boost).

SF-boost (Adaboost+RSM): I1, I2, . . . , IB (|Ik| = n, k = 1, 2, . . . , B) are
chosen from I0 randomly according to sample weights{wS

i }and J1, J2,. . . ,JB

(|Jk| ∼ m/2, k = 1, 2, . . . , B) are chosen from J0 randomly according to fea-
ture weights {wF

j }. The weights {wS
i } are updated according to previous

misclassification and weights {wF
j } are updated according to the degree of

importance on the basis of Ik selected at the current stage. The combine
weights {βk} are taken as in the same as Adaboost.

Weighting in SF-Boost algorithm is performed in two directions. One direction
is the same as Adaboost, that is, weighting is made on the sample set. Another
direction is made on the feature set. By default, half features are chosen randomly
as the same as in RSM, but the selection weights are calculated on the basis of a
certain sample subset selected in the resampling stage. Since, in each updating
stage, a resampled sample subset is of many of previously-misclassified samples,
the features are chosen so as to keep separability on the resampled subset.

The feature weight wF
j is evaluated on the basis of class separability in jth

coordinate. We construct a histogram in which the jth coordinate is divided into
a fixed number of intervals staring from the minimum value and ending in the
maximum value of samples. Then we measure the mutual information as follows.
Let I be the sample subset chosen currently. For jth feature, represented as a
set {j}, we measure the mutual information:

H(YI) − H(YI |XI,{j}),

where H(YI) is the entropy of YI = {yi|i ∈ I} and H(YI |XI,{j}) is the conditional
entropy of YI given XI,{j}. The latter is the sample-averaged conditional entropy
over short intervals.

The concrete algorithm is given in Fig. 1. It is noted that we can simulate both
Adaboost and RSM easily by activate/inactivate some parts of the algorithm.

A similar algorithm is already proposed [12]. In the algorithm, a feature se-
lection procedure is employed to find a sub-optimal feature subset for a chosen
sample subset. In the goal of feature selection, the procedure is stronger than
ours. However, our algorithm has the following advantages: 1) even if the same
sample set is chosen repeatedly, the proposed algorithm can choose different
features according to its random nature as the same as RSM. This is useful to
have a necessary number of different classifiers as we hope, and 2) almost all fea-
ture selection algorithms cost too much for high-dimensional data. The random
selection adopted here is far less in computation time.
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X : training sample set of size n; X = {xi,j |i = 1, 2, . . . , n, j = 1, 2, . . . , m}
I : index set of samples (I ⊆ I0 = {1, 2, . . . , n})
J : index set of features J ⊆ J0 = {1, 2, . . . , m})
XI,J : part of X specified by I (samples) and J (features)
wS

i : weight for ith sample
wF

j : weight for jth feature
A : learning algorithm for obtaining a classifier
φ : component classifier
Φ : combined classifier
T : maximal number of component classifiers (default: 50)
error(t) : error rate of constructed classifier at step t
error(t) = 1

n

∑n
i=1 I{yi �= Φt(xi)}

nb : the number of bootstrapped samples (default: nb = n)
mb : the number of randomly chosen features (default: mb = m/2)
σ : convergence precision (default: σ = 0.1)

Procedure SF-boost(X: training set, T, nb, mb) to return a combined classifier Φ

1. Initialize: wS
i ← 1/n; wF

j ← 1/m for every ith sample and jth feature; t ← 0;
2. While(t < T ){
3. I ←(randomly chosen nb samples with replacement according to {wS

i })
4. (reweighting of features)

wF
j ← H(YI) − H(YI |XI,{j}) (j = 1, 2, . . . , m)

5. Normalize {wF
j } to the sum of one.

6. J ← (randomly chosen mb features according to {wF
j })

7. φt ← A(XI,J ) /* construction of a component classifier*/
8. εt ←

∑
i:φk(xi) �=yi

wS
i /* error with sample weights*/

9. βt ← 1
2

ln(1 − εt)/εt /* classifier weight */
10. (reweighting of samples )

If φt(xi) �= yi then wS
i ← wS

i eβt ; otherwise wS
i ← wS

i e−βt (i = 1, 2, . . . , n)
11. Normalize {wS

i } to the sum of one.
12. Φt = arg max

∑t
k=1 βkφk

13. If |error(t) − error(t − 1)| < σ, then exit from the loop.
14. t ← t + 1
15. }
16. Φ(x) = arg maxy

∑
t βtφt(x)

Fig. 1. SF-boost algorithm

5 Experiments

We conducted experiments on 13 real-world datasets in UCI repository [13]. For
learning algorithms, we used linear as a weak algorithm and SVM as a strong
algorithm. Here weak means that the training error is usually not small. We
compared four fusion methods: Adaboost, Bagging, RSM and SF-Boost. The
number of component classifiers is set to B = 50. Actually, the performance of
most methods was almost converged until 50.
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Fig. 2. Comparison of three fusion methods for linear and SVM. The improved value
of the recognition rate from a single classifier is shown. In each dataset, from left,
Adaboost, Bagging and RSM.

5.1 Boosting + Weak Classifier vs. Bagging + Strong Classifier

First, we examined the relationship between fusion methods and learning algo-
rithms. The results are shown in Fig. 2. From Fig. 2, it is clear that linear was
improved by boosting (Adaboost) more than by bagging (Bagging and RSM), and
SVM was improved by bagging rather than by boosting. These observations are
consistent with our prediction. It is also noted that RSM outperforms Bagging
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in most cases. Therefore, in the following, we mainly consider the combinations
of Adaboost+linear and RSM+SVM. Both combinations showed a comparable
performance as shown in the following Table 1.

5.2 Effectiveness of the Proposed Boosting Algorithm

Next, we examined the effectiveness of our boosting algorithm in which boosting
and bagging are coupled. The results are shown in Table 1.

We notice first that our SF-boost works better than the others in many cases,
regardless of the strengths of learning algorithms. This means that SF-boost
succeeded to find the most appropriate complexity in these methods. Although
it is not shown here, we confirmed that SF-boost was almost always better than
Adaboost (19 of 26 cases). On the other hand, SF-boost was better than RSM in
16 of 26 cases.

Table 1. Comparison of recognition rate in AdaBoost and SF-Boost

Base learning algorithm
Linear SVM

Fusion algorithm Fusion algorithm
Dataset Single AdaBoost SF-Boost Single RSM SF-Boost

balance-scale 70.91 84.02 85.93 93.60 83.03 82.87
diabetes 73.43 72.91 73.68 63.02 70.82 70.71
heart-statlog 72.59 76.29 76.67 61.11 73.70 77.04
ionosphere 87.16 88.02 87.74 94.30 93.72 89.44
iris 98.67 96.67 96.00 98.00 94.67 96.00
liver-disorders 62.60 67.56 69.28 62.32 66.02 64.87
optdigits 94.40 95.78 95.30 96.48 99.20 98.51
pendigits 86.90 86.95 81.37 77.11 82.17 97.30
segment 81.60 85.58 87.92 92.46 96.62 97.32
sonar 72.12 75.48 79.33 79.38 80.33 81.28
spambase 68.83 70.29 90.39 86.33 93.04 92.70
waveform-5000 86.04 85.58 85.56 83.82 85.82 84.38
wine 74.74 78.72 92.68 74.12 89.31 89.90

Average 79.23 81.83 84.76 81.70 85.26 86.33

5.3 On Generalization Ability

It is also interesting to check the generalization ability of those classifiers that
can be measured by the difference between the training and testing errors. The
smaller the difference is, the higher the generalization ability is. With classifiers
of high generalization ability, we can rely on the training error for estimating
the testing error. The results are shown in Fig. 3.

In Fig. 3, we notice that 1) weak algorithms (linear in our case) have high
generalization ability compared with strong algorithms (SVM in our case), and
2) among boosting methods, SF-boost has higher generalization ability than
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Fig. 3. Difference of testing error and training error by Adaboost and SF-Boost. In
each dataset, linear (light) and SVM (dark).

Adaboost. The second observation implies that a random feature selection in
SF-boost succeeded to suppress an excessive fitting to the training samples that
are often observed in Adaboost.

These things tell us that we should use linear with some boosting method if
we want reliable testing performance, because a high value of recognition rate on
the training samples guarantees the same degree of recognition rate for testing
samples.

6 Discussion

Obviously, from a limited number of datasets, we cannot derive strong conclu-
sions, but we could have several evidences from experiments.

– It can been seen that boosting is most effective with weak learning algo-
rithms. On the contrary, bagging, especially, bagging using different feature
subsets, works with strong algorithms.

– The proposed boosting algorithm in which boosting and feature-based bag-
ging are coupled works well compared with methods on either side.

– For classifier selection, boosting with weak algorithms is most promising
because the testing error is close to the training error.

7 Conclusion

We have compared boosting with bagging, especially bagging in different feature
subsets, in weak and strong learning algorithms. As a result, it was shown that
combinations of (boosting+weak algorithms) and (bagging+strong algorithms)
were both better combinations. In addition, we have proposed a boosting method
with characteristics of both boosting and bagging and confirmed the advantages
on 13 real-world datasets.
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There are still many open problems. The first one is to know to what degree
the strength of learning algorithms is related to the effectiveness of boosting or
bagging. The others are about how to control the balance between boosting and
bagging and how to measure the generalization ability of combined classifiers for
classifier selection.
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Abstract. We propose AdaBoost.BHC, a novel multi-class boosting al-
gorithm. AdaBoost.BHC solves a C class problem by using C − 1 binary
classifiers defined by a hierarchy that is learnt on the classes based on
their closeness to one another. It then applies AdaBoost to each binary
classifier. The proposed algorithm is empirically evaluated with other
multi-class AdaBoost algorithms using a variety of datasets. The re-
sults show that AdaBoost.BHC is consistently among the top performers,
thereby providing a very reliable platform. In particular, it requires sig-
nificantly less computation than AdaBoost.MH, while exhibiting better
or comparable generalization power.

1 Introduction

Adaptive reweighting and combining methods such as boosting have become
very popular because of their remarkable ability to reduce both model bias and
variance as compared to a base learner. In particular, AdaBoost [1] has been
successfully applied to vast range of machine learning applications. AdaBoost
is an ensemble learning method for binary classification problems based on a
set of weak learners trained under different distributions. There is one baseline
requirement for the boosting procedure to work: the weak learner should be at
least 50% accurate.

AdaBoost.M1 [2] is a direct extension of the binary AdaBoost algorithm with
a multi-class weak learner. The problem of AdaBoost.M1 is that the multi-class
weak learner needs to be much stronger, since a random guess would yield only
1/C accuracy for a C class problem. This observation has prompted a plethora of
approaches that convert a multi-class problem into multiple binary classification
problems thus omitting the necessity of directly employing a multi-class classifier.
These algorithms either change a single multi-class problem into multiple binary
class problems [3], into one big binary class problem with increased number of
examples[4], or into a sequence of binary class problems with output codes [5][6].

We take a different approach by employing a binary hierarchical classifier
(BHC), which converts a multi-class problem into a set of binary problems based
on affinity between classes. In BHC, similar classes are clustered together into
meta-classes so that the resulting binary problems are simpler to solve than

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 32–41, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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in other algorithms mentioned above. In this paper, AdaBoost.BHC, a novel
method that combines binary AdaBoost with BHC, is proposed and applied to
multi-class classification problems, and the results are compared to the results
from existing multi-class AdaBoost algorithms. The results show that the per-
formance of AdaBoost.BHC is always among the best, and it runs much faster
than AdaBoost.MI and AdaBoost.MH.

2 Dealing with Multi-class Problems

In binary classification, a classifier maps the input space onto a binary output
space, {+1,−1}. In many cases, however, we have to deal with C > 2 classes,
so the output space is defined as {1, 2, ..., C}. There are classification algorithms
that can directly handle multiple classes, such as decision trees or multi-layer
perceptrons. Producing a non-binary output, however, is not possible or less
natural for other approaches such as SVMs. In such a case, we can model a
multi-class problem using a fusion of binary classifiers.

One way to employ binary classifiers for a multi-class problem is using binary
codes to decompose the problem’s output space. One-versus-all method and
“all-pairs” method are examples of solving multi-class problem by decomposing
output spaces. The error-correcting output code (ECOC) [7] is another example
of a binary code approach combined with robust error-correcting coding. All of
these algorithms can be considered as two-stage approaches in the sense that
multiple binary classifiers are trained independently and combined to produce
the final class label at the second level. These methods have another common
aspect that the binary classification problems are specified without considering
similarity between classes. Therefore, the resulting binary problems can become
more problematic, e.g. highly unbalanced in one-vs-all approaches, and leading
to complicated, multimodal decision boundaries in ECOCs.

An alternative approach is the binary hierarchical classifier (BHC) [8] that
was developed for hyperspectral remote-sensing applications where classes (land
cover types) have certain natural groupings, i.e. some classes are more similar to
one another than to others. BHC recursively decomposes a multi-class problem
into C − 1 binary (meta-)class problems, arranged as a binary hierarchical tree.
In a BHC tree, similar classes are grouped together to form meta-classes at each
inner level of the tree. Since the resulting structure of the BHC tree is determined
by affinity between classes, the hierarchy often provides useful insights on the
problem domain. More importantly, the resulting binary classification problems
tend to be simpler, thereby facilitating both feature extraction/selection and
classifier design, and making it easier to satisfy the baseline requirement for
boosting weak learners.

At the root node of a BHC tree, the given set of classes is first partitioned into
two disjoint sets or meta-classes. The meta-classes are recursively partitioned
until the leaves of the decomposition tree are reached where each leaf corresponds
to only one of the original classes. Consequently, the number of leaf nodes in
the BHC tree equals to the number of classes. An outline of the partitioning
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Tableware Vehicle Bldg (float) Bldg (non−float) Container Headlamp

Fig. 1. BHC tree for Glass dataset. Class names in bold italic font are window classes,
and others are non-window classes.

Algorithm 1. Outline of PARTITION NODE algorithm
1. Initialize associations as a1 = 1, and ai = 0.5, ∀i > 1. ai = P (Tl|ci) = 1−P (Tr|ci).
2. Find an optimal projection by Fisher’s discriminant analysis with soft assignments.
3. Calculate the mean log-likelihood of Tr and Tl in the Fisher-projected space.
4. Update ai’s, using the mean log-likelihoods and a pre-defined step size T.
5. Repeat Steps 2 through 4 until increase in Fisher’s discriminant is insignificant.
6. Compute the entropy: H = − 1

M

∑
i[ai log2 ai + (1 − ai) log2(1 − ai)].

7. Stop if H < θH . Otherwise, decrease T and repeat Steps 2 through 6.

algorithm is given in Algorithm 1. As a result of the partitioning process, classes
that are similar in the input feature space tend to get lumped into the same
meta-class in the tree. In the Glass data, for example, all glass types can be
divided into two groups: window and non-window. Fig. 1 shows a BHC tree for
the Glass data, and we can observe that all classes that belong to the window
meta-class are located under the same sub-tree. An empirical study [9] has shown
that BHC offers comparable classification accuracies with that of the ECOC with
fewer number of classifiers.

Recently, another tree-based approach, margin tree, was proposed [10]. The
margin tree algorithm employs the margin between classes as a distance measure
for the hierarchical agglomerative clustering of classes. Both BHC and margin
tree produce classification trees, but differ in how this tree is built. In the margin
tree algorithm, it is assumed that the dimensionality of data is higher than the
number of samples, so that the classes are always linearly separable. On the
other hand, in BHC we need at least as many samples as number of dimensions,
which enables the Fisher’s discriminant analysis. In this paper, we chose BHC
since all datasets in our experiments have more number of samples than number
of features, but our framework is easily applicable to margin tree or other tree-
based multi-class decomposition algorithms as well.
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3 Multi-class AdaBoost

There are many variations of AdaBoost for multi-class problems. AdaBoost.M1
[2] is a direct extension of the binary AdaBoost algorithm. In AdaBoost.M1,
the weak-learner should be able to produce multi-class output. The problem
of AdaBoost.M1 is that even weak learning may not be easily obtainable for
challenging multi-class problems. Since we are giving more weight to the samples
on which our hypotheses fail, the distribution often gets harder to learn for weak
learners as we keep boosting, making it much more difficult to produce at least
50% accuracy for multi-class classifiers.

AdaBoost.MH [4] transforms a multi-class problem into a binary classification
problem by replicating examples with attached class labels, based on the Ham-
ming loss. AdaBoost.MH can handle both multi-class and multi-label problems.
AdaBoost.MH is the most popular multi-class version of AdaBoost in practice
[11], and it shows good generalization ability even for relatively hard multi-class
problems. One of the problems with AdaBoost.MH is that it converts a multi-
class problem into one huge binary problem that requires N · C examples. An
alternative approach is AdaBoost.MI [3], a direct application of the one-vs-all
method. In AdaBoost.MI, we have C independent weak learners for a C-class
problem, and each binary weak learner is dedicated to one class. Each weak
learner is trained separately, with independently managed distributions. Ad-
aBoost.MI has similar computational complexity as AdaBoost.MH, but requires
a smaller memory footprint because the algorithm can be easily modularized.

Another approach, AdaBoost.OC [5] combines the output code algorithm with
AdaBoost. It requires only one binary classifier with N examples, which makes it
much faster than other algorithms. AdaBoost.ECC [6] is based on AdaBoost.OC,
and it has been shown that AdaBoost.OC is actually a shrinkage version of Ad-
aBoost.ECC [12]. In AdaBoost.ECC, a coloring μt : Y → {−1, +1} is computed
at t-th round of boosting, mapping the output space onto a binary space. A
new coloring is obtained for each round, hence we have a sequence of colorings
(μ1, μ2, ..., μT ) from T rounds of boosting, which makes each class label corre-
spond to a unique codeword, e.g., (+1, +1, -1...). The codeword from each class
labels is multiplied by the outputs of hypotheses and summed up, and the class
label which maximizes the value is selected as the final output.

Recently, a different approach that employs a multi-class weak learner was
also proposed, where the minimum accuracy requirement for the multi-class
weak learner is 1/C rather than 1/2 [11], which is not included in our exper-
iments since we focus on algorithms that work with binary weak learners. We
compare performances of MH, MI, and ECC algorithms with that of the pro-
posed AdaBoost.BHC.

4 AdaBoost.BHC

In the AdaBoost.BHC algorithm, a standard binary AdaBoost algorithm is ap-
plied to each internal node of the BHC tree, with separately updated distribu-
tions. The final hypothesis of each node, Hk, is the weighted sum of hypotheses,
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Algorithm 2. AdaBoost.BHC
Given (x1, y1), ..., (xN , yN ) and a BHC tree T , where xi ∈ X, yi ∈ Y = {1, 2, ..., C}.
– T1 is the root node, and Tk.C ⊂ Y is a set of classes belong to Tk.
– Tk.L(= l) and Tk.R(= r) are indices of left and right child of Tk.
– If Tk is a leaf node, l = r = 0 and |Tk.C| = 1.

1. For each internal node Tk,
(a) Construct (Xk, Yk) = {(xi, yi)|yi ∈ Tk.C},
(b) Map (Xk, Yk) → (Xk, Zk), zi ∈ Zk = {+1,−1}.

zi(xi) =

{
+1 if yi ∈ Tl.C

−1 if yi ∈ Tr.C

(c) Run AdaBoost on with (Xk, Zk) to obtain Hk.
2. Get Hfinal(xi), starting from k = 1

(a) If |Tk.C| = 1, output Hfinal(xi) = y ∈ Tk.C and finish.
(b) If Hk(xi) = +1, k = Tk.L. Otherwise k = Tk.R. Return to step 2-(a).

and the final multi-class output, Hfinal(xi) is determined from binary labels
generated at each node, Hk(xi) of the BHC tree. A detailed description of the
AdaBoost.BHC algorithm is given in Algorithm 2.

One of the main differences of AdaBoost.BHC from other multi-class Ad-
aBoost algorithms is that the binary decomposition of AdaBoost.BHC is de-
termined from the distribution of the input data. As a result, AdaBoost.BHC
produces more separable binary classification problems than other approaches,
hence supporting good generalization behavior. Another notable advantage of
AdaBoost.BHC is that it requires less number of computations per round than
AdaBoost.MH or AdaBoost.MI. The weak learner at the root node is trained
with N examples, and the left and the right child nodes of the root are trained
with N/2 examples on average. Assuming a full balanced binary tree, computa-
tional complexity of AdaBoost.BHC algorithm is:

log2C−1∑
k=0

1

2k
f

(
N

2k

)
,

where f(·) is the complexity of the weak learning algorithm. Table 1 shows
computational requirements of MH, MI, ECC, and BHC algorithms for O(N)
and O(N2) weak learning algorithms.

5 Experiments and Results

Empirical comparisons of existing multi-class AdaBoost algorithms and Ad-
aBoost.BHC are made using datasets from the UCI machine learning repository
[13] as in Table 2. Seven different multi-class datasets from the repository are
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Table 1. Time complexity comparison (per round) between different multi-class Ad-
aBoost algorithms for N examples from C classes

AdaBoost.MH AdaBoost.MI AdaBoost.ECC AdaBoost.BHC

O(N) weak learner C · N C · N N log2 C · N
O(N2) weak learner C2 · N2 C · N2 N2 2(1 − 1

C
)N2

Table 2. Datasets used in experiments from UCI repository

Name # Train # Test # Attributes # Classes

Iris 150 4-CV 4 3

Glass 214 4-CV 10 6

Yeast 1484 4-CV 8 10

Page blocks 5473 4-CV 10 5

Landsat 4435 2000 36 6

Optical digits 3823 1797 64 10

Pen-based digits 7494 3498 16 10

employed. 4-fold cross validation (CV) is done 10 times for Landsat, Optical dig-
its, and Pen-based digits datasets. For the other four datasets with pre-specified
test sets, each test is repeated 40 times and the results are averaged. 100 rounds
of boosting are done for each algorithm. MATLAB’s built-in classification and
regression tree (CART) is used as the base learner. Four different algorithms are
tested: AdaBoost.MH, AdaBoost.MI, AdaBoost.ECC, and AdaBoost.BHC.

Figs. 2 to 8 show training error and test error of each algorithm for seven
datasets. All algorithms except AdaBoost.MI generally show good performance
on all data. AdaBoost.BHC and AdaBoost.MH display the best generalization
behaviors for most datasets. Note that AdaBoost.BHC achieves low error rates
much faster than AdaBoost.MH in most experiments. AdaBoost.MI shows prob-
lems with Yeast and Page blocks datasets as shown in Figs. 4 and 5, where
both training error and test error increase after some rounds. One probable
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Fig. 2. Training and test errors for Iris data
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Fig. 3. Training and test errors for Glass data
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Fig. 4. Training and test errors for Yeast data

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Page blocks, Training error

Rounds

E
rr

or

MH
MI
ECC
BHC

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3
Page blocks, Test error

Rounds

E
rr

or

MH
MI
ECC
BHC

Fig. 5. Training and test errors for Page blocks data

reason is the fact that the class distributions of Yeast and Page blocks datasets
are highly unbalanced. The smallest class of the Yeast data has only 5 exam-
ples from a total of 1484, and the largest class of the Page blocks dataset has
4913 examples from a total of 5473. Because AdaBoost.MI makes C different
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Fig. 6. Training and test errors for Landsat data
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Fig. 7. Training and test errors for Optical digits data
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Fig. 8. Training and test errors for Pen digits data

binary classification problems, the highly skewed prior distribution makes the
problem much more difficult for weak learners. AdaBoost.MH is less affected by
unbalanced distributions, because it converts the hypothesis space from h : X →
Y to h : (X, Y ) → (correct, incorrect) domain, hence it always yields the same
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Table 3. Average training time(seconds) for 100 rounds

Algorithm Yeast Page blocks Landsat Optical Pen digits

AdaBoost.MH 32.0 156.9 311.8 698.9 866.8

AdaBoost.MI 43.5 128.1 331.0 731.4 688.4

AdaBoost.ECC 5.5 15.8 42.5 60.0 33.9

AdaBoost.BHC 24.8 49.3 167.1 198.7 138.1

fraction of positive and negative examples. AdaBoost.ECC and Adaboost.BHC
also perform better than AdaBoost.MI under skewed distributions because they
aggregate several classes together based on the coding scheme or the affinity be-
tween classes. There are more systematic approaches to evaluate performances
of classifiers with respect to the complexity of the problem [14], which is left as
a future work.

AdaBoost.ECC generally shows relatively higher generalization error except for
the Yeast dataset. One possible reason for this is the sub-optimal output space par-
titioning of the AdaBoost.ECC algorithm. AdaBoost.ECC require mappings from
Y to {+1,−1} for each round, and a recent study [15] has shown that appropri-
ate partitioning of the output space is important for the algorithm’s performance.
Here we employed a random partitioning, as suggested in [5]. It is also shown that
random partitioning is generally better than the optimized max-cut algorithm,
but it still has room for improvement [15]. Our empirical results suggests that
Adaboost.BHC provides better output decomposition than AdaBoost.ECC, be-
cause it decomposes the output space based on the class-conditional distributions,
producing simpler decision boundaries for binary weak learners.

Table 3 shows average training time of different algorithms for large (N ≥
1000) datasets. AdaBoost.ECC is clearly the fastest algorithm. AdaBoost.BHC
is slower than AdaBoost.ECC, but is significantly faster than AdaBoost.MI and
AdaBoost.MH.

6 Conclusions

In this paper, the AdaBoost.BHC algorithm incorporating multiple binary clas-
sifiers, a class hierarchy, and boosting was proposed and tested. AdaBoost.BHC
is always among the best performers if not the very best, thus providing a
more reliable solution. Moreover it is faster than all algorithms other than Ad-
aBoost.ECC. AdaBoost.ECC however typically does not generalize as well as
AdaBoost.BHC.
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Abstract. We propose a hybrid hierarchical classifier that solves multi-
class problems in high dimensional space using a set of binary classifiers
arranged as a tree in the space of classes. It incorporates good aspects
of both the binary hierarchical classifier (BHC) and the margin tree al-
gorithm, and is effective over a large range of (sample size, input dimen-
sionality) values. Two aspects of the proposed classifier are empirically
evaluated on two hyperspectral datasets: the structure of the class hier-
archy and the classification accuracies. The proposed hybrid algorithm
is shown to be superior on both aspects when compared to other bi-
nary classification trees, including both the BHC and the margin tree
algorithm.

1 Introduction

Multi-class problems involving C > 2 classes are often tackled using a collec-
tion of binary classifiers. One way to employ binary classifiers for multi-class
problems is by using binary codes to decompose the problem’s output space.
Error-correcting output code (ECOC) is a good example of the binary code ap-
proach [1]. Other popular approaches include the “all-vs-all” method, where a
total of

(
C
2

)
classifiers are needed, and “one-versus-rest” method which requires

only C classifiers. In “all-vs-all” each binary classifier gets only a fraction of the
data for training, while in one-vs-rest, the data seen is skewed towards the “rest”
meta-class.

Another notable way to address a multi-class problem is by constructing a
hierarchical tree of binary classifiers. Binary hierarchical classifier (BHC) [2]
and margin tree [3] both decompose a multi-class problem into a hierarchically
constructed set of binary classification problems. In both algorithms, a C class
problem is decomposed into C − 1 binary classification problems, and each leaf
node corresponds to one of the output classes. The tree structure of BHC or mar-
gin tree can also be thought of representing a binary codebook. Decomposing a
multiple class problem into several binary classification problems with hierarchy
has some advantages, since similar classes are grouped together to form a meta-
class, hence providing useful insights into the problem itself. The data seen by
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each classifier is not so skewed as in one-vs-rest, while the amount of data avail-
able to train the classifiers progressively decreases from the root (where all data
can be used), to the leaves, where only data for the two classes being considered
is inspected.

BHC and margin tree are very similar to each other in the way that they model
a multi-class problem using a tree of binary classifiers. Both algorithms were
developed to be used for high-dimensional multi-class problems. In this paper
we show that the strengths of BHC and margin tree are actually complementary
to each other. This suggest the possibility of a hybrid approach that is effective
for different types of applications spanning a large range of dimensionality versus
sample size. We then propose a hybrid hierarchical classifier that exploits both
the BHC and margin tree algorithm to construct a binary classification tree.
The proposed algorithm is tested with hyperspectral data, and the resulting
tree structure and classification accuracies are compared to those of BHC and
margin tree algorithms.

1.1 Binary Hierarchical Classifier (BHC)

The binary hierarchical classifier (BHC) [2] was developed for the classification
of hyperspectral data. It decomposes a C class problem into C − 1 binary clas-
sification problems using a binary tree. An empirical evaluation has shown that
BHC performs comparably with ECOC using fewer binary classifiers [4]. At the
root node of a BHC tree, all classes are first partitioned into two disjoint meta-
classes, and obtained meta-classes are recursively partitioned until each single
class is assigned to its own meta-class. Consequently, the number of leaf nodes
in the BHC tree equals to the number of classes. The partitioning process en-
courages similar classes to remain in the same partition. At each internal node,
for a given set of classes Ω, classes belongs to Ω are to be partitioned into two
meta-classes: Ω0 and Ω1. The association of each class ωi is represented by the
posterior probability for two meta-classes: P (Ω0|ωi)+P (Ω1|ωi) = 1. The outline
of the PARTITION NODE(Ω) algorithm [2] is described in Algorithm 1.

Algorithm 1. PARTITION NODE(Ω)

1. Initially set P (Ω0|ω1) = 1, and P (Ω0|ωi) = P (Ω1|ωi) = 0.5 for i �= 1.
2. Compute the means and covariances of the meta-classes: μj and Σj , j ∈ {0, 1}.
3. Compute the fisher projection vector w with the within-class scatter matrix SW:

w = SW
−1(μ0 − μ1) .

4. Compute the mean log-liklihood of meta-classes and update the meta-class poste-
riors P (Ωj |ωi) with the log-likelihood and temperature parameter T .

5. Repeat steps 2-5 until the incremental increase of the Fisher’s discriminant is
insignificant.

6. Stop if the entropy of meta-class posteriors is less than the threshold. If not, repeat
steps 2-6 after cooling down the temperature T .
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In Algorithm 1, we need the inverse of a d × d matrix SW, whose rank can-
not exceed the number of samples, n, since it actually is a covariance matrix of
sample points. Obviously, SW is not invertible when n < d, which is called the
small sample size problem of Fisher’s linear discriminant analysis. One possible
and obvious solution is reducing the dimensionality of data by dimensionality re-
duction techniques. For example, the best-bases feature extraction algorithm [5]
aggregates highly-correlated adjacent bands until we have desired number of di-
mensions suitable for the Fisher’s discriminant analysis. Though the best bases
algorithm works well with the BHC framework, it is specifically developed for hy-
perspectral data and not generally applicable to other types of high-dimensional
data. Many dimensionality reduction techniques are actually domain-specific,
and general methods without any domain knowledge often lead to significant
loss of information. Another possible solutions include approximation techniques
such as Regularized Discriminant Analysis (RDA) [6] or pseudo-inverse; how-
ever these approaches generate inaccurate projections when the scatter matrix
is highly singular. Moreover, taking a pseudo-inverse of very high dimensional
data is computationally expensive.

1.2 Margin Tree

In margin tree [3], margins between pairs of classes (or meta-classes) are used
as distance measures for clustering of (meta-)classes. There are three different
ways to construct a margin tree: greedy, complete-linkage and single-linkage. It
is shown that all three methods produce comparable classification results, but
the complete-linkage method generates more balanced trees [3]. In this paper,
we also employed the complete-linkage margin tree, which is constructed by
complete-linkage hierarchical agglomerative clustering (HAC) using margins be-
tween classes as distance measures. As a results, a total of C − 1 internal nodes
will be created with C leaf nodes, same as in BHC.

In the margin tree algorithm, it is assumed that the dimensionality is always
greater than the number of samples (d > n) [3], so that the samples are always

1

2

3

margin

margin

(a) Linearly separable case

1

2
3

margin

margin

(b) Non-separable case

Fig. 1. In figure (a), class 1 is considered to be closer to the class 2 than to the class 3
because the margin between class 1 and 2 is smaller than the margin between 1 and 3.
In figure (b), the margin between class 1 and class 3 is extended due to the misclassified
data, thus bigger margin does not necessarily mean more inter-class distance.



Hybrid Hierarchical Classifiers for Hyperspectral Data Analysis 45

linearly separable by a maximum-margin hyperplane. When the samples are
not linearly separable, the margin measure is affected by the misclassification
cost and the resulting tree structure depends largely on the cost parameter as
shown in Fig. 1. Using non-linear kernels such as radial basis function (RBF) is a
popular option for SVMs to make the patterns separable in a higher dimensional
space; however kernels make the interpretation of margins more difficult, and
make the tree structure more sensitive to the kernel parameters.

2 Hybrid Hierarchical Classifier

As described earlier, the small sample size problem occurs in the partitioning
process of BHC when we have less number of samples than the dimensionality of
data. On the other hand, the weakness of the margin tree is exactly opposite, and
the margins between classes are not as meaningful when there is more number
of samples than the number of dimensions. Another problem is that the margin
is defined only by the samples around the decision boundary, or support vectors.
The overall distribution of data is not considered in the tree construction process.
In case of the KSC hyperspectral data [2] we used in this paper, the number
of samples per class and the number of dimensions are comparable. 13 classes
in the KSC dataset are also grouped based on traditional characterisation of
vegetation into seven upland and five wetland classes as shown in Table 1. It is
often observed in our experiments that BHC fairly distinguishes wetland classes
from the upland classes when we have fair amount of training data, while margin
tree usually fails to produce meaningful groups.

It is interesting that the requirements for the sample size and the dimen-
sionality from BHC and margin tree are mutually exclusive conditions. We can
avoid the small sample size problem by employing the margin tree algorithm
whenever we have less number of samples than the number of dimensions, and

Table 1. Landcover classes in the KSC hyperspectral data

Type Num Class Name

1 Scrub
2 Willow swamp
3 Cabbage palm hammock

Upland 4 Cabbage Oak hammock
5 Slash pine
6 Broadleaf/Oak hammock
7 Hardwood Swamp

8 Graminoid marsh
9 Spartina marsh

Wetland 10 Cattail marsh
11 Salt marsh
12 Mud flats

Water 13 Water
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Algorithm 2. BUILD TOP-DOWN HYBRID TREE(Ω)
1. If |Ω| < 3, return.
2. S(Ω) =

∑
ωi∈Ω |ωi|

– If b · S(Ω) ≤ d + 1:
• Build a margin tree with Ω.

– If b · S(Ω) > d + 1:
• PARTITION NODE(Ω) to get Ω0 and Ω1.
• BUILD TOP-DOWN HYBRID TREE(Ω0).
• BUILD TOP-DOWN HYBRID TREE(Ω1).

we can avoid the linearly inseparable case by applying BHC algorithm whenever
the samples are not guaranteed to be linearly separable. In the following sections,
two different hybrid algorithms are suggested: top-down and bottom-up.

Building a Top-down Hybrid Tree. In the top-down hybrid method, we
initially apply the BHC algorithm starting from the root node, and the margin
tree algorithm is called when the partitioned node does not have enough number
of training samples. Let Ω = {ω1, ω2, ..., ωC} be the set of all classes, and S(Ω)
be the number of samples in Ω. The top-down hybrid algorithm is described
in Algorithm 2. The b value in step 2 is a constant that determines when the
transition between BHC and margin tree happens. Larger b means the hybrid
tree is closer to a BHC tree, and smaller b means the hybrid tree becomes closer
to a margin tree. b should be less than or equal to 1.0 to prevent the small sample
size problem. Lower bound of b can be deduced from the Cover’s theorem on
linear separability [7], according to which random dichotomies are almost surely
linearly separable when b ≥ 1.0. In practice, however, smaller b might be used
without any problem since our patterns are not randomly distributed in most
cases. Therefore we set b = 0.5 in our experiments, and also tested other values
ranging from 0.1 to 1.0. Note that when b · S(Ω) ≤ d + 1 at the root node,
the whole classification tree would be same as the margin tree. On the other
extreme, if there are enough number of samples for all classes, then the whole
tree would be exactly same as the BHC.

Building a Bottom-up Hybrid Tree. A second way to build a hybrid clas-
sification tree is building the tree bottom-up. The overall structure of top-down
hybrid tree is close to that of the BHC tree, since initial partitioning of classes
at the root node follows the BHC algorithm, unless there are so few number of
samples that the tree becomes identical to a margin tree. Unlike the top-down
tree, the hybrid tree obtained from the bottom-up approach could have differ-
ent overall structure from the BHC tree, even at the root node. The main idea is
aggregating classes into several meta-classes using the margin tree algorithm un-
til the number of samples in each meta-class becomes sufficient for the BHC algo-
rithm. Once the number of samples in the smallest meta-class (or class) is larger
than the dimensionality, we apply BHC on the meta-classes, instead of individual
classes. The bottom-up tree building starts with a set of meta-classes, and each
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Algorithm 3. BUILD BOTTOM-UP HYBRID TREE(W )

1. If |W | < 2, stop.
2. Find Ωa and Ωb (a �= b) in W s. t.:

(Ωa, Ωb) = argmin
Ωi,Ωj∈W

max
ωk∈Ωi,ωl∈Ωj

margin(ωk, ωl)

3. Merge Ωa and Ωb to make a new meta-class Ωc = Ωa ∪ Ωb.
4. Update the working set: W = (W − {Ωa} − {Ωb}) ∪ {Ωc}
5. Find Ωm and Ωn (m �= n) such that:

(Ωm, Ωn) = argmin
Ωm,Ωn∈W

S(Ωm) + S(Ωn)

– If [S(Ωm) + S(Ωn)] < 2 · d, then repeat from step 1.
– Else, build a BHC tree with W .

meta-class contains only one class in it initially: Ω1 = {ω1}, Ω2 = {ω2}, ... ,
ΩC = {ωC}. Let’s define the working set W as W = {Ω1, Ω2, ..., ΩC}, initially.
The BUILD BOTTOM-UP HYBRID TREE algorithm is shown in Algorithm 3.

3 Experimental Setup

Land cover classification by hyperspectral image (HSI) analysis has become an
important part of remote sensing research in recent years [8]. The proposed
method was evaluated on hyperspectral images taken from two geographically
different locations: NASA’s John F. Kennedy Space Center (KSC) [9] and the
Okavango Delta in Botswana [10]. We will call the two datasets the KSC and
the Botswana datasets, respectively. The KSC dataset was acquired by NASA
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and originally con-
sisted of 242 bands. After removing noisy bands, only the remaining 176 bands
are used. There are 13 different land cover classes including water and mixed
classes. The hyperspectral image used for experiments has 512× 614 pixels with
18m spatial resolution. The Botswana dataset was obtained from the Okavango
Delta by the NASA EO-1 satellite with the Hyperion sensor on May 31, 2001.
The acquired data originally consisted of 242 bands, but only 145 bands are used
after preprocessing. The area used for experiments has 1476 × 256 pixels with
30m spatial resolution, with 14 different land cover classes. The KSC dataset
has 5121 samples with class labels, and the Botswana dataset has 3248 samples.

For each dataset, samples from each class are randomly divided into 75%
training set and 25% test set, and then the training set is sub-sampled to take
10, 20, 30, 50, 75% of the original training set. The purpose of the additional
subsampling is to observe the learning curves of different classifiers, and the
100% case is not included since the hybrid algorithms produce results identical
to BHC. The random splitting procedure is repeated for 10 times to obtain
means and standard deviations of classification accuracies. Each classification
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tree is trained and tested with two different types of SVM kernels: radial basis
function (RBF) and linear. Linear kernel results are included since the original
margin tree algorithm is based on the linear kernel [3]. Parameters for RBF
kernel is found by 3-fold cross validation for each experiment.

4 Results

Two aspects of the hierarchical classifiers are evaluated: the structure of the
class hierarchy, and the classification accuracies. Table 2 and Fig. 2 show the
structural evaluations, and Tables 4 and 5 show classification accuracies. Best
results are emphasized in bold. Note that we did not compare with ”one-vs-all”,
”all-pairs” or certain direct multi-class methods since a previous, extensive study
already showed BHC to be superior than or comparable to these methods for
hyperspectral data [4].

Table 2 shows the average distances between different groups of classes gen-
erated from the KSC training data, representing how well the hierarchy of the
tree complies with the domain knowledge. In Table 1, classes in the KSC data
are categorized as upland or wetland classes. Figures in Table 2 are obtained
by calculating the minimum tree-traversal distance between two leaf nodes. For
example, the distance between two sibling nodes is 2. For each algorithm, the
first row indicates the average distance between all upland classes, the second
row is the distance between all wetland classes, and the third row indicates the
average inter-class distance between each upland and wetland class pairs. A tree
is considered to have better structure when the values in the first and the sec-
ond rows are much smaller than the value in the third row. As can be seen in
the table, the bottom-up hybrid algorithm shows more significant separations
between two land types with only a small number of training samples. To bet-
ter visualize this advantage, classification trees obtained from the 20% training
samples are shown in Fig. 2. Fig. 2(a) shows the tree structure obtained from
the BHC, and trees in Fig. 2(b), 2(c), and 2(d) are from margin tree, top-down
hybrid, and bottom-up hybrid algorithms, respectively. Upland class names are
printed in normal fonts, and wetland class names are printed in bold italic for
distinction. Fig. 2(d) clearly demonstrates significant separation between two
groups generated from the bottom-up hybrid hierarchical tree.

Table 4 shows the average classification accuracies and standard deviations
from the KSC data, and Table 5 shows the results for the Botswana data. In
most cases there are not much difference in classification accuracies. Although
not significant, we can still observe the tendency changes as the increased number
of data points: top-down hybrid results are closer to the margin tree results when
we have smaller number of samples, and the results become closer to the BHC
results as we have more training samples. The bottom-up hybrid algorithm shows
at least equal performances to all other algorithms, and shows better results than
others when the linear kernel is employed.

We also tested the effect of b value in the top-down hybrid algorithm. Table 3
shows the average classification accuracies for the KSC dataset with different
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Table 2. Average distances between: 1) upland classes 2) wetland classes 3) upland
and wetland classes

Tree Distance
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC
Upland 5.70 (0.24) 5.61 (0.25) 5.35 (0.20) 5.12 (0.15) 4.97 (0.04)
Wetland 6.74 (0.33) 6.40 (0.47) 6.12 (0.22) 5.72 (0.22) 5.44 (0.08)
Between 6.40 (0.26) 6.30 (0.19) 6.37 (0.11) 6.53 (0.07) 6.63 (0.05)

Margin
Tree

Upland 6.30 (0.70) 6.02 (0.86) 6.64 (0.50) 6.42 (0.81) 5.60 (0.86)
Wetland 5.42 (0.55) 5.34 (0.50) 5.40 (0.47) 5.34 (0.49) 5.62 (0.18)
Between 6.47 (0.40) 6.53 (0.38) 6.39 (0.43) 6.49 (0.45) 6.68 (0.49)

Hybrid
Top-down

Upland 6.31 (0.26) 5.72 (0.18) 5.43 (0.28) 5.12 (0.15) 4.97 (0.04)
Wetland 5.72 (0.34) 6.06 (0.33) 5.96 (0.25) 5.72 (0.22) 5.44 (0.08)
Between 6.47 (0.25) 6.37 (0.14) 6.37 (0.11) 6.52 (0.07) 6.63 (0.05)

Hybrid
Bottom-up

Upland 4.53 (0.18) 4.72 (0.60) 5.20 (0.86) 5.10 (0.22) 4.95 (0.00)
Wetland 3.82 (0.63) 4.24 (0.75) 4.16 (0.48) 5.46 (0.34) 5.28 (0.25)
Between 8.06 (0.52) 8.10 (0.89) 8.09 (0.68) 6.83 (0.32) 7.03 (0.19)

Table 3. Classification accuracies for KSC data with different values of b

b
Training set size (% of full training set)

10% 15% 20% 30% 50% 75%

0.1 89.45 (1.23) 91.59 (1.02) 92.45 (0.85) 93.55 (0.65) 94.38 (0.65) 95.12 (0.50)

0.3 89.52 (1.22) 91.64 (0.92) 92.25 (0.95) 93.43 (0.71) 94.75 (0.67) 95.29 (0.57)

0.5 89.79 (0.85) 90.80 (1.41) 91.65 (1.10) 93.40 (0.70) 94.73 (0.67) 95.23 (0.49)

0.7 89.32 (1.41) 90.60 (1.53) 91.63 (1.29) 93.43 (0.67) 94.71 (0.59) 95.24 (0.51)

1.0 89.66 (1.42) 90.00 (0.88) 91.58 (1.37) 93.41 (0.62) 94.71 (0.59) 95.24 (0.51)

Table 4. Classification accuracy (%) for KSC data

(a) RBF kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 89.66 (3.04) 91.47 (3.70) 93.38 (3.58) 94.74 (2.70) 95.23 (2.10)

Margin Tree 89.45 (4.66) 92.45 (1.56) 93.55 (3.14) 94.37 (3.29) 95.12 (2.42)

Hybrid Top-down 89.79 (0.85) 91.65 (1.10) 93.40 (0.70) 94.73 (0.67) 95.23 (0.49)

Hybrid Bottom-up 89.17 (0.70) 92.25 (0.90) 93.43 (0.61) 94.41 (0.71) 95.36 (0.49)

(b) Linear kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 85.90 (0.75) 89.76 (1.12) 91.02 (1.44) 93.66 (1.38) 94.94 (0.60)

Margin Tree 87.20 (1.62) 90.99 (1.72) 89.97 (1.56) 89.80 (0.82) 91.07 (1.55)

Hybrid Top-down 87.20 (2.43) 90.01 (1.13) 91.15 (1.42) 93.67 (1.38) 94.94 (0.60)

Hybrid Bottom-up 90.90 (1.07) 92.30 0.77) 92.82 (1.24) 93.20 (1.26) 94.21 (0.98)
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Table 5. Classification accuracy (%) for Botswana data

(a) RBF kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 86.84 (1.84) 91.14 (1.17) 91.92 (1.41) 94.97 (0.64) 96.10 (0.90)

Margin Tree 87.84 (2.19) 91.09 (1.44) 92.94 (0.91) 94.92 (0.82) 96.01 (1.07)

Hybrid Top-down 87.86 (1.61) 90.63 (1.38) 92.24 (1.08) 94.97 (0.67) 96.10 (0.90)

Hybrid Bottom-up 87.29 (1.93) 91.11 (0.90) 92.53 (1.01) 94.76 (1.16) 96.11 (0.92)

(b) Linear kernel

Tree
Training set size (% of full training set)

10% 20% 30% 50% 75%

BHC 80.27 (3.33) 87.37 (2.37) 88.91 (1.67) 89.48 (1.63) 90.34 (1.72)

Margin Tree 86.40 (3.76) 87.21 (5.16) 90.31 (2.56) 90.49 (3.78) 94.18 (3.78)

Hybrid Top-down 82.47 (4.22) 87.66 (2.49) 88.84 (1.82) 89.48 (1.63) 90.34 (1.72)

Hybrid Bottom-up 90.38 (1.48) 93.54 (0.68) 93.36 (1.81) 91.11 (1.21) 90.09 (1.50)

(a) BHC (b) Margin Tree

(c) Top-down Hybrid (d) Bottom-up Hybrid

Fig. 2. Typical tree structure from BHC, Margin Tree, Top-down Hybrid, and Bottom-
up Hybrid

values of b. When b is very small, the numbers are similar to the results from the
margin tree in Table 4, and the results are more similar with the results from
the BHC when b = 1.0.
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5 Conclusion

It is shown that by using the proposed hybrid hierarchical classifiers, a classi-
fication tree can be built much more effectively than by using the BHC alone,
because the proposed method does not suffer from the small sample size problem.
The hybrid algorithm can also generate much more meaningful tree structures
than the margin tree can because the suggested method looks for margins be-
tween classes only when the samples are linearly separable. The performance of
the generated classification tree is evaluated by two measures: the separation
between upland and wetland classes, and the classification accuracy. Bottom-
up hybrid approach shows best separation results, and both hybrid approach
yielded comparable, if not better, classification accuracies.
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Abstract. Multiple classifier combination is used to hyperspectral remote sens-
ing image classification in this paper, and some classifier combination algo-
rithms are experimented. Based on a brief introduction to multiple classifier 
system and general algorithms, a modified evidence combination algorithm is 
adopted to handle evidence with high inconsistency, and a hierarchical multiple 
classifier system is designed to integrate the advantages of multiple classifiers. 
Using the OMIS hyperspectral remote sensing image as the study data, training 
samples manipulation approaching including boosting and bagging, together 
with parallel and hierarchical combination schemes are experimented. Maha-
lanobis distance classifier, MLPNN, RBFNN, SVM and J4.8 decision tree are 
selected as member classifiers. In the multiple classifier combination scheme 
based on training samples, both boosting and bagging can enhance the classifi-
cation accuracy of any individual classifier, and boosting performs a bit better 
than bagging when the same classifier is used. In classification ensemble using 
multiple classifier combination approaches, both parallel combination using 
modified evidence theory and hierarchical classifier system can obtain higher 
accuracy than any individual member classifiers. So it can be concluded that 
multiple classifier combination is suitable for hyperspectral remote sensing im-
age classification. 

Keywords: Multiple classifier combination, classifier ensemble, evidence the-
ory, boosting, bagging, hyperspectral remote sensing. 

1   Introduction 

Remotely Sensed image has been widely used to land cover classification and the-
matic mapping owing to its diverse advantages. Classification accuracy is the most 
important indicator for remote sensing applications. In order to improve classification 
accuracy, two strategies are adopted usually: one is to develop novel advanced classi-
fiers, such as artificial neural network [1-4], object-oriented classifier, support vector 
machine classifier [5-6], decision tree, artificial immune system [7], expert system 
and so on; the other is to generate a classifier ensemble by combining some individual 
classifiers for a specific task, which is named as classifier ensemble or multiple classi-
fier system [8]. Decision level fusion based on classification results from different 
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classifiers is a popular way to integrate multiple classifiers, and some fusion algo-
rithms have been developed and employed, for example, majority voting, D-S evi-
dence theory, fuzzy integral, weighted summation, consensus, mixed neural network 
and hierarchical classifier system [9-11].  

Recently, Multiple Classifier System (MCS) has been widely used in such fields as 
pattern recognition, image processing and target identification. Classifier combination 
can make use of the complementarity among multiple classifiers and improve the total 
accuracy. For example, Bo used voting and Bayesian average fusion algorithms to 
Landsat TM image classification and the total accuracy was higher than any individ-
ual classifier [12]; Zhang employed multiple classifier combination to urban vegeta-
tion classification from IKONOS image and obtained satisfactory results [13]; Foody 
used majority voting rule to integrate multiple classifiers for two-class classification 
[14]; Doan investigated the combination of soft classification methods for remote 
sensing image and found that classification combination could improve the accuracy 
[15]; Dehghani applied a hierarchical classifier combination method to hyperspectral 
remote sensing image [16]�and Benediktsson discussed the use of multiple classifier 
systems in remote sensing [17]. All those studies have shown the merits and prospects 
of multiple classifier combination to remote sensing. 

In this paper the study is focused on the use of classifier ensemble to hyperspectral 
remote sensing image classification from two aspects: combination based on sample 
manipulation, and combination based on multiple classifiers. Using OMIS (Opera-
tional Modular Imaging Spectrometer) aerial hyperspectral remote sensing data, the 
performance of classifier ensemble adopting different combination strategies is ex-
perimented and then compared with traditional individual classifier. 

2   Multiple Classifier Combination 

2.1   Concept 

Assume M classes exist on a remote sensing image, and C1∪C2∪…Ci…∪CM, 
i∈{1, 2, …, M}. For hard classification, each pixel is allocated a specific class label 
J, J∈{1, 2, …, M+1}. For soft classification, each pixel is depicted by a vector {P(1), 
P(2), …, P(M)}, where P(i) is the probability or membership of the pixel belonging to 
the ith class, or the abundance of the ith endmember in the pixel. 

When multiple classifiers are combined, both the results of hard classification and 
that of soft classification can be integrated, or the hierarchical tree structure can be 
used. Some widely used classifier combination methods are majority voting, Bayes-
ian, D-S evidence theory, fuzzy integral and dynamic classification selection. 

2.2   Multiple Classifier Combination Based on Sample Manipulation 

In recent years, multiple classifier combination methods based on training sample 
manipulation have got more attention from pattern recognition field, and the most 
widely used methods are Boosting and Bagging. Unlike statistical voting theory 
which is based on the assumption of independent data sources and uses all training 
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samples only one time, Boosting and Bagging are exerted by manipulating training 
samples [18-19]. 

Bagging is the abbreviation of Bootstrap Aggregating. In this algorithm, n samples 
are selected at random from a set with k samples, and instructive iteration is exerted to 
create some different bags, and every bags is classified by vote to predict its class.  

Similar to Bagging, Boosting is also based on the manipulation to training samples. 
Boosting can process data with weight, so the weights of misclassified samples are 
increased to concentrate the learning algorithm on specific samples.  

In this research, Bagging, Boosting, J4.8 decision tree, MLP neural network, RBF 
neural network and others are used to form the classifier ensemble for hyperspectral 
remote sensing image classification. In the experiments, kmax=10 and the sample num-
ber of every iteration is 75% of the total samples.  

2.3   Multiple Classifier Combination Based on Classifier Ensemble 

In multiple classifier combination based on classifier ensemble, identical training 
samples are used to every member classifier to derive its classification result, and then 
all results are integrated based on a specific algorithm, for example, majority voting, 
Bayesian average, D-S evidence theory and fuzzy integral. In this experiment, a modi-
fied D-S evidence theory and a hierarchical classifier ensemble are used to combine 
multiple classifiers 

2.3.1   D-S Evidence Theory and Its Improvement 
Compared with Bayesian theory, D-S evidence theory assigns probability to sets and 
can handle the uncertainty caused by unknown factors. D-S evidence theory uses 
discrimination framework, confidence function, likelihood function and probability 
allocation function to represent and process knowledge [20]. Suppose that 

{ }1 2, , ,i MC C C CΘ = L L  is discrimination framework and M is the number of 

classes, therefore basic probability allocation function m is a function from 2Θ to [0, 1 
and it meets the requirement of: 
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tions corresponding to evidence F1, F2, … , and Fn, and their orthogonal sum Z=Z1⊕Z2 
…⊕ …⊕Zn is:  

( ) 0Z φ =                                                            (2) 

( ) ( )1

1i

i i
A i n

Z A K Z A−

≤ ≤

= ×∑∏
I

                                            (3) 

( )
1i

ii
A i n

K Z A
φ≠ ≤ ≤

= ∑ ∏
I

                                                (4) 

When various evidences are inconsistent or contradictory each other, the combined 
result of D-S evidence may be unreasonable [21]. A modified evidence combination 
algorithms was proposed and experimented by Sun et al, and it proved that the modified 



Multiple Classifier Combination for Hyperspectral Remote Sensing Image Classification 55 

 

method was superior to traditional method while processing those evidences with high 
contradiction and inconsistency [22]. For remote sensing image, different classifier 
may generate different classified labels, which result in the generation of evidence 
with high contradiction, so the modified evidence combination is applied to classifica-
tion integration of hyperspectral remote sensing images. The detailed equations are as 
follows [22]:  
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Where, ε  is the confidence of evidence, k%  is the average of contradiction level be-
tween two evidences, and K  is the total contradiction level of all evidences. This 
evidence combination method can reduce the limitations caused by high evidence 
inconsistency.  

For multiple classifier combination of remote sensing, the classifier result of each 
classifier can be viewed as a piece of evidence. Probability allocation function can be 
represented by the classification accuracy of specific class. For example, if a pixel is 
classifier to the ith class, the basic probability is: m(Ci)=Pi, m( Θ )=1- Pi, where Pi is 
the accuracy of the ith class by the specific class. After evidence combination being 
completed, the class with maximum evidence is selected as the final result.  

2.3.2   Hierarchical Classifier Combination 
In this hierarchical classifier framework, the probability output from each individual 
classifier is used as the input of classifiers in the next level. The inaccuracy of class 
probability and inconsistency of inter-classifiers in the first level can be reduced by 
processing and classifying the output probability in the second level. Since support 
vector machines (SVMs) perform well for decision level fusion, SVM classifier is 
used in the second level, and MLP neural network is used in the first level. Fig.1 is 
the structure of this proposed hierarchical classifier ensemble.  
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Fig. 1. Structure of hierarchical classifier system 

3   Hyperspectral Remote Sensing Data 

OMIS hyperspectral remote sensing image with 64 bands is classified by above clas-
sifier ensemble, and 59 bands out of 64 bands are used for classification. The image is 
classified into five classes: water, building, vegetation, forest and bare soil. Fig.2 is 
the false color composite of the image by using Band 27, 25 and 2 as R, G and B 
components. Training samples and test samples are selected independently from the 
image, and Table 1 is the information about samples.  

Table 1. Information about training samples and test samples 

class Number of training samples Number of training samples 
water 202 327 
forest 356 301 

vegetation 167 259 
building 252 263 
bare soil 172 283 

4   Experiment and Analysis 

The member classifiers in the classifier ensemble include: Mahalanobis distance clas-
sifier, MLPNN, RBFNN, SVM classifier, J4.8 decision tree. Those classifiers are 
based on different principles and criterions. Classifier combination is implemented 
using IDL language and ENVI software. 

In evidence theory method, Mahalanobis distance classifier, MLPNN and SVM 
classifier are used to form the classifier ensemble, and classification accuracy is 
evaluated by total accuracy and kappa coefficient. Fig.3 shows the classification re-
sults of SVM, J4.8 decision tree, RBFNN and MLPNN respectively. Fig.4 are  
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Fig. 2. The false color composite of the hyperspectral remote sensing data 

 

      

(a) Result of SVM                               (b) Result of J48 decision tree 

   

                    (c) Result of RBFNN                               (d) Result of MLPNN 

Fig. 3. Classification results of individual classifier 
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                  (a) RBFNN based on bagging             (b) J4.8 decision tree based on bagging 

       

(c) MLPNN based on bagging                        (d) RBFNN based on boosting 

 

(e) J48 decision tree based on boosting 

Fig. 4. Classification result based on boosting and bagging 
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the classification results based on boosting and bagging, including RBFNN based on 
bagging, J4.8 decision tree based on bagging, MLPNN based on bagging, RBFNN 
based on boosting, J4.8 DT based on boosting. Fig.5 is the result of modified evi-
dence theory, and Fig.6 is the result of hierarchical classifier combination. The classi-
fication of single classifiers are listed in Table 2.The accuracy indicators of different 
classification schemes are listed in Table 3.  

 

     

Fig. 5. Classification result of multiple classifier   Fig. 6. Classification result of hierarchical 
combination based on modified evidence theory        classifier combination 

 

In Table 2, SVM classifier has the best classification accuracy of forest and bare 
soil; MLPNN classifier has the best classification accuracy of vegetation and build-
ing; RBF classifier and Mahalanobis distance classifier have the best classification 
accuracy of water. From Table 3, it can be found that all multiple classifier combina-
tion methods can improve the accuracy of hyperspectral remote sensing image classi-
fication in contrast with those individual member classifiers. 

Table 2. Classification accuracy of single classifier 

classifier Water Building Forest Vegetation Boil soil 
SVM 80.57% 97.34% 92.69% 89.96% 92.97% 

J48 decision tree 88.07% 86.38% 88.80% 95.82% 80.92% 

RBFNN 95.72% 88.70% 89.58% 90.87% 81.63% 

Mahalanobis distance classifier 94.80% 96.35% 88.42% 95.82% 80.92% 

MLPNN 87.77% 98.34% 90.35% 98.10% 88.69% 

In the multiple classifier combination scheme based on training samples, both 
Boosting and Bagging can enhance the classification accuracy of any individual clas-
sifier. In contrast, boosting performs a bit better than bagging when the same classi-
fier is used. 
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In classification ensemble based on multiple classifier combination, both modified 
evidence theory and hierarchical classifier system can obtain higher accuracy than any 
individual member classifier.  

Table 3. Classification accuracy statistics 

classifier Total accuracy Kappa 
SVM 90.7200% 0.8838 

J48 decision tree 87.8576% 0.8480 
RBFNN 89.4627% 0.8680 

Mahalanobis distance classifier 91.4166% 0.8925 
MLPNN 92.5331% 0.9065 

RBFNN based on bagging 89.8814% 0.8732 
MLPNN based on bagging 93.0914% 0.9135 
J4.8 DT based on bagging 90.4396% 0.8802 
RBFNN based on boosting 90.6490% 0.8829 
J4.8 DT based on boosting 90.9979% 0.8872 

Modified evidence combination 92.9518% 0.9117 
Hierarchical classifier combination 93.5799% 0.9196 

5   Conclusion 

Using land cover classification from OMIS hyperspectral remote sensing image as an 
example, the applications of multiple classifier combination to hyperspectral remote 
sensing is experimented in this paper. Classifier ensemble can improve the classifica-
tion accuracy of hyperspectral remote sensing image, and it is a potentially important 
and advanced classification strategy. Both classifier combination based on training 
samples and multiple classifier combination based on evidence theory and hierarchi-
cal system can enhance the classification accuracy obviously. Both hierarchical classi-
fier combination and parallel classification combination can enhance classification 
accuracy, and their performances are affected by different factors such as selected 
member classifiers, classifier combination criterion and others.  
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Abstract. The classification of hyperspectral imagery, using multiple
classifier systems is discussed and an SVM-based ensemble is introduced.
The data set is separated into separate feature subsets using the correla-
tion between the different spectral bands as a criterion. Afterwards, each
source is classified separately by an SVM classifier. Finally, the different
outputs are used as inputs for final decision fusion that is based on an
additional SVM classifier. The results using the proposed strategy are
compared to classification results achieved by a single SVM and other
well known classifier ensembles, such as random forests, boosting and
bagging.

Keywords: hyperspectral, land cover classification, support vector ma-
chines, multiple classifier systems, classifier ensmeble.

1 Introduction

Hyperspectral data provide detailed spectral information from land cover, rang-
ing from the visible to the short-wave infrared region of the electromagnetic
spectrum. Nevertheless the classification of hyperspectral imaging is challeng-
ing, due to the high-dimension of the data sets. Particularly with a limited
number of training samples the classification accuracy (of conventional statis-
tical classifiers) can be limited. Hughes [1] showed that with a limited number
of training samples the classification accuracy decreases after a maximum is
achieved. Thus, it requires sophisticated classification algorithms to use detailed
hyperspectral information comprehensively. In several remote sensing studies it
was demonstrated that Support Vector Machines (SVM) perform better than or
at least comparable to other classifiers in terms of accuracy, even when applied
to hyperspectral data sets [2],[3]. One reason for this success might be the un-
derlying concept of SVM classifiers. Their aim is to discriminate two classes by
constructing an optimal separating hyperplane to the training samples within
a multi-dimensional feature space, by using only the closest training samples of
each class [4]. Consequently, the approach only considers training data close to
the class boundary and performs well with small training sets.
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Multiple classifier systems (MCS) or classifier ensembles are another machine
learning concept, which has been applied to remote sensing data sets recently
[5]. By combining different independent classifiers, MCS can improve the classifi-
cation accuracy in comparison to a single classifier. In [6]-[8] ensemble strategies
were successfully applied to hyperspectral data sets. In [9] an SVM base classifier
system was introduced, to classify multisensor imagery. Each data set, a multi-
temporal image and a set of multitemporal SAR data, was individually classified
by SVM. Afterwards the outputs were fused by an additional SVM classifier. The
results demonstrate that the proposed classification concept outperforms other
parametric and non-parametric classification techniques (i.e., maximum likeli-
hood classifier, decision tree, and boosted decision tree) including a single SVM.
Moreover, the fusion step by an additional SVM classifier seems more efficient
than other approaches, such as a simple majority vote. In [10] the simultaneous
use of a neural network and a statistical method was discussed for classifying
a hyperspectral data set. The image was separated into several feature subsets,
using the correlation coefficient between the different bands. Afterwards each
subset was individually classified by a statistical classifier and a neural network.
To generate the final map the outputs were combined by decision fusion. In [11]
a similar concept was used for economic forecasting. The feature space was sep-
arated into different subsets, using mutual information as criterion. Therefore,
features within the same group are more similar to each other than compared
to features belonging to different subsets. Whereas in [10] the individual feature
subsets were used as input for the classifier ensemble, in [11] the input feature
sets were generated by selecting individual features from each subset.

In regard to these results, it seems interesting to apply the approach intro-
duced in [9] to a hyperspectral data set. To generate multiple sources, the orig-
inal hyperspectral data are split into several smaller data sources, following the
correlation between bands as proposed in [10]. The subsets are classified by an
individual SVM classifier. Finally the different outputs are combined by an addi-
tional SVM classifier [9]. The results are compared to those achieved by a single
SVM classifier using the whole hyperspectral data set as well as other ensemble
methods, such as boosted decision trees and random forests.

The paper is organized as follows. The classification techniques are reviewed in
Section 2, followed by the SVM ensemble in Section 3. The data set is introduced
in Section 4. Experimental results are given in Section 5, and, finally, conclusions
are discussed in Section 6.

2 Classifier Algorithms

2.1 Support Vector Machines

Support Vector Machines fit an optimal separating hyperplane to the training
data of two classes in a multi-dimensional feature space. In linearly non-separable
cases, the input space is mapped into a high dimensional feature space, using a
so-called kernel function [4]. A detailed overview on the general concept of SVM
is given in [12]. A brief introduction is given below: Let us assume that a training
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data set of � samples, in a d -dimensional feature space �d, is given by xi with
their corresponding class labels yi = ±1, Ω = {(xi, yi) | i ∈ [1, �]}.

The linear hyperplane fl(x) = wx + b is given by the normal vector w and
the bias b, with |b| / ‖w‖ as the distance between the hyperplane and the origin,
where ‖w‖ is the Euclidean norm from w. The margin maximization results in
the following optimization problem:

min

[
w2

2
+ C

�∑
i=1

ζi

]
(1)

with ζi as slack variables and C as regularization parameter. The constant C
penalizes training errors, i.e., training samples that are located on the wrong
side of the hyperplane. The final SVM function for a non-linear separable case
is described as follows:

fn(x) =

(
�∑

i=1

αiyik(xi, xj) + b

)
(2)

where αi are Lagrange multipliers.

Thanks to the kernel-trick it is possible to work within the newly transformed
feature space, without knowing the explicit mapping, but only knowing the ker-
nel function k(xi, xj). In this study a common radial basis function (RBF) kernel
was used:

k(xi, xj) = exp
[
−γ ‖xi − xj‖2

]
. (3)

The training of an SVM classifier requires the adequate definition of the kernel
parameter γ and the regularization parameter C, which is usually done by a grid-
search. Various combinations of C and γ are tested and the combination that
yields the highest accuracy (based on a cross validation) is taken. A one-against-
one rule was used, which generates a binary SVM for each possible pair-wise
classification problem.

In contrast to other classifier algorithms, which provide probability measure-
ments (e.g., Bayesian classifiers) and class labels (e.g., decision trees), respec-
tively, the output image of a SVM classifier (Eq. 2) contains the distance of each
pixel to the hyperplane of the binary classification problem. This information is
used to determine the final result.

2.2 Multiple Classifier Systems

Multiple classifier systems combine variants of the same base classifier or differ-
ent algorithms [13]. In doing so the total accuracy is usually increased, compared
to the classification accuracy achieved by a single classifier [13]. Several differ-
ent concepts have been introduced, which were also applied successfully to in
diverse remote sensing studies [9],[10],[14],[15]. However two main techniques
exist: boosting and bagging.
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Boosting techniques, such as AdaBoost.M1 [16], are concepts to improve the
performance of any (weak) classifier. During the initialization all training sam-
ples are equally weighted. The weights of the training samples are iteratively
modified after each step and the next base classifier CB within the system is
trained on the reweighed samples. The weights of correctly classified training
samples decreases, while misclassified samples are assigned a stronger weight. In
doing so the classifier is focusing on ”difficult” training samples. The approach
is described as follows:

Input: A training set Ω = {(xj , yj)}�
j=1, base classifier CB and number

of classifiers I.
1. Ω1 = Ω and weight(xj) = 1 for j = 1 . . . l (x ∈ S1)
2. FOR i = 1 to I{
3. Ci = CB(Ωi)
4. calculate error rate εi

5. if εi > 0.5, terminate procedure
6. calculate weight βi = εi/(1 − εi)
7. for each xj ∈ Ωi{ if Ci(xj) �= yj then

weight(xj) = weight(xj) · βi}.
8. normalize weights that the total sum of weights is 1}.
9. END

10. C∗(x) = arg max
∑

Ci(x)=y

log (1/βi)

In contrast to this bagging (bootstrap aggregating) is based on resampling in-
stead of re-weighting, thus it does not change the distribution of the training
data and all classes are equally weighted [17]. Usually a random and uniform
selection is performed, generating a training set with � samples from a training
set of same size �. This random selection is performed with replacement, i.e., a
sample can be selected several times in a set, whereas another sample is not con-
sidered in this particularly training set. Each individual training set is used to
train the base classifier, thus, different outputs are generated. A simple majority
vote is used to determine the final classification result. Bagging is described as
follows:

Input: A training set Ω={(xj , yj)}�
j=1, the base classifier CB and num-

ber of randomly generated training sets I.
1. FOR i = 1 to I{
2. Ωi = training set from Ω
3. Ωi = C(Ωi)}
4. END
5. the class with the maximum number of votes is chosen

The random forest (RF) method is a combination of bagging of the training
samples as well as the attributes. RF is an ensemble of decision tree classifiers
DT (x, θi), i = 1, ..., where θi are independent identically distributed random vec-
tors and x is an input pattern [18]. Thus, each tree within the classifier systems



66 X. Ceamanos et al.

ensemble is trained on a subset of the original training samples. In addition the
feature subset is generated randomly at each split of a tree. RF are well suited
for classifying high dimensional data sets, because the computational complexity
is simplified by decreasing the number of input features (and training samples)
at each node.

3 Data Sets

An AVIRIS (Airborne Visible InfraRed Imaging Spectrometer) data set was col-
lected on a cloud-free day, surrounding the region of the volcano Hekla in South
Iceland. The sensor operates from the visible to mid-infrared region of the elec-
tromagnetic spectrum (i.e., 0.4μm to 2.4μm). The system has four spectrometers
and 224 data channels. Because spectrometer 4 was not working properly dur-
ing the image acquisition, 64 bands (1.84μm to 2.4μm) were deleted from the
imagery, as the first channels for all the other spectrometers, but those channels
were blank. Thus, the image used in this study contains 157 bands. The data set
covers 2048 x 614 pixels, with a spatial resolution of 20 m [10]. Twenty-four land
cover classes were considered during the classification, mainly lava flows from
different eruptions, partly covered by vegetation. The available ground truth
information was equally split into independent training and test data. More-
over, different training data sets were generated, containing 25 and 100 samples
per class, as well as a set with all available training data (total: 17491). The
validation set contains 16667 samples.

4 SVM Ensemble Strategy

The proposed SVM classifier ensemble is based on the application of SVM on
different data sources and a fusion of the outputs by an additional SVM. To gen-
erate different sources, the hyperspectral image is separated into feature subsets,
in accordance to the correlation matrix (see Fig. 2). The elements in the corre-
lation matrix Σ are defined by the absolute correlation r between the spectral
response of individual bands si and sj in a d-dimensional feature space is defined
as:

rSiSj =

∣∣∣∣∣∣∣∣∣∣
d
∑d

1 sisj −
∑d

1 si

∑d
1 sj√[

d
∑d

1 s2
i −

(∑d
1 si

)2
] [

d
∑d

1 s2
j −

(∑d
1 sj

)2
]
∣∣∣∣∣∣∣∣∣∣

(4)

Figure 2 shows the correlation matrix for the data set. Blue regions show a low
correlation, whereas a high correlation is indicated by red. A visual interpretation
of the matrix points out three main regions of high correlation, ranging from
band 3 to 29, 30 to 105 and 111 to 150. The low correlation values in the
remaining bands, indicates noise (e.g., water absorption) and thus, the bands
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Fig. 1. AVIRIS data set, sourrounding the region of the volcano Hekla, South Iceland
and coressponding test data with 24 classes

f(x)#1

f( )

SVM3-29

SVM f(x)#2SVM30-105

f(x)#3SVM111-150

f(x)allSVMOAO

final
classification

Fig. 2. Schematic overview on the SVM-based ensemble (after Waske and Benedikts-
son, 2007). The visual interpretation of the correlation matrix points out three different
major regions, which are used for the application of the proposed SVM ensemble.

are removed. The remaining 143-band data set was used for the classifcation
by SVM, Boosting, RF, etc.. After generating three feature subsets, individual
SVM classifiers were applied to each subset. The outputs were fused by a final
SVM (see Fig. 2).
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5 Experimental Results

The SVM were trained on the different feature subsets and the whole image.
The training and parameter selection was performed using LIBSVM in a MAT-
LAB environment [20]. The best values for γ and C were selected in an user
defined range of possible parameters based on a leave-one-out cross validation.
The outputs generated for the three feature subsets (see Fig.2) were then used
for the decision fusion process, which was based on the application of another
SVM (see Fig.2). In addition to the SVM, three different ensemble strategies
were applied on the data sets, boosting, bagging and random forests (RF), with
varying ensemble sizes (i.e., 10, 25, 50, 100). Boosting (i.e., AdaBoost.M1) and
bagging were performed with a j4.8 decision tree, which is an implementation
of the well-known C4.5 decision tree. All three ensembles were applied by using
the WEKA data mining software [19].

In Table 1 the classification accuracies for the different results are given.
The results of the proposed SVM classification show that the total accuracy
is increased between 2.3% and 4.6% when compared to a single SVM classifier.
Comparing the different DT-based classifier systems, it can be assessed that
boosting and random forests achieve significantly higher accuracies compared to
bagging, which even performs less accurate than a single SVM does. Boosting
and RF achieve very similar results. Whereas boosting perform slightly better
with large training data sets, the latter approach is more adequate for a smaller
training set size. All three DT-based ensemble methods show a typical increase
in the classification accuracy with an increasing number of classifiers within the
ensemble (not presented in detail). Thus, in the following discussion only the
results achieved by 100 iterations are considered.

The accuracy assessment demonstrates that the proposed SVM ensemble
strategy can outperform boosting and RF in terms of accuracy, depending on
the number of available training samples. With a small number of samples (i.e.,
25 per class) DT-based boosting and RF yield higher classification accuracy (i.e.,
73.2% and 74.3%) than the proposed method (71.4%). Although a larger train-
ing set size results in an increase of the classification accuracies for all methods,
the increase is most significant for the SVM ensemble. The classifications that

Table 1. Overall test accuracy in percentage, using the proposed SVM-based classifier
system and other ensemble methods (with 100 iterations) with different training sample
sets (25 samples per class (TR 25), 100 samples per class (TR 100) and all training
samples)

Overall test accuracy [%]
Method TR 25 TR 100 all training samples

single SVM 66.8 79.4 90
SVM ensemble 71.4 82.2 92.3
Boosting 73.2 82.9 89.2
Bagging 65.3 76.1 85.4
RF 74.3 82.9 88.1
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Fig. 3. Differences in class accuracies, achived by the SVM ensemble as compared to
a standard SVM

are based on the medium training set size show very similar accuracies. However,
using the largest training set with all available samples, the proposed ensemble
strategy results in accuracy of 92.3%, which is approximately 3% to 4% higher
compared to the results achieved by boosting and RF.

The good performance of the proposed classifier ensemble is also underlined
by the class accuracy. Comparing the class accuracies, achieved by the SVM-
ensemble with those by a standard SVM classifier, it can be observed that the
proposed strategy achieved the higher class accuracies in most cases. In Figure 3
the differences between the accuracies for different land cover classes are shown.
The differences significantly tends towards the positive, i.e, the proposed strategy
outperforms a single SVM in terms of the class accuracy, in most cases.

6 Discussion and Conclusion

In this paper, the problem of classifying hyperspectral imagery was addressed.
A multiple classifier system was proposed, which is based on the fusion of SVM.
The classification strategy is based on the combination of different SVM clas-
sifiers that are applied to several subsets within the feature space. To generate
different subsets, the whole data set was separated, using the correlation be-
tween spectral bands. Besides the proposed strategy a single SVM and different
well-known classifier ensembles were applied on the data set. Their performance
was compared to the proposed method, varying the number of training samples.

Experimental results show that the proposed SVM fusion outperforms an
SVM classifier in terms of total accuracy, irrespectively of the number of
available training samples. In contrast to this, other ensembles such as boosting
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and random forests can outperform the proposed strategy in terms of accuracy,
particularly with a small number of training samples. Nevertheless the SVM
ensemble is interesting, when a larger number of training samples is available.
In this case it performs better than boosting, bagging and random forests in
terms of accuracy. Overall, the proposed method seems to be a promising, al-
ternative classification strategy for hyperspectral remote sensing data and can
yield higher accuracies than other well-known ensemble methods. In our future
research the computational complexity needs to be reduced. Moreover the im-
pact of the subset generation (e.g., number of subsets) on the overall accuracy
will be investigated.
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Abstract. For pattern recognition problems where a small set of rel-
evant objects should be retrieved from a (very) large set of irrelevant
objects, standard evaluation criteria are often insufficient. For these sit-
uations often the precision-recall curve is used. An often-employed scalar
measure derived from this curve is the mean precision, that estimates the
average precision over all values of the recall. This performance measure,
however, is designed to be non-symmetric in the two classes and it ap-
pears not very simple to optimize. This paper presents a classifier that
approximately maximizes the mean precision by a collection of simple
linear classifiers.

Keywords: Pattern recognition, performance evaluation, information
retrieval, precision-recall graph.

1 Introduction

The standard performance measure in pattern recognition is the classification
performance. In most real world applications the classification error is not well
suited. For classification problems where classes are very imbalanced, or where
the misclassification costs for different classes vary widely, the classification error
can give a very unfair impression of the true performance. For the situations
where the true misclassification costs are unknown, often the Receiver Operating
Characteristic curve (ROC curve) is used. The ROC curve insensitive to class
priors [Fla03], and the Area under the ROC curve (AUC) is often used as a scalar
performance measure to compare classifiers [Bra97]. Classifiers are especially
developed to directly optimize the AUC [BS05,FFHO02].

In the field of Information Retrieval (IR) one often does not use the ROC
curve, but the Precision-Recall-curve. There the user queries a database of
positive and negative documents, and retrieves the M most promising docu-
ments [SM83]. The performance measures therefore should incorporate the fact
that just a limited number of objects is presented to the user. Two classical
measures for Information Retrieval systems are the Precision and the Recall.
Roughly speaking, the Precision measures how ’pure’ the retrieved M docu-
ments are (so that just a few irrelevant documents are retrieved), while Recall
measures how many of the total relevant documents are retrieved.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 72–81, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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To evaluate a classifier, the number of retrieved documents M is often fixed,
and the Precision and Recall are measured. Comparing two classifiers now in-
volves comparing the two pairs of performances. To combine these two perfor-
mances often the F-measure, which is the harmonic mean between the precision
and recall, is used [vR79]. The comparison between two systems becomes harder
when the operating point for the systems is not known beforehand, and the sys-
tems should work with varying operating points. In these situations it may be
preferable to consider the mean precision, which is the precision averaged over
a range of recall values.

Unfortunately, we don’t know classifiers that directly optimize this mean pre-
cision. Often classifiers are constructed that minimize a classification error, or
are tuned for a specific operating point in the precision-recall graph. This pa-
per presents an algorithm that approximates the optimal mean precision by a
combination of linear classifiers. In section 2 the mean precision is defined and
rewritten such that it can estimated on a training dataset of objects. The esti-
mator is decomposed in a sum of terms, where each term combines objects with
equal precision. In section 3 a classifier is constructed that optimizes each term
in the sum. In section 4 experiments are performed and in section 5 conclusions
and further research directions are given.

2 Mean Precision

We have two classes, the positive target class, and the negative outlier or back-
ground class. It is assumed that the positive class has to be retrieved and that
this class is (much) smaller than the negative class. Assume we have N+ positive
and N− negative objects in our dataset: x+

j , j = 1, ..., N+ and x−
j , j = 1, ..., N−.

A classifier should rank all the objects in a dataset. Objects that are ranked
below a threshold θ are ’accepted’, otherwise they are ’rejected’. A graphical
representation is given in Figure 1. The number of positive objects that is

x

θ

N+f+
N−f−

FNFP

TN
TP

Fig. 1. Graphical representation of the distribution of the positive and negative class
on the classifier output. Objects below the threshold θ are classified as positive. The
different sets of data are shown: True Positive, True Negative, False Positive and False
Negative.
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accepted, is called the True Positives TP . The number of positive objects that
is rejected, is called the False Positives FP .

The two performance measures, precision and recall, are defined as:

precision(θ) =
TP (θ)

TP (θ) + FP (θ)
(1)

recall(θ) =
TP (θ)

TP (θ) + FN(θ)
=

TP (θ)
N+

(2)

2.1 Mean Precision for Given 1D Distributions

Consider a one dimensional feature x for which the true distributions of the
positive and negative classes f+ and f− are known. Then the cumulative distri-
butions F+ and F− are defined, and the total cumulative sum becomes:

F (x) = N+F+(x) + N−F−(x). (3)

The True Positives and False Positives can be written as:

TP (θ) = N+F+(θ), FP (θ) = N−F−(θ). (4)

The recall for a given threshold θ becomes:

recall(θ) =
N+F+(θ)

N+
=
∫ θ

−∞
f+(u)du (5)

and the precision:

precision(θ) =
N+F+(θ)

F (θ)
=

N+
∫ θ

−∞ f+(u)du

N+
∫ θ

−∞ f+(u)du + N− ∫ θ

−∞ f−(u)du
. (6)

The mean precision is now defined as the precision averaged over all values of
the recall. This can be written as an average over θ when a coordinate transform
is applied. Note that

drecall(θ)
dθ

=
dF+(θ)

dθ
= f+(θ). (7)

Therefore the integration variable drecall(θ) can be replaced by f+(θ)dθ:

prec =

∫ ∞

−∞

N+F+(θ)

F (θ)
f+(θ)dθ =

∫ ∞

−∞

N+
∫ θ

−∞ f+(u)du

N+
∫ θ

−∞ f+(u)du + N− ∫ θ

−∞ f−(u)du
f+(θ)dθ.

(8)
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2.2 Mean Precision Using Sampled Distributions

When the exact distributions f+ and f− are not available, the distributions
can be approximated using sampled versions. Assume that the objects x+

j , j =
1, ..., N+ are samples from the positive class, and x−

j , j = 1, ..., N− are from the
negative class. For simplicity later, we assume that the positive and negative
objects are ordered: x+

1 < x+
2 < ..., < x+

N+ . When no superscript is given, the
data can be of any of the two classes xj , j = 1, ..., N , where N = N+ + N−.
Then:

f+(x) =
N+∑
j=1

δ(x − x+
j ), F+(x) =

N+∑
j=1

I(x ≥ x+
j ), (9)

where δ(x) is a Dirac-Delta function and I(.) is the indicator function I(A) = 1
if the statement A is true and I(A) = 0 otherwise).

Substituting this in (5) and (6) gives for a single value of θ:

precision(θ) =

∑N+

j=1 I(θ ≥ x+
j )∑N

j I(θ ≥ xj)
, recall(θ) =

N+∑
j=1

I(θ ≥ x+
j ). (10)

To find the mean precision, we have to average over all values of recall. The
average over all positive objects xi is computed by:

prec =
1

N+

N+∑
i=1

prec(x+
i ) =

1

N+

N+∑
i=1

∑N+

j=1 I(x+
i ≥ x+

j )∑N
j=1 I(x+

i ≥ xj)
=

1

N+

N+∑
i=1

i∑N
j=1 I(x+

i ≥ xj)
.

(11)

Note that in the last step we assumed that the objects x+
1 , x+

2 , ..., x+
N+ are ordered

(x+
1 < x+

2 < ..., < x+
N+), such that the sum in the numerator can be reduced to:∑N+

j=1 I(x+
i ≥ x+

j ) = i.

2.3 Decomposition of the Mean Precision

The sum given in the denominator of (11) can be decomposed into two parts; one
sum over all positive objects and one over all negative objects. This results in:

N∑
j=1

I(x+
i ≥ xj) =

N+∑
j=1

I(x+
i ≥ x+

j ) +
N−∑
j=1

I(x+
i ≥ x−

j ) = i + c−i . (12)

We define S0 as the subset of the positive objects x+
i , i = 1, ..., m0 for which

c−i =
∑N−

j=1 I(x+
i ≥ x−

j ) = 0. These are the objects that do not have any negative
objects with a lower feature value. In figure 2 these are the three positive objects
that are located left of 0.1. For these objects the terms in the sum in (11) becomes
one. Next we can define the sets Sk as the subsets of positive objects for which
c−i = k, and define the cardinalities of the sets mk = |Sk|:
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Sk =

⎧⎨⎩x+
i

∣∣∣ N−∑
j=1

I(x+
i ≥ x−

j ) = k

⎫⎬⎭ , k = 0, .., N−. (13)

For instance, the set S1 in figure 2 contains the positive objects that have just
a single negative object left of them, so that are all positive objects between 0.1
and 1.0. For this example there is two objects (around x = 0.5), and therefore
m1 = 2. Note also that m6 = m7 = ... = m12 = 0.

The total mean precision can now be written as (combining (11) and (12)):

prec =
1

N+

N+∑
i=1

i

i +
∑N−

j=1 I(x+
i ≥ x−

j )
(14)

=
1

N+

N+∑
i=1

i

i + c−i
=

1

N+

[
m0∑
i=1

i

i
+

m0+m1∑
i=m0+1

i

i + 1
+

m0+m1+m2∑
i=m0+m1+1

i

i + 2
+ ...

]
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Fig. 2. The (unnormalized) cumulative distributions N+F+(x) and N−F−(x) for the
positive objects (small circles) and the negative objects (crosses)
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Fig. 3. The resulting precision-recall graph for the data that is shown in Figure 2
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In figure 3 the Precision-Recall curve for the data shown in figure 2 is shown.
The different subsets Sk of positive objects define different ranges in the recall.
For this example only three subsets, S0, S1 and S2 are non-empty, and they are
indicated in the graph. The first three positive objects on the left are element of
S0 and have a precision of 1. The two objects in S1 have two different precision
values of 4/5 and 5/6.

3 Optimizing Mean Precision

For a given feature x the mean precision (11) or (14) can directly be computed.
Assume we would like to define a new feature as a linear combination of original
features:

z = wTx (15)

in such a way that it optimizes the mean precision:

w∗ = argmax
w

1
N+

N+∑
i=1

i

i +
∑N−

j=1 I(wT x+
i ≥ wT x−

j )
(16)

= argmax
w

1
N+

[
m0∑
i=1

i

i
+

m0+m1∑
i=m0+1

i

i + 1
+

m0+m1+m2∑
i=m0+m1+1

i

i + 2
+ ...

]
. (17)

Unfortunately, this is a complicated nonlinear optimization problem. When the
weights w are changed a bit, the ordering of the objects may change drastically,
and objects move between the different sets Sk. This causes the numbers mk to
change and therefore also the sums in (17). To optimize all terms simultaneously
appears to be very hard (we could not reduce it to a easily-solvable optimiza-
tion problem). Therefore we decide to optimize (17) term by term in a greedy
optimization.

3.1 Optimizing the First Term in Mean Precision

To optimizing the first term in (17) we try to find that direction w in feature
space such that the maximum number of positive objects do not have a single
negative object below them. That means that we try to find a classifier f(x) =
I(wT x < θ) that maximizes m0 first. This can be done by the following (linear
programming) optimization procedure:

minw |w| + C
∑

i∈+ ξi (18)

s.t. wT x−
i ≥ θ, for negative objects (19)

wT x+
i ≤ θ + ξi, ξi ≥ 0 for positive objects. (20)

In the constraints (19) all the negative objects x−
i are forced to be above the

threshold θ, so the negative objects are classified without error and the term∑N−

j=1 I(wT x+
i ≥ wT x−

j ) in (16) becomes 0. Positive objects x+
i that are not
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on the correct side (i.e. below) of the decision boundary are punished by a so-
called slack ξi. This is defined in the first constraint (20). The sum of the slacks
is minimized in the function (18), together with a regularization term on the
L1-norm of the weight vector w.

This optimization procedure finds a linear combination of original features, or
a linear classifier, such that the number of correctly classified positive objects is
as large as possible, and such that none of the negative objects is misclassified.

3.2 Optimizing the Next Terms in Mean Precision

The previous formulation only considers the first term in (17). To maximize the
second term in (17), or to find the largest set S1, we have to find the largest set
of positive objects that have one negative object below them. This optimization
becomes very complicated. Therefore we decided to remove the negative object
that is the closest to the set S0. That is the object for which the constraint
(20) is violated the first1. After this object is removed from the training set, the
optimization (18) is run again, selecting the set S1.

This process is repeated until all positive objects have been classified to the
positive class, or until a pre-specified value for the recall is obtained. Assume that
a certain recall r is required. The number of classifiers n that has to be trained
to obtain at least this recall, becomes n :

∑n
i=1 mi ≥ N+r. This depends on

the number of positive objects mk in each of the sets Sk, which again depends
on the data. It is therefore not clear beforehand how many classifiers have to be
trained to obtain a certain recall.
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Fig. 4. Scatterplot with a positive and negative class (circles and crosses respectively),
containing the sequence of classifiers w1, w2, w3

1 In linear programming optimization algorithms each of the constraints obtains a
dual variable that indicates how heavily this constraint has to be enforced. The
object corresponding to the constraint with the highest dual variable is selected to
be removed.
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This process is also shown in figure 4. The first classifier w0 separates the
positive objects (indicated by the circles) from the negative objects (crosses).
None of the negative objects are misclassified, and around 50% of the positive
objects are correct. In the second iteration the rightmost negative object (at
position (1.6,−1.6)) is removed, and the new classifier w2 is trained.

3.3 Combining the Classifiers

Unfortunately, the procedure does not result in a single unique w, but in a
collection of classifiers wk. When a new object has to be classified, the classifiers
have to be combined into a single output, depending on the actual operating
point that is chosen.

Following the philosophy of optimizing (17) term by term, an iterative scheme
has to be used. First classify the new object w by w0. When z is classified positive
by w0, the classification is finished and the object z is labeled positive. When
w0 classifies z as negative, the object is presented to the next classifier w1, and
the process repeats itself. The classifier labels the object as positive, or it moves
it to the next classifier, until the last n-th classifier is reached, and the object is
classified negative.

Input: Datasets {x+
j , j = 1, ..., N+} and {x−

j , j = 1, ..., N−}, M
Output: Classifier w
for k ← 0 to M do

optimize wk using (17);
find object x∗ ∈ {x−

j } with the largest dual variable;
remove object x∗ from the negative examples;

end
combine classifiers wk to classifier w

Algorithm 1. The optimal mean-precision algorithm

In algorithm 1 shows a high-level overview of the steps that are taken in the
(approximate) optimization of the mean precision. It is not clear if this is the
optimal approach. It is expected that the final classifier becomes more stable
and robust when the individual classifiers wk are averaged, but at the expense
of the flexibility of the classifier. This is subject for further research.

4 Experiments

In this section we perform some experiments on some real world datasets to show
the feasibility of the approach. The number of classifiers that is iteratively trained
is also limited. Three versions are tested, using a single linear classifier (just w0,
M = 1), using M = 10 classifiers and M = 25 classifiers. It was observed that
for more than M = 25 classifiers the performance rarely improved.

We compare the Optimal-Mean-Precision formulation (OptPrec) with a collec-
tion of simple classifiers: the Linear Discriminant Analysis (LDA) and
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the Quadratic Discriminant (QD) [DHS01], the Logistic classifier [And82], the
Parzen density classifier [Par62] and the Support Vector Classifier [Vap98]. For
the Parzen classifier, the width parameter is optimized by maximizing the like-
lihood using leave-one-out on the training set. For the support vector classifier
a linear kernel is used, where the C parameter is optimized using 10-fold cross-
validation. In the experiments can show some results on the Imports85 dataset
(159 objects in 25D), the Glass dataset (214 objects in 9D, where the classifi-
cation task is to distinguish class 1 from the rest), and the Sonar dataset (208
objects in 60D). These datasets are taken from the UCI repository [NHBM98].

Table 1. The mean-precision (×100) for different classifiers and datasets. The best
performances are indicated in bold. Results averaged over 10-fold stratified cross-
validation. Values between the brackets indicate the standard deviation.

classifier Imports85 Glass Sonar

LDA 85.2 (15.2) 69.8 (11.7) 74.1 (15.6)
QD 77.2 (18.0) 81.5 (19.0) 77.1 (13.9)
Logistic 72.9 (23.2) 74.3 (15.1) 79.6 (14.9)
Parzen 85.4 (17.3) 75.4 (16.7) 80.9 (12.7)
SVM 88.9 (14.4) 72.1 (15.6) 77.9 (15.3)
OptPrec M=1 90.8 (12.0) 79.1 (28.8) 77.5 (17.2)
OptPrec M=10 90.6 (12.1) 93.1 (9.4) 76.6 (18.0)
OptPrec M=25 89.4 (12.0) 93.1 (9.4) 76.4 (17.8)
Kernel OptPrec M=1 74.6 (15.8) 80.7 (14.1) 99.0 (1.0)

The experimental results are shown in Table 1. All experiments are performed
using 10-fold stratified cross-validation, and the performance measure is mean-
precision. For each dataset the best average performance is written in bold.
Furthermore, all performances that are not significantly worse (in terms of a
one-sided t-test with a 5% significance level) are also written in bold.

The results on the Imports85 dataset show a common outcome: many clas-
sifiers have a similar performance, but the OptPrec slightly outperforms the
other classifiers (although not significantly). Note also that the outcomes of the
OptPrec are a bit more robust than of the other classifiers. The Glass dataset
results show a situation where the OptPrec significantly outperforms the other
approaches. Only the classifier that only maximizes the size of the first set m0,
is too unstable and gives poor results. The outcomes on the Sonar dataset shows
that the OptPrec classifier is not always optimal in its linear implementation,
but that for some datasets nonlinear decision boundaries are needed. This is im-
plemented by kernelizing the linear classifier; the original data is mapped into a
new feature representation using (in this case) the RBF kernel with an optimized
width parameter σ. For the Sonar dataset it resulted in an almost perfect mean
precision.

For many datasets the OptPrec classifier is not superior: in the cases where
data is (almost) separable, or when the decision boundary is very nonlinear
other classifiers may perform equally well, or better. Even more importantly, in
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small sample size classification problems it is often advantageous to use all the
available training data for estimating the class conditional probabilities. It is
hard to estimate the subset of positive objects in S0 from a small training set. In
these cases it might be advantageous to make the individual estimates wk more
robust and combine them. This is still an issue for further research.

5 Conclusions

This paper presents the derivation of a classifier that (approximately) optimizes
the mean precision for a two-class classification problem. The classifier itera-
tively separates a part of the positive class from the negative class, such that
the positive part is as ’pure’ as possible (i.e. it does not contain any negative
objects) and as large as possible. For each separation of a pure part, a classi-
fier is obtained. When these classifiers are combined into a final classifier, the
mean precision is optimized. Experiments show that for some datasets very good
performances can be obtained. Further research is needed to investigate the pos-
sibility to optimize the mean precision in one step, how the classifiers have to be
combined (in particular in the low sample size situation) and how it will perform
on real world retrieval problems.

References

[And82] Anderson, J.A.: Logistic discrimination. In: Kirshnaiah, P.R., Kanal, L.N.
(eds.) Classification, Pattern Recognition and Reduction of Dimensionality.
Handbook of Statistics, vol. 2, pp. 169–191. North Holland, Amsterdam
(1982)

[Bra97] Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

[BS05] Brefeld, U., Scheffer, T.: AUC miximizing support vector learning. In: Pro-
ceedings of ICML 2005 workshop on ROC analysis in Machine Learning
(2005)

[DHS01] Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John
Wiley & Sons, Chichester (2001)

[FFHO02] Ferri, C., Flach, P., Hernandez-Orallo, J.: Learning decision trees using the
area under the ROC curve. In: Proceedings of the ICML (2002)

[Fla03] Flach, P.: The geometry of ROC space: understanding machine learning
metrics through ROC isometrics. In: Proceedings of the international con-
ference on Machine learning 2003, pp. 194–201 (2003)

[NHBM98] Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of ma-
chine learning databases (1998)

[Par62] Parzen, E.: On estimation of a probability density function and mode.
Annals of Mathenatical Statistics 33, 1065–1076 (1962)

[SM83] Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval.
McGraw-Hill, New York (1983)

[Vap98] Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
[vR79] van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterwort (1979)



A Multiple Expert Approach to the Class

Imbalance Problem Using Inverse Random
under Sampling

Muhammad Atif Tahir, Josef Kittler, Krystian Mikolajczyk, and Fei Yan

Centre for Vision, Speech and Signal Processing
University of Surrey

Guildford, GU2 7XH, UK
{m.tahir,j.kittler,k.mikolajczyk,f.yan}@surrey.ac.uk

Abstract. In this paper, a novel inverse random under sampling (IRUS)
method is proposed for class imbalance problem. The main idea is to
severely under sample the negative class (majority class), thus creating
a large number of distinct negative training sets. For each training set we
then find a linear discriminant which separates the positive class from
the negative class. By combining the multiple designs through voting, we
construct a composite between the positive class and the negative class.
The proposed methodology is applied on 11 UCI data sets and experi-
mental results indicate a significant increase in Area Under Curve (AUC)
when compared with many existing class-imbalance learning methods.

1 Introduction

Many real world classification problems are represented by highly imbalance
data sets, that is, the number of samples from one class is much smaller than
from another. This is known as class imbalance problem and is often reported
as an obstacle to construct a model that can successfully discriminate minority
samples from majority samples. Generally, the problem of imbalanced data sets
occurs when one class represents a rare or uncommon concept while the other
class represents the anti-concept, so that the examples from the anti-concept
class outnumber the examples from the concept class. This type of data is found,
for example, in the image retrieval concept detection problem where only few
images belong to the concept class; in medical record databases for rare diseases
where a small number of patients would have a particular disease.

There is a great deal of research on learning from imbalanced data sets re-
ported in the literature [1,8,6]. The most commonly used methods to handle
imbalanced data sets involve under sampling or over sampling of the original
data set. Over sampling aims to balance class populations through replicating
the minority class examples while under sampling aims to balance the class
populations through the elimination of majority class examples.

In this paper, a novel inverse random under sampling (IRUS) method is pro-
posed for the class imbalance problem in which the ratio of the respective training
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set cardinalities is inversed. The idea is to severely under sample the negative
class (majority class), thus creating a large number of distinct negative training
sets. For each training set we then find a linear discriminant which separates the
positive class from the negative samples. As the number of positive samples in
each training set is greater than the number of negative samples, the focus in
machine learning is on the positive class and consequently it can invariably be
successfully separated from the negative training samples. Thus each training set
yields one classifier design. By combining the multiple designs through voting,
we construct a composite between the positive class and the negative class. We
shall argue that this boundary has the capacity to delineate the positive class
more effectively than the solutions obtained by conventional learning. We shall
show experimentally on standard benchmarking data that the proposed method
leads to significant improvements in performance.

This paper is organized as follows. Section 2 provides briefly review several class
imbalance methods followed by proposed inverse random under sampling method
(IRUS) in section 3. Section 4 describes the experimental setup followed by results
and discussion in Section 5. The paper is drawn to conclusion in Section 6.

2 Related Work

As discussed in Section 1, the most commonly used methods to handle imbal-
anced data sets involve under sampling or over sampling of the original data
sets. Random over sampling and random under sampling are the most popular
non-heuristic methods that balance class representation through random repli-
cation of the minority class and random elimination of majority class examples
respectively. There are some limitations of both random under sampling and ran-
dom over sampling. For instance, under-sampling can discard potentially useful
data while over-sampling can increase the likelihood of overfitting [1]. Despite
these limitations, random over sampling in general is among the most popular
sampling techniques and provides competitive results when compared with most
complex methods [1,12].

Several heuristic methods are proposed to overcome these limitations includ-
ing Tomek links [13], Condensed Nearest Neighbour Rule (CNN) [7], One-sided
selection [10] and Neighbourhood Cleaning rule (NCL) [11] are several well-
known methods for under-sampling while Synthetic Minority Over-Sampling
Technique (SMOTE) is a well-known method for over-sampling technique [5].
The main idea in SMOTE is to generate synthetic examples by operating in the
“feature space” rather than the “data space” [5]. The minority class is oversam-
pled by interpolating between several minority class examples that lie together.
Depending upon the amount of over-sampling required, neighbours from the k
nearest neighbours are randomly chosen. Thus, the overfitting problem is avoided
and the decision boundaries for the minority class are spread further into the
majority class space [1].

Liu et al. [12] and Chan et al. [3] examine the class imbalance problem by
combining classfiers built from multiple under-sampled training sets. In both
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approaches, several subsets from the majority class with each subset having
approximately the same number of samples as the minority class are created. One
classifier is trained from each of these subsets and the minority class and then
the classifiers are combined. Both these approaches differ in grouping multiple
classifiers and in creating subsets from the majority class.

3 Inverse Random under Sampling

In this section, we will discuss the proposed inverse random under sampling
(IRUS) method. For convenience, we refer to the minority class as the concept
class and the majority class as the anti-concept class. A conventional training of
a concept detector using a data set containing representative proportions of sam-
ples from the concept and anti concept classes will tend to find a solution that
will be biased towards the larger class. In other words, the probability of misclas-
sifying samples from the anti-concept class will be lower than the probability of
error for the concept class. However, the actual performance will be determined
by the underlying overlap of the two classes and the class prior probabilities.
Thus, we need to control the probability of misclassification of samples from the
anti-concept class to achieve the required target performance objectives. This
may require setting the operating point of the detector so as to achieve false
positive rate that is lower than what would be yielded by conventional training.
This could be achieved by biasing the decision boundary in favour of the anti
concept sample error rates using threshold (off set) manipulation. Alternatively,
we could increase the imbalance between the number of samples from the two
classes artificially by eliminating some of them. The latter solution is not very
sensible, as we would be depleting the class which is naturally underrepresented
even further. The former solution would lead to a substantial increase in the
false negative rate.

The problem of learning decision functions in situations involving highly im-
balanced class sizes is sometimes mitigated by stratified sampling. This aims to
create a training set containing a comparable numbers of samples from all the
classes. Clearly, in stratified sampling the training set size would be determined
by the number of samples in the underrepresented class. This would lead to a
drastic subsampling of the anti-concept class with the resultant reduction in the
accuracy of the estimated class boundary. This loss of accuracy can be recovered
by means of multiple classifier methodology. By drawing randomly multiple sub-
sets from the anti-concept class data set, each adhering to the stratified sampling
criteria, we can design several detectors and fuse their opinions. For a typical
imbalance of priors of say 100 : 1, the number of the designs would be too low
to allow an alternative approach to controlling false positive error rate and one
would have to resort to the biasing methods discussed earlier.

Suppose we take the data set manipulation to the extreme and inverse the
imbalance between the two classes. Effectively we would have to draw sample
sets from the anti-concept class of size proportional to P 2 where P is the prior
probability of the concept class. This would lead to very small sample sets for
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Concept Class

Anti−Concept Class

Fig. 1. Schematic diagram showing each boundary partitions the training data set by
a hyperplane tangent to the surface of the volume occupied by the concept class

the anti-concept class and therefore, a poor definition of the boundary between
the two classes. Nevertheless, the boundary would favour the concept class. Also,
as the number of samples from the negative class is very small in relation to the
dimensionality of the feature space, the capacity of each boundary to separate the
classes fully is high. Moreover, as the number of samples drawn is proportional
to P 2, the number of independent sets that can be drawn will be of the order
of 1

P 2 . This large number of designs could then be used for controlling the false
positive rate using a completely different mechanism. By combining the designed
detectors using voting, we can control the threshold on the number of votes
needed to accept the concept hypothesis, thus controlling the false positive error
rate. This contrasts with the complex task of biasing a decision boundary in
high dimensional space.

Interestingly, there is another important benefit of the the IRUS method. As
the number of samples forming the negative class is very small, each detector
design will be significantly different. This will produce highly diverse detectors
which are required for effective classifier fusion. The fused decision rule achieves
better class separation than a single boundary, albeit estimated using more sam-
ples. This is conveyed schematically in Figure 1. Each boundary partitions the
training data set by a hyperplane tangent to the surface of the volume occupied
by the concept class. It is the union of these tangent hyperplanes created by fu-
sion, which constitutes a complex boundary to the concept class. Such boundary
could not easily be found by a single linear discriminant function. If one resorted
to nonlinear functions, the small sample set training would most likely lead to
a over fitting and, consequently, to poor generalisation on the test set. Figure 2
provides supporting evidence for the above conjecture. The histogram of dis-
criminant function values (i.e. distance from the decision boundary) generated
by one thousand classifiers designed using the inverse imbalance sampling princi-
ple for a single negative class test sample (blue bar) shows many of the classifiers
scoring positive values which lie on the concept class side of the boundary. This
is expected for more than half of the classifiers, as the negative sample will lie
beyond the concept class, but nevertheless on the same side as the concept class.
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Fig. 2. Histogram of Discriminant Function generated by one thousand classifiers

In contrast, discriminant function values for a single positive class test sample
show that most of the classifiers scoring positive values lie on the concept side
of the boundary.

In summary, we propose a classifier design approach which is based on an
inverse imbalance sampling strategy. This is accomplished by setting the ap-
propriate threshold in the fusion stage combining the outputs of the multiple
concept detectors. It allows a very accurate definition of the boundary between
the concept class and the negative class.

The pseudo code of IRUS is shown in Algorithm 1. S and Sets are user speci-
fied parameters. S controls the number of negative samples drawn at random in
each model while Sets determine the number of models or classifiers. For each
set Ξ ′

a paired with Ξc we learn a model hi. For each model hi, the probability of
unseen instances belonging to concept class Dc is calculated. The probabilities
from all models are added. The output is a probability set Ξp of the test in-
stances belonging to concept class. Ξp is then used to calculate the performance
measure discussed in Section 4.3.

4 Experiments

4.1 Experimental Setup

To evaluate the effectiveness of the proposed method, extensive experiments
were carried out on 11 public data sets from UCI repository which have different
degrees of imbalance [2]. Table 1 describes the data sets used in this study. For
each data set, it shows the number of attributes (A), number of samples (Ns),
number of majority samples (Na) and number of minority samples (Nc). As in
[1,12], for more than two classes, the class with fewer samples is chosen as the
positive class and the remaining as the negative class.
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Algorithm 1. PseudoCode for Inverse Random Under Sampling (IRUS)
Require: Ξc: Training set of concept patterns with cardinality Nc

Ξa: Training set of anti-concept patterns with cardinality Na

Ξt: Test set with cardinality Nt

S: Number of samples from Ξa for each Model
Sets: Number of classifiers, default: ceil(Nc

S
)

Ensure: Ξp: Probability set of Test instances belonging to concept class
Ξp ⇐ 0
for i = 1 to Sets do

Ξ ′
a ⇐ Randomly pick S samples without replacement from Ξa

Ts ⇐ Ξ ′
a + Ξc

Train base classifier hi using Ts samples
for j = 1 to Nt do

Dc ⇐ Probability distribution of Test Sample Ξtj belonging to concept class
from hi

Ξpj ⇐ Ξpj + Dc

end for
end for

Table 1. Description of Data sets. Ratio is the size of majority class divided by that
of minority class.

Data set Samples Attributes Concept/Anti-Concept #min/#maj Ratio
Ns A Na/Nc

Flag 194 28 White/Remainder 17/177 10.42
German 1000 20 Bad/Good 300/700 2.33
Glass 214 9 Ve-win-float-proc/Remainder 17/197 11.59

Haberman 306 3 Die/Survive 81/225 2.78
Mf-Mor 2000 6 10/Remainder 200/1800 9.0
Mf-Zer 2000 47 10/Remainder 200/1800 9.0
Nursery 12960 8 Not-recom/Remainder 328/12632 38.51
Phoneme 5404 5 1/0 1586/3818 2.41

Pima 768 8 1/0 268/500 1.87
Satimage 6435 36 4/Remainder 626/5809 9.28
Vehicle 846 18 Van/Remainder 199/647 3.25

For every data set, we perform a 10-fold stratified cross validation. The whole
cross validation is repeated 10 times, and the final values are the averages of
these 10 cross validation runs.

4.2 Benchmark Methods

Decision tree (C45) is used as the base classifier for the proposed inverse ran-
dom under sampling technique (IRUS). The IRUS method is compared with the
following class imbalance techniques: Random Under Sampling (RUS), Random
Over Sampling (ROS) and SMOTE. The WEKA [14] implementation is used for
C45 and SMOTE and the k nearest neighbour parameter is set to 5 in SMOTE.
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Further, since pruning and unpruned trees can have different effects on learning
from imbalanced data sets, all methods are evaluated using both pruned (25%
confidence lavel)/unpruned decision trees. The presented method is also com-
pared with Chan and Stolfo’s method [3] (ChSt). The only difference is that
the number of majority class examples sampled by ChSt method is equal to the
number of minority class examples, while the number of majority class examples
sampled in this paper is smaller than the number of minority class examples.

4.3 Performance Measure

The area under the receiver operating characteristic curve (AUC) is most com-
monly used measure for class imbalance data sets [9,12] and is adopted here.
The AUC represents the expected performance as a singular scalar. It integrates
performance of the learning method over all possible values of false positive rate.
The Mann Witney statistic is used to calculate the AUC and is implemented in
WEKA [14].

5 Results and Discussion

Table 2 shows the AUC for various data sets using different methods. It is clear
from Table 2 that AUC using unpruned tree is higher than AUC using pruned
tree. This is due to the fact that pruning can reduce the minority class cov-
erage in the decision trees [4]. On Nursery and Vehicle data sets, all methods
have achieved very high AUC (> 0.95) for both pruned and unpruned decision
trees. Overall, our proposed IRUS method has increased performance in 7 out
of 11 data sets. There is an increase in the performance in all data sets except
phoneme, mf-mor, nursery and satimage. For mf-mor, nursery and satimage, the
difference is not significant. However, for phoneme, there is a significant decrease
in performance when compared with all other methods. This is explained by the
fact that number of positive samples is quite high in this data set (1586 out of
3818) and since only few samples from negative class are used to learn a model,
some negative samples are always on the wrong side of the boundary. Overall, the
average AUC for IRUS is approximately 10.1%, 4.6%, 2.8%, 2.7%, 0.63% better
than J48, RUS, ROS, SMOTE, ChSt respectively when unpruned decision tree
is used. It should be noted that the minority class is over-sampled at different
values for SMOTE and the highest mean AUC is obtained when minority class
is over-sampled at 400%. For IRUS, again after experimenting with different
run-time paramters, the paramters used are S = 15 and Sets = 1.5 × ceil(Nc

S ).
Table 3 shows the results of t-test (significance level 0.05) of AUC. The t-

test is shown separately for pruned and unpruned trees in the upper and lower
triangles respectively. The table clearly indicates that IRUS achieves significant
performance gains when compared with other methods. For unpruned decision
tree, the t-test reveals that IRUS performs significantly better in 8 out of 11 data
sets when compared with ROS and SMOTE and 5 out of 11 when compared with
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Table 2. AUC of the compared methods

Data set Pruning J48 RUS ROS SMOTE ChSt IRUS

Flag yes 0.5000 0.7354 0.7424 0.6592 0.7891 0.7852
no 0.7089 0.7581 0.7289 0.6926 0.7921 0.7949

German yes 0.7061 0.6969 0.7058 0.7164 0.7254 0.5365
no 0.7021 0.6950 0.7047 0.7141 0.7234 0.7668

Glass yes 0.5894 0.7036 0.7635 0.7818 0.7899 0.8148
no 0.6432 0.7078 0.7656 0.7820 0.8121 0.8169

Haberman yes 0.5851 0.6167 0.6320 0.6693 0.6454 0.6555
no 0.6182 0.6100 0.6367 0.6726 0.6545 0.6877

Mf-Mor yes 0.500 0.9294 0.9234 0.9264 0.9286 0.9275
no 0.5000 0.9284 0.9227 0.9269 0.9281 0.9262

Mf-Zer yes 0.5980 0.8660 0.8771 0.8754 0.9006 0.9072
no 0.8667 0.8660 0.8771 0.8752 0.9007 0.9065

Nursery yes 0.9940 0.9606 0.9975 0.9944 0.9898 0.9850
no 0.9975 0.9743 0.9982 0.9973 0.9965 0.9978

Phoneme yes 0.9127 0.8931 0.9251 0.9174 0.9146 0.8429
no 0.9151 0.8960 0.9254 0.9195 0.9238 0.8596

Pima yes 0.7756 0.7572 0.7763 0.7717 0.7671 0.8110
no 0.7788 0.7626 0.7781 0.7747 0.7689 0.8167

Satimage yes 0.9084 0.9095 0.9214 0.9202 0.9454 0.9289
no 0.9162 0.9109 0.9213 0.9208 0.9486 0.9405

Vehicle yes 0.9770 0.9649 0.9768 0.9740 0.9810 0.9810
no 0.9769 0.9679 0.9779 0.9758 0.9850 0.9850

Average yes 0.7319 0.8197 0.8405 0.8369 0.8524 0.8341
no 0.7840 0.8252 0.8397 0.8411 0.8581 0.8635

Table 3. Summary of t-test with significance level at 0.05. The upper triangle shows the
results with pruned decision tree and the lower triangle shows the results with unpruned
decision trees. Each tabular shows the amount of WIN-TIE-LOSE of a method in a
row comparing with the method in a column.

J48 RUS ROS SMOTE ChSt IRUS

J48 - 4-2-5 0-3-8 1-2-8 1-2-8 3-0-8
RUS 3-3-5 - 1-3-7 2-0-9 1-1-9 2-1-8
ROS 7-4-0 8-2-1 - 4-5-4 2-3-6 3-0-8

SMOTE 7-4-0 9-1-1 2-7-2 - 3-4-4 3-2-6
ChST 9-1-1 9-2-0 8-2-1 5-4-2 - 4-4-3
IRUS 9-1-1 9-1-1 8-1-2 8-2-1 5-4-2 -

ChSt. IRUS is significantly lower in only 1 data set (phoneme) when compared
with RUS and SMOTE while only in 2 data sets when compared with ROS
and ChSt. For pruned decision tree, IRUS performs significantly better in 8 and
6 data sets when compared with ROS and SMOTE respectively, although the
overall average AUC for IRUS is less than ROS and SMOTE (see Table 2).
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Fig. 3. Run time parameter S vs AUC. Na = Total number of samples in Concept
Class.

Figure 3 shows the different values of run-time parameter S vs AUC in glass,
haberman and pima data sets. This parameter effectively controls the number of
anti-concept samples drawn at random in each model (classifier). It is observed
that IRUS performs best for values in the range [5− 20]. Parameter S also effects
the training time. For low value of S, more sets or classifiers (See Algorithm 1) are
trained while for high value of S, less classifiers are required. We have also exper-
imented with different values of other run-time parameter Sets. This parameter
is important to make sure that almost all anti-concept samples are selected dur-
ing different models. After some experiments, it is observed that the mean AUC
is almost identical when Sets > 1.5 × ceil(Nc

S ).

6 Conclusion

A novel inverse random under sampling (IRUS) method is proposed in this paper
to solve the class imbalance problem. The main idea is to use disproportionate
training set sizes, but by inversing the training set cardinalities. By the pro-
posed method of inverse under sampling of the majority class, we can construct
a large number of minority class detectors which in the fusion stage has the
capacity to realise a complex decision boundary. The distinctiveness of IRUS is
assessed experimentally using 11 public UCI data sets. The results indicate sig-
nificant performance gains when compared with other class imbalance methods.

In this paper, C4.5 is used as a base classifier. It would be interesting to see
how other well-known classifiers like NaiveBayes, SVM, KNN, LDA behave when
used as a base classifier in our proposed inverse under sampling method.
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Abstract. Multiclass pattern recognition problems (K > 2) can be de-
composed by a tree-structured approach. It constructs an ensemble of
K-1 individually trained binary classifiers whose predictions are com-
bined to classify unseen instances. A key factor for an effective ensemble
is how to combine its member outputs to give the final decision. Although
there are various methods to build the tree structure and to solve the
underlying binary problems, there is not much work to develop new com-
bination methods that can best combine these intermediate results. We
present here a trainable fusion method that integrates statistical infor-
mation about the individual outputs (clustered decision templates) into
a Radial Basis Function (RBF) network. We compare our model with
the decision templates combiner and the existing nontrainable tree en-
semble fusion methods: classical decision tree-like approach, product of
the unique path and Dempster-Shafer evidence theory based method.

1 Introduction

Many real-world pattern recognition problems contain a large number of classes.
Multi-class decomposition schemes, such as the tree-structured approach [1,2,3,4],
Error-Correcting Output Codes (ECOC) [5], One-Against-One and One-Against-
Others have been considered where an ensemble of classifiers instead of a single
classifier is developed. Any multi-class decomposition scheme consists of three
stages: (1) decomposition of the multi-class problem into a set of simpler two-
class problems, (2) solving these two-class problems and (3) combination of the
intermediate solutions to yield the final decision. Ensemble methods can be di-
vided into: Flat and Hierarchical. Flat architectures are the most popular ones
where the members work independently disregarding the hierarchical structure of
the classes. Tree-Structured ensembles improves the classification performance by
taking into account prior knowledge encoded into the class hierarchy.

The main motivations for this paper are: (1) Although there are various
methods to build the class hierarchy (first stage) and to solve the underlying
binary-class problems (second stage), there is not much work to develop new
combination methods that can best combine the intermediate results of the bi-
nary classifiers within the hierarchy (third stage). (2) The simple aggregation

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 92–101, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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rules used for flat multiple classifier systems such as minimum, maximum,
average, product and majority vote can not be applied to hierarchical decision
profiles.

Our main contributions are: (1) A new trainable fusion method for a tree
ensemble that integrates statistical information about its individual outputs in
the form of decision templates into the training of an RBF network combiner.
(2) A new similarity measure based on multivariate Gaussian function to match
a decision profile with decision templates. (3) The application of the decision
templates combiner proposed by Kuncheva [6] for hierarchical ensembles.

The remainder of this paper is organized as follows:Wegive a short description of
the tree-structured learning algorithm for multi-class decomposition in Section 2.
In Section 3, we discuss briefly the existing approaches for decision fusion for hier-
archical ensembles. The proposed combination method is presented in Section 4.
Section 5 contains the results of performance evaluation on nine multi-class visual
object recognition tasks. Finaly, we conclude the paper in Section 6.

2 Tree-Structured Multi-class Decomposition

Given a training set L = {(xi, yi)|xi ∈ RD, yi ∈ Ω, i = 1, . . . , m}, the task of the
tree-structured approach is to decompose a given K-class problem into a set of
K-1 binary-class problems and to train a classifier to solve a binary-class problem
at each internal node given a base learning algorithm (BaseLearn). At the classi-
fication phase, the approach uses a given combination method (TreeCombiner)
to combine the intermediate results of the internal node classifiers in order to
produce the final decision of the ensemble for a given unseen instance x. First,
the set of K classes (Ω) is split into two disjoint subsets, known as meta-classes
or super-classes. Then the meta-classes are again split recursively until each
meta-class contains one of the original classes. The resultant binary tree has K
leaf nodes, one for each original class and K-1 internal nodes, each associated
with two meta-classes and a binary classifier. (See Algorithm 1).

There are various ways to build the tree structure, e.g. user-defined and class-
similarity based approaches. As an example for user-defined approach, in the
handwritten digits recognition problem, the user can construct two meta-classes
by separating the digits {0, 1, 2, 3, 4} in one meta-class and the rest in the other
meta-class. If the class hierarchy is based on the relationships between classes, it
provides important domain knowledge that leads to improvement in classifica-
tion accuracy. That is, the class hierarchy should satisfy the well-known cluster
assumption: similar classes should belong to the same meta-class while dissimi-
lar classes should belong to different meta-classes. In this study, the Euclidean
distance dik between each pair of class centroids ci and cj is used to measure
the similarity between classes ωi and ωj.

A Top-Down approach is used to construct the binary tree structure. Recur-
sively, for each internal node j, the set of classes Ωj is divided into two disjoint
(dissimilar) subsets Ω2j and Ω2j+1 starting from the root node. For example, at
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Algorithm 1. Tree Ensemble Learning Algorithm
Require: L - set of m labeled training examples

Ω = {ω1, . . . , ωK}- set of classes
BaseLearn - base learning algorithm
TreeCombiner - hierarchical combination method
Training Phase

1: Ω1 ← Ω
2: Generate Class Hierarchy as follows:

1. C ← {(ck, ωk)}K
k=1 ← GetClassCentroids(L)

2. hierarchy ← BuildNode(Ω1, C)

3: for each internal node j at hierarchy do
4: Filter the training set L as follows:

Lj = {(x, y)|x ∈ Ωj and y = 0 if x ∈ Ω2j and y = 1 if x ∈ Ω2j+1}
5: Train binary classifier, hj ← BaseLearn(Lj)
6: end for

Prediction Phase
7: return TreeCombiner(x,hierarchy) for a given instance x

Fig. 1. Class hierarchy for the handwritten digits

the root node with index 1 (see Figure 1), the most distant subsets Ω2 and Ω3

of Ω1 are determined by performing 2-means clustering using the centroids of
the two most distant classes in Ω1 as initial prototypes for clusters. Ω2 and Ω3

will contain the set of classes lies at the first and second cluster, respectively.
After constructing the tree, a binary classifier hj is assigned to each internal

node j to discriminate between two meta-classes Ω2j and Ω2j+1 and it is trained
using the filtered training set Lj (See Algorithm 1) .
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3 Existing Tree Combination Methods

3.1 Classical Decision Tree-Like (Hard) Combiner

This Hard Combiner method assumes that for a given instance x, the inter-
nal node classifiers hj assign a hard class label (hard classifiers), hj : RD →
{Ω2j , Ω2j+1}. Starting from the root node and recursively, the instance is pushed
to one of the two child nodes until a leaf node is reached. That is, to assign a
class label to a given instance, only the classifiers along the unique path from
the root node to one of the leaf nodes are considered.

3.2 Product of the Unique Path Combiner

This tree combiner was proposed by Kumar et al. in [1,2] and applied for land-
cover classification using remote sensing images. It is based on the assumption
that the internal classifier hj can estimate meta-class membership probabilities
(soft classifier). Then, for given instance x, the membership probability for each
class k is the product of the posterior probabilities of all the internal classifiers
along the unique path from the root node to the leaf node containing class k.

3.3 Dempster-Shafer Evidence Theory Based Combiner

Major advantages of Dempster-Shafer (DS) theory of evidence [7,8] are the
ability: (1) to discriminate between ignorance and uncertainty, (2) to represent
evidences at different levels of abstraction and (3) to combine evidences pro-
duced by different sources. The DS theory starts by assuming a universe of
discourse called the frame of discernment that consists of a finite set of K mu-
tually exclusive atomic hypotheses θ = {θ1, . . . , θK}. Let 2θ denote the set of all
subsets of θ. Then a mass function over the frame of discernment θ is a function
m : 2θ → [0, 1] that is called basic probability assignment (bpa) if it satisfies:
m(φ) = 0 and

∑
A⊆θ m(A) =1. Dempster’s rule of combination combines the

basic probability assignments produced by n independent sources m1, . . . , mn:

m(A) =
∑

∩Ai=A

∏
1≤i≤n

mi(Ai) (1)

DS Theory was used for decision fusion of hierarchical multiclassifier systems by
Fay et al in [3,4] where it was applied successfully for visual object recognition.

4 Proposed Tree Combination Method

Now we introduce a new trainable soft fusion method to combine the intermedi-
ate results of tree-structured individual classifiers. It is based on the assumption
that the combined classifiers have real-valued outputs (soft classifiers). It is in-
spired from Stacked Generalization technique for combining multiple classifiers
to improve generalization accuracy introduced by Wolpert [9].
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Fig. 2. Decision Profile for instance x using tree-structured ensemble classifiers

Fig. 3. An illustrative example for data transformation

4.1 Hierarchical Decision Profile

The binary outputs of the K-1 internal node classifiers for each training example
x are stored in a decision profile DP (x) as the matrix in Figure 2. Based on the
way of using DP (x) to find the overall support for each class k, the fusion meth-
ods are divided by Kuncheva [10] into class-conscious and class-indifferent.
class-conscious refers to the methods that use the kth column of DP (x) such
as average, minimum, maximum and product rules. class-indifferent refers to
the methods that ignore the context of DP (x) and use all of DP (x) as features
in a new feature space, which is called the intermediate feature space. From
Figure 3, we can observe that the class-conscious fusion methods can not be
used with the hierarchical decision profile because the meta-classes are not the
same at different rows. Hence, class-indifferent fusion method is required where
the final decision of the tree ensemble is made by another classifier that takes
the intermediate feature space as input and outputs a class label (see Figure 3).
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4.2 Standard Decision Templates Combiner

This trainable combiner was proposed by Kuncheva [6]. At the training phase, a
decision template (DTk) is calculated for each class k as the mean of the decision
profiles of the training examples belonging to class k.

DTk =
1

Nk

∑
yi=k

DP (xi) (2)

At the classification phase, the decision profile for an instance x is matched to
the K decision templates using a similarity measure. The class label with the
closest decision template will be assigned to x. In [6], Kuncheva discussed 11
different similarity measures and compared them with 14 other techniques. The
most popular similarity measures are S1 measure,

μk(x) = S1(DP (x), DTk) =

∑K−1
i=1

∑2
j=1 min(dp(i, j), dtk(i, j))∑K−1

i=1

∑2
j=1 max(dp(i, j), dtk(i, j))

(3)

and the normalized Euclidean distance,

μk(x) = N(DP (x), DTk) = 1 − 1
(K − 1) × 2

K−1∑
i=1

2∑
j=1

(dp(i, j) − dtk(i, j))2 (4)

This rule is equivalent to applying the nearest mean classifier in the profile space.

4.3 RBF Network Combiner Using Clustered Decision Templates

An RBF network classifier will be applied in the intermediate feature space
instead of the nearest mean classifier applied by the above Decision Templates
combiner. Multivariate Gaussian function φj is used as an RBF at hidden nodes.
Since the hidden layer applies a nonlinear transformation to the input data, class
separation should be much easier in the hidden unit space (see Figure 3). The
output vector y for a given instance x is produced at the final output layer from
the weighted summation of the activations of the Gaussian kernels φj ’s.

yk =
K×c∑
j=1

wjkφj(‖DP (x) − DTj‖) where k = 1, . . . , K (5)

The two-phase learning procedure discussed in [11] is used for training RBF
network combiner using the same training set that is used to construct the
ensemble members. In the first phase, for each class k, c decision templates are
calculated by applying c-means clustering on the decision profiles of all training
examples that belong to class k. After this clustering is completed, K×c clustered
decision templates are used as the RBF centers. Then the width of the jth RBF
(σj) is set to the distance between the decision template DTj and the nearest
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template of different class multiplied by α as in (6) where α should control the
degree of overlap between adjacent Gaussian nodes (in our experiments, α=1).

σj = α min
i=1,...,K×c

{
‖DTj − DTi‖2 : i �= j, class(DTi) �= class(DTj)

}
(6)

Then, the radial basis function φj is defined as follows,

φj(‖DP (x) − DTj‖) = exp(−
‖DP (x) − DTj‖2

2

2σ2
j

) (7)

Then, in the second learning phase the output layer weights W are computed by
minimising the MSE at the network output by a matrix pseudoinverse technique
using singular value decomposition, W = H+T , where T is the matrix of target
outputs of the m training examples where the 1-out-of-K coding scheme is used
and H is the activation matrix,

Hij = φj(‖DP (xi) − DTj‖)i=1,...,m
j=1,...,K×c (8)

5 Experimental Results

5.1 Methodology

An experimental study is conducted to compare the proposed tree combiner
(RBFN) with classical decision tree-like approach (Hard), product of the unique
path combiner (Product), Dempster-Shafer evidence theory based combiner (DS)
and standard Decision Templates combiner using S1 measure (DT:S1) and nor-
malized Euclidean distance (DT:NM). The two-phase learning algorithm used
to train the RBFN tree combiner (see Subsection 4.3) is also used to train the
binary RBF network classifier at each node. Except that meta-class specific c-
means clustering algorithm (with c = 10) is applied independently to the training
examples that belong to each meta-class. The nine real-world data sets used in
this study are described in Table 1. We intentionally select data sets with vari-
ance in number of features (D), number of classes (K) and number of examples
(N). All implementation was carried out using the WEKA library [12].

For each data set and tree combiner, 5 runs of 10-fold cross-validation have
been performed. The (Win/Tie/Loss) record presents three values, the num-
ber of data sets for which algorithm A is significantly better, equal, or worse

Table 1. Description of the data sets

ID Data set K D N Reference
Fruits1 Fruits-colorhist-3x3 7 216 840 Fay [4]
Fruits2 Fruits-orienthist-sobel-4x4 7 128 840 Fay [4]
COIL1 COIL-colorhist-1x1 20 24 1440 Fay [4]
COIL2 COIL-orienthist-sobel-2x2 20 32 1440 Fay [4]
Digits1 Digits-PCA40 10 40 2000 Schwenker et al.[11]
Digits2 Digits-pixels 10 256 2000 Schwenker et al.[11]
Letters Letters 26 16 2000 UCI Repository [13]
Texture Texture 11 40 1100 UCI Repository [13]
Satimage Satimage 6 36 1286 UCI Repository [13]
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than algorithm B with respect to classification accuracy, using corrected paired
t-test [14] implemented in WEKA at 0.05 significance level. The accuary in our
experiments is less than the results on the same data sets reported elsewhere
because we use a random subset of the available data to save computation time.
Our main concern is the relative accuracy between different combiners.

5.2 Results

Table 2 shows the average test accuracies and standard deviations. For each data
set, the highest accuracy achieved is bold faced. The result with bullet(•)/open
circle(◦) mark indicates that the RBFN combiner is significantly better/worse
than the respective combiner for the respective data set. We conclude that the
RBFN combiner significantly outperforms Hard, Product and DS combiners in
seven of the nine domains and its behavior is statistically indistinguishable in the
remaining two domains. In addition, the RBFN combiner is significantly superior
to the DT:S1 and DT:NM in eight and seven of the nine domains, respectively.

Table 2. Test accuracy using different tree combiners, using 100% of training data

Dataset RBFN(c=3) Hard Product DS DT:S1 DT:NM
Fruits1 97.05 ± 1.82 95.95 ± 2.15 96.26 ± 1.94• 96.21 ± 1.99 95.76 ± 2.48 96.52 ± 1.95
Fruits2 94.90 ± 2.44 92.21 ± 3.68• 92.79 ± 3.25• 92.86 ± 3.35• 92.64 ± 3.06• 93.67 ± 2.76•

COIL1 93.89 ± 2.07 89.08 ± 2.14• 90.81 ± 1.74• 90.54 ± 2.13• 88.60 ± 2.32• 91.33 ± 2.10•

COIL2 98.75 ± 0.86 95.94 ± 1.82• 97.72 ± 1.24• 97.21 ± 1.25• 94.15 ± 1.70• 96.54 ± 1.32•

Digits1 93.58 ± 1.84 84.19 ± 2.72• 88.88 ± 2.37• 87.68 ± 2.56• 91.82 ± 2.06• 92.13 ± 2.16•

Digits2 94.46 ± 1.61 92.11 ± 2.03• 92.61 ± 1.50• 92.90 ± 1.64• 92.38 ± 1.80• 93.24 ± 1.53•

Letters 80.37 ± 2.74 68.74 ± 4.34• 73.29 ± 3.93• 72.11 ± 4.07• 71.15 ± 3.22• 73.24 ± 3.12•

Texture 96.27 ± 1.74 94.45 ± 1.92• 95.73 ± 1.88 95.05 ± 1.87• 93.65 ± 2.07• 94.45 ± 1.68•

Satimage 87.92 ± 2.53 87.49 ± 2.39 87.68 ± 2.61 87.67 ± 2.56 86.17 ± 2.96• 86.59 ± 2.83

ave. 93.02 88.91 90.64 90.25 89.59 90.86
(Win/Tie/Loss) (0/2/7) (0/2/7) (0/2/7) (0/1/8) (0/2/7)

5.3 Influence of the Training Set Size

One might expect that the performance of RBFN combiner would be very poor
with small training sets. To study the influence of the training set size, we
evaluate the different tree combiners using only 40% of the available training set
(see Table 3). The significance is again indicated with bullets and open circles.
From the results, we conclude that sample size has no apparent influence on the
benefits of RBFN combiner because it still works very well with small samples.
That is, RBFN combiner significantly outperforms Hard, Product, DS, DT:S1

and DT:NM combiners in 8, 6, 7, 9, 7 of the nine domains, respectively.

5.4 Influence of the Number of Decision Templates per Class

In all the previous experiments, RBFN combiner was trained with 3 clustered de-
cision templates per class (c=3). To study the influence of the number of decision
templates per class, we measured test accuracies of the RBFN combiner using
one, 7, 10, 15 and 20 decision templates per class (see Table 4). The significance
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Table 3. Average test accuracy for different tree combiners, using 40% of training data

Dataset RBFN(c=3) Hard Product DS DT:S1 DT:NM
Fruits1 96.10 ± 1.88 94.74 ± 2.26• 94.95 ± 2.33 95.21 ± 2.31 94.31 ± 2.03• 95.24 ± 2.11
Fruits2 92.83 ± 3.11 90.62 ± 3.09• 89.86 ± 3.79• 90.31 ± 3.69• 90.05 ± 3.56• 90.69 ± 3.55•

COIL1 93.15 ± 2.27 86.83 ± 2.53• 88.68 ± 2.42• 88.54 ± 2.27• 86.96 ± 2.67• 89.35 ± 2.76•

COIL2 97.94 ± 1.14 93.93 ± 2.00• 95.82 ± 1.58• 95.46 ± 1.74• 91.88 ± 2.09• 94.61 ± 1.83•

Digits1 92.01 ± 1.81 82.09 ± 2.97• 86.58 ± 2.72• 85.10 ± 2.74• 89.95 ± 1.99• 90.30 ± 1.85•

Digits2 93.78 ± 1.64 91.27 ± 2.03• 91.68 ± 2.05• 91.90 ± 1.87• 91.49 ± 1.97• 92.72 ± 1.73•

Letters 78.21 ± 3.05 65.06 ± 4.06• 69.70 ± 3.43• 68.66 ± 3.66• 68.66 ± 3.49• 70.66 ± 3.79•

Texture 95.33 ± 1.89 93.53 ± 1.94• 94.33 ± 2.18 94.02 ± 2.01• 92.51 ± 2.41• 93.38 ± 2.15•

Satimage 87.32 ± 3.12 86.19 ± 2.93 86.58 ± 2.95 86.44 ± 2.98 85.70 ± 3.13• 86.06 ± 3.40

ave. 91.85 87.14 88.69 88.40 87.94 89.22
(Win/Tie/Loss) (0/1/8) (0/3/6) (0/2/7) (0/0/9) (0/2/7)

Table 4. Average test accuracy for RBF Network combiner with different number of
clustered decision templates per class (c), using 100% of training data

Dataset RBFN(c=3) RBFN(c=1) RBFN(c=7) RBFN(c=10) RBFN(c=15) RBFN(c=20)
Fruits1 97.05 ± 1.82 96.83 ± 1.87 97.31 ± 1.78 97.38 ± 1.61 97.52 ± 1.81 97.36 ± 1.76
Fruits2 94.90 ± 2.44 93.67 ± 2.81• 95.14 ± 2.42 95.24 ± 2.49 95.26 ± 2.58 95.55 ± 2.41
COIL1 93.89 ± 2.07 92.25 ± 2.17• 95.33 ± 1.90◦ 96.15 ± 1.83◦ 96.68 ± 1.71◦ 96.74 ± 1.61◦

COIL2 98.75 ± 0.86 97.12 ± 1.32• 99.57 ± 0.52◦ 99.76 ± 0.41◦ 99.88 ± 0.30◦ 99.92 ± 0.27◦

Digits1 93.58 ± 1.84 92.67 ± 1.98• 94.10 ± 1.71 94.20 ± 1.72 94.13 ± 1.66 94.26 ± 1.74
Digits2 94.46 ± 1.61 93.76 ± 1.67• 94.70 ± 1.50 94.78 ± 1.64 94.86 ± 1.63 94.96 ± 1.51
Letters 80.37 ± 2.74 75.14 ± 3.42• 83.93 ± 2.65◦ 85.06 ± 2.93◦ 86.36 ± 2.42◦ 87.27 ± 2.75◦

Texture 96.27 ± 1.74 95.13 ± 1.91• 96.93 ± 1.62 97.05 ± 1.50 97.25 ± 1.37 97.27 ± 1.54
Satimage 87.92 ± 2.53 87.59 ± 2.69 88.27 ± 2.35 88.20 ± 2.35 88.13 ± 2.26 87.92 ± 2.35

ave. 93.02 91.57 93.92 94.20 94.45 94.58
(Win/Tie/Loss) (0/2/7) (3/6/0) (3/6/0) (3/6/0) (3/6/0)

is again indicated with bullets and open circles. From the results, we can con-
clude that RBFN combiner with c >3 significantly outperforms RBFN with c=3
in only three data sets and the improvement is insignificant in the remaining do-
mains. In addition, RBFN combiner with c =3 significantly outperforms RBFN
with c=1 in seven of the nine tasks. Although the RBFN combiner with c=1 and
both Decision Templates combiners are trained with one decision template per
class, RBFN combiner outperforms both Decision Templates combiners (DT:S1

and DT:NM) due to its trainable output layer and nonlinear behaviour.

6 Conclusions

In this paper, we present a new soft trainable fusion method for tree-structured
multiple classifier systems used in problems with a large number of classes. The
proposed model integrates statistical information about the individual binary
classifier outputs (in the form of clustered decision templates) into an RBF net-
work combiner. Multivariate Gaussian function was used as similarity measure
to match a hierarchical decision profile with decision templates. Not only RBF
network was used as combiner but also it was used to construct the ensemble
classifiers. We conduct experiments on nine real-world multi-class object recog-
nition tasks including digits, letters, fruits and textures. The experiments have
shown that the RBF Network tree combiner significantly outperforms the three
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existing nontrainable tree combiners and the decision templates combiner pro-
posed by Kuncheva. We also demonstrate that this combiner is robust to changes
in the training set size and the number of decision templates per class.
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Abstract. We present a novel ensemble of logistic linear regressors that
combines the robustness of online Bayesian learning with the flexibility
of ensembles. The ensemble of classifiers are built on top of a Randomly
Varying Coefficient model designed for online regression with the fusion
of classifiers done at the level of regression before converting it into a class
label using a logistic link function. The locally weighted logistic regressor
is compared against the state-of-the-art methods to reveal its excellent
generalization performance with low time and space complexities.

1 Introduction

Research in classification has been dominated by kernel based methods like Sup-
port Vector Machine (SVM)[9] and more recently by non-parametric methods
like Gaussian Process Classification (GP)[6]. Non-parametric methods like GP
derives its success by using a covariance function of the input to model the de-
pendency amongst the responses. The response for a test input is then computed
as a linear smooth of all the training responses. This in turn leads to a large
overhead in the time and space complexities for training and prediction. The
need to store away all of the training points in order to produce a prediction
for an unseen input makes the kernel machines ill suited for online learning. On
the other hand ensemble learning paradigm is ideal for online learning where the
learning model has to adjust its complexity in tune with the training data. When
new data is observed from a new region of input space an ensemble learner can
add a new model to the region of space and adjust its parameters to model that
particular region of space. To implement such an ensemble we need classifiers
that have varying responsibilities in different regions of space and are able to
learn independent of each other. Conventional ensemble learners combine the
classifier predictions either by a majority voting or by linear combination of
the votes. This would not work when the ensembles have different levels of confi-
dence over the input space. The combined prediction would be more robust if the
predictions are weighted by confidence of individual classifiers before combining
them. In this paper we use a linear logistic regression as the base classifier with
Bayesian learning for the regression. The combination of the predictions is done
at the regression level wherein each learner is endowed with a predictive distri-
bution and the variances of the distribution are used to weigh the predictions of

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 102–111, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the base learners. The real valued output of the regression is then converted to a
class label using a logistic link function. In this paper we combine the robustness
and efficiency of a Bayesian learning with the flexibility of ensemble learning to
produce an online classifier that is able to adapt its complexity in tune with the
observed data. We reuse a Randomly Varying Coefficient model [3] designed for
regression to build our ensemble classifier system.

2 Randomly Varying Coefficient Model

The Randomly Varying Coefficient model approximates a multivariate non-linear
function using a set of local models. Each of the local models has a probabilistic
formulation with a parametric model for the linear fit and the extent of linearity
at a particular location in the input space. The strength of RVC arises from the
fact that the local models are trained independent of each other unlike [5]. Apart
from minimizing the interference between two models, this also allows models
to be dynamically allocated and deallocated without the need for relearning.
Furthermore, the probabilistic formulation of RVC provides an estimate of the
uncertainty in its prediction and allows Bayesian inference rules to be applied
in order to learn the parameters.The end result of an RVC is a set of linear
regression models distributed in the input space that have different confidence
in their predictions in different regions of the input space.

3 Local Logistic Regression

In this section, we introduce the probabilistic model for a locally weighted logistic
regression based on the probabilistic formulation of RVC called the logistic RVC
(lRVC). Here, the probability of a binary class variable zi is modeled as the
output of a logistic link function over a continuous latent variable yi as :

p(zi = 1|yi) = 1/(1 + exp(−yi)), i = 1 . . . N (1)

where i is the index over the training data. In turn, the latent variable yi is
modeled as the response of a locally linear regression that follows the RVC
formulation. For a locally linear region centered around xc a conditional model
for the continuous latent variable yi can be written as:

yi = βT
i xi + ε (2)

where xi ≡ [(x′
i − xc)T , 1]T represents the center subtracted, bias augmented

d dimensional input vector, βi ≡ [β(1)
i . . . β

(d+1)
i ]T represents the corresponding

regression coefficient and ε ∼ N (0, σ2) is the Gaussian mean zero noise with a
variance σ2. Crucially the latent regression coefficient βi has a Gaussian distri-
bution :

βi ∼ N (β̂,Ci) (3)

where the magnitude of the covariance Ci is made proportional to the distance
of x′

i from the center by modeling it as a diagonal covariance with the elements
being a quadratic function of the input :

Ci(j, j) = xT
i xi/h2

j , j = 1 . . . d (4)
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This has the effect that for points that lie near the center, the latent regression
coefficients βi have similar values, with the distribution of βi being peaked
around β̂. This in turn results in a linear region around the center.

Proceeding along the same lines as Chapter 3 of [6] we now assume a noise-free
latent variable yi by setting σ2 to zero. Setting σ2 to zero yields the following
model for yi :

yi ∼ N (βT
i xi, 0) (5)

or equivalently marginalizing yi :

p(zi = 1|βi) = 1/(1 + exp(−βT
i xi)) (6)

which corresponds to the classical formulation of a linear logistic regression with
regression coefficients βi.

We preserve the same probabilistic model as the original RVC for the rest of
parameters. This includes a Gamma distribution as a regularizer prior over the
bandwidth parameters :

h2
j ∼ Gamma(aj , bj) (7)

and a noninformative Normal prior N (μ,S) for the parameter β̂.
We can now infer the posterior distribution over the parameters of the model

using a Variational Bayesian EM similar to [3]. In this procedure, the posterior
distribution over the parameters are assumed to be independent and these distri-
butions are iteratively determined one at a time by fixing all other distributions.

For a logistic regression, an additional complication arises in the computation
of the posterior distribution over the hidden variables βi. The likelihood term
P (zi|βi) is given by a logistic link function whereas the prior over βi is Gaussian
and is not conjugate to the likelihood term. We solve this issue by using a
Laplacian approximation to approximate the posterior over βi by a Gaussian
distribution. The log posterior over the hidden variable βi is given by :

M = ln Q(βi|z) = ln P (zi|βi) +
〈
lnP (βi|β̂,Ci)

〉
Q(β̂),Q(h)

− ln

∫
exp

(
ln P (zi|βi) +

〈
ln P (βi|β̂,Ci)

〉
Q(β̂),Q(h)

) (8)

Laplace approximation of the posterior corresponds to

Q(βi|z) ∼ N (ν i,Gi)

where νi = argmaxβi
M and G−1

i = −∇∇M|βi=νi is the Hessian of the nega-
tive log posterior. The posterior mode νi can be obtained by setting the gradient
of M to zero. However, this procedure does not yield a closed form solution for
the posterior mode νi. We then have to resort to Newton’s update to find the
mode iteratively as shown :

νi = νold
i − (∇∇M)−1∇M (9)

Substituting the forms of P (βi|β̂,Ci) and P (zi|βi) from eqs. (3) and (6) into
eq. (8) and differentiating it with respect to βi we get :

∇M |βi=νold
i

= xi(zi − πi) − 〈Ci〉−1 (νold
i − μ̃) (10)

∇∇M |βi=νold
i

= −xix
T
i πi(1 − πi) − 〈Ci〉−1 (11)
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Algorithm 1. Training a local model

1: Initialize hyperparameters: Θ ≡ {μ0,S,a,b}.
2: Input: Batch training data X, z
3: repeat
4: Initialize νold

i = μ̃, πi = 1/(1 + exp(−xT
i νold

i )) and wi = 1
πi(1−πi)

.

5: Estimate posterior hyperparameters Θ̃ using Θ and eqs. (13) - (16).
6: Estimate values of the hyperparameters a and b of the regularizer prior using

eq. (17).
7: until convergence of Θ̃

where πi = 1/(1 + exp(−xT
i νold

i )) and 〈Ci〉 = diag(xT
i xi/

〈
h2

j

〉
Q(h2

j)
). It can be

found from eq. (11) that G−1
i = −∇∇M = xixT

i πi(1 − πi) + 〈Ci〉−1 and the
estimate for νi can be obtained by substituting eqs. (10) and (11) in eq. (9)
yielding :

νi = νold
i + Gi(xi(zi − πi) − 〈Ci〉−1 (νold

i − μ̃)) (12)

which can be simplified using Sherman-Morrison Woodbury theorem to yield :

Gi = 〈Ci〉 − 〈Ci〉xix
T
i 〈Ci〉

wi + xT
i 〈Ci〉xi

(13)

ν i =
〈Ci〉xi

(wi + xT
i 〈Ci〉xi)

((zi − πi)wi + xT
i νold

i − xT
i μ̃) + μ̃ (14)

where wi = 1
πi(1−πi)

.

Posterior over β̂ based on its likelihood and prior can be derived similar to [3] :

Q(β̂|z) ∼ N (μ̃, S̃)

where
S̃ = (

∑
i

〈Ci〉−1 + S−1)−1, μ̃ = S̃(
∑

i

〈Ci〉−1 νi + S−1μ) (15)

Similarly, the posterior over hj is given by :

Q(h2
j |z) ∼ Gamma(ãj , b̃j)

where

ãj = aj + N/2, b̃j = bj +
∑

i

[
(νi,j − μ̃i,j)

2 + Gi,jj + S̃jj

]
/2xT

i xi (16)

and the optimal values for aj and bj are obtained by an update rule given by -

aj = ãj , bj = b̃j (17)

Hence, posterior parameters are inferred by using a partial Newton step to infer
the posterior of βi followed by EM updates as shown in Algorithm 1.

We observe from the training updates that the base classifier is extremely
efficient with a complexity of O(dMN) for training, where d is the number of
dimensions of the input space, M the number of local models and N the number
of training instances.
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4 Prediction

Using the learning procedure discussed in the previous section we obtain in-
dependently trained local models of the logistic regression. Each of the local
models represent a separate classifier with a linear decision boundary. To obtain
an aggregate prediction for a particular query input we need to combine these
classifiers.

Ensemble learning has been a field of research which has seen considerable
amount of research into the ways of combining classifiers [4]. In this paper, we
use the same technique as RVC - combining the linear regressors to produce a
non-linear regression model followed a logistic transform to obtain a classifier.

Given the ensemble of trained local experts, in order to predict the response
yq for a new query point xq, we take the normalized product of the predic-
tive distribution of each local expert. This is similar to the predictive routine
in Bayesian Committee Machines [8]. The predictive distribution of each local
expert is given by:

yq,k ∼ N (μ̃T xq,k,xq,k
T (S̃k + Ckhmode

)xq,k)

where xq,k refers to the query point with the k-th center subtracted and aug-
mented with bias. Blending the prediction of different experts by taking their
product and normalizing it results in a Normal distribution given by:

yq ∼ N (μ, ζ2) where μ =

∑
k αkμ̃T

k xq,k∑
k αk

, ζ2 =
1∑
k αk

. (18)

Here, μ is a sum of the means of each individual expert weighted by the confi-
dence expressed by each expert in its own prediction αk, ζ2 is the variance and
αk is the precision of each expert:

αk = 1/(xT
q,k(S̃k + Ck)xq,k) (19)

The predictive probability for the logistic regression can be obtained by com-
bining the predictive probability of the latent variable yq with the link function
and marginalizing the latent variable to yield :

P (zq = 1|z) =

∫
P (zq = 1|yq)P (yq|z)dyq (20)

where P (zq = 1|yq) is a logistic function and P (yq|z) is the predictive distribution
given by eq. (18). The integral given in eq. (20) cannot be evaluated analytically
and we must rely on numerical methods or sampling to evaluate the integral.
In the context of binary classification if we threshold the predictive probability
at 1

2 in order to discriminate between classes, a maximum aposteriori(MAP)
prediction would be the same as an averaged prediction as shown in [1] and
explained in [6]. Therefore we use MAP predictive estimate for classification. To
obtain the MAP prediction we evaluate the integral in eq. (20) by approximating
P (yq|z) by a delta function at its mode. The prediction routine is listed in
Algorithm 2.
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Algorithm 2. Global prediction using local models

1: Input: Query point xq

2: Initialize: sumα = 0, yq = 0
3: for k = 1 to #local models do
4: xq,k = xq − xc,k

5: Calculate αk using eq. (19)
6: yq = yq + αkμ̃T

k xq,k

7: sumα = sumα + αk

8: end for
9: yq = yq/sumα

10: Output : P (zq = 1) = 1/(1 + exp(−yq))

5 Online Classification

We can use the same technique as in the original RVC [3] to convert the batch
updates derived earlier into online updates. For this we make use of the fact that
in a Bayesian inference posterior is given by :

posteriorN =

N∏
i

(likelihoodi) × prior0

where i is an index over the data points. The same can be expressed as a set of
online updates :

posteriori ∝ likelihoodi × priori ; priori+1 = posteriori

This set of updates implies that at every step of the online update the prior com-
puted over the data seen so far is combined with the likelihood of the current data
point to yield the posterior.This newposterior distribution of the parameter is then
used as the prior during the next update. Based on this, we can derive the online
updates for the logistic RVC that correspond to the batch results derived earlier :

S̃i = (〈Ci〉−1 + S−1
i )−1 (21)

μ̃i = S̃i(〈Ci〉−1 νi + S−1
i μi) (22)

ãi,j = ai,j + 1/2 (23)

b̃i,j = bi,j +
[
(νi,j − μ̃i,j)

2 + Gi,jj + S̃i,jj

]
/(2xT

i xi) (24)

where νi and Gi are given by eq. (13). We repeat the above updates for a single
data point {xi,yi} till the posteriors Θ̃ ≡ {S̃, μ̃, ã, b̃} converge. For the (i+1)-th
point, we then use posterior Θ̃ of i-th step as the prior Θ ≡ {S, μ, a,b}.

When learning from data in an online fashion, we need to dynamically adapt
the model complexity of the learning to reflect the complexity of the data be-
ing modeled. This can be accomplished by adding and deleting local models
depending on whether we need to increase the model complexity or decrease it.
We employ a heuristic similar to [3] for addition and deletion of models. Here
a new local model is added when the predictive probability of a class falls be-
low a certain threshold. A local model is pruned when there is sufficient overlap
between the local regions of two local models.
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6 Evaluation

Before we proceed to detailed evaluation experiments, we need to specify the
evaluation measures that would be used to compare different classifiers. We
compare classifiers based on two different measures - misclassification error and
target information. The former is the often used loss function that measures the
mean number of misclassifications produced by a classifier on a test set. The
target information criteria refers to a loss function that takes into account the
confidence expressed by the classifier about its prediction. The loss function is
given by :

I =
1

N

[∑
zi=1

log2(P (zi = 1|xq
i )) +

∑
zi=0

log2(1 − P (zi = 1|xq
i ))

]
+ 1 (25)

and it measures in bits, the information conveyed by the classifier about the
test target. For a baseline classifier that assigns classes at random I → 0 and
for a more confident discrimination of classes I → 1. It must be noted that
this measure has a strong penalty for confident misclassification and can lead to
I < 0.

6.1 Comparison of Generalization Performance and Efficiency of
Learning

In the first evaluation, we compare the generalization performance of lRVC
against a Gaussian Process classifier with squared exponential covariance func-
tion and a baseline probabilistic linear logistic regressor. The lRVC used in the
evaluation used around 20 local models initialised at the cluster centers in the
input space. The Gaussian process uses a square exponential kernel and a lo-
gistic link function. Hyperparameters of the GP are learnt using a gradient
descent. The two classifiers are compared on different benchmark datasets listed
in Table 1. The Breast cancer, Heart (Cleveland) and the Ionosphere dataset
were obtained from the UCI repository, Pima and synthetic datasets are the
same as the ones used in [7]1. The USPS dataset corresponds to the digit dis-
crimination task listed in [6]. The Catalysis and Gatineau datasets were obtained
from the predictive uncertainty challenge 2 were the validation set has been used
as test set. The evaluations on the datasets obtained from UCI was carried out
on 10 train-test splits of the data and the mean and standard deviations are re-
ported here. For all other datasets a single train-test trial was carried out using
the train and test files provided. This makes it possible to compare other classi-
fiers that have previously used the latter datasets. For the Gatineau dataset GP
was trained using a subset of 1000 training points due to practical considerations
of time and space complexity. The evaluation statistics are listed in Table 2. Also
shown in the table is the results for a LIBSVM[2] (with an RBF kernel) eval-
uation over the same datasets with the parameters being chosen using a 5 fold

1 The datasets can be obtained from http://www.stats.ox.ac.uk/pub/PRNN/
2 http://predict.kyb.tuebingen.mpg.de/pages/home.php
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Table 1. Statistics of the benchmark datasets

Dataset #train pts. #test pts #dim

Breast cancer 142 427 30
Heart(Cleveland) 149 148 13
Ionosphere 175 176 33
Pima 200 332 7
Synthetic 250 1000 2
USPS(3-5) 767 773 256
Catalysis 873 300 617
Gatineau 3000 2176 1092

Table 2. Performance comparison between lRVC and GP in terms of the misclassifica-
tion error rate and the target information (measured in bits) conveyed by the classifier.
The values in parenthesis indicate the standard deviation.

lRVC GP Linear SVM
Error Information Error Information Error Information Error

Breast 0.028(0.007) 0.807(0.010) 0.026(0.009) 0.805(0.045) 0.042(0.014) 0.797(0.050) 0.028(0.009)
Heart 0.166(0.017) 0.432(0.049) 0.169(0.017) 0.423(0.039) 0.173(0.024) 0.388(0.113) 0.173(0.022)
Ionosphere 0.152(0.027) 0.338(0.170) 0.123(0.025) 0.535(0.054) 0.163(0.027) -2.288(0.963) 0.078(0.025)
Pima 0.202 0.361 0.222 0.276 0.198 0.364 0.198
Synthetic 0.100 0.649 0.093 0.658 0.114 0.611 0.100
USPS(3-5) 0.045 0.798 0.025 0.794 0.040 0.476 0.023
Catalysis 0.303 0.143 0.303 0.150 0.343 -3.516 0.323
Gatineau 0.090 0.570 0.090 0.588 0.154 -0.484 0.090

cross validation. The comparison for SVM is restricted to the misclassification
error since SVM does not provide a predictive probability. One can see from the
results that lRVC is able to match the performance of GP for all the datasets
and outperforms the baseline linear classifier especially when the target infor-
mation is used for the comparison. It must be noted that while lRVC used only
a small number of local models for prediction, GP used all of the training set
for training and prediction. To emphasize this difference Table 3 shows the time
taken by lRVC and GP for training and prediction on a dataset consisting of
the USPS digit 3 classified against the rest of the digits. lRVC can be seen to
achieve a good generalization performance with a low overhead.

6.2 Use of Predictive Confidence Bounds for Rejection

In the next evaluation, we evaluate the confidence bounds learnt by lRVC by
plotting the relation between the reject rate, the misclassification error and the
target information. In this experiment the first and second moments for the
predictive probability were computed by using sampling to evaluate the integral
in eq. (20). The test samples which had a variance above a threshold were rejected
and the misclassification error was evaluated for the rest of the test data. The
dataset used for this purpose was the USPS data. The misclassification error
typically decreases as test samples are rejected and an ideal classifier would have
a larger reduction in the misclassification error with respect to the rejection rate.
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Table 3. Comparison between the time taken for training and prediction using a
Matlab implementation of lRVC and GP on the USPS dataset

Method 0 1 2 4 5 6 7 8 9
# training pts. 1173 1028 881 815 767 826 796 783 828
# testing pts. 1204 1065 872 861 773 832 820 749 817

GP

Error 0.011 0.002 0.018 0.005 0.026 0 0.002 0.025 0.006
Information 0.894 0.903 0.863 0.869 0.794 0.886 0.868 0.855 0.849
Train time(sec) 1915.9 1475.8 1020.8 877.0 911.4 963.7 919.9 845.8 993.0
Test time(sec) 47.8 37.6 25.0 22.1 20.2 23.8 23.4 20.5 24.4

lRVC

Error 0.009 0.005 0.022 0.005 0.045 0.003 0.009 0.032 0.012
Information 0.944 0.960 0.886 0.966 0.798 0.972 0.955 0.883 0.946
Train time(sec) 582.59 509.67 440.44 402.23 382.08 400.75 370.25 363.13 383.42
Test time(sec) 0.87 0.74 0.61 0.61 0.55 0.55 0.54 0.49 0.55
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Fig. 1. (a) Comparison of error-reject curve for lRVC and GP (b) Online learning
dynamics of lRVC compared with GP. The plots are the average performance over 10
trials of different orders of data presentations.

The error and the target information versus the rejection rate for lRVC, GP and
the Bayesian linear logistic regressor were evaluated and plotted in fig. (1(a)).
It can be seen that lRVC’s performance exceeds that of the linear classifier by a
large margin and is not significantly different from GP.

6.3 Dynamics of Online Learning

In the last evaluation, we use the online updates derived in Section 5 to learn
a classifier on the synthetic dataset. The data points are presented to the on-
line learner one at a time and the misclassification error is evaluated over the
test data after each training update. The dynamics of the learning process is
shown in fig. (1(b)). The learning dynamics is compared with the generalization
performance of GP which uses increasing number of training data points and
the corresponding test error at each stage is displayed. It can be seen from the
figure that online version of lRVC exhibits fast convergence and matches the
performance of GP asymptotically.
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7 Discussion

Local logistic regression is a very competitive method as can be seen from the re-
sults of the evaluation. The result makes it more significant when we take it into
account that the logistic regression is able to achieve such a good performance
using a small number of local models. Moreover the time and space efficiency is
linear in terms of the data points and the dimension. In contrast, kernel classi-
fication paradigms like GP and SVM have a much higher overhead in training
and testing.

The logistic regression formulation in this paper is restricted to binary classi-
fication. It can be easily extended to a multi-class classification using a softmax
link function instead of a logistic link function. The treatment of the learning
remains the same in that case too.

In conclusion, the contribution of this paper has been a probabilistic formu-
lation of a local linear logistic regressor that combines the modeling guarantees
of a Bayesian method with the efficiency of an ensemble learner thus making it
ideal candidate for online real-time learning.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Claredon Press (1995)
2. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001),

http://www.csie.ntu.edu.tw/~cjlin/libsvm

3. Edakunni, N.U., Schaal, S., Vijayakumar, S.: Kernel carpentry for online regression
using randomly varying coefficient model. In: International Joint Conference on
Artificial Intelligence, pp. 762–767 (2007)

4. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

5. Nikunj, C.: Oza and Stuart Russell. Online bagging and boosting. In: Artificial
Intelligence and Statistics, pp. 105–112 (2001)

6. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press, Cambridge (2006)

7. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge (1996)

8. Tresp, V.: A Bayesian committee machine. Neural Computation 12(11), 2719–2741
(2000)

9. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


Regularized Linear Models

in Stacked Generalization
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Abstract. Stacked generalization is a flexible method for multiple clas-
sifier combination; however, it tends to overfit unless the combiner func-
tion is sufficiently smooth. Previous studies attempt to avoid overfitting
by using a linear function at the combiner level. This paper demonstrates
experimentally that even with a linear combination function, regulariza-
tion is necessary to reduce overfitting and increase predictive accuracy.
The standard linear least squares regression can be regularized with an
L2 penalty (Ridge regression), an L1 penalty (lasso regression) or a com-
bination of the two (elastic net regression). In multi-class classification,
sparse linear models select and combine individual predicted probabil-
ities instead of using complete probability distributions, allowing base
classifiers to specialize in subproblems corresponding to different classes.

1 Introduction

Multiple classifier systems combine the predictions of many classifiers to produce
the ensemble prediction [1, 2, 3]. Simple techniques such as voting or averaging
can improve predictive accuracy by combining diverse classifiers [4]. More so-
phisticated ensemble techniques, such as ensemble selection, train a combina-
tion function in order to account for the strengths and weaknesses of the base
classifiers and to produce a more accurate ensemble model [5].

Stacked generalization is a flexible method for multiple classifier systems in
which the outputs of the base-level classifiers are viewed as data points in a new
feature space, and are used to train a combiner function [6]1. Ting and Witten [7]
applied stacked generalization to classification problems, and found that a multi-
ple response linear combiner outperformed several nonlinear combiners on their
problem domains and selection of base classifiers. They also showed that in classi-
fication problems, it is more effective to combine predicted posterior probabilities
for class membership than class predictions.

Caruana et al. [5] evaluated stacked generalization with logistic regression
with thousands of classifiers on binary classification problems, and reported that
stacked generalization tended to overfit, resulting in poor overall performance.
In this paper, we remedy this overfitting and improve overall generalization
accuracy through regularization.
1 Wolpert introduced the ideas of internal cross-validation and trainable combiner

functions together in his article; we use the term ‘stacked generalization’ to refer to
the latter.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 112–121, 2009.
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Regularization attempts to improve predictive accuracy by reducing variance
error at the cost of slightly increased bias error–this is known as the bias-variance
tradeoff [8]. In this paper, regularization is applied to linear stacked generaliza-
tion for multi-class classification in order to improve predictive accuracy. In
particular, Ridge regression [8], lasso regression [8], and elastic net regression [9]
are used to regularize the regression model by shrinking the model parameters.
Lasso regression and some settings of elastic net regression generate sparse mod-
els, selecting many of the weights to be zero. This means each class prediction
may be produced by a different subset of base classifiers.

In our experiments, many classification algorithms and many parameter set-
tings are used to build a library of base models as in Caruana et al. [10]. We also
perform resampling at the ensemble level in order to obtain more statistically
reliable estimates of performance without the expense of retraining base classi-
fiers. We look at the correspondence between performance on subproblems and
overall classifier performance, and interpret the behavior of sparse linear models
in stacked generalization.

This paper is organized as follows: Section 2.1 formally describes stacked
generalization, including usage of indicator functions to transform the multi-
class problem into several regression problems and the class-conscious extension,
StackingC. Section 2.2 describes linear regression, Ridge regression, lasso regres-
sion and elastic net regression, which are used to solve the indicator subproblems
in stacked generalization. Section 3 describes empirical studies that indicate the
advantage of regularization. Section 4 discusses the results and Section 5 con-
cludes with a summary and future work.

2 Model

2.1 Stacked Generalization

Given a set of L classifiers ŷi(x|θ), i = 1..L, the predictions of each classifier on
a validation dataset Dval are aggregated and combined with the known labels to
create a meta-level training dataset D′

val. The combiner function is then trained
on this meta-level validation dataset. Given a test point, the predictions of all
base-level classifiers are combined to produce a new data point x′

i. The combiner
function is evaluated at the new data point x′

i, and its output is taken as the
ensemble output. Formally, the ensemble prediction of stacked generalization is
given by sg(x) = c(y11(x), ..., y1K(x), ..., yL1(x), ..., yLK(x)), where x is the test
point, c is the classifier combiner function and ylk is the posterior prediction of
the lth classifier on the kth class. Following Ting and Witten, a regression func-
tion can be used at the meta-level by constructing one regression subproblem
per class with an indicator function [7]. At prediction time, the class correspond-
ing to the subproblem model with the highest output is taken as the ensemble
output. A more general discussion of reducing classification to linear regression
problems is given in Hastie et al. [8].

The most general form of stacked generalization includes all outputs
from all base classifiers. To simplify the problem, Seewald recommends using a
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class-conscious approach in which each indicator model is trained using predic-
tions on the indicated class only, called StackingC [11]. Formally, the StackingC
class prediction is given by sc(x) = argmaxk rk(y1k(x), ..., yLk(x)), where x is
the test point, k = 1..K is an index over classes, rk is the regression model
for the indicator problem corresponding to the kth class and ylk is the pos-
terior prediction of the lth classifier for the kth class. Ting and Witten report
that StackingC gives comparable predictive accuracy while running considerably
faster than stacked generalization [7], and Seewald also reports increased pre-
dictive accuracy. Based on these arguments, the experiments in this paper use
StackingC rather than complete stacked generalization.

2.2 Linear Models and Regularization

The least squares solution is given by ŷ = β̂x, where β̂ = argminβ

∑N
i=1(yi −

β0 −
∑p

j=1 xijβj)2. Here β̂ is the vector of model parameters determined by the
regression, N is the number of training data points, yi is the true output on data
point i, xij is the jth feature of the ith data point, and p is the number of input
dimensions for the problem. In StackingC, the features are predicted probabilities
from base classifiers. When the linear regression problem is underdetermined,
there are many possible solutions. This can occur when the dimensionality of
the meta-feature space L is larger than the effective rank of the input matrix (at
most N), where L is the number of classifiers and N is the number of training
points. In this case, it is possible to choose a basic solution, which has at most
m nonzero components, where m is the effective rank of the input matrix.

Ridge regression augments the linear least squares problem with an L2-norm
constraint: PR =

∑p
j=1 β2

j ≤ s. This has the effect of conditioning the matrix in-
version problem by adding a constant k to the diagonal: β = (XT X+kI)−1XT y.
There is a one-to-one correspondence between s and k [8].

Lasso regression augments the linear least squares problem with an L1-norm
constraint: Pl =

∑p
j=1 |βj | ≤ t. The L1-norm constraint makes the optimization

problem nonlinear in yi, and quadratic programming is typically used to solve
the problem. Unlike Ridge regression, lasso regression tends to force some model
parameters to be identically zero if the constraint t is tight enough, thus resulting
in sparse solutions.

Zou and Hastie describe a convex combination of the Ridge and lasso penal-
ties called the elastic net [9]. The penalty term is given by Pen(β|α) = (1 −
α)1

2 ||β||2l2 + α||β||l1, where 0 ≤ α ≤ 1 controls the amount of sparsity. The elas-
tic net is particularly effective when the number of predictors p (or classifiers
in StackingC) is larger than the number of training points n. The elastic net
performs groupwise selection when there are many correlated features (unlike
the lasso, which instead tends to select a single feature under the same circum-
stances). When there are many excellent classifiers to combine, their outputs
will be highly correlated, and the elastic-net will be able to perform groupwise
selection.
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3 Experimental Studies

For empirical evaluations, we selected publicly available datasets with numer-
ical attributes and k ≥ 3 classes. Table 1 indicates the datasets and relevant
properties. For the 26-class letter dataset, we randomly subsampled a stratified
selection of 4000 points.

Table 1. Datasets and their properties

Dataset Attributes Instances Classes

balance-scale 4 625 3
glass 9 214 6
letter 16 4000 26

mfeat-morphological 6 2000 10
optdigits 64 5620 10

sat-image 36 6435 6
segment 19 2310 7
vehicle 18 846 4

waveform-5000 40 5000 3
yeast 8 1484 10

Approximately half the data points (with stratified samples) in each prob-
lem are used for training the base classifiers. The remaining data is split into
approximately equal disjoint segments for model selection at the ensemble level
(e.g. stacking training data or select-best data) and test data, again in stratified
samples. In a real-world application, the base classifiers would be re-trained us-
ing the combination of base-level data and validation data once ensemble-level
hyperparameters are determined, but this is not done in our studies due to the
expense of model library construction.

Previous studies with L ≥ 1000 classifiers obtain one sample per problem, with
no resampling due to the expense of model library creation, such as in Caruana et
al. [5]; we partially overcome this problem by resampling at the ensemble training
stages. In particular, we use Dietterich’s 5x2 cross-validation resampling [12] over
the ensemble training data and test data. We use the Wilcoxon signed-rank test for
identifying statistical significance of the results, since the accuracies are unlikely
to be normally distributed [13].

We generate around 1000 classifiers, including neural networks, support vector
machines, k-nearest neighbors, decision stumps, decision trees, random forests,
and adaboost.m1 and bagging models. See the Appendix for full details on con-
struction of base classifiers. Source code and data sets are available at http://
spot.colorado.edu/~reids/reg-09/

3.1 Ensemble Techniques

As a baseline for comparison, we select the best classifier as identified by accu-
racy on the held-out ensemble training set (select-best). We also compare our

http://
spot.colorado.edu/~reids/reg-09/
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linear models to voting (vote) and averaging (average) techniques. The Stack-
ingC approaches are denoted sg-linear, sg-ridge and sg-lasso.

For the majority of our datasets, there are more linear regression attributes
p (same as the number of classifiers L) than data points n (equal to the number
of stacking training points, roughly N

4 )2. To solve this underdetermined system
without resorting to the typical Ridge solution, we choose a basic solution as
implemented in the Matlab mldivide function.

In order to select the Ridge regression penalty, we search over a coarse grid of
λ = {0.0001, 0.01, 0.1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} using cross-
validation, then use all validation data to train the ridge regression model with
the selected penalty parameter. We use the Matlab implementation of Ridge re-
gression from the Matlab Statistics Toolbox. Parameters are selected by
cross-validation for each subproblem rather than choosing a single λ for all sub-
problems. For example, the regularization hyperparameter for the first indicator
problem λ1 may differ from λ2. For lasso regression, we use the LARS software
by Efron and Hastie [14], and search over a grid of fraction = 0 to 1 in incre-
ments of 0.01 to select the regularization penalty term by cross-validation for
each subproblem. We search over a finer grid in sg-lasso than in sg-ridge since
model selection is much more efficient in LARS. For the elastic net, we use the
glmnet package written by Friedman, Hastie and Tibshirani and described in
the corresponding technical report [15].

4 Results

The test set accuracies of all ensemble methods are shown in Table 2. Each
entry in this table is an average over 10 folds of Dietterich’s 5x2 cross-validation
[12] over ensemble training/validation data. According to the pairwise Wilcoxon

Table 2. Accuracy of each model for each data set. Entries are averages over
the 10 samples from Dietterich’s 5x2 cross-validation at the ensemble level. Variances
are omitted based on arguments in Demšar [13]. See Section 3 for a description of the
methods and Section 4 for discussion.

Dataset select − best vote average sg− linear sg − lasso sg − ridge

balance-scale 0.9872 0.9234 0.9265 0.9399 0.9610 0.9796
glass 0.6689 0.5887 0.6167 0.5275 0.6429 0.7271
letter 0.8747 0.8400 0.8565 0.5787 0.6410 0.9002
mfeat-m 0.7426 0.7390 0.7320 0.4534 0.4712 0.7670
optdigits 0.9893 0.9847 0.9858 0.9851 0.9660 0.9899
sat-image 0.9140 0.8906 0.9024 0.8597 0.8940 0.9257
segment 0.9768 0.9567 0.9654 0.9176 0.6147 0.9799
vehicle 0.7905 0.7991 0.8133 0.6312 0.7716 0.8142
waveform 0.8534 0.8584 0.8624 0.7230 0.6263 0.8599
yeast 0.6205 0.6024 0.6105 0.2892 0.4218 0.5970

2 The waveform, letter, optdigits and sat-image datasets are exceptions.
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signed-ranks test [13], Ridge regression StackingC outperforms unregularized
linear regression StackingC at p ≤ 0.002. Select-best outperforms both unregu-
larized and lasso regression StackingC at p ≤ 0.002. Ridge regression StackingC
outperforms select-best at p ≤ 0.084, and has more wins than any other algo-
rithm. On two problems, select-best outperforms all model combination methods.
On all problems, sg-linear and sg-lasso perform less accurately than sg-ridge;
this suggests that it may be more productive to assign nonzero weights to all
posterior predictions when combining several base classifiers.

To study the effect of regularization on each subproblem, we plot the root
mean squared error for a particular indicator subproblem as a function of the
regularization penalty hyperparameter. Computation of a reasonable composite
value over all data sets is difficult due to incommensurability of the problems,
so we restrict our focus to a particular subproblem3. Figure 1(a) shows the root
mean squared error in the first subproblem in the sat-image dataset4. As the
ridge penalty λ increases from 10−8 to 103, the error decreases by more than 10%.
With such a small penalty term, the error at 10−8 roughly corresponds to the
error that would be obtained by unregularized linear regression. For individual
subproblems, therefore, regularization dramatically improves performance.

Figure 1(b) shows the overall accuracy of the multi-response linear regression
with Ridge regularization for the sat-image dataset. Regularization increases the
accuracy of the overall model by about 6.5%, peaking around λ = 103. As the
penalty is increased beyond 103 (not pictured), the accuracy decreases, reaching
0.24, the proportion of the predominant class, around λ = 108. Please note that
in this figure, λ is the same for all subproblems.

Figure 1(c) shows the correlation between the accuracy of the overall multi-
response linear regression system and the root mean squared error on the first
subproblem. The fit is approximately linear, with a = −0.408e + 0.957, where a
is the accuracy of the multiclass classifier and e is the RMSE of the classifier on
the first indicator subproblem.

Figure 2(a) shows the overall accuracy of the multi-response linear regression
system as a function of the penalty term for lasso regression for the sat-image
problem. Standard errors over the 10 folds are indicated. As in the Ridge regres-
sion case, λ is the same over all subproblems in this figure. The accuracy falls
dramatically as the penalty increases beyond 0.2, stabilizing after λ = 0.50 at
an accuracy of 0.24, the proportion of the predominant class.

In order to view the effect of the elastic net’s mixing parameter α on the ac-
curacy of the multi-response system, accuracy vs penalty curves are plotted in
Figure 2(b) for α = {0.05, 0.5, 0.95}. The α = 1.0 curve indicated in Figure 2(a)
is highly similar to the α = 0.95 curve, and therefore omitted from Figure 2(b) for
clarity. With a small penalty term λ ≤ 10−1, the curves are constant, and within
one standard deviation of the select-best curve. As the penalty increases, the ac-
curacy reaches a maximum that is dependent on α, with higher α values yielding

3 Results are qualitatively similar for other subproblems.
4 The root mean squared error is used instead of the accuracy because the subproblem

in multi-response is a regression problem.
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higher accuracy at smaller penalty values. In this case, fine-tuned regularization
increases accuracy by about 1.5%.

In Ridge-regularized stacked generalization, all predictors are given some por-
tion of the total weight. In lasso regression and some settings of elastic net re-
gression, it is possible to obtain a sparse model in which many weights are iden-
tically zero. This reduces computational demand at prediction time and makes it
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Fig. 1. Figure 1(a) shows root mean squared error for the indicator problem for the
first class in the sat-image problem. Figure 1(b) shows overall accuracy as a function
of the Ridge parameter for sat-image. The error bars indicate one standard deviation
over the 10 samples of Dietterich’s 5x2 cross validation. Figure 1(c) shows the accuracy
of the multi-response linear regression system as a function of mean squared error on
the first class indicator subproblem for Ridge regression.

Table 3. Selected posterior probabilities and corresponding weights for the sat-image
problem for elastic net StackingC with α = 0.95. Only the 6 models with highest
total weights are shown here. ann indicates a single-hidden-layer neural network, and
corresponding momentum, number of hidden units, and number of epochs in training.

Classifier class − 1 class − 2 class − 3 class − 4 class − 5 class − 6 total

adaboost-500 0.063 0 0.014 0.000 0.0226 0 0.100
ann-0.5-32-1000 0 0 0.061 0.035 0 0.004 0.100
ann-0.5-16-500 0.039 0 0 0.018 0.009 0.034 0.101
ann-0.9-16-500 0.002 0.082 0 0 0.007 0.016 0.108
ann-0.5-32-500 0.000 0.075 0 0.100 0.027 0 0.111

knn-1 0 0 0.076 0.065 0.008 0.097 0.246
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Fig. 2. Overall accuracy of the multi-response linear regression system as a function of
the penalty term for lasso regression for the sat-image problem, with standard errors
indicated in Figure 2(a). Figure 2(b) shows accuracy of the multi-response linear re-
gression system as a function of the penalty term for α = {0.05, 0.5, 0.95} for the elastic
net for sat-image. The constant line indicates the accuracy of the classifier chosen by
select-best. Error bars have been omitted for clarity, but do not differ qualitatively from
those shown in Figure 2(a).
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Fig. 3. Coefficient profiles for the first three subproblems in StackingC for the sat-
image dataset with elastic net regression at α = 0.95. This is over a single partition of
ensemble training and testing data.

possible to identify a small subset of base classifiers and predictions that are re-
sponsible for making the overall prediction. Figure 3 shows the coefficient profiles
for the sat-image dataset, for classes 1-3 with elastic net regularized StackingC
with α = 0.95. The optimal value of λ according to overall classification accu-
racy is shown as a vertical line. At λ = λopt, only 244 of the 999 classifiers are
assigned weight for any of the subproblems. Table 3 shows the 6 classifiers with
the highest total sum of weights for all classes. Sparse models obtained by L1-
regularized linear regression can choose different classifiers for each class–that
is, classwise posterior predictions are selected instead of complete classifiers. For
instance, the classifier assigned the most total weight is k = 1-nearest neighbor,
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which contributes to the response for classes 3-6, but doesn’t appear in the pre-
dictions for classes 1 or 2. The base classifier that makes the largest contribution
to the class-1 prediction is boosted decision trees run for 500 iterations. Thus
each classifier is able to specialize in different class-based subproblems rather
than being required to predict accurate probabilities for all classes.

5 Conclusion

Stacked generalization has a tendency to overfit; overfitting is even more likely
when using many highly correlated, well-tuned models. In order to avoid overfit-
ting and to improve prediction accuracy, it is necessary to perform regularization
at the combiner level, even when using a linear combiner. Regularization can be
performed by penalization of the L2 norm of the weights (Ridge regression), L1
norm of the weights (lasso regression) or a combination of the two (elastic net
regression). L1 penalties yield sparse linear models; in stacked generalization,
this means selecting from a small number of classifier posterior predictions.

An interesting extension of this work would be to examine the full Bayesian
solutions (under Gaussian and Laplacian priors for regularization), instead of
the single-point maximum likelihood estimates implicit in the Ridge (Gaussian
prior) and lasso (Laplacian prior) regularizers. Other work could study additional
regularization by (a) selecting a single regularization hyperparameter for use in
all subproblems or (b) constraining the weights to be non-negative for each
subproblem.
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Appendix: Base Classifiers

We generate about 1000 classifiers for each problem. For each classification algo-
rithm, we generate a classifier for each combination of the parameters specified
below. All implementations are in Weka except for the Random Forest (R), for
which we used the R port of the Breiman-Cutler code by Andy Liaw, available
through CRAN.

1. Neural Network decay={true, false} momentum={0.1, 0.5, 0.9}
learningRate={0.5, 0.75, 0.9} trainingTime={100, 500, 1000}
numHiddens={2, 4, 16, 32}

2. Support Vector Machine (C-SVM) kernelType={linear, polynomial, rbf, sig-
moid} coef0={-1, 1} cost={0.1, 1.0, 10, 100, 1000} degree={1, 2, 3}
eps={0.001, 0.01} gamma={0.1, 0.3, 0.8}

3. K-Nearest Neighbor k={1, 2, 4, 16, 32, 64}
4. Decision Stump
5. Decision Tree (J48) binarySplits={true, false} confidenceFactor={0.25, 0.5,

0.75} reducedErrorPruning={false, true} unpruned={true, false}
6. Random Forest (Weka) numTrees={1, 2, 30, 50, 100, 300, 500}
7. AdaBoost.M1 numIterations={10, 50, 100, 500} classifier={J48 binary

Splits={true, false}, Decision Stump}
8. Bagging classifier={J48 binarySplits={true,false}} numBags={5, 10, 50}
9. Random Forest (R) numTrees={1, 2, 30, 50, 100, 300, 500}
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Abstract. When applying Machine Learning technology to real-world
applications, such as visual quality inspection, several practical issues
need to be taken care of. One problem is posed by the reality that usu-
ally there are multiple human operators doing the inspection, who will
inevitable contradict each other occasionally. In this paper a framework
is proposed which is able to deal with this issue, based on trained en-
sembles of classifiers. Most ensemble techniques have however difficulties
learning in these circumstances. Therefore several novel enhancements to
the Grading ensemble technique are proposed within this framework –
called Active Grading. The Active Grading algorithm is evaluated on data
obtained from a real-world industrial system for visual quality inspec-
tion of the printing of labels on CDs, which was labelled independently
by four different human operators and their supervisor, and compared to
the standard Grading algorithm and a range of other ensemble (classifier
fusion) techniques.

Keywords: Ensemble learning, grading, classifier fusion, visual quality
control, learning from multiple humans.

1 Introduction

The most effective and flexible way to reproduce the human cognitive abil-
ities needed to automate the required complex decision tasks in production
processes, such as visual quality inspection, is by learning these tasks from
human experts [1]. Traditionally, this is done using supervised learning, the data
for which is provided by one selected person. The learning system is trained on
this single set of data items, each of which has a unique label assigned to it.
There may be some minor inconsistencies within the data, but these are usually
considered as being random and each label is considered to be the ground truth.

However, quality inspection systems nowadays require the highest possible
flexibility (due to e.g. changing customer demands, slight changes in the pro-
duction line, new products to be inspected, etc.) [2]. This requires the human
operators, currently performing their task manually, to be able to directly train
and adapt the system without too much intervention of their supervisor. A typ-
ical situation is that there are three shifts and one operator per shift is working
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on the system. Their supervisor would like to be in control of their decisions as
much as possible, but does not perform the inspection him-/herself.

Visual quality inspection is difficult because it is based on human evaluations
which cannot be converted (easily) into mathematical rules. The literature shows
that the effectiveness of human visual quality inspection lies around 80% [3]. This
means that in 20% of the cases the decision a human operator makes is different
from his/her supervisor. These can be caused by a number of factors, such as
different levels of experience and training or fatigue and stress, caused by the
typically very strict time restrictions. Therefore techniques are needed which can
deal with these contradictions and inconsistencies in a systematic way if we want
the human operators to train the system themselves.

This paper proposes an approach for this kind of problem based on ensembles
of classifiers. Each of the operators will train their own personal classifier, which
are afterwards combined by an ensemble method, trained to represent the super-
visor’s decisions as well as possible. The main difficulty is that for a substantial
part of the data (about 20%), systematically none of the operators agrees with
their supervisor (and hence also not the decisions of the classifiers each of the
operators trains). Most ensemble methods cannot cope well with such a setting.
To solve this problem an extension of the Grading ensemble method [4] will be
presented which is able to combine the decisions of the classifiers, trained by the
different operators, in an appropriate way.

The remainder of this paper is organised as follows. A general framework for
learning visual quality inspection from multiple humans is proposed in Section 2,
in which each of the operators trains his/her own personal classifier, which are
afterwards combined by an ensemble method. A novel ensemble method – called
Active Grading – which is able to effectively combine the decisions of the different
operators is formulated in Section 3 as a generalisation of the Grading ensemble
method [4]. This ensemble method is able to learn in the setting of the application
in this paper, i.e. when for a substantial part of the data none of the classifiers
in the ensemble provides the correct classification. Experiments were done using
real-world data obtained from an industrial visual quality control application for
CD imprints, described in Section 4 together with the obtained results. Finally,
a conclusion is formulated in Section 5.

2 Architecture

In Figure 1 a generic framework for learning visual quality inspection from mul-
tiple human operators is shown. Starting from the original image of the product
which is to be inspected (left-hand side of the figure), a “deviation image” is
calculated. The grey-level value of each pixel in this image correlates to the de-
gree of deviation from the “optimal” image of the product. Usually the image
is mostly black, with the potentially defective parts highlighted by non-black
groups of pixels. The contrast image is used to eliminate application-specific el-
ements from subsequent processing steps. From the contrast image Regions Of
Interest (ROIs) are extracted. Essentially this is a grouping of the non-black
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Fig. 1. General classification framework for visual quality inspection which can be
trained by different human operators

pixels in the image into one or more distinct groups (called “objects”), each
of which is a potential defect. The features of each object are calculated and
can be complemented by three additional data sources: information about the
ROIs, information about the status of the production process and aggregate
features, characterising the images as a whole (information about all objects to-
gether) [5]. The feature vectors are processed by an operator-specific trainable
classifier which generates a gradual good/bad decision for the entire image. This
result is compared to the input of the human quality operator and a feedback
loop, in the form of an (incremental) learning process, adapts the classifica-
tion system. The operators, each training their own classifiers this way (during
the initial training of the system or possible further adaptation), will inevitably
provide different inputs to the system for some of the images – and thus their
personal classifiers will also produce different classifications. These contradicting
decisions are resolved using ensemble methods. This combination can be done
using fixed rules or, if a supervisor labels the data as well, trainable ensemble
methods, to better represent the decisions of the supervisor. The decision the
ensemble makes is the final decision of the classification system.

Each of the operators will thus train their own personal classifier as they think
would be best, according to their experience and expertise. Two levels of con-
tradiction in the operators’ decisions can be distinguished. The inter-operator
contradictions are the systematic contradictions between the decisions of differ-
ent operators. They can be caused e.g. by different levels of experience, training,
skill, etc. The intra-operator contradictions are the contradictions an operator
makes with decisions he has made himself. They can be caused by personal fac-
tors (such as the level of fatigue, attention, stress and boredom), environmental
factors (such as a changed quality policy of the company and recent complaints
of customers), etc. (see e.g. [6]).

The intra-operator contradictions, which are assumed to be basically random,
are dealt with by the classifiers themselves. Several learning techniques can nat-
urally handle noisy data (see e.g. [7]). The systematic inter-operator contradic-
tions will be handled by the ensemble by combining the outputs of the different
classifiers in a suitable and systematic way (see Section 3).
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This architecture has several important advantages over other architectures
which cannot deal with training input from different human operators. The
classifiers trained independently by the operators will be easier to train, as
they only need to handle the (non-systematic) intra-operator contradictions.
The inter-operator contradictions are dealt with by the ensembles. Furthermore,
it can be clearly distinguished what has been taught by which operator, en-
abling the system to give operator-specific feedback. The knowledge of each of
the operators separately can be captured by the system.

3 The Active Grading Ensemble Framework

3.1 Combining the Decisions of Different Humans

There are two main requirements when selecting appropriate ensemble methods
to be used in the architecture described in Section 2: (i) they have to combine an
existing set of trained classifiers (trained by the operators); and (ii) the classifiers
are no local experts in some parts of the feature space, but are trained over the
entire features space (the classifiers are trained by the operators on the data
provided by the inspection system, which cannot be influenced). The ensemble
algorithms within the class of classifier fusion fulfill exactly these requirements.
Classifier fusion techniques will be not explained in detail here; for reviews and
detailed discussions see e.g. [8, 9]. They will however be used for comparison in
the evaluation in Section 4. Also another ensemble technique closely related to
classifier fusion, called Grading [4], fits these requirements. This technique will
be described in Section 3.2. To effectively tackle the problem in this paper the
Grading algorithm will be reformulated in a novel “Active Grading” framework
in Section 3.3, which is a generalisation of the original Grading technique. Within
this framework, several enhancements to the original algorithm are described,
which will enable the algorithm to learn from different humans.

3.2 Grading

Let us consider the case in which there is a diverse set of ND trained classifiers
available, D1, . . . , DND , each trained to classify their own training data set into
NC different classes. Creating diversity in this set of classifiers can be done in
different ways: different training samples can be selected to train the classifiers,
different feature subsets can be selected, the target output can be changed, etc.
(see e.g. [9, 10]). Therefore, the training sets of the different classifiers can, but
need not be of the same size or contain the same number of features. Note that
in our application the diversity comes from changing the target output: each of
the classifiers is trained by one of the human operators, which provides his own
labelling for the training data. Assuming the training set of each of the classifiers
Di has a number of NA

i attributes, the classifiers can be considered a mapping
Di : IRNA

i �→ IRNC

, where the features are mapped to the classifier’s confidence
for each of the NC different classes. Let us denote the confidence of classifier Di
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for class j when classifying a data item x as Di,j(x).1 Without loss of generality
we can assume Di,j(x) ∈ [0, 1].

In the Grading ensemble method [4], for each of the (level-1) classifiers Di a
level-2 “Grading classifier” Gi is trained, which predicts whether or not the level-
1 classifier will provide the correct prediction, based on the original classifier fea-
ture space. The Grading classifiers are thus mappings Gi : IRNA

i �→ [0, 1], where
0 means the Grading classifier is perfectly sure the classifier will err; 1 means the
Grading classifiers is perfectly sure the classifier will provide the correct classi-
fication. The training sets for the Grading classifiers are easily constructed by
comparing the “crisp” classifier outputs with the target classifications. The crisp
outputs of classifier Di for a data item x, DCr

i (x), can be obtained as follows:

∀j : DCr
i,j(x) =

{
1, if j = argmaxk Di,k(x);
0, else. (1)

Note that in the application in this paper, the target classifications are the
labelling provided by the supervisor for (a part of) the training data.

When a new data item x is to be classified, each of the level-1 classifiers’ pre-
dictions are obtained. The evaluation of the Grading classifiers is also obtained,
indicating which of the level-1 classifiers is estimated to be correct. The final
prediction of the Grading ensemble is obtained only from the level-1 classifiers
which are estimated to be correct. If at least one classifier is estimated to be
correct, the final prediction is calculated using the following formula [4]:

∀j : Grad(x)j =
ND∑
i=1

{
Gi(x)|DCr

i,j (x) = 1 ∧ Gi(x) > 0.5
}

, (2)

where Grad(x)j is the final confidence of the Grading algorithm for class j.
If none of the classifiers is estimated to be correct the same procedure as above

is applied, using (1−Gi(x)) instead of Gi(x) in (2). This comes down to using the
classifications of all classifiers, even though they are estimated to be incorrect.
In [4] this is described as being a “rare case” – although this may be true in
the case of “standard” pattern recognition applications, this will not be the case
in the application in this paper. The operators will contradict their supervisor
systematically in some parts of the feature space, meaning that for significant
parts of the feature space none of the classifiers (trained by the operators) will be
correct (as will be shown in Section 4). Combining these outputs in the way the
Grading algorithm does will result in incorrect classifications in these regions of
the feature space. This is the problem the Active Grading approach will tackle,
as will be explained in Section 3.3.

3.3 Active Grading

In this section the Grading algorithm [4] as described in Section 3.2 will be
reformulated in a new “Active Grading” framework. Afterwards, enhancements
1 x will be used to denote a data item, described by the appropriate features for the

current classifier (if the classifiers are trained using different features).
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to the Grading algorithm will be proposed within this framework, which will
enable learning in the context of this paper – namely when none of the classifiers
provide the correct classification for a significant part of the feature space.

Let us assume, like in Section 3.2, that we have a set of ND trained classifiers,
D1, . . . , DND , and a set of ND Grading classifiers, G1, . . . , GND , each of which
predicts whether its corresponding classifier will provide the correct classification
for some new data item.

When a new data item x is to be classified, in the Active Grading framework
a number of operations will be performed as follows. First, the classifier outputs
are obtained and made crisp according to (1), resulting in DCr

1 (x), . . . , DCr
ND (x).

Also the outputs of the Grading classifiers are obtained (predicting whether the
corresponding classifiers correctly classify x), resulting in G1(x), . . . , GND (x).

Next, for each classifier Di, a correction operation is performed to correct
the classifiers’ outputs based on the outputs of the Grading classifiers, resulting
in DCorr

i (x). For the standard Grading algorithm described in Section 3.2 this
operation is given by the following equation:

∀i : DCorr
i (x) =

{
Gi(x)DCr

i (x), if Gi(x) > 0.5;
[1 − Gi(x)] DCr

i (x), else. (3)

Note that this operation is nothing more than a reweighing, which will be used
further on in the case when none of the classifiers is estimated to be correct.
At the end of this section an enhancement will be proposed which does perform
a real correction of the classifier outputs, and which will form the heart of the
Active Grading approach.

After the classifier outputs are “corrected”, for each of the classifiers Di an in-
clusion operation is performed to indicate which of the classifiers will participate
in the final prediction, resulting in Ii(x). For the standard Grading algorithm
this operation is given by the following equation:

∀i : Ii(x) =
{

0, if Gi(x) ≤ 0.5 ∧ ∃k : Gk(x) > 0.5;
1, else. (4)

The final step in the Active Grading framework is the actual classifier fusion.
The fusion of the Grading algorithm can now be simply written as follows:

∀j : Gradj(x) =
ND∑
i=1

{
DCorr

i,j (x)|Ii(x) = 1
}

, (5)

where DCorr
i,j (x) denotes the confidence for class j of DCorr

i (x) and Gradj(x)
denotes the final predicted confidence of the Grading algorithm for class j.

The above formulation of the Grading algorithm does exactly the same thing
as the algorithm described in Section 3.2. However, it provides a convenient
framework for enhancements to this algorithm. As mentioned above, the main
problem is how to handle situations in which none of the classifiers (are estimated
to) provide the correct classification. Within the Active Grading framework in-
troduced in this paper, we will propose an enhanced correction operation with
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respect to the one used in the standard Grading algorithm. When a classifier is
estimated to be incorrect by its corresponding Grading classifier, we propose to
effectively modify the output of the classifier in such a way that another class
is predicted than the one which was initially predicted by the classifier. More
formally, we propose to change (3) into the following equation:

∀i : DCorr
i (x) =

{
Gi(x)DCr

i (x), if Gi(x) > 0.5;
[1 − Gi(x)]

[
1 − DCr

i (x)
]
, else. (6)

Note that although at first glance this might seem to be a small modification, it
has significant consequences. In the case that none of the classifiers is estimated
to be correct, the standard Grading algorithm uses the (weighted) outputs of all
of the classifiers without changing their “winning” classes. This will most likely
provide incorrect classifications in this case. The Active Grading algorithm, how-
ever, effectively changes the “winning” classes the classifiers predict. By doing
so, it actively uses the information provided by the Grading classifiers and modi-
fies the classifier outputs accordingly. To the authors’ knowledge, this is the first
ensemble algorithm which changes the classifier outputs in such a way.

A second modification to the standard Grading algorithm is motivated by the
idea that the corrected classifier outputs can be used, regardless whether the
other classifiers are estimated to be correct or not. As the classifiers’ outputs are
corrected when the initial prediction of the classifiers is estimated to be incorrect,
all classifiers can contribute valuable information to the ensemble. This can be
very easily incorporated into the framework by using the following equation
instead of (4): ∀i : Ii(x) = 1. Intuitively, we estimate whether the classifiers are
correct; if they are then their predictions are used, if they are not then their
predictions are modified and these modified predictions are used.

4 Experimental Results

As discussed in Section 2, the proposed architecture for teaching the quality
inspection to the system by multiple human quality control operators clearly has
many advantages. By only taking into account the predictions of the operators’
classifiers, we want to model the decisions of the supervisor. Of course, the
accuracy of this system should not drop compared to a system in which one
single classifier would only be trained on the data provided by the supervisor.

For the experiments in this paper a data set obtained from an industrial
visual inspection system used for checking the quality of the labels printed on
CDs is used. This data set contains 1534 samples and was independently labelled
by 4 different operators and their supervisor into 2 classes: “good” and “bad”.
As discussed in Section 2, from the images obtained from the vision system
74 generic features (e.g. the number of objects detected, the area of the largest
object, the maximum brightness of an object, etc.), describing each of the images,
are derived [5]. Analysis of these data sets has shown that the operators make
about the same decisions for the entire feature space, while in some part of the
feature space (about 20% of the data) the supervisor makes different decisions
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Table 1. Mean accuracy (in %) of CART classifiers for the CD data sets: the first row
shows the evaluation of each of these classifiers for the operator’s own (test) data; the
second row shows the evaluation of these classifiers for the supervisor’s data

Evaluation data
provided by

Training data provided by
Operator01 Operator02 Operator03 Operator04 Supervisor

Same as training 94.77 96.60 97.39 96.01 94.38
Supervisor 75.16 70.00 73.86 73.66 94.38

Table 2. Mean accuracy (in %) of the different ensemble methods when combining the
outputs of the classifiers, trained by the different operators, to model the supervisor’s
decisions for the CD data sets

Classifier fusion methods Grading methods
Vote AC FI DT DS DDS Grad AGrad-N AGrad-S

72.81 78.56 73.27 78.24 73.66 73.66 79.54 93.01 94.77

than all of the operators. Interestingly, this is about the error rate of human
visual quality inspection reported elsewhere [3].

For the data sets provided by each of the operators a CART decision tree
classifier [11] was trained. The accuracy of these classifiers was determined for
all 5 data sets (using 10-fold cross-validation), the results of which can be found
in the first row of Table 1. From these results it is clear that the classifiers are
well trained for the data provided to them (ranging from 94.38% to 97.39%).
However, when the operators’ classifiers are evaluated on the data provided by
the supervisor the accuracy drops significantly, ranging from 70% to 75.16% (the
first 4 values in the second row of the Table 1), which are much lower than the
94.38% of the classifier trained by the supervisor himself. It is, however, the
ensemble’s job to combine the first four classifiers and to obtain an accuracy
comparable to a classifier trained specifically on the supervisor’s data.

The ensemble methods are trained on the same training data as the classifiers,
so the outputs of the classifiers for their own training data are used as input to the
ensembles. To combine the decisions of these classifiers the standard Grading [4]
(Grad) and two variants of the proposed Active Grading approach are evaluated
(Active Grading applied when none of the classifiers is estimated to be correct
(AGrad-N ) and applied for each of the classifiers separately when estimated
to be incorrect (AGrad-S ) – as detailed in Section 3.3). The CART decision
tree classifier [11] was also used as Grading classifier. For comparison, a number
of the most effective classifier fusion techniques (for detailed discussions, see
e.g. [8,9]) were evaluated as well: Voting (Vote) [12], a number of simple Algebraic
Connectives (AC ) such as the Maximum, Minimum, Product, Mean and Median
rules [13], Fuzzy Integral (FI ) [14], Decision Templates (DT ) [15], Dempster-
Shafer combination (DS ) [16] and its extension Discounted Dempster-Shafer
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combination (DDS ) [17]. The results of these algorithms can be found in Table 2
(only the result of the best Algebraic Connective, the Product rule, is shown).

From the results in Table 2 it can be seen clearly that the classifier fusion
algorithms do not perform well for this task. Their accuracies lie in the range
of 72.81% to 78.56%. The standard Grading algorithm performs already slightly
better with 79.54%, but this level of accuracy still is not enough for industrial
applications. In contrast, the two proposed Active Grading approaches perform
very well. AGrad-N and AGrad-S achieve accuracies of 93.01% and 94.77%,
respectively. This means an improvement of 13.47% and 15.23% compared to the
best of the other ensemble methods which were evaluated. It should be noted that
the result of AGrad-S is even slightly better than a classifier trained specifically
on the supervisor’s data (see Table 1). This confirms that the decisions of the
supervisor can effectively be modelled by the ensemble, if the classifiers trained
by the different operators are combined in an appropriate way.

The reason the classifier fusion methods are not performing very well for this
kind of problem is that they are trained on the classifier outputs, rather than
on the original feature space. As for this application the majority of the data is
correctly classified by the classifiers and the other part is systematically misclas-
sified by each of the classifiers within the ensemble (trained by the operators),
these methods will not be able to increase the performance of the system very
much. In order to do this, information about the original feature space is re-
quired, which is used by the Grading methods. The standard Grading method
can detect which of the classifiers will provide an incorrect prediction, but does
not contain any mechanism to use this information in a constructive way. This is
exactly what the Active Grading methods do: they actively modify the classifier
outputs, so that they become useful for the combination process.

5 Conclusion

In this paper a framework for dealing with the reality that multiple human
operators might be training a visual quality inspection system is proposed, in
which the operators train their own personal classifier, the predictions of which
are combined by an ensemble method. The operators’ decisions are however
not perfect and will systematically contradict their supervisor’s decisions. This
poses a problem for most ensemble techniques, which cannot cope well with the
situation in which none of its member classifiers outputs the correct prediction.
Therefore, the Grading ensemble technique is extended to a more general Active
Grading framework, in which some extensions to the standard Grading method
are proposed which make it able to learn in these circumstances. This technique is
evaluated on data obtained from a real-world industrial system for visual quality
inspection of the printing of labels on CDs, which was labelled independently
by four different human operators and their supervisor, and compared to the
standard Grading algorithm and a range of other classifier fusion algorithms.
The experimental results show a performance boost of over 15% compared to
the best other ensemble method.
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Abstract. Pattern classification systems are currently used in security
applications like intrusion detection in computer networks, spam filtering
and biometric identity recognition. These are adversarial classification
problems, since the classifier faces an intelligent adversary who adap-
tively modifies patterns (e.g., spam e-mails) to evade it. In these tasks
the goal of a classifier is to attain both a high classification accuracy
and a high hardness of evasion, but this issue has not been deeply in-
vestigated yet in the literature. We address it under the viewpoint of
the choice of the architecture of a multiple classifier system. We pro-
pose a measure of the hardness of evasion of a classifier architecture, and
give an analytical evaluation and comparison of an individual classifier
and a classifier ensemble architecture. We finally report an experimental
evaluation on a spam filtering task.

1 Introduction

Pattern recognition systems, and in particular multiple classifier systems, are
currently used in several security applications like biometric identity recogni-
tion, intrusion detection in computer networks and spam filtering, in which the
task is to discriminate “attack” samples (e.g., a spam e-mail) from “legitimate”
samples (e.g., legitimate e-mails). These kinds of tasks are named adversar-
ial classification problems, since there is an intelligent, adaptive adversary who
tries to camouflage patterns (like spam e-mails) to evade the security system.
Accordingly, in these applications the goal is to attain both a high classifica-
tion accuracy and a high hardness of evasion, which is intuitively related to the
effort required to the adversary to evade the system. However in the machine
learning and pattern recognition literature the issue of the hardness of evasion
in adversarial classification problems has not been deeply and formally investi-
gated yet. Most of the works proposed countermeasures against specific kinds of
attacks for spam filtering and intrusion detection tasks (see for instance [1,2,3]),
and only few of them proposed formal models of adversarial classification tasks
[4,5], or analysed the main issues raised by the application of machine learning
techniques [6]. Therefore, from an engineering viewpoint the design of accurate
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and hard to evade classification systems for security applications is still an open
problem.

In this work we argue that the hardness of evasion has to be taken into ac-
count in two distinct aspects of the design of a pattern recognition system: the
choice of the features and the choice of the classifier architecture. Here we focus
on the latter, and propose a quantitative measure of the hardness of evasion of
a classifier architecture. We then analytically evaluate and compare the hard-
ness of evasion and the accuracy of two specific single classifier and multiple
classifier architectures which are used in many real security systems, and were
supported so far only by intuitive arguments and empirical evidence. In light of
our theoretical findings, we give an experimental evaluation of the accuracy and
hardness of evasion of the considered classifier architectures on a spam filtering
task, using the well known SpamAssassin open source spam filter.

2 Analysis of Multiple Classifier Systems for Adversarial
Classification Tasks

In many classification systems used in security applications, like multimodal
biometric authentication and verification, and intrusion detection in computer
networks, the input features come from heterogeneous sources (for instance, im-
ages of faces and fingerprints). In these cases combining classifiers trained on the
different feature subsets has been proposed as a natural way to design a simpler
and more accurate classification system than a single classifier trained on all the
available features [7,8,9,10]. Few authors proposed the use of MCSs with the
explicit goal of improving the hardness of evasion (see for instance [2]). MCS ar-
chitectures turn out to be used also in commercial and open source security sys-
tems, like the SpamAssassin spam filter (http://spamassassin.apache.org)
and the Snort intrusion detection system (http://www.snort.org). However,
with the only exception of a previous work by the authors [11], the use of MCSs
for improving the hardness of evasion is supported only by intuitive and qualita-
tive motivations, besides experimental evidences, and lack of a clear and sound
theoretical support. In this section we propose a quantitative measure to eval-
uate the hardness of evasion of pattern classification systems, and apply it to
analyse two different classifier architectures which are used in real adversarial
classification tasks and are simple enough to allow for an analytical investigation.

2.1 The Concept of Hardness of Evasion

In security tasks there is a formal and agreed definition of classification accuracy
in terms of the false positive (FP) and the false negative (FN) error rates. In-
stead, there is no formal and agreed definition of hardness of evasion. Intuitively,
it depends on the “difficulty” for an adversary to evade the security system, but
its evaluation depends on the specific task and on the kind of security system.
Our aim is to propose a quantitative definition related to pattern classification
systems. We first point out that in such systems the hardness of evasion can

http://spamassassin.apache.org
http://www.snort.org
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be analysed under two distinct aspects: the feature set, and the way in which
features are combined (namely, the classifier architecture). Indeed, given an “at-
tack” sample, an adversary has to consider two distinct issues: first, which fea-
tures have to be modified, to evade the classifier? Second, how can patterns be
camouflaged, so that the values of the targeted features are modified as desired?
The latter issue is related to the nature of the individual features: the designer
of the classifier should select features that are robust against pattern camou-
flage. However, in the design of a security system it is safer to assume that the
adversary knows which features are used, and that he can always devise a way
to evade them, although with some effort. Moreover, in practice quantifying the
relative effort that is needed to modify different features is often very difficult.
Accordingly, the hardness of evasion should also rely on forcing the adversary to
modify as many features as possible to evade the system. This clearly depends
on how the individual features are combined by the classifier architecture, which
directly leads to the former issue above, namely, which (and how many) features
have to be modified to evade the classifier. Accordingly, the hardness of evasion
of a pattern classifier can be pursued at two distinct levels: the choice of the in-
dividual features, which should be not trivial to modify by pattern camouflage,
and the choice of the classifier architecture, which should force the adversary
to modify as many features as possible to evade the classifier. Although these
choices are not necessarily independent on each other, they can nevertheless be
addressed separately (perhaps in a closed-loop design cycle). In this work, we
focus on the latter issue, namely designing a hard to evade classifier architec-
ture in the sense defined above. To this aim, we give the following quantitative
definition of the hardness of evasion of a classifier architecture:

For a given feature set, the hardness of evasion is defined as the expected
value of the minimum number of features which have to be modified to
evade the classifier.

Accordingly, given two different classifiers A and B trained on the same feature
set, A is harder to evade than B, if the expected minimum number of features
that need to be modified to evade A is higher than the one needed to evade B.

2.2 A Theoretical Analysis of Multiple Classifier Systems for
Adversarial Classification Tasks

In this section we focus on two classifier architectures (a single classifier and a
MCS) used in multimodal biometric systems, in the SpamAssassin anti-spam
filter, and in the Snort intrusion detection system. We will analytically evaluate
and compare their hardness of evasion, defined as in Sect. 2.1, and classification
accuracy. We first construct a model of the classification problem and of the
two architectures, suitable to an analytical investigation. We consider n binary-
valued features taking on the values 0 and 1, denoting respectively the absence
and the presence of a given “attack” characteristic (as happens in Snort, while
in SpamAssassin there are also features related to “legitimate” characteristics,
which take on the values 0 and −1 ). The classifier architectures are shown in
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Fig. 1. The first one is a “monolithic” classifier: a linear combination of the fea-
tures with a decision threshold, as in SpamAssassin. A variant of this architecture
is used by Snort: the logical OR between all features (viewed as boolean values),
where 1 corresponds to true (accordingly, a pattern is labelled as “attack” if at
least one feature detects an attack characteristic). The second one is an ensem-
ble of classifiers trained on disjoint feature subsets, as in multimodal biometric
systems [7,8]. To allow a direct comparison with the monolithic architecture, we
consider an implementation in which the individual ensemble members are linear
classifiers and are combined with the OR logical function. We denote the class
labels as A (“attack”) and L (“legitimate”), and the random feature vector as
X = (x1, ..., xn) ∈ {0, 1}n. To make an analytical evaluation possible, we assume
that features are i.i.d. The (common) class-conditional distribution of each fea-
ture will be denoted as p1A, p0A, p1L and p0L, where p1A = P (Xi = 1|X ∈ A) for
any i = 1, ..., n, and so on (obviously, p1A = 1−p0A and p1L = 1−p0L). We also
consider all the weights of the monolithic linear classifier to be identical. This
is reasonable, given that all features are assumed to have the same discriminant
capability. Without loosing generality, we normalise the weight values to 1 and
consider only a variable threshold t > 0. The decision function sM(x) of the
monolithic classifier can then be written as follows (see Fig. 1, left):

sM(x) =
{

1, if
∑n

i=1 xi − t ≥ 0,
0, otherwise .

(1)

Note that also the OR decision function used by Snort can be written as (1),
provided that t ∈ (0, 1]. These architectures can also be viewed as MCSs, if
features are the decisions of individual classifiers. We also consider the weights
of the individual classifiers of the MCS to be all identical and normalised to 1,
and a common value also for the decision thresholds, denoted with t′. Assuming
further that the n features are uniformly subdivided among the N classifiers
(this requires n to be multiple of N), the decision function of the m-th individual
linear classifier of the MCS (Fig. 1, right) can be written as:

sm
M(x) =

{
1, if

∑n/N
i=1 xm

i − t′ ≥ 0,
0, otherwise ,

(2)

where xm
i is the i-th feature of the m-th classifier. The MCS architecture is

shown in Fig. 1, right.
We now compute the accuracy of the two classifiers above in terms of the FP

and FN rates, as functions of n, N, t, t′, and of the class-conditional feature dis-
tribution. The FP rate is the probability that a legitimate sample is misclassified
as an attack, FP = P (sM(X) = 1|X ∈ L). For the monolithic classifier, from the
definition of sM(x) in (1), this happens if at least �t� features equal 1 for a legiti-
mate pattern. Being the features i.i.d., the corresponding probability is:

FP =
∑n

k=�t
(
n
k

)
pk
1L × pn−k

0L . (3)

The FN rate equals 1 minus the true positive (TP) rate, which is defined as
P (sM(X) = 1|X ∈ A). This equals the probability that at least �t� features equal
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Fig. 1. The two classifier architectures considered in this work. A single, linear classifier
(left), and an ensemble of linear classifiers combined by the OR logical function (right).
In both cases the weights of the linear combination are assumed to be all identical, and
a normalised value of 1 is considered.

1 for an attack pattern, and can be computed analogously to the FP rate. For
the monolithic classifier one obtains:

TP =
∑n

k=�t
(
n
k

)
pk
1A × pn−k

0A . (4)

Using the OR decision function instead of a linear combination, the expressions
of FP and TP are the same ones above, with k ranging from 1 to n.

For the MCS, FP is the probability that at least one individual classifier
outputs 1 for a legitimate sample. Each individual classifier is trained on n/N
different i.i.d. features and has the same decision function (2). Their decisions
are thus i.i.d. Denoting the common decision function as s(x), one obtains:

FP =
∑N

m=1

(
N
m

)
P (m classifiers say A ∧ N − m say L|X ∈ L)

=
∑N

m=1

(
N
m

)
[P (s(x) = 1|X ∈ L)]m × [P (s(x) = 0|X ∈ L)]N−m

=
∑N

m=1

(
N
m

) [∑n/N
k=�t′

(
n/N

k

)
pk
1L × p

n/N−k
0L

]m

×[∑n/N
k=n−�t′

(
n/N

k

)
pk
0L × p

n/N−k
1L

]N−m

.

(5)

The TP rate of the MCS is the probability that at least one individual classifier
outputs 1 for an attack sample. This can be computed analogously to (5):

TP =
∑N

m=1

(
N
m

) [∑n/N
k=�t′

(
n/N

k

)
pk
1A × p

n/N−k
0A

]m

×[∑n/N
k=n−�t′

(
n/N

k

)
pk
0A × p

n/N−k
1A

]N−m

.
(6)

The hardness of evasion was defined as the expected value over the distribution
P(X |X ∈ A) of the minimum number of features that have to be modified in
an attack sample to evade the classifier. We denote with nmin(x) such value for
any sample x, for the monolithic classifier (Fig. 1, left). Since x is labelled as A
when at least �t� features equal 1, denoting with k(x) the number of features
equal to 1 it follows that:

nmin(x) =
{

k(x) − �t� + 1, if k(x) ≥ �t�,
0, otherwise .
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The expected value of nmin(x), denoted as nmin, can be computed as follows:

nmin =
∑n

k=�t [k − �t� + 1] × P (k features equal 1|X ∈ A)
=
∑n

k=�t [k − �t� + 1] ×
(
n
k

)
× pk

1A × pn−k
0A .

(7)

To evade the MCS with the OR decision function (Fig. 1, right) it is necessary
to evade all individual classifiers whose output is 1. Denoting with nmin,m(x)
the minimum number of features that have to be modified in the m-th clas-
sifier, for a given attack sample x, the overall minimum number of features
to modify is nmin(x) =

∑N
m=1 nmin,m(x). The expectation is thus given by

nmin =
∑N

m=1 Enmin,m(X)|X∈A [nmin,m(X)]. Since all classifiers are trained on
disjoint subsets of i.i.d. features of the same size n/N and have the same deci-
sion function, the N random variables nmin,m(X), m = 1, ..., N are i.i.d. as well.
Their expectation can be computed exactly as in (7), and thus we obtain:

nmin = N ×
∑n/N

k=�t′ [k − �t′� + 1] ×
(
n/N

k

)
× pk

1A × p
n/N−k
0A . (8)

Since an analytical comparison between the above expressions of accuracy and
hardness of evasion is not possible, we give a numerical comparison. To this aim,
we first fix the class-conditional distribution of the features to values that can be
representative of a real adversarial task like spam filtering (taking into account
that features are assumed to be i.i.d.). We chose the values p1A = 0.25 and
p1L = 0.15, namely, each individual feature detects 25% of the attacks and also
erroneously identifies 15% of legitimate samples as attacks. We then evaluate the
accuracy of the monolithic classifier and of the MCS using the receiver operating
characteristic (ROC) curve (namely, the TP rate as a function of the FP rate,
obtained by varying the decision thresholds t and t′). For the monolithic classifier
(Fig. 2, left) we consider different values of the number of features n. As expected
(being the features i.i.d.), the discriminant capability increases for increasing n.
For the chosen values of p1A and p1L, n = 600 is sufficient to obtain nearly zero
FP and FN rates. A realistic accuracy for spam filters is the one for n equal to
about 300. The accuracy of the MCS was evaluated for different values of the
ensemble size N , with n fixed to 300 (Fig. 2, right). It can be seen that the MCS
discriminant capability is lower than that of the monolithic classifier (the MCS
ROC curves are always below the one of the monolithic classifier for n = 300).
The reason is that the individual classifiers of the MCS are much less accurate
than the monolithic one, since they are trained on a lower number (n/N) of
i.i.d. features. This turns out to be true also for different class-conditional feature
distributions. We point out however that this result holds for the case in which
the classifiers are not under attack.

We finally evaluate and compare the hardness of evasion (7) and (8) for
n = 300 features. For a fair comparison between the monolithic classifier and the
MCS we consider a fixed working point on the ROC curve defined by choosing
classifier parameters (the decision thresholds t and t′) that minimise a classifica-
tion cost given by FP + 1

C FN , where C denotes the relative cost of FP and FN
errors. Since in security applications FP errors are more harmful than FN ones,
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Fig. 2. Top-left part of the ROC curves of the monolithic linear classifier for different
feature set sizes n (left), and of the MCS for n = 300 and different ensemble sizes N
(right), for i.i.d. features with class-conditional distribution given by p1A = 0.25 and
p1L = 0.15. The area under the ROC curve (AUC) is also reported.
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Fig. 3. Classification cost FP + 1
C

FN as a function of the hardness of evasion for the
monolithic classifier and four MCS with ensemble size N = 2, ..., 5, n = 300 features,
and four C values. Each dashed line corresponds to a different C value: from top to
bottom, C = 1, 2, 10, 100.

we consider C > 1. The comparison was made for four C values and four MCS
ensemble sizes: C = 1, 2, 10, 100, and N = 2, 3, 4, 5. The corresponding classifica-
tion cost and hardness of evasion are reported in Fig. 3. The comparison between
the monolithic classifier and the MCSs, for any fixed C value, clearly shows that
the monolithic classifier is more accurate at any given operating point when the
adversary does not attack, but it is also easier to evade. Moreover, while the
MCS accuracy decreases for increasing ensemble sizes, the hardness of evasion
increases. Therefore, in the considered classifier architectures there is a trade-off
between the accuracy when the classifier is not under attack, and the hardness
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of evasion. Note also that for increasing C values (namely, when a smaller FP
rate is required), the accuracy of the MCS approaches that of the monolithic
classifier, while the hardness of evasion remains significantly higher.

The analytical results in this section are limited to two classifier architectures,
and hold only under rather strict conditions on the class-conditional feature
distribution. Nevertheless, they allow to provide a first, formal evaluation and
comparison of monolithic classifiers and MCSs in terms of both classification
accuracy and hardness of evasion, and suggest that MCSs can be useful to attain
a higher hardness of evasion than monolithic classifiers. In the next section we
will give an empirical evaluation of these architectures for a spam filtering task,
in light of the analytical results above.

3 Experimental Results

We analytically found in Sect. 2.2 that, when the adversary does not attack, a
linear classifier with identical weights trained on i.i.d. features is more accurate
than an ensemble of linear classifiers with identical weights and decision thresh-
olds trained on disjoint subsets of identical size of the same features, and combined
with the OR logical function, but it is easier to evade. In this section we empirically
evaluate whether this result holds also in a real application where the assumption
of i.i.d. features could be not satisfied. To this aim we considered the SpamAssas-
sin spam filter (version 3.2.5), and the TREC 2007 e-mail corpus, publicly avail-
able at http://plg.uwaterloo.ca/~gvcormac/treccorpus07 and made up of
75,419 real e-mails (25,220 legitimate and 50,199 spam messages) collected be-
tween April 2007 and July 2007.

SpamAssassin can be considered as a linear classifier with several hundred
binary features (rules associated to legitimate or spam e-mail characteristics
take on respectively −1 and 0 values and 1 and 0 values), nine of which are
actually associated to the outputs of a text classifier. The main aim of our ex-
periments was to compare the two classification architectures of Fig. 1. To this
end, we compared the SpamAssassin classifier architecture (a monolithic linear
classifier) with MCSs trained on disjoint subsets of its features and combined
with the OR logical function. However, even disregarding the nine tests asso-
ciated to the text classifier, which exhibit a significantly higher discriminant
capability, the remaining features cannot be considered i.i.d. Their correlation
on the TREC legitimate e-mails ranges in [−0.0045, 0.2821], with 0.0001 mean
and 0.0025 std. dev., while for spam e-mails it ranges in [−0.1867, 0.3265] with
0.0004 mean and 0.0069 std. dev. Their class-conditional distribution is given by
p1A ∈ [0, 0.5588], with 0.0105 mean and 0.0374 std. dev., and by p1L ∈ [0, 0.0600]
with 0.0003 mean and 0.0029 std. dev. To take this into account, we used differ-
ent weights in the linear classifiers. Moreover, the text classifier of SpamAssassin
(which has a continuous-valued output) was considered as one of the individual
classifiers of the MCSs. The experiments were carried out as follows. We consid-
ered only the n = 549 features whose value was not constant over all e-mails of
the TREC corpus. The text classifier was trained on the first 10, 000 e-mails in

http://plg.uwaterloo.ca/~gvcormac/treccorpus07
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Table 1. Mean and standard deviation of the FP and FN rates and of the hardness of
evasion of the monolithic classifier trained on the SpamAssassin features, and of two
MCSs with ensemble size N = 3, 10, trained on disjoint subsets of the same features

FP rate FN rate hardness of evasion

monolithic 0.0061(±0.0024) 0.0363(±0.0084) 1.37(±0.09)
MCS, N = 3 0.0062(±0.0013) 0.0520(±0.0060) 3.01(±0.13)
MCS, N = 10 0.0097(±0.0020) 0.0569(±0.0052) 3.25(±0.22)

chronological order. The next 10, 000 e-mails were used to train the linear classi-
fiers, using a support vector machine (SVM) with the linear kernel (the publicly
available libsvm software was used [12]). The operating point of all individual
classifiers was set by keeping the FP rate below 1%. Two ensemble sizes for the
MCS were considered: N = 3, 10. The 549 features were randomly and uniformly
subdivided among the individual classifiers of the MCS. The accuracy (FP and
FN rates) and the hardness of evasion at the chosen operating point were then
computed on the remaining 55, 419 e-mails, and are reported in Table 1.

Table 1 shows that the considered MCS architecture provides a lower clas-
sification accuracy than the monolithic architecture, when they are not under
attack (both the FP and FN rates of the MCS are slightly higher, and increase
for increasing values of the ensemble size). However the hardness of evasion of
the MCS is higher than the one of the monolithic classifier, and increases for
increasing ensemble size. It is worth noting that this qualitative behaviour is
the same found by our theoretical analysis of Sect. 2.2, although the assump-
tion of i.i.d. features is violated, and the experimental setup does not match the
one considered in Sect. 2.2 since the weights of the individual classifiers are not
identical. In particular, the considered classifier architectures are characterised
by a trade-off between classification accuracy and hardness of evasion: the MCS
architecture can allow to improve the hardness of evasion, although its accuracy
when the system is not under attack can be lower.

4 Conclusions

In this work we addressed for the first time the issue of quantitatively evaluating
the hardness of evasion of a pattern classifier for security applications, and in
particular of multiple classifier systems. We argued that the hardness of evasion
has to be evaluated in two distinct steps of classifier design, namely the choice
of the features and of the classifier architecture. We focused on the latter step,
and proposed a quantitative measure of the hardness of evasion of a classifier
architecture, related to the number of features that should be modified by the
adversary to evade the whole classifier. This allowed us to give an analytical
evaluation and comparison of two classifier architectures which are used in real
security systems, but were motivated so far only by intuitive arguments and
empirical evidence. The analytical results were exploited to give an experimental
evaluation of these architectures in a real case study related to a spam filtering
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task. Our theoretical and experimental results suggest that MCSs can allow
to improve the hardness of evasion, although their classification accuracy can
be lower than that of a single classifier, when the system is not under attack.
Moreover, the experimental results suggest that the validity of our theoretical
conclusions can go beyond the assumptions under which they have been derived.
We believe that the framework proposed in this work can be a starting point to
derive principled guidelines for the design of pattern classifiers for adversarial
classification problems.
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Abstract. We have recently introduced an incremental learning algorithm, 
Learn++.NSE, for Non-Stationary Environments, where the data distribution 
changes over time due to concept drift.  Learn++.NSE is an ensemble of classifi-
ers approach, training a new classifier on each consecutive batch of data that 
become available, and combining them through an age-adjusted dynamic error 
based weighted majority voting.  Prior work has shown the algorithm’s ability 
to track gradually changing environments as well as its ability to retain former 
knowledge in cases of cyclical or recurring data by retaining and appropriately 
weighting all classifiers generated thus far. In this contribution, we extend the 
analysis of the algorithm to more challenging environments experiencing vary-
ing drift rates; but more importantly we present preliminary results on the abili-
ty of the algorithm to accommodate addition or subtraction of classes over time.  
Furthermore, we also present comparative results of a variation of the algorithm 
that employs an error-based pruning in cyclical environments.  

Keywords: nonstationary environment, concept drift, Learn++.NSE. 

1   Introduction 

Classification in changing environments is a particularly interesting and challenging 
problem with a growing list of application domains, such as network monitoring,  
economic, climate or financial data analysis, all of which generate data from such en-
vironments. The complexity of the problem is in part due to decision boundaries be-
tween classes being subject to potentially unpredictable change over time, which is 
commonly referred to as a non-stationary environment, and is most commonly asso-
ciated with a change or drift in the underlying distribution of the data.  The ability to 
track such data requires an algorithm that can update its parameters such that new 
knowledge is acquired, while old – and still relevant – information is retained, but the 
currently irrelevant information is discarded only to be recalled if such data later be-
come relevant again in a cyclical environment. Ideally, such an algorithm should be 
incremental, i.e., not requiring access to previously seen data.  

Earliest efforts in learning concept drift have focused on the types of drift and con-
ditions under which such drift can be learned, e.g. under a formal PAC framework, as 
a hidden context [1;2], or more pragmatically as real vs. virtual drift [3]. More  
recently, Kuncheva indicated four different types of changes that may be encountered, 
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such as noise (which should ideally be recognized as such, and ignored by the algo-
rithm), a blip ( a rare event, anomaly detection), an abrupt or gradual change [4;5].   

Various approaches have been developed for concept drift, which we categorize as 
active or passive approaches, also referred to as detect-and-retrain and constant  
update [6]. An active approach explicitly seeks to detect drift in the data, and takes 
corrective action to keep the classifier up-to-date.  FLORA is among the first such al-
gorithms, and uses an adjustable window on the incoming data to ensure that only da-
ta from the current environment is used for classifier training [2].  The window size is 
based on a performance on current environment, which is also interpreted as a meas-
ure of the amount of drift. Any data that fall outside of the current window are then 
assumed to be irrelevant and the corresponding knowledge is forgotten by replacing 
the existing classifier with the newly trained one.  In most active parameter or per-
formance based drift detection approaches, the environment is assumed to be statio-
nary unless some parameter (e.g. difference of certain statistical moments between 
prior and incoming data, [7-9] or performance threshold [10] is surpassed.   

Passive approaches to tracking drift operate under the assumption that drift is al-
ways occurring, thus avoiding the complexity of trying to determine the magnitude of 
change.  Therefore, the same procedure – e.g., using a fixed window size or always 
retraining a new classifier – is followed for each instance or batch of incoming data.   

Ensemble or multiple classifier systems (MCS) based algorithms, which are  
typically passive approaches,  represent a new breed of algorithms to learning in non-
stationary environments, and they are particularly effective at providing a good bal-
ance between stability (retaining existing and relevant information) and plasticity 
(learning new knowledge) in the presence of drift.  MCS-based approaches consist of 
an ensemble of classifiers, combined to form a final representative decision.  In order 
to prevent irrelevant knowledge from effecting this decision, a combination of voting 
techniques and forgetting mechanisms are employed. Voting based classifier combi-
nation (ensemble weighting) allows classifiers with varying competences on the  
current environment to proportionally contribute to the final decision as in dynamic 
majority voting (DWM) [10], LIFT-based weight assigning [11], adaptive classifiers 
for changing environments (ACE) [12] or others [6;13].  Weights are often dynami-
cally updated at each training instance, independent of the existence or amount of 
drift. While lower weights allow the knowledge of certain classifiers to be temporarily 
forgotten, ensemble pruning allows knowledge believed to be completely irrelevant to 
be permanently discarded.  

Pruning can be useful because the ensemble, growing otherwise uncontrollably over 
time with new classifiers trained on new data, may accumulate too many irrelevant 
classifiers that can outvote the competent experts in the ensemble, despite weighting 
strategies.  Pruning also helps with another concern with ensemble approaches, name-
ly, the computational complexity that increases with each new classifier generated for 
incoming data.  The preventative approach taken in many algorithms is therefore to 
limit the number of classifiers in the ensemble using an error-based criterion, where 
the worst performing expert in the ensemble is permanently removed.  This has been 
shown to be an effective method in many studies, and has proven superior to the more 
basic age-based pruning (remove the oldest) [10;12-14].  We must note, however, that 
permanent removal of classifiers through pruning runs the risk of discarding informa-
tion that may later become relevant, should the environment happen to be a cyclical 
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one. The trade-off between using a pruning approach and retaining all classifiers is 
analyzed in this effort. 

The aforementioned approaches have been evaluated on a variety of concept drift 
scenarios, such as gradual or abrupt, but not on cyclical environments, except our cur-
rent and previous efforts [15-17], and certainly not on environments where the rate of 
change itself changes unpredictably, or where the change introduces or removes 
classes. In this contribution, we evaluate and compare our proposed approach, 
Learn++.NSE, and its error-based pruning version on such challenging environments. 

2   Learn++.NSE 

Learn++.NSE is an ensemble-based (passive) approach for NonStationary Environ-
ments.  Data are drawn in batches over time from an environment that may be expe-
riencing some change; however, we make no assumption on the nature or rate of the 
drift. The change – if and when it exists – may be gradual or abrupt, expanding or 
contracting in feature space, introducing or removing classes, cyclical or otherwise.  
We simply assume that the current data distribution has changed in some way com-
pared to the prior distribution that provided the previous data.  For each consecutive 
batch or snapshot of the data, a new classifier is generated. In the original version of 
Learn++.NSE, all classifiers are retained, not only to maintain ensemble stability, but 
also to accommodate cyclic environments.  To reduce outvoting from an eventually 
large number of potentially irrelevant classifiers, Learn++.NSE tracks the age-
weighted running average of the ensemble error over all current and previous envi-
ronments, which are then used to determine classifier voting weights.  A sigmoidal 
weighting gives most recent error a greater consideration for determining the classifi-
er weights – regardless of the age of the classifier.  Note that it is the error of the  
classifiers on more recent environments that are weighted more heavily, and not the 
classifiers themselves. Hence old classifiers may receive higher current weights. 

The pseudocode in Figure 1 formally describes Learn++NSE.  Data are received as 
snapshots  of the current environment with distribution , .  At each time step, 

samples are drawn as the training dataset ; , 1, , . A Base 
Classifier is used to train a classifier on the current dataset. Each consecutive snapshot 

 is assumed to be drawn from distribution ,  that differs from that of the 
prior snapshot. Moreover, we assume that prior data is no longer accessible; thus the 
information must be stored solely within the classifiers.  This assumption is a neces-
sary condition for incremental learning algorithms.   

When new data arrive at time t, Learn++.NSE first evaluates the overall error  of 
the existing ensemble of k classifiers on the new training data (Step 1).  A normalized 
distribution Dt is adjusted – similar to that in AdaBoost [18] – according to the errors 
committed on each instance. This distribution is greater over those points at which the 
composite hypothesis  does not match the true class label (Step 2). This dis-
tribution Dt is an important tool to be used for individual classifier error evaluation.  
Once a new classifier is added to the ensemble (Step 3), the errors of all classifiers – 
normalized with respect to Dt – are computed on the new data . Since the distribu-
tion Dt gives more emphasis to previously misclassified instances, the current error 
gives classifiers more credit for correctly classifying instances on which the ensemble 
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hypothesis was incorrect. Note that if the newly trained classifier’s error on the cur-
rent environment exceeds ½, that classifier is discarded and a new one is trained; if 
the error of a previously generated classifier exceeds ½, however, its weight is set to 
½. An error of ½ yields a normalized error  of 1 (Equation 6) at the current time 
step, which then carries zero voting weight (Equation 9). 

The classifier errors over all (current and previous) environments are then averaged 
using a sigmoidal weighting function, giving more weight to errors on more recent  
environments (step 5). This allows retention and reactivation of old classifiers if they 
perform well on new environments. If the ensemble size exceeds a predetermined thre-
shold T, and if pruning is desired, then the classifier with the largest error on the current 
data is discarded (step 6). The average error is then used to determine the voting weight 
of each classifier (step 8), combined through weighted majority voting (step 9).  

 

 

Fig. 1. Learn++.NSE Algorithm pseudocode 

Input: For each dataset 
Training data .
Supervised learning algorithm BaseClassifier
Ensemble size T
Do for 
If t = 1, Initialize , ,  Go to step 3. Endif                  (1)

1. Compute error of the existing ensemble on new data
                                     (2)

2. Update and normalize instance weights

,                                                                    (3)

Set is a distribution                                      (4)
3. Call BaseClassifier with , obtain 

4. Evaluate all existing classifiers on new data 
for                                      (5)

If , generate a new . If , set ,
, for                                      (6)

5. Compute weighted average of all normalized errors for classifier :
For ,                   (7)

for                                 (8)
6. Ensemble Pruning (if used): If t > T

Error-based: Remove where  
Endif
7. Calculate classifier voting weights , (9)
8. Obtain final hypothesis:           (10) 
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3   Experimental Results 

Previous studies have shown that Learn++.NSE i) consistently outperforms a single 
classifier, justifying an MCS approach; ii) is able to poll old classifiers in cases of  
recurring or cyclical data and consequently achieve higher accuracy; and iii) can work 
with a wide spectrum of on-line as well as batch learning algorithms, and hence is in-
dependent of the base classifier used to train the algorithm [15-17]. In this study, we 
pose the problem of even harsher environments which involve changes in the number 
of classes and changes in the rate of drift within the experiment (acceleration of drift).  
We also evaluate the trade-off made by pruning the ensemble and the ability to recall 
previously seen knowledge in recurring environments. 

In prior work we have used a unique non-Gaussian dataset, the rotating checker-
board, derived from the canonical XOR problem.  Figure 2 shows several snapshots 
of the distribution from which the data are drawn. A static window is maintained for 
sampling at each time step while the checkerboard itself rotates about a central axis.  
In each complete rotation (α = 0 to 2π), the distribution inside the window repeats 
twice, yielding a recurring context.  Random noise is introduced at each time step to 
prevent identical snapshots of training data from appearing.  We also use a minimal 
number of training data (size m=25) to test the limit of the algorithm.   

In this experiment, we compare the Learn++.NSE performance during an accelerat-
ing (positive or negative) drift.  We introduce three cases as described in Figure 3: a 
basic constant drift, an exponentially increasing drift, and a sinusoidal drift rate which 
includes a momentary pause 
at the midpoint of the test. 
From the start (t = 0) to finish 
(t=1), the board completes 
one rotation (α = 0 to 2π) in T 
= 400 time steps, according 
the rate of changes shown in 
Fig. 3. The purpose of these 
tests is to investigate the algo-
rithm’s ability to track harsh 
environments while still 
maintaining the characteris-
tics that have been realized 
thus far: the algorithms abil-
ity to significantly and con-
sistently outperform a single 
classifier trained on the cur-
rent training data (justifying 
an ensemble of classifiers), the ability to track recurring or cyclical data (justifying 
the error-weighting approach to prevent outvoting), and the ability to achieve a per-
formance better than a pruned ensemble (justifying the retention of classifiers).  

Results are computed on the entire testing grid of 51x51 resolution (2601 test 
points). All plots are averages of 100 independent trials and include a 95% confidence 
interval in a similarly colored shaded region around each curve (please see the elec-
tronic version of this paper for optimal viewing of the colors).  For each experiment, 

Fig. 2. Rotating checkerboard data 
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we compare Learn++.NSE to a single 
sifier and to Learn++.NSE with error-based 
pruning, where a 25-classifier cap is 
maintained.  Separate experiments are 
conducted for each dataset with different 
base classifiers including naive Bayes, 
MLP, and SVM. For brevity, and since all 
three yielded similar trends, only SVM re-
sults are given here.  

Results in Figures 4 ~ 6 appear to be 
quite promising despite the changes in the 
amount and rate of drift throughout the  
experiment. First, Learn++.NSE (with or 
without pruning) consistently outperforms 
a single classifier with statistical signifi-

cance, regardless of the rate or type of the drift. This is not a trivial, but an important 
benchmark: a single classifier is always trained on the most recent data only, and never 
has to deal with former knowledge. The performance of Learn++.NSE over a single 
classifier indicates that the algorithm can extract useful information from the previous 
classifiers, and that the ensemble structure is in fact beneficial. Second, the ability of 
the algorithm to track the changing the environment, as expected, is correlated to the 
current rate of change: when the environment is changing very slowly or when it is 
stationary, for example, during the  mid sections of the sinusoidal rate of change  
(Fig. 6), the ensemble performance increases very rapidly. When the rate of change is 
accelerating (e.g. after 300 ms in Fig. 5, or 200 ms in Fig. 6), there is a slight drop in 
the performance; and when the environment is changing at a constant rate, the algo-
rithm performance increases gradually (Fig 4.) We should note here that the sharp 
performance peaks in Fig 4 ~ 6 are simply due to the periodic nature of the problem, 
where decision boundaries become perpendicular (and therefore simpler) every /2 
radians. Also note that the current state of the board is different at any given time step 
for each of the experiments due to varying rates of change. 

Perhaps one of the most interesting observations is the behaviour of the algorithm at 
and after α = π.  This happens at time step T = 200, 275 and 200 for the constant,  
accelerating and sinusoidal change of rate, respectively. As mentioned above, the  
distribution repeats itself in the α = [π ~ 2π] interval, creating a cyclic environment. 
Learn++.NSE (both the pruned and unpruned versions) shows an increase in perfor-
mance after this interval, compared to α = [0 ~ π] interval, a clear indication of the 
ability of the algorithm to use old classifiers which then become relevant again. This 
is particularly striking in Figure 5, where the performance improvement due to using 
old classifiers outweighs the performance drop due to rapidly accelerating rate of 
change which also occurs at around T =275 (α = π). Finally, upon careful observa-
tions, we also observe that the unpruned Learn++.NSE consistently and significantly 
outperforms the pruned version in the α = [π ~ 2π] interval (Fig. 4 and 5), indicating 
that those classifiers discarded by the pruning can in fact be useful in such a cyclic 
environment. The only exception to this is in Fig 6, where the large number of accu-
mulated classifier during very slow / near stationary period of the sinusoidal rate does 
not allow the unpruned ensemble to significantly outperform the pruned ensemble for 

Fig. 3. Variable drift rates 
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a short period of time (T=275) when the rate of change starts increasing again. It is in-
teresting to note that during the very end (at around T = 400, or α = 2π), both versions 
of Learn++.NSE – but in particular the unpruned version – shows a more significant 
performance peak. This is attributed to the return of a prior distribution, now for the 
third time, allowing a larger number of classifiers to contribute to a correct decision.  

 

Fig. 4. SVM performance on checkerboard 
with constant drift rate 

 
Fig. 5. SVM performance on checkerboard 
with exponentially accelerating drift rate 

 

Fig. 6. SVM performance on checkerboard with sinusoidal drift rate 

 
Hence, apart from validating that the algorithm can handle varying rates of drift, 

these experiments also allow us to determine when pruning may be beneficial: if the 
environment changes (relatively) at a constant rate, and/or the environment is not ex-
pected to repeat itself, then an error-based pruning provides performance nearly as 
good as the entire ensemble. However, in a cyclic environment (such as climate, elec-
tricity demand, etc. applications), using an unpruned ensemble is always preferable 
because of the sheer significance in performance increase. 

The second experiment is a synthetic multi-class Gaussian dataset that includes 
random concept drift in the mean, variance, as well as the number of classes present at 
any given time.  Figure 7 provides a visual display of the drift path followed by each 
class during the experiment, where the arrows indicate the direction of drift in mean 
for the next interval, and the sizes of the ellipses / circles indicate the variance  
of that class.  Note that this scenario includes appearance of a new class (C4) during  
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Fig. 7. Path of drift of multiclass Gaussian data from start at t = 0 to end at t = 1  

 2 5⁄ 3 5⁄  and the disappearance of an old class (C1) during 3 5⁄ 4 5⁄  .  At 
each time step in the 0 1 interval, a new snapshot (size m = 20) of training data 
are obtained to train a new classifier for a total of T=300 time steps (snapshots).The 
performances of Learn++.NSE (with and without pruning), a single classifier trained 
on the current training data, and that of ideal Bayes classifier (since the data distribu-
tions are Gaussian) are shown in Fig. 8 as averages of 100 independent trials along 
with their corresponding 95% confidence intervals (except for Bayes). The figure also 
indicates each separate interval of drift for reference.  

 

Fig. 8. Performance on the multiclass drift Gaussian data 
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The performance curve in Fig. 8 indicates that Learn++.NSE and its pruned version 
are both capable of tracking an environment that experiences both concept drift and 
concept change (addition / removal of classes). The jumps in performance at T=120 
and T=180 correspond to the sharp concept changes after the respective addition or re-
moval of a class, which results (depending on the location of the class) in a change in 
the difficulty of the problem.  We note that i) both versions of the algorithm follow the 
Bayes classifier very closely – hence able to track the drift, ii) there is little significant 
difference between the pruned and unpruned versions; and iii) they both outperform a 
single classifier, even (and especially) after class addition and subtraction.  

4   Conclusions and Discussions 

We presented an ensemble-based approach to the increasingly relevant topic of classi-
fication in non-stationary environments.  We survey the complexity of this problem, 
as concept drift or change can occur in many forms (gradual, abrupt, cyclic, change in 
class counts, etc.) and rates (constant, increasing, decreasing, etc.). We show that 
Learn++.NSE can closely follow and accommodate the drift, even in the harshest envi-
ronments, regardless of its rate and type, or addition or removal of concept classes.  

We have also compared the original version of Learn++.NSE that retains all classifi-
ers in case a cyclic environment makes the old classifier relevant to one that prunes the 
ensemble based on each classifier’s error. The benefit of retaining all classifiers  
becomes especially evident when in fact an environment experiences a cyclic behavior, 
as the unpruned version significantly outperforms the pruned ensemble. However, in 
other cases, particularly when the rate of change is gradual and/or constant in rate, 
there is little or no significant difference between the two versions, and both versions 
significantly outperforms a single classifier trained on the most recent data. 

Other attributes of the algorithm include independence of the base classifier being 
used, as well as being a truly incremental algorithm. At no point in time does 
Learn++.NSE uses previously seen data and solely relies on the knowledge it extracts 
from the existing classifiers.  Future work with Learn++.NSE will include a compari-
son with other (active and passive) approaches on a variety of learning scenarios. 
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Abstract. Classification algorithms based on template matching are used in 
many applications (e.g., face recognition). Performances of template matching 
classifiers are obviously affected by the representativeness of available tem-
plates. In many real applications, such representativeness can substantially de-
crease over the time (e.g., due to “aging” effects in biometric applications). 
Among algorithms which have been recently proposed to deal with such issue, 
the template co-update algorithm uses the mutual help of two complementary 
template matchers to update the templates over the time in a semi-supervised 
way [8]. However, it can be shown that the template co-update algorithm de-
rives from a more general framework which supports the use of more than two 
template matching classifiers. The aim of this paper is to point out this fact and 
propose the co-update of multiple matchers. Preliminary experimental results 
are shown to validate the proposed model.  

1   Introduction 

Template matching is a widely used classification approach in many applications [1-3]. 
For example, in personal verification systems based on multi-modal biometrics [2-4]. 
However, the effectiveness of these approaches is strongly dependent on the “represen-
tativeness” of templates. For example, in biometric applications, intra-class variations 
and aging (scratch on the finger skin or the face, unknown expressions, etc.) may affect 
such representativeness [2-3]. In order to deal with these problems, several “template 
update” algorithms have been proposed.  Templates are usually captured under the 
supervision of a human expert (e.g. during the enrolment phase for biometric verifica-
tion systems), but capturing all possible intra-class variations is impossible.  

With regard to this issue, “semi-supervised” template update has been proposed [5-8]. 
In this approach, unlabelled samples (that is, samples collected during the system’s 
operation) showing very strong similarity to existing templates are added into the set 
of samples of the related class, thus increasing the representativeness of related set of 
templates. Recently, the so-called “co-update” algorithm, derived from the co-training 
method [9], showed that the mutual “help” of two weakly correlated matchers can 
increase the template representativeness more quickly than systems adopting only one 
matcher, and improve the overall performance. This has been verified, in particular, 
for biometric applications [7-8]. 
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In [7], a statistical framework modelling the co-update behaviour has been pro-
posed in the biometric scenario. This model lies on hypotheses which fit the practical 
scenarios involving fingerprints and faces, providing a first analytical framework able 
to explain the relationship between the amount of unlabelled data collected and the 
template set size for a certain application. However, it can be shown that this model 
derives from a general framework which involves more than two matchers, independ-
ently on the peculiar application. The aim of the present work is to point out this fact 
by proposing the “co-update of multiple matchers”. With this term, we mean a generic 
classification system based on template-matching [1]. Preliminary experiments are 
done on a case-study of a bi-modal biometric verification system. Results show the 
reliability of the framework by comparing the template set sizes and errors predicted 
by the model with the template set sizes and errors obtained on test data. 

The paper is organized as follows. Section 2 describes the current version of the 
model. Section 3 reports the experimental results which validate the model, and also 
shows the difference with the previous one. Section 4 concludes the paper. 

2   Co-updating of Multiple Matchers 

Let us consider a pattern recognition problem characterized by c sets of features (here 
called “views”), and each view is conditionally independent of each other. The system 
is made up of c matchers, one matcher for each view. Thanks to the independence 
assumption, each recognizer is expected to assign correct “labels” to certain input data 
which are difficult for the other. In the case of template co-update, two matchers are 
used (bi-modal system) [7, 8]. In this Section, we show that the model proposed in [7] 
derives from a general framework involving more than two matchers. 

The description of the generalized co-update algorithm is given in Figure 1. Let Dl 
be a set of labelled data. These data are the templates captured by human supervision, 
thus they are labelled with classes identifiers (e.g. users names in the case of personal 
verification). It is supposed that a batch Du (usually, much larger than Dl) of data is 
acquired during system operation. Each element of Du is a c-uple of samples, one 
sample for each view. Matchers can be combined in different kinds of ensembles 
(abstract-level, score-level [10]). Without loss of generality, we can neglect the par-
ticular kind of adopted fusion rule. By setting the size of the ensemble Dim_ens, 

N_ens= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ensDim

c

_
, different ensembles are possible. The main idea of co-updating 

of multiple matchers is that each ensemble can update the template set of remaining c-
Dim_ens matchers. In this paper, we adopted the same terminology used in [7] for 
sake of uniformity with the state-of-the-art. Let us call “master” the ensemble that 
assume the supervisor’s role, and “slave” the remaining matchers, whose template 
sets are augmented thanks to the master ensemble.  

During the off-line co-update phase, each ensemble is applied to the batch Du. The 
results of matching is a value which can be interpreted as a similarity value between 
the input sample and related template set. If this value exceeds a given “updating 
threshold”, the match is verified, and ‘slave’ samples in the c-uple are added to the set 
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Dl. All matchers assume, alternatively, master and slave roles. The process is repeated 
a specified number of times.  

It is worth highlight two particular cases. (1) Dim_ens=1: the ensemble is made up 
of only one matcher at time, the other ones are ‘slaves’. (2) Dim_ens=c-1, the ensem-
ble is made up of c-1 matchers at time, and the remaining one is ‘slave’.  

 
Define c matchers, a matcher for each feature set x1, …, xc 
Set the size of the ensemble Dim_ens 

Set the number of possible ensembles N_ens= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ensDim

c

_
 

 
In the enrolment (supervised) session, collect a set Dl of samples (in terms of c 
feature sets). A c-uple of samples {x1, x2, ..., xC} – one sample for each matcher- is 
acquired. 
Create templates using the set Dl  

Loop for H iterations: 
Collect a set Du without supervision. Each element of Du is a c-uple of samples {x1, x2, 
..., xC} from the same class 

For each ensemble Ei, }_...,,2,1{ ensNi ∈  

Let the matchers used by Ei be the ‘master’, while the others are the ‘slaves’ 
For each c-uple of elements  in Du 

If the ensemble Ei (master) verifies the matching (i.e. match exceed a pre-
defined updating threshold), the samples in the c-uple related to ‘slave’ match-
ers are added to the set Dl  

Update templates using the augmented labelled set Dl  

Fig. 1. Algorithm for Co-updating of multiple matchers 

As for the majority of semi-supervised template update algorithms, the core of co-
update is the insertion of new samples without external supervision. This might intro-
duce misclassified samples in template set. For this reason, only “confident examples” 
are added by a very high co-update threshold value at which no false matches occur, 
namely, FAR = 0%. The role, master or slave, of the matchers is highlighted by su-
perscripts M and S. For sake of clarity, we omit in the following terminology the 
explicit reference of each slave matcher. 

Some assumptions are made in order to propose a mathematically tractable model. 
The first assumption regards the finite discrete space used to represent different pos-
sible values for each feature set (for example, a certain class can be represented by a 
finite number of possible directed acyclic graphs). Each class can produce a maxi-

mum of )(i
TOTN  different observations for each of the c representations at hand. This 

assumption can be motivated easily noting that only a finite number of samples are 
collectable in a physical system. The main consequence of this assumption is that a 
new example, very similar to an existing one, can be considered already present in the 
template set. 
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The second assumption states that all possible observations are equally probable 
(e.g. this is usually stated in biometric applications), and the c representations are 
conditionally independent given the class [8,9].  In the co-update stage, a set Du of 
|Du|=k c-uples of samples are presented to the system. We indicate with k’ the number 
of samples of the master ensemble whose class has been verified (i.e. match exceeds 
the given updating threshold). The value k’ can be easily computed by considering 
that each of k samples of the master ensemble can be drawn with replacement from a 

homogeneous population of )( M
TOTN elements. The probability that a sample will be 

verified is )(1 MFRRp −= , where )(MFRR  is the False Rejection Rate for the master 

ensemble. The problem can be modeled using a binomial distribution. Therefore, on 
average:   

( ))(1 MFRRkk −=′  . (1) 

It is worth noting that the effectiveness of the master ensemble as supervisor to-
wards the ‘slave’ matcher is related to its FRR value. If FRR(M)=0 (k’=k) the master 
ensemble is equivalent to a “true” supervisor because it will verify the class of all 
‘genuine’ samples in Du. If FRR(M)>0, then only k’<k samples can be verified. Thus, 
only k’<k samples will be added to the slave template set. 

Only a finite number of samples are collectable in our physical system, so some 
samples appear indistinguishable. We are interested in samples that provide new in-
formation to the template set, so we can consider only  distinguishable samples. Let d 
be the random variable representing the number of elements in k’ that are different 
among themselves, and dn the random variable representing the number of elements 
in k’ that are different and not present in the ‘slave’ template set. The pdf pd(d) can be 
modeled using a multinomial distribution: 

( )∑
=

′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

d

i

k

S
TOT

i
S

TOT
d

N

id

i

d

d

N
dp

0
)(

)(

1)( . (2) 

The conditional pdf pdn/d (dn/d) – the probability to have dn different samples not 
present in the (S) template set if d samples are different among themselves – can be 
modeled using an hyper-geometric distribution: 

( )dnNNdnhddnp S
TOT

S
TOTddn ),(,;)|( )()(

| −= . (3) 

where )(S
TOTN  is the number of samples in the population, )( )( nN S

TOT − is the number of 

samples in the population that are classified as ‘highly confident genuine samples’ 
(i.e. samples actually belonging to the matched class), d is the number of items in the 
sample, dn is the number of items in the sample that are classified as ‘highly confi-
dent genuine samples’. By using Eqs. (2) and (3), the pdf 

∑
′

=

=
k

d
dddndn dpddnpdnp

1
/ )()/()(  is derived. Here, we are interested to the expected 

value E[dn]. This represents the expected enlargement of the ‘slave’ template set due 
to the collection of k’ elements. By assuming that for each co-update step the number 

)(SnΔ  of new and distinct samples added to the slave template set is about equal to its 
expected value E[dn],  since the correspondent variance var[dn] is very small: 
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Let )(
0

Sn  be the initial size of the (S) template set, and )(
)(
S
in  the size of the (S) tem-

plate set at the i-th co-update step. The length of the (S) template set at the i-th step 
can be written as: 
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The weight w takes into account the effectiveness of the master template set as a 
supervisor. By recalling that in the ensemble of template matchers, as illustrated in 
Fig. 1, when a matcher plays the role of ‘master’ the other c-1 matchers play the role 
of ‘slave’, we can write the length of the jth  (S) template set at the i-th step  
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It is worth noting that while the effectiveness of the master template set as a super-
visor depend on the FRR(M) value, the final growth of each (Sj) template set depend 

on each (Sj) biometric itself, via the parameter )( jS
TOTN . The FRR(M) parameter is re-

lated to the behavior of the ensemble formed by the c-1 matchers. 
The FRR(M) value determine the system’s dynamics, so it is worth to relate its value 

to the length of the master template set. In order to model the above value each j-th 
sample can be characterized by a 0≥ijm  connection degree with other samples, and the 

i-th class can be characterized by the sequence { }
TOTNiii mmm ,...,, 21  of connection 

degrees. The “connection degree” is the number of examples that produce a similarity 
value over the updating threshold. There is a subset of samples for which this connec-
tion degree is zero. We refer to such samples with the term “isolated”. We propose to 
characterize each client with two parameters: the fraction of samples that are isolated 

( 0=ijm ), namely, fI, and the average connection degree { }iji mm =  computed only 

for the ‘connected’ samples. Therefore, “difficult” classes can be modeled by a low 
value of mi and high value of  fI,  whilst high value of mi  and low value of  fI,  are 
adopted for “easy” classes. Parameters mi and  fI depend on the dataset, on the employed 
matchers, and on the  ensemble formed by the ‘master’ matchers. 

Isolated samples contribute to the FRR with a constant value equal to 1, because 
they cannot “match” to other samples. The contribute to connected sample is com-
puted as follows. Let x̂  be a connected sample with connection degree im . Let r be 

the number of  the connected samples of x̂  in the master template set, imr ≤≤0 . 

The identity of x̂  will be correctly verified if at least one among its mi connected 
samples is in the master template set, that is, if  r>0. If r=0 - events with probability 
p(r=0) - even connected samples cannot “match” with samples in the master template 
set, so their contribute to the FRR value will be )0( =rp .  
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When n<(NTOT –mi) the random variable r will be modeled by the hypergeometric 

distribution ( ))()( ,,; M
i

M
TOT nmNrh , and the FRR value depend on both isolated and 

connected samples. When the template set reaches the size n=NTOT –mi  at least one of 
the mi connected samples will be in the master template set, so )0( =rp =0 and the  

FRR value depend only on the fraction of isolated samples fI.  In other words, there is 
a “saturation” value for FRR, that is FRR(n >NTOT –mi  )=fI. 
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Eq. (5-6) allows us to model the template set size increase during the co-update it-
erations, whilst eq. (7) models the FRR of the master ensembles. Notice that, in order 
to simplify the model, we adopted the average of mij for connected samples. This 
average value does not take into account isolated samples, but only connected sam-
ples. The above relationships can be used to predict the behaviour of co-update.  

3   Experimental Results 

In this Section, the case-study of a biometric verification system made up of a face 
and a fingerprint matchers is adopted for the experimental validation of the proposed 
model. In biometrics, a single sample is given by a couple of face and fingerprint 
images, from which two independent features sets are derived [2-3]. Images collected 
by the supervisor are the initial template set, which is called “gallery” in biometric 
applications.  

Although the number of matchers is two, the model can be validated by hypothe-
sizing that each matcher behaves as an ensemble of set of independent matchers ap-
plied to the same biometric. This agrees with observations in previous Section: the 
model proposed in [7] derives from the general framework proposed here. Therefore, 
the following conclusions can be applicable for the general case.  

3.1   The Data Set  

The data set adopted consists of 42 individuals composed of 20 face and fingerprint 
images for each individual, by keeping in mind the independence of face and finger-
print traits. The time span of both the collected data sets spans over one year. Forty-
two frontal face images with 20 instances representing significant illuminations 
changes and variations in facial expressions per person were used from the Equinox 
corporation database [11]. The fingerprint data set has been collected by the authors 
using Biometrika Fx2000 optical sensor. The images are acquired with variations in 
pressure, moisture and time interval to represent large intra-class variations. The re-
sults are computed on five random coupling of face and fingerprint datasets and are 
averaged. Whilst minutiae are simply extracted from the fingerprint images after 
commonly used processing algorithms [2], PCA is computed on the whole data set 
and applied to face images in order to reduce the size of the overall feature space. 
95% of energy is retained according to the current literature [3]. 
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It is worth noting that fingerprint and face data sets are strongly different in terms 
of environmental conditions: the face one is notably “simpler” than the fingerprint 
one. We adopted so different data sets in order to show the effect of intra-class varia-
tions on the model prediction ability. 

3.2   Experimental Results 

First of all, we implemented a simple bi-modal identification system made up of a 
PCA-based face matcher and a fingerprint matcher using the “String” matching algo-
rithm (“String” is based on minutiae points). We used the standard versions of these 
two recognition algorithms [2-3]. Then, we implemented the template co-update algo-
rithm in Figure 1. Both the eigenspace of the PCA-based face matcher and the co-
update threshold value at FAR = 0% are computed using the whole dataset, and has 
not been updated during the co-update process. This approach is common to some 
template update practices [5-9]. The update of face and fingerprint templates is per-
formed simply by adding new examples to the user’s template set.  

In the experiments the initial template set has been set as follows. We selected, as 
the initial template in Dl for the i-th client, a sample whose connection degree is ex-
actly mi. In other word, the initial template is a connected sample ‘near’ to other mi 
samples. In the proposed model the i-th client is characterized by (fC, mi) so this initial 
template is representative for the client. The rationale for this choice is to exclude 
outliers from the initial template set, likewise to what happens in real situations, 
where the initial template is chosen in completely supervised fashion.  

We simulated the acquisition of a batch set Du by generating several sets of k=10 
couples – face and fingerprint – of ‘genuine’ examples, drawn with replacement from 
a homogeneous population of )( face

TOTN = int)( fingerpr
TOTN = 20 samples. We are aware that 

adopted database size may not be very well appropriate for the task, but it respects, on 
average, the size adopted in other template update works reported in literature [5-9]. 

In order to set the correct parameters in the proposed model, for each client and for 
each biometric we computed a) the value fc, that is, the fraction of samples that pro-
duce a ‘score’ over the threshold S*, and b) the value mi, that is, the integer nearest to 
the average connection degree of the connected samples. For each client, results are 
averaged on ten trials (experimental values) and predicted using parameters evaluated 
on the related training set. Table 1 gives a summary of these parameters. In particular, 
it is shown the ratio between the average fraction of connected samples and the re-
lated standard deviation (second column). The ratio between the average connection 
degree and the related standard deviation is also shown. 

Table 1. Ratio between the average fraction of connected samples (f_c) and related standard 
deviation. The same ratio related to the connection degree m_s is also shown for face and fin-
gerprint systems. 

 E[f_c]/devst[f_c] E[m]/devst[m] 
Face 0,62 3,15 
Fingerprint 0,71 1,33 
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It is worth noting that the difference among considered biometric systems is not re-
lated to the fraction of connected samples. In fact, the value of fingerprint and face 
matchers is about the same. This mean that, with respect to the average value, the 
related standard deviation is such that the differences two systems is not appreciable. 
This is confirmed by the average value of f_c, which is 0,62 for the face matcher and 
0,71 for the  fingerprint one. 

Strong differences can be appreciated by observing the ratio between the average 
connection degree (m) and the related standard deviation. This indicated that face 
matcher exhibit a connection degree higher than that of fingerprint one, and a lower 
standard deviation. Therefore, face matcher can be considered (maybe due to Equinox 
data) “easier” than fingerprint one, thus it is expected a significant performance im-
provement for the face matcher, by using the co-update approach.. 

This hypothesis is confirmed by Figs. 2, which compares the values obtained on 
test data with the values predicted by the model. Reported trend is obtained by aver-
aging values over all the clients. For each iteration of the algorithm depicted in  
Figs. 2, the FRR value evaluated at zeroFAR and the template set sizes are reported. 
The model is able to predict the experimental performance, with a negligible differ-
ence. For example, in a real scenario, due to the presence of isolated samples, the true 
value of FRR will be greater than 0 (FRR=1 if all the samples in template set are 
isolated), and this is respected by proposed model.  

Fig. 2 shows the average values over all the client. Discrepancy between predicted 
and experimental values can be justified recalling that the proposed model predicts 
the system’s performance for each client separately. Moreover, the whole connection 
graph that characterizes each client is modelled using only two parameters (mi and 
fI). The saturation of theoretical and experimental curves is driven by eqs. (6-7). In 
particular, FRR of the master matcher is responsible of the weight w, which tends to 
decrease as the template set size of both matchers increases. Thus, the size of galleries  
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Fig. 2. Experimental trend and predicted values of template set sizes (a) and FRR (b) for fin-
gerprint and face biometrics. Reported trend is obtained averaging values over all the clients.  
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must converge to NTOT if mi is not zero. At the end of co-update process, 
FRR(n=NTOT)=fI. It is worth noting that the correct prediction of FRR values is matter 
of primary importance both for the validation of the model and for the designers, that 
need relevant information about the performance of the system. With regard to this 
issue, the FRR predicted by the proposed framework does not depend on the number 
of matchers, but only the template set size and related parameters (connection degree 
and fraction of connected samples). 

An important problem to solve is how to compute the above parameters. At the state 
of our knowledge, this can be only done by collecting an additional set of examples. But 
this implies to verify that these parameters are not dependent on intra-class variations, 
but to intrinsic characteristic of each client. This will be matter of a future work. 

4   Conclusions 

In this paper we showed that the theoretical framework of template co-update can be 
derived from a general model proposed here. Preliminary experiments on a biomet-
rics-based case-study have shown the effectiveness of the model. A further validation 
step is necessary by increasing the number of biometrics.  

Other issues still remain, but we believe that the template co-update algorithm is 
well explained by proposed model. Therefore, it is suitable for designing classifica-
tion systems, based on template matching, which can improve with use. 
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Abstract. We have previously introduced, in purely theoretical terms,
the notion of neutral point substitution for missing kernel data in multi-
modal problems. In particular, it was demonstrated that when modalities
are maximally disjoint, the method is precisely equivalent to the Sum rule
decision scheme. As well as forging an intriguing analogy between mul-
tikernel and decision-combination methods, this finding means that the
neutral-point method should exhibit a degree of resilience to class misat-
tribution within the individual classifiers through the relative cancelling
of combined estimation errors (if sufficiently decorrelated).

However, the case of completely disjoint modalities is unrepresentative
of the general missing data problem. We here set out to experimentally
test the notion of neutral point substitution in a realistic experimental
scenario with partially-disjoint data to establish the practical applica-
tion of the method. The tested data consists in multimodal Biometric
measurements of individuals in which the missing-modality problem is
endemic. We hence test a SVM classifier under both the modal decision
fusion and neutral point-substitution paradigms, and find that, while er-
ror cancellation is indeed apparent, the genuinely multimodal approach
enabled by the neutral-point method is superior by a significant factor.

1 Introduction

In a paper given at the last MCS meeting [9], we set out a strategy for address-
ing the problem of missing modalities in multimodal kernel data. The problem
of missing features is well-known in general pattern recognition, but can be ad-
dressed (aside from simply omitting the missing-data samples) using methods
such as mean substitution [1], at the simplest level, or else via more complex
methods (eg [3]) that take into account specifics of the distribution statistics and
morphology.

However, in multimodal kernel decision problems the issue of missing features
becomes acute (multimodal kernel decision problems are those in which feature
maps φ̂ giving RN outputs for detected objects ω are associated either with
particular sensor spaces; φ̂m(Sm(ω)) → RNm , or else with particular kernel

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 161–170, 2009.
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measures Km(φ̂m(·), φ̂m(·)) → R on some, possibly even common, sensor-output
space S)1. The difficulties arise because we cannot, in general, assume that the
Kernel matrix Kn = Kn(φ̂n(S(ωi)), φ̂n(S(ωj))) defined on a per-mode basis (ie
applicable only to mode n) will give rise to the same Mercer embedding space,
ψ̂n(S) = (ψn

1 (S), ψn
2 (S), ψn

3 (S), . . .)′ when the set from which i and j are drawn
has differing cardinalities, r, due to the missing data2. (The functions ψn

i (S)
being Eigenfunctions of the Kernel matrix Kn; ie such that φ̂(S(ωi)) = λ

1
2 ui,

where Kn = UΛU′ and U = (u1, u2, u3, . . . ur), with Λ = diag(λ1, λ2, . . . λn)
the eigenvalue matrix, and ui = ψi(S(ωi))).

We cannot therefore simply assume that modes can be combined into a com-
posite (Mercer) pattern space in which to perform classification (as in standard
pattern recognition)3. Furthermore, even if this composition of spaces can be
achieved, there are no kernels defined a priori within it since there are no
inter-modal kernels defined at the outset, as would be required for pattern
recognition based on Euclidean (l2-norm), or quasi-Euclidean (ln-norm) assump-
tions. Consequently, there is an ambiguity as to how the problem should be
approached.

We therefore, rather, approach the problem from the opposite direction, firstly
defining a composite kernel capable of accommodating missing Kernel values,
and only secondarily considering the nature of the space in which this compos-
ite kernel is embedded, consistent with the ideals of kernel-based approaches
generally.

The paper is therefore structured as follows: in the following section we re-
cap the neutral-point approach to missing value substitution, and indicate its
relation to the Sum-Rule decision scheme. In section 3 we detail the application
of the method to multi-modal Biometric data (data in which the missing value
problem arises naturally). Section 4 discusses experimental outcomes and makes
concluding remarks.

1 In which case the problem is similar to that of multikernel learning [6]. However, we
here assume that that the association of kernels with output sensors with is in some
way intrinsic to the experimental setup (e.g. the association of genetic-distance with
gene-data), rather than being determined after the fact via an optimisation process
as is sometimes the case in Multikernel learning).

2 We could, of course, simply overlook this issue, and combine outputs in the sensors’
tensor space; however this is to make the notion of using mode-specific Kernels
redundant, in particular, losing the inherent advantages of the problem-relevant,
minimalist and linearised embedding spaces so constructed. Furthermore, in certain
domains (eg step-wise gene-distance measurements [8]), where there is no absolute
underlying sensor space, it is only possible to work with kernel embedding spaces.

3 This is not necessary problematic for other Kernel applications. For instance, a
method for approaching the missing data issue at the objective function level in
Kernel PCA is given in [7]; it utilises cross entropy with respect to a Gaussian
distribution as the cost function to be minimised with respect to the missing values.
However, this makes implicit assumptions about the data (namely that it can be
modelled as a Gaussian with the given kernel), and takes a significant amount of
time to compute.
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2 The Neutral Point Method

We here recap the essentials of the neutral point method; for more detailed
information refer to [9]. For clarity in this section, we assume an underlying
unidimensional sensor space within each mode, and omit explicit consideration
of the sensor-space/feature-map relation φ(S(ω)) as it does not effect findings:

We thus consider a set of Kernel measures, Ki in relation to which sensor
outputs can be defined for each entity ω (ie where x maps objects ω into a
common real valued space):

Xi = {x(ω), ω ∈ Ω} (1)

Any kernel Ki(x′
i, x

′′
i ) embeds the scale of the respective sensor Xi (equipped

with with inner product) into a hypothetical linear space (the embedding space),
X̂i ⊇ Xi , in which the null element and linear operations are defined.

For a single modality, the training set:

Ω�
i = {ωj, j = 1, . . . , Ni} (2)

is completely defined by kernel matrix and class indices y (y = ±1):

Ω�
i => {Ki = �Ki(xi(ωj), xi(ωl)), ωj , ωl ∈ Ω�

i �, y(ωj), ωj ∈ Ω�
i } (3)

Support Vector Machines (SVMs) are the most common Kernel-based ap-
proach approach to 2-class pattern recognition, the problem being to find max-
imal margin discriminant hyperplane in space X i :

yi(xi(ω)) = Ki(θi, xi(ω)) + bi

>
< 0 (4)

(which generally has a much more complex decision boundary in Xi ).
This leads to the standard SVM Training Criterion:

Ki(θi, θi) + C
∑

ωj∈Ω�
i

δj → min(θi ∈ X i, b ∈ R, δj ∈ R) (5)

Subject to:
yi�Ki(θi, xi(ωl)) + b� ≥ 1 − δj , δj ≥ 0 (6)

The (Wolfe) dual form of the criterion is a quadratic programming problem
with respect to the Lagrangian multipliers, λ:∑

ωj∈Ω�
i

λi,j − (1/2)
∑

ωj∈Ω�
i

∑
ωl∈Ω�

i

�yjylKi(xi(ωj), xi(ωl))�λi,jλi,l → max (7)

Subject to: ∑
ωj∈Ω�

i

yjλi,j = 0, 0 ≤ λi,j ≤ C/2, ωj ∈ Ω�
i (8)
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This gives rise to the usual decision rule defined by the support objects Ω̂i ∈
Ω�

i as the remaining Lagrange multipliers tend to zero λi,j → 0 (leaving λ̂i,j > 0):

f̂(xi(ω)) =
∑

j:ωj∈Ω�
i

yj λ̂i,jKi(xi(ωj), xi(ωl)) + b̂i

>
< 0 (9)

with:

b̂i = −

⎛⎝ ∑
j:ωj∈Ω�

i

λ̂i,j

∑
l:ωl∈Ω�

i

y(ωl)λ̂i,lKi(xi(ωj), xi(ωl))/
∑

j:ωj∈Ω�
i

λ̂i,j

⎞⎠ (10)

However, there exits a continuum of points for each i for which no decision is
given:

x̂φ,i ∈ X φ,i, X φ,i = {xi ∈ X i : Ki(θ̂i, xi) + b̂i = 0}, b̂i = −Ki(θ̂i, xφ,i) (11)

These are the neutral points. In the following, we do not, at any stage, need
to explicitly calculate them. In particular, where an individual neutral point
is used in calculation, we shall find that it is only required that the neutral
point be one drawn from the total set of of neutral points, without having the
requirement of specifying which neutral point it is. In other words the designator
of an individual neutral point behaves like a ’particularity’ operator and not an
indexical operator.

To proceed further, we now need to explicitly consider the multikernel decision
problem. Substituting the most straightforward multi-modal Kernel, the linear
kernel where K(x′, x′′) =

∑n
i=1 Ki(x′

i, x
′′
i ) into the (non-dual) SVM decision

problem, we find that the training criterion becomes:

Ki(θi, θi) + C
∑

ωj∈Ω�
i

δj → min(θi ∈ X i, b ∈ R, δj ∈ R) (12)

Subject to:

�yj(Ki(θi, xi(ωj))+
n∑

l=1,l �=i

Kl(θl, xl(ωj)) + b)≥1− δj , δj ≥0, ωj ∈Ω�
i �, i = 1, . . . , n

(13)
However, the question arises as to the existence of the terms Kl(θl, xl(ωj)),

when l �= i; that is, where an object designated within one mode’s kernel em-
bedding space also exists within another mode’s kernel space. If, for instance,
multi-modal training sets are partially disjoint (e.g. when training sets have
missing feature values) then the multi-mode kernel problem is not soluble in
itself. If multi-modal training sets are completely disjoint (for instance, when
the training sets within each mode are proprietary) then the multi-modal kernel
problem is maximally intractable.

However, because of the presence of the individual modes’ decision problems
in the above constraint optimisation problem, we can apply the neutral point
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substitution as constituting the least biasing value substitution given the decision
problem in question. Thus, rather than proposing a missing data approach that
makes strong assumptions about the form of the data (perhaps that it is Gaussian
in nature), or else takes only very partial consideration of the nature of the data
(as in mean-substitution), we propose to adopt a missing-data approach that is
relevant to the classification problem in hand.

Hence, we the replace ’missing’ sensor values xl(ωj), l �= i, by unbiased neutral
points: x̂φ,i ∈ X̂φ,i.

It was shown [9] that, in the case of completely disjoint modalities, the solution
to the above equation with appropriate neutral point substitutions (such that
Kl(θl, xl(ωj)) + b = 0) becomes linearly separable in b, and defaults to the sum
rule decision scheme for the individual modes’ SVMs:

f̂(xi(ω), i =, . . . , n) =
n∑

1=1

�Ki(θ̂i, xi(ωl)) + b̂i�
>
< 0 (14)

This is a very reassuring result, in that it shows that our choice of unbiased
substitution for missing data naturally corresponds to the only alternative way
of dealing with the completely disjoint data problem (ie treating it as a case
of decision fusion). Further, it indicates that neutral point substitution readily
permits room for the error decorrelation effect to take place (which can be im-
portant if the composite Kernel increases the dimensionality of the embedding
space to the point at which the ’curse of dimensionality’ becomes apparent).
What is not immediately clear, however, is the extent to which this effect is ad-
vantageous for partially disjoint data, where the composite Mercer space is not
so straightforwardly decomposable into its marginal components. In this case,
we can regard the the completed data (ie the data without missing components)
as ’weighting’ the summed marginal decisions on the basis of the intra-modal
correlations to an extent that is governed by their proportion of the total data.
The exact degree to which this occurs will be data and kernel dependant. We
would therefore like to quantify this result for a typical data set.

We hence now turn to an empirical exploration of the neutral point method
in a realistic scenario, in which the modal data is only very partially disjoint;
that is, where the multimodal data is largely complete, apart from a few missing
values (eg, of the sort that occur in the field of census data returns).

3 Experimental Findings

3.1 Database, Reference Systems and Experimental Protocols

The data used in our evaluation scheme is taken from the Biosecure database.
Biosecure4 is a European project whose aim is to integrate multi-disciplinary re-
search efforts in biometric-based identity authentication. Application examples
are a building access system using a desktop-based or a mobile-based platform,
4 http://www.biosecure.info/
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Table 1. A list of channels of data for each biometric modality captured using a given
device

(a) Channels of data

Label template ID {n} Modality Sensor Remarks

fa 1 Still Face web cam Frontal face images (low resolution)
ft 1–6 Fingerprint Thermal 1/4 is right/left thumb; 2/5 is right/left index; 3/6

is right/left middle finger

ir 1–2 Iris image LG 1 is left eye; 2 is right eye

(b) Reference systems

Modality Reference systems

Still Face Omniperception’s Affinity SDK
face detector; LDA-based face
verifier

Fingerprint NIST Fingerprint system

Iris A variant of Libor Masek’s iris
system

(c) Protocols

Data sets No. of match scores per person
dev (51 persons) eva (156 persons)

S1 Gen 1 1
Imp 103 × 4 51 × 4

S2 Gen 2 2
Imp 103 × 4 126 × 4

as well as applications over the Internet such as tele-working and Web or remote-
banking services. As far as the data collection is concerned, three scenarios have
been identified, each simulating the use of biometrics in remote-access authenti-
cation via the Internet (termed the “Internet” scenario), physical access control
(the “desktop” scenario), and authentication via mobile devices (the “mobile”
scenario). A report on the complete Biosecure database is being drafted.

For the purpose of our experiments, we used the subset of desktop scenario,
which further contains a subset of still face, 6 fingers and iris modalities, denoted
by fa1, ft1–6 and ir1, respectively. These 8 channels of data, as well as the
reference system, and the experimental protocols are summarized in Table 1.

Note that for the purpose of performance assessment, the main objective of
this paper, the data set and experimental protocols are not the primary concern;
any database could have been used. The only requirement is that a wide variety of
biometric modalities are used in order to illustrate the generality of our approach.

It is important to note that there are two score data sets: development and
the evaluation sets (see Table 1(c)). In this table, S1 means the session 1 data
whereas S2 means the session 2 data. The data in S1 consists of two samples col-
lected within the same session. They are collected to facilitate the development
of a baseline system. It is known that intra-session performance is biased [4]. For
this reason, we shall use the S2 data for our evaluation. A plot of EER for the 8
channels of data is shown in Figure 1. The iris baseline system used here is far
from the performance claimed by Daugman’s implementation [2]. We verified
that this is due to bad iris segmentation and a suboptimal threshold for dis-
tinguishing eyelashes from iris (being baselines, no effort was made to optimize
performance; the only requirement is that all systems output match scores).

Two factors can result in missing modalities. First, during the data collection
process, some volunteers did not complete a whole session. Second, some acquired
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Fig. 1. The error of the development set (blue) versus that of evaluation set (red) of
the 8 systems used in the cost-sensitive evaluation of the Biosecure data set

Table 2. Correlation matrix of genuine scores. fa1=face, ft1–6: fingerprints, ir1=iris
match scores.

fa1 ft1 ft2 ft3 ft4 ft5 ft6 ir1

1.00 0.15 -0.03 -0.07 -0.13 0.12 -0.08 -0.07
0.15 1.00 0.33 0.40 0.39 0.56 0.44 0.08
-0.03 0.33 1.00 0.60 0.41 0.58 0.64 0.02
-0.07 0.40 0.60 1.00 0.51 0.62 0.66 0.02
-0.13 0.39 0.41 0.51 1.00 0.51 0.56 -0.04
0.12 0.56 0.58 0.62 0.51 1.00 0.73 -0.12
-0.08 0.44 0.64 0.66 0.56 0.73 1.00 -0.11
-0.07 0.08 0.02 0.02 -0.04 -0.12 -0.11 1.00

biometric samples are so low in quality that they cannot be processed by our
feature extraction algorithm, or the resultant extracted features could not be
used for matching. Being well controlled, the development set contains almost
complete observations; however a fraction of samples in the evaluation set (8348
out of 76920) contain some missing modalities.

3.2 Correlation Analysis of the Match Scores

We may summarise the data as paired biometric systems delivering impostor
match scores5 (the corresponding genuine user match scores are similar and,
hence not considered here).

In particular, it is useful to summarize the two class-conditional covariance
matrices by their correlation matrices since correlation is invariant to variable
scaling and is bounded in [−1, 1], with 1 (resp. −1) being perfect positive (resp.

5 Match scores used in the experiments are available for download at: http://
personal.ee.surrey.ac.uk/Personal/Norman.Poh/web/fusionq
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Table 3. Impostor scores

1.00 -0.02 -0.02 -0.05 -0.01 -0.03 -0.05 0.10
-0.02 1.00 0.06 0.08 0.09 0.04 0.07 -0.03
-0.02 0.06 1.00 0.12 0.05 0.14 0.10 -0.03
-0.05 0.08 0.12 1.00 0.08 0.10 0.15 -0.05
-0.01 0.09 0.05 0.08 1.00 0.05 0.07 -0.02
-0.03 0.04 0.14 0.10 0.05 1.00 0.14 -0.03
-0.05 0.07 0.10 0.15 0.07 0.14 1.00 0.02
0.10 -0.03 -0.03 -0.05 -0.02 -0.03 0.02 1.00
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Fig. 2. Performance of the baseline expert systems and that of fusion with SVM using
the sum rule and the neutral point substitution method

negative) correlation. The correlation matrix of the impostor and client match
scores calculated on the development set are shown in Table 2 and Table 3.

There are three points to note. First, the impostor match scores have generally
correlation entries close to zero. Second, the correlation among all the six fingers
(columns 2 to 7, resp. rows 2 to 7) are all positive, albeit having small values.
Third, the correlation among the genuine match scores of all the six fingers
(columns 2 to 7, resp. rows 2 to 7) have relatively high values (from 0.3 to 0.6).
According to [5], this indicates that combining two fingerprint systems may not
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be as effective as combining two different biometric traits, e.g., a fingerprint and
a face biometric. The problem is therefore implicitly multi-modal, and can be
kernelised in terms of SVM recognition within the individual modes.

3.3 Results

Using the neutral point substitution method outlined in section 2, we there-
fore specified an experimental scenario in which the SVM classifier acts both
individually upon the modalities of the Biosecure database, and collectively via
sum rule decision fusion and composite kernelization. Composite kernelisation
is carried-out via the linear kernel K(x′, x′′) =

∑n
i=1 Ki(x′

i, x
′′
i ) with neutral

point substitution undertaken for the missing values. An inner product kernel is
chosen for transparency within the individual modalities.

The results of these tests are given as superimposed ROC curves in Figure 2.

4 Discussion and Conclusions

It was demonstrated theoretically that the neutral point method is an appro-
priate strategy for treating missing values in multi-kernel problems with the
potential to retain the error-decorrelation advantages of the sum-rule decision
scheme in typical test scenarios with partial missing data. Experiments were con-
sequently conducted on multimodal biometric data from the Biosecure database,
in which both multi-kernelisation and the missing data problem arose naturally,
in order to complement the theoretical analysis derived for the asymptotic sce-
nario of complete data-disjunction.

Results (Fig. 2) demonstrate that the sum rule decision scheme is indeed su-
perior to any individual modal decision rule on the tested data, but that very
significantly greater advantage arose from the composition of Kernels (which
would, in itself, be impossible without missing value substitution). We hypoth-
esise that this result will be typical for naturally-arising multi-kernel, missing-
data problem (data in which missing values are relatively rare). The neutral
point method is thus an appropriate ’first-resort’ strategy to consider in these
cases, as opposed to modal fusion; particularly as the latter is implicit in the
former.

Because of the nature of the derivation of the neutral point method, there
is no explicit requirement for actual value substitution, and the method gives
rise to minimal changes to the cost function of linearised kernel composition.
Furthermore, the method differs from previous approaches in that the missing
values are related to the decision problem rather than to the data distribution. In
this way it is consistent with the broad philosophy of maxim margin SVM-based
approaches. We thus conclude that the neutral point method can be charac-
terised as an empirically safe and theoretically-unbiased approach to missing
data substitution.
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Abstract. In this paper we present our work on the Random Forest (RF) family
of classification methods. Our goal is to go one step further in the understanding
of RF mechanisms by studying the parametrization of the reference algorithm
Forest-RI. In this algorithm, a randomization principle is used during the tree
induction process, that randomly selects K features at each node, among which
the best split is chosen. The strength of randomization in the tree induction is
thus led by the hyperparameter K which plays an important role for building ac-
curate RF classifiers. We have decided to focus our experimental study on this
hyperparameter and on its influence on classification accuracy. For that purpose,
we have evaluated the Forest-RI algorithm on several machine learning problems
and with different settings of K in order to understand the way it acts on RF per-
formance. We show that default values of K traditionally used in the literature
are globally near-optimal, except for some cases for which they are all significa-
tively sub-optimal. Thus additional experiments have been led on those datasets,
that highlight the crucial role played by feature relevancy in finding the optimal
setting of K.

Keywords: Supervised Learning, Ensemble Method, Random Forests, Decision
Trees.

1 Introduction

Random Forest is a family of classifier ensemble methods that use randomization to
produce a diverse pool of individual classifiers, as for Bagging [1] or Random Sub-
spaces methods [2]. It can be defined as a generic principle of classifier ensemble that
uses L tree-structured base classifiers {h(x, Θk), k = 1, ...L} where {Θk} is a fam-
ily of independent identically distributed random vectors, and x is an input data. The
particularity of this kind of ensemble is that each decision tree is built from a random
vector of parameters. A Random Forest can be built for example by randomly sampling
a feature subset for each decision tree (as in Random Subspaces), and/or by randomly
sampling a training data subset for each decision tree (as in Bagging). Since they have
been introduced in 2001, RFs have been studied in many ways, theoretically as well
as experimentally [3,4,5,6,7,8]. In most of those works, it has been shown that RFs are
particularly competitive with one of the most efficient learning principles, i.e. boost-
ing [4,8]. However, the mechanisms that explain the good performance of RFs are not

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 171–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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clearly identified and one has to admit that it is still a complex task for the practitioner
to take full benefits of the potential of those methods. For example considering the ref-
erence RF method called Forest-RI, introduced by Breiman in [4] (see section 2), an
important hyperparameter has been identified : the number K of features randomly se-
lected at each node during the tree induction process. Yet, in those research works that
have experimented this method, the value of K is arbitrarily or empirically set, and
sometimes without any theoretical nor experimental justification.

In this paper we propose to go one step further in the understanding of RF mecha-
nisms, by studying the parametrization of the reference algorithm Forest-RI. We pro-
pose to study the influence of the hyperparameter K on the classification accuracy, in
order to empirically distinguish parametrization rules or tendencies, according to some
characteristics of the classification problem. The final goal is to give elements to the
practitioner in order to help him building RFs that accurately suit to the specificities
of a classification problem. For that purpose we have experimented on several machine
learning datasets the algorithm Forest-RI with different settings of K in order to study
their influence on accuracy. We show that default values of K traditionally used in the
literature are globaly near-optimal, except for some cases for which they are all sig-
nificatively sub-optimal. We have then studied the relation between the nature of the
feature space and RF performance, by studying feature relevancy. We highlight the cru-
cial role played by feature relevancy in finding the optimal setting of K .

The paper is thus organized as follows: we recall in section 2 the Forest-RI prin-
ciples and related works on its experimentation; in section 3, we describe our exper-
imental protocol, the datasets used, and the results obtained with different settings of
the hyperparameter K. We finally draw some conclusions and future works in the last
section.

2 The Forest-RI Algorithm

One can see Random Forests as a family of methods, made of different decision tree en-
semble induction algorithms, such as the Breiman Forest-RI method often cited as the
reference algorithm in the literature [4]. In this algorithm the Bagging principle is used
with another randomization technique called Random Feature Selection. The training
step consists in building an ensemble of decision trees, each one trained from a boot-
strap sample of the original training set — i.e. applying the Bagging principle — and
with a decision tree induction method called Random Tree. This induction algorithm,
usually based on the CART algorithm [9], modifies the splitting procedure for each
node, in such a way that the selection of the feature used for the splitting criterion is
partially randomized. That is to say, for each node, a feature subset is randomly drawn,
from which the best splitting criterion is then selected as in traditionnal tree induction
algorithms. To sum up, in the Forest-RI method, a decision tree is grown by using the
following process :

– Let N be the size of the original training set. N instances are randomly drawn with
replacement, to form the bootstrap sample, which is then used to build the tree.

– Let M be the dimensionality of the original feature space, and K a preliminary
fixed hyperparameter so that K ∈ [1, M ]. For each node of the tree, a subset of
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K features is randomly drawn without replacement, among which the best split is
then selected.

– The tree is thus built to reach its maximum size. No pruning is performed.

In this process the tree induction is directed by a single hyperparameter, i.e. the num-
ber K of randomly selected features. This number allows to introduce more or less
randomization in the induction. Whereas this hyperparameter seems to be critical to
induce accurate RF [3], no research work has been specifically devoted to the study of
its setting and its real influence on performance, and only a few have empirically dealt
with this issue.

In [6] for example, Geurts et al. have proposed a new method of RF induction, called
Extras-Trees for Extremely Randomized Tree Ensemble, that modifies the Forest-RI
algorithm to accentuate the randomization. Here the Random Feature Selection is still
used but modified so that the best splitting criterion selection is one step further random-
ized. The authors have designed their experimental protocol to study the influence of K
on performance. Even if this method is partly different from the Forest-RI algorithm,
this work allows to draw some intuitions on the Random Forest behavior according to
K . It highlights for example that its default setting K =

√
M , where M stands for the

size of the original feature set, is most of times closed to the optimal setting, at least for
the Extras-Trees method and on several representative datasets.

When introducing RF formalism, Breiman studied performance according to K [4].
In these experiments, a large number of RF has been grown on three datasets, for which
the test set error rate has been monitored. Actually only one of those three experiments
was really concerned by the Forest-RI algorithm, since the two others have been run
with an induction algorithm that uses feature combinations as splitting criterions, in-
stead of single features. Hence, even if some tendencies can be intuitively guessed,
those experiments do not allow to conclude on RF behavior according to the setting
of K . We also noticed that in his Forest-RI experiments, Breiman decided to use two
values of K : 1 and log2M + 1. While the first value is intuitively interesting since it
corresponds to a decision tree induction that selects in a fully random manner the split-
ting criterion among features for each node, the second one seems to be more arbitrary
or at least is not justified.

In [3], a serie of tests with Forest-RI has been led on the well-known MNIST hand-
written digit recognition dataset [10]. An interval of values of K has been found for
which best accuracies have been reached; this interval does not contain neither K = 1
nor K = M but contains the two values K =

√
M and K = log2(M) + 1. However

we think that their primary conclusions need to be confirmed with a more rigourous
experimental protocol and with several different machine learning datasets.

Finally, implementation and experimentation of the Forest-RI algorithm require to
fix the value of the hyperparameter K but there actually does not exist any theoretical
rule that can be used to fix it. As mentioned previously, only arbitrary default values
are proposed in the literature and nothing guarantees that these values are close to the
optimal setting. Thus one of the goal of the work presented in this paper is to bring
elements of RF mechanism understanding by focusing on the hyperparameter K and
on the way it acts on RF accuracy. For that purpose we have led a set of experiments
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that are described in the following section. Notice that in the rest of this paper, the
term Random Forest (RF) will always stand for a forest induced with the Forest-RI
algorithm.

3 Investigating the Influence of Hyperparameter K on Accuracy

The hyperparameter K denotes the number of features randomly selected at each node
during the tree induction process. It must be set with an integer in the interval [1..M ],
where M stands for the dimensionality of the feature space. This number thus controls
the strength of the randomization in the feature selection process, in such a way that
the smaller the value of K , the stronger the randomization. In the case where K = 1
for example, each split (i.e. the feature used as splitting criterion) of the tree structure
is randomly selected among all the available features. On the contrary, where K =
M , no randomization is introduced in the split selection and each tree is thus grown
following a traditional tree induction process. In this particular case, randomization is
thus introduced only through the bagging principle. The main idea of our experiments
is to study RF accuracy according to hyperparameter K , on several kinds of machine
learning problems. We first describe in the following subsection the datasets used. We
then detail our experimental protocol and results in the next two subsections.

3.1 Datasets

The description of the 12 datasets that have been used for these experiments is sum-
murized in Table 1. 9 of these datasets have been selected from the UCI repository
[11], because they concern different machine learning issues in terms of number of
classes, number of features and number of samples. Three additionnal datasets on differ-
ent handwritten digit recognition problems have been used: (i) the well-known MNIST
database [10] with a 85 multiresolution density feature set (1+2×2+4×4+8×8)built
from greyscale mean values as explained in [3]; (ii) Digits and DigReject both described
in [12], on which a 330-feature set has been extracted, made from three state-of-the-art
kinds of descriptors, i.e. a 117-statistical/structural feature set [13], a 128-feature set
extracted from the chaincode (contour-based) [14], and the same 85-feature set as for
MNIST.

Table 1. Dataset description

Dataset # Samples # Features # Classes Dataset # Samples # Features # Classes

Digits 38142 330 10 Mfeat-karhunen 2000 64 10
DigReject 14733 330 2 Mfeat-zernike 2000 47 10
Letter 20000 16 26 MNIST 60000 84 10
Madelon 2600 500 2 Musk 6597 166 2
Mfeat-factors 2000 216 10 Pendigits 10992 16 10
Mfeat-fourier 2000 76 10 Segment 2310 19 7
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3.2 Experimental Protocol

Our experiments aim at studying the evolution of RF accuracy according to different
values of K . For all the RF induced in our experiments, the number of trees has been
set to 100. This choice is based on an experimental work presented in [3], in which
it has been shown that it is a reasonable value to grow an accurate RF. Moreover our
goal is not here to reach intrinsic optimal performance. First, each dataset has been
randomly split into training and testing subsets, as explained in the previous section.
This splitting procedure has been repeated 50 times, so that 50 different training sets
and testing sets are thus available, each respectively containing two thirds and one third
of the original dataset. We denote by Ti = (Tri, T si) such a split, with i ∈ [1..50] and
where Tri and Tsi stand respectively for the training set and the testing set. Then, for
each Ti, the Forest-RI algorithm has been run for each value of K in [1..M ], where M
stands for the total number of features. However, mainly for computational reasons, the
definition domain of K has been sampled for some of the datasets for which the size of
the feature space is too large, so that values of K have been picked at regular intervals
between 1 and M . In the rest of this paper we denote by M ′ the number of values of
K that have been tested for each dataset. Table 2 summarizes the number of runs in
these experiments, according to the values of K and the number of splits. Algorithm
1 summarizes the whole experimental protocol applied to each dataset. This procedure
outputs a table of 50 × M ′ error rates according to different values of K , and for each
dataset. Those results are presented and discussed in the next subsection.

Table 2. Numbers of runs for evaluating RF performance according to K

Dataset M M ′ = # values of K tested for each Ti total # of runs

Digits 330 M
10

+ 1 = 34 34 × 50 = 1700

DigReject 330 M
10

+ 1 = 34 34 × 50 = 1700

Letter 16 16 16 × 50 = 800

Madelon 500 M
10

+ 1 = 51 51 × 50 = 2550

Mfeat-factors 216 M
3

+ 1 = 73 73 × 50 = 3650

Mfeat-fourier 76 76 76 × 50 = 3800

Mfeat-karhunen 64 64 64 × 50 = 3200

Mfeat-zernike 47 47 47 × 50 = 2350

Mnist 84 M
2

+ 1 = 43 43 × 50 = 2150

Musk 166 M
3

+ 1 = 56 56 × 50 = 2800

Pendigits 16 16 16 × 50 = 800

Segment 19 19 19 × 50 = 950

Total 586 29100

3.3 Results

Table 3 presents the results obtained with the experimental protocol detailed in Algo-
rithm 1. With this protocol, a table of 50 × M ′ error rates with respect to K is first
obtained for each dataset. These series of error rates have been averaged so that to each
dataset correspond M ′ accuracies, i.e. one mean value for every K , and the standard
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Algorithm 1. Experimental Protocol 1
INPUT: N : number of samples in the original dataset.
INPUT: M : number of features in the original dataset.

OUTPUT: ε[50][M ′]: 2D table used for storing each error rate obtained with Forest-RI.
for i ∈ [1..50] do

Randomly draw without replacement 2
3
× N samples from the original dataset to form

a training subset Tri. The remaining samples form the testing subset Tsi, the couple
(Tri, T si) is denoted Ti.

for each k in [1..M ] do
H(k) ← Grow a Random Forest with the Forest-RI algorithm, with L = 100 and K =
k, on the training set Tri.

ε(i, k) ← Test the resulting RF on the testing set Tsi.

end for
end for

deviation values have also been computed. Table 3 details some of those results ac-
cording to five particular values of K . The first of those values, in the second column,
corresponds to the ”optimal” value of K , noted K∗, that is to say the value of K , among
all the tested values, for which the maximum average accuracy has been reached. The
second and third values correspond to K =

√
M and K = log2M + 1 which are often

used as default settings in the literature (see section 2). The two last columns present
error rates for K = 1 and K = M . The number in brackets for columns 2, 3 and 4,
represents the value of K that is either obtained from the experiments (K∗ in column
2) or fixed for the experiments (

√
M in column 3 or log2(M) + 1 in column 4).

A first observation made from Table 3 is that the four particular values K =
√

M ,
K = log2(M) + 1, K = 1 and K = M rarely exactly correspond to the best
parametrization of K . K∗ is

√
M for only 2 of the 12 datasets (Mfeat-zernike and

Table 3. Mean error rates for the different algorithms

Dataset K∗ K√
M Klog2(M)+1 K1 KM

Digits 2.18 ± 0.12 (11) 2.20 ± 0.13 (18) 2.19 ± 0.12 (9) 2.61 ± 0.13 3.25 ± 0.19

DigReject 7.15 ± 0.34 (181) 7.70 ± 0.34 (18) 7.80 ± 0.35 (9) 9.02 ± 0.32 7.27 ± 0.30

Letter 4.16 ± 0.28 (3) 4.23 ± 0.23 (4) 4.30 ± 0.26 (5) 5.21 ± 0.27 7.33 ± 0.47

Madelon 17.60 ± 1.60 (261) 30.48 ± 1.94 (22) 34.54 ± 1.26 (10) 45.94 ± 1.57 18.60 ± 1.91

Mfeat-fac 3.56 ± 0.71 (10) 3.57 ± 0.58 (15) 3.58 ± 0.73 (9) 4.27 ± 0.72 4.61 ± 0.76

Mfeat-fou 16.81 ± 1 (19) 17.11 ± 1.05 (9) 17.25 ± 1.02 (7) 22.18 ± 1.19 18.66 ± 1.33

Mfeat-kar 4.30 ± 0.68 (6) 4.33 ± 0.69 (7) 4.30 ± 0.68 (6) 7.14 ± 0.83 8.38 ± 1.11

Mfeat-zer 22.26 ± 1.06 (7) 22.26 ± 1.06 (7) 22.56 ± 1.02 (5) 23.86 ± 0.90 24.87 ± 1.33

MNIST 5.06 ± 0.14 (24) 5.17 ± 0.14 (10) 5.32 ± 0.17 (8) 6.54 ± 0.17 6.54 ± 0.28

Musk 2.34 ± 0.34 (88) 2.40 ± 0.29 (13) 2.50 ± 0.26 (8) 4.03 ± 0.32 2.48 ± 0.34

Pendigits 0.97 ± 0.17 (4) 0.97 ± 0.17 (4) 1.01 ± 0.17 (5) 1.15 ± 0.18 1.50 ± 0.23

Segment 2.36 ± 0.53 (5) 2.44 ± 0.44 (4) 2.36 ± 0.53 (5) 3.23 ± 0.50 2.71 ± 0.56
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Pendigits), log2(M)+1 for only 2 of them (Mfeat-karhunen and Segment), and is never
equal to 1 nor to M . Those settings are even sometimes quite far from the K∗ value, as
for the Madelon, DigRejects, MNIST and Musk datasets. One could conclude from this
that it is not advised to systematically use one of those default settings of K and that it
is necessary to further investigate a way to supply a better rule of parametrization. How-
ever, by examining standard deviation values and differences between results obtained
for two settings of K closed from each other, we were wondering if this conclusion was
correct. We can see from table 3 that they are most of the time of the same order. If
we thus consider that values of K closed from each other produce classifiers statiscally
equivalent in terms of accuracy, K =

√
M can be considered as a good setting for K

— at least close to the optimal setting — for 8 of the 12 datasets. Of course this state-
ment needs to be experimentally investigated and proved, by performing a statistical
test of significance such as the McNemar test for example. Nevertheless we think that
it is reasonnable to deduce from our results that K =

√
M is a good compromise for

the parametrization of K .
Figure 1 presents our results as curves of averaged error rates with respect to values

of K . On this figure one can first observe that all the curves exhibit the same global
variation, that is to say a decreasing followed by an increasing when K increases. This
confirms the primary conclusions drawn in [3], in which it has been found that the
extrema values for K , i.e. K = 1 and K = M , are not advised to be used for building
an accurate RF with Forest-RI. However, this common behavior strongly differs from
a dataset to another in a more detailed analysis of the curves. We can distinguish three
trends of variation in these 12 diagrams: for 5 of them (Mfeat-factors, Mfeat-fourier,
Mfeat-karhunen, Mfeat-zernike and Digits) the minimum error rate is reached for a
small value of K (marked with circles in the figure) and the increase of the curves from
this point till K = M is monotonical and almost linear; for 4 of them (Letter, Mnist,
Pendigits and Segment) the trend is almost the same but with a more parabolical shape;
for 3 of them (DigReject, Madelon and Musk) this increase of the curves is quasi null,
and the minimum error rate is reached for a larger value of K (i.e. greater than M

2 ).
These different behaviours are quite difficult to explain only with some characteristics
of the datasets such as the number of classes or the number of features. Geurts et al.
in [6] suggest that the nature of the features could explain some particularity of their
Extra-Trees behavior for some particular cases. They conjecture that the more features
that are irrelevant, the larger the value of K∗, since a higher value of K would lead
to a better chance of filtering out the irrelevant variables. This statement has led us to
focus on the relevancy of features for explaining accuracy variation according to values
of K . For that purpose we have decided to evaluate the relevancy of each feature by
measuring the information gain with respect to the class. In general terms, the expected
information gain is the change in information entropy from a prior state to a state that
takes some information [15]. It is often used in decision tree induction as criterion for
node split selection. For our experiments, information gain has been measured for all the
features on each Tri of each dataset. In that way, 50 × M values of information gain
have been computed for each dataset. Figure 2 synthesizes those results as curves of
cumulative number of features with respect to information gain values, so that each dot
of the curves indicates the number of features for which the information gain is smaller
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Fig. 1. Mean error rates with respect to values of K. The minimum error rates are marked on each
diagram.

than or equal to the corresponding value on the x-axis. This representation allows to
simultaneously observe the relevancy of all the features and gives an idea of how many
of them are irrelevant. One can observe on this figure that values of information gain
are globally greater (typically higher than 0.1) for datasets for which values of K∗ are
small regarding to M, as this is the case for exemple for Digits, Mfeat-Factors and
Mfeat-Karhunen for which K∗ is lower than M

10 . On the contrary, for the three datasets
for which K∗ is higher than M

2 (DigReject, Madelon and Musk), the information gain
values are always lower than about 0.1. This seems to prove that relevancy of features
strongly explains the accuracy variation according to values of K .

The choice of K actually leans on a compromise between two needs : (i) to force,
via randomness, the tree induction process to diversify choices of splitting criteria in or-
der to induct trees different from each other (ii) to choose relevant features for splitting
criteria in order to induct trees performant enough. A too strong randomization of the
split selection produces trees that globally do not suit the problem enough, while not
randomizing ”enough” creates trees that tend to overfit the training data, and thus make
them be similar from each other in terms of predictions. K acts thus as a trade-off for
balancing performance and diversity of trees in the ensemble. However we believe that
the impact on performance of the ”amount” of randomization used in the split selec-
tion process, strongly depends on the global relevancy of features. If there are too few
relevant features, the randomization will rapidly make the tree accuracy decrease, and
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Fig. 2. Cumulative number of features with respect to information gain values

thus rapidly deteriorate the ”individual performance of the trees versus the ensemble
diversity” trade-off. On the contrary a large amount of strongly relevant features facil-
itates the overfitting of trees and weakens the randomization effects in split selection.
We believe that this is the reason why the three datasets for which values of information
gain are small (DigRejects, Madelon and Musk), present error rate curves that do not
significantly raise for increasing values of K . Consequently we think that the relevancy
of features is an important property that should be taken into account for determining a
parametrization rule for the Forest-RI algorithm.

4 Conclusions

Investigations on RF parametrization have been presented in this paper, that have fo-
cused on the number K of features randomly selected at each node during the tree in-
duction. This hyperparameter allows to control the strengh of the randomization in the
split selection, in such a way that the smaller the value of K , the stronger the random-
ization. In this work several experiments have been led with the Forest-RI algorithm on
different machine learning datasets and with different settings of K , in order to study its
influence on RF performance. We have firstly shown that default settings traditionally
used in the literature do not allow to produce the best possible RF in terms of accuracy,
in a majority of cases. However our results illustrate that one of them, i.e. K =

√
M
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with M being the dimensionality of the feature space, is a reasonnable setting to in-
duct near-optimal RF. This statement should obviously be experimentally confirmed
through the use of statistical test of significance such as the McNemar test for deter-
mining whether or not significant improvement can be made with an optimal setting
of K in comparison with K =

√
M . In a second part of this experimental work we

have focused on the relevancy of features to determine whether or not it could explain
the accuracy variation according to K . We have shown that this property is crucial for
finding the best setting of K since it can strongly modify the randomization effect of
the random split selection procedure. As a consequence we think that the relevancy of
features is an important property that should be taken into account for determining a
parametrization rule for the Forest-RI algorithm. Our future works will focus on this
open issue.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
2. Ho, T.: The random subspace method for constructing decision forests. IEEE Transactions

on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
3. Bernard, S., Heutte, L., Adam, S.: Using random forests for handwritten digit recognition.

In: International Conference on Document Analysis and Recognition, pp. 1043–1047 (2007)
4. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
5. Breiman, L.: Consistency of random forests and other averaging classifiers. Technical Report

(2004)
6. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine Learning 36(1),

3–42 (2006)
7. Latinne, P., Debeir, O., Decaestecker, C.: Limiting the number of trees in random forests. In:

Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 178–187. Springer, Heidelberg
(2001)

8. Rodriguez, J., Kuncheva, L., Alonso, C.: Rotation forest: A new classifier ensemble method.
IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1619–1630 (2006)

9. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chap-
man and Hall/Wadsworth, Inc., New York (1984)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

11. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
12. Chatelain, C., Heutte, L., Paquet, T.: A two-stage outlier rejection strategy for numerical field

extraction in handwritten documents. In: International Conference on Pattern Recognition,
Honk Kong, China, vol. 3, pp. 224–227 (2006)

13. Heutte, L., Paquet, T., Moreau, J., Lecourtier, Y., Olivier, C.: A structural/statistical feature
based vector for handwritten character recognition. Pattern Recognition Letters 19(7), 629–
641 (1998)

14. Kimura, F., Tsuruoka, S., Miyake, Y., Shridhar, M.: A lexicon directed algorithm for recog-
nition of unconstrained handwritten words. IEICE Transaction on Information and Sys-
tem E77-D(7), 785–793 (1994)

15. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine
Learning Research 3, 1157–1182 (2003)



Ensembles of One Class Support Vector

Machines

Albert D. Shieh1 and David F. Kamm2

1 Department of Statistics, Harvard University,
Cambridge, MA 02138, USA
shieh@fas.harvard.edu

2 Department of Computer Science, Stanford University,
Stanford, CA 94305, USA
dkamm@cs.stanford.edu

Abstract. The one class support vector machine (OCSVM) is a widely
used approach to one class classification, the problem of distinguising
one class of data from the rest of the feature space. However, even with
optimal parameter selection, the OCSVM can be sensitive to overfitting
in the presence of noise. Bagging is an ensemble method that can reduce
the influence of noise and prevent overfitting. In this paper, we propose a
bagging OCSVM using kernel density estimation to decrease the weight
given to noise. We demonstrate the improved performance of the bagging
OCSVM on both simulated and real world data sets.

1 Introduction

In binary classification, it is typically assumed that training data is available
for both classes. However, in some real world applications, there is little or
no data available for one of the classes. For example, in the diagnosis of rare
diseases, there are many healthy patients but few sick patients to collect data
from. Therefore, one class is represented well (positive class), but the other
class is not represented well or at all (negative class). One class classification
is the partially unsupervised learning problem of training on positive data only
and distinguishing the positive class from the rest of the feature space, which
comprises all possible negative classes. One class classifiers decide to either accept
or reject a given point into the positive class [13].

There are two main types of one class classifiers. Density methods estimate
the probability distribution of the positive class and accept points that have a
high probability of belonging to the positive class. Boundary methods estimate a
boundary that encloses the positive class and accept points inside the boundary.
Although density methods provide information about the entire structure of
the positive class, boundary methods often perform better since they solve a
fundamentally easier problem [13]. In particular, the one class support vector
machine (OCSVM), a boundary method adapting the support vector machine
(SVM) to one class classification [12,11], has become one of the most widely used
one class classifiers.
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Although the OCSVM has been applied widely, the estimated boundary can
be sensitive in practice [10]. When the training data is noisy and contains many
outliers near or in the negative class, the OCSVM will estimate a large boundary
that encloses areas of the feature space where the positive class has low density,
resulting in many false positives [6]. This can be highly problematic for many
applications where the number of false positives must be kept to a minimum.
For example, the accidental diagnosis of a sick patient as healthy may result
in death. Optimal parameter selection can tighten the estimated boundary to
a certain extent [15], but ideally the OCSVM should be modified in order to
decrease the influence of outliers on the estimated boundary.

One way of viewing the sensitivity of the OCSVM to outliers is that the
OCSVM is unstable. Although the estimated boundary robustly encloses the
positive class, the introduction of outliers can arbitrarily expand the estimated
boundary. Bagging is an ensemble method that combines multiple unstable clas-
sifiers trained on resampled data to produce an improved classifier [3]. Bagging
has been applied to other unstable one class classifiers such as one class decision
trees [9] with success. Other types of ensemble methods, such as combining dif-
ferent one class classifiers [14] and training on different sets of features [8], have
been applied to the OCSVM with success. However, since the OCSVM has been
traditionally viewed as stable, bagging OCSVM has not been explored to our
knowledge.

In this paper, we propose a bagging OCSVM using weights determined by
kernel density estimation. Our bagging OCSVM combines the advantages of
density methods, boundary methods, and bagging. The OCSVM is still used to
estimate a boundary, but kernel density estimation is used to find outliers and
bagging is used to decrease the influence of outliers on the estimated boundary.
Our bagging OCSVM is inspired by the recent success of combining density and
boundary methods [5]. We demonstrate that the bagging OCSVM tightens the
estimated boundary and reduces false positives on both simulated and real world
data sets. The rest of the paper is organized as follows. In Section 2, we describe
the OCSVM. In Section 3, we describe the bagging OCSVM. In Section 4, we
experimentally compare the normal and bagging OCSVM. In Section 5, we give
our final remarks.

2 One Class Support Vector Machines

The OCSVM, as formulated in [11], estimates a set that encloses most of a
given sample of m points {xi}m

i=1,xi ∈ IRd. Each point xi is transformed by
a map φ : IRd → K from the feature space IRd into a high dimensional kernel
space K generated by the kernel k(x,y). The kernel corresponds to an inner
product in the kernel space through k(x,y) = 〈φ(x), φ(y)〉. The OCSVM finds
a hyperplane in the kernel space that separates the data from the origin with
maximum margin. If no such hyperplane exists, slack variables ξi allow for some
points to be within the margin (outliers) and a free parameter ν ∈ [0, 1] controls
the cost of such violations. In general, ν provides an upper bound on the fraction
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of outliers [11]. The hyperplane in the kernel space induces a nonlinear surface
in the feature space.

More precisely, the OCSVM solves the quadratic program

min
w,ξ,ρ

1
2
‖w‖2 +

1
νm

m∑
i=1

ξi − ρ

s.t. 〈w, φ(xi)〉 ≥ ρ − ξi, i = 1, . . . , m

ξi ≥ 0, i = 1, . . . , m (1)

where w is the normal vector to the hyperplane and ρ is the margin. The
quadratic program can be solved efficiently by sequential minimal optimization
(SMO) of its dual form [11]. The decision function

g(x) = sign(〈w, φ(x)〉 − ρ) (2)

determines whether a given point x is in (positive) or out (negative) of the
estimated set.

In practice, a Gaussian kernel

k(x,y) = exp
(
−‖x− y‖2

2σ2

)
(3)

with a width parameter σ is used and is the only kernel that has been successfully
applied to the OCSVM [11]. The Gaussian kernel maps the data into the same
orthant in the kernel space, justifying the principle of separating the data from
the origin. The OCSVM with a Gaussian kernel is equivalent to the support
vector domain description (SVDD) [12], which finds a hypersphere in the kernel
space that encloses the data with minimum volume.

Optimal selection of σ is critical to the performance of the OCSVM, since it
controls the shape of the estimated boundary. When σ is not selected properly
and distances are inhomogeneous, the estimated boundary is often elongated and
encloses large, empty areas of the feature space. Selecting σ using methods such
as kernel whitening [15] can tighten the estimated boundary to a certain extent.
However, when there are many outliers in the data, tuning σ alone is not sufficient
to create a compact estimated boundary [6]. Therefore, the OCSVM should be
modified in order to tighten the estimated boundary and exclude outliers.

3 Weighted Bagging

Bagging is a popular ensemble method that trains each classifier in the ensemble
on a resampled version of the training data [3]. Given training data of m points
X = {xi}m

i=1, a bootstrap sample Y is generated by drawing m points randomly
with replacement from X with probability weight w(i) for point xi. In classical
bagging, all points are given the same probability weight w(i) = 1/m. Each
bootstrap sample is the same size as the training data, but some points from the
training data can either be left out or repeated multiple times. An ensemble of n
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classifiers is formed by training a classifier on n bootstrap samples. New points
are typically classified by a simple majority vote of the ensemble.

More precisely, the bagging algorithm is:

1. Generate n bootstrap samples of m points {Yj}n
j=1 from X with probability

weights w(i).
2. For j = 1, . . . , n, train a classifier gj on the bootstrap sample Yj .
3. Classify new points using the majority vote of the ensemble {gj}n

j=1.

Bagging is only useful when the classifier is unstable and small changes to
the training data in the bootstrap samples can create large changes in the
classifier [1]. The OCSVM is unstable in the sense that the estimated boundary
expands greatly in the presence of outliers. However, the OCSVM is also stable
in the sense that the estimated boundary always encloses the positive class.

Directly applying bagging to the OCSVM is not useful since the OCSVM is
stable for the majority of the training data. Bagging only tightens the estimated
boundary when outliers are excluded from the bootstrap samples. However, since
all points are given the same probability weight, outliers are likely to be included
in many of the bootstrap samples. Bagging will still exclude some outliers from
the bootstrap samples by chance, but the estimated boundary will not be very
robust. Since we want to exclude outliers from the bootstrap samples, we should
give outliers lower probability weight. We propose to give probability weights to
points based on how close they are to the positive class.

Kernel density estimation is a popular nonparametric method to estimate the
probability distribution of the training data [7]. The kernel density estimator is
a sum of Gaussian kernels at each point in the training data

f(x) =
m∑

j=1

1
(2π)d/2σdm

k(x,xj). (4)

We could use the kernel density estimate as the probability weight w(i) = f(xi)
for point xi. However, kernel density estimation in multiple dimensions can be
unreliable. Therefore, a more suitable probability weight would be a measure of
how well the kernel density estimator fits the training data.

We use an iterative method from [4] based on cross validation of a weighted
kernel density estimator to determine the probability weights. Instead of boosting
up probability weights for outliers, we boost them down. Initially, all points are
given the same probability weight. At iteration k, given the probability weights
wk(i), the weighted kernel density estimator is

fk(xi) =
m∑

j=1

wk(i)
(2π)d/2σd

k(xi,xj) (5)

and the leave one out weighted kernel density estimator is

f ′
k(xi) =

m∑
j=1

wk(i)
(2π)d/2σd

k(xi,xj)I(j �= i). (6)
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The probability weights are updated by adding the log odds ratio of the weighted
kernel density estimate to the leave one out weighted kernel density estimate.

More precisely, the probability weight algorithm is:

1. Initialize with uniform probability weights by w0(i) = 1/m.
2. For k = 1, . . . , n, update the probability weights by

wk(i) = wk−1(i) + log
(

fk−1(xi)
f ′

k−1(xi)

)
.

3. Invert and normalize the final probability weights by

w(i) =
(

1
wn(i)

)
/

⎛⎝ m∑
j=1

1
wn(j)

⎞⎠ .

The final probability weights will be low for points in the negative class and high
for points in the positive class.

4 Experiments

We compared the normal and bagging OCSVM on both simulated and real
world data sets. All experiments were performed in MATLAB on a standard
personal computer. We used the SMO algorithm from [11] as implemented in
the LIBSVM library to solve the OCSVM. We selected σ for each data set
using a simple grid search as in [6] to maximize the number of negative points
outside the estimated boundary plus the number of positive points inside the
estimated boundary. We used n = 10 samples in bagging and k = 5 iterations in
determining the probability weights for all data sets. We used the same ν and
σ values for each individual OCSVM in the ensemble as the normal OCSVM.
The bagging OCSVM was significantly more computationally intensive than the
normal OCSVM due to the kernel density estimation step, but was still fast
enough to be used practically. Typical runtimes for the bagging OCSVM were
less than a minute.

First, we evaluated the normal and bagging OCSVM on three simulated data
sets similar to those used in [6]:

– Square noise contains 450 points and 2 features. First, 400 points were
drawn randomly from the square {(x, y) : x ∈ [0.4, 2.6], y ∈ [0.4, 0.6] ∪
[2.4, 2.6]} ∪ {(x, y) : x ∈ [0.4, 0.6] ∪ [2.4, 2.6], y ∈ [0.4, 2.6]}. Next, 50 points
of noise were drawn randomly from the area {(x, y) : x ∈ [0, 3], y ∈ [0, 3]}.
We set ν = 1/9 and σ = 0.35.

– Line noise contains 450 points and 2 features. First, 400 points were drawn
randomly from the line {(x, y) : x = y, x ∈ [0, 3], y ∈ [0, 3]}. Next, 50 points
of noise were drawn randomly from the area {(x, y) : x ∈ [0, 3], y ∈ [0, 3]}.
We set ν = 1/9 and σ = 0.35.
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– Sphere contains 450 points and 2 features. All 450 points were drawn from
a bivariate Gaussian distribution with mean (1.5, 1.5) and variance 0.1. We
set ν = 1/10 and σ = 2.

The estimated boundaries of the normal and bagging OCSVM are shown in
Figure 1. On the Square noise and Line noise data sets, the bagging OCSVM

Fig. 1. Estimated boundaries of the normal (left) and bagging (right) OCSVM on the
Square noise (top), Line noise (middle), and Sphere (bottom) data sets
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performs much better than the normal OCSVM. The estimated boundary of the
normal OCSVM is influenced by outliers and encloses large areas of the feature
space with low density, including disconnected areas of the feature space. On the
other hand, the estimated boundary of the bagging OCSVM tightly encloses the
shapes of the positive class in the feature space. Therefore, the bagging OCSVM
appears to be less sensitive than the normal OCSVM to noise. On the Sphere
data set, the bagging OCSVM performs similarly to the normal OCSVM. There-
fore, the bagging OCSVM does not appear to arbitrarily tighten the estimated
boundary. Although we chose the ν values optimally according to the proportion
of noise, we found that adjusting the ν values only shrunk or expanded the esti-
mated boundaries uniformly for both the normal and bagging OCSVM.

In order to determine whether the probability weights alone are sufficient
to eliminate outliers without bagging, we removed 50 points with the lowest
probability weights from the Square noise and Line noise data sets and trained
a normal OCSVM. The amount of outliers removed corresponds to the amount
of added noise. The estimated boundaries of the normal OCSVM are shown in
Figure 2. Although the estimated boundaries of the normal OCSVM improved
significantly after outlier removal, the probability weights are not necessarily
reliable for outlier detection. In regions of the feature space where the data is
sparse, the probability weights are low, so thresholding can lead to discontinuities
in the estimated boundary. In particular, the estimated boundary for the Square
noise data set contains a gap in the top side. Therefore, sampling from a weighted
distribution in bagging appears to be important for averaging out sparse regions
of the data.

Next, we evaluated the performance of the normal and bagging OCSVM on
three real world data sets from the UCI Machine Learning Repository:

– USPS contains 256 features and 2651 points (821 positive class, 1830 neg-
ative class). The data set was randomly partitioned into a training data set

Fig. 2. Estimated boundaries of the normal OCSVM on the Square noise (left) and
Line noise (right) data sets after outlier removal
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Table 1. Performance of the normal and bagging OCSVM on the USPS, Breast cancer,
and Ionosphere data sets

Data set FPR TPR
Normal Bagging Difference

USPS 0% 45.2% 49.7% +4.5%
1% 61.6% 65.0% +3.4%
5% 75.7% 78.5% +2.8%
10% 89.8% 92.7% +2.9%

Breast cancer 0% 67.2% 88.9% +21.7%
1% 82.0% 89.8% +7.8%
5% 86.1% 90.2% +4.1%
10% 93.0% 92.2% −0.8%

Ionosphere 0% 8.8% 18.4% +9.6%
1% 28.0% 37.6% +9.6%
5% 58.4% 60.0% +1.6%
10% 87.2% 90.4% +3.2%

of 644 points and a test data set of 2007 points (177 positive class, 1830
negative class). We set σ = 1.

– Breast cancer contains 10 features and 683 points (444 positive class, 239
negative class). The data set was randomly partitioned into a training data
set of 200 points and a test data set of 483 points (244 positive class, 239
negative class). We set σ = 1.

– Ionosphere contains 34 features and 351 points (225 positive class, 126
negative class). The data set was randomly partitioned into a training data
set of 100 points and a test data set of 251 points (125 positive class, 126
negative class). We set σ = 16.

We used the true positive rate (TPR) and false positive rate (FPR) as our
performance metrics. Since ν is an upper bound on the FPR, we varied ν in
order to control the FPR. However, varying ν was not sufficient to compute
a full receiver operating characteristic (ROC) curve since the FPR was always
below 25%. In real world applications of one class classification, the target FPR is
typically very low since there are large consequences for false positives. Therefore,
we compared the TPR of the normal and bagging OCSVM at four typical target
FPRs of 0%, 1%, 5%, and 10% as in [8]. The TPRs of the normal and bagging
OCSVM are shown in Tables 1 and 2.

The bagging OCSVM achieves higher TPRs than the normal OCSVM for
almost all target FPRs on all data sets, suggesting that real world data sets
are noisy enough that tightening the estimated boundary is important. The
performance improvement of the bagging OCSVM is highest for low target FPRs.
For a target FPR of 0%, the difference in TPR for the bagging OCSVM ranges
from +4.5% to +21.7%. As the target FPR increases, the performance of the
bagging OCSVM approaches that of the normal OCSVM, probably because
tightening the estimated boundary becomes less important than enclosing all
of the positive class. For a target FPR of 10%, the difference in TPR for the
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Table 2. Performance of the normal and bagging OCSVM on the noisy versions of the
USPS, Breast cancer, and Ionosphere data sets

Data set FPR TPR
Normal Bagging Difference

USPS 0% 32.2% 38.4% +6.2%
1% 48.6% 53.1% +4.5%
5% 68.4% 73.4% +5.0%
10% 81.9% 84.7% +2.8%

Breast cancer 0% 56.1% 83.6% +27.5%
1% 59.8% 86.9% +27.1%
5% 66.8% 87.3% +20.5%
10% 78.3% 87.8% +9.5%

Ionosphere 0% 0.0% 11.2% +11.2%
1% 25.6% 36.0% +10.4%
5% 56.8% 58.4% +1.6%
10% 59.2% 60.0% +0.8%

bagging OCSVM ranges from −0.8% to +3.2%. Therefore, the bagging OCSVM
appears to be well suited for applications of one class classification that require
a low target FPR.

In order to further evaluate the robustness, noisy versions of the data sets
were generated by randomly swapping 25% of the points in the training data set
with points in the test data set. The performance improvement of the bagging
OCSVM was even larger on the noisy versions of the data sets, suggesting that
tightening the estimated boundary is especially important in the presence of
noise. The noisy versions of the training data sets contained points from both
the positive class and the negative class, which probably expanded the estimated
boundaries of the normal OCSVM. The performance of the bagging OCSVM is
not as sensitive to noise since the bagging OCSVM decreases the weight given
to points far from the positive class. Therefore, the bagging OCSVM appears to
be well suited for unlabeled training data.

5 Conclusion

In this paper, we proposed a bagging OCSVM using weights determined by kernel
density estimation to tighten the estimated boundary of the normal OCSVM,
which can be sensitive to noise. We demonstrated that the estimated boundary
of the bagging OCSVM fits the shape of the positive class well on three simulated
data sets and that the bagging OCSVM achieves significantly higher TPRs than
the normal OCSVM on three real data sets at common target FPRs. The bagging
OCSVM is especially useful for applications of one class classification that require
low target FPRs, such as the diagnosis of rare diseases.

Acknowledgments. The authors would like to thank the anonymous reviewers,
whose comments helped improve the manuscript.
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Abstract. Ensembles need their base classifiers do not always agree for any
prediction (diverse base classifiers). Disturbing Neighbors (DN ) is a method
for improving the diversity of the base classifiers of any ensemble algorithm.
DN builds for each base classifier a set of extra features based on a 1-Nearest
Neighbors (1-NN) output. These 1-NN are built using a small subset of randomly
selected instances from the training dataset. DN has already been proved suc-
cessfully on unstable base classifiers (i.e. decision trees). This paper presents an
experimental validation on 62 UCI datasets for standard ensemble methods using
Support Vector Machines (SVM) with a linear kernel as base classifiers. SVMs
are very stable, so it is hard to increase their diversity when they belong to an
ensemble. However, experiments will show that DN usually improves ensemble
accuracy and base classifiers diversity.

Keywords: SVM, Ensembles, Diversity, Disturbing Neighbors, Kappa-Error
Movement Diagrams.

1 Introduction

An ensemble is a combination scheme of individual predictors called base classifiers.
The success of an ensemble requires both accuracy and diversity of its base classifiers.
Diversity represents how different are the predictions of the base classifiers. If base
classifiers always agree there would no be any difference between using only one base
classifier or several combined by an ensemble method. So the power of using a set of
base classifiers relies on the possibility that some of them can correct a wrong prediction
of others.

It is very usual to obtain these base classifiers in an ensemble using the same algo-
rithm, so in this situation the training process performed by the ensemble is the main
source of diversity. Bagging [1] diversity comes from randomly picking different in-
stances for training each base classifier. The Random Subspaces method [2] chooses dif-
ferent subsets of attributes for training each base classifier. Boosting [3] trains iteratively
the set of base classifiers, modifying the weights of instances to train the current classi-
fier. These new weights are computed from the training error on the previous base clas-
sifier, so each new base classifier becomes more specialized in instances that have been
misclassified before. Sometimes base classifiers methods are very stable and the ensem-
ble training algorithm is not enough to provide the desired level of diversity.

SVM (Support Vector Machine) [4] computes an optimal hyperplane that separates
the input space in two regions corresponding to classes of a two-class dataset (i.e., it
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c© Springer-Verlag Berlin Heidelberg 2009



192 J. Maudes, J.J. Rodrı́guez, and C. Garcı́a-Osorio

maximizes the margin). If the dataset is not linearly separable the hyperplane can be
constructed without such problem in the feature space given by a kernel function. When
no kernel is used (i.e., SVM is an hyperplane in the input space) it is said that the kernel
is linear. Linear kernel is more appropriate for linearly separable datasets. However,
it is also an interesting option for other datasets since it is the fastest and there exists
optimized implementations (e.g., [5]). Besides, if complete separation is not possible,
slack variables can be introduced to allow training errors. Thus linear kernel is a very
competitive choice when numerous SVMs have to be constructed, as it happens with
ensembles. For that reason this paper is focused only on linear SVM. Nevertheless, we
think that some of its conclusions could be valid for other kernels.

It is known that SVM is a very stable classifier, thus it is hoped that ensembles of
SVM will benefit from strategies contributing to increase their diversity.

Disturbing Neighbors (DN ) have been used successfully to improve diversity on
forests [6]. DN uses a 1-Nearest Neighbor (1-NN) classifier to build a set of extra fea-
tures that are added to the training dataset of each base classifier. This 1-NN classifier
is different for each base classifier. The built features are the 1-NN prediction plus a
boolean set of features indicating which is the nearest neighbor. The original training
dataset is transformed into an augmented dataset, which is different for each base clas-
sifier, independently of the ensemble schema in which it is going to be used.

Unlike SVM, decision trees are very sensitive to small changes in the training dataset.
The motivation of this paper is to test DN within SVM ensembles to see if accuracy
and diversity increase, just like in forests, despite SVM stability. Although DN are
introduced in [6], the method is described here for the sake of self-containment.

The paper is organized as follows. Section 2 describes the Disturbing Neighbor
method. Section 3 analyses experimentally our method applied to state of art repre-
sentative ensembles of SVMs. Section 4 concludes.

2 Method

The DN method (see Fig. 1) works on each base classifier as follows:

1. m instances are randomly selected from the training dataset to build a 1-NN clas-
sifier. The value m uses to be very small (m = 10 in our experiments).

2. Dimensions used to compute Euclidean distances in the 1-NN classifier are also
randomly selected. At least 50% of attributes are selected.

3. Then m+1 new features are appended to training dataset. One of the added features
is the class predicted by the 1-NN classifier for each instance x, and the other m
are boolean features, all set to false except the one corresponding to the nearest
neighbor of the instance.

4. The base classifier is trained using the original features plus the new m+1 features.

Thus normal base classifiers training process is altered or disturbed by adding these
new features from the 1-NN classifier. That is why the method is called Disturbing
Neighbors. Randomness increases diversity and it is due to:

– The neighbors used in each 1-NN classifier are selected randomly. Therefore, their
predictions and the boolean features are different for each base classifier.
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Function DN -BaseClassifierTrainer
input : D: Training Dataset with l features and n instances,

m: Small integer,
BCT : Training algorithm of a base classifier BC

output: A classifier trained using a DN variant of BC base method that can be used as
base classifier into an ensemble method

variables:
RndDimensions: Array [1..l] of booleans
RndNeighbors: Array [1..m] of instances from D
D′ : Augmented Dataset, initially empty

begin
Randomly set to True more than l/2 elements of RndDimensions, the rest are set
to False ;
Randomly fill RndNeighbors with m instances belonging to D ;
forall x ∈ D do

x′
← x ;

i ← NearestNeighbor( x, RndNeighbors, RndDimensions) ;
Append m new boolean features into x′, all them with False value except the
one in i position that is set to True;
p ← class of RndNeighbors [i] ;
Append p as a new feature of x′ ;
Insert x′ into D′ dataset ;

end
Train a BC classifier using D′ and BCT ;
Return BC;

end

Function NearestNeighbor
input : x:training dataset instance,

Neighbors: Array [1..m] of instances,
BooleanMask: Array [1..l] of Boolean

output: i:integer indicating the nearest neighbor
begin

Get the Nearest Neighbor to x in Neighbors computing the Euclidean Distance
using only dimensions set to True in BooleanMask ;
Return the index in Neighbors of the 1-NearestNeighbor ;

end

Fig. 1. Disturbing Neighbor Base Classifier Training. 1-Nearest Neighbor function has been spec-
ified separately in order to remark that (i) it only returns the nearest neighbor index (not the pre-
dicted class), and (ii) distance is computed taking into account only a random subset from the
original features.

– The dimensions used for computing the Euclidean distances are picked randomly
as well, so even if two base classifiers have almost the same m neighbors, the 1-NN
predictions and the boolean features could be different.

The value m is very small since the aim is not to create a very accurate 1-NN classifier,
but a different one each time. The m boolean features can be taken into account by the
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resulting SVM, so it is expected that each SVM will be different. This deserves further
explanation, our intuition is that if r is a Voronoi region corresponding to one of the m
neighbors, dj is the binary attribute indicating whether an instance is located at r, and
cj is the SVM coefficient for such attribute, then the more populated is r by instances
belonging to one of the classes the SVM separates, probably the greater would be the
absolute value of cj .

Because 1-NN class predictions are nominal, they have to be transformed into binary
features to be computed by SVM training algorithm. These binary features also divide
the input space in regions whose number is equal or less than the number of classes.
Actually, each region resulting from this new division is the union of the Voronoi re-
gions corresponding to neighbors that share the same class. So again, we have a set of
boolean attributes that can change SVM coefficients.

Therefore, the appended dimensions by DN can be used by each SVM in the ensem-
ble. The randomness introduced makes these dimensions be different for each SVM, so
diverse hyperplanes are obtained each time.

3 Results

Validation is made implementing Disturbing Neighbors in Java within WEKA [7]. We
tested our method using WEKA ensemble implementations. Default WEKA parameters
were used unless otherwise indicated. We compared our method with:

1. Bagging [1].
2. Boosting: We used AdaBoost [3] and MultiBoost [8]. In both Boosting versions we

considered resampling and reweighting variants, which are respectively denoted
as (S) or (W) in tables. In reweighting variant all the instances from the training
dataset are used by each base classifier, but in each new round Boosting changes
the weight distribution to focus into hard to classify instances. In resampling variant
base classifiers are trained only with a sample of the training set according to such
Boosting weight distribution.

3. Random Subspaces [2]: We tested two configurations, picking 50% and 75% of the
original problem dimensions.

The size of the ensemble was fifty in all the experiments. The base method used for test-
ing is WEKA implementation of SMO (Sequential Minimal Optimization) [9]. Linear
Kernel was used. For ensembles using Disturbing Neighbors our DN -SVM implemen-
tation is used as base classifier, setting the number of neighbors m = 10.

We also included in the study an ensemble with fifty DN -SVM base classifiers to
check if they perform well by their own without any sophisticated combination schema,
just a simple average of the predictions generated by the individual base classifiers. We
denote this method by DN -Ensemble from now on.

Finally, we wanted to know:

1. If 1-NN accuracy was strong enough to be the main reason the disturbed classifiers
could improve ensembles accuracy. So, we included this method to the test.
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2. If DN -SVM accuracy is significantly better than SVM accuracy. We wanted to
test if improvement on ensembles comes from diversity enhancement or from base
classifiers accuracy enhancement. So DN -SVM on its own was added to the test.

NN methods are very robust with respect to slight variations of data set, so they do
not improve very much when combined with standard ensembles [10]. Thus, we have
not considered ensembles of k-NN in our test. In particular, Bagging using 1-NN as
base classifiers is equivalent to 1-NN [11]. Moreover, Bagging can slightly degrade the
performance of stable algorithms (e.g., k-NN) [12].

Table 1. Summary of the data sets used in the experiments.#N: Numeric features, #D: Discrete
features, #E: Examples, #C: Classes. A bullet represents the DN -version of an ensemble wins the
corresponding plain version in such dataset. Columns are labeled as follows : (1) DN -Bagging
vs. Bagging, (2) DN -MultiBoost(S) vs. MultiBoost(S), (3) DN -MultiBoost(W) vs. Multi-
Boost(W), (4) DN -AdaBoost(S) vs. AdaBoost(S), (5) DN -AdaBoost(W) vs. AdaBoost(W), (6)
DN-Subspaces (75%) vs. Subspaces (75%), (7) DN-Subspaces (50%) vs. Subspaces (50%).

Dataset #N #D #E #C 1 2 3 4 5 6 7

abalone 7 1 4177 28 • •

anneal 6 32 898 6 • • • • •

audiology 0 69 226 24 • • •

autos 15 10 205 6 • • • • • • •

balance-scale 4 0 625 3 • • • • • • •

breast-w 9 0 699 2 • • • •

breast-y 0 9 286 2 • • • • •

bupa 6 0 345 2 • • • • • • •

car 0 6 1728 4 • • • • • • •

credit-a 6 9 690 2 • • • • • •

credit-g 7 13 1000 2 • • •

crx 6 9 690 2 • • • •

dna 0 180 3186 3 • • • • • •

ecoli 7 0 336 8 • • • • • •

glass 9 0 214 6 • • • • • • •

heart-c 6 7 303 2 • •

heart-h 6 7 294 2 • • •

heart-s 5 8 123 2 • • • • •

heart-statlog 13 0 270 2 • •

heart-v 5 8 200 2 • • •

hepatitis 6 13 155 2 • • •

horse-colic 7 15 368 2 • • • • • • •

hypo 7 18 3163 2 • • • • • • •

ionosphere 34 0 351 2 • • • • • • •

iris 4 0 150 3 •

krk 6 0 28056 18 • • • • • • •

kr-vs-kp 0 36 3196 2 • • • • • •

labor 8 8 57 2 • • • •

led-24 0 24 5000 10 • •

letter 16 0 20000 26 • • • • • •

lrd 93 0 531 10 •

Dataset #N #D #E #C 1 2 3 4 5 6 7

lymphography 3 15 148 4 •

mushroom 0 22 8124 2 •

nursery 0 8 12960 5 • • • • • • •

optdigits 64 0 5620 10 • • • • • •

page 10 0 5473 5 • • • • • • •

pendigits 16 0 10992 10 • • • • • • •

phoneme 5 0 5404 2 • • • • • • •

pima 8 0 768 2 •

primary 0 17 339 22 • • • •

promoters 0 57 106 2 •

ringnorm 20 0 300 2 • • • • • • •

sat 36 0 6435 6 • • • • • • •

segment 19 0 2310 7 • • • • • • •

shuttle 9 0 58000 7 • • • • • • •

sick 7 22 3772 2 • • • • • •

sonar 60 0 208 2 • • • • • • •

soybean 0 35 683 19 • • • • •

soybean-small 0 35 47 4 • •

splice 0 60 3190 3 • • • • •

threenorm 20 0 300 2 • • • • • •

tic-tac-toe 0 9 958 2 • • • • • •

twonorm 20 0 300 2 • • • • •

vehicle 18 0 846 4 • • • • • •

vote1 0 15 435 2 • •

voting 0 16 435 2 • • •

vowel-context 10 2 990 11 • • • • • • •

vowel-nocontext 10 0 990 11 • • • • • • •

waveform 40 0 5000 3 • •

yeast 8 0 1484 10 • • •

zip 256 0 9298 10 • • • • • •

zoo 1 15 101 7 • •
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Table 2. Ensemble methods sorted by their average rank

Average
Position Rank Method

1 6.31 DN -Bagging
2 6.70 DN -MultiBoost (S)
3 6.93 DN -Subspaces (75%)
4 7.56 DN -Ensemble
5 7.88 DN -MultiBoost (W)
6 8.58 Bagging
7 9.52 DN -AdaBoost (S)
8 9.61 DN -AdaBoost (W)
9 9.61 DN -Subspaces (50%)

Average
Position Rank Method

10 9.65 MultiBoost (W)
11 9.69 MultiBoost (S)
12 9.80 DN -SVM
13 10.23 Subspaces (75%)
14 10.55 SVM
15 11.25 AdaBoost (W)
16 12.12 1-Nearest Neighbor
17 12.38 Subspaces (50%)
18 12.64 AdaBoost (S)

Table 3. Wins, ties and losses of DN methods. Table a shows comparison of methods with and
without DN based diversity. Table b shows comparison of ensemble methods with the 1-Nearest
Neighbor classifier.

Method Win-Tie-Loss
Bagging 47-5-10
Subspaces (50%) 44-4-14
Subspaces (75%) 37-2-23
AdaBoost (W) 41-2-19
AdaBoost (S) 42-1-19
MultiBoost (W) 39-4-19
MultiBoost (S) 45-2-15
SVM 31-1-30

a.

Method Win-Tie-Loss
DN -Ensemble 39-4-19
DN -Bagging 40-3-19
DN -Subspaces (50%) 33-1-28
DN -Subspaces (75%) 45-3-14
DN -AdaBoost (W) 42-2-18
DN -AdaBoost (S) 40-1-21
DN -MultiBoost (W) 41-2-19
DN -MultiBoost (S) 44-1-17
DN -SVM 41-1-20

b.

For validation we used the 62 UCI datasets [13] in Table 1 and 5 × 2 stratified
cross validation, which provides an acceptable number of repetitions [14]. Results are
summarized in Tables 1, 2 and 3.

Table 2 shows the methods using the average ranks from [15]. A number is assigned
to each method and dataset corresponding to its rank position in such dataset. If there
are ties, average ranks are assigned. Then, for each method, the average position is cal-
culated over all datasets (see second column of Table 2). The methods are then ordered
using these values. We can see that all undisturbed ensemble methods were improved by
their DN version. DN -Ensemble is in fourth place, thus a very competitive ensemble
can be built just by using DN -SVM as base learner.

The improvement of using DN versions is quantified in Table 3.a that shows wins,
ties and loses of disturbed ensemble versions against undisturbed versions. Bullets in
Table 1 shows datasets whereDN versions win the plain ones. Fig. 2 points out accuracy
enhancements for Bagging (the best ranked plain method).

According to the sign test [15], for 62 data sets, one method is better than other with
significance level of 5%, if the number of wins plus half the ties is greater or equal than
39. Hence, for all the methods in Table 3.a, except Random Subspaces 75% and SVM,
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Fig. 2. Bagging vs. DN -Bagging. Accuracy of each method is represented in each axis. Light
points above the diagonal represent datasets in which DN -Bagging is better than Bagging.
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Fig. 3. Error vs. Kappa for Bagging and Random Subspaces 75% in letter dataset

the DN version is significantly better. The difference in Random Subspaces 75% is 38,
so even that method is very near to show a significant improvement.DN -SVM wins are
almost the same than losses. Thus DN -SVM does not seem better or worse than SVM.
Table 3.b shows that all DN methods but Random Subspaces 50% are significantly
better than 1-NN. So it seems that DN versions are not improved bacause of its 1-NN
classifier. The reason of enhancement in ensembles using DN could be that DN -SVM
base classifiers are more diverse than SVM base classifiers without getting an important
accuracy loss.

We also tested diversity improvement of DN -SVM using the Kappa statistic [16].
Kappa measures how diverse two classifiers are, it can take values ranged from −1
to 1. A Kappa value equal to 1 means that both classifiers agree in every example,
a value equal to 0 means that there is no agreement above that expected by chance,
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Fig. 4. Kappa-Error Movement Diagrams for the considered methods
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and negative Kappa values happen when there is disagreement between the classifiers.
Then Kappa values are used to draw Kappa-Error Diagrams [16]. Fig. 3 shows an ex-
ample with the Bagging and Random Subspaces 75% methods and the UCI dataset
letter. We plot a point (x, y) for each pair of base classifiers belonging to the same
ensemble, where x is kappa measure for these two classifiers, and y is their aver-
age error. So, ideally, pairs of base classifiers will be close to left bottom corner, be-
cause it means they are accurate and diverse. In Fig. 3 we see DN -clouds slightly dis-
placed to the left of undisturbed ensembles clouds. It means that DN -methods are more
diverse.

In Fig. 4 each dataset and method cloud have been substituted by the average of
their points. Then, arrows are drawn from the points representing the average result
of each undisturbed method and dataset to the points of the corresponding disturbed
method and dataset (e.g., from letter tested with Bagging to letter tested with DN -
Bagging). Finally, these arrows are gathered into four Kappa-Error Movement Dia-
grams, one for each considered method (i.e., Bagging, Random Subspaces 75%, and
both Boosting variants with resampling). We can see almost all arrows pointing left
which indicates an increase in diversity, the longer the arrow the bigger the increase in
diversity.

Finally, Fig. 5 shows Kappa-Error Relative Movement Diagrams for each ensemble
method. These diagrams are obtained gathering all arrows in Fig. 4 for an ensemble, and
translating the starting point of every arrow to the origin of coordinates. The majority
of arrows point to left, which is an indicator of diversity growth. Many arrows also
point up showing that generally, increase of diversity is at the expense of individual
base classifiers accuracy.

4 Conclusion

Disturbing Neighbors is a method for altering normal training process of base classifiers
in an ensemble, enhancing its diversity and improving the ensemble overall accuracy.
Disturbing Neighbors builds new features using an 1-NN classifier. These features are
the 1-NN output plus a set of boolean attributes indicating which is the nearest neigh-
bor. The 1-NN classifier is built using a small subset of training instances randomly
selected from the original dataset. Dimensions used to compute the Euclidean distance
are also selected randomly. These two sources of randomness are the reasons why the
built features are different each time, so when these new features are used to train base
classifiers the diversity is increased.

Kappa statistic and Kappa movement diagrams show that DN supplies extra diver-
sity to SVM base learners. Experimental validation also shows that DN -SVM itself
does not significantly improves SVM accuracy, whereas SVM ensembles that use DN
are usually significantly better than the versions without DN . So this improvement can
only come from the increment in diversity obtained by applying DN .

Acknowledgments. This work has been supported by the “Junta de Castilla y León”
project BU007B08.
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Abstract. In general, classifying graphs with labelled nodes (also known
as labelled graphs) is a more difficult task than classifying graphs with
unlabelled nodes. In this work, we decompose the labelled graphs into
unlabelled subgraphs with respect to the labels, and describe these de-
composed subgraphs with the travelling matrices. By utilizing the trav-
elling matrices to calculate the dissimilarity for all pairs of subgraphs
with the JoEig approach[6], we can build a base classifier in the dis-
similarity space for each label. By combining these label base classifiers
with the global structure base classifiers built on dissimilarities of graphs
considering the full adjacency matrices and the full travelling matrices,
respectively, we can solve the labelled graph classification problem with
the multiple classifier system.

1 Introduction

Multiple classifier system [5] which is an efficient technique for improving the
classification performance grows rapidly in the field of statistical pattern recog-
nition in the last decade. But strikingly, there are very few attempts [1,10] in the
literature to create base classifiers in the structural pattern recognition domain
[2]. In structural pattern recognition, graphs are a general and powerful data
structure for object representation. The nodes in a graph can represent different
objects and the relationships between these objects or parts of the objects are
represented by edges. Also, labels and attributes for the nodes and edges can
further be used to incorporate more information in a graph representation.

One of the few examples for creating structural base classifiers is discussed in
[12]. The idea is to generate different graph-based classifiers by randomly remov-
ing nodes and their incident edges from the training graphs until a maximum
number of nodes is reached for all graphs. Because of the randomness, different
graph-based classifiers can be created and each becomes a base classifier in the
multiple classifier system. However, with this setting, we still need to compute
similarity/dissimilarity for labelled graphs using time-consuming techniques such
as the maximum common subgraph [2] or the graph edit distance [7] considering
a labelled graph classification problem.
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Unlike graphs with unlabelled nodes, graphs with labelled nodes usually need
to be processed and described with more complicated algorithms and structures.
Also, classifying graphs with labelled nodes is a more difficult task than clas-
sifying graphs with unlabelled nodes. In this work, we propose a method to
decompose labelled graphs into sets of unlabelled subgraphs, and describe the
decomposed subgraphs with the travelling matrices. By using these travelling
matrices as the adjacency matrices, we can reduce the problem of classifying
labelled graphs into classifying sets of unlabelled graphs.

For each label, we can find out its corresponding nodes in a graph and cal-
culate the travelling distances between all pairs of these nodes using Dijkstra’s
algorithm [3] for finding the shortest path given a pair of nodes. With the trav-
elling distances, the connectivity information within the subgraph constructed
by these corresponding nodes can be described with the travelling matrix. In
the travelling matrix, the diagonal elements are always zero (a node is unreach-
able with itself) and the rest of the elements are the inverse of the travelling
distances between nodes. Note that for a fully connected graph, the travelling
matrix will reduce to an adjacency matrix. As a result, for a certain label, the
travelling matrix of the subgraph for each graph can be found and used to rep-
resent the local structure. With this local representation, we can compute the
dissimilarity between subgraphs with graph comparison methods. In this work,
we adopt the JoEig (Joint Eigenspace) [6] approach to calculate the dissimilarity
between pairs of subgraphs. The JoEig is an eigendecomposition based approach
for comparing graphs. The main idea is to project a pair of graphs into a joint
eigenspace which is expanded by the eigenvectors of both graphs and to compare
the projected graphs. After the dissimilarity between all pairs of subgraphs are
derived, we can create a base classifier in the dissimilarity space [8] for this label.

However, these label base classifiers only consider local structures of graphs.
Obviously, there are also needs for base classifiers considering global structures
of graph. Therefore, we also consider base classifiers with two different global
structures of graphs. One is with the full adjacency matrix and the other is with
the full travelling matrix. By combining the label base classifiers and the global
structure base classifiers, we can solve the labelled graph classification problem
with unlabelled graph representations.

The rest of the paper is organized as follows. In Section 2, we recap the JoEig
approach for comparing unlabelled graphs. A multiple classifier system utilizes
the label information of graphs is proposed in Section 3. Simulation results are
presented in Section 4. Finally, a conclusion is given in Section 5.

2 Unlabelled Graph Comparison

Before we introduce the JoEig [6] approach for unlabelled graph comparison,
some definitions and introduction on graphs are given as in the following.

A graph is a set of nodes connected by edges in its most general form. Consider
the undirected graph G = (V, E, W ) with the node set V = {v1, v2, . . . , vn}, the
edge set E = {e1, e2, . . . , em} ⊂ V × V , and the weight function W : E → (0, 1].
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If the graph edges are weighted, the adjacency matrix A for the graph G is the
n × n matrix with elements

Aij =
{

W (vi, vj), if (vi, vj) ∈ E;
0, otherwise. (1)

Clearly since the graph is undirected, the matrix A is symmetric. The Laplacian
[9] of the graph is defined by L = D − A, where D is the diagonal node degree
matrix whose elements Dii =

∑n
k=1 Aik. The Laplacian matrix of G is positive

semidefinite and singular, and it is more often adopted for spectral analysis than
the adjacency matrix because of its properties.

2.1 JoEig: Graph Comparison in Joint Eigenspace

JoEig projects each pair of two graphs into a joint eigenspace. This joint eigenspace
is expanded by both set of eigenvectors.

Let G and H be weighted undirected graphs and LG and LH be their Lapla-
cian matrices, respectively. The eigendecomposition of LG and LH are performed
as

LG = VGDGV T
G , LH = VHDHV T

H , (2)

where VG and VH are orthonormal matrices and DG and DH are diagonal ma-
trices of the eigenvalues (in ascending order) of G and H , respectively. With the
joint projection vector VGV T

H , both graphs G and H will be projected to their
joint eigenspace as LGVGV T

H and VGV T
H LH . The difference between two graphs

using JoEig is defined as

‖VGDGV T
H − VGDHV T

H ‖2. (3)

The JoEig approach approximates a graph by relocating its eigenvalues in the
joint eigenspace constructed by the eigenvectors of both graphs.

There are also three possibilities for setting the number of eigenvectors to
compare graphs with different sizes in JoEig. In this work, we choose to make
full use of the eigenvectors from the smaller graph and keep the same number
of eigenvectors and eigenvalues in the larger graph as in the smaller graph by
removing less important eigenvalues and eigenvectors from the larger graph.

3 A Labelled Graph Based Multiple Classifier System

We use the example graph shown in Figure 1(a) through this section to explain
our method. This example graph is with 8 nodes and each node is labelled
with one symbol. There are no attributes on the edges and the elements of the
adjacency matrix A given in Eq.(4) of this graph are either 1 or 0 to indicate
whether there is an edge between two nodes or not.
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(a) (b)

Fig. 1. An example of (a) labelled graph; (b) the shortest path between node 1 and
node 5

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 1 1 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4)

3.1 Travelling Matrix

Our goal is to solve the labelled graph classification problem by decomposing
labelled graphs into sets of unlabelled subgraphs. In order to represent the de-
composed subgraphs, we need an other way than by the adjacency matrix to
describe the connectivity information between nodes. The main reason is that,
if we only choose nodes with the same label to form a subgraph, there are prob-
ably nodes with no neighbors at all and the subgraph might fall into isolated
parts if it is represented by the adjacency matrix. To avoid this phenomenon, we
propose the travelling matrix to represent the connectivity information of sub-
graphs. The basic assumption is that the larger the travelling distance between
two nodes is, the less connective they are. The travelling distance between a pair
of nodes can be easily computed with Dijkstra’s shortest path algorithm [3]. An
example of the shortest path between node 1 and node 5 is given in Figure 1(b),
and the travelling distance between these two nodes is 4 since there are at least
4 edges one node has to travel to reach the other one. Therefore, an element in
the travelling matrix is defined as the inverse of the travelling distance between
two nodes. Also, the elements on the diagonal are all defined as zero. For the
example graph in Figure 1(a), its full travelling matrix T will be
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T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1
2

1
4

1
3

1
4

1
4

1 0 1 1
2

1
4

1
3

1
4

1
4

1 1 0 1 1
3

1
2

1
3

1
3

1
2

1
2 1 0 1

2 1 1
2

1
2

1
4

1
4

1
3

1
2 0 1 1

2 1
1
3

1
3

1
2 1 1 0 1 1

1
4

1
4

1
3

1
2

1
2 1 0 1

1
4

1
4

1
3

1
2 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

Note that for a fully connected graph, the travelling matrix will reduce to an
adjacency matrix. For the example in Figure 1(a), there are three different labels,
i.e., C, H and O. For each label, we will extract a subgraph consisting only nodes
with this particular label. For example, Figure 2(a), Figure 2(b) and Figure 2(c)
are the subgraphs extracted with label H , O, and C, respectively. The solid line
means that these two nodes are connected in the original graph, and the dash line
means they are not connected in the original graph but now weakly connected by
their travelling information. Now that a subgraph only consists of nodes with the
same label, it means that we can actually ignore the label within the subgraph
and fully describe this subgraph with a connectivity matrix (which is, travelling
matrix by our definition). The travelling matrices for these 3 subgraphs are

TH =

⎛⎜⎜⎝
0 1

4
1
4

1
4

1
4 0 1

2 1
1
4

1
2 0 1

1
4 1 1 0

⎞⎟⎟⎠, TO =
(

0 1
2

1
2 0

)
, and TC =

(
0 1

2
1
2 0

)
, respectively.

3.2 Dissimilarity and Base Classifiers

Given m graphs with n distinctive labels among the graphs, we want to create
n base classifiers with respect to the labels. So, for a certain label, we extract a
subgraph and its travelling matrix from each graph consisting only with this label

(a) (b) (c)

Fig. 2. Examples of subgraphs extracted with label (a) H , (b) O and (c) C, respectively,
from the graph in Figure 1(a)
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as described above. With these m subgraphs, the dissimilarity are calculated
pairwise with the JoEig approach as described in Section 2. Some graphs might
have no nodes with such label at all, and therefore the subgraphs of these graphs
are empty. In this case, we directly set the dissimilarity to 0 if the two subgraphs
are both empty, and set the dissimilarity to 1 if only one of the subgraphs is
empty. As a result, we can obtain a m × m dissimilarity matrix for each label.
With this dissimilarity matrix, we can build a base classifier for this label in the
dissimilarity space [8]. In the end, we can construct n label base classifiers by
doing the same to each label.

However, the label base classifiers only consider subgraphs which describe the
local structures of graphs. To increase the diversity of the multiple classifier
system, we also create global structure base classifiers. We propose two different
global structure base classifiers, one for the full travelling matrix and the other
for the full adjacency matrix. So we pairwise compare the original graphs with
the JoEig approach to derive the dissimilarity matrix. But these original graphs
can be represented with the full travelling matrices or the full adjacency matrices.
Similar to the above, we also build global structural base classifiers for these two
dissimilarity matrices.

4 Experiments

In this section, we compare the performance of the single base classifiers as
described in Section 3 with the classifier combiner. Two classifiers, i.e., linear
discriminant (ldc) and nearest mean classifier (nmc), are adopted to build base
classifiers in the dissimilarity space [8]. All the base classifiers and the classifier
combiner are built with the PRTOOLS [4]. Two real-world datasets, i.e., Mu-
tagenicity and AIDS [11], are used in the experiments. We use 15% of training
objects as the representative objects to construct the dissimilarity space for both
datasets. Also, the eigenvalue diagonal and eigenvector matrices are resized to
the size of the smaller graph with the JoEig approach. Moreover, all the results
in the following are the average over 50 repetitions of experiments resulting in a
very small standard deviation.

4.1 Experiment 1: Mutagenicity Dataset

Mutagenicity is one of the numerous adverse properties of a compound that
hampers its potential to become a marketable drug. The molecules are converted
into graphs in a straightforward manner by representing atoms as nodes and
the covalent bonds as edges. Nodes are labeled with the corresponding chemical
symbol, and there are 10 different symbols in total. The average number of nodes
of a graph is 30.3177 ± 20.1201, and the average number of edges is 30.7694 ±
16.8220. The Mutagenicity dataset is divided into two classes, i.e., mutagen and
nonmutagen. There are in total 4,337 elements (2,401 mutagen elements and
1,936 nonmutagen elements). In the experiments, 40% of objects are randomly
selected as the training dataset, 30% are taken as the validation set and the
other 30% are used as the testing dataset.
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Fig. 3. Combination results of different number of base classifiers for Mutagenicity
dataset

In Figure 3, we add the base classifiers (10 label base classifiers and 2 global
structure classifiers) one by one with the sequential forward feature selection
technique. The base classifier contributes most (with respect to the validation
dataset) to the combination results of the current chosen base classifiers will be
selected as the next base classifier to be combined. From Figure 3, we can see
that nmc base classifiers give better combination results than ldc base classifiers
with both max and mean combining rules. Combining ldc base classifiers with
the mean combining rule performs much worse than the other combinations,
especially when more and more base classifiers are combined. This is because
some dissimilarity matrices in the label base classifier are highly correlated as
some labels are absent in most graphs. As a result, most elements in the dissim-
ilarity matrix are zero. Therefore, these base classifiers become very noisy to ldc
with the mean combining rule. Also, for nmc base classifiers, the error rates of
the combination results first decrease when more classifiers are included in the
combination, and then remain stable, but increase again in the end when too
many worse base classifiers are included in the combination. A very interesting
phenomenon is that all the combiners reaching the lowest error rate have at least
one of the global structure base classifiers as the base classifiers. So it is clear
that the global structures can improve the classification performance.

Now the question is, would the label base classifiers also improve the perfor-
mance of the combiner or is it sufficient to only combine the global structure
base classifiers? In Figure 4(a) and Figure 4(b), we present the learning curve
of nmc base classifiers and their max and mean combiners, respectively. From
both figures, we observe that the results of combining only two global structural
classifiers are much worse than combining the best 4 base classifiers. Therefore,
label base classifiers also contribute significantly to the combiner.
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Fig. 4. Learning curves of nmc base classifiers and their (a) max and (b) mean
combiners

4.2 Experiment 2: AIDS Dataset

The AIDS dataset consists of graphs representing molecular compounds. The
graphs are constructed from the AIDS Antiviral Screen Database of Active Com-
pounds (molecules). This dataset consists of two classes, active and inactive, to
indicate molecules with activity against HIV or not. The molecules are converted
into graphs in a straightforward manner by representing atoms as nodes and the
covalent bonds as edges. Nodes are labeled with the corresponding chemical sym-
bol, and there are 26 labels in total. The average number of nodes of a graph is
15.6953± 13.1918, and the average number of edges is 16.1986± 15.0123. There
are 2,000 elements in total (1,600 inactive elements and 400 active elements). In
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Fig. 6. Learning curves of (a) ldc base classifiers and their max combiner and (b) nmc
base classifiers and their mean combiner

the experiments, 40% of objects are randomly selected as the training dataset,
30% are taken as the validation set and the other 30% are used as the testing
dataset.

In Figure 5, the base classifiers (26 label base classifiers and 2 global structure
classifiers) are added one by one using the same technique described above. The
AIDS dataset is a much easier dataset to classify compared to the Mutagenic-
ity dataset, and some base classifiers already reach very small error rates which
makes it for the combiner difficult to improve the individual performance. From
Figure 5, we can still observe that the ldc base classifiers with the mean com-
bining rules are heavily disturbed by the correlated dissimilarity matrices and
perform much worse than the other combinations. On the other hand, ldc base
classifiers with the max combining perform much better than the others.

In Figure 6(a), the combiner is only slightly better than individual ldc classi-
fiers with large amount of training data because one of the individual classifier
has almost zero error rate and that leaves no much room for the combiner to
improve. On the other hand, if we use weak base classifiers as in Figure 6(b),
the combiners can have more significant improvements.

5 Discussions and Conclusions

We solve the labelled graph classification problem with the multiple classifier
system by decomposing labelled graphs into unlabelled subgraphs with their la-
bels and building label base classifiers from these subgraphs. Two global struc-
tural base classifiers are also considered to increase the diversity of the multiple
classifier system. The subgraphs are represented by the travelling matrices in-
stead of the adjacency matrices. The travelling matrix records the node to node
travelling information. By comparing graphs/subgraphs pairwise with the JoEig
approach, we can derive the dissimilarity matrix. With the dissimilarity matrix,
we can construct the base classifier in the dissimilarity space.
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Even though we only consider nodes with single labels and edges with no
attributes in the experiments, our approach also applies to nodes with multiple
labels and edges with attributes. For multiple labels, we can decompose graphs
into subgraphs that might have common nodes. For attributed edges, we can
simply use the weighted adjacency matrix.
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Abstract. Cluster ensembles provide us with a versatile alternative to
individual clustering algorithms. In structural pattern recognition, how-
ever, cluster ensembles have been rarely studied. In the present paper
a general methodology for creating structural cluster ensembles is pro-
posed. Our representation formalism is based on graphs and includes
strings and trees as special cases. The basic idea of our approach is to
view the dissimilarities of an input graph g to a number of prototype
graphs as a vectorial description of g. Randomized prototype selection
offers a convenient possibility to generate m different vector sets out of
the same graph set. Applying any available clustering algorithm to these
vector sets results in a cluster ensemble with m clusterings which can
then be combined with an appropriate consensus function. In several ex-
periments conducted on different graph sets, the cluster ensemble shows
superior performance over two single clustering procedures.

1 Introduction

Clustering, a common task in pattern recognition and related fields, refers to the
process of dividing a set of given objects into homogeneous groups referred to as
clusters. Cluster ensembles have been introduced as a more accurate alternative
to individual clustering algorithms [1]. The basic idea of ensemble methods is to
combine the partitions of many clustering algorithms applied to a specific data
set to one final decision.

A large amount of clustering algorithms based on pattern representations in
terms of feature vectors have been proposed in the literature (see [2] for a sur-
vey). Also, quite a number of papers are concerned with cluster ensemble meth-
ods based on feature vectors [3,4,5,6]. Contrariwise, there are only few works
where symbolic data structures, and in particular graphs, are used for data clus-
tering [7]. This is rather surprising since in many application domains there exist
data sets that possess inherent structural or relational characteristics. Obviously,
such data is highly suitable for graph based representations. Prominent examples
are network topologies [8], molecular compounds [9], and web graphs [10]. We
refer to [11] for an exhaustive review of graph based representation in pattern
recognition.
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The lack of graph clustering algorithms arises from the fact that there is little
mathematical structure in the domain of graphs. For example, computing the
sum, the weighted sum, or the product of a pair of entities (which are elemen-
tary operations, required in many clustering algorithms) is not possible or not
defined in a standardized way in the domain of graphs. However, graph kernels,
a relatively novel class of algorithms for pattern recognition, offer an elegant so-
lution to overcome this drawback of graph based representation [12]. Originally,
kernel methods have been developed for transforming a given feature space into
another one of higher dimensionality without computing the transformation ex-
plicitly for each individual feature vector. Recently, however, as a fundamental
extension, the existence of kernels for symbolic data structures, especially for
graphs, has been shown [13].

In the present paper we address the problem of graph clustering by means
of a graph kernel based on the idea of dissimilarity space embedding. The idea
of such embeddings was originally developed in order to map sets of feature
vectors in a dissimilarity space [14]. Later this procedure has been transferred
from vectors to strings [15], and eventually to graphs [16]. The general idea of
our approach is to represent the underlying graphs by means of dissimilarities
to prototype graphs. The motivation for this procedure is twofold. First, we
overcome the lack of clustering algorithms in the graph domain. Secondly, this
embedding procedure is particularly interesting as it offers an elegant solution
to the crucial question of how to build the individual clusterings of an ensemble.
As will be shown in this paper, through repeated selection of different prototype
graphs one can produce an arbitrary number of vectorial descriptions of the
same graph set. The clusterings resulting from these vector sets are then used
as ensemble members.

The present paper extends previous work on structural classifier ensemble
methods [17] to the setting of multiple clustering systems. With a compari-
son based on four different validation indices we empirically confirm that our
novel ensemble procedure results in better clusterings when compared to re-
sults achieved with a single clustering algorithm applied in the domain of graphs
as well as in the embedding space. Hence, the general procedure for building
structural cluster ensembles together with an experimental study of this novel
approach is the main contribution of the present paper.

The remainder of this paper is organized as follows. Next, the dissimilarity
space embedding graph kernel is described. In Section 3, the idea of our clus-
ter ensemble is introduced and the base clustering algorithm employed in our
experiments is described in detail. The experimental results are presented and
discussed in Section 4. Finally, in Section 5, we draw some conclusions.

2 Dissimilarity Space Embedding Graph Kernel

Kernel methods have become one of the most rapidly emerging sub-fields in intel-
ligent information processing [12]. Recently, kernel theory has been generalized
to the domain of graphs [13].
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Definition 1 (Graph Kernel). Let G be a finite or infinite set of graphs, g1,
g2 ∈ G, and ϕ : G → F a function where F is a feature vector space endowed
with a scalar product 〈., .〉. A graph kernel function is a mapping κ : G × G → R

such that κ(g1, g2) = 〈ϕ(g1), ϕ(g2)〉. �

According to this definition a graph kernel function takes two graphs g1 and g2

as arguments and returns a real number that is equal to the result achieved by
first mapping the two graphs by a function ϕ to a feature space F and then
computing the scalar product 〈ϕ(g1), ϕ(g2)〉 in F . That is, instead of mapping
graphs from G to F and computing their scalar product there, one can simply
evaluate the value of the kernel function κ in the original graph domain. This
procedure is commonly referred to as the kernel trick.

What makes kernel theory interesting is the fact that many algorithms can be
kernelized, i.e. reformulated such that only pairwise scalar products rather than
explicit objects are needed1. Obviously, by replacing the scalar product by a
valid kernel function it is possible to run kernelizable algorithms in an implicitly
existing feature vector space F .

The graph kernel used in the present paper is based on a graph embedding pro-
cedure that makes use of graph edit distance. The key idea of graph edit distance
is to define the dissimilarity, or distance, of graphs by the minimum amount of
distortion that is needed to transform one graph into another. A standard set of
distortion operations is given by insertions, deletions, and substitutions of nodes
and edges.

Given two graphs, the source graph g1 and the target graph g2, in order
to compute the graph edit distance of g1 and g2 we delete some nodes and
edges from g1, relabel (substitute) some of the remaining nodes and edges, and
insert some nodes and edges in g2, such that g1 is finally transformed into g2. A
sequence of edit operations e1, . . . , ek that transform g1 into g2 is called an edit
path between g1 and g2. In order to find the most suitable edit path out of all
possible edit paths, one introduces a cost for each edit operation, measuring the
strength of the corresponding operation. The idea of such cost functions is to
define whether or not an edit operation represents a strong modification of the
graph. Consequently, the edit distance of two graphs is defined by the minimum
cost edit path between two graphs. The edit distance of graphs can be computed,
for example, by a tree search algorithm [18] or by faster, suboptimal methods
which have been proposed recently (e.g. [19]).

Assume we have available a set of graphs G = {g1, . . . , gN} and a graph
dissimilarity measure d(gi, gj) (in our case the graph edit distance). After having
selected a set P = {p1, . . . , pn} of n ≤ N prototypes from G, we compute the
dissimilarity of a given graph g ∈ G to each prototype p ∈ P . This leads to
n dissimilarities, d1 = d(g, p1), . . . , dn = d(g, pn), which can be arranged in an
n-dimensional vector (d1, . . . , dn). In this way we can transform any graph from
G into a vector of real numbers.

1 Such algorithms together with a kernel function κ are commonly termed kernel
machines.
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Definition 2 (Graph Embedding). If G = {g1, . . . , gN} is a set of graphs and
P = {p1, . . . , pn} ⊆ G is a set of prototype graphs, the mapping ϕP

n : G → R
n is

defined as the function

ϕP
n (g) �→ (d(g, p1), . . . , d(g, pn)),

where d(g, pi) is the graph edit distance between graph g and the i-th prototype.

Note that in practice, the prototype set P is often defined on a training set T of
graphs, i.e. P ⊆ T ⊂ G. However, the mapping ϕP

n (.) is not restricted to graphs
from T , but all graphs from G can be mapped via ϕP

n (.) to R
n, of course.

Clearly, the graph embedding procedure described above provides a founda-
tion for a novel class of graph kernels. Based on the resulting graph maps ϕP

n ,
standard kernel functions for feature vectors in R

n can be applied, mapping the
vector space embedded graphs implicitly into a higher dimensional feature space
F . An example is the RBF kernel.

κRBF (g1, g2) = exp
(
−γ||ϕP

n (g1) − ϕP
n (g2)||2

)
, with γ > 0.

Obviously, in every kernel machine the scalar product can be replaced by κ(g1, g2)
such that these algorithms can be applied to objects originally given in terms of
graphs.

3 Cluster Ensembles

3.1 General Procedure

The two major issues in the construction of a cluster ensemble are how to build
the individual clustering algorithms and how to combine their decisions [1]. Var-
ious approaches for building the ensemble members have been proposed in the
literature. Among these are random initialization of the clustering algorithm [3],
randomly choosing the number of clusters [4], applying different types of clus-
tering algorithms [5], or using subsets of features [6].

In the present paper the following approach is employed. Through the em-
bedding framework introduced in the previous section, we establish not only a
general framework for mapping graphs to the real vector space R

n, but also
a straightforward approach for building the ensemble members in a multiple
clustering system. Regarding the graph embedding procedure, the selection of
the n prototypes {p1, . . . , pn} is a critical issue since not only the prototypes
themselves but also their number affect the resulting vectors. This particular
characteristic of our embedding framework is utilized for building the clus-
ter ensemble members. That is, selecting m times the prototypes randomly,
and varying the respective number of prototypes n in a certain interval for
each selection, results in m different prototype sets with different cardinality
P1 = {p11, . . . , p1n1}, . . . ,Pm = {pm1, . . . , pmnm}.

For each prototype set Pi a mapping ϕPi
ni

is defined according to Def. 2 which
map a given graph set G = {g1, . . . , gN} to m different vector sets X(1) =
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{x(1)
1 , . . . ,x(1)

N }, . . . ,X(m) = {x(m)
1 , . . . ,x(m)

N }. Note that the dimensionality of
the vectors in X(s) depend on the number ns of selected prototypes. Clearly,
applying a clustering algorithm to each of these vector sets results in m different
clusterings of the underlying data.

For the combination of the individual clusterings the pairwise approach is
implemented as consensus function [1,5]. That is, for each of the m clusterings
an N ×N coassociation matrix is built. The entries in this coassociation matrix
are either set to one or zero, depending on whether or not the two corresponding
elements are in the same cluster. Obviously, the normalized sum of the m coas-
sociation matrices can be seen as similiarity matrix between the N elements.
That is, pairs of elements will have a high similarity value if they often belong to
the same cluster. Contrariwise, the similarity value will be low if two elements
are assigned to the same cluster only a few times. In order to generate the final
ensemble clustering, this similarity matrix can now be used with any clustering
algorithm which directly operates on pairwise similarities. In Algorithm 1 the
cluster combination procedure is described in pseudo-code.

Algorithm 1. Clustering combination
Input: Data sets X(1), . . . , X(m) with N elements each, number of clusters k

Output: Consensus matrix M (Similarity matrix) and final clustering {Cj}k
j=1.

1: for each data set X(s), s = 1, . . . , m do

2: Generate clustering {C
(s)
j }k

j=1 with k clusters C
(s)
1 , . . . , C

(s)
k .

3: end for
4: for each clustering {C

(s)
j }k

j=1, s = 1, . . . , m do

5: Form a coassociation matrix M(s) = {m
(s)
ij }, of size N × N , where

m
(s)
ij =

{
1 if x

(s)
i and x

(s)
j are in the same cluster

0 else

6: end for
7: Form consensus matrix M = 1

m

∑m
s=1 M(s)

8: Generate final clustering {Cj}k
j=1 based on the consensus matrix M

Next, we describe our base clustering algorithm employed for both clustering
of the individual data sets X(s) and generation of the final clustering based on
the consensus matrix M.

3.2 Kernel k-Means Clustering

The k-means algorithm is one of the most popular clustering algorithms in pat-
tern recognition and related areas. This algorithm employs a squared error cri-
terion, i.e. it finds k clusters C1, . . . , Ck such that the objective function

f
(
{Cj}k

j=1

)
=

k∑
j=1

∑
xi∈Cj

d(xi,mj)

is minimized. In this formula, mj refers to the mean of cluster Cj .



216 K. Riesen and H. Bunke

Commonly k-means algorithm starts with a random initial partition of the
data and keeps reassigning the patterns to clusters based on the similarity be-
tween the pattern and the cluster centers until a certain convergence criterion is
met (e.g. no reassignment of objects from one cluster to another has taken place
during the last iteration). In the present paper a deterministic initialization of
the algorithm is applied. The set of initial cluster centers is constructed by iter-
atively retrieving the median of set X minus the objects already selected. The
median of set X is the object x ∈ X that minimizes the sum of distances to all
other objects in X. Obviously, this procedure initializes k-means with objects
situated in, or near, the center of the set X.

A well known drawback of k-means clustering is that the individual clusters
Cj need to be spherical in order to achieve satisfactory results. (This drawback
directly follows from the minimization of the squared error.) However, it turns
out that the k-means algorithm can be written as a kernel machine, i.e. it can be
reformulated in terms of pairwise scalar products only. Hence, we can replace the
scalar products 〈., .〉 with a valid kernel function κ to represent the scalar product
in an implicit feature space F . Applying k-means clustering in the resulting
feature space F , i.e. finding spherical clusters Cj in F , corresponds to finding
(possibly) non-spherical clusters in the original vector space R

n. Consequently,
this clustering procedure is much more powerful than the conventional k-means
algorithm. The resulting procedure is commonly referred to as kernel k-means
clustering.

As base clustering algorithm, kernel k-means clustering is applied in conjunc-
tion with the graph kernel defined in Section 2, i.e.

κRBF (g1, g2) = exp
(
−γ||ϕP

n (g1) − ϕP
n (g2)||2

)
with γ > 0. Also for the combination of the clustering results kernel k-means
clustering is employed, interpreting the entries mij of the consensus matrix M
as kernel values κij .

4 Experimental Results

4.1 Databases

For our experimental evaluation, four data sets with quite different characteris-
tics are used. The data sets vary with respect to graph size, edge density, type
of labels for the nodes and edges, and meaning of the underlying objects. Lack-
ing space we give a short description of the data only. For a more thorough
description we refer to [20] where the data sets are discussed in greater detail2.

The first database used in the experiments consists of graphs representing dis-
torted letter line drawings out of 15 classes (Letter). Next we apply the proposed
method to the problem of image clustering, i.e. we use graphs representing images

2 Note that the data sets are publicly available: http://www.iam.unibe.ch/fki/

databases/iam-graph-database
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out of two categories (cups, cars) from the COIL-100 database [21] (COIL). The
third data set is given by graphs representing fingerprint images of the NIST-4
database [22] out of the four classes arch, left, right, and whorl (Fingerprint).
Finally, the fourth set is given by the Enzyme data set. The graphs are con-
structed from the Protein Data Bank [23] and labeled with their corresponding
enzyme class labels (EC 1,. . ., EC 6 ) (Enzymes).

4.2 Cluster Validation Indices

In order to measure the quality of our clusterings, we use four different validation
indices, viz. Dunn [24], C [25], Rand [26], and the Bipartite index [27].

Dunn index measures the ratio of the minimum distance of two different
clusters and the maximum diameter of a cluster. Hence, Dunn is considered to
be positively-correlated such that higher values indicate higher clustering quality.
In contrast with the Dunn index, the smaller the C index value is, the higher is
the clustering quality. The C index measures how frequently pairs with a small
distance belong to the same cluster. Rand index measures the numbers of pairs
belonging to the same class and to the same cluster and the number of pairs
that neither belong to the same class nor to the same cluster. Hence, Rand
index measures the consistency of a given clustering, and therefore higher values
indicate better clusterings. The Bipartite index (BP index for short) gives us
the maximum possible classification accuracy of the given clustering.

Whereas the two former indices (Dunn and C) do not need any ground truth
information, the latter ones (Rand and BP) are defined with respect to the class
memberships of the underlying objects.

4.3 Experimental Setup

In our study on structural cluster ensembles, we use two reference systems,
i.e. two single clustering algorithms. First, we apply k-means algorithm to the
original graph data. Note that in this case the distance function d is given by
the graph edit distance and the mean mj of the j-th cluster is defined as the
set median graph (mj = argming1∈Cj

∑
g2∈Cj

d(g1, g2)). In the remainder of
the present paper we denote k-means applied to graphs as k-medians. Secondly,
we use a single kernel k-means algorithm applied to the vector space embedded
graphs. To this end we use the best performing ensemble member as second
reference system. Note that the best performing ensemble member is defined for
each validation index independently.

Each of our graph sets is divided into two disjoint subsets, viz. validation
and test set. The validation set is used to determine those meta parameters
of the clustering algorithm which cannot be directly inferred from the specific
application. For k-medians clustering in the original graph domain only the cost
function for graph edit distance has to be validated. For our novel approach,
however, there are two additional parameters to tune, viz. the final ensemble
size m′ and the parameter γ in the RBF kernel.

First, for each vector set X(s) (s = 1, . . . , m) the kernel value γ is optimized
regarding one specific validation criterion at a time. In Fig. 1 (a) the optimization
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of γ is illustrated on one vector set X(s) for all validation indices. That is, the
validation criterion is plotted as a function of γ.

For the final ensemble size m′ we follow the strategy which is best known as
overproduce-and-select [28]. We first generate a large number m of clusterings
optimized on the validation set (here m = 100). Next, starting with the best
individual clustering, the ensemble is incrementally increased by one, adding the
next best clustering to the ensemble. After each addition, the quality of the en-
semble is verified. Thereafter the best performing ensemble on the validation set
is applied to the independent test set. Note that this procedure is independently
repeated for each validation index. In Fig. 1 (b) the procedure of finding the
final ensemble members is illustrated, i.e. two validation criteria (BP and C)
are plotted as a function of the ensemble size m. In this example the optimal
ensemble size is 5 and 15 for C index and BP index, respectively.

(a) RBF kernel validation for all validation
indices on one particular embedding.

(b) Ensemble size validation for BP
and C index.

Fig. 1. Meta parameter optimization on the independent validation set

4.4 Results and Discussion

In Table 1 the clustering validation indices for both reference systems, i.e. the
single clustering algorithms (Sing.) in the original graph domain (GD) and in the
embedding vector space (VS), are given for all test data sets. The same criteria
are shown for our novel approach, i.e. the ensemble procedure (Ens.) in the em-
bedding vector space. Compared to the first reference system, i.e. the k-medians
clustering in the original graph domain, we observe that the ensemble approach
results in better clusterings in 15 out of 16 cases. That is, the superiority of
our ensemble clustering based on vector space embedded graphs is obvious when
compared to the traditional approach in the original graph domain. Regarding
the second reference system, the best individual clustering from the ensemble, we
observe the following. Our novel approach with a cluster ensemble outperforms
this single clustering system in half of the cases (8 out of 16). In five cases both
approaches achieve the same criterion value, and in only three cases we observe
a deterioration of the clustering quality.



Cluster Ensembles Based on Vector Space Embeddings of Graphs 219

Table 1. Clustering results on the data sets in the graph domain (GD) and the vector
space (VS) achieved with single clustering algorithms (Sing.) and the cluster ensemble
(Ens.). Bold numbers indicate superior performance over the other systems.

Dunn 1-C Rand BP

Sing. Ens. Sing. Ens. Sing. Ens. Sing. Ens.

Data Set GD VS VS GD VS VS GD VS VS GD VS VS

Letter 0.02 0.15 0.12 0.58 0.94 0.94 0.87 0.90 0.90 0.23 0.41 0.45
COIL 0.13 0.14 0.15 0.62 0.94 0.94 0.69 0.52 0.80 0.81 0.62 0.89
Fingerprint 0.21 0.07 0.09 0.91 0.93 0.97 0.32 0.77 0.77 0.45 0.67 0.67
Enzymes 0.03 0.03 0.04 0.41 0.96 0.95 0.49 0.71 0.70 0.22 0.27 0.28

Evaluating the four validation indices independently of each other, we con-
clude the following. Regarding the Dunn index, we observe that the clustering
based on the ensemble outperforms the single clustering approaches on half of
the data sets. Regarding both C and Rand index, the ensemble achieves the
best validation criterion value among all procedures on three out of four data
sets. Finally, regarding BP our novel approach achieves the best result on all of
the four data sets.

Summarizing, with the ensemble procedure proposed in the present paper,
the clusterings are in most of the cases more compact and better separable than
the clusterings achieved by the single clustering algorithms. Moreover, on all
data sets the partitions found by the ensemble are more accurate and consistent
according to the ground truth.

5 Conclusions

In the present paper we propose a procedure for building structural cluster en-
sembles which can be applied to graphs, strings, and trees. The basic idea is to
map the structural data in an n-dimensional vector space by means of dissim-
ilarities and prototype selection. In the present study we focus on graph based
representation. The fact that our embedding framework crucially depends on
the prototype selection strategy, is explicitly utilized for building our ensemble.
That is, by means of m randomized prototype sets, a single graph set can be
mapped to multiple vector sets. Based on these m vector space embeddings of
graphs, a kernel k-means clustering algorithm is applied, resulting in m different
clusterings of the same data. Finally, the clusterings are combined by means of
a consensus function, interpreting the summed coassociation matrices of each
clustering as similarity matrix upon which the final clustering is then defined.

The novel contribution of the proposed approach is threefold. First, it makes
the k-means clustering algorithm available to the graph domain. Because of the
lack of suitable procedures for computing the mean of a graph population, only k-
medians algorithm has been traditionally applied to graphs. Secondly, by means
of the embedding procedure we gain the possibility to apply kernel k-means
clustering to data that are not spherically structured, as implicitly assumed by
the k-means clustering algorithm. Thirdly (and most importantly), by means of a



220 K. Riesen and H. Bunke

random prototype selection, multiple vector sets can be defined, all representing
the same underlying graph set. Through this procedure a multiple clustering
system for structural data can be obtained in a straightforward way.

The applicability and performance of our novel approach is tested on four
different graph sets with four clustering validation indices. According to the
Dunn index our novel approach outperforms the reference systems in two out of
four cases. The other indices indicate that our novel approach outperforms the
reference systems on most (C, Rand) or even all (BP) data sets.

Potential future work includes an extension to other clustering algorithms and
other criteria for evaluating the clustering quality, for example, stability [1].
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Abstract. Data with multi-valued categorical attributes can cause ma-
jor problems for decision trees. The high branching factor can lead to
data fragmentation, where decisions have little or no statistical support.
In this paper, we propose a new ensemble method, Random Ordinality
Ensembles (ROE), that circumvents this problem, and provides signif-
icantly improved accuracies over other popular ensemble methods. We
perform a random projection of the categorical data into a continuous
space by imposing random ordinality on categorical attribute values. A
decision tree that learns on this new continuous space is able to use binary
splits, hence avoiding the data fragmentation problem. A majority-vote
ensemble is then constructed with several trees, each learnt from a differ-
ent continuous space. An empirical evaluation on 13 datasets shows this
simple method to significantly outperform standard techniques such as
Boosting and Random Forests. Theoretical study using an information
gain framework is carried out to explain RO performance. Study shows
that ROE is quite robust to data fragmentation problem and Random
Ordinality (RO) trees are significantly smaller than trees generated using
multi-way split.

Keywords: Decision trees, Data fragmentation, Random Ordinality, Bi-
nary splits, Multi-way splits.

1 Introduction

Ensembles are a combination of multiple base models for which the final classifi-
cation depends on the combined outputs of individual models. Classifier ensem-
bles have shown to produce better results than single models, if the classifiers
are accurate and diverse [7,12].

Several different methods based on the principle of data randomization have
been proposed to build diverse decision tree ensembles. Some methods manip-
ulate the data, whereas some other methods manipulate the splitting criteria.
Bagging [3] and Boosting [10] introduce randomization by manipulating the dis-
tribution of training patterns supplied to each classifier. Random Trees [8] and
Random Forests [4] manipulate the splitting criteria to build ensembles of
decision trees.
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The majority of existing methods [5,13] for decision trees build a tree in a top-
down approach and use various impurity functions to estimate the quality of the
attributes in order to select the best one to split on. Whether there should be a
binary split or multi-way split has been a question of extensive research [5,13,9,2].
While multi-way splits produce a more comprehensible tree, they may lead to the
data fragmentation problem [14], where fine-grained partitioning of the training
set at every tree node reduces the number of examples at lower-level nodes. As
decisions in the lower levels nodes are based on increasingly smaller fragments of
the data, some of them may not have much statistical significance.

Motivated by the advantages of binary decision trees (low data fragmentation)
for multi-valued categorical data [5,13,9], in the proposed work, we build classifier
ensembles of binary decision trees for datasets consisting of multi-valued categor-
ical attributes.

The rest of the paper is organized as follows: in the next section, we discuss
different binary-split and multi-way split criteria for decision trees. In section 3,
we present the Random Ordinality ensemble technique. Theoretical study of RO
attributes using information gain ratio framework is presented in section 4. The
experiments are presented in section 5. The effect of data fragmentation on ROE
and sizes of RO trees are studied in section 6. The paper ends with conclusions
and future work.

2 Related Work with Split Criteria

In this section, we analyze various split criteria used in decision trees for multi-
valued categorical attributes.

The CART [5] procedure proposed by Brieman uses the Gini index as its split-
ting criterion. As a multi-way split (for multi-valued categorical attributes) with
the Gini index favours those with more values, CART enforces binary splits to
overcome this problem. As CART procedure builds binary trees, the values of the
categorical attribute at the node have to be divided into two groups. If the num-
ber of attribute values is |A| then the number of nontrivial binary splits is given
by 2(|A|−1) − 1. Selecting the best split is computationally expensive. Breiman [5]
shows that for two class problems the best split can be found by examining only
(|A|-1) possibilities.

C4.5 as proposed by Quinlan [13] uses the information gain ratio as the splitting
criterion. C4.5 builds a binary tree for continuous data. There are two methods in
C4.5 to handle multi-valued categorical attributes. In the first, it allows the multi-
way split of nodes (one branch for each attribute value). In the second method, it
uses a greedy approach to iteratively merge the attribute values into two groups.
Another way to obtain a binary split for a multi-valued categorical attribute is
to partition the data points using an attribute value [5,9]. In this method, all the
data points with that attribute value form one group, whereas the other group is
formed with the other examples. Geurts et al. [11] suggest a randomized method
to create binary attributes from the multi-valued attributes; they divide the at-
tribute values randomly into the two categories. As in this method the node split
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decision is taken without considering the output, the classification accuracy of the
tree may be poor.

Our method is between the methods proposed by Breiman (searching for the
best split) [5] and completely random splits [11]. In RO trees, the best split at
each node can be found by examining (|A|-1) possibilities. In this next section, we
present RO ensembles.

3 Random Ordinality Ensembles

In this section we discuss our proposed method, for producing ensembles of binary
decision trees on datasets with multi-valued categorical attributes. The handling of
categorical attributes is difficult as the category values have no intrinsic ordering.
For example (dog, cat, cow), have no natural order. This is distinct from discrete
data, such as (low, medium, high), where there is a natural order to the attribute
values. We can exploit this property to build an ensemble of binary decision trees.
We solve the node splitting problem under some random constraints. Our method
is between the methods proposed by Breiman (searching for the best split) [5] and
completely random splits [11]. To find the best split at each node (|A|-1) possibil-
ities are examined. Random constraints used in the proposed method are helpful
in building classifier ensembles as the randomization helps in creating diversity.
This technique is based on data manipulation by imposing a random or-
dinality onto the categorical attribute values. This implies a random projec-
tion of the categorical attributes into a continuous space. Our method is based on
data manipulation, so it is not specific to any split criterion—Random Ordinality
creates diverse training datasets.

3.1 Data Generation Using RO

As there is no natural order given for the categorical attribute values, we can en-
force a random ordinality on these values. In other words, we create a random pro-
jection of categories to a continuous space. We explain our method by using the
example data given in column one of Table 1. This data has four attribute values
(Cow, Dog, Cat, Rat) for one of its attributes (attribute 1). We assign some inte-
ger number (1 to number of attribute values) to them randomly such that no two
attribute values are assigned the same integer value. For example, we assign Dog
= 1, Cow = 2, Rat = 3, Cat = 4 to the attribute values of the first attribute. The
enforced ordinality is therefore Dog<Cow<Rat<Cat. We follow the same process
for all the multi-valued categorical attributes independently. Our final dataset will
be integer-valued, therefore having a natural ordering. Following this method we
can generate diverse continuous datasets from the original training dataset.

3.2 Learning

Each decision tree in the ensemble learns on one dataset from the pool of differ-
ent datasets created by RO. During learning, integer-valued attributes are treated
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Table 1. Example of Random Ordinality for a single attribute A1. The possible values
of A1 have no natural ordering—but can be randomly assigned with an ordinality, as
shown by new attributes A′

1, and A′′
1 . In A′

1, we have Dog<Cow<Rat<Cat, while in A′′
1 ,

we have Rat<Cat<Cow<Dog.

A1 → A′
1 A′′

1

Cow → 2 3
Dog → 1 4
Cow → 2 3
Dog → 1 4
Rat → 3 1
Rat → 3 1
Cat → 4 2
Cat → 4 2

as continuous attributes. We have binary splits in the tree as for continuous data
attributes the node is split at a threshold value. For our example, we have three
possible splits, {(1), (2,3,4)}, {(1,2), (3,4)} and {(1,2,3), (4)}. The best split is de-
cided by the desired split criterion. We avoid the data fragmentation problem as
there is a binary split. Using this method, it is not necessarily true that we get the
best split as shown by Breiman [5]. However, since we want to create an ensem-
ble, different node splits are necessary to create diverse decision trees. Further-
more there is no change in the tree building process so no extra computational
cost for the tree building phase. Results of different decision trees in the ensem-
ble are combined using a majority voting scheme to get the final prediction. ROE
algorithm is presented in Fig. 1. In the next section, we present theoretical study
of RO attributes.

4 Study of RO Attributes in an Information Gain
Framework

In RO, new attributes are created by randomly assigning order to different at-
tribute values and treating these new attributes as continuous. The selected split-
ting criterion is used to decide the best binary split. In this section, we will use the
information theoretic framework to discuss whether these attributes are good for
classification.

Let D be a 2 class (Y = +1 and Y = -1) dataset with the same number of pos-
itive and negative examples. Let A be a multi-valued attribute with cardinality
|A| again with uniform prior probability. Half of these values correctly identify
the positive class, whereas rest of the values correctly identify the negative class.
For example, if attribute values are (a,b,c,d,e,f),

p(Y = +1|A = a) = 1, p(Y = +1|A = b) = 1, p(Y = +1|A = c) = 1. (1)
p(Y = −1|A = d) = 1, p(Y = −1|A = e) = 1, p(Y = −1|A = f) = 1. (2)
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Input- Dataset T with m multi-valued categorical attributes and L size of the
ensemble.

Training Phase
for i=1...L do

Data Generation
Apply Random Ordinality to generate integer valued dataset Ti.
Learning Phase
Treat dataset Ti as continuous, and learn decision tree Di.

end for

Testing Phase
For a given data point x
for i=1...L do

Convert x to x′ using the ordinality of tree Di.
Get the prediction for x′ from tree Di.

end for
Combine the results of L decision trees by the chosen combination rule to get the final
classification result (we use majority voting method).

Fig. 1. Algorithm for Random Ordinality Ensembles (ROE)

Wecalculate the information gain ratio of different attributes createdbyRO.We
randomly assign order to (a,b,c,d,e,f) and calculate a binary split at each point, the
maximum information gain ratio is taken as the information gain ratio associated
with this random order. For example, if we assign

a < c < f < e < b < d. (3)

The maximum information gain ratio is based on the split ((a,c) (f,e,b,d)) and
this is taken as the information gain ratio associated with the random order pre-
sented in Eq. 3. We calculate the average information gain ratio of different possi-
ble random orders of attribute values. We carry out this exercise for attributes
with different cardinality, whereas dataset and attribute values have the same
properties as discussed above.

We also calculate the information gain ratio of binary splits created by random
splitting of attribute values into two groups. Results are presented in table 2. Re-
sults indicate that the average gain ratio of attribute created using RO and the
gain ratio of multi-valued attributes are quite similar, whereas random splits do
not create good splits. As the cardinality of the attribute increases, the average
information gain ratio of RO attributes decreases. The same is true for the multi-
way split as the value of normalizing factor (log2 |A|) increases. This suggests that
on average we are creating binary splits from multi-valued categorical attributes
that have similar information gain ratio. The theoretical study suggests that for
multi-valued categorical attributes with certain properties, the informationgain
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Table 2. Gain ratio of attributes with different numbers of attribute values

Cardinality |A| Number of Average gain Average gain Gain ratio
of the random ratio for ratio for for

attribute A attributes RO attributes (s.d.) attributes with multi-way split
created random split (s.d.)

4 104 0.59(0.29) 0.37(0.26) 0.50
6 104 0.47(0.20) 0.20(0.24) 0.39
8 106 0.40(0.16) 0.13(0.18) 0.33
10 107 0.35(0.12) 0.10(0.14) 0.30
12 107 0.32(0.10) 0.08(0.11) 0.28
14 107 0.29(0.09) 0.06(0.09) 0.26

ratio of a binary split with some random constraints may be equal to or
greater than a multi-way split.

In the next section, we present the comparative study of ROE against the other
ensemble methods.

5 Empirical Evaluation

A study was carried out to compare the performance of ROE with Bagging [3],
AdaBoostM1 [10] and Random Forest [4]. We created two types of RO ensem-
bles. In the first, ROE with J48, we used the J48 (the WEKA [15] implementation
of C4.5 as the base classifier (with the unpruned option)), which uses multi-way
splits for multi-valued categorical attributes as per default. In the second, ROE
with RS, we used Random Trees[15] as the base classifier. Random Trees [15] con-
structs a tree that considers K random features at each node. In other words, we
combine the benefits of attribute randomization of Random Subspaces (RS) with
Random Ordinality. We carried out experiments with Bagging and AdaBoost.M1
[10] using J48 (unpruned) as the base model, and Random Forests (WEKA im-
plementations of these ensemble method were used). The sizes of the ensembles
were set at 50 for these experiments. K (number of attributes to randomly investi-
gate) is taken as the half of the attributes for Random Tree. Default settings were
used for the rest of the parameters. The experiments were conducted following the
5 × 2 cross-validation [6]. The original test proposed by Dietterich [6] to compare
the performance of classifiers suffers from low replicability. Alpaydin [1] propose
a modification to the 5 × 2 cross-validation F test. We used this test for our ex-
periments. We considered a confidence level of 95% for this test. Table 3 presents
classification errors of different ensemble methods on different datasets.

Results suggest that, with the exception of Monks1 data, the performance of
ROE with J48 is either statistically similar or better than that of other popular
ensemble methods. The performance of ROE with RS is either statistically similar
or better than that of other popular ensemble methods for all datasets. For Monks1
data the performance of ROE with J48 was poor. We discuss this dataset in detail
to understand the limitations of RO ensembles.
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Table 3. Classification error in % for different ensembles; bold numbers indicate best
performance. Comparative results are presented ROE with J48/ROE with RS in bracket
(if performance of these ensembles are different). ‘+/-’ shows that performance of ROE
is statistically better/worse than that algorithm for that dataset, ‘Δ’ shows that there is
no statistically significant difference in performance for this dataset between ROE and
that algorithm.

Dataset RO with J48 RO with RS Bagging AdaBoostM1 Random Single
ensemble ensemble Forest Tree (J48)

Promoter 13.1 12.8 15.5 19.6 13.4 28.5(+/+)
Hayes-Roth 16.9 15.9 22.8(+/+) 23.1(+/+) 22.2(+/+) 25.3(+/+)

Breast Cancer 30.3 30.1 29.9 35.6 32.4 35.9
Monks1 18.3 1.5 5.8(-/Δ) 5.9(-/Δ) 3.3(-/Δ) 15.9(-/+)
Monks2 33.9 30.9 46.9(+/+) 47.5(+/+) 50.4(+/+) 49.6(+/+)
Monks3 0 0 0 0 0 0
Balance 19.6 20.0 29.6(+/+) 30.3(+/+) 26.9(+/+) 31.4(+/+)

Soyalarge 8.8 7.3 8.2 7.3 7.9 9.7
Tic-tac-toe 6.6 3.4 10.0(+/+) 3.5 8.6(Δ/+) 18.4(+/+)

Car 4.1 4.2 8.3(+/+) 5.9(+/+) 8.3(+/+) 9.2(+/+)
DNA 4.5 4.4 6.2(+/+) 5.1 5.8 8.9(+/+)

Mushroom 0.1 0.1 0 0 0 0
Nursery 1.0 0.9 2.8(+/+) 1.3(+/+) 2.6(+/+) 3.6(+/+)

RO with J48
win/draw/lose 7/5/1 5/7/1 5/7/1 9/3/1

RO with RS
win/draw/lose 7/6/0 5/8/0 6/7/0 9/4/0

Monks1 dataset has six attributes and two classes. The classification is Y = 1,
if (x1 = x2)∨ (x5 = 1). All the other data points belong to class 2. When we treat
data as continuous, the first concept (x1 = x2) is a diagonal concept. J48 trees are
restricted to orthogonal decision boundaries. In other words, decision trees divide
the input attribute space into rectangular regions whose sides are perpendicular to
the attribute axis. Decision trees have a representational problem because of this
orthogonal property; they cannot learn diagonal concepts properly. Ensembles of
decision trees solve this problem, as combined results of decision trees produce a
good approximation of a diagonal concept [7]. The quality of the approximation
depends on the diversity of decision trees in the ensemble. RO with RS trees are
more diverse as compared to RO with J48 trees. Hence, ROE with RS can learn
this diagonal concept in Monk1 data better than ROE with J48.

Building a good ensemble depends on the creation of diverse decision trees.
We create diverse decision trees by imposing random ordinality to categorical at-
tributes values that in turn create different node splits. The diversity in node splits
is the key for diverse decision trees. If we have |A| attribute values, these attributes
will be present in different trees in different order, the possible number of dif-
ferent splits from these attribute values is 2(|A|−1) − 1. If |A| is small, there is
a large possibility that different trees have same node splits, and we may not get
very diverse trees. Tic-Tac-Toe data has only 3 attribute values for each attribute.
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Hence, there is only three possible node splits for each attribute (we are taking
the case when all the attribute values are present in the node). Different trees can
have one of the three possible node splits for a attribute. It means that there is a
large possibility that different trees have same node splits. In this condition, the
trees in the ensemble will not be very diverse. When we combine the attribute
randomization of RS with RO, we observe a large improvement in the classifica-
tion error as compared to ROE with J48 (the average error reduced from 6.6%
to 3.4%). Better diversity of ROE with RS is the reason for this improvement.
In the next section, we present the various studies to analyze RO trees and RO
ensembles.

6 Study of RO Ensembles and RO Trees

One of the motivation of ROE is that it avoids data fragmentation problem. In this
section we study the effect of data fragmentation on ROE and RO tree
sizes.

6.1 Study of Data Fragmentation for ROE

Data fragmentation may affect the performance of decision trees. We have carried
out a controlled experiment to see how different ensemble methods perform with
respect to the number of attribute values. For this purpose, we selected two pure
continuous datasets; Segment and Vehicle. We converted these datasets into cat-
egorical datasets using equal width discretization. We studied various ensemble
methods on these discretized datasets; varying the numbers of bins to see its ef-
fect on different ensemble methods. We performed five replications of a two-fold
cross-validation. The results (Fig. 2) suggest that classification errors of RO en-
sembles are relatively unaffected. When we increase the number of bins we have
a small number of points in every bin; that leads to badly estimated probabili-
ties and poor generalization. Whereas, RO ensembles have binary decision trees
so they are more robust to the data fragmentation problem.
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Fig. 2. Effect of equal width discretization on various ensemble methods for Vehicle and
Segment datasets. RO resists fragmentation as space grows.
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Table 4. The average sizes of RO trees and multi-split J48 trees for different datasets

Name of Size of The average The average
dataset the training number of leaves/size of number of leaves/size of

data RO trees (J48) multi-way split J48 trees

Car 864 54/107 127/174
DNA 1587 76/151 211/281

Tic-Tac-Toe 479 49/97 92/142
Promoter 53 6/11 13/17

6.2 RO Tree Sizes

Smaller trees have greater statistical evidence at the leaves. Motivated by Occams
Razor, small trees are preferable. As RO trees have binary splits RO trees are
more likely to have smaller sizes than that of multi-split decision trees. We studied
RO tree sizes for various datasets; Car, DNA, Tic-Tac-Toe and Promoter. The
experiments were conducted following the 5 × 2 cross-validation and 50 RO trees
are created in each run.

In the table 4, we present the average sizes of RO trees (J48 decision trees cre-
ated using datasets generated by RO method) and normal multi-split J48 decision
trees for different datasets. For all the datasets, RO trees are smaller that normal
multi-split J48 decision trees. For example, for DNA dataset, the average size of
RO trees is 151 whereas the average size of normal multi-split J48 decision trees
is 281. These results indicate that RO helps in creating smaller decision
trees.

7 Conclusion

In this paper, we have presented a new ensemble method to build diverse binary
decision trees for datasets consisting of multi-valued categorical attributes. We con-
vert categorical attributes into continuous attributes by randomly assigning inte-
ger values to categorical attribute values. As the transformation to continuous
data is random, diverse datasets are created. When a decision tree is constructed
by treating these new attributes as continuous ones, we have binary splits at the
nodes giving binary decision trees. The theoretical study suggests that for multi-
valued categorical attributes with certain properties, the information gain ratio of
a binary split of RO attributes may be equal to or greater than a multi-way split.
We create two types of ensembles using RO. In the first, we use J48 (the WEKA
[15] implementation of C4.5) as the base model for the ensemble. In the second,
we combine the attribute randomization of Random Subspaces with Random Or-
dinality. The comparative study on 13 different datasets from the UCI repository
suggest that ROE significantly outperform other popular ensemble methods in
terms of test error. The study shows that ROE avoids the data fragmentation
problem and RO trees are significately smaller than multi-way split trees. ROE
is easy to implement and parallel implementation of ROE is also possible.
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In this present work, we imposed random ordinality to each attribute indepen-
dently. In future we will also take interdependencies of attributes into considera-
tion while imposing random ordinality. The ”take-home” message of this paper is
that, when categorical attribute values have no intrinsic order, this property can
be exploited to build a successfully performing ensemble of diverse binary decision
trees.
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Abstract. Hierarchical classification problems gained increasing atten-
tion within the machine learning community, and several methods for
hierarchically structured taxonomies have been recently proposed, with
applications ranging from classification of web documents to bioinfor-
matics. In this paper we propose a novel ensemble algorithm for mul-
tilabel, multi-path, tree-structured hierarchical classification problems
based on the true path rule borrowed from the Gene Ontology. Local
base classifiers, each specialized to recognize a single class of the hierar-
chy, exchange information between them to achieve a global “consensus”
ensemble decision. A two-way asymmetric flow of information crosses the
tree-structured ensemble: positive predictions for a node influence its an-
cestors, while negative predictions influence its offsprings. The resulting
True Path Rule hierarchical ensemble is applied to the prediction of gene
function in the yeast, using the FunCat taxonomy and biomolecular data
obtained from high-throughput biotechnologies.

1 Introduction

Several interesting real-world classification problems are characterized by hierar-
chical relationships between classes [1, 2, 3]. These problems come from different
fields, ranging from textual classification of web content [1, 2], to gene function
prediction in bioinformatics [3, 4], and share the common property that a certain
general class may be further specified by more refined classes at different levels
of an overall hierarchy. For instance, in the FunCat taxonomy [5] the general
class ”metabolism” has several child classes, such as ”amino acid metabolism”,
”C-compound and carbohydrate metabolism”, ”lipid and fatty acid metabolism”
and others that provide more detailed specifications and subdivisions of the par-
ent class. Moreover each child class, e.g. ”amino acid metabolism”, can be further
subdivided in ”metabolism of the aspartate family”, ”metabolism of the cysteine
- aromatic group” and so on, thus resulting in a complex hierarchy divided at
multiple levels.

Several hierarchical algorithms have been proposed in the literature, with dif-
ferent characteristics and purposes, considering for instance methods restricted
to multilabels with single and no partial paths [1, 6], or other methods extended
to multiple and also partial paths [2, 7]. Nevertheless, algorithms that explic-
itly take into account the relationships between the classes of the structured
hierarchy received much less attention.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 232–241, 2009.
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In particular in this paper we propose a hierarchical ensemble algorithm, by
which classifications of positive examples in child nodes influence the prediction
of the parent node in a recursive way, while negative predictions in a node
influence the prediction in the descendant nodes. This general behaviour is a
consequence of the true path rule, a term borrowed from the Gene Ontology [8]:
according to this rule, if an example belongs to a class, it belongs to all its
ancestors, and if does not belong to a class it does not belong to all its offsprings.

In the next section the main motivations and characteristics of the proposed
ensemble algorithm are presented and discussed. Then in Sect. 3 we test the pro-
posed method on a complex hierarchical gene function prediction problem, using
the FunCat taxonomy and bio-molecular data obtained from public databases,
and discuss some drawbacks and possible enhancements of the proposed hierar-
chical ensemble approach. The conclusions end the paper.

2 An Ensemble Algorithm Based on the True Path Rule

2.1 Definitions and Notation

We consider a multiclass multilabel classification problem where the classes are
structured according to a given hierarchy.

More precisely, an example x can be assigned to 1 or more classes of the set
Ω = {ω1, ω2, . . . , ωm}. The assignments are coded through a vector of multilabels
y =< y1, y2, . . . , ym >∈ {0, 1}m, by which if x belongs to class ωj , then yj = 1,
otherwise yj = 0.

The classes are structured according to a hierarchy and can be represented by
a directed graph, where nodes correspond to classes, and arcs to relationships
between classes. Considering that each node corresponds to a class, the node
corresponding to the class ωi may be simply denoted by i. We denote by child(i)
the set of children nodes of i, while par(i) represents the set of the parents of
node i. Moreover ychild(i) denotes the labels of the children classes of node i and
analogously ypar(i) denotes the labels of the parent classes of i.

A classifier D : X → {0, 1}m computes the multilabel associated to each
example x ∈ X , and di(x) ∈ {0, 1} is the label predicted by the classifier for
class ωi. For the sake of simplicity if there is no ambiguity we represent di(x)
simply by di.

2.2 The True Path Rule

The proposed algorithm is inspired by the ”true path rule” that characterizes
the hierarchy of the gene functional classes of both the Gene Ontology (GO) [8]
and FunCat [5] taxonomies:

“If the child term describes the gene product, then all its parent terms
must also apply to that gene product”

This means that if a gene is annotated with a specific functional term (functional
class), then it is annotated with all the ”parent” classes, and with all its ancestors
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Fig. 1. True path rule: if example x belongs to class G then it belongs also to class D,
B and A. On the contrary if an example x does not belong to class C it cannot belong
to class F or L.

in a recursive way. On the contrary if a gene is not annotated to a a class, it
cannot be annotated to its offsprings. (Fig. 1).

From the “true path rule”, for a given example x, considering the parents of
a given node i, the following rules can be immediately deduced:{

yi = 1 ⇒ ypar(i) = 1
yi = 0 � ypar(i) = 0 (1)

As a consequence a classifier that respects the true path rule needs to obey the
following rules: {

di = 1 ⇒ dpar(i) = 1
di = 0 � dpar(i) = 0 (2)

On the other hand, considering the children of a given node i, the following
rules can be immediately deduced:{

yi = 1 � ychild(i) = 1
yi = 0 ⇒ ychild(i) = 0 (3)

and a classifier that respects the true path rule needs to obey the following rules:{
di = 1 � dchild(i) = 1
di = 0 ⇒ dchild(i) = 0 (4)

From eq. 1 and 3 we can observe an asymmetry in the rules that govern the
assignments of positive and negative labels. Indeed we have a propagation of
positive labels from bottom to top of the hierarchy (eq. 1), and a propagation
of negative labels from top to bottom (eq. 3). On the contrary negative labels
cannot propagate from bottom to top, and positive predictions cannot propagate
from top to bottom.
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2.3 The Main Ideas behind the Algorithm

We can design a hierarchical classifier that uses the predictions made at each
node by local ”base” classifiers and puts together their decisions to realize an
ensemble that obeys the “true path rule”. More precisely the basic ideas behind
the true path rule ensemble algorithm are the following:

1. A set of base classifiers associated to each class/node of the graph provides
a local decision about the assignment of a given example to a given node.

2. Positive decisions for a node influence the decisions made by the parent
nodes in a recursive way (that is a positive decision influences the parent
and may propagate from bottom to top across the graph). On the contrary
negative decisions do no affect decisions of the parent node (that is they do
not propagate from bottom to up, eq. 2).

3. If the classifier takes a negative prediction for a given node (taking into
account the local decision of its descendants), it in turns set to negative all
its descendants, to preserve the consistency of the hierarchy according to the
true path rule. On the contrary positive decisions do not influence decisions
of child nodes (eq. 4).

The decision of the ensemble classifier is thus the result of the local predictions
made by the base classifiers associated to each node modified in order to take
into account positive predictions that comes from the bottom of the graph and
negative predictions that comes from the top of the graph.

We propose an algorithm for tree-structured graphs that scans the tree from
bottom to top through a per level traversal of the tree. Base classifiers estimate
local probabilities p̂i(x) that a given example x belongs to class ωi, and the
ensemble corrects the local probabilities to estimate the “consensus” probability
pi(x). More precisely, given the local estimates of the probabilities p̂j(x) made
by the base classifiers across the tree T of the m classes, the probability that an
example x belongs to class ωi is:

pi(x) = P (ωi|x, T, p̂j(x), 1 ≤ j ≤ m) (5)

2.4 The Hierarchical Ensemble Algorithm

The algorithms starts to train the m base learners (one for each node/class of the
hierarchy); each trained classifiers computes an estimate of the local probabilities
p̂j(x). The core of the algorithm is represented by the evaluation phase, where
the ensemble provides an estimate of the “consensus” global probability pi(x).
A detailed representation of the evaluation phase of the algorithm is given in
Algorithm 1. In the algorithm there are two main for loops: the external for
(from row 1 to 26) handles a per level bottom-up traversal of the tree, while
the internal (from row 2 to 25) scans the nodes at each level. If a node is a
leaf (row 3), then the consensus probability pi is equal to the local probability
p̂i(x). Note that a positive decision is taken if pi(x) is larger than a threshold t
(row 5): a natural choice for t is 0.5. If a node is not a leaf (row 10), at first the
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Algorithm 1. True Path Rule (TPR) hierarchical ensemble
Input:
- a test example x
- tree T of the m hierarchical classes
- set of m classifiers (one for each node) each predicting p̂i(x), 1 ≤ i ≤ m

1: for all levels k of T from bottom to top do
2: for all nodes i at level k do
3: if i is a leaf then
4: pi(x) ← p̂i(x)
5: if pi(x) > t then
6: di(x) ← 1
7: else
8: di(x) ← 0
9: end if

10: else
11: φ(x) ← {j|j ∈ child(i), dj(x) = 1}
12: pi(x) ← 1

1+|φ(x)|

(
p̂i(x) +

∑
j∈φ(x) pj(x)

)
13: if pi(x) > t then
14: di(x) ← 1
15: else
16: di(x) ← 0
17: for all j ∈ subtree(i) do
18: dj(x) ← 0
19: if pj(x) > t then
20: pj(x) ← t
21: end if
22: end for
23: end if
24: end if
25: end for
26: end for

Output:

- the ensemble decisions di(x) =

{
1 if x belongs to node i

0 otherwise

- the probabilities pi(x) that x belongs to the node i ∈ T

set φ(x) collects all the children nodes for which we have a positive prediction,
and the consensus probability pi of the ensemble is computed by considering
both the local estimate of the probability p̂i and the probabilities computed by
the children nodes for which a positive decision has been taken (row 12). Note
that in case of a negative decision for the node i, all the classes belonging to
the subtree rooted at i are set to negative (rows 17-18). The algorithm provides
both the multilabels associated to the example x and the probabilities pi that a
given example belongs to the class i, 1 ≤ i ≤ m.
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3 Experimental Results

3.1 Hierarchical Classification of Functional Classes of Genes

We considered the functional classification of yeast genes for a large number
of classes structured according to the FunCat (Functional Catalogue), a hierar-
chically tree-structured, controlled classification system enabling the functional
description of proteins from any organism [5].

We selected only the genes annotated to FunCat (funcat-2.1 scheme), available
from the MIPS web site (http://mips.gsf.de/projects/funcat), using the
Hcgene R package [9]. We also removed the genes annotated only with the ”99”
FunCat class (”UNCLASSIFIED PROTEINS”) and selected classes with at least
20 positive examples, in order to get a not too small set of positive examples
for training. The resulting tree has a depth equal to 5 and includes about 200
functional classes. Different strategies can be chosen to select negative examples
for each functional class [10, 9]. In this work negative examples for each class
have been selected in such a way that they are not annotated for the class, but
belong to the parent class (i.e. positive for the parent class). In this way only
negative examples that are not too dissimilar to the positive ones are selected.

3.2 Data Sets

We chose four different types of bio-molecular data obtained from high-throughput
bio-technologies and available from public databases or from literature. The main
characteristics of the data we used in our experiments are summarized in Tab. 1.

Proteins are constituted by structured and functionally characterized regions
usually referred as domains joined by unstructured regions named loops. To
capture this source of functional information we considered the E-value assigned
to each gene product by a collection of profile-HMMs, each of which trained on a
specific domain family, using data from the Pfam (Protein families) database [11].
The E-values have been obtained by means of the HMMER software toolkit [12].

Phylogenetic data have been obtained through BLAST searches [13]: each
feature corresponds to the negative logarithm of the lowest E-value reported by
BLAST version 2.0 in a search against a complete genome, with negative values
(corresponding to E-values greater than 1) truncated to 0 [14].

We merged the gene expression experiments of Spellman et al. (gene expres-
sion measures relative to 77 conditions) [15] with the transcriptional responses of

Table 1. Data sets

Data set n. examples n. feat. n.classes

Protein domain 3529 5724 211

Phylogenesis 2445 24 187

Gene expression 4532 250 230

PPI - BioGRID 4531 5367 232



238 G. Valentini

yeast to environmental stress (173 conditions) by Gasch et al. [16], thus obtaining
real-valued vector data with 250 features.

Finally we downloaded protein-protein interaction (PPI) data from the Bi-
oGRID database, that collects PPI data from both high-throughput studies and
conventional focused studies [17]. Data are binary: they represent the presence
or absence of protein-protein interactions.

3.3 Experimental Setup

For each data set we evaluated the performance of three different ensembles: the
Flat ensemble, that does not take into account the hierarchical structure of the
data, the Hierarchical Top-Down and the proposed True Path Rule (TPR) Hi-
erarchical Bottom-Up ensemble. The classical hierarchical Top-down algorithm
classifies an example x, where di(x) is the classifier decision at node i and root(T )
denotes the set of nodes at the first level of the tree T , in the following way:

yi =

⎧⎨⎩di(x) if i ∈ root(T )
di(x) if i /∈ root(T ) ∧ ypar(i) = 1
0 if i /∈ root(T ) ∧ ypar(i) = 0

As base learners we used 2nd and 3rd degree polynomial SVMs. The probabilistic
output of the SVMs composing TPR ensembles has been computed using the
sigmoid fitting proposed in [18].

Considering the large unbalance between positive and negative examples avail-
able for each class, we evaluated the performance of the ensembles through the
F-measure, i.e. the harmonic mean between precision and recall, by applying for
each data set 5-fold cross-validation techniques. We performed a limited model
selection for the base learners, by applying a grid search only to the first level
nodes (classifiers) of the tree (the nodes closest to the root), and then we ex-
tended the resulting best model parameters to all the other classifiers of the tree.

3.4 Results

Results of the comparison between Flat, Top-down and True Path Rule hier-
archical ensembles are summarized in Tab. 2. The table reports the average
F-measure across classes, using the same 0/1 loss for each class of the hierarchy.
Data in bold denote results for an ensemble better than both the other two (at
0.05 significance level), according to the 5-fold cross-validated paired t-test [19].
True Path Rule ensembles achieve significantly better results with respect to
both Flat and Hierarchical top-down ensembles: only with Gene expression data
Top-down ensembles perform better, even if the difference is not statistically
significant.

Looking at Tab. 3 we can observe that the better results of TPR ensembles are
due to a better balancing between precision and recall. Indeed on the average the
higher recall is obtained by the Flat ensemble, while the higher average precision
by the Top-down ensembles (Tab. 3). In both cases the recall and precision of the
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Table 2. Average F-measure across FunCat classes: comparison between Flat, Top-
down and TPR (true path rule) ensembles

Data set Flat Top-down TPR

Protein domain 0.0976 0.1246 0.1590

Phylogenetic 0.0204 0.0005 0.0708

Gene expression 0.0882 0.1139 0.1058

PPI - BioGRID 0.0396 0.0255 0.1257

Average across data 0.0614 0.0661 0.1153

Table 3. Average Precision and Recall across FunCat classes: comparison between
Flat, Top-down and TPR (true path rule) ensembles

Flat Top-down TPR
Data set Prec. Rec. Prec. Rec. Prec. Rec.

Protein domain 0.1133 0.3256 0.3370 0.0800 0.1488 0.2395

Phylogenetic 0.1288 0.2095 0.0103 0.0002 0.1050 0.0853

Gene expression 0.0669 0.3772 0.1518 0.0961 0.0757 0.2777

PPI - BioGRID 0.1462 0.2282 0.2235 0.0145 0.1862 0.1204

Average across data 0.1138 0.2851 0.1806 0.0477 0.1289 0.1807

TPR ensemble is on the middle, but results in a larger F-measure. Nevertheless,
for real applications to gene function prediction, the precision is actually too
low to be useful in practice. Indeed in real applications an ”in silico” prediction
needs to be validated by ”in vitro” biological functional validation, and we need
a reasonably high precision to justify the more expensive biological validation.

Note that here we consider the average precision, recall, and F-measure across
classes, and hence we may obtain an average F-measure that is lower of both
the average precision and recall.

Even if the average accuracy across classes is quite high (for both Hierarchical
Top-down and TPR ensembles is larger than 90%, while for Flat is about 75%,
data not shown), note that this results is not so significant, considering the large
unbalance between positive and negative examples for most functional classes.
On the contrary the F-measure is quite low: the average across data sets is only
0.1153 for TPR ensembles and this result is halved with both Flat and Top-down
ensembles (Tab. 2).

These relatively poor results are due to the intrinsic complexity of the
hierarchical multiclass multilabel classification of genes [20]. In many cases bio-
molecular data obtained through complex bio-technologies are affected by a rel-
atively high degree of noise. Moreover, usually each data set can provide useful
information only for a subset of classes, while for others may be substantially
uninformative. It is well-known that by combining multiple sources of data we
can substantially improve the results [14, 3], and we may expect substantial
improvements by applying data fusion techniques with TPR ensembles.
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Another important problem is the local model selection of each base learner. In
the experiments, for computational complexity reasons, we applied a relatively
moderate model selection strategy limited only to the first level of the tree
hierarchy (16 nodes/classes out of more than 200). By applying a computational
intensive model selection through internal cross validation we may expect a
further improvement of the results of TPR ensembles.

4 Conclusions

In this work we presented a novel ensemble algorithm for multiclass multilabel
hierarchical classification problems. The training phase is straightforward (even
if computationally intensive), but the core of the algorithm is represented by
the evaluation phase. At this stage the base classifiers associated to each node
of the tree exchange information in an asymmetric way from bottom to top and
top to bottom: positive predictions affect the decisions at “higher level” nodes
(i.e. ancestor nodes), while negative predictions affect offsprings, according to
the true path rule borrowed from the Gene Ontology.

Even if this algorithm has been conceived for the prediction of the function
of genes at genome-wide level, it is sufficiently general to be applied in other
similar hierarchical problems in different fields and contexts.

The preliminary experimental results show that TPR ensembles are compet-
itive with respect to both classical Flat and Hierarchical Top-down ensembles,
and suggest also further directions to improve the basic TPR algorithm. For
instance, considering that the decision for a class is influenced only by positive
decisions of its offsprings, an ongoing research line consists in explicitly balanc-
ing the weigth of the local predictor with respect to that of its children: in this
way we could tune the precision and the recall of the ensemble. Moreover, by
introducing model selection strategies at each node and data fusion techniques
to exploit multiple sources of biomolecular data, we may expect to substantially
improve the overall performance of the ensemble.
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Abstract. Machine Learning can be divided into two schools of thought:
generative model learning and discriminative model learning. While the
MCS community has been focused mainly on the latter, our paper is
concerned with questions that arise from ensembles of generative mod-
els. Generative models provide us with neat ways of thinking about two
interesting learning issues: model selection and semi-supervised learning.
Preliminary results show that for semi-supervised low-variance genera-
tive models, traditional MCS techniques like Bagging and Random Sub-
space Method (RSM) do not outperform the single classifier approach.
However, RSM introduces diversity between base classifiers. This start-
ing point suggests that diversity between base components has to lie
within the structure of the base classifier, and not in the dataset, and it
highlights the need for novel generative ensemble learning techniques.

1 Introduction

In the past few years, the MCS community has mainly focused on supervised
problems, that is, learning scenarios where classifiers are trained on labelled ex-
amples. Nevertheless, many real applications are nowadays characterised by two
contrasting factors, namely the need for large quantities of labelled data to design
supervised classifiers with high accuracy, and the difficulty and cost of collecting
such data.

A possible answer to this accuracy/labelling dilemma is to consider semi-
supervised algorithms, that is, techniques which are able to learn from a small
amount of labelled data together with a large amount of unlabelled data [1]. The
majority of the work done so far has been concerned with ensembles of semi-
supervised discriminative models, where some external procedure is responsible
for labelling the unlabelled data before base classifiers can learn from them
[2,3,4,5,6].

Generative models are algorithms that can learn from labelled and unlabelled
data [1]. There are very few examples of semi-supervised generative ensembles
[7,8], and so far there is still no common understanding of the way unlabelled
data affects ensembles of generative models.

This paper is an attempt to further investigate semi-supervised ensembles of
generative models. Generative and discriminative approaches are two ways of
solving the same problem (Sec. 2). A comparison of ensemble techniques shows
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that the way they make use of unlabelled data is different (Sec. 3); moreover they
provide different levels of understanding in terms of model mismatch (Sec. 4). As
generative models have not been explored in the MCS community, we present
a preliminary experimental analysis (Sec. 5). Our results show that for semi-
supervised low-variance generative models, diversity between base classifiers has
to be structurally imposed.

2 Discriminative or Generative Models?

The generative/discriminative dilemma seems to divide Machine Learning into
two separate communities.

In a statistical approach a classification problem is modelled by the joint
distribution p(X, Y ), where X and Y denote the data and the class random
variables, respectively. Because we want to solve a classification problem, our
goal is to find the optimal estimate of the class posterior p(Y |X). This can be
determined via Bayes’ rule:

p(Y |X) =
p(X |Y )p(Y )

p(X)
.

Discriminative classifiers directly model the class posterior distribution p(Y |X).
In practical terms, this corresponds to modelling our problem as decision regions
between classes. Typical example of discriminative models are neural networks,
where we try to learn decision boundaries by minimising some error function. In
a generative approach we make explicit assumptions about the form of the class
conditional distributions p(X |Y ) and class priors p(Y ). Therefore, a generative
model in practice models the data distribution rather than the decision regions.
An example of a generative model is a Näıve Bayes network, which is based
on the assumption that all the features are conditionally independent given the
class:

p(X|Y ) =
D∏

f=1

p(Xf |Y ), (1)

as depicted in Fig. 1. If all features are discrete, we can estimate Eq. (1) by
frequency counts.

In terms of problem applicability, generative models can naturally incorporate
unlabelled data because they learn the way data is distributed. On the other
hand, discriminative models have no knowledge at all about the data distribu-
tions and therefore, their major drawback is that they cannot naturally handle
unlabelled data. This implies that in semi-supervised problems there must exist
an external mechanism that labels the unlabelled data before a discriminative
classifier can incorporate them into the learning process, as in Co-training [3]
and Tri-Training [4].

In terms of performance, when only few labelled data are available, there is
strong evidence [9] that generative models outperform discriminative models.
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X1 X2 X3

Y

Fig. 1. A Näıve Bayes network. Each arc represent a inter-variable dependency, while
the absence of an arc is an indication of independence between random variables.

Moreover, while discriminative models can achieve better performance, genera-
tive models have a faster speed of convergence. The main reason discriminative
models are usually preferred to generative models is that the latter rely on strong
assumptions. The choice of the right assumption in generative models is crucial,
for studies have shown that when there is model mismatch, unlabelled data can
degrade classification performance [10].

3 Semi-supervised Learning

3.1 Discriminative Ensembles for Semi-supervised Problems

The MCS community has traditionally focused on discriminative base classifiers,
and most of the work done so far about semi-supervised learning has been con-
cerned with techniques that let discriminative classifiers exploit unlabelled data
[3,4,5,6]. As a discriminative model cannot make use of data without labels, an
external mechanism has to assign “pseudo-labels” to the unlabelled data before
a classifier can effectively process them. We now describe the main principles
of how discriminative models can learn from unlabelled data. A full review of
semi-supervised ensemble techniques is out of the scope of this paper; the reader
might refer to [1,2] for a more extensive survey.

Decision-directed ensemble approaches [11] are based on the idea that a clas-
sifier can iteratively self-teach itself. Within this framework a single classifier is
initially trained on the labelled data. Afterwards, the same classifier is used to
classify unlabelled data and the most confident predicted patterns are selected
and added along with their “pseudo label” to the labelled patterns; the process
iterates until a stopping criterion is reached. In an ensemble approach the en-
semble prediction could be used to assign pseudo labels to the unlabelled data.
Co-Training [3] can be considered the first attempt to apply ensemble learning
to semi-supervised problems. This approach is based on the assumption that the
feature space can be split into two disjoint subsets called views, and that each
one of these is sufficient for correct classification. Therefore, a single classifier
is trained on each of these views. Initially, both classifiers are trained only on
labelled data. Each classifier is then asked to classify a small amount of unla-
belled data. The most confident predictions are added to the labelled training
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set of the other classifier; then the process re-iterates for a given amount of
times. The basic idea behind co-training is that whenever classifiers disagree,
the mistaken one can be “taught” by the other one, for each view is sufficient
to make a correct prediction. In other words, co-training is an ensemble method
that enforces agreement on unlabelled data [12]. An interesting extension is given
by tri-training [4], where three classifiers use majority voting to label unlabelled
data. If two classifiers agree, then the unlabelled pattern is labelled accordingly.

These “pseudo labels” are used only with discriminative classifiers. Although
this mechanism might succeed, it seems somewhat ad-hoc. In contrast, generative
models can lead to more elegant ensemble approaches.

3.2 Generative Ensembles for Semi-supervised Problems

The reason why we should be interested in generative models is that unlabelled
data can be incorporated into their learning process without need of “pseudo la-
bels”. Once we have made our assumptions about the form of our joint distribu-
tion p(X, Y ) = p(X, Y, θ), the learning process consists of finding the parameters
θ that most likely fit our data1.

For instance, let us consider a C class problem in a D dimensional space. In
a semi-supervised problem, our data can be split into a finite set of labelled
patterns DL = {XL,YL} = {(xi, yi) | i = 1, . . . , N} and a finite set of unlabelled
data DU = {XU} = {(xj) | j = N + 1, . . . , M}, D = {DL,DU}. We assume
that labelled and unlabelled patterns are independent and identically distributed
samples drawn from the same joint probability distribution p(X, Y ). A semi-
supervised Maximum Likelihood approach seeks to find the set of parameters θ
that maximize the log-likelihood log p(D|θ) = log p(X L,YL, X U |θ):

log p(X L,YL, X U |θ) =
= log p(X L,YL|θ) + log p(X U |θ)

=
N∑

i=1

log p(yi|θ)p(xi|yi, θ) +
M∑

j=N+1

log
C∑

k=1

p(yk|θ)p(xj |yk, θ)
(2)

From (2) it is easy to observe that the log-likelihood is made of two terms, the
first one depending on the labelled data, and the second one depending on the
unlabelled data. It follows that in a generative ensemble approach each base
classifier can learn from labelled and unlabelled data, and in addition ensemble
techniques could be used to improve classification accuracy.

4 Model Selection

Model selection is the process of choosing a specific class of models according
to our knowledge of the problem. Whenever a generative model does not match
the problem data distribution, we call this model mismatch.
1 Alternatively we can use a full Bayesian Learning approach, which consists of inte-

grating out parameters via approximation methods such as Variational Inference.
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In generative models, we make assumptions about the form of probability dis-
tributions and about the inter-variable dependencies within these distributions.
For instance we might assume that our data is Normally distributed, and we
might also assume a Näıve Bayes approach, by making any feature conditioned
on the class label statistically independent from any other, as depicted in Fig. 1.
A model mismatch indicates our model does not represent the problem correctly
because these independence assumption are violated in practice.

Similarly to generative models, discriminative classifiers are based on model
assumptions, and therefore they are not always able to model boundaries between
decision regions. A “model mismatch” in this case would correspond to selecting
a linear perceptron to solve an XOR problem, or not using enough hidden nodes
in our neural network.

The main difference between generative and discriminative approaches is that
a mismatch is explicit for generative models, whereas it is hidden and more subtle
for discriminative models: can the correspondence between the number of hidden
nodes and decision boundaries be quantified in terms of model mismatch?

At a more abstract level, any learning algorithm can be thought of as a search
in the space of representable models H. The model mismatch problem then
corresponds to asking the question: What happens when the true model f does
not belong to this search space H? This situation, which is depicted in Fig. 2, is
known as the “representational problem” [13] in the MCS community.

f

h1

h2

h3

H

Fig. 2. An ensemble approach can deal with a representational problem by approxi-
mating the true hypothesis with a combination of wrong ones [13]

Discriminative ensemble learning tries to overcome this model limitation by
replacing the single classifier approach with a combination of accurate and dif-
ferent models: if enough data are available, a combination of different models
h1, h2, . . . , hM in the search space can lead to a better approximation of the true
model f even if this does not belong to H [13].

In theory the same ensemble principle could be applied to generative models.
Moreover, we could exploit the property of generative models of explicitly select-
ing the model bias to define the boundaries of the hypothesis space. If the search
space is then large enough, it might possible to combine diverse generative base
models to achieve better performance than the single base classifier, and solve
not only the representational problem but also the semi-supervised problem. We
now illustrate some studies we have carried out on generative model ensembles.
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5 Empirical Analysis

Very few experiments have been carried out on semi-supervised ensembles of
generative models [7,8]. The aim of this study is to further investigate how
unlabelled data can affect ensemble learning when we combine generative base
classifiers.

The base model we chose for this analysis was a Gaussian Näıve Bayes net-
work, i.e. a Näıve Bayes with Normally distributed continuous features and iden-
tity covariance matrix N (x|μ, I). We adopted a MAP approach and we used a
scaled conjugate gradient descent algorithm to learn our model parameters. We
applied three different ensemble methods: RSM [14] and two different variants
of Bagging [14]: BaggingL– which samples with replacement from labelled data,
and BaggingLU– which samples with replacement from labelled and unlabelled
data. We used simple mean as a combination rule. Each technique has been
evaluated according to a 5 times 2 statistical test. We tested our model on three
different datasets, two of which were artificial datasets, the other was a real
dataset:

Ringnorm. Artificial dataset that implements Breiman’s ringnorm example. It
is a 2 class problem with 20 features and it has 7400 patterns. This dataset
is a model mismatch for our model, as one class has not been generated by
N (x|μ, I).

Uniringnorm. Artificial dataset that represents a 2 class problem with 20 fea-
tures and it has 1000 patterns. This dataset is a model match for our model,
being the data generated from N (0, I) or N (μ2, I), where μ2 = (a, a, ..., a),
with a = 2√

20
.

Feltwell. We also applied our model on a real dataset by selecting 5124 patterns
from Feltwell dataset. This is a 5 class problem with 15 features.

Following someexperiments in [15],we studiedhowsupervisedandsemi-supervised
ensembles of generative models perform in comparison with the respective single
classifier counterparts, as we increase the amount of labelled data. Our aim was
to identify any specific situation where semi-supervised ensemble learning is more
beneficial than the semi-supervised single approach and the supervised ensemble.
Our results can be summarised as follow:

– Data acts as a variance reducing factor. Both semi-supervised ensembles
and semi-supervised single classifiers show less variance than the supervised
counterparts. This is unsurprising, as Näıve Bayes are low variance classifiers.

– BaggingLU
• Model match: the semi-supervised ensemble performs exactly like the

semi-supervised single classifier, and it always outperforms the super-
vised counterpart for any amount of labelled data.

• Model mismatch: semi-supervised BaggingLU performs slightly worse
than the semi-supervised single classifier, and in general semi-supervised
learning outperforms the supervised one only when few labelled data are
available (i.e. less than 40 labelled patterns).
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– BaggingL
• There is no difference between the semi-supervised ensemble and the

semi-supervised single base classifier accuracy. This implies that bagging
the unlabelled data is effectively worsening the ensemble classification
performance.

– RSM
• Model match: semi-supervised learning usually outperforms supervised

learning for any amount of labelled data.
• Model mismatch: In general semi-supervised learning outperforms super-

vised learning only when few labelled data are available (i.e. less than
50 labelled patterns). However, the ensemble techniques perform slightly
and much (nearly 6%) worse, respectively, than the single counterparts
for both supervised and semi-supervised learning.

We found similar results for Feltwell, where the semi-supervised ensemble tech-
niques achieves almost the same accuracy as the semi-supervised respective single
classifiers.

We conclude that Bagging and RSM techniques do not work well with semi-
supervised low variance generative models, as data resampling or data ran-
dom projections do not seem to increase the ensemble accuracy over the single
classifier.

6 Discussion

Both semi-supervised Bagging and RSM ensemble techniques seem not to im-
prove classification accuracy over the single classifier approach – but why?

Let us focus on a typical semi-supervised scenario, where a large amount of
unlabelled data and only few labelled data are available. We fix the amount
of labelled data to be 30 patterns and we look at the ensemble behavior as we
increase the number of base classifiers from 1 to 10. Results are shown in Figures
3 and 4 for a match problem and a mismatch problem, respectively. If we look
at the leftmost part of both figures, we can observe the ensemble behavior of
BaggingL as we increase the number of components in the ensemble. In both a
model match and mismatch the semi-supervised ensemble error does not change
as we increase the number of base classifiers, but at the same time this ensemble
performs exactly like the semi-supervised single classifier. This is true for any
amount of labelled data, and not only for 30 labelled patterns. A similar behavior
has been observed for BaggingLU. It seems that when enough data are available,
data resampling does not infer any kind of diversity on low variance generative
base classifiers.

The rightmost part of both figures shows the ensembles created according to
RSM. Whereas semi-supervised RSM fails for a model mismatch, Fig. 3 shows an
unexpected behavior: the semi-supervised ensemble error has very low variance
and the error decreases as we increase the number of classifiers. In other words,
base classifiers are diverse. Increasing the amount of labelled data does not alter
this behavior. However this semi-supervised ensemble does not perform better
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Fig. 3. Classification error for a model match (Uniringnorm) with 30 labelled data.
semi-supervised BaggingL does not create different base classifiers, whereas semi-
supervised RSM does.
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Fig. 4. Classification error for a model mismatch (Ringnorm) with 30 labelled data.
semi-supervised BaggingL does not create different base classifiers, but the model mis-
match cannot be model by the semi-supervised RSM.

than the semi-supervised single classifier. A possible reason for this could be
that each base classifier is a projection of the feature space, and therefore it is
missing information about the full data distribution, whereas the single classifier
can model the data completely. From a representational problem perspective,
this corresponds to the space of hypotheses being so small that it is not possible
to find hypotheses that, if combined, can lead to a good approximation of the
true function that represents our problem.

To sum up, our analysis of Bagging and RSM techniques shows how generative
models cannot be learnt like their discriminative siblings:

– Resampling techniques like Bagging do not work well with low variance gen-
erative models, as the amount of training data acts like a variance reduction
factor.

– RSM techniques introduce some diversity between base classifier compo-
nents, but they do not outperform the single classifier. A reason for that
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might be that the search space of the base classifier is not powerful enough
to solve a representational problem.

Nevertheless this pattern of behavior looks promising and might indicate the
need for novel generative ensemble techniques.

7 Conclusion and Future Work

How to Combine Generative Models?
While discriminative ensembles have the benefit of generating diverse base classi-
fiers, base components require an external mechanism to make use of unlabelled
data. On the other hand, generative model ensembles naturally gain the ability of
learning from unlabelled data but at the same time they lose in terms of diversity
that can be generated by traditional ensemble techniques.

Nevertheless, our results point towards the design of semi-supervised genera-
tive ensemble techniques that seek diversity in other ways than the traditional
ones in MCS. It might be the case that generative model transparency can be
exploited to build base classifiers that are structurally diverse and therefore ex-
tend the hypothesis search space. For instance, we could combine generative
models that are characterised by different inter-model dependencies. An exam-
ple is given by Super Parent One Dependency Estimator (SPODE) ensembles
[16], where each base classifier feature depends not only on the class but also on
another feature called superparent, as depicted in Fig. 5.

Generative models are the only systematic way we can explore hybrid en-
sembles because we can actually choose the structural difference between mod-
els. This is not possible with discriminative models, where it is not clear which
boundaries might arise by combining different classifiers (for instance SVMs with
neural networks). Instead, with generative models not only can we systemati-
cally place models in the search space but we can also decide how big the search
space is.

A natural way to quantify diversity between generative models is given by
the KL divergence [14], a non-commutative measure of the difference between
probability distributions. Multivariate Mutual Information measures this KL
divergence for multidimensional probability distributions. In practical terms it

Y 1

X1 X2 X3

Y 2

X1 X2 X3

Y 3

X1 X2 X3

F

Ȳ

Fig. 5. An ensemble as a combination of all possible SPODEs
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gives us an indication of how correlated, i.e. how diverse, random variables are
[17]. The focus of our future work will be to use Multivariate Mutual Information
to rank and select diverse generative base classifiers from the hypothesis space.
This might allow us to solve both the representational and the semi-supervised
problems in an ensemble fashion.
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Abstract. In real applications, a large-scale data set is usually available
for a classifier design. The recently proposed Support Cluster Machine
(SCM) can deal with such a problem, where data representation is firstly
changed with a mixture model such that the classifier works on a com-
ponent level instead of individual data points. However, it is difficult
to decide the proper number of components for designing a successful
SCM classifier. In the paper, a hierarchical ensemble SCM (HESCM) is
proposed to address the problem. Initially, a hierarchical mixture mod-
eling strategy is used to obtain different levels of mixture models from
fine representation to coarse representation. Then, the mixture model
in each level is exploited for training SCM. Finally, the learnt models
from all the levels are integrated to obtain an ensemble result. Experi-
ments carried on two real large-scale data sets validate the effectiveness
of the proposed approach, increasing classification accuracy and stability
as well as significantly reducing computational and spatial complexities
of a supervised classifier compared to the state-of-the-art classifiers.

1 Introduction

Support Vector Machines (SVMs) have been successfully applied to many ap-
plications, such as text categorization [4], face detection [7], remote sensing [6].
However, it is difficult to handle large-scale data sets. Recently, a SVM-like ker-
nel based approach, the Support Cluster Machine (SCM) [5], was proposed to
address the problem in the machine learning community. The main idea in the
SCM is that the representation of data is changed with a mixture model. Then,
a similarity measure between generative models is defined by a kernel, i.e., prob-
ability product kernel (PPK) [3]. Unlike the SVM, the classifier is trained in a
probability space where the learnt models contain support clusters rather than
support vectors (the name SCM is based on this).

In the SCM, it is important to obtain a proper number of mixture models for
the best classification result. If the selected number of mixture models does not
fit the data well, the classification accuracy can decrease. In large-scale classi-
fication problems, it is time-consuming to select the proper number of mixture
components by model selection. To address this problem, the data are here rep-
resented in a hierarchical structure with mixture modeling such that different
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descriptions of data can be captured. Then, the SCM is trained by using the mix-
ture model from each level to avoid an improper statistical information. Finally,
the classification result is integrated by using the results provided by different
SCM classifiers that are designed using mixture models at different levels. Note
that the data are represented in a hierarchical structure with different granu-
larity by going from many (fine representation) to few (coarse representation)
numbers of models. Therefore, the diversity of data is obtained in the input
space to a base classifier. Experiments based on two real large-scale data sets
validate the effectiveness of the proposed approach, which improves the classifi-
cation accuracy and reliability as well as significantly reduces the computational
complexity (linear scalability) when compared to the-state-of-the-art classifiers.

The rest of the paper is organized as follows. The next section describes the
proposed hierarchical ensemble SCM. Section 3 discusses the data used in the
experiments, and reports and discusses the results provided by the different
algorithms. Finally, conclusions and discussion are given in Section 4.

2 Proposed Approach

Let the given training data set Xl = (xi, yi)n
i=1, Xl ∈ RD×n be made up of n

labeled samples in a D-dimensional input space. Without a loss of generality,
we work on a binary classification problem, i.e., yi = +1 if xi is labeled as the
positive class and −1 otherwise.

In the proposed algorithm, data are represented by a mixture model, e.g.,a
Mixture of Gaussians (MoG) (not limited to MoG) which contains a local infor-
mation. Therefore, the learning procedure is done in a probability space instead
of input feature space and only learnt components rather than data points are
used for training. That is the reason why the proposed approach is more scal-
able than the common SVM trained by data points. In our framework, a Support
Cluster Machine is used for training to satisfy the above condition. However, it is
difficult to evaluate the influence of the number of mixtures on the classification
results [5]. Therefore, different number of mixtures are modeled in a hierarchy
and used as inputs to base classifiers, i.e., SCMs. Finally, a classification result is
integrated in terms of those provided by base classifiers to improve classification
accuracy and stability.

2.1 Hierarchical Mixture Modeling

In real applications, it is difficult to identify a suitable number of components
for the design of a SCM classification task. In the paper, a hierarchical repre-
sentation of data is adopted such that different numbers of mixture models can
be obtained. For a large-scale data problem, we need a computationally efficient
mixture hierarchical clustering algorithm for the scalability. In [9], an Expecta-
tion Maximization (EM)-like [2] clustering algorithm was used to satisfy this
condition which was proposed to construct mixture hierarchies in terms of a
finite set of virtual samples in a bottom-up fashion. Here, all subsequent com-
putations are based on the representatives in the previous level and the original
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points no longer need to be considered. Namely, the learning of a given level
fully exploits the previous computation.

As in commonly known mixture modeling, the datum at a given level is ex-
pressed in the form:

P (X) =
Kl∑
i=1

πl
iP (X|zl

i = 1,Ml), (1)

where l is the level in the hierarchy, Ml the mixture model at this level, K l

the number of components for the model, πl
i the prior probability of the ith

component, and zl
i a binary variable that takes the value 1 if and only if the

sample X was drawn from the ith component.
The basic problem for the hierarchial mixture modeling is how to estimate the

parameters for the lth level given those in the (l + 1)th one. As in a flat mixture
model, let us assume that the virtual samples are independent such that the
likelihood of the virtual samples under the model Ml can be written as follows:

P (X|Ml) =
Kl+1∏
i=1

P (Xi|Ml).

and with the constraint that samples in the same block are assigned to the same
component of Ml, i.e.,

P (zl+1
i = 1) = P (zl

j = 1|zl+1
i = 1)P (zl

j = 1). (2)

This means that the node i of level l + 1 is a child of the node j of level l.
Therefore, the likelihood of the complete visual data in level l can be given

by

P (X, Z|Ml) =
Kl+1∏
i=1

Kl∏
j=1

[
πl

jP (Xi|zij = 1,Ml)
]zij

where zij = zl+1
i zl

j is a binary variable that takes 1 if and only if the block
(virtual sample) Xi is assigned to the jth component of Ml, and the real sample
xm

i is the mth data point in Xi. Using log-likelihood, we have the following
Expectation step:

hij = E[zij|Xi,Ml] = P (zij = 1|Xi,Ml) =
P (Xi|zij = 1,Ml)πl

j∑
k P (Xi|zik = 1,Ml)πl

k

.

For the Gaussian case, hij can be computed by

hij =

[
1

(2π)(
d
2 ) ∏d

k=1 σl
ij

exp
(
− 1

2 (
∑d

k=1[
(μl

ij−μl+1
ij )2

(σl
ij)2

+
(σl+1

ij )2

(σl
ij)2

])
)]Mi

πl
j

Σknumerator, with k in place of j
. (3)
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The Maximization-step consists of maximizing

Ql =
Kl+1∑
i=1

Kl∑
j=1

hij log
(
πl

jPr(Xi|zij ,Ml)
)

s.t.
∑

j

πl
j = 1. (4)

For the Gaussian case, we can easily obtain the model parameters (π, μ, Σ) as,

πk
j =

∑
i hij

Cl+1 (5)

μl
j =

∑
i hijMiμ

l+1
i∑

i hij Mi
(6)

Σl
j = 1∑

i hijMi
[∑ i hijMiΣ

l+1
i +

∑
i hijMi(μ

l+1
i −μl

j)(μ
l+1
i −μl

j)�]. (7)

2.2 Support Cluster Machine (SCM)

After obtaining the mixture of Gaussians, the similarity measure between Gaus-
sians is defined and a SVM-like learning framework is adopted for learning. After
training, the kernel between a Gaussian and a vector is also defined for prediction.

Learning phase. Unlike the SVM, the SCM maximizes the margin between
the positive and negative clusters, rather than data vectors, i.e.,

min
w,b,ξ

1
2
w�w + C

K∑
k=1

πkξk (8)

with the constraints

yk

(
w�φ(θk) + b

)
≥ 1 − ξk, k = 1, . . . , K (9)

where φ(·) is a mapping function and the slack ξk is multiplied by the weight πk

(the prior of the kth cluster in MoG) such that a misclassified cluster with more
samples can be given a heavier penalty [5].

Incorporating the constraints (9) and ξk ≥ 0, k = 1, . . . , K, to the cost func-
tion (8), and using Lagrangian theorem, the constrained optimization problem
can be transformed into a dual problem following the same step as that in
SVM [8]. Thus, the dual representation of SCM is given as

max
α

K∑
k=1

αk − 1
2

K∑
k=1

K∑
k′=1

ykyk′ αkαk′ κ(θk, θk′ ) (10)

s.t.
{

0 ≤ αk ≤ πkC, k = 1, . . . , K∑K
k=1 αkyk = 0.

The SCM has the same optimization formulation as the SVM except that in the
SCM the Lagrange multipliers αk are bounded by C multiplied by the weight πk.

Kernel Function by Generative Models. After preprocessing, the data are
represented by a mixture of Gaussians. The similarity between the components
can be calculated by the probability product kernel (PPK) [3]:
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κkk′ = κ(θk, θk′ ) (11)

= (πkπk′ )ρ

∫
RD

N ρ(x|μk, Σk)N ρ(x|μk′ , Σk′ )dx

= (πkπk′ )ρρ−D/2(2π)
(1−2ρ)D

2 |Σ̃|− 1
2 |Σk|−

ρ
2 |Σk′ |−

ρ
2

exp
(
− ρ

2
(μ�

p Σ−1
k μk + μ�

k′ Σ−1
k′ μk′ − μ̃�Σ̃

−1
μ̃)
)

where ρ is a constant, Σ̃ = Σ−1
k + Σ−1

k′ , μ̃ = Σ−1
k μk + Σ−1

k′ μk′ .
To reduce the computational cost, it is assumed that the features are sta-

tistically independent. Hence, a diagonal covariance matrix is used, i.e., Σk =
diag((σ(1)

k )2, · · · , (σ(d)
k )2). Therefore, we have the PPK as

κkk′ = (πkπk′ )ρρ−D/2(2π)
(1−2ρ)D

2

D∏
d=1

(
σ

(d)
k σ

(d)

k′ )(1−ρ)√
(σ(d)

i )2 + (σ(d)
j )2

exp

(
−ρ

2

D∑
d=1

(μ(d)
k − μ

(d)

k′ )2

(σ(d)
k )2 + (σ(d)

k′ )2

)
. (12)

Prediction (classification of unlabeled samples). A test sample x can be
treated as an extreme case of Gaussian θx when its covariance matrix vanishes,
i.e., θx = (πx = 1, μx = x, Σx = σ2

xI, σx ∝ 0), where I is an identity matrix.
The kernel value between θk and θx is computed using (12). When ρ = 1, we

get the kernel value for the SCM prediction:

κ(θk, θx) = πk
1

(2π)D/2 det |Σk|
exp

(
−

D∑
d=1

(μ(d)
k − x(d))2

2(σ(d)
k )2

)
= πkp(x|μk, Σk) (13)

which is the posterior probability of x given θk.
Then, the prediction function is the linear combination of the kernels com-

puted between trained mixture components and the test pattern θx = {1,x, σ2
xI}

as follows:

f(x) =
K∑

k=1

αkykκ(θk, θx) + b. (14)

Accordingly, a class label is assigned to a test pattern by

x ∈
{

+1, if f(x) ≥ 0
−1, otherwise = sgn(f(x)). (15)

2.3 Hierarchical Ensemble SCM (HESCM)

After the estimation of the model parameters in the hierarchy, a serial of sets
of model parameters Θl, l = 1, · · · , L for different levels are obtained. In terms of
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the mixture model for a given level, we can train a support cluster machine as
described in Section 2.2. Then, the classification result is integrated in terms of
those provided by the individual classifiers.

For a supervised classification task, a labeling information is known and conse-
quently a hierarchical mixture model is estimated within the class. Accordingly,
inputs to different SCMs are {Θl,yl}, l = 1, · · · , L, where yl is the correspond-
ing class vector for Θl in the lth level, and L is the number of levels and also the
number of base classifiers. The prediction function for each classifier f l is a lin-
ear combination of the kernels computed between the learnt mixture component
and a test pattern θx:

f l(x) =
Kl∑
k=1

αl
kyl

kκ(θl
k, θx) + bl. (16)

Then, for the lth base classifier, a class label is assigned to the test pattern in
the form

x ∈ sgn
(
f l(x)

)
. (17)

Finally, a winner-takes-all combination rule is used to make a final decision [1],

x ∈ ym if ym = argmaxc Nc,
∑

c

Nc = L (18)

where Nc is the accumulated number that the base classifiers assign the yc

labeling to the test pattern.

3 Experimental Results

In this section we present experimental results that demonstrate the effectiveness
of the proposed HESCM by comparison to the Hierarchical Ensemble Represen-
tative Approach (HERA), the Representative Approach (RA), the SCM and the
SVM. Regarding the RA, it simply keeps the mean vectors μk of mixture model
as representatives. Then, mean vectors instead of original data points are used to
train a standard SVM. Similar to the proposed HESCM, the HERA integrates
the results provided by the RAs from different hierarchical levels.

3.1 Experimental Setting

In the experiments, the SVM and the RA used a Gaussian kernel with the kernel
width parameter σ. For the model selection, there is an additional parameter,
i.e., the penalization parameter C. In the proposed HESCM, C is fixed to 100,
and the number of base classifiers L and the number of components KL in the
bottom level should be first decided. Regarding HERA, except for two param-
eters L and KL, the same setting as HESCM, there are two other parameters,
σ, and C which should be selected during model selection.
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We tested the algorithms with two real large-scale benchmark machine learn-
ing data sets:

Adult1: 1994 Census data base, where there are 30, 162 training samples and
15, 060 test samples with 14 features, and the percentage of positive samples is
24.78%. Prediction task is to determine whether a person makes over $ 50K a
year.

IJCNN12: Contains 49,990 (4,853 positive and 45,137 negative) training samples
and 91,701 (8,712 positive and 82,989 negative) test examples with 22 attributes.

3.2 Experimental Results

Adult Data. For this data set, L = 15 hierarchical mixture models were ob-
tained in a hierarchical mode. Therefore, there are 15 base classifiers in total.
From the bottom up, 90% components of the (l +1)th level were kept for the lth

level. For instance, at the last level (i.e., 15th) level, there are K15 = 1000 com-
ponents, and, therefore, K14 = 900 components. The accuracies of individual
classifiers are shown in Table 1 using the RA and the SCM. From the analysis of
Table 1, one can see that in most of cases, classification accuracies provided by
the SCMs trained by all the model information are better than those provided
by the RAs trained by the mean vectors. This is possibly caused by the fact that
the SCM takes advantage of more information including the mean vectors μk as

Table 1. Classification accuracies at individual levels using the RA and the SCM
and the number of mixture components (or vectors), Kl, l = 1, · · · , 15 for the Adult
data set

Level Kl RA (%) SCM (%)

1 228 75.43 74.13
2 253 75.43 74.07
3 281 75.43 74.54
4 313 75.57 74.95
5 348 75.84 75.14
6 387 75.91 74.96
7 430 76.00 75.73
8 478 76.43 77.35
9 531 76.85 77.37
10 590 76.67 78.42
11 656 77.17 78.49
12 729 77.66 77.90
13 810 77.90 78.42
14 900 78.15 79.66
15 1000 78.51 80.06

1 Available at: http://archive.ics.uci.edu/ml/datasets/Adult
2 Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
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Fig. 1. The ensemble classification accuracies and the corresponding training time with
respect to the number of base classifiers for the Adult data set

well as component proportion πk and covariance matrices Σk to compute the
similarity of the generative models when compared to the RA which uses only
mean vectors.

Although the accuracies of the individual classifiers decreased from the bottom
level to the higher levels, all the ensemble accuracies using different number of
base classifiers were higher than the one provided by the single SCM shown in
Fig. 1(a) and also higher than those provided by individual SCMs. Moreover,
the classification accuracies increase smoothly with the increase in the number of
base classifiers. This is mainly due to the diversity of the results provided by the
mixture models in hierarchy. However, the training time only increase slightly
as shown in Fig. 1(b). Furthermore, it is important to note that the HESCM
is computationally much less demanding than the standard SVM, e.g., 172.23s3

for Adult data set using libsvm4, while the accuracy (83.73%) is only slightly
better than the proposed HESCM. By the analysis of Fig. 1(a), one can see that
the accuracies by HESCMs are also much better than those by HERAs.

IJCNN1Data. Similar to the experiments on Adult data, we obtained the classi-
fication accuracies at individual levels using the RA and the SCM on the IJCNN1
data set shown in Table 2. For this data set, we utilized a six-level hierarchical
structure and used the coarser granulity to decrease the number of kernels at each
level. Accordingly, the training times decreases significantly (cf. Fig. 2(b)). How-
ever, the ensemble accuracies are improved steadily with the increase of base clas-
sifiers shown in Fig. 2(a). Again, one can see from that all the ensemble accuracies
are better than the initial one, 94.30% by the SCM, and the others provided by
a single classifier. Note that, the SCM obtains much better classification accura-
cies than the SVM in terms of representative vectors. This further confirms the
effectiveness of the model-based kernels for the classification tasks.
3 If the time for model selection is also considered, the computational complexities are

much demanding.
4 Available at: http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Table 2. Classification accuracies at individual levels using the RA and the SCM and
the number of mixture components (or vectors), Kl, l = 1, · · · , 6 for IJCNN1 data set

Level Kl RA (%) SCM (%)

1 18 76.79 88.88
2 37 78.18 83.05
3 75 82.68 88.39
4 150 84.83 89.51
5 300 84.55 92.76
6 600 90.49 94.30
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Fig. 2. The ensemble classification accuracies and the corresponding training time with
respect to the number of base classifiers on IJCNN1 data set

4 Discussion and Conclusion

In the paper, we propose a hierarchical ensemble classification algorithm to in-
tegrate results provided by support cluster machines. In particular, a series of
mixture models in a hierarchical manner were generated to define SCM base clas-
sifiers. In each level, it is not necessary to scan the original data base to estimate
mixture models, while visual samples in the current generated in terms of those
in the previous bottom level are generated for the estimation of mixture mod-
els. Therefore, the computational complexity decreases from the bottom level
to higher levels. Although the statistical modeling of mixture models loses some
information from the bottom to higher levels, the diversity of mixture models
for defining base classifiers still increases the ensemble accuracy as a whole. This
can be validated by the experiments shown in Section 3 on two large real data
sets, which results in better classification accuracies compared to the SCM, the
RA, and the HERA and also needs a much less computation time than the SVM.

In the proposed HESCM algorithm, data are represented by mixture mod-
els using a clustering technique. The approach can suffer from the curse of di-
mensionality problem. A dimensionality reduction technique, such as random
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projection, together with a hierarchical mixture modeling approach will be de-
veloped for addressing that problem in our future research.
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Abstract. One of the most widely used assumptions in supervised learn-
ing is that data is independent and identically distributed. This assump-
tion does not hold true in many real cases. Sequential learning is the
discipline of machine learning that deals with dependent data such that
neighboring examples exhibit some kind of relationship. In the literature,
there are different approaches that try to capture and exploit this cor-
relation, by means of different methodologies. In this paper we focus on
meta-learning strategies and, in particular, the stacked sequential learn-
ing approach. The main contribution of this work is two-fold: first, we
generalize the stacked sequential learning. This generalization reflects
the key role of neighboring interactions modeling. Second, we propose
an effective and efficient way of capturing and exploiting sequential cor-
relations that takes into account long-range interactions by means of a
multi-scale pyramidal decomposition of the predicted labels. Addition-
ally, this new method subsumes the standard stacked sequential learning
approach. We tested the proposed method on two different classification
tasks: text lines classification in a FAQ data set and image classification.
Results on these tasks clearly show that our approach outperforms the
standard stacked sequential learning. Moreover, we show that the pro-
posed method allows to control the trade-off between the detail and the
desired range of the interactions.

1 Introduction

As the machine learning community matures, problems it addresses become more
challenging. One of the most widely used assumptions in supervised learning is
that data is independent and identically distributed (iid). However, there are
many real world applications in which that assumption does not necessarily hold.
Consider the case of a laughter detection application from voice records. Laugh
has a clear pattern alternating voice and non-voice segments. Thus, discriminant
information comes from the alternating pattern, and not just by the samples
on their own. Another case is part-of-speech tagging in which each example
describes a word that is categorized as noun, verb, adjective, etc. In this case
it is very unlikely that patterns such as [verb, verb, adjective, verb] occur. All
these applications present a common feature: the sequence/context of the labels
matters.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 262–271, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Sequential learning [1] breaks the iid assumption and assumes that samples
are not independently drawn from a joint distribution of the data samples X
and their labels Y . In sequential learning the training data actually consists
of sequences of pairs (x, y), so that neighboring examples exhibit some kind of
correlation. Usually sequential learning applications consider one-dimensional
relationship support, but this kind of relationships appear very frequently in
other domains, such as images, or video. Consider the case of object recognition
in image understanding. It is clear that if one pixel belongs to a certain object
category, it is very likely that neighboring pixels also belong to the same object
(with the exception of its borders).

Sequential learning is often confused with a very related application, time
series prediction. The main difference between both problems lays in the fact
that sequential learning has access to the whole data set before any prediction is
made and the full set of labels is to be provided at the same time. On the other
hand, time series prediction has access to real labels up to the current time t
and the goal is to predict the label at t + 1.

In literature, sequential learning has been addressed from different perspec-
tives: from the point of view of meta-learning by means of sliding window tech-
niques, recurrent sliding windows [1] or stacked sequential learning [5] [2], the
method is formulated as combination of classifiers. From the point of view of
graphical models, using Hidden Markov Models, Conditional Random Fields [6]
to infer the joint or conditional probability of the sequence. And Graph Trans-
former Networks [9], that considers the input and output as a graph and looks
for the transformation than minimizes a loss function of the training data using
a Neural Network.

Independently of the specific method, there are still fundamental issues in
sequential supervised learning that requires the attention of the community. In
[1] the author acknowledge the following ones: a) How to capture and exploit
sequential correlations; b) how to represent and incorporate complex loss func-
tions; c) how to identify long-distance interactions; d) how to make sequential
learning computationally efficient.

In this work, we are concerned with meta-learning strategies. Recently, Cohen
et al. [2] showed that stacked sequential learning (SSL from now on) performed
better than CRF and HMM on a subset of problems called “sequential partition-
ing problems”. These problems are characterized by long runs of identical labels.
Moreover, SSL is computationally very efficient since it only needs to train two
classifiers a constant number of times. Considering these benefits, we decide to
explore in depth sequential learning using SSL and generalize the Cohen archi-
tecture to deal with a wider variety of problems as well as giving answers to
most of the open problems described by Dietterich in [1].

In this paper, we argue that a fundamental and overlooked step in SSL is the
way the extended set is created. We first provide a general framework in which
this extension step is clearly identified and then propose a new aggregation
method capable of capturing long-distance interactions efficiently. The proposed
step is based on a multi-scale decomposition [7] of the predicted data labels.
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As a result, we provide answers to the different open issues obtaining a method
that a) captures and exploit sequential correlations b) since the method is a
meta-learning strategy the loss function dependency is delegated to the second
step classifier; c) it efficiently captures long-distance interactions; and d) it is
fast, because it relies on training a few general learners. The benefits of the new
method are shown in a one-dimensional support problem in a FAQ structure
detection dataset. Moreover, along with one-dimensional sequence examples, we
provide results and discussion in the image domain using 2-D support – note that
image processing and understanding is a good example of sequential partitioning
problems. For the 2D domain, we use the Weizmann horse database [4].

2 Multiscale Stacked Sequential Learning

The basic idea of stacked sequential learning is to create an extended data set
that joins the original training data features with the predicted labels considering
a neighborhood around the example. The basic SSL method uses a five-fold
cross-validation on the training set to obtain the predicted set Y ′ and considers
a sliding window of length w with origin in the prediction of the current example
to extend its features. That is for each example in the training set xi ∈ X, the
predicted values y′

i ∈ Y ′ are obtained and joined creating an extended example
xext

i = (xi, y
′
i−wa

, . . . , y′
i+wb

) ∈ Xext, where the number of added features is
w = wa + wb + 1.

In our opinion, the core step in this process is the creation of the extended
data set. That is, how the neighboring interactions are captured. In the original
SSL article [2] they propose to use a sliding window. However, this is a very poor
choice when one want to consider far interaction patterns or when one needs to
deal with noisy environments, since the training becomes very sensitive to errors
in the neighborhood. For this reason, in the next subsection, we extend the basic
model to cope with a general neighboring definition and then propose the use of
a multi-scale approach that includes the basic windowing strategy as a particular
case. Additionally, it allows to deal with long distance interactions as well as to
use a priori knowledge for modeling the neighboring interactions.

2.1 Generalized Stacked Sequential Learning

The framework for generalizing the stacked sequential learning includes a new
block in the pipeline of the basic SSL. Figure 1 shows the Generalized Stacked
Sequential Learning process. A classifier h1(x) is trained with the input data
set (x, y) by means of cross-validation and the predicted labels y′ are obtained.
The next block defines the policy for creating the neighborhood model of the
predicted labels. z = J(y′, ρ, θ) : R → Rw is a function that captures the data
interaction with a model parameterized by θ in a neighborhood ρ. The result of
this function is a w-dimensional value, where w is the number of elements in the
support lattice of the neighborhood ρ. In the case of defining the neighborhood
by means of a window, w is the number of elements in the window. Then, the



Multi-scale Stacked Sequential Learning 265

Fig. 1. Block diagram for the generalized stacked sequential learning

output of J(y′, ρ, θ) is joined with the original training data creating the extended
training set (xext, y) = ((x, z), y). This new set is used to train a second classifier
h2(xext) with the goal of producing the final prediction y′′. Observe, that the
system will be able to deal with neighboring relations depending on how well
one is able to characterize them in J(y′, ρ, θ).

2.2 Multiscale Stacked Sequential Learning (MSSL)

The generalized stacked sequential learning emphasizes the key role of the in-
teraction modeling by means of J(y′, ρ, θ). The proposed definition of J(y′, ρ, θ)
consists of two steps that answers two fundamental questions: first, how to model
the relationship between neighboring locations and second, how to define the sup-
port lattice to produce the final set z. To answer the first question, we propose
the use of a multi-scale approach by means of a pyramidal decomposition [7].
The scale space and pyramidal decomposition in particular are very well-known
tools for image analysis and processing. Their focus is to exploit the high corre-
lation existing in the neighboring pixels of an image and represent them in an
efficient way. Observe, that this goal is very similar to the objective of sequential
learning in which we want to characterize and learn the relationship between
examples according to their labels. For the sake of clarity, we show the formula-
tion in one dimension. However, it is a trivial task to extend it to an arbitrary
dimensionality. Given the initial label sequence y′(0) of length L, and the concept
of the floor integer rounding function defined as �x� = max {n ∈ Z | n ≤ x},
each level of the decomposition is computed as follows,

y
′(s+1)
�i/r� =

r2∑
m=−r1

g(s)(m)y′(s)
i+m, i ∈ [0, r, 2r, . . . , �L/rs�], r = r1+r2+1, r1, r2 ≥ 0

(1)
where s defines the scale and g(s)(m) is a weighting function of length r defined
around the origin of the window. Observe that with this definition the resulting
label sequence is a reduced version of the label sequence at the previous scale
where each new label is a weighted average of the former ones. From the point
of view of machine learning, the weighing function g(s)(·) can be interpreted as a
prior model of the relationship between neighboring examples at one scale. This
step is parameterized as θ = {S, r1, r2, g

(s)(·)} in J(y′, ρ, θ). Figure 2(a) shows
the pyramidal decomposition with the following parameterization: the number
of scales is S = 3, the relationship model used gs(·) is a uniform distribution –
no direction is preferred – with total length r = 2. The bottom sequence shows
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(a) (b)

Fig. 2. Example of the process for obtaining z, (a) Multi-scale pyramid decomposition,
(b) Feature creation by means of a scale-space window

the predicted labels y′(0) = y′ for a binary classification problem (black/white).
The middle step takes r predicted labels from y′(0) and applies the weighing
function to obtain the values in y′(1). The same process is applied at each scale
according to Eq. 1.

On the other hand, to define the support lattice, we use a scale-space sliding
window. This is a window defined by w1 and w2 as left and right lengths, with a
total size w = w1 +w2 +1, defined with origin in the current example prediction
in all the scales considered in the pyramidal decomposition – ρ = {w1, w2}.
Thus, the output of J(y′, ρ, θ) for S scales and a prior model window of length
r and the support lattice parameterized by {w1, w2} is given by,

zi = J(y′, ρ, θ) =(
y
′(0)
i−w1

, ., y
′(0)
i+w2

, y
′(1)
�i/r�−w1

, ., y
′(1)
�i/r�+w2

, . . . , y
′(S)

�i/rS−1�−w1
, ., y

′(S)

�i/2S−1�+w2

)
Figure 2(b) shows the second half of the process for a window of length w = 3
centered at the predicted label. At the bottom scale, we take the current pre-
dicted label with their neighboring ones (y′(0)

i−1, y
′(0)
i , y

′(0)
i+1). Since higher scales are

reduced versions of the original sequence, we have to find the correct indexing at
each scale for obtaining its neighbors. This is done by casting the current index
value using the following relationship: at scale s the index corresponding to i in
the original sequence is given by �i/rs�. Thus, for the sequence in the middle of
Figure 2(b), we retrieve

(
y
′(1)
�i/2�−1, y

′(1)
�i/2�, y

′(1)
�i/2�+1

)
. As a result, the final value

of J(y′
i, ρ, θ) is

zi =
(
y
′(0)
i−1, y

′(0)
i , y

′(0)
i+1, y

′(1)
�i/2�−1, y

′(1)
�i/2�, y

′(1)
�i/2�+1, y

′(2)
�i/22�−1, y

′(2)
�i/22�, y

′(2)
�i/22�+1

)
Observe that the higher the number of scales is, the more predicted examples are
considered. This feature allows to consider long distance interaction with a very
small set of features while keeping a good short distance resolution. Figure 3
plots the number of features needed for observing a certain number of predicted
labels (coverage). Different curves show the effect of altering the size of the
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Fig. 3. Number of features needed for covering a certain number of predicted values
for different window sizes of the support lattice

support window w. This parameter governs the trade-off between resolution and
coverage. Thus, if the support window has a size of w = 3, we need 9 scales
and a total of 27 features to capture information from 600 labels. However,
details in long distance label interactions are lost. As w increases, the number
of features increase also, but more complex and detailed label patterns can be
captured. On the contrary, maximum interaction details are observed at the
cost of using the same number of features as the coverage value. This trade-off
allows the practitioner to consider different strategies according to the degree of
correlation expected in the sequence. Moreover, if the neighboring interactions
can be modeled, they can be used in this strategy by means of the prior g(s)(·).

3 Experiments and Results

We test the proposed multi-scale sequential learning algorithm on two different
problems according to the dimensionality of the relationship support lattice. The
first is a FAQ categorization task, where each line from a FAQ text document
has to be classified with labels like “header”, “question”,“answer” and “trailer”.
The second experiment is a horse image classification task, i.e. the goal is to
identify which of the image pixels belong to a horse taking into account their
neighboring predictions.

3.1 Categorization of FAQ Documents

The FAQ categorization task has been frequently used in literature for bench-
marking sequential learners [2] [8]. In this data set, three different computer sci-
ence FAQ groups pages are used (ai-neural-nets, ai-general, aix). Each FAQ group
consists of 5 to 7 long sequences of lines; each sequence corresponding to a single
FAQ document. Each line is characterized using McCallun et al features [3], with
24 attributes that describe line characteristics with the respective class label. In
total, each FAQ group contains between 8965 and 12757 labelled lines. This data
set is multi-class, with 4 possible classes; in our experiments, for each of the three
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Table 1. Error results, number of features and coverage values for different configura-
tions of MSSL in the FAQ data sets

(r, S, w) BASE (−, 1, 3) (−, 1, 6) (2, 2, 1) (2, 3, 1) (2, 4, 1) (4, 4, 1)

Features - 7 13 6 9 12 12
Coverage - 7 13 12 24 48 192

neural-netsA 7.0675 5.9855 5.8103 6.1495 5.624 4.9195 4.5257
neural-netsT 1.8067 1.4826 0.7825 1.3146 0.7159 0.5257 0.5199
Ai-GeneralA 8.2764 9.2944 10.3183 9.2636 9.1998 9.0374 10.3834
Ai-GeneralT 1.8916 1.6275 0.9392 1.7031 1.2716 0.6582 1.1964

Ai-AixA 9.7971 9.3519 9.9028 9.3307 9.3412 9.1311 9.5689
Ai-AixT 1.2553 0.8966 0.7493 0.9233 0.4754 0.2888 0.2662

groups we split the multi-class problem into two binary problems considering the
following labels “answer” vs “not answer”, and “tail” vs “not tail”. The base clas-
sifier used in all the experiments is an AdaBoost with decision stumps reaching
a maximum of 100 iterations. We performed a leave-one-out cross-validation for
each sequence in each FAQ group – one sequence is used as testing and the rest
of sequences are joined into one training sequence. In the first step of the se-
quential learning schema, a 5-fold crossvalidation using only the training data is
performed to obtain the extended data set. Then, the first and second classifiers
are trained with the whole training set and the extended training set respec-
tively. Different configurations according to the (r, S, w) parameterization are
compared.

Table 1 shows the results obtained for the FAQ experiments. Observe that
the sequential learning approaches generally improve the accuracy performance
except for the AI-GeneralA data set. Moreover, as the number of features in-
crease the accuracy improves. Comparing SSL with the MSSL approach, it is
worth noting that using a similar number of features, the multiscale counter-
parts achieve better accuracies. This seems to suggest that the data sets include
some structure information that can only be captured at the largest scales. This
idea is reinforced by the fact that for some of the test sets, the larger the cover-
age, the lower the error. With respect to the MSSL approaches, the more scales
are used, the better the accuracy performance is. Finally, when the prior lattice
size r is doubled – thus quadrupling the coverage by sacrificing details in the
data sequence – we can see that on half of the data sets the accuracy improves.

3.2 Horse Image Classification

For the horse classification task, we used the Weizmann horse database [4], which
consist of 328 images in gray scale. Each image is labelled according to the horse
silhouette. In order to show the behavior of the different configurations indepen-
dently of the feature set selected, we designed the experiment of classifying dark
horses. To that end, we selected 8 images of clearly distinguishable dark horses
and a test set of 29 images. As a pre-processing step, we rescale all the gray
images to the same resolution 150× 100. The feature vector is composed of just
one value per pixel corresponding to the gray level intensity. All configurations
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use AdaBoost using decision stumps as base classifier with a maximum of 50
iterations.

For each image in the training set we perform a stratified sampling of 600
pixels per image. This data is used for training the first classifier using leave-one-
image-out to produce the extended data set. Observe that in order to compute
the neighbors of each pixel the whole left-out image is classified. Finally, both
classifiers are trained using the same feature samples without and with the ex-
tended set respectively. This process is performed with different configurations
using exactly the cross-validation samples. In order to avoid a biased result due
to the random sampling, the whole experiment is repeated 10 times with differ-
ent samplings. All experiments use a prior lattice of size r = 2× 2 with uniform
distribution. Figure 4 illustrates the effect of different (S, w) configurations. The
first column shows the input images, the second column displays the results of
applying Adaboost, the third column shows the effect using the standard SSL
which corresponds to a parameterization (1, 5) of the generalized SSL and, finally,
the last column shows the results using a (6, 2) multi-scale parameterization. Ob-
serve that both configurations are comparable in terms of the number of features

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4. Examples of the classification of dark horses using different strategies. First
column: original gray level image; second column: results of Adaboost; third column:
SSL with w = 11 × 11 and; last column: MSSL using a (6, 2) configuration.
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Table 2. Improvement values, number of features and coverage value for different
configurations of MSSL (including SSL) on the Weizmann data sets

(S, w) (1, 3) (1, 5) (1, 7) (3, 1) (6, 1) (6, 2)

Features 49 121 225 27 84 150

Coverage 49 121 225 36 288 800

Improv. 1.0789% 1.3091% 1.4765% 1.0975% 2.2499% 2.6538%

used. Figures 4(a)(b)(c)(d) show an example where the grass of the background
creates some false positive spurious responses. As expected, both SSL and MSSL
are capable of removing these artifacts. Figures 4(e)(f)(g)(h) show an example
of label completion. The original classifier ”beheads” the horse. If we observe
the results in Figures 4(g)(h), standard SSL focuses on the details and barely
fails to join head and body, and misses practically the whole back. However, the
MSSL clearly completes the basic shape of the horse at the cost of losing some
details. Figures 4(i)(j)(k)(l) show an example in which both former effects are
present. Again observe that MSSL is able to reconstruct the back and tail of the
horse and remove its shadow and the spurious responses more effectively. The
last Figures 4(m)(n)(o)(p) are a clear example of context learning. The base clas-
sifier produces misleading responses associated to the background fence. With
the MSSL we expect to learn the pixel relationships intrinsic to the true shape of
the object. Observe in Figure 4(p) that most of the fence is removed successfully
while preserving the basic shape of the horse and completing the missing labels
in its neck and back.

Table 2 shows the figures result of the horse dyadic task. The last row of
the table displays the average improvement of each algorithm with respect to
the AdaBoost classifier. It is worth noting that the multiscale approach, using the
parameters (3, 1) performs similarly to the windowing approach with parameters
(1, 3) but using just 27 new features instead of 49. Moreover, the multiscale
approach, using parameters (6, 2), is almost two times better than the best of
the standard SSL configurations using much less features. Finally, though the
improvement slowly increases with the size of the window in the SSL approach,
in the case of the MSSL approach, going from scale S = 3 to scale S = 6 with
the same value r = 1 almost doubles the performance. This means that the
increase in coverage helps the second classifier in capturing and exploiting long
range interactions.

4 Conclusions

In this paper we generalize the stacked sequential learning process and stress the
key role of the neighboring modeling. Additionally, we propose the use of a multi-
scale approach, namely MSSL, that includes the classical SSL as a particular case
and allows to capture long distance label interactions very efficiently. The method
allows to have an explicit trade-off between the resolution of the interactions we
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desire to model and the number of features; very detailed interactions can be
modeled in short distance or long distance patterns can be captured with a
coarser resolution using the same number of features in the extended training
set. We show that strategies mixing detailed interactions and long ranges can be
defined at the cost of adding more features.

We show the behavior of the MSSL on two tasks. Results show that the MSSL
approach qualitatively and quantitatively improves the SSL method consider-
ably. Moreover, MSSL is extremely efficient in terms of the number of features
used in the extended training set. In the authors’ opinion MSSL is new technique
that opens new lines of research in sequential learning allowing for the analysis
of long distance interactions in a very efficient way.
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Abstract. An unsupervised multi-spectral, multi-resolution, multiple-
segmenter for textured images with unknown number of classes is
presented. The segmenter is based on a weighted combination of sev-
eral unsupervised segmentation results, each in different resolution, using
the modified sum rule. Multi-spectral textured image mosaics are locally
represented by four causal directional multi-spectral random field models
recursively evaluated for each pixel. The single-resolution segmentation
part of the algorithm is based on the underlying Gaussian mixture model
and starts with an over segmented initial estimation which is adaptively
modified until the optimal number of homogeneous texture segments is
reached. The performance of the presented method is extensively tested
on the Prague segmentation benchmark using the commonest segmen-
tation criteria and compares favourably with several leading alternative
image segmentation methods.

1 Introduction

Segmentation is the fundamental process which partitions a data space into
meaningful salient regions. Image segmentation essentially affects the overall
performance of any automated image analysis system thus its quality is of the
utmost importance. Image regions, homogeneous with respect to some usually
textural or colour measure, which result from a segmentation algorithm are anal-
ysed in subsequent interpretation steps. Texture-based image segmentation is
area of intense research activity in recent years and many algorithms were pub-
lished in consequence of all this effort. These methods are usually categorised [1]
as region-based, boundary-based, or as a hybrid of the two. Different published
methods are difficult to compare because of lack of a comprehensive analysis to-
gether with accessible experimental data, however available results indicate that
the ill-defined texture segmentation problem is still far from being satisfactorily
solved. Spatial interaction models and especially Markov random fields-based
models are increasingly popular for texture representation [1,2], etc. Several re-
searchers dealt with the difficult problem of unsupervised segmentation using
these models see for example [3,4,5] or [6,7,8].

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 272–282, 2009.
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image GT MW3AR SWA

Fig. 1. Selected Berkeley benchmark image, ground truth from the benchmark and the
segmentation results from the presented method (MW3AR) and SWA [9]

The concept of decision fusion [10] for high-performance pattern recognition
is well known and widely accepted in the area of supervised classification where
(often very diverse) classification technologies, each providing complementary
sources of information about class membership, can be integrated to provide
more accurate, robust and reliable classification decisions than the single classi-
fier applications.

Similar advantages can be expected and achieved [8] also for the unsuper-
vised segmentation applications. However, a direct unsupervised application of
the supervised classifiers fusion idea is complicated with unknown number of
data hidden classes and consequently a different number of segmented regions
in segmentation results to be fused. This paper exploits above advantages by
combining several unsupervised segmenters of the same type but with different
feature sets.

2 Combination of Multiple Segmenters

The proposed method (MW3AR) combines segmentation results from different
resolution. We assume to down-sample input image Y into M different resolu-
tions Y (m) =↓ιm Y with sampling factors ιm m = 1, . . . , M identical in both
horizontal and vertical directions and Y (1) = Y . Local texture for each pixel
Y

(m)
r is represented the 3D simultaneous causal autoregressive random field

model (CAR) parameter space Θr (4) and modelled by the Gaussian mixture
model (5),(6).

2.1 Single-Resolution Texture Model

Static smooth multi-spectral textures require three dimensional models for ad-
equate representation. We assume that single multi-spectral textures can be
locally modelled using a 3D simultaneous causal autoregressive random field
model (CAR). This model can be expressed as a stationary causal uncorrelated
noise driven 3D autoregressive process [11]:

Yr = γXr + er , (1)

where γ = [A1, . . . , Aη] is the d × dη parameter matrix, d is the number of
spectral bands, Ic

r is a causal neighborhood index set with η = card(Ic
r ) and
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er is a white Gaussian noise vector with zero mean and a constant but unknown
covariance, Xr is a corresponding vector of the contextual neighbours Yr−s

and r, r − 1, . . . is a chosen direction of movement on the image index lattice I.
The selection of an appropriate CAR model support (Ic

r ) is important to obtain
good texture representation but less important for segmentation. The optimal
neighbourhood as well as the Bayesian parameters estimation of a CAR model
can be found analytically under few additional and acceptable assumptions using
the Bayesian approach (see details in [11]). The recursive Bayesian parameter
estimation of the CAR model is [11]:

γ̂T
r−1 = γ̂T

r−2 +
V −1

x(r−2)Xr−1(Yr−1 − γ̂r−2Xr−1)T

(1 + XT
r−1V

−1
x(r−2)Xr−1)

, (2)

where Vx(r−1) =
∑r−1

k=1 XkXT
k +Vx(0). Local texture for each pixel is represented

by four parametric vectors. Each vector contains local estimations of the CAR
model parameters. These models have identical contextual neighbourhood Ic

r but
they differ in their major movement direction (top-down, bottom-up, rightward,
leftward), i.e.,

γ̃T
r = {γ̂t

r, γ̂
b
r , γ̂

r
r , γ̂l

r}T . (3)

The parametric space γ̃ is subsequently smooth out, rearranged into a vector
and its dimensionality is reduced using the Karhunen-Loeve feature extraction
(γ̄). Finally we add the average local spectral values ζr to the resulting feature
vector (Θr).

2.2 Mixture Based Segmentation

Multi-spectral texture segmentation is done by clustering in the CAR parameter
space Θ defined on the lattice I where

Θr = [γ̄r, ζr]T (4)

is the modified local parameter vector (3) computed for the lattice location r.
We assume that this parametric space can be represented using the Gaussian
mixture model (GM) with diagonal covariance matrices due to the previous
CAR parametric space decorrelation. The Gaussian mixture model for CAR
parametric representation at the m-th resolution (m = 1, . . . , M) is as follows:

p(Θ(m)
r ) =

K(m)∑
i=1

p
(m)
i p(Θ(m)

r | ν(m)
i , Σ

(m)
i ) , (5)

p(Θ(m)
r | ν(m)

i , Σ
(m)
i ) =

|Σ(m)
i |− 1

2

(2π)
d
2

e − (Θ(m)
r −ν

(m)
i

)T (Σ(m)
i

)−1(Θ(m)
r −ν

(m)
i

)
2 . (6)

The mixture model equations (5),(6) are solved using a modified EM algorithm.
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Initialization. The algorithm is initialised using ν
(m)
i , Σ

(m)
i statistics for

each resolution m estimated from the corresponding thematic maps in two
subsequent steps:

1. refining direction
ν

(m−1)
i

(
∀Θ

(m−1)
r : r ∈↑ Ξ

(m)
i

)
, Σ

(m−1)
i

(
∀Θ

(m−1)
r : r ∈↑ Ξ

(m)
i

)
m = M + 1, M, . . . , 2 i = 1, . . . , K(m) ,

2. coarsening direction
ν

(m)
i

(
∀Θ

(m)
r : r ∈↓ Ξ

(m−1)
i

)
, Σ

(m)
i

(
∀Θ

(m)
r : r ∈↓ Ξ

(m−1)
i

)
m = 2, 3, . . . , M i = 1, . . . , K(m) ,

where Ξ
(m)
i ⊂ I ∀m, i, and the first initialisation thematic map Ξ

(M+1)
i is ap-

proximated by the rectangular subimages obtained by regular division of the
input texture mosaic. All the subsequent refining step are initialised from the
preceding coarser resolution upsampled thematic maps. The final initialisation
results from the second coarsening direction where the gradually coarsening seg-
mentations are initialised using the preceding downsampled thematic maps. For
each possible couple of components the Kullback Leibler divergence

D (p(Θr | νi, Σi) || p(Θr | νj , Σj)) =
∫

Ω

p(Θr | νi, Σi) log
(

p(Θr | νi, Σi)
p(Θr | νj , Σj)

)
dΘr

is evaluated and the most similar components, i.e.,

{i, j} = argmin
k,l

D (p(Θr | νl, Σl) || p(Θr | νk, Σk))

are merged together in each initialisation step. This initialisation results in Kini

subimages and recomputed statistics νi, Σi . Kini > K where K is the optimal
number of textured segments to be found by the algorithm.

Two steps of the EM algorithm are repeating after initialisation. The compo-
nents with smaller weights than a fixed threshold (pj < 0.1

Kini
) are eliminated.

For every pair of components we estimate their Kullback Leibler divergence.
From the most similar couple, the component with the weight smaller than the
threshold is merged to its stronger partner and all statistics are actualised us-
ing the EM algorithm. The algorithm stops when either the likelihood function
has negligible increase (Lt − Lt−1 < 0.05) or the maximum iteration number
threshold is reached.

2.3 Resulting Mixture Probabilities

Resulting mixture model probabilities are mapped to the original fine resolu-
tion image space for all m = 1, . . . , M mixture submodels ((5)(6)). The M
cooperating segmenters deliver their class response in the form of conditional
probabilities. Each segmenter produces a preference list based on the mixture
component probabilities of a particular pixel belonging a particular class, to-
gether with a set of confidence measurement values generated in the original
decision-making process.
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Single-segmenters Correspondence. Single-resolution segmentation results
cannot be combined without knowledge of the mutual correspondence between
regions in all different-resolution segmentation probabilistic mixture component
maps (K1×

∑M
m=2 Km combinations). Mutual assignments of two probabilistic

maps are solved by using the Munkre’s assignment algorithm [8] which finds the
minimal cost assignment

g : A �→ B,
∑
α∈A

f(α, g(α))

between sets A, B, |A| = |B| = n given the cost function f(α, β), α ∈ A, β ∈
B. α corresponds to the fine resolution probabilistic maps, β corresponds to
downsampled probabilistic maps and f(α, β) is the Kullback Leibler divergence
between probabilistic maps. The algorithm has polynomial complexity instead
of exponential for the exhaustive search.

Final Parametric Space. The parametric vectors representing texture mosaic
pixels are assigned to the clusters based on our modification of the sum rule ac-
cording to the highest component probabilities, i.e., Yr is assigned to the cluster
ωj∗ if

πr,j∗ = maxj

∑
s∈Ir

ws

(
M∑

m=1

p2(Θ(m)
r−s | ν

(m)
j , Σ

(m)
j )∑M

i=1 p(Θ(i)
r−s | ν

(i)
j , Σ

(i)
j )

)
,

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood
and πr,j∗ > πthre (otherwise the pixel is unclassified). The area of single cluster
blobs is evaluated in the post-processing thematic map filtration step. Regions
with similar statistics are merged. Thematic map blobs with area smaller than a
given threshold are attached to its neighbour with the highest similarity value.

3 Experimental Results

The algorithm was tested on natural colour textures mosaics from the Prague
Texture Segmentation Data-Generator and Benchmark (http://mosaic.utia.cas.
cz) [12]. The benchmark test mosaics layouts and each cell texture membership
are randomly generated and filled with colour textures from the large (more than
1000 high resolution colour textures) Prague colour texture database. The bench-
mark ranks segmentation algorithms according to a chosen criterion. There are
implemented twenty seven most frequented evaluation criteria categorised into
four criteria groups – region-based [12], pixel-wise [12], clustering comparison cri-
teria, and consistency measures [12]. The region-based [12] performance criteria
mutually compare ground truth (GT) image regions with the corresponding ma-
chine segmented regions (MS). The pixel-wise criteria group contains the most
frequented classification criteria such as the omission and commission errors,
class accuracy, recall, precision, etc. Finally the last two criteria sets incorpo-
rate the global and local consistency errors [12] and three clustering comparison
criteria.
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Table 1. Benchmark criteria: CS = correct segmentation; OS = over-segmentation;
US = under-segmentation; ME = missed error; NE = noise error; O = omission error;
C = commission error; CA = class accuracy; CO = recall - correct assignment; CC
= precision - object accuracy; I. = type I error; II. = type II error; EA = mean
class accuracy estimate; MS = mapping score; RM = root mean square proportion
estimation error; CI = comparison index; GCE = Global Consistency Error; LCE
= Local Consistency Error; dM = Mirkin metric; dD = Van Dongen metric; dVI =
variation of information;

Benchmark – Colour

MW3
AR

TFR
/
KLD
[13]

TFR
[14]

AR3D
+ EM
multi
[8]

AR3D
+ EM
[7]

GMRF
+ EM
[6]

HGS
E
[15]

EG-
BIS
[16]

JSEG
[17]

SWA
def par
[9]

Blob-
world
[18]

EDI-
SON
[19]

CS 53.04 51.25 46.13 43.22 37.42 31.93 29.81 28.78 27.47 27.06 21.01 12.68
OS 59.53 5.84 2.37 49.27 59.53 53.27 10.69 19.69 38.62 50.21 7.33 86.91
US 3.20 7.16 23.99 16.55 8.86 11.24 33.76 39.15 5.04 4.53 9.30 0.00
ME 5.63 31.64 26.70 10.30 12.54 14.97 26.89 20.42 35.00 25.76 59.55 2.48
NE 6.96 31.38 25.23 12.56 13.14 16.91 25.04 21.54 35.50 27.50 61.68 4.68
O 19.32 19.65 28.73 21.99 34.32 33.61 48.94 44.35 37.94 33.01 41.45 73.17
C 86.19 9.67 12.50 87.38 100.00 100.00 32.39 82.87 92.77 85.19 58.94 100.00
CA 71.89 67.45 61.32 64.51 59.46 57.91 49.60 51.10 55.29 54.84 46.23 31.19
CO 74.66 76.40 73.00 71.00 64.81 63.51 63.37 64.12 61.81 60.67 56.04 31.55
CC 95.04 81.12 68.91 90.14 91.79 89.26 66.09 72.73 87.70 88.17 73.62 98.09
I. 25.34 23.60 27.00 29.00 35.19 36.49 36.63 35.88 38.19 39.33 43.96 68.45
II. 0.74 4.09 8.56 3.79 3.39 3.14 13.51 7.59 3.66 2.11 6.72 0.24
EA 80.43 75.80 68.62 73.90 69.60 68.41 58.74 59.88 66.74 66.94 58.37 41.29
MS 71.78 65.19 59.76 64.47 58.89 57.42 46.63 49.03 55.14 53.71 40.36 31.13
RM 3.09 7.21 8.61 4.55 4.88 4.86 13.31 8.38 4.96 6.11 7.96 3.21
CI 82.43 77.21 69.73 76.51 73.15 71.80 61.17 63.11 70.27 70.32 61.31 50.29
GCE 8.17 20.35 15.52 15.31 12.13 16.03 16.75 16.64 18.45 17.27 31.16 3.55
LCE 5.78 14.36 12.03 7.97 6.69 7.31 10.46 8.97 11.64 11.49 23.19 3.44
dM 8.97 12.64 17.47 13.51 15.43 15.27 27.95 19.72 15.19 13.68 20.03 16.84
dD 14.78 18.01 18.21 16.87 19.76 20.63 22.90 21.29 23.38 24.20 31.11 35.37
dVI 16.67 14.06 13.04 16.11 17.10 17.32 12.83 13.79 17.37 17.16 15.84 25.65

Tab.1 compares the overall benchmark performance of the proposed algorithm
MW3AR (M = 5, ι1 = 1, ι2 = 1.5, ι3 = 2, with the Blobworld [18], JSEG [17],
Edison [19], TFR/KLD [14], SWA [9], EGBIS [16], HGS [15], and our previously
published methods AR3D-multi [8], GMRF [6], AR3D [7], respectively. MW3AR
demonstrates a significant improvement (e.g. 23 % for the correct segmenta-
tion CS criterion) over our previously published unsupervised multi-segmenter
AR3D-multi [8].

These results illustrated in Figs.1,2,3 and Tab.1 demonstrate very good pixel-
wise, correct region segmentation, missed error, noise error, and undersegmen-
tation properties of our method while the oversegmentation results are slightly
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mosaic

ground truth

MW3AR

AR3D – multi [8]

AR3D [7]

TRF / KLD [13]

Fig. 2. Selected experimental texture mosaics, ground truth from the benchmark and
the corresponding segmentation results
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ground truth

GMRF [6]

SWA [9]

JSEG [17]

Blobworld [18]

EDISON [19]

Fig. 3. Selected ground truth from the benchmark and the corresponding segmentation
results
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worse and dVI results are only average. For all the pixel-wise criteria or the
consistency measures our method is among the best ones. The table demon-
strates improvement of the presented multi-segmenter method over our previous
multi-segmenter [8] and its single-segmenter version published earlier [7] in most
benchmark criteria.

Figs.2,3 and show four selected 512× 512 experimental benchmark mosaics
created from four to eleven natural colour textures. The last four or five rows on
these figures demonstrate comparative results from the eight alternative lead-
ing algorithms. Hard natural textures were chosen rather than synthesised (for
example using Markov random field models) ones because they are expected to
be more difficult for the underlying segmentation model. The third row on Fig.2
demonstrates robust behaviour of our CAR3D-multi algorithm but also infre-
quent algorithm failures producing the oversegmented thematic map for some
textures. Such failures can be reduced by a more elaborate postprocessing step.
The TFR/KLD [14], AR3D [7], GMRF [6], SWA [9], EGBIS [16], JSEG [17],
Blobworld [18], HGS [15], and Edison [19], algorithms on these data performed
mostly worse as can be seen in their corresponding rows on Figs.2,3 some areas
are undersegmented while other parts of the mosaics are oversegmented. Fig.2
illustrates also the improvement of the multi-segmenter version of the algorithm
at the cost of slight increase of computational complexity. These results can be
further improved by sophisticated postprocessing and by the optimisation of the
directional models contextual neighbourhoods.

4 Conclusions

We proposed a significant improvement of our previously published unsupervised
multi-segmenter. The MW3AR segmenter is computationally efficient, noise re-
silient and robust method for unsupervised textured image segmentation with
unknown number of classes based on the underlying CAR and GM texture mod-
els. The algorithm is very fast, despite of using the random field type data
representation, due to its efficient recursive parameter estimation of the under-
lying models and therefore is much faster than the usual Markov chain Monte
Carlo estimation approach required for these image representations. Usual draw-
back of most segmentation methods is their application dependent parameters
to be experimentally estimated. Our method requires only a contextual neigh-
bourhood selection and two additional thresholds. The method’s performance
is demonstrated on the extensive benchmark tests on natural texture mosaics.
It performs favourably compared with eight alternative leading segmentation
algorithms. Our method accomplishes very good segmentation results also on
natural images from the Berkeley segmentation benchmark as well as on remote
sensing images.
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Abstract. Classical clustering algorithms require a predefined number
of cluster centers. They are often very sensitive to initialization, which
can result in very different clustering results. We present a two-phase
algorithm which is a combination of a new ant based algorithm and a
nonnegative matrix factorization-based consensus clustering algorithm.
Ant clustering approaches can and do find the number of clusters as well
as the data partition. However, they are very sensitive to both initial
conditions and select parameters. Here, we show that using an ensem-
ble of ant partitions and NMF to combine them we can find both the
“right” number of clusters and a good data partition. Experiments were
done with ten data sets. We conducted a wide range of comparisons that
demonstrate the effectiveness of this new approach.

Keywords: Clustering, Ant-based clustering, Fuzzy c-means, Consensus
clustering, NMF, Ensembles.

1 Introduction

The main aim of clustering is to divide a data set into groups so that the data
within a group are sufficiently similar while the data belonging to different groups
are dissimilar. Two big drawbacks of many existing clustering algorithms such
as the Fuzzy C means (FCM) algorithm, K-means algorithm and Expectation
Maximization (EM) algorithm are that they require prior knowledge of the num-
ber of clusters for the data and are very sensitive to cluster center initialization,
since the search for a partition is based on the hill climbing heuristic [1,2]. Many
clustering algorithms [3,4,5,8,19] developed using the principles of Swarm Intel-
ligence are considered distributed, flexible and robust. The algorithms simulate
the co-operative and stochastic iterative behavior of a colony of ants, they are
based on direct or indirect feedback with relatively simple agents [18].

The behavior of ant colonies has inspired the development of various cluster-
ing techniques: (1) Several species of ants cluster their corpses into cemeteries
in order to clean up their nests. (2) Besides nest cleaning, another interesting
approach is chemical recognition of nest mates. The ant algorithm in this paper
is based on chemical odor. In [8,20], an ant clustering algorithm was proposed
by correspondence of a nest to a cluster and a chemical odor to a cluster label

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 283–292, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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according to some ant behavioral rules. In ant clustering the ants are themselves
the data, which means the number of examples is exactly the number of ants.
We found if one dataset is not well separated in feature space, there are always
some data left unlabeled after the ant’s refining phase. In order to finish cluster-
ing, the Fuzzy C means algorithm was used on only the unclassified examples.
The number of clusters and initialization for FCM came directly from ant clus-
tering. Lastly, we merged the centroids obtained from both stages and labeled
the data. We call the first stage ANTFCM. Ant clustering is randomly self-
organized, meaning each run may result in a different partition, which increases
the difficulty of finding the optimal solution and evaluating the partition quality.
The creation of different partitions can be treated as an ensemble of partitions.
We used consensus clustering to merge the ensemble of data partition solutions
here, which resulted in the ability to choose the right number of clusters and an
overall partition that better modeled the true distribution of data. A number
of approaches have recently been developed to solve consensus clustering prob-
lems [9,10,11,12,13,14,15]. We used the nonnegative matrix factorization (NMF)
[12,13,15] algorithm as a consensus clustering algorithm as the 2nd stage of our
algorithm. NMF is very simple to implement and often yields good results [16].
It has been found to outperform many other consensus methods [12].

2 Ant Clustering and NMF-Based Consensus Clustering

2.1 Ant Clustering

We first describe the ant clustering algorithm proposed in [8] by Labroche. Za-
harie and Zamfirache [20] proposed ant based clustering for dealing with noise
based on Labroche’s method [8]. Our definitions in this paper mainly come from
those of [20]. Let x1,...,xn be the set of data, where n is the number of ants:

– xi is associated with an example, Li is a label, which is a natural number
used to identify a cluster. It is initially set to be 0 meaning that the data
has not been assigned to a cluster,

– Ti is a similarity threshold. Ai is age, which counts the number of meetings
in which the ant has participated,

– Mi defines an adaptive parameter, which measures the ant’s perception of
its nest’s size, M+

i defines another adaptive parameter, which measures the
ant’s perception of its acceptance degree by the other members of its nest,

– Ncluster = Ni

n , where Ni is the number of examples in the ith cluster (Ncluster

is the ratio of data belonging to the cluster).

Ant clustering has three main phases: the threshold learning phase, the ran-
dom meeting phase and the refine cluster phase. The first phase is mainly to
estimate the value of the similarity threshold Ti for each ant i. The similarities
between an ant i and other randomly selected kt ants are computed and the
maximum (max(S(i, .))) and the average (< S(i, .) >) of these similarities are
obtained. The estimation of Ti then is defined by (maxS(i, .)+ < S(i, .) >)/2,
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S(i, j) = 1
s

∑s
k=1(1−

|xk
i −xk

j |
max(xk)−min(xk) ) where s is the number of features. S(i, j)

has proved to be a reasonable similarity function [8,20]). In the random meetings
phase, random pairs, (i, j), of distinct ants are selected km times. The similar-
ity S(i, j) for each pair is computed and for each pair of ants it is determined
whether the ants accept each other. The definition of an acceptance between
ants i and j is Accept(i,j)=True if and only if S(i, j) > Ti and S(i, j) > Tj , Ac-
cept(i,j)=False otherwise. In the cluster refining stage, the clusters with a small
number of elements and low M+

i values are eliminated and they are merged
with other clusters based on their similarities and on the values of Mi and M+

i .
Behavioral rules 1-5 below [20] are applied to each meeting of ant pairs (i, j).

Rule 1 : new nest creation. If Accept (i, j) is True and Li = Lj = 0 then
Li := Lmax + 1, Lj := Lmax + 1 where Lmax is the maximal value of the labels
assigned up to the current step.
Rule 2 : if Accept(i,j) is True and Li = 0, Lj! = 0 then Li := Lj, which means
put an ant into an existing nest.
Rule 3 : positive meeting between two nestmates. If Accept (i, j) is True and
Li = Lj! = 0 then increase Mi, M

+
i , Mj, M

+
j .

Rule 4 : negative meeting between two nestmates. If Accept (i, j) is False and
Li = Lj! = 0 then the ant with the smaller acceptance degree is excluded from
its nest, all parameters related to this ant are set to 0. The parameter M of the
other ant is increased while the parameter M+ is decreased.
Rule 5 : meeting between ants belonging to different nests. If Accept (i, j) is
True and Li! = Lj! = 0 then the ant with lower M is included in the nest of the
other ant and the corresponding Mi, Mj decreased.

The increasing and decreasing factors in Rules 4 and 5 are based on the
following relations:

increase(ν) = (1 − α)ν + α, decrease(ν) = (1 − α)ν (1)

where α ∈ (0, 1).

2.2 ANTFCM and NMF-Based Consensus Clustering

The general structure of the ant clustering algorithm [20] and how to combine
it with Fuzzy C means clustering is shown in Fig. 1.

To discuss NMF-based consensus clustering, we first must introduce some
notation [12,15]. Let X = {x1, x2, ..., xn} be a set of n examples, suppose we have
a set of T clusterings (or partitions) P = {P 1, P 2, ..., PT }, each partition P t, (t =
1, ..., T ) includes a set of clusters Ct = {Ct

1, C
t
2, ..., C

t
k}, where k represents the

number of clusters for partition P t and X=
⋃k

l=1 Ct
l , the number of clusters k

can be different for different partitions. Define a similarity matrix W̃n×n, where

W̃ij =
1
T

T∑
t=1

Wij(P t), (2)

Wij(P t) = 1, if (i, j) ∈ Ct
k, 0 otherwise, for some k.



286 Y. Gu, L.O. Hall, and D.B. Goldgof

Fig. 1. ANTFCM algorithm with FCM used to refine the partition

Fig. 2. (a) Example of cluster partitions: 6-examples data set with 5 partitions, the
numbers 1 and 2 represent cluster labels. (b) Similarity matrix.
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In Fig. 2 an example of five partitions of the data set and the similarity matrix
are shown. We denote U as a solution of the consensus clustering problem. U is
a connectivity matrix, if i, j belongs to the same cluster: Uij = 1, otherwise it
is 0. Therefore consensus clustering takes the form of the following optimization
problem:

minU

n∑
i,j=1

(
W̃ij − Uij

)2

= minU

∥∥∥W̃ − U
∥∥∥2

. (3)

We used symmetric 3-factor NMF here, with the role of the connectivity matrix
U (solution of NMF) and details of the algorithm in [12,13].

2.3 Determination of the Number of Clusters

In this section, we use the idea behind the model selection method in Brunet
et al. [21] and examine its applicability to the NMF algorithm to determine the
number of clusters in the data set. Brunet et al. successfully used this method
to determine the unknown number of groups from gene expression data.

We first define the dispersion coefficient as

ρk =
1
n2

n∑
i=1

n∑
j=1

4(Ĉk(i, j) − 1
2
)2 (4)

where ρk ∈ [0, 1] and ρk = 1 represents a perfectly consistent assignment, k
represents the number of clusters, the connectivity matrix Ĉk is computed by
averaging the connectivity matrices (Uk) over trials. The connectivity matrix Uk

comes from the NMF solution (Eq. 3). The value Ĉk(i, j) indicates the possibility
of two examples i and j being assigned to the same cluster. If the assignment
is consistent, each element of Ĉk should be close to either 0 or 1. Therefore
the dispersion coefficient (Eq. 4) is the summarization of the general quality of
the consistency. After obtaining the values of ρk for various k’s, the number of
clusters can be determined by the point k where ρk is the maximum.

The procedure for finding the correct number of clusters is as follows:

1. Run the ANTFCM multiple times (we used 50 times here, and can reduce
this number but too few will result in less accuracy), whatever the number of
clusters ANTFCM finds, we take it as a candidate, if the candidate number
is consistent all the time, we treat the candidate number as our solution.

2. For each candidate number of clusters, we applied the NMF algorithm with a
different initialization over 5 trials based on the generated similarity matrix
from the ANTFCM algorithm, using Eq. 4 we determined the correct number
of clusters, k as the one where the ρk value is the maximum.

3 Experiments

3.1 Experimental Parameters

We first present the parameters needed by the ant clustering algorithm. We used
the same default value for each parameter as in [20]. The kt = n/3 parameter
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is used in the threshold learning phase to estimate the value of Ti for each ant,
it is used for finding similarities between ant i and kt randomly selected ants.
km = n2 represents times that an ant i randomly meets with other distinct ants
during the random meeting phase. α = 0.1 is included in the increasing and
decreasing factors in Eq. 1. θα = 0.1 and θr = 0.1 are used for the threshold
values in the refining cluster stage. m = 2 is the degree of fuzzification for FCM.

3.2 Data Sets

The algorithm was applied to ten data sets. The Iris Plant database, Digits 389,
Ionosphere, Letter IJL, Soybean, Wine Recognition data, Multiple Sclerosis, and
Breast cancer are from the UCI data repository [17]. Digits 389 is a randomly
sampled subset of three classes: 3, 8, and 9 from the Pen-Based Recognition
of Handwritten Digits Data Set. Letter IJL is a randomly sampled subset of
the letters I, J, and L from the letters dataset. Two artificial datasets were
generated using Gaussian distributions. A mixture of five Gaussians was used.
The first artificial data contains 1000 examples and 2 features, all classes are well
separated. The 2nd dataset has 500 examples and 2 features but some examples
are on the border among classes. Details are in [23].

3.3 Evaluation Metric for Clustering

Since all the above data sets come with labels, we can utilize the following
accuracy measure:

Accuracy = (
∑
Ck

maxLmT (Ck, Lm))/n (5)

where n is the number of examples, Ck is the k-th cluster, Lm is the m-th class
and T (Ck, Lm) is the number of examples that belong to class m assigned to
cluster k. Thus accuracy is computed as the maximum sum of T (Ck, Lm) for all
pairs of clusters and classes.

3.4 Results for the ANTFCM Algorithm

The ANTFCM results in Table 1 are averaged over 50 experiments, each with a
different random seed. The parameters kt and km are critical parameters, kt

here is high enough to lead to a reliable estimation, km should be large enough
to allow each ant to participate in meetings with other ants. The minimal value
of km should be the number of ants, but in [8], a greater value proportional to
n was suggested, we used n2 here.

To show our ANTFCM methods provides a good data partition, we applied
the classical Fuzzy C means (FCM) algorithm to the ten datasets. The accuracy
for FCM is the average accuracy over 50 random initializations. Due to the
different random seeds of each run, the ANTFCM algorithm may not find a
consistent number of cluster centers and partitions. Therefore some ANTFCM
accuracies higher than FCM result from over clustered partitions (Eq. 5). This
instability also increased the difficulty in evaluating ANTFCM.
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Table 1. Accuracy for ANTFCM and determined # of clusters. Entries in bold in

the last column are where the # of clusters does not match the true number (in

parentheses).

Data Name FCM% ANTFCM% # of clusters from Maximal Determined
ANTFCM (candidate) ρk # of clusters

Iris 89.33 81.20 3,4 0.7353 3

Digits 389 91.88 90.15 4 / 4 (3)

Ionosphere 71.03 83.37 2,3,4 0.9175 2

Letter IJL 60.00 71.48 4,5,6,7 0.8197 5 (3)

Soybean 78.72 95.06 3,4,5 0.9490 4

Wine 68.54 87.65 3 / 3

Multiple Sclerosis 83.67 83.33 3,4 0.8322 3 (2)

Breast Cancer 95.28 94.28 2,3 0.7895 2

Artificial dataset 1 100.00 99.98 5 / 5

Artificial dataset 2 99.8 98.91 5 / 5

3.5 Determination of the Number of Clusters

From Table 1, we observe that for Digits 389, Wine and two artificial datasets
a consistent number of clusters was found after ANTFCM. For the rest of data
sets, we performed the two step procedure of Section 2.3. For most of the data
sets the expected number of clusters was found except for Digits 389, Letter ILJ
and Multiple Sclerosis. It is easy to find that these three datasets’ candidate
lists don’t contain the correct number of clusters and they all overestimate the
number of clusters. One possible way to solve this issue is to increase the value
θr in the ant refining stage (line 13 in the ANTFCM algorithm), which can
reduce the number of clusters generated, however, we are dealing with various
datasets here and increasing θr may degrade performance for other datasets. A
more adaptive method of choosing θr is needed.

3.6 Comparison with Consensus Results

We compared our NMF result with results from four other algorithms. In Table 2
KC represents the results of applying K-means to a consensus similarity matrix.
CSPA is cluster-based similarity partitioning algorithm. HGPA is Hyper-Graph
Partitioning Algorithm. A description of the CSPA and HGPA algorithms can be
found in Strehl’s paper [14]. Agglomerative represents the agglomerative cluster-
ing algorithm, which is a standard bottom-up algorithm, which can be stopped
when the desired number of clusters is reached [22]. To fairly compare these five
consensus algorithms, we used the known actual number of classes as an input
for each algorithm (an advantage for them, though our combined method failed
to detect the true number of classes for 3 data sets shown in Table 1, we can
still use the known actual number of classes as an input for NMF here for fair
accuracy comparison). Results were obtained by averaging over five trials with
random initialization.
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Table 2. Results on consensus clustering (50 runs of ANTFCM as input partitions)

Data Name KC% CSPA% HPGA% Agglomerative% NMF%

Iris 81.33 92.67 92.67 80.67 94.00

Digits 389 85.75 92.32 49.34 90.79 90.79

Ionosphere 69.52 67.81 64.10 69.23 69.80

Letter IJL 60.29 53.33 54.76 60.00 59.52

Soybean 95.74 87.23 93.62 100.00 100.00

Wine 87.42 89.29 60.22 88.20 89.33

Multiple Sclerosis 78.57 70.40 74.49 70.40 70.40

Breast Cancer 94.71 83.40 65.52 94.71 94.71

Artificial dataset 1 97.36 92.30 24.80 100.00 100.00

Artificial dataset 2 89.12 94.00 25.20 99.8 99.8

Average accuracy 83.98 82.28 60.47 85.38 86.83

Table 3. Results on consensus clustering (50 runs of K-means as input partitions)

Data Name KC% CSPA% HPGA% Agglomerative% NMF%

Iris 84.80 85.33 62.27 89.33 89.33

Digits 389 82.06 84.87 48.51 82.06 90.13

Ionosphere 71.23 67.81 64.10 71.23 71.23

Letter IJL 54.29 55.24 48.57 54.29 57.62

Soybean 71.06 72.34 78.72 78.72 78.72

Wine 70.22 67.98 64.49 70.79 70.22

Multiple Sclerosis 82.65 70.40 70.40 74.49 70.40

Breast Cancer 95.99 79.97 65.52 95.99 94.13

Artificial dataset 1 90.26 87.60 24.80 100.00 100.00

Artificial dataset 2 90.05 94.00 25.20 99.8 99.8

Average accuracy 79.26 76.56 55.26 81.67 82.16

From Table 2, we observed that NMF’s average accuracy was the highest. This
is a good indication that NMF can lead to a better quality solution. Interestingly,
we observed that the Agglomerative algorithm’s performance on the ten datasets
was very close to the NMF based algorithm except for Iris and Wine.

In this paper, our approach was to combine an ant based algorithm and NMF
together, therefore we need to compare the results with different input partitions.
In Table 3, we used random initialization to obtain 50 K-means algorithm results.
Comparing the results of the consensus algorithms between Table 2 and Table 3,
we noticed that each algorithm using the result of ANTFCM as an input partition
obtained better accuracy than when using the K-means algorithm. The reason
behind this is that the ant based algorithm obtains final partitions by doing a
form of global search. There is more chance for an ant based algorithm to find
partitions which K-means or some other algorithms cannot find as they may get
stuck in a local extrema when doing partitions. Hence, the promise of our new
approach.
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4 Summary

We introduced a new ant based clustering algorithm, in which an ensemble of
data partitions was created followed by an NMF-based consensus clustering al-
gorithm. We demonstrated the effectiveness of the two-stage algorithm of finding
the correct number of clusters and improving the clustering performance by con-
ducting a wide range of comparative experiments. The disadvantage of the first
stage of our approach is that since the ants’ process is self-organized, the final
partition may not be the optimal solution. Therefore we utilized the 2nd stage,
an NMF-based consensus clustering algorithm to find the optimal final partitions
from an ensemble of ant generated partitions. The benefits of using NMF-based
consensus clustering are: it can obtain a better partition; it can find a combined
partition which is unattainable by any single clustering algorithm; it provides a
consistent solution, which can be used to detect the correct number of clusters;
finally it improves clustering robustness, which means the “mistakes” made by
ANTFCM can be “canceled out” in the final consensus partition. In the case of
the Iris data FCM found only one partition in over 10,000 random initializations.
Our algorithm finds different partitions and when using NMF better reflects the
underlying labeled data.
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Abstract. An ensemble is generated by training multiple component learners for
a same task and then combining them for predictions. It is known that when lots
of trained learners are available, it is better to ensemble some instead of all of
them. The selection, however, is generally difficult and heuristics are often used.
In this paper, we investigate the problem under the regularization framework,
and propose a regularized selective ensemble algorithm RSE. In RSE, the selec-
tion is reduced to a quadratic programming problem, which has a sparse solution
and can be solved efficiently. Since it naturally fits the semi-supervised learning
setting, RSE can also exploit unlabeled data to improve the performance. Exper-
imental results show that RSE can generate ensembles with small size but strong
generalization ability.

1 Introduction

Ensemble learning [11] is a learning paradigm where multiple component learners are
trained to solve a problem. Since an ensemble often has better performance than a single
learner, it has achieved successes in many domains.

In general, an ensemble is built in two steps, i.e., training multiple component learn-
ers and then combining them. According to the styles of training component learn-
ers, popular ensemble algorithms can be roughly categorized into two classes, that is,
approaches where component learners are trained in parallel, and approaches where
component learners must be trained sequentially. Representatives of the former include
Bagging [4], Random Subspace [14], Random Forest [6], GASEN [24], etc. Represen-
tatives of the latter include AdaBoost [13], Arc-x4 [5], LPBoot [10], etc.

In most ensemble algorithms, all of the obtained component learners are employed
to build an ensemble. However, some researchers [24,23,17] show that through selec-
tive ensemble, i.e., ensembling some instead of all the available component learners, a
better ensemble can be generated. The selection, however, is not easy and thus many
heuristics have been used. For example, for the selection, Zhou et al. [24,23] used a
genetic algorithm; Castro et al. [7] employed artificial immune algorithm; Coyle and
Smith [9] utilized case similarity; Martı́nez-Muñoz and Suárez [17] proposed to order
the component learners and then select the first ones to use.

As a generic learning framework, regularized approaches [18] work by minimizing
the regularized risk function, and have been found useful in ensemble learning. For
example, LPBoost [10] takes margin as regularizer; RegBoost [15] utilizes the graph
Laplacian regularizer [2] to make base classifiers cut through sparse regions; in [8],

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 293–303, 2009.
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the regularizer is used to take local smoothness constraints, yielding a more general
regularized Boosting.

In contrast to previous heuristic methods, in this paper we study the selective ensem-
ble problem under the regularization framework. We utilize the hinge loss and the graph
Laplacian regularizer, and present a regularized selective ensemble approach RSE. In
RSE, the selection problem is reduced to a quadratic programming (QP) problem, which
has a sparse solution and meanwhile can be solved efficiently. Empirical study shows
that RSE is able to generate ensembles with small size while have strong generalization
ability, which is superior to many existed ensemble methods.

In practical applications, unlabeled examples are much easier to obtain. Therefore,
semi-supervised learning [25], which attempts to exploit unlabeled examples to help
improve learning performance, has attracted much attention. A prominent advantage of
RSE is that it naturally fits the semi-supervised setting. Experiments show that RSE can
exploit unlabeled data effectively.

In the following of the paper we will start with a brief review on related work. Then,
we propose RSE and its semi-supervised extension, followed by reports on experiments.
Finally, we conclude the paper.

2 Related Work

After obtaining the component learners, most ensemble algorithms combine all of them
to build an ensemble, however, it has been shown that it is better to ensemble some
instead of all of them [24,23,17].

Zhou et al. [24] analyzed the relationship between ensemble and its component learn-
ers from the context of both regression and classification, and proved that it may be
better to combine many instead of all of the learners. Since it is difficult to select the
component learners, they used genetic algorithm to select a part of learners to build
the ensemble. Empirical studies show that, comparing with some popular ensemble ap-
proaches such as Bagging and Boosting, the proposed GASEN algorithm can generate
ensembles with smaller sizes but stronger generalization ability.

Martı́nez-Muñoz and Suárez [17] proposed a heuristic method, where the compo-
nent learners obtained from Bagging are reordered, and a part of the top-ranked ones
are included in the final ensemble. The experimental result also shows that selective
ensemble may improve ensemble’s performance while reducing its size.

Selective ensemble is a special paradigm of ensemble learning, which aims at build-
ing strong ensembles with small sizes. In some sense it is related to ensemble pruning
[16,22]. However, it is noteworthy that in earlier researches of ensemble prunning [16],
the goal was to use a small size of ensemble to achieve an equivalent performance of
a boosted ensemble. This has been proved to be NP-hard and is even hard to approxi-
mate [19], and the pruning may sacrifice the generalization ability of the final ensemble.
Since Zhou et al.’s work [24], it is known that by using selective ensemble it is possible
to get a small yet strong ensemble. What makes this difference is that earlier ensemble
pruning works on ensembles where the component learners must be trained sequen-
tially, while selective ensemble works on ensembles where the component learners can
be generated in parallel, and the sequential generation of the former makes the problem
much more difficult to tackle.
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3 The RSE Approach

Let X and Y denote the feature space and the set of class labels, respectively. Here,
binary classification is considered for simplicity, assuming Y = {−1, +1}. A training
set D = {(x1, y1), . . . , (xN , yN )} is given, where xi ∈ X and yi ∈ Y .

From training set D, ensemble learning algorithms try to train a set of compo-
nent classifiers {h1, . . . , hM} and choose weights {w1, . . . , wM} to combine them as
H(x) =

∑M
i=1 wihi(x), and it is often assumed that wi ≥ 0 and

∑M
i=1 wi = 1. The

classification decision of the ensemble H on instance x is +1 if H(x) ≥ 0 and −1
otherwise. The number of component classifiers is called the size of the ensemble. It is
obvious that classifiers with zero weights will be excluded from the ensemble.

In this work, we concern on the second step of building an ensemble, i.e., choosing
weights to combine the component classifiers. In this section, we study the selective
ensemble problem under the regularization framework.

3.1 Regularized Risk Function

Let w = [w1, . . . , wM ]� denote the weights used to combine the component classifiers
{h1, . . . , hM}. The ensemble’s output on instance xi is

H(xi) =
∑M

k=1
wkhk(xi) = p�

i w, (1)

where pi = [h1(xi), . . . , hM (xi)]� are the component classifiers’ predictions on xi.
Under the regularization framework, the weights w is usually determined by mini-

mizing the regularized risk function

R(w) = λ V (w) + Ω(w), (2)

where V (w) is the empirical loss which approximately measures the misclassification
loss of classifier on the training examples in D, Ω(w) is the regularization term, and λ
is the regularization parameter which specifies the tradeoff between the minimization
of V (w) and the smoothness or simplicity enforced by minimization of Ω(w).

Empirical Loss. The empirical loss considers the loss between each example’s class
label yi and its corresponding prediction H(xi) = p�

i w.
Here, we use the hinge loss function �

(
yi, H(xi)

)
= max

(
0, 1 − yiH(xi)

)
. Typ-

ically, this is the empirical loss minimized in support vector machines [18], and it is
usually written as a sum of slack variables included in the constraints. Afterwards, we
can define the empirical loss function V (w) for the ensemble H on training set D as

V (w) =
∑N

i=1
�
(
yi, H(xi)

)
=
∑N

i=1
max(0, 1 − yip

�
i w), (3)

where, as same as previous definition, w are the weights, and pi are predictions on xi.
Obviously, the empirical loss function in Eq. 3 is convex and continuous.

Regularization Term. The regularization term Ω(w) is used to smooth or simplify the
function. In this work, the graph Laplacian regularizer [2] is adopted.
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Let G = (V ; E) be the neighborhood graph of the training set D, where the vertex
set V is the set of all the examples in D, and the edge set E contains pairs of neighbor-
ing examples. Based on the idea that the classifier should make similar predictions on
neighboring examples, the classifier that cuts through dense regions is penalized by

PL(H) =
∑N

i=1

∑N

j=i+1
Wij

(
H(xi) − H(xj)

)2
, (4)

where W is the (weighted) adjacency matrix of G.
Let the diagonal matrix D defined by Dii =

∑N
j=1 Wij , the normalized graph

Laplacian of G is L = D−1/2(D − W )D−1/2. Then, the function in Eq. 4 can be
rewritten as PL(H) = h�Lh, where h = [H(x1), . . . , H(xN)]� is ensemble H’s
predictions on the examples. By Eq. 1, it follows that h = [p�

1 w, . . . , p�
Nw] = P�w,

where P ∈ {−1, +1}M×N is the prediction matrix which collects every component
classifier’s prediction on every example, and Pij = hi(xj).

Using the graph Laplacian regularizer, the regularization term is defined as

Ω(w) = h�Lh = w�PLP�w, (5)

where, as defined above, L is the graph Laplacian and P is the prediction matrix.
Here, rather than building the neighbor graph on the training set, we assume that the

graph is fully connected, and the weight of the edge between xi and xj is determined by
the distance function Wij = exp(−σ‖xi − xj‖2), where σ is a bandwidth parameter.

3.2 Optimization Problem with Sparsity Constraint

Using the empirical loss function defined by Eq. 3 and the graph Laplacian regulariza-
tion term in Eq. 5, we have the following optimization problem:

min
w

w�PLP�w + λ
∑N

i=1
max(0, 1 − yip

�
i w) (6)

subject to 1�w = 1, w ≥ 0.

Since max(·, ·) is non-smooth, Eq. 6 can be equivalently rewritten as the following

min
w

w�PLP�w + λ 1�ξ (7)

subject to yip
�
i w + ξi ≥ 1, i = 1, . . . , N

1�w = 1, w ≥ 0, ξ ≥ 0

where ξ = [ξ1, . . . , ξN ]� are slack variables, λ is the regularization parameter, 1 and 0
are all-1 and all-0 vector, respectively. It is evident that Eq. 7 is a standard QP problem,
which can be efficiently solved using many existed optimization packages.

Note that the constraint, 1�w = 1, w ≥ 0, is �1-norm constraint on the weights
w, which is a sparsity constraint that will force some wi’s to be zero. Recall that the
ensemble size is equal to the number of non-zero elements in w, thus ensemble with
small size is encouraged.
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Input: training set D, component learner L, trials M
Process:

1. for i = 1 to M{
2. Si = bootstrap sample from D ;
3. hi = L(Si) ; }
4. Get the component classifiers’ predictions P ;
5. Build the neighbor graph on D, and calculate L;
6. Solve the QP problem in Eq. 7 to get the weights w;

Output: ensemble H
H(x) =

∑
wi>0 hi(x) for selective ensemble (RSE)

H(x) =
∑

wi>0 wihi(x) for weighted ensemble (RSE-w)

Fig. 1. Pseudo-code of the RSE Algorithm

3.3 The RSE Algorithm

The RSE algorithm is summarized in Fig. 1.
Note that RSE uses bootstrap sampling to train component classifiers, which is bor-

rowed from Bagging, other methods to train component classifiers can also be used.

3.4 Semi-supervised Extension

In many real-world applications, it is often the case that abundant unlabeled examples
are available. Thus, semi-supervised learning [25], which attempts to exploit unlabeled
examples to improve the performance, has attracted much attentions.

Using the unlabeled examples for regularization [2] is one of the important ap-
proaches in semi-supervised learning, and graph Laplacian regularizer is a representa-
tive example. RSE uses the graph Laplacian regularizer, and it naturally fits the
semi-supervised learning setting, we call the corresponding semi-supervised version
as RSEss, and RSE-wss corresponds to the semi-supervised version of RSE-w.

Obviously, the graph Laplacian regularizer does not rely on the class labels. So,
when given training set D with L labeled examples and U unlabeled ones, the graph
Laplacian regularizer can be derived by Eq. 5, except that the prediction matrix P and
the graph Laplacian L should be computed on both labeled and unlabeled examples.

4 Experiments

4.1 Configuration

We use 14 two-classes UCI data sets [3] in experiments. These data sets span a broad
range of real domains, and some statistics of the data sets are shown in Table 1.

We compared RSE with Bagging [4], AdaBoost [13], and the first selective ensemble
algorithm GASEN [24]. RSE-w is also evaluated. Without loss of generality, C4.5 tree
is used as the component classifier. For Bagging and AdaBoost, the ensemble size is
100, while GASEN and RSE select component learners from 100 bagged C4.5 trees.
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Table 1. Experimental data sets

Date set #Examples #Attributes Date set #Examples #Attributes

australian 690 14 heart-s 270 13
ballons 76 4 ionosphere 351 34
cancer 286 9 kr-vs-kp 3196 36
cylinder-b 540 39 live-dis 345 6
diabetes 768 8 spectf 267 44
germen 1000 20 spambase 4601 57
haberman 306 3 vote 435 16

Table 2. Comparison of the predictive errors (mean±std) under supervised setting, where the
best performance on each data set is bolded. The average row presents the results averaged over
all data sets; W/T/L row summarizes the comparison of RSE (RSE-w) against other algorithms
according to pairwise t-tests with 95% significance level.

Data set C4.5 Bagging AdaBoost GASEN RSE-w RSE

australian .148±.021 .133±.018 .137±.015 .131±.017 .131±.018 .127±.016
balloons .316±.067 .269±.089 .243±.077 .262±.079 .223±.069 .241±.074
cancer .278±.035 .267±.027 .343±.049 .273±.029 .272±.020 .266±.018
cylinder-b .328±.021 .328±.021 .328±.020 .322±.020 .337±.045 .319±.033
diabetes .267±.024 .241±.024 .265±.023 .241±.021 .246±.018 .243±.019
germen .281±.018 .249±.019 .258±.025 .248±.019 .249±.017 .245±.017
haberman .285±.040 .266±.031 .308±.036 .267±.029 .260±.013 .256±.020
heart-s .217±.041 .181±.034 .188±.029 .177±.031 .175±.030 .168±.031
ionosphere .110±.030 .077±.023 .062±.023 .075±.022 .074±.021 .070±.021
kr-vs-kp .008±.003 .007±.003 .005±.003 .007±.002 .006±.002 .006±.002
liver-dis .352±.036 .283±.035 .317±.046 .283±.033 .276±.037 .269±.034
spectf .173±.036 .125±.028 .128±.029 .125±.028 .129±.027 .122±.028
spambase .079±.008 .060±.007 .050±.006 .059±.007 .059±.007 .059±.007
vote .047±.016 .042±.015 .056±.017 .042±.014 .040±.012 .038±.012

average 0.206 0.183 0.189 0.179 0.176 0.171

W/T/L (RSE) — 11/3/0 9/3/2 6/8/0 8/5/1 —
W/T/L (RSE-w) — 3/11/0 9/2/3 3/9/2 — 1/5/8

They are all implemented in WEKA [21], and the trees are pruned following the default
settings. The genetic algorithm employed by GASEN is implemented using MATLAB
[12], the selection threshold is set to 0.01, and the parameters of genetic algorithm
are set to the default values. The bandwidth σ is set to 0.01, and the regularization
parameter λ is selected by 5-fold cross validation on training sets for RSE and RSE-w,
respectively. The QP problem is solved using MOSEK [1].

For each data set, 50 runs of hold-out tests are executed. In each run, one-third of
examples are selected randomly for testing, and the remaining for training. The average
predictive error rates and the ensemble sizes are recorded.

In order to study how well RSEss and RSE-wss can exploit unlabeled examples, ex-
periments under semi-supervised setting are also carried out, during which the training
data set is partitioned into labeled set L and unlabeled set U under a label rate. To sim-
ulate different amount of unlabeled examples, two different label rates, 5% and 10%,
are investigated here. Under 5% (10%) label rate, 5% (10%) of the training set is used
as labeled training data, while the remaining 95% (90%) as unlabeled data.
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Table 3. Comparison of the ensemble size (mean±std) under supervised setting, where the small-
est size on each data set is bolded. The average row presents the size averaged over all data sets.

Date set GASEN RSE-w RSE Date set GASEN RSE-w RSE

australian 45.3±3.0 20.5±5.7 19.1±5.7 heart-s 45.5±3.1 19.8±7.7 21.7±7.2
balloons 38.9±15.8 15.8±14.6 15.9±18.9 ionosphere 43.1±8.7 15.0±6.3 14.9±5.6
cancer 41.0±4.2 11.9±3.6 13.0±4.2 kr-vs-kp 40.4±7.1 10.1±6.3 8.9±5.8
cylinder-b 15.5±13.7 9.1±6.7 11.4±9.5 liver-dis 44.7±3.4 31.4±8.6 29.9±8.3
diabetes 45.0±2.5 26.5±7.2 26.5±8.2 spectf 45.0±3.3 17.7±4.4 17.3±3.4
germen 45.5±2.8 29.9±5.0 29.3±4.5 spambase 44.5±3.3 37.8±5.6 37.2±5.8
haberman 43.1±9.1 15.1±4.8 13.3±4.7 vote 38.6±16.1 8.8±6.0 8.5±5.8

average 41.2 19.2 19.1

Table 4. Comparison of the predictive errors (mean±std) under 5% label rate, where the best
one on each data set is bolded. The average row presents the results averaged over all data sets.

Data set C4.5 Bagging AdaBoost GASEN RSE-w RSE RSE-wss RSEss

australian .200±.065 .184±.051 .210±.050 .206±.061 .201±.053 .197±.051 .151±.025 .151±.023
balloons .458±.001 .458±.001 .458±.001 .475±.033 .458±.001 .458±.001 .458±.001 .458±.001
cancer .312±.062 .310±.051 .336±.074 .340±.091 .289±.016 .288±.023 .292±.010 .285±.022
cylinder-b .394±.060 .393±.054 .395±.046 .396±.053 .403±.064 .420±.061 .336±.038 .332±.037
diabetes .342±.046 .299±.036 .317±.035 .302±.038 .289±.035 .286±.034 .262±.027 .259±.028
germen .345±.044 .308±.028 .326±.032 .310±.028 .329±.033 .316±.032 .291±.012 .284±.015
haberman .280±.055 .273±.041 .288±.056 .292±.059 .257±.012 .265±.030 .256±.012 .255±.015
heart-s .318±.081 .268±.070 .302±.079 .287±.078 .296±.069 .291±.071 .220±.045 .221±.043
ionosphere .267±.095 .238±.068 .258±.084 .242±.073 .226±.065 .218±.056 .176±.030 .176±.029
kr-vs-kp .074±.021 .064±.016 .067±.017 .064±.015 .065±.016 .064±.016 .047±.013 .049±.014
liver-dis .443±.059 .434±.047 .435±.054 .427±.052 .411±.028 .404±.038 .379±.037 .375±.040
spectf .362±.082 .281±.055 .315±.065 .300±.059 .328±.067 .336±.072 .262±.019 .245±.030
spambase .147±.019 .107±.015 .087±.013 .107±.014 .116±.015 .110±.011 .100±.011 .098±.011
vote .097±.068 .094±.062 .103±.072 .087±.058 .096±.061 .084±.058 .059±.045 .060±.046

average 0.288 0.265 0.278 0.274 0.269 0.267 0.235 0.232

4.2 Results

Results under Supervised Setting. The predictive errors are shown in Table 2, the
last rows present the average error over all data sets, and the summary of pairwise t-
tests with 95% significance level, where W/T/L means that RSE (RSE-w) wins, ties
and loses on #W, #T and #L data sets, respectively. The ensemble sizes are presented
in Table 3.

It can be observed from Table 2 that selective ensemble algorithms consistently per-
form better than single decision trees. Moreover, RSE has the lowest averaged error
rate, and t-test results indicate that RSE performs significantly better than all the com-
paring methods. Compared with the non-selective ensemble algorithms Bagging and
AdaBoost, RSE wins on 11 and 9 data sets. respectively. RSE only loses to AdaBoost
on ionosphere and spambase, where AdaBoost performs significantly better and oth-
ers ensemble methods have similar performance. Compared with GASEN, RSE also
performs quite well (wins on 6 data sets and never loses).

It is quite interesting that RSE performs much better than RSE-w which weights the
selected classifier by w. Similar phenomenon was observed before for GASEN [24]. A
possible reason is that the weights of RSE-w were determined by minimizing the hinge
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Table 5. Comparison of the predictive errors (mean±std) under 10% label rate, where the best
one on each data set is bolded. The average row presents the results averaged over all data sets.

Data set C4.5 Bagging AdaBoost GASEN RSE-w RSE RSE-wss RSEss

australian .182±.041 .167±.032 .190±.037 .173±.029 .191±.035 .177±.036 .152±.016 .149±.019
balloons .423±.114 .403±.099 .425±.100 .405±.113 .374±.079 .390±.107 .368±.070 .346±.073
cancer .297±.029 .293±.034 .333±.047 .299±.033 .289±.015 .283±.022 .280±.025 .275±.026
cylinder-b .369±.055 .349±.048 .377±.057 .347±.044 .370±.055 .380±.052 .318±.029 .306±.025
diabetes .310±.046 .279±.038 .301±.045 .277±.039 .272±.031 .262±.034 .250±.026 .243±.025
germen .335±.036 .300±.024 .309±.029 .299±.024 .305±.028 .289±.019 .286±.017 .277±.016
haberman .273±.060 .267±.033 .288±.054 .283±.052 .249±.018 .254±.019 .251±.017 .249±.023
heart-s .290±.058 .251±.063 .266±.066 .255±.073 .267±.058 .246±.052 .212±.039 .212±.046
ionosphere .203±.083 .190±.053 .199±.078 .190±.058 .181±.054 .173±.052 .148±.039 .143±.035
kr-vs-kp .057±.015 .051±.010 .042±.012 .049±.010 .044±.013 .044±.012 .035±.008 .036±.009
liver-dis .403±.053 .397±.058 .398±.058 .397±.057 .384±.046 .378±.041 .347±.035 .346±.036
spectf .328±.067 .269±.043 .289±.066 .273±.045 .284±.045 .285±.054 .235±.025 .226±.031
spambase .127±.012 .095±.011 .073±.007 .097±.012 .099±.011 .094±.010 .088±.009 .087±.009
vote .074±.049 .058±.029 .080±.044 .069±.038 .072±.033 .061±.029 .049±.023 .049±.023

average 0.262 0.241 0.255 0.244 0.241 0.237 0.216 0.210

loss, which is only an approximation of the 0-1 misclassification loss, while the optimal
weights for the hinge loss may not be optimal for the 0-1 loss.

It can be found from Table 3 that the ensemble sizes of RSE and RSE-w are much
smaller than that of GASEN. Since different regularization parameters are selected via
cross validation, RSE and RSE-w select 19.1 and 19.2 trees, respectively, while GASEN
selects 41.2 trees on average.

Based on these result, it is believed that RSE can generate ensembles with small size
but strong generalization ability.

Results under Semi-Supervised Setting. The predictive error rates under label rates
of 5% and 10% are shown in Table 4 and Table 5, respectively, and the ensemble sizes
are shown in Table 6 and Table 7, respectively. Here, RSEss and RSE-wss use unlabeled
data to improve performance, while other methods only use the labeled data.

It can be found from Table 4 and Table 5 that, under 5% and 10% label rates, RSEss

get the best performance on 11 and 13 data sets, respectively. Comparing RSEss with
RSE under 5% label rate, it can be found that the averaged error rate is reduced from
0.237 to 0.210. Especially, it is reduced from 0.336 to 0.245 on spectf. On cylinder-
b, RSE has the worst error rate 0.420, but RSEss performs best with error rate 0.332.
Similar results can be found by comparing RSE-wss with RSE-w, also under 10% label
rate. Therefore, we can see the unlabeled data could be useful in constructing ensemble,
even when the component classifiers are learned on the labeled data.

It can be found that under 5% label rate, the average error rate of RSE is 0.267
and that of RSEss is 0.232, with a reduction of 15.1%; while under 10% label rate,
the average error rate of RSE is 0.237 and that of RSEss is 0.210, with a reduction of
12.9%. This validates that RSEss can benefit from using unlabeled examples.

Comparing ensemble sizes in Table 6 and Table 7, we can find that RSEss also
generates smaller ensembles than GASEN, and much smaller than that of Bagging
and AdaBoost. The sizes of RSEss (RSE-wss) ensembles are often larger than that of
RSE(RSE-w) ensembles; this is not difficult to understand because RSEss(RSE-wss)
uses much more data than RSE(RSE-w) since the latter does not use unlabeled data.
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Table 6. Comparison of the ensemble size (mean±std) under 5% label rate, where the smallest
size on each data set is bolded. The average row presents the size averaged over all data sets.

Data set GASEN RSE-w RSE RSE-wss RSEss

australian 34.9±9.5 10.1±3.8 11.6±3.5 25.1±9.1 30.4±8.3
balloons 13.4±9.7 75.2±4.5 75.2±4.5 75.2±4.5 75.2±4.5
cancer 27.7±9.6 53.1±18.2 53.6±14.4 50.2±15.0 50.7±17.9
cylinder-b 46.9±15.0 4.0±12.3 4.1±4.4 8.5±3.8 12.4±4.2
diabetes 46.9±13.6 7.0±3.7 7.8±7.2 22.0±9.7 21.0±7.2
germen 49.5±6.1 5.5±2.6 5.3±2.7 8.0±4.9 10.5±4.4
haberman 25.7±12.3 65.8±13.9 65.2±14.4 71.3±20.8 63.0±21.4
heart-s 29.5±14.5 36.1±10.9 37.6±13.1 49.3±13.2 49.1±15.5
ionosphere 34.3±14.1 36.7±14.8 48.2±19.6 13.3±8.0 19.2±9.2
kr-vs-kp 41.2±10.3 10.9±6.7 10.7±8.2 7.1±8.4 7.9±8.0
liver-dis 47.7±11.7 20.2±16.3 19.5±11.7 20.2±7.0 23.4±11.2
spectf 38.8±11.4 27.6±14.7 27.9±14.9 17.3±9.4 25.7±11.2
spambase 50.4±4.8 10.6±3.0 11.3± 2.5 17.8±5.9 18.5±4.3
vote 24.6±9.8 58.7±19.5 64.5±17.7 63.6±19.6 70.8±19.6

average 36.5 30.1 31.6 32.3 34.1

Table 7. Comparison of the ensemble size (mean±std) under 10% label rate, where the smallest
size are bolded. The average row presents the size averaged over all data sets.

Data set GASEN RSE-w RSE RSE-wss RSEss

australian 39.2±5.9 4.9±3.9 5.1±4.6 6.8±3.1 8.4±4.8
balloons 29.7±13.9 48.0±17.9 61.6±15.8 39.9±11.1 65.6±17.3
cancer 33.8±11.3 37.2±13.3 42.3±13.3 25.2±15.6 37.0±12.8
cylinder-b 44.6±7.8 2.7±1.6 2.9±1.7 8.3±8.6 10.1±8.8
diabetes 44.8±5.4 7.6±3.8 8.4±3.6 15.8±10.5 11.9±11.3
germen 44.9±3.6 6.9±3.7 8.3±3.6 6.3±6.3 11.3±8.6
haberman 27.4±6.1 52.1±9.6 56.4±7.4 53.2±9.7 55.7±12.9
heart-statlog 42.3±14.3 12.4±17.7 10.8±15.0 18.2±9.4 17.5±11.7
ionosphere 35.5±20.5 15.0±9.1 15.8±10.9 7.6±16.3 11.9±11.6
kr-vs-kp 41.4±13.9 9.7±7.0 8.9±6.5 8.9±8.1 6.2±7.9
liver-dis 42.7±13.5 7.7±4.2 8.2±4.6 8.1±6.8 12.0±9.0
spectf 43.6±11.9 7.3±8.2 6.9±6.5 7.3±6.8 10.2±9.9
spambase 44.1±9.0 14.0±3.4 14.4±2.7 21.2±5.0 21.6±4.4
vote 15.3±12.8 57.5±21.1 66.4±16.9 57.3±14.1 64.7±13.7

average 37.8 20.2 22.6 20.3 24.6

5 Conclusion

Given a number of trained component learners, it is better to build an ensemble that
contains some instead of all of the component learners. The selection, however, is gen-
erally difficult and some smart heuristics were used in previous studies. In this paper,
we study the problem of selective ensemble under the regularization framework. In the
proposed RSE approach, the selection problem is reduced to a QP problem which has
a sparse solution and can be efficiently solved. Moreover, RSE can exploit unlabeled
examples easily. Experiments show that RSE can generate ensembles with smaller sizes
but strong generalization ability, and the use of unlabeled data is helpful.

In this paper, RSE is designed to handle two-class classification problems. A multi-
class extension will be studied in future work. Considering that combining class prob-
abilities may lead to better results than combining class labels [20], it may also an
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interesting future work is to develop selective ensemble algorithms which selectively
combine class probabilities.
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Abstract. In feature selection the effect of over-fitting may lead to se-
rious degradation of generalization ability. We introduce the concept of
combining multiple feature selection criteria in feature selection methods
with the aim to obtain feature subsets that generalize better. The concept
is applicable with many existing feature selection methods. Here we dis-
cuss in more detail the family of sequential search methods. The concept
does not specify which criteria to combine – to illustrate its feasibility we
give a simple example of combining the estimated accuracy of k-nearest
neighbor classifiers for various k. We perform the experiments on a number
of datasets. The potential to improve is clearly seen on improved classifier
performance on independent test data as well as on improved feature se-
lection stability.

1 Introduction

A common practice in multidimensional classification methods is to apply a
feature selection (FS) procedure as the first preliminary step. The aim is to
avoid overfitting in the training phase since, especially in the case of small and/or
high-dimensional data, the classifiers tend to adapt to some specific properties of
training data which are not typical for the independent test data. The resulting
classifier then poorly generalizes and the classification accuracy on independent
test data decreases [2]. By choosing a small subset of “informative” features we
try to reduce the risk of overfitting and to improve the generalizing property of
the classifier. Moreover, FS may also lead to data acquisition cost savings as well
as to gains in processing speed.

In most cases a natural way to choose the optimal subset of features would be
to minimize the probability of classification error. As the exact evaluation of error
probability is usually not viable, we have to minimize some estimates of classi-
fication error (wrapper methods) or at least some estimates of its upper bound,
or even some intuitive probabilistic criteria like entropy, model-based class dis-
tances, distribution divergences, etc. (filter methods) [7]. In order to avoid biased
solutions the chosen criterion has to be evaluated on an independent validation

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 304–313, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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set. Nevertheless, the problem of overfitting applies to FS criteria and FS algo-
rithms as well [11] and cannot be fully avoided by means of validation. It is well
known that different optimality criteria may choose different feature subsets [2].
The resulting feature subsets may differ even if one and the same criterion is
applied to differently chosen training data. In this respect the “stability” of the
resulting feature subsets becomes a relevant viewpoint [8] [14].

It has been shown repeatedly in literature that classification system perfor-
mance may be considerably improved in some cases by means of classifier com-
bination [6]. In multiple-classifier systems FS is often applied separately to yield
different subsets for each classifier in the system [5] [4]. Another approach is to
select one feature subset to be used in all co-operating classifiers [10] [3].

In contrary to such approaches we utilize the idea of combination to eventually
produce one feature subset to be used with one classifier. We propose to combine
FS criteria with the aim to obtain a feature subset that has better generalization
properties than subsets obtained using single criteria. In the course of FS process
we evaluate several criteria simultaneously and, at any selection step, the best
features are identified by combining the criteria output. In the following we
show that subsets obtained by combining selection criteria output using voting
and weighted voting are more stable and improve the classifier performance on
independent data in most cases.

1.1 Notation

Let Y denote the set of all D = |Y| features. Further let Xd ⊂ Y denote the
current subset of d features, fi denote the i-th feature in the set of all features,
i = 1, . . . , D and J(·) denote a FS criterion. Without loss of generality we will
assume that higher J(·) value indicates better feature subset.

2 Decomposing Sequential Search Methods

To simplify the discussion of the criterion combination scheme to be proposed
let us focus only on the family of sequential search methods. Most of the known
sequential FS algorithms share the same “core mechanism” of adding and re-
moving features to/from a working subset. The respective algorithm steps can be
described as follows (for the sake of simplicity we consider only non-generalized
algorithms that process one feature at a time only):

Definition 1. Let ADD() be the operation of adding feature f+ to the working
set Xd to obtain Xd+1:

Xd+1 = Xd ∪ {f+} = ADD(Xd), Xd, Xd+1 ⊂ Y (1)

where
f+ = arg max

f∈Y \Xd

J +(Xd, f) (2)

with J+(Xd, f) denoting the criterion function used to evaluate the subset ob-
tained by adding f , where f ∈ Y \ Xd, to Xd.
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Definition 2. Let REMOVE() be the operation of removing feature f− from
the working set Xd to obtain set Xd−1:

Xd−1 = Xd \ {f−} = REMOV E(Xd), Xd, Xd−1 ⊂ Y (3)

where
f− = arg max

f∈Xd

J−(Xd, f) (4)

with J−(Xd, f) denoting the criterion function used to evaluate the subset ob-
tained by removing f , where f ∈ Xd, from Xd.

In standard sequential FS methods the impact of feature adding (resp. removal)
in one algorithm step is evaluated simply as follows:

J +(Xd, f) = J(Xd ∪ {f}), J −(Xd, f) = J(Xd \ {f}) , (5)

where J(·) is either a filter- or wrapper-based criterion [7] to be evaluated on
the subspace defined by the tested feature subset.

2.1 Simplified View of Sequential Search Methods

In order to simplify the notation for a repeated application of FS operations we
introduce the following useful notation

Xd+2 = ADD(Xd+1) = ADD(ADD(Xd)) = ADD2(Xd) , (6)

Xd−2 = REMOV E(REMOV E(Xd)) = REMOV E2(Xd) ,

and more generally

Xd+δ = ADDδ(Xd), Xd−δ = REMOV Eδ(Xd) (7)

Using this notation we can now outline the basic idea behind sequential FS al-
gorithms very simply. For instance:

SFS (Sequential Forward Selection [16] yielding a subset of t features):

1. Xt = ADDt(∅).

SFFS (Sequential Forward Floating Selection [9] yielding a subset of t features,
with optional search-restricting parameter Δ ∈ [0, D − t]):

1. Start with X0 = ∅, d = 0.
2. Xd+1 = ADD(Xd), d = d + 1.
3. Repeat Xd−1 = REMOV E(Xd), d = d − 1 as long as it improves solutions already

known for the lower d.
4. If d < t + Δ go to 2.

OS (Oscillating Search [13] yielding a subset of t features, with optional search-
restricting parameter Δ ≥ 1):
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1. Start with initial set Xt of t features. Set cycle depth to δ = 1.
2. Let X↓

t = ADDδ(REMOV Eδ(Xt)).
3. If X↓

t better than Xt, let Xt = X↓
t , let δ = 1 and go to 2.

4. Let X↑
t = REMOV Eδ(ADDδ(Xt)).

5. If X↑
t better than Xt, let Xt = X↑

t , let δ = 1 and go to 2.
6. If δ < Δ let δ = δ + 1 and go to 2.

DOS (Dynamic Oscillating Search [15] yielding a subset of optimized size p, with
optional search-restricting parameter Δ ≥ 1):
1. Start with Xp = ADD(ADD(∅)), p=2. Set cycle depth to δ = 1.
2. Compute ADDδ(REMOV Eδ(Xt)); if any intermediate subset Xi, i ∈ [p − δ, p] is

found better than Xp, let it become the new Xp with p = i, let δ = 1 and restart
step 2.

3. Compute REMOV Eδ(ADDδ(Xt)); if any intermediate subset Xj , j ∈ [p, p + δ] is
found better than Xp, let it become the new Xp with p = j, let δ = 1 and go to 2.

4. If δ < Δ let δ = δ + 1 and go to 2.

Obviously, other FS methods can be described using the notation above as well.

3 Combining Multiple Criteria

Different criterion functions may reflect different properties of the evaluated
feature subsets. Incorrectly chosen criterion may easily lead to the wrong subset.
Combining multiple criteria is justifiable from the same reasons as traditional
multiple classifier systems. It should reduce the tendency to over-fit by preferring
features that perform well with respect to several various criteria instead of
just one and consequently enable to improve the generalization properties of
the selected subset of features. The idea is to reduce the possibility of a single
criterion to exploit too strongly the specific properties of training data, that may
not be present in independent test data.

In the following we discuss several straight-forward approaches to criteria
combination by means of re-defining J + and J − in Definitions 1 and 2. We will
consider ensembles of arbitrary feature selection criteria J (k), k = 1, . . . , K. In
Section 4 concrete examples will be given for J (k), k = 1, . . . , 4 standing for the
accuracy of (2k − 1)-Nearest Neighbor classifier.

3.1 Simplest Criterion Combination

First let us discuss the simplest combination option. To realize a simple cri-
terion ensemble consisting of criteria J (k), k = 1, . . . , K, consider modifying
Definitions 1 and 2 as follows

J+
avg(Xd, f) =

1
K

K∑
k=1

J (k)(Xd ∪ {f}) (8)

J−
avg(Xd, f) =

1
K

K∑
k=1

J (k)(Xd \ {f}) ,

or, to put more preference on features that generally “fail the least” with respect
to all of the considered criteria, modify Definitions 1 and 2 as follows
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J +
min(Xd, f) = min

k=1,...,K
J (k)(Xd ∪ {f}) (9)

J −
min(Xd, f) = min

k=1,...,K
J (k)(Xd \ {f}) .

Remark: Maximizing would meaninglessly emphasize feature over-selection.
Clearly, none of the approaches (8) and (9) is applicable unless all J (k),

k = 1, . . . , K yield equally bounded values. This should apparently be no prob-
lem with wrappers, where the estimated classification accuracy can be easily
normalized to [0, 1]. However, both (8) and (9) produce feature preferences that
are hard to interpret, especially if the used criteria J (k), k = 1, . . . , K tend to
yield values of differing size (albeit equally bounded). Accordingly, no consistent
advantage over single-criterion FS has been observed throughout the numerous
experiments we have performed. Therefore, the simple criterion value combina-
tion as described in this Section is to be considered unsatisfactory and unable to
bring reliable improvement over the traditional single-criterion FS methods.

3.2 Multiple Criterion Voting

A better way to realize the idea of criterion ensemble is to implement a form of
voting. The intention is to reveal stability in feature preferences, with no restric-
tion on the principle or behavior of the combined criteria J (k), k = 1, . . . , K.
Accordingly, we will redefine J+ and J − to express averaged feature ordering
preferences instead of directly combining criterion values.

In the following we define J +
order as replacement of J+ in Definition 1. The

following steps are to be taken separately for each criterion J (k), k = 1, . . . , K
in the considered ensemble of criteria. First, evaluate all values J (k)(Xd ∪ {fi})
for i = 1, . . . , D − d, where fi ∈ Y \ Xd. Next, order these values descending
with possible ties resolved arbitrarily at this stage and encode the ordering using
indexes ij , j = 1, . . . , D − d, ij ∈ [1, D − d] where im �= in for m �= n:

J (k)(Xd ∪ {fi1}) ≥ J (k)(Xd ∪ {fi2}) ≥ · · · ≥ J (k)(Xd ∪ {fiD−d
}) . (10)

Next, express feature preferences using coefficient α
(k)
j , j = 1, . . . , D − d,

defined to take into account possible feature preference ties as follows:

α
(k)
i1

= 1 (11)

α
(k)
ij

=

{
α

(k)
ij−1

if J (k)(Xd ∪ {fi(j−1)}) = J (k)(Xd ∪ {fij})
α

(k)
ij−1

+ 1 if J (k)(Xd ∪ {fi(j−1)}) > J (k)(Xd ∪ {fij})
for j ≥ 2 .

Now, having collected the values α
(k)
j for all k = 1, . . . , K and j = 1, . . . , D−d

we can transform the criteria votes to a form usable in Definition 1 by defining:

J+
order(Xd, fi) = − 1

K

K∑
k=1

α
(k)
i . (12)

The definition of J−
order is analogous.
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3.3 Multiple Criterion Weighted Voting

Suppose we introduce an additional restriction to the values yielded by criteria
J (k), k = 1, . . . , K in the considered ensemble. Suppose each J (k) yields values
from the same interval. This is easily fulfilled, e.g., in wrapper methods where
the estimated correct classification rate is usually normalized to [0, 1]. Now the
differences between J (k) values (for fixed k) can be treated as weights expressing
relative feature preferences of criterion k. In the following we define J+

weigh as
replacement of J + in Def. 1. The following steps are to be taken separately for
each criterion J (k), k = 1, . . . , K in the considered ensemble of criteria. First,
evaluate all values J (k)(Xd ∪ {fi}) for fixed k and i = 1, . . . , D − d, where fi ∈
Y \Xd. Next, order the values descending with possible ties resolved arbitrarily
at this stage and encode the ordering using indexes ij, j = 1, . . . , D − d in the
same way as shown in (10). Now, express feature preferences using coefficient
β

(k)
j , j = 1, . . . , D − d defined to take into account the differences between the

impact the various features from Y \ Xd have on the criterion value:

β
(k)
ij

= J (k)(Xd ∪ {fi1}) − J (k)(Xd ∪ {fij}) for j = 1, . . . , D − d . (13)

Now, having collected the values β
(k)
j for all k = 1, . . . , K and j = 1, . . . , D−d

we can transform the criteria votes to a form usable in Definition 1 by defining:

J+
weigh(Xd, fi) = − 1

K

K∑
k=1

β
(k)
i . (14)

The definition of J−
weigh is analogous.

3.4 Resolving Voting Ties

Especially in small sample data where the discussed techniques are of particular
importance it may easily happen that

J +
order(Xd, fi) = J +

order(Xd, fj) for i �= j . (15)

(The same can happen for J−
order, J

+
weigh, J −

weigh.) To resolve such ties we employ
an additional mechanism. To resolve J + ties we collect in the course of FS
process for each feature fi, i = 1, . . . , D the information about all values (12)
evaluated so far. In case of J + ties the feature with higher average over previous
values (12) is preferred. (Tie resolution for J−

order, J+
weigh, J−

weigh is analogous.)

4 Experimental Results

We performed a series of FS experiments on various data-sets from UCI repos-
itory [1] and one data-set (xpxinsar satellite) from Salzburg University. Many
of the data-sets have small sample size with respect to dimensionality. In this
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type of problems any improvement of generalization properties plays crucial role.
To put the robustness of the proposed criterion voting schemes on test we used
in all experiments the Dynamic Oscillating Search algorithm [15] as one of the
strongest available subset optimizers, with high risk of over-fitting.

To illustrate the concept we have resorted in all experiments to combining
classification accuracy of four simple wrappers – k-Nearest Neighbor (k-NN)
classifiers for k = 1, 3, 5, 7, as the effects of increasing k are well understandable.
With increasing k the k-NN class-separating hyperplane gets smoother – less
affected by outliers but also less sensitive to possibly important detail.

Each experiment was run using 2-tier cross-validation. In the “outer” 10-fold
cross-validation the data was repeatedly split to 90% training part and 10%

Table 1. ORDER VOTING. Comparing single-criterion and multiple-criterion FS
(first and second row for each data-set). All reported classification rates obtained using
3-NN classifier on independent test data. Improvement emphasized in bold (the higher
the classification rate and/or stability measures’ value the better).

D
im

.
C

la
ss

es Rel. Classsif. Subset FS Stability FS time
sample FS rate size d C CW CW ATI

Data size Wrapper(s) Mean S.Dv. Mean S.Dv.
rel (GK) h:m:s

derm 36 6 1.657 3-NN .970 .023 9.6 0.917 .481 .664 .597 .510 00:03:24
1,3,5,7-NN .978 .027 10.7 1.676 .406 .636 .534 .486 00:15:50

hous 14 5 7.229 3-NN .707 .088 4.9 1.513 .308 .617 .456 .478 00:01:19
1,3,5,7-NN .689 .101 5.4 1.744 .389 .650 .497 .509 00:04:48

iono 34 2 5.162 3-NN .871 .078 5.6 1.500 .200 .349 .303 .216 00:02:10
1,3,5,7-NN .882 .066 4.7 1.269 .262 .454 .441 .325 00:06:09

mammo 65 2 0.662 3-NN .821 .124 4.2 1.833 .248 .476 .497 .343 00:00:30
1,3,5,7-NN .846 .153 3 1.483 .306 .519 .519 .420 00:01:23

opt38 64 2 8.773 3-NN .987 .012 9 1.414 .192 .449 .412 .297 01:34:14
1,3,5,7-NN .987 .012 9.5 1.360 .219 .512 .490 .362 06:22:00

sati 36 6 20.532 3-NN .854 .031 14.2 3.156 .367 .557 .347 .392 32:59:47
1,3,5,7-NN .856 .037 14.5 3.801 .392 .567 .357 .399 116:26:

segm 19 7 17.368 3-NN .953 .026 4.7 1.735 .324 .648 .610 .550 00:35:13
1,3,5,7-NN .959 .019 4.6 2.245 .282 .652 .625 .601 02:02:40

sonar 60 2 1.733 3-NN .651 .173 12.8 4.895 .244 .411 .327 .260 00:07:15
1,3,5,7-NN .676 .130 8.8 4.020 .185 .389 .350 .260 00:16:02

specf 44 2 3.034 3-NN .719 .081 9.5 4.522 .160 .281 .174 .157 00:03:56
1,3,5,7-NN .780 .111 9.8 3.092 .210 .358 .255 .237 00:15:36

wave 40 3 41.667 3-NN .814 .014 17.2 2.561 .486 .792 .680 .657 62:36:30
1,3,5,7-NN .817 .011 16.4 1.356 .477 .826 .753 .709 70:27:36

wdbc 30 2 9.483 3-NN .965 .023 10.3 1.676 .329 .507 .327 .345 00:12:18
1,3,5,7-NN .967 .020 10.1 3.176 .338 .530 .360 .375 00:41:07

wine 13 3 4.564 3-NN .966 .039 5.9 0.831 .544 .731 .568 .594 00:00:15
1,3,5,7-NN .960 .037 6 1.000 .556 .748 .575 .606 00:00:54

wpbc 31 2 3.194 3-NN .727 .068 9.1 3.048 .226 .347 .168 .211 00:01:53
1,3,5,7-NN .727 .056 7.2 2.600 .197 .312 .189 .188 00:04:41

xpxi 57 7 4.313 3-NN .895 .067 10.8 1.939 .434 .648 .618 .489 05:07:06
1,3,5,7-NN .894 .069 11.5 3.233 .421 .657 .630 .495 21:19:43
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Table 2. WEIGHTED VOTING. Comparing single-criterion and multiple-criterion
FS (first and second row for each data-set). All reported classification rates obtained
using 3-NN classifier on independent test data. Improvement emphasized in bold (the
higher the classification rate and/or stability measures’ value the better).

D
im

.
C

la
ss

es Rel. Classsif. Subset FS Stability FS time
sample FS rate size d C CW CW ATI

Data size Wrapper(s) Mean S.Dv. Mean S.Dv.
rel (GK) h:m:s

derm 36 6 1.657 3-NN .970 .023 9.6 0.917 .481 .664 .597 .510 00:03:24
1,3,5,7-NN .978 .017 10.3 1.552 .491 .721 .658 .573 00:17:42

hous 14 5 7.229 3-NN .707 .088 4.9 1.513 .308 .617 .456 .478 00:01:19
1,3,5,7-NN .716 .099 5.6 2.29 .455 .639 .459 .495 00:03:33

iono 34 2 5.162 3-NN .871 .078 5.6 1.500 .200 .349 .303 .216 00:02:10
1,3,5,7-NN .897 .059 4.9 1.758 .278 .426 .393 .345 00:07:40

mammo 65 2 0.662 3-NN .821 .124 4.2 1.833 .248 .476 .497 .343 00:00:30
1,3,5,7-NN .813 .153 2.6. 1.428 .210 .487 .542 .390 00:00:43

opt38 64 2 8.773 3-NN .987 .012 9 1.414 .192 .449 .412 .297 01:34:14
1,3,5,7-NN .988 .011 8.6 1.020 .304 .576 .569 .423 07:39:33

sati 36 6 20.532 3-NN .854 .031 14.2 3.156 .367 .557 .347 .392 32:59:47
1,3,5,7-NN .856 .038 13.8 2.182 .400 .618 .448 .456 99:30:44

segm 19 7 17.368 3-NN .953 .026 4.7 1.735 .324 .648 .610 .550 00:35:13
1,3,5,7-NN .959 .019 4.6 2.245 .354 .667 .644 .610 02:26:29

sonar 60 2 1.733 3-NN .651 .173 12.8 4.895 .244 .411 .327 .260 00:07:15
1,3,5,7-NN .614 .131 10.1 3.015 .192 .361 .301 .224 00:20:32

specf 44 2 3.034 3-NN .719 .081 9.5 4.522 .160 .281 .174 .157 00:03:56
1,3,5,7-NN .787 .121 9.1 3.590 .205 .369 .285 .229 00:17:54

wave 40 3 41.667 3-NN .814 .014 17.2 2.561 .486 .792 .680 .657 62:36:30
1,3,5,7-NN .814 .016 16.9 1.700 .560 .822 .727 .700 287:06:

wdbc 30 2 9.483 3-NN .965 .023 10.3 1.676 .329 .507 .327 .345 00:12:18
1,3,5,7-NN .967 .020 10.3 4.267 .347 .524 .352 .346 00:55:08

wine 13 3 4.564 3-NN .966 .039 5.9 0.831 .544 .731 .568 .594 00:00:15
1,3,5,7-NN .960 .037 6.6 1.200 .606 .741 .567 .606 00:00:28

wpbc 31 2 3.194 3-NN .727 .068 9.1 3.048 .226 .347 .168 .211 00:01:53
1,3,5,7-NN .686 .126 6.9 2.508 .196 .322 .211 .192 00:04:24

xpxi 57 7 4.313 3-NN .895 .067 10.8 1.939 .434 .648 .618 .489 05:07:06
1,3,5,7-NN .895 .071 11 2.683 .444 .638 .595 .475 38:35:53

testing part. FS was done on the training part. Because we used wrapper setup,
each criterion evaluation involved training and testing classifier(s). To utilize
the training data better, it was processed by means of “inner” 10-fold cross-
validation, i.e., was repeatedly split to 90% part used for classifier training and
10% part used for classifier validation. The averaged classifier accuracy then
served as single FS criterion output. Each selected feature subset was eventually
evaluated on the 3-NN classifier, trained on the training part and tested on
the testing part of the “outer” data split. The resulting classification accuracy,
averaged over “outer” data splits, is reported in Tables 1 and 2.

In both Tables 1 and 2 for each data-set the multiple-criterion results (second
row) are compared to the single-criterion result (first row) obtained using 3-NN
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as wrapper. For each data-set its basic parameters are reported, including its
class-averaged dimensionality-to-class-size ratio. Note that in each of the “outer”
runs possibly different feature subset can be selected. The stability of feature
preferences across the “outer” cross-validation runs has been evaluated using the
stability measures C, CW , CWrel and ATI (a.k.a. GK), all yielding values from
[0, 1], which reflect various aspects of the stability problem as described in [14].
We also report the total time needed to complete each 2-tier cross-validation
single-threaded experiment on an up-to-date AMD Opteron CPU.

Table 1 illustrates the impact of multiple criterion voting (12) as described in
Section 3.2. Table 2 illustrates the impact of multiple criterion weighted voting
(14) as described in Section 3.3. Improvement is emphasized in bold. The results
presented in both Tables 1 and 2 clearly show that the concept of criteria ensem-
ble has the potential to improve both the generalization ability (as illustrated
by improved classification accuracy on independent test data) and FS stability
(sensitivity to perturbations in training data). The positive effect of either (12)
or (14) is not present in all cases (in some cases the performance degraded) but
it is clearly prevalent among the tested datasets.

It can be also seen that none of the presented schemes can be identified as
the better choice. Moreover, care should be taken when applying either of the
two, as the criterion ensemble effect may be even counterproductive as was the
case of house dataset in Table 1 and sonar and wpbc datasets in Table 2.

5 Concluding Remarks

It has been shown that combining multiple critera by voting in FS process has
the potential to improve both the generalization properties of the selected fea-
ture subsets as well as the stability of feature preferences. The actual gain is
problem dependent and can not be guaranteed, although the improvement on
some datasets is substantial.

The idea of combining FS criteria by voting can be applied not only in se-
quential selection methods but generally in any FS method where a choice is
made among several candidate subsets (generated, e.g., randomly as in genetic
algorithms). Additional means of improving robustness can be considered, e.g.,
ignoring the best and worst result among all criteria, etc.
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Abstract. Classical approaches for network traffic classification are based on
port analysis and packet inspection. Recent studies indicate that network pro-
tocols can be recognised more accurately using the flow statistics of the TCP
connection. We propose a classifier selection ensemble for a fast and accurate
verification of network protocols. Using the requested port number, the classifier
selector directs the decision to an ensemble member responsible for this port.
The chosen ensemble member ramifies the decision further using the “sign pat-
tern” of the first four packets. Finally, a decision tree classifier labels the flow
as ‘accepted’ or ‘rejected’ using the sizes of the first four packets. The ensemble
has modular architecture which allows further modules to be individually trained
and added. The classifiers were cross-tested using designated training and test-
ing data of network traffic traces from three institutions. The results show that
accuracy need not be sacrificed for speed of classification, and that the protocol
classification is robust from one network to another.

1 Introduction

Network traffic classification is important for ensuring quality of service (QoS), se-
curity, optimal priority assignment, and general traffic management. Fast and accurate
catching of an inadequate application protocol is imperative when security is concerned.
Ideally, a smart firewall would block such protocols at their onset. The basic traffic unit
we consider in this paper is termed a flow. We define a flow as a bi-directional ordered
sequence of packets with the same IP addresses and TCP port numbers. A flow is either
accepted by the classifier as one of the valid protocols or rejected as unknown or known
but non-allowed. Usually, to label a flow, the information of all packets is needed. For
this information to be extracted, the flow must have entered the network, so the classi-
fication would come when it may be too late to decline service.

The main approaches to traffic classification are port-based, payload-based and
statistical.

The port-based approach uses the assumption that each port is associated with one
protocol [13]. The protocol classification is made simply by reading the port number.
However, this method is not suitable for networks with dynamic port allocation. For
such networks an undesirable application may be directed through a port conventionally

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 314–323, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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associated with an acceptable application. Thus the classification of applications cannot
be done from the port number only.

Passing a non-allowed protocol through an accepted port may also be a result of
malicious activity. Another problem with the port-based approach is that it will not
prevent ‘tunnelling’, i.e., protocol X embedded within and disguised as protocol Y ,
where Y an accepted protocol for the network while X might not be [3,5].

The payload-based approach looks at the content of the packets [15]. The protocol
verification is more accurate but requires more computational resources. An adverse
issue associated with the payload-based approach is related to the privacy of the content.
Also, when the traffic is encrypted the approach will not work [9].

The statistical approach takes characteristics of the flow as the input features, e.g.,
number of packets; their length; minimum, maximum and average length, etc. Various
statistical classifiers have been tried on the extracted features, e.g., Bayesian networks
[1], Support Vector Machines [12], Gaussian Mixture Modelling and Decision Trees
[6]. Statistical tests such as goodness of fit, χ2 and Kolmogorov-Smirnov have also
been tried [7] to single out anomalies such as incidents of skype application within
an http protocol. Extracting discriminative features is a major focus of the works
on statistical traffic classification [1,12]. It is worth noting that most of the statistical
approaches proposed so far [1,6,16] need to be retrained when the number of allowed
protocols varies.

The main problem of both the payload-based and the statistical approaches is that
traffic flows can only be classified once they have passed through the system completely.
This limits their applicability for online classification. Anyway, it has been recently
shown that accurate classification can be achieved using only the sizes and the directions
of the first few packets of the TCP connection [2,6].

The requirement for operational speed brings in the idea of classifier selection en-
semble where only one of a set of ‘experts’ has to make a decision [11]. The ensemble
consists of member classifiers (experts) and an ‘oracle’ that authorises one of the clas-
sifiers to pass its decision as the ensemble decision. The oracle may have pre-defined
regions of competence for the classifiers [14] or dynamically allocated regions [17].
With dynamic competence allocation the suggested labels for the object of interest x
are further analysed using past data. The classifier whose predicted label has been most
accurate for the neighbourhood of x is chosen to produce the ensemble decision. While
dynamic allocation has been found to be very successful, it requires that all ensemble
members classify x. Besides, past data needs to be stored and searched through. Since
we are aiming at a fast classification, we propose to use pre-defined competence re-
gions and train a bespoke classifier for each region. We propose to use the port number
(pretend protocol name) as the oracle determining the regions of competence. The di-
rections and sizes of the first four packets of the TCP flow are then used as the features
in a further 2-stage classifier. The features and the modular architecture were chosen
so that the classification is both fast and accurate, and new modules can be trained and
added to the system without re-training any already trained part.

The rest of the paper is organised as follows. Section 2 describes the proposed system
and Section 3 shows the experimental results. Our conclusions and future plans are
given in Section 4.
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2 A Classifier Selection Ensemble for Network Traffic
Classification

We propose the following classifier selection ensemble. Each port number has a classi-
fier trained to verify that the traffic through that port follows the expected protocol. Thus
the classifier selector only checks the port number and directs the flow to the respective
classifier. If the port number is not one of the pre-defined set the flow is rejected.

2.1 The Features

Following [1],[6] and [7], we propose to use only the first four packets and record the
following features:

– x0, the pretend name of the flow guessed from the port number;
– x1, x2, x3, x4, the directions of the first four packets, xi ∈ {0, 1}, where 0 means

that the packet is transferred from server to client, and 1, from client to server;
– s1, s2, s3, s4, the payload sizes of the first four packets, where si are positive inte-

gers. As in [6], we leave off packets without payload because they are mostly used
to exchange connection state information.

The generic architecture of the classifier ensemble is shown in Figure 1.

�

�

�

�
Network � Pretend name

filter

Port #

�

(Pretend name)
Rejected

� Sign
filter

4 Signs

��

(Signs)
Rejected

� Payload size
classifier

4 Sizes

��

(Payload sizes)
Rejected

� Accepted

The Selected ClassifierThe Oracle

Fig. 1. The generic classifier ensemble architecture. Only the selected ensemble member is
shown. Each ensemble member is implemented as a cascade classifier with 2 stages.

2.2 Classifier Selector: The Pretend Name

The port information is often neglected in classifying network traffic flow [6]. In this
study we use this information in two ways. First, we label as unknown all flows whose
port number (pretend name) does not appear in a pre-set list. Second, the pretend
name is used to branch out the classification to a bespoke classifier. This partitions the
feature space on the value of x0, thereby reducing a multi-class problem to a two-class
problem: match versus mismatch of the pretend name.
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2.3 Ensemble Classifier – Stage 1: Sign Filter

To illustrate the consecutive steps of the system design we use a data set consisting
of network traffic traces at the University of Brescia, Italy [6]. The data set is divided
into training (58 478 instances) and testing (75 163 instances). The known protocols in
the training data are: pop3, smtp, http, msn, ftp and BitTorrent. The testing
data contains an additional class named ‘unknown’. Table 1 shows a summary of the
training data.

Table 1. Summary of the network traffic data (training) from the University of Brescia, Italy

Signs Protocol and port number
pop3 ftp smtp msn BitTorr http

1 2 3 4 110 21 25 1863 6881 80
0 0 0 0 0 138 16 0 0 3
0 0 0 1 1 75 55 0 0 0
0 0 1 0 21 216 543 0 0 0
0 0 1 1 0 0 4 0 1 0
0 1 0 0 749 21 604 1 0 0
0 1 0 1 18823 5845 18186 0 1 0
0 1 1 0 17 1 18 0 1 0
0 1 1 1 0 0 1 0 0 0
1 0 0 0 0 0 0 328 23 5348
1 0 0 1 0 0 0 30 520 240
1 0 1 0 0 0 0 660 3609 826
1 0 1 1 0 0 0 4 753 12
1 1 0 0 0 0 0 1 8 427
1 1 0 1 0 0 0 0 87 76
1 1 1 0 0 0 0 0 9 108
1 1 1 1 0 0 0 0 45 23

The table shows that groups of protocols can be distinguished by the signs of the first
four packets. For example, protocolsmsn (1863),BitTorrent (6881) and http (80)
hardly ever begin with a packet from sever to client (x1 = 0). The 7 exceptions in the
table (out of 13 144 flows) may be thought of as recording mistakes. The distribution
of the data suggests that the four signs can be used to filter out very quickly protocols
that clearly do not match their pretend name. This constitutes the second stage of the
cascade classifier, called the sign filter. A rejection threshold pr is chosen next. The
occurrences if each protocol (a column in Table 1) are scaled to form a probability
distribution across the 16 sign combinations. All values with likelihood less than the
chosen threshold are treated as outliers. Thus for each protocol, there are “impossi-
ble” sign combinations which make up the filter for that pretend name. For example,
with threshold pr = 0.02, the “allowed” combination of signs for the http proto-
col (80) are 1000, 1001, 1010, and 1100. All other protocols will be rejected by the
sign filter.
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Fig. 2. Scatterplot of the LBNL training data with sign pattern 0100 in the plane spanned by the
first two size features, s1 and s2

2.4 Ensemble Classifier – Stage 2: Decision Tree Classifier Using Payload Sizes

A separate classifier is trained for each sign combination that passes through the sign
filter. For example, consider a protocol with pretend name pop3 (110) and sign pat-
tern 0100. Figure 2 shows a scatterplot of the data of network traffic traces from the
Lawrence Berkeley National Laboratory (LBNL) with sign pattern 0100. The data
points from pop3 form a distinctive oblong cluster, away from the ‘+’–shaped clus-
ter of the other protocols with the same sign pattern.1

Figure 3, on the other hand, displays the same scatterplot for the training data from
the University of Brescia (UNIBS) and the Cooperative Association for Internet Data
Analysis (CAIDA). The ftp protocol is also shown because it is present in these two
data sets.

The figures show that:

1. Protocols pop3 and ftp are very close to one another. To build a good classifier,
both protocols should be present in the training data.

2. The classes have intricate irregular shapes (UNIBS and CAIDA data) which sug-
gests that a decision tree classifier may fare well for this problem.

3. The class ‘other’ is different from one data set to another. The geometrical configu-
ration of this class will depend on what protocols are accepted in the network. Note
that class ftp in Figure 3 is, in fact, part of class ‘other’.

4. Curiously, even the same class (pop3) has different appearances for the three dif-
ferent networks. This means that an ensemble has to be trained individually for
each network. Hence an ensemble trained on the UNIBS data cannot be expected
to be overly accurate on LBNL and CAIDA data, and vice versa.

Our ensemble differs from the stereotype in that a flow can be classified as “unaccepted”
at each stage: the combiner (classifier selector), the sign filter and the decision tree

1 Since the payload size is a discrete variable, multiple points may share both coordinates (x, y).
A small random noise is added to all data so that the points move slightly off (x, y) in a random
way. This will create an impression of the density of the data.
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Fig. 3. Scatterplot of the UNIBS and CAIDA training data with sign pattern 0100 in the plane
spanned by the first two size features, s1 and s2

classifier. This speeds up the decision process, which is important for online traffic
classification.

3 Experimental Evaluation

A summary of the content of the three data sets used in this study is given in Table 2.
For the experimental evaluation we chose the three protocols that are common to

all three data sets, http, smtp and pop3. A pilot experimental study on the UNIBS
training data, using Weka [8], reinforced our choice of the decision tree classifier. Fur-
ther to that, we carried out the following sets of experiments, where A, B, C refer to the
three protocols and a, b, c refer to the three data sets:

(1). Train a classifier for a protocol with pretend name A using training data set a.
To do this, assume that all flows have pretend name A so as to form a training
data set with class labels ‘A’ and ‘other’. Identify the sign patterns relevant for
protocol A. Filter the data for each sign pattern. Using this data, train a decision
tree classifier to distinguish between the two classes.

(2). Test the classifier on testing data sets b and c.
(3). Repeat steps (1) and (2) for protocols B and C

In this imaginary scenario, all traffic takes the pretend identity of the protocol in ques-
tion. In reality, the likelihood of class ‘other’ will be much smaller. Therefore the clas-
sification accuracy achieved in the experiments is a pessimistic estimate of the accuracy
expected during operation. Because of the specific experimental set-up, a direct com-
parison with classification accuracies obtained elsewhere may be misleading.

The cross-data classification accuracies are shown in Table 3.
Figure 4 gives the plot of Sensitivity versus 1−Specificity for the protocol pop3.2

The different markers correspond to the sources of the training data. Two of the

2 Sensitivity is the proportion of positives detected out of all positives (proportion correctly ver-
ified protocols). Specificity is the proportion of true positives out of all classified as positives
(proportion of true protocols out of all non-rejected protocols).
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Table 2. Protocols and number of flows in the three data sets

UNIBS CAIDA LBNL
Protocol Port Training Testing Training Testing Training Testing
pop3 110 19611 19940 9591 2386 1172 1426
smtp 25 19427 19480 11831 20722 20825 1304
http 80 7063 4928 5930 12459 81984 38228
ftp 21 6296 14458 1652 16202 – –

BitTorrent 6881 5057 7412 – – – –
msn 1863 1024 1033 – – – –

netbios-ssn 139 – – – – 4575 10113
https 443 – – 25427 7896 18013 3283

oms 4662 – – 1716 2491 – –
imap4 993 – – – – 7677 422

other – 7912 – 1423 – 4584

Table 3. Classification accuracy of the ensemble member classifiers (cross-data training and
testing)

pop3 smtp http
UNIBS LBNL CAIDA

UNIBS 95.69 99.32 75.57
LBNL 78.99 99.11 76.53

CAIDA 83.42 99.21 99.83

UNIBS LBNL CAIDA

98.75 99.01 96.67
81.46 99.17 95.39
80.44 99.34 99.54

UNIBS LBNL CAIDA

97.93 88.14 97.75
99.29 95.49 94.78
98.50 93.68 97.94

anomalies with a substantial slip in the classification accuracy are indicated. The rea-
sons for the inadequate classification can be illustrated with the findings in Figures 2
and 3. The presentation of the pop3 protocol is very different from one network to
another. In addition, the classification of pop3 is further impaired by its similarity to
ftp. The two marked points are for ensembles trained on UNIBS and LBNL and tested
on CAIDA. The pop3 protocol have similar appearance in the UNIBS and LBNL data
and a different, more scattered, appearance in the CAIDA data (Figure 3 (b)). Thus the
ensembles trained on UNIBS and LBNL data are ill-equipped to classify the version of
pop3 in CAIDA.

Figure 5 plots Sensitivity versus 1−Specificity for protocols smtp and http. There
are two inaccurate classifiers for smtp. This time the mismatch is between the smtp
traffic in the UNIBS and LBNL data. The two points that lie closer to the diagonal line
in subplot (a) are the cross-testing UNIBS-LBNL and LBNL-UNIBS.

The experimental results show that the ensemble members have accuracies compa-
rable to those in the state-of-the-art literature on traffic classification [1,6,15]. The high
accuracy of the cross-data experiment, with a few exceptions discussed earlier, indi-
cates that the statistical approach to traffic classification is robust across networks, so
universal solutions can be sought. This reflects the fact that the network protocols have
standard definitions, and the features we are using are not affected by differences in
network configurations, traffic intensity or delays.
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Fig. 4. Sensitivity-Specificity plot for protocol pop3. The markers indicate the training data
source.
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Fig. 5. Sensitivity versus 1−Specificity for protocols smtp and http

4 Conclusion

We propose a classifier selection ensemble for network traffic verification. Upon re-
ceiving the first four packets of a flow, the classifier selector directs the decision to an
ensemble member based upon the requested port number. The classifier responsible for
this port number ramifies the decision further using the “sign pattern” of the four pack-
ets. A decision tree classifier labels the flow as ‘accepted’ or ‘rejected’. The ‘accepted’
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class is the protocol conventionally associated with the requested port number. The
flow can be classed as ‘rejected’ at every stage of the ensemble classification: the oracle
rejects non-allowed port requests, the sign filter rejects flows whose sign patterns are
highly unlikely, and, finally, the decision tree classifier is responsible for the fine dis-
crimination based on the sizes of the first four packets. Without looking at the payloads,
it is difficult to detect “tunnelling” behaviours where an unaccepted protocol is wrapped
and carried within an accepted one. In our system, tunnelling may pass through the port
and the sign filters but then land as an outlier in the space of the payload sizes. Our
system is expected to reject the protocol at this final stage.

The classifiers were cross-tested using designated training and testing data of net-
work traffic traces from three institutions: UNIBS, LBNL and CAIDA. The results show
the robustness of the statistical approach to traffic classification.

While the ensemble accuracy is comparable to that reported in the literature [1,6,15]
the proposed ensemble has the following advantages:

– Compared to classifiers that use the whole flow, our protocol verification is quick, as
the sequence of decisions is based on the port number and the directions and sizes of
the first four packets of a flow. Should operational speed permit it, the ensemble can be
used online; a flow can be stopped before the application is processed by the network.
– The proposed ensemble needs only two parameters. First, we must choose a threshold
for selecting the valid sign patterns (Here we used 2%. All sign patterns with likelihood
higher than the threshold will merit separate decision tree classifiers. Flows with un-
likely sign patterns are rejected.) The second parameter is the level of pruning for the
decision tree classifiers.
– The structure of the ensemble is modular. Classifiers can be trained and added without
disturbing the rest of the ensemble. For example, if a new port joins the list of allowed
ports, an ensemble member can be trained separately for this port. Also, if the traffic
changes, e.g., by allowing a new application through an existing protocol, and an un-
likely sign pattern starts appearing more often, a separate classifier can be trained for
this sign pattern and added to the ensemble.

One interesting future research direction comes from the fact that network traffic
changes by definition, and so would the class descriptions (‘accepted’ and ‘rejected’)
[10]. To respond to these changes, the ensemble should be further developed so as to
cope with concept drift. Moreover, we are planning to implement our protocol verifica-
tion system in an online platform such as the one described in [4].
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Abstract. We consider the problem of multi-modal pattern recogni-
tion under the assumption that a kernel-based approach is applicable
within each particular modality. The Cartesian product of the linear
spaces into which the respective kernels embed the output scales of sin-
gle sensors is employed as an appropriate joint scale corresponding to the
idea of combining modalities at the sensor level. This contrasts with the
commonly adopted method of combining classifiers inferred from each
specific modality. However, a significant risk in combining linear spaces
is that of overfitting. To address this, we set out a stochastic method for
encompassing modal-selectivity that is intrinsic to (that is to say, theo-
retically contiguous with) the selected kernel-based pattern-recognition
approach.

The principle of kernel selectivity supervision is then applied to the
problem of signature verification by fusing several on-line and off-line
kernels into a complete training and verification technique.

1 Introduction

It is often appropriate to treat observed phenomena via several distinct feature
modalities (frequently with differing measurement scales) for the purposes of
pattern recognition [1,2]. Such feature scales xi ∈ Xi may be such that it is
convenient, or even necessary, to treat real-world objects ω ∈ Ω via a pair-wise
similarity measure over these features

(
xi(ω′), xi(ω′′)

)
. It is therefore assumed

that mode-specific functions Ki(x′
i, x

′′
i ) can be delimited over the output scales of

the sensors in question Xi × Xi → R. The various K(x′, x′′) functions constitute
a kernel if they embed the sensor output Xi into a linear space via analogy
with the inner-product. This condition is satisfied if the Kernel function defines
a semidefinite matrix over any finite set of measured objects. The embedding
may be of a significantly (even infinitely) different dimensionality to that of the
original sensor scale, depending on the kernel characteristics.
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Kernel-based multi-modal pattern recognition presents a number of difficulties
and advantages over classical pattern-recognition in consequence of its pairwise
nature. In particular, the problem of the composition and selection of feature
modalities becomes acute, since we cannot simply assume the Euclidean vec-
torisablity of composite data without explicit construction of a kernel in the
composite space. This problem is further compounded by the potential pres-
ence of training data that is not equally represented within each modality - as
sometimes occurs in census returns, or in independently-trained classification
systems, for example, in multimodal biometrics1.

However, when xi(ω) ∈ Xi = R, the kernel defined by the product Ki(x′
i, x

′′
i ) =

x′
ix

′′
i generates an appropriate and natural embedding of the multimodal data.

The class of discriminative classifiers known as Support Vector Machines
(SVMs) may thus be employed for two-class pattern recognition within R

n, once
modalities are combined via the joint kernel K(x′,x′′) =

∑n
i=1 x′

ix
′′
i (this ap-

proach can also be used for highly-complex kernel-represented modalities [3,4,5]).
Despite the improved resilience of the SVM approach to over-fitting by virtue

of its adjustment of capacity to the requirements of hyperplane description, it
is often still necessary to combine modality-specific features only after selection
has taken place. Feature selection (FS) techniques are of two broad types: filters
and wrappers [6].

Filters are applied to the feature set irrespective of classification methodology,
in contrast to wrappers. In this case, selection is either continuous (via weight-
ing of the features) or else carried-out through absolute inclusion/exclusion of
features from the total set. Wrappers, while considering feature selection in con-
junction with classification, do not, in general, seek to do so via a single algo-
rithmic approach (ie one in which FS is implicit in the process of classification
itself - an exception being [7]). This is perhaps because of the danger of sam-
ple variability; if classification and FS progress interdependently, outliers can
potentially affect the process disproportionately in the earlier stages. If, on the
other hand, there exists a method of assigning selectivity a priori, this danger is
mitigated to a large extent. Ideally, we require a range of behaviours, from the
complete absence of selection, to the selection of only singular features.

In the following paper, we show, following [9] and [10], how selectivity may
be incorporated into the Relevance Kernel Machine (RKM) [4,5], a continuous
wrapper FS method previously described by the authors. The desired selectivity
is achieved through a meta-parameter that controls the tendency of the RKM
to generate zero components in the orientation of the decision plane (and hence
the degree of elimination of constituent kernels). Thus, the selectivity parameter
corresponds directly to model complexity, with the appropriate level of selectiv-
ity determined by cross validation or (in future work) via information-theoretic
considerations.

1 This missing data issue also occurs, albeit less acutely, in standard pattern recog-
nition: the reason for its particularly problematic nature in kernel-based pattern-
recognition is the inability to construct an embedding space when presented with an
incomplete kernel Gram matrix w.r.t all of the measured objects.
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The Relevance Kernel Machine with supervised selectivity is then applied to
the problem of signature verification which consists in testing the hypothesis
that a given signature belongs to the person having claimed his/her identity.
Depending on the initial data representation, it is adopted to distinguish be-
tween on-line and off-line signature verification [8]. Any method of signature
verification is based, finally, on a metric or kernel in the set of signatures. The
selective kernel fusion technique considered in this paper serves as a natural way
of easily combining on-line and off-line methods into an entire signature veri-
fication procedure. Experiments with signature database SVC2004 have shown
that the multi-kernel approach essentially decreases the error rate in comparison
with verification based on single kernels.

2 A Bayesian Strategy for Determining the Discriminant
Hyperplane

Let objects ω ∈ Ω, measured by n features with modality-specific scales xi(ω) ∈
Xi, be allocated to one of two classes y(ω) ∈ Y = {−1, 1}. For convenience, we
assume an underlying distribution in the set of observable feature values and
associated class indices;

(
x1(ω), ..., xn(ω), y(ω)

)
∈ X1 × ... × Xn × Y. Training

set members (X, Y ) = {x1j , ..., xnj , yj, j = 1, ..., N }, xij = xi(ωj), yj = y(ωj)
are i.i.d. The kernel approach demands only that a real value similarity function
exists - it thus obviates the distinction between different kinds of feature scales,
so that we can assume that all the modality-specific features xi(ω) ∈ Xi are
real-valued: Xi = R.

Functions ϕ1 (x1, ..., xn |a1, ..., an , b, y) with y = ±1 are thus two parametric
families of probability densities in the composite feature space X1 × ... × Xn.
We assume marginally overlapping concentrations, such that the two together
can be associated with a discriminant hyperplane

∑n
i=1 aixi + b ≷ 0. We further

associate improper (ie non-unity integral) densities with the distributions:

ϕ (x1, ..., xn | a1, ..., an , b, y) ={
h, y (

∑n
i=1 aixi+b) > 1,

exp
[
−c
(
1−y (

∑n
i=1 aixi+b)

)]
, y (

∑n
i=1 aixi+b) < 1,

The constant h then represents the extent to which the classes are equivalent to
a uniform distribution over their respective half-spaces. The parameter c deter-
mines the extent to which the classes overlap.

The direction vector (a1, ..., an) of the discriminant hyperplane
∑n

i=1 aixi +
b ≷ 0 will, in the absence of a training mechanism, be considered a random
vector distributed in accordance with some specific prior density Ψ(a1, ..., an |μ)
parametrized by μ. No such constraint is assumed in b, hence, Ψ(a1, ..., an, b |μ) ∝
Ψ(a1, ..., an|μ).

With respect to the training set, the a posteriori joint distribution density
of the parameters of the discriminant hyperplane is consequently proportional
to the product P (a1, ..., an, b |X, Y, μ) ∝ Ψ(a1, ..., an |μ) × Φ(X |Y, a1, .., an, b).
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The objective of training is thus to maximise the a posteriori density:

(â1, ..., ân, b̂) =
argmax [lnΨ(a1, ..., an |μ) + lnΦ(X |Y, a1, .., an, b)] .

This correlates to the training criterion:{
− lnΨ(a1, ..., an|μ)+c

∑N
j=1δj → min

(a1,...,an,b,δ1,...,δN)
,

yj (
∑n

i=1 aixij +b) ≥ 1−δj, δj ≥ 0, j = 1, ..., N.
(1)

Note that if we set C = 2rc, with r the common variance of the independent
constituent variables (having zero mean), and omit the parameter μ (such that
Ψ(a1, ..., an |μ) = Ψ(a1, ..., an) is the joint normal distribution), we obtain the
classical SVM over the real-valued features xij ∈ Xi = R with the direction
vector elements ai ∈ Xi = R constituting a discriminant hyperplane in X1 × ...×
Xn = R

n such that:{∑n
i=1 a2

i + C
∑N

j=1 δj → min
(a1,...,an,b,δ1,...,δN)

,

yj (
∑n

i=1 aixij +b) ≥ 1−δj, δj ≥ 0, j = 1, ..., N.
(2)

Specifically, if the kernels Ki(x′
i, x

′′
i ) : Xi×Xi → R defined for the sensor features

xi ∈ Xi are inserted into (2), we obtain the optimization:⎧⎪⎨⎪⎩
∑n

i=1 Ki(ai, ai)+C
∑N

j=1δj → min
(a1,...,an,b,δ1,...,δN)

,

yj (
∑n

i=1 Ki(ai, xij) + b) ≥ 1 − δj , δj ≥ 0,
j = 1, ..., N.

(3)

It is important to note that, in general, the elements ai of the hyperplane di-
rection vector exist in the embedding space X̃i ⊇ Xi, rather than the original
feature space Xi.

A central advantage of SVMs, in terms of their capacity for overfitting, is that
at the minimum of the training criterion (such that ai =

∑
j: λj>0 λjyjxij ∈ X̃i),

the discriminant hyperplane applicable to any new point (xi ∈ Xi, i = 1, . . . , n)∑
j: λj>0

λjyj

∑n

i=1
Ki(xij , xi) + b ≷ 0 (4)

is determined only by those Lagrange multipliers with λj ≥ 0 in the dual form of
(3), ie the support objects. The dual problem, which can be solved by quadratic-
programming is thus :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
j=1

λj−(1/2)
N∑

j=1

N∑
l=1

yjyl

( n∑
i=1

Ki(xij , xil)
)
λjλ l → max,

N∑
j=1

yjλj = 0, 0 ≤ λj ≤ C/2, j = 1, ..., N.

(5)

The following section will consider a distinct form of the a priori distribution
Ψ(a1, ..., an |μ), that gives rise to a feature- and kernel-selective SVM, such that
the parameter μ controls the desired selectivity level.
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3 The Continuous Training Technique with
Supervised Selectivity

We first assume a conditional normal distribution for the direction elements ai

in relation to independent random variances given by ri:

ψ(ai | ri) =
(
1
/

r
1/2
i (2π)1/2

)
exp

(
−(1/2ri)a2

i

)
,

Ψ(a1, ..., an | r1, ..., rn) ∝(∏n
i=1 ri

)−1/2

exp
(
−(1/2)

∑n
i=1 (1/ri)a2

i

)
.

There is hence a hyper-ellipsoidal relationship between the direction elements ai.
We further assume that the reciprocatedvariances are gammadistributed (a rea-

sonable, maximum-entropy-based assumption for positive-constrained scale vari-
ables), ie: γ

(
(1/ri) |α, β

)
∝ (1/ri)α−1 exp (−β (1/ri)) (with means E(1/ri) =

α/β and variances E
(
(1/ri)2

)
= α

/
β2). We then set the following parameter rela-

tions to enable convenient characterisation of the distribution; α = (1 + μ)2
/
2μ,

β = 1/2μ.
There is hence now a parametrically-defined set of distributions in the direc-

tion elements ai, dependant only on μ : μ ≥ 0 (where E(1/ri) = (1 + μ)2 and
E
(
(1/ri)2

)
= 2μ(1 + μ)2).

In behavioral terms it should be noted that, as μ → 0, we find that 1/ri
∼=

... ∼= 1/rn
∼= 1. However, as μ increases, this identity constraint is progressively

relaxed.
Proceeding with the derivation, we now eliminate the inverse variances as fol-

lows. Firstly, we note that the joint distribution of independent inverse variances
with respect to μ is proportional to the product:

G(r1, ..., rn |μ)∝
(

n∏
i=1

(1/ri)

)(1+μ)2/2μ−1

exp

(
−1/2μ

n∑
i=1

(1/ri)

)
.

The maximum of the joint a posteriori density function P (a1, ..., an, b, r1, ..., rn

|X, Y, μ) then gives us the required training criterion: we see that it is propor-
tional to the product: Ψ(a1, ..., an | r1, ..., rn) G(r1, ..., rn |μ) Φ(X | Y, a1, .., an, b).

In the case of real-valued features xi ∈ R, the resulting training criterion
hence has the form:⎧⎪⎪⎨⎪⎪⎩

∑n
i=1

[
(1/ri)

(
a2

i +(1/μ)
)
+((1/μ)+1+μ) lnri

]
+

C
∑N

j=1 δj → min (ai∈R, ri, b, δj) ,

yj (
∑n

i=1aixij +b) ≥ 1 − δj , δj ≥ 0, j = 1, ..., N,
ri ≥ ε,

(6)

ε > 0 is the inclusion criterion for features: it is thus a sufficiently small positive
real number. In general, a smaller ri will imply a smaller ai. As ri → ε, the ith
feature will affect the discriminant hyperplane

∑n
i=1 aixi + b ≷ 0 increasingly

weakly.
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Again, we obtain the kernel-based training criterion by substituting into (6)
Ki(ai, ai) for a2

i and replacing aixij by Ki(ai, xij) to give:⎧⎪⎨⎪⎩
∑n

i=1

[
(1/ri)

(
Ki(ai, ai) + (1/μ)

)
+(

(1/μ) + 1 + μ
)
ln ri

]
+ C

∑N
j=1 δj → min

ai∈X̃i,ri,b,δj

,

yj

(∑n
i=1Ki(ai, xij)+b

)
≥1−δj, δj ≥0, j=1, . . . ,N, ri ≥ ε.

(7)

As with SVMs, there is no explicit need to evaluate either the ai ∈ R in (6)
or the ai ∈ X̃i in (7); it is sufficient merely to establish the non-zero Lagrange
multipliers λj ≥ 0 in the dual representation ai = ri

∑
j: λj>0 yjλjxij . We do

this via quadratic-programming using a modification of (5):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
j=1

λj−
1
2

N∑
j=1

N∑
l=1

yjyl

( n∑
i=1

riKi(xij , xil)
)
λjλ l→max,

N∑
j=1

yjλj = 0, 0 ≤ λj ≤ C/2, j = 1, ..., N.

(8)

This gives the Kernelised decision hyperplane:∑
j: λj>0

yjλj

∑n

i=1
riKi(xij , xi) + b ≷ 0 (9)

In distinction to the discriminant hyperplanes for standard SVMs (4), features are
effectively assigned weights ri, so that as ri → 0, the influence of the respective
features diminishes. However, as it stands, the weights are unknown in (7).

Solving this optimization problem for fixed μ, involves the application of the
Gauss-Seidel iteration to the variable sets (a1, ..., an, b, δ1, . . . , δN ) and (r1, ..., rn),
with initiation values of (r0

i = 1, i = 1, ..., n). Once the solution λk
1 , . . . , λk

N , i.e.
(ak

1 , ..., ak
n), is found at the k th iteration with the current approximations (rk

1 , . . . ,
rk
n), the revised values of the variances (rk+1

1 , ..., rk+1
n ) are defined as

rk+1
i = r̃k+1

i if r̃k+1
i ≥ ε, rk+1

i = ε otherwise,

r̃k+1
i =

(ak
i )2 + 1/μ

1/μ + 1 + μ
=∑

j:λk
j >0

∑
l:λk

l >0 yjyl (rk
i )2Ki(xij , xil)λk

j λk
l + 1/μ

1/μ + 1 + μ
.

(10)

Convergence of the procedure occurs in ≈ 10 − 15 steps for typical problems,
suppressing redundant features through the allocating of very small (but always
non-zero weights) ri defining the discriminant hyperplane (9).

In summary, the training criterion for Relevance Kernel Machine (RKM) [4,5]
is set out in (6). The feature selectivity of this SVM generalisation is parametri-
cally determined by μ : 0 ≤ μ < ∞. As μ → 0 , variances tend toward unity (10),
and the RKM degenerates to the classical SVM (2). Contrarily, when μ → ∞,
we have from (6) that

∑n
i=1

[
(1/ri)a2

i +(1+μ) ln ri

]
+C

∑N
j=1 δj → min; actually

a significantly more selective training criterion than the original RKM (without
supervised selectivity):

∑n
i=1

[
(1/ri)a2

i + ln ri

]
+ C

∑N
j=1 δj → min [4].
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4 Signature Verification via Selective Fusion of On-Line
and Off-Line Kernels

4.1 Kernels Produced by Metrics

Let ω′ and ω′′ be two signatures represented by signals or images, and ρ(ω′, ω′′)
be a metric evaluating dissimilarity of signatures from a specific point of view.
Then function

K(ω′, ω′′) = exp
[
−γ ρ2(ω′, ω′′)

]
(11)

has the sense of their pair-wise similarity. If coefficient γ > 0 is large enough,
this function will be a kernel in the set of signatures, usually called the radial
kernel.

As a rule, it is impossible to know in advance which of possible metrics is
more appropriate for a concrete person. The advantages of the multi-kernel ap-
proach to the problem of on-line signature verification were demonstrated in [4].
We extend here the kernel-based approach onto the problem of combining the
on-line and off-line modalities (Figure 1) into an entire signature verification
technique.

Fig. 1. Off-line (images) and on-line (signals) representation of signatures

In this work, we tested 12 different metrics in the set of on-line signatures and
4 metrics computed from the pictorial off-line representation. So, all in all, we
combined 16 different on-line and off-line kernels listed in Table 1.

4.2 Metrics in the Set of On-Line Signatures

Each on-line signature is represented by a multi-component vector signal which
initially includes five components xt = (x1

t · · ·xn
t ): two pen tip coordinates

(X, Y ), pen tilt azimuth (Az) and altitude (Alt), and pen pressure (Pr) (Fig. 1).
We supplement the signals with two additional variables - pen’s velocity and
acceleration.

For comparing pairs of signals of different lengths [ω′ = (x′
s, s = 1, . . . , N ′),

ω′′ = (x′′
s , s = 1, . . . , N ′′)], we use the principle of dynamic time warping with

the purpose of aligning the vector sequences [4]. Each version of alignment
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Table 1. The kernels studied in the experiments

w(ω′, ω′′) is equivalent to a renumbering of the elements in both sequences ω′
w =

(x′
w,s′

k
, k = 1, . . . , Nw), ω′′

w = (x′′
w,s′′

k
, k = 1, . . . , Nw), Nw ≥ N ′, Nw ≥ N ′′. We

tested 12 different metrics defined by 6 different subsets of signal components
and 2 different values of the alignment rigidity parameter β [4] as shown in Ta-
ble 1:

ρ(ω′, ω′′|β) = min
w

√∑Nw

k=1
‖x′

w,s′
k
− x′′

w,s′′
k
‖2. (12)

4.3 Metrics in the Set of Off-Line Signatures

For comparing grayscale images (patterns) representing off-line signatures we
apply the technique of tree-structured pattern representation proposed in [11].

For the given pattern P , the recursive scheme described in [11] produces
a pattern representation R in the form of a complete binary tree of elliptic
primitives (nodes) Q: R = {Qn : 0 ≤ n ≤ nmax}, where n is the node number
of the level ln = �log2(n = 1)�.

Let R′ and R′′ be a pair of tree-structured representations, and R′⋂R′′ be
their intersection formed by the pairs of nodes (Q′

n, Q′′
n) having the same num-

ber n. For comparing any two corresponding nodes Q′
n ∈ R′ and Q′′

n ∈ R′′, a
dissimilarity function d(Q′

n, Q′′
n) ≥ 0 can be easily defined through parameters of

each primitive such as center vector, orientation vectors with their sizes (along
two principal axes of the primitive), and the mean brightness value. Using these
parameters, we define a loss function

D(Q′
n, Q′′

n) =
{

d(Q′
n, Q′′

n), if Q′
n and/or Q′′

n are ”end” nodes,
0, otherwise,

where d(Q′
n, Q′′

n) = α1d1(Q′
n, Q′′

n)+α2d2(Q′
n, Q′′

n)+α3d3(Q′
n, Q′′

n), α1, α2, α3 ≥ 0,
α1 + α2 + α3 = 1. Here, di(Q′

n, Q′′
n) is a distinction function between the centers
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of the primitives, their orientation and size parameters, and the mean brightness
values for i = 1, 2, 3, respectively.

Then, following [11], we define the distinction measure (metric) of the trees
R′ and R′′ as follows:

ρ(R′, R′′ | α1, α2, α3) =
∑

R′ ⋂ R′′ 2−lnD(Q′
n, Q′′

n) =

α1

∑
R′ ⋂ R′′ 2−lnd1(Q′

n, Q′′
n)+

α2

∑
R′ ⋂ R′′ 2−lnd2(Q′

n, Q′′
n)+

α3

∑
R′ ⋂ R′′ 2−lnd3(Q′

n, Q′′
n),

(13)

where the sum is taken over all pairs (Q′
n, Q′′

n) ∈ R′⋂R′′. We competitively
applied three basic distinction measures of the form (13) ρ1(R′, R′′) = ρ(R′, R′′ |
1, 0, 0), ρ2(R′, R′′) = ρ(R′, R′′ | 0, 1, 0), ρ3(R′, R′′) = ρ(R′, R′′ | 0, 0, 1), and the
uniform mixture ρ4(R′, R′′) = ρ(R′, R′′ | 1/3, 1/3, 1/3).

4.4 Signature Database and Results of Experiments

In the experiment, we used the database of the Signature Verification Competi-
tion 2004 [12] that contains vector signals of 40 persons (Fig. 1). On the basis
of these signals we generated grayscale images (256× 256 pixels) with 256 levels
of brightness corresponding to the levels of pen pressure in the original signals.

For each person, the training set consists of 400 signatures, namely, 5 sig-
natures of the respective person, 5 skilled forgeries, and 390 random forgeries

Table 2. Error rates for single kernels versus kernel fusion
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formed by 195 original signatures of other 39 persons and 195 skilled forgeries for
them. The test set for each person consists of 69 signatures, namely, 15 genuine
signatures, 15 skilled forgeries, and 39 random forgeries. Thus, the total number
of the test signatures for 40 persons amounts to 2760.

For each pair of signature signals, 12 different on-line metrics and 4 off-line
metrics were simultaneously computed and, respectively, 16 different kernels were
evaluated (Table 1).

For each person, we tested 18 ways of training based, first, on each of the
initial kernels separately {K1(ω′, ω′′), . . . , K16(ω′, ω′′)}, second, on the plane fu-
sion of all the individual kernels with equal weights (1/16)

∑16
i=1 Ki(ω′, ω′′), and,

third, on the selective fusion of all the 16 kernels using the continuous training
technique (Section 3) with the selectivity level chosen via cross validation. The
error rates in the total test set of 2760 signatures are shown in Table 2.

It is well seen that the combined kernel obtained by selective kernel fusion
with individually chosen selectivity essentially outperforms each of the single
ones. At the same time, for each of 40 persons whose signatures made the data
set, the kernel fusion procedure has selected only one relevant kernel as the most
adequate representation of his/her handwriting.

5 Conclusions

The kernel-based approach to signature verification enables harnessing the kernel-
selective SVM as one of mathematically most advanced methods of pattern recog-
nition. This approach predefines the algorithms of both training and recognition,
and it remains only to choose the kernel produced by an appropriate metric in
the set of signatures, such that the genuine signatures of the same person would
be much closer to each other than those of different persons. However, different
understandings of signature similarity lead to different kernels.

The proposed kernel fusion technique automatically chooses the most ap-
propriate subset of kernels for each person in the process of adaptive training.
Experiments with signature data base SVC2004 demonstrate that verification
results obtained by selective fusion of several on-line and off-line kernels in ac-
cordance with the proposed approach essentially outperforms the results based
on both single kernels and their plane fusion.
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Abstract. There are a variety of methods for inducing predictive sys-
tems from observed data. Many of these methods fall into the field of
study of machine learning. Some of the most effective algorithms in this
domain succeed by combining a number of distinct predictive elements to
form what can be described as a type of committee. Well known examples
of such algorithms are AdaBoost, bagging and random forests. Stochastic
discrimination is a committee-forming algorithm that attempts to com-
bine a large number of relatively simple predictive elements in an effort
to achieve a high degree of accuracy. A key element of the success of this
technique is that its coverage of the observed feature space should be
uniform in nature. We introduce a new uniformity enforcement method,
which on benchmark datasets, leads to greater predictive efficiency than
the currently published method.

1 Introduction

There are many techniques available for inducing predictive algorithms from
observed data. Those methods that use a combination of classifiers, called a
committee or ensemble, such as AdaBoost[5], bagging[2] and random forests[7]
have demonstrated very good performance on real-world problems. Stochastic
discrimination is an alternative method of constructing committees of classifiers.
It has a sound theoretical basis and is robust to sources of over-fitting, other
than those attributable to small sample size effects[4, 8, 10]. It intrinsically deals
with two class problems but can be extended to multi-class problems by the
use of such techniques as one-versus-all and error correcting output coding[11]
decompositions.

One of the principle differences between conventional ensemble methods, such
as bagging, and stochastic discrimination is that in conventional ensembles each
individual classifier is normally expert, to some degree, on the whole data space.
In a stochastic discrimination ensemble this is not the case[9]. The set of weak
classifiers in a stochastic discrimination ensemble may view the data space in a
uniform fashion but individual classifiers may not, and in general will not, do
this. More specifically, they will only consider a limited subspace of the feature
space, with each dimension in the feature space having a degree of coverage
selected at random.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 335–343, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The extent to which a stochastic discrimination ensemble views the feature
space without unduly favouring one region over another is known as its unifor-
mity. The method of uniformity enforcement is one of the key elements of an im-
plementation of stochastic discrimination. Uniformity ensures that the ensemble
as a whole can generalise effectively over the full extent of the feature space.

The implementation of stochastic discrimination described in detail in [9, 12]
uses a method of uniformity enforcement that is based on measurements relating
to the average coverage for elements of the ensemble predicting a specific class.
We propose an alternative uniformity enforcement scheme based on the minimum
instance coverage.

2 Stochastic Discrimination

Typically classifier combination methods such as AdaBoost, bagging and random
forests seek to merge base classifiers that have knowledge of the full extent of the
feature space via the training set. Stochastic discrimination differs in its approach
to combining weak base classifiers, which it refers to as thick models, in that it
seeks to assemble elements that cover subsets of the training data. These are
drawn from embedded subspaces of a finite n dimensional space, F ∈ R

n. These
subspaces are constructed from a geometric model centered on an instance of
the training set and which form an n dimensional rectangular parallelepiped.

The coverage of the parallelepiped in each feature dimension is a random
proportion of the feature extent. This sub-sampling of the feature space is one
of the methods responsible for ensuring diversity in the produced population of
thick models and additionally acts as a regularisation mechanism to alleviate
the potential for over-fitting.

A stream of thick models is generated by randomly selecting an instance from
the training set and generating a geometric model around it. This stream is then

Fig. 1. A collection of 10 rectangular parallelepiped thick models centred around two
data instances from the training set. Additional instances from the two classes are
shown and they are all embedded in a three dimensional feature space.
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Algorithm 1. Stochastic discrimination thick model stream production algo-
rithm, P

Do

Generate a Thick Model from a random instance in TR1

If ( Enriched( Thick Model ) )

If( ImprovesUniformity( Thick Model ) )

Accept( Thick Model )

Until ( Enough( Thick Models ) )

thinned according to each model’s ability to discriminate between instances of
classes within its embedded subspace of the feature domain. Suitably discrim-
inating models undergo further selection based on the existing coverage of the
feature domain. The underlying theory of stochastic discrimination[9] requires
that coverage should be uniform to ensure that there is no bias towards partic-
ular areas of the feature space. This implies that the number of thick models
capturing each instance in the training set should be equal.

In the context of a two class classification problem in which feature vectors,
q, are drawn from two classes, {1, 2}, embedded in feature space F , instances
from the available dataset are randomly partitioned into a training and test set,
{TR, TE}. TR is further partitioned into instances from class 1 and class 2,
{TR1, TR2}. Stochastic discrimination creates a stream of models by randomly
sampling instances from TR and builds a space-enveloping thick model around
them. The thick model, m, is constructed from random proportions of the feature
extent in each of the n dimensions of the feature space, as depicted in Figure 1.

It is worthwhile observing that the generalisation ability of the stochastic
discrimination algorithm is a function sensitive to a number of factors

SDAcc = f(ModelNumber, EnrichmentDegree,

CoverageUniformity , ModelSize).

It is resistant to overtraining and in general the more models in the ensemble
the higher the accuracy. Additionally there is a strong relationship between the
number and distribution of instances in TR and the number of thick models
required to adequately capture their distribution. Stochastic discrimination also
relies on the assumption, which is a requirement for other machine learning
algorithms, that there is a projectability between the distribution of samples in
the training set and the test set.

2.1 Enrichment

For the stream of stochastically generated thick models to be useful for the task
of classification it is necessary that they possess some discriminative power to
separate the classes. To this end the thick models are selectively filtered based on
their enrichment. Enrichment is calculated from the proportion of instances for
each of the classes in the training set which are captured by the thick model, m.
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If the proportion of instances of class 1 captured from TR1 is greater than those
of class 2 that are captured from TR2, then the model is considered enriched
with respect to class 1.

| m ⊂ TR1 |
| TR1 | >

| m ⊂ TR2 |
| TR2 | . (1)

2.2 Uniformity Enforcement Strategies

In the standard version of stochastic discrimination[9] each thick model subset,
m, that satisfies the enrichment criteria is further subjected to a uniformity
forcing step as indicated in Algorithm1 and referred as algorithm P . Uniformity
is enforced via the measurement of coverage. The coverage of a data instance,
cq, is defined as the number of thick models that include the data instance, q,
within their volume, divided by the size of the set of thick models, M , produced
so far, | M |. Thus,

cq =
| {m ∈ M : q ∈ m} |

| M | . (2)

A thick model, m, is considered an acceptable candidate for the ensemble of
thick models if it is enriched and its average coverage for points captured from
TR1, cTR1 , is below the average cover for all points in TR1, C̄TR1 .

(
1

|{q ∈ TR1 : q ∈ m}|
∑

{q∈TR1:q∈m}
cq) < C̄TR1 . (3)

In effect this filters models from the stream that favour instances which are
under-represented in the current thick model working set, M .

We propose an alternative strategy to achieve uniformity. This entails selecting
the least covered instance in TR1. By choosing the instance that has minimum
coverage as the basis for the new thick model, we aggressively focus on the area
in the feature space that instantaneously exhibits the least coverage and ensure
that it is increased. If there are ties for the least covered instance then these
can be broken randomly or, as an enhancement, an instance from particularly
ill represented region can be searched for.

{q : arg min
q∈TR1

cq}. (4)

Our modified algorithm, described in Algorithm 2 and referred to as L, seeks to
improve the mean coverage and improve the variance of the coverage array by
decreasing the contribution from the largest reducible component. If the mini-
mum value in the coverage array, C, is not unique then one of the corresponding
instances is selected at random.

To quantify the degree of uniformity, D, present in the thick model streams
we calculate the standard deviation of the instance wise coverage.

D =
√

1
|TR|

∑
q∈TR

(cq − C̄)2, (5)
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Algorithm 2. Stochastic discrimination thick model stream production
algorithm, L

Do

Generate a Thick Model using least covered instance in TR1

If ( Enriched( Thick Model ) )

Accept( Thick Model )

Until ( Enough( Thick Models ) )

where C is the mean value of the coverage set. The minimum value for D is zero
and this indicates that all instances in the training set have equivalent coverage,
higher values of D represent increasingly poor levels of uniformity.

2.3 Discriminant

Once a thick model set of the desired size has been formed, a discriminant
function can be used to classify instances. The discriminant function uses the
difference in probabilities of capture by the thick models in M to assign class
membership. In the case where the models have been enriched for TR1, an
unknown instance, x, will be captured by a larger number of thick models if it is
of class 1 than were it of class 2. A suitable threshold can be chosen to optimise
the classification accuracy of the discriminant function.

3 Theoretical Exploration

Under the assumption that variance is a valid measurement of uniformity we ex-
amine the behaviour of the classic uniformity algorithm P as defined in section 2.2
and Algorithm 1. and L Algorithm 2. These algorithms have simplified to high-
light the essential differences between the two approaches. For more detailed im-
plementation information see [9].

The coverage values, C, form a set of positive integers in the range from 0 to
the size of the thick model set , | M |. Considering the limiting case in which a
thick model captures only one point from TR, the addition of this thick model
to M will result in a unity increment of a single value within C. The maximum
reduction to the variance of C will be achieved if that point is the one that is
the furthest below the mean value of the coverage set, C, known as cmin. Ties
in the value of cmin should be broken randomly.

By considering the contribution made to the change in variance by increment-
ing either cmin or another arbitrary member of C with a value larger than cmin

we can show that

((k + 1) − C)2 + (l − C)2

| M | ≤ ((l + 1) − C)2 + (k − C)2

| M | , (6)

where k, l are positive real integers representing values within C and with k ≤ l.
It follows that the reduction in variance , and hence increase in the uniformity,
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will be greatest if k is the minimum value in C. The change to the mean value
of C is constant in this limiting case. Thus for the special case where the thick
model covers only a single instance in TR, algorithm L should always improve
uniformity by at least as much as algorithm P .

When the thick model covers more than one point, the analysis of performance
is more complicated. The degree of improvement of uniformity and the mean
value of cover,C, will depend on the specific sample of instances captured by the
thick model, m. At the limit, where all points in TR1 are captured by m, there
will no difference in the change in uniformity and C between algorithms P and L.
Where m only captures a percentage of TR1 and if points are chosen at random,
the expectation will be that the reduction in variance from algorithm L will
always exceed or equal that from algorithm P . But this ignores the contribution
from the average cover related enforcement strategy employed by algorithm P ,
which will undoubtedly improve the situation over a purely random selection.
Furthermore, the performance will be dependent on the exact distribution of the
dataset under consideration.

However, each new thick model under algorithm L will always contain the
most beneficial point, cmin, whilst under algorithm P , m will only have some
probability of capturing cmin. This probability will be dependent on the size of
TR1, the amount of the feature space that m captures and the distribution of
instances in the feature space. Our experimental results suggest that on average
algorithm L is more effective.

4 Experiment Details

Experiments were performed on twenty datasets, eighteen datasets from the
UCI Machine Learning Repository [1] and 2 synthetic ones from [3]. These con-
tained a mixture of binary and multi-class problems. Multi-class problems are
handled using a one-versus-all decomposition strategy. To estimate the general-
isation error of the induced classifiers, ten repetitions of ten-fold cross valida-
tion were performed for each dataset within a WEKA[6] framework. Identical
trials were performed for the standard uniformity enforcement algorithm, de-
scribed in [9], based on mean class coverages and our method of uniformity
enforcement using the least covered point. The number of thick models used
for each classifier was fixed at 3001. The minimum allowable thick model size
was adjusted between 0.01 and 0.5 percent of the feature space. The following
datasets were used. Balance[BAL], credit-a[CRA], diabetes[DIA], ecoli[ECO],
glass[GLA], heart[HRT], hepatitis[HEP], ionosphere[ION], iris[IRS], labor[LAB],
lymph[LYM], parkinsons[PAR], satellite[SAT], segment[SEG], sonar[SON], ve-
hicle[VEH], vowel[VOW], Wisconsin breast cancer[WIS], twonorm[2NM] and
threenorm[3NM].

5 Experimental Results

We present individual experimental results for a selection of the datasets in
Figure 2. These show the test error rates and normalised standard deviation of
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the coverage, D, plotted against minimum model size for algorithms L and P .
From Figure 2. it is not easy to determine a direct relationship between test
accuracy and D, the trend, except in the case of WIS, is that lower coverage
deviation leads to lower test error. The averaged values Figure 3. support this
view. The minimum error rates in Table 1. confirm that neither algorithm is
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Fig. 2. Test error versus minimum thick model size and normalised standard deviation
of coverage for uniformity enforcement algorithms L and P
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Table 1. Minimum test error rates for algorithms L and P and mean values for L and P

BAL CRA DIA ECO GLA HRT HEP ION IRS LAB

L .10 .03 .24 .14 .29 .17 .23 .09 .04 .19

P .10 .04 .23 .16 .42 .17 .21 .10 .11 .19

LYM PAR SAT SEG SON VEH VOW WIS 2NM 3NM

L .35 0.17 .12 .09 .12 .29 .14 .03 .03 .16

P .47 0.13 .11 .16 .13 .32 .20 .04 .03 .14

Mean test error L 0.151

Mean test error P 0.173

superior on all datasets. Where L performs worse than P then the difference
is generally small, as is the case with datasets DIA, HEP and SAT. Where
algorithm L exceeds the performance of P the difference can be significant, as is
the case with datasets GLA, IRS, LYM, SEG, VEH, VOW and the exceptions
being PAR, 3NM.

Figure 3. contains averaged results over all datasets for test error and average
cover on the left and normalised thick model retry rates and the normalised
standard deviation of the coverage on the right. The averaged graphs give a
clearer indication of the relative performance of the two algorithms. L consis-
tently outperforms P in terms of test accuracy across all minimum thick model
sizes and also for absolute coverage values. This implies that L is building larger
thick models that capture more points and will tend to generalise better.

The right of Figure 3. shows that the averaged normalised standard deviation,
D, is consistently better for L across all model sizes. It also shows that the stream
production efficiency for L, measured by the number of retries required to find
a suitable model, can be as little as half the value of P .
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Table 1. shows the minimum value of the test error for each of the twenty
datasets for uniformity enforcement algorithms L and P . Averaging over all
datasets, algorithm P has a minimum test error that is 15 percent worse than
L. Subjecting these results to a paired T test rejects the null hypothesis at a
significance level of 0.05.

6 Conclusion

The strategy of uniform coverage enforcement is an important element of the
stochastic discrimination method. Our experiments indicate that simply select-
ing the least covered instance in the training set is an effective alternative to
the standard method of choosing a random instance and then checking for its
effect on coverage. Though it is not certain for any particular dataset which
strategy will be most effective, over a range of datasets, algorithm L achieves
better accuracy, more uniform coverage, larger thick models and a lower retry
rate than algorithm P . Finally, we would like to thank the reviewers for their
helpful comments.
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Abstract. This paper examines the benefits that information theory
can bring to the study of multiple classifier systems. We discuss rela-
tionships between the mutual information and the classification error of
a predictor. We proceed to discuss how this concerns ensemble systems,
by showing a natural expansion of the ensemble mutual information into
“accuracy” and “diversity” components. This natural derivation of a di-
versity term is an alternative to previous attempts to artificially define
a term. The main finding is that diversity in fact exists at multiple or-
ders of correlation, and pairwise diversity can capture only the low order
components.

1 Introduction

Information Theory sparked a revolution in the practice of electronic commu-
nications [1] and has since been successfully applied in countless fields, from
anthropology to biology to cosmology. In the last decade or so, it has found
significant uptake in Machine Learning. Suppose there is a message Y , encoded
and sent to us by a friend through a communications channel, that we receive
as a signal X . We would like to decode the received signal X , and recover the
correct message Y ; that is, we will perform a decoding operation, Ŷ = g(X). In
Machine Learning terms, we imagine that the friend transmitting the message
has access to a particular object, for which Y is the correct class label. They ‘en-
code’ the object as a feature vector X . Our task is to decode that feature vector
and recover the correct class label, using our predictor function g(·). Using this
analogy, information theory provides us with a language and a set of mathemat-
ical tools to analyze the situation. One of the most interesting observations it
can provide is a bound on the error of our predictor, dependent on the chosen
features X . This bound, known as Fano’s inequality, applies for any predictor:
be it a simple decision stump, or a nonlinear support vector machine.

We can also use information theory to understand multiple classifier systems.
To make the link, consider the received signal X not to be a set of features, but
as a set of classifier outputs, which we will use to form an ensemble. In this case,
the predictor g(·) corresponds to the ensemble combiner function. In this work

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 344–353, 2009.
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we investigate the link in detail, in particular addressing the notion of ensemble
diversity.

This paper is structured as follows. Section 2 provides a tutorial introduction
to the basics of information theory, including the lesser known concept of multi-
variate mutual information. Section 3 describes how an understanding for the
concept of diversity can naturally emerge as an expansion of the ensemble mutual
information. Section 4 uses this result to characterize and explain the behaviors
of Adaboost versus Bagging, sections 5 and 6 present related work and conclude
with a look ahead to what advantages this approach might bring to MCS.

2 Background

In this section we review the required elements of information theory, and their
relation to Machine Learning. Due to space limitations this is necessarily brief;
for an extended treatment the reader might consult reference [2] or [3].

2.1 Information Theory Basics

The fundamental unit of information theory is the entropy of a random vari-
able [1]. The entropy, denoted H(X), quantifies the uncertainty present in the
distribution of X . It is defined1 as,

H(X) = −
|X|∑
i=1

p(xi) log p(xi). (1)

The base of the logarithm is arbitrary, but decides the “units” of the entropy.
When using base 2, the units are ‘bits’, when using base e, the units are ‘nats’.
To compute this, we need an estimate of the distribution p(X). This is estimated
by frequency counts from data, that is p(xi) = #xi

N , the fraction of observations
taking on value xi from the total number of observations N .

If the distribution is highly biased toward one particular event x ∈ X , i.e.
little uncertainty over the outcome, then the entropy is low. If all events are
equally likely, i.e. maximum uncertainty over the outcome, then H(X) is max-
imal2. Following the rules of standard probability theory, entropy can also be
conditioned on other events. The conditional entropy of X given Y is denoted,

H(X |Y ) = −
|Y |∑
j=1

p(yj)
|X|∑
i=1

p(xi|yj) log p(xi|yj). (2)

This can be thought of as the amount of uncertainty remaining in X after we
learn the outcome of Y .
1 In this work we restrict ourselves to discrete RVs, and note z log(z) → 0 with z → 0.
2 In general, 0 ≤ H(X) ≤ log(|X|).
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Fig. 1. Illustration of various information theoretic quantities

We can now define the Mutual Information between X and Y , i.e. the amount
of information shared by X and Y , as follows.

I(X ; Y ) = H(X) − H(X |Y )

=
∑
X

∑
Y

p(xy) log
p(xy)

p(x)p(y)
. (3)

It should be noted that Mutual Information is symmetric, i.e. I(X ; Y )=I(Y ; X).
The relation between all these quantities can be seen in figure 1. The Mutual
Information can also be conditioned on other events—the conditional mutual
information is,

I(X1; X2|Y ) = H(X1|Y ) − H(X1|X2Y )

=
∑
Y

p(y)
∑
X1

∑
X2

p(x1x2|y) log
p(x1x2|y)

p(x1|y)p(x2|y)
. (4)

This can be thought of as the information still shared between X1 and X2 after
the value of Y is revealed. The conditional mutual information will emerge as a
particularly important property in understanding the message of this paper.

2.2 Relationship to Machine Learning

Suppose there is a message Y , that was sent through a communications channel,
and we received the value X . We would like to decode the received value X , and
recover the correct Y . That is, we will perform a decoding operation, Ŷ = g(X).
In ML terms: Y is the original (unknown) class label distribution, X is the
particular set of features chosen to represent the problem, and g is our predictor.
The set of features chosen may or may not be sufficient to perfectly recover Y ;
that is, there may be an error in prediction. Information theory can provide a
bound on p(Ŷ �= Y ), for any predictor g.
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Fig. 2. Fano’s inequality [4] provides a lower bound on the Bayes rate, while Hellman-
Raviv [5] provides the upper bound. Picking features to reduce conditional entropy
(equivalent to maximising mutual information) causes this bound to be minimized.

The error of predicting target variable Y from input X is tightly bounded by
two inequalities [4,5]. The bounds state,

H(Y ) − I(X ; Y ) − 1
log(|Y |) ≤ p(g(X) �= Y ) ≤ 1

2
H(Y |X). (5)

In order to maximise the chances of our predictor guessing the correct class label,
we should have maximum I(X ; Y ). Given the definition (3), this is equivalent to
minimizing H(Y |X), illustrated in figure 2. As the mutual information I(X ; Y )
grows, the bound is minimized—whether or not the bound can be reached de-
pends on the ability of our classifier, i.e. the function g(X).

For example, if the conditional entropy is measured to be H(Y |X) = 0.4, then
the minimum error rate by any classifier lies in the range [0.079, 0.2]. In other
words, no classifier can possibly achieve better than error 0.079 with features
X , and there exists a classifier that can achieve at least error 0.2. It should be
noted that, in real ML problems, since we only ever have access to a sample of X
(not the full distribution) this is in practice an estimated bound on the training
error. We will investigate relations to the the generalization error in section 4.

We have now covered the basic properties of information theory. To complete
the background necessary for this paper, we now briefly review the lesser-known
topic of multi-variate mutual information.

2.3 Multi-variate Mutual Information

While Shannon’s mutual information I(X ; Y ) measures dependence between a
pair of variables, the multivariate form, known as Interaction Information [6],
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can account for dependencies among multiple variables. For a set of size 2, the
Interaction Information reduces to Shannon’s definition. For three random vari-
ables, the Interaction Information is

I({X1, X2, X3}) = I(X1; X2|X3) − I(X1; X2), (6)

that is, a difference of the conditional mutual information and the simple mutual
information. The case for n variables is defined recursively. A full treatment of
this advanced topic is not possible given the limited space; for more information
the reader is referred to reference [7]. The interaction information turns out to be
useful in understanding the nature of ensemble diversity, which we will explore
in the following section.

3 Mutual Information and Ensemble Classifiers

One of the long-standing problems in the MCS literature is to understand the na-
ture of ensemble diversity. We know that ensemble members should exhibit some
level of accuracy.We also know that ensemble members should not be identical, ex-
hibiting some level of diversity. However, quantifying these statements has proved
challenging [8]. In this section we take an information theoretic perspective.

3.1 Why Is Diversity So Elusive?

To answer this question [9] we return to one of the most well-known results
in the MCS literature concerning the diversity issue. Tumer & Ghosh [10] re-
lated the ensemble classification error to the correlations between the individual
predictor outputs. They showed that the error of a linearly combined ensem-
ble could be decomposed neatly into accuracy and diversity components. This
exemplary early work sparked much effort to find the corresponding accuracy-
diversity terms for a majority voting ensemble. A fundamental message of this
work is that we should not expect the majority vote ensemble error to similarly
decompose into additive accuracy-diversity terms.

The neat situation in [10] is due to the linearity of the combination opera-
tor, and bias-variance properties of the squared loss function. When we have a
nonlinear combination operator, and a zero-one loss function, the situation is
more complicated. It is well appreciated that there exists no unique definition
of bias and variance for zero-one loss. In the same fashion, there is no unique
definition of covariance (diversity) with this loss function; instead, the literature
has spawned a myriad of diversity definitions [8] with desirable and undesirable
properties.

It is often the case in Machine Learning to use a surrogate loss function, and
minimise that instead of the actual one of interest. Adaboost is the prime exam-
ple of this—the distribution updates in the algorithm do not directly minimise
classification error, but instead minimize a surrogate, an exponential loss which
bounds the classification loss. In this way, when the exponential loss is small,
we can be guaranteed the classification loss will also be at least as small. In the
following section we take a similar approach, remembering that the classification
error rate can be bounded by the mutual information, using Fano’s inequality.
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3.2 A ‘Natural’ Definition of Diversity

In this section we show a diversity term emerges naturally when we measure
the ensemble mutual information. This draws on a recent result in the feature
selection literature [7], described and adapted for the MCS community in the
Appendix. For a set of classifiers S = {X1, ..., XM}, remembering that our ob-
jective is to maximise I(X1:M ; Y ), we have the expansion,

I(X1:M ; Y ) =
M∑
i=1

I(Xi; Y ) −
∑
X⊆S

|X|=2..M

I({X}) +
∑
X⊆S

|X|=2..M

I({X}|Y ). (7)

The expansion consists of three terms. The first,
∑M

i=1 I(Xi; Y ) is the sum of
each individual classifier’s mutual information with the target. Since the mutual
information is actually only a bound on the accuracy, not the actual accuracy,
it is misleading to say this is an ‘accuracy’ term. Instead, we refer to the first
term as the relevancy of a classifier output to the target. The final combination
function g will determine if this provides good accuracy in combination with the
other classifiers.

The second contains terms of the form I({X}) and is independent of the class
label Y , and so is the closest analogy to the (now almost mythical) concept of
‘diversity’. It measures the interaction information among all possible subsets of
classifiers, drawn from the ensemble. We refer to this as the ensemble redun-
dancy. Notice this term is subtractive from the overall mutual information. A
large value of I({X}) indicates strong correlations between the classifiers, and
reduces the value of I(X1:M ; Y ), and hence the overall achievable accuracy.

The third contains terms of the form I({X}|Y ) and is a function of the class
label Y . This therefore does not correspond to the folklore definition of ‘diver-
sity’, that it should be a function solely of the classifier outputs. We call this the
conditional redundancy. Notice that this term is additive to the ensemble mutual
information. While it is commonly accepted that we should have low correla-
tions between ensemble members, this term indicates that we in fact need strong
class-conditional correlations. The balance between these conditional and uncon-
ditional terms is similar to aiming for a small within-class variance (maximizing
the dependency I({X}|Y )) and a large between-class variance (minimizing the
dependency I({X})).

3.3 Low-Order and High-Order Diversity

We have found that through an expansion of the ensemble mutual information,
terms which we might call ‘diversity’ appear naturally. The redundancy is a
traditional diversity term, and the conditional redundancy is the same form but
conditioned on the class label. The sum of these two values is what we refer to
as the “diversity” of the classifier set. It should be noted that the summations
in eq(7) are over all possible subsets of classifiers drawn from the ensemble. We
can expand this sum over subsets, to give us a breakdown of diversity,
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I(X1:M ; Y ) =
M∑
i=1

I(Xi; Y ) −
∑

|X|=2

I({X}) +
∑

|X|=2

I({X}|Y )

−
∑

|X|=3

I({X}) +
∑

|X|=3

I({X}|Y )

− . . . + . . .

−
∑

|X|=M

I({X}) +
∑

|X|=M

I({X}|Y ).

This breakdown has the form,

I(X1:M ; Y ) = Individual Mutual Info + 2-way diversity (pairwise)
+ 3-way diversity
+ ...-way diversity
+ M-way diversity

where the diversity measure is the multivariate mutual information. This ex-
pansion reflects the true complexity of the accuracy-diversity issue. Diversity is
not simply a pairwise measure between classifiers, such as the Q-statistics or the
Double-Fault measures. Diversity in fact exists on numerous levels of interaction
between the classifiers.

4 Monitoring Low-Order Diversity Components

In the previous section we showed that diversity exists at multiple levels of
correlation within an ensemble. If the classifiers were statistically independent,
then all diversity terms would be zero, and we would have simply I(X1:M ; Y ) =∑M

i=1 I(Xi; Y ). If the classifiers only exhibited pairwise interactions, the break-
down be as above but omitting the 3-way and above diversity terms. This as-
sumption of pairwise interactions gives us,

I(X1:M ; Y ) ≈
M∑
i=1

I(Xi; Y ) −
M∑

j=1

M∑
k=j+1

I(Xj , Xk) +
M∑

j=1

M∑
k=j+1

I(Xj , Xk|Y ) (8)

The ensemble information is thus approximated by a sum of the relevancy, the
pairwise redundancy, and the pairwise conditional redundancy. In figures 3, 4,
and 5 we monitor these three components to characterize the behavior of Ad-
aboost and Bagging. All information measurements are made on training data,
and used to explain the performance on test data. Examining the pairwise com-
ponents we find Adaboost succeeds by decreasing redundancy, but has no effect
on the conditional term. Bagging has no effect on either, reflected in the poor
test error. Further comment is provided in the figure captions.
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Fig. 3. Adaboost (left) and Bagging (right) errors using decision stumps on the Breast
Cancer data. Graphs show standard deviation over ten trials of 2-fold cross validation.

Fig. 4. The Relevancy-Diversity tradeoff. On the left we see the average relevancy of
Adaboost classifiers decreases over time, but the diversity component compensates this
by also rising. On the right, Bagging maintains almost constant classifier relevancy and
very low diversity, explaining the poor test error in figure 3.

Fig. 5. Second order components of the ensemble mutual information. Adaboost (left)
decreases the redundancy of its classifiers, though maintains constant conditional re-
dundancy. Bagging (right) allows the redundancy to rise very slightly at small ensemble
size, but has no significant effect on either component.
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5 Related Work

Meynet and Thiran [11] suggest a heuristic cost function, designed to balance
ensemble accuracy with diversity. The cost function consists of two information
theoretic terms. The first is simply the average mutual information between each
ensemble member and the class label, which they call the Information Theoretic
Accuracy, ITA = 1

M

∑M
i=1 I(Xi; Y ). The second is the reciprocal of the average

pairwise mutual information between ensemble members, which they call the
Information Theoretic Diversity,

ITD =
( 1(

M
2

) M∑
j=1

M∑
k=j+1

I(Xj ; Xk)
)−1

. (9)

Thus, the task is to simultaneously maximise ITA and ITD, though it is clear
that a tradeoff will occur between the two. The authors represent the tradeoff
by a second-order polynomial: the Information Theoretic Score is defined,

ITS = (1 + ITA)3.(1 + ITD) (10)

Comparing the form of ITA and ITD to the results in section 3.2, it is clear
that ITS includes two of the necessary components to take account of pair-
wise interactions between ensemble members. The final term necessary is the
class-conditional I(Xi; Xj|Y ), and the higher-order terms are assumed zero.
The main difference between this heuristic and the current work is that ITS
was hand-designed, whereas we have shown a natural derivation of a diversity
term.

6 Conclusion

This paper examined the issue of ensemble diversity from an information the-
oretic perspective. A major advantage of information theoretic criteria is they
capture higher order statistics of the data. In contrast, the squared error criterion
can capture only second-order statistics. The main finding was an expansion of
the ensemble mutual information which naturally involves “accuracy” and “di-
versity” component, although diversity is shown to exist at several levels, having
low and high order elements.

The advantage of this approach is that g(·) can be any function, that is,
any ensemble combiner function. In this paper we showed preliminary results
with the majority vote combiner, as this has traditionally been of most interest
regarding the ‘diversity’ question. Extensions to this work might assess how
effective different combiner functions are at ‘decoding’ the information contained
in the ensemble.
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Appendix: Expansion of the Ensemble Mutual Information

Theorem 1
Given a set of classifiers S = {X1, ..., XM}, and a class label Y , their Shannon
mutual information can be expanded as

I(X1:M ; Y ) =
∑
T⊆S

I({T ∪ Y }), |T | ≥ 1. (11)

That is, the Shannon Mutual Information between X1:M and Y expands into a
sum of Interaction Information terms. Note that

∑
T⊆S should be read, “sum

over all possible subsets T drawn from S”.

Proof: See ref [7].

Example: As an illustrative example for an ensemble of size M = 3, the Shannon
information between the joint variable X1:3 and a target Y can be re-written as

I(X1:3; Y ) = I({X1, Y }) + I({X2, Y }) + I({X3, Y })
+I({X1, X2, Y }) + I({X1, X3, Y }) + I({X2, X3, Y })
+I({X1, X2, X3, Y }). (12)

Each term can then be separated into class unconditional I({X}) and condi-
tional I({X}|Y ) according to the standard definition of interaction information.
This gives us the expansion found in the main body of this paper.
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Abstract. Weighted averaging of classifier outputs is used in many
MCSs, yet is still not well understood. Several empirical studies have
investigated the effect that non-negativity and sum-one constraints have
on the error rate of weighted averaging rules, but there is little theory
available to understand the results.

In this paper we study how constraints on the weights affect the lo-
cation of the decision boundary of a MCS using weighted averaging.
This allows us to explain many of the empirical findings, and suggest
guidelines for when the application of constraints may or may not be
appropriate. We also consider how these results relate to the analytical
framework first proposed by Tumer and Ghosh [5].

1 Introduction

Suppose we have a K-class classification problem and M classifiers whose outputs
we combine according to the weighted averaging combining rule

p̂(k|x) =
M∑
i=1

wip̂i(k|x), k = 1, 2, . . . , K, (1)

where p̂i(k|x) is the estimate output by the ith component classifier of the
probability that an observation x was generated from the class with label k.
Commonly the special case of simple averaging is used, in which case all the
weights wi are equal to 1/M . Given an input x, we assume a classification ĉ(x)
is made according to the rule

ĉ(x) = argminj

K∑
l=1

L(j, l)p̂(l|x), (2)

where L(j, l) is a loss function which specifies the loss incurred when classifying
an observation from class l as having come from class j, for l, j = 1, . . . , K.

Given that we use this rule, a method must be determined for obtaining the
value of the weights. This typically proceeds in two stages: firstly it is decided
which constraints (if any) should be applied to the weights, and then a value
for the weights is obtained by some method such that they satisfy the chosen
constraints. In this paper we consider the effect of two types of constraint:

1. Sum-W constraint:
∑M

i=1 wi = W ,
2. Non-negativity constraint: wi ≥ 0 for all i = 1, . . . , M .
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The most common sum-W constraint is sum-1, for the simple reason that this is
a necessary condition for the combined outputs p̂(k|x), k = 1, . . . , M to sum to
one. If the outputs are to be interpreted as probabilities, then it is necessary to
apply both the sum-1 and non-negativity constraints.

Both Breiman [1] and LeBlanc and Tibshirani [4] explored empirically the
accuracy of weighted averaging, where the weights were selected to minimise
some sum of squares criteria. In each case, it was found that some constraint
on the weights was necessary for good performance, and that the non-negativity
constraint produced the best results. LeBlanc and Tibshirani [4] also considered
a slightly different combining rule to that of equation (1) which allowed different
weights for each class. In this case they found that the sum-1 constraint alone
did not produce results as good as when using the non-negativity constraint.
Further, Breiman [1] found that when forcing the non-negativity constraint,
additionally constraining the weights to sum to one made little difference, and
in fact the sum of the weights tended to be close to one anyway. These findings
differ somewhat from those of Ting and Witten [6]. Similarly to LeBlanc and
Tibshirani [4] they allowed different weights for each class, but they found that
enforcing the non-negativity constraint made little difference to the accuracy of
the classifier. However, they commented that enforcing non-negativity avoided
the need to interpret negative weights.

Although such empirical guidelines are useful, there is still little theoretical
understanding of the conditions under which enforcing the non-negativity con-
straint is likely to improve upon the accuracy of a single classifier. In section 2
we present some theoretical results based on analysis of the location of the deci-
sion boundary which help to explain the behaviour noted empirically. In section
3 we show how our findings relate to the framework for analysing classifier de-
cision boundaries proposed by Tumer and Ghosh [5] and extended to weighted
averaging by Fumera and Roli [2].

2 Effect of the Constraints on the Location of the
Decision Boundary

The analysis in this section is based on analysing the location of the decision
boundary of the weighted average classifier (2). Under this rule, the decision
boundary between two classes labelled j and j′ is the set of points{

x :
K∑

l=1

L(j, l)p̂(l|x) =
K∑

l=1

L(j′, l)p̂(l|x),

K∑
l=1

L(j, l)p̂(l|x) >

K∑
l=1

L(k, l)p̂(l|x) ∀ k �= j, j′
}

,

which is a subset of the set{
x :

K∑
l=1

L(j, l)
M∑
i=1

wip̂i(l|x) =
K∑

l=1

L(j′, l)
M∑
i=1

wip̂i(l|x),

}
. (3)
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2.1 Non-negativity Constraint

Theorem 1. Under classification rule (2), when constraining the weights to
be non-negative the decision boundary of the final classifier can not lie in the
interior of any region of the feature space where all classifiers output the same
label.

Proof. Denote the interior of the region in which the ith classifier will classify
an observation as class j by Ri

j , i.e.

Ri
j = int

({
x : j = argminc

K∑
l=1

L(c, l)p̂i(l|x)

})
.

Now let R∗
j denote the interior of the region in which all classifiers will classify

an observation as class j, i.e. R∗
j =

⋂
i Ri

j . Then for all i, for x ∈ R∗
j ,

K∑
l=1

L(j, l)p̂i(l|x) <

K∑
l=1

L(j′, l)p̂i(l|x).

Hence for wi ≥ 0, i = 1, 2, . . . , M , for x ∈ R∗
j

M∑
i=1

wi

K∑
l=1

L(j, l)p̂i(l|x) <

M∑
i=1

wi

K∑
l=1

L(j′, l)p̂i(l|x).

Hence there does not exist an x ∈ R∗
j such that

M∑
i=1

wi

K∑
l=1

L(j, l)p̂i(l|x) =
M∑
i=1

wi

K∑
l=1

L(j′, l)p̂i(l|x).

Therefore, from (3) we can see that no points in the region R∗
j are on the decision

boundary between classes j and j′. A similar argument holds to show that no
point in R∗

j′ is on the decision boundary between classes j and j′. Hence the
decision boundary of the combined classifier can not be in a region where all the
classifiers output the same label.

The significance of this result is that it gives a necessary condition for optimal
performance of the weighted averaging rule with non-negativity constraints, ex-
pressed in terms of the decision boundaries of the classifiers which are combined:
if the optimal decision boundary is not within the region where the classifiers
output different labels, i.e. “disagree”, then the Bayes (optimal) error can not
be attained for any value of the weights1. However, even when it is the case that
the optimal decision boundary is within the “region of disagreement” it may not
be possible to attain the Bayes error for any value of the weights wi, depending
1 As an aside, this is also a necessary (and sufficient) condition for there to exist a

classifier selection mechanism with error equal to the Bayes error.



Constraints in Weighted Averaging 357

on how flexible the decision boundary of the classifier is and the complexity of
the optimal boundary.

Given that the optimal boundary is within the region of disagreement, mak-
ing this region tighter about the Bayes boundary can lower, but not increase,
the maximum possible error rate of the classifier. Applying a non-negativity
constraint can provide regularisation by reducing the space of possible decision
boundaries. In addition, this result shows that if using a non-negativity con-
straint we should use component classifiers whose decision boundaries lie close
to the optimal boundary, but are spread about it in an even way. Alternatively,
one could say that if we expect to have such a set of classifiers then, due to the
added regularisation, it is likely that using a non-negativity constraint will result
in a lower error rate than when using unconstrained estimates.

If the region of disagreement of the classifiers does not contain the Bayes
boundary, then it is possible that using a weighted averaging rule with non-
negativity constraint will result in a relatively high error rate, depending on
how far away from this region the optimal boundary lies. In such a scenario it
is likely that the classifiers whose decision boundaries are closest to the optimal
boundary should have the largest weights, in which case the error rate is likely
to be lower than that of simple averaging. However, we may be able to obtain
an even lower error rate by allowing negative weights, in which case the bound
of theorem 1 does not hold.

For example, consider a toy classification problem consisting of two normally
distributed populations. The mean of class 1 is (0, 0) and that of class 2 is (1, 1).
The variance covariance matrix of each class is equal to the identity matrix,
and the prior probability an observation is from class 1 is 0.7. The Bayes error
for this example is 0.2041. In figure 1(a) the component classifiers have been
trained on independent training sets of size 80 drawn from the population. The
optimal boundary is within the region of disagreement (shaded). In figure 1(b)
the classifiers were trained on independent training sets of size 80 which consisted
of an equal number of observations from class 1 and class 2, and so are biased
towards class 2. In this case the region of disagreement does not contain the
optimal boundary.

The error rates of the classifier corresponding to using the best non-negative
weights, the best unconstrained weights and simple averaging are shown in
table 1. This shows that the benefit of using unconstrained weights for the exam-
ple shown in figure 1(a) is small compared to the benefit for the example shown in
figure 1(b). In the latter case, using simple averaging corresponds to an added
error 1.5 times that of the best non-negative weights, yet almost 38 times larger
than when using the best unconstrained weights.

In practice it is likely that the small increase in added error of using simple
averaging over weighted averaging in the case of figure 1(a) is outweighed by
the error introduced by weight estimation [3]. However, in a case such as figure
1(b) the potential benefit of using unconstrained weights compared to simple
averaging is unlikely to be outweighed by the loss of accuracy due to weight
estimation. Therefore, a non-negativity constraint should only be applied if the
method used to obtain the classifiers to be combined is unlikely to be biased.
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(b) “Biased classifiers”

Fig. 1. The decision boundaries of the combined classifiers are shown as solid lines
whilst the optimal boundary is dashed. The region of disagreement of the classifiers is
shaded.

Table 1. Optimal error rates for the examples shown in figures 1(a) and 1(b) under
different constraints on the weights. The Bayes error is 0.2041.

example (a) example (b)
constraint best weights error best weights error

non-negativity (0.26, 0.70, 0.04) 0.2045 (0.00, 1.00, 0.00) 0.2264
unconstrained (0.26, 0.70, 0.04) 0.2045 (−1.65, 1.98, 0.67) 0.2050

simple averaging (0.33, 0.33, 0.33) 0.2074 (0.33, 0.33, 0.33) 0.2380

2.2 Sum-W Constraint

Theorem 2. When using weighted averaging, multiplying the weights by a pos-
itive constant will not affect the outputs made by the classifier.

Proof. Suppose we multiply all the weights by a constant c > 0. Then rather than
output p̂(k|x), the result of weighted averaging will be c p̂(k|x), for k = 1, . . . , K.
Clearly

argminj

K∑
l=1

L(j, l)c p̂(l|x) = argminj

K∑
l=1

L(j, l)p̂(l|x),

so the labels output by the classification rule (2) will not be changed.

Theorem 3. When using weighted averaging, multiplying the weights by a neg-
ative constant will result in changes in the label output by the classifier for all
inputs x.

Proof. If we multiply the weights by a constant c′ < 0, then as above the result
will be that the outputs of weighted averaging will also be multiplied by c′ < 0.
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One can see that

argminj

K∑
l=1

L(j, l)c′p̂(l|x) = argmaxj

K∑
l=1

L(j, l)p̂(l|x),

�= argminj

K∑
l=1

L(j, l)p̂(l|x),

so using rule (2) will give different outputs to the case that we multiply the
weights by a positive constant c.

The first result shows that the optimal weights are not unique, as we could always
multiply them by a positive constant and obtain the same classifier outputs.
Therefore, applying a sum-W constraint makes it more likely that there exists a
unique optimal vector of weights. However, if the optimal weights are such that
their sum is negative, say, then theorem 3 implies that there does not exist a
set of optimal weights with positive sum. Therefore, constraining the weights to
sum to one, for example, will in some cases exclude the optimal solution, and
possibly many good solutions as well. However, the sum-W constraint is obviously
looser than the non-negativity constraint, which constrains the sign of all the
weights as well as (indirectly) the sign of their sum. For illustration, suppose we
combine three classifiers and an optimal value for the unconstrained weights is
(−4, 1, 1). If we normalise these weights to sum to one then we must multiply
by −0.5, resulting in weights (2,−0.5,−0.5). Because we have multiplied by a
negative constant, theorem 3 shows that the labels output by the classifier have
changed and so are no longer optimal. In this example, one can see that if we
were to constrain the weights to sum to a positive constant, we would exclude
the optimal unconstrained solution.

These results imply that applying a sum-1 constraint in addition to a non-
negativity constraint is unlikely to result in significant reductions in error rate,
though does convey some regularisation by limiting the space of optimal weight
vectors. Because the sum-1 constraint is not as strict as the non-negativity con-
straint, if the optimal unconstrained weights are all positive then one would
expect to do better when enforcing the non-negativity constraint than the sum-
1 constraint. Applying a sum-1 constraint without the non-negativity constraint
could have a detrimental effect on classification performance compared to the
unconstrained case if the sum of the optimal weights is negative, and other-
wise may result in slightly improved weight estimates due to the relatively small
amount of regularisation. Note that the sum of the optimal weights is only likely
to be negative if there is at least one individual classifier with a relatively high
error rate. This is because, in a two-class classification problem, theorem 3 im-
plies that multiplying the weights by a negative constant will swap the labels
output by the classifier. Therefore, using an individual weight wi < 0 is equiva-
lent to including a classifier which always outputs the opposite labels to the ith
classifier. Note that this also allows for some interpretation of negative weights:
a negative weight indicates that the errors made by the corresponding classifier
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are as “useful” to the MCS as the correct classifications made by those classifiers
with positive weight.

3 Relation to Previous Work

The results of section 2 are useful in helping to explain the circumstances in
which non-negativity and sum-W constraints are appropriate. Previous study of
the decision boundary by Fumera and Roli [2] in the framework of Tumer and
Ghosh [5] has assumed that the weights are non-negative and sum to one. We
now show that if we consider the possibility of unconstrained weights, that sim-
ilar conclusions to those above can be drawn from this framework. In addition,
because this framework allows one to model the exact location of the decision
boundary and not just bounds on its location, we can gain a better understand-
ing of the non-negativity constraint.

The framework applies most easily to the case of a one-dimensional feature
space, so for simplicity we only consider this case. In addition, we assume there
are only two classes (labelled l and k), that the 0–1 loss function is used and that
the decision boundary consists of only one point. In what follows we will denote
the optimal boundary by x∗, the decision boundary of the weighted averaging
classifier by xWA and the decision boundary of the ith classifier in the combi-
nation by xi. Then following Tumer and Ghosh [5], consider the outputs of the
component classifiers as being composed of the true conditional class probability
plus an error term, i.e.

p̂i(k|x) = p(k|x) + εi(k|x).

If we linearise p(k|x) and p(l|x) about the Bayes boundary x∗, i.e.

p(k|x) ≈ p(k|x∗) + (x − x∗)p′(k|x∗), (4)

and assume that εi(k|x) = εi(k) for all x close to x∗, then the decision boundary
xWA can be expressed as

xWA = {x : p̂(k|x) = p̂(l|x)}

≈ 1
sW

M∑
i=1

wi[εi(l) − εi(k)] + x∗, (5)

where s = p′(k|x∗) − p′(l|x∗) and W =
∑

i wi. Setting wi/W = 1 in equation
(5) gives xi ≈ 1

s [εi(l)− εi(k)]+x∗. Hence if we denote the distance between xWA

and x∗ by dWA, then

dWA ≈
M∑
i=1

wi

W
(xi − x∗), i.e.

dWA ≈
M∑
i=1

wi

W
di, (6)
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where di denotes the distance between the boundary of the ith classifier and x∗.
This shows that under the assumptions of this framework, the decision boundary
of the weighted averaging classifier is offset from the optimal boundary by the
weighted average of the offsets of the individual classifiers, with weights wi/W .

Tumer and Ghosh [5] showed that under the assumptions given earlier, we
can express the added error of a classifier with decision boundary xb (i.e. the
error rate of the classifier minus the Bayes error) as

AE ≈ s

2
(x∗ − xb)2.

Hence, from (6), we can express the added error of the weighted average as

AEWA ≈ s

2
(dWA)2,

≈ s

2

(
M∑
i=1

wi

W
di

)2

. (7)

That is, the added error of the weighted average is proportional to the square of
the weighted average of the offsets of the individual classifiers.

Optimising the weights is then a matter of minimising the added error (7). To
allow comparison with the results of section 2.1, suppose we constrain the weights
to be non-negative. If all the classifiers have offset di of the same sign, i.e. their
decision boundaries all lie on the same side of x∗, then expression (7) implies
that we can minimise AEWA by using only the best component classifier, i.e.
that with the smallest absolute offset and hence lowest error. That is, if x∗ does
not lie in the region of disagreement, then the framework shows that we should
select the classifier whose decision boundary is closest2 to the optimal boundary.
Furthermore, (7) shows that it is only possible to obtain zero added error if there
is at least one component classifier with negative offset, and one with positive
offset, i.e. if the region of disagreement contains the optimal boundary. Also note
that expression (6) implies that multiplying the weights by a positive constant
will not affect the location of the decision boundary. In fact, because we have
only two classes, in this case it can be seen that multiplying the weights by a
negative constant will not change the location of the decision boundary either,
though in this case the labels output by the classifier will be reversed.

Hence this analysis yields the same conclusions about the effect of the non-
negativity constraint as that of section 2.1. In addition, by modelling the location
of the decision boundary we can say something about the value of the optimal
weights. Firstly, note that from (6) we can see that even with two constraints on
the weights, if M > 2 then the optimal weights will not be unique 3. So suppose
for simplicity that we have only two classifiers, and decide to enforce the non-
negativity constraint. Then it makes sense to also apply the sum-1 constraint
2 By “closest” to the optimal boundary we mean with respect to the probability

density.
3 In practice it is likely that due to the complexity of the optimal decision boundary

this is unlikely to occur.
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in order to ensure uniqueness of the optimal weights and interpretation of those
weights as probabilities. If d1 and d2 are of the same sign, then the added error
(7) will be minimised if we select the best of the two classifiers. If the di are
of opposite signs, then the added error will be zero if we set w−1

i ∝ |di|. Now
suppose that we do not apply the non-negativity constraint. In this case we can
minimise the added error (7) by setting w−1

i ∝ Ii|di|, where I1, I2 = 1 if di are
of opposite signs, and I1 = 1, I2 = −1 if the di are of the same sign. In this case
it is preferable not to enforce a sum-W constraint because a sum-W constraint
with W > 0 is only appropriate if |d1| > |d2|, and otherwise we should use a
sum-W constraint with W < 0. Because in practice we wont know the signs of
the di it is not possible to know in advance the appropriate sign of W .

From (7), AEi ∝ d2
i , so |di| ∝

√
AEi. Therefore, in certain circumstances as

described above the error rate of the weighted average classifier is minimised by
setting w−1

i ∝
√

AEi. Whilst we can not estimate the di directly, we can estimate
the added errors AEi. This result is slightly different to that of Fumera and Roli
[2] who showed that if the classifiers are expected to be unbiased and the weights
constrained to be non-negative, then the weight of the ith classifier should be
inversely proportional to its expected added error, i.e. w−1

i ∝ E[AEi]. However,
this does not contradict our findings because we are concerned with the scenario
that the weights are determined after the classifiers have been trained rather
than beforehand.

4 Conclusions and Discussion

In this paper we explored the effect that constraining the weights can have
on the location of the decision boundary of the weighted average classifier. We
showed that enforcing a non-negativity constraint results in regularisation due
to constraining the region in which the decision boundary can lie. This result
implies that the non-negativity constraint is likely to improve performance of the
weighted averaging rule provided that the classifiers which are combined are not
all systematically different to the optimal boundary. If the optimal boundary lies
outside the region where the combined classifiers disagree, then enforcing this
constraint will potentially result in a classifier with larger error rate than when
using unconstrained weights.

We also showed that under certain conditions applying a sum-1 constraint
may improve performance, as it limits the number of optimal solutions. How-
ever, if the optimal weights sum to a negative constant, then enforcing a sum-
1 constraint will be detrimental to performance of the classifier. Therefore, it
would seem sensible to enforce a sum-1 constraint only when a non-negativity
constraint is also used.

These findings explain the empirical results discussed in section 1. Further-
more, it is hoped that the theoretical analysis will inform sensible choice of
constraints for new or unusual classification problems, or for new methods of
training the classifiers which are combined. Because the effect of the constraints
considered depends on the relation of the component classifiers to the optimal



Constraints in Weighted Averaging 363

classifier, which we do not know, it may be more fruitful in future to focus on
other forms of regularisation, such as shrinkage.
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Abstract. This paper introduces a new ensemble approach, Feature-
Space Subdivision (FaSS), which builds local models instead of global
models. FaSS is a generic ensemble approach that can use either stable
or unstable models as its base models. In contrast, existing ensemble
approaches which employ randomisation can only use unstable models.
Our analysis shows that the new approach reduces the execution time
to generate a model in an ensemble with an increased level of localisa-
tion in FaSS. Our empirical evaluation shows that FaSS performs sig-
nificantly better than boosting in terms of predictive accuracy, when a
stable learner SVM is used as the base learner. The speed up achieved
by FaSS makes SVM ensembles a reality that would otherwise infeasible
for large data sets, and FaSS SVM performs better than Boosting J48
and Random Forests when SVM is the preferred base learner.

Keywords: Local models, stable learners.

1 Introduction

Existing ensemble methods such as Bagging, Random Forests, Random Subspace
and Boosting generate multiple global models from a single learning algorithm
through randomisation (or perturbation) in order to improve predictive accuracy
relative to a single model. The reliance on global models and randomisation (or
perturbation) also means that only unstable base learners can be used for these
ensemble methods because only unstable base learners generate sufficient global
model diversity through randomisation or perturbation. This excludes many
stable base learners that, when applied directly, may produce more accurate
individual models for the given learning task. Unstable learners will generate
substantially different models when there is a small perturbation on the training
data; whereas stable learners generate models that differ little in the context
of small perturbations. Examples of stable learners are Naive Bayes, k-nearest
neighbour classifiers and support vector machines. Decision tree learners are a
typical example of unstable learners.

This paper introduces a fundamentally different approach to ensemble learn-
ing, which induces diverse local models, rather than global models, in distinct
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local regions of the feature-space. The proposed ensemble approach constructs all
partitions of the feature-space that are defined over a fixed number of attributes
and learns a local model in each partition. This approach can be applied to both
stable and unstable learners, and trains faster than existing ensemble methods
because each local model is learned using a substantially smaller data set than
learning a global model using the whole data set. The reduction in training time
will be more pronounced when the learning algorithm has high order polynomial
time complexity. In addition, our approach will continue to get improvement by
increasing the level of localisation for as long as the data quantity is sufficient
to support the level of localisation.

The proposed work is distinguished from existing work on ensemble methods
based on randomisation (such as Bagging [2], Random Forests [3]) or perturba-
tion (Boosting [11]), feature subset selection/search for ensembles [8,9,5], and
localised modelling (such as NBTree [6], Lazy Bayesian Rules [14]) by

• Employing a complete enumeration of feature-space subdivisions to build a
set of local model variants for each point in the feature-space; thus eliminat-
ing the need to use randomisation or perturbation to build model variants;

• Utilising local models in a way that provides more model diversity than
existing learners which either heuristically identify or randomly select a small
set of feature subsets to build global models (see Section 2.3 for more details);

• Enabling either randomised or enumerated implementation.

We show in this paper that the proposed approach improves the predictive accu-
racy of the ensemble and decreases the time required to generate an individual
model, as the level of localisation increases. For example, in one of the largest
data sets we used, building a SVM ensemble of 455 models takes less than one-
hundredth of the time required to train one single SVM model! The approach
works for both stable and unstable models such as decision trees, k-nearest neigh-
bours and support vector machines (SVM). In this paper, we focus on the stable
learner SVM and show that the proposed approach performs significantly bet-
ter than Boosting in terms of predictive accuracy, and is significantly faster if
training a single SVM requires a long time.

2 Feature-Space Subdivision

A local model formed from instances similar to one we wish to classify will often
perform better than a global model formed from all instances [4]. However, in
the general case we do not know the relevant distance metric so do not know
what local neighborhood to use. We propose to use many local neighborhoods,
creating an ensemble by applying the base learner in each.

Our approach is to subdivide the feature-space into non-overlapping local
regions in a single subdivision; and ensure that different subdivisions provide
the distinct local neighbourhoods for each point in the feature-space. There are
many ways a feature-space can be subdivided. Instead of using heuristics, we
subdivide the feature-space exhaustively based on a user-specified number of
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features to control the level of localisation. The set of exhaustive feature-space
subdivisions forms the basis to develop a new ensemble method which aggregates
all local models or a random subset generated in the set. We call the proposed
method Feature-Space Subdivision or FaSS.

We describe the enumerated version of FaSS in Section 2.1 and provide the
time complexity analysis in Section 2.2, and explain the randomised version of
FaSS in Section 2.3.

2.1 Definition and Implementation

Let X be the input n-dimensional feature space with Ai denote the i-th feature,
and Y denote the set of classes representing the underlying concept, which is to
be learnt from a training set of size m, D := {(xi, yi)|i ∈ {1, 2, . . . , m}}.
Let e : X → {0, 1} be a Boolean-valued function which consists of a conjunction
of h atoms over A1, . . . , An. The subspace and its complement confined by e are
given as follows: r := {x ∈ X | e(x) = 1}, r̄ := X\r.

We define an h-subdivision as: R =
⋃

i ri = X , where ∀ i �= j, ri ∩ rj = ∅.
ri are mutually exclusive subspaces that cover the entire feature space using

conjunctions of h features, and h ≤ n
2 . A learning algorithm f is used to build a

local model f(ri) for each subspace ri.
Let rj

i be a subspace i of an h-subdivision j. The set of all distinct h-
subdivisions, in which no two r subspaces are equivalent or a subset of another
between any two h-subdivisions, is defined as follows:

Rh := {R | ∀ j �= k, rj
· �⊆ rk

· }, (1)
|Rh| = Cn

h , (2)

where Cn
h is the binomial coefficient.

FaSS is an ensemble method which combines all local models generated from
Rh or a subset of Rh.

An example of FaSS in binary domains. In a domain of n binary attributes,
the feature-space can be subdivided into two half-spaces n ways, where each
such subdivision uses one of the n attributes. Extending to subdivision using h
attributes, the feature-space can be subdivided into 1

2h -spaces in Cn
h ways, where

h is the number of binary attributes used to do the subdivision. In general, an
h-subdivision is one of the possible non-overlapping subdivisions of the feature-
space using h attributes. The exhaustive set has Cn

h h-subdivisions for a given
feature-space defined by n attributes.

Let us consider that a subspace is a local neighbourhood of a point x in the
feature space. Applying the subdivision, each point x has exactly Cn

h different
local neighbourhoods; and x is the minimum intersection of all the local neigh-
bourhoods. Each subspace is defined by one conjunction of h conditions. For
example, {A1=0 and A2=1} defines a subspace constrained by attributes A1

and A2 and their specified values. The exhaustive set of x’s local neighbour-
hoods contains all the different training data sets from which x can be modelled
(by using a learner to produce one local model for each local neighbourhood.)
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Models learned from these distinct local neighbourhoods can be viewed as the
representative local models for x. For example, if the feature space is defined by
four binary attributes A1, A2, A3 and A4 and x=<A1=0, A2=1, A3=1, A4=0>;
for h=2, six quarter-spaces ri of two dimensions are shown below, where each
column indicates the attributes used (with an implied value for each attribute)
in each quarter-space:

A1 A1 A1 A2 A2 A3 Level 1
A2 A3 A4 A3 A4 A4 Level 2

which define all six local neighbourhoods for x. This example shows the enumer-
ation method we employed to generate Cn

h h-subdivisions in an FaSS ensemble
which can be done without attribute selection.

h specifies the level of localisation—a high h signifies a high level of localisation
with a reduced training data size in each subdivision; and only attribute subsets,
which do not contain attributes used in r to define a local neighbourhood, are
used to build local model for the neighbourhood.

Level Tree. The data structure we propose, which implements the feature-
space subdivision mentioned above, is called a Level Tree. It is a restricted form
of decision tree where each level of the tree must use the same attribute. Fig. 1(a)
shows an example of a Level Tree defined by three attributes: A1, A2 and A3. A
local model is trained from data in each leaf of the tree and it is attached to the
leaf. A Level Tree1 with local models is thus equivalent to a single global model,
ready to predict when a test instance is presented.

Using feature-space subdivision, the structures of all possible h-subdivision
Level Trees (without local models) can be generated with minimal cost by enu-
meration since no attribute selection is required, unlike in the case of ordinary
decision trees. Subdivision for numeric attributes will be considered in the same
manner as a cut-point selection in an ordinary decision tree using a heuristic
such as information gain. As a result, though each attribute can appear at one
level only in a Level Tree, the cut-points used for a numeric attribute on different
nodes of the same level can be different.

The training data is filtered through the branches in the Level Tree as each
node is created. If the training data run out before a branch reaches the re-
quired level h, a leaf is formed and the majority class of its parent is used
for prediction. Otherwise, a local model is trained for each branch that has a
level h.

The aggregation of all possible Level Trees of h-subdivision forms an ensemble.
To make the final prediction, the predictions from all Level Trees in an ensemble
are aggregated using a simply majority vote, like in bagging.

1 As a single model, a Level Tree is similar to an Oblivious Decision Tree (ODT) [7],
except that an ODT uses the majority class of the training instances at a leaf to
classify whereas a Level Tree uses local models. However, ODT is meant to be used
as a single model with no considerations for ensembles.
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Fig. 1. (a) An example of Level Tree with three levels of localisation using attributes:
A1 at level 1, A2 at level 2, and A3 at level 3, and a local model attached to each leaf.
Each Level Tree with local models forms a single global model.
Fig. 1. (b) Plot of ratio of reduction (Log4) at three levels of localisation for FaSS
using hypothetical algorithms having time complexities O(m3), O(m2) and O(m1),
FaSS using SVM, IBk and J48, and Boosting J48.

2.2 Time Complexity Analysis

Assume an algorithm with time complexity O(mp) is used to generate 2h local
models in each binary Level Tree of h-subdivisions, where m is the number of
training instances and p is a constant. The total execution time of generating a
single binary Level Tree is in the order of 2hmp, ignoring the time to generate the
structure of a Level Tree which is negligible by comparison in nominal attribute
only domains. Further assume uniform data distribution and every increment of
h reduces the number of instances in each subdivision by half. Thus, the ratio
of reduction in execution time (TR) for each Level Tree as a result of a single
increment of h is given as follows:

TR =
2hmp

2h+1(m/2)p
= 2p−1

Compared to generating a single global model, the ratio of reduction in execution
time for generating a single model in FaSS of h-subdivision is thus 2h(p−1). Gen-
eralising to b-nary trees, where b ≥ 2, the ratio of reduction will be bh(p−1). This
reduction may be viewed as an upper bound because of the uniform data distribu-
tion assumption. In contrast, most ensemble methods employing randomisation
have the ratio of reduction approximately equal to one since generating a single
model and each of its variants from a base learning algorithm requires about the
same amount of time when using the same data size.

Fig 1(b) shows an example of the ratios of reduction in execution time of a
single model using FaSS with quad trees (i.e., b=4 because each attribute in
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this domain has four labels) at h=1, h=2, and h=3; and FaSS employs three
different base learning algorithms: J48 (decision tree), IBk (k-nearest neighbour
where k=5) and SVM which have different time complexities. We also compare
them to Boosting using J48 with ensemble sizes equivalent to the three settings
of h. The data set (coding) consists of a total of 20000 instances, and the result
is averaged over a 10-fold cross-validation. Note that we are applying log4 to
the reduction ratios and include FaSS using three hypothetical algorithms with
different p values which show three linear lines with different reduction ratios.

The largest reduction comes from FaSS SVM which is equivalent to FaSS using
a hypothetical algorithm with a time complexity between O(m2) and O(m3); and
the reduction ratios for FaSS IBk is very close to FaSS using a hypothetical algo-
rithm with O(m2). FaSS J48 appears to behave as FaSS using an algorithm with
a time complexity between O(m) and O(m2). The reduction ratio for Boosting
is relatively modest and is less than that for FaSS J48.

2.3 Randomised Version of FaSS

FaSS can be implemented in more than one way, including a randomised version
of FaSS which randomises the feature-space subdivision process (i.e., selecting
a random subset of Rh), as opposed to the randomisation/perturbation in the
instance space like bagging or boosting, and randomisation in the model building
process as in Random Forests. This implementation completely avoids the issue
of enumerating all Cn

h models in FaSS without randomisation.
Randomised FaSS is different from Random Subspace (RS) [5] in three key

aspects. First, RS builds each global model from all data points, albeit with a
reduced feature set; whereas FaSS builds local models using local training sets
defined by subspaces in R. Second, the diversity of RS models is confined by the
set of Cn

h feature subsets only, assuming h is the number of selected features;
whereas the model diversity in FaSS is further enhanced by b(h+1) different local
models in each of the Cn

h feature subsets, assuming in a b-nary domain. In effect,
each Random Subspace model is forced to exclude a subset of the features (those
not selected) and is free to utilize as it sees fit the remaining features to build a
global model, whereas each FaSS model is forced to include, albeit implicitly, a
subset of features (those selected to build the level tree) and is left free to utilize
those remaining to build local models. Third, for an algorithm with O(nmp),
the training time for RS is expected to be reduced by half only, when h = n/2
is used in order to have the maximum diversity; whereas the training time for
FaSS is expected to be reduced in the order of (n − h)mp/bh(p−1).

3 Empirical Evaluation

We design our experiment to examine the properties of the proposed FaSS ap-
proach and compare it with Bagging and Boosting. The experiment is conducted
under the WEKA platform [13]. We use the support vector machine, decision tree
and boosting implementations in this platform (i.e., SMO, J48, AdaBoostM1).
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The two base learning algorithms are selected because of their differing charac-
teristics that we want to examine in FaSS. They are algorithms which produce
different degrees of (un)stable models; have significantly different time complex-
ities. J48 produces an unpruned decision tree whenever it is used; all other
settings are as in the default settings. All experiments are carried out on an
OpenPOWER 720 Power5 Linux Cluster with 8 gigabytes main memory.

A total of eight plus three large data sets from the UCI Machine Learn-
ing Repository [1] are used. All experiments are conducted using 10-fold cross-
validation, unless stated otherwise. We measure the performance in terms of
error rate and execution time per model. We measure a total of training and
testing time in each data set and then divide the total time by the ensemble size
to give the average execution time per model in order to demonstrate the time
reduction in comparison to that of a single ordinary model.

We first show the performance of FaSS without randomisation in Sections 3.1
and 3.2, and then FaSS with randomisation in Section 3.3.

3.1 FaSS SVM

The results of FaSS SVM are presented in Table 1. In terms of error rate and
execution time, FaSS SVM shows that both the error rate and the execution time
per model decrease as the level of localisation increases. The geometric means of
performance ratios in Table 1 show that FaSS decreases the error rate of SVM by
20% at h = 1 and 45% at h = 3. There are a few exceptions to the general trend
which occur in wave21 and dna. The error rate spikes at high level of localisation
in the dna data set are likely to be due to the effect of a low number of training
examples relative to the high branching factor and high number of attributes.
This data set has 60 nominal attributes, each having four labels, and a data size
of 3196 examples only. Many branches in the Level Tree have no or very small
number of training examples when h = 3. SVM requires more training examples

Table 1. Average error rate and execution time (in seconds) at different ensemble sizes
for FaSS SVM (linear kernels); data and ensemble sizes at h=1, 2 and 3

Average Error Time Per Model Ensemble Size
FaSS FaSS Data for FaSS at h

SVM 1 2 3 SVM 1 2 3 Size 1 2 3

coding 28.58 26.10 23.67 20.05 2392 397.45 43.72 13.03 20000 15 105 455
nursery 6.85 3.75 1.57 .35 47.06 7.39 2.79 2.91 12960 8 28 56
dna 7.34 3.77 3.20 7.19 17.02 4.19 2.38 5.14 3186 60 1,770 34,220
wave40 13.72 13.68 13.46 13.42 3.60 1.26 1.02 1.10 5000 40 780 9,880
satimage 13.33 11.84 10.86 9.76 3.51 1.63 1.54 2.19 6435 36 630 7,140
wave21 12.98 13.00 13.16 13.42 2.37 .70 .48 .48 5000 21 210 1,330
segment 6.97 6.41 5.63 4.68 2.04 .70 .57 .52 2310 19 171 969
anneal 12.58 9.91 7.13 6.01 1.89 .53 .32 .30 898 38 703 8,436

Average 12.79 11.06 9.84 9.36 308.69 51.73 6.60 3.21
Geomean .80 .65 .55 .27 .14 .14
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in order to produce a reasonable model; thus it can only tolerate up to h = 2.
The number of poor performing local models in this kind of branches becomes
sufficiently large to affect the performance of the ensemble when h is high. Thus,
domains with many multi-label attributes require to either have large data size
or use a low level of localisation when employing FaSS.

In terms of execution time, the geometric means in Table 1 show that FaSS
at h = 1 reduces the time to construct and test a model to 27% of SVM at
h = 1 and 14% at h = 3. The general trend persists in every single data set for
FaSS SVM from SVM to h = 1 and h = 2. However, there is a slight increase
in execution time at h = 3 (relative to h = 2) in four of the eight data sets for
FaSS using SVM. These are likely to be due to an increase in difficulty (relative
to those in the lower levels) in converging to the final SVM local models as a
result of small data size in subdivisions at high levels.

3.2 FaSS SVM versus Boosting SVM

Table 2 compares the results between Boosting and FaSS using SVM as the
base model. Except in one data set (anneal), Boosting makes little or no im-
provement on the predictive performance of SVM. In contrast, FaSS reduces
error rates significantly in all data sets, except the two waveform data sets.
The total time results show that FaSS uses significantly less time than Boost-
ing in the three most time consuming data sets (coding, nursery and dna), in
which training a single SVM takes a long time. Notably FaSS of eight SVM
models uses only a slightly more time than a single SVM model in nursery, but
reduces almost half the error rate. Also note that Boosting SVM takes signif-
icantly more time in nursery than a single SVM model because the changed
data distribution increases the training time significantly for training individual
models.

Table 2. Average error rate and total execution time (in seconds) for SVM, Boosting
SVM and FaSS SVM using h=1. Boosting with early stopping (up to 100 iterations) is
used here and the average number of boosting iterations over the 10-fold cross validation
is also provided. Using SVM as the baseline, the average error results that are better
(at 5% level of significance of a pair-wise t-test) are highlighted in boldface.

Average Error Total Time #Iterations
SVM Boost FaSS SVM Boost FaSS Boost FaSS

coding 28.58 28.58 26.10 2392 9797.6 5962 3.9 15
nursery 6.85 6.85 3.75 47.1 1570.7 59.2 12.5 8
dna 7.34 7.41 3.77 17.0 2295.0 251.2 100.0 60
wave40 13.72 13.72 13.68 3.6 28.0 50.3 3.6 40
satimage 13.33 13.33 11.84 3.5 14.3 58.5 3.1 36
wave21 12.98 12.98 13.00 2.4 14.1 14.8 4.2 21
segment 6.97 6.67 6.41 2.0 9.2 13.4 6.5 19
anneal 12.58 8.02 9.91 1.9 18.0 20.1 19.8 38
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Fig. 2. Error Rate Curves for FaSS SVM, Boosting J48 and Random Forests. This
experiment is conducted using a 2:1 split of the given data set for training and testing.
Quadratic kernels are used. These data sets have the following characteristics (#at-
tributes, data size): connect-4 (42, 67557); usps (256, 9298); pendigits (16, 10992). FaSS
SVM reduces SVM’s error rate from 2.1% to 1.8% in pendigits; Boosting stops early
at 8 iterations in usps.

3.3 Why Use FaSS Instead of Boosting or Random Forests?

Our results in the previous two sections show that FaSS has two key advantages:
(i) the reduction in execution time per model as the level of localisation increases;
and (ii) it works well with stable learners. Therefore, FaSS is useful when data
size is large, and it is particularly useful in domains where stable learners out-
perform the alternatives. Figure 2 shows three such examples in which SVM is
the most accurate base learner and FaSS (with randomisation) can be used to
further improve its predictive performance; and the result shows that FaSS SVM
performs significantly better than Boosting J48 and Random Forests.

Bagging and boosting are known to work for unstable models only. Though
there are a few works that apply boosting or bagging to SVM, they use either
boosting to select a subsample to scale up the efficiency of SVM for large data
sets [10] or bagging in conjunction with random subspacing [12] to increase
SVM’s instability, achieving better performance without the benefit of scaling
up the execution time. In contrast, FaSS not only scales up the efficiency of SVM,
but also significantly improves its predictive performance, as we have showed in
section 3.1. For an additional example in the most time consuming connect-4
data set shown in Figure 2, FaSS SVM of 100 models takes 1.7 days—which is
about one-tenth of the time (16.3 days) to train one single SVM model! Boosting
SVM of 100 models in this data set is estimated to take about 4.5 years! Boosting
or Bagging has no mechanism to reduce the runtime. Boosting or other ensemble
methods that build global models would be infeasible for compute time expensive
algorithms such as SVM in large data sets.

4 Conclusions

This paper shows the advantages of using local models in ensembles. This is a
significant departure from existing ensemble methods that utilises global models
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through randomisation (or perturbation) on the training data or of the training
process. The proposed FaSS approach possesses the same property of existing
ensemble approaches, i.e., increasing ensemble size improves an ensemble’s pre-
dictive performance, with two added advantages.

First, FaSS significantly reduces the execution time for each model with a
high level of localisation. Our analysis shows that the ratio of reduction is in
the order of bh(p−1) when an algorithm with time complexity O(mp) is employed
to generate local models in FaSS using b-nary Level Trees of h-subdivision. In
other words, the reduction becomes more pronounced when the algorithm has
high order polynomial time complexity.

Empirical results show that FaSS executes each model faster—FaSS is an
effective way to speed up SVM to make ensembles feasible for SVM; and FaSS
SVM is significantly faster than Boosting SVM for large data sets.

Second, FaSS is an ensemble approach which is more generic than existing
approaches; many of which are limited to unstable models. Both stable and
unstable models such as SVM and decision trees can be used in FaSS to improve
their predictive performance by increasing the ensemble size through increasing
level of localisation. (The result for unstable learners is not shown because of
space limitation.) We show that FaSS SVM performs significantly better than
Boosting SVM in terms of predictive accuracy, and FaSS SVM performs better
than Boosting J48 and Random Forests when SVM is the preferred base learner.

These advantages are a direct result of using local models rather than global
models in the ensembles, and the FaSS approach ensures that there are no du-
plicate local regions in which the same data subset is used to generate multiple
local models in the ensemble—ensuring maximum model diversity.
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Abstract. The classification of remote sensing data with imbalanced
training data is addressed. The classification accuracy of a supervised
method is affected by several factors, such as the classifier algorithm,
the input data and the available training data. The use of an imbalanced
training set, i.e., the number of training samples from one class is much
smaller than from other classes, often results in low classification accura-
cies for the small classes. In the present study support vector machines
(SVM) are trained with imbalanced training data. To handle the imbal-
anced training data, the training data are resampled (i.e., bagging) and
a multiple classifier system, with SVM as base classifier, is generated.
In addition to the classifier ensemble a single SVM is applied to the
data, using the original balanced and the imbalanced training data sets.
The results underline that the SVM classification is affected by imbal-
anced data sets, resulting in dominant lower classification accuracies for
classes with fewer training data. Moreover the detailed accuracy assess-
ment demonstrates that the proposed approach significantly improves
the class accuracies achieved by a single SVM, which is trained on the
whole imbalanced training data set.

Keywords: land cover classification, multispectral, support vector ma-
chines, bagging, imbalanced training data.

1 Introduction

Monotemporal applications are often inefficient, when classifying remote sensing
data from agricultural areas. Due to great differences in the phenology of planted
crops, these regions areas are characterized by great temporal variability of land
cover changes. Thus, the classification of multitemporal data sets, containing im-
ages that were acquired at different dates during the observation period, appear
appropriate in this context and usually improve the classification accuracy. On
the other hand, common statistical classifier algorithms seem not adequate in
this context and alternative techniques are necessary to handle multitemporal
data sets. Support Vector Machines (SVM), which are well known in the field
of machine learning and pattern recognition, were introduced in context of re-
mote sensing during the recent years [1]-[3]. In these studies they perform better
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or at least equal to other classification methods. Another development is the
use of multiple classifier systems (MCS) or classifier ensembles [4]. MCS were
used successfully in diverse remote sensing application [5] and are particularly
interesting for multisource and hyperspectral data sets [5]-[9]. The results demon-
strate that classifier systems usually increase the performance of a single classifier
and perform at least as good as sophisticated classification strategies as SVM.
Bagging [10] is a well known approach for generating classifier ensembles. The
concept is based on the random selection of training sample sets. Afterwards
an individual classifier is trained on each of these sample sets, resulting in vari-
ous classifier predictions. The final classification map is generated by combining
these individual outputs and often a simple majority vote is used. Whereas in
many studies decision tree classifiers are used for constructing an ensemble with
bagging, in [11] and [12] SVM were used as a base classifier.

Beside the classifier algorithm, the input data and the available reference data
(in context of supervised classifications) have a significant impact on the clas-
sification accuracy. Imbalanced training data sets, i.e., the number of training
samples from one class is much smaller than from other classes, often results
in low classification accuracies for the minor classes. Thus the problem of su-
pervised classifications with imbalanced training data is addressed in several
studies [13]-[15]. In [13] for instance, the classification of forest types in remote
sensing data is discussed. The authors proposed an SVM strategy, which enables
the handling of imbalanced training data. In context of machine learning and
pattern recognition classification problems with imbalanced training samples are
often handled by (1) over-sampling and (2) under-sampling the training data,
respectively [16]. Following the over-sampling strategy, some training patterns
of the minor class are resampled before the classifier training, resulting in the
same number of samples as the other classes. In the latter one, the size of the
major classes is decreased to match the number of samples within the minor
class. In the study presented here, a combination of bagging and SVM is used to
classify multitemporal remote sensing data set, with imbalanced training data.
The approach is applied to a time series of multispectral SPOT data, which
was acquired between May and July over an agricultural study site in Western
Germany. The paper is organized as follows. In the next section, a short intro-
duction to the conceptual framework of SVM and multiple classifier systems is
given. The data sets and preprocessing are described in Section 3. The actual
methods for the application of the proposed ensemble strategy are explained in
Section 4. Experimental results are presented in Section 5. Section 6 discusses
results and conclusion.

2 Classifier Algorithms

2.1 Support Vector Machines

Support vector machines are a binary classifier concept that separates two classes
by fitting an optimal separating hyperplane to the training data of two classes in
a multi-dimensional feature space. For linearly not separable cases, the input data
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are mapped into a high dimensional space, using so-called kernel function [17]. A
detailed introduction on the general concept of SVM is given in [18] and [19]. A
training data set of � samples, in a d -dimensional feature space �d, is given by
xi with their corresponding class labels yi = ±1, Ω = {(xi, yi) | i ∈ [1, �]}.

The linear hyperplane f(x) is given by the normal vector w and the bias b,
with |b| / ‖w‖ as the distance between the hyperplane and the origin, where ‖w‖
is the Euclidean norm from w

fl(x) = wx + b. (1)

The margin maximization leads to the following optimization problem:

min

[
w2

2
+ C

�∑
i=1

ζi

]
(2)

where ζi denotes the slack variables and C the regularization parameter, which
is used to penalize training errors. The SVM decision function for a non-linear
separable case is described by:

fn(x) =

(
�∑

i=1

αiyik(xi, xj) + b

)
(3)

where αi are Lagrange multipliers. The kernel function k(xi, xj) performs a
mapping operation and enables us to work within the newly transformed feature
space, only knowing the kernel function. A common kernel function in remote
sensing applications is the Gaussian radial basis function (RBF), defined by:

k(xi, xj) = exp
[
−γ ‖xi − xj‖2

]
. (4)

The training of an SVM classifier requires the adequate definition of the kernel
parameter γ and the regularization parameter C. The constant C is used as a
penalty for training samples that located on the wrong side of the hyperplane. It
controls the shape of the solution and thus affects the generalization capability
of the SVM. However, the use of inadeqaute parameter values might result in
a less accurate classification. Often the kernel parameters are determined by a
grid-search, using n-fold cross validation. Potential combinations of C and γ are
tested in an user defined range and the best combinations for C and γ were
selected based on the results of the cross validation.

2.2 Multipe Clasifier Systems

The main idea of a multiple classifier system is to consider several different
decisions in the final classification, instead of relying on a single classifier [4].
Ensemble classifier are based on the assumption that a set of independent (i.e.,
diverse) classifiers produce individual errors, which are not generated by the
majority of the other classifiers. Thus, a combination of these classifier outputs
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can improve the classification accuracy. Consequently, the classifier diversity is
a prerequisite and a set of more or less similar classifier (outputs) would not
increase the classification accuracy [4]. Classifier ensembles can be generated
by combining different classifier methods [6],[9] as well as by a combination of
variants of the same algorithm, the so-called base classifier [7],[8]. In [6] for
instance, different data sources were classified simultaneous by a neural network
and statistical classifier. The different outputs (i.e., class labels) were combined
by decision fusion. A decision fusion strategy that is based on SVM was addressed
in [8], to combine multispectral remote sensing and SAR data. Each image source
was classified separately by an SVM and the original outputs, i.e., the distances
from each pixel top the hyperplane, were combined by an additional SVM. The
proposed strategy increases the classification accuracy, compared to a single
SVM that was applied to the whole data set.

Other multiple classifier systems are based on diverse variants of the same al-
gorithm. Boosting and bagging are perhaps the widest used concepts to generate
such a diverse set of classifiers. Breimans bagging [10] uses subsets of training
data, also known as bootstrapped aggregates. For each classifier in the ensemble,
a random and uniform selection of training samples is performed with replace-
ment, selecting � samples from a training set of same size �. This means that
some training samples can be selected several times for a specific training set,
whereas other samples are not considered in this particularly bag. Afterwards
separate classifiers are trained, using the different training sample sets. The dif-
ferent results are combined for the final prediction, often by a majority vote.
The bagging code can be described as follows:

Input: A training set Ω={(xj , yj)}�
j=1, the base classifier CB and number

of randomly generated training sets I.
1. FOR i = 1 to I{
2. Ωi = bootstrapped bag from Ω
3. Ci = CB(Ωi)}
4. END
5. the class with the maximum number of votes is chosen

Although many classifier ensembles based on decision trees, thanks to the
simple handling and fast training times, other studies discussed the use of SVM
ensembles, e.g., [11],[12]. In [11] SVM ensembles were constructed by boosting
and bagging. In context of remote sensing, SVM ensemble was used for the clas-
sification of high-resolution images in [12]. An SVM ensemble was constructed,
by training each SVM on a subset of training samples, which was randomly gen-
erated without replacement. The experimental results of these studies showed
that SVM ensembles can outperform a single SVM in terms of classification
accuracy.

3 Study Site and Data Sets

The test site is located near Bonn in the German state North Rhine-Westphalia.
The area is dominantly used for agriculture. In this study a multitemporal data



Classifying Remote Sensing Data with Support Vector Machines 379

set was available, containing multispectral SPOT images (11 May, 24 June, 17
July and 25 July 2006). Thus, the data set comprised information from varying
phenological stages. An orthorectification of the imagery was performed, using
a digital elevation model and a geocoded reference image. The experiments pre-
sented here are focusing on 9 land cover classes: Arable crops, Cereals, Grassland,
Forest, Maize, Orchards, Rapeseed, Root crops, Urban. A map from a detailed
field survey was used for generating the training (100 samples per class) and test
sample sets (500 samples per class). Nine different imbalacned training data sets
were generated, each time the number of training samples of one land cover class
was randomly reduced to 20. Regarding the random generation, each experiment
was conducted 5 times, i.e., 5 imbalanced samples sets per class were generated
(45 in total).

4 Methods

The imagery was normalized before the classifier training and stretched between
0 and 1. The training of the SVM with Gaussian kernel and the classification
were performed using LIBSVM in a MATLAB environment [20]. The kernel
parameters of C and γ are determined by a grid-search, using a 3-fold cross
validation. Possible combinations of C and γ are tested in an user defined range
and the best combinations were used for the final classification. To handle the
multiclass problem - SVM were originally developed as binary classifiers - the
one-against-one was followed. Each potential SVM was generated, separating
one class from another. The final class was determined by a simple majority
vote. An usual SVM classification is performed, using the imbalanced training
data sets and the original balanced data set, containing 100 samples per class.
During the bagging process 20 samples (i.e., the number of sample of the minor
class) were selected without replacement from each major class to generate the
final balanced training data set. The individual outputs were combined by a
simple majority vote to create the final result. For each ensemble 10 individual
iterations were performed. As mentioned before, the experiments were conducted
five times, using 5 different imbalanced training sets per class. For the final
accuracy assessment the results were averaged.

5 Experimental Results

The results demonstrate the impact of imbalanced training data set on the clas-
sification accuracy. Whereas the total accuracy is almost not affected, the class
accuracies of the minor class are significantly reduced. Using the original bal-
anced data set, with 100 samples per class, the SVM classification achieves an
accuracy of 76.7%. This overall accuracy is slightly reduced by 1.5% when imbal-
anced data sets are used. In contrast to this, the class accuracies are significantly
reduced by using imbalanced data sets. However, the effect varies between the
different land cover classes: e.g., the accuracies of Cereals and Orchards are sig-
nificantly reduced by 44% and 68%, respectively, whereas the effect Forests is
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less sensitive, resulting in a reduction in a reduction of the accuracy by 5.6%
(see Fig. 3)

This negative impact of the imbalanced training can be reduced by construct-
ing an SVM ensemble. Compared to the results achieved by a single SVM (with

Fig. 1. Class accuracies, using the original and the imbalanced data with and without
bagging

Fig. 2. Differences in class accuracies, using the original and the imbalanced data with
and without bagging
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Fig. 3. Differences in class accuracies, using the original and the imbalanced data with
and without bagging
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imbalanced training data), the accuracy of each minor class is improved by the
proposed approach (see Fig. 1). To visualize this effect, the differences in the class
accuracies achieved by the three approaches are presented in Fig. 2. Whereas the
differences in the accuracies achieved due to imbalanced and the original training
data clearly tend towards negative, i.e., the accuracy is significantly reduced, the
differences between the accuracies achieved by bagging and the original data are
much more balanced.

In addition the impact of the number of iterations within the ensemble was
investigated and larger classifier systems were constructed, containing 50 indi-
vidual classifications (not presented in detail). However, with a few exceptions,
the large ensembles could neither improve the total accuracy nor the accuracy
of the minor classes.

The visual interpretation of the classification results clearly shows the ad-
vantage of the proposed approach (Fig. 3). Comparing the classification maps
generated with imbalanced data to the results achieved with the original training
set (i.e., balanced with 100 samples per class) it is obvious that many regions
belonging the minor classes are neglected. Following the proposed strategy most
of these regions are assigned to the minor class, as in the original classification
result (see Fig. 3).

6 Discussion and Conclusion

In the presented study, the problem of classifying remote sensing data with im-
balanced data sets was discussed and an approach based on multiple classifier
systems was proposed. The proposed method is based on the generation of SVM
ensembles by resampling the training data (i.e., bagging). The experimental re-
sults underline the negative effect of imbalanced training data, resulting in a
significant lower classification accuracy of the minor classes. As in other studies,
the construction of SVM ensembles with baggin, does not significantly effect the
overall accuracy. Nevertheless the proposed method significantly improves the
class accuracies of the minor classes. Of course, this requires the generation of
additional SVM classifiers, but on the other hand an ensemble with 10 SVM
perform very well. Moreover, additional classifiers (i.e., a large ensemble size)
do not further improve the class accuracy of the minor classes. It is interesting
to underline that the negative effect of imbalanced data as well as the positive
effect of the proposed method on the class accuracies varies between different
land cover classes. Whereas some classes classified reasonable well with imbal-
anced training data, the class accuracy of other classes is significantly reduced.
One reason might be that some classes can already successfully separate by few
training samples, whereas other classes require a higher number of training sam-
ples for an adequate classification. Overall the proposed method is well suited
for dealing with imbalanced data sets. Due to the general high performance of
SVM in context of remote sensing - particularly when classifying multisource
and hyperspectral data sets - the proposed strategy seems particularly interest-
ing with respect to real world applications, when dealing with imbalanced data
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sets on the one hand and with high-dimensional and multisource data sets on
the other.
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Abstract. We describe an on-line machine learning ensemble technique,
based on an adaptation of the mixture of experts (ME) model, for pre-
dicting terrain in autonomous outdoor robot navigation. Binary linear
models, trained on-line on images seen by the robot at different points
in time, are added to a model library as the robot navigates. To pre-
dict terrain in a given image, each model in the library is applied to
feature data from that image, and the models’ predictions are combined
according to a single-layer (flat) ME approach. Although these simple
linear models have excellent discrimination in their local area in fea-
ture space, they do not generalize well to other types of terrain, and
must be applied carefully. We use the distribution of training data as
the source of the a priori pointwise mixture coefficients that form the
soft gating network in the ME model. Single-class Gaussian models are
learned during training, then later used to perform density estimation of
incoming data points, resulting in pointwise estimates of model applica-
bility. The combined output given by ME thus permits models to abstain
from making predictions for certain parts of the image. We show that
this method outperforms a less sophisticated, non-local baseline method
in a statistically significant evaluation using natural datasets taken from
the domain.

Keywords: Mixture of Experts, Classifier Ensembles, Local Classifier
Accuracy, Online Learning, Terrain Segmentation, Autonomous Robot
Navigation.

1 Introduction

Autonomous robot navigation in unstructured outdoor environments is a chal-
lenging area of active research and is currently unsolved. The navigation task re-
quires identifying safe, traversable paths that allow the robot to progress towards
a goal while avoiding obstacles. Stereo vision allows for obstacle avoidance in the
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(a) RGB Image (b) Gnd. Plane Dev. (c) Stereo Labels (d) Classification

Fig. 1. Demonstration of near-to-far learning using stereo. In (c) and (d), and through-
out this paper, red represents nontraversable obstacle (positive); green represents
traversable groundplane (negative).

near field (here, within 10 m of the robot). However, navigating solely on near-
field terrain readings can lead to a common failure mode in outdoor autonomous
navigation where incorrect trajectories are followed due to nearsightedness, or an
inability to distinguish safe and unsafe terrain in the far field [1].

To address near-sighted navigational errors, near-to-far learning is often used
[2,3]. The near-to-far approach uses both appearance and stereo information from
the near field as inputs for training appearance-based models; these models are
then applied in the far field in order to predict safe terrain and obstacles farther
out from the robot where stereo readings are unavailable.

Near-to-far learning using stereo is demonstrated in Figure 1. For a given RGB
image (1a), stereo disparity is computed using a stereo camera pair; from this
data, a groundplane model is fit and subtracted out, resulting in an estimate of
groundplane deviation (1b). Near-field stereo labels from both the groundplane
and obstacle classes are identified according to small and large groundplane
deviation values, respectively (1c); these near-field stereo labels are sampled to
create a balanced training set. Next, features are extracted from the image at
the pixels of this training set; here, color histograms are used [3]. A model is then
trained on the resulting near-field feature data. The resulting model is evaluated
over the image, including the far field, to arrive at a final terrain predictions
(1d). These terrain predictions are used by the robot’s path planning system to
influence the robot’s low-level navigation [1].

Recently, the use of classifier ensembles to learn and store terrain models over
time for application to future terrain has been investigated [3,4,5]. These en-
sembles are constructed dynamically from an on-line model library that is main-
tained as the robot navigates terrain towards some goal. For an incoming image,
the outputs of the models in the resulting ensemble are combined, dynamically
and in real-time, in a manner designed to optimize predictive performance on
far-field terrain. This previous work achieved classifier fusion by taking a linear
combination of model outputs using one weight per each model in the ensem-
ble. This technique’s primary disadvantage is that models cannot be experts
locally, i.e., at pixel resolution, which is problematic because a given model’s
discrimination ability may not apply everywhere in the image (i.e., in input
space).
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2 Terrain Segmentation with Mixtures of Experts

To overcome the shortcomings of the single-weight non-local methods noted
above, we describe an efficient on-line machine learning ensemble technique. It
is based on an adaptation1 of the mixture of experts (ME) model [6,7,8]. The
general aim of the approach is to combine multiple experts learned over time
by extracting a soft partitioning of the feature space to yield local accuracy
estimates [9], while also respecting the real-time domain requirement.

On-line mixtures of experts and related mixture models are not novel, nor
is the use of Gaussian models to partition the input space and inform where
local linear models are applicable. In particular, Sato and Ishii in [10] use the
Normalized Gaussian Network [11], or NGnet, as the basis for their proposed
on-line EM algorithm, used in turn to fit model parameters.

The primary differentiating contribution of this paper is threefold. First, we
place explicit emphasis on permitting the mixture of experts to abstain from
making predictions, where appropriate. Second, our overall approach is for the
purpose of binary classification, which requires adaptation and extension of the
NGnets above. This is contrast to the the approaches taken in [10] and [11], which
are framed in a regression context and hence do not model class-conditional
data distributions. Finally, this approach has not been previously applied to the
terrain segmentation task or to other open problems in the autonomous robot
navigation domain.

2.1 Overview of the ME Approach for Terrain Segmentation

During navigation, terrain in an outdoor scene is to be classified as either
traversable (groundplane) or nontraversable (obstacle). Two-class appearance-
based linear models, trained on-line on images seen by the robot at different
points in time, are added to a model library as the robot navigates; the training
data is not kept after the model has been added to the library. When terrain
segmentation is required, each model in the library is applied to feature data
extracted from the current image, and the models’ predictions are combined ac-
cording to the single-layer (flat) ME model. Because mixing coefficients in the
ME model are functions of the input data, models can be experts locally in
feature space.

Model Abstinence. A key benefit of our approach is model abstinence, i.e.,
when it is determined that a model does not apply to some point x and hence
should be permitted to abstain (or mostly abstain) from making a prediction
at that point. Not only can individual models abstain, but in our approach, the
entire ensemble can abstain at x. Such behavior is desirable in the autonomous

1 Our approach adopts the mixture of experts architecture from [6]. This is fundamen-
tally a conditional mixture model in which the mixing coefficients, like the expert
response, are functions of the input. We do not explicitly fit the model using EM as
outlined in [7].
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(a) Train M1 on I1 (b) Eval M1 on I1 (c) Test Image I2 (d) Eval M1 on I2

Fig. 2. Good specialization but poor generalization of linear experts. A model trained
on near-field training data from an image (2a) yields reasonable terrain classification
on that image (2b). That same model, when applied to a different test image (2c),
yields reasonable segmentation in some parts of the image, but not in others (2d).

robot navigation domain, because the robot’s path planning system (the plan-
ner) maintains a probabilistic cost map over time used for path planning [1]. If
there is not a sufficient basis to make terrain predictions, then the resulting fully
abstaining ensemble will result in no updates to the robot’s cost map. The next
incoming frame would then offer a new opportunity for terrain prediction and
cost map updates.

Behavior of Linear Models on Domain Data. Linear models are very
efficient to train, which is important in this real-time domain because training
and terrain segmentation are done on-line on incoming images while the robot
is navigating. We have found that these simple linear models are specialists in
their area of feature space, yielding good segmentation on terrain similar to that
on which they are trained, but they but do not generalize well to other terrain.
Blindly applying these models without regard to their applicability to the input
is problematic, and can lead to poor terrain prediction as the model is forced to
generalize to regions of feature space on which it was not trained.

Fig. 2 shows an example of this.2 From features extracted from a particular
training image (2a), a model is trained. Terrain prediction is reasonable when
the model is applied to the image on which it was trained (2b). For a test image
with similar terrain appearing later in same data set (2c), the model trained
on the original image is applicable only in certain areas (2d), yet still remains
equally confident everywhere.

Local Applicability Estimates. For determining where models are applicable,
we use the distribution of training data as the source of the mixing coefficients
that form the soft gating network in the ME model. This gating network deter-
mines which models are applicable and to what extent for each input (feature

2 In Fig. 2 and in similar figures throughout the paper, red coloring indicates non-
traversable obstacle terrain prediction (model output approaching +1); green color-
ing indicates traversable groundplane terrain prediction (model output approaching
−1); and color intensity indicates prediction confidence, with black representing full
uncertainty (model output of 0).
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vector) x in some set of data X . During training of model M, in addition to
training the linear model (w, b), a multivariate Gaussian model G is fit to each
of the C classes of training data (here, C = 2). Thus, a model M comprises
{Gc=1,Gc=2,w, b}. These Gaussian models are trivial to train and very efficient
to evaluate on incoming feature data.

Later, during evaluation (i.e., when segmenting terrain for an incoming im-
age), the density models G are used to determine how similar the incoming data
is to the data on which a previously learned expert was trained; the density
model thus provides pointwise estimates of model applicability. The mixing co-
efficients, which are functions of G and x, are combined with the expert output
at x according to the ME model to yield the final ensemble output.

Because they are learned on the same training data, a natural concern would
be that the mixing coefficients (model applicability estimates) and the model
output are not independent. We examined this and determined that the two
variables are poorly correlated (R2 ≈ 0.4), and conclude that they measure
different things.

This approach is similar in principle to that proposed by Grudic et al. [12],
who also sought a mechanism for applying models only where applicable. There,
as here, density models are used to inform when and where to apply models.
In that approach, histogram-based density models are used, trained on decision
boundary distances of holdout data evaluated through the linear model. Our
approach, in contrast, is based on Gaussian density models learned directly from
training data. Further, in Grudic’s approach, the final classifier output is the
output of the density model response, the input for which is the output of the
experts (i.e., decision boundary distances). In contrast, in our approach, final
classifier output is a fusion of the density model response with the expert output,
per the ME model.

Mixture of Experts Model. The mixture of experts (ME) model [6,7,8] on
which our approach is based is a type of conditional mixture model where the
mixing coefficients are functions of the input, shown in Eq. 1:

p(t|x) =
K∑

k=1

πk(x)pk(t|x) , (1)

where the individual component densities pk(t|x) are the experts, and the mixing
coefficients πk(x) are known as gating functions [13].

ME Model Adaptation. Importantly, this initial research involves an adap-
tation of the ME model, where expert predictions are scaled to be on [−1, +1]
(see Eq. 2), and hence cannot be considered true probabilities. For this rea-
son, p(t|x) also falls on [−1, +1]. In this scaling, values approaching −1 indicate
groundplane predictions of increasing confidence, values approaching +1 indicate
obstacle predictions of increasing confidence, and values approaching 0 indicate
increasing uncertainty.

This modification is motivated by numerical considerations, as shown by the
following scenario. Consider some test point x for which an expert predicts fully
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uncertain output, e.g. when x lies on that expert’s decision boundary. Numeri-
cally, the uncertain expert prediction must be propagated, regardless of applica-
bility (mixing coefficient). Scaling the expert output on [−1, +1] accommodates
this requirement, where uncertain expert output is represented as 0. Otherwise,
if expert output were on [0, 1] where uncertain output is represented as 0.5, the
final prediction will be distorted by the applicability estimate falling on [0, 1].

In the future, more sophisticated evolutions of our approach will eliminate
the need for this adaptation in part by the inclusion of a fully uncertain, generic
component that models everything the other components fail to model.

2.2 Experts: Logistic Regression Models

The experts in our technique are logistic regression models [14], a linear clas-
sification method common in statistics and machine learning, appropriate for
predicting the certainty of a binary outcome. Moreover, they are very efficient
to compute on large-scale data, motivating their use in the real-time scenarios
considered here.

Given a data instance x and associated model weights (w, b), logistic regres-
sion calculates a continuous probability of the positive output class y for some
test instance x according to the following probability model:

P (y = ±1|x,w, b) =
1

1 + exp [−y(wTx + b)]
, (2)

where w and b are estimated when training the model by minimizing the negative
log-likelihood on training data [15].

2.3 Mixing Coefficients: Gaussian Density Models

The mixing coefficients in our technique are determined by Gaussian density
models fit to training data when training the expert. When training expert k,
a single multivariate Gaussian model Gk,c is learned for each class c of training
data from the current image, using the sample mean and covariance of that data.
During terrain segmentation, for each test point (i.e., feature vector correspond-
ing to a pixel in the image) x, the mixing coefficients for model k are determined
by the response of Gk,c at x:

Gk,c(x|θk,c) =
1

(2π)d/2
∣∣∣Σ′

k,c

∣∣∣1/2
exp

[
−1

2
(x − μk,c)

T (Σ′
k,c)

−1(x − μk,c)
]

, (3)

where x is a d-dimensional feature vector, μk,c is a d-dimensional mean vector,
Σ′ is a scaled d × d covariance matrix, and |Σ′| denotes the determinant of Σ′.
θk,c is a parameter set comprising:

θk,c = {μk,c,Σk,c, α} , (4)
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where μk,c andΣk,c are the sample mean and covariance, respectively, of the train-
ing data used to fit Gk,c. Finally, Σk,c is subject to scaling by some factor α and
application of additive white Gaussian noise ε with mean μn and variance σ2

n:

Σ′
k,c = α [Σk,c + ε] , where ε ∼ N (μn, σ2

n) . (5)

Gaussian Noise ε. In implementation, we found that the covariance Σ was
often singular, and hence not invertible, for feature data typical in this domain;
this has been encountered before in similar scenarios when d % N [16]. While
numerically stable, computing the pseudoinverse was found to yield unsatisfac-
tory results in the response of Eq. 3 for our input. Our solution, known in the
literature [16], was to apply a small amount of additive white Gaussian noise to
the feature data such that the inverse of the resulting covariance matrix would
be defined (Eq. 5). We define this noise ε to be ∼ N (μn, σ2

n), set μn = 0, and
take an adaptive approach for σ2

n: starting at 0.01, it is increased by 0.01 until
the resulting scaled covariance matrix becomes invertible.

Covariance Scaling Parameter α. In initial experimentation with the ME
technique, we observed correct behavior in terms of strong response of Eq. 3 near
the Gaussian peak (sample mean μk), and monotonically decreasing values as
|x − μk| increased. However, the cutoff was too sharp, with most of the output
distributed below a value of 0.1. The intuition is that the peak of the density
model was too steep (i.e., the distribution was too peaked). Our solution was
to scale the covariance Σ by some factor α in order to have a more gradual
decline in the response of Eq. 3 for increasing |x − μk|. We used α = 8.0 in the
experiments, which was determined ad-hoc from a sensitivity analysis. In a more
sophisticated approach, it is natural that α be data-driven; we will investigate
this possibility in future work.

Scaling of the Density Output. The response of the density output of Gk,c in
Eq. 3 is scaled such that the value at the peak of the Gaussian distribution (i.e.,
at the mean μk,c) is 1. Hence, the mixing coefficient πk,c(x) will be maximal
when x is close to the sample mean of the data used to train the model. This
scaling is achieved by dividing the response of Eq. 3 by its output at the sample
mean of the data used to train the model:

πk,c(x|μk) =
Gk,c(x)

Gk,c(μk,c)
. (6)

Determination of πk(x) from πk,c(x). The final mixing coefficient πk(x) is
simply the maximum of the C single-class density model outputs πk,c at x:

π′
k(x) = max

c
[πk,c(x)] . (7)

Alternatives for future investigation include determining πk(x) as either the
simple or the weighted mean of the C density model outputs πk,c(x), instead of
the maximum.
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2.4 Modifications Permitting Ensemble Abstinence

With a traditional mixture model, although individual models can abstain from
making predictions, the entire ensemble cannot, because

∑
k πk(x) = 1. This

effectively assumes that the correct model, or combination of models, exists in
the ensemble for a given data instance x, which we do not wish to assume. In
particular, we wish to allow the entire a posteriori ensemble output to abstain
for certain x.

Consider the case where all models in the ensemble predict +1 for x, but
whose mixing coefficients at x are all 0.1. In the traditional ME approach, the
mixing coefficients would be scaled to sum to 1, resulting in a full confidence +1
output. This output is not reflective of the underlying models’ low applicability
at x.

On the other hand, if no scaling is done, undesirable behavior will result.
Consider if there were 10 experts in the ensemble, all predicting +1 at x, each
with mixing coefficients of 0.1. With no scaling of the mixing coefficients, their
cumulative ME sum would result in a final, full-confidence prediction of +1. In
the same scenario but with 20 such experts, without scaling the final ME output
would be greater than 1; some scaling is needed to bound the output.

In short, a scaling approach is needed that bounds final ME ensemble output,
but also allows the ensemble to abstain if its underlying experts all wish to
abstain. Our solution is to scale the sum of the K mixing coefficients at x to the K
experts’ mean density model response at x, such that

∑
k πk(x) = 1

K

∑
k π′

k(x).
This is achieved by dividing each unscaled mixing coefficient π′

k(x) by the total
number of experts K:

πk(x) =
π′

k(x)
K

. (8)

Thus, if the individual experts all have low applicability estimates, the final
ensemble output will be reflective of this and will have an appropriate low-
confidence response.

2.5 Conceptual Overview of the ME Approach Applied to the
Domain

A conceptual overview of the approach as applied to terrain segmentation is
shown in Fig 3. This is also the basis of the experimental approach discussed in
Sec. 3.1.

Consider an ensemble composed of three models M1, M2, and M3. These
models are trained on the corresponding feature data sets X1, X2, and X3,
extracted from images I1, I2, and I3, respectively (shown in Figs. 3a–3c). A
fourth image It, and its associated feature data set Xt, is the current target
image requiring terrain classification (Fig. 3d). (Note that I1 and It are similar,
but not identical, frames.)

Each of the three linear models {wk, bk} in the ensemble is applied to Xt

(Eq. 2); their corresponding terrain predictions are shown in Figs. 3e–3g. In the
ME approach,Xt is also evaluated through the two density models {Gk,c=1,Gk,c=2}



Terrain Segmentation with On-Line Mixtures of Experts 393

(a) Train M1 on X1 (b) Train M2 on X2 (c) Train M3 on X3 (d) Test Features Xt

(e) Eval M1 on Xt (f) Eval M2 on Xt (g) Eval M3 on Xt (h) ME Output

(i) π1(Xt) (j) π2(Xt) (k) π3(Xt) (l) Composite π(Xt)

Fig. 3. Conceptual overview of ME approach for terrain segmentation

learned from each the three training images, yielding the mixing coefficients πk

(Eqs. 3–8), shown in Figs. 3i–3k. The composite coverage π of the three experts
is shown in Fig. 3l. The final terrain classification output from the ME approach
(Eq. 1) is given in Fig. 3h.

3 Experimental Evaluation

3.1 Approach

Baseline Algorithm. We compare the ME approach to a basic unweighted
average baseline method [3], in which the terrain classification from each model
in the ensemble is averaged together to arrive at the final terrain classification.3

Data Sets. The evaluation is performed using six hand-labeled natural data
sets taken from the domain, recently contributed by the authors [5] and made
publicly available [17]. Each dataset consists of a 100-frame hand-labeled image
sequence. The images were manually labeled, with each pixel being placed into
one of three classes: Obstacle, Groundplane, or Unknown; further details
are available [3].
3 This can be seen as a general case of majority voting, appropriate when individual

expert output is on [0, 1] and final ensemble output on [0, 1] is also desirable.
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Method. The experimental method follows the conceptual approach outlined
previously in Sec. 2.5 and Fig. 3. We conducted a series of 3,000 randomized
experiments, drawing one training image at random from each of the six datasets
for each experiment. A testing image, with known ground truth labeling, was
also drawn. Six models were learned on the training images, and each model was
then applied to the test image. To obtain the output of the unweighted average
baseline method, the terrain classification was combined using a simple average.
For the ME approach, mixing coefficients were determined, and then combined
with the linear model output according to the ME model (Eq. 1) to arrive at
the final ME terrain segmentation.

Evaluation. We evaluated our approach only on the pixels in that portion of the
image occurring in the far field, i.e., greater than 10 m but less than 100 m from
the robot. We used standard binary classification accuracy (ACC), and since the
data is roughly 3:1 skew, we also report ACC for baselines of predicting all of
the same class. We report the mean ACC and std. dev. across all randomized
experiments.

3.2 Results and Discussion

Experimental data is provided in Table 1; sample output is shown in Fig. 4.

Statistical Analysis. The scores shown in Table 1 represent mean values of
scores from 3,000 randomized experiments. Within each experiment, the scores
for each method were determined by evaluation on the same test image.

Thus, a dependent-samples analysis can be performed to determine whether
or not the difference in performance among algorithms is statistically significant.
Because the distribution of the differences between the paired samples was found
to be non-normal, the equivalent nonparametric test statistic, the Sign test [18],
was used.

This test provided sufficient statistical evidence to infer that the medians
of the differences between each population are not 0, significant at the 95%
confidence level.4 We conclude that the ME approach outperforms the baseline
approach in this evaluation.

Discussion. These results illustrate the benefits of allowing individual models
to abstain. In one scenario (Figs. 4a–4c), the ME method assigns low weight to
the incorrect models, allowing the correct model (i.e., the one model of the six
that matches the scenario of the target image It) to carry the most weight in the
final ensemble output. In a different scenario (Figs. 4d–4f), for certain parts of the
image, none of the models in the ensemble were applicable, allowing “uncertain”
regions to pass through to the final output. In both cases, if models were blindly
applied without regard to local accuracy, incorrect terrain predictions would
have been made.
4 Although the standard deviations for the scores appear high, they are similarly high

for each group of samples, and are due to within-sample variance.
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Table 1. ME Algorithm Performance vs. Baseline

Algorithm Score (ACC)a,b

Mixture of Experts (Local) 0.759 ± .21
Unweighted Average (Non-Local) 0.683 ± .24
Predict all Obstacle 0.726 ± .16
Predict all Groundplane 0.274 ± .16
a Binary accuracy, thresholded at 0.5.
b Mean and standard deviation of 3,000 randomized experiments.

(a) Test Scenario 1 (b) Unweighted Output 1 (c) ME Output 1

(d) Test Scenario 2 (e) Unweighted Output 2 (f) ME Output 2

Fig. 4. Experimental snapshots from two scenarios

In our experiments, we observed the technique to be real-time in our parallel
implementation, when run on hardware with computational performance compa-
rable to that of a typical robotic platform. An in-depth study of the computational
characteristics of the proposed ME approach is an area for future work.

4 Conclusions and Future Work

In this paper, we presented a novel adaptation of the mixture of experts model
for determining model applicability, and applied this technique to the terrain
segmentation problem in the outdoor autonomous robot navigation domain. This
method accommodates the key domain constraints associated with near-to-far
learning for autonomous robot navigation: models are learned over time; model
training and evaluation must be performed in real time; training data is not kept
once a model has been trained, due to storage limitations; and training data,
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derived from stereo, may not be available for the target image requiring terrain
segmentation.

We evaluated our approach, a local method, against a non-local, unweighted
average as a baseline in a statistically significant evaluation, and concluded that
the proposed mixture of experts approach outperforms the unweighted average
baseline in far-field terrain prediction performance. In particular, the ME ap-
proach’s inherent ability to permit individual experts to abstain from making
strong predictions on a local (i.e., pointwise) basis allows for the more applicable
models’ predictions to carry the most weight in the final ensemble prediction.

Future work. We identify three key areas of ongoing future work. First, we
plan to conduct a more in-depth experimental evaluation, varying key factors
such as data-driven methods for determining α and variants of the class density
combination function (Eq. 7) to determine impact on performance. This analysis
will also involve comparison against another local method, described earlier in
the paper, which takes an alternative approach for estimating local accuracy
[12]; the computational performance of each will be considered.

Second, we will investigate posing this problem more formally in the hierarchi-
cal mixtures of experts (HME) context [7], using EM to fit model parameters,
and making use of validation data from the target image to influence mixing
coefficients.

Finally, while the notion of a mixture model with the ability to abstain ap-
pears useful, the theory behind its implementation needs to be improved. The
inclusion of an uncertain, generic component should greatly improve the theo-
retical expression.
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Abstract. Nowadays, multiple classifier system is widely used for land cover 
classification by remote sensing imagery. The performance of combined classi-
fier is closely related to the selection of member classifiers, so it is necessary to 
analyze the diversity and consistency of member classifiers. In our study, con-
sistency measures are studied and experimented from three levels: general con-
sistency measure, binary prior measure and consistency of errors, and the result 
shows that it is feasible to find the effective set of member classifiers by some 
consistency measures. In land cover classification by remotely sensed classifi-
ers, we can select optimal member classifiers by integrating different consis-
tency criterions. 

Keywords: consistency measure, multiple classifier combination, land cover 
classification, remote sensing, weighted count of errors and correct results 
(WCEC). 

1   Introduction 

Land cover is a fundamental variable influencing and linking many factors of the 
human and physical environment [1]. Remote sensing has provided an efficient way 
of data acquisition for land use administration and land cover mapping, in which land 
cover classification by remote sensing image is the basic work. Recently, multiple 
classifier system (MCS) has been applied to land cover classification, because the 
performances of various classifiers on a specific land cover classification are often 
dissimilar and it is necessary to combine those classifiers. Benediktsson applied some 
MCS methods (boosting, bagging, consensus theory and random forests) to  
multi-source remotely sensed data for land cover classification [2]. A good multiple 
classifier system depends on not only combination rules, but also member classifiers 
selected from a classifier pool [3]. Nowadays, how to select optimal set of member 
classifiers has been raised in attention as this is one of the critical issues to the success 
of MCS. Kang and Lee reported some strategies for selecting multiple classifiers [4]. 
Kang proposed some measures for selecting classifiers, including closeness (MC), 
conditional entropy (CE) and minimization of mutual information (mMI) [3]. 
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In this paper, we are less concerned about the scheme of combination, but mainly 
focus on the methods of selecting optimal member classifiers from a classifier pool. 
According to Michalis, consistency can inhibit the gains obtained regardless of the 
method used to combine classifiers [5]. Consistency is an index to measure the degree 
of similarity for different investigators (methods) [6]. Generally speaking, high con-
sistency of classifiers is not beneficial for improving overall accuracy because classi-
fiers with less consistency could provide complementary each other. Consistency 
measure in this paper is based on various land cover classification results by different 
classifiers for one specific remotely sensed image. 

In the study, consistency is respectively measured from three levels: general con-
sistency measure, binary prior measures and consistency of errors. Experiments are 
carried out to show the relationship between consistency and the performance of 
combined classifiers, and to compare the criterions of consistency measures for se-
lecting optimal member classifiers. It should be pointed that the classifiers used for 
land cover classification are dependent mutually, as they use the same training sam-
ples and feature sets.  

2   Consistency Measures 

Aksela defined diversity measures from different viewpoints, which can be grouped 
into three categories based on various sets of values from which the measures are 
calculated [7]. Consistency measures from the three aspects are as follows: (1) general 
consistency measure by kappa statistics which uses information on all class labels; (2) 
kappa statistic and double-fault used as binary prior measures which employ prior 
knowledge on the correctness of the classification results of classifiers; (3) consis-
tency of errors by kappa statistic and weighted count of errors and correct results 
(WCEC) that use all class labels as well as prior knowledge on correctness. Consis-
tency measure in this paper is just based on test samples, not on the whole classifica-
tion results.  

Assuming that m ( 2m ≥ ) classifiers are used for land cover classification by one 
remotely sensed image, consistency is measured based on the classification results for 
n  test samples. There are k( 2k ≥ ) possible outputs of each classifier, while the 

number of possible class labels is b, different from k, ijy  represents the number of 

classifiers whose outputs are j for the ith class test samples, 1i = ,…, n ; 1j = ,…, k . 

2.1   General Consistency Measure  

General consistency measure does not use test samples to evaluate the correctness of 
the classification results produced by multiple classifiers, but only estimate the con-
sistency from the outputs of every classifier based on class label [7]. In this case, the 
number of possible outputs of classifiers, k, is just the same with that of possible class 
labels b.  

Kappa (κ ) statistic is firstly put forward by Cohen in 1960, which is a measure of 
consistency between two surveyors after chance being corrected [6, 8]. Kappa statistic 
has been used for assessing the accuracy of classification of remote sensing data 
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based on the error matrix [9]. This in effect means checking the degree of consistency 
between the classification results of the classifier and the reference data [5].  

Cohen’s kappa is suited for two classifiers. If there are more classifiers, the follow-
ing formula is adopted. 

The equation of kappa statistic is [10, 11]: 
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A value of kappa below 0.40 is considered to represent poor agreement beyond 
chance, values between 0.40 and 0.75 indicate fair agreement, and values beyond 0.75 
indicate excellent agreement [10]. 

In principle, the kappa value is minimized to select the optimal subset of classifiers 
to improve the diversity of member classifiers. 

2.2   Binary Prior Measure 

This method uses the “0/1” outputs of classifiers based on test samples [11]. That is to 
say, when a test sample i is correctly classified by the lth classifier, its output to the 
test sample is defined as 1, otherwise 0. So classifiers have two possible outputs to a 
specific ground truth, correctness or incorrectness. In the case, k is equal to 2, not the 
same as b. 

Furthermore, as n  is the total number of test samples, for a two-classifier measure, 
11n is used to denote the number of samples correctly classified by both classifiers, 
00n  is the number of samples incorrectly classified by both classifiers, and 10n  and 
01n  the number of samples when just correctly classified by the first or second classi-

fier respectively. Naturally n= 11n + 00n + 10n + 01n .  
The following are two ways of binary prior measures, double fault and kappa. 

2.2.1   Double Fault (DF) 
DF is defined as the proportion of the cases that has been misclassified by both classi-
fiers [12]. It is a pairwise measure, and for the whole combination the averaged value 
over all pairs of classifiers is computed. In theory, the mean pairwise value is mini-
mized for selecting the subset of classifiers. 

The equation of Double fault (DF) is[7] 

DF= 00n

n
                                                        (2) 
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2.2.2   Kappa (κ ) 

The definition of the kappa is the same with that in 2.1, with the difference that the 
possible outputs of the classifiers are either 0 or 1. In the case the value of k  is two. 

The κ value calculated by Equation (1) reflects the degree of consistency of the 

classifiers to be used based on prior knowledge, which is a non-pairwise method.  
It should be noted that if the classifiers used for combination make errors to one 

test sample, they all agree on the “0”output, although they actually disagree on the 
specific class the test sample belong to[5].   

In principle, the kappa is minimized for selecting the set of classifiers. 

2.3   Consistency of Errors  

Although classifiers all make errors to a specific test sample sometimes, the errors 
may be different according to classification results. Consistency on the same incorrect 
class is harmful for classifier combination. The method of consistency measure  
not only takes the prior knowledge into consideration, but also need to use the class 
labels. 

2.3.1   Kappa (κ ) 

This κ is based on the consistency of errors, also calculated by Equation (1). For two 

classifiers, we respectively collect their own class labels for test samples when  

incorrectly classified by both of them. κ can be computed with the two sets of class 

labels.  

In theory, mean pairwise κ value is minimized for selecting the set of classifiers. 

2.3.2   Weighted Count of Errors and Correct Result (WCEC) 
Weighted count of errors and correct result (WCEC) takes both correct and incorrect 
results into consideration and gives suitable weight on them [7]. If there are two clas-
sifiers, the Equation is  

( )11 01 10 00 001
2 5different sameWCEC n n n n n= + + − −                     (3) 

Where, 00
differentn  stands for the number of samples incorrectly classified by both clas-

sifiers with different errors, and 
00
samen  represents the number of samples incorrectly 

classified by both classifiers, but with the same classification results. 
For more than two classifiers, the mean of the pairwise counts is calculated. In the-

ory, the WCEC is maximizing for selecting the optimal set of classifiers. 
General consistency measure, binary prior measure, and consistency of errors all 

use κ values, so we use 1κ  , 2κ  and 3κ  to distinguish the different results by the 

three types of measures, that is to say, 1κ represents κ value calculated by general 
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consistency measure, 2κ  represents that of binary prior measure and 3κ  represents 

that of consistency of errors. 

3   Classifier Combination 

There are many methods for combing classifiers in pattern recognition. Based on the 
output types of individual classifier, the multiple classifier combination methods can 
be classified into three categories: combination at abstract level, rank level and meas-
urement level [18]. In this paper, abstract level fusion is used, and the most popular 
algorithm is voting rule. The voting rule is based on an assumption that population’s 
decision is superior to the individual’s decision [15]. There are different voting rules 

[16]. In the majority voting rule, label that received more than half of the votes is 
taken as the finial classification output. In the conservative voting rule, only if all the 
member classifiers are consensus with the same class label, the sample can be desig-
nated as the label. Weighted vote rule is also widely used, for the performances of 
classifiers differ to different land cover types [19]. In our experiment, the weights are 
designed according to different user’s accuracy of land cover classes, as overall accu-
racy is too general to reflect the classification performances of different land cover 
classes and producer’s accuracy is used for producers, less suitable for predicting the 
final class labels. Dempster-Shafer (DS) evidence theory rule of combination is also 
used to implement the classifier combination [17].  

4   Experiment and Analysis 

4.1   Land Cover Classification 

4.1.1   Study Area and Data Used 
An experiment was performed using Landsat ETM+ multispectral image, captured on 
3 April, 2001, with the spatial resolution of 28.5m. The spatial scope of the study area 
is: latitude 34°13′N to 34°19′ N and longitude 117°07′E to 117°13′ E. The data used 
for classification consists of six bands (the thermal band and panchromatic band were 
excluded) and has a size of 400*400 pixels.  

4.1.2   Remote Sensing Classifiers 
Decision tree classification (DTC) is an effective method of classifying data set, and 
can provide good decision support capabilities. For many problems of classification 
where large datasets are used and the information contained is complex, even may 
contain errors, decision trees provide a useful solution [21].  

Support Vector Machine (SVM) classification is based on statistical learning theory 
and it belongs to the class of non-parametric classification methods [22]. The criterion 
of SVM is Structural Risk Minimization (SRM) and it can learn “good” classification 
hyperplane in high dimension feature space [23]. 

Back Propagation Neural Network (BPNN) algorithm is underpinned by a gradient 
descent algorithm that is used to modify the network weights to maximise 
performance, using some criterion function [24].  
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Minimum Distance Classifier (MD) calculates the distance between each pixel of 
remotely sensed image and the mean vector of every class, and then the pixel will be 
classified to the class with the minimal distance. 

Spectral Angle Mapper (SAM) is a physically-based spectral classification that 
uses an n-dimensional angle to match pixels to reference spectra [25]. The  
algorithm determines the spectral similarity between test spectra and reference 
spectra.   

4.1.3   Classification Implementation and Result Comparison 
Considering regional natural condition and ground characteristic, land cover is classi-
fied into five types: water, forest, built-up land, agricultural land and grass land. 
Training and test samples are also selected for accuracy evaluation and further consis-
tency measure. There is almost no overlap between the training samples and test sam-
ples in order to decrease the correlation of them. Land cover classification by SVM, 
DTC, BPNN, MD and SAM are implemented on ENVI 4.3, using the same training 
samples. The SVM parameters are determined by gridding search model. In our ex-
periment, radial basis function is adopted. Penalty parameter C  is 150 and γ in kernel 
function is 0.170. The feature sets used for classification are identical for different 
classifiers. Land cover classification results by single classifier are shown in Fig.1. As 
shown in Table 1, it is clear that for this data set, MD is the worst classifier, giving a 
total classification accuracy of just 80.40% for test data. SVM is seen to be the best 
classifier with an overall accuracy of 92.42% for the same test set. The performances 
of the classifiers are different according to accuracy comparison, so it is necessary to 
combine classifiers to improve classification accuracy.  

Table 1. Comparison of classification accuracies of MLC, SVM, BPNN, SAM and MD 

Classifier SVM DTC BPNN SAM MD 
Overall accuracy/% 92.42 89.58 87.34 84.37 80.40 

kappa 0.91 0.87 0.84 0.80 0.76 

4.2   Consistency Measure and Analysis 

Each classifier is given a serial number in terms of overall accuracy, so the serial 
numbers of SVM, DTC, BPNN, SAM and MD are respectively 1, 2, 3, 4 and 5. The 
number of selected member classifiers is three, so there are 10 possible combinations. 
As shown in Table 2, the selection criterions are computed for every combination. 
Besides, three multiple classifier combination schemes including weighted vote, DS 
evidence theory and majority voting are carried out, and the overall accuracies are 
also shown in Table 2.  

The degree of consistency can be analyzed from Table 2. The average values of 

1κ , 2κ and 3κ  for all possible combination sets are respectively 0.824, 0.460 and 

0.555, calculated based on different levels of consistency. The average value of 1κ   
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         (a ) SVM Classifier                (b) DTC Classifier              (c) BPNN Classifier 

   

        (d) SAM Classifier                (e) MD Classifier      (f) Optimal combined classifier 

 
   Water               farmland             forest          built-up land          grass 

Fig. 1. Land cover classification results of ETM+ by single classifier and combined classifier 

Table 2. Comparison of the performances of different criterions of consistency measure for 
selecting optimal member classifiers  

Members 1κ  DF 2κ  WCEC 3κ  
Weighted
vote(%) 

DS (%) 
majority
（%） 

1,2,3 0.868 0.057 0.515 0.680 0.490 91.191 91.211 91.315 
1,2,4 0.856 0.075 0.515 0.647 0.563 89.330 89.330 89.578 
1,2,5 0.796 0.086 0.326 0.681 0.407 92.556 92.622 92.928 
1,3,4 0.892 0.084 0.628 0.514 0.818 89.826 89.825 89.950 
1,3,5 0.839 0.098 0.463 0.532 0.551 91.687 91.687 91.687 
1,4,5 0.813 0.110 0.423 0.529 0.751 91.315 91.310 91.563 
2,3,4 0.842 0.079 0.558 0.577 0.384 87.717 87.717 87.841 
2,3,5 0.770 0.060 0.377 0.632 0.405 89.578 89.578 90.074 
2,4,5 0.764 0.069 0.334 0.586 0.492 88.089 88.120 88.709 
3,4,5 0.804 0.086 0.458 0.441 0.692 87.717 87.717 88.089 

 
shows that land cover classification by multiple classifiers is excellent agreement in 

the general level. The average value of 2κ  indicates when correctness of classifica-

tion is taken into account, the classification results by multiple classifiers are fairly 
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agreement. It can be seen that the degree of consistency of errors evaluated by 3κ is 

not low, which is harmful for classifiers combination. The degrees of consistency 
vary with the levels on which consistency is defined.  

Consistencies of different sets of classifiers for combination are respectively evalu-

ated by 1κ , 2κ , 3κ , DF, and WCEC. The different values of the criterions are related 

to different classification accuracy indicators of combined classifiers. We respectively 

choose the optimal sets of combination by minimizing 1κ , 2κ , 3κ , DF and maximiz-

ing WCEC and obviously the selected sets are different. The general consistency 

measure using 1κ could not find very effective member classifiers sets because the 

criterion does not take into account the difference between errors and correct deci-
sions. The optimal set of member classifiers selected by DF is {1, 2, 3}, with the 
overall accuracy of 91.191% by weighted vote rule, which is obviously better than 

that of the combined classifiers selected by 1κ . The set of member classifiers selected 

by 3κ  is {2, 3, 4}, with poor overall accuracy of 87.717% by weighted vote combi-

nation. WCEC and 3κ both find the best selection of {1, 2, 5}, with a total classifica-

tion accuracy of 92.556% by combing classifiers using weighted vote rule, which is 
just the one with the highest overall accuracy in all the possible combinations. The 
sixth image in Fig.1 is the classification result by combined classifier of the set of {1, 
2, 5}. It also can be seen from Table 2 when combination methods change the criteri-
ons also take effect for selecting members for combining classifiers.  

It can be seen from Table 2 that if the selection of member classifiers is good 
enough, such as {1, 2, 5}, it may give an overall accuracy higher than that of the ex-

cellent singe classifier. The following analysis is based on the values of 2κ . It seems 

that classifiers with high classification accuracy agree much mutually, but their com-
bination may not improve overall accuracy much. On the opposite, the classifiers with 
small degree of consistency may have great potential to improve classification accu-
racy. By combining classifiers, sometimes it may not improve the performance of the 
best classifier, but beneficial for poor classifiers. Although the MD classifier is the 
poorest classifier in terms of accuracy, the optimal combination contains it. So when 
we perform classifier combination, the inaccurate classifier should not be excluded.  

5   Conclusions 

In this paper, consistency measure is used for selecting optimal remotely sensed 
member classifiers to be combined for land cover classification. It can be seen that 
some consistency criterions are able to choose effective sets of member classifiers. 
Sometimes they don’t select the truly optimal set of member classifiers in terms of 
overall accuracy, as in fact, the performance of combined classifier is also affected by 
the accuracy of individual classifier. The optimal member classifiers selected by  
different criteria are not the same. Though general consistency measure is widely  
used for many fields, the results indicate it is not quite suitable for selecting optimal  



406 P. Du et al. 

 

member classifiers, as it does not consider the correctness of land cover classification. 
Binary prior measure performs better than general consistency measure, for that it 
takes the correctness of classification into consideration. However, it ignores the dif-
ferent errors made by classifiers and though the outputs of some classifiers for spe-
cific samples are all “0”, the true classification results may be different. The third 
level of consistency measure takes the consistency of errors into consideration. 
WCEC punishes the consistency of errors and rewards the consistency of correct 
outputs, and also weights are given for the different kinds of outputs. In addition, 
other experiments using different pools of classifiers are also carried out. It can be 

concluded that 2κ , DF and WCEC are beneficial for finding an effective member 

classifier set. 3κ  sometimes failed to select a good combination, as it only focused on 

the consistency of errors, ignoring the correct outputs. In land cover classification by 
remotely sensed data, we can select optimal member classifiers by integrating differ-
ent consistency criterions.  
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Abstract. Target identification from high resolution remote sensing image is a 
common task for many applications. In order to improve the performance of 
target identification, multiple classifier combination is used to a QuickBird high 
resolution image, and some key techniques including selection and design of 
member classifier, classifier combination algorithm and target identification 
methods are investigated. After constructing a classifier ensemble composed of 
five members: maximum likelihood classifier (MLC), minimum distance classi-
fier (MDC), Mahalanobis distance classifier (MHA), decision tree classifier 
(DTC) and support vector machine (SVM), double fault measure is used to se-
lect three classifiers for further combination. MLC, DTC and MHA are se-
lected, and their independence and diversity are evaluated. Different classifier 
combination strategies are experimented to extract sports field and buildings 
from QuickBird image. The results show that multiple classifier combination 
can improve the performance of image classification and target identification, 
and the accuracy is affected by many factors. 

Keywords: multiple classifier combination, high resolution remote sensing, 
target identification, hierarchical classifier system, classifier selection. 

1   Introduction 

Target identification and extraction from remote sensing imagery is one of the most 
important problems in many applications. The occurrence of high spatial resolution 
remote sensing images provides a new way for extracting ground objects in detail. 
Despite their high resolution and fine description to ground objects, target identifica-
tion methods from high resolution remote sensing image are still faced with such 
difficulties as vast data size, strong impacts of background and noises, and uncertainty 
in extraction process [1].  

Recently, multiple classifier system (MCS) has been widely used in a variety of 
fields as a hot topic of pattern recognition, and multiple classifier combination or 
classifier ensemble has been introduced to remote sensing information processing  
[2-6]. In this paper, multiple classifier combination is used to target identification 
from high resolution remote sensing images in order to reduce the non-object noises 
and enhance the accuracy and reliability of target identification.  
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2   Multiple Classifier Combination 

Multiple classifier combination can be explained briefly as deriving the final classifi-
cation decision by integrating the output of multiple learning machines according to a 
certain combination approach. It belongs to the domain of decision level information 
fusion [7]. In pattern recognition and classification, the algorithm that is effective for 
one feature set may be unsuitable to the other feature sets, and multiple classifiers can 
provide the complementary information about the classified pattern on hand, so mul-
tiple classifier combination may outperform any individual classifier by integrating 
the advantages of various classifiers.  

Usually multiple classifiers are organized by two schemes: parallel and concatena-
tion connection [8]. In concatenation connection, outputs of the classifiers in previous 
level are used as the inputs into classifiers of the next level to guide next classification 
process. But in parallel connection, multiples classifiers are designed independently 
without any mutual interaction and their outputs are combined according to certain 
strategies, so it is quite helpful to integrate those existing individual classifiers to form 
a powerful recognition and classification system.  

According to the output information of member classifier, classifier combination 
can be categorized into three levels: abstract level, rank level and measurement  
level [9]. For abstract level output, the output of member classifier is a class label, 
which means each classifier provides a label and the labels of multiple classifiers are 
combined further, usually majority vote is used. If the output of a classifier is the rank 
of one pixel belonging to every class, the combination is named as rank level combi-
nation. If the output of the member classifier can depict the quantitative degree or 
probability of one pixel belonging to a certain class, for example, posterior probabil-
ity, and the quantitative index is used to combining multiple classifiers, it is meas-
urement level combination.  

For the target identification from high resolution remote sensing images, the 
scheme of parallel combination based on abstract level is used.  

3   Experiments 

In this experiment, multi-spectral QuickBird image (spatial resolution is 2.44m) of 
China University of Mining and Technology, located in Xuzhou City, Jiangsu Prov-
ince, China, is used as the case study image. Training and test samples are selected by 
ocular interpretation and field investigation.  

Multiple features are proposed to be used in high resolution image processing ow-
ing to the mutual complementation of different features [10-11]. In the experiment, 
multiple features including gray and spectral vector, vegetation index and texture 
(average, variance, entropy, correlation, second moment, contrast) are used in order to 
describe and extract objects effectively.  

Firstly, multi-spectral image is preprocessed and useful features are extracted. The 
identical training sample set is used to train those member classifiers including maximum 
likelihood classifier (MLC), minimum distance classifier (MDC), Mahalanobis distance 
classifier (MHA), decision tree classifier (DTC) and support vector machine (SVM). 
Double fault evaluation criterion is used to select the optimal classifier combination, and 
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this optimal combination is then used to multiple classifier system to extract the object of 
interest. Finally targets are recognized based on geometric feature and knowledge.  

3.1   Selection of Member Classifiers 

According to the land cover of study area and task of target identification, the class 
category consists of five classes: impervious surface, water, vegetation, sports field 
and shadow. Table 1 is the accuracy of all classifiers.  

Table 1. The performance of individual classifiers 

index MLC MDC MHA DTC SVM 
Total accuracy 81.9579 53.4680 78.8850 81.4311 82.0018 
Kappa 0.7320 0.4246 0.7171 0.7443 0.7438 
Accuracy rank 2 5 4 3 1 

 
The performance of multiple classifier system is closely related with member clas-

sifiers and their combination strategy, so it is important to decide how to select classi-
fiers from classifier ensemble and how to combine them [12-15]. In order to simplify 
the process, we assume that the number of classifiers selected is a fixed odd number, 
which is useful for majority vote combination. Here the number is assumed as 3, so 
there are 10 schemes when 3 classifiers are selected from a set with 5 classifiers. The 
double fault measure is used to assess the performance of classifier combination and 
the results are listed in Table 2.  

Table 2. Double fault measures of different classifier combination schemes 

Member classifiers Double fault 
values 

Member classifiers Double fault 
values 

1-2-3 0.0662862 1-4-5 0.129792 
1-2-4 0.0727246 2-3-4 0.0632133 
1-2-5 0.107112 2-3-5 0.0882353 
1-3-4 0.0781387 2-4-5 0.122330 
1-3-5 0.0951127 3-4-5 0.110770 

      Note: 1 denotes to SVM, 2 denotes MLC, 3 denotes to DTC, 4 denotes to MHA and 5  
      denotes to MDC. 

From Table 2, it is easy to found that the combination of MLC, MHA and DTC has 
the smallest double fault value, so their combination is the best one and used to fur-
ther target identification.  

3.2   Target Identification Using Identical Feature Set  

Fig.1. is the scheme of multiple classifier combination based on identical features for 
each member classifier [3].  
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Fig. 1. The scheme of multiple classifier combination 

Dempster-Shafer evidence theory is used as the fusion algorithm of outputs from 
multiple classifiers [13]. In multiple classifier system, the output of each classifier can 
be viewed as a piece of evidence, and the classification accuracy of each classifier can 
be used as the probability assignment function. For example, if a pixel is classified 
into the ith class (marked as Ci) by a classifier, then the basic probability  
assignment was assigned as: m(Ci)=Pi, m( Θ )=1-Pi, where Ci is the ith class, 

{ }, , , ,1 2 1 1C C C C Cj j MΘ= − +L L means the others classes and Pi is the classification 

accuracy of the ith class by the classifier. After finishing evidence combination, the 
class with maximum evidence value is used as the final decision class.  

Table 3. The classification accuracy of each classifier to different classes (%) 

 Impervious  
surface 

water vegetation Sports field shadow 

Producer accuracy 
MLC 98.65 91.12 58.72 40.74 67.39 
MHA 71.08 96.45 88.69 100.00 68.11 
DTC 80.17 81.07 100.00 71.60 74.10 
MCS 97.58 94.38 92.05 98.77 66.67 
user accuracy 
MLC 77.27 100.00 64.43 100.00 98.25 
MHA 92.57 75.64 81.23 71.68 60.43 
DTC 84.59 83.54 99.09 37.54 93.35 
MCS 87.21 90.88 97.41 89.89 98.23 

Table 3 is the classification accuracy of each classifier to different classes when us-
ing identical input feature sets, and Table 4 is the total accuracy and kappa coefficient 
of individual classifier and multiple classifier system. It can be found that the combi-
nation of multiple classifiers enhance the classification accuracy to a great extent. 
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Table 4. Comparison of individual member classifiers with multiple classifier system 

classifier MLC MDC MHA DTC SVM MCS 
Total accuracy (%) 81.9579 53.4680 78.8850 81.4311 82.0018 90.7375 
Kappa  0.7320 0.4246 0.7171 0.7443 0.7438 0.8675 

3.3   Target Identification 

In order to extract the target of interest, the classification results should be changed to 
binary image at first, and then edge tracing is conducted to the binary image, and 
geometric rules and prior knowledge are used to identify the targets. For example, if 
the target is circular building, the regions with low circular degree should be rejected. 
Some other geometric features include area, perimeter, rectangle degree, circle de-
gree, central moment, centroid and so on [16]. 

For water and vegetation, there are not special geometric features, so the classifica-
tion results are used directly. For sports field extraction, the area, perimeter and shape 
indicators are used. For buildings, shape index is used to the classification results. 
Fig.2 and Fig.3 are the result of sports field and building identification.  

 

                   

Fig. 2. Result of sports field extraction          Fig. 3. Result of building identification 

4   Discussions and Analysis 

4.1   Quantitative Indicators for Member Classifier Selection  

Member classifier selection is the prerequisite of multiple classifier system design. 
The simplest way is to select member classifiers based on their accuracy rank, which 
means those classifiers with better performance are selected. Although this idea is 
very straightforward and simple, it is not always the fact. The experiment of this pa-
per has confirmed it again.  

Hee-Joong Kang et al proposed three assessment indicators based on information 
theory: MC(the measure of closeness), CE(the conditional entropy), mMI(the minimi-
zation of mutual information), and they think CE is the potential clue for classifier 
selection, but their conclusion is not absolute yet [12]. Kuncheva et al analyzed the 
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classifier selection in terms of independence of classifiers, and the conclusion is that 
independent classifiers can’t result in higher accuracy [15].  

The diversity among classifiers is necessary for multiple classifier combination. 
The measure of diversity can be analyzed from three levels. The first level is to use 
only the output of member classifier without considering the correctness of result. The 
second level is to consider both the output of classifier and its correctness on specific 
pixels. The third level is to consider not only the output of classifier and its correct-
ness on specific pixels, but also the diversity of errors [17].  

In the classifier selection in section 3.1, only one quantitative indicator is used, but 
many other indicators were proposed in [17]. So in this section we compare and ana-
lyze different indicators including Double-fault (DF), Kappa, Proportion of Specific 
Agreement(PS), Weighted count of errors and correct results(WCEC) and their im-
pacts on classification accuracy.  

The classification result based on only two classifiers can be divided into four 
parts: (1) samples correctly classified by both classifiers, marked as a; (2) samples 
correctly classified by the first and incorrectly by the second, marked as b; (3) sam-
ples incorrectly classified by the first but correctly classified by the second, marked as 
c; (4) samples incorrectly classified by both classifiers, marked as d. The results are 
illustrated in Table 7[18]. 

Table 5. Notation used in the dichotomous outcome for two classifiers 

a b p1=a+b 
c d q1=c+d 
p2=a+c q2=b+d  

Double-fault (DF) is defined as the proportion of the cases that has been misclassi-
fied by both classifiers [19].  

d
DF

a b c d
=

+ + +
 

Proportion of Specific Agreement (PS) was used to measure the efficiency of clas-
sifiers combination mainly considering of samples incorrectly classified by both clas-
sifiers. The equation of Ps is: 

2

2

d
PS

b c d
=

+ +
 

Kappa，one of the indicators which were used to measure the consistency of member 
classifiers, took Both of the misclassification and correctly classification into account. 
It could be expressed as:  

1 2 2 1

2( )ad bc
kappa

p q p q

−=
+

 

A value of kappa below 0.40 is considered to represent poor agreement beyond 
chance, values between 0.40and 0.75 indicate fair agreement, and values beyond 
0.75indicate excellent agreement [18]. 
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Weighted count of errors and correct results (WCEC) takes both correct and incor-
rect results into consideration and gives suitable weight on them. If there are two 
classifiers, the Equation is  

1
( ) 5

2 different sameWCEC a b c d d= + + − −  

Where, differentd  stands for the number of samples incorrectly classified by both clas-

sifiers with different errors, and samed  represents the number of samples incorrectly 

classified by both classifiers, but with the same classification results. 
Those indicators were pairwise measure, and for the whole combination the aver-

aged value over all pairs of classifiers is computed. The results are illustrated in  
Table 6. It can be found that different indicators lead to different classifier selection 
scheme, so it is necessary to compare those schemes in future research.  

Table 6. Comparison of diversity among classifiers 

 Double 
fault 

kappa PS WCEC Combination 
accuracy 

1-2-3 0.0663 0.2228 0.3643 0.5632 88.0597% 

1-2-4 0.0727 0.2369 0.3817 0.5524 87.2695% 

1-2-5 0.1071 0.2001 0.3878 0.5205 75.1975% 

1-3-4 0.0781 0.2661 0.4068 0.5645 87.2695% 

1-3-5 0.0951 0.1496 0.3540 0.5167 82.0896% 

1-4-5 0.1298 0.2707 0.4519 0.4448 70.1932% 

2-3-4 0.0632 0.1684 0.3277 0.6150 90.7375% 

2-3-5 0.0882 0.1023 0.3155 0.5445 87.0061% 

2-4-5 0.1223 0.2222 0.4129 0.4820 77.3924% 

3-4-5 0.1108 0.1737 0.3807 0.4444 77.2169% 

12345 0.0934 0.2013 0.3783 0.5248 89.6839% 
                       Note: 1 is SVM, 2 is MLC, 3 is DTC, 4 is MHA and 5 is MDC 

4.2   Multiple Classifier Combination Strategy 

In order to analyze the impacts of classifier combination strategy on target identifica-
tion accuracy, MLC, DTC and MHA is selected as member classifiers, and different 
combination strategies including majority vote, weighted sum, D-S evidence theory 
and fuzzy integral are experimented. The results are shown in Table 7. From Table 7 
it can be concluded that each multiple classifier combination scheme can improve the 
performance of classification. 
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Table 7. Comparison of multiple classifier combination strategies 

 SVM(best 
individual) 

majority 
vote 

weighted 
sum 

D-S evidence 
theory 

fuzzy 
integral 

Total 
accuracy 

82.0018 88.4987% 89.1133% 90.7375% 90.4302% 

kappa 0.7438 0.8390 0.8438 0.8675 0.8624 
rank  4 3 1 2 

 

In order to compare the combination strategy, the secondary combination strategy 
is experimented, which means the results of different combination strategies are used 
as the input of the next layer combination. The flow chart is shown in Fig.4 and the 
accuracy statistics is listed in Table 8.  

 

 

Fig. 4. Secondary combination of multiple classifier system 

Table 8. Accuracy comparison of secondary classifier combination 

Combination 
scheme 

majority vote weighted sum D-S evidence 
theory 

fuzzy  
integral 

1-2-3 90.7375% 90.7375% 90.7375% 90.7375% 
1-2-4 90.7375% 90.7375% 90.7375% 90.7375% 
1-3-4 90.3424% 90.3424% 90.3424% 90.8253% 
2-3-4 90.3424% 90.3424% 90.3424% 90.8253% 
1-2-3-4 90.7375% 90.7375% 90.7375% 90.7375% 

From Table 8 it can be found that the accuracy of secondary level combination is 
higher than that of the first level combination. Although the improvement is not 
strong, the performance of secondary level combination is better. There is another 
interesting phenomenon in Table 8, where some accuracy indicators occur repeatedly 
(for example, 90.7375%), and the reason for that is the strong correlativity among the 
inputs. 

MLC 

DTC 

MHA 

 
 
 

Combination 
strategy 

Result 

First level MCS Second level MCS 

Majority vote 

Weighted sum 

Fuzzy integral 

D-S evidence 
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5   Conclusion 

Multiple combination system is introduced to target identification from high resolu-
tion remote sensing image in this paper, and QuickBrid multi-spectral image is used 
to conduct a case study in the campus of China University of Mining and Technology. 
The whole process, including training and test sample selection, member classifier 
design, feature extraction, classifier selection and combination strategy determination, 
is investigated to classify the high resolution image and extract interested targets. 
Diversity of member classifiers is important to multiple classifier system, and double 
default is used in this paper based on the comparison to a lot of indicators. Some 
widely used classification combination strategies, including weighted sum, fuzzy 
integral, D-S evidence theory and majority vote, are experimented, and a secondary 
combination scheme is used to integrate the output of four combined results by the 
first level.  

Based on the experiments and discussions in this paper, in can be concluded that 
multiple classifier combination can play important roles in high resolution remote 
sensing image classification and target identification by making full use of the abun-
dant and detailed information in high resolution image and integrating the benefits of 
different classifiers. But there are still many issues for further study, for example, 
selection of member classifier, optimization of feature sets and determination of com-
bination strategy, which will be emphasized in our future research.  
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Abstract. In this paper we investigate the construction of combination
functions in identification systems. In contrast to verification systems, the
optimal combination functions for identification systems are not known.
In this paper we represent the combination function by means of a neural
network and explore different methods of its training, so that the iden-
tification system performance is optimized. The modifications are based
on the principle of utilizing best impostors from each training identifi-
cation trial. The experiments are performed on score sets of biometric
matchers and handwritten word recognizers. The proposed combination
methods are able to outperform the likelihood ratio, which is optimal
combination method for verification system, as well as, weighted sum com-
bination method optimized for best performance in identification systems.

Keywords: Classifier combination, identification system, biometric
matchers, neural network.

1 Introduction

Suppose we have a matching system with N registered or enrolled classes. Given
some input, the system has to find its best match to any of the N enrolled
classes. We call such matching system an identification system. In contrast to
more general N -class pattern classification problem setup, we imply that the
matching score of the input to the enrolled class is derived using only input and
enrolled templates. Consequently, identification systems can deal with variable
and large number of classes N and no retraining of the matching algorithm is
needed. The examples of identification systems include biometric identification
systems and handwritten word recognition; both can contain large and variable
number of classes, persons or lexicon words, and matching algorithms, as a rule,
calculate the matching score using only two, input and enrolled, templates.

Identification systems are different from verification systems. In verification
systems the possible class of the input is provided beforehand; the system only
performs the match of the input to the enrolled template of the specified class,
and depending on the matching score outputs accept or reject decision. In iden-
tification system we have to match the input against all enrolled templates and
output the class matching the input best. For evaluating performance of ver-
ification systems we can use ROC curves, and for evaluating performance of
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identification systems we can calculate the correct identification rate or use rank
measures such as cumulative match curves (CMC).

In this paper we consider the combinations of matching scores in identification
systems. Though we used only pairs of matchers for combination, the presented
algorithms can be applied to situations with few matchers. Each matcher j = 1, 2
produces sets of matching scores sj

i assigned to each of i = 1, . . . , N classes. A
combination function f is used to combine 2 matching scores corresponding to
each class: Si = f(s1

i , s
2
i ). In identification systems the classification result C is

determined as
C = arg max

i=1,...,N
f(s1

i , s
2
i ) (1)

In verification systems, on the other hand, we compare the value of combination
function to some threshold and make accept/reject decision.

The optimal combination function for verification system is well-known [1,2];
such function should have decision surfaces separating two types of score pairs
(s1

i , s
2
i ), genuine and impostor. Optimal Bayes classifier separating genuine and

impostor score pairs is obtained by the ratio of genuine and impostor score
densities (likelihood ratio):

flr(s1
i , s

2
i ) =

pgen(s1
i , s

2
i )

pimp(s1
i , s

2
i )

(2)

and can be well approximated if the number of matchers (two in our case) is
relatively small.

On the other hand, the solution to finding optimal combination function for
identification system is not yet known. As we showed in [2], likelihood ratio
flr is optimal if matching scores assigned to different classes are statistically
independent. If they are dependent, likelihood ratio might be non-optimal, and
the performance of combined system can be even worse than the performance of
a single matcher. The scores assigned to different classes are usually dependent
since they are derived using same input template.

The goal of this paper is to investigate the approaches of constructing combi-
nation function for identification systems with the help of multi-layer perceptron.
In particular, we present two methods of training neural network resulting in in-
creased identification system performance.

2 Previous Work

Previous work in classifier combinations and combinations of biometric matchers
makes little distinction on whether the considered system is verification or identifi-
cation system. For example,Kittler et al. [3] derive the combination rules assuming
identification system, but test them using verification system. Besides, the inde-
pendence of matching scores assigned to different classes is assumed in that work.

As another example, Lee et al. [4] explicitly reduce the problem of com-
bining matchers in a biometric identification system to the task of applying a
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classifier (SVM) trained for an equivalent verification system. Since the combi-
nation function is trained for verification system, it may not produce an optimal
combination algorithm for identification systems.

Whereas most research in combinations of biometric matchers deals with veri-
fication systems, e.g. [5], the earlier research in classifier combinations dealt with
more general classifiers. Effectively, many of the earlier approaches were learning
combination functions of the following type:

C = arg max
i=1,...,N

fi({s1
k}k=1,...,N , {s2

k}k=1,...,N ) (3)

instead of less complex combinations of Eq. 1. For example, Bayesian and
Dempster-Shafer combination methods of [6] require learning confusion matri-
ces for each classifier participating in the combination. The Behavior-Knowledge
Space combination method of [7] requires learning a decision space of a set of
classifiers participating in the combination. Although these approaches can be
considered to be somewhat optimal, they could be applied only in situations with
a small number of classes. However, in our applications of biometrics and hand-
written word recognition, the number of classes N is of the order of thousands
and we are forced to construct combinations of the Eq. 1 type.

Some of the earlier works on the training of pattern recognition systems rec-
ognized the need to train the algorithms with the goal of minimizing the classi-
fication errors. As noted in [8], the traditional neural network training involving
MSE (mean squared error) minimization might not result in the neural network
having minimum classification errors. Different methods of training neural net-
works for classification error minimization have been proposed [8,9,10]. Though
our application of neural network used as combination function of Eq. 1 is differ-
ent from the application of neural network as pattern classifiers in these previous
works, which are rather similar to Eq. 3, we employ a training principle simi-
lar to principle proposed in those works - we will be utilizing training samples
proved to be most difficult for classification.

We have previously underscored the need to have a separate training proce-
dures of combination algorithms in verification and identification systems [2].
Furthermore, we proposed some heuristic methods of constructing combination
functions for identification systems in [11]. In this paper we are looking for
the ways to change the training procedures of traditional multilayer perceptron
neural networks, so that the resulting combination function has optimized per-
formance in identification systems. Methods considered in this paper can be
viewed as a more automated and generalized compared to the heuristic methods
described in [11].

3 Optimizing Combination Functions for Identification
Systems

3.1 Weighted Sum Combination

One of the most frequently used methods for combining matching scores in
identification systems is the weighted sum rule. In our case, we combine only
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two matchers and the weighted sum combination function can be written
as

f(s1, s2) = ws1 + (1 − w)s2 (4)

The weight w can be chosen heuristically so that the better performing matchers
have a bigger weight [5]. The optimal weights can be also estimated for linear
combinations of classifiers subject to the minimization of classification error [12].

In our experiments we have trained the weights so that the number of success-
ful identification trials on the training set is maximized. The previously proposed
methods of training resulting in the minimization of classification error [12] are
not directly applicable due to much bigger number of classes in our case. Since
we have only two matchers in all our configurations, it was possible to utilize a
brute-force approach: we calculate the correct identification rate of the combi-
nation function f(s1, s2) = ws1 + (1−w)s2 for different values of w ∈ [0, 1], and
find w corresponding to the highest recognition rate. Despite being brute-force,
due to simplicity of weighted sum method, this approach was the fastest to train.

3.2 Minimizing Classification Error and Iterative Learning

If we perform training for verification system, we can treat genuine and im-
postor scores from different identification trials separately. Indeed, the optimal
combination in the form of likelihood ratio (Eq. 2) uses separately approximated
genuine and impostor densities, and any other algorithm can do the same. But
in order to perform training of combination function for identification system,
we have to consider the scores in each identification trial as a single training
sample, and train the combination function on these samples. This is precisely
the technique used to train the weighted sum rule for identification systems
(Section 3.1). For each training identification trial we check whether the genuine
score pair produced greater combined scores than all the impostor score pairs.
By counting the numbers of successful trials we were able to choose the proper
weights. Although the weighted sum rule provides a reasonable performance in
our applications, its decision surfaces are linear and might not completely sep-
arate the generally non-linear score distributions. Therefore we explore more
complex combination functions trained with the available training set.

In this paper we explore the approximation of combination function f(s1, s2)
by means of neural network, multilayer perceptron. Although the previous work
in neural network optimization for minimizing misclassification errors was in
constructing classifiers and not their combinations [8,9,10], we apply similar
optimization criteria for the training. In [9] several optimization criteria were
explored. The general solution consists in constructing a smooth misclassifica-
tion cost function giving different weights to different errors of currently trained
neural network, and modifying neural network by gradient descent method to
reduce the cost. In our case, we used one particular case of such cost - the cost
incurred by the largest possible error from the best impostor. Such cost is an
extreme case of parametric cost functions considered in [9], where the parameter
is chosen so that the cost function uses only best impostor.
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Another difference of our approach with previous research in minimum clas-
sifier error optimization of neural networks is that during network update the
input to our neural network can consist of only one score pair (this is difference
between Eq. 3 and Eq. 1). As a consequence, we are not only required to modify
the cost function determined by network outputs, but we also need to provide a
proper score pair as the training input. By considering only the best impostor
score pair we are able to do it.

In order to implement our algorithms, we need to be able to determine what
is the best impostor score pair in each training identification trial. The best
impostor depends on the currently trained combination function. Therefore, for
our methods we use the following iterative training procedure:

1. Make initialization of f(s1, s2).
2. For each training identification trial find the impostor score pair with the

biggest value of the combined score according to currently trained f(s1, s2).
3. Update f(s1, s2) by using genuine score pair and found best impostor score

pair of one identification trial.
4. Repeat steps 2-3 for all training identification trials.
5. Repeat steps 2-4 for predetermined number of training epochs.

Note, that proposed training procedure based on best impostors does not explic-
itly model the dependence between matching scores assigned to different classes.
Though such modeling can be very helpful for improving the performance of
combination algorithms, it leads to a different type of combinations not defined
by Eq. 1 [13]. In current paper we are interested in modified optimization criteria
(minimizing classification error), and by using this criteria we implicitly account
for dependencies between matching scores assigned to different classes.

3.3 Neural Network Training for Identification Systems

Neural networks, especially multilayer perceptrons, allow approximation of ar-
bitrary functions. Therefore, it should be possible to train a neural network to
represent the optimal combination function in identification systems. This ap-
proach can be viewed as a generalization of the combination method using a
sum of logistic functions described in our previous work [11]. A neural network
with logistic activation functions and a single layer of hidden nodes directly cor-
responds to the combination function consisting of the sum of logistic functions.
By utilizing more than one hidden layer and by using generic training of the neu-
ral network, it is possible to obtain better combination function than by using
ad hoc structure and training procedure of the sum of logistic functions [11].

We compare three approaches for training a neural network for the combina-
tion task at hand. The first approach is the traditional training using separate
genuine and impostor scores. The other two approaches focus on minimizing
the misclassification rate, and the genuine and impostor scores are not treated
separately.

1. Traditional training: random impostor score pairs are used alongside with
genuine score pairs.
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2. Best impostor training: following iterative training procedure, the best im-
postor score pair is found from an identification trial and used together with
genuine score pair to update neural network.

3. Mixed scores training: we use best impostor from the identification trial for
training only if there is a failure in one combined classifier. More precisely, let
(s1

gen, s2
gen) and (s1

bi, s
2
bi) denote the genuine and best impostor score pairs for

the current identification trial. We update the neural network only if s1
gen >

s1
bi and s2

gen < s2
bi) or (s1

gen < s1
bi and s2

gen > s2
bi). This training method

can be viewed as a combination of best impostor neural network training
and the conditional training of the sum of logistic functions combination
method [11].

Our goal is to train the neural network so that the misclassification rate is min-
imized. As we discussed in section 3.2, the configuration of our neural network
is different from the networks trained with the purpose of classifier error mini-
mization. But we can notice that used optimization criteria are similar. Indeed,
by considering the best impostor we effectively use the extreme case of para-
metric cost functions presented in [9]. During our training of neural network we
employ the mean square error defined for genuine and best impostor samples;
such choice of error calculation corresponds to considering the square polynomial
functions for cost calculations in [9]. The mixed score training implies additional
selection of training samples, and can also be represented by a proper choice of
cost function family.

4 Experiments

4.1 Handwritten Word Recognizers

We consider the application of handwritten word recognizers in the automatic
processing of United Kingdom mail. The destination information of the mail
piece contains the name of the postal town or county. After automatic segmen-
tation of the mail piece image, the goal of the handwritten word recognizer is to
match the hypothesized town or county word image against a lexicon of possible
names, which contains 1681 entries.

We use two handwritten word recognizers for this application: Character
Model Recognizer (CMR)[14] and Word Model Recognizer (WMR)[15]. Both
recognizers employ similar approaches to word recognition: they oversegment
the word images, match the combinations of segments to characters and derive a
final matching score for each lexicon word as a function of the character matching
scores.

Our data consists of three sets of word images of approximately the same
quality. The data was initially provided as these three subsets and therefore we
did not regroup them. The images were manually truthed and only those images
containing any of the 1681 lexicon words were retained. The word recognizers
were run on these images and their match scores for all 1681 lexicon words were
saved. Note, that both recognizers reject some lexicon entries if, for example,
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the lexicon word is too short or too lengthy for the presented image. We assume
that in real systems such rejects will be dealt with separately (it is possible that
the lexicon word corresponding to image truth will be rejected), but for our
combination experiments we keep only the scores of those lexicon words which
are not rejected by either of the recognizers. Thus for each image Ik we have a
variable number Nk of score pairs (scmr

i , swmr
i ), i = 1, . . . , Nk corresponding to

non-rejected lexicon words. One of these pairs corresponds to the true word of
the image which we refer to as ’genuine’ scores, and the other ’impostor’ score
pairs correspond to non-truth words.

After discarding images with non-lexicon words, and images where the truth
word was rejected by either recognizer, we are left with three sets of 2654, 1723
and 1770 images and related sets of score pairs. We will refer to the attempt
of recognizing a word image as an identification trial. Thus each identification
trial has a set of score pairs (scmr

i , swmr
i ), i = 1, . . . , Nk with one genuine score

pair and Nk − 1 impostor pairs. The scores of each recognizer were also linearly
normalized so that each score is in the interval [0, 1] and bigger score implies a
better match.

Since our data was already separated into three subsets, we used this structure
for producing the training and testing sets. Each experiment was repeated three
times. Each time one subset is used as a training set, and the other two sets
are used as test sets. The final results are derived as averages of these three
training/testing phases.

4.2 Biometric Person Matchers

We used biometric matching score set BSSR1 distributed by NIST[16]. This set
contains matching scores for a fingerprint matcher and two face matchers ’C’ and
’G’. Fingerprint matching scores are given for left index ’li’ finger matches and
right index ’ri’ finger matches. For our experiments we used four combinations
involving both fingerprint and face score subsets: ’li&C’, ’li&G’, ’ri&C’ and ’ri&G’

Though the BSSR1 score set has a subset of scores obtained from the same
physical individuals, this subset is rather small - 517 identification trials with
517 enrolled persons. Therefore we used larger subsets of fingerprint and face
matching scores of BSSR1 by creating virtual persons. The fingerprint scores
of a virtual person come from a physical person and the face scores come from
a different individual. The scores are not reused, and thus we are limited to
a maximum of 6000 identification trials and a maximum of 3000 classes (or
enrolled persons). Some enrollees and some identification trials also needed to
be discarded since the corresponding matching scores were invalid probably due
to enrollment errors. Finally, we split the data into two parts - 2991 identification
trials with 2997 enrolled persons, with each part used as training and testing
sets in two phases. The final results are the averages of these two phases.

4.3 Experimental Results

In the likelihood ratiomethod we reconstructed the densities using the Parzenwin-
dow method with Gaussian kernels. The window widths are found by maximum
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likelihood leave-one-out cross validation method on a training set. Note that the
reconstructed densities pgen(s1, s2) and pimp(s1, s2) of the likelihood ratio combi-
nation function 2 are two-dimensional. Given a large number of training samples,
using two-dimensional kernels in the Parzen method results in a good approxima-
tion of the densities [17].

For the weighted sum combination method 4, as well for other methods, we
use separate training and testing subsets. It is worth noting, that despite of only
single weight w to be found, weighted sum method indeed has a slightly lower
performance on the testing sets than on the training set.

In all the cases of the neural network methods we have the same config-
uration - multilayer perceptron with configuration 2-8-9-1, sigmoid activation
functions and backpropagation training. We keep the default parameter set-
tings of the neural network library [18]. About 100 training epochs are required
to get the best performance with minimal overfitting effect. Since we did not
have a separate validation set for the biometric dataset, we decided to run
the training for 300 epochs and choose the best performance numbers on test
datasets.

Table 1. The results of experiments. Numbers represent the correct identification rates
(in %).

Matchers Likelihood Weighted Traditional Best Impostor Mixed Scores
Ratio Sum Rule Training Training Training

CMR&WMR 69.84 81.58 76.69 80.54 81.67

li&C 97.24 97.23 97.01 97.26 97.39

li&G 95.90 95.47 96.00 96.07 96.29

ri&C 98.23 98.09 98.21 98.26 98.33

ri&G 97.14 96.82 97.41 97.43 97.38

The results of the experiments are presented in Table 1. The numbers in the
table refer to the correct identification rates, that is the percentage of trials in
which the genuine score receives the best score compared to impostor scores. In
general, neural networks showed slightly better results which can be explained
by their superior trainability compared to density based likelihood ratio method
and linear weighted sum method.

As we discussed in [2], the likelihood ratio method actually fails for combi-
nation of word recognizers - it has lower performance than WMR alone. Such
result is explained by the strong dependence between WMR’s matching scores
assigned to different classes. But likelihood ratio has slightly better performance
than weighted sum for combination of biometric matchers due to weaker de-
pendence between scores and the inability of weighted sum to model non-linear
decision boundaries. The goal of considered neural network combination is to
be able to outperform both likelihood ratio and weighted sum. As we can see
from Table 1, our modifications to neural network training achieved this task.
The last modification, mixed scores training, is able to outperform the likelihood
ratio weighted sum combination in all cases.
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5 Summary

Verification and identification systems possess different optimal combination
functions, and therefore require different training procedures. The optimal com-
bination function for verification systems coincides with the likelihood ratio of
genuine and impostors scores. We can approximate this function directly by re-
constructing score densities, as we did in this paper, or use traditional pattern
classification algorithms trained to separate genuine and impostor scores. The
optimal combination function for identification system, on the other hand, is
difficult to find.

In this paper we investigated the approaches of constructing combination
functions for identification systems by means of neural networks. Previous works
in neural network optimizations suggest the possibility that our optimization
modifications might have a property of optimality. The experiments on biometric
matchers and handwritten word recognizers show that proposed methods are
able to outperform likelihood ratio, as well as traditionally used in identification
system, weighted sum combination method.
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Abstract. Time series forecasting is a challenging problem, that has a
wide variety of application domains such as in engineering, environment,
finance and others. When confronted with a time series forecasting appli-
cation, typically a number of different forecasting models are tested and
the best one is considered. Alternatively, instead of choosing the single
best method, a wiser action could be to choose a group of the best models
and then to combine their forecasts. In this study we propose a combined
model consisting of Multi-layer perceptron (MLP), Gaussian Processes
Regression (GPR) and a Negative Correlation Learning (NCL) model.
The MLP and the GPR were the top performers in a previous large scale
comparative study. On the other hand, NCL suggests an alternative way
for building accurate and diverse ensembles. No studies have reported on
the performance of the NCL in time series prediction. In this work we
test the efficiency of NCL in predicting time series data. Results on two
real data sets show that the NCL is a good candidate model for fore-
casting time series. In addition, the study also shows that the combined
MLP/GPR/NCL model outperforms all models under consideration.

Keywords: Time series prediction, Negative Correlation Learning, MLP,
Gaussian Processes, NN3 data, diversity, Wilcoxon.

1 Introduction

Time series forecasting is a type of problem whereby the temporal structure
and ordering of the data is utilized in some way [1]. To forecast a time series, a
wide variety of approaches are available. Linear models estimate the unknown
value as a linear combination of other values. This class of models includes AR,
ARMA, ARX, ARMAX, Box-Jennkins, etc [1]. In spite of being quite simple to
use, well recognized and do not suffer too much from the choice of the structural
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parameters; simple linear model predictions can obtain poor and useless results
when dealing with a number of real world situations. Nonlinear prediction models
have been used to overcome this limitation including machine learning techniques
like Artificial Neural Network (ANN), Simple Bayesian Regressors, K-Nearest
Neighbour (K-NN), Bayesian Neural Network (BNN), fuzzy models and Hidden
Markov Models [2] [3] [4] [5] [6] [7]. Despite their more general character, and
therefore their extended potential, nonlinear tools suffer from high complexity
and the setting of many user-controlled structural parameters that very often
can rely on the users experience and can require high computation time and
resources to be adjusted for best performance.

In a recent study [8] a large scale empirical comparison of eight different
computational intelligence models for time series prediction was conducted.
The study revealed that the standard multilayer perceptron neural network
(MLP)and the Gaussian process regression (GPR)are the best models to con-
sider. The study also presented a thorough methodology for data pre-processing
techniques and model parameter setting.

A common difficulty to all methods of time series prediction is choosing the ap-
propriate model for the application considered. The forecast procedure is usually
affected by many factors and hence alternative approaches can capture this vari-
ability. Combining several methods rather than attempting to select the best one
can reduce errors arising from faulty assumptions, bias or mistakes in the data.

Ensemble methods have been shown both theoretically and empirically to out-
perform single predictors on a wide range of tasks [9]. Neural network ensembles
are well accepted as a way to combine a group of weak models in order to make
a composite, stronger one. It has been shown that low correlation of error and
diverse members may give better ensemble performance [10].

Many techniques for creating diverse ensemble members are built using heuris-
tics and intuition. Some attempts to achieve a good compromise between accu-
racy and diversity include variants of bagging, boosting and stacking techniques
[11] [12] [13].

In a further study a combined MLP/GPR model was sucessful in the predic-
tion of a large collection of time series data. The model combination used included
some aspects of forecast combination using the simple average and model selec-
tion based on the training set and the validation set performance. This model was
among the winning models in two major international forecasting competition the
NN3 and NN5 Time series Forecasting Competitions [14] [15].

On the other hand the negative correlation learning (NCL) algorithm suggests
an alternative way creating diverse predictors. NCL algorithm has attempted to
explicitly quantify diversity, and incorporate it into a learning algorithm [16].
NCL has been used in a variety of applications such as (classification, regressions,
incremental learning algorithms, bioinformatics ... etc) and proved to be effective
as reported in [17] [18] [19].To our knowledge, there were no reported attempts
to test and compare the performance of NCL against other machine learning
methods when applied to time series prediction.
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The objective of this study is to test the performance of the NCL algorithm
when applied to time series prediction and to compare it to the MLP and the
GPR models. The other goal is to apply the considered methodology to the
tourist arrivals forecasting problem. This is one of the important applications of
time series forecasting, and it has attracted a lot of research interest. The need
for accurate tourism forecasting is of particular importance for better planning
and business decisions due to the significant contribution of the tourism industry
to the economies of many countries. In this paper we consider inbound tourism
to Egypt from 36 source countries. As such, these time series could be a useful
benchmark for comparing the considered models. The other benchmark that
we used is the NN3 competition time series data. These are essentially business-
type time series that possess some similarities with the time series data obtained
from the tourism domain in terms of nonlinearity, trend and seasonality. Results
show that NCL offers an improved accuracy compared to the MLP and the
GPR models. In this work we also devise a new combined model that was found
most efficient when used to forecast time series data. To draw final conclusions
we use the Wilcoxon signed-ranks test to verify the significance of the obtained
results.

The paper is organized as follows; Section 2 briefly describes the MLP, the
GPR models and the NCL algorithm. Section 3 outlines methods for data pre-
processing and model parameter optimization. Section 4, describes the used data
sets, and explains the details of the experiments conducted. In Section 5 results
are presented and discussed. Finally, the paper is concluded in Section 6.

2 Machine Learning Models for Time Series Forecasting

In this section we briefly introduce two machine learning models who have been
proven to be successful for time series prediction; the MLP and the GPR. We
also briefly review the NCL algorithm.

2.1 Multi-layer Perceptron

The multilayer perceptron is perhaps the most popular network architecture in
use today both for classification and regression. The MLP consists of several
layers. The MLP output is given by: ŷ = v0 +

∑NH
j=1 vjg(ωT

j x̀) ; where x̀ is the
input vector x augmented with 1, i.e. x̀ = (1, xT )T , ωi is the weight vector for
jth hidden node, v0, v1, v2...vNH are the weights for the output node, and ŷ is
the network output. The function g represents the hidden node output, and it
is given in terms of a squashing function, in our study for example we use the
logistic function: g(u) = 1

1+exp(−u) .
The MLP is a heavily parameterized model, and by selecting the number

of hidden nodes NH we can control the complexity of the model. The most
interesting property of the MLP is the capability to work as a universal
approximator [20].
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2.2 Gaussian Processes

Gaussian process regression (GPR) has many desirable properties, such as ease of
obtaining and expressing uncertainty in predictions, the ability to capture a wide
variety of behavior through a simple parameterization, and a natural Bayesian
interpretation. Because of this GPR has been suggested as replacements for
supervised neural networks in non-linear regression, and have been extended to
handle classification tasks [21].The ability in GP to fit arbitrary functions or
surfaces is its nonparametric flexibility.

Gaussian process regression models are constructed from classical statistical
models by replacing latent functions of parametric form (e.g. linear functions,
truncated Fourier or Wavelet expansions, multi-layer perceptrons) by random
processes with Gaussian prior. The posterior distribution of a to-be-predicted
function value can then be obtained using the assumed prior distribution -normal
distribution- by applying simple probability manipulations [8]. (See detailed il-
lustration of the GP model in Rasmussen and Williams [22]).

2.3 Negative Correlation Learning Algorithm

Generally in building an ensemble, one of the elements required for accurate
prediction is recognized to be error ”diversity”. NCL algorithm suggests an al-
ternative way for managing this diversity by updating the backpropagation’s
delta rule in training the predictors in the ensemble.In constructing the base set
of learners, it is well appreciated that the individuals should exhibit different
patterns of generalization.

NC learning works with a penalty term attached to the normal MSE error
function. A coefficient can be used to vary the emphasis on the penalty term.
With a coefficient of zero, the NC learning algorithm is exactly equivalent to
a simple ensemble of learners. With a higher coefficient - which means more
emphasis on diversity significantly faster convergence and lower generalization
error is observed on a number of problems [18]. (see [23] for a detailed description
of the NC training algorithmn). In our experiments we choose the learning rate
parameter α to be 0.1. The other parameters of the NCL are determined by
crossvalidation as will be outlined in the next sections.

3 Data Preprocessing and Model Parameter Setting

In this section we describe our methodology for preprocessing the time series
data used and how model parameters selection is performed.

In general we adopt the following methodology in our experiments. First we
conduct a pre-processing step on the time series data. Then we perform a param-
eter optimization step for the model used. We use the model with the optimized
parameters to learn and finally test it using a cross validation approach. Usually
a post-processing stage is needed before the final testing to recover the original
time-series data. In what follows we provide more details.
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Preprocessing the time series data is a necessary step as it can considerably
impact the performance of the prediction model.(See [8] for a more thorough dis-
cussion). Particularly, time series data may include patterns of seasonality which
have to be dealt with before applying the prediction model. Therefore a seasonal
test is carried out to detect the presence of seasonality. If detected, the time se-
ries is deseasonalized. Also, a log transformation is performed to limit the effects
of exponential growth of some time series. As is usually performed for neural
networks, we scale time series to be in the range [1.1]. In summary, we perform
the following transformation by the following order: 1. Log transformation., 2.
Deseasonalization -if needed and 3. Scaling.

On the other hand, the used models require some key parameters that need
to be determined. We use K-fold validation for the purpose of determining these
parameters. In this approach we have a set of M examples and partition them
into K sets (”folds”) of size M/K. For each fold, the model is trained on the
other folds and then tested on this fold. The total testing error is then used to
select the best parameter values.

The advantage of K-Fold Cross validation is that all the examples in the
dataset are eventually used for both training and testing.

The time series is post processed in the reverse order and the parameter of the
linear scaled time series (slope, intercept) are used to scale the time series to its
actual values. If the time series has a seasonal pattern and was deseasonalized,
then we add the seasonal factors.

4 Data and Experiments

In this study we use two data sets to test the models under consideration. In
particular we use the ”NN3 data set” and data describing the monthly tourism
arrivals to Egypt by nationality.

From the NN3 competition data sets we use the time series of length greater
than 50 points in order to have enough data for neural network ensemble training.
This reduced the number of time series to 61 time series. The NN3 data set
consists of monthly time series data with different properties, seasonal patterns
and noise effects. (For more details see [14]).

On the other hand, we considered the problem of forecasting inbound tourism
demand for Egypt. Specifically, we consider two type of time series for 36 major
source countries: a time series describing the monthly tourist arrivals from origin
country and time series indicating the number of nights spent by tourists from
origin country. In addition for each type of time series the aggregate over all
counties was used. Therfore in total the data was composed of ((36∗2)+2) = 74
time series spanning the period from 1993 to 2007.

For the NCL model, we need to optimize the number of lags, penalty factor λ
and number of hidden nodes. We vary the number of lags between [1,6] to find
the optimum one, penalty factor λ is optimized between [0, 1] with step equals
to 0.1 and the number of hidden nodes is varied between [1, 12] with step equals
to 1. (see [8] [14] for the details of the parameter determination for MLP and
GPR).
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We use the holdout method to evaluate the accuracy of the predictive model.
The hold out data is the test data set. The over all accuracy is take from only
one run.

5 Results and Discussion

We use the Symmetric Mean Absolute Percentage Error, SMAPE as the error
measure, as described by equation (2) ( ym is the target output and ŷm is the
prediction). SMAPE has several advantages including removing scale and ease
of interpretation. Table 1, presents the results of the tested models on the NN3
data and the tourism data. The results are calculated as the average SMAPE
of all time series in each data set. In the NN3 data set, we used the validation
period of 18 data points following the instructions of the competition to use the
last 18 points to validate the goodness of fit, but we did not use them to evaluate
and rank the models performance. On the other hand, we used 6 point forecast
horizon for the tourism data set.

Table 1 compares the error percentage of the MLP, GPR, combined MLP-
GPR (MLP/GPR), the NCL and finally the combined (MLP/GPR/NCL) model.
The combination we used is based on the average rule: f = 1

N

∑N
i=1 fi; where

N is the number of combined models and fi is the forcast obtained by model i.
There is impirical evidence that equal weights and simple combination schemes
do better than more sophisticated rules[20].

The results show that for both data sets the combined MLP/GPR/NCL model
achieves the best performance. As follows we introduce the Wilcoxon signed-ranks
test and use it to compute the statistical significance of the obtained results.

SMAPE =
1
M

M∑
m=1

|ŷm − ym|
(|ŷm| + |ym|)/2

(1)

5.1 The Wilcoxon Signed-Ranks Test

Over the last years, the machine learning community has become increasingly
aware of the need for statistical validation of the published results. Statistical

Table 1. The average SMAPE (%) for each model in both data sets

Data Sets NN3 Tourism dataset

MLP 16.98 24.86

GPR 16.15 25.67

MLP/GPR 15.50 24.52
Ensemble

NCL 15.06 24.55

NCL/MLP/GPR 13.65 23.76
Ensemble



434 W.M. Azmy et al.

evaluation of experimental results has been considered an essential part of vali-
dation of new machine learning methods for quite some time [24].The tests used
have however long been rather naive and unverified. The procedures for compar-
ison of a set of machine learning models on a single problem have been proposed
almost a decade ago.

Different statistical and common-sense techniques have been used to decide
whether the differences between the algorithms are real or random. The most
frequently used test is the t-test. In this study we choose to select a different
approach to validate our model taking into consideration concerns raised against
the widely used t-test as usually conceptually inappropriate and statistically
unsafe [24].We will use Wilcoxon (1945) signed-ranks test. It is a non-parametric
tests which violates the assumption of normally distributed data and is less
affected by outliers.

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non-parametric alter-
native to the paired t-test, which ranks the differences in performances of two
classifiers for each data set, ignoring the signs, and compares the ranks for the
positive and the negative differences.

Let di be the difference between the performance scores of the two classifiers
on ith out of N data sets. The differences are ranked according to their absolute
values; average ranks are assigned in case of ties. Let R+ be the sum of ranks
for the data sets on which the second algorithm outperformed the first, and R−

the sum of ranks for the opposite. Ranks of di = 0 are split evenly among the
sums; if there is an odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) +
1
2

∑
di=0

rank(di) (2)

R− =
∑
di<0

rank(di) +
1
2

∑
di=0

rank(di) (3)

Let T be the smaller of the sums, T = min(R+, R−). Most books on gen-
eral statistics include a table of exact critical values for T and N up to 25 (or
sometimes more).

For a larger number of data sets, the statistics

Z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

(4)

is distributed approximately normally. With α = 0.05, the null-hypothesis can
be rejected if Z is smaller than −1.96. This means that the statistic Z has fallen
into the region of rejection. The p-value translates the statistic Z into a standard
normal distance. So, the null hypothesis is rejected if the p-value is less than 0.05
in the standard normal curve.

5.2 Statistical Validation of Models

To compute the statistical significance of the results listed in table 1; we claim
the null hypothesis (H0) to be that there is NO significant difference between



MLP, Gaussian Processes and Negative Correlation Learning 435

Table 2. Statistical validation results {Z-value(P-value)} for NN3 data set

GPR MLP/GPR NCL NCL/MLP/GPR
Ensemble Ensemble

MLP -1.1959 -3.2143 -2.4745 -4.5216
(0.2317) (0.0013) (0.0133) (0.00001)

GPR 0(0) -2.5750 -2.0220 -3.9326
(0.01) (0.0432) (0.0001)

MLP/GPR 0(0) -0.1472 -2.6612
Ensemble (0.8829) (0.0078)

NCL 0(0) -3.5447
(0.0004)

Table 3. Statistical validation results {Z-value(P-value)} for Tourism data set

GPR MLP/GPR NCL NCL/MLP/GPR
Ensemble Ensemble

MLP -0.8108 -0.7246 -1.3387 -2.2061
(0.4175) (0.4687) (0.1807) (0.0274)

GPR 0(0) -2.4000 -1.5812 -2.4862
(0.0164) (0.1138) (0.0129)

MLP/GPR 0(0) -1.1609 -2.4647
Ensemble (0.2457) (0.0137)

NCL 0(0) -0.1374
(0.8907)

the performance of any two possible models used in this work. Tables 2and 3
show the statistical validation results on the two data sets used in our study.

The highlighted cells indicate that there is a significant difference in perfor-
mance between the method listed in the row compared to the method listed in
the column. For example, for the NN3 data, the results indicate that MLP/GPR,
NCL and NCL/MLP/GPR outperform the single models MLP and GPR with
a statistical significance. In the same time, although the SMAPE results indi-
cate that the NCL outperforms the MLP/GPR model; there is no statistical
significance found for this result. So we can consider that NCL and MLP/GPR
are on a tie. On the other hand, a clear conclusion can be drawn that the
NCL/MLP/GPR ensemble outperforms both the NCL model and the MLP/
GPR model with a significant statistical difference according to Wilcoxon sta-
tistical test with 90% significance level. The same result applies to the Tourism
data sets, except that in that case NCL vrs. NCL/MLP/GPR were found almost
a tie. This leaves us with the general conclusion that the NCL and the combined
NCL/MLP/GPR model have proven to be very effective for the application on
hand.
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6 Conclusions and Future Work

In this work we investigate efficient machine learning techniques and ensemble
methods for time series prediction. The application we focus on is forecasting
tourist arrivals. We also use the NN3 data in our study because it pocesses similar
characteristics like the timeseries obtained from the tourism domain. In this
work we devise a combined model of MLP, GPR and NCL to predict time series
data. A comparative analysis revealed that the combined model outperforms
the single models of the MLP, GPR, NCL and the MLP/GPR model. Currently
we are investigating predictor combination under uncertainty. We also intend to
investigate other forecasting techniques and models like block/ group training ,
fuzzy wavelet networks and echo state networks.
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Abstract. In this work we propose a novel pairwise diversity measure, that re-
calls the Fisher linear discriminant, to construct a classifier ensemble for tracking
a non-rigid object in a complex environment. A subset of constantly updated
classifiers is selected exploiting their capability to distinguish the target from the
background and, at the same time, promoting independent errors. This reduced
ensemble is employed in the target search phase, speeding up the application of
the system and maintaining the performance comparable to state of the art al-
gorithms. Experiments have been conducted on a Pan-Tilt-Zoom camera video
sequence to demonstrate the effectiveness of the proposed approach coping with
pose variations of the target.

1 Introduction

It is well known that ensemble methods’ aim is to aggregate multiple learned models to
improve the accuracy of classification. Boosting, bagging and other forms of classifiers
combination [8,17,22] give an experimental confirmation and a theoretical explanation
that diverse hypotheses joined together produce a strong ensemble, whose error is re-
duced with respect to the average error of the members.

At the same time, the diversity concept arises from the intuition that a set of very
dissimilar classifiers would perform better than a single good decision maker, because
its error is compensated by the decisions of the others [12]. Intuitively, the more diverse
are the classifiers, the wider is the knowledge and the more tolerant is the ensemble
to unpredictable events. As equal classifiers will produce the same (redundant) output,
the combination of the responses of several classifiers is useful when they disagree on
some inputs. We refer to this measure of disagreement, which initially appeared under
the name of ambiguity in [10], as diversity.

The construction of a classifier ensemble is deemed to take advantage of the diversity
of its components [4,7,3]; the empirical explanation has been deduced from experiments
[13,6], and the use of diversity in designing ensembles has been intensively analysed
[19,5,2,20]. However, despite all the work done to date, there is not a concordant defi-
nition and formalization of diversity, but only different representations of the same in-
tuition [11,18]. It is acknowledged that the diversity measures can be categorised in two
types: pairwise, when a measure considers a couple of classifiers, and non–pairwise,
when the diversity refers to the whole ensemble and its performance. Yule’s Q statistics
[21], the correlation coefficient and the disagreement measure, for instance, belong to
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the first set, while Kohavi–Wolpert’s measure [9] or Kuncheva’s entropy [13] represent
the second group.

In this work we propose to exploit a criterion reminiscent of the Fisher linear dis-
criminant as a pairwise diversity measure for the construction of an effective selection
of online trained classifiers. This criterion is used to select a subset of classifiers, pro-
moting those with independent errors; the resulting ensemble is then employed to track
via classification a moving object in a video sequence, following the idea pioneered in
[1]. Unlike most of the literature on classifiers, in our case the ensemble does not re-
quire any information on the data; it is initially built on-the-fly with random hypotheses,
and then updated with significant information.

Starting with a minimal set of training examples, the experts pool is updated with
other patterns coming from the tracking phase: the target found at time (t − 1) is em-
ployed as a positive sample to update the ensemble parameters at time t. The training
set is thus collected as two observations at a time, one for the target and one for the
negative sample. This mechanism offers the advantage of selecting fresh and constantly
updated classifiers at each step, maintaining the knowledge of the ensemble coherent
with the object appearance and, at the same time, allowing to select the most appropri-
ate classifiers in that context. Compared with similar methods, like the Online Boosting
algorithm [15] that implicitly promotes diversity between classifiers modifying at each
step their weight in the linear combination, the proposed technique allows a dynamic
replacement of the participating classifiers without affecting the overall performance.

Preliminary experiments conducted on outdoor video sequence demonstrate that this
expert fusion framework can be employed as a robust tracking system that copes with
pose variations while following moving objects in a dynamic environment. Moreover,
our selection strategy saves the computational cost when compared to the Online Boost-
ing approach, keeping the accuracy comparable.

2 Proposed Solution

Given an ensemble S of R binary classifiers {s1, s2, . . . , sR} and a set of vector-valued
samples X , so that sr : X → {+1,−1}, we define the average prediction of the
ensemble at time t on a sample x as the average of the individual scores (mean rule)

st(x) =
1
R

R∑
r=1

sr,t(x) (1)

The outputs of this classifier on a training set of samples (xn, yn) with n = 1, . . . , N
can be divided considering the class yn ∈ Y = {−1, +1} of the sample xn ∈ X .
At time t, these two separate sets model two distinct probability density functions
P (st(x)|y) with priors P (y), means μy

t = E(st) and variances (σy
t )2. For each class

y ∈ Y , we can define the variance of the ensemble of (1) as

V ary(st) = E
{
(st(x) − μy

t )2
}

= E

⎧⎨⎩
[

1
R

R∑
r=1

(sr,t(x) − μy
r,t)

]2
⎫⎬⎭
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=
1

R2
E

{
R∑

r=1

(sr,t(x) − μy
r,t)

2

}
+

2
R2

E

⎧⎨⎩
R∑

r=1

R∑
j>r

(sr,t(x) − μy
r,t)(sj,t(x) − μy

j,t)

⎫⎬⎭
=

1
R2

{
R∑

r=1

E
[
(sr,t(x) − μy

r,t)
2
]}

+
1

R2
2

⎧⎨⎩
R∑

r=1

R∑
j>r

E
[
(sr,t(x) − μy

r,t)(sj,t(x) − μy
j,t)

]⎫⎬⎭ (2)

Analysing (2), we can observe that the first bracketted term is the sum of the variances
of the R classifiers

R∑
r=1

E
{
(sr,t(x) − μy

r,t)
2
}

=
R∑

r=1

E
{
(sr,t(x) − E(sr,t))2

}
=

R∑
r=1

(
σy

r,t

)2
(3)

The second addend takes the shape of the covariance between the ensemble classifiers

2
R∑

r=1

R∑
j>r

E
[
(sr,t(x) − μy

r,t)(sj,t(x) − μy
j,t)

]
= 2

R∑
r=1

R∑
j>r

E [(sr,t(x) − E(sr))(sj,t(x) − E(sj))]

= 2
R∑

r=1

R∑
j>i

Cov(sr,t(x), sj,t(x))

=
∑

r=1:R

∑
(j=1:R)∧(j �=r)

Cov(sr,t(x), sj,t(x)) (4)

The first and the second part of (2) are thus respectively the diagonal and off-diagonal
side of the covariance matrix of the classifier ensemble. They are indicators of the
goodness of the classifier with respect to the training set. The first term is greater than
zero by definition. The second term is a measure of the relationship between pairs of
classifiers, and it can be positive or negative; this last condition is the most desirable.
When considering the covariance matrix, the element in position (i, j) is denoted by
E
[
(sy

i (x) − E(sy
i (x)))(sy

j (x) − E(sy
j (x)))

]
.

To speed up the application of the ensemble and to improve its performance, we wish
to reduce its dimensionality and its complexity by choosing a subset SM of classifiers
s1, s2, . . . , sM from the initial pool S so that M << R, reducing optimally the num-
ber of classifiers according to a certain evaluation criterion (objective function). This
selection has two main advantages: 1) the decrement in computational cost during the
application; 2) the resulting ensemble is composed of low error classifiers, that improve
accuracy of the system.

In order to form a smaller set SM with equal or better performance than the entire
pool of predictors, we add classifiers to the current set choosing at each step m =
1, . . . , M the one that maximises the objective function J
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sm,t = arg max
s/∈Sm−1,s∈S

[J(Sm−1 ∪ s)] (5)

where S0 = ∅. The output of the selected set becomes 〈s〉t (x) = 1
M

∑M
m=1 sm,t(x).

In our case, the objective function has two facets: on one hand, the minimization of
the covariance value between the classifiers of the selected set for both classes in Y
guarantees that the classifiers are conditionally independent. In this way, the diversity
acts as an effective selection tool. On the other hand, we want to maximize the separa-
bility of the class distributions, providing a good ensemble of decision makers. Without
loss of generality, we can assume that, for every expert sr, (μ+

r > μ−
r ); the class sepa-

rability can then be represented as the distance between the means (μ+
r − μ−

r ). We can
measure the linear discriminating power of the classifier ensemble S through the ratio
of separability and independence

F–ratiot(S) =
(μ+

t − μ−
t )2

(V ar+(st) + V ar−(st))
(6)

Fusing the selection approach (5), and the criteria (6), we can select incrementally
the best M decision makers that satisfy

sm,t = arg max
s/∈Sm−1,s∈S

[F–ratiot(Sm−1 ∪ s)] (7)

This greedy approach, that at every step m adds the most convenient classifier with
respect to the selected ones, is based on the Sequential Feature Selection technique;
working in real-time with R classifiers does not allow us to apply an exhaustive search
over all the possible 2R − 1 subsets as proposed for a similar problem in [16].

Algorithm 1 presents the pseudocode for the proposed solution; among all the possi-
ble hypotheses the one that provides the highest F–ratio is added greedily to the ensem-
ble. The limit for including classifiers is given by the need to prevent a decrease of the
F–ratio value; the final selection is performed for the next search phase.

The main disadvantage of this solution is that the computation is performed regularly
at every frame t, in order to remove classifiers that become obsolete when the training
set changes during the on-line learning.

3 Experiments

We employed our approach for object detection and tracking in video surveillance ap-
plications. In this section, an experiment performed on real-world video sequences is
presented to validate the proposed framework. The hardware employed in all the tests
is an AMD Athlon64 3500+ with 1GB of RAM.

3.1 Features and Classifiers

We employed three different types of features to describe moving objects: Haar fea-
tures, Local Binary Patterns (LBP) [14], and colour histograms. All the modules have
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Algorithm 1. F–ratio based selection

Require: Classifiers pool S
Require: Empty selection set S0 = ∅

for t = 1, 2, . . . , T do
// Update the scores of the hypotheses on the positive sample x+

t

// and on the negative sample x−t
for all the R hypotheses do

Probe sr,t(x
+
t ), sr,t ∈ S

Probe sr,t(x
−
t ), sr,t ∈ S

end for
// Randomly add the first classifier
S1 ← S0 ∪ srandom : {srandom /∈ S0, srandom ∈ S}
F–ratiocurr ← 0
F–ratioprev ← 0
// While the F–ratio grows, add classifiers to the selection
while F–ratiocurr ≥ F–ratioprev do

F–ratioprev ← F–ratiocurr

Sm ← Sm−1 ∪ arg max{s/∈Sm−1,s∈S} {F–ratiot(Sm−1 ∪ s)} as in (6)

F–ratiocurr ← F–ratio(Sm)
m ← m + 1

end while
Output: Selection set SM

end for

been implemented in C++ using fast structures, i.e. integral images and integral his-
tograms, to reduce the computational requirements. The LBP operator calculated on a
central pixel (xc, yc) and 8 neighbours has the form LBP (xc, yc) =

∑7
i=0 f(vi, vc)2i

where i is an index over the neighbours of the central pixel, vi and vc are the inten-
sity values of the pixel (xi, yi) and the central one respectively, and f(vc, vi) = 1
if vc < vi, f(vc, vi) = 0 otherwise. For what concerns colour histogram features,
the region of interest is divided in several random rectangles separately calculated; the
Bayesian classifier operates on the Gaussian distribution given by the Bhattacharyya
distance for positive and negative samples from the template histogram obtained in the
first frames. In this work, sr,t is a Naive Bayes classifier that discriminates between the
background and the target. The positive (target) and negative (background) samples are
represented each by a normal distribution N (μy

r , (σy
r )2) where y ∈ Y . The score at

time t is determined by the highest posterior probability given by the Bayes classifier

sr,t(x) = argmax
y∈Y

P (y|x, μy
r,t, (σ

y
r,t)

2) (8)

The means μy
r,t and the variances (σy

r,t)
2 of the positive and negative distributions asso-

ciated to the r-th classifier are refreshed at each frame using the values previously calcu-
lated in the covariance analysis process; in this way, the decision makers are maintained
updated with the target appearance.
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Fig. 1. Comparison of Online Boosting algorithm (top row), proposed approach (second row)
and Mean Shift output (third row) on the PTZ sequence at frames 3, 120, 420, 492. The sets are
composed of 500 members, but the number of classifiers effectively applied during the search
phase in the proposed approach varies as in Fig 2

Fig. 2. Number of classifier included in the proposed solution ensemble on the entire PTZ
sequence

3.2 Results

We acquired several videos at a resolution of 360 × 288 pixels with a Pan-Tilt-Zoom
(PTZ) camera placed on the top of a building for a total of about 5400 frames. We
followed a pedestrian controlling the camera parameters; this configuration was chosen
in order to show how detection via classification of a non-rigid object can be performed
where a simple background subtraction technique could not be employed.

In figure 1 we present some results taken from the output sequences of three differ-
ent systems: the Online Boosting algorithm (top row), the proposed approach (second
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row), and the Mean Shift algorithm (third row). All the systems have been initialized
with a target patch obtained by a change detection step. The boosting based ensem-
ble and the proposed one are composed of 500 members each, but in the latter case
the number of classifiers effectively involved in the search phase varies, as shown in
figure 2. In the last frames of the video sequence, Mean Shift misses the target, while
the two frameworks that exploit a classifier set to track the object, enhancing at the
same time the diversity between the members, are demonstrated to yield to similar
accuracy. This last statement is confirmed also by figure 3, where the ROC curves rep-
resenting the number of true positives out of false positives, generated by modifying
the tolerance threshold while classifying, lead to similar results. The Online Boosting
and the F–ratio approach are compared also in terms of distance of the target from
the ground-truth (figure 4). Although the localisation error of the proposed tracker is
slightly worse, the shifts from the ideal centre of the object are limited to a few pixel in
both cases.

Figure 5 shows the advantage of the proposed method. We can observe that the pro-
posed approach has a lower computational cost with respect to the online boosting
method and, when employing a few classifiers, than Mean Shift, which is faster for
large ensembles. This can be explained because, contrary to the online boosting where
all the classifiers are applied at the same time, the dynamic F–ratio driven selection
allows to reduce the number of experts employed in the search phase, saving compu-
tational time. We can also state that using time consuming features or classifiers in the
case of the online boosting framework dramatically increases the total time of compu-
tation, while in our case the selection of a limited number of classifiers guarantees that
the number of operations is kept low. In our case, the heaviest computational part is
represented by the covariance matrix estimation; this R × R matrix suffers from the
curse of dimensionality when the number of classifiers grows. Moreover, the score for
a fast update can be explored in future using, for instance, the Cholesky decomposition

Fig. 3. ROC curves comparison for the Online Bosting and the proposed technique. The ensem-
bles are composed of 500 classifiers and they refer to the sequence of figure 1.
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(a)

(b)

Fig. 4. Error in pixels with respect to the ground truth for our approach and for the Online Boost-
ing algorithm [15] on the PTZ sequence: X (a) and Y (b) coordinates.

Fig. 5. Running time (in milliseconds) per frame on the sequence of Fig.1 for the three com-
pared methods. Mean Shift obtained the best computational time, followed by the non-optimized
proposed approach, and by the online boosting algorithm

instead of calculating the full matrix at every frame. In figure 6 the trend of the means,
that represent the expected values of the target pattern (positive samples) and the ran-
dom background (negative samples) distributions, is drawn.
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Fig. 6. Means of the positive (target) and negative (background) samples distributions for the
proposed approach on the frames of the outdoor video sequence

4 Conclusions

In this work we propose a novel criterion that recalls the Fisher linear discriminant
as pairwise diversity measure for the construction of fast and robust classifiers, that are
able to distinguish the target and the background classes committing independent errors.
This subset is used to track a non-rigid object in a video sequence; to keep updated the
knowledge of the ensemble, the classifiers are trained with fresh patterns coming from
the tracking phase. Unlike existing methods, such as the Online Boosting algorithm
[15] that implicitly promotes the diversity between members by adapting their weights
but implies to work always with a fixed number of experts, our approach considers the
diversity as an effective criterion to construct a performing ensemble that allows a flex-
ible replacement of classifiers. Moreover, it is suited to operate with computationally
expensive features, because the search phase is unburdened by the selection step. Var-
ious experiments conducted on a Pan-Tilt-Zoom camera video sequence demonstrate
that the described framework is a robust tracking system which copes with pose varia-
tion and has performance comparable with the state of the art algorithms.
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Abstract. The availability of an ever increasing amount of data sources
due to recent advances in high throughput biotechnologies opens un-
precedented opportunities for genome-wide gene function prediction.
Several approaches to integrate heterogeneous sources of biomolecular
data have been proposed in literature, but they suffer of drawbacks and
limitations that we could in principle overcome by applying multiple clas-
sifier systems. In this work we evaluated the performances of three basic
ensemble methods to integrate six different sources of high-dimensional
biomolecular data. We also studied the performances resulting from the
application of a simple greedy classifier selection scheme, and we fi-
nally repeated the entire experiment by introducing a feature filtering
step. The experimental results show that data fusion realized by means
of ensemble-based systems is a valuable research line for gene function
prediction.

1 Introduction

The integration of multiple sources of heterogeneous biomolecular data is a key
item for the prediction of gene function at genome-wide level. More in gen-
eral, functional classification of unannotated genes is a central problem in mod-
ern functional genomics and bioinformatics [1]. The ever increasing amount of
biomolecular data produced in last years as effect of recent advances in high-
throughput biotechnologies did not result into a corresponding improvement in
gene function prediction accuracy, because the additional complexity introduced
by the need to integrate heterogeneous data sources constitutes a serious limiting
factor [2]. To deal with this problem, several approaches have been proposed in
literature. A first one is based on a direct ”vector-space integration” by which
different vectorial data are concatenated [3]. Modelling interactions between gene
products using graphs and functional linkage networks is another valuable re-
search line, as well as the application of probabilistic graphical models [4]. Ker-
nel methods, by exploiting the closure property of kernels with respect to the
sum and other algebraic operators, represent another interesting approach for
the integration of biomolecular data [5]. Nevertheless, all these methods suffer
of limitations and drawbacks, due to their limited scalability to multiple data
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sources (i.e. Kernel integration methods based on semidefinite programming [5]),
to their limited modularity when new data sources are added (i.e. vector-space
integration methods), or when the available biomolecular data are characterized
by different structural features (i.e. functional linkage networks and vector-space
integration).

A new possible approach is represented by ensemble methods, but not much
work has been done to apply classifier integration to gene function prediction [2].
To our knowledge, only few works have been proposed, such as the ”late inte-
gration” of kernels trained on different sources of data [6], or the Naive-Bayes
integration of the outputs of SVMs in the context of the hierarchical classifi-
cation of genes [7]. Ensemble-based data fusion techniques have been success-
fully applied in several domains, ranging from biomedical applications [8] to
the classification of multisource remote-sensing images [9]. However, there are
several reasons to apply ensemble methods in the specific context of genomic
data fusion for gene function prediction. At first, biomolecular data differing
for their structural characteristics (e.g. sequences, vectors, graphs) can be easily
integrated, because with ensemble methods the integration is performed at the
decision level, combining the outputs produced by classifiers trained on differ-
ent datasets. Moreover, as new types of biomolecular data, or updates of data
contained in public databases, are made available to the research community,
ensembles of learning machines are able to embed new data sources or to update
existing ones by training only the base learners devoted to the newly added or
updated data, without retraining the entire ensemble. Finally most ensemble
methods scale well with the number of the available data sources, and problems
related to the addition of newly available sources of biomolecular data can be
easily managed.

In this contribution we investigate the effectiveness of different types of ensem-
ble systems in gene function prediction. We also evaluate the effect on the quality
of predictions due to the introduction of a simple base classifier selection scheme.
We finally repeat the entire experiment introducing a feature selection step. The
results are then compared with baseline methods to provide an overview of the
potentialities of multiple classifier systems in gene function prediction.

2 Methods

In our experiments, to integrate different sources of biomolecular data, we chose
relatively simple methods, such as weighted average combination methods and
decision templates. As a second step we considered ensembles based on base
learner selection, according to the test-and-select approach, and finally we ap-
plied ensembles combined with simple feature filtering methods to reduce the
high dimensionality that characterize biomolecular data.

2.1 Ensemble Methods for Biomolecular Data Fusion

Data fusion can be realized by means of an ensemble system composed by learn-
ers trained on different ”views” of the data and then combining the outputs of
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the component learners. Each type of data may capture different and comple-
mentary characteristics of the objects to be classified and the resulting ensemble
may obtain better prediction capabilities through the diversity and the anti-
correlation of the base learner responses.

In particular, each type of biomolecular data B1, B2, . . . , BT is characterized
by different features f1, f2, . . . , fT , where T is the number of the available data
sources. Thus, an example x is characterized by different sets of features:

x =< xf1 ,xf2 , . . . ,xfT > (1)

where xft represents the data relative to the features ft of a specific data set
Bt ⊂ Xt.

A classifier trained on data Bt computes a function dt,j : Xt → [0, 1] that
estimates the support (e.g. the probability) that a given example x belongs to a
specific class ωj . In our experiments we applied a sigmoid fitting to the output
of SVMs, to obtain an estimate of the probability that a given example belongs
to a given class [10]. An ensemble combines the outputs of T base learners,
each trained on a different type of biomolecular data, using a suitable combining
function g to compute the overall support μj for a given class ωj:

μj(x) = g(d1,j(xf1), d2,j(xf2), . . . , dT,j(xfT )) (2)

At first, we combine the base classifiers through the classical weighted average
rule:

μj(x) =
T∑

t=1

wtdt,j(xft) (3)

In our experiments we computed the weights according to a convex combination
rule (wc

t) and a logarithmic transformation (wlog
t ):

wc
t =

Ft∑T
t=1 Ft

w
log
t ∝ log

Ft

1 − Ft
(4)

In both cases we use the F-measure Ft, i.e. the harmonic mean between precision
and recall, instead of the classical accuracy, since the gene functional classes are
largely unbalanced (positive examples are largely less than negative ones). Ft

measures are obtained by ”internal“ cross-validation on the training data. The
ensemble chooses the class ωj , according to the estimated probability μj (eq. 3):

Dj(x) =

{
1, if μj(x) > h

0, otherwise
(5)

where output 1 corresponds to positive predictions for ωj and 0 to negatives. A
reasonable value for the threshold h is 0.5 (if μj estimates probabilities). Note
that in this setting an example x may belong to more than one class (eq. 5), thus
modeling the multilabel classification problem that characterizes gene function
prediction.
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Some base learners trained on specific biomolecular data may incorrectly pre-
dict the examples for a given gene functional class for several reasons. For in-
stance certain types of biomolecular data can be informative for some functional
classes, but uninformative for others. In order to take into account systematic
incorrect answers of certain base learners, Decision Templates [11] can represent
a valuable approach. In this approach the decision profile DP(x) for an instance
x is a matrix composed by the dt,j ∈[0,1] elements representing the support
given by the tth classifier to class ωj . Decision templates DTj are the averaged
decision profiles obtained from Xj , the set of training instances belonging to the
class ωj:

DTj =
1

|Xj |
∑

x∈Xj

DP (x) (6)

The similarity S between the decision template DTj for a class ωj , 1 ≤ j ≤ C,
and the decision profile for a given test instance x is:

Sj(x) = 1 − 1
T × C

T∑
t=1

C∑
k=1

[DTj(t, k) − dt,k(x)]2 (7)

and the final decision of the ensemble is computed by assigning the test instance
to the class with the largest similarity:

D(x) = argmax
j

Sj(x) (8)

For gene prediction we consider two-classes problems, because a gene may
belong or not to a given functional class. To simplify the notation, we denote
the positive class by 1 and the negative by 2. In this context, exploiting the
fact that dt,2(x) = 1 − dt,1(x), the similarity S (eq. 7) for the positive and the
negative class class becomes:

S1(x) = 1 − 1
T

T∑
t=1

[DT1(t, 1) − dt,1(x)]2 (9)

S2(x) = 1 − 1
T

T∑
t=1

[DT2(t, 1) − dt,1(x)]2 (10)

and the final decision of the ensemble is:

D(x) = arg max(S1(x),S2(x)) (11)

2.2 Feature Filtering

Feature selection methods can select the most significant features and can reduce
the high dimensionality that characterize most biomolecular data.

To reduce the computational complexity we introduce a simple filtering
method based on the t-test statistic: More precisely, we applied the two-sample
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Welch t-test to verify the null hypothesis Hj of no difference between the means
of feature values of the two given positive and negative sets of genes at a given
significance level α. Since the number of features for each data set is in the order
of thousands, we need to restate the problem in a multiple hypothesis test set-
ting. In particular we applied the Benjamini and Hochberg (BH) [12] procedure
to control the false discovery rate FDR (that is the expected proportion of false
positives among the rejected hypotheses). This procedure is applied separately
for each data set.

2.3 Base Learner Selection

According to the test and select methodology [13], we apply a variant of the
“choose the best” technique [14] to select a subset of “optimal” classifiers. More
precisely we select the “best” subset of base classifiers (each one trained on
a different source of biomolecular data) according to the F-measure estimated
by internal cross-validation on the the training set. A high level scheme of the
adopted “test and select” procedure is reported below:

1. Separately for each available data, select the most significant features us-
ing the two-sample t-test with Benjamini and Hochberg p-value correction
(Sect. 2.2).

2. Train the base learners on the heterogeneous data sets filtered according to
step 1.

3. Select the n learners with the best F-measure estimated by internal cross-
validation on the training set

4. Evaluate the ensembles with the n best learners on a separated test set.

We applied the “test and select” procedure with and without the first step
(feature filtering with “corrected” t-test). Note that at step 2 and 3 a base learner
model selection can also be performed using cross-validation on the training data.
Weighted average rule and decision templates (Sect. 2.1) are the aggregation
strategies adopted to combine the output of the base learners.

3 Experimental Setup

We collected several sources of biomolecular data to classify genes of the yeast,
an eukaryotic unicellular model organism. In particular we used protein-protein
interaction data collected from BioGrid [15] and STRING [16], a collection of
physical and genetic interactions obtained from different types of biological ex-
periments and from literature. Moreover we included data to register the pres-
ence/absence of a particular protein domain in the proteins encoded by genes
comprised in the dataset [17] and the E-value assigned to each gene prod-
uct to a collection of profile-HMMs computed through the HMMR software
toolkit (http://hmmer.janelia.org ). We considered also homology relation-
ships data using pairwise Smith-Waterman log E values between all pairs of yeast
sequences. Finally we included into our experiment a dataset obtained by the
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Table 1. Datasets

Code Dataset examples features description

D1 Protein domain binary 3529 4950 protein domains obtained from Pfam
database [17]

D2 Protein domain log-E 3529 5724 Pfam protein domains with log E-values com-
puted by the HMMER software toolkit

D3 Gene expression 4532 250 merged data of Spellman and Gasch experi-
ments [18] [19]

D4 PPI - BioGRID 4531 5367 protein-protein interaction data from the Bi-
oGRID database [15]

D5 PPI - STRING 2338 2559 protein-protein interaction data from [16]
D6 Pairwise similarity 3527 6349 Smith and Waterman log-E values between all

pairs of yeast sequences

integration of microarray hybridization experiments published in [18] [19]. The
main characteristics of the data sets used in the experiments are summarized
in Tab. 1. The genes represented in the datasets under investigation have been
associated to functional classes using the functional annotations collected in the
Functional Catalogue (FunCat) database version (2.1) [20].

In our experiments we considered only the first level of the hierarchy of FunCat
classes, that is the most general and wide 15 functional classes of the overall
taxonomy.

We considered the intersection between all the datasets, resulting into a final
collection of 1910 yeast genes. In other words we used in our experiments only
the genes for which experimental measures were available for all the types of
data. Each resulting dataset was randomly split into a training set and a test
set (composed, respectively, by the 70% and 30% of the available samples). We
performed a 3-fold stratified cross-validation on the training data for model
selection, using gaussian SVMs as base learners. We chose the F-measure for
both model selection and to evaluate the performances on the separated test
set, because most FunCat classes are unbalanced, with positive examples largely
lower than negatives.

We then applied a test and select procedure, by choosing the best 2, 3 or
4 classifiers according to the F-measure evaluated by cross-validation on the
training set (Sect.2.3). The test and select procedure has been applied with and
without feature selection according to a two-sample t-test and a Benjamini and
Hochberg correction at 0.05 significance level (Sect.2.2).

4 Results

Tab. 2 summarizes the averages across the performed 15 dichotomic learning
tasks of the F-measure, recall, precision and specificity computed on the test
sets using respectively:

1. The ensemble methods described in Sect. 2.1 using all the available data sets
and base learners

2. The test-and-select procedure outlined in Sect. 2.3.
3. The featurefiltering stepaddedbefore the test-and-selectprocedure (Sect. 2.2).
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Table 2. Summary of ensemble results. Lbest refers to the best single learner, Lavg

to the average results of single SVMs; Elin and Elog to weighted average combination
with respectively linear and logarithmic weights; EDT stands for decision templates
ensembles.

A) Results using all the
available base learners

Metric Lbest Lavg Elin Elog EDT

F 0.4816 0.3470 0.4403 0.4112 0.5302

rec 0.3970 0.2859 0.3304 0.2974 0.4446

prec 0.6785 0.5823 0.8179 0.8443 0.7034

spec 0.9516 0.9533 0.9798 0.9850 0.9594

B) Results with test and
select procedures

Metric Lbest Lavg Elin Elog EDT

F 0.4816 0.3470 0.5436 0.5441 0.5698

rec 0.3970 0.2859 0.4793 0.4778 0.5164

prec 0.6785 0.5823 0.6723 0.6591 0.6435

spec 0.9516 0.9533 0.9538 0.9573 0.9447

C) Results with test and select
and feature filtering

Metric Lbest Lavg Elin Elog EDT

F 0.4893 0.2638 0.5175 0.4912 0.6310

rec 0.3841 0.1927 0.3987 0.3711 0.5667

prec 0.7278 0.6141 0.8708 0.9042 0.7439

spec 0.9639 0.9775 0.9841 0.9871 0.9552

Lbest refers to the best single learner (trained on the D2 protein domain data
set, Tab. 1), and Lavg to the average results of the single SVMs across all the 6
data sets.

As reported in Tab. 2 A), the performances averaged across all the performed
learning tasks are increased by the basic ensemble-based data fusion approaches
involving the combination of all the component classifiers. The investigated com-
bination strategies are able, on the average, to outperform the single learners.
In particular the Decision Template combiner outperforms the single best clas-
sifier in the evaluation of the test set. The simple greedy strategy to test and
select the “best” base learners for each classification task significantly enhances
the performances of weighted average combination methods (from 0.41 to 0.54
with Elog), but also Decision templates gain from this approach (Tab. 2 B). By
adding a simple feature selection step to the test and select methods we can
observe that only Decision templates are able to improve their performances
(Tab. 2 C). Indeed on the average the performances of single learners largely
decrease (the F-measure falls from from 0.34 to 0.26), as well as the perfor-
mances of weighted average ensembles, even if the relative decrement of the
latter is lower. In all cases, independently of the adopted ensemble method and
with or without feature selection, the ensembles of learning machines largely
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Fig. 1. Per class F-measure results of ensemble methods with base learner selection
and feature filtering. For each FunCat class, the first six shaded gray bars refer to
single learners with feature filtering (from L1 to L6); the last three bars (filled with
patterns) correspond respectively to weighted average combination with linear (Elin)
and logarithmic (Elog) weights and decision template (EDT ) ensembles. a) Funcat
classes 01, 02, 10, 11, 12; b) 14, 16, 18, 20, 30; c) 32, 34, 40, 42, 43.

outperform the average results of the single SVMs. Moreover in most cases en-
semble methods outperform also the best single SVM, and in particular decision
templates obtain better results than the best single SVM on all the gene function
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prediction tasks (Fig. 1). It is worth noting that ensemble methods achieve a very
high precision (Tab. 2): this is of paramount importance to drive the biological
validation of novel predicted genes whose function is unknown or only partially
known, in order to reduce the costs of possible false positives.

Each type of biomolecular data set captures different characteristics of genes,
and can be informative for some classes but uninformative for the prediction
of other classes of genes. From this standpoint we can understand the reasons
why simple decision fusion techniques may improve gene function prediction. In
particular decision templates seem to better exploit the different characteristics
of the available source of biomolecular data. Indeed, through the decision tem-
plates, also relatively uncertain or wrong responses of base learners can provide
useful information for the decision of the ensemble, especially if this behaviour is
consistently maintained across the data. This is confirmed also by the fact that
test and select methods with decision templates to combine the output of the se-
lected base learners require on the average more learners than weighted average
ensembles (data not shown). Decision templates are thus able to exploit also the
characteristics of the less informative base learners to improve the predictions of
the overall ensemble.

5 Conclusions

In this work we investigated the effectiveness of ensemble-based data fusion
methods on the functional classification of yeast genes. The ensembles are able
to outperform the averaged performances of single SVMs in all the gene func-
tion prediction tasks, achieving the best results in terms of precision and recall.
The performances are further improved by a simple ”choose the best” selection
strategy, and a feature filtering method is able to enhance the results of decision
templates. Considering the F-measure that summarizes both precision and recall,
the experimental results show that data fusion realized by means of ensemble
systems is a valuable research line in gene function prediction and that Decision
Templates may represent a good choice for biomolecular data integration.
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Abstract. A novel cascade multiple classifier system (MCS) for docu-
ment image classification is presented in the paper. It consists of two
different classifiers with different feature sets. The proceeding classifier
uses image features, learns physical representation of the document, and
outputs a set of candidate class labels for the second classifier. The suc-
ceeding classifier is a hierarchical classification model based on textual
features. The candidate labels set from the first classifier provides sub-
trees for the second classifier to search in the hierarchical tree and derive
a final classification decision. Hence, it reduces the computational com-
plexity and improves classification accuracy for the second classifier. We
test the proposed cascade MCS on a large scale set of tax document clas-
sification. The experimental results show improvement of classification
performance over individual classifiers.

Keywords: Document Classification, Multiple-classifiers, Classifier
Combination.

1 Introduction

With the exponential proliferation of documents, document image classification
becomes an increasingly important step in office automation, digital libraries and
many other applications. It provides automatic indexing, archiving and retriev-
ing documents and facilitates higher-level document analysis. Many machine
learning algorithms have been used in document image classification such as
support vector machine (SVM), K-nearest-neighbor (KNN), latent conditional
independence model, decision tree, neural networks and others [1]. These clas-
sifiers operate on one of image features, textual features from OCR (optical
character recognition) and document layout structure features or some combi-
nation depending on the specific problems. Most of document classification work
focuses on developing state-of-the-art single classifier.

Recently there has been increasing interest in combining multiple classifiers
in order to improve the performance of a given document image classification
system. Héroux et al. present three classifiers for form categorization using KNN
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and multi-layer neural networks with image features and tree matching classifier
with physical layout features [2]. A voting method of combining two competing
classifiers is proposed in [3] to classify business letters based on content features.

There are mainly three different types of architectures in multiple classifier
systems, namely, cascade [4], parallel [5] [6] and mixture of both. Cascade mul-
tiple classifier systems are a certain form of multi-stage classification where the
succeeding classifier takes the output from the proceeding one as input in a
cascading fashion. Parallel multiple classifier systems combine individual inde-
pendent classifiers to obtain final output. Most of multiple classifier system work
has been focused on parallel structure partially because it is much easier to train
each individual classifiers with its own features independently and fuse the out-
puts than to modify classifiers in order to fit into cascading scenario. Many
classifier combination rules have been proposed in the literature such as sum,
product, median, majority vote, Bayesian, Dempster-Shafer and other rules [5]
[6] [7]. Rank order statistics rules (e.g. min/max) find better performance against
outliers than the sum rule [7]. Behavior-knowledge space method uses prior sta-
tistical knowledge of individual classifiers to derive the best final decision [8].
While behavior-knowledge space method relies on the global behavior of indi-
vidual classifiers, a combination approach using local accuracy of each classifier
in small regions of feature space surrounding an unknown test sample is pre-
sented in [9].

In information retrieval which is related to document image classification re-
search, several researchers have achieved improvements in classification accu-
racy via the combination of different classifiers for text categorization. Larkey
and Croft use weighted linear combinations of classifier ranks [10]. Hull et al.
propose linear combinations of probabilities or log odds scores [11]. A linear
combination of normalized scores is presented in [12]. Bennett et al. introduce
a probabilistic method for combining classifiers that considers the context sen-
sitive reliabilities of contributing classifiers [13]. Most of combination methods
in text classification research field are parallel approaches and use same type of
textual features for all classifiers.

In document classification, image features offers a good characterization of
physical representation of the document image. Image features are also fast to
implement since it does not need document layout analysis as required in OCR
text extraction. But image features alone do not capture the whole character-
istics of document because it is the semantics that decides the class for the
document. On the other hand, OCR textual features might be noisy due to poor
image quality. The challenge is how to combine these two types of features to-
gether to improve classification performance. In this paper, we present a cascade
multiple classifier system for document image classification. The proposed MCS
is composed of two classifiers where the first one uses image features and the
succeeding classifier takes the proceeding classifier output and textual features
to derive a final classification output. Classifier with image features will produce
a set of candidate class labels. This set will enable the second classifier to con-
centrate a small search space to derive a final output. This is realized in the
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second classifier with a hierarchical classification model and the hierarchical tree
can be easily divided into subtrees according to the candidate class labels set
from the proceeding classifier.

The rest of paper is organized as follows. We will describe the proposed cascade
multiple classifier system and the individual classifiers with image and textual fea-
tures respectively in Sec. 2. In Sec. 3, we apply the proposed method in a large scale
tax document classification problem. We conclude our work in Sec. 4.

2 Cascade Multiple Classifier System

In this section, we will explain the proposed cascade multiple classifier system
and the individual classifiers. The overall architecture is given in Fig. 1 where
Classifier 1 and Classifier 2 are connected in cascade approach with image and
textual features inputs respectively. Classifier 1 uses image features of the docu-
ment and Classifier 2 employs textual features from OCR texts. For a single-label
multi-class classification problem, a given test document can be one of any L
class labels {Y1, Y2, . . . , YL} at the input to the multiple classifier system. After
it passes through Classifier 1, the candidate label set reduces to {Yi, . . . , Ym}
where the cardinal number is less than L. Given this reduced candidate label set
and textual features, Classifier 2 reaches the final class label {Yj} for the test
document.

Classifier 1 Classifier 2

textual features

image features
classification
output

{Y1, Y2,..., YL} {Yi,..., Ym} {Yj}

Fig. 1. Cascade multiple classifier system

2.1 Classifier Based on Image Features

Classification using image features has long been an active research topic in doc-
ument image classification [1]. Image features are either extracted directly from
the whole page or from a segmented region. Recently, Sarkar proposed to use 5
dimensional thresholded Viola-Jonese rectangular features with a latent condi-
tional independence model to classify tax documents [14]. Shin et al. presented
a decision tree classifier based on image features such as percentages of text and
non-text content regions, column structures to classify documents [15].

Classifier 1 in our cascade multiple classifier system in Fig. 1 uses local image
features, represents features in vector space, and applies KNN classifier to classify
document. Fig. 2 shows the basic idea of Classifier 1.
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1. Original Document 3. Codebook

4. Coded Document

2. Create Patches  (10x10)

5. Tf-Idf vector of size  
150 for eachgrid; total  
vector s ize is 600

6. Classification
using kNN

Fig. 2. Classifier 1 with image features

A document is represented as a typical bag-of-words model in the image do-
main. The text documents when seen as an image do not have much variation
in terms of colors or texture. To make the task simpler, we decide to deal with
only binarized image. First, a code book is generated using 7 randomly selected
documents. Each of these documents is divided into 10-by-10 pixel blocks (we
call these chunks patch). K-means algorithm is applied on all these blocks to
generate 150 clusters. The mean of these clusters is taken as the representa-
tive codeword for that cluster (shown in step 3 in Fig. 2 ). The number 150 is
reached after observing the results from performing the k-means on blocks from
120 to 170 clusters. Blocks in the original image are replaced by closest blocks
in the code word dictionary. If the reconstructed image (step 4 in Fig. 2 ) is
not a very good visual representation of the original, then that experimental
cluster number is increased or decreased by 5. 150 codes obtained from the sam-
ple 7 documents are enough to represent the entire population of binarized text
documents.

Each encoded document is divided into four quadrants (step 5 in Fig. 2 ). As
we are representing the document image following the traditional vector-space
model, those 150 patches will form our vocabulary numbered from 1 to 150. A
vector is formed for each quadrant following the inverse TF-IDF (term frequency-
inverse document frequency) model. Our experiment is limited to text documents
where most of the dissimilarity is seen not in the major central area, but mainly
around the large area of four outer corners. Four vectors are sufficient to takes
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test document

{Yi, ,..., Yj} .  .   .   . {Yk, ,..., Ym} {Yh, Yn}

{Yj} .   .   . {Yj} {Yj, ..Yp} {Yh} {Yn}.   .   . {Ym}

{Yj} {Yp}.   .   .

Fig. 3. Hierarchical structure of Classifier 2

this dissimilarity into account. These four vectors are concatenated end-to-end
to form the feature vector for the document image.

A set of labeled vectors are collected to form our training set. We obtain clus-
ters representing image of similar document structure with spectral clustering
algorithm. We kept increasing the number of clusters so as to achieve minimum
variance in any given cluster. We decided upon the variance size by computing
the variance of each cluster, and then going upwards in each cluster till the docu-
ment images started differing too much from their neighbors in the cluster. Since
documents from different labeled classes may look similar, a cluster may have
more than one labels. A test document is converted to the feature vector form
and its Euclidean distance is computed from each of the clusters. The label(s)
of the closest cluster(s) are assigned to the document. We can either choose a
fix number of labels as our candidate set or a varying number till a threshold is
met. We will empirically choose one method in the experiment followed.

2.2 Hierarchical Classifier Based on Textual Features

The second classifier in Fig. 1 is a hierarchical classification model consisting of
multi-class and binary classifiers based on textual features [16]. The multi-layer
hierarchical structure of classification model derives from the intrinsic hierarchies
of given documents. The textual features are vector representation of TF-IDF
of OCR texts after χ2-statistics feature selection.

The hierarchical classification model is illustrated in Fig. 3 where different
classes are grouped together in different levels of tree according to textual con-
tent of the document image class. The leaves are the final single labels. We
apply binary Regularized Least Square (RLS) classifiers to the middle level of
hierarchical tree and KNN classifiers to the bottom classes. In each level of tree
above the bottom, we classify the test document by multiple one-against-rest
binary RLS classifiers. Each RLS classifier is constructed for one of the several
categories. The l -th RLS classifier is trained on the whole training data set to
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classify the members of class l against the rest. Each level classification produces
a single candidate category for the next level processing. Based on the output
from the upper level, another set of RLS classifiers are invoked to further clas-
sify the document into smaller set of categories. When the process reaches the
bottom of the hierarchical tree, the corresponding category KNN classifier is
invoked to classify the document into the final required class. In the case there
are multiple candidate categories from the middle levels, we pick the one with
highest confidence value.

Classifier 2 with textual features is suitable to incorporate the output infor-
mation from Classifier 1 in Fig. 1 because it is organized in a hierarchical model.
Based on the Classifier 1 output, Classifier 2 can be adapted to only focus on
those categories from the candidate label outputs and prune quickly in the hi-
erarchical tree.

2.3 Combination Method

Classifier 1 in the cascade MCS reduces the candidate labels set as shown in
Fig. 1. For a given test document, Classifier 1 can either output a fix number
of candidate labels or a varying number for different documents. In both cases,
Classifier 2 will only focus on those candidates. Specifically, in the hierarchical
tree, Classifier 2 will only invoke RLS classifiers for those categories containing
candidates from Classifier 1. This approach speeds up the computation in Clas-
sifier 2. In some scenarios, only KNN classifier will be used without any RLS
classifiers if the candidate labels are all inside one category in the middle level of
the tree. KNN classifiers produce a rank-ordered labels and the first one appear-
ing inside the candidate label set from Classifier 1 is chosen as the final output.
By incorporating the output information from Classifier 1, the classification ac-
curacy will also increase since the candidate label set reduces the searching space
in Classifier 2. However if the true label in case is not in the output candidates
set produced by Classifier 1, Classifier 2 will certainly make an error. Therefore,
a balanced number of candidates set is important as trade-off between com-
putational complexity and classification accuracy. We will use cross-validation
method to choose an optimal number of candidate labels set for Classifier 1
according to the classification accuracy as demonstrated in the experiments.

3 Experimental Results

In this section, we apply the proposed cascade multiple classifier system to in-
dividual income tax documents categorization problem where class labeling is
based on texts of document. we have collected the most comprehensive tax doc-
uments so far in the literature. A large-scale individual income tax related doc-
uments are collected through varies accounting firms across US for the 2008 tax
season. All these pages have been manually labeled by professionals. The indi-
vidual income tax documents are organized in a hierarchical structure, e.g. docu-
ments issued by US IRS (Internal Revenue Services), organizer (forms containing
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client tax and personal information) and others can be formed into multiple cat-
egories and each category can be further divided into small sets. This makes the
hierarchical classification model suitable for the task [16]. On the other hand,
different class forms have different physical image features which can improve
the performance of Classifier 2. It is a single-label multi-class problem with 27
different classes in total.

We first clean up noise and de-skew for bad-quality pages. Then we apply
OCR to obtain texts and image processing to extract image features explained
in Sec. 2.1 from documents. Most of the numerals are deleted since they do not
provide useful information for classification purpose except for those associated
with class labels. We also remove stop words and extreme low frequency terms.
After all these pre-processings, we randomly select 70% of the overall documents
for training, 10% for cross-validation purpose, and remaining 20% for testing.

Classifier 1 and Classifier 2 in the cascade MCS can be trained independently
since they are based on different types of features. As explained in Sec. 2.1, Clas-
sifier 1 can provide either a fix number of candidate labels for all test documents
or different numbers depending on the image feature of the given document.
Therefore it is necessary to choose an optimal strategy for the candidate labels
set. In the first experiment, we use 10% cross-validation data set to empirically
select the best approach. We use the overall accuracy, defined as the percentage
of correctly classified data, to compare varying number approach and fix num-
ber approach with different candidate set sizes. Fig. 4 plots the overall accuracy
versus candidate set sizes. For convenience purpose, we plot the overall accu-
racy for the varying number method and the one for the fix number method of
different candidate set sizes in the same figure. As shown in the figure, candi-
date set with 8 labels offers the best overall accuracy. As the set size decreases,
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the performance drops sharply. While as the size increases, it approaches to the
overall accuracy of the Classifier 2 alone. Therefore, we will choose to output 8
candidate labels from Classifier 1 for the cascade MCS.

In the second experiment, we test the performance of the proposed cascade
MCS on the rest 20% testing documents. We use precision, recall, F1 for each
class and overall accuracy for all the testing documents as performance measures
which are defined as follows,

precision =
true positives

true positives + false positives
,

recall =
true positives

true positives + false negatives
,

F1 = 2 × precision× recall
precision + recall

,

overall accuracy =
number of correctly classified documents

number of overall documents
.

To validate the merit of our proposed cascade MCS, we compare the experi-
mental results against individual Classifier 1 and Classifier 2 where the number
of candidate labels from Classifier 1 is fixed to one. Fig. 5 plots the F1, precision
and recall measures for all 27 classes. By comparing Classifier 1 and Classifier
2, we can clearly see that the hierarchical classification model based on tex-
tual features outperforms Classifier 1 with image features. This reinforces our
claim that textual features work much better than image features in document
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Table 1. Overall Accuracy

Cascade MCS Classifier 1 Classifier 2

Overall Accuracy 0.925 0.452 0.874

image classification because documents with similar appearance might belong
to different classes due to different textual information. On the other hand, by
combining these two classifiers in the proposed MCS architecture, it improves
the classification performance. The proposed cascade MCS exhibits better F1,
precision and recall than any of individual classifiers. It achieves 5% increase in
the overall accuracy over Classifier 2 as shown in Table 1. These results show the
strength of the proposed cascade multiple classifier system in document image
classification.

4 Conclusion

We have presented a cascade multiple classifier system for single-label multi-
class document image classification problem in the paper. Two classifiers with
different feature sets and architectures are combined in a cascade approach. The
first classifier uses image features of documents to provide a set of fix number of
candidate labels. The second classifier is a hierarchical classification model based
on the textual features. It is composed of multiple RLS and KNN classifiers by
exploiting the intrinsic hierarchies of the document class. By considering the
candidate labels set from the proceeding classifier, the second classifier is able to
search a much smaller region of the hierarchical tree and reaches a final decision.
Experimental results on a large scale tax document image categorization suggest
that the proposed method outperforms individual classifiers.
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Abstract. The use of multi-scale features is explored in the setting of supervised
image segmentation by means of pixel classification. More specifically, we con-
sider an interesting link between so-called scale selection and the maximum com-
bination rule from pattern recognition. The parallel with scale selection is drawn
further and a multi-scale segmentation method is introduced that relies on a per-
scale classification followed by an over-scale fusion of these outcomes. A limited
number of experiments is presented to provide some further understanding of the
technique proposed.

1 Introduction

The fact that images are inherently multi-scale [1,2] has given rise to various paradigms
within computer vision, image analysis and image processing that concur with this view.
Indeed realizing that image features—whether these are edges, corners, blobs, ridges,
or more complex structures [3,4,5,6]—typically occur at a particular scale, current de-
tectors are developed to operate at multiple scales, employing a wavelet or scale space
representation of the image [5,7,8]. Another fact is that such approaches have shown
to improve upon raw-pixel-based approaches, providing a more complete picture of
the actual features present and being less responsive to spurious structures. One of the
most notable approaches is the one based on so-called scale selection, which suggests
to detect a feature simultaneously with its optimal, intrinsic scale [9,10]. In a sense, this
optimal scale is the scale at which this feature is most pronounced, most discernable
from its surroundings (see also Section 2).

It should be pointed out that the lion’s share of these methods are concerned with
unsupervised techniques in which the feature to be detected is modeled using what is
sometimes referred to as “geometric reasoning” [5] or the like [11,12]. In the super-
vised setting, say the task considered in this paper, i.e., image segmentation by means
of supervised pixel classification [13,14,15,16], multi-scale information is typically in-
corporated by a simple concatenation of features1 extracted from various scales into a

1 N.B. Here “features” does not refer to an image feature like an edge, corner, or whatever, but
in this case the “features” are those that serve as input for a classifier and are typically filter
outputs, e.g., the output of a gradient operator or other edge filter. We do hope that it is clear
from the context at what instance which type of “features” we mean.
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single feature vector. Using such a representation, a classifier is subsequently built that
takes this as input and tries to separate the one class, e.g., object, from the other, e.g.,
background, in an optimal way.

While smooth filter-based features are typically more powerful, as they are
—apparently, and conceivably so—biased in the right direction, it leaves unsolved the
issue of which scales to include. This is in addition to the question of what type of
features to use in the first place of course. Leaving the latter concern aside for the time
being, the investigation presented here focuses on the first issue and suggest a way to
deal with it, or rather, to circumvent it.

Partly adopting the classical scale space thought that if one cannot decide on the
particular scales to use a priori that one shall consider all scales simultaneously [1], we
indeed set out to consider every scales in performing a supervised image segmentation
task (in principle, that is). A second concept from the scale space community, which
actually provides the chief inspiration for this work, is the earlier-mentioned scale se-
lection approach [9,10]. It, first of all, triggered us to consider classifiers at individual
scales for every pixel, in this avoiding the concatenation of arbitrary scales, but it also
suggests how to afterward combine the posterior probabilities obtained for every scale
into one single decision per pixel, namely by means of the maximum membership rule
(or simply the max rule) [17,18].

The main points of this contribution are to demonstrate that an a priori scale selec-
tion can be avoided, to illustrate that improved performance over single scales can be
attained through a simple fixed combining rule, and to provide some insight into when
such performance increase may take place.

Outline. The next section, Section 2, starts out with a brief introduction of scale space
theory in which many issues and topics for discussion are deliberately left aside as they
do not pertain to the core of this contribution. After that, some more words are spent
on the basics of automatic scale selection, which are subsequently related to supervised
image segmentation by per-scale pixel classification and the maximum membership
rule. Section 3 is reserved for a description of the experiments carried out and what we
would like these to illustrate. The actual outcomes are contained in the same section.
Section 4 concludes the paper and dwells upon some matters that were not considered
in this work and sketches some topics of interest for future research.

2 Scale Space and Scale Selection

Scale Space Theory. Scale space theory can be motivated both from the viewpoint
of physical measurements [19] and the theory on biological visual perception [1,20].
The theory provides a formal way to approach the problem of image representation for
which it turns out that scale plays a crucial role. The most rudimentary incarnation of
a scale space is so-called linear, or Gaussian, scale space, which relies on a physically
plausible axiomatization [19]. This scale space is also the one we rely on.

In effect, given an image � : R
n → R, the formal multi-scale image representation

boils down to a one-parameter family of blurred images in which the blurring corre-
sponds to a convolution with a Gaussian kernel which standard deviation σ is directly
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proportional to the scale at which the original image is represented. That is, a scale
space representation L : R

n ×R
+ → R of � is given by L(x;σ) = (�∗ gσ )(x), in which

the Gaussian kernel gσ is defined as

gσ (x) =
1

(2π)
n
2 σn

exp

(
−‖x‖2

2σ2

)
.

From the previous definition, the scale space framework extends to a theory for

Gaussian derivative operators in which general |k|th order derivatives ∂ |k|

∂xk gσ (k is a
multi-index and |k| is its order) are used to convolve the input image � with [21,19,20].
A basic collection of features that can be calculates is the N-jet, which are all Gaussian
image derivatives up to order N at a particular scale and which one may compare to
the well-known idea of Taylor expansion. It is these basic features that are often em-
ployed in supervised image analysis techniques [13,14,15,16] and the order rarely goes
beyond four (cf. [20]). The collection of basic linear filters, in turn, is used as a basis
for expressing a large class of more general, potentially nonlinear, image processing
operators [3,4,5,9,10]. One of the most important consequences from a more practical
point is that many classical operators can now also be made to operate at various scale,
as such enhancing their applicability (see for instance [6]). Moreover, it allows image
operators to be made scale invariant, which is beneficial in many computer vision tasks.

Scale Selection. Although the original scale space contributions recognized that an
image feature typically reside at a particular scale, they did not address the problem of
how to select the locally appropriate scale to perform a task. The general scale selection
framework developed in [9] and [10] provides a solution to this problem by generating
hypotheses about interesting scale levels in an image based on a general principle stating
that local extrema over scales in the operator output are likely candidates to correspond
to interesting structures. In other words, an image filter is applied to all scales and a
special meaning is attached to those scales at which the filter output attains either a
local maximum or minimum.

Typically, the global maximum of the absolute output is taken to be the single opti-
mal scale to detect the relevant feature. A simple interpretation of this idea is that the
scale is selected at which the feature’s presence is most pronounced or best matches the
hypothesis. For a more rigorous and complete treatment of the scale selection principle,
including the important notion of scale normalization, we refer to [9] and [10]. The
outline above should suffice, however, to understand the gist of this paper.

Supervised Scale Selection. Assuming that both image data and label images are at our
disposal, the supervised image segmentation approach we suggest is as follows. In the
training phase, for every image location and every scale, features (Gaussian derivative
filter outputs) are extracted. In this, the type of features remains fixed, only the scale
varies. In the experiments we use for instance simple N-jets of a certain order at every
scale. Following the feature extraction, a classifier is trained for every scale, i.e., using
the corresponding features coming from that scale a mapping is learned that maps every
feature vector to a class label or, in our case, a set of posteriors.

Now, in the testing phase, the same features are extracted and the proper classifier
is applied at every scale, resulting in a posterior image for every scale. This in fact
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corresponds to regular image filtering, like in classical scale space approaches, only
now the filter outputs are relatively complicated, consisting of posteriors coming from
trained classifiers.

After the classification has been performed at every scale using the corresponding
features, to come to an actual image label for every image location, the posterior infor-
mation from all scales needs to be fused or combined over scales into a single decision
for every image location. In order to do so, we suggest to proceed in the same scale
selection spirit and find for every pixel the hypothesis, which supposes that the pixel
belongs to one of several known classes, that gives the best match. In other words,
the pixel should be labeled using the most confident classifier output, i.e., a maximum
membership rule is employed.

It may be noted at this point that it may seem obvious to use other combination rules
as well. The main problem with most of these rules, however, is the fact that they are
generally sensitive to the way scale is parameterized. The maximum membership rule
is one that does not have this drawback.

3 Experimental Investigations

In this section we report on several experiments based on different image data sets.
Three of them are illustrated more extensively. Two of these are artificial and one of
them is based on real image data coming from [16]. Some other experiments conducted
were also meant to demonstrate some properties of our scheme that could be read-
ily understood, i.e., based on a problem for which it was obvious that the combining
scheme should outperform the single-scale classifiers. This initially turned out to be
much harder than expected and at various occasions the results obtained were counter-
intuitive, at least at first. The next subsection reports briefly on some of these initial
findings, while the other three subsections indeed provide some exemplifying tests.

Before moving on to the first subsection, we mention that in the latter three experi-
ments all classifications were performed using quadratic discriminant analysis (QDA)—
assuming normally distributed classes, all features extracted were N-jets (N equals 2, 5,
and 3, respectively, the choices of which were based on small pilot studies), and in all
cases we used 36 exponentially increasing scales ranging from 1

2 to 24. (As hinted at
earlier on, we of course take all scales into account only in principle. Solving an actual
problem forces us to perform a discretization first and limit the range of scales.)

First Experiments. To start with, it should be mentioned that in non of our small initial
experiments, we did not see any significant deterioration of the results after combining
over all scales. Apparently, even though different scales were picked, the suggested
approach at least managed to perform at a level similar to the optimal single scale.

Getting clear performance improvements however was more difficult. Our first at-
tempts involved simple objects (e.g. white squares) of different sizes that should be
segmented from their background (e.g. uniformly black), simple objects (e.g. white cir-
cles) blurred to variable levels against the same background, different levels of additive
noise, and various combinations of these ingredients. The idea was that different object
sizes or smoothing levels directly corresponds to varying scales, but all experiments
basically failed to demonstrate that a potential improvement is possible.
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In reconsideration, it may actually be quite obvious, or at least plausible, that with
these simple images not much gain can come from the maximum membership rule.
Take for example the noiseless case in which a close-to-optimal solution is basically a
supervised thresholding of the gray values. There is really no need to perform opera-
tions at different scales. When adding some noise, the same applies, but possibly some
blur is needed; adding noise does not suddenly make it needful to take into account var-
ious scales, although the best single scale usually increases slightly. All of this changes
however when relatively severe noise is added to relatively large structures as the next
paragraph illustrates.

Frequency Data. When the noise level is in some way proportional to the scale of the
structure to be segmented (which are white on black, say) the following can happen.
At small scales the small structures are well segmented because the noise is low and
little blur can deal with this. Because of the large scale noise, the large scale structures
cannot be segmented at this low scale. While small scale structures get removed under
severe blur, large scale structures remain more intact in this situations and chances are
that the smoothing takes care of the heavier noise and allows for a better segmentation
of the larger objects.

This is tested by the experiment described on the basis of Fig. 1. The left image
shows an input image, while the right image shows the ground truth. Other images in
the database had the same structure: horizontal bands of two different frequencies, re-
flecting the large and small structures. The amplitude of the low frequency components
was drastically reduced compared to the high frequency component such that the addi-
tive noise with constant variance had a detrimental impact on the visibility of the large
structures. Four images were used for training, four for testing. Fig. 2 illustrates that
small scales pick up the small, high frequency objects, while large scales mainly en-
able the correct classification of the low frequency part. Fig. 3 shows the improvements
possible by applying the max rule, which over 10 test examples measures to about 40%
reduction in classification error. The figures include some further data for which we
refer to the respective captions.

Multi-Scale Texture Data. The second test is somewhat similar in spirit to the previous
in the sense that we explicitly constructed a problem that needs at least two scales to
be solved. We made two base textures, one in which dots are arranged quadrilaterally

Fig. 1. Example input and output images from the frequency data, which is a two-class problem
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0.19 / 0.82 / 0.50 0.19 / 0.82 / 0.65 0.18 / 0.83 / 0.84 0.17 / 0.84 / 1.08

0.16 / 0.85 / 1.40 0.19 / 0.79 / 1.82 0.33 / 0.67 / 2.35 0.32 / 0.70 / 3.04

0.31 / 0.71 / 3.94 0.31 / 0.72 / 5.10 0.31 / 0.72 / 6.60 0.31 / 0.73 / 8.55

0.30 / 0.73 / 11.07 0.29 / 0.73 / 14.32 0.28 / 0.73 / 18.54 0.30 / 0.72 / 24.00

Fig. 2. Segmentation results at 16 different scales for the example image in Fig. 1. The left num-
ber in the titles of the images gives the error for that image, the middle one gives the average
confidence, and the final number gives the feature scale.

0.09 / 0.92

Fig. 3. Segmentation result of the maximum membership rule is on the left, in the middle is an
image of the confidences at each location, and the right image gives the local scales (white equals
24, black 1

2 ). The numbers in the title of the left image gives the error and the average confidence,
respectively.

(::) and one in which they are arranged trilaterally (∴), which at high enough scale look
basically the same. Two more textures were created that are simply scaled versions of
the two base textures. By adding a large scale texture to a small scale, we can construct
four different textures. We took three of these to construct two classes. One class con-
tains two textures and the second only one. Most importantly, the textures are chosen
such that the first texture from the first class can only be discriminated from the second
class by means of the high scale texture, while the second can only be separated from
the second class using the low scale texture. Fig. 4 shows an example input image and
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Fig. 4. Example input and output images from the texture data, which is a two-class problem

0.31 / 0.80 / 0.50 0.34 / 0.80 / 0.65 0.34 / 0.84 / 0.84 0.27 / 0.91 / 1.08

0.27 / 0.90 / 1.40 0.24 / 0.84 / 1.82 0.33 / 0.77 / 2.35 0.37 / 0.93 / 3.04

0.22 / 0.98 / 3.94 0.21 / 0.98 / 5.10 0.22 / 0.96 / 6.60 0.25 / 0.87 / 8.55

0.34 / 0.75 / 11.07 0.35 / 0.76 / 14.32 0.30 / 0.80 / 18.54 0.26 / 0.91 / 24.00

Fig. 5. Segmentation results at 16 different scales for the example image in Fig. 4. The left num-
ber in the titles of the images gives the error for that image, the middle one gives the average
confidence, and the final number gives the feature scale.

the distribution of the two classes. Note that it is difficult to perceptually discriminate
between the various textures (zooming in on the pdf file might help). In our tests, four
images were used for training and four for testing.

Fig. 5 illustrates quite convincingly that indeed different separation takes place on
essentially two different scales. Fig. 6 gives the outcome of the combiner, which clearly
improves over the performance of individual classifiers. Again, on 10 previously unseen
test image, an overall relative improvement of about 40% is attained.

Rib and Lung Segmentation. The final experiment is on data from [16]. It concerns a
three-class rib and lung field segmentation task, see Fig. 7 for an example. This problem
is mainly included to illustrate the procedure on a real-world data set. Looking at the
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0.12 / 1.00

Fig. 6. Segmentation result of the maximum membership rule is on the left, in the middle is an
image of the confidences at each location, and the right image gives the local scales (white equals
24, black 1

2 ). The numbers in the title of the left image gives the error and the average confidence,
respectively.

0.16 / 0.93

Fig. 7. Top row: Example input and output images from the lung and rib data, which is a three-
class problem. Bottom row: Segmentation result of the maximum membership rule is on the left,
in the middle is an image of the confidences at each location, and the right image gives the local
scales (white equals 24, black 1

2 ). The numbers in the title of the left image gives the error and
the average confidence, respectively.

segmentations over scale (not included because of space limitations), it seems that the
gain of combining comes from the fact that the lung fields (including the ribs) are better
segmented from the background at a larger scale than the one needed to separate ribs
from lungs. Even though this seems a plausible explanation, it should not be taken as
conclusive as it is of a similar nature as the one provided in the first subsection above.

Nonetheless, training on ten images and testing on another ten, the combination
approach does again provide improved performance and the overall error rate drops
from about 0.24 for the optimal single scale classifier to around 0.18 for the max rule.
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Fig. 8 gives a somewhat favorable example segmentation obtained with the combina-
tion scheme. The scale image illustrates that ribs are segmented on small scales while
the lung field vs. background problem is solved on a higher scale.

4 Discussion and Conclusion

A link between scale selection from multi-scale image analysis, notably scale space the-
ory, and a standard fixed classifier combination rule, the maximum membership rule,
has been discussed. Based on the latter observation and some additional inspiration
coming from the scale selection literature, a supervised image segmentation proce-
dure was suggested that circumvents the normally encountered problem of choosing
the scale. Its usefulness has been tested in a limited number of experiments and some
insight was offered into the underlying mechanism.

Even though the parallels with classical scale selection are certainly of interest and
the demonstrated performance of the approach is promising, we realize the paper of-
fers only an initial study into the matter of combining multi-scale image processing
technique with supervised learning methods. Even limiting ourselves to the current
scope, there are many interrelationships not explored and intricacies not fully under-
stood. Some of these are most surely interesting topics for future research.

Currently, for us the main intertwined issues are the interdependencies of various
“scales”; the scale of the object or structure to be segmented, the scale of its blur, the
scale of the noise, the scale of the extracted features, and the type of classifier, which
could, in addition, has its own optimal scale to operate on—think for example of a
Parzen classifier or even the QDA employed in this work. Besides these issues, there
are of course the more standard ones, e.g. what types of features to use in the first place?
What order of derivatives is sufficient? Do other classifier behave radically different in
this setting? Would other combining rules not be more appropriate?

A laterally related question that has our attention is whether we can say anything
useful on the way class distributions change under scale changes. Having knowledge
on this might help to devise more powerful combination schemes.

Finally, when more and more complex tasks are considered, the issue may arises of
how to combine scale information over different scales in a more structural kind of way.
In order to solve this, we could consider to adopt the classical scale space thought in
full and delve into the theory of deep structure [22,1,23,24]. This branch of scale space
theory is, however, still in its infancy, even for the unsupervised case.
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Abstract. The meta-learner MLR (Multi-response Linear Regression)
has been proposed as a trainable combiner for fusing heterogeneous base-
level classifiers. Although it has interesting properties, it never has been
evaluated extensively up to now. This paper employs learning curves to
investigate the relative performance of MLR for solving multi-class classi-
fication problems in comparison with other trainable combiners. Several
strategies (namely, Reusing, Validation and Stacking) are considered for
using the available data to train both the base-level classifiers and the
combiner. Experimental results show that due to the limited complexity
of MLR, it can outperform the other combiners for small sample sizes
when the Validation or Stacking strategy is adopted. Therefore, MLR
should be a preferential choice of trainable combiners when solving a
multi-class task with small sample size.

Keywords: Ensemble classifier, Multi-response linear regression (MLR),
Trainable combiner, Decision template (DT ), Fisher linear discriminant
(FLD).

1 Introduction

The task of constructing an ensemble classifier [1,2] can be broken into two steps,
that is, generating a diverse set of base-level classifiers and combining their
predictions. In general, there are two commonly used approaches to generate
multiple base-level classifiers. One method is to train classifiers from different
executions of the same learning algorithm through injecting randomness into the
learning algorithm or manipulating the training examples, the input attributes
and the outputs [3, 4, 5]. The obtained classifiers are often called homogeneous
and they are typically combined by fixed combination rules such as weighted
or unweighted voting. The other method is to apply some different learning
algorithms to the same data set [6, 7, 8, 9, 10, 11, 12]. The derived classifiers are
called heterogeneous and trainable combiners can generally merge them to result
in a good ensemble classifier [7]. In the present study, we will focus on the
heterogeneous base-level classifiers and trainable combiners.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 478–487, 2009.
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With respect to trainable combiners, we are faced with the following prob-
lem: how to utilize the available data to train the models for both levels, the
base-level classifiers as well as the combiner? Thus far, three strategies (that
is, Reusing, Validation and Stacking) [13] have been proposed and they will be
briefly described in Section 2.

In recent years, multi-response linear regression (MLR) has been recommended
as a trainable combiner for merging heterogeneous base-level classifiers and there
have been some variants of it [6,7,9,10,14]. Among the different methods related
to MLR, the approach proposed in [7] may be the prominent one and some ev-
idence has shown that it can handle multi-class problems very well [9]. To the
best of our knowledge, however, the previous researchers only considered the sit-
uation that the training set size is supposed to be fixed and the Stacking method
is employed to construct its meta-level data (namely, the data for training the
combiner).

It is still unclear whether MLR will always keep its superiority with respect to
different sample sizes and using different techniques to form its meta-level data.
Thus, in this paper we employ learning curves to investigate the relative per-
formance of MLR for solving multi-class classification problems in comparison
with other combiners FLD (Fisher Linear Discriminant), DT (Decision Tem-
plate) and MEAN. Several strategies are considered for using the available data
to train the base-level classifiers and the combiner. The experimental results show
that for small sample sizes, MLR can generally outperform the other combiners
when the Validation or Stacking strategy is adopted. Meanwhile, the Reusing
strategy should be avoided as much as possible anyway. When the sample size
is large, however, there is little difference between the compared combiners no
matter what strategy is employed to form the meta-level data.

The remainder of the paper is organized as follows. In Section 2, the working
mechanism of MLR as well as some feasible strategies to utilize the given data to
derive both base-level classifiers and combiner is introduced. Section 3 presents
and discusses the experimental studies conducted on some multi-class data sets.
Finally, the main conclusions are given in Section 4.

2 MLR and Strategies to Use the Training Data

2.1 Working Mechanism of MLR

Consider a given set L = {(yn,xn)}N
n=1, where yn is a class label taking value

from Φ = {ω1, ω2, · · · , ωm} and xn ∈ Rd is a vector representing the attribute
values of the nth example. Suppose that a set C = {C1, C2, · · · , CL} of L base-
level classifiers is generated by applying the heterogeneous learning algorithms
A1, A2, · · · , AL to L and the prediction of Ci(i = 1, 2, · · · , L) when applied to
an example x is a probability distribution vector

PCi(x) = (PCi(ω1|x), PCi(ω2|x), · · · , PCi(ωm|x))T

�
= (P i

1(x), P i
2(x), · · · , P i

m(x))T , i = 1, 2, · · · , L,
(1)



480 C.-X. Zhang and R.P.W. Duin

where P i
j (x) denotes the probability that the example x belongs to class ωj as es-

timated by the classifier Ci. Furthermore, we define P(x) as an mL-dimensional
column vector, namely,

P(x) = (PT
1 (x),PT

2 (x), · · · ,PT
L(x))T

= (P 1
1 (x), · · · , P 1

m(x)︸ ︷︷ ︸
Classifier C1

, P 2
1 (x), · · · , P 2

m(x)︸ ︷︷ ︸
Classifier C2

, · · · , PL
1 (x), · · · , PL

m(x)︸ ︷︷ ︸
Classifier CL

)T (2)

Based on the intermediate feature space constituted by the outputs of each
base-level classifier, the MLR method [7] firstly transforms the original classifica-
tion task with m classes into m regression problems: the problem for class ωj has
examples with responses equal to one when they indeed have class label ωj and
zero otherwise. For each class ωj , MLR selects only P 1

j (x), P 2
j (x), · · · , PL

j (x),
the probabilities that x belongs to ωj predicted by the base-level classifiers
C1, C2, · · · , CL, as the input attributes to establish a linear equation

LRj(x) =
L∑

i=1

αi
jP

i
j (x), j = 1, 2, · · · , m, (3)

where the coefficients {αi
j}L

i=1 are constraint to be non-negative and the non-
negative-coefficient least-squares algorithm described in [15] is employed to esti-
mate them. When classifying a new example x, we only need to compute LRj(x)
for all the m classes and assign it to the class ωk which has the greatest value.

2.2 Strategies to Use the Training Data

In order to estimate the coefficients {αi
j}L

i=1 in formula (3), or more generally,
to train the combiner MLR, we have to form the meta-level data. In practical
applications, however, we are only given a single set L which should be used
to train the base-level classifiers as well as the combiner. In this situation, there
may be three feasible approaches(Reusing, Validation and Stacking) to make full
use of L to construct an ensemble classifier.

The Reusing strategy simply applies the given learning algorithms A1, A2, · · · ,
AL to L to train the base-level classifiers C1, C2, · · · , CL which are then used to
predict the examples in L to form the meta-level data. Since the same set L
is used to derive both base-level classifiers and combiner, the obtained combiner
will inevitably be biased.

The Validation strategy splits the training set L into two disjoint subsets,
one of which is used to derive the base-level classifiers C1, C2, · · · , CL and the
other one is employed to construct the meta-level data.

The Stacking strategy utilizes the cross-validation method to form the meta-
level data. Firstly, the training set L is partitioned into K disjoint subsets
L1, L2, · · · , LK of almost equal size. In order to obtain the base-level predic-
tions on examples in Lk, say, L ′

k = {(yi,PT (xi))|(yi,xi) ∈ Lk}, the learning
algorithms A1, A2, · · · , AL are applied to the set L \Lk to derive the classifiers
{Cj,k}L

j=1 which are then used to predict the examples in Lk. After repeating
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this process K times (once for each set Lk), we can obtain the final meta-level
data set L CV =

⋃K
k=1 L ′

k. The readers can refer to [2, 6, 7, 13] for more details
about this technique.

It is worthwhile to mention that for a new example x, there may be two
different ways to construct the input P(x) of the combiner trained by the Stack-
ing method. The Stacking I method, commonly utilized by many researchers
[16, 6, 7, 9, 10], is to retrain the base-level classifiers C1, C2, · · · , CL on the full
training set L to produce P(x). The Stacking II method, proposed in [13], applies
all the classifiers {Cj,k}L

j=1
K
k=1 which are trained in the process of cross-validation

to predict x. For each type of base classifier, it averages the predictions that are
obtained in each fold, namely, C̄j(x) = (1/K)

∑K
k=1 Cj,k(x) and forms the input

of the combiner as P(x) = (C̄T
1 (x), C̄T

2 (x), · · · , C̄T
L (x))T .

3 Experimental Studies

Because learning curves can give a good picture to study the performance of an
algorithm at various sample sizes, in this section we employ them to investigate
the relative performance of MLR for solving multi-class classification tasks in
comparison with several other combiners. Furthermore, each of the different
strategies described in subsection 2.2 will be considered here to employ the given
set to train the models for both levels.

3.1 Experimental Setup

We conducted experiments on a collection of 10 multi-class data sets from the
UCI repository [17]. The data sets and some of their characteristics are summa-
rized in Table 1.

Table 1. Summary of the data sets used in the experiments

Training size Test size
Data set # Examples # Attributes # Classes (Per class) (Per class)
Abalone 4177 10 3 5,10,20,30,50,80,100 500
Cbands 12000 30 24 10,20,30,50,80,100 100
Digits 2000 240 10 5,10,20,30,50,80,100 50
Letter 20000 16 26 10,20,30,50,80,100 200
Pendigits 7494/3498 16 10 5,10,20,30,50,80,100 3498(total)
Satellite 6435 36 6 5,10,20,30,50,80,100 500
Segmentation 2310 19 7 5,10,20,30,50,80,100 100
Vehicle 846 18 4 5,10,20,30,50,80,100 50
Vowelc 990 12 11 10,20,30,50 30
Waveform 5000 21 3 5,10,20,30,50,80,100 500

We totally considered 7 different types of base-level classifiers: Fisher lin-
ear discriminant (fisherc), Parzen density classifier (parzenc), Nearest neigh-
bor (knnc), Logistic linear classifier (loglc), Nearest mean (nmc), Decision tree
(treec), Support vector classifier (svc) and 4 different combiners: Multi-response
linear regression (MLR), Fisher linear discriminant (FLD), Decision template
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(DT ) and Mean (MEAN ), which were all implemented with PRTools1. The
outputs of each base-level classifier were scaled to fall into a [0,1] interval so
that the intermediate feature space is constituted in a homogeneous way. Con-
sidering the fact that we were combining the base-level classifiers with posterior
probabilities or confidences as their outputs, the voting based combiners were
not included. Furthermore, the parameters included into the base-level classifiers
and the combiners were all taken to be their default values in PRTools. With the
given base-level classifiers, two batches of experiments (one uses the first four
ones and the other considers all the seven ones) were conducted to study the
influence of the number of base-level classifiers on the relative performance of
the combiners. The different strategies described in subsection 2.2 were respec-
tively considered to utilize the available data to train base-level classifiers and
combiners, in which the Validation method uses a 50%/50% split and the two
Stacking methods employ 10-fold cross-validation to form the meta-level data.

We estimated the learning curves in the following way to understand the
behavior of different combiners at various sample sizes. For each data set (except
for “Pendigits”) listed in Table 1, a training set and an independent test set with
desired sizes were randomly sampled. As for the “Pendigits” data set which has
separate training and testing data, all of its testing data was used as the test set.
On each of the obtained training set, the base-level classifiers and the combiner
were constructed according to each of the strategies described in subsection
2.2. The trained combiner was then executed on the test set and the estimated
classification error was utilized to evaluate its performance. It should be noted
that all steps required for building the base-level classifiers and the combiner,
including the cross-validation utilized by the Stacking method, were performed
on the training set only. For each training set size, the above process was repeated
10 times and the obtained results were averaged.

3.2 Results and Discussion

We firstly considered the cases that an ensemble classifiers is composed of 4
base-level classifiers. For each combiner, the mean of the test errors over 10
replications (standard deviation also shown) was plotted as a function of the
sample size. Due to the limited space of this paper, only some representative
plots obtained on “Cbands”, “Digits” and “Satellite” data sets are presented
here but the other ones are available from the authors. From these plots, the
following observations can be made:

• For small sample sizes, MLR can generally perform better than the other
combiners when the Validation or Stacking method is adopted. However,
the superiority of MLR is not very obvious when the classification task
has many classes (“Cbands”) or high dimensionality of the input space
(“Digits”), which may be caused by the inadequate diversity among the
linear models established by MLR.

1 PRTools is a Matlab Toolbox for Pattern Recognition and it can be freely downloaded
from the PRTools website, http://www.prtools.org.
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Fig. 1. On “Cbands” data set, learning curves for the compared combiners when
different strategies are utilized to train base-level classifiers and combiner

• When the sample size is large, there is little difference between the compared
combiners no matter what strategy is used to form the meta-level data.

• The Reusing strategy should be avoided as much as possible anyway ex-
cept for large sample sizes because the test errors corresponding to it are
generally larger than those obtained by using the Validation or Stacking
technique.

• Some combiners are observed in Fig. 2 to exhibit a dramatic error in some
situations, which can be explained as the bad performance of base-level
classifier fisherc or combiner FLD when the training set size is comparable
to the dimension of the feature space [13, 18].

• For each combiner, the results obtained by Stacking II are slightly better
than those derived by Stacking I. The reasons for this may be due to the
fact that Stacking II benefits from more robust base-level classifiers [13].

In order to see clearly the relative performance of the compared combiners on the
used 10 data sets, Table 2 provides some comparative summaries of the mean test
errors for the combiner MLR in comparison with other ones. Here, the geometric
means of error ratios and significant Wins-Losses of MLR compared with other
combiners at each considered sample size were listed and these statistics were
computed in the following way. Take the notation “MLR/FLD” as an example,
at each sample size we firstly computed the error ratio of MLR to FLD on each
data set, and then calculated the geometric mean of the obtained error ratios
across all the data sets. Therefore, the value smaller than 1 indicates the better
performance of MLR. With respect to the Win-Loss statistic, a paired t-test
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Fig. 2. On “Digits” data set, learning curves for the compared combiners when dif-
ferent strategies are utilized to train base-level classifiers and combiner

was utilized to check whether the performance of MLR is significantly better
than that of the other ones at the significance level 0.05 for each combination of
data set and sample size and the numbers listed in the table should be read as
the number of data sets on which MLR performs significantly better than FLD.
From the results reported in Table 2, we can draw almost the same conclusions
as those obtained from the previous figures.

Table 2. On the used 10 data sets, geometric means of error ratios as well as significant
Wins-Losses of MLR in comparison with other combiners (4 base-level classifiers)

Training set size per class
5 10 20 30 50 80 100

0.9842 0.9898 1.0269 0.9757 0.9760 0.9952 0.9886
MLR/FLD 3-2 5-1 4-1 4-0 2-0 4-1 3-1

1.0116 1.0575 1.0532 0.7557 0.7810 0.8404 0.8840
Reusing method MLR/DT 1-3 1-6 2-4 3-5 2-4 3-5 3-5

1.2563 1.2221 1.1510 0.8289 0.9123 0.9066 0.9380
MLR/MEAN 0-6 0-8 1-5 4-2 2-4 3-5 4-5

0.7045 0.7201 0.9517 1.0305 1.0367 1.0318 1.0371
MLR/FLD 6-0 9-0 5-2 1-2 1-5 1-4 0-3

0.8454 0.8718 0.8897 0.8717 0.9150 0.8721 0.9004
Validation method MLR/DT 4-0 9-0 5-0 5-2 5-1 5-0 4-1

0.9051 0.8391 0.7779 0.7496 0.7070 0.7909 0.8326
MLR/MEAN 3-0 7-1 7-0 8-0 7-0 5-1 5-1

0.6983 0.8535 0.9782 0.9908 1.0158 1.0211 1.0316
MLR/FLD 7-0 10-0 2-1 1-1 1-4 0-4 0-4

0.8290 0.8569 0.8495 0.9239 0.9162 0.9037 0.9123
Stacking I method MLR/DT 5-0 6-0 5-0 4-1 4-0 4-1 4-1

0.8922 0.8091 0.7500 0.7622 0.8525 0.8532 0.8620
MLR/MEAN 3-0 6-0 5-0 5-1 6-1 4-1 4-1

0.6919 0.8709 0.9869 0.9963 1.0171 1.0253 1.0347
MLR/FLD 7-0 10-0 2-1 1-1 0-3 0-3 0-5

0.8499 0.9041 0.9377 0.9579 0.9385 0.9213 0.9216
Stacking II method MLR/DT 4-0 5-0 4-0 4-1 6-1 5-0 4-0

0.9299 0.8684 0.8513 0.8728 0.8743 0.8821 0.8816
MLR/MEAN 3-2 4-1 4-1 4-1 6-1 4-1 4-1
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Table 3. On the considered 8 data sets, geometric means of error ratios as well as
significant Wins-Losses of MLR in comparison with other combiners (7 base-level clas-
sifiers)

Training set size per class
5 10 20 30 50 80 100

1.0750 0.9784 0.9973 0.9503 0.9619 0.9722 0.9676
MLR/FLD 2-3 4-1 2-1 4-1 3-0 1-0 3-0

1.2238 1.1786 1.1888 0.8278 0.8078 0.8219 0.8534
Reusing method MLR/DT 0-5 1-6 1-5 1-4 3-3 3-3 4-3

1.4937 1.3714 1.4900 1.0298 0.9185 0.8889 0.8825
MLR/MEAN 0-7 1-7 1-5 1-3 3-3 4-3 3-3

0.8298 0.5536 0.7442 0.8878 1.0258 1.0177 1.0102
MLR/FLD 4-0 8-0 7-0 6-1 1-1 0-1 0-1

0.9410 0.9812 0.9786 0.9476 0.9140 0.8784 0.8663
Validation method MLR/DT 1-0 4-1 3-1 3-0 4-0 4-0 5-0

1.0349 0.9104 0.8831 0.8355 0.7993 0.8176 0.8145
MLR/MEAN 1-2 6-0 4-0 8-0 6-0 5-0 6-0

0.5368 0.7356 0.9036 0.9452 1.0042 1.0343 1.0134
MLR/FLD 7-0 8-0 7-0 3-0 1-1 0-2 0-2

0.9759 0.9915 0.9259 0.9025 0.8712 0.8441 0.8240
Stacking I method MLR/DT 2-1 2-1 4-0 3-0 5-1 5-1 5-0

1.0112 0.9481 0.8764 0.8508 0.8516 0.8110 0.7911
MLR/MEAN 0-1 4-0 5-0 7-0 5-0 5-0 6-0

0.5146 0.7427 0.9111 0.9650 1.0365 1.0266 1.0382
MLR/FLD 7-0 8-0 4-0 2-1 0-3 0-2 0-2

0.9498 0.9866 0.9547 0.9085 0.8755 0.8335 0.8267
Stacking II method MLR/DT 0-0 1-0 4-0 4-0 6-0 4-0 5-0

1.0231 0.9440 0.8795 0.8289 0.7653 0.8091 0.8042
MLR/MEAN 0-0 4-0 4-0 5-0 7-0 5-0 5-0
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Fig. 3. On “Satellite” data set, learning curves for the compared combiners when
different strategies are utilized to train base-level classifiers and combiner

As for the experiments conducted with the 7 base-level classifiers, we reported
the obtained results in Table 3 whose format is identical to that of Table 2.
Considering that it takes too much time to conduct experiments on “Cbands”
and “Letter” data sets, only the remaining 8 ones were taken into account in this
batch of experiments. Through comparing the results listed in Tables 2 and 3, it
seems that the superiority of MLR over the other combiners is more significant
when more base-classifiers are used to form an ensemble classifier since MLR is
observed to loss less times in this case.
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3.3 Complexity Analysis

Now let us analyze the complexity of each considered combiner in terms of the
number of parameters to be estimated.

Apparently, the combiner MEAN have not any parameters to estimate since
it simply averages the probability distributions predicted by each base-level clas-
sifier and assigns x to the class having the largest probability. Because the com-
biner MLR needs to establish m linear models and each of them has L parame-
ters, there are totally mL parameters required to be estimated.

If we use P
k

= (P 1
k,1, P

1
k,2, · · · , P 1

k,m, P 2
k,1, P

2
k,2, · · · , P 2

k,m, · · · , PL
k,1, P

L
k,2, · · · ,

PL
k,m)T to denote the mean vector of class ωk in the intermediate feature space,

the combiner DT estimates the class label of x as

ωdt(x) = argmin
1≤k≤m

L∑
i=1

m∑
j=1

[P i
k,j − P i

j (x)]2 = argmin
1≤k≤m

||Pk − P(x)||2. (4)

Thus, there are m2L parameters to be estimated.
As for the combiner FLD, it decides the class label of x as

ωfld(x) = argmin
1≤k≤m

(P
k − P(x))T Σ−1(P

k − P(x)), (5)

here Σ indicates the sample estimate of the mL×mL covariance matrix supposed
to be common for each class. Since the combiner FLD utilizes one-against-all
strategy to solve a multi-class task, it needs to estimate m(mL(mL+1)

2 + 2mL)
parameters in total.

Based on the above analysis, we can see that the compared combiners can be
ordered from simple to complex as MEAN, MLR, DT and FLD. Thus, one of
the reasons for the better performance of the combiner MLR than that of DT
and FLD at small sample sizes may be attributed to its limited complexity. As
for the advantage of MLR over MEAN, it may be due to the fact that MLR
takes into account more information in the data whereas MEAN does not.

4 Conclusions

In this paper, we utilized learning curves to investigate the relative performance
of MLR for solving multi-class problems in comparison of other trainable com-
biners FLD, DT and the fixed combiner MEAN. The Reusing, Validation and
two versions of Stacking method were respectively considered for using the given
data to train the base-level classifiers as well as the combiner. The experimental
results show that MLR can outperform the other combiners for small sample
sizes when Validation or Stacking method is employed. Meanwhile, the Reusing
strategy should be avoided as much as possible anyway. When the sample size
is large, however, there is little difference between the compared combiners no
matter what strategy is employed to form the meta-level data. As for the two
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Stacking methods, Stacking II may be preferred over Stacking I for its robust-
ness and relatively smaller computational cost.
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Abstract. Random Linear Oracle (RLO) ensembles of Naive Bayes clas-
sifiers show excellent performance [12]. In this paper, we investigate the
reasons for the success of RLO ensembles. Our study suggests that the
decomposition of most of the classes of the dataset into two subclasses
for each class is the reason for the success of the RLO method. Our
study leads to the development of a new output manipulation based en-
semble method; Random Subclasses (RS). In the proposed method, we
create new subclasses from each subset of data points that belongs to the
same class using RLO framework and consider each subclass as a class
of its own. The comparative study suggests that RS is similar to RLO
method, whereas RS is statistically better than or similar to Bagging
and AdaBoost.M1 for most of the datasets. The similar performance of
RLO and RS suggest that the creation of local structures (subclasses) is
the main reason for the success of RLO. The another conclusion of this
study is that RLO is more useful for classifiers (linear classifiers etc.)
that have limited flexibility in their class boundaries. These classifiers
can not learn complex class boundaries. Creating subclasses makes new,
easier to learn, class boundaries.

Keywords: Classifier Ensemble, Naive Bayes, Clusters, Subclasses.

1 Introduction

Ensembles are combination of multiple base models [9,13]. Final classification
depends on the combined outputs of individual models. Classifier ensembles
have shown to produce better results than single models, if the classifiers, in the
ensembles, are accurate and diverse [9,13]. Ensembles perform better when base
models are unstable; classifiers whose output undergoes significant changes in
response to small changes in training data. Decision-trees and neural networks
are unstable classifiers. Naive Bayes and other linear classifiers are generally
stable [15,14] thus not best suited for ensemble methods such as Bagging [2] and
Boosting [6]. However, RLO ensembles have shown very good performance with
Naive Bayes classifiers [12]. In this paper, we study RLO ensembles and propose
a new ensemble method Random Subclasses (RS) that is less computationally
expensive and more flexible as compared to RLO.

The paper is organised as follows. In section 2, we discuss the subclasses
strategy to improve the performance of simple classifiers. RLO is discussed in
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Section 3. In section 4, we introduce Random Subclasses (RS) method. Results
are discussed in section 5. Section 6 describes conclusion and future work.

2 Subclasses Methods

In this section we discuss the subclasses strategy to improve the performance of
low variance classifiers. Low variance classifiers (linear classifiers, linear discrim-
inate analysis etc.) have limited flexibility in learning class boundaries. They
have difficulty in learning class boundaries for the classes that consist of loosely
disconnected components (Fig. 1). One of the methods to solve this problem is
to create new class boundaries that can be learnt easily by the classifier. This is
achieved by splitting the original set of classes into subclasses. Class decomposi-
tion via clustering [14,15], supervised clustering [5] etc. are different methods to
create subclasses. These new subclasses can improve the performance of linear
classifiers [14,15,5]. Naive Bayes is a linear classifier. We discuss Naive Bayes
classifiers in detail to understand the effect of new subclasses on Naive Bayes
classifiers.

A Naive Bayes classifier is a simple probabilistic classifier however it produces
good results [4,8]. Naive Bayes is a global classifiers; it uses all the available
data for estimating probabilities. When each class of the dataset lies in different
regions, it is not able to estimate class probabilities accurately. In other words,
it fails to detect local class variations as single-dimensions projection of the data
loses their spatial information [15]. Rish et al. [11] show that in cases when data
points belong to same class spread in multiple regions, computing marginals of
the data may result in significant loss of information.

Vilalta and Rish propose a method [15] to improve the performance of Naive
Bayes. In this method, they transform the data by decomposing each class into
many clusters. In other words, they introduce local structures in the global
classifier. Probabilities are computed on these new clusters. These predefined
local structures (clusters) help in computing better probability estimates. Naive
Bayes classifiers give improved results with this additional step.

In the next section, we will discuss RLO that creates the same kind of local
structures as discussed in the last two sections.

Fig. 1. Two class problem, each class has two loosely connected components
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3 Random Linear Oracle

Kuncheva and Rodriguez [10,12] propose Random Linear Oracle (RLO) ensemble
method. This algorithm is presented in Fig. 2. In this method, every classifier
in the ensemble consists of a pair of classifiers. These two classifiers learn on
different subspaces decided by the random hyperplane. While testing, first the
position of the testing data point is decided by the random hyperplane then the
decision of the classifier, which is trained in that subspace, is taken. They sug-
gest two random oracles (random hyperplane); random linear oracle and random
spherical oracle, however in this work, we focus on Random Linear Oracle en-
sembles. The similar discussion is true for Random Spherical Oracle ensembles.

In the RLO approach, the space is divided into two subspaces using a hyper-
plane drawn in the feature space of the dataset. The hyperplane is generated by
taking two random points from the training set and calculating the hyperplane
perpendicular to the line segment between the points and running through the
middle point. The training set is split, depending upon which side of hyper-
plane the points lie. Kuncheva and Rodriguez [10,12] suggest two reasons for the
success of RLO ensembles.

1. As linear oracle splits the space into two subspaces the classification task
is easier, which may lead to the better classification accuracy (for pair of
classifiers) than the classifier trained on complete space.

2. The second reason is that with random linear oracles diverse classifiers are
created.

The performance of RLO ensembles with Naive Bayes classifiers is better than
other popular ensemble methods [12]. Whereas, use of decision trees, in the RLO

Random Linear Oracle Algorithm
Initialisation- Choose the ensemble size M, the base classifier model D and clas-
sification problem P defined as a labelled training set T and a set of classes Ω.

Ensemble Construction
for i=1...M do

a- Draw a random hyperplane ht in the feature space of P.
b- Split the training set T into T+ and T− depending on which side of ht the
points lie.
c- Train a classifier for each side, D+

i = D(T+,Ω) and D−
i = D(T−,Ω).

Add the mini-ensemble of the two classifiers and the oracle, (ht,D
+
i ,D−

i ), to the
current ensemble.

end for
Classification
a- For a new object x, find the decision of each ensemble member by choosing D+

i

or D−
i depending on which side of ht, x is.

b- Combine the decisions of all the selected classifiers by the chosen combination
rule (we use majority voting scheme).

Fig. 2. Random Linear Oracle (RLO) Algorithm
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ensembles [10], does not give this much improvement. That leads to a question,
why RLO ensembles with Naive Bayes classifiers perform so well. The answer lies
in the property of Naive Bayes classifier. As we have discussed in the last section
that Naive Bayes classifier is a global classifier. If the classes of a datasets spreads
in multiple regions, the estimation of class-conditional probability is biased and
Naive Bayes performs poorly [15]. Decomposing each class into many clusters
may be beneficial in these cases [15].

A random linear oracle divides the training dataset into two clusters, each
in different regions. Hence, there is a large probability that those classes that
spread in multiple regions will be divided into two subclasses, each belongs to
the one of the clusters created by the random linear oracle. This introduces a
form of class locality in Naive Bayes classifier. We get better class probability
estimates in this case. That is the probable reason for the good performance
of RLO ensembles with Naive Bayes classifiers. Decision trees are capable of
representing complex decision boundaries. Hence, the subclasses strategy has
not been very useful for decision trees. RLO ensembles with decision trees do
not produce good performance [10] that is because individual decision trees in a
RLO ensemble are not benefited much from the division of the data.

Creating subclasses in the data is helpful in improving the performance of
low variance classifiers (eg. linear classifiers) [14]. This is useful for datasets that
consist of classes having more than one intrinsic component.

That suggests that RLO ensembles are more useful for linear classifiers. In the
next section, we present proposed Random Subclasses (RS) method that divides
each class into a set of subclasses using the RLO framework to show that it is
the creation of subclasses that is helpful in good performance of RLO ensembles
with Naive Bayes classifiers.

4 Random Subclasses (RS)

In this section, we propose a new ensemble method Random Subclasses (RS)
which is quite similar to RLO, however RS is more computationally efficient and
flexible as compared to RLO. The purpose of this algorithm is not to present an
algorithm that is better (in terms of classification accuracy) than RLO but to
emphasise the fact that the creation of subclasses is helpful in RLO.

We suggest RS method that creates subclasses directly. To create 2 subclasses
from a class, we select 2 points randomly from the data points belonging to
the class and use RLO framework to create 2 subclasses from the data points
belonging to the class. We create subclasses for all classes available in the dataset
( Fig. 3). When K hyperplanes are same in a RS classifier, it will produce the
same structures as in a RLO classifier ( Fig. 4). After creating subclasses, we train
a classifier on the complete data treating the subclasses as the classes of the data
(for K classes 2K subclasses are created). In RS method, the prediction by each
classifier is produced in new output space (new subclasses). These predictions
are converted to original class labels as the relationship between the classes and
the subclasses is known. The RS algorithm is shown in Fig. 5.
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(a) (b) (c)

Fig. 3. Two class problem (a) The RLO framework divides the complete data into two
subspaces using a random hypeplane. (b) and (c) show RS in which we create a random
hyperplane for each class and each class is divided into two subclasses.

(a) (b)

Fig. 4. When hyperplanes for both the classes are same, RS creates the same structures
as RLO

The main difference between RLO and RS is that in RS we create K hyper-
planes (K is the number of classes), one for each class whereas in RLO method
we have one hyperplane. RLO divides the entire training data into two subspaces
whereas RS divides each class into two subclasses. A RLO classifier has a pair of
classifiers, these two classifiers learn on different subspaces decided by a hyper-
plane, whereas a RS classifier is a single classifier trained on the complete data.
During testing in the RLO method, first the position of the testing data point
is decided and the decision of the classifier, which is trained in that subspace,
is used. In RS, we do not have this selection step as we have only one classifier.
The RS approach has following advantages over the RLO approach;

1- In RLO, for an ensemble of size M, 2M classifiers are trained, whereas in RS
only M classifiers are trained.
2- We have better flexibility in RS for creating subclasses which is the reason of
the improved performance of RLO ensembles. In RS, we can control the number
of subclasses per class (2 subclasses or no subclasses), whereas we do not have
this kind of control in RLO. For example, if the number of data points is low in
a class, we may not create subclasses for that class.
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Algorithm -Random Subclasses
Input: Choose the ensemble size M, training data T with K classes, a testing data
point x.
Output: Prediction of x.
Ensemble Construction-
for i=1...M do

a- Separate T into subsets Tj where Tj = {(x, y) ∈ T | y = yj}
for j=1...K do

a- Draw a random hyperplane hj (using the method suggested in RLO method)
in the feature space of Tj .
b- Create two new subclasses depending on which side of hj the points lie for
Tj points.

end for
After this step, we have 2K classes (a new output space).
Train classifier on this dataset.

end for
Classification
a- Find the decision of each ensemble member.
b- Convert it into original class label.
c- Combine the decisions of all the selected classifiers by the chosen combination rule
(we use majority voting scheme).

Fig. 5. Random Subclasses Method

3- Take the case of prediction of a data point, which has some of the attribute
values missing. Naive Bayes can work with missing attribute values. In RLO
method, the position of testing data point is computed, this is an additional
source of error as an inaccurate selection of the classifier may lead to the poor
classification result.

One may argue that the method (random hyperplanes) used in the proposed
RS method to create subclasses is not very accurate and in some cases may
give very bad subclasses that may not be useful. In these cases, we may not be
getting improvement in the classifier performance. We are creating ensembles
of classifiers and the final result in an ensemble is the combination of many
classifiers. Hence, even if some of the individual classifiers may not have improved
performance, the ensembles perform well because of the classifiers that have
improved performance.

RLO and RS are similar in the sense that both create new class boundaries by
using random hyperplanes. In the next section, we present experimental results.

5 Experiments

We investigate two hypotheses in these experiments. One, whether RS is simi-
lar to RLO for Naive Bayes classifier as both create subclasses using the same
method (random hyperplanes) and the second that RS and RLO are useful for
the other low variance classifiers. For the second hypothesis, we used SVM with
linear kernel classifier for our experiments.
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Table 1. Datasets used in experiments

Dataset Size No. of No. of cont. No. of Cat.
Name Classes attributes attributes

DNA 3175 3 - 60
Glass 215 7 9 -

Ionosphere 351 2 34 -
Optical 5620 10 64 -

Pendigits 10992 10 16 -
Pima-diabetes 768 2 8 -
Ring-Norm 7400 2 20 -
Satimage 6435 6 36 -
Segment 2310 7 19 -
Sonar 208 2 60 -
Spam 4601 2 57 -

Tic-Tac-Toe 958 2 - 9
Two-Norm 7400 2 20 -

Vehicle 846 4 18 -
Vote 435 2 - 16
Vowel 990 11 10 -

Waveform 5000 3 40 -

We carried out experiments on 17 datasets taken from UCI Repository. In-
formation about datasets are shown in Table 1. We carried out our experiments
using Naive Bayes classifier and SVM with linear kernel as the base classifier.
We carried out experiments with Bagging [2] and AdaBoost.M1 [7] modules of
WEKA [16]. The size of the ensemble was fixed to 25 as mentioned by Kuncheva
and Rodriguez [12]. For a RLO ensemble, 25 pairs of classifiers were trained.

We performed five replications of a two-fold cross-validation. In each replica-
tion, the dataset was divided into two random equal-sized sets. Each learning al-
gorithm was trained on one set at a time and its error was estimated on the other
set. The original test proposed by Dietterich [3] to compare the performance of
classifiers suffers from low replicability. Alpaydin [1] proposes a modification to
the 5 × 2 cross-validation F test. That test was used in our experiments. A
confidence level of 95% for this test was considered.

To calculate the hyperplane and for determining on which side of it a given
point lies, each categorical attribute of was replaced by |A| binary attribute
where |A| is the number of possible categories and all numeric attributes were
linearly scaled within the interval [0,1] [10].

We used WEKA [16] implementation of Naive Bayes classifier for our exper-
iments. For the numeric data, normal distribution option was selected. Results
are presented in Table 2. Results show that RS is similar to RLO (3 Wins, 14
Draws) this verifies our hypothesis that RS is creating the same effect as RLO.
RS performed statistically better than or similar to Bagging (10 Wins and 7
Draws), AdaBoost.M1 (9 Wins, 5 Draws and 3 Losses) and a single Naive Bayes
classifier (10 Wins and 7 Draws) for most of the datasets.
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Table 2. Classification error in % for different ensemble methods with Naive Bayes
classifier as the base classifier. Number in bold shows the best performance for that
dataset. “+” shows that performance of RS is statistically better than that ensemble
method for the dataset. “-” shows that performance of RS is statistically worse than
that ensemble method for the dataset.

Data RS RLO Bagging AdaBoost.M1 Single classifier

DNA 4.6 4.6 4.8 8.1(+) 4.8
Pima Dia 22.9 23.2 23.6 24.2 23.5

Glass 37.6 38.2 48.3(+) 50.3(+) 51.6(+)
Ionosphere 17.7 16.3 21.1(+) 9.5(-) 20.7(+)

Optical 6.8 6.8 8.8(+) 8.6(+) 8.8(+)
PenDigit 8.1 8.0 14.1(+) 14.2(+) 14.2(+)

Ring-Norm 2.3 2.2 2.2 2.3 2.2
Satimage 15.1 17.1(+) 20.2(+) 20.4(+) 20.5(+)
Segment 17.2 17.8 19.6 18.2 19.8
Sonar 24.4 23.5 28.0 20.8 29.1

Spambase 18.7 19.6(+) 20.0(+) 19.9(+) 20.0(+)
Tic-Tac-Toe 26.7 27.0 28.1 8.1(-) 28.4
Two-Norm 2.2 2.2 2.2 2.2 2.2

Vehicle 35.8 34.1 53.9(+) 54.5(+) 54.5(+)
Vote 7.7 7.3 10.6(+) 4.7(-) 10.7(+)
Vowel 21.7 25.1(+) 35.0(+) 27.9(+) 35.9(+)

Waveform 14.8 16.0 20.1(+) 19.4(+) 20.1(+)

Win/Draw/Loss 3/14/0 10/7/0 9/5/3 10/7/0

We used WEKA [16] implementation of Support Vector Machine with linear
kernel with regularization parameter C = 1 (default value) for our experiments.
Results are presented in Table 3. Table 3 shows that for 7 out of 17 datasets,
RS and RLO performed statistically better than a single classifier. Bagging im-
proved the performance for DNA data whereas AdaBoost.M1 did not improve
the performance for any of the datasets. Creating subclasses is the reason for
the success of RLO and RS. As new subclass boundaries create easier to learn
problems, the subclasses strategy works well with linear classifiers.

Experiments results verify both hypotheses that RS and RLO are similar
and RS and RLO are useful for the other low variance classifiers. The similar
performance of RLO and RS shows that the creation of new decision boundaries
is the main reason of the success of RLO with low variance classifiers.

The better performance of RLO can be explained by using bias-variance prop-
erties of RLO classifiers. The creation of subclasses increases the number of deci-
sion boundaries per class, this increases the complexity of individual classifiers,
hence it reduces the bias part of the classifier error [14]. It also increases the
variance part of the error. RLO classifiers are diverse classifiers due to different
random hyperplanes, an ensemble of these diverse classifiers reduces the variance
part of the error [2]. The same augment can be used to explain the performance
of RS.
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Table 3. Classification error in % for different ensemble methods with SVM with
linear kernel as the base classifier. Number in bold shows the best performance for that
dataset. “+” shows that performance of RS is statistically better than that ensemble
method for the dataset. “-” shows that performance of RS is statistically worse than
that ensemble method for the dataset.

Data RS RLO Bagging AdaBoost.M1 Single classifier

DNA 5.1 4.9 6.0(+) 7.5(+) 7.8(+)
Pima Dia 23.1 22.3 22.8 22.8 22.9

Glass 48.0 45.7 48.1 44.4 49.2
Ionosphere 11.9 12.3 12.3 11.3 12.5

Optical 1.5 1.6 1.8(+) 2.3(+) 2.1(+)
PenDigit 1.3 1.5(+) 2.4(+) 2.2(+) 2.5(+)
Ringnorm 20.9 20.9 22.7(+) 22.3(+) 22.8(+)
Satimage 12.8 13.3(+) 13.7(+) 13.7(+) 13.7(+)
Segment 7.8 7.4 7.9 7.7 7.7
Sonar 19.0 18.7 22.9(+) 23.1(+) 24.7(+)

Spambase 10.3 9.7(-) 9.8(-) 9.9 10.1
Tic-Tac-Toe 1.6 1.6 1.6 2.4(+) 1.6
Two-Norm 2.2 2.2 2.2 2.2 2.2

Vehicle 28.1 27.4 28.7 29.0 29.0
Vote 3.9 4.0 3.8 5.0(+) 4.1
Vowel 31.6 29.9 39.2(+) 40.2(+) 40.3(+)

Waveform 14.1 14.0 13.9 14.1 14.1

Win/Draw/Loss 2/14/1 7/9/1 9/8/0 7/10/0

6 Conclusion and Future Work

Most of the ensemble methods require unstable base classifier. Naive Bayes is
a stable classifier. Hence, it is not suited for as a base classifier for ensembles.
However, RLO performs well with Naive Bayes classifiers. In this paper, we in-
vestigate the reason of RLO success. We conclude that the creation of local
structures in a RLO classifier leads to the better class probabilities estimates
hence improves the performance for Naive Bayes Ensembles. We also develop
RS ensemble method that decomposes classes into subclasses. RS is less com-
putationally expensive and more flexible as compared to RLO. We carried out
a comparative study on 17 datasets taken from UCI repository. Results suggest
that RS and RLO are similar, whereas RS and RLO are statistically better than
or similar to Bagging and AdaBoost.M1 for most of the datasets.

We also carried out the comparative study of different ensemble methods using
SVM with linear kernel as the base classifier. RLO and RS showed improvement
for some datasets whereas for almost all datasets Bagging and AdaBoost.M1
did not show any improvement over a single classifier. We conclude from our
study that RLO and RS are useful for classifiers that can not learn complex
class boundaries e.g. linear classifiers.

RLO has been employed with other ensemble methods [10,12]. Results suggest
that all ensemble methods in study, with Naive Bayes as the classifiers, are better
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with RLO than their standard versions. Combining RS with other ensemble
methods will be one of the future directions of this study.
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Abstract. Recently, Ensembles of local experts have successfully been
applied for the automatic detection of drug-induced organ toxicities based
on spectroscopic data. For suitable Ensemble composition an expert selec-
tion optimization procedure is required that identifies the most relevant
classifiers to be integrated. However, it has been observed that Ensemble
optimization tends to overfit on the training data. To tackle this problem
we propose to integrate a stacked classifier optimized via cross-validation
that is based on the outputs of local experts. In order to achieve probabilis-
tic outputs of Support Vector Machines used as local experts we apply a
sigmoidal fitting approach. The results of an experimental evaluation on a
challenging data set from safety pharmacology demonstrate the improved
generalizability of the proposed approach.

1 Introduction

In the last two decades the development of new NMR (nuclear magnetic res-
onance) measurement techniques together with a steadily increasing spectral
resolution and improved data quality, respectively, have provided the opportu-
nity for in-depth automatic analysis of biofluids. Thereby, the ultimate goal is
to detect specific changes of an organism’s metabolism that is, for example, in-
duced by drug applications in safety pharmacology. Generally, the research field
of Metabonomics addresses “the quantitative measurement of the time-related
multiparametric metabolic response of living systems to pathophysical stimuli or
genetic modification” [1]. In addition to classical analysis methods from clinical
chemistry and histopathology meanwhile also automatic classification techniques
utilizing pattern recognition approaches have been applied successfully.

Recently, multiple classifier systems have been developed for the detection of
drug-induced organ toxicities with applications to industrial safety pharmacology
(cf. e.g. [2]). It has been shown that the use of Ensemble methods that integrate
multiple classifiers each providing local views on the spectra outperforms single
classifier approaches. However, when comparing the classification performance
of classifier Ensembles achieved on cross-validation data with those on test-sets
it becomes clear that the systems tend to overfit. This is especially critical when
only small portions of NMR spectra are available for training and optimization.

In this paper we present an enhancement of Ensembles of local experts for
Metabonomic applications that explicitly focuses on improved generalizability.

J.A. Benediktsson, J. Kittler, and F. Roli (Eds.): MCS 2009, LNCS 5519, pp. 498–508, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Our goal is to stabilize the classification performance from cross-validation to
test. Therefore, a variant of stacked generalization [3] as a combination method
of predictions from different models is integrated into our Ensemble system for
NMR classification. Thereby, the decisions of local experts that focus on small
parts of the spectra serve as probabilistic level-0 model outputs. Since for this
level of classification we use Support Vector Machines that generate binary de-
cisions pseudo-probabilities are derived by means of a sigmoidal mapping ap-
proach. Subsequently, an additional classifier – the level-1 generalizer – is applied
to the vectors of pseudo-probabilities providing the final classification result. In
order to find the most suitable configuration we investigated the appropriateness
of certain variants of level-1 generalizers. By means of an experimental evaluation
on a realistic NMR dataset from industrial safety pharmacology we demonstrate
the effectiveness of the proposed approach. Using stacking for Ensembles of local
experts improved generalization can be achieved for Metabonomic applications.

In the following section the general background for the automatic analysis of
NMR spectra is given together with the motivation of our current work. Sub-
sequently in section 3 the proposed Ensemble system that focuses on improved
generalizability for toxicity prediction is described. The results of the experimen-
tal evaluation are presented in section 4. The paper ends with a conclusion.

2 Background and Motivation

Within an NMR spectrum of some analyzed sample the concentration of nu-
merous molecules is represented by peak intensities. Peak positions are specific
for the respective molecules as exemplary shown in figure 1. Changes in the
concentration of several molecules can be detected by comparison of correspond-
ing peak intensities between different samples. Substantial changes indicate an
alteration of the organism’s metabolic profile. Consequently, a major issue in
Metabonomics research is the development of systems for an automatic analysis
of samples for the identification of relevant peak changes.

Fig. 1. Exemplary 1H-NMR spectrum of an urine sample from an untreated rat. A
subset of peaks and their corresponding molecules, the chemical structure of urea and
the signal emitting hydrogen atoms are denoted.
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Recently pattern recognition techniques have also been applied to Metabo-
nomics tasks. It has been demonstrated that, generally, it is possible to detect
changes in metabolisms by comparison of spectroscopic data (cf. [4,5,6]). Cer-
tainly the most promising approach – Classification of Unknowns by Density
Superposition [7] – was developed within the Consortium for Metabonomic Tox-
icity (COMET) project [8]. This approach is based on spectra classification using
probabilistic neural networks [9] that were trained exploiting a large database
which is not publicly available. When generally analyzing related work as it has
been reported in the literature it becomes clear that so far only little research
has been devoted to the automatic classification of NMR data.

In our previous work for the first time Ensemble methods were developed for
the prediction of organ toxicities based on spectroscopic data [10]. We devel-
oped a multiple classifier system that introduced weighted Random Subspace
Sampling (RSS) with applications to the field of Metabonomics. The weights
of variables relevant for toxicity classification were iteratively optimized by an
unsupervised learning approach. Subspaces were classified by Support Vector
Machines (SVMs) and aggregation of the predictions was performed by majority
voting. It has clearly been shown that differences in the relevance of distinct
variables, i.e. parts of the NMR spectra, exist w.r.t. their significance for classi-
fication. Favoring relevant regions in RSS finally improved the Ensemble classi-
fication performance. An alternative multiple classifier approach for the analysis
of NMR data has been proposed in [2] where preprocessing methods were varied
for Ensemble creation. Again it has been shown that the combination of multiple
classifiers outperforms single classifier approaches in Metabonomics. The idea of
focusing on certain spectral regions for classification and their combination in
an Ensemble system has been further investigated in [11]. In this approach an
Ensemble of local experts is created by training classifiers on short spectral re-
gions that are determined by a sliding window technique. Final aggregation of
local experts’ predictions is achieved by majority voting, whereas the subset of
experts used for final voting is optimized in order to achieve an improved clas-
sification accuracy. Thus, the classification decision is based on specific parts of
the spectra, which are supposed to reflect biologically relevant changes.

Ensemble optimization for automatic analysis of NMR data has achieved a
nearly perfect classification performance on the validation sets. Unfortunately,
the generalization capabilities of the system on this extremely challenging type
of data is still not optimal. An experimental evaluation of several strategies for
ensemble optimization has indicated a generally decreasing classification perfor-
mance on unknown test data [11]. A promising approach for the combination of
multiple models emphasizing the idea of cross-validation for an improvement of
generalization capabilities – generalized stacking – was proposed by Wolpert [3],
and further discussed by Breiman [12] and Ting et al. [13] (cf figure 2). In this
approach a given data set is split into J training and test sets according to the
J-fold cross-validation principle. Different so-called level-0 models are estimated
on the training sets and applied to predict the corresponding test sets. The pre-
dictions from all test sets are collected in a new data set and further used as
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Fig. 2. Illustration of the generalized stacking approach. A data-set is subdivided into
J cross-validation parts and 4 models are trained on each set, respectively. The outputs
of different sets are collected in a single data set for training the final classifier.

input for training of a final classifier, the so-called level-1 generalizer. For a final
classification level-0 models are trained on the whole data set and new samples
are classified by the level-1 generalizer based on the predictions of level-0 models.
Generally, the type of level-0 model and level-1 generalizer is not restricted to
any specific classification algorithm. However, Ting et al. assume probabilistic
outputs of level-0 models rather than class predictions for a successful applica-
tion of generalized stacking [13]. By means of generalized stacking the severe
problem of overfitting in Ensemble optimization methods can be avoided, which
is a clear advantage contrary to optimization of expert selection for majority
voting as a nontrainable combination method.

3 Stacking for Fusion of Local Spectral Information

In order to stabilize the classification results of the multiple classifier system
of local experts for the analysis of NMR spectra we developed an Ensemble
estimation approach that explicitly focuses on improved generalizability. There-
fore, the problem of overfitting is tackled by the application of a trainable com-
biner which is inspired by the concept of generalized stacking. Consequently,
the new approach is referred to as stacking for Ensembles of local experts. The
basic idea is to use the output of local classifiers that represent statistical mod-
els for designated parts of NMR spectra as input data for a second classifier.
The parametrization of the level-1 generalizer is adjusted by cross-validation.
Thereby, rules for classification according to the local experts’ predictions are
automatically derived by the stacked classification algorithm. Figure 3 gives an
overview of the system.

The new approach of stacking for local experts in Metabonomic applications
extends our previous work on Ensembles of local experts for the automatic anal-
ysis of NMR data [11]. Local information of spectroscopic data is treated by
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Fig. 3. Classification system for automatic analysis of NMR data based on an Ensemble
of local experts and stacking for improved generalizability (see text for description)

classifiers that have restricted views on the data thereby covering very few peaks
only. Spectral regions of interest (SROIs) are determined on NMR data by apply-
ing a sliding window approach and an alignment procedure, respectively, in order
to compensate peak shifts induced by changes of physiochemical factors like pH
or ion concentration. SVMs using a radial basis function kernel are trained for
each SROI of spectral intensities and serve as local experts for specific regions.
Initially experts exhibiting insufficient classification performance on a validation
set are excluded from the Ensemble and selection of experts for Ensemble ag-
gregation by majority voting is optimized in a final step in order to achieve a
suitable classification accuracy.

Only very few substances (or combinations of substances) that indicate in-
duced organ toxicities after drug application (by changes in their concentration)
are known in safety pharmacology. This fact supports the assumption that even
though concentration information of numerous molecules is present in an NMR
spectrum only a very small fraction is useful for the detection of drug-induced
organ toxicities. Thus, the identification of a suitable combination of local ex-
perts for the final classification is the most crucial step in the Ensemble of local
experts. Unfortunately, this process is prone to overfitting.
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Dos Santos et al. proposed to use a genetic algorithm approach for (gen-
eral) Ensemble optimization which reduces the tendency to overfitting [14].
They found that a cross-validation procedure has to be used in order to eval-
uate the classification performance on an independent validation set. However,
analyzing our task it becomes clear that cross-validation is not generally ap-
plicable to majority voting. Thus, we focus on an alternative aggregation ap-
proach aiming at improved generalizability while retaining high classification
performance.

According to the terminology used in the stacked generalization literature in
our approach SVMs, serving as local experts on NMR data, are used as level-0
models. According to [13] for best generalization the level-1 generalizer should
have probabilistic input, i.e. level-0 classification have to provide probabilities
rather than binary decisions. The latter is, however, the case for standard Sup-
port Vector Machines as they generate -1 or 1 decisions, respectively, depending
on the position of the test sample w.r.t. the hyperplane that separates the par-
ticular classes. In order to achieve probabilistic SVM decisions we integrate an
additional post-processing step into SVM classification. As developed by Platt
[15], and further refined by Lin and coworkers [16] probabilities can be generated
from SVM decisions by fitting a parametrized sigmoidal function to the distances
of the samples from the labeled training set to the separating hyperplane. The
rationale is based on the assumption that greater distances indicate higher confi-
dences for the classification. Analogously smaller distances correspond to smaller
confidences. In our approach SVM probabilities derived in this way represent the
output of the local experts which is fed into the level-1 classifier.

To sum up, the original Ensemble of local experts approach is extended using
a stacked classifier on the outputs of the local experts for final classification. Fur-
thermore, probability estimates of SVMs are integrated in the Ensemble system
and serve as input for the level-1 generalizer. These enhancements are supposed
to increase the generalization of the Ensemble of local experts, which will be
shown by an experimental evaluation and comparison to previous results.

4 Experimental Evaluation

In order to evaluate the effectiveness of the new approach with respect to the
addressed improved generalizability we performed various practical experiments.
As in our previous work they are related to the detection of drug-induced or-
gan toxicities based on a challenging real-world data set from pharmaceutical
industry1. This set contains 896 1H NMR spectra of urine samples from rats
treated with one of 53 pharmaceuticals. According to literature investigations
and histological judgments induced organ toxicity regarding proximal tubulus
(kidney) is present in 259 samples (= 18 pharmaceuticals). Details on spectra
measurements, data treatment and histological judgment are given in [11].
1 The presented evaluation is restricted to this data set due to the lack of publicly

available data sets of NMR spectra. The presented approach is, however, not depen-
dent on the type of data used and generally applicable.



504 K. Lienemann, T. Plötz, and G.A. Fink

The presentation of the results is structured as follows. First we determine the
optimal configuration of the proposed approach by evaluating the suitability of
various level-1 generalizers, measuring the impact of probabilistic level-0 model
outputs for our task. Subsequently the classification capabilities are directly
compared with those that have been achieved using the original Ensemble of local
experts thereby clearly indicating the improved generalizability of the proposed
method for the particular test sets. For all experiments the selection of SROIs,
training of local experts and their preselection for Ensemble generation, resulting
in 147 local experts for the final Ensemble, were performed as previously [11].

We performed a five-fold cross-validation and test procedure for training, pa-
rameter optimization and final test. Samples were grouped according to target
and indication of their corresponding pharmaceutical. These groups of samples
are sub-divided into five sets while trying to keep ratios of non-toxic and toxic
samples approximately equal. Training was pursued using three fifths of the sets,
parameter optimization by one fifth and final testing on the remaining set in ev-
ery possible configuration. Final classification rates are given as averages over
the results on the particular sets. In addition to focusing on specific samples
a further goal is the classification of pharmaceuticals as being toxic or non-
toxic. Thus, results for analyzed samples that have been collected at different
time-points are aggregated to final classifications of the corresponding pharma-
ceutical (maximum mean value) – referred to as group-classification. Due to its
robustness to imbalanced data-sets the Matthews Correlation Coefficient [17] –
MC – (normalized to [−1 . . . 1]) has been used as primary evaluation criterion
for all training and optimization procedures. For completeness also classification
accuracy (acc), specificity (spec) and sensitivity (sens) values are shown.

Table 1 summarizes the classification results achieved for different level-1 gen-
eralizers based on probabilistic level-0 model outputs. Results for cross-validation
and test using either a k nearest neighbor classifier (kNN – with k = 7 optimized
according to a fixed grid from one to 31), grid-search optimized SVMs with lin-
ear (LSVMs) or radial basis kernel functions (RSVMs), respectively, and random
forests (RFs) [18] are shown. RFs are parametrized depending on the data di-
mensionality v, using �log2(v)� decision trees in the forest and selecting �

√
v �

variables randomly at each node. Analyzing the results (level of significance for
all sample-based experiments: ≈ ±2.5%) it can be seen that RSVMs outperform
all other techniques. Furthermore, it becomes clear that improved stability of
classification results when turning from cross-validation towards test is gained
independently of the particular choice of level-1 generalizer.

In order to validate the necessity of probabilistic outputs of level-0 models for
a generalizing stacking system (as claimed by Ting et al. [13] – cf. section 3)
the new approach was also evaluated using binary predictions of local experts.
By means of the results presented in table 2 the assumption of Ting et al. can
clearly be confirmed also for the Metabonomic application case. Using Ensembles
with probabilistic level-0 outputs better classification accuracies together with
improved generalizability can be achieved.
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Table 1. Classification performance of different level-1 generalizer algorithms based
on probabilistic outputs of RSVMs as level-0 models in the Ensemble of local experts

cross-validation test
Measure kNN RF LSVM RSVM kNN RF LSVM RSVM

acc [%] 82.7 77.0 82.4 83.5 80.7 76.7 80.7 81.0

spec [%] 95.4 92.5 94.5 94.4 93.9 92.8 93.3 92.0

sens [%] 51.4 39.0 52.5 56.8 48.3 36.7 49.8 54.1

MC 0.551 0.383 0.542 0.575 0.494 0.366 0.496 0.510

Table 2. Classification performance using probabilistic or prediction outputs of RSVMs
as local experts and RSVM for stacked classification

cross-validation test
Measure probabilistic prediction probabilistic prediction

acc [%] 83.5 76.9 81.0 61.7

spec [%] 94.4 91.1 92.0 73.8

sens [%] 56.8 42.1 54.1 32.1

MC 0.575 0.387 0.510 0.058

Table 3. Changes in classification performance using a PLS transformation prior to
classification by RSVM

cross-validation test
Measure RSVM PLS + RSVM RSVM PLS + RSVM

acc [%] 83.5 83.5 81.0 82.6

spec [%] 94.4 90.0 92.0 88.2

sens [%] 56.8 67.6 54.1 68.7

MC 0.575 0.590 0.510 0.574

Although the preselection of local experts already reduces the set of experts
used for stacked classification to those with a reasonable classification accuracy,
a further selection of experts is beneficial as shown in the original Ensemble of
local experts approach. A well-known method for variable weighting of a labeled
multidimensional data set according to the relevance of the variables for class
separation is the projection to latent structures (PLS, also referred to as partial
least squares) [19]. PLS transformation is comparable to principal component
analysis (PCA) differing, however, in the optimization criterion. For PLS it is
not the explained variance of the new coordinate system that is optimized but
the covariance between the data variables and class labels. Thus, PLS focuses
on variables (in this case local experts) relevant for class discrimination, thereby
achieving an implicit weighting of experts. The application of the PLS transfor-
mation on the probabilistic outputs prior to classification by a RSVM leads to
an improved classification accuracy on the cross-validation set and only a slight
decrease on the test set can be observed (cf. table 3).
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Table 4. Evaluation of the original Ensemble of local experts approach and the pro-
posed stacking modification on cross-validation (xval) and test. Bold numbers indicate
the best performance of the two methods on the respective set, while italic numbers
highlight the best relative change (Δ) when comparing cross-validation and test.

Local Experts Local Experts + Stacking
Measure xval test Δ xval test Δ

sample classification

acc [%] 86.3 77.8 -9.9% 83.5 82.6 -1.1%

spec [%] 99.2 94.2 -5.0% 90.0 88.2 -2.0%

sens [%] 54.4 37.5 -31.1% 67.6 68.7 +1.6%

MC 0.659 0.402 -39.0% 0.590 0.574 -2.7%

group classification

acc [%] 98.1 88.5 -9.8% 92.3 90.4 -2.1%

spec [%] 100 94.1 -5.9% 100 97.1 -2.9%

sens [%] 94.4 83.3 -11.8% 77.8 77.8 ±0%

MC 0.958 0.785 -18.1% 0.834 0.786 -6.1%

The final part of the evaluation addressed a direct comparison of the results
achieved using either the original Ensemble of local experts approach or the
enhanced version integrating the proposed stacking technique. The results pre-
sented in table 4 clearly indicate the improved generalization of the latter. The
classification accuracies on cross-validation slightly decrease or remain almost
the same (level of significance for group classification: ≈ ±8.2%) but the effect
of overfitting as it was observed for the original Ensemble of local experts can
almost be eliminated when using the new approach. This improved generaliz-
ability is of major importance for safety pharmacology where unknown samples
need to be classified reliably.

5 Conclusion

Generalizability of an automatic classification system is a major prerequisite for
its application to real-word problems. In this paper we presented a new model
combination approach that does not suffer from the problem of overfitting during
optimization as observed for our previously developed Ensemble of local experts
approach for Metabonomic applications. Motivated by the concept of general-
ized stacking outputs of local NMR experts are aggregated for final Ensemble
estimation. Improved generalizability is achieved by parameter optimization us-
ing a cross-validation approach in a hierarchical classification framework. The
decisions of local classifiers – level-0 models – serve as input for an additionally
subsequent level-1 generalizer. Generally, stacked generalization works best when
integrating level-0 models that generate probabilistic outputs. Consequently, in
our approach decisions of Support Vector Machines are transformed from binary
towards pseudo-probabilistic by means of a sigmoidal fitting function.

The effectiveness of stacking for Ensembles of local experts for Metabonomic
applications was demonstrated in an experimental evaluation. Analyzing a
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challenging real-world set of NMR spectra from industrial drug design shows
improved generalizability of the classification performance when turning from
cross-validation towards test. In the typical use-case of an automatic classifica-
tion system in safety pharmacology toxicities need to be predicted reliably for
unknown samples. Thus, reducing the effect of overfitting is of major importance
which clearly emphasizes the practical relevance of the proposed approach.
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Abstract. Boosting has been shown to improve the predictive performance of 
unstable learners such as decision trees, but not of stable learners like support 
vector machines (SVM). In addition to the model stability problem, the high 
computational cost of SVM prohibits it from generating multiple models to 
form an ensemble for large data sets. This paper introduces a method that not 
only enables boosting to improve the predictive performance of SVM, but also 
reduces the computational cost to make ensembles of SVM feasible for large 
data sets. The method proposes to build local models, instead of global models; 
and it is the first method, to the best of our knowledge, to solve the two prob-
lems in boosting SVM at the same time. The proposed method to boost SVM 
also performs better than boosting decision trees in term of predictive accuracy 
in our experiments.  

Keywords: Boosting, support vector machines, local models. 

1   Introduction 

In recent years, the idea of combining multiple classifiers has attracted a lot of atten-
tion. Ensemble approaches like Boosting [1] reduce generalization error of machine 
learning systems by building and aggregating diverse multiple classifiers.  

Although Boosting has been applied to many problems and improved classification 
accuracy, it suffers from the limitation of its basic theoretically property—it is only 
suitable to improve predictive performance of unstable learners [2-4]. Boosting is to 
grow an ensemble of classifiers by successive reweighting of the training set where 
current weight depends on the previous classifier’s performance  [5]. It exploits the 
“instability” of base learners such as decision trees, to build diverse models. Thus 
Boosting cannot decrease prediction error of stable learners such as Support Vector 
Machines (SVM). But, stable learners can be used to achieve superior performance 
for some data sets than unstable learners such as decision trees. For many problems, 
SVM is preferred for the better match of problems we have on hand. 

In addition to the model stability problem, long training time of SVM prohibits it 
from being applied to large data sets. Although the training time of SVM has been 
reduced by using Sequential Minimal Optimization (SMO) to empirically between ~m 
to ~m2.2 [6], the high computational cost makes it infeasible to form ensemble of 
SVM for large data sets.  
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In this paper we propose a method that not only enables Boosting to improve 
SVM’s prediction accuracy but also reduce the training time of Boosting SVM.  
The central idea of this approach is to build local models rather than a global model. 
We called the proposed method Localsvm. We show in this paper that this can be 
achieved by building SVM at every leaf of a decision tree. This increases the instabil-
ity of the model and at the same time reduces the SVM training time. For example, in 
the largest data set we used in the experiment, training a Localsvm model requires less 
than one-thousandth of the time used to train one single SVM! And we show that 
Boosting can be used to successfully improve the predictive accuracy of SVM. 

We introduce Localsvm in the next section, and describe the evaluation result in  
Section 3. We discuss the related work in Section 4, and conclude in the last section. 

2   Localsvm 

We propose a generic method to learn local models instead of global models such that 
it converts a stable model into an unstable model and enables existing ensemble 
methods such as Boosting to be used to improve the stable learner’s predictive per-
formance. The key idea is to subdivide the feature space into non-overlapping regions 
and then use the stable learners to build local models at each of the local regions. As 
such, the proposed method can be easily implemented using the existing decision  
tree [8] to construct a non-overlapping subdivision of local regions. By setting an 
appropriate minimum data size at the leaf for the intended stable learner, it will build 
a local model most appropriate for each of the local regions. In this paper, we focus 
on stable learner SVM and use it to build a local model to associate with each leaf in 
the decision tree; thus we call the proposed method Localsvm.  

Figure 1 shows an example of Localsvm. An internal (non-terminal) node represents 
a test using one attribute. A leaf (terminal node) represents a local SVM model, 
trained using a local training set defined by the local region. The learning algorithm is 
provided in Figure 2. 

During classification, a test instance traverses from the root of a tree to a leaf, ac-
cording to the outcome of the test at each internal node along the path. When it 
reaches the leaf, classification is made by using the local SVM. 

In a nutshell, Localsvm is as unstable as a decision tree and yet it classifies instances 
based on the outcomes of SVM. 

The proposed method brings about three key advantages. First, it converts any sta-
ble learners into unstable learners so that existing ensemble methods (which apply to 
unstable learners only) are readily employed to improve the predictive accuracy of the 
stable learners. We demonstrate the feasibility of the proposed method using the sta-
ble learner SVM and an existing ensemble method Boosting in this paper. Second, the 
model diversity increases significantly through the use of local models as compared a 
single global model. Third, the use of local training set reduces the training time sig-
nificantly for high order polynomial time complexity algorithms such as SVM. The 
analysis of the training time reduction is provided below. 
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Fig. 1. An example of Localsvm 

BuildLocalsvm(S) 
Input:    S -  Training set  
Output: T -  Localsvm  
    
Create a new tree node T  

 IF (all instances in the training set S belong to a single class) 
 THEN 
          make T a leaf with the majority class.  

         ELSE IF (number of instances in T is less than 2M) 
                                                \* M is the minimum number of instances per leaf. *\  

THEN 
make T a leaf and build a local model associated with this leaf 

T.local_model = SVM(S) 
 ELSE 
 
      /* find the best splitting attribute by using the gain ratio criterion */ 

A = selectBestSplitAttribute(S) 
 

                Splitting S into i subsets vi by using A 
FOR each subset i 

T.branch(i) = BuildLocalsvm (vi). 
END FOR 

 
END IF 

 
RETURN T 

Fig. 2. The Localsvm agorithm 
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Time complexity analysis. Assume SVM used in Localsvm has time complexity 
O(mp), where m is the number of training instances and p is a constant. Let f  be the 
number of leaf nodes in a decision tree in which f  local models of SVM are trained, 
and further assume that the training data is distributed uniformly over f.  Thus, the 
ratio of reduction in training time (TR) due to Localsvm is given as follows: 

( )
1

p
p

R p

m
T f

mf f

−= =  

As a result, the time reduction due to Localsvm as compared to SVM can be signifi-
cantly when both f and p are large. As an example, in two of the most time consuming 
data sets (connect and coding), training a single SVM model took 16000 seconds and 
1100 seconds, respectively; whereas training a single Localsvm (having f = 403 and 91, 
respectively) took only 14 seconds and 4 seconds, respectively using the same machine.  

Knowing f and the training time reduction ratio in real experiments, we can com-
pute p based on the above equation: p is calculated to be 2.2 for both data sets—the 
upper end of the time complexity estimated by Platt using the SMO algorithm [6]. 

3   Empirical Study 

The empirical study has two aims. First, to examine whether SVM can be successfully 
boosted using Localsvm. Here we investigate Boost Localsvm in terms of its predictive 
accuracy and its capacity to handle large data sets in terms of training time. Second, 
we compare Boost Localsvm to the commonly used combination of boosting and deci-
sion tree, an unstable learner. The experiments are carried out in the Weka platform [7]. 
We implement Localsvm in Weka by using J48 (Weka’s implementation of C4.5 deci-
sion tree [8]). The minimum number of instances at each leaf is set to 100 for Localsvm. 
We use the Weka implementations of AdaBoost.M1 and SMO for boosting [1] and 
SVM [6] with linear kernels in the experiments. We use seven large data sets from the 
UCI Repository [9] in the experiments. Because of the large data sizes, only a single 
run is carried out in each data set using the given training and test sets. The character-
istics of those data sets are shown in Table 1.  

Table 1. Description of data sets used in the experiments 

 
#Numeric 
attribute 

#Normal  
attribute    #Classes 

Train 
 Size 

Testing 
Size 

connect 0 42 3 50000 17557 
poker-hand 0 10 9 25010 1000000 

coding 0 15 2 15000 5000 
nursery 0 8 5 8606 4354 
letter 16 0 26 16000 4000 

shuttle 9 0 7 43500 14500 
pendigits 16 0 10 7494 3489 
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Fig. 3. Error rate results for SVM, Boost SVM, Localsvm and Boosti Localsvm, where i is the 
number of boosting iterations 
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The following description is divided into two subsections. The first subsection de-
scribes the result of the investigation comparing SVM, Boost SVM, Localsvm and 
Boost Localsvm. The second subsection shows the results comparing Boost Localsvm 

and Boost J48. All the experiments are run in AMD 2356 Quad Core Opterons™, 
32GB RAM and 4 x 320GB disks with CentOS 5 Linux operating system. 

3.1   Can SVM Be Successfully Boosted Using Localsvm? 

Fig. 3 shows the error rate result for SVM, Boost SVM, Localsvm, Boost Localsvm  

using 10, 20, 30 and 40 iterations in the seven data sets. As expected, the result shows 
that boosting cannot improve the predictive performance of SVM because of its 
model stability. Only in the pendigits data set that Boost SVM shows some marginal 
improvement. On the other hand, Localsvm alone improves the predictive accuracy of 
SVM significantly; and Boost Localsvm further improves its predictive accuracy and 
the improvement continues with the increased number of iterations. The only excep-
tion is in the pendigits data set in which the error rate continues to decrease up to 30 
boosting iterations but it increases slightly when the boosting iterations reach 40.  

Fig.4 shows the training time result for SVM, Boost SVM, Localsvm and Boost Lo-
calsvm. For data sets in which SVM requires long training time, Localsvm significantly 
reduces the training time. For example, in the connect, poker-hand and coding data 
sets, training one Localsvm model only requires one-thousandth, one-eightieth and one-
three-hundredth of the time required to train one SVM model! As a result, training 40 
Localsvm models (in Boost Localsvm with 40 iterations) requires less time than that to 
train a single model SVM model in these data sets! 

In data sets in which SVM trains fast, Localsvm will need training time in the same 
order. The examples can be found in the letter-recognition, shuttle and pendigits data 
sets. 

In all data sets, Boost Localsvm demonstrates that the training time increases line-
arly with the number of iterations. 

It is important to note that it will takes too long to run Boost SVM in the connect 
data set when training a single SVM model takes more than 4.5 hours; boosting 40 
SVM models will take more than 7 days! Also note that Boost SVM usually takes 
significantly longer to run than Boost Localsvm  when the same number of iterations is 
used. For example, Boost SVM with 49 iterations takes more than 900 seconds in the 
nursery data set; but Boost Localsvm with 40 iterations takes less than 40 seconds only. 
In the coding data set, boosting 2 SVM models takes more than 2800 seconds; 
whereas boosting 40 Localsvm models takes less than 130 seconds only. 

3.2   Comparison with J48 and Boost J48 

Table 2 shows the comparison with J48 and Boost J48. First, Localsvm performs better 
than J48 in five out of the seven data sets in terms of predictive accuracy; the two 
exceptions are marginally worse. Second, Boost Localsvm performs better than Boost 
J48 in majority of the data sets and performs equally well in one to two data sets (de-
pending on the number of iterations used.) The only exception is in the coding data 
set in which Boost Localsvm performs marginally worse when boosting 10 iterations 
and becomes marginally better when boosting 40 iterations. 
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Fig. 4. Training time result for SVM, Boost SVM, Localsvm and Boost Localsvm. Boost SVM 
stops at 1, 2, 49, 4, 4, and 21 iterations respectively in the poker-hand, coding, nursery, letter, 
shuttle, and pendigits data sets.  

In terms of training time, it is expected that Localsvm will take longer because of the 
use of SVM at every leaf of the tree. Indeed, Boost Localsvm is either in the same order 
or requires 1-2 order more training time than Boost J48. 
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Table 2. Result of error rate and training time for J48, Localsvm and their boosting counterparts 

Error Rate (%)    Boost 10 Boost 40 

 J48 SVM Localsvm Boost 
J48 

Boost   
Localsvm 

Boost 
J48 

Boost  
Localsvm 

connect 19.66 23.7 19.15 17.4 16.9 NA NA 

poker-hand 42.3 54.2 29.18 36.9 27.2 30.7 19.5 

coding 29.2 29.7 27.52 22.2 22.4 19.1 18.9 

nursery 3.7 6.4 3.77 1.3 0.4 0.7 0.2 

letter-recog 12.47 19.0 11.32 4.8 3.6 3.1 3.1 

shuttle 0.05 2.9 0.2 0.0 0.0 0.0 0.0 

pendigits 7.95 5.1 4.72 3.7 2.9 3.0 2.3 

Training Time (sec)        
connect 3.74 16260.1 14.1 46.2 201.8 NA NA 

poker-hand 0.45 1467.9 18.51 4.0 294.6 15.9 1137.8 

Coding 0.43 1170.1 4.02 2.6 36.1 10.6 127.9 

Nursery 0.15 14.0 0.65 0.8 8.5 3.1 39.2 

letter-recog 4.6 10.9 30.98 44.3 648.0 185.7 2816.7 

Shuttle 4.25 1.8 4.08 33.9 46.3 141.6 175.6 

Pendigits 0.93 1.4 2.83 8.2 31.2 32.3 129.9 

4   Related Work 

Boosting has previously been applied to SVM with the sole purpose of either scaling up 
the training time [10] or increasing predictive accuracy [18]. Boosting is used in [10] to 
select a subsample so that a SVM can be trained using a smaller subset. In [18], the 
boosting procedure is restarted, when the termination condition is met, for different 
values of the kernel parameter in order to increase model diversity—this increases the 
training time of a normal boosting process without reducing the training time for indi-
vidual SVM—this is infeasible for large data sets.  In another work, bagging is used in 
conjunction with random subspacing to increase SVM’s instability with the aim to im-
prove predictive accuracy without significantly reduction in the training time [11]. In 
contrast, Localsvm enables SVM to be successfully boosted and its training time to be 
significantly reduced, especially in large data sets.  

An ensemble built using Localsvm  is different from that built using methods such as 
Random Subspace [17] in three key aspects. First, Random Subspace builds each global 
model using all data points, albeit with one reduced feature set; whereas Localsvm builds 
local models using significantly small local training sets, each with a different reduced 
feature set. Second, the diversity of the models generated by Random Subspace is lim-
ited to the set of n

hC feature subsets, where n
hC is the binomial coefficient and h is the 

number of selected features out of the total n features. Each Localsvm model has f differ-
ent local models trained using different feature subsets as opposed to only one feature 
subset used in one Random Subspace model. Diversity of Localsvm models is further 
enhanced by the ensemble method used. Third, for an algorithm with O(nmp), the  
training time for Random Subspace is expected to be reduced by half only, when h = n/2 
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is used in order to have the maximum diversity; whereas the training time for Localsvm is 
expected to be reduced less than nmp/f (p-1), since each local model is trained using a 
reduced feature set. 

To the best of our knowledge, the only other ensemble approach to improve the predic-
tive performance of stable learners is Davidson’s bootstrap model averaging [12] which 
creates global models from multiple bootstrapping samples and sums the joint probabili-
ties of individual ensemble members to produce the final prediction (as opposed to a sim-
ple majority vote in bagging.) This method has two key weaknesses. First, the diversity of 
the models depends on bootstrap samples only; as a result, the improvement over, bagging 
due solely to model averaging, is small. Second, because of the use of global models, no 
significant training time reduction can be expected; thus, it cannot be applied to high order 
polynomial time complexity algorithms, especially in large data sets. 

Recent progress has significantly reduced the time complexity of SVM to O(m) by 
using Core Vector Machines [13]  and Ball Vector Machines [14]. Despite these ad-
vances, they are still the stable learners which prohibit SVM from being successfully 
boosted. These methods can be used in conjunction with Localsvm to improve the 
training time in ensembles. 

There are previous works which build hybrid models using decision trees in the 
same style as suggested in this paper. For example, Ting and Zhang [15] study the 
weaknesses of boosting Naïve Bayes by building Naïve Bayes at each leaf of a deci-
sion tree; Kohavi [16] scales up the predictive accuracy of a single Naïve Bayes using 
such a hybrid. But none has used SVM in a decision tree hybrid we have proposed in 
this paper and showed that it can be successfully boosted.  

5   Conclusions and Future Work 

We show in this paper that one can successfully boost SVM by building local SVMs 
at the leaves of a decision tree. This resolves the model stability problem and the high 
computational cost problem at the same time, and makes boosting SVM a reality that 
would otherwise infeasible for large data sets. To the best of our knowledge, this is 
the first method to successfully boost SVM which improves the predictive accuracy 
of the base model as well as significantly reduce the training time for SVM. We also 
show in our experiments that the proposed method to boost SVM perform better than 
boosting decision trees in terms of predictive accuracy. 

Although we have focused in this paper on boosting SVM, the proposed method 
which advocates the use of local models (as opposed to global models), we believe, 
can be applied to other stable learners, and the base model created is readily applied 
to existing ensemble methods such as Bagging, Random Subspace which rely on 
unstable models, not just for Boosting only. We will verify this in the near future. 
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Abstract. Statistical classification of hyperspectral data is challenging
because the inputs are high in dimension, while the quantity of labeled
data is typically limited. The resulting classifiers are often unstable and
have poor generalization. Nonlinear manifold learning algorithms assume
that the original high dimensional data actually lie on a low dimensional
manifold defined by local geometric differences between samples. Re-
cent research has demonstrated the potential of these approaches for
nonlinear dimension reduction and representation of high dimensional
observations. Nonlinear scattering phenomena associated with processes
observed in remote sensing data suggest that these may be useful for
analysis of hyperspectral data. However, computational requirements
limit their applicability for classification of remotely sensed data. Multi-
classifier systems potentially provide a means to exploit the advantages
of manifold learning through decomposition frameworks, while providing
improved generalization. This paper reports preliminary results obtained
from an ensemble implementation of Landmark Isomap in conjunction
with a kNN classifier. The goal is to achieve improved generalization of
the classifier in analysis of hyperspectral data in a dynamic environment
with limited training data. The new method is implemented and applied
to Hyperion hyperspectral data collected over the Okavango Delta of
Botswana.

1 Introduction

Increased availability of data from airborne and space-based hyperspectral sen-
sors has generated tremendous interest in the remote sensing community. These
instruments characterize spectral signatures with much greater detail than tra-
ditional multispectral sensors, and thereby can potentially provide improved
discrimination of targets [1]. However, hyperspectral data also present difficult
challenges for supervised statistical classification, where labeled training data
are used to estimate the parameters of the label-conditional probability density
functions [2]. Often, the dimensionality of the data is high (>200), there are tens
of classes C, and the quantity of training data is small. Sample statistics of train-
ing data may also not be representative of the true probability distributions of
the individual class signatures, particularly for remote, inaccessible areas where
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training data are logistically difficult and expensive to acquire. Generalization of
the resulting classifiers is often poor, thereby resulting in poor quality mapping
over extended areas.

Various approaches have been investigated to mitigate the impact of small
sample sizes and high dimensionality, which are inherently coupled issues since
the adequacy of a data sample depends on the data dimensionality, among other
factors [3]. Regularization methods attempt to stabilize the covariance matrix
by weighting the sample covariance matrix and a pooled covariance matrix or by
shrinking the sample covariance matrix toward the identity matrix [4]. While this
may reduce the variance of the parameter estimates, the bias of the estimates can
increase dramatically. Alternatively, the input space can be transformed into a
reduced feature space via feature selection [5,6] or feature extraction[7,8,9]. Al-
though feature selection methods reduce the effect of the high dimensionality
problem and are more interpretable, they are often trapped in a local optimal
feature subset. Linear feature extraction methods, including principal compo-
nent analysis (PCA), the maximum noise fraction (MNF), decision boundary
feature extraction (DBFE) [7], segmented principal component analysis (SPCA)
[8], and best basis band combining methods [9,10] are all used in analysis of
hyperspectral data. While these methods have been successful in many classifi-
cation problems, they ignore the nonlinear scattering phenomena represented in
the bidirectional reflectance distribution fraction (BDRF). Multiple scattering
within pixels, mixed pixels, atmospheric variability, scene geometry, and canopy
characteristics all contribute to nonlinear responses inherent in hyperspectral
data [11], motivating investigation of nonlinear methods.

2 Methodology

Recently, the machine learning community has made significant progress on mod-
eling nonlinear structure by determining coordinate systems that lie on the non-
linear manifold represented by the data [12,13,14,15,16]. The connection of two
of the most popular methods, Isomap [12] and Local Linear Embedding [13] to
kernel PCA [17] imply that new data can also be readily projected onto the
manifold. This is an important advance for classification problems as the mani-
fold is often constructed from training data, and the novel observations must be
projected onto the manifold.

Isomap nonlinear manifold learning assumes that the local feature space
formed by the nearest neighbors is linear, and the global nonlinear pattern can
be found by connecting these piecewise linear spaces. Isomap uses a user-defined
neighborhood and the shortest path algorithm to discover the manifold. It first
defines Ki, the set of neighborhood nodes of node i, to create a distance matrix
D′. If j ∈ Ki, d′ij = dij . If j /∈ Ki, d′ij = ∞. Isomap then accumulates the
distance beyond the set Ki along the shortest path to obtain Dstp.

The shortest path network is constructed from a directed graph G = (N, E),
where N represents the nodes, and E represents the edges of the graph. The
value of dij represents the length (cost) of Eij , while xij is the amount of flow
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from Ni to Nj . The shortest path algorithm, typically implemented in Isomap via
the Dijkstra [18] method, finds the paths from a root node N1 to all other nodes
to minimize the sum of the individual path lengths. The process is repeated for
each sample, which in turn becomes the root node, to create a shortest path
network Dstp.

Dimension reduction is then accomplished through multidimensional scaling
(MDS), a linear dimension reduction technique that places a set of samples in
a meaningful dimensional space that explains the similarity between samples.
Given a distance matrix D, and assuming that a Y ∈ �l×n, l % d exists such
that δ2

ij = ||yi − yj ||2 ≈ d2
ij and Yi are orthogonal, it can be shown that Y,

calculated by classical MDS, is equivalent to a vector of the first l principal
components of X if the Euclidean pairwise distance matrix is used [19]. Here,
MDS is used to evaluate the instrinsic dimension of Dstp.

Experiments in [12] have demonstrated that Dstp is able to define the nonlin-
ear manifold, and that it can be represented globally by MDS in a lower dimen-
sional space. The method has been applied to hyperspectral data by researchers
at the Naval Research Laboratory and by our group [11,20,21]. Both research
groups found that Isomap can characterize hyperspectral data in low dimensional
spaces while improving separation for many classes, so the embedded features
are potentially useful for classification. However, although Dijkstra’s algorithm
is efficient for finding the shortest path from a root node to the rest of the nodes,
building the shortest path network is O(N2 log N), which is problematic when
the total number of samples, N , is large.

Several approaches have been proposed to mitigate the computational de-
mands of Isomap. Bachmann [11] approached the memory and computational
overhead problem by dividing the scene into arbitrary subsets, each with a man-
ageable number of samples, and realigning them after learning the individual
manifolds. In another approach, Landmark Isomap (L-Isomap) randomly selects
n “landmark” points from the original data to construct its manifold [16]. In-
stead of building an N×N shortest path network, L-Isomap uses a much smaller
n × N network, which requires fewer iterations. The MDS operations are also
reduced on this smaller network. Samples that are not selected for landmarks
are placed on the manifold via the derived embedding vectors and their updated
distances to the n landmark points. The complexity of computing the geodesic
distance matrix is then O(nN log n). Although it mitigates the computational
burden, L-Isomap assumes that the manifold is smooth, which is not always the
case for data in remotely sensed images. Chen et al. [20] investigated classifi-
cation with manifold learning by using the kNN method. Later, they obtained
improved classification results using a new form of landmark selection which fo-
cuses on the boundaries of the clusters, rather than randomly selected points as
in L-Isomap [22]. In essence, the goal was to identify the facets of the manifold
that are often associated with boundaries of the classes.

Extending these ideas, Bachmann et al. [21] investigated use of a representa-
tive backbone manifold composed of a subset of samples, and subsequent em-
bedding of other samples in the manifold via a local linear embedding algorithm.
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Using a different approach, Kim et al. [23] sought to incorporate local spatial
information and unlabeled samples while reducing computation associated with
developing the Isomap manifold by performing spatial-spectral clustering prior
to developing multiresolution manifold in a two-stage approach. Later, they also
investigated Laplacian regularization as a semi-supervised approach to mitigate
the impact of small training sets [24].

While these approaches have all improved computation in manifold learning,
new improvements may also be achieved through multi-classifier systems. En-
sembles of manifolds and decomposition methods such as binary and hierarchical
classifiers, which also provide capability to exploit local manifold structure, all
provide potentially advantageous frameworks for reducing computational over-
head, while increasing generalization of classifiers. In this preliminary study,
Isomap is investigated for manifold learning in an ensemble-based approach,
whereby labeled data are severely decimated by random sampling to create mul-
tiple sparse approximations to the full manifold.

The goal of the research is to investigate the capability of a multi-classifier
system based on an “extreme” implementation of L-Isomap, whereby a dra-
matically reduced number of points is used to construct each component of an
ensemble of manifolds. Novel pixels are classified relative to the resulting man-
ifolds. While individual manifolds obtained using the new Ensemble L-Isomap
(EL-Isomap) are not likely to be representative approximations of all classes, the
ensemble of manifolds may be adequate to achieve good classification results.
The computational complexity of EL-Isomap increases linearly with the number
of components in the ensemble, so the overall computational requirements are
greatly reduced.

Classification in this study is performed using the kNN method, which is
easy to implement with Isomap since both require the distance matrix of the
data. Because Isomap obtains geodesic distances from the distance matrix by
calculating the shortest path distances, kNN classification can be applied once
the matrix is obtained. Thus, the manifold coordinates are not actually obtained,
mitigating the impact of selection of the intrinsic dimension, to which manifold
based classification is quite sensitive. Finally, EL-Isomap determines the overall
label of a pixel via voting.

3 Results

The ensemble approach for classification was applied to hyperspectral data and
evaluated relative to classification accuracies obtained by the traditional Isomap
and the L-Isomap methods.

3.1 Remotely Sensed Data

The NASA EO-1 satellite acquired a sequence of data over the Okavango Delta,
Botswana in 2001-2003. The Hyperion sensor on EO-1 acquires data at 30 m2

pixel resolution over a 7.7 km strip in 242 bands covering the 400-2500 nm
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Fig. 1. Subset of Hyperion data over the Okavango Delta (RGB: Bands 51, 149, 31)

Table 1. Land cover classes for Okavango Delta region and associated numbers of
labeled data

Land Cover Classes # Labeled Disjoint Labeled Data Sets

Data Points Data 1 Data 2

1 Water 297 158 139

2 Primary Floodplain 437 228 209

3 Riparian 448 237 211

4 Firescar 354 178 176

5 Island Interior 337 183 154

6 Woodlands 357 199 158

7 Savanna 330 162 168

8 Short Mopane 239 124 115

9 Exposed Soils 215 111 104

TOTAL 3014 1580 1434

portion of the spectrum in 10 nm windows. Preprocessing of the data was per-
formed to mitigate the effects of bad detectors, inter-detector miscalibration,
and intermittent anomalies. Uncalibrated and noisy bands associated with wa-
ter absorption features were removed, and the remaining 145 bands [10-55, 82-97,
102-119, 134-164, 187-220] were included as candidate features. Figure 1 illus-
trates the complexity of the spatial distribution of the data. A data set comprised
of 1476 × 256 pixels with nine land cover types (Table 1) was analyzed in this
study. Labeled data were obtained from a combination of field studies and in-
terpretation of high resolution imagery by experts who are knowledgeable of
the area. Because land cover types are collocated in geographic regions, labeled
data occur in contiguous patches. Training and test data were obtained by ran-
domly sampling data from these patches. A set of spatially disjoint labeled data
were also collected throughout the scene to better evaluate generalization of the
method.
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3.2 Experimental Design

Experiments were conducted to evaluate the impact of sampling rate, number
of elements in the ensemble, and the effect of incorporating unlabeled data in
construction of the manifold when the quantity of labeled data is extremely
small. Results were obtained for manifolds constructed using I) randomly se-
lected subsets of all the labeled data, II) randomly sampled labeled data from
disjoint areas, III) labeled and unlabeled data from disjoint areas. Hereafter,
these experiments are referred to as I, II and III, respectively.

Data were randomly sampled such that 25% were reserved for testing, and
the remaining points were sampled to obtain training sets comprised of 15%,
30%, 45%, 60%, and 75% of the original data. These training sets were used to
construct the manifolds for Isomap and L-Isomap experiments. For EL-Isomap,
the manifolds were constructed by further decimating the L-Isomap training
sets to 20%, 30%, 40%, and 50% of the labeled samples utilized for L-Isomap
(e.g. 20 × 15 samples, etc). Ten replications of each split of the training and
test data and 5 replications of each EL-Isomap experiment were performed,
respectively. The optimal value of k for the kNN classifier was obtained by 3-
fold cross validation. The number of neighbors used in construction the shortest
path network was selected experimentally to be 5.

3.3 Experimental Results

Complete results obtained for all sampling rates are too extensive to be pre-
sented herein. Representative sample results and a summary of trends exhibited
in the full set of experimental results are included. Plots of the classification ac-
curacies obtained using the kNN classifier in conjunction with Isomap (SKNN),
traditional L-Isomap (LKNN), and Ensemble Landmark Isomap (ELSKNN) are
shown in Fig. 2- 4.

Classification results obtained using SKNN reflect the manifold constructed
from the combined set of sampled training and the full test data, while results
for LSKNN were obtained from a manifold constructed using only the randomly
sampled training data. Thus, for low sampling rates, the accuracies obtained from
SKNN and LSKNN are almost identical. As the sampling rate increases, SKNN
yields higher accuracies resulting from more points being used to construct the
manifold than for LSKNN. The primary focus of the study is the impact of
severe decimation of the data used to construct the manifold for the ensemble,
so discussion focuses on results from LSKNN and ELSKNN.

The test set is 25% of the original labeled data for Experiment I, approxi-
mately 90 points for most classes. At a sampling rate of 30% (≈ 100 points),
the manifold for SKNN is constructed from ≈ 190 points, while the manifold for
LSKNN is constructed from ≈100 points. The overall classification accuracies
for SKNN and LSKNN are both ≈.93, as shown in Fig. 2a. When the landmark
sample is further decimated to 20% of the landmark sample (N ≈ 100 × .2) for
ELSKNN, the average accuracy for an ensemble manifold with M = 2 elements
is .87, then improves to .89 when M = 3 and to .90 when M = 5, with little ad-
ditional improvement for larger M . For a decimation rate of 50% (N ≈ 100× .5)
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Fig. 2. Accuracy plot for Experiment I. SKNN, LSKNN and ELSKNN for two different
training rates, (a) 30% and (b) 60%. For ELSKNN, two different decimation rates, 20%
and 50%, are shown.

2 2.5 3 3.5 4 4.5 5 5.5 6
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

# Ensemble

A
cc

ur
ac

y

 

 

SKNN

LSKNN

ELSKNN(0.2)

ELSKNN(0.5)

[  0.3 ] 

(a)

2 2.5 3 3.5 4 4.5 5 5.5 6
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

# Ensemble

A
cc

ur
ac

y

 

 

SKNN

LSKNN

ELSKNN(0.2)

ELSKNN(0.5)

[  0.6 ] 

(b)

Fig. 3. Accuracy plot for Experiment II. SKNN, LSKNN and ELSKNN for two different
training rates, (a) 30% and (b) 60%. For ELSKNN, two different decimation rates, 20%
and 50%, are shown.

for ESKNN, the accuracy is .91 with a 2 element ensemble and .92 for a 3 ele-
ment ensemble, with little improvement for larger ensembles. Fig. 2b shows the
same trends for sampling rates of 60% for the training data. Reduction in com-
putation is significant, with little degradation in classification accuracy relative
to LSKNN.

Results from Experiment II obtained using the disjoint labeled data sets have
lower accuracies, reflecting the high correlation between training and test data
obtained by sampling data that are collocated within a geographic region. Ap-
proximately half the data lie in each of the disjoint sets of labeled data, so only
about half the number of points (≈ 50 points for a sampling rate 30%, ≈ 95
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Fig. 4. Accuracy plot for Experiment III. SKNN, LSKNN and ELSKNN for two dif-
ferent training rates, (a) 30% and (b) 60%. For ELSKNN, two different ensemble sizes
of 2 and 4 are shown.

points for 60%) is used to construct the manifolds in Fig. 3. The accuracies for
a sampling rate of 30% are shown in Fig. 3a, with decimation rates of 20% and
50% for ELSKNN, and Fig. 3b contains accuracies for a sampling rate of 60%
and decimation rates of 20% and 50% of the training data. For sampling rates
of 30%, the average classification accuracy for LSKNN is .84, while ELSKNN
yields an accuracy of .76 for a 2 member ensemble, with only slight improvement
achieved with larger ensembles with decimation of 20% (N ≈ 50× .2). With dec-
imation of 50% (N ≈ 50 × .5), ELSKNN has nearly the same average accuracy
as LSKNN for a 2 member ensemble, but with half the data. When the sam-
pling rate increases to 60% in Fig. 3b ELSKNN has nearly the same accuracy as
LSKNN for a decimation rate of 20% (N ≈ 95× .2) with a 2 element ensemble,
and actually has higher accuracies than LSKNN for a 5 member ensemble with
a decimation rate of 50%.

When the quantity of labeled data are extremely limited, the manifold may
not be characterized adequately for good classification. Preliminary experiments
conducted to investigate the impact of inclusion of unlabeled data are shown in
Fig. 4. Here, the training data were sampled, then augmented by unlabeled data
to evaluate the impact of ensemble manifolds. Fig. 4a demonstrates the impact
of augmenting the unlabeled data (30% sampling rate, 30% decimation rate)
such that the ratio of the number of unlabeled to labeled data ranges from .5 to
2.0 for a 2, 3, and 5 member ensembles. Fig. 4b contains analogous results where
the sampling rate is 60%. Classification accuracies degrade as the quantity of
unlabeled data introduced to the system increases, but the impact is mitigated
by large ensembles. Although the overall accuracies are lower, the accuracies
for individual classes may actually improve due to the manifold having been
developed from a larger, more representative sample.
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4 Conclusions and Ongoing Work

The primary goal of this research is to investigate multiple classifier system
frameworks in conjunction with manifold learning for analysis of high dimen-
sional remote sensing image data. Because of the computational complexity of
algorithms such as Isomap, application of these approaches to large data sets
commonly encountered in hyperspectral sensing is impossible. For classification
purposes, manifolds are typically constructed from labeled data, then unlabeled
data are inserted for classification. In this paper, we explored the concept of se-
vere decimation of the training data used to build the manifold, referring to the
process as “extreme landmark” selection, in conjunction with ensembles. The
results indicate that for this data set, lower accuracies associated with signifi-
cant reduction in the amount of data used to construct the manifold are largely
compensated for by the use of ensembles. In practice, the rate of decimation
which could be tolerated would need to be ascertained.

Use of multi-classifier systems in conjunction with even simplistic sampling
of the data to create data manifolds appears to be promising. Ongoing work
involves investigation of other schemes for landmark selection, alternative classi-
fiers, and hierarchical schemes for developing sub-manifolds with class-dependent
characteristics.
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Abstract. Semi-supervised learning and ensemble learning are two im-
portant learning paradigms. The former attempts to achieve strong gen-
eralization by exploiting unlabeled data; the latter attempts to achieve
strong generalization by using multiple learners. In this paper we advo-
cate generating stronger learning systems by leveraging unlabeled data
and classifier combination.

1 Introduction

In many real applications it is difficult to get a large amount of labeled training
examples although there may exist abundant unlabeled data, since labeling the
unlabeled instances requires human effort and expertise. Exploiting unlabeled
data to help improve the learning performance has become a very hot topic
during the past decade. There are three major techniques for this purpose [28],
i.e., semi-supervised learning, transductive learning and active learning.

Semi-supervised learning [6, 36] deals with methods for exploiting unlabeled
data in addition to labeled data automatically to improve learning performance,
where no human intervention is assumed. Transductive learning [25] also tries to
exploit unlabeled data automatically, but it assumes that the unlabeled examples
are exactly the test examples. Active learning deals with methods which assume
that the learner has some control over the input space, and the goal is to minimize
the number of queries from human experts on ground-truth labels for building
a strong learner [22]. In this paper we will focus on semi-supervised learning.

From the perspective of generating strong learning systems, it is interesting
to see that semi-supervised learning and ensemble learning are two important
paradigms that were developed almost in parallel and with different philosophies.
Semi-supervised learning tries to achieve strong generalization by exploiting un-
labeled data, while ensemble learning tries to achieve strong generalization by
using multiple learners. From the view of semi-supervised learning, it seems that
using unlabeled data to boost the learning performance can be good enough, and
so there is no need to involve multiple learners; while from the view of ensemble
learning, it seems that using multiple learners can do all the things and therefore
there is no need to consider unlabeled data. This partially explains why the MCS
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community has not paid sufficient attention to semi-supervised ensemble meth-
ods [20]. Some successful studies have been reported [3, 7, 14, 15, 24, 32], while
most are semi-supervised boosting methods [3, 7, 15, 24].

In this article we advocate combining the advantages of semi-supervised learn-
ing and ensemble learning. Using disagreement-based semi-supervised learning
[34] as an example, we will discuss why it is good to leverage unlabeled data and
classifier combination. After a brief introduction to disagreement-based meth-
ods in Section 2, we will discuss on why classifier combination can be helpful
to semi-supervised learning in Section 3, discuss on why unlabeled data can be
helpful to ensemble learning in Section 4, and finally conclude in Section 5.

2 Disagreement-Based Semi-supervised Learning

Research on disagreement-based semi-supervised learning started from Blum and
Mitchell’s seminal work on co-training [5]. They considered the situation where
data have two sufficient and redundant views (i.e., two attribute sets each of
which contains sufficient information for constructing a strong learner and is
conditionally independent to the other attribute set given the class label). The
algorithm trains a learner from each view using the original labeled data. Each
learner selects and labels some high-confident unlabeled examples for its peer.
Then, each learner is refined using the newly labeled examples provided by its
peer. The whole process repeats until no learner changes or a pre-set number of
learning rounds is executed.

Blum and Mitchell [5] analyzed the effectiveness of co-training and disclosed
that if the two views are conditionally independent, the predictive accuracy of an
initial weak learner can be boosted to arbitrarily high using unlabeled data by
employing the co-training algorithm. Dasgupta et al. [8] showed that when the
two views are sufficient and conditionally independent, the generalization error
of co-training is upper-bounded by the disagreement between the two classifiers.
Later, Balcan et al. [2] indicated that if a PAC learner can be obtained on each
view, the conditional independence assumption or even the weak independent
assumption [1] is unnecessary, and a weaker assumption of “expansion” of the
underlying data distribution is sufficient for iterative co-training to succeed.

Zhou et al. [35] showed that when there are two sufficient and redundant
views, a single labeled training example is able to launch a successful co-training.
Indeed, the existence of two sufficient and redundant views is a very luxury
requirement. In most real-world tasks this condition does not hold since there
is generally only a single attribute set. Thus, the applicability of the standard
co-training is limited though Nigam and Ghani [18] showed that if there exist a
lot of redundant attributes, co-training can be enabled through view split.

To deal with single view data, Goldman and Zhou [9] proposed a method which
trains two learners by using different learning algorithms. The method requires
each classifier be able to partition the instance space into equivalence classes,
and uses cross validation to estimate the confidences of the two learners as well
as the equivalence classes. Zhou and Li [32] proposed the tri-training method,



When Semi-supervised Learning Meets Ensemble Learning 531

which requires neither two views nor special learning algorithms. This method
uses three learners and avoids estimating the predictive confidence explicitly.
It employs “majority teach minority” strategy in the semi-supervised learning
process, that is, if two learners agree on an unlabeled instance but the third
learner disagrees, the two learners will label this instance for the third learner.
Moreover, classifier combination is exploited to improve generalization. Later, Li
and Zhou [14] proposed the co-forest method by extending tri-training to include
more learners. In co-forest, each learner is improved with unlabeled instances
labeled by the ensemble consists of all the other learners, and the final prediction
is made by the ensemble of all learners. Zhou and Li [31, 33] proposed the first
semi-supervised regression algorithm Coreg which employs two kNN regressors
facilitated with different distance metrics. This algorithm does not require two
views either. Later it was extended to a semi-supervised ensemble method for
time series prediction with missing data [17].

Previous theoretical studies [2, 5, 8] worked with two views, and could not
explain why these single-view methods can work. Wang and Zhou [26] presented
a theoretical analysis which discloses that the key for disagreement-based ap-
proaches to succeed is the existence of a large diversity between the learners,
and it is unimportant whether the diversity is achieved by using two views, or
two learning algorithms, or from other channels.

Disagreement-based semi-supervised learning approaches have been applied to
many real-world tasks, such as natural language processing [10,19,21,23], image
retrieval [28,29,30], document retrieval [13], spam detection [16], email answering
[11], mammogram microcalcification detection [14], etc. In particular, a very
effective method which combines disagreement-based semi-supervised learning
with active learning for content-based image retrieval has been developed [29,30],
and its theoretical analysis was presented recently [27].

3 The Helpfulness of Classifier Combination to
Semi-supervised Learning

Here we briefly introduce some of our theoretical results on the helpfulness of
classifier combination to semi-supervised learning. Details can be found in a
longer version of [26].

Let H denote a finite hypothesis space and D the data distribution generated
by the ground-truth hypothesis h∗ ∈ H. Let d(hi, h∗) = Prx∈D[hi(x) �= h∗(x)]
denote the difference between two classifiers hi and h∗. Let hi

1 and hi
2 denote

the two classifiers in the i-th round, respectively. We consider the following
disagreement-based semi-supervised learning process:

Process. First, we train two initial learners h0
1 and h0

2 using the labeled data
set L which contains l labeled examples. Then, h0

1 selects u number of unlabeled
instances from the unlabeled data set U to label, and puts these newly labeled
examples into the data set σ2 which contains copies of all examples in L; while
h0

2 selects u number of unlabeled instances from U to label and puts these newly
labeled examples into the data set σ1 which contains copies of all examples in L.
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h1
1 and h1

2 are then trained from σ1 and σ2, respectively. After that, h1
1 selects u

number of unlabeled instances from U to label, and updates σ2 with these newly
labeled examples; while h1

2 selects u number of unlabeled instances to from U
label, and updates σ1 with these newly labeled examples. The process is repeated
for a pre-set number of learning rounds.

We can prove that even when the individual learners could not improve the
performance any more, classifier combination is still possible to improve gener-
alization further by using more unlabeled data.

Lemma 1. Given the initial labeled data set L which is clean, and assuming that
the size of L is sufficient to learn two classifiers h0

1 and h0
2 whose upper bound

of the generalization error is a0 < 0.5 and b0 < 0.5 with high probability (more
than 1 − δ) in the PAC model, respectively, i.e., l ≥ max[ 1

a0
ln |H|

δ , 1
b0

ln |H|
δ ].

Then h0
1 selects u number of unlabeled instances from U to label and puts them

into σ2 which contains all the examples in L, and then h1
2 is trained from σ2 by

minimizing the empirical risk. If lb0 ≤ e M
√

M ! − M , then

Pr[d(h1
2, h

∗) ≥ b1] ≤ δ , (1)

where M = ua0 and b1 = max[ lb0+ua0−ud(h0
1,h1

2)
l , 0].

Lemma 1 suggests that the individual classifier h1
2 can be improved using unla-

beled data when d(h0
1, h

1
2) is larger than a0.

Considering a simple classifier combination strategy, that is, when two clas-
sifiers disagree on a test instance, the classifier which has a higher confidence is
relied on. Let hi

com denote the combination of hi
1 and hi

2, Si denote the set of
examples on which hi

1(x) �= hi
2(x), and γ = Prx∈Si [hi

com(x) �= h∗(x)].

Lemma 2. If d(h1
1, h

1
2) >

ua0+ub0+
(
l(1−2γ)−u

)
d(h0

1,h0
2)

u+l(1−2γ) and l < u < c∗, then

Pr[h1
com(x) �= h∗(x)] < Pr[h0

com(x) �= h∗(x)]. (2)

Lemma 2 suggests that the classifier combination h0
com can be improved us-

ing unlabeled data when d(h1
1, h

1
2) is larger than

ua0+ub0+
(
l(1−2γ)−u

)
d(h0

1,h0
2)

u+l(1−2γ) . By
Lemmas 1 and 2, we have the following theorem.

Theorem 1. When d(h0
1, h

0
2) > a0 > b0 and γ ≥ 1

2 +
u
(
a0+b0−d(h0

1,h0
2)
)

2ld(h0
1,h0

2)
, even

when Pr[h1
j (x) �= h∗(x)] ≥ Pr[h0

j(x) �= h∗(x)] (j = 1, 2), Pr[h1
com(x) �= h∗(x)] is

still less than Pr[h0
com(x) �= h∗(x)].

Moreover, we can prove Theorem 2, which suggests that the classifier combina-
tion is possible to reach a good performance earlier than the individual classifiers.

Theorem 2. Suppose a0 > b0, when γ <
d(h0

1,h0
2)+b0−a0

2d(h0
1,h0

2)
, Pr[h0

com(x) �= h∗(x)] <
min[a0, b0].
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4 The Helpfulness of Unlabeled Data to Ensemble
Learning

When there are very few labeled training examples, the necessity of exploiting
unlabeled data is obvious, since it is impossible to build a strong ensemble oth-
erwise. So, in this section we will only focus on situation where there are a lot
of labeled training examples.

It is well-known that to construct a good ensemble, the base classifiers should
be accurate and diverse; however, the diversity is difficult to measure and control
[12]. We claim that when there are lots of labeled training examples, unlabeled
instances are still helpful since they can help to increase the diversity among the
base learners. We will briefly introduce a preliminary study below.

Let X = Rd denote the d-dimensional input space and Y = {−1, +1} denote
the binary label space. Given labeled training set L = {(x1, y1), · · · , (xl, yl)}
and unlabeled training set U = {u1, · · · , un}, where xi ∈ X , uj ∈ X and
yi ∈ Y, let L̃ = {x1, · · · , xl} denote the set of unlabeled instances derived
from L. Assume that the classifier ensemble E consists of m linear classifiers
{w1 · · · , wm}, where wk ∈ Rd (k = 1, · · · , m) is the weight vector of the k-
th classifier. Let W = [w1, · · · , wm] be the matrix formed by concatenating
all weight vectors. Then, we can generate an ensemble by minimizing the loss
function

V (L,U , W ) =
1
2

m∑
k=1

||wk||22 + C1 · Vacc(L, W ) + C2 · Vdiv(D, W ) , (3)

where the first term controls the model complexity, the second term corresponds
to the loss of the ensemble in terms of accuracy on L (balanced by C1), while
the third term corresponds to the loss of the ensemble in terms of diversity
on data set D (balanced by C2). Here, we consider two ways to specify D: (1)
D = L̃, and (2) D = L̃

⋃
U . The first way leads to the method Lcd which does

not consider unlabeled data, while the second way leads to the method LcdUd
which considers both labeled and unlabeled data.

The second loss term in Eq. 3 can be calculated according to

Vacc(L, W ) =
m∑

k=1

l∑
i=1

loss(wk, xi, yi) , (4)

where loss(wk, xi, yi) measures the loss of the k-th base classifier, i.e., wk, on
the i-th labeled training example, i.e., (xi, yi). Here we calculate it using the l2
norm

loss(wk, xi, yi) =

{
0 if yi〈wk, xi〉 ≥ 1

(1 − yi〈wk, xi〉)2 if yi〈wk, xi〉 < 1

where 〈·, ·〉 denotes the dot product between vectors.
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We calculate the third term in Eq. 3 by considering the prediction difference
between each pair of base classifiers, i.e.,

Vdiv(D, W ) =
m−1∑
p=1

m∑
q=p+1

d(wp, wq,D) , (5)

where

d(wp, wq,D) =

{
0 if D = ∅∑

x∈D sign(〈wp,x〉)·sign(〈wq,x〉)
|D| if D �= ∅ .

By putting Eqs. 4 and 5 into Eq. 3, and approximating sign(·) by tanh(·),
the resulting loss function turns to be a continuous and differentiable function
of the model parameters W . Thus our goal becomes to find the optimal model
W ∗ which minimizes

W ∗ = arg min
W

V (L,U , W ) . (6)

We initialize W by generating each classifier wk from a bootstrap sample
of L, i.e., Lk = {(xk

1 , y
k
1 ), · · · , (xk

l , yk
l )}, by solving the SVM-style optimization

problem

min
wk,ξ

1
2
||wk||22 + C

l∑
i=1

ξk
i s.t. yk

i 〈wk, xk
i 〉 ≥ 1 − ξk

i , ξk
i ≥ 0 .

where ξ = [ξk
1 , ξk

2 , · · · , ξk
l ]. The above problem falls into the category of quadratic

programming (QP) and can be solved efficiently by a number of methods off-
the-shelf. Then, we solve Eq. 6 by gradient descent.

Figure 1 shows some preliminary results on data sets g241n1 and vehicle [4].
For each data set, a half data is randomly chosen to form the test set. Among
the remaining data, 5% are used as labeled training examples while 95% are
used as unlabeled instances. The experiments are repeated for ten times with
random data splits. The parameters C1 and C2 are both set to 1. In Figure 1
the horizontal axis in each subfigure shows the size of the ensembles (from 10 to
60 with an interval of 10), and the vertical axis shows the average accuracy. The
results show that LcdUd can outperform Lcd, while the only difference between
LcdUd and Lcd is that the former considers the usefulness of unlabeled data.

It is worth noting that the above method is far from an excellent one since
it does not distinguish the priorities of the contribution from labeled data and
unlabeled data. Ideally, the accuracy and diversity on labeled data should be
considered at first to form a pool of comparable ensembles, and then from the
pool an ensemble with high diversity on unlabeled data is selected. Powerful
ensemble methods would be developed along this direction.

1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html



When Semi-supervised Learning Meets Ensemble Learning 535

10 20 30 40 50 60
0.65

0.66

0.67

0.68

0.69

0.70

Ensemble size

A
cc

ur
ac

y

 

 

Lcd

LcdUd

10 20 30 40 50 60
0.77

0.78

0.79

0.80

0.81

Ensemble size

A
cc

ur
ac

y

 

 

Lcd

LcdUd

(a) g241n (N = 1500, d = 241) (b) vehicle (N = 435, d = 26)

Fig. 1. Comparing the performance of Lcd and LcdUd. N is the number of instances;
d is the dimensionality.

5 Conclusion

Semi-supervised learning and ensemble learning are two well-developed
paradigms for improving generalization. Although there are some studies of semi-
supervised ensemble methods, the MCS community has not devoted much effort
to this line of research. In this article we argue that

– Classifier combination is helpful to semi-supervised learning. There are at
least two reasons: 1) the performance of classifier combination can be im-
proved further even though the individual learners could not be improved
using unlabeled data; 2) the classifier combination can reach a good perfor-
mance earlier than individual learners.

– Unlabeled data are helpful to ensemble learning. There are at least two
reasons: 1) when there are very few labeled training examples, unlabeled
data have to be exploited for constructing a strong ensemble; 2) unlabeled
data can be used to help increase the diversity of base learners.

Our arguments were made on disagreement-based semi-supervised learning ap-
proaches, however, they are possible to generalize to other kinds of semi-supervised
learning and ensemble learning approaches. We believe that semi-supervised en-
semble methods are very worth studying. Moreover, we think it is possible to
derive effective diversity controls for ensemble learning by considering the use-
fulness of unlabeled data.

Acknowledgments

The author wants to thank Wei Wang and Min-Ling Zhang for their help. This
research was supported by the National Science Foundation of China (60635030,
60721002), the National High Technology Research and Development Program
of China (2007AA01Z169), the Jiangsu Science Foundation (BK2008018) and
the Jiangsu 333 High-Level Talent Cultivation Program.



536 Z.-H. Zhou

References

1. Abney, S.: Bootstrapping. In: Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, Philadelphia, PA, pp. 360–367 (2002)

2. Balcan, M.-F., Blum, A., Yang, K.: Co-training and expansion: Towards bridging
theory and practice. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural
Information Processing Systems, vol. 17, pp. 89–96. MIT Press, Cambridge (2005)

3. Bennett, K., Demiriz, A., Maclin, R.: Exploiting unlabeled data in ensemble meth-
ods. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Edmonton, Canada, pp. 289–296 (2002)

4. Blake, C., Keogh, E., Merz, C.J.: UCI repository of machine learning databases.
Department of Information and Computer Science, University of California, Irvine,
CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In:
Proceedings of the 11th Annual Conference on Computational Learning Theory,
Madison, WI, pp. 92–100 (1998)

6. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press,
Cambridge (2006)
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