
Providing Observability for OpenMP 3.0

Applications

Yuan Lin1 and Oleg Mazurov2

1 Nvidia Corp., Santa Clara, CA 95050, USA
yulin@nvidia.com

2 Sun Microsystems Inc., Menlo Park, CA 94025, USA
oleg.mazurov@sun.com

Abstract. Providing observability for OpenMP applications is a techni-
cally challenging task. Most current tools treat OpenMP applications as
native multi-threaded applications. They expose too much implementa-
tion detail while failing to present useful information at the OpenMP ab-
straction level. In this paper, we present a rich data model that captures
the runtime behavior of OpenMP applications. By carefully designing in-
teractions between all involved components (compiler, OpenMP runtime,
collector, and analyzer), we are able to collect all needed information and
keep overall runtime overhead and data volume low.

1 Introduction

For any programming environment, offering observability in the runtime behav-
ior of user applications is equally as important as offering schemes that help to
create the application. OpenMP provides a set of high level constructs and APIs
that aim to simplify the task of writing high performance and portable parallel
applications. The nondeterministic nature of concurrent execution of threads,
the program transformations performed by the compilers, and the interactions
between user applications and runtime libraries makes program observation (e.g.,
performance profiling and debugging) more important, and at the same time,
more difficult to achieve.

For example, a generic performance analysis tool can only provide rudimen-
tary support for OpenMP performance profiling. The tool may show all native
threads used in the process - some may map to OpenMP threads and some may
be internal service threads used by the OpenMP runtime library itself. The tool
may show native callstacks that barely resemble the caller-callee relationship
in user program. The tool may not be able to differentiate the user CPU time
used for real work from those used for OpenMP synchronization or caused by
OpenMP overhead. In OpenMP, an OpenMP thread executes on behalf of an
OpenMP task inside an OpenMP parallel region (implicit or explicit) at any par-
ticular moment. If the tool has no knowledge of this context, it cannot present
information close to the OpenMP execution model, reducing the help it pro-
vides in trouble-shooting OpenMP specific performance problems. To a certain
extent, the OpenMP execution environment resembles a virtual machine. We

M.S. Müller et al. (Eds.): IWOMP 2009, LNCS 5568, pp. 104–117, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Providing Observability for OpenMP 3.0 Applications 105

believe, for general OpenMP programmers, observability should be provided at
the OpenMP abstraction level, in addition to the machine level which exposes
internals of the virtual machine.

This paper makes the following contributions. First, it presents a data model
upon which the runtime behavior of an OpenMP program can be constructed for
observation. Second, it presents a way to extend the current OpenMP profiling
API to support the new OpenMP tasking feature, and a way to integrate vendor
specific extensions. Third, it presents the techniques for generating the user
callstack that reflects the program logic rather than implementation details.
And last, it presents the techniques for efficiently generating, recording, and
reconstructing various tree structures in the data model.

The rest of the paper is organized as follows. Section 2 describes our OpenMP
data model. Section 3 describes extensions to the OpenMP profiling API to sup-
port the data model. Section 4 presents our techniques in getting the user call-
stack. Section 5 presents our techniques in getting the thread tree and the task
tree related information. Section 6 uses a quicksort program to illustrate the in-
formation that can be constructed and presented to users using the data collected
by our techniques. Section 7 describes related work. Section 8 concludes our paper.

2 The Data Model

In this section, we describe a rich data model that captures the runtime behavior
of an OpenMP application. Any event of interest that happened during the
execution of an OpenMP application will have its OpenMP context described in
the data model.

Before diving into the details of the data model, we define the components
involved in the tool chain:

– A compiler that processes program source code, translates OpenMP con-
structs, produces executable code functionally equivalent to the original,
and provides information that allows mapping of various program objects in
the executable code back to the source code (e.g., user and outlined function
naming, instruction to source line mapping).

– An OpenMP runtime library that provides thread/task management,
scheduling and synchronizations.

– A collector that is a runtime component interacting with the program and
the OpenMP runtime to obtain and to record information about dynamic
program behavior. Low overhead is crucial for this component. Thus recorded
data may be different from what finally makes the data model.

– An analyzer that works either on-the-fly or post-mortem. The analyzer im-
plements the data model by reconstructing it from data recorded by the col-
lector and provides a means for the user to access that data model through
a set of displays or tools with various mechanisms to manipulate data, such
as filtering and aggregation.

The callstack is a crucial piece of information for observability. We need a call-
stack that hides the details of outlined functions from a user, contains only stack

106 Y. Lin and O. Mazurov

frames from the user’s code and maintains natural caller/callee relationships as
specified by the logic of the user’s program. A set of collected callstacks can be
formed into a tree-like data structure with each path from the root representing
a particular callstack. We’ll refer to that data structure as the dynamic function
call graph or function tree.

OpenMP parallel region information is required to understand the parallel
behavior of a program. By assuming that serial program execution is represented
by the default parallel region with only one thread in the team, we can assert
that any program event occurs in some OpenMP thread (i.e., a member of the
current parallel region thread team). With nested parallelism and a parent-child
relationship between parallel regions we get a tree-like data structure where we
can map any event to a node thus specifying all ancestor OpenMP threads and
parallel regions up to the default one, which is the root of the tree. We call that
data structure the OpenMP thread tree or parallel region tree.

The OpenMP runtime provides a unique ID for each parallel region instance.
To collect and to present the entire dynamic parallel region tree would require
an enormous amount of data. Two optimizations appear practical: a sampled
parallel region tree; and a representation in which all dynamic IDs are mapped
to original OpenMP directives in the source code while preserving the dynamic
parent-child relationship. This is similar to the dynamic function call graph.

During their lifetime, OpenMP threads transition through various states de-
fined by the OpenMP runtime, such as working in user code, waiting in a barrier
or other synchronization objects and performing a reduction operation. Time
spent in different states can be aggregated and presented as metrics for various
program objects: functions, threads, parallel regions, etc. An OpenMP thread
state is thus another important part of the data model.

OpenMP tasks give another perspective to a program’s dynamic behavior. By
extending the notion of a task for serial execution, parallel regions, worksharing
constructs, etc. (and calling such tasks implicit), we can assert that any pro-
gram event is associated with some task. Task creation defines a parent-child
relationship between tasks, which leads us to another tree-like data structure -
the OpenMP task tree. Optimizations similar to those suggested for the parallel
region tree are also possible.

The OpenMP data model thus consists of the following pieces of information
defined for an arbitrary program event: an OpenMP thread state, a node in the
parallel region tree, a node in the task tree, and a user callstack. The actual
data model may also contain information that is not OpenMP related, such as
a time-stamp, a machine callstack, a system thread ID or a physical CPU ID
associated with a particular event of interest. We do not discuss how to record
and process such information as the techniques are mature and well-known.

3 OpenMP Profiling API

The original OpenMP profiling API[1] was designed to allow for easy extensions,
and the introduction of tasks in OpenMP 3.0[2] created an immediate need for
such extensions.

Providing Observability for OpenMP 3.0 Applications 107

To collect information corresponding to the data model described in the pre-
vious section, a new set of nine requests is proposed for the common API:

1. depth of the current task tree;
2. task ID of the n-th ancestor task (0 for the current task);
3. source location of the n-th ancestor task;
4. depth of the current parallel region tree;
5. parallel region ID of the n-th ancestor parallel region (0 for the current one);
6. source location of the n-th ancestor parallel region;
7. OpenMP thread ID of the n-th ancestor thread in the parallel region tree

path;
8. size of the thread team of the n-th ancestor parallel region;
9. OpenMP state of the calling thread.

Notice that although some of the above information (such as the size of the
thread team) is available through standard OpenMP API calls (such as omp get
team size()), the collector runtime should use the profiling API[1] because it
guarantees the above nine pieces of information are provided consistently and
atomically in one API call.

Although not used in the work presented in this paper, a set of new events
is proposed to cover tasks in OpenMP 3.0: a new task created, task execution
begins, task execution suspended, task execution resumed, task execution ends
(Appendix A).

Recognizing that some interactions between the collector and the OpenMP
runtime can be very specific to a particular implementation, we are suggesting
a simple way to add vendor specific requests and events, which would not in-
terfere with possible future extensions of the common API. A vendor willing to
implement its own set of extensions should reserve one request number in the
common API to avoid possible collision of similar requests from other vendors.
This request is issued during the rendezvous to check if that vendor’s extensions
are supported by the OpenMP runtime and if so, to enable them. All actual
extended requests and events are assigned negative values, which will never be
used by the common API, and are put in a separate include file. This scheme
assumes that no two sets of extensions can be enabled at the same time but it
allows both the OpenMP runtime and the collector to support more than one
vendor extension. Thus, there is no problem with possible overlap of values or
names of actual extension requests and events defined by different vendors.

4 Collecting User Call Stack Information

4.1 The Challenges

OpenMP 3.0 introduces a new tasking feature1 which makes it easier to write
more efficient parallel applications that contain nested parallelism or dynamically
1 For conciseness, we use the OpenMP task construct to illustrate the challenges and

our solution, as it is the most difficult construct to deal with. Similar techniques can
be applied to other OpenMP constructs.

108 Y. Lin and O. Mazurov

generated concurrent jobs. To allow for concurrency, the execution of a task can
be deferred and the thread that executes a task may be different from the thread
that creates the task. In Fig. 4.1 (a), function goo() may be executed by thread
1 while function bar() may be executed by thread 2. And function bar() may
be executed after function foo() has returned.

Most OpenMP implementations use the outlining technique that generates
an outlined function that corresponds to the body of many OpenMP constructs
and uses a runtime library to schedule the execution of outlined functions among
OpenMP threads. Fig. 4.1 (b) illustrates the transformed code. Fig. 4.1 (c) il-
lustrates the interaction between the compiler generated code and the OpenMP
runtime library. Notice that function foo() now calls an entry point mt
TaskFunction () in the OpenMP runtime which may asynchronously executes
the encountered task on another thread.

Getting the user callstack is not straightforward. In Fig. 4.1, when we in-
spect the native call stack while the program is executing bar(), the native
callstack will be very different from the native callstack in code that does not
have the OpenMP construct. Fig. 4.1 (d) illustrates the differences. First, the
native callstack has frames that are from the OpenMP runtime library. Second,
the outlined function is called by a slave thread in a dispatching function inside
the OpenMP runtime library. The frames from the root down to the outlined
functions are all from the runtime library. Last but not least, function foo() may
have returned. None of the native callstacks in any of the threads show where
the task associated with foo task1() comes from. All these complications are
implementation details that users usually do not care about, have no knowledge
of, and are often confused by. To make things worse, the internal implementation
scheme may change from one version of implementation to another.

4.2 Scheme Overview

At any moment in an OpenMP application, a thread is executing some OpenMP
task if it is not idle waiting for work. Therefore, the user callstack (UC) for
any event is made of two pieces: task spawn user callstack (TSUC) and local
segment (LS).

UC = TSUC + LS

The TSUC is the user callstack for the spawn event of the current task. The
LS is the callstack corresponding to the execution of the outlined task function.

Let’s assume for the moment that we know how to get the local segment,
then the basic scheme of constructing the user callstacks becomes quite straight-
forward. When a task is spawned, we get the user callstack corresponding to
the spawn event and store it together with the data structure for the task itself.
This user callstack, excluding the PC that calls mt TaskFunction , is the TSUC
for any subsequent event that happened during the execution of the task. Each
thread maintains a record of the current task it is executing. When an event
happens, we can find the TSUC of the current task by querying the task data
structure. We concatenate it with the local segment and get the user callstack.

Providing Observability for OpenMP 3.0 Applications 109

kar() | kar()
{ | {

foo(); | foo();
} | }

|
foo() | foo()
{ | {

goo(); | goo();
#pragma omp task | taskinfo = ...
{ | _mt_TaskFunction_(taskinfo, __foo_task1, ...);

bar(); | }
} |

} | __foo_task1(char *arg)
| {
| bar();
| }
|

bar() | bar()
{ | {

statement 1; | statement 1;
} | }

(a) (b)

User’s Code . OpenMP runtime library
+---
| foo() .

T | { .
h | goo(); .
r | taskinfo =
e | _mt_TaskFunction_(taskinfo, -----> _mt_TaskFunction_(taskinfo,
a | __foo_task1, ...); . mfunc_entry,...)
d | } . { ...
| . stored_entry = mfunc_entry;

1 |
| . }

..
| .

T | . dispatcher ()
h | . {
r |
e | __foo_task1(char *arg) <----- (*stored_entry)(...);
a | {
d | bar(); . }
| } .

2 | .
| .

(c)

Native Callstack User Callstack
================= ==============
_lwp_start() main()
<frames in the OpenMP runtime library> kar()
dispatcher() foo()
__foo_task1() bar()
bar()

(d)

Fig. 1. (a) original code; (b) compiler transformed code; (c) interaction between com-
piled code and OpenMP runtime library; (d) native callstack vs user callstack

110 Y. Lin and O. Mazurov

Notice that the construction of user callstacks is conceptually recursive, and the
TSUC is always empty for the outer-most task.

In the rest of this section, we will discuss how to get the local segment, and
will present a method to get the TSUC more efficiently since computing the user
callstack for each task spawn event can be very expensive.

4.3 Getting the Local Segment

The local segment can be constructed by walking up the native callstack when
an event happens. Stopping at the first frame from the OpenMP runtime li-
brary does not work, because (a) the program may be executing an OpenMP
user routine (e.g. omp set num threads()); (b) the program may be inside some
library that the OpenMP runtime library calls (e.g. memcpy() in the standard
C library). The key is to tell whether the program is inside an OpenMP user
routine, and whether the program is inside an outlined function.

The OpenMP runtime maintains an in omp user api state flag, which is set
to 1 whenever the program enters an OpenMP user routine, and is reset to
0 when the program leaves the OpenMP user routine. The OpenMP runtime
also maintains a boundary stack pointer. When the OpenMP runtime library is
about to call an outlined function, it records, in the boundary stack pointer, a
stack location in a frame in the call-chain within the OpenMP runtime that
will eventually lead to the outlined function. The OpenMP runtime reports the
in omp user api state and the boundary stack pointer to the collector upon re-
quest. Section 4.6 describes how the collector uses the two values.

4.4 Getting the Task Spawn User Callstack

The task spawn user callstack (TSUC) is essentially the user callstack (exclud-
ing the PC that calls mt TaskFunction () (see Fig. fig:exe)) when the task
is spawned. Since any task in an invocation of a function will have the same
TSUC, we can get the TSUC at the entry of the function instead of computing
it every time a task is spawned. This reduces the overhead when multiple tasks
are created in one function call, for example inside a loop.

4.5 Pragma PC

In the above description, we assume that, when a profiling event occurs, the
thread is either executing some user code or some OpenMP user API calls.
However, the thread may also be executing some OpenMP runtime library code
(e.g., a thread is enqueuing, dequeuing, or stealing a task). At these moments, the
local segment is empty. We are not able to get the leaf PC for the user callstack
from the empty segment. The leaf PC that can be used naturally in the user
callstack at these moment would be the call instruction to mt TaskFunction ().
So, we need to get this PC, which we call pragma pc, and report it to the collector,
which will use this PC when it finds the local segment is empty.

During the lifetime of a task region, its TSUC and pragma pc will remain
constant, while its boundary stack pointer is set only when the corresponding
outlined function is about to be executed.

Providing Observability for OpenMP 3.0 Applications 111

4.6 Collector Runtime Behavior

We described an idea of storing the task spawn user callstack in the data struc-
ture representing a task above in Section 4.2. In our case, a callstack is an array of
unprocessed virtual addresses obtained by a stack walking routine implemented
in the collector. However, to optimize memory and disk use, the collector imple-
ments a mapping scheme using a simple hashing technique. An array of addresses
is mapped into a unique 64-bit identifier (UID). The UID can be passed around
during program execution, recorded along with other data at an arbitrary time.
The mapping scheme guarantees the array of addresses can be reconstructed
from the UID during data processing later. The collector records all such map-
pings on the disk and keeps track of mappings already recorded to reduce data
volume. Although unlikely in usual practice, hash collision is still a possibil-
ity. Some hash collisions can be detected and reported from different mapping
records with the same UID at analysis time. The probability of an undetected
hash collision and its cost are considered negligible for the task of statistical
performance profiling.

It is trivial to extend to the hashing algorithm so that a new UID can be
computed from some previous UID and a segment of addresses. This is essen-
tially the same as appending the segment of address to the array of addresses
represented by the previous UID. Therefore, the task spawn user callstack can
be represented using a 64-bit UID, which we call mfunc start context id. The
mfunc start context id is obtained by the OpenMP runtime from the collector,
stored in a task data structure, and reported back to the collector whenever
requested.

We extended the OpenMP profiling API with a new mechanism that allows the
OpenMP runtime to issue requests that are carried out by the collector. During
the initial rendezvous the collector registers a helper function as a specific event
callback. This helper function is called by the OpenMP runtime to obtain a UID
for the current user callstack at moments corresponding to task spawning as
described above.

When the collector wants to get a user callstack for some program event,
it issues a specific OpenMP profiling API request to get the current context,
which includes mfunc start context id, boundary stack pointer, pragma pc, and
in omp user api state. The collector uses boundary stack pointer, pragma pc, and
in omp user api state to construct the local stack segment. It walks the stack
up to the frame pointed to by boundary stack pointer and collects PC addresses
from all stack frames. The collector then checks the collected addresses in the
reverse order and if it finds an address from the OpenMP runtime it cuts off
the entire tail, possibly leaving the entry address if in omp user api state is set.
If the resulting segment is empty, the collector uses pragma pc for the local
segment. The collector then computes a UID for the entire user callstack from
mfunc start context id and the local segment. The computed UID is recorded
along with other profiling data for the event.

Because the overall scheme of maintaining user callstacks for OpenMP tasks
includes specific mechanisms and interactions, such as UID computation and the

112 Y. Lin and O. Mazurov

helper mechanism, the request to get the current context is made part of the
vendor specific extension to the OpenMP profiling API (Appendix A).

5 Collecting Parallel Region Tree and Task Tree
Information

5.1 OpenMP Run Time Part

At any moment, the OpenMP runtime should be able to report, upon query by
the collector, the nine pieces of information as described in Section 3. In order
to do that, the OpenMP runtime needs to maintain a dynamic tree path during
the execution. This is straightforward to implement.

5.2 Collector Part

Instead of collecting and recording information for the entire path in the parallel
region tree for each event, the collector tries to reduce overhead and data volume
by maintaining the current parallel region ID for each thread in thread local
storage (TLS) and recording all necessary information only when it changes. As
with callstack UIDs, the collector keeps track of already recorded parallel region
IDs. At an event, the collector asks about the current parallel region ID. If the ID
is not different from the ID currently stored in TLS, the collector does nothing.
Otherwise it records a “thread enters a parallel region” event along with the time-
stamp and starts checking if it also needs to record all information about the new
parallel region and its ancestors. As multiple threads may almost simultaneously
enter a new parallel region, usually only one thread records all information about
that parallel region. No synchronization is used between threads to keep track of
the recorded status of a parallel region as we only get multiple identical records
in the worst case.

At analysis time, we can map any event that is recorded with a time-stamp
and a thread ID to an interval determined by “thread enters a parallel region”
events, thus obtaining the corresponding parallel region ID. It’s guaranteed by
the scheme described above that all information about that parallel region and
all its ancestors has also been recorded.

The collector uses the same scheme to record task tree information as for
recording parallel region tree information.

6 OpenMP Profiling API Examples

We use a quick sort implementation to illustrate how the ideas described above
can be presented to the user by a performance analysis tool. All screenshots are
obtained from a prototype based on the Sun StudioTMPerformance Analyzer.

A parallel version of the algorithm using OpenMP is shown in Fig. 6 and the
code is pretty straightforward.

Providing Observability for OpenMP 3.0 Applications 113

41. quick_sort(int lt, int rt, float *data)
42. {
43. if ((rt-lt) < LOW_LIMIT) {
44. serial_quick_sort(lt, rt, data);
45. }
46. else {
47. int md = partition(lt, rt, data);
48. #pragma omp task
49. quick_sort(lt, md-1, data);
50. #pragma omp task
51. quick_sort(md+1, rt, data);
52. }
53. }

66. main(int argc, char* argv[])
67. {
68. int n; float *data;
...
98. #pragma omp parallel
99. {
100. #pragma omp single nowait
101. quick_sort(0, n-1, data);
102. }
...
109. }

Fig. 2. Parallel quick sort algorithm using OpenMP

An OpenMP unaware tool that is capable of collecting only actual machine
callstacks will not show any recursion, because the implementation of OpenMP
tasks essentially turns the recursive execution into a work-list based execution.
The compiler transformed function of quick sort() contains the initial con-
dition checking, either calls the serial sort function or partitions the specified
part of the array and creates two more tasks for sorting both parts of the parti-
tion. Instead of recursively calling quick sort(), the program recursively creates
tasks. When a task is picked up for execution by a thread, it bears no trace of
where it was created and thus the machine callstack has practically the same
depth no matter what the logical depth of a particular task is. This behavior
can be easily observed in the machine view (Fig. 3 (a)) in Analyzer’s Timeline
display.

Here, the horizontal axis represents time, and each horizontal bar repre-
sents a thread with all collected events shown with their callstacks colored by
frame. Selected event details, including the callstack, are shown in the right
panel.

In the user view (Fig. 3 (b)), where the logical structure of dynamic pro-
gram execution is reconstructed, one can see that the recursion pattern with a
fluctuating callstack depth is restored.

Knowing the current task ID for each event, we can map it to the original
OpenMP construct and compute OpenMP metrics aggregated for those con-
structs over all events. Two OpenMP metrics, OpenMP Work and OpenMP
Wait, are computed based on the OpenMP state recorded for every event. A
sorted list of all OpenMP task constructs along with their metrics is presented
in the OpenMP tasks display (Fig. 4).

114 Y. Lin and O. Mazurov

(a)

(b)

Fig. 3. (a) Machine View; (b) User View

Providing Observability for OpenMP 3.0 Applications 115

OMP Work OMP Wait Name
sec. sec.

--
6.254 1.861 <Total>
2.512 0.010 OpenMP task from quick_sort, line 48 in "qsort.c"
2.342 0. OpenMP task from quick_sort, line 50 in "qsort.c"
1.141 0.771 OpenMP task 0
0.260 1.081 OpenMP task from main, line 98 in "qsort.c"

Fig. 4. OpenMP tasks display

A similar display is provided for all parallel regions. Again, dynamic parallel
region IDs are mapped to source and all metrics are computed for the corre-
sponding OpenMP constructs.

7 Related Work

The need for a user level, implementation independent representation of OpenMP
program behavior that is consistent with the OpenMP programming model is gen-
erally desired and was, in particular, stated in [3] for OpenMP debugging. [3] also
emphasized the importance of more detailed views that expose underlying imple-
mentation specifics for sophisticated users.

A work towards an open source implementation of the OpenMP profiling API
has been reported in [4].

The problem of uniquely identifying OpenMP threads with nested OpenMP
parallelism has been approached in [5], where a suggestion, similar to ours, for
extension of the standard OpenMP runtime API was made.

User call stacks can also be obtained by tracing function entry and exit events
and by maintaining a data structure that allows reconstruction of user call stacks
at run time. ompP[6] uses a similar approach to track OpenMP parallel region
entry and exit events. It is not clear whether this technique can be extended
to deal with tasks without imposing significant overhead, because there usually
are significantly more tasks than parallel regions. It is also unclear how this
technique would handle untied tasks. Yet another major challenge is dealing
with survived tasks - a task whose ancestor tasks have finished before the task
starts executing.

A general method for efficiently collecting logical call path profiles in multi-
threaded applications and its implementation for Cilk are described in [7]. The
method relies on the availability in the runtime of all pieces of information nec-
essary for logical call path reconstruction at an arbitrary sample point. While
that method can certainly cope with work-stealing, as implemented in both Cilk
and OpenMP, it’s not obvious how it would grapple with survived tasks, which
are prohibited by design in Cilk but are allowed in OpenMP.

8 Conclusion

For OpenMP runtime observation tools, such as a debugger and a performance
profiling tool, the user model should be intuitive and close to program logic, and

116 Y. Lin and O. Mazurov

should be presented in terms of high level language constructs used in the pro-
gram. In this paper, we present a rich data model, which comprises a function
tree, a parallel region tree and a task tree, that captures the OpenMP specific
runtime behavior. We describe a set of methods that efficiently collect the data
for the data model. This work demonstrates that providing high level observ-
ability to OpenMP programming and runtime systems, though challenging, is
achievable.

Acknowledgements

The authors would like to thank Martin Itzkowitz, Eric Duncan, and Nawal
Copty for reviewing the paper. The authors would also like to thank the anony-
mous reviewers for their many helpful comments and suggestions.

References

1. Itzkowitz, M., Mazurov, O., Copty, N., Lin, Y.: White Paper: An OpenMP Runtime
API for Profiling. Tech. Rep., Sun Microsystems, Inc. (2007)

2. OpenMP Architecture Review Board. OpenMP application program interface, ver-
sion 3.0 (2008), http://www.openmp.org/mp-documents/spec30.pdf

3. Cownie, J., DelSignore Jr., J., de Supinski, B., Warren, K.: DMPL: An OpenMP
DLL Debugging Interface. In: Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716,
pp. 137–146. Springer, Heidelberg (2003)

4. Bui, V., Hernandez, O., Chapman, B., Kufrin, R., Gopalkrishnan, P., Tafti, D.:
Towards an Implementation of the OpenMP Collector API. In: Proceedings of the
International Conference ParCo (2007)

5. Morris, A., Malony, A., Shende, S.: Supporting Nested OpenMP Parallelism in the
TAU Performance System. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R.,
Malony, A.D., Voss, M. (eds.) IWOMP 2005 and IWOMP 2006. LNCS, vol. 4315,
pp. 279–288. Springer, Heidelberg (2008)

6. Fuerlinger, K., Gerndt, M.: ompP: A profiling tool for OpenMP. In: Mueller, M.S.,
Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005
and IWOMP 2006. LNCS, vol. 4315, pp. 15–23. Springer, Heidelberg (2008)

7. Nathan, R.: Tallent and John Mellor-Crummey. Effective performance measurement
and analysis of multithreaded applications. In: PPoPP 2009: Proceedings of the 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
ACM, New York (2009)

A OpenMP Profiling API Extensions

/* New requests */
typedef enum {

...
OMP_REQ_TASK_NLVLS, /* depth of the current task tree */
OMP_REQ_TASK_IDN, /* task ID of the n-th ancestor task */
OMP_REQ_TASK_SRCN, /* source location of the n-th ancestor task */
OMP_REQ_PREG_NLVLS, /* depth of the current parallel region tree */
OMP_REQ_PREG_IDN, /* ID of the n-th ancestor parallel region */
OMP_REQ_PREG_SRCN, /* source location of the n-th ancestor parallel region */

http://www.openmp.org/mp-documents/spec30.pdf

Providing Observability for OpenMP 3.0 Applications 117

OMP_REQ_PREG_THRIDN, /* thread ID of the n-th ancestor thread */
OMP_REQ_PREG_TMSZN, /* thread team size of the n-th ancestor parallel region */
OMP_REQ_CREATED_TASK, /* task ID of a newly created task */

} OMP_COLLECTORAPI_REQUEST;

/* New events */
typedef enum {

...
OMP_EVENT_CREATE_TSK, /* a new task created */
OMP_EVENT_BEGIN_TSK, /* task execution begins */
OMP_EVENT_SUSPEND_TSK, /* task execution suspended */
OMP_EVENT_RESUME_TSK, /* task execution resumed */
OMP_EVENT_END_TSK /* task execution ends */

} OMP_COLLECTORAPI_EVENT;

/* New OpenMP thread state */
typedef enum {

...
THR_TSKWT_STATE, /* waiting in taskwait */

} OMP_COLLECTOR_API_THR_STATE;

/* Reserve request ID for Sun specific extensions */
#define OMP_REQ_SUNEXTENSION ((OMP_COLLECTORAPI_REQUEST)0x4A415641)

/* Sun specific extensions (from a separate include file) */

#define OMPX_REQ_CONTEXT ((OMP_COLLECTORAPI_REQUEST)-1)

struct OMPX_request_context {
int size; /* entry length */
OMP_COLLECTORAPI_REQUEST reqn; /* request number */
OMP_COLLECTORAPI_EC errc; /* error code */
int rtsz; /* return size */
uint64_t mfunc_start_context_id;
void *boundary_stack_pointer;
void *pragma_pc;
int pragma_pc_state;
int in_omp_user_api;

};

#define OMPX_REGISTER_HELPER ((OMP_COLLECTORAPI_EVENT)-1)

#define OMPX_HLP_UCTX ((OMP_COLLECTORAPI_REQUEST)-2)

struct OMPX_helper_uctx {
int size; /* entry length */
OMP_COLLECTORAPI_REQUEST reqn; /* request number */
OMP_COLLECTORAPI_EC errc; /* error code */
int rtsz; /* return size */
void *starting_stack_pointer;
void *boundary_stack_pointer;
uint64_t mfunc_start_context_id;
void *pragma_pc;
uint64_t new_context_id; /* return result */

};

	Providing Observability for OpenMP 3.0 Applications
	Introduction
	The Data Model
	OpenMP Profiling API
	Collecting User Call Stack Information
	The Challenges
	Scheme Overview
	Getting the Local Segment
	Getting the Task Spawn User Callstack
	Pragma PC
	Collector Runtime Behavior

	Collecting Parallel Region Tree and Task Tree Information
	OpenMP Run Time Part
	Collector Part

	OpenMP Profiling API Examples
	Related Work
	Conclusion
	References
	OpenMP Profiling API Extensions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

