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Abstract. With the current prevalence of multi-core processors in HPC
architectures, mixed-mode programming, using both MPI and OpenMP
in the same application, is becoming increasingly important. However,
no low-level synthetic benchmarks exist to test the performance of this
programming model. We have designed and implemented a set of mi-
crobenchmarks for mixed-mode programming, including both point-to-
point and collective communication patterns. These microbenchmarks
have been run on a number of current HPC architectures: the results
show some interesting performance differences between the architectures
and highlight some possible inefficiencies in the implementation of MPI
on multi-core systems.

1 Introduction

With the advent of multi-core processors, and the associated diminishing rate of
increase in processor clock speed, almost all current high performance computing
systems now contain nodes which consist of shared memory multiprocessors.
Large numbers of such nodes can be connected together with a high-bandwidth,
low-latency network to form a scalable distributed memory system.

To program such systems, by far the most popular programming model is
message-passing, using the MPI [4] library. MPI programs can execute on ma-
chines with shared memory nodes in a straightforward way by running one MPI
process per core on each node. In this case, message-passing between processes
on a node is normally implemented via shared memory, but this is not visible to
the programmer. However, it is also possible to run fewer MPI processes than
cores on each node, and make use of the additional cores by using a multi-
threaded programming model. This is most frequently done using the OpenMP
[5] API, but can also be accomplished via a lower-level thread library interface
such as Posix threads. This programming style is termed mixed-mode or hybrid
(we prefer the former term as the latter is somewhat overloaded in the HPC
literature).

Several studies (for example [7],[10]) have shown that, in certain circum-
stances, mixed-mode programs can perform better than (or consume less memory
than) the equivalent program using MPI only. Such advantages may outweigh
the potential additional software complexity and possible loss of portability of
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the mixed-mode version. A number of commonly used HPC applications, such
as CPMD [2] and ECMWF’s Integrated Forecast System (IFS) [9] successfully
exploit mixed-mode programming. With the principal performance gains in HPC
architectures likely to come, in the near future at least, primarily from increasing
the number of cores per chip, mixed-mode programming seems likely to assume a
more important role, as it may allow applications to scale better on such systems
than pure MPI.

Microbenchmarks (low-level synthetic benchmarks testing the performance of
basic operations) exist for both MPI [3], [8] and OpenMP [1]. However, these mi-
crobenchmarks cannot on their own give sufficient information about the perfor-
mance of mixed-mode programs, as there will, in general, be interactions between
the MPI and OpenMP layers. The Sphinx benchmark suite from LLNL [11] con-
tains a small number of OpenMP/MPI microbenchmarks, which measure the
performance of mixed-mode barriers and reductions, and assess the ability to
overlap threaded computation with MPI non-blocking communication.

To fill this gap, we have designed and implemented a suite of microbench-
marks for mixed-mode OpenMP/MPI programming. The utility of such a suite
is demonstrated by the results presented in [6], which demonstrate how the avail-
able communication bandwidth between nodes can depend on the mix of MPI
processes and OpenMP threads employed.

In Section 2, we describe the contents of the suite and the rationale for its
construction. In Section 3, we present selected results from running the mi-
crobenchmarks on a number of current HPC architectures, and demonstrate the
interesting features thus illuminated. Finally, Section 4 presents our conclusions
and possibilities for future work.

2 Benchmark Design and Implementation

The basic design concept of the mixed-mode microbenchmarks is to provide
mixed-mode analogues for (a subset of) the typical operations found in MPI mi-
crobenchmark suites, for both point-to-point and collective communications.
There are two main considerations which have driven the design of the benchmark
suite. Firstly, we wish to adequately capture the cost of the inter-thread commu-
nication and synchronisation which may occur in mixed-mode programs if not all
threads participate in the inter-node (MPI) communication. To do this, we mea-
sure not only the cost of the MPI library calls themselves, but also the (possibly
multi-threaded) writing of send buffers, and reading of receive buffers. The second
consideration is that we wish to be able to directly and easily compare the perfor-
mance of the same communication patterns when we hold the total number of cores
constant, but vary the number of MPI processes and OpenMP threads (such that
the product of these two values equals the number of cores). This is achieved by
the appropriate choices of data buffer sizes and MPI message lengths.

The benchmarks are implemented in Fortran90. We may produce a C ver-
sion in the future, but we expect that there would be little dependence on the
base language, as most of the performance characteristics are dictated by the
hardware and by the MPI and OpenMP libraries.
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2.1 Point-to-Point Operations

In the mixed-mode microbenchmark suite we measure the performance
of three point-to-point communication operations: PingPong, PingPing and
HaloExchange. Each of these operations is implemented in each of three dif-
ferent ways:

1. Master-only: MPI communication takes place in the master thread, outside
of parallel regions.

2. Funnelled: MPI communication takes place in the master thread, inside
parallel regions.

3. Multiple: MPI communication takes place concurrently in all threads inside
parallel regions.

To illustrate this, Figures 1–3 show pseudocode representations of these three
forms of the PingPong benchmark. The PingPing benchmark differs from Ping-
Pong in that messages are exchanged in both directions between the two pro-
cesses concurrently. For both the PingPong and PingPing benchmarks, the user
can specify the two MPI ranks which participate: this is intended to permit the
measurement of both intra-node and inter-node MPI communication, by speci-
fying two MPI ranks which will execute either on the same, or on different nodes.
The benchmark reports which of these was the case by comparing the results
of MPI GET PROCESSOR NAME on the two participating process. For the HaloEx-
change benchmark all MPI processes participate. The processes are arranged in
a ring and each process exchanges messages with its two neighbouring processes.
In the point-to-point benchmarks, the data sizes specified by the user correspond
to the total number of 4-byte words sent between pairs of MPI processes.

Process 1

MPI_Recv( pongBuf )

Process 0

Each thread reads its part of pingBuf 
Each thread writes its part of pongBuf

End OMP Parallel region

MPI_Send( pingBuf )

MPI_Recv( pingBuf )

MPI_Send( pongBuf )

dataSize * numThreads

dataSize * numThreads

End OMP Parallel region

Each thread writes to its part of pingBuf

Begin OMP Parallel region

Begin loop over repeats Begin loop over repeats 

End loop over repeats End loop over repeats 

Begin OMP Parallel region

End OMP Parallel region

Begin OMP Parallel region

Each thread reads its part of pongBuf

Fig. 1. Pseudocode for Master-only PingPong benchmark
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Process 1Process 0

Begin OMP Parallel region

OMP Master

OMP Barrier

Each thread writes to its part of pingBuf

Begin loop over repeats Begin loop over repeats

Begin OMP Parallel region

OMP Master

OMP Master

MPI_Send (pingBuf)

Each thread reads its part of pongBuf

OMP Barrier

OMP End Master

MPI_Recv(pongBuf)

MPI_Send (pongBuf)

OMP Barrier

Each thread writes its part of pongBuf

MPI_Recv (pingBuf)

OMP End Master

OMP Barrier

Each thread reads its part of pingBuf 

OMP End Master

dataSize * numThreads

dataSize * numThreads

End OMP Parallel region End OMP Parallel region

End loop over repeats End loop over repeats

Fig. 2. Pseudocode for Funnelled PingPong benchmark

messages
dataSizeof size 

numThreads

messages
dataSizeof size 

numThreads

Process 1

MPI_Recv( pongBuf )

Process 0

MPI_Send( pingBuf )

MPI_Recv( pingBuf )

MPI_Send( pongBuf )

Begin OMP Parallel region Begin OMP Parallel region

Each thread reads its part of pongBuf

Each thread reads its part of pingBuf 

Each thread writes its part of pongBuf

Begin loop over repeats Begin loop over repeats

Each thread writes to its part of pingBuf

End OMP Parallel region End OMP Parallel region

End loop over repeats End loop over repeats

Fig. 3. Pseudocode for Multiple PingPong benchmark

2.2 Collective Operations

The microbenchmark suite contains measurements for mixed-mode analogues
of the following operations: Barrier, Reduce, AllReduce, Gather, Scatter and
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rbuf = globalReduceBuf)
MPI_Reduce (sbuf = localReduceBuf,

Read globalReduceBuf

End loop over repeats 

End OMP Parallel region

Each thread updates localReduceBuf

Begin OMP Parallel region 
with REDUCTION clause

Begin loop over repeats 

rbuf = globalReduceBuf)
MPI_Reduce (sbuf = localReduceBuf,

rbuf = globalReduceBuf)
MPI_Reduce (sbuf = localReduceBuf,

Process 1 Process p

dataSize

dataSize

Process 0

End loop over repeats 

End OMP Parallel region

Each thread updates localReduceBuf

Begin OMP Parallel region 
with REDUCTION clause

Begin loop over repeats 

End loop over repeats 

End OMP Parallel region

Each thread updates localReduceBuf

Begin OMP Parallel region 
with REDUCTION clause

Begin loop over repeats 

Fig. 4. Pseudocode for Reduce benchmark

  rbuf = scatterRecv, root = 0) 
MPI_Scatter (sbuf = scatterSend,

  rbuf = scatterRecv, root = 0) 
MPI_Scatter (sbuf = scatterSend,

  rbuf = scatterRecv, root = 0) 
MPI_Scatter (sbuf = scatterSend,

Process 1 Process pProcess 0

End loop over repeats 

End OMP Parallel region

Each thread reads its part

Begin OMP Parallel region 

Begin loop over repeats 

End loop over repeats 

End OMP Parallel region

Each thread reads its part

Begin OMP Parallel region 

Begin loop over repeats 

End loop over repeats 

End OMP Parallel region

Each thread reads its part

Begin OMP Parallel region 

Begin loop over repeats 

Write to scatterSend

of scatterRecv of scatterRecv of scatterRecv

dataSize * numThreads

dataSize * numThreads

Fig. 5. Pseudocode for Scatter benchmark

AlltoAll. Figures 4 and 5 show pseudocode representations of the Reduce and
Scatter benchmarks respectively.

The other collective benchmarks are constructed in an analogous fashion. The
total amount of data involved is proportional to both the number of OpenMP
threads and the number of MPI processes. This means that experiments can eas-
ily be conducted where the total amount of compute resource, and the product
of the number of threads and the number of processes is fixed, but the number of
processes and number of threads per process is varied. The benchmarks are con-
structed so that when this is done, the patterns and quantity of data movement
are preserved. (Note that for the Barrier benchmark, no data is involved).

2.3 Benchmark Control

The user is able to set some control parameters for the benchmark suite:

– A list of the benchmarks to be run.
– The minimum and maximum data sizes to be run. The data size starts at

the minimum size and is successively doubled until the maximum is reached.
– A target execution time. If the execution time for a given data size is less

than this value, it is rejected, and the test is re-run with twice the number
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of repetitions. If the execution time is more than twice the target time, it is
accepted, and the initial number of repetitions for the subsequent data size
is set to half its current value. This process is intended to keep the execution
time for each test approximately constant, regardless of the benchmark or
the data size used. Before each timed test, two repetitions are run as a
warm-up.

– The MPI process IDs to be used for the PingPong and PingPing benchmarks.
Negative values are permitted: in this case the value is added to the total
number of processes to give a valid ID.

At present, the number of MPI processes and OpenMP threads are controlled by
the way the benchmark is executed (i.e. by the mpirun command or equivalent,
and the value of the OMP NUM THREADS environment variable) and they are fixed
for that run. We considered trying to vary the number of process and threads
within a run, but the complexity of the programming and the possible lack of
control over idle threads mean we have not yet done so.

2.4 Other Issues

Each benchmark has a validation test, which is run on the warm-up repetitions.
For each benchmark and data size a Pass or Fail is reported.

The benchmark reports the value returned by MPI INIT THREAD, and issues a
warning if the level of support is not adequate for the benchmark. The Multiple
versions of point-to-point benchmarks require MPI THREAD MULTIPLE, while all
other benchmarks require MPI THREAD FUNNELED. We have found that the value
returned is a poor indicator of whether the validation test will succeed. We have
encountered one implementation of MPI which returns MPI THREAD SINGLE but
runs the benchmarks requiring MPI THREAD FUNNELED successfully, and another
implementation which returns MPI THREAD MULTIPLE, but fails to run the bench-
marks requiring this value.

3 Benchmark Results

3.1 Hardware

We have run the benchmark suite on four different platforms:

– IBM eServer 575 Power5 cluster. Each node contains 8 1.6GHz dual-
core processors and 32GB of memory, and the nodes are connected with
IBM’s High Performance Switch (HPS) with a total of four links from each
node to the network. The system was running Version 10.1 of the IBM xlf90
Fortran compiler and Version 4.3 of IBM Parallel Operating Environment.
Our experiments used 4 nodes (64 cores).

– IBM eServer 575 Power6 cluster. Each node contains 16 4.7 GHz dual-
core processors and 128 or 256GB of memory. The nodes are connected
through an Infiniband network with four links from each node to the network.
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The system was running Version 12.1 of the IBM xlf90 Fortran compiler and
Version 4.3 of IBM Parallel Operating Environment. Our experiments used
4 nodes (128 cores).

– IBM BlueGene/P. Each node has four 850MHz Power450 cores and 2GB
of memory. There are three networks connecting the compute nodes of the
BlueGene/P, a 3D torus network and two tree networks (one used for col-
lective communication, the other for barrier synchronisation). The system
was running Version 11.1 of the IBM xlf90 Fortran compiler and BlueGene
Driver Version 1.0 Release 3.0. Our experiments used 16 nodes (64 cores).

– Cray XT4. Each node contains a quad-core 2.3 GHz AMD Opteron pro-
cessor and 8 or 16GB of main memory. The network is a Cray SeaStar 3D
torus. The system was running Version 7.2.4 of the PGI pgf90 compiler and
Version 3.0.2 of the Cray Message Passing Toolkit. Our experiments used 16
nodes (64 cores).

In all cases we fully populated the nodes, so the product of the number of MPI
process per node and the number of OpenMP threads per process always equals
the number of cores per node.

3.2 Results

We do not have space here to show the results of all the benchmarks on all
the platforms, so we have selected some of the more interesting results for
presentation.

Figures 6 and 7 show the results of running the Master-only version of the
PingPong benchmark on the IBM Power 5 cluster and BlueGene/P system
respectively. The execution times are normalised to the execution time with
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Fig. 8. IBM Power5: Ratio of Multiple to Master-only PingPong execution times

one OpenMP thread per MPI process. The MPI ranks participating in the
benchmark are chosen to lie on different nodes. On both systems, for small
data sizes, the execution time is least for one thread per MPI process, and in-
creases with the number of threads, whereas for large data sizes, the execution
time is greatest for one thread per MPI process, and decreases with the num-
ber of threads. The crossover between these regimes occurs between 103 and
104 bytes. Recall that the send and receive buffers are being written/read by
multiple threads. For small data sizes, the overhead of parallelisation is not
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Fig. 10. IBM Power 5: Ratio of execution time for Reduce benchmark to one thread
per process

worthwhile, but above the crossover, significant benefit is gained from having
multiple threads employed. The other hardware platforms display similar be-
haviour (not shown here).

Figures 8 and 9 show the results of running the Multiple version of the
PingPong benchmark on the IBM Power 5 cluster and BlueGene/P system re-
spectively. In this case the execution times are normalised by the time for the
Master-only PingPong benchmark running on the same number of processes
and threads. For the Power5 system, we observe very poor performance for the
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Fig. 11. IBM Power 6: Ratio of execution time for Reduce benchmark to one thread
per process
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Fig. 12. IBM BlueGene/P: Ratio of execution time for Reduce benchmark to one
thread per process

Multiple version on small data sizes: in some cases it is over 3 orders of mag-
nitude slower (note the log scale on the vertical axis in Figure 8. The Power 6
system displays similar behaviour to the Power 5: contention for locks inside the
MPI library is a possible cause of this. In contrast, the Multiple version on the
BlueGene/P system is a little over two times slower using four threads per pro-
cess than using one. On neither system is there any benefit gained from calling
MPI from multiple threads for large data sizes. This suggests that a single large
message is able to utilise all the off-node bandwidth.
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Fig. 13. Cray XT4: Ratio of execution time for Reduce benchmark to one thread per
process
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Fig. 14. IBM Power 5: Ratio of execution time for AlltoAll benchmark to one thread
per process

Figures 10 to 13 show the results of running the Reduce benchmark on all
four platforms. The execution times are normalised to the execution time with
one OpenMP thread per MPI process.

On the IBM Power 5 and Power 6 systems, we observe that the mixed-mode
version of Reduce is generally slower than the pure MPI (one thread per process),
though there are some modest gains to be had by using two threads per process
for small data sizes. On the BlueGene/P system, the mixed-mode version is
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Fig. 16. IBM BlueGene/P: Ratio of execution time for AlltoAll benchmark to one
thread per process

also slower, except for a window of data sizes between 103 and 104 bytes. This
suggests that on these platforms, the MPI Reduce is well optimised for shared
memory nodes. It is also possible that the implementation of OpenMP array
reductions is not very efficiently implemented. On the Cray XT4, however, the
mixed mode version is generally faster, except for data sizes between 104 and
105 bytes. This system is known to suffer from contention between cores on the
same node for access to the network: having fewer, larger, messages entering the
network seems to be beneficial.
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Figures 14 to 17 show the results of running the AlltoAll benchmark on all four
platforms. The execution times are normalised to the execution time with one
OpenMP thread per MPI process. The four systems show different behaviours
for this benchmark. On the IBM Power 5, the mixed mode version is significantly
faster for data sizes in the range 103 to 104 bytes, and the optimal number of
threads per process is usually two. For the IBM Power 6, having multiple threads
per process is beneficial on small data sizes, but increasing the number of threads
per process beyond two makes little difference. On the BlueGene/P, mixed-mode
is worthwhile for small data sizes, but not large ones, and on the Cray XT4 it
is worthwhile for almost all data sizes and is up to three times faster in some
cases.

4 Conclusions and Future Work

We have described the design and implementation of a set of microbenchmarks
for mixed-mode OpenMP/MPI programming. These cover both point-to-pont
and collective communication patterns. We have run these benchmarks on four
current HPC architectures: the results show some interesting performance dif-
ferences between the architectures and highlight some possible inefficiencies in
the implementation of MPI on these systems.

In the future, we intend to run the benchmarks on other systems, for example
on Intel- and Opteron-based clusters (where there may be multiple combinations
of MPI library and OpenMP compiler available) and on vector systems such the
NEC SX-9 and the Cray X2. We can also consider additions to the benchmark
suite: for example multi-PingPong (where every core on a node communicates
with a corresponding core on another node).
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