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Preface

OpenMP is an application programming interface (API) that is widely accepted
as a de facto standard for high-level shared-memory parallel programming. It
is a portable, scalable programming model that provides a simple and flexible
interface for developing shared-memory parallel applications in Fortran, C, and
C++. Since its introduction in 1997, OpenMP has gained support from the ma-
jority of high-performance compiler and hardware vendors. Under the direction
of the OpenMP Architecture Review Board (ARB), the OpenMP specification
is undergoing further improvement. Active research in OpenMP compilers, run-
time systems, tools, and environments continues to drive OpenMP evolution. To
provide a forum for the dissemination and exchange of information about and ex-
periences with OpenMP, the community of OpenMP researchers and developers
in academia and industry is organized under cOMPunity (www.compunity.org).
This organization has held workshops on OpenMP since 1999.

This book contains the proceedings of the 5th International Workshop on
OpenMP held in Dresden in June 2009. With sessions on tools, benchmarks,
applications, performance and runtime environments it covered all aspects of
the current use of OpenMP. In addition, several contributions presented pro-
posed extensions to OpenMP and evaluated reference implementations of those
extensions. An invited talk provided the details on the latest specification devel-
opment inside the Architecture Review Board. Together with the two keynotes
about OpenMP on hardware accelerators and future generation processors it
demonstrated that OpenMP is suitable for future generation systems.

OpenMP 3.0 has been adopted rapidly, as is evidenced by the number of
available compilers and the use of new features by application developers. The
OpenMP workshop series has made important contributions to the development
of the specification and its adoption. This year’s contributions clearly indicate
that this role will continue in the future.

June 2009 Matthias S. Müller
Barbara M. Chapman
Bronis R. de Supinski
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Parallel Simulation of Bevel Gear Cutting
Processes with OpenMP Tasks

Paul Kapinos and Dieter an Mey

Center for Computing and Communication,
JARA, RWTH Aachen University, Germany

{kapinos,anmey}@rz.rwth-aachen.de

Abstract. Modeling of bevel gear cutting processes requires highly flex-
ible data structures and algorithms. We compare OpenMP3.0 tasks with
previously applied approaches like nesting parallel sections and stack
based algorithms when parallelizing recursive procedures written in For-
tran 95 working on binary tree structures.

Keywords: OpenMP 3.0, Tasking, Nesting, Fortran 90/95, Recursive
Subroutines, Parallelization.

1 Introduction

Today manufacturers of bevel gears are confronted with continuously growing de-
mands for cost effectiveness of the manufacturing process. This is also true for
the cutting of bevel gears. To enhance the productivity of the manufacturing pro-
cesses, the processing time has to be reduced. In order to further improve produc-
tivity, the tool life has to be maximized so that the tooling time and the tool costs
are minimized. By increasing the cutting velocity, a reduction in the primary pro-
cessing time is obtained. This results in an increased load on the cutting edge of the
tool. In order to predict the tool life during these processes, a detailed analysis of
the cutting process is required to evaluate the chip creation conditions. The Lab-
oratory for Machine Tools and Production Engineering (WZL, [1]) of the RWTH
Aachen University develops the program KegelSpan [2] [3] [4] to simulate and
study the manufacturing process of bevel gears.

Shared-memory parallelization with OpenMP was taken into account dur-
ing the development of KegelSpan early on. OpenMP was chosen because
of the possibility to gradually adopt parallelism on parts of premature program
versions without rewriting lots of code, and the ability to easily handle com-
plicated data structures. The recursive routines, which work on binary trees,
were detected to consume a substantial part of the runtime in initial versions of
KegelSpan and have been investigated and parallelized in [5]. In this paper we
expand this work taking the long-awaited OpenMP 3.0 tasking approach into
consideration.

In section 2 we briefly describe the program KegelSpan [2]. In section 3 we
discuss the parallelization strategies which we applied to the recursive routines,

M.S. Müller et al. (Eds.): IWOMP 2009, LNCS 5568, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 P. Kapinos and D. an Mey

which have been selected for parallelization after profiling the whole program. We
present and discuss our performance measurements of the parallelized routines
in section 4 and conclude in section 5.

2 Simulation of Bevel Gear Cutting Processes

The program KegelSpan developed by the WZL [1] simulates bevel gear
cutting with defined cutting edges. It is written in Fortran 95 heavily using many
advanced language features like modules, recursive functions, Fortran pointers
and operator overloading. In theory, the process of a single cutting process is
well understood, but the production of a complete bevel gear consists of a series
of cutting processes. By today’s standards the tool wear, life time and critical
wear behavior are determined experimentally. The target of the development
of KegelSpan is to determine optimal process attributes (cutting speed, feed
etc.) on the basis of calculated variables like chip thickness, unwinded cutting
edge length and to better predict the tool wear behavior.

The tool’s edges are represented by spacial lines. The kinetics of the move-
ments of the cutting tool determines the movement of these lines in space and
defines the hulls of the cutting edges.

These hulls, represented by a three-dimensional polygon grid, are examined in
the order of the cutting edges for penetration with the polygon grid of the work-
piece. If a penetration occurs, the difference volume, the so-called non-deformed
chip, is computed by subtracting the surfaces of both polygon grids. Based on
the non-deformed chip, the characteristic values can be determined. Whenever
the individual cuts are computed, the polygon network of the workpiece is adap-
tively refined. This frequently leads to an unbalanced distribution of nodes and
polygons in space.

In order to reduce the amount of computation by only examining neighboring
parts of the polygon grids for mutual penetration, a binary space partitioning
tree (BSP tree) is constructed. The polygons are recursively sorted into a hi-
erarchy of nested axis aligned bounding boxes (AABBs), until the number of
polygons per box falls below an adjustable threshold value. Because of the un-
even distribution of the nodes in space (see figure 1 left) the binary tree (BSP
Tree) tends to be quite unbalanced. However, an attempt to balance this tree
according to the number of polygons per sub-box by setting the split plane
through the mass center of all polygons turned out to be counter-productive.
For geometrical and algorithmic reasons the program’s runtime increased con-
siderably.

The BSP trees are implemented with dynamic data structures and Fortran
pointers in the KegelSpan program and recursive routines are used for tree
traversal. As early performance analyses revealed that 75 percent of the total
runtime was consumed in these recursive procedures, they were initially par-
allelized with ”traditional” OpenMP approaches and now with OpenMP 3.0
tasking constructs as soon as compilers became available.
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Fig. 1. Adaptive refinement (left) and penetration of meshes (right)

3 Parallelization of the Recursive Routines

For simplicity we only discuss routines which directly call themselves twice and
are used for the traversal of binary trees, if these two evocations can safely be
computed in parallel.

RECURSIVE SUBROUTINE BSPtraversal (tree)
TYPE (BSPtree) :: tree
.... do work here
CALL BSPtraversal (tree%left)
CALL BSPtraversal (tree%right)
END SUBROUTINE BSPtraversal

3.1 Parallelization with Nested PARALLEL SECTIONS Constructs

In the first approach we simply executed both recursive evocations in a PAR-

ALLEL SECTIONS constructs containing two sections:

RECURSIVE SUBROUTINE PrimerPar (tree)
TYPE (BSPtree) :: tree
.... do work here
!$OMP PARALLEL SECTIONS
!$OMP SECTION
CALL PrimerPar (tree%left)

!$OMP SECTION
CALL PrimerPar (tree%right)

!$OMP END PARALLEL SECTIONS ! <--- barrier !
END SUBROUTINE PrimerPar

In order to activate more than 2 threads, nested parallelism has to be supported
by the compiler and explicitly enabled. If there is no limitation of the nesting depth
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or the total number of threads, an additional thread will be forked for each node of
the tree. We applied two different strategies to avoid overloading the system with
thousands of threads which could easily happen in KegelSpan program.

Limiting the nesting depth to N also implies that the total number of
threads is limited by 2N . The computational load is distributed to the threads
in a deterministic manner as the distribution is determined by the shape of the
tree. If the subtrees differ in size, the tree is unbalanced and so is the work
distribution. The OpenMP overhead is limited, as once the maximum nesting
level is reached, the remaining subtree will be processed sequentially.

Limiting the total number of threads to M (”thread pool”) also implies
that the nesting level is limited by M −1. For each node the number of currently
active threads is checked and as long as the limit is not reached, an additional
thread is forked. This strategy potentially may lead to an automatic load bal-
ance. But, alas, the implied barrier at the end of the PARALLEL SECTIONS

construct inserts additional overhead (see figure 2 left). Furthermore, the work
distribution is non-deterministic such that even in the case of a balanced tree, a
load imbalance may occur (see figure 2 right).

Up to version 2.5 of the OpenMP API there was no standard way to control
the maximum nesting depth or the maximum number of threads of an OpenMP
program. Although some compilers offered extensions to control the nesting be-
havior of applications we implemented this manually by using a variable which
was decremented in every recursive call (limiting max. nested depth) or a shared
variable containing the number of currently active threads (thread pool) in order
to retain portability.

In OpenMP v3.0 new Internal Control Variables (ICV) allow to set the limits
in a portable and easy way. The thread-limit-var ICV may be controlled
by the OMP THREAD LIMIT environment variable and is used to limit the size
of the ”thread pool”. The max-active-levels-var ICV may be controlled
by OMP MAX ACTIVE LEVELS environment variable and is used to limit the
maximum nesting depth.

(0) (1)

0100

1110 11

(1)0

(10)

100 101

Barrier

(0) 1

(00) 01

000 001

Fig. 2. Nested PARALLEL SECTIONS with 4 threads: The size of the triangles
represents the amount of work in the subtrees.
Left: Limited self-balancing.
Right: Work scheduling is non-deterministic; bad scheduling on a balanced tree.
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Fig. 3. Adaptive parallelization: Probability fronts for LIFO (left) or FIFO queue

3.2 Adaptive Parallelization

In an alternative approach we reimplemented the recursive procedures by an
iterative algorithm. A compiler would similarly map the recursion to a stack
based algorithm. But only the manual approach provides an opportunity for
parallelization. A dynamic data structure (LIFO- or FIFO queue) is introduced
to dynamically store the arguments of the previously recursive procedure call.
The initial parameters are stored into this structure in an initialization phase
and a team of threads executes a parallel loop until the queue is empty and
no thread is working on any item any more. Accesses to the queue have to be
guarded in critical regions.

The participating threads get an item from the queue, proceed with their
work, and eventually put items into the queue - if the recursive pendant would
have recursive evocations here.

This adaptive algorithm leads to an automatically balanced work load as long
as the tree is not degenerated into a list.

SUBROUTINE BSPstack (tree)

TYPE (BSPtree) :: tree

TYPE (Stack) :: myStack

.....

CALL StackPush (tree, myStack) ! Initialize

!$OMP PARALLEL

DO WHILE (queue is not empty .and. at least one thread is busy)

CALL StackPop (localtemp, myStack)

... work on localtemp here

IF ( node is not a leaf node )

CALL StackPush (localtemp%left, myStack)

CALL StackPush (localtemp%right, myStack)

END IF

END DO

!$OMP END PARALLEL

.....

END SUBROUTINE BSPstack
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As the queue has to be accessed by all threads in critical regions, it may
become a bottleneck for a large number of threads and thus lead to a limited
scalability. An implementation of a distributed queue may alleviate overhead.

The strategyof the queue has an impact on the processing sequence of the nodes.
A FIFO approach corresponds to a breadth-first traversal when executed se-

rially, whereas the LIFO approach corresponds to a depth-first traversal. In
parallel, there is no arrangement of node traversal enforced, but the trends still
remain (see fig. 3)

The programming effort for the adaptive algorithm is considerably higher
compared to the one employing nested PARALLEL SECTIONS, as it may im-
pact the implementation of the work function as well due to the paradigm change
from recursive to iterative.

3.3 Tasking

With OpenMP version 3.0 [6] the new tasking concept offers a thriving new
alternative. A task is an enclosed computational assignment, which is defined
first and executed later by any thread of the participating team. A task can
even generate further tasks. After generating another task, the generating task
can continue its execution first, while the generated task can be executed by any
thread of the participating team immediately or later. At an (implicit or explicit)
TASKWAIT barrier all previously generated tasks have to be completed.

Obviously, the tasking concept lends itself to the parallelization of recursive pro-
cedures by simply putting the recursive procedure evocation into task constructs.

A team of threads is forked and the master thread generates the first task
to operate on the root node. Tasks which then are generated recursively, are
equally executed by all threads of the team.

Here the TASKWAIT directive hardly affects performance, because threads
arriving at this barrier can happily suspend execution and work on another task
without any need to idle. This property of OpenMP tasks leads to an improved
load balancing almost ”for free”.

.....

!$OMP PARALLEL

IF (master) THEN CALL BSPtask (root) ! Start, one Thread only

!$OMP END PARALLEL

.....

RECURSIVE SUBROUTINE BSPtask (tree)

TYPE (BSPtree) :: tree

.... do work here

!$OMP TASK

CALL BSPpar (tree%left)

!$OMP END TASK

!$OMP TASK

CALL BSPpar (tree%right)

!$OMP END TASK

!$OMP TASKWAIT ! <--- does not really affect performance !

END SUBROUTINE BSPtask
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Usually a TASKWAIT barrier is necessary, if the output of a subtask is needed
in the computation after the TASKWAIT directive. If this is not the case, as e.g.
the subtask’s output is stored in disjoint partitions of a shared memory region,
there is the opportunity to save system resources because of a lower number of
simultaneously active tasks. But it turns out that Fortran is at a disadvantage
because Fortran pointers cannot be declared FIRSTPRIVATE on a TASK

directive (see [6] section 2.9.3.4 on page 94) and without a TASKWAIT barrier,
the variables’ lifetime which are shared in the generating task might prematurely
end (see [6] section 2.7 on page 61).

Additionally creating a task per tree node may lead to a slow-down due to
the overhead of managing the tasks by the runtime system. A possible solution
to this may be obtained by increasing the amount of work performed per task.

The merging of the work may be achieved by forbidding the spawning of
additional tasks if an threshold nesting depth of tasks is reached. This may be
implemented by an IF clause in the task definition or by a conventional if branch
and calling the serial version of the routine. Furthermore, the call tree may be
analyzed in more detail to handle tiny and fat nodes differently. The fat nodes
can be sensibly parallelized by spawning an additional task, whereas tiny ones
should be executed immediately.

4 Performance Experiments

Two recursive subroutines of KegelSpan have been parallelized with all the
approaches described in the previous section. We compare programming effort
and report on runtime measurements on two different platforms.

4.1 Work Distribution and Characteristics of the BSP Trees

Because of algorithmic reasons (adaptive refinement of meshes and unequal dis-
tribution of points in the space) the BSP trees in KegelSpan are heavily
unbalanced. Furthermore, the shape and the growth of the trees varies a lot
during the execution of the program and are specific to the particular use case.
Hence, only an averaged overview of the tree growth and shape may be given
which is valid only for the test data set.

Accumulated over the whole computation, there are about 230 thousands of
leaves and almost the same number of inner nodes in the BSP trees. The average
leaf depth is 12, with a lot of leaves (63 %) concentrated in the depth of 10 to 13.
There are leaves in the depth from 6 to 20, too. On average, one subtree from
the root node has about double the number of nodes than the other subtree,
confirming that the trees are unbalanced.

The first of the parallelized routines, denoted as A, is an adopted variation
of the well-known QuickSort algorithm. The amount of work decreases in every
step and consequently the scalability of any parallelization of this algorithm is
limited.
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Table 1. Three approaches in comparison

SECTIONS Adaptive parallelization Tasking

time to adopt, est. 1 hour 1 week 1 hour + “verification”
code lines added less than 50 up to 1000 less than 50

work on unbalanced trees bad good good
algorithmical changes? no maybe no

In the second parallelized routine, denoted as B, almost whole work is con-
centrated in the leaves of the BSP tree. The work of inner nodes consists only
of some reduction to merge the results of recursive calls.

The execution time of an average task is in the order of milliseconds, or
millions of CPU cycles.

4.2 Programming Effort

We try to summarize and categorize our experiences in implementing the differ-
ent parallelization approaches in table 1.

Parallelization with a nested PARALLEL SECTIONS construct was the
simplest, because it is a simple and matured concept and it requires only few
additional lines of code and no algorithmic changes.

The implementation of the adaptive parallelization algorithm required a com-
plete rewrite of the related routines including some changes in the algorithm.
Programming efforts and error-proneness were clearly higher.

The time to implement the tasking concept was comparable to the SEC-

TIONS solution. But anyhow it took some time to verify the solution and to
get the data scopes all right. The particular definition of default data scopes
for the TASK construct compared to the PARALLEL construct (see [6] section
2.9.1.1 on page 79) leads to some confusion in determining the data scope used
by default. Scoping seems to be a typical source of errors and we hope that the
known data race detection tools will be ready to check task constructs soon.

The new runtime routines and the environment variables for the limitation
of the nesting depth or the size of the thread pool provided by OpenMP 3.0
furthermore reduce the necessary programming effort. But they turned out to
be less flexible than our hand-coded routines.

4.3 Speedup

We ran all variants of the parallelized routines on two different machines:

– a Fujitsu-Siemens RX200 S4/X equipped with two Intel Xeon E5450 quad
core processors at 3.0GHz running Linux (denoted as ”Harpertown” in the
following) and

– a Sun T5120 equipped with one eight-core Sun Niagara T2 processor with 64
simultaneous threads at 1.4 GHz running Solaris (denoted as ”Niagara2”).
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Table 2. Speedup compared to serial version, without thread binding. SD = SEC-
TIONS with limiting the nesting depth, ST = SECTIONS with limiting the number
of active threads (threadpool) , AF = adaptive parallelization with FIFO queue, AL =
adaptive parallelization with LIFO queue (stack), T = tasking (without limits to task
spawning). SD and ST employ our hand-coded versions to control the nesting behavior
and not the new OpenMP 3.30 runtime functions.

Niagara2 Harpertown
SUN Studio Express 07/2008 (-fast) Intel 11.1.016 beta (-O3)

#Thr SD ST AF AL T SD ST AF AL T SD ST AF AL T

1 0.98 1.02 0.99 0.97 1.00 1.00 1.00 0.96 0.97 0.99 0.93 0.93 0.91 0.93 1.00
2 1.45 1.45 1.77 1.77 1.78 1.47 1.46 1.38 1.67 1.71 1.35 1.37 1.61 1.64 1.81
4 2.31 1.97 2.72 2.76 2.78 2.30 1.94 2.52 2.61 2.53 2.17 1.82 2.45 2.48 2.83
8 2.64 2.34 3.39 3.39 3.47 2.53 2.20 3.02 3.09 3.06 2.41 2.37 2.89 2.93 3.49
16 2.98 2.70 3.69 3.69 3.81 2.63 2.39 3.01 3.09 3.06
32 2.98 2.89 3.59 3.53 3.83

A
:
bu

ild
B

SP
T
re

e

64 2.97 2.97 1.30 1.28 3.86

1 1.01 0.98 1.12 1.12 0.53 0.95 0.95 0.99 1.00 0.51 0.99 0.99 0.94 0.94 0.49
2 1.41 1.42 1.83 2.00 0.98 1.02 0.98 1.03 1.07 0.60 1.20 1.19 1.44 1.52 0.82
4 1.70 1.90 2.61 3.62 1.89 1.00 0.99 0.91 0.88 0.51 1.36 1.44 1.65 1.98 1.10
8 1.94 2.18 3.86 6.01 3.53 0.97 0.88 0.92 0.86 0.45 1.43 1.69 1.54 1.82 1.06
16 2.93 2.19 5.39 8.59 5.98 0.91 0.77 0.90 0.84 0.45
32 2.85 1.70 6.57 8.30 7.96

B
:
bo

xL
pS

ch
lA

rr

64 2.78 1.56 4.74 4.87 8.01

Table 3. Accumulated serial execution times of the recursive routines in seconds (cor-
responding to a speedup of 1.0 in table 2)

Niagara2 Harpertown
SUN Studio Express 07/2008 Intel 11.0.034 beta

A: buildBSPTree 157 17.9 16.6

B: boxLpSchlArr 501 54.9 38.8

On both Niagara2 and Harpertown we used the Sun Studio Express compiler
and turned on high optimization with -fast whereas on Harpertown we addi-
tionally used the Intel Beta compiler (11.1.016) for which we were able to use
the optimization with -O3, only if we omit the -g debug flag.

We observe a maximum speedup of 3.49 with 8 threads on Harpertown and
8.59 with 16 threads on Niagara2 (see tables 2). Please note the difference in
absolute runtime (table 3): Because of the higher clock cycle, the superscalar
architecture, and the large caches the Harpertown outperforms the Niagara2 by
about one order of magnitude with the serial code version.

As Niagara2 contains 2 instruction units per core, 16 threads frequently are a
sweet-spot for multi-threaded applications which do not demand a high memory
bandwidth. The Niagara2 typically shines when running memory intensive codes
with many (up to 64) threads waiting for memory in parallel. Here we obtain
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Fig. 4. Speedup on Dunnington with thread placement by taskset. Sun Studio com-
piler -fast.
Left: scatter - private cache (taskset -c 0,1,2,3)
Right: compact - shared cache (taskset -c 1,9,10,11,12,13)

a speedup of up to 3.86 with 64 threads on routine A and up to 8.59 with
16 threads on routine B. All program versions display a smooth behavior with
respect to the number of threads employed, though the scalability of routine A
is obviously limited.

On Harpertown, we frequently observed that 2 threads of a memory inten-
sive code may consume the whole bandwidth of the front side bus while higher
scalability can be observed for cache-friendly applications.

For KegelSpan a speedup of 3.49 (Intel compiler) or 3.09 (Sun Studio
compiler) for the routine A with 8 threads is a tolerable result, in particular
when taking the limited scalability of the QuickSort-like algorithm into account.

The parallel versions of routine B, that scaled up to 8.59 on Niagara2, do not
perform well on Harpertown. The best speedup achieved with Intel compiler is
about 2 with 4 threads. The Sun Studio compiled version fails to scale at all on
Harpertown.

In order to get a better understanding of this observation, we run a limited
number of tests on a 4-socket Intel Dunnington1 processor based machine with
the same Sun Studio binaries to focus on binding and caching effects. In one
test setting we bound all (up to four) threads to one socket using taskset, such
that all threads shared the same L3 cache. In the other test setting we pinned
each thread to a separate socket and therefore the threads had their own large
L3 cache.

In the runs with shared cache we obtained a speedup of up to 1.8 which is
similar to speedup of the Intel compiler version (see fig. 4 right). If the threads
runs each on own socket we again don’t see any speedup.

We therefore assume that the low scalability of the routine B is a consequence
of memory bus limitations and cache issues. Unfortunately, we were not yet able
to conduct any useful hardware performance counter experiments (see below).
1 We choose a machine with 4 Intel Dunnington CPUs in comparison to a 2 socket

Harpertown machine. Therefore it is possible to run up to 4 threads with a dedicated
socket and thus without sharing cache.
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Fig. 5. Nested PARALLEL SECTIONS : Comparison of the self-coded and the OMP
3.0 driven implementations of thread forking boundaries on Routine B
Left: Niagara2, studio f90 express (-fast)
Right: Xeon, ifort 11.1.016 (-O3)

Evaluation of the new OpenMP 3.0 runtime functions to limit the
maximum thread count in nested parallel SECTIONS

– The OpenMP 3.0 ICVs thread-limit-var and max-active-

levels-var are global the program, i.e. all simultaneous parallel regions
share them. Furthermore there is no way to adjust the thread-limit-
var ICV from within the program (this ICV may be adjusted by setting the
OMP THREAD LIMIT environment variable only) thus all parallel regions
in the whole program share their value. Our own implementation is more
flexible in adjustment of number of threads in parallel regions.

– The OpenMP 3.0 variants are potentially dangerous in use. Due to high
default values of thread-limit-var and max-active-levels-var
for the tested compilers (e.g. 2147483647 for both ICVs by Intel compiler),
simply neglecting to set an environment variable may lead to an heavily
overloaded system or to running out of memory.

For routine A the performance of the hand-coded version and the OpenMP 3.0
runtime functions has been observed to be the same.

For routine B the OpenMP 3.0 implementation is approximately twice as slow
as the hand-coded version (see fig. 5). Surprisingly, for this routine the tasking
variant is also approx. two times slower with only one thread than the serial
version. This behavior lets us draw the conclusion that there is an fundamen-
tal problem with this routine in combination with OpenMP 3.0. Here further
research is needed.

The impact of limiting the number of tasks was also investigated.
We implemented reducing the task number by limiting the maximum task

nesting depth both with IF clauses in task definition and with Fortran con-
ditional branches and calling the serial version of the routine. In routine B,
in which the most work is concentrated in the leaves, we implemented also the
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Fortran conditional branching and calling the serial version of the routine. Niagara2,
Routine B, Sun Studio f90 Express (-fast).

differentiation of inner nodes (for which no task were spawned) and leaves (which
are outsourced to tasks).

We discovered that reducing the number of tasks does not result in any further
speedup for KegelSpan. That is in contrast to the result reported in [7] when
parallelizing the computation of Fibonacci numbers. We also see no overhead
due to additional IF’s if the cutting depth was chosen large enough to let the
cutting condition always be false (and thus producing an task for every node in
the tree). Only the slow-down due of advancing serialization and load imbalance
was seen, if the cutting depth was decreasing, see fig. 6.

It seems that the task granularity in our program is considerably higher than
the overhead of the runtime’s task management.

In general, our performance measurements confirm that the tasking and adap-
tive approaches scale better than nested PARALLEL SECTIONS as the trees
are unbalanced. Interestingly, in routine B the tasking approach is always much
slower with few threads (a factor of two with a single thread) but it catches up
when increasing the thread count. For the nested PARALLEL SECTIONS ap-
proach it is not clear whether limiting the nesting depth or the thread pool size is
advantageous. For the adaptive parallelization the LIFO queue outperforms the
FIFO queue for routine B, while for routine A the difference is negligible. The
advantage of LIFO queue compared to FIFO seems to be evoked by better cache
utilization. The last element put into the LIFO queue will probably immediately
be processed, keeping the caches hot.

4.4 Pitfalls

By now, the support for OpenMP 3.0 is still in its infancy.
We had quite some difficulties to generate correct and efficient executables

with the Intel 11.0 (beta and production) compilers when using tasks. We re-
ported multiple compiler bugs but also found workarounds. Initially, we had to
turn off optimization to generate correct executables. Since version 11.1.016 of
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the Intel beta compiler we are able to turn the optimization on by -O3, but
we were forced to disable the production of debugging symbols by omitting the
-g flag due of yet another bug in the compiler. Fixes for our problems are an-
nounced by Intel. The Sun Studio Express Compiler (Version 07/2008) came out
a little later than first Intel compiler with tasking support and did not reveal
any similar weaknesses when employing tasks.

By now, there are no tools available which may help to check the correctness
of threaded programs which use tasks. We tried out Intel’s Thread Checker and
Sun’s Thread Analyze without success, which is not surprising because these
tools officially do not support tasking by now.

We also failed to get meaningful hardware counter data with Intel VTune due
to many bugs and the inability of VTune to read the debug information from a
binary compiled with the Sun Studio compiler. This prevented us from drilling
further down into some of the performance peculiarities that we are not yet able
to explain satisfactorily.

5 Conclusion

In the context of the simulation of bevel gear cutting processes we compared dif-
ferent approaches of parallelizing recursive algorithms for binary tree traversals
using OpenMP with advanced Fortran 90/95.

Recursively nesting of PARALLEL SECTIONS is appealing because of it’s
simplicity, while the laborious stack implementation [5] performs better on un-
balanced trees. The new tasking approach provided by OpenMP 3.0 combines
ease of use of the first approach and the scalability of the second, provided that
data scoping is handled with care.

We obtained a speed-up of up to 3.86 on the single-socket 8-core multi-
threaded Niagara 2-based system and up to 3.49 on the dual-socket 4-core
Harpertown-based machine for the first routine (”A”) and a speed-up of up
to 8.59 on the Niagara 2- but only 1.98 on the Harpertown-based system for the
second routine (”B”).

Future work will include a test of upcoming compiler versions and tuning the
runtime environment. Particularly, we want to investigate the matter of lim-
ited scalability of the routine B on Harpertown. Further experiments concerning
untied tasks, thread placement, and wait policies will be carried out once the
compilers mature and generate more reliable code.
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Abstract. Recently, multicore technology has been introduced to em-
bedded systems in order to improve performance and reduce power con-
sumption. In the present study, three SMP multicore processors for
embedded systems and a multicore processor for a desktop PC are eval-
uated by the parallel benchmark using OpenMP. The results indicate
that, even if the memory performance is low, applications that are not
memory-intensive exhibit large speedups by parallelization. The results
also indicate a large performance improvement due to parallelization
using OpenMP, despite its low cost.

1 Introduction

Recently, the use of embedded systems with complicated functions, such as digi-
tal home appliances and car navigation systems, has become widespread. These
systems require increasingly higher performance as the functionality of the user
interface becomes increasingly higher and the amount of information being pro-
cessed increases. On the other hand, the power consumption of embedded sys-
tems must be reduced in order to extend the operating time of mobile devices
and realize more environmentally friendly products. Therefore, multicore tech-
nology has been introduced not only for high-end general-purpose processors
but also for embedded processors, because multicore is advantageous in terms of
performance per watt. On a multicore SMP processor, conventional multi-thread
programming using POSIX thread library has been required, or special assembly
language code has been inserted at each synchronization point. However, as the
applications on embedded system become larger, in order to reduce the develop-
ment time an easier programming method for parallel processing is required in
place of complex programming methods that require and skilled programmers.

OpenMP[1] is a portable programming model that provides a flexible inter-
face for developing parallel applications on shared memory multiprocessors. By
inserting a hint for parallelization, called a “directive”, into a program writ-
ten in a conventional programming language, such as C, C++, or Fortran, the
OpenMP compiler generates the parallelized code. Recently, OpenMP has be-
come available for several compiler products for desktop computers or servers.

M.S. Müller et al. (Eds.): IWOMP 2009, LNCS 5568, pp. 15–27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this way, the development environment of OpenMP can be used broadly. The
GNU Compiler Collection (GCC), which is a well-known open-source compiler
suite [2], has supported OpenMP since GCC version 4.2. Nevertheless, in the
field of embedded systems, a special cross compiler is provided by the vendor,
and most of these compilers cannot treat OpenMP directives.

In the present study, we evaluate some embedded multicore processors with a
shared memory mechanism by parallel benchmark programs using OpenMP. In
addition, we develop the OpenMP implementation using a cross compiling envi-
ronment for embedded multicore systems. Since embedded multicore processors
are widely used, we investigate the following:

– the effect of OpenMP as a programming method, and
– the memory bandwidth and synchronization performance as an SMP multi-

core processor and their impact on the overall system performance.

2 Multicore Processor for Embedded Systems

In the present study, we evaluate three multicore processors for embedded sys-
tems with shared memory: M32700, MPCore, and RP1. Furthermore, as an
example of a multicore processor for a desktop PC, the Intel Core2Quad Q6600
is examined for the purpose of comparison.

In the following, we will describe the M32700, the MPCore, and the RP1 in
greater detail.

2.1 Renesas Technology M32700

The M32700[3], developed by Renesas Technology, is a dual-core processor em-
bedded with two M32R-II cores.

Figure 1 shows a block diagram of the M32700 processor. The M32R-II core
consists of seven-stage pipeline, and each core includes an 8-Kbyte instruction

I−TLB
32 Entries

Full Associative

D−TLB
32 Entries

Full Associative

I−Cache
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Debugging Interface

CPU 1 
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On−Chip
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Bit−width: 32 bits

Off−Chip
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Fig. 1. Block diagram of the M32700 processor[3]
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cache and an 8-Kbyte data cache with two-way set associativity. The data cache
is managed by a cache consistency mechanism between the cores. On the M32700
chip, a 512-Kbyte SRAM is shared with two cores via a 128-bit internal bus.

The M32R-II instruction set consists of 32-bit instructions and more frequently
used 16-bit instructions. If two 16-bit instructions are located continuously, these
instructions can be issued simultaneously depending on the combination of
instructions. On the other hand, the M32700 does not have a floating-point
function unit.

2.2 ARM/NEC Electronics MPCore

The MPCore[4], developed by ARM and NEC Electronics, is a quad-core pro-
cessor into which four MP11 cores are embedded. The MPCore is designed as a
combination of various function modules called PrimeCells to provide a flexible
configuration. Figure 2 shows a block diagram of the MPCore processor.

The MP11 core is an implementation of the ARM11 micro architecture based on
ARMv6 instruction set architecture and has an eight-stage, single-issue pipeline.
The MP11 core consists of the 32-bit ARM instruction set, the 16-bit Thumb in-
struction set, theJazelle instruction set for accelerationof theJavavirtualmachine,
as well as DSP extensions, and SIMD instructions, for example. In the present
study, we use the only the 32-bit ARM instruction set.

Each core is connected to a Snoop Control Unit (SCU), and two AXI buses
from the SCU are connected to external devices. In the evaluation board used in
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Fig. 2. Block Diagram of the MPCore processor[4]
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the present study, external peripheral devices, including two AXI bus interfaces
for attachment to the MPCore processor and a DRAM controller, are incor-
porated into a single FPGA chip. Therefore, the external system bus and the
DRAM controllers are operated at a clock frequency of 30 MHz. To reduce the
influence of the performance degradation due to the slow frequency for the bus
clock, in addition to 32-Kbyte instruction and 32-Kbyte data level-1 caches, a
level-2 shared-cache of 1 Mbyte is embedded on the MPCore[5].

2.3 Renesas/Hitachi/Waseda University RP1

The RP1 processor, developed by Renesas, Hitachi, and Waseda University, is
a quad-core processor based on SH-X3 architecture[6]. The RP1 includes four
SH-4A cores and performs 4,320 MIPS and 16.8 GFlops at a clock frequency of
600 MHz. Figure 3 shows a block diagram of the RP1 processor.

The SH-4A core consists of an eight-stage pipeline and can issue two 16-
bit instructions simultaneously. The RP1 has a dedicated snoop bus for cache
consistency, and data transfer for cache coherence control can avoid traffic on the
Super Highway (SHwy). The RP1 also includes local memories dedicated to each
core that can be accessed with one clock, ILRAM for instructions and OLRAM
for data, a local memory that can be accessed with several clocks, URAM, and
a centralized shared memory, CSM.

In the present study, we use Linux as the operating system and do not apply
the internal memory in the RP1 chip to Linux, so that the RP1 is treated as a
conventional SMP processor.
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3 Omni OpenMP Compiler

As an OpenMP implementation, Omni OpenMP compiler version 2, which we
developed previously, is used. In order to adapt to each multicore architecture,
the runtime library must be implemented using spinlock, and the cross compiling
environment must be built as described below.

3.1 Implementation of the Runtime Library

When an OpenMP program is compiled using Omni OpenMP compiler, we can
choose either mutex lock, provided by POSIX thread, or a dedicated spinlock
function for specific architecture from the runtime libraries as the mutual ex-
clusion. For this purpose, we implement the runtime libraries using spinlock for
each of the multicore processors examined in the present study. Initially, a lock
variable is set to 0 and is changed to 1 when the lock is acquired. If the lock
variable is already 1, the lock is in use, and the process waits using busy waiting
until the release of the lock. At the exit of the critical section, the lock variable
reverts to 0, i.e., the unlocked state. In addition, to avoid false sharing of the
cache block, lock variables are aligned to the boundary of cache line.

Figure 4 shows the implementation of the spinlock function for each multicore
in assembly language. These implementations are performed by referencing the
Linux kernel[7].

M32700 M32R provides only bus lock/unlock operations, lock/unlock instruc-
tions, as the atomic operation. While the bus is locked, the other processor or
peripherals cannot access the bus, which causes degradation of performance.
Here, we assume that the address of the lock variable is stored in r0.

To minimize the lock period, after the lock instruction reads the lock
variable to r5, the unlock instruction is immediately performed, and the lock
variable is set to 1 simultaneously. If r5 is not 0, then the lock is already in
use, and r5 returns to the starting point. To avoid the bus contention caused
by repeating the lock operation, the lock variable is tested before the second
lock operation, and the nop (no-operation) instruction is added.

M32700 MPCore RP1
1 ldi r4,#1

2 loop:

3 lock r5,@r0

4 unlock r4,@r0

5 bnez r5,loop

6 exit:

1 mov r3, #1

2 loop:

3 ldrex r1, [r0]

4 teq r1, #0

5 strexeq r1, r3, [r0]

6 teqeq r1, #0

7 bne loop

8 exit:

1 loop:

2 movli.l @r4, r0

3 tst r0, r0

4 bf loop

5 mov #1, r0

6 movco.l r0, @r4

7 bf loop

8 exit:

Fig. 4. Spinlock codes for each architecture
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MPCore ARMv6 architecture provides the Exclusive Load, ldrex instruction,
and the Exclusive Store strex instruction. Here, we assume that the address
of the lock variable is stored in r0.

Ldrex reads the lock variable to r3, and then the operation mode is
changed to the exclusive access mode. In line 4, if r1 is 0, then the Z (Zero)
flag is set. Hereinafter, suffix eq indicates that the instruction is executed
if and only if the Z flag is set. Otherwise, the instruction is replaced with
nop. In line 5, when the Z flag is set, that is, when the lock acquisition is
successful, strex tries to write the value 1 into the lock variable. If another
processor has not written to the lock variable until the exclusive access mode,
then the write operation by strex is successful, and r1 is set to 0. Otherwise,
r1 becomes 1. In line 6, teqeq checks whether store is successful. If the lock
cannot be acquired, or the store is unsuccessful, the operation returns from
line 7 to line 3.

RP1 On SH4A architecture, Move Linked, movli, and Move Conditional, movco
instructions are available. The movli and movco operations are similar to
Exclusive Load and Exclusive Store, respectively, of the MPCore. Here, we
assume that the address of the lock variable is stored in r4.

Movli reads the lock variable to r0 implicitly. Unless the value r0 is 0,
the lock acquisition is retried in lines 3 and 4. Movco tries to set the lock
variable to 1. The T (True) flag is set if this is successful. Otherwise, the T
flag is reset, and the operation returns from line 7 to line 2 movli.

3.2 Cross Compiling Environment

The Omni OpenMP compiler consists of a front-end part, a translation part,
and a runtime library. The front-end part converts a C or Fortran program to
a common intermediate language. The translation part translates the OpenMP
directives into a normal multithreaded C program using POSIX threads.

In the case of cross compiling, similar to the native compiler, the front-end part
and the translation part can be executed on the host PC (x86) because these
processes and codes are architecture-independent. Finally, the cross compiler
for the target architecture generates the target binary linked with the runtime
library described in Section 3.1 from the multithreaded code.

4 Performance Evaluation

4.1 Evaluation Environment

In the present study, we evaluate four multicore processors described in Section 2.
Table 1 shows the specifications and the operating environment. We adopt Linux
2.6 as the operating system. These embedded systems start up via 100-Mbps
Ethernet using the Network File System (NFS), and the Q6600 in the desktop
PC uses the local file system.

As the OpenMP implementation, Omni OpenMP compiler Version 2 is com-
monly used for all platforms in the present study. For the back-end compiler, we
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Table 1. Evaluation environment

Processor M32700 MPCore RP1 Q6600
# of Cores 2 4 4 4
Frequency
Core/Int./Ext. Bus 300/75/75

MHz
210/210/30
MHz

600/300/50
MHz

2.4 GHz

Cache L1: I+D 8K+8K/2-way 32K+32K/4-
way

32K+32K/4-
way

32K+32K/8-
way

L2: — 1M/8-way — 4M×2/16-way
Line size (byte) 16 32 32 64

Memory 32-Mbyte 256-Mbyte 128-Mbyte 2-Gbyte
Type SDRAM DDR DDR2-600 DDR2-800
Clock 100 MHz 30 MHz 300 MHz 400 MHz

OS Linux 2.6.25 Linux 2.6.19 Linux 2.6.16 Linux 2.6.18
uname -m m32r armv61 sh4a i686

C Compiler gcc 4.1.2
20061115

gcc 4.1.1 gcc 3.4.5
20060103

gcc 4.1.2
20061115

Target -m32r2 -mcpu=mpcore -m4a -march=nocona

C Library glibc 2.3.6.ds1-
13

glibc 2.3.6 glibc 2.3.3 glibc 2.3.6.ds1-
13.etch5

Pthread Linuxthreads
0.10

NPTL 2.3.6 Linuxthreads
0.10

NPTL 2.3.6

use various versions of gcc C compiler, as listed in Table 1. We also use glibc
as the standard C library. However, each environment provides a POSIX thread
library through different implementations.

LinuxThreads is the first implementation of POSIX thread on Linux. In order
to manage thread creation or thread termination, a manager thread is required
independently of the computation thread, and operations related to synchroniza-
tion are implemented by signal. In contrast, the Native POSIX Threads Library
(NPTL) is an implementation that was developed to solve the problem of Linux-
Threads. NPTL uses futex, which stands for fast user-level locking mechanism. In
the case of the RP1, although the TAS (test-and-set) instruction is not suitable
for the SMP environment, the LinuxThreads library contains TAS (test-and-set)
instructions. Therefore, we rewrite the library using MOVLI/MOVCO instruc-
tions and replace the pthread library of the system with the improved library
described herein.

4.2 Benchmark

Next, we explain the parallel benchmarks used in the present study.
The MiBench suite[8] is a free benchmark suite for embedded processors that

emulates the benchmark suite developed by the EEMBC (Embedded Micropro-
cessor Benchmark Consortium)[9]. MiBench includes six categories, namely, Au-
tomotive and Industrial Control, Consumer Devices, Office Automation,
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Networking, Security, and Telecommunications, and consists of 35 benchmarks.
In the present study, we consider the major algorithms to parallelize benchmarks
using OpenMP for typical applications on embedded systems. We choose Susan
Smoothing (SS), the image-processing algorithm from Automotive@category,
Blowfish Encrypt (BF) from Security category, and FFT from Telecommuni-
cations category, and parallelize these benchmarks using OpenMP.

In addition, we attempt to confirm the performance of target multicore proces-
sors using existing scientific applications. We use some benchmarks from the NAS
Parallel Benchmark (NPB)[10], including IS and CG. IS in NPB3.3-OMP[11] is
written in C language with OpenMP. Although CG in NPB is described in For-
tran, Omni OpenMP provides a modified version of CG, which is translated into
C language and uses OpenMP directives as the sample.

MediaBench is a benchmark for embedded multimedia applications [12]. We
use the parallelized version using OpenMP of mpeg2encode [13]. Since we con-
sider multimedia streaming to be one of the most suitable applications for em-
bedded multicore processors, we choose this benchmark.

4.3 Performance Evaluation for Synchronization

First, we preliminarily evaluate each system for synchronization using syncbench
of the EPCC micro benchmark[14]. Table 2 shows the results for syncbench.
The M32700 is investigated using two cores, and the other processors are in-
vestigated using up to four cores. As a result, the M32700 and the RP1 using
LinuxThreads as the POSIX thread library have very low performance in the
cases of “single,” “critical,” “lock/unlock,” and “atomic” with mutex lock, which
indicates that the signal handling degrades the performance when rendezvous
occurs among the threads. To solve this problem, we introduce the spinlock mech-
anism for synchronization (in place of mutex lock). The results indicate that the
introduction of the spinlock in LinuxThreads results in an extreme speedup. For

Table 2. Results of EPCC syncbench (Unit: µs)

M32700 MPCore RP1 Core2Quad
(2 PU) (4 PU) (4 PU) (4 PU)

Mutex Spin Mutex Spin Mutex Spin Mutex Spin
parallel 392.2 376.8 436.5 434.8 107.8 107.2 2.80 2.25
for 18.5 13.6 7.46 6.15 1.66 1.42 0.364 0.372
parallel for 399.7 383.6 436.3 435.7 108.2 107.7 3.71 2.47
barrier 14.1 10.7 6.11 5.98 1.13 0.867 0.301 0.316
single 50.8 9.87 3.14 3.12 295.1 1.53 4.54 0.859
critical 273.5 3.15 0.921 0.837 128.2 0.190 1.31 0.129
lock/unlock 273.1 2.51 1.03 0.962 121.0 0.174 1.41 0.131
ordered 8.64 7.08 1.50 1.33 0.584 0.598 0.191 0.168
atomic 241.0 0.501 0.894 0.893 121.0 0.365 0.474 0.307
reduction 401.9 387.1 443.9 443.8 327.0 109.1 6.13 3.35
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example, the speedup by spinlock is 482 in the case of “atomic” on the M32700,
and 695 in the case of “lock/unlock” on the RP1. On the MPCore using NPTL, in
the case of “ordered”, the performance of spinlock increases slightly (1.12 times
faster) compared with that of mutex lock. Based on these results, hereinafter,
we use only spinlock for synchronization. In the case of embedded processors,
“parallel,” “parallel for,” and “reduction” directives, which include the element
of “parallel” directive, the execution time is relatively large. When the “parallel”
directive is assigned, some threads are generated so that the program can be per-
formed in parallel, and memory access is frequent. The MPCore, for which the
access time to DRAM is slowest, requires the longest execution time for parallel
directives. Naturally, the parallel region should be assigned to the largest section
possible in order to reduce the overhead for thread assignment.

4.4 Evaluation by Parallel Benchmarks Using OpenMP

Next, we evaluate the multicore processors using parallel benchmarks. First, we
use NAS Parallel Benchmarks. Figure 5 shows the speedup of IS (Class W). In
addition, Table 3 shows the actual execution times for all of the benchmarks.
NPB IS is a memory-intensive program. Since the embedded processors have
low bandwidth for memory access, the MPCore with four cores only achieves
a speedup of 1.6 times, whereas the speedup of the M32700 is 1.1 times. In
contrast, the speedup of the RP1 with four cores is 2.9 times. The RP1 has a
dedicated bus for the snoop cache control, and the above results indicate that the
mechanism for cache control in the RP1 is effective. Figure 6 shows the speedup
of CG (1, 400× 1, 400,sparse matrix). On this benchmark, the speedups of both
the RP1 and the Q6600 with four cores are 2.8 times. The reason for this is that
CG is a computation-intensive benchmark. On the other hand, in the case of

Table 3. Results of Performance Evaluation (Unit: seconds)

Processor PU IS CG Susan s FFT Blowfish Mpeg2encode
M32700 1 4.66 183.5 22.1 19.6 175.3 1143.8

2 4.32 93.2 11.8 10.5 94.3 (90.6–102.4) 788.0
MPCore 1 11.3 31.0 21.7 3.19 138.9 —

2 7.66 15.6 11.2 1.71 112.4 (69.8–140.6) —
3 7.09 10.8 7.80 1.31 79.4 (46.8–139.8) —
4 7.09 8.15 5.99 1.03 76.1 (34.9–139.3) —

RP1 1 4.14 4.43 8.49 0.280 60.2 57.4
2 2.26 2.44 4.51 0.147 33.5 (29.5–60.0) 46.6
3 1.64 1.85 3.18 0.107 31.6 (19.9–59.8) 39.8
4 1.41 1.56 2.52 0.085 23.5 (19.7–30.6) 35.9

Q6600 1 0.06 0.215 0.933 0.0076 6.12 5.47
2 0.036 0.116 0.476 0.0048 3.14 (3.13–3.15) 3.69
3 0.029 0.086 0.322 0.0065 2.59 (2.58–2.62) 2.88
4 0.026 0.073 0.251 0.0063 1.70 (1.69–1.71) 2.48
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Fig. 5. Speedup of NPB IS (CLASS=W)
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Fig. 6. Speedup of CG

the MPCore, the speedup is 3.8 times. The cache efficiency appears to increase
because the L2 cache is shared among four cores.

Next, we investigate the speedup in the case of MiBench. Here, we introduce
MiDataSets, which is a collection of various workloads for MiBench[15]. We
adopt 19.pgm for SS, 4.txt for BF from MiDataSets, and the large dataset in
MiBench is used for FFT (nwave=6, nsample=65,536). In addition, we change
the algorithm in BF from the CFB64 mode to the ECB mode. Figures 7, 8, and 9
show the speedups of SS, BF, and FFT, respectively. The speedup of SS is from
3.4 to 3.7 times due to high parallelism. The parallel version of BF performs the
following operations in a pipelined manner: read 40 bytes from input file, encrypt
100 times, then write 40 bytes to output file. Since BF indicates scattering
results of the execution time (except for the Q6600), we append the minimum
and maximum execution times to the average time. This dispersion appears to
be caused by the influence of the NFS because the results for the Q6600 are
stable. As a result of the slight dependency among only 8 bytes in the ECB
mode, in the best case of all the trial, we can obtain a speedup of 4.0 times with
four cores on the MPCore, and a speedup of 3.0 times with three cores on
the RP1.
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Fig. 7. Speedup of Susan (smoothing)
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Fig. 9. Speedup of FFT
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Fig. 10. Speedup of Mpeg2encode

For FFT on the RP1 with four cores, a speedup of 3.3 times is obtained due
to high parallelism. For the Q6600, the speedup is degraded in the case of three
or four cores, as compared to two cores, because the working set is so small for
the Q6600 that the synchronization cost becomes dominant. Table 4 shows the
cost of modification for OpenMP. Parallelization through the use of OpenMP
is quite simple, and involves only the insertion of a small number of OpenMP
directives.

Finally, Figure 10 shows the speedup of mpeg encoding. We cannot execute
this benchmark on the MPCore because of a fatal error. Although the speedup
on the Q6600 with four cores is 2.2 times, in the case of the RP1 with four cores,
the speedup is only 1.6 times due to the overhead of file operation via NFS. In
the case of the M32700, there is no degradation of the performance because the
execution time is sufficiently long due to the software emulation of floating point
operations.

Table 4. Modification Cost for OpenMP

Benchmark Change
SS add 6 directives
BF add 9 directives & modify 12 lines
FFT add 4 directives

5 Related Work

Several embedded multicore processors had been evaluated indivisually.
Hotta, et al. [13] evaluated the M32700 by mpeg2enc in MediaBench paral-
lelized with OpenMP. Blume, et al. [16] evaluated the MPCore using several
applications parallelized with OpenMP. Seo, et al. [17] studied OpenMP direc-
tive extension for BlackFin 561 Dual-Core processor, and they modified EEMBC
benchmarks[9] for parallel version using OpenMP.
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Miyamoto, et al. [18] evaluated Fujitsu FR1000 processor and the RP1 using
multimedia applications parallelized automatically by OSCAR compiler which
they developed.

Several different kinds of embedded multicore processors had never been eval-
uated simultaneously by the parallel benchmark using OpenMP.

6 Conclusion

In the present study, we evaluated the performance of four multicore proces-
sors, namely, the M32700, the MPCore, and the RP1 for embedded systems,
and the Core2Quad Q6600 for a desktop PC. After we investigated the synchro-
nization performance using syncbench of the EPCC micro benchmark, we used
various benchmarks, including the NAS Parallel Benchmarks, MediaBench, and
MiBench, which are parallelized by OpenMP.

As a result, although embedded multicore processors have larger synchroniza-
tion cost and slower memory performance than multicore processors for desktop
PC, the spinlock mechanism enables embedded multicore processors to improve
the synchronization performance. Moreover, according to the parallel bench-
marks using OpenMP, the performance became higher as the number of cores
increased for the case in which several OpenMP directives were inserted into
the source code. Therefore, OpenMP is very useful for parallelizing embedded
applications as well as scientific applications on HPC. On the other hand, major
hurdles remain with respect to the use of OpenMP for embedded systems. For
example, parallel processing using OpenMP is too difficult to satisfy real-time re-
striction. To apply OpenMP to embedded systems, some extensions for OpenMP
directives will be required, including functions such as real-time processing and
power-awareness.

In the future, the effect of spinlock for synchronization under multiple parallel-
workloads should be examined. In addition, most multicore processors include
fast internal memories on the chip, and we will consider using these internal mem-
ories to speedup synchronization. Furthermore, we will investigate the transition
of power consumption of each multicore processor system for various numbers
of cores.
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Abstract. Automatic introduction of OpenMP for sequential applica-
tions has attracted significant attention recently because of the prolif-
eration of multicore processors and the simplicity of using OpenMP to
express parallelism for shared-memory systems. However, most previous
research has only focused on C and Fortran applications operating on
primitive data types. C++ applications using high-level abstractions,
such as STL containers and complex user-defined types, are largely ig-
nored due to the lack of research compilers that are readily able to
recognize high-level object-oriented abstractions and leverage their as-
sociated semantics. In this paper, we automatically parallelize C++ ap-
plications using ROSE, a multiple-language source-to-source compiler
infrastructure which preserves the high-level abstractions and allows us
to unambiguously leverage their known semantics. Several representa-
tive parallelization candidate kernels are used to explore semantic-aware
parallelization strategies for high-level abstractions, combined with ex-
tended compiler analyses. Those kernels include an array-based compu-
tation loop, a loop with task-level parallelism, and a domain-specific tree
traversal. Our work extends the applicability of automatic parallelization
to modern applications using high-level abstractions and exposes more
opportunities to take advantage of multicore processors.

1 Introduction

Today’s multicore processors have been forcing application developers to par-
allelize legacy sequential codes and/or write new parallel applications if they
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want to take advantage of shared-memory parallelism supported by hardware.
However, parallel programming is never an easy task for users, given the stun-
ning work to deal with extra issues in parallel computing, such as dependencies,
synchronization, load balancing, and race conditions. Therefore, parallelizing
compilers and tools are playing increasingly important roles in allowing the full
utilization of new computer systems and enhancing the productivity of users.

OpenMP [1] is a simple and portable parallel programming model that ex-
tends existing programming languages like C/C++ and Fortran 77/90 to include
additional parallel semantics. The extensions OpenMP provides contain compiler
directives, user level runtime routines and environment variables. Programmers
can use OpenMP to express parallelization opportunities and strategies for appli-
cations. Moreover, the simple API provided by OpenMP has attracted paralleliz-
ing compilers and tools to use OpenMP as a target for interactive or automatic
parallelization.

Although numerous parallelizing compilers [2,3] and tools [4,5] have been pre-
sented during the past decades, most of them focus only on C and/or Fortran ap-
plications operating on primitive data types. On the other hand, object-oriented
languages, especially C++, are widely used to develop scientific computing ap-
plications. Those applications are often written with various standard and/or
user-defined high-level abstractions, such as those in the C++ Standard Tem-
plate Library (STL), now part of the C++ standard. While high-level abstrac-
tions successfully hide their implementation details and are useful to users for
this purpose, they significantly impede static code analyses applied to their com-
plex implementation. Typically, significant information about the abstractions
is lost during the compiler’s lowering to a simple intermediate representation
(IR). Thus, compilers are often forced to make conservative assumptions for ap-
plications using such abstractions and are not able to apply many optimizations,
including automatic parallelization.

In this paper, we use a source-to-source compiler infrastructure, ROSE [6], to
explore compiler techniques to recognize high-level abstractions and to exploit
their semantics for automatic parallelization. Our goal is to automate the process
of migrating existing sequential C++ applications to multicore machines and to
assist in developing new parallel applications. Specifically, our work addresses
the concerns of parallelism for three target audiences: 1) users with legacy code
(C/C++) using standard abstractions (STL, etc.), 2) users and library writ-
ers with domain-specific abstractions that have semantic properties that match
those of the ones we make available, 3) library developers who are developing
domain-specific abstractions for users and leveraging the semantics using their
own semantic specifications (ones that we don’t define). Our work addresses the
essential requirement that modern compilers be fundamentally extensible in a
way that simplifies how domain-specific abstractions can be optimized.

The remainder of this paper is organized as follows. The ROSE compiler infras-
tructure is introduced in the next section. Section 3 discusses high-level abstrac-
tions and parallelization. Section 4 then presents the details of a semantic-aware
parallelizer using ROSE. Preliminary results of our work are given in Section 5.
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Section 6 discusses related work. Finally, Section 7 presents our conclusions and
the future directions of this work.

2 The ROSE Compiler Infrastructure

ROSE is an open source compiler infrastructure to build source-to-source pro-
gram transformation and analysis tools for large-scale C/C++ and Fortran ap-
plications. Since it preserves the representation of high-level abstractions, no
required information to recognize such abstractions is lost and the associated se-
mantics can be reliably inferred. ROSE allows even non-expert users to exploit
compiler techniques to address the analysis and transformation of abstractions.

Fig. 1 illustrates a typical source-to-source translator built using ROSE. The
Edison Design Group (EDG) front-end [7] is used to parse C and C++ applica-
tions. EDG source files and its IR are protected under commercial or research
licenses, but may be distributed freely in binary form. Language support for For-
tran 2003 (and earlier versions) is based on the open source Open Fortran Parser
(OFP) [8] developed at Los Alamos National Laboratory. Using both EDG and
OFP, ROSE presents a common object-oriented, open-source IR for C/C++ and
Fortran. The ROSE IR includes an abstract syntax tree (AST), symbol tables,
a control flow graph, etc. and is based loosely on the Sage++ IR design [9].
Also, a set of distributed symbol tables is associated with the AST tree to store
symbols’ information within each scope. Generic and custom program analysis
and transformation can be built on top of the ROSE IR. The ROSE unparser
generates source code in the original source language from the transformed AST,
with all original comments and C preprocessor control structures preserved. Fi-
nally, a vendor compiler is optionally called to continue the compilation of the
generated (transformed) source code, generating a final executable.

The ROSE AST, together with its corresponding symbol tables, fully sup-
ports type resolution, semantic analysis, and overloaded function resolution. All
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Fig. 1. A source-to-source translator built using ROSE
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information in the application source code is preserved in the AST, including
C preprocessor control structure, source comments, source position information,
token stream (including whitespace), and C++ template information. The ROSE
AST also has a rich set of interfaces for building source-to-source translators.
These interfaces support efficient AST traversals, AST node queries, AST con-
struction, copying, insertion, removal, and symbol table lookups. Moreover, per-
sistent attributes are introduced in the AST to easily store and evaluate arbitrary
user-defined information, including AST annotations. These attributes are per-
sistent in that they are preserved when the AST is written out to (and read in
from) a binary file.

A number of program analyses and transformations have been developed for
ROSE. They are designed to be utilized by users via calling simple function in-
terfaces. The program analyses available include call graph analysis, control flow
analysis, data flow analysis (def-use chain, reaching definition, live variables, alias
analysis etc.), class hierarchy analysis and dependence analysis. Representative
program translations developed with ROSE are partial redundancy elimination,
constant folding, inlining, outlining (separating out a portion of code as a func-
tion), and loop transformations (a loop optimizer supporting aggressive loop
optimizations such as fusion, fission, interchange, unrolling and blocking).

3 High-Level Abstractions and Parallelization

General purpose languages typically permit the construction of abstractions;
represented by functions, data structures, etc. These permit high-level represen-
tations of typically user-defined concepts. C++, as an object-oriented language,
supports more complex abstractions and encourages the use of classes, member
functions, templates, etc.

Knowledge of the semantics of the abstractions can be a short-cut for program
analysis based on the implementation of an abstraction. In the case of complex
abstractions with semantics hidden behind the use of pointers, leveraging known
or published semantics of the abstractions can often be more productive. As an
example, the knowledge that STL vectors are contiguous in memory is critical to
numerous optimization opportunities, but it might be impossible to obtain from
an analysis of a specific STL implementation because of the complexity of its
internal pointer handling. By exploiting well-defined semantics of high-level ab-
stractions, compilers can significantly enhance the applicability and accuracy of
existing analyses and optimizations. Such work also serves to encourage libraries
to define abstractions with well-defined semantics. For instance, traditional par-
allelization algorithms designed for primitive data types can be extended to
handle applications using high-level abstractions if the applications demonstrate
similar semantic properties. The semantics of abstractions often directly indicate
the side effects of function calls and such knowledge can significantly benefit par-
allelization which is often disabled because the inability to accurately summarize
read and write accesses hidden behind call sites.

In the following subsections, we examine several typical candidates and ex-
plore parallelization strategies for applications using high-level abstractions.
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3.1 An Array-Based Computation Loop

Loops operating on fixed-sized arrays are probably the most popular and rep-
resentative examples for automatic parallelization using OpenMP. Typically, an
array-based computation loop parallelizable by using omp parallel for has the fol-
lowing properties:

1. The loop has a canonical form (for (init; test; incr) block) which satisfies the
requirements as defined by the OpenMP specification.

2. The loop operates on arrays using contiguous memory locations for a set of
elements of the same type.

3. The elements of arrays do not overlap in memory or alias each other.
4. Random element accesses with a constant cost can be achieved by calculating

offsets from an array base using subscripts.
5. The operations on the arrays do not rearrange the memory layout of elements

and invalidate their accesses using subscripts across different iterations.
6. There are no loop carried data dependencies for array element accesses.

Conventional parallelization algorithms rely on a set of transformations and
analyses in order to judge the safety of parallelization. For example, loop nor-
malization is conducted to produce a canonical form, if possible. Alias analysis
is used to tell if there are aliased elements. A set of data dependence tests
based on array subscripts are used to determine if different loop iterations are
independent. Automatic parallelization can be extended to handle high-level ab-
stractions by leveraging their semantics and applying the conventional analyses
and transformations. We take the following STL vector computation loop as an
example to explore a viable parallelization method. The method is generic so
that it can be applied to other high-level abstractions with similar semantics,
including the STL deque or user-defined types.
1 std::vector <int> v1(100);
2 for (int i = 0; i < 100; i++)
3 v1[i] = v1[i] + i;

The STL vector has many semantics (e.g., iterator invalidation rules) which
can be taken advantage of by automatic parallelization. As a sequential con-
tainer with contiguous storage for its elements, it supports random element ac-
cess via both iterators and member functions (operator[] and at()). Although a
vector can be reallocated or resized during its lifetime, it is quite common to
have computation phases in which the vector participates in computations as
if it was a fixed-sized primitive array. Within these phases, the arguments of
random element access functions can be directly treated as array subscripts and
passed to relevant parallelization analysis, especially array dependence analy-
sis. The elements of the vector have to be verified to be alias-free and non-
overlapping, either by compiler analyses or user annotations. Even for a loop
using random access iterators, an extended loop normalization phase can con-
vert the loop into a canonical form that is friendly to parallelization. For ex-
ample, for(vector<T>::iterator i = v.begin(); i != v.end(); i++) can be transformed to
size t n = v.size(); for (size t i = 0; i < n; i++). Dereferences of the iterator within the
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loop body can be replaced with equivalent element access function calls. In this
case, all variable accesses like (∗i) and i[n] are replaced with v[i](or v.at(i)) and
v[i + n] (or v.at(i + n)) respectively according to the semantics defined in the lan-
guage standard.

3.2 A Loop with Task-Level Parallelism

OpenMP 3.0 allows programmers to explicitly create tasks, which enable more
parallelization opportunities, especially for algorithms applying independent
tasks on non-random accessible data sets, or those using pointer chasing, re-
cursion and so on. It is worthwhile to study how the semantics of high-level
abstractions can facilitate parallelization targeting task level parallelism.

An example using the STL list is shown below as a typical candidate for
parallelization using an omp task directive combined with an omp single within
an omp parallel region:
1 for (std::list<myType>::iterator i = my list.begin(); i != my list.end(); i++)
2 process(∗i);

In order to parallelize the loop, a parallelization algorithm has to recognize the
following program properties (a conservative case of parallelizable loops):

1. Whether the container supports random access, thus enabling the use of
omp for; omp task is allowed in either case.

2. The elements in the container do not alias or overlap.
3. At most one element accessed via the loop index variable, we refer it as the

current element, is written within each iteration (no loop carried output
dependence among the elements).

4. The loop body does not read elements other than the current element if
there is at least one write access to the current element (no loop carried true
dependence or antidependence among the elements).

5. There are no other loop carried dependencies caused by variable references
other than accessing the elements in the container.

A parallelization algorithm can significantly benefit from the known seman-
tics of standard and user-defined high-level abstractions when dealing with a
target mentioned above. It is essential that individual iterations of the loop be
independent, substantial analysis is required to verify this. For instance, STL
lists do not support random access. Knowing the usage of iterators will help
identifying the loop index variable of non-integer types and is critical to rec-
ognize the reference to the current element by iterator dereferencing. Element
accesses using other than dereferencing the index iterator, such as front() and
back() can be conservatively treated as accesses to non-current elements. Many
standard and custom functions have well-defined side effects on both function
parameters and/or global variables. Therefore compilers can skip costly side ef-
fect analysis for those functions, such as size() and empty() for STL containers.
Domain-specific knowledge can even be used to ensure the uniqueness of ele-
ments within a container to be processed as an alternative to conventional alias
and pointer analysis. For example, a list of C function definitions returned by a
ROSE AST query function has unique and non-overlapping elements.
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3.3 A Domain-Specific Tree Traversal

We discuss a specific example from a static analysis tool, namely Compass [10],
which is a ROSE-based framework for writing static code analysis tools to detect
software defects or bugs. A typical Compass checker’s kernel is given in Fig. 2.
It is a visitor function to detect any error-prone usage of relational comparison,
including <, >, ≤, and ≥, on pointers (MISRA Rule 5-0-18 [11]). A recursive tree
traversal function walks an input code’s AST and invokes the visitor function
on each node. Once a potential defect is found, the AST node is stored in a
list (output) for later display. Most functions (information retrieval functions like
get ∗() and type casting functions like isSg∗()) used in the function body have
read-only semantics.

1 void CompassAnalyses::PointerComparison::Traversal::visit(SgNode∗ node)
2 {
3 SgBinaryOp∗ bin op = isSgBinaryOp(node);
4 if (bin op)
5 {
6 if (isSgGreaterThanOp(node) || isSgGreaterOrEqualOp(node) ||
7 isSgLessThanOp(node) || isSgLessOrEqualOp(node))
8 {
9 SgType∗ lhs type = bin op−>get lhs operand()−>get type();

10 SgType∗ rhs type = bin op−>get rhs operand()−>get type();
11 if (isSgPointerType(lhs type) || isSgPointerType(rhs type))
12 output−>addOutput(bin op);
13 }
14 }
15 }

Fig. 2. A Compass checker’s kernel

Even with ideal side effect analysis and alias analysis, a conventional paral-
lelization algorithm will still have trouble in recognizing the kernel as an inde-
pendent task. The reason is that the write access (line 12) to the shared list will
cause an output dependence among different threads, which prevents possible
parallelization. However, the kernel’s semantics imply that the order of the write
accesses does not matter, which make this write access suitable to be protected
using omp critical. Communicating such semantics to compilers is essential to
eliminate the output dependence after adding the synchronization construct.

Another piece of semantic knowledge will enable an even more dramatic op-
timization. The AST traversal used by Compass checkers does not care about
the order of nodes being visited. So it is semantically equal to a loop over the
same AST nodes. The AST nodes are stored in memory pools, as in most other
compilers [12]. The memory pools in ROSE are implemented as arrays of each
type of IR node stored consecutively. Converting a recursive tree traversal into
a loop over the memory pools is often beneficial due to better cache locality and
less function call overhead. The loop is also more friendly to most analyses and
optimizations than the original recursive function call; and importantly to this
paper, can be automatically parallelized. In a more aggressive optimization, the
types of IR nodes analyzed by the checker can be identified and only the relevant
memory pools will be searched.
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4 A Semantic-Aware Parallelizer

We design a parallelizer using ROSE to automatically parallelize target loops and
functions by introducing either omp for or omp task, and other required OpenMP
directives and clauses. It is designed to handle both conventional loops operating
on primitive arrays and modern applications using high-level abstractions. The
parallelizer uses the following algorithm:

1. Preparation and Preprocessing
(a) Read a specification file for known abstractions and semantics.
(b) Apply optional custom transformations based on input code semantics,

such as converting tree traversals to loop iterations on memory pools.
(c) Normalize loops, including those using iterators.
(d) Find candidate array computation loopswith canonical forms (for omp for)

or loops and functions operating on individual elements (for omp task).
2. For each candidate:

(a) Skip the target if there are function calls without known semantics or
side effects.

(b) Call dependence analysis and liveness analysis.
(c) Classify OpenMP variables (autoscoping), recognize references to the

current element, and find order-independent write accesses.
(d) Eliminate dependencies associated with autoscoped variables, those in-

volving only the current elements, and output dependencies caused by
order-independent write accesses.

(e) Insert the corresponding OpenMP constructs if no dependencies remain.

The key idea of the algorithm is to capture dependencies within a target and
eliminate them later on as much as possible based on various rules. Parallelization
is safe if there are no remaining dependencies. Semantics of abstractions are used
in almost each step to facilitate the transformations and analyses, including
recognizing function calls as variable references, identifying the current element
being accessed, and ensuring if there are constraints for the ordering of write
accesses to shared variables.

The custom transformation for optimizing the Compass checkers is trivial to
implement in ROSE since the Compass checkers are derived from an AST traver-
sal class to implement its capability of AST traversal. ROSE already provides
AST traversal classes using either recursive tree traversal or loops over mem-
ory pools. Changing the checkers’ superclass will effectively change the traversal
method. Similar to other work [3], our variable classification is largely based
on the classic live variable analysis and idiom recognition analysis to identify
variables that could be classified as private, firstprivate, lastprivate, and reduction.

We give more details of the parallelizer and its handling of high-level abstrac-
tions in the following subsections.

4.1 Recognizing High-Level Abstractions and Semantics

ROSE uses a high-level AST which permits the high fidelity representation of
both standard and user-defined abstractions in their original source code forms
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without loss of precision. As a result, program analyses have access to the details
of high-level abstraction usage typically lost in a lower level IR. The context
of those abstractions can be combined with their known semantics to provide
fundamentally more information than could be known from static analysis alone.

Although semantics of standard types and operations can be directly inte-
grated into ROSE to facilitate parallelization, a versatile interface is still fa-
vorable to accommodate semantics of user-defined types and functions. As a
prototype implementation, we extend the annotation syntax proposed by [13]
to manually prepare the specification file representing the knowledge of known
types and semantics. A future version of the file will be expressed in C++ syntax
to facilitate handling.

The original annotation syntax was designed to allow conventional serial loop
optimizations to be applied on user-defined array classes. As a result, it only
contains annotation formats for array classes to indicate if the classes are arrays
(array) and their corresponding member access functions for array size (length())
and elements(element()). It also allows users to explicitly indicate read (read),
written (modify), and aliased (alias) variables for class operations or functions
to complement compiler analysis. We have extended the syntax to accept C++
templates in addition to classes. In particular, is fixed sized array is used instead
of array to make it clear that a class or template has a set of operations which
conform to the semantics of a fixed-sized array, not just any array. Although
standard or user-defined high level array abstractions may support some size
changing operations such as resize(), those non-conforming operations are not
included in the specification file and will be treated as unknown function calls.
The semantic-aware parallelizer will safely skip the loop containing such function
calls as shown in our algorithm. New semantic keywords have also been intro-
duced to express knowledge critical to parallelization, such as overlap, unique,
and order independent.

An example specification file is given in Fig. 3. It contains a list of qualified
names for classes or instantiated class templates with array-like semantics, and
their member functions for element access, size query, and other operations pre-
serving the relevant semantics. We also specify side effects of known functions,
uniqueness of returned data sets, order-independent write accesses, and so on.

4.2 Dependence Analysis

We generate dependence relations for both eligible loop bodies and function
bodies to explore the parallelization opportunities. We compute all dependence
relations between every two statements s1 and s2, including the case when s1 is
equal to s2, within the target loop body or function body. Each dependence re-
lation is marked as local or thread-carried (either loop-carried and task-carried).

The foundation of the analysis is the variable reference collection phase, in
which all variable references from both statements are collected and catego-
rized into read and write variable sets. In addition to traditional scalar and
array references, each member function call returning a C++ reference type is
checked against the known high-level abstractions and semantics to see if it is
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1 class std::vector<MyType> {
2 alias none; overlap none; //elements are alias−free and non−overlapping
3 is fixed sized array { //semantic−preserving functions as a fixed−sized array
4 length(i) = {this.size()};
5 element(i) = {this.operator[](i); this.at(i);};
6 };
7 };
8 void my processing(SgNode∗ func def) {
9 read{func def}; modify {func def}; //side effects of a function

10 }
11 std::list<SgFunctionDef∗> findCFunctionDefinition(SgNode∗ root){
12 read {root}; modify {result};
13 return unique; //return a unique set
14 }
15 void Compass::OutputObject::addOutput(SgNode∗ node){
16 //order−independent side effects
17 read {node}; modify {Compass::OutputObject::outputList<order independent>};
18 }

Fig. 3. A semantics specification file

semantically equivalent to a subscripted element access of an array-like object.
An internal function, is array(), is used to resolve the type of the object implement-
ing the member function call and compare it to the list of known array types as
given in the specification file. If the resolved type turns out to be an instantiated
template type, its original template declaration is used for the type comparison
instead. Consequently, is element access() is applied to the function call to check
for an array element access and obtain its subscripts. Read and write variable
sets of other known functions are also recognized and the affected variables are
collected.

After that, a dependence relation is generated for each pair of references, r1
from s1’s referenced variable set and r2 from s2’s, if at least one of the references
is a write access and both of them refer to the same memory location based on
their qualified variable names or the alias information in the specification file.
For array accesses within canonical loops, a Gaussian elimination algorithm is
used to solve a set of linear integer equations of loop induction variables. The
details of the array dependence analysis can be found in [14].

5 Preliminary Results

As this work is an ongoing project (the current implementation is released with
the ROSE distribution downloadable from our website [6]), we present some
preliminary results in this section. Several sequential kernels in C and C++ were
chosen to test our automatic parallelization algorithm on both primitive types
and high-level abstractions. They include a C version Jacobi iteration converted
from [15] operating on a 500× 500 double precision array, a C++ vector 2-norm
distance calculation (

√∑n
i=1 (xi − yi)2) on 100 million elements, and a Compass

checker (shown in Fig. 2 for MISRA Rule 5-0-18 [11]) applied on a ROSE source
file (Cxx Grammar.C) with approximately 300K lines of code. The generated
OpenMP versions were compiled using our own OpenMP translator, which is a
ROSE-based OpenMP 2.5 implementation targeting the Omni OpenMP runtime



38 C. Liao et al.

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

S
pe

ed
up

Number of threads

Linear
2-norm
Jacobi

Compass

Fig. 4. Speedup of the three example programs after parallelization

library [16]; thus, we do not have performance results for task parallelism (we are
currently working on an OpenMP 3.0 implementation and we will also use other
OpenMP 3.0 compilers as the backend compiler in the future). GCC 4.1.2 was
used as the backend compiler with optimization disabled; optimization is not
relevant because we are only showing that our algorithm can extract parallelism
from high-level abstractions. We ran the experiments on a Dell Precision T5400
workstation with two sockets, each a 3.16 GHz quad-core Intel Xeon X5460
processor, and 8 GB memory.

Fig. 4 gives speedup of all the three test kernels after domain-specific opti-
mization (optional) and parallelization compared to their original sequential ex-
ecutions. The results proved the efficiency of the semantic-driven optimization
of replacing the tree traversal with a loop iteration for the Compass checker: a
performance improvement of 35% of the one thread execution compared to the
original sequential execution. Our algorithm was also able to capture the par-
allelization opportunities associated with both primitive data types and high-
level abstractions. All tests showed near-linear speedup except for the Compass
checker. The critical section within the checker’s parallel region made a linear
speedup impossible when 7 and 8 threads were used. More dramatic performance
improvements can be obtained if only the relevant memory pools are searched
but this step is not yet automated in our implementation.

6 Related Work

Numerous research compilers have been developed to support automatic paral-
lelization. We only mention a few of them due to the page limit. For example,
the Vienna Fortran compiler (VFC) [17] is a source-to-source parallelization
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system for an optimized version of High Performance Fortran. The Polaris com-
piler [2] is mainly used for improving loop-level automatic parallelization. The
SUIF compiler [18] was designed to be a parallelizing and optimizing compiler
supporting multiple languages. However, to the best of our knowledge, current
research parallelizing compilers largely focus on Fortran and/or C applications.
Commercial parallelizing compilers like the Intel C++/Fortran compiler [3] also
use OpenMP internally as a target for automatic parallelization. Our work in
ROSE aims to complement existing compilers by providing a source-to-source,
extensible parallelizing compiler infrastructure targeting modern object-oriented
applications using both standard and user-defined high-level abstractions.

Several papers in the literature present parallelization efforts for C++ Stan-
dard Template Library (STL) or generic libraries. The Parallel Standard Tem-
plate Library (PSTL) [19] uses parallel iterators and provides some parallel
containers and algorithms. The Standard Template Adaptive Parallel Library
(STAPL) [20] is a superset of the C++ STL. It supports both automatic
parallelization and user specified parallelization policies with several major com-
ponents for containers, algorithms, random access range, data distribution,
scheduling and execution. GCC 4.3’s runtime library (libstdc++) provides an ex-
perimental parallel mode, which implements an OpenMP version of many C++
standard library algorithms [21]. Kambadur et al. [22] proposes a set of language
extensions to better support C++ iterators and function objects in generic li-
braries. However, all library-based parallelization methods require users to make
sure that their applications are parallelizable. Our work automatically ensures
the safety of parallelization based on semantics of high-level abstractions and
compiler analyses.

Some previous research has explored code analyses and optimizations based on
high-level semantics. STLlint [23] performs static checking for STL usage based
on symbolic execution. Yi and Quinlan [13] developed a set of sophisticated
semantic annotations to enable conventional sequential loop optimizations on
user-defined array classes. Quinlan et al. [24, 25] presented the parallelization
opportunities solely using the high-level semantics of A++/P++ libraries and
user-defined C++ containers without using dependence analysis. This paper
combines both standard and user-defined semantics with compiler analyses to
further broaden the applicable scenarios of automatic parallelization. We also
consider the new OpenMP 3.0 features and domain-specific optimizations.

7 Conclusions and Future Work

In this paper, we have explored the impact of high-level abstractions on
automatic parallelization of C++ applications and designed a parallelization
algorithm to take advantage of the capability of the ROSE source-to-source com-
piler infrastructure and the known semantics of both standard and user-defined
abstractions. Though only three representative cases have been examined, our
approach is very generic so that additional STL or user-defined semantics which
are important to parallelization can be discovered and incorporated into our im-
plementation. Our work demonstrates that semantic-driven parallelization is a
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very feasible and powerful approach to capture more parallelization opportuni-
ties than conventional parallelization methods for multicore architectures. Our
approach can also be seamlessly integrated with conventional analysis-driven
parallelization algorithms as a significant complement or enhancement.

In the future, we will apply our method on large-scale C++ applications to
recognize and classify more semantics which can be critical to parallelization. We
are planning to extend our work to support applications using more complex and
dynamic control flows such as pointer chasing and use more OpenMP construct
types. Further work also includes investigating the impact of polymorphism used
in C++ applications, exploring the interaction between the automatic paral-
lelization and conventional loop transformations, and leveraging semantics for
better OpenMP optimizations as well as correctness analyses.
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Abstract. OpenMP relies heavily on barrier synchronization to coor-
dinate the work of threads that are performing the computations in a
parallel region. A good implementation of barriers is thus an impor-
tant part of any implementation of this API. As the number of cores in
shared and distributed shared memory machines continues to grow, the
quality of the barrier implementation is critical for application scalabil-
ity. There are a number of known algorithms for providing barriers in
software. In this paper, we consider some of the most widely used ap-
proaches for implementing barriers on large-scale shared-memory mul-
tiprocessor systems: a ”blocking” implementation that de-schedules a
waiting thread, a ”centralized” busy wait and three forms of distributed
”busy” wait implementations are discussed. We have implemented the
barrier algorithms in the runtime library associated with a research com-
piler, OpenUH. We first compare the impact of these algorithms on the
overheads incurred for OpenMP constructs that involve a barrier, pos-
sibly implicitly. We then show how the different barrier implementa-
tions influence the performance of two different OpenMP application
codes.

1 Introduction

OpenMP programs typically make repeated use of barriers to synchronize the
threads that share the work they contain. Implicit barriers are required at the
end of parallel regions; they are also required at the end of worksharing con-
structs unless explicitly suppressed via a NOWAIT clause. Explicit barriers may
be inserted elsewhere by the application developer as needed in order to ensure
the correct ordering of operations performed by concurrently executing, inde-
pendent threads. The OpenMP implementation will therefore need to include
barrier synchronization operations: these are typically an important part of the
runtime library, whose routines are inserted into OpenMP code during com-
pilation and subsequently invoked during execution. Given the importance of
this construct in the OpenMP API, a good barrier implementation is essential.
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In OpenMP 3.0, threads waiting at barriers are permitted to execute other tasks.
Hence eliminating barrier contentions is essential to free up threads or improve
work stealing. As the number of threads in parallel regions steadily grows, and
the memory hierarchies in the cores and parallel machines become more complex,
the scalability of the implementation becomes increasingly important. OpenMP
implementations should provide a choice of barrier implementations for different
environments and architectures with complex memory hierarchies and intercon-
nect topologies.

Barrier algorithms are generally considered to fall into two classes: those based
upon a blocking construct that de-schedules a waiting thread, and those relying
on a busy-wait construct, in which threads loop on a shared variable that needs to
be set or cleared before they can proceed. The primary disadvantage of scheduler-
based blocking is that the overhead of scheduling may exceed the expected wait
time. The scheduling overhead we are referring here is the overhead involved in
switching the thread back and forth when it is blocked. The operating system
scheduler will switch the blocked thread and reliquish the processor, for any other
thread which is ready to execute. On the other hand, the typical implementation
of busy-waiting introduces large amounts of memory and interconnect contention
which causes performance bottlenecks. Hence enhanced versions of a busy-wait
barrier implementation, generally known as distributed busy-wait , have been
devised. The key to these algorithms is that every processor spins on a separate
locally-accessible flag.

As part of an effort to investigate ways in which OpenMP and its implemen-
tations may scale to large thread counts, we have begun to study a variety of
strategies for accomplishing the most expensive synchronization operations im-
plied by this API, including barriers and reductions. We believe that the existing
set of features for expression of the concurrency and synchronization within an
application must be enhanced in order to support higher levels of shared mem-
ory concurrency, but that a careful implementation of existing features may go
some of the way to improving the usefulness of this programming model on large
shared-memory machines. The aim of the work described here is to gain insight
into the behavior of different barrier algorithms in the OpenMP context in order
to determine which of them is most appropriate for a given scenario. Our over-
all goal is to provide an OpenMP library which will adapt to deliver the most
suitable implementation of a barrier based on the number of threads used, the
architecture (memory layout/interconnect topology), application and possibly
system load.

2 OpenUH Implementation of OpenMP

The experimental results described here are based upon barrier algorithms imple-
mented in the runtime library associated with the OpenUH compiler. OpenUH [1],
a branch of the Open64 [2] compiler suite, is an optimizing and portable open-
source OpenMP compiler for C/C++ and Fortran 95 programs. The suite is based
onSGI’sPro64 compilerwhichhas beenprovided to the community as open source.
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(a) (b)

Fig. 1. (a) The performance of EPCC syncbench compiled using OpenUH. (b) The
performance of EPCC syncbench compiled using Intel compiler.

At the time of writing, OpenMP 2.5 is supported along with a partial implementa-
tion of OpenMP 3.0; the compiler’s OpenMP runtime library is open source. It tar-
gets the Itanium, Opteron, and x86 platforms, for which object code is produced,
and may be used as a source-to-source compiler for other architectures using the
intermediate representation (IR)-to-source tools.

OpenUH translates OpenMP to an internal runtime API, which provides the
internal data structures and thread management needed to implement OpenMP
constructs. The OpenMP runtime uses the Posix Threads API for thread cre-
ation, thread signals, and locks with the goal of providing a portable OpenMP
runtime implementation. The initial barrier implementation in OpenUH was
based on a very straightforward centralized blocking barrier algorithm, described
in the next section, and which was known to have poor scalability.

In Figure 1, we show the overheads of the different OpenMP constructs
as the number of processors increases on a SGI Altix 3700 using the EPCC
microbenchmarks. The graph on the left gives the overheads in milliseconds re-
ported for OpenUH, and those of the Intel 10.1 compiler are given on the right.
A quick inspection of these results shows that there are OpenMP operations
which are significantly more expensive than others in both implementations:
these include reductions, single constructs, parallel/parallel for and barriers. It is
important to note that the overhead of such constructs depends on the way the
barrier is implemented, since they are either the barrier or they contain an im-
plicit barrier.

3 Approaches to Implementing a Barrier

In this section we describe several different implementations of the barrier con-
struct that we considered for this work. All of them appear in the literature, and
have been implemented in different parallel languages and libraries, including
MPI, UPC, CoArray Fortran and Global Arrays. Our interest was to evaluate
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them with regard to their usefulness for OpenMP and to determine whether one
or more of them provided superior performance. We use a pseudo code repre-
sentation to describe the algorithms.

3.1 Centralized Blocking Barrier

This barrier implementation is based on a a single thread counter, a mutex and
a condition variable. The counter keeps track of the number of threads that have
reached a barrier. If the counter is less than the total number of threads, the
threads do a condition wait. The last thread to reach this barrier wakes up all
the threads using condition broadcast. The mutex is used to synchronize access
by the different threads to the shared counter.

The need to acquire the mutex lock is the main bottleneck in this algorithm,
as all the threads compete to acquire it when they receive the broadcast signal.
An alternative implementation uses multiple condition variables and mutexes
to relieve this. A pair of threads will then use a particular set of mutex and
condition variables, which will provide somewhat better performance than is
obtained by using a single mutex and condition variable.

Under both these strategies, the scheduling overhead (the overhead of context
switching the blocked thread) is far more expensive than the typically expected
barrier wait time, and hence this simplistic algorithm is not an efficient way to
implement a barrier where thread blocking is not needed. However this algorithm
makes sense when we oversubscribe threads to cores (i.e. several threads share a
core), because it frees up CPU resources allowing other threads to obtain CPU
time.

3.2 Centralized Barrier

In a centralized barrier algorithm, each processor updates a counter to indicate
that it has arrived at the barrier and then repeatedly polls a flag that is set

// Shared data.
barrier_lock // pthread mutex lock
barrier_cond // pthread condition variable
barrier_count // Number of threads not yet arrived
barrier_flag // To indicate all arrived

procedure blocking_barrier
barrier_flag=team->barrier-flag
new_count = atomic_incr(barrier_count)

if(new_count==team_size)
team->barrier_count=0
team->barrier_flag = barrier_flag ^ 1
pthread_cv_broadcast()

else
pthread_mutex_lock()
while(barrier_flag==team->barrier_flag)

pthread_cv_wait()
pthread_mutex_unlock()

(a) Blocking Barrier Algorithm

// Shared data.
barrier_count // not yet arrived
barrier_flag // indicate all have arrived
team_size // number of threads

procedure central_barrier
barrier_flag=team->barrier-flag
new_count = atomic_inc(barrier_count)

if (new_count == team_size)
team->barrier_count = 0
team->barrier_flag = barrier_flag ^ 1

else
while (team->barrier_flag == barrier_flag)

(b) Centralized Barrier Algorithm
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when all threads have reached the barrier. Once all threads have arrived, each
of them is allowed to continue past the barrier. The flag can be a sense reversal
flag, to prevent intervention of adjacent barrier operations.

This implementation uses a small amount of memory, is simple to implement,
and could be good if cores share small fast caches (typically L2).

The potential drawback of centralized barriers is that the busy waiting to test
the value of the flag occurs on a single, shared location. As a result, centralized
barrier algorithms cannot be expected to scale well to large numbers of threads.
Our experiments (see Section 4 below) confirm this. However, because of the
small amount of memory used, it may be a contender where cores share cache
lines, as it keeps the rest of the cache almost intact.

3.3 Dissemination Barrier

This barrier implementation technique derives its name from the way in which
it disseminates information among a set of threads. Each thread spins around
a variable dedicated to it, and signaled by another thread. Each thread goes
through log(N) rounds where N is the number of threads. At the end of rounds,
the thread knows that the other threads in the system have reached the barrier
and it is good to proceed to the next barrier episode.

In step k, thread i signals thread (i+2k) mod P. For each step, we use alternate
sets of variables to prevent interference in consecutive barrier operations. This
algorithm also uses sense reversal to avoid resetting variables after every barrier.
The dissemination barrier has shorter critical as compared to other algorithms.
Our experiments (see Table 1) shows that this algorithm gives the best perfor-
mance upto 16 threads. It also gives best performance for the barrier contruct
on multicore platform (see Table 2).

// Shared data:
int P // number of threads
struct node {
boolean flag[2]
struct node *partner
}
node nodes[P][logP] // array of nodes

// Private data for each thread:
volatile int parity
volatile int sense

// intializes each thread
// to its partner
procedure dissem_init() {
for (i = 0; i < P; i++) {
d = 1;
for (r = 0; r < logP; r++) {

nodes[i][j].partner=nodes[(i+d) % P][j];
d = 2*d;
}
}

}

(a) Dissemination Barrier Initialization

procedure dissem_barrier {
i = thread_id;
sense = thread_private->sense
parity = thread_private->parity
for ( r = 0; r < logP; r++) {
nodes[i][r].partner.flag[parity]= sense;
while (nodes[i][r].flag[parity] != sense)

}

if(parity==1)
thread_private->sense = sense^1;

thread_private->parity=1-parity;
}

(b) Dissemination Barrier Algorithm
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3.4 Tree Barrier

In this method, each thread is assigned to a unique tree node which is linked
into an arrival tree by a parent link and into the wakeup tree by a set of child
links. The parent notifies each of its children by setting a flag in the nodes
corresponding to them. The child in turn sets a flag in the parent node to signal
its arrival at the barrier.

The data structures for the tree barrier is initialized such that each node’s
parent flag variable points to the appropriate childnotready flag. The child notify
variable points to the wakeup sense variable. The havechild flag indicates whether
a particular node has children or not. During a barrier phase, a thread tests to
see if the childnotready flag is clear for each of its children before reinitializing
them to next barrier. After all children of a node have arrived, the childnotready
flag is cleared. All threads other than root spins on their local wakeup sense flag.
At each level, a thread releases all its children before leaving the barrier and thus
eventually the barrier is complete.

3.5 Tournament Barrier

The Tournament barrier algorithm is similar to a tournament game. Two threads
play against each other in each round. The loser thread sets the flag on which the

// Shared data:
typedef struct {

volatile boolean *parentflag;
boolean *child_notify[2];
volatile long havechild;
volatile long childnotready;
boolean wakeup_sense;

} treenode;
treenode shared_array[P];

Private data for each thread:
volatile int parity;
volatile boolean sense;
treenode *mynode;

procedure tree_barrier
vpid=thread_id;
treenode *mynode_reg;
mynode_reg = cur_thread->mynode;

while (mynode_reg->childnotready);

mynode_reg->childnotready = mynode_reg->havechild;
*mynode_reg->parentflag = False;

if (vpid)
while(mynode_reg->wakeup_sense != cur_thread->sense);

*mynode_reg->child_notify[0] = cur_thread->sense;
*mynode_reg->child_notify[1] = cur_thread->sense;
cur_thread->sense ^= True;

}

(a) Tree Barrier Algorithm

// Shared data:
struct round_t
{
boolean *opponent
int role // WINNER or LOSER
boolean flag
}
round_t rounds[P][logP]

// Private data for each thread:
boolean sense
int parity
round_t *myrounds

procedure tour_barrier
round_t round=current_v_thread->myrounds;
for(;;) {

if(round->role & LOSER) {
round->opponent->flag = sense;

while (root_sense != sense);
break;

}
else if (round->role & WINNER)
while (round->flag != sense);
else if (round->role & ROOT) {

while (round->flag != sense);
champion_sense = sense;
break;

}
round++;

}

(b) Tournament Barrier Algorithm
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the winner is busy waiting. Then the loser thread waits for the global champion
flag to be set, where as the winners, play against each other in next round. The
overall winner becomes the champion and notifies all losers about the end of
barrier.

The complete tournament barrier requires log N “rounds”, where N is the
number of threads. The threads begin at the leaves of the binary tree and at
each step, one thread continues up to the tree to the next round of the tourna-
ment. The WINNER and LOSER at each stage is statically determined during
initialization. In round k, thread i sets a flag of thread j, where i = 2k, and j =
(i − 2)k. The LOSER thread i drops out and busy waits on a global flag while
the WINNER thread j, participates in the next round of the tournament.

4 Performance Measurements

We have tested the barrier implementations described above on several differ-
ent platforms. Experiments were performed on Cobalt, NCSA’s SGI 3700 Altix,
consisting of two systems each with 512 Intel 1.6 Ghz Itanium2 Madison proces-
sors running SUSE 10.2 (see http://www.teragrid.org/ for a detailed descrip-
tion of the system). The experiments up to 512 threads was run on Columbia,
NASA’s SGI 4700 Altix, consisting of 1024 dual-core Intel 1.6 Ghz Itanium2
Montecito processors running SUSE Linux Enterprise Operating system (see
http://www.nas.nasa.gov/ for a detailed description of the system). Other
experiments were conducted on a Sun Fire X4600 with eight dual core AMD
Opteron 885 processors and a Fujitsu-Siemens RX600S4/X system with four
Intel Xeon E7350 quad core processors located a Aachen University.

4.1 EPCC Microbenchmark Results

We implemented each of the five algorithms described above in the OpenUH
runtime library and used the corresponding portion of the EPCC microbench-
marks to test the barrier performance they supply. The first diagram (See Fig a)
gives the time taken to implement a barrier in microseconds for 2, 4, 16, 32, 64,
128 and 256 threads on SGI 3700. As can be clearly seen, the centralized block-
ing and centralized barrier algorithm did not perform as well as the tournament
and dissemination barrier. This is expected since our test cases didn’t involve
oversubscribing threads to cores. The tournament algorithm resulted in the least
overhead where the thread count is greater than 16 and the dissemination barrier
is best when the number of threads is less than 16. For space reasons, we did not
show results of our tests on a Sun Fire X4600 and a Fujitsu-Siemens Intel Xeon
with up to 16 threads. In both systems, the dissemination barrier produced the
least overhead (See Table 2 for summarized results).

The next microbenchmark tests the time taken to execute a parallel directive,
including the barrier which is required at its termination. As before, we show
overheads for 2, 4, 16, 32, 64, 128 and 256 threads. Here the results (See Fig b)
were similar to the previous barrier case where the tournament barrier produced
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(a) BARRIER

(b) PARALLEL (c) REDUCTION

lower overheads for test cases with 16 or more threads. The blocking algorithm
continues to perform poorly (and we do not show results above 128 threads).

A barrier is also used as part of the OpenMP reduction implementation. The
results (See Fig c)for the reduction operation are more diverse than for the
other two OpenMP constructs (Barrier and Parallel). The tree implementation
produced the least overheads with 2 and 128 threads, the centralized barrier
performed well on 4 threads, the dissemination barrier worked well for 16 threads,
and the tournament implementation worked well on 32, 64 and 256 threads. The
blocking algorithm produced the worst results in all cases. On a Sun Fire X4600
and a Fujitsu-Siemens Intel Xeon running the test case with 2, 4, 8 and 16
threads, the tournament barrier produced the best results (See Table 2).

Table 1 summarizes the best algorithms for the different OpenMP constructs
based on the EPCC benchmark on SGI 3700 Altix until 256 threads and SGI 4700
Altix for 512 threads. Table 2 summarizes the results on multicore systems (Sun
Fire X4600 with eight dual core AMD Opteron 885 processors). It is clear that
there is not a single optimal algorithm for all the different OpenMP constructs
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Table 1. Best Barrier Algorithms in the EPCC Benchmark on the SGI 3700 Altix
until 256 threads and SGI 4700 Altix for 512 threads

Number of Threads Barrier Reduction Parallel
2 dissemination tree tournament
4 dissemination centralized dissemination
8 dissemination tournament tournament
16 tournament dissemination tournament
32 tournament tournament tournament
64 tournament tournament tournament
128 tournament tree tournament
256 tournament tournament tournament
512 tournament tournament tournament

Table 2. Best Barrier Algorithms in the EPCC Benchmark on Sun Fire X4600

Number of Threads Barrier Reduction Parallel
2 dissemination tournament tournament
4 dissemination tournament tournament
8 dissemination tournament tournament
16 dissemination tournament tournament

with different numbers of threads and on different platforms. The best barrier
implementation depends on the environment (i.e, number of threads, system
utilization) and the platform where the application is running. On a multicore
system, thread binding also influenced the results. We saw an improvement in
performance of these barrier implementations when the threads were bound to
cores of the same processor using numactl command. These results show the
need for OpenMP runtimes to be able to adaptively choose the best barrier
implementation based on all these factors.

4.2 The Performance of ASPCG

We tested the barrier implementation using the Additive Schwarz Precondi-
tioned Conjugate Gradient (ASPCG) kernel up to 128 threads on the Altix
System. The ASPCG kernel solves a linear system of equations generated by a
Laplace equation in Cartesian coordinates. The kernel supports multiple parallel
programming models including OpenMP and MPI.

Figure 2 shows the timings of the ASPCG kernel using the different barrier im-
plementations. Note that the blocking algorithm does not scale after 32 threads.
This is because the wake-up signal to the threads becomes a contention point.
All busy-wait algorithms scale, some with better performance than others. Using
the dissemination implementation instead of the original barrier implementation
in OpenUH, centralized blocking, represents a performance gain (total wall clock
time) of 12 times for 128 threads. Table 3 shows a summary of the best barrier
implementations for ASPCG on different numbers of threads.
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Fig. 2. Timings for the ASPCG kernel with different barrier implementations

Table 3. Best Barrier Algorithms for ASPCG and GenIDLEST

Number of Threads ASPCG GenIDLEST
2 tournament blocking
4 dissemination blocking
16 tournament/tree dissemination
32 tournament tournament
64 tournament –
128 dissemination –

4.3 The Performance of GenIDLEST

Generalized Incompressible Direct and Large-Eddy Simulations of Turbulence
(GenIDLEST) solves the incompressible Navier-Stokes and energy equations and
is a comprehensive and powerful simulation code with two-phase dispersed flow
modeling capability, turbulence modeling capabilities, and boundary conditions
to make it applicable to a wide range of real world problems. It uses an over-
lapping multi-block body-fitted structured mesh topology in each block com-
bining it with an unstructured inter-block topology. The multiblock approach
provides a basic framework for parallelization, which is implemented by SPMD
parallelism using MPI, OpenMP or a hybrid MPI/OpenMP. GenIDLEST uses
OpenMP for and reduction constructs extensively in its code. In GenIDLEST,
the centralized blocking implementations works better than the rest of the bar-
rier implementations for 2 and 4 threads. Table 3 shows a summary of the best
barrier implementations for different numbers of threads. It is clear here that
the choice of a good barrier implementation can be application dependent. The
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use of the tournament barrier algorithm instead of a centralized blocking one
represented a performance gain in total wall clock time of 35% on 32 threads.

5 Conclusions and Future Work

We have presented the impact of a number of different barrier implementations,
including a centralized blocking algorithm and several kinds of busy wait algo-
rithms, on the overheads of OpenMP constructs.

We implemented the barrier algorithms in OpenUH and obtained a signifi-
cant reduction in overheads for barriers, and constructs that include them, using
distributed busy-wait approaches. The ASPCG and GENIDLEST applications
were compiled using the enhanced OpenUH system, also with noticeable per-
formance improvements under the new busy-wait algorithms. In general, the
performance of a given barrier implementation is dependent on the number of
threads used, the architecture (memory layout/interconnect), application and
possibly system load. An OpenMP runtime library should therefore, we believe,
adapt to different barrier implementations during runtime.

Our future work includes further testing of these algorithms on larger systems
(in particular, the Altix 4700 deployed at Nasa Ames with 2048 cores) and on
other applications. We also plan to explore the use of similar enhancements to
further improve the performance the reduction operation (i.e. updates on the re-
duction variable). Also as OpenMP 3.0 becomes available in OpenUH we would
like to evaluate how these algorithms affect the performance of the tasking fea-
ture, especially the untied tasks and the environment variable OMP WAIT POLICY.
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Abstract. The Intel Cluster OpenMP (CLOMP) compiler and associated runtime 
environment offer the potential to run OpenMP applications over a few nodes of 
a cluster. This paper reports on our efforts to use CLOMP with the Gaussian 
quantum chemistry code. Sample results on a four node quad core Intel cluster 
show reasonable speedups. In some cases it is found preferable to use multiple 
nodes compared to using multiple cores within a single node. The performances 
of the different benchmarks are analyzed in terms of page faults and by using a 
critical path analysis technique. 

Keywords: Cluster OpenMP, performance, quantum chemistry code. 

1   Introduction 

OpenMP is an attractive shared memory parallel programming model that invites in-
cremental parallelization. Traditionally, however, OpenMP programs have been con-
strained by the number of processors and available memory on the underlying shared 
memory hardware, as changing these involves significant expense. By contrast for 
message passing applications running on a cluster it is usually a relatively easy matter 
to add a few more nodes to a cluster. In this respect the ability to run an OpenMP code 
over even a few nodes of a cluster, as promised by the Intel Cluster OpenMP (CLOMP) 
compiler and runtime environment [1], has an immediate attraction. 

CLOMP runs over a cluster by mapping the OpenMP constructs to an underlying 
page based software Distributed Shared Memory (DSM) system [1]. To transfer an 
application from native OpenMP to CLOMP is in principle straightforward; requiring 
shared variables to be identified as ‘sharable’ either automatically by the compiler or 
manually by the programmer placing sharable directives where the variable is declared. 
Sharable data are placed on sharable pages which are read/write protected using the 
mprotect() system call. When an OpenMP thread accesses data on one of these 
pages a segmentation fault occurs that is caught by the CLOMP runtime library. The 
library is then responsible for retrieving the relevant memory page from the distributed 
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environment, ensuring that the data is consistent with what is expected given the 
OpenMP memory consistency model.  

Compared to regular OpenMP, the additional overhead of using CLOMP is pri-
marily that associated with the cost of servicing the various segmentation faults. As the 
latency of any communication between nodes on a cluster is in the order of micro-
seconds, while the clock speed of a typical processor is sub nanosecond, for an appli-
cation to scale well using CLOMP it will need to perform significant computation 
between memory consistency points. Ideal CLOMP applications are those that may 
access large amounts of sharable data but modify only a relatively small amount of this 
data, and make limited use of thread synchronization. Good examples are applications 
for doing rendering, data-mining, all kinds of parallel search, speech and visual rec-
ognition, and genetic sequencing [2].  

In this paper we report on our efforts to adapt parts of the Gaussian computation 
chemistry package [3] for use with CLOMP. In section 2 we give a brief overview of 
the Gaussian code and the parts that we have attempted to use CLOMP with. Section 3 
details our benchmark environment and computations, while section 4 discusses the 
observed performance attempting to rationalize it in terms of the performance model of 
Cai et al. [4]. Finally section 5 contains our conclusions.  

2   The Gaussian Program and Its Use with CLOMP 

Gaussian is a general purpose computational chemistry package that can perform a 
variety of electronic structure calculations [3]. It consists of a collection of executable 
programs or “Links” that are used to perform different tasks. A complete Gaussian 
calculation involves executing a series of Links for different purposes such as data 
input, electronic integral calculation, self-consistent field (SCF) evaluation etc. Each 
Link is responsible for continuing the sequence of Links by invoking the exec() system 
call to run the next Link. Not all Links run in parallel; those that run sequentially are 
mainly responsible for setting up the calculations and assigning symmetry and will 
usually take only a short time to execute [5]. 

Two fundamental quantum chemistry methods are Hartree-Fock theory and Density 
Functional Theory (DFT). In the Gaussian code the implementations of both methods 
are very similar. Specifically in both cases electrons occupy molecular orbitals that are 
expanded in terms of a set of basis functions (usually atom centered), for which the 
coefficients are obtained by solving an equation of the form: 

F C=ε S C (1) 

where C is a matrix containing the orbital coefficients; S is the overlap matrix with 
elements that represent the overlap between two basis functions; ε is a diagonal matrix 
of yet to-be-determined molecular orbital energies, and in the case of Hartree-Fock 
theory, F is the Fock matrix. The Fock matrix is defined as: 
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where CoreH μν
 involves integrals representing the kinetic energy of the electrons and their 

interactions with the nuclei, and the remaining part of the right side of Eqn. (2) comes 
from the interactions between electrons. In the latter the two-electron repulsion inte-
grals (ERIs) are defined as: 
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and P is the density matrix which for a closed shell system is given by:  

∑=
m
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(4) 

with the summation being over half the number of electrons in the system.  
For DFT the equations are essentially the same, except that F is now the Kohn-Sham 

matrix K, the second “exchange” term in the summation in Eqn. (2) is dropped, and an 
additional term is added that involves a numerical integration over all space of a 
quantity that depends on the electron density. Between HF and DFT there lies a number 
of so called hybrid schemes that include some HF exchange as well as some of the DFT 
terms requiring numerical integration.   

A HF energy calculation performed using Gaussian uses a subroutine called PRISM 
to calculate the relevant ERIs and form their contribution to the Fock matrix. For DFT 
calculations a subroutine called PRISMC is used to evaluate the ERIs, while the nu-
merical integration is undertaken by a routine called CALDFT. For hybrid DFT 
methods PRISM is used together with CALDFT. Collectively these three routines will 
typically consume over 90% of the total execution time for a HF or DFT energy cal-
culation. For this reason these routines have already been parallelized for shared 
memory hardware using OpenMP; adapting these routines to run with CLOMP and 
studying their performance is the major objective of this work. 

After the formation of the F (or K) matrix, the molecular orbital coefficients C are 
determined by solving Eqn. (1). This involves diagonalization of F (or K). The new 
molecular orbital coefficients are then put back into Eqn. (4) to form a new density 
matrix from which a new F (or K) matrix is computed. This process continues until 
there is no change in the density matrix between iterations, at which point the interac-
tions between the electrons represents a “self-consistent field”. In Gaussian, Link 502 
is used to perform the SCF computation and evaluate the total energy for a given con-
figuration of the atomic nuclei. 

Most of quantum chemistry revolves around atomic configurations where there are 
no net forces on the individual nuclei. Finding these locations involves evaluating both 
the energy of the system and its derivative with respect to a displacement of any of the 
atomic nuclei. In Gaussian such force evaluations are performed for HF and DFT 
methods by using the same three routines (PRISM, PRISMC and CALDFT) but called 
from Link 703. 
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The basic strategy for a HF/DFT energy evaluation is as follows: 

1. Start the Link using a single process (the master thread) and allocate a large 
working memory space using the malloc() system call. Data used in the 
evaluation of the F (or K) matrix is subsequently stored into this working space 
(e.g. the density matrix and orbital shell information). All density matrix related 
input data gets arranged as a single block, with the length of this “density matrix 
block” being dependent on the size of the problem (atoms, theoretical method and 
basis set size).  

2. In the routine responsible for computing the F (or K) matrix, the remaining 
working memory space is divided into Nthread blocks. Each of these “Fock matrix 
blocks” will be used as private space for a single thread to store its contribution to 
the F (or K) matrix, and for the intermediate arrays used in F (or K) matrix con-
struction. 

3. Create Nthread threads using an OpenMP parallel directive. Each thread reads in 
the relevant parts of the shared density matrix block, calculates a subset of the ERIs 
and does a subset of the numerical integration, computing a contribution to its own 
local F (or K) matrix. 

4. The child threads terminate when all their ERIs have been evaluated and their 
portion of the numerical integration is complete. The master thread then sums the 
Nthread private copies of the F (or K) matrices. This step is performed sequentially 
on master thread since the cost of adding a few O(n2) F (or K) matrices is usually 
small compared to the O(n4) cost of forming them. 

In the case of a force evaluation the approach is similar, except each thread is now 
making contributions to the gradient vector rather than the F (or K) matrix. 

We note that since the density matrix is read only, while the F (or K) matrices are 
private to each thread during the parallel section, in the CLOMP implementation once 
the initial penalty associated with fetching the relevant pages across the network to the 
right node has occurred, there should be little contention between threads. Thus HF and 
DFT energy and gradient calculations within Gaussian have the potential to achieve 
high parallel performance when using CLOMP provided that the time required to 
evaluate the ERIs and/or do the numerical integration is sufficiently large to mask the 
network overheads. 

To use CLOMP in the code we firstly replace the malloc() system call by the 
CLOMP analogue kmp_sharable_malloc(); this makes the whole of the 
Gaussian working array shared between all threads in the Link. A large amount of the 
shared variables were automatically tagged as sharable by the compiler, however, a 
significant number of other variables had to be identified by hand (around 60 sharable 
directives were inserted for Link 502). The parallel Links were then compiled and 
linked by using the CLOMP Intel 10.0 compiler with the -cluster-openmp, 
-clomp-sharable-commons, -clomp-sharable-localsaves and 
-clomp-sharable-argexprs directives. 

For the purpose of this study, a number of other OpenMP directives were deliber-
ately disabled since they correspond to fine grain loop parallelization that is known not 
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to run well using CLOMP over multiple nodes in a cluster. In due course these direc-
tives should be reactivated, but with parallelism limited to just the number of threads 
within the master node. 

3   Experimental Details  

All performance experiments were carried out using a Linux cluster containing 4 nodes 
each with a 2.4GHz Intel Core2 Quad-core Q6600 CPU and 4GB of local DRAM 
memory. The cluster nodes were connected via Gigabit Ethernet.  

The Intel C/Fortran compiler 10.0 was used to compile and build the two ported 
parallel Links of the Gaussian development version (GDV) with the CLOMP flags 
given above. 

Five different HF and DFT benchmark jobs were considered spanning a typical 
range of molecular system. These are detailed in Table 1. 

Table 1. Benchmarks used for performance measurements of the CLOMP implementation of 
Gaussian program 

Case Method Basis Molecule Links Routines Used 
I HF 6-311g* Valinomycin 502 PRISM 
II BLYP 6-311g* Valinomycin 502 PRISMC, CALDFT 
III BLYP cc-pvdz C60 502&703 PRISMC, CALDFT 
IV B3LYP 3-21g* Valinomycin 502&703 PRISM, CALDFT 
V B3LYP 6-311g** α-pinene 703 PRISM, CALDFT 

Only the first SCF iteration is measured within Link 502 (the time to complete a full 
SCF calculation will scale almost linearly with the number of iterations required for 
convergence). The reported times comprises both the parallel formation of the F (or K) 
matrix and its (sequential) diagonalization. 

4   Results and Discussion 

Table 2 shows the speedups, defined as the ratio of the serial run time (ts) divided by the 
parallel run time (tp) for the five benchmark tests and Links 502 and 703 as applicable. 
The effect of using multiple cores and multiple nodes is contrasted. We use the sin-
gle-thread non-CLOMP OpenMP executing time to calculate the speedup in the present 
work. We note also that the Gaussian code uses cache blocking when evaluating inte-
grals in order to maximize performance [6]. For the quad-core processor used in this 
work the presence of a shared level 2 cache means that the optimal cache blocking size 
varies with the number of cores being used. In an attempt to remove this effect, results 
have been calculated by using the optimal cache blocking size for a given number of 
threads on a node. 
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Table 2. Speedups of Link 502(L502) and Link 703(L703) for benchmark systems 

Case I Case 
II Case III Case IV Case V 

Nnode×Ncore 
L502 L502 L502 L703 L502 L703 L703 

1-thread 1×1 0.93 0.77 0.79 1.02 0.86 0.98 0.93 
1×2 1.73 1.48 1.55 1.99 1.61 1.90 1.75 

2-thread 
2×1 1.78 1.56 1.56 1.97 1.45 1.92 1.79 
1×4 2.91 2.53 2.83 3.26 2.55 3.07 2.67 
2×2 3.16 2.83 2.93 3.88 2.30 3.67 3.28 4-thread 
4×1 3.25 2.94 2.98 3.91 2.21 3.71 3.12 
2×4 4.83 4.26 4.95 6.41 2.87 5.83 4.49 

8-thread 
4×2 5.55 4.75 5.24 7.68 3.13 7.09 5.30 

16-thread 4×4 7.30 5.25 7.71 12.47 2.88 10.76 6.74 

 
The results for the 1-thread case given in Table 2 show that in some cases there 

exists a significant slowdown associated with using CLOMP over “normal” OpenMP. 
Similar results have been reported elsewhere [7]. For all multi-thread cases speedups 
are observed. For two threads this varies from 1.45 to 1.99. The difference between 
using two cores within one node versus one core each on two nodes is surprisingly 
small, with the biggest difference being for case IV where using two cores within one 
node is preferable.  

With 4 threads speedups of between 2.21 and 3.91 are observed. In most cases 
performance is better when using multiple nodes compared to using all cores within 
one node. Similar results are also found with 8 threads. This suggests that either 
memory bandwidth and/or contention due to the shared cache is limiting scalability 
when using 4 cores on a single chip. 

For 16 threads the best speedup observed is 12.47 for Link 703 of case III. However 
we also see a relatively poor speedup of just 2.88 for Link 502 of Case IV. This is due to 
the fact that for this system Link 502 takes relatively little time (~100s), and the 
overhead of parallelization with 16 cores is large. Also, for this calculation the se-
quential time becomes significant.  

Overall the results indicate that for large HF and DFT Gaussian energy and gradient 
calculations CLOMP is able to provide reasonable parallel performance over four 
nodes. To analysis the results further we use the performance model of Cai el al. [4, 8]. 
In this model execution time is based on the number, types and the associated ap-
proximate costs of page faults that occur during the execution of each parallel section. 
For Gaussian an outline of the important features of the two parallel Links and the 
sources of the page faults is given in Fig. 1. 

Start of the Link: 
Allocate working array in the sharable heap using 

kmp_sharable_malloc(); 
Within the Link: 
… 

Obtain new density matrix 
Parallel loop over Nthread (OpenMP Parallel region): 
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Call Prism, PrismC or CalDFT to calculate 1/Nthread of the 
total integrals and save their contributions to each 
thread’s private Fock matrix; 

End Parallel loop 
loop over i=2, Nthread (sequential region) 

Add Fock matrix created by thread i to the master 
thread’s Fock matrix; 

endloop 
… 
Exit Link; 

Fig. 1. Basic CLOMP parallel construct in Link 502 of the Gaussian program (Link703 is similar, 
except contributions are now to the gradient vector) 

At the beginning of each Link the master threads obtains a new copy of the density 
matrix. This will cause the underlying DSM to pass write notices to all other threads at 
the implicit barrier that occurs at the top of the next parallel region indicating that the 
corresponding memory pages have been modified. Within the parallel region each 
thread will read elements of the density matrix and update elements of their F (or K) 
matrix. This will cause a series of page faults to occur as new memory pages are ac-
cessed. Over time each thread is likely to access all density matrix elements and make 
contributions to all F (or K) matrix elements. For the density matrix this means each 
thread will end up fetching over its own read-only copy of the entire density matrix 
from the master thread. While for the F (or K) matrix each thread will end up creating 
its own writeable copy of this matrix. After the CLOMP parallel region has finished, a 
moderate amount of fetch page faults will occur on the master thread as it seeks to sum 
together the partial contributions to the F (or K) matrices computed by the other 
threads.  

In the analysis model of Cai et al [4], the overhead associated with a CLOMP par-
allel calculation is determined by the thread that encounters the largest number of page 
faults (the critical path). The total CLOMP execution time on p threads is given by: 

1
0

(1) (1)
( ) ( ) ( )

par par
crit p w w f f

i i i

Tot Tot
Tot p T p Max N C N C

p p
−

== + = + +
 

(5) 

where (1) parTot is the sum of the elapsed times for the parallel regions when the appli-
cation is run using just one thread, p is the number of threads actually used, ( )critT p is 
the page fault time cost for the thread that encounters the maximum number of page 
faults in the p-thread calculations. ( )critT p  is further expanded in terms of w

iN and f
iN , 

the number of write and fetch page faults respectively for thread i in the parallel region 
and their corresponding costs, wC and fC . The 1

0
p

iMax −
=  in Eqn. (5) follows the thread in 

each parallel region that has the maximum page fault cost.  
To obtain the page fault number for the five Gaussian test cases we have used the  

SEGVprof profiling tool that is distributed as part of the CLOMP distribution. This tool 
creates profile files (.gmon) for all CLOMP processes, reporting the segmentation 
faults occurring for each thread in each parallel region. SEGVprof also provides a script 
(segvprof.pl) that reports aggregated page fault counts. This script was extended 
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to produce per-thread results. The values of wC and fC are system dependent and have 
been measured using two-nodes with the code given in Ref. [8]. This gave the values of 
Cw=10μs and Cf=171μs. These values are expected to be lower limits on the cost of 
page faults.   

Since the model of Cai et al. [4] assumes there is no sequential time we give in  
Table 3 execution times and associated critical path page fault counts for just the 
PRISM, PRISMC and CALDFT portions of Links 502 and 703. This shows that the 
elapsed times cover a large range from just over 6 seconds to nearly 2900 seconds. Not 
surprisingly total page fault counts roughly reflect the size of the system, which in 
return is related to execution time. For any given test case and routine, the number of 
write and fetch page faults appears to remain roughly constant when going from 2 to 4 
threads (1 thread/node). This is in line with the expectation expressed above, i.e. that  
 

Table 3. The elapsed time (Tot(n)) and measured page fault numbers of subroutine PRISM, 
PRISMC and CALDFT in Link 502 (L502) and Link 703(L703) using 2-thread and 4-thread (1 
thread/node) for all experimental cases. Also shown are TotΔ  and critTΔ  defined in Eqn. (6) 
(see text for further details).   

Max page faults per 
thread 

From Eqn. 6 (sec.) Experiment 
(Links) 

Routines Nthread 
Tot(n) 
(sec.) 

Write Fetch TotΔ  critTΔ  

2 751.8 4931 13148 Case I 
(L 502) 

PRISM 
4 386.3 4934 13150 

20.8 2.30 

2 285.2 5104 6036 PRISMC 
4 146.3 5347 6273 

7.4 1.17 

2 185.1 8043 3933 
Case II 
(L 502) 

CALDFT 
4 93.9 7540 3680 

2.7 0.66 

2 286.1 5337 5240 PRISMC 
4 147.5 5628 5253 

8.9 0.96 

2 95.0 3852 1493 
Case III 
(L 502) 

CALDFT 
4 49.5 4146 2187 

4.0 0.54 

2 2894.3 6038 8577 PRISMC 
4 1454.0 6043 8580 

13.7 1.53 

2 272.8 6682 1011 
Case III 
(L 703) 

CALDFT 
4 137.0 6475 1127 

1.2 0.28 

2 53.9 1497 3576 PRISM 
4 29.0 1500 3579 

4.1 0.63 

2 86.1 3170 916 
Case IV 
(L 502) 

CALDFT 
4 43.3 3069 1007 

0.5 0.22 

2 353.9 1853 5224 PRISM 
4 181.9 1854 5229 

9.9 0.91 

2 109.6 8497 1077 
Case IV 
(L 703) 

CALDFT 
4 54.2 8954 1167 

-1.2 0.31 

2 21.2 1151 548 PRISM 
4 11.1 1151 551 

1.0 0.11 

2 12.0 3849 91 
Case V 
(L 703) 

CALDFT 
4 6.3 3344 97 

0.6 0.05 
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each thread will read most density matrix elements and produce contributions to most F 
(or K) matrix elements. In general the number of fetch faults are more than the number 
of write faults for PRISM and PRISMC, but much less for CALDFT. This reflects the 
fact that PRISM or PRISMC is called before CALDFT, so the fetch faults associated 
with creating a read only copy of the density matrix occur during execution of 
PRISM/PRISMC not CALDFT. (It is also interesting that in comparison to the page 
fault counts given by Cai et al. [8] for the NAS parallel benchmark codes the absolute 
value of the counts for Gaussian are much smaller, despite the fact that the execution 
time is comparable.) 

To investigate the applicability of the Cai et al. [4] model we note that there should 
exist the following equality between 2-thread and 4-thread calculations: 

2 (4) (2) 2 (4) (2)crit crit critTot Tot Tot T T TΔ = × − = × − = Δ  (6) 

Thus for the model of Cai et al. [4] to hold the scaled difference between the 
measured elapsed times reported in Table 2 when using 4 and 2 threads should be equal 
to the time difference computed using write and fetch page fault numbers also given in 
Table 2, combined with the cost penalty values of Cw=10µs and s and Cf=171µs. To test this 
we plot in Fig. 2 these two values. The results clearly show a large difference, although 
interestingly there does appear to be a linear relationship between the two quantities 
with a scale factor of around 8.4. 

 
Fig. 2. ΔTot ~ ΔTcrit for the data given in Table 2 

Possible causes for the inability of the Cai et al. [4] model to describe correctly the 
performance of Gaussian are its failure to account for load imbalance and repeated 
computation (reflected by the term 

(1) parTot

p  in Eqn. (5)), the assumption that page faults 
occurring on different threads are fully overlapped, and assignment of a fixed cost to 
servicing a fetch fault regardless the number of threads involved. In this case it is most 
likely that load imbalance and repeated computation are the main problems, since the 
total number of page faults appears to be too small compared to the total execution time 
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for this to be a major cause for error. Specifically for case I and Link 502 ΔTcri as 
evaluated using the page fault counts in Table 3 with costs of Cw =10µs and s and Cf =171µss 
is just 2.25s, yet ΔTot is 20.8 seconds. 

5   Conclusions 

We have investigated the performance of the CLOMP implemented quantum chemistry 
software package Gaussian on the 4-node Linux distributed memory system equipped 
with Intel Quad-core processors. Comparable or better scalability was found for using 
multi-nodes compared to multi-cores. Page fault measurements reveals relatively low 
counts within parallel regions, implying that HF and DFT energy and gradient com-
putations within Gaussian are well suited to implementation with CLOMP as the effort 
associated with keeping the sharable memory consistency is low. A critical path model 
has been used to analyze performance, but the accuracy of this model appears to be 
limited due to load imbalance. Work is currently underway to extend the model of  
Cai et al. [4] to include load balancing, and also to study use of CLOMP for other parts 
of the Gaussian code. 

Acknowledgments. This work is funded by Australian Research Council Linkage 
Grants LP0669726 and LP0774896 with support from Intel Corporation, Gaussian Inc. 
and Sun Microsystems. 

References 

1. Hoeflinger, J.P.: Extending openmp to clusters. White Paper, Intel. Corporation (2006) 
2. Hoeflinger, J.P., Meadows, L.: Programming OpenMP on Clusters. HPCwire 15(20) (May 

19, 2006), http://www.hpcwire.com/hpc/658711.html 
3. Frisch, M.J., et al.: Gaussian 03. Gaussian, Inc., Wallingford CT (2004) 
4. Cai, J., Rendell, A.P., Strazdins, P.E., Wong, H.J.: Performance model for cluster-enabled 

OpenMP implementations. In: Proceeding of 13th IEEE Asia-Pacific Computer Systems 
Architecture Conference, pp. 1–8 (2008) 

5. Sosa, C.P., Andersson, S.: Some Practical Suggestions for Performing Gaussian Benchmarks 
on a pSeries 690 System, IBM Form Number REDP0424, April 24 (2002) 

6. Yang, R., Antony, J., Janes, P.P., Rendell, A.P.: Memory and Thread Placement Effects as a 
Function of Cache Usage: A Study of the Gaussian Chemistry Code on the SunFire X4600 
M2. In: The 2008 International Symposium on Parallel Architectures, Algorithms, and 
Networks, pp. 31–36. IEEE Computer Society, Los Alamitos (2008) 

7. Terboven, C., an Mey, D., Schmidl, D., Wagner, M.: First Experiences with Intel. Cluster 
OpenMP. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 
48–59. Springer, Heidelberg (2008) 

8. Cai, J., Rendell, A.P., Strazdins, P.E., Wong, H.J.: Predicting performance of Intel Cluster 
OpenMP with Code Analysis method, ANU Computer Science Technical Reports, 
TR-CS-08-03 (2008) 



Evaluating OpenMP 3.0 Run Time Systems
on Unbalanced Task Graphs

Stephen L. Olivier and Jan F. Prins

University of North Carolina at Chapel Hill, Chapel Hill NC 27599, USA
{olivier,prins}@unc.edu

Abstract. The UTS benchmark is used to evaluate task parallelism in
OpenMP 3.0 as implemented in a number of recently released compil-
ers and run-time systems. UTS performs parallel search of an irregular
and unpredictable search space, as arises e.g. in combinatorial optimiza-
tion problems. As such UTS presents a highly unbalanced task graph
that challenges scheduling, load balancing, termination detection, and
task coarsening strategies. Scalability and overheads are compared for
OpenMP 3.0, Cilk, and an OpenMP implementation of the benchmark
without tasks that performs all scheduling, load balancing, and termina-
tion detection explicitly. Current OpenMP 3.0 implementations generally
exhibit poor behavior on the UTS benchmark.

1 Introduction

The recent addition of task parallelism support to OpenMP 3.0 [1] offers im-
proved means for application programmers to achieve performance and pro-
ductivity on shared memory platforms such as multi-core processors. However,
efficient execution of task parallelism requires support from compilers and run
time systems. Design decisions for those systems include choosing strategies for
task scheduling and load-balancing, as well as minimizing overhead costs.

Evaluating the efficiency of run time systems is difficult; the applications they
support vary widely. Among the most challenging are those based on unpre-
dictable and irregular computation. The Unbalanced Tree Search (UTS) bench-
mark [2] represents a class of such applications requiring continuous load balance
to achieve parallel speedup. In this paper, we compare the performance and scal-
ability of the UTS benchmark on three different OpenMP 3.0 implementations
(Intel icc 11, Mercurium 1.2.1, SunStudio 12) and an experimental prerelease of
gcc 4.4 that includes OpenMP 3.0 support. For comparison we also examine the
performance of the UTS benchmark using Cilk [3] tasks and using an OpenMP
implementation without tasks that performs all scheduling, load balancing, and
termination detection explicitly. Throughout this paper we will refer to the lat-
ter as the thread-level parallel implementation. Additional experiments focus on
comparing overhead costs. The primary contribution of the paper is an analysis
of the experimental results for a set of compilers that support task parallelism.

The remainder of the paper is organized as follows: Section 2 outlines back-
ground and related work on run time support for task parallelism. Section 3

M.S. Müller et al. (Eds.): IWOMP 2009, LNCS 5568, pp. 63–78, 2009.
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describes the UTS benchmark. Section 4 presents the experimental results and
analysis. We conclude in Section 5 with some recommendations based on our
findings.

2 Background and Related Work

Many theoretical and practical issues of task parallel languages and their run
time implementations were explored during the development of earlier task par-
allel programming models, such as Cilk [4,3]. The issues can be viewed in the
framework of the dynamically unfolding task graph in which nodes represent
tasks and edges represent completion dependencies.

The scheduling strategy determines which ready tasks to execute next on avail-
able processing resources. The load balancing strategy keeps all processors sup-
plied with work throughout execution. Scheduling is typically decentralized to
minimize contention and locking costs that limit scalability of centralized sched-
ulers. However decentralized scheduling increases the complexity of load balanc-
ing when a local scheduler runs out of tasks, determining readiness of tasks, and
determining global completion of all tasks.

To decrease overheads, various coarsening strategies are followed to aggregate
multiple tasks together, or to execute serial versions of tasks that elide synchro-
nization support when not needed. However such coarsening may have negative
impact on load balancing and availability of parallel work.

Cilk scheduling uses a work-first scheduling strategy coupled with a random-
ized work stealing load balancing strategy shown to be optimal[5]. A lazy task
creation approach, developed for parallel implementations of functional lan-
guages [6], makes parallel slack accessible while avoiding overhead costs until
more parallelism is actually needed. The compiler creates a fast and a slow clone
for each task in a Cilk program. Local execution always begins via execution of
the fast clone, which replaces task creation with procedure invocation. An idle
processor may steal a suspended parent invocation from the execution stack,
converting it to the slow clone for parallel execution.

In OpenMP task support, “cutoff” methods to limit overheads were proposed
in [7]. When cutoff thresholds are exceeded, new tasks are serialized. One pro-
posed cutoff method, max-level, is based on the number of ancestors, i.e. the level
of recursion for divide-and-conquer programs. Another is based on the number
of tasks in the system, specified as some factor k times the number of threads.
The study in [7] finds that performance is often poor when no cutoff is used and
that different cutoff strategies are best for different applications. Adaptive Task
Cutoff (ATC) is a scheme to select the cutoff at runtime based on profiling data
collected early in the program’s execution [8]. In experiments, performance with
ATC is similar to performance with manually specified optimal cutoffs. However,
both leave room for improvement on unbalanced task graphs.

Iterative chunking coarsens the granularity of tasks generated in loops [9]. Ag-
gregation is implemented through compiler transformations. Experiments show
mixed results, as some improvements are in the noise compared to overheads of
the run time system.
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Intel’s “workqueuing” model was a proprietary OpenMP extension for task
parallelism [10]. In addition to the task construct, a taskq construct defined
queues of tasks explicitly. A noteworthy feature was support for reductions
among tasks in a task queue. Early evaluations of OpenMP tasking made com-
parisons to Intel workqueuing, showing similar performance on a suite of seven
applications [11].

An extension of the Nanos Mercurium research compiler and run time [11] has
served as the prototype compiler and run time for OpenMP task support. An
evaluation of scheduling strategies for tasks using Nanos is presented in [7]. That
study concluded that in situations where each task is tied, i.e. fixed to the thread
on which it first executes, breadth-first schedulers perform best. They found that
programs using untied tasks, i.e. tasks allowed to migrate between threads when
resuming after suspension, perform better using work-first schedulers. A task
should be tied if it requires that successive accesses to a threadprivate variable
be to the same thread’s copy of that variable. Otherwise, untied tasks may be
used for greater scheduling flexibility.

Several production compilers have now incorporated OpenMP task support.
IBM’s implementation for their Power XLC compilers is presented in [12]. The
upcoming version 4.4 release of the GNU compilers [13] will include the first pro-
duction open-source implementation of OpenMP tasks. Commercial compilers
are typically closed source, underscoring the need for challenging benchmarks
for black-box evaluation.

3 The UTS Benchmark

The UTS problem [2] is to count the nodes in an implicitly defined tree: any
subtree in the tree can be generated completely from the description of its parent.
The number of children of a node is a function of the node’s description; in our
current study a node can only have zero or m = 8 children. The description
of each child is obtained by an evaluation of the SHA-1 cryptographic hash
function [14] on the parent description and the child index. In this fashion, the
UTS search trees are implicitly generated in the search process but nodes need
not be retained throughout the search.

Load balancing of UTS is particularly challenging since the distribution of
subtree sizes follows a power law. While the variance in subtree sizes is enormous,
the expected subtree size is identical at all nodes in the tree, so there is no
advantage to be gained by stealing one node over another. For the purpose of
evaluating run time load-balancing support, the UTS trees are a particularly
challenging adversary.

3.1 Task Parallel Implementation

To implement UTS using task parallelism, we let the exploration of each node
be a task, allowing the underlying run time system to perform load balancing as
needed. A sketch of the implementation follows below:
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void Generate_and_Traverse(Node* parentNode, int childNumber) {

Node* currentNode = generateID(parentNode, childNumber);

nodeCount++; // threadprivate, combined at termination

int numChildren = m with prob q, 0 with prob 1-q

for (i = 0; i < numChildren; i++) {

#pragma omp task untied firstprivate(i)

Generate_and_Traverse(currentNode, i);

}

}

Execution is started by creating a parallel region (with a threadprivate counter
for the number of nodes counted by the thread). Within the parallel region a
single thread creates tasks to count the subtrees below the root. A single taskwait
is used to end the parallel region when the entire tree has been explored.

3.2 Thread-Level Parallel Implementation without Tasks

Unlike the task parallel implementation of UTS, the thread-level parallel im-
plementation described in [2] using OpenMP 2.0 explicitly specifies choices for
the order of traversal (depth-first), load balancing technique (work stealing), ag-
gregation of work, and termination detection. A sketch of the implementation
follows below:

void Generate_and_Traverse(nodeStack* stack) {

#pragma omp parallel

while (1) {

if (empty(stack)) {

... steal work from other threads or terminate ...

}

currentNode = pop(stack);

nodeCount++; // threadprivate, gathered using critical later

int numChildren = m with prob q, 0 with prob q-1

for (i = 0; i < numChildren; i++) {

...initialize childNode...

childNode = generateID(currentNode, i);

push(stack, childNode);

}

}

}

Execution is started with the root node on the nodeStack of one thread; all
other threads start with an empty stack. Note that the single parallel region
manages load balancing among threads, termination detection, and the actual
tree traversal.

3.3 Cilk Implementation

For comparison, we created a cilk implementation of UTS which is close to the
OpenMP 3.0 task implementation. It differs mainly in its use of a Cilk inlet
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in the search function to accumulate partial results for the tree node count as
spawned functions return. The Cilk runtime handles the required synchroniza-
tion to update the count.

4 Experimental Evaluation

We evaluate OpenMP task support by running UTS and related experiments on
an Opteron SMP system. The Opteron system consists of eight dual-core AMD
Opteron 8220 processors running at 2.8 Ghz, with 1MB cache per core.

We installed gcc 4.3.2, the Intel icc 11.0 compiler, SunStudio 12 with Ceres
C 5.10, and an experimental prerelease of gcc 4.4 (12/19/2008 build). We also
installed the Mecurium 1.2.1 research compiler with Nanos 4.1.2 run time. Since
Nanos does not yet natively support the x86-64 architecture, we built and used
the compiler for 32-bit IA32. We used cilk 5.4.6 for comparison with the OpenMP
implementations on both machines; it uses the gcc compiler as a back end. The
-O3 option is always used. Unless otherwise noted, reported results represent the
average of 10 trials.

For a few results in Section 4.4 of the paper, we used an SGI Altix running
Intel icc 11 and Nanos/Mercurium built for IA64. Details for that system are
presented in that section.

4.1 Sequential and Parallel Performance on UTS

Table 1 shows sequential performance for UTS on the Opteron SMP system; the
execution rate represents the number of tree nodes explored per unit time. We
use tree T3 from [2], a 4.1 million node tree with extreme imbalance. This tree is
used in experiments throughout the paper. The table gives results for both the
task parallel and the thread-level parallel implementations. They were compiled
with OpenMP support disabled.

Figure 1 shows the speedup gained on the task parallel implementation us-
ing OpenMP 3.0, as measured against the sequential performance data given
in table 1. We observe no speedup from Sun Studio and gcc. Cilk outper-
forms the Intel OpenMP task implementation, but neither achieve more than
10X speedup, though both show improved speedup as up to 16 cores are used.
Figure 2 shows the speedup, over 15X in most cases, using the thread-level par-
allel implementation.

Table 1. Sequential performance on Opteron (Millions of tree nodes per second)

Implementation gcc 4.3.2 Intel icc 11.0 Sun Ceres 5.10 gcc 4.4.0
Task Parallel 2.60 2.45 2.38 2.60

Thread-Level Parallel 2.48 2.49 2.17 2.39
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Fig. 1. UTS using cilk and several OpenMP 3.0 task implementations: Speedup on
16-way Opteron SMP. See Figure 7 and Section 4.4 for results using Nanos.
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Speedup on 16-way Opteron SMP. Work stealing granularity is a user-supplied param-
eter. The optimal value (64 tree nodes transferred per steal operation) was determined
by manual tuning and used in these experiments.
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4.2 Analysis of Performance

Two factors leading to poor performance are overhead costs and load imbalance.
There is a fundamental tradeoff between them, since load balancing operations
incur overhead costs. Though all run time implementations are forced to deal
with that tradeoff, clever ones minimize both to the extent possible. Poor im-
plementations show both crippling overheads and poor load balance.

Overhead Costs. Even when only a single thread is used, there are some
overhead costs incurred using OpenMP. For task parallel implementation of UTS,
Cilk achieves 96% efficiency, but efficiency is just above 70% using OpenMP 3.0
on a single processor using the Intel and Sun compilers and 85% using gcc 4.4.
The thread-level parallel implementation achieves 97-99% on the Intel and gcc
compilers and 94% on the Sun compiler.

To quantify the scaling of overhead costs in the OpenMP task run times,
we instrumented UTS to record the amount of time spent on work (calculating
SHA-1 hashes). To minimize perturbation from the timing calls, we increased the
amount of computation by performing 100 SHA-1 hash evaluations of each node.
Figure 3 presents the percent of total time spent on overheads (time not spent
on SHA-1 calculations). Overhead costs grow sharply in the gcc implementation,
dwarfing the time spent on work. The Sun implementation also suffers from
high overheads, reaching over 20% of the total run time. Overheads grow slowly
from 2% to 4% in the Intel run time. Note that we increased the granularity of
computation 100-fold, so overheads on the original fine-grained problem may be
much higher still.

Load Imbalance. Now we consider the critical issue of load imbalance. To in-
vestigate the number of load balancing operations, we modified UTS to record
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the number of tasks that start on a different thread than the thread they were
generated from or that migrate when suspended and subsequently resumed.
Figure 4 shows the results of our experiments using the same 4.1M node tree
(T3), indicating nearly 450k load balancing operations performed by the Intel
and Sun run times per trial using 8 threads. That comprises 11% of the 4.1M
tasks generated. In contrast, gcc only performs 68k load balancing operations.
For all implementations, only 30%-40% of load balancing operations occur be-
fore initial execution of the task, and the rest as a result of migrations enabled
by the untied keyword.

Given the substantial amount of load balancing operations performed, we
investigated whether they are actually successful in eliminating load imbalance.
To that end, we recorded the number of nodes explored at each thread, shown
in Figure 11. Note that since ten trials were performed at each thread count,
there are 10 data points shown for trials on one thread, 20 shown for trials on
two threads, etc. The results for the Intel implementation (a) show good load
balance, as roughly the same number of nodes (4.1M divided by the number
of threads) are explored on each thread. With the Sun implementation, load
balance is poor and worsens as more threads are used. Imbalance is poorer still
with gcc.

Even if overhead costs were zero, speedup would be limited by load imbalance.
The total running time of the program is at least the work time of the thread
that does the most work. Since each task in UTS performs the same amount
of work, one SHA-1 hash operation, we can easily determine that efficiency
e is limited to the ratio of average work per thread to maximum work per
thread. The lost efficiency (1−e) for the different OpenMP task implementations
is shown in Figure 5. Poor load balance by the Sun and gcc implementations
severely limits scalability. Consider the 16-thread case: neither implementation
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Fig. 5. UTS on Opteron: Lost efficiency due to load imbalance

Fig. 6. Work aggregated into tasks. Speedup on Opteron SMP using the Intel OpenMP
tasks implementation. Results are similar using the gcc 4.4 and Sun compilers, though
slightly poorer at the lower aggregation levels.

can achieve greater than 40% efficiency even if overhead costs were nonexistent.
On the other hand, inefficiency in the Intel implementation cannot be blamed
on load imbalance.

4.3 Potential for Aggregation

The thread parallel implementation reduces overhead costs chiefly by aggregating
work. Threads do not steal nodes one at at time, but rather in chunks whose size
is specified as a parameter. A similar method could be applied within an OpenMP
run time, allowing chunks of tasks to be moved between threads at a time.

To test possible overhead reduction from aggregation, we designed an experi-
ment in which 4M SHA-1 hashes are performed independently. To parallelize we
use a loop nest in which the outer forall generates tasks. Each task executes a
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Fig. 7. UTS speedup on Opteron SMP using two threads with different scheduling and
cutoff strategies in Nanos. Note that ”cilk” denotes the cilk-style scheduling option in
Nanos, not the cilk compiler.

Table 2. Nanos scheduling strategies. For more details see [7].

Name Description
wfff work-first with FIFO local queue access, FIFO remote queue access
wffl work-first with FIFO local queue access, LIFO remote queue access
wflf work-first with LIFO local queue access, FIFO remote queue access
wfll work-first with LIFO local queue access, LIFO remote queue access
cilk wflf with priority to steal parent of current task
bff breadth-first with FIFO task pool access
bfl breadth-first with LIFO task pool access

loop of k SHA-1 hashes. So k represents an aggregation factor. Since the outer
forall has 4M / k iterations equally distributed by static scheduling, there should
be little or no load balancing. Thus, performance measurements should represent
a lower bound on the size of k needed to overcome overhead costs. Figure 6 shows
speedup for aggregation of k = 1 to 100000 run using the Intel implementation.
(Results for the gcc 4.4 and Sun compilers are very similar and omitted for lack
of space.) Speedup reaches a plateau at k = 50. We could conclude that for our
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Fig. 8. Work aggregated into tasks. Speedup on Opteron SMP using cilk-style schedul-
ing in Nanos. Results are similar using other work-first scheduling strategies.

tree search, enough tasks should be moved at each load balancing operation to
yield 50 tree nodes for exploration. Notice that for 8 and 16 threads, performance
degrades when k is too high, showing that too much aggregation leads to load
imbalance, i.e. when the total number of tasks is a small non-integral multiple
of the number of threads.

4.4 Scheduling Strategies and Cutoffs

As mentioned in Section 2, the Mercurium compiler and Nanos run time offer a
wide spectrum of runtime strategies for task parallelism. There are breadth-first
schedulers with FIFO or LIFO access, and work-first schedulers with FIFO or
LIFO local access and FIFO or LIFO remote access for stealing. There is also a
“Cilk-like” work-first scheduler in which an idle remote thread attempts to steal
the parent task of a currently running task. In addition, the option is provided
to serialize tasks beyond a cutoff threshold, a set level of the task hierarchy
(maxlevel) or a certain number of total tasks (maxtasks). Note that a maxtasks
cutoff is imposed in the gcc 4.4 OpenMP 3.0 implementation, but the limit is
generous at 64 times the number of threads.

Figure 7 shows the results of running UTS using two threads in Nanos with
various scheduling strategies and varying values for the maxtasks and maxlevel
cutoff strategies. See Table 2 for a description of the scheduling strategies repre-
sented. The breadth-first methods fail due to lack of memory when the maxlevel
cutoff is used. There are 2000 tree nodes at the level just below the root, re-
sulting in a high number of simultaneous tasks in the breadth-first regime. As
shown in the graphs, we did not observe good speedup using Nanos regardless of
the strategies used. Though not shown, experiments confirm no further speedup
using four threads.

Limiting the number of tasks in the system (maxtasks cutoff) may not allow
enough parallel slack for the continuous load balancing required. At the higher
end of the range we tested in our experiments, there should be enough parallel
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Fig. 9. Work aggregated into tasks. Speedup on an SGI Altix for 4M hash operations
performed; work generated evenly upon two threads. The various Nanos scheduling
strategies are used without cutoffs, and Intel icc is shown for comparison. Note that
”cilk” denotes the cilk-style scheduling option in Nanos, not the cilk compiler.

Fig. 10. UTS Speedup on Opteron SMP using the Intel OpenMP 3.0 task implemen-
tation with user-defined inlining specified using the if() clause

slack but overhead costs are dragging down performance. Cutting off a few levels
below the root (maxlevel cutoff) leaves highly unbalanced work, since the vast
majority of the nodes are deeper in the tree, and UTS trees are imbalanced
everywhere. Such a cutoff is poorly suited to UTS. For T3, just a few percent
of the nodes three levels below the root subtend over 95% of the tree. Adaptive
Task Cutoff [8] would offer little improvement, since it uses profiling to predict
good cutoff settings early in execution. UTS is unpredictable: the size of the
subtree at each node is unknown before it is explored and variation in subtree
size is extreme.

We also repeated aggregation experiments from Section 4.3 using Nanos.
Figure 8 shows speedup using the cilk-like scheduling strategy with no cutoffs
imposed. Results for other work-first schedulers is similar. Noticed that com-
pared to the results from the same experiment using Intel compiler (Figure 6),
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speedup is much poorer at lower levels of aggregation with Nanos. Whereas
speedup at 10 hash operations per second is about 13X with 16 threads using
the Intel compiler, Nanos speedup is less than 1X.

Since the breadth-first methods struggle with memory constraints on the
Opteron SMP, we tried the aggregation tests on another platform: an SGI Altix
with lightweight thread support on the Nanos-supported 64-bit IA64 architec-
ture. The Altix consists of 128 Intel Itanium2 processors running at 1.6 Ghz,
each with 256kB of L2 cache and 6MB of L3 cache. We installed the Mecurium
1.2.1 research compiler with Nanos 4.1.2 run time and the Intel icc 11.0 com-
piler. Even using the breadth-first schedulers and no cutoffs, the tasks are able to
complete without exhausting memory. Figure 9 shows experiments performed on
two threads of the Altix. The Intel implementation outperforms Nanos at fine-
grained aggregation levels. Among the Nanos scheduling options, the work-first
methods are best.

4.5 The if() Clause

The OpenMP task model allows the programmer to specify conditions for task
serialization using the if() clause. To evaluate its impact, we used the if() clause
in a modified version of our task parallel implementation so that only n% percent
of the tree nodes are explored in new tasks while the rest are explored in place.
We varied n exponentially from less than 0.01% to 100%. Figure 10 shows the
results on the Opteron SMP using the Intel compiler. Using the if() clause to
limit the number of tasks seems to improve speedup. However, Figure 1 showed
similar speedups using the same compiler and UTS implementation but with no
if() clause. Why would setting n = 100% not yield the same results? We suspect
that the use of the if() clause may disable a default internal cutoff mechanism
in the Intel run time system.

5 Conclusions

Explicit task parallelism provided in OpenMP 3.0 enables easier expression of
unbalanced applications. Consider the simplicity and clarity of the task parallel
UTS implementation. However, there is clearly room for further improvement in
performance for applications with challenging demands such as UTS.

Our experiments suggest that efficient OpenMP 3.0 run time support for very
unbalanced task graphs remains an open problem. Among the implementations
tested, only the Intel compiler shows good load balancing. Its overheads are
also lower than other implementations, but still not low enough to yield ideal
speedup. Cilk outperforms all OpenMP 3.0 implementations; design decisions
made in its development should be examined closely when building the next
generation of OpenMP task run time systems. A key feature of Cilk is its on-
demand conversion of serial functions (fast clone) to concurrent (slow clone)
execution. The ”Cilk-style” scheduling option in Nanos follows the work stealing
strategy of Cilk, but decides before task execution whether to inline a task or
spawn it for concurrent execution.
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We cannot be sure of the scheduling mechanisms used in the commercial
OpenMP 3.0 implementations. The gcc 4.4 implementation uses a task queue and
maintains several global data structures, including current and total task counts.
Contention for these is a likely contributor to overheads seen in our experiments.
Another problematic feature of the gcc OpenMP 3.0 implementation is its use of
barrier wake operations upon new task creation to enable idle threads to return
for more work. These operations are too frequent in an applications such as UTS
that generates work irregularly. Even with an efficient barrier implementation,
they may account for significant costs.

Experiments using several different scheduling strategies with cutoffs also
show poor performance. Unbalanced problems such as UTS are not well suited
to cutoffs because they make it difficult to keep enough parallel slack available.
Aggregation of work should be considered for efficient load balancing with re-
duced overhead costs. Further work is needed to determine other ways in which
OpenMP 3.0 run time systems could potentially be improved and whether ad-
ditional information could be provided to enable better performance.

While the UTS benchmark is useful as a benchmarking and diagnostic tool
for run time systems, many of the same problems it uncovers impact real world
applications. Combinatorial optimization and enumeration lie at the heart of
many problems in computational science and knowledge discovery. For exam-
ple, protein design is a combinatorial optimization problem in which energy
minimization is used to evaluate many combinations of amino acids arranged
along the backbone to determine whether a desired protein geometry can be
obtained [15]. An example of an enumeration problem in knowledge discovery
is subspace clustering, in which subsets of objects that are similar on some sub-
set of features are identified [16]. Another example is the Quadratic Assignment
Problem (QAP) at the heart of transportation optimization. These sorts of prob-
lems typically require exhaustive search of a state space of possibilities. When
the state space is very large, as is often the case, a parallel search may be the
only hope for a timely answer.

Evaluation on a wider range of applications is needed to determine the shared
impact of the compiler and run time issues that UTS has uncovered. One issue
that we have not addressed in our experiments is locality. UTS models applica-
tions in which a task only requires a small amount data from its parent and no
other external data. We anticipate future work in which we consider applications
with more demanding data requirements.
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Abstract. Exploiting the full computational power of current hierar-
chical multiprocessor machines requires a very careful distribution of
threads and data among the underlying non-uniform architecture so as to
avoid memory access penalties. Directive-based programming languages
such as OpenMP provide programmers with an easy way to structure
the parallelism of their application and to transmit this information to
the runtime system.

Our runtime, which is based on a multi-level thread scheduler com-
bined with a NUMA-aware memory manager, converts this information
into “scheduling hints” to solve thread/memory affinity issues. It enables
dynamic load distribution guided by application structure and hardware
topology, thus helping to achieve performance portability. First experi-
ments show that mixed solutions (migrating threads and data) outper-
form next-touch-based data distribution policies and open possibilities
for new optimizations.

Keywords: OpenMP, Memory, NUMA, Hierarchical Thread Schedul-
ing, Multi-Core.

1 Introduction

Modern computing architectures are increasingly parallel. While the High Per-
formance Computing landscape is still dominated by large clusters, the degree
of parallelism within cluster nodes is increasing. This trend is obviously driven
by the emergence of multicore processors that dramatically increase the number
of cores, at the expense of a poorer memory bandwidth per core. To minimize
memory contention, hardware architects have been forced to go back to a hier-
archical organization of cores and memory banks or, in other words, to NUMA
architectures (Non-Uniform Memory Access). Note that such machines are now
becoming mainstream thanks to the spreading of AMD HyperTransport and
Intel QuickPath technologies.
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Running parallel applications efficiently on older multiprocessor machines was
essentially a matter of careful task scheduling. In this context, parallel runtime sys-
tems such as Cilk [7] or TBB [9] have proved to be very effective. In fact, these
approaches can still behave well over hierarchical multicore machines in the case
of cache-oblivious applications. However, in the general case, successfully running
parallel applications onNUMAarchitectures requires a careful distributionof tasks
and data to avoid “NUMA penalties”. Moreover, applications with strong memory
bandwidth requirements need data to be physically allocated on the “right” mem-
ory banks in order to reduce contention. This means that high-level information
about the application behavior, in terms of memory access patterns or affinity be-
tween threads and data, must be conveyed to the underlying runtime system.

Several programming approaches provide means to specify task-memory affini-
ties within parallel applications (OpenMP, HPF [10], UPC [3]). However, retriev-
ing affinity relations at runtime is difficult; compilers and runtime systems must
tightly cooperate to achieve a sound distribution of thread and data that can
dynamically evolve according to the application behavior. Our prior work [17,2]
emphasized the importance of establishing a persistent cooperation between an
OpenMP compiler and the underlying runtime system on multicore NUMA ma-
chines. We designed ForestGOMP [17] that extends the GNU OpenMP im-
plementation, GOMP, to make use of the BubbleSched flexible scheduling
framework [18]. Our approach has proved to be relevant for applications dealing
with nested, massive parallelism.

We introduce in this paper a major extension of our OpenMP runtime sys-
tem that connects the thread scheduler to a NUMA-aware memory management
subsystem. This new runtime not only can use per-bubble memory allocation in-
formation when performing thread re-distributions, but it can also perform data
migration — either immediately or upon next-touch— in situations when it is
more appropriate. We discuss several of these situations, and give insights about
the most influential parameters that should be considered on today’s hierarchi-
cal multicore machines. The remainder of this paper is organized as follows. We
present the background of our work in Section 2. We describe our extensions to
the ForestGOMP runtime system in Section 3. In Section 4, we evaluate the
relevance of our proposal with several performance-oriented experiments. Before
concluding, related work is summarized in Section 5.

2 Background and Motivations

In this section, we briefly introduce modern memory architectures and how they
affect application performance. Then we detail how existing software techniques
try to overcome these issues and show the difficulty is to be as less intrusive as
possible while trying to achieve high performance.

2.1 Modern Memory Architectures

The emergence of highly parallel architectures with many multicore processors
raised the need to rethink the hardware memory subsystem. While the number
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of cores per machine quickly increases, memory performance remains several
orders of magnitude slower. Concurrent accesses to central memory buses lead to
dramatic contention, causing the overall performance to decrease. It led hardware
designers to drop the centralized memory model in favor of distributed and
hierarchical architectures, where memory nodes and caches are attached to some
cores and far away from the others. This design has been widely used in high-
end servers based on the Itanium processor. It now becomes mainstream since
AMD HyperTransport (see Figure 1) and the upcoming Intel QuickPath

memory interconnects dominate the server market. Indeed, these new memory
architectures assemble multiple memory nodes into a single distributed cache-
coherent system. It has the advantage of being as convenient to program as
regular shared-memory SMP processors, while providing a much higher memory
bandwidth and much less contention.

However, while being cache-coherent, these distributed architectures have
non-constant physical distance between hardware components, causing their com-
munication time to vary. Indeed, a core accesses local memory faster than other
memory nodes. The ratio is often referred to as the NUMA factor. It generally
varies from 1.2 up to 3 depending on the architecture and therefore has a strong
impact on application performance. Not only does the application run faster if
accessing local data, but also contention may appear on memory links if two pro-
cessors access each others’ memory nodes. Moreover, shared caches among cores
increase the need to take data locality into account while scheduling tasks.

Table 1. Aggregated bandwidth on a quad-socket quad-core Opteron machine de-
pending on the machine load (4 or 16 threads) and the location of memory buffers

Data location Local Local + Neighbors
4 threads on node 0 5151 MB/s 5740 MB/s

4 threads per node (16 total) 4×3635 MB/s 4×2257 MB/s

To illustrate this problem, we ran some experiments on a quad-socket quad-
core Opteron machine. Second row of Table 1 shows that a custom application
using few threads on a non-loaded machine will achieve best performance by
distributing its pages across all memory nodes (to maximize the throughput)
and keeping all threads together on a single processor (to benefit from a shared
cache). However, on a loaded machine, having multiple threads access all mem-
ory nodes dramatically increases contention on memory links, thus achieving
the best performance when each task only accesses local memory (third row of
Table 1). This suggests that achieving high-performance on NUMA architecture
takes more than just binding tasks and data based on their affinities. The host
load and memory contention should also be taken into account.

2.2 Software Support for Memory Management

While thememoryarchitecture complexity is increasing, thevirtualmemorymodel
is slowly being extended to help applications achieving better performance.
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Applications still manipulate virtual memory buffers that are mapped to physical
pages that the system allocates anywhere on the machine. Most modern operat-
ing systems actually rely on a lazy allocation: when applications allocate virtual
memory, the underlying physical pages are actually allocated upon the first access.
While the primary advantage of this strategy is to decrease resource consumption,
it brings an interesting feature usually referred to as first-touch: each page is al-
located in the context of the thread that actually uses it first. The operating sys-
tem is thus able to allocate physical pages on the memory node near the core that
accesses it.

However, if the first thread touching a page is not the one that will access
it intensively in the future, the page may not be allocated “in the right place”.
For this reason, some applications manually touch pages during the initialization
phase to ensure that they are allocated close to the threads that will actually
access them.

Dynamic applications such as adaptative meshes have their task/data affini-
ties varying during the execution, causing the optimal distribution to evolve. One
solution consists in migrating pages between memory nodes to move data near
the tasks that access them at any time. However, it is expensive and requires
actually to detect at runtime that a buffer is not located on the right node. An-
other solution called next-touch is the generalization of the first-touch approach:
it allows applications to ask the system to allocate or migrate each page near the
thread that will first touch it in the future [11,15,16]. It is unfortunately hard to
implement efficiently and also does not work well in many cases, for instance if
two threads are actually touching the same zone.

These features enable memory-aware task and data placement but they re-
main expensive. Moreover, as illustrated by the above experiment, predicting
performance is difficult given that memory performance is also related to the
machine load. Irregular applications will thus not only cause the thread sched-
uler to have to load-balance between idle and busy cores, but will also make the
memory constraints vary dynamically, causing heuristics to become even harder
to define.

3 Design of a Dynamic Approach to Place Threads and
Memory

To tackle the problem of improving the overall application execution time over
NUMA architectures, our approach is based on a flexible multi-level scheduling
that continuously uses information about thread and data affinities.

3.1 Objectives

Our objective is to perform thread and memory placement dynamically accord-
ing to some scheduling hints provided by the programmer, the compiler or even
hardware counters. The idea is to map the parallel structure of the program onto
the hardware architecture. This approach enables support for multiple strate-
gies. At the machine level, the workload and memory load can be spread across
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NUMA nodes and locality may be favored. All threads working on the same
buffers may be kept together within the same NUMA node to reduce memory
contention. At the processor level, threads that share data intensively may also
be grouped to improve cache usage and synchronization [2]. Finally, inside mul-
ticore/multithreaded chips, access to independent resources such as computing
units or caches may be taken into account. It offers the ability for a memory-
intensive thread to run next to a CPU-intensive one without interference.

For irregular applications, all these decisions can only be taken at runtime. It
requires an in-depth knowledge of the underlying architecture (memory nodes,
shared caches, etc.). Our idea consists in using separate scheduling policies at
various topology levels of the machine. For instance, low-level work stealing only
applies to neighboring cores while the memory node level scheduler transfers
larger entities (multiple threads with their data buffers) without modifying their
internal scheduling. Such a transfer has to be decided at runtime after check-
ing the hardware and application statuses. It requires that the runtime system
remembers, during the whole execution, which threads are part of the same team
and which memory buffers they often access. It should be possible to quantify
these affinities as well as dynamically modify them if needed during the execu-
tion. To do so, affinity information may be attached at thread or buffer creation
or later, either by the application programmer, by the compiler (through static
analysis), or by the runtime system through instrumentation. In the end, the
problem is to decide which actions have to be performed and when. We have
identified the following events:

• When the application allocates or releases a resource (e.g., thread or buffer);
• When a processor becomes idle (blocking thread);
• When hardware counters reveal an issue (multiple accesses to remote nodes);
• When application programmers insert an explicit hint in their code.

To evaluate this model, we developed a proof-of-concept OpenMP extension
based on instrumentation of the application. We now briefly present our imple-
mentation.

3.2 MaMI, a NUMA-Aware Memory Manager

MaMI is a memory interface implemented within our user-level thread library,
Marcel [18]. It allows developers to manage memory with regard to NUMA
nodes thanks to an automatically gathered knowledge of the underlying archi-
tecture. The initialization stage preallocates memory heaps on all the NUMA
nodes of the target machine, and user-made allocations then pick up memory
areas from the preallocated heaps.

MaMI implements two methods to migrate data. The first method is based
on the next-touch policy, it is implemented as a user-level pager (mprotect()
and signal handler for SIGSEGV). The second migration method is synchronous
and allows to move data on a given node. Both move pages using the Linux

system call move_pages().

mprotect()
SIGSEGV
move_pages()
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Migration cost is based on a linear function on the number of pages be-
ing migrated1. The cost in microseconds for our experimentation platform is
120+11×nbpages (about 380 MB/s). It is also possible to evaluate reading and
writing access costs to remote memory areas. Moreover, MaMI gathers statistics
on how much memory is available and left on the different nodes. This informa-
tion is potentially helpful when deciding whether or not to migrate a memory
area. Table 2 shows the main functionalities provided by MaMI.

Table 2. Application programming interface of MaMI

– void *mami_malloc(memory_manager, size);
Allocates memory with the default policy.

– int mami_register(memory_manager, buffer, size);
Registers a memory area which has not been allocated by MaMI.

– int mami_attach(memory_manager, buffer, size, owner);
Attaches the memory to the specified thread.

– int mami_migrate_on_next_touch(memory_manager, buffer);
Marks the area to be migrated when next touched.

– int mami_migrate_on_node(memory_manager, buffer, node);
Moves the area to the specified node.

– void mami_cost_for_read_access(memory_manager, source, dest,
size, cost);
Indicates the cost for read accessing SIZE bits from node SOURCE to node
DEST.

3.3 ForestGOMP, a MaMI-Aware OpenMP Runtime

ForestGOMP is an extension to the GNU OpenMP runtime system relying
on the Marcel/BubbleSched user-level thread library. It benefits from Mar-

cel’s efficient thread migration mechanism2 thus offering control on the way
OpenMP threads are scheduled. ForestGOMP also automatically generates
groups of threads, called bubbles, out of OpenMP parallel regions to keep track
of teammate threads relations in a naturally continuous way. Thanks to Mar-

cel automatically gathering a deep knowledge of hardware characteristics such
as cores, shared caches, processors and NUMA nodes, BubbleSched and MaMI

are able to take interesting decisions when placing these bubbles and their as-
sociated data. The BubbleSched library provides specific bubble schedulers to
distribute these groups of threads over the computer cores. The BubbleSched

platform also maintains a programming interface for developing new bubble
schedulers. For example, the Cache bubble scheduler [2] has been developed
using this interface. Its main goal is to benefit from a good cache memory us-
age by scheduling teammate threads as close as possible on the computer and
1 Our experiments first showed a non-linear behavior for the migration cost. It led us

to improve the move_pages() system call implementation in Linux kernel 2.6.29 to
reduce the overhead when migrating many pages at once [8].

2 The thread migration cost is about 0.06µs per thread and the latency is about 2.5µs.
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stealing threads from the most local cores when a processor becomes idle. It also
keeps track of where the threads were being executed when it comes to perform
a new thread and bubble distribution.

The ForestGOMP platform has been enhanced to deal with memory affini-
ties on NUMA architectures.

A Scheduling Policy Guided by Memory Hints. Even if the Cache bubble
scheduler offers good results on dynamic cache-oblivious applications, it does
not take into account memory affinities, suffering from the lack of information
about the data the threads access. Indeed, whereas keeping track of the bubble
scheduler last distribution to move threads on the same core is not an issue, the
BubbleSched library needs feedback from the memory allocation library to
be able to draw threads and bubbles to their “preferred” NUMA node. That is
why we designed the Memory bubble scheduler that relies on the MaMI memory
library to distribute threads and bubbles over the NUMA nodes regarding their
memory affinities. The idea here is to have MaMI attaching “memory hints” to
the threads by calling the BubbleSched programming interface. These hints
describe how much data a thread will use, and where the data is located. This
way, the bubble scheduler is able to guide the thread distribution onto the correct
NUMA nodes. Then, the Cache bubble scheduler is called inside each node to
perform a cache-aware distribution over the cores.

Extending ForestGOMP to Manage Memory. The ForestGOMP

platform has also been extended to offer the application programmer a new
set of functions to help convey memory-related information to the underlying
OpenMP runtime. There are two main ways to update this information. Appli-
cation programmers can express memory affinities by the time a new parallel
region is encountered. This allows the ForestGOMP runtime to perform early
optimizations, like creating the corresponding threads at the right location. Up-
dating memory hints inside a parallel region is also possible. Based on these new
hints, the bubble scheduler may decide to redistribute threads. Applications can
specify if this has to be done each time the updating function is called, or if
the runtime has to wait until all the threads of the current team have reached
the updating call. The ForestGOMP runtime only moves threads if the new
per-thread memory information negates the current distribution.

4 Performance Evaluation

We first describe in this section our experimentation platform and we detail the
performance improvements brought by ForestGOMP on increasingly complex
applications.

4.1 Experimentation Platform

Theexperimentionplatform is a quad-socketquad-core1.9GHzOpteron8347HE
processor host depicted on Figure 1. Each processor contains a 2MB shared L3
cache and has 8 GB memory attached.
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4 Cores with 512kB L2
and 64kB L1 Caches each

Fig. 1. The experimentation host is composed of 4 quad-core Opteron (4 NUMA
nodes)

Table 3. Memory access latency (uncached) depending on the data being local or
remote

Access type Local access Neighbor-node access Opposite-node access
Read 83 ns 98 ns (× 1.18) 117 ns (× 1.41)
Write 142 ns 177 ns (× 1.25) 208 ns (× 1.46)

Table 3 presents the NUMA latencies on this host. Low-level remote memory
accesses are indeed much slower when the distance increases. The base latency
and the NUMA factor are higher for write accesses due to more hardware traffic
being involved. The observed NUMA factor may then decrease if the application
accesses the same cache line again as the remote memory node is not involved
synchronously anymore. For a write access, the hardware may update the remote
memory bank in the background (Write-Back Caching). Therefore, the NUMA
factor depends on the application access patterns (for instance their spatial and
temporal locality), and the way it lets the cache perform background updates.

4.2 Stream

Stream [12] is a synthetic benchmark developed in C, parallelizedusing OpenMP,
that measures sustainable memory bandwidth and the corresponding computa-
tion rate for simple vectors. The input vectors are wide enough to limit the cache
memory benefits (20 millions double precision floats), and are initialized in par-
allel using a first-touch allocation policy to get the corresponding memory pages
close to the thread that will access them.

Table 4 shows the results obtained by both GCC 4.2 libgomp and Forest-

GOMP runtimes running the Stream benchmark. The libgomp library ex-
hibits varying performance (up to 20%), which can be explained by the fact
the underlying kernel thread library does not bind the working threads on the
computer cores. Two threads can be preempted at the same time, and switch
their locations, inverting the original memory distribution. The ForestGOMP

runtime achieves a very stable rate. Indeed, without any memory information,
the Cache bubble scheduler deals with the thread distribution, binding them to
the cores. This way, the first-touch allocation policy is valid during the whole
application run.
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Table 4. Stream benchmark bandwidth results on a 16-core machine (1 thread per
core), in MB/s

libgomp ForestGOMP
Operation Worst-Best Worst-Best

Copy 6 747-8 577 7 851-7 859
Scale 6 662-8 566 7 821-7 828
Add 7 132-8 821 8 335-8 340
Triad 7 183-8 832 8 357-8 361

4.3 Nested-Stream

To study further the impact of thread and data placement on the overall appli-
cation performance, we modified the Stream benchmark program to use nested
OpenMP parallel regions. The application now creates one team per NUMA node
of the computer. Each team works on its own set of Stream vectors, that are ini-
tialized in parallel, as in the original version of Stream. To fit our target computer
architecture, the application creates four teams of four threads. Table 5 shows the
results obtained by both the libgomp and the ForestGOMP library.

The libgomp runtime system maintains a pool of threads for non-nested par-
allel regions. New threads are created each time the application reaches a nested
parallel region, and destroyed upon work completion. These threads can be exe-
cuted by any core of the computer, and not necessarily where the master thread
of the team is located. This explains why the results show a large deviation.

The ForestGOMP runtime behaves better on this kind of application. The
underlying bubble scheduler distributes the threads by the time the outer paral-
lel region is reached. Each thread is permanently placed on one NUMA node of
the computer. Furthermore, the ForestGOMP library creates the teammates
threads where the master thread of the team is currently located. As the vectors
accessed by the teammates have been touched by the master thread, this guar-
antees the threads and the memory are located on the same NUMA node, and
thus explains the good performance we obtain.

Table 5. Nested-Stream benchmark bandwidth results in MB/s

libgomp ForestGOMP
Operation Worst-Best Worst-Best

Copy 6 900-8 032 8 302-8 631
Scale 6 961-7 930 8 201-8 585
Add 7 231-8 181 8 344-8 881
Triad 7 275-8 123 8 504-9 217

4.4 Twisted-Stream

To complicate the Stream memory access pattern, we designed the Twisted-
Stream benchmark application, which contains two distinct phases. The first



88 F. Broquedis et al.

one behaves exactly as Nested-Stream, except we only run the Triad kernel
here, because it is the only one to involve the three vectors. During the second
phase, each team works on a different data set than the one it was given in the
first phase. The first-touch allocation policy only gives good results for the first
phase as shown in Table 6.

Table 6. Average rates observed with the Triad kernel of the Twisted-Stream bench-
mark using a first-touch allocation policy. During phase 2, threads access data on a
different NUMA node.

libgomp ForestGOMP
Triad Phase 1 8 144 MB/s 9 108 MB/s
Triad Phase 2 3 560 MB/s 6 008 MB/s

A typical solution to this lack of performance seems to rely on a next-touch
page migration between the two phases of the application. However this func-
tionality is not always available. And we show in the remaining of this section
that the next-touch policy is not always the best answer to the memory locality
problem.

The Stream benchmark program works on three 160MB-vectors. We ex-
perimented with two different data bindings for the second phase of Twisted-
Stream. In the first one, all three vectors are accessed remotely, while in the
second one, only two of them are located on a remote node. We instrumented
both versions with calls to the ForestGOMP API to express which data are
used in the second phase of the computation.

Remote Data. The underlying runtime system has two main options to deal
with remote accesses. It can first decide to migrate the three vectors to the
NUMA node hosting the accessing threads. It can also decide to move the threads
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Stream benchmark, where the whole set of vectors is remotely located
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to the location of the remote vectors. Figure 2 shows the results obtained for
both cases.

Moving the threads is definitely the best solution here. Migrating 16 threads
is faster than migrating the corresponding vectors, and guarantees that every
team only accesses local memory. On the other hand, if the thread workload
becomes big enough, the cost for migrating memory may be become lower than
the cost for accessing remote data.

Mixed Local and Remote Data. For this case, only two of the three Stream

vectors are located on a remote NUMA node. One of them is read, while the other
one is written. We first study the impact of the NUMA factor by only migrating
one of the two remote vectors. Figure 3(a) shows the obtained performance.
As mentioned in Table 3, remote read accesses are cheaper than remote write
accesses on the target computer. Thus, migrating the read vector is less critical,
which explains our better results when migrating the written vector. The actual
performance difference between migrating read and written vectors is due to
twice as many low-level memory accesses being required in the latter case.

To obtain a better thread and memory distribution, the underlying runtime
can still migrate both remote vectors. Moving only the threads would not discard
the remote accesses as all three vectors are not on the same node. That is why we
propose a mixed approach in which the ForestGOMP runtime system migrates
both thread and local vector near to the other vector. This way, since migrating
threads is cheap, we achieve a distribution where all the teams access their data
locally while migrating as few data as possible. Figure 3(a) shows the overhead
of this approach is smaller than the next-touch policy, for which twice as much
data is migrated, while behaving the best when the thread workloads increase,
as we can see on Figure 3(b).
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Fig. 3. Execution times of different thread and memory policies on the Twisted-
Stream benchmark, where only two of the three vectors are remotely located

We also tested all our three Stream benchmark versions on the Intel compiler
11.0, which behaves better than ForestGOMP on the original Stream appli-
cation (10 500 MB/s) due to compiler optimizations. Nevertheless, performance
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drops significantly on both Nested-Stream, with an average rate of 7 764 MB/s,
and Twisted-Stream with a second step average rate of 5 488 MB/s, while the
ForestGOMP runtime obtains the best performance.

5 Related Work

Many research projects have been carried out to improve data distribution and
execution of OpenMP programs on NUMA architectures. This has been done ei-
ther through HPF directives [1] or by enriching OpenMP with data distribution
directives [4] directly inspired by HPF and the SGI Fortran compiler. Such di-
rectives are useful to organize data the right way to maximize page locality, and,
in our research context, a way to transmit affinity information to our runtime
system without heavy modifications of the user application.

Nikolopoulos et al. [13] designed a mechanism to migrate memory pages au-
tomatically that relies on user-level code instrumentation performing a sampling
analysis of the first loop iterations of OpenMP applications to determine thread
and memory affinity relations. They have shown their approach can be even more
efficient when the page migration engine and the operating system scheduler [14]
are able to communicate. This pioneering research only suits OpenMP applica-
tions that have a regular memory access pattern while our approach favors many
more applications.

To tackle irregular algorithms, [11,15,16] have studied the promising next-
touch policy. It allows the experienced programmer to ask for a new data distri-
bution explicitly the next time data is touched. While being mostly similar to
the easy-to-use first-touch memory placement policy in terms of programming
effort, the next-touch policy suffers from the lack of cooperation between the al-
location library and the thread scheduler. Moreover, this approach does not take
the underlying architecture into account and so can hardly achieve most of its
performance. ForestGOMP works around this issues thanks to BubbleSched

and MaMI knowledge of the underlying processor and memory architecture and
load.

6 Conclusion and Future Work

Exploiting the full computational power of current more and more hierarchi-
cal multiprocessor machines requires a very careful distribution of threads and
data among the underlying non-uniform architecture. Directive-based program-
ming languages provide programmers with a portable way to specify the parallel
structure of their application. Through this information, the scheduler can take
appropriate load balancing decisions and either choose to migrate memory, or
decide to move threads across the architecture. Indeed, thread/memory affinity
does matter mainly because of congestion issues in modern NUMA architectures.

Therefore, we introduce a multi-level thread scheduler combined with a NUMA-
aware memory manager. It enables dynamic load distribution in a coherent way
based on application requirements and hardware constraints, thus helping to reach
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performanceportability.Our early experiments showthatmixed solutions (migrat-
ing threads and data) improve overall performance. Moreover, traditional next-
touch-based data distribution approaches are not always optimal since they are
not aware of the memory load of the target node. Migrating threads may be more
efficient in such situations.

We plan first to enhance the current bubble framework so as to improve
our scheduling decision criteria by introducing global redistribution phases at
some times. Obviously, hardware counter feedback should also be involved in
this process. We therefore need to experiment further with both synthetic and
real-life applications.

These results also suggest there is a need to extend OpenMP so as to transmit
task/memory affinity relations to the underlying runtime. This evolution could
also widen the OpenMP spectrum to hybrid programming [5,6].
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Abstract. Performance anomalies when running Gaussian frequency calcula-
tions in parallel on SGI Altix computers with CC-NUMA memory architecture 
are analyzed using performance tools that access hardware counters. The bot-
tleneck is the frequent and nearly simultaneous data-loads of all threads in-
volved in the calculation of data allocated in the node where the master thread 
runs. Code changes that ensure these data-loads are localized improve perform-
ance by a factor close to two. The improvements carry over to other molecular 
models and other types of calculations. An expansion or an alternative of 
FirstPrivate OpenMP’s clause can facilitate the code transformations. 

Keywords: OpenMP, Gaussian 03, SGI Altix, CC-NUMA, memory latency. 

1   Introduction 

The Computational Chemistry program Gaussian [1] is one of the few commercially 
available programs in the discipline that has been parallelized using OpenMP [2]. 

When monitoring the progress of a 32-way parallel Gaussian 03 frequency calcula-
tion on an SGI Altix 450 with the system command “top,” we noticed an anomalous 
performance behavior: The first four threads clearly lagged behind the rest. This  
effect is most visible in the section of Gaussian that solves the Couple-Perturbed  
Hartree-Fock (CPHF) equations [3], [4], [5], [6] (link l1002). This lack of load bal-
ance cannot be attributed to either the parallel algorithm in Gaussian or to possible 
peculiarities of the input data set.  

In this paper we describe first the Gaussian software, followed by a brief explana-
tion of the SGI Altix CC-NUMA (cache coherent Non-Uniform Memory Access) 
architecture, and of the profiling tools that enable the access to hardware counters.  
In the next sections we discuss the possible origin of the interactions with the  
CC-NUMA memory architecture of the SGI Altix 450 and a way to overcome them. 
In closing we offer a suggestion of an OpenMP clause that would make implementing 
the solution straightforward. 
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2   Gaussian 

2.1   The Gaussian 03 Program 

Gaussian 03 computes approximate solutions to the Schrödinger Equation for molecular 
systems. The Integro-differential equations for the electronic wavefunction for a given 
arrangement of the nuclei is approximated by expansion in a finite basis of Gaussian 
functions [7] which reduces the problem to linear algebra plus the evaluation of matrix 
elements involving these basis functions. The calculations performed in this work in-
volve a mean-field approximation to the general Schrödinger equation [8], [9] using a 
density-functional expression for the mean-field potential [10]. 

The number of basis functions, N, is proportional to the size of the molecule (num-
ber of atoms, NA). The number of matrix elements is formally O(N4), but because the 
basis functions are localized in space, after applying numerical thresholds this number 
approaches O(N2) for large molecules. The cost of using the matrix elements can be 
reduced to O(N) using tree-based methods such as the Fast Multipole Method [11], 
[12] for the Coulomb part of the problem and appropriate use of the locality of inter-
actions for other terms in the potential [13], [14], [15]. 

Stationary points on the potential energy surface for nuclear motion are located  
using standard optimization techniques along with analytic first derivatives of the 
electronic energy with respect to the nuclear coordinates [16]. Minima on a surface 
correspond to stable structures of the molecules.  Second derivatives of the energy 
with respect to the nuclear coordinates at minima can be used to predict harmonic 
vibrational frequencies and vibrational spectra, such as Infra-Red (IR) and Vibrational 
Circular Dichroism (VCD) [17]. Since the analytic second derivative calculation can 
be very time-consuming, one of these calculations is used here as an example for 
testing the performance of various algorithms with respect to memory access in a CC-
NUMA environment. 

Time spent in the second derivative calculation is dominated by solving the deriva-
tive self-consistent field (CPHF) equations. There is one such equation for each nu-
clear displacement, for a total of 3NA. The dimensionality of these equations is large, 
so they are solved iteratively, with each iteration involving the contraction of matrix 
elements with contributions to each derivative density.  Thus the computational cost is 
formally O(NAN4). The scaling can be reduced for large systems as mentioned above, 
but for the modest size system used as an example here, the resulting speedups are 
modest. 

2.2   Memory Allocation and Parallelism in Gaussian 

Many of the terms in the calculations done in Gaussian involve very large amounts of 
data. Most of these are recomputed as needed. But since it is not possible to store all 
the data (e.g., all the N4 matrix elements) in memory, the management of memory and 
the selection of algorithms based on the amount of available memory is critical to 
good performance.  Consequently, a stack-based allocation approach is used. The 
amount of memory to be used by the calculation is set by the user and the memory 
allocated once.  Then routines which compute individual terms in the calculation 
choose their algorithms and allocate memory from this pool, passing on unused parts 
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for use by the subordinate routines for the chosen algorithm. This facilitates a strate-
gic approach in which the optimal method of calculation given the amount of memory 
available can be selected, but it also means that on a CC-NUMA system with a “first-
touch” memory allocation policy, the physical location of pages is determined by 
whatever term was calculated first, and this need not be optimal for other phases of 
the overall calculation. 

 The underlying algorithms for basic tasks, such as the computation of matrix ele-
ments, are frequently updated and improved. So the primary goal in the implementa-
tion of parallelism in Gaussian is to have a single set of routines which implement an 
algorithm and which can be used for serial, SMP parallel, and cluster parallel compu-
tations. SMP parallelism is implemented using OpenMP and cluster parallelism, 
which is not considered further in this paper, is done using Linda. In the example 
computation considered here, the dominant step is computation of the N4 two-electron 
integrals and their contraction with density matrix derivative contributions during 
solution of the CPHF equations. This is parallelized by dividing the integrals to be 
computed among threads, with each thread computing the contribution of some inte-
grals to all the products. Since the OpenMP clause Default(Shared) is used in 
every Parallel Region and Parallel Do, a copy of the output products is 
allocated to each thread, and the results are added together after all threads have com-
pleted their tasks.  Each thread also has space allocated for the intermediate data gen-
erated and used during the calculation, but all threads share the input data (density 
matrices and various quantities derived from the basis functions which are used in the 
computation of the integrals). The allocation of work is done statically so that no 
communication between tasks is required. For the example considered here, static 
allocation gives excellent load balance, but it is also trivial to distribute work dynami-
cally via a shared counter if this is preferable for other cases. 

2.3   Example Calculation 

Our example is a calculation of the IR and VCD spectra of alpha-pinene, first pub-
lished in ref [18].  The calculation done here uses the same B3LYP model as the 
original work, but the 6-311G(df,p) basis set.  This is a modest size of calculation by 
modern standards, but this facilitates testing a variety of modifications to the algo-
rithms and memory layout.  The performance issues involved in larger calculations 
are unchanged from this example. 

3   SGI Altix 

SGI Altix systems are based on a cache-coherent Non Uniform Memory Access (CC-
NUMA) architecture. The system components (processors, memory, IO, etc.) are 
distributed across nodes. These nodes are interconnected through an internal network. 
The cache coherency is maintained through a directory located in each memory node. 
Reference [19] describes the principle of this type of Distributed Shared Memory 
(DSM) systems. 

On SGI Altix systems, the “compute” nodes include two processor sockets, memory 
DIMMs (dual in-line memory modules) and a “Hub” chip. The “Hub” is the memory 
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controller for the local DIMMs. It also interfaces with the processors through the Front 
Side Bus (FSB) and the rest of the system with two NUMAlink ports. The NUMAlink 
fabric interconnects the different nodes in the system through eight port routers. Each 
link sustains a bandwidth of 3.2 GB/s in each direction. It is also possible to configure a 
system with memory-only nodes. 

The experiments described in this paper were carried out on an SGI Altix 450 sys-
tem [20] equipped with 9130M Dual-Core Intel Itanium Processors. These processors 
run at 1.66GHz and have a last level cache size of 8MB (4 MB per core). The FSB 
has a frequency of 667 MHz. The computer system has 72 cores and 2GB of memory 
per core. The architecture of this system is sketched on Fig. 1; each of the two sym-
metric NUMAlink fabrics is formed by four routers in a square attached to up to 5 
nodes (Compute or IO). The Non-Uniform aspect of the CC-NUMA architecture can 
be easily understood from this picture. Access to the local memory simply goes 
through the local “hub,” while a remote access will require another “hub” and one, 
two or three router traversals. As a result, the remote memory-load latency is between 
2.1 and 2.9 times larger than the local direct access. 

 

Fig. 1. SGI Altix 450 architecture. Only one NUMAlink interconnection represented. The 
system may include up to 80 nodes, with at least one IO and one Compute node. 

4   Performance Tools 

For this study, we used the SGI Histx [20] performance analysis tools, which SGI 
developed for the IA64 architecture. The SGI Histx performance tool suite includes 
two tools used in this project: a profiling tool histx, and a performance monitoring 
tool lipfpm. lipfpm simply counts the occurrence of given events during a run; it relies 
on the hardware performance counters [22] available on the Intel Itanium processors. 
The profiling tool histx can also use these performance counters to profile an applica-
tion and monitor the frequency of any event for each section of the code. 

 



 Scalability of Gaussian 03 on SGI Altix: The Importance of Data Locality 97 

 

In particular for this project we used the following experiments: 

• lipfpm “mlat” computes the average memory access latency seen at the processor 
interface (FSB) dividing the cumulative number of memory read transactions out-
standing per cycle by the total number of cycles. 

•  lipfpm “dlatNN” simply counts the number of memory data-loads which took 
more than NN cycles to complete; possible values for NN are any power of two be-
tween 4 and 4096. E.g. lipfpm “dlat1024” measures the number of data-loads 
which took more than 1024 cycles. 

• histx “dlatNN” profiles the application based on the occurrence of data-loads with 
latency longer than NN cycles. E.g. with histx “dlat1024@2000” a sample is tak-
ing after 2000 data-loads longer than 1024 cycles. So if an application generates 
200 million data-loads longer than 1024 cycles, 100 thousand samples will be 
taken allowing for a precise profile. 

• histx "numaNN" also samples data-loads longer than NN cycles (like histx 
"dlatNN" does). However it further identifies which node of the CC-NUMA sys-
tem the data accessed was located on. 
 

Note that the histx profiling experiments provide information at the routine or the 
source line level. 

5   Discussion 

The model job used in this paper is the calculation of vibrational frequencies of  
α-pinene. This molecule consists of 26 atoms. The basis set, a measure of the accu-
racy of the calculation, is 6-311G(df,p); this results in a total of 346 basis functions 
which is an indication of the size of the problem. The full calculation executed on 32 
cores of the previously described SGI Altix 450 takes around 1450 seconds wall clock 
time. The section of the program where the anomalous behavior was noticed, link 
l1002, takes 1144 seconds; this is 79% of the time for the full calculation. 

The experiments to measure latencies using the original code confirm that the first 
4 threads that are located on the first blade (node 0) have much lower average latency 
than those threads on other nodes. We will call them remote. These effects are shown 
in Fig. 2 and Fig. 3. 

Fig. 2 depicts the results of the “mlat” lipfpm experiment. Thread 0, the master 
thread, has an Average Memory Latency of around 480 ns as seen by the FSB. The 
average of the Average Memory Latency of the next threads, located on the same 
node, is slightly lower, around 470 ns. Unlike thread 0 these threads do not have to 
deal with gather operations. The next 28 threads exhibit on average a much higher 
Average Memory Latency, 955 ns, almost a factor of two compared to thread 0. 

Similar effects can be seen in Fig. 3. For thread 0 there are around 20 million re-
tired data loads with latencies that exceed 1024 cycles (613 ns). The threads on the 
same node count less than 5% of such data loads, whereas the average of the counts 
for the remaining threads is close to 10 times higher. 
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Fig. 2. Result of the “mlat” lipfpm experiment using the original code. This figure shows the 
Average FSB Memory Latency in nanoseconds for every thread in the calculation: 0 to 31. 
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Fig. 3. Result of “dlat1024” lipfpm experiment using the original code. This experiment counts 
the number of data-load misses that take more than 1024 cycles for each thread 0 to 31. 
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Experiments with the histx tool (“numa”) point directly to the function in the 
Gaussian program that is responsible for the vast majority of the long-latency data-
loads, dgst01. In particular we can see that these data-loads are coming from ac-
cesses to the (remote) node where thread 0 is running. 

The “hot-spot” of dgst01 has constructions like the one shown in Table 1. 

Table 1. Program snippet from dgst01 

Do 500 IShC = 1, NShCom 
   IJ = LookLT(C4IndR(IShC,1)+IJOff) 
   KL = LookLT(C4IndR(IShC,6)+KLOff) 
   R1IJKL = C4RS(IShC,IRS1,1)*( C4ERI(IShC,IJKL) 
$         - FactX*(C4ERI(IShC,IKJL)+C4ERI(IShC,ILJK)) ) 
C 
   If(Abs(R1IJKL).ge.CutOff) then 
      Do 10 IMat = 1, NMatS 
10       FA(IMat,IJ) = FA(IMat,IJ) + DA(IMat,KL)*R1IJKL 
      Do 20 IMat = 1, NMatS 
20       FA(IMat,KL) = FA(IMat,KL) + DA(IMat,IJ)*R1IJKL 
   endIf 

 [Similar If/endIf constructs as above] 

500   Continue 
 

The arrays of interest are FA, the Fock matrix, and DA, the Density matrix. These 
are used in the inner loops 10 and 20. These loops have an overall nesting of 5. 

Initially we focused our attention on FA thinking that the load/store (read/write) ac-
tivity would be the main source of the long-latency data load misses. Even though this 
array should have been mostly localized on the node where the thread is running, we 
allowed for the possibility that this localization may not be “perfect” due to possible 
accesses to the memory locations in the serial part or a previous parallel region.  

We ensured localization by creating ALLOCATABLE temporary arrays that where 
allocated and first used in the parallel region, thus avoiding the potential problems of 
previously allocated and used memory from the stack managed by Gaussian. This 
code modification did not have any effect on the Average Memory Latency of the 
remote threads nor on the counts of long-latency data-loads. 

We therefore turned our attention to DA. After implementing the same modifica-
tions as for FA, we saw a very substantial improvement in the latency profile of the 
memory accesses. Figures 4 and 5 summarize the results. 

The first thing to notice in Fig. 4 is that all average latencies are lower. The laten-
cies in the first node have come down by approximately 100 ns to 360 (thread 0) and 
320 ns (average of threads 1 to 3). But more importantly, the average latency of the 
remote nodes has been more than halved -- now 370 ns on average. This means that it 
is of the same order of magnitude as the latency of thread 0. Consequently the ob-
served load balance is improved significantly. 
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Fig. 4. Result of the “mlat” lipfpm experiment using the modified code. This figure shows the 
Average FSB Memory Latency in nanoseconds for every thread in the calculation: 0 to 31. 

 
Fig. 5. Result of “dlat1024” lipfpm experiment using the modified code. This experiment 
counts the number of data-load misses that take more than 1024 cycles for each thread 0 to 31. 
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This is also reflected in Fig. 5 to be compared with Fig. 3. The remote long-latency 
data-load counts have been cut by a factor of around 5 on the first node and by a factor 
of over 40 on the other nodes. We don’t have a good explanation for the higher latencies 
in the second node, but it should be noted that these differences are negligible in com-
parison with the gains obtained from the data in Fig. 3. In addition, subsequent experi-
ments did show a uniform distribution of the latencies of all the remote nodes. Higher in 
the profile are now routines that take care of data movement (copies). 

The improved locality and derived decrease in latency has an important impact on 
the overall performance of this section of the calculation. The modified code runs this 
portion in 668 seconds elapsed time, down from 1144 seconds needed by the original 
program. 

The original code represents the worst-case scenario for contention since all the 
“remote” nodes are trying to access elements of DA that have been allocated in the 
first node. In this sense the modified code exemplifies the best case scenario since all 
the references to DA are local. An example of an intermediate case is when the array 
DA is distributed uniformly over the nodes. In this case, while there is no strict local-
ity for DA, the data-load contention is spread over the network fabric. As a conse-
quence no load unbalance is seen. The Average FSB Memory Latency of thread 0 
remains unchanged compared to the original code. The average for the threads in the 
first node is just a bit lower than in the original code. The biggest improvement is, as 
to be expected, in the average for the “remote” nodes. It improves by close to a factor 
of 2 to 490 ns. The run time for this version is around 800 sec., a significant im-
provement compared to the original code but not nearly as good as for the modified 
code. These results are insensitive to how DA is distributed over the nodes: equal, 
contiguous chunks over the threads or round-robin with pagesize segments. 

We have verified that similar improvements can be measured when running the 
same type of calculation on different molecules. The benefits extend to other types of 
Gaussian calculations where the same core algorithm is used. 

6   Suggestions 

The effects of the code modifications could have largely been accomplished using the 
existing OpenMP clause FirstPrivate. This clause, however, creates n copies 
(where n is the number of threads) of the array whereas only n-1 (or less, see below) 
are needed in the case where the private arrays are read-only. It also lacks the flexibil-
ity to address specific situations. 

A new clause that has at least the following properties would be desirable: 

• The original array in the master thread should not be replicated. As an advanced 
feature the option can be given to not replicate the arrays for the threads running in 
the first node. 

• There is no need for a Barrier in the allocation of these read-only private arrays 
• A conditional clause would be desirable. A decision about replicating individual 

arrays should be made at run time. 
• Run time determination of size and shape of arrays is also desirable. This would 

help to work around arrays with assumed dimensions and or shapes. Cases where 
only sections of the array are needed in the parallel region would also be addressed. 
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7   Conclusions 

In CC-NUMA systems with default “first-touch” memory allocation policies, frequent 
access to memory locations in remote nodes can have a profound impact on perform-
ance. In the case presented in this paper, the culprit is the significant difference in 
latency between local and remote data-loads, especially when all remote data-loads 
are from one node. It is fairly simple to recode the program to attenuate these effects, 
but this goes at the expense of a larger memory footprint. The programming task can 
be made “OpenMP-friendly” with a special clause to the parallel region directives. 

The need to localize by replication read-only memory locations is not intuitive in 
OpenMP programming. In general, with a default setting of sharing variables in a 
parallel region, the focus is directed towards privatizing read-write data to minimize 
or avoid altogether the use of critical regions. 

As more and larger multi-core microprocessors are being developed the considera-
tions presented in this paper become increasingly relevant. An efficient shared  
memory application must take into account the high cost of remote access. The pro-
grammer should not hesitate and replicate data structures frequently accessed. 
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Abstract. Providing observability for OpenMP applications is a techni-
cally challenging task. Most current tools treat OpenMP applications as
native multi-threaded applications. They expose too much implementa-
tion detail while failing to present useful information at the OpenMP ab-
straction level. In this paper, we present a rich data model that captures
the runtime behavior of OpenMP applications. By carefully designing in-
teractions between all involved components (compiler, OpenMP runtime,
collector, and analyzer), we are able to collect all needed information and
keep overall runtime overhead and data volume low.

1 Introduction

For any programming environment, offering observability in the runtime behav-
ior of user applications is equally as important as offering schemes that help to
create the application. OpenMP provides a set of high level constructs and APIs
that aim to simplify the task of writing high performance and portable parallel
applications. The nondeterministic nature of concurrent execution of threads,
the program transformations performed by the compilers, and the interactions
between user applications and runtime libraries makes program observation (e.g.,
performance profiling and debugging) more important, and at the same time,
more difficult to achieve.

For example, a generic performance analysis tool can only provide rudimen-
tary support for OpenMP performance profiling. The tool may show all native
threads used in the process - some may map to OpenMP threads and some may
be internal service threads used by the OpenMP runtime library itself. The tool
may show native callstacks that barely resemble the caller-callee relationship
in user program. The tool may not be able to differentiate the user CPU time
used for real work from those used for OpenMP synchronization or caused by
OpenMP overhead. In OpenMP, an OpenMP thread executes on behalf of an
OpenMP task inside an OpenMP parallel region (implicit or explicit) at any par-
ticular moment. If the tool has no knowledge of this context, it cannot present
information close to the OpenMP execution model, reducing the help it pro-
vides in trouble-shooting OpenMP specific performance problems. To a certain
extent, the OpenMP execution environment resembles a virtual machine. We
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believe, for general OpenMP programmers, observability should be provided at
the OpenMP abstraction level, in addition to the machine level which exposes
internals of the virtual machine.

This paper makes the following contributions. First, it presents a data model
upon which the runtime behavior of an OpenMP program can be constructed for
observation. Second, it presents a way to extend the current OpenMP profiling
API to support the new OpenMP tasking feature, and a way to integrate vendor
specific extensions. Third, it presents the techniques for generating the user
callstack that reflects the program logic rather than implementation details.
And last, it presents the techniques for efficiently generating, recording, and
reconstructing various tree structures in the data model.

The rest of the paper is organized as follows. Section 2 describes our OpenMP
data model. Section 3 describes extensions to the OpenMP profiling API to sup-
port the data model. Section 4 presents our techniques in getting the user call-
stack. Section 5 presents our techniques in getting the thread tree and the task
tree related information. Section 6 uses a quicksort program to illustrate the in-
formation that can be constructed and presented to users using the data collected
by our techniques. Section 7 describes related work. Section 8 concludes our paper.

2 The Data Model

In this section, we describe a rich data model that captures the runtime behavior
of an OpenMP application. Any event of interest that happened during the
execution of an OpenMP application will have its OpenMP context described in
the data model.

Before diving into the details of the data model, we define the components
involved in the tool chain:

– A compiler that processes program source code, translates OpenMP con-
structs, produces executable code functionally equivalent to the original,
and provides information that allows mapping of various program objects in
the executable code back to the source code (e.g., user and outlined function
naming, instruction to source line mapping).

– An OpenMP runtime library that provides thread/task management,
scheduling and synchronizations.

– A collector that is a runtime component interacting with the program and
the OpenMP runtime to obtain and to record information about dynamic
program behavior. Low overhead is crucial for this component. Thus recorded
data may be different from what finally makes the data model.

– An analyzer that works either on-the-fly or post-mortem. The analyzer im-
plements the data model by reconstructing it from data recorded by the col-
lector and provides a means for the user to access that data model through
a set of displays or tools with various mechanisms to manipulate data, such
as filtering and aggregation.

The callstack is a crucial piece of information for observability. We need a call-
stack that hides the details of outlined functions from a user, contains only stack
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frames from the user’s code and maintains natural caller/callee relationships as
specified by the logic of the user’s program. A set of collected callstacks can be
formed into a tree-like data structure with each path from the root representing
a particular callstack. We’ll refer to that data structure as the dynamic function
call graph or function tree.

OpenMP parallel region information is required to understand the parallel
behavior of a program. By assuming that serial program execution is represented
by the default parallel region with only one thread in the team, we can assert
that any program event occurs in some OpenMP thread (i.e., a member of the
current parallel region thread team). With nested parallelism and a parent-child
relationship between parallel regions we get a tree-like data structure where we
can map any event to a node thus specifying all ancestor OpenMP threads and
parallel regions up to the default one, which is the root of the tree. We call that
data structure the OpenMP thread tree or parallel region tree.

The OpenMP runtime provides a unique ID for each parallel region instance.
To collect and to present the entire dynamic parallel region tree would require
an enormous amount of data. Two optimizations appear practical: a sampled
parallel region tree; and a representation in which all dynamic IDs are mapped
to original OpenMP directives in the source code while preserving the dynamic
parent-child relationship. This is similar to the dynamic function call graph.

During their lifetime, OpenMP threads transition through various states de-
fined by the OpenMP runtime, such as working in user code, waiting in a barrier
or other synchronization objects and performing a reduction operation. Time
spent in different states can be aggregated and presented as metrics for various
program objects: functions, threads, parallel regions, etc. An OpenMP thread
state is thus another important part of the data model.

OpenMP tasks give another perspective to a program’s dynamic behavior. By
extending the notion of a task for serial execution, parallel regions, worksharing
constructs, etc. (and calling such tasks implicit), we can assert that any pro-
gram event is associated with some task. Task creation defines a parent-child
relationship between tasks, which leads us to another tree-like data structure -
the OpenMP task tree. Optimizations similar to those suggested for the parallel
region tree are also possible.

The OpenMP data model thus consists of the following pieces of information
defined for an arbitrary program event: an OpenMP thread state, a node in the
parallel region tree, a node in the task tree, and a user callstack. The actual
data model may also contain information that is not OpenMP related, such as
a time-stamp, a machine callstack, a system thread ID or a physical CPU ID
associated with a particular event of interest. We do not discuss how to record
and process such information as the techniques are mature and well-known.

3 OpenMP Profiling API

The original OpenMP profiling API[1] was designed to allow for easy extensions,
and the introduction of tasks in OpenMP 3.0[2] created an immediate need for
such extensions.



Providing Observability for OpenMP 3.0 Applications 107

To collect information corresponding to the data model described in the pre-
vious section, a new set of nine requests is proposed for the common API:

1. depth of the current task tree;
2. task ID of the n-th ancestor task (0 for the current task);
3. source location of the n-th ancestor task;
4. depth of the current parallel region tree;
5. parallel region ID of the n-th ancestor parallel region (0 for the current one);
6. source location of the n-th ancestor parallel region;
7. OpenMP thread ID of the n-th ancestor thread in the parallel region tree

path;
8. size of the thread team of the n-th ancestor parallel region;
9. OpenMP state of the calling thread.

Notice that although some of the above information (such as the size of the
thread team) is available through standard OpenMP API calls (such as omp get
team size()), the collector runtime should use the profiling API[1] because it
guarantees the above nine pieces of information are provided consistently and
atomically in one API call.

Although not used in the work presented in this paper, a set of new events
is proposed to cover tasks in OpenMP 3.0: a new task created, task execution
begins, task execution suspended, task execution resumed, task execution ends
(Appendix A).

Recognizing that some interactions between the collector and the OpenMP
runtime can be very specific to a particular implementation, we are suggesting
a simple way to add vendor specific requests and events, which would not in-
terfere with possible future extensions of the common API. A vendor willing to
implement its own set of extensions should reserve one request number in the
common API to avoid possible collision of similar requests from other vendors.
This request is issued during the rendezvous to check if that vendor’s extensions
are supported by the OpenMP runtime and if so, to enable them. All actual
extended requests and events are assigned negative values, which will never be
used by the common API, and are put in a separate include file. This scheme
assumes that no two sets of extensions can be enabled at the same time but it
allows both the OpenMP runtime and the collector to support more than one
vendor extension. Thus, there is no problem with possible overlap of values or
names of actual extension requests and events defined by different vendors.

4 Collecting User Call Stack Information

4.1 The Challenges

OpenMP 3.0 introduces a new tasking feature1 which makes it easier to write
more efficient parallel applications that contain nested parallelism or dynamically
1 For conciseness, we use the OpenMP task construct to illustrate the challenges and

our solution, as it is the most difficult construct to deal with. Similar techniques can
be applied to other OpenMP constructs.
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generated concurrent jobs. To allow for concurrency, the execution of a task can
be deferred and the thread that executes a task may be different from the thread
that creates the task. In Fig. 4.1 (a), function goo() may be executed by thread
1 while function bar() may be executed by thread 2. And function bar() may
be executed after function foo() has returned.

Most OpenMP implementations use the outlining technique that generates
an outlined function that corresponds to the body of many OpenMP constructs
and uses a runtime library to schedule the execution of outlined functions among
OpenMP threads. Fig. 4.1 (b) illustrates the transformed code. Fig. 4.1 (c) il-
lustrates the interaction between the compiler generated code and the OpenMP
runtime library. Notice that function foo() now calls an entry point mt
TaskFunction () in the OpenMP runtime which may asynchronously executes
the encountered task on another thread.

Getting the user callstack is not straightforward. In Fig. 4.1, when we in-
spect the native call stack while the program is executing bar(), the native
callstack will be very different from the native callstack in code that does not
have the OpenMP construct. Fig. 4.1 (d) illustrates the differences. First, the
native callstack has frames that are from the OpenMP runtime library. Second,
the outlined function is called by a slave thread in a dispatching function inside
the OpenMP runtime library. The frames from the root down to the outlined
functions are all from the runtime library. Last but not least, function foo() may
have returned. None of the native callstacks in any of the threads show where
the task associated with foo task1() comes from. All these complications are
implementation details that users usually do not care about, have no knowledge
of, and are often confused by. To make things worse, the internal implementation
scheme may change from one version of implementation to another.

4.2 Scheme Overview

At any moment in an OpenMP application, a thread is executing some OpenMP
task if it is not idle waiting for work. Therefore, the user callstack (UC ) for
any event is made of two pieces: task spawn user callstack (TSUC) and local
segment (LS).

UC = TSUC + LS

The TSUC is the user callstack for the spawn event of the current task. The
LS is the callstack corresponding to the execution of the outlined task function.

Let’s assume for the moment that we know how to get the local segment,
then the basic scheme of constructing the user callstacks becomes quite straight-
forward. When a task is spawned, we get the user callstack corresponding to
the spawn event and store it together with the data structure for the task itself.
This user callstack, excluding the PC that calls mt TaskFunction , is the TSUC
for any subsequent event that happened during the execution of the task. Each
thread maintains a record of the current task it is executing. When an event
happens, we can find the TSUC of the current task by querying the task data
structure. We concatenate it with the local segment and get the user callstack.
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kar() | kar()
{ | {

foo(); | foo();
} | }

|
foo() | foo()
{ | {

goo(); | goo();
#pragma omp task | taskinfo = ...
{ | _mt_TaskFunction_(taskinfo, __foo_task1, ...);

bar(); | }
} |

} | __foo_task1(char *arg)
| {
| bar();
| }
|

bar() | bar()
{ | {

statement 1; | statement 1;
} | }

(a) (b)

User’s Code . OpenMP runtime library
+-------------------------------------------------------------------------
| foo() .

T | { .
h | goo(); .
r | taskinfo = ... .
e | _mt_TaskFunction_(taskinfo, -----> _mt_TaskFunction_(taskinfo,
a | __foo_task1, ...); . mfunc_entry,...)
d | } . { ...
| . stored_entry = mfunc_entry;

1 | . ...
| . }

............................................................................
| .

T | . dispatcher ()
h | . {
r | . ...
e | __foo_task1(char *arg) <----- (*stored_entry)(...);
a | { . ...
d | bar(); . }
| } .

2 | .
| .

(c)

Native Callstack User Callstack
================= ==============
_lwp_start() main()
<frames in the OpenMP runtime library> kar()
dispatcher() foo()
__foo_task1() bar()
bar()

(d)

Fig. 1. (a) original code; (b) compiler transformed code; (c) interaction between com-
piled code and OpenMP runtime library; (d) native callstack vs user callstack
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Notice that the construction of user callstacks is conceptually recursive, and the
TSUC is always empty for the outer-most task.

In the rest of this section, we will discuss how to get the local segment, and
will present a method to get the TSUC more efficiently since computing the user
callstack for each task spawn event can be very expensive.

4.3 Getting the Local Segment

The local segment can be constructed by walking up the native callstack when
an event happens. Stopping at the first frame from the OpenMP runtime li-
brary does not work, because (a) the program may be executing an OpenMP
user routine (e.g. omp set num threads()); (b) the program may be inside some
library that the OpenMP runtime library calls (e.g. memcpy() in the standard
C library). The key is to tell whether the program is inside an OpenMP user
routine, and whether the program is inside an outlined function.

The OpenMP runtime maintains an in omp user api state flag, which is set
to 1 whenever the program enters an OpenMP user routine, and is reset to
0 when the program leaves the OpenMP user routine. The OpenMP runtime
also maintains a boundary stack pointer. When the OpenMP runtime library is
about to call an outlined function, it records, in the boundary stack pointer, a
stack location in a frame in the call-chain within the OpenMP runtime that
will eventually lead to the outlined function. The OpenMP runtime reports the
in omp user api state and the boundary stack pointer to the collector upon re-
quest. Section 4.6 describes how the collector uses the two values.

4.4 Getting the Task Spawn User Callstack

The task spawn user callstack (TSUC) is essentially the user callstack (exclud-
ing the PC that calls mt TaskFunction () (see Fig. fig:exe)) when the task
is spawned. Since any task in an invocation of a function will have the same
TSUC, we can get the TSUC at the entry of the function instead of computing
it every time a task is spawned. This reduces the overhead when multiple tasks
are created in one function call, for example inside a loop.

4.5 Pragma PC

In the above description, we assume that, when a profiling event occurs, the
thread is either executing some user code or some OpenMP user API calls.
However, the thread may also be executing some OpenMP runtime library code
(e.g., a thread is enqueuing, dequeuing, or stealing a task). At these moments, the
local segment is empty. We are not able to get the leaf PC for the user callstack
from the empty segment. The leaf PC that can be used naturally in the user
callstack at these moment would be the call instruction to mt TaskFunction ().
So, we need to get this PC, which we call pragma pc, and report it to the collector,
which will use this PC when it finds the local segment is empty.

During the lifetime of a task region, its TSUC and pragma pc will remain
constant, while its boundary stack pointer is set only when the corresponding
outlined function is about to be executed.
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4.6 Collector Runtime Behavior

We described an idea of storing the task spawn user callstack in the data struc-
ture representing a task above in Section 4.2. In our case, a callstack is an array of
unprocessed virtual addresses obtained by a stack walking routine implemented
in the collector. However, to optimize memory and disk use, the collector imple-
ments a mapping scheme using a simple hashing technique. An array of addresses
is mapped into a unique 64-bit identifier (UID). The UID can be passed around
during program execution, recorded along with other data at an arbitrary time.
The mapping scheme guarantees the array of addresses can be reconstructed
from the UID during data processing later. The collector records all such map-
pings on the disk and keeps track of mappings already recorded to reduce data
volume. Although unlikely in usual practice, hash collision is still a possibil-
ity. Some hash collisions can be detected and reported from different mapping
records with the same UID at analysis time. The probability of an undetected
hash collision and its cost are considered negligible for the task of statistical
performance profiling.

It is trivial to extend to the hashing algorithm so that a new UID can be
computed from some previous UID and a segment of addresses. This is essen-
tially the same as appending the segment of address to the array of addresses
represented by the previous UID. Therefore, the task spawn user callstack can
be represented using a 64-bit UID, which we call mfunc start context id. The
mfunc start context id is obtained by the OpenMP runtime from the collector,
stored in a task data structure, and reported back to the collector whenever
requested.

We extended the OpenMP profiling API with a new mechanism that allows the
OpenMP runtime to issue requests that are carried out by the collector. During
the initial rendezvous the collector registers a helper function as a specific event
callback. This helper function is called by the OpenMP runtime to obtain a UID
for the current user callstack at moments corresponding to task spawning as
described above.

When the collector wants to get a user callstack for some program event,
it issues a specific OpenMP profiling API request to get the current context,
which includes mfunc start context id, boundary stack pointer, pragma pc, and
in omp user api state. The collector uses boundary stack pointer, pragma pc, and
in omp user api state to construct the local stack segment. It walks the stack
up to the frame pointed to by boundary stack pointer and collects PC addresses
from all stack frames. The collector then checks the collected addresses in the
reverse order and if it finds an address from the OpenMP runtime it cuts off
the entire tail, possibly leaving the entry address if in omp user api state is set.
If the resulting segment is empty, the collector uses pragma pc for the local
segment. The collector then computes a UID for the entire user callstack from
mfunc start context id and the local segment. The computed UID is recorded
along with other profiling data for the event.

Because the overall scheme of maintaining user callstacks for OpenMP tasks
includes specific mechanisms and interactions, such as UID computation and the
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helper mechanism, the request to get the current context is made part of the
vendor specific extension to the OpenMP profiling API (Appendix A).

5 Collecting Parallel Region Tree and Task Tree
Information

5.1 OpenMP Run Time Part

At any moment, the OpenMP runtime should be able to report, upon query by
the collector, the nine pieces of information as described in Section 3. In order
to do that, the OpenMP runtime needs to maintain a dynamic tree path during
the execution. This is straightforward to implement.

5.2 Collector Part

Instead of collecting and recording information for the entire path in the parallel
region tree for each event, the collector tries to reduce overhead and data volume
by maintaining the current parallel region ID for each thread in thread local
storage (TLS) and recording all necessary information only when it changes. As
with callstack UIDs, the collector keeps track of already recorded parallel region
IDs. At an event, the collector asks about the current parallel region ID. If the ID
is not different from the ID currently stored in TLS, the collector does nothing.
Otherwise it records a “thread enters a parallel region” event along with the time-
stamp and starts checking if it also needs to record all information about the new
parallel region and its ancestors. As multiple threads may almost simultaneously
enter a new parallel region, usually only one thread records all information about
that parallel region. No synchronization is used between threads to keep track of
the recorded status of a parallel region as we only get multiple identical records
in the worst case.

At analysis time, we can map any event that is recorded with a time-stamp
and a thread ID to an interval determined by “thread enters a parallel region”
events, thus obtaining the corresponding parallel region ID. It’s guaranteed by
the scheme described above that all information about that parallel region and
all its ancestors has also been recorded.

The collector uses the same scheme to record task tree information as for
recording parallel region tree information.

6 OpenMP Profiling API Examples

We use a quick sort implementation to illustrate how the ideas described above
can be presented to the user by a performance analysis tool. All screenshots are
obtained from a prototype based on the Sun StudioTMPerformance Analyzer.

A parallel version of the algorithm using OpenMP is shown in Fig. 6 and the
code is pretty straightforward.
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41. quick_sort(int lt, int rt, float *data)
42. {
43. if ( (rt-lt) < LOW_LIMIT ) {
44. serial_quick_sort( lt, rt, data );
45. }
46. else {
47. int md = partition( lt, rt, data );
48. #pragma omp task
49. quick_sort( lt, md-1, data );
50. #pragma omp task
51. quick_sort( md+1, rt, data );
52. }
53. }

66. main(int argc, char* argv[])
67. {
68. int n; float *data;
...
98. #pragma omp parallel
99. {
100. #pragma omp single nowait
101. quick_sort( 0, n-1, data );
102. }
...
109. }

Fig. 2. Parallel quick sort algorithm using OpenMP

An OpenMP unaware tool that is capable of collecting only actual machine
callstacks will not show any recursion, because the implementation of OpenMP
tasks essentially turns the recursive execution into a work-list based execution.
The compiler transformed function of quick sort() contains the initial con-
dition checking, either calls the serial sort function or partitions the specified
part of the array and creates two more tasks for sorting both parts of the parti-
tion. Instead of recursively calling quick sort(), the program recursively creates
tasks. When a task is picked up for execution by a thread, it bears no trace of
where it was created and thus the machine callstack has practically the same
depth no matter what the logical depth of a particular task is. This behavior
can be easily observed in the machine view (Fig. 3 (a)) in Analyzer’s Timeline
display.

Here, the horizontal axis represents time, and each horizontal bar repre-
sents a thread with all collected events shown with their callstacks colored by
frame. Selected event details, including the callstack, are shown in the right
panel.

In the user view (Fig. 3 (b)), where the logical structure of dynamic pro-
gram execution is reconstructed, one can see that the recursion pattern with a
fluctuating callstack depth is restored.

Knowing the current task ID for each event, we can map it to the original
OpenMP construct and compute OpenMP metrics aggregated for those con-
structs over all events. Two OpenMP metrics, OpenMP Work and OpenMP
Wait, are computed based on the OpenMP state recorded for every event. A
sorted list of all OpenMP task constructs along with their metrics is presented
in the OpenMP tasks display (Fig. 4).
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(a)

(b)

Fig. 3. (a) Machine View; (b) User View
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OMP Work OMP Wait Name
sec. sec.

----------------------------------------------------------------------
6.254 1.861 <Total>
2.512 0.010 OpenMP task from quick_sort, line 48 in "qsort.c"
2.342 0. OpenMP task from quick_sort, line 50 in "qsort.c"
1.141 0.771 OpenMP task 0
0.260 1.081 OpenMP task from main, line 98 in "qsort.c"

Fig. 4. OpenMP tasks display

A similar display is provided for all parallel regions. Again, dynamic parallel
region IDs are mapped to source and all metrics are computed for the corre-
sponding OpenMP constructs.

7 Related Work

The need for a user level, implementation independent representation of OpenMP
program behavior that is consistent with the OpenMP programming model is gen-
erally desired and was, in particular, stated in [3] for OpenMP debugging. [3] also
emphasized the importance of more detailed views that expose underlying imple-
mentation specifics for sophisticated users.

A work towards an open source implementation of the OpenMP profiling API
has been reported in [4].

The problem of uniquely identifying OpenMP threads with nested OpenMP
parallelism has been approached in [5], where a suggestion, similar to ours, for
extension of the standard OpenMP runtime API was made.

User call stacks can also be obtained by tracing function entry and exit events
and by maintaining a data structure that allows reconstruction of user call stacks
at run time. ompP[6] uses a similar approach to track OpenMP parallel region
entry and exit events. It is not clear whether this technique can be extended
to deal with tasks without imposing significant overhead, because there usually
are significantly more tasks than parallel regions. It is also unclear how this
technique would handle untied tasks. Yet another major challenge is dealing
with survived tasks - a task whose ancestor tasks have finished before the task
starts executing.

A general method for efficiently collecting logical call path profiles in multi-
threaded applications and its implementation for Cilk are described in [7]. The
method relies on the availability in the runtime of all pieces of information nec-
essary for logical call path reconstruction at an arbitrary sample point. While
that method can certainly cope with work-stealing, as implemented in both Cilk
and OpenMP, it’s not obvious how it would grapple with survived tasks, which
are prohibited by design in Cilk but are allowed in OpenMP.

8 Conclusion

For OpenMP runtime observation tools, such as a debugger and a performance
profiling tool, the user model should be intuitive and close to program logic, and
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should be presented in terms of high level language constructs used in the pro-
gram. In this paper, we present a rich data model, which comprises a function
tree, a parallel region tree and a task tree, that captures the OpenMP specific
runtime behavior. We describe a set of methods that efficiently collect the data
for the data model. This work demonstrates that providing high level observ-
ability to OpenMP programming and runtime systems, though challenging, is
achievable.
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A OpenMP Profiling API Extensions

/* New requests */
typedef enum {

...
OMP_REQ_TASK_NLVLS, /* depth of the current task tree */
OMP_REQ_TASK_IDN, /* task ID of the n-th ancestor task */
OMP_REQ_TASK_SRCN, /* source location of the n-th ancestor task */
OMP_REQ_PREG_NLVLS, /* depth of the current parallel region tree */
OMP_REQ_PREG_IDN, /* ID of the n-th ancestor parallel region */
OMP_REQ_PREG_SRCN, /* source location of the n-th ancestor parallel region */

http://www.openmp.org/mp-documents/spec30.pdf
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OMP_REQ_PREG_THRIDN, /* thread ID of the n-th ancestor thread */
OMP_REQ_PREG_TMSZN, /* thread team size of the n-th ancestor parallel region */
OMP_REQ_CREATED_TASK, /* task ID of a newly created task */

} OMP_COLLECTORAPI_REQUEST;

/* New events */
typedef enum {

...
OMP_EVENT_CREATE_TSK, /* a new task created */
OMP_EVENT_BEGIN_TSK, /* task execution begins */
OMP_EVENT_SUSPEND_TSK, /* task execution suspended */
OMP_EVENT_RESUME_TSK, /* task execution resumed */
OMP_EVENT_END_TSK /* task execution ends */

} OMP_COLLECTORAPI_EVENT;

/* New OpenMP thread state */
typedef enum {

...
THR_TSKWT_STATE, /* waiting in taskwait */

} OMP_COLLECTOR_API_THR_STATE;

/* Reserve request ID for Sun specific extensions */
#define OMP_REQ_SUNEXTENSION ((OMP_COLLECTORAPI_REQUEST)0x4A415641)

/* Sun specific extensions (from a separate include file) */

#define OMPX_REQ_CONTEXT ((OMP_COLLECTORAPI_REQUEST)-1)

struct OMPX_request_context {
int size; /* entry length */
OMP_COLLECTORAPI_REQUEST reqn; /* request number */
OMP_COLLECTORAPI_EC errc; /* error code */
int rtsz; /* return size */
uint64_t mfunc_start_context_id;
void *boundary_stack_pointer;
void *pragma_pc;
int pragma_pc_state;
int in_omp_user_api;

};

#define OMPX_REGISTER_HELPER ((OMP_COLLECTORAPI_EVENT)-1)

#define OMPX_HLP_UCTX ((OMP_COLLECTORAPI_REQUEST)-2)

struct OMPX_helper_uctx {
int size; /* entry length */
OMP_COLLECTORAPI_REQUEST reqn; /* request number */
OMP_COLLECTORAPI_EC errc; /* error code */
int rtsz; /* return size */
void *starting_stack_pointer;
void *boundary_stack_pointer;
uint64_t mfunc_start_context_id;
void *pragma_pc;
uint64_t new_context_id; /* return result */

};
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Abstract. With the current prevalence of multi-core processors in HPC
architectures, mixed-mode programming, using both MPI and OpenMP
in the same application, is becoming increasingly important. However,
no low-level synthetic benchmarks exist to test the performance of this
programming model. We have designed and implemented a set of mi-
crobenchmarks for mixed-mode programming, including both point-to-
point and collective communication patterns. These microbenchmarks
have been run on a number of current HPC architectures: the results
show some interesting performance differences between the architectures
and highlight some possible inefficiencies in the implementation of MPI
on multi-core systems.

1 Introduction

With the advent of multi-core processors, and the associated diminishing rate of
increase in processor clock speed, almost all current high performance computing
systems now contain nodes which consist of shared memory multiprocessors.
Large numbers of such nodes can be connected together with a high-bandwidth,
low-latency network to form a scalable distributed memory system.

To program such systems, by far the most popular programming model is
message-passing, using the MPI [4] library. MPI programs can execute on ma-
chines with shared memory nodes in a straightforward way by running one MPI
process per core on each node. In this case, message-passing between processes
on a node is normally implemented via shared memory, but this is not visible to
the programmer. However, it is also possible to run fewer MPI processes than
cores on each node, and make use of the additional cores by using a multi-
threaded programming model. This is most frequently done using the OpenMP
[5] API, but can also be accomplished via a lower-level thread library interface
such as Posix threads. This programming style is termed mixed-mode or hybrid
(we prefer the former term as the latter is somewhat overloaded in the HPC
literature).

Several studies (for example [7],[10]) have shown that, in certain circum-
stances, mixed-mode programs can perform better than (or consume less memory
than) the equivalent program using MPI only. Such advantages may outweigh
the potential additional software complexity and possible loss of portability of
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the mixed-mode version. A number of commonly used HPC applications, such
as CPMD [2] and ECMWF’s Integrated Forecast System (IFS) [9] successfully
exploit mixed-mode programming. With the principal performance gains in HPC
architectures likely to come, in the near future at least, primarily from increasing
the number of cores per chip, mixed-mode programming seems likely to assume a
more important role, as it may allow applications to scale better on such systems
than pure MPI.

Microbenchmarks (low-level synthetic benchmarks testing the performance of
basic operations) exist for both MPI [3], [8] and OpenMP [1]. However, these mi-
crobenchmarks cannot on their own give sufficient information about the perfor-
mance of mixed-mode programs, as there will, in general, be interactions between
the MPI and OpenMP layers. The Sphinx benchmark suite from LLNL [11] con-
tains a small number of OpenMP/MPI microbenchmarks, which measure the
performance of mixed-mode barriers and reductions, and assess the ability to
overlap threaded computation with MPI non-blocking communication.

To fill this gap, we have designed and implemented a suite of microbench-
marks for mixed-mode OpenMP/MPI programming. The utility of such a suite
is demonstrated by the results presented in [6], which demonstrate how the avail-
able communication bandwidth between nodes can depend on the mix of MPI
processes and OpenMP threads employed.

In Section 2, we describe the contents of the suite and the rationale for its
construction. In Section 3, we present selected results from running the mi-
crobenchmarks on a number of current HPC architectures, and demonstrate the
interesting features thus illuminated. Finally, Section 4 presents our conclusions
and possibilities for future work.

2 Benchmark Design and Implementation

The basic design concept of the mixed-mode microbenchmarks is to provide
mixed-mode analogues for (a subset of) the typical operations found in MPI mi-
crobenchmark suites, for both point-to-point and collective communications.
There are two main considerations which have driven the design of the benchmark
suite. Firstly, we wish to adequately capture the cost of the inter-thread commu-
nication and synchronisation which may occur in mixed-mode programs if not all
threads participate in the inter-node (MPI) communication. To do this, we mea-
sure not only the cost of the MPI library calls themselves, but also the (possibly
multi-threaded) writing of send buffers, and reading of receive buffers. The second
consideration is that we wish to be able to directly and easily compare the perfor-
mance of the same communication patterns when we hold the total number of cores
constant, but vary the number of MPI processes and OpenMP threads (such that
the product of these two values equals the number of cores). This is achieved by
the appropriate choices of data buffer sizes and MPI message lengths.

The benchmarks are implemented in Fortran90. We may produce a C ver-
sion in the future, but we expect that there would be little dependence on the
base language, as most of the performance characteristics are dictated by the
hardware and by the MPI and OpenMP libraries.
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2.1 Point-to-Point Operations

In the mixed-mode microbenchmark suite we measure the performance
of three point-to-point communication operations: PingPong, PingPing and
HaloExchange. Each of these operations is implemented in each of three dif-
ferent ways:

1. Master-only: MPI communication takes place in the master thread, outside
of parallel regions.

2. Funnelled: MPI communication takes place in the master thread, inside
parallel regions.

3. Multiple: MPI communication takes place concurrently in all threads inside
parallel regions.

To illustrate this, Figures 1–3 show pseudocode representations of these three
forms of the PingPong benchmark. The PingPing benchmark differs from Ping-
Pong in that messages are exchanged in both directions between the two pro-
cesses concurrently. For both the PingPong and PingPing benchmarks, the user
can specify the two MPI ranks which participate: this is intended to permit the
measurement of both intra-node and inter-node MPI communication, by speci-
fying two MPI ranks which will execute either on the same, or on different nodes.
The benchmark reports which of these was the case by comparing the results
of MPI GET PROCESSOR NAME on the two participating process. For the HaloEx-
change benchmark all MPI processes participate. The processes are arranged in
a ring and each process exchanges messages with its two neighbouring processes.
In the point-to-point benchmarks, the data sizes specified by the user correspond
to the total number of 4-byte words sent between pairs of MPI processes.

Process 1

MPI_Recv( pongBuf )

Process 0

Each thread reads its part of pingBuf 
Each thread writes its part of pongBuf

End OMP Parallel region

MPI_Send( pingBuf )

MPI_Recv( pingBuf )

MPI_Send( pongBuf )

dataSize * numThreads

dataSize * numThreads

End OMP Parallel region

Each thread writes to its part of pingBuf

Begin OMP Parallel region

Begin loop over repeats Begin loop over repeats 

End loop over repeats End loop over repeats 

Begin OMP Parallel region

End OMP Parallel region

Begin OMP Parallel region

Each thread reads its part of pongBuf

Fig. 1. Pseudocode for Master-only PingPong benchmark
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Process 1Process 0

Begin OMP Parallel region

OMP Master

OMP Barrier

Each thread writes to its part of pingBuf

Begin loop over repeats Begin loop over repeats

Begin OMP Parallel region

OMP Master

OMP Master

MPI_Send (pingBuf)

Each thread reads its part of pongBuf

OMP Barrier

OMP End Master

MPI_Recv(pongBuf)

MPI_Send (pongBuf)

OMP Barrier

Each thread writes its part of pongBuf

MPI_Recv (pingBuf)

OMP End Master

OMP Barrier

Each thread reads its part of pingBuf 

OMP End Master

dataSize * numThreads

dataSize * numThreads

End OMP Parallel region End OMP Parallel region

End loop over repeats End loop over repeats

Fig. 2. Pseudocode for Funnelled PingPong benchmark

messages
dataSizeof size 

numThreads

messages
dataSizeof size 

numThreads

Process 1

MPI_Recv( pongBuf )

Process 0

MPI_Send( pingBuf )

MPI_Recv( pingBuf )

MPI_Send( pongBuf )

Begin OMP Parallel region Begin OMP Parallel region

Each thread reads its part of pongBuf

Each thread reads its part of pingBuf 

Each thread writes its part of pongBuf

Begin loop over repeats Begin loop over repeats

Each thread writes to its part of pingBuf

End OMP Parallel region End OMP Parallel region

End loop over repeats End loop over repeats

Fig. 3. Pseudocode for Multiple PingPong benchmark

2.2 Collective Operations

The microbenchmark suite contains measurements for mixed-mode analogues
of the following operations: Barrier, Reduce, AllReduce, Gather, Scatter and
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rbuf = globalReduceBuf)
MPI_Reduce (sbuf = localReduceBuf,

Read globalReduceBuf

End loop over repeats 

End OMP Parallel region

Each thread updates localReduceBuf

Begin OMP Parallel region 
with REDUCTION clause

Begin loop over repeats 

rbuf = globalReduceBuf)
MPI_Reduce (sbuf = localReduceBuf,

rbuf = globalReduceBuf)
MPI_Reduce (sbuf = localReduceBuf,

Process 1 Process p

dataSize

dataSize

Process 0

End loop over repeats 

End OMP Parallel region

Each thread updates localReduceBuf

Begin OMP Parallel region 
with REDUCTION clause

Begin loop over repeats 

End loop over repeats 

End OMP Parallel region

Each thread updates localReduceBuf

Begin OMP Parallel region 
with REDUCTION clause

Begin loop over repeats 

Fig. 4. Pseudocode for Reduce benchmark

  rbuf = scatterRecv, root = 0) 
MPI_Scatter (sbuf = scatterSend,

  rbuf = scatterRecv, root = 0) 
MPI_Scatter (sbuf = scatterSend,

  rbuf = scatterRecv, root = 0) 
MPI_Scatter (sbuf = scatterSend,

Process 1 Process pProcess 0

End loop over repeats 

End OMP Parallel region

Each thread reads its part

Begin OMP Parallel region 

Begin loop over repeats 

End loop over repeats 

End OMP Parallel region

Each thread reads its part

Begin OMP Parallel region 

Begin loop over repeats 

End loop over repeats 

End OMP Parallel region

Each thread reads its part

Begin OMP Parallel region 

Begin loop over repeats 

Write to scatterSend

of scatterRecv of scatterRecv of scatterRecv

dataSize * numThreads

dataSize * numThreads

Fig. 5. Pseudocode for Scatter benchmark

AlltoAll. Figures 4 and 5 show pseudocode representations of the Reduce and
Scatter benchmarks respectively.

The other collective benchmarks are constructed in an analogous fashion. The
total amount of data involved is proportional to both the number of OpenMP
threads and the number of MPI processes. This means that experiments can eas-
ily be conducted where the total amount of compute resource, and the product
of the number of threads and the number of processes is fixed, but the number of
processes and number of threads per process is varied. The benchmarks are con-
structed so that when this is done, the patterns and quantity of data movement
are preserved. (Note that for the Barrier benchmark, no data is involved).

2.3 Benchmark Control

The user is able to set some control parameters for the benchmark suite:

– A list of the benchmarks to be run.
– The minimum and maximum data sizes to be run. The data size starts at

the minimum size and is successively doubled until the maximum is reached.
– A target execution time. If the execution time for a given data size is less

than this value, it is rejected, and the test is re-run with twice the number
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of repetitions. If the execution time is more than twice the target time, it is
accepted, and the initial number of repetitions for the subsequent data size
is set to half its current value. This process is intended to keep the execution
time for each test approximately constant, regardless of the benchmark or
the data size used. Before each timed test, two repetitions are run as a
warm-up.

– The MPI process IDs to be used for the PingPong and PingPing benchmarks.
Negative values are permitted: in this case the value is added to the total
number of processes to give a valid ID.

At present, the number of MPI processes and OpenMP threads are controlled by
the way the benchmark is executed (i.e. by the mpirun command or equivalent,
and the value of the OMP NUM THREADS environment variable) and they are fixed
for that run. We considered trying to vary the number of process and threads
within a run, but the complexity of the programming and the possible lack of
control over idle threads mean we have not yet done so.

2.4 Other Issues

Each benchmark has a validation test, which is run on the warm-up repetitions.
For each benchmark and data size a Pass or Fail is reported.

The benchmark reports the value returned by MPI INIT THREAD, and issues a
warning if the level of support is not adequate for the benchmark. The Multiple
versions of point-to-point benchmarks require MPI THREAD MULTIPLE, while all
other benchmarks require MPI THREAD FUNNELED. We have found that the value
returned is a poor indicator of whether the validation test will succeed. We have
encountered one implementation of MPI which returns MPI THREAD SINGLE but
runs the benchmarks requiring MPI THREAD FUNNELED successfully, and another
implementation which returns MPI THREAD MULTIPLE, but fails to run the bench-
marks requiring this value.

3 Benchmark Results

3.1 Hardware

We have run the benchmark suite on four different platforms:

– IBM eServer 575 Power5 cluster. Each node contains 8 1.6GHz dual-
core processors and 32GB of memory, and the nodes are connected with
IBM’s High Performance Switch (HPS) with a total of four links from each
node to the network. The system was running Version 10.1 of the IBM xlf90
Fortran compiler and Version 4.3 of IBM Parallel Operating Environment.
Our experiments used 4 nodes (64 cores).

– IBM eServer 575 Power6 cluster. Each node contains 16 4.7 GHz dual-
core processors and 128 or 256GB of memory. The nodes are connected
through an Infiniband network with four links from each node to the network.
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The system was running Version 12.1 of the IBM xlf90 Fortran compiler and
Version 4.3 of IBM Parallel Operating Environment. Our experiments used
4 nodes (128 cores).

– IBM BlueGene/P. Each node has four 850MHz Power450 cores and 2GB
of memory. There are three networks connecting the compute nodes of the
BlueGene/P, a 3D torus network and two tree networks (one used for col-
lective communication, the other for barrier synchronisation). The system
was running Version 11.1 of the IBM xlf90 Fortran compiler and BlueGene
Driver Version 1.0 Release 3.0. Our experiments used 16 nodes (64 cores).

– Cray XT4. Each node contains a quad-core 2.3 GHz AMD Opteron pro-
cessor and 8 or 16GB of main memory. The network is a Cray SeaStar 3D
torus. The system was running Version 7.2.4 of the PGI pgf90 compiler and
Version 3.0.2 of the Cray Message Passing Toolkit. Our experiments used 16
nodes (64 cores).

In all cases we fully populated the nodes, so the product of the number of MPI
process per node and the number of OpenMP threads per process always equals
the number of cores per node.

3.2 Results

We do not have space here to show the results of all the benchmarks on all
the platforms, so we have selected some of the more interesting results for
presentation.

Figures 6 and 7 show the results of running the Master-only version of the
PingPong benchmark on the IBM Power 5 cluster and BlueGene/P system
respectively. The execution times are normalised to the execution time with
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one OpenMP thread per MPI process. The MPI ranks participating in the
benchmark are chosen to lie on different nodes. On both systems, for small
data sizes, the execution time is least for one thread per MPI process, and in-
creases with the number of threads, whereas for large data sizes, the execution
time is greatest for one thread per MPI process, and decreases with the num-
ber of threads. The crossover between these regimes occurs between 103 and
104 bytes. Recall that the send and receive buffers are being written/read by
multiple threads. For small data sizes, the overhead of parallelisation is not
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Fig. 10. IBM Power 5: Ratio of execution time for Reduce benchmark to one thread
per process

worthwhile, but above the crossover, significant benefit is gained from having
multiple threads employed. The other hardware platforms display similar be-
haviour (not shown here).

Figures 8 and 9 show the results of running the Multiple version of the
PingPong benchmark on the IBM Power 5 cluster and BlueGene/P system re-
spectively. In this case the execution times are normalised by the time for the
Master-only PingPong benchmark running on the same number of processes
and threads. For the Power5 system, we observe very poor performance for the
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Multiple version on small data sizes: in some cases it is over 3 orders of mag-
nitude slower (note the log scale on the vertical axis in Figure 8. The Power 6
system displays similar behaviour to the Power 5: contention for locks inside the
MPI library is a possible cause of this. In contrast, the Multiple version on the
BlueGene/P system is a little over two times slower using four threads per pro-
cess than using one. On neither system is there any benefit gained from calling
MPI from multiple threads for large data sizes. This suggests that a single large
message is able to utilise all the off-node bandwidth.
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Figures 10 to 13 show the results of running the Reduce benchmark on all
four platforms. The execution times are normalised to the execution time with
one OpenMP thread per MPI process.

On the IBM Power 5 and Power 6 systems, we observe that the mixed-mode
version of Reduce is generally slower than the pure MPI (one thread per process),
though there are some modest gains to be had by using two threads per process
for small data sizes. On the BlueGene/P system, the mixed-mode version is
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also slower, except for a window of data sizes between 103 and 104 bytes. This
suggests that on these platforms, the MPI Reduce is well optimised for shared
memory nodes. It is also possible that the implementation of OpenMP array
reductions is not very efficiently implemented. On the Cray XT4, however, the
mixed mode version is generally faster, except for data sizes between 104 and
105 bytes. This system is known to suffer from contention between cores on the
same node for access to the network: having fewer, larger, messages entering the
network seems to be beneficial.
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Figures 14 to 17 show the results of running the AlltoAll benchmark on all four
platforms. The execution times are normalised to the execution time with one
OpenMP thread per MPI process. The four systems show different behaviours
for this benchmark. On the IBM Power 5, the mixed mode version is significantly
faster for data sizes in the range 103 to 104 bytes, and the optimal number of
threads per process is usually two. For the IBM Power 6, having multiple threads
per process is beneficial on small data sizes, but increasing the number of threads
per process beyond two makes little difference. On the BlueGene/P, mixed-mode
is worthwhile for small data sizes, but not large ones, and on the Cray XT4 it
is worthwhile for almost all data sizes and is up to three times faster in some
cases.

4 Conclusions and Future Work

We have described the design and implementation of a set of microbenchmarks
for mixed-mode OpenMP/MPI programming. These cover both point-to-pont
and collective communication patterns. We have run these benchmarks on four
current HPC architectures: the results show some interesting performance dif-
ferences between the architectures and highlight some possible inefficiencies in
the implementation of MPI on these systems.

In the future, we intend to run the benchmarks on other systems, for example
on Intel- and Opteron-based clusters (where there may be multiple combinations
of MPI library and OpenMP compiler available) and on vector systems such the
NEC SX-9 and the Cray X2. We can also consider additions to the benchmark
suite: for example multi-PingPong (where every core on a node communicates
with a corresponding core on another node).
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Abstract. Tasking in OpenMP 3.0 allows irregular parallelism to be ex-
pressed much more easily and it is expected to be a major step towards
the widespread adoption of OpenMP for multicore programming. We dis-
cuss the issues encountered in providing monitoring support for tasking
in an existing OpenMP profiling tool with respect to instrumentation,
measurement, and result presentation.

1 Introduction

The direct support for task parallelism in version 3.0 of the OpenMP standard
is expected to be a major step towards the widespread adoption of OpenMP
for shared memory multicore programming. Tasking allows irregular forms of
parallelism to be expressed more easily and it will allow OpenMP to be employed
in new application areas.

In this paper we discuss the issues we encountered in providing monitoring
support for tasking in the ompP profiling tool with respect to instrumentation
and measurement and result presentation. Since tasking results in more dynamic
and unpredictable execution characteristics of OpenMP codes, we believe tool
support will be more important for users that would like to understand how their
code executes and what performance it achieves. As an example, the OpenMP
v3.0 specification states that, when a thread encounters a task construct, “[it]
may immediately execute the task, or defer its execution”. To some application
developers it will be important to know what decision the runtime took and
ompP’s profiles offer this kind of information, among other things.

The rest of this paper is organized as follows: in Sect. 2 we give a short
overview of the OpenMP profiling tool we have extended in this study to support
tasking. In Sect. 3 we describe the extensions and modifications made, at the
instrumentation, measurement, and result presentation stages. In Sect. 4 we
discuss related work and in Sect. 5 we conclude and discuss areas for future
work.
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2 The OpenMP Profiler ompP

ompP is a profiling tool for OpenMP applications that does not rely on nor is
limited to a particular OpenMP compiler and runtime system. ompP differs from
other profiling tools like gprof or OProfile [6] in primarily two ways. First, ompP
is a measurement-based profiler and does not use program counter sampling. The
application with source code instrumentation invokes ompP monitoring routines
that enable a direct observation of program execution events (like entering or
exiting a critical section). The direct measurement approach can potentially lead
to higher overheads when events are generated very frequently, but this can be
avoided by instrumenting such constructs selectively. An advantage of the direct
approach is that the results are not subject to sampling inaccuracy and hence
they can also be used for correctness testing in certain contexts.

The second difference lies in the way of data collection and representation.
While general profilers work on the level of routines, ompP collects and displays
performance data in the user model of the execution of OpenMP events [5]. For
example, the data reported for critical sections contain not only the execution
time but also list the time to enter and exit the critical construct (enterT and
exitT, respectively) as well as the accumulated time each threads spends inside
the critical construct (bodyT) and the number of times each thread enters the
construct (execC). An example profile for a critical section is given in Fig. 1.

R00002 main.c (20-23) (unnamed) CRITICAL

TID execT execC bodyT enterT exitT

0 1.00 1 1.00 0.00 0.00

1 3.01 1 1.00 2.00 0.00

2 2.00 1 1.00 1.00 0.00

3 4.01 1 1.00 3.01 0.00

SUM 10.02 4 4.01 6.01 0.00

Fig. 1. Profiling data delivered by ompP for a critical section

Profiling data in a similar style is also delivered for other OpenMP con-
structs, the columns (execution times and counts) depend on the particular con-
struct. Furthermore, ompP supports the query of hardware performance counters
through PAPI [3] and the measured counter values appear as additional columns
in the profiles.

Profiling data are displayed by ompP both as flat profiles and as callgraph
profiles, giving both inclusive and exclusive times in the latter case. The call-
graph profiles are based on the callgraph that is recorded by ompP. An example
callgraph is shown in Fig. 2. The callgraph is largely similar to the callgraphs
given by other tools, such as callgrind [9], with the exception that the nodes are
not only functions but also OpenMP constructs and user-defined regions, and
the (runtime) nesting of those constructs is shown in the callgraph view. The
callgraph that ompP records represents the union of the callgraph of each thread.
That is, each node reported has been executed by at least one thread.
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ROOT [critical.i686.ompp: 4 threads]

REGION +-R00004 main.c (40-51) (’main’)

PARALLEL +-R00005 main.c (44-48)

REGION |-R00001 main.c (20-22) (’foo’)

REGION | +-R00002 main.c (27-32) (’bar’)

CRITICAL | +-R00003 main.c (28-31) (unnamed)

REGION +-R00002 main.c (27-32) (’bar’)

CRITICAL +-R00003 main.c (28-31) (unnamed)

Fig. 2. Example callgraph view of ompP

3 Supporting Tasks in ompP

The OpenMP 3.0 specification introduces two new constructs for tasking, task
and taskwait. If a thread encounters a task construct, it packages up the code
and data environment and creates the task to be executed in the future, poten-
tially by a different thread. The taskwait construct is used to synchronize the
execution of tasks. A thread can suspend the execution only at a task schedul-
ing point (TSP). The same thread will pick up the execution of a task, unless
the task is untied. In this case, any thread can resume the execution and no
restriction on the location of TSPs in untied tasks exists.

3.1 Instrumentation

ompP relies on source code instrumentation using Opari [7] to add monitoring
calls according to the POMP specification inside and around OpenMP con-
structs. We extended Opari to handle the task and taskwait constructs as
described below.

For task, an instrumented piece of code looks similar to the pseudocode de-
picted in Fig. 3. I.e., enter/exit instrumentation calls are placed on the outside
of the task construct and begin/end calls are placed as the first and last state-
ments inside the tasking code, respectively.

If specified, the untied clause is detected and POMP_Utask_* calls are generated
in this case. A simple enter/exit pair of instrumentation calls is added for the
taskwait clause.

3.2 Measurement

ompP’s measurement routines implement the POMP_Task_*, POMP_Utask_*, and
POMP_Taskwait_* calls. An important observation is that during execution a
task construct is best represented by two separate entities: one for task creation
and one for task execution. Following this idea, we create two ompP regions for
each source code task construct, one of type TASK for task creation and one of
type TASKEXEC to record profiling data related to task execution. In the termi-
nology of the OpenMP specification, TASK corresponds to the task construct,
while TASKEXEC corresponds to the task region. UTASK and UTASKEXEC are used
for untied tasks.
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POMP_Task_enter(...)

#pragma omp task

{
POMP_Task_begin(...)

// user’s task code
POMP_Task_end(...)

}
POMP_Task_exit(...)

(a) POMP instrumentation for the task

construct.

POMP_Taskwait_enter(...)

#pragma omp taskwait

POMP_Taskwait_exit(...)

(b) POMP instrumentation for the
taskwait construct.

Fig. 3. Instrumentation for tasking related constructs

void main(int argc, char* argv[]) { void mytask() {
#pragma omp parallel { sleep(1);

int i; }
#pragma omp single nowait {

for( i=0; i<5; i++ ) {
#pragma omp task /* if(0) */ {

mytask();

}
}

}
}

Fig. 4. (Pseudo) source code with tasking

Consider the simple code example in Fig. 4 and its corresponding callgraph
as delivered by ompP in Fig. 5. Task creation occurs inside the single region
while task get executed when threads hit the implicit barrier at the end of
the parallel construct. If, alternatively, an if(0) clause is specified, tasks are
executed immediately and this is visible in the callgraph, where the TASKEXEC is
a child of the TASK node.1

Support for monitoring untied tasks is incomplete at this time. We chose to
offer the user the option to disable any monitoring of untied tasks completely
or to monitor them in the same way as tied tasks (assuming that the executing
thread does not change during the lifetime of a task). Without a way to observe
the suspension and resumption of tasks at general task scheduling points, this
seems to be the best we can do.

1 All experiments reported in this paper have been performed on a Linux machine
using a beta version of Intel’s C/C++ compiler suite v11.0.044, which supports
tasking. We suspect this implementation might be not be fully optimized but it was
a sufficient as a vehicle to test the feasibility of our monitoring approach, as this
paper is concerned about functionality and not performance.
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PARALLEL +-R00001 PARALLEL +-R00001 main.c (15-26)

SINGLE |-R00002 SINGLE +-R00002 main.c (18-25)

TASK | +-R00003 TASK +-R00003 main.c (22-23)

TASKEXEC +-R00003 TASKEXEC +-R00003 main.c (22-23)

Fig. 5. Dynamic callgraph of the code shown in Fig. 4 (left). The right side shows the
callgraph when an if() clause is present and evaluates to false.

3.3 Profiling Data Analysis and Presentation

Flat profiles and callgraph profiles are recorded for the [U]TASK, [U]TASKEXEC,
and TASKWAIT regions. Fig. 6 shows the possible immediate dynamic nesting of
these three region types and their interpretation. The location of the [U]TASKEXEC
region in the callgraph allows the analysis of when tasks were executed dynami-
cally. The execution might happen nested in the [U]TASK region if an if() clause
evaluates to false. If tasks are executed at a TASKWAIT region, this will also be indi-
cated by the dynamic nesting and if threads execute tasks while at the implicit exit
barrier of a parallel or workshare construct, the TASKEXEC region will be shown as
a child region of this parallel or workshare region.

inner region

outer region [U]TASK TASKEXEC TASKWAIT

[U]TASK – × (see caption) –
TASKEXEC × × (task-switching) ×
TASKWAIT – × –

+-....

|- outer
|- inner
+-....

Fig. 6. Possible nesting of the tasking related region types in ompP. A dash symbol
(–) indicates a nesting that can not occur, × indicates valid nestings. The [U]TASK–
TASKEXEC nesting signifies immediate execution either because the if() clause evaluates
to false or runtime decided not to defer the execution for other reasons such as resource
exhaustion.

One of ompP’s more advanced features is its overhead analysis. When threads
execute a worksharing region with an imbalanced amount of work, the waiting
time of threads in the implicit exit barrier of that worksharing construct is
measured by ompP and reported as load imbalance overhead. A total of four
overhead classes are defined: load imbalance; synchronization overhead; limited
parallelism; and thread management. The reporting of the overhead relies on
the fact that OpenMP threads do not perform useful work on behalf of the
application in certain program phases (such as when entering a critical section
or at implicit or explicit thread barriers).

This assumption is no longer valid with OpenMP 3.0 when tasking is used.
When threads hit an implicit barrier, instead of idling they can do useful work by
executing ready tasks. To account for this, we modified the overhead reporting
of ompP by subtracting from the overheads the time spent executing tasks. The
required timing data is available from the callgraph recorded by ompP (we know
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Overheads wrt. each individual parallel region:

Total Ovhds (%) = Synch(%) + Imbal (%) + Limpar (%) + Mgmt (%)

R00001 6.00 1.00 (16.68) 0.00 (0.00) 1.00 (16.66) 0.00 (0.00) 0.00 (0.02)

Overheads wrt. whole program:

Total Ovhds (%) = Synch(%) + Imbal (%) + Limpar (%) + Mgmt (%)

R00001 6.00 1.00 (15.64) 0.00 (0.00) 1.00 (15.63) 0.00 (0.00) 0.00 (0.02)

SUM 6.00 1.00 (15.64) 0.00 (0.00) 1.00 (15.63) 0.00 (0.00) 0.00 (0.02)

Fig. 7. Overhead analysis report corresponding to the code shown in Fig. 4

R00001 main.c (15-26) PARALLEL

TID execT execC bodyT exitBarT startupT shutdwnT taskT

0 3.00 1 0.00 0.00 0.00 0.00 3.00

1 3.00 1 0.00 1.00 0.00 0.00 2.00

SUM 6.00 2 0.00 1.00 0.00 0.00 5.00

Fig. 8. Flat region profile, showing the time threads spend executing tasks while wait-
ing at the implicit exit barrier of the parallel region. This data corresponds to the code
shown in Fig. 4 when executed with two threads.

that a [U]TASKEXEC happens in the context of the implicit exit barrier) and from
the callgraph profiles recorded for the task execution on a per-thread basis.

An example of an overhead report that takes task execution into account is
shown in Fig. 7. This overhead report corresponds to the code fragment shown
in Fig. 4, the application executes with two threads and creates 5 tasks with an
execution time of 1 second each. As shown, ompP correctly accounts for the task
execution by reporting the imbalance overhead as 1.0 second due to the uneven
distribution of tasks to threads.

To allow the application developers to analyze when tasks get executed fur-
ther, we added a new timing category taskT to OpenMP parallel regions and
worksharing regions. Fig. 8 shows the profile of a parallel region. While at the
implicit exit barrier of the parallel construct, thread 0 spent 3.0 seconds execut-
ing tasks, while thread 1 spent 2.0 seconds, 1.0 second remains as the waiting
time of thread 1, as shown in the exitBarT column.

4 Related Work

Opari and the POMP interface are the basis of OpenMP monitoring for sev-
eral performance tools for scientific computing like TAU [8], KOJAK [10], and
Scalasca [4]. To the best of our knowledge, there is currently no work under way
to support tasking within these projects [2]. However, we believe that our work
on extending Opari and the experience we gathered with respect to supporting
tasking in the monitoring system will be of use for adding tasking support for
these tools.
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Sun has developed an extension to their proposed performance profiling API [5]
for OpenMP and is supporting tasking in the new version of their performance tool
suite. [1]. The nature of this interface and Sun’s implementation are different from
ompP’s approach (callbacks and sampling vs. direct measurement).

5 Conclusion and Future Work

We have described our experiences in supporting tasking in a measurement based
profiler for OpenMP. We have made additions to a source code instrumentation,
measurement, and result presentation stages of the tool.

With respect to measurement, a fundamental difference arose in the way
waiting time at implicit barriers was accounted for in the overhead analysis.
The modified data reporting allows users to see which threads execute tasks at
which point in the application. Due to the dynamic execution characteristics of
OpenMP with tasking, we believe this capability is important both for perfor-
mance considerations as well as a pedagogical tool for people learning to use
OpenMP tasking.

We found that monitoring overhead directly correlates with the frequency of
monitored events. With very frequent, short lived tasks overheads can be sub-
stantial. However, such an application is unlikely to scale or to perform well even
without any monitoring. For reasonably sized tasks we found that monitoring
overhead can be expected to be less than 5 percent of execution time.

For the future, work is planned in several directions. Clearly, how untied tasks
are handled currently is unsatisfactory. However, without notifications of task
switches form the runtime, the options for a source code instrumentation based
tool like ompP are very limited. The most promising solution for this issue seems
to lie in an incorporation of the profiling API [5] for providing such a notification
mechanism. The currently limited adoption of this API by vendors is a practical
problem, however.
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Abstract. Tiling is widely used by compilers and programmer to optimize sci-
entific and engineering code for better performance. Many parallel programming
languages support tile/tiling directly through first-class language constructs or
library routines. However, the current OpenMP programming language is tile
oblivious, although it is the de facto standard for writing parallel programs on
shared memory systems. In this paper, we introduce tile aware parallelization
into OpenMP. We propose tile reduction, an OpenMP tile aware parallelization
technique that allows reduction to be performed on multi-dimensional arrays.
The paper has three contributions: (a) it is the first paper that proposes and dis-
cusses tile aware parallelization in OpenMP. We argue that, it is not only nec-
essary but also possible to have tile aware parallelization in OpenMP; (b) the
paper introduces the methods used to implement tile reduction, including the re-
quired OpenMP API extension and the associated code generation techniques; (c)
we have applied tile reduction on a set of benchmarks. The experimental results
show that tile reduction can make parallelization more natural and flexible. It not
only can expose more parallelism in a program, but also can improve its data
locality.

1 Introduction

Tiling [1] [2] has been used as an effective compiler optimizing technique to generate
high performance scientific codes. Tiling not only can improve data locality for both the
sequential and parallel programs [3] , but also can help the compiler to maximize par-
allelism and minimize synchronization [4] for programs running on parallel machines.
Thus, sometimes, it is used by the programmers to hand-tune their scientific programs
to get better performance.

Tiling is essentially a program design paradigm. It is a natural representation for
many important data objects that are heavily used in scientific and engineering algo-
rithms. Scientific code that is written with the concept of tile/tiling in mind usually
looks concise and clear, and thus is much easier to understand and less error prone.

M.S. Müller et al. (Eds.): IWOMP 2009, LNCS 5568, pp. 140–153, 2009.
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Due to these advantages, it is desirable to provide certain high level language con-
structs in the programming languages to support tile/tiling in program design directly.
To meet this requirement, researchers have proposed various designs in many paral-
lel programming languages or sublanguages. The examples include HPF[5], UPC[6],
X10[7], ZPL[8], CAF[9], Titanium[10], and HTA[11], which are among the most popu-
lar parallel languages. However, it is interesting to find out that, in the current OpenMP
APIs, no directive or clause can be used to annotate data tiles and carry such information
to the OpenMP compiler. In other words, the current OpenMP programming language
is tile oblivious, although it is the de facto standard for writing parallel programs on
shared memory systems.

In this paper, we propose tile aware parallelization for the OpenMP programming
language. Its purpose is to enhance the OpenMP API with the concept of tile/tiling
so that more data parallelism can be exposed to the OpenMP compiler. Besides grant-
ing greater flexibility to the OpenMP compiler to perform more data parallelization,
it brings better data locality into the code. This is achieved by extending the cur-
rent OpenMP directives, clauses, and runtime routines, or introducing new language
constructs into OpenMP. Our first effort in this direction is termed tile reduction, an
OpenMP tile aware parallelization technique that allows parallel reduction to be per-
formed on multi-dimensional arrays.

Reduction is a form of recursive calculation that use mathematically associative and
commutative operators to ”aggregate” a set of data. Reduction can be performed in
parallel to improve performance. For this reason, many programming languages and
sub-languages support parallel reduction. Some examples are UPC [12], MPI [13], ZPL
[14], and OpenMP [15]. According to the current OpenMP API specification, reduction
can only be performed on ”named scalar” variables. It cannot be applied on multi-
dimensional arrays. We call this kind of reduction scalar reduction. In this paper, we
introduce a new technique called tile reduction, which evolves the current reduction
parallelization from scalar variables to multi-dimensional arrays. We have extended the
traditional reduction clause to allow the programmers to annotate their code where
tile reduction can be applied. We have also developed the required code generation
technique to interpret the new reduction clause and generate the required parallel
code accordingly. The major contributions of this paper are:

1. As far as the authors are aware, this is the first paper that proposes and discusses
tile aware parallelization in OpenMP. We argue that, it is not only necessary but
also possible to have tile aware parallelization techniques in OpenMP.

2. The paper introduces tile reduction, an OpenMP tile aware parallelization technique
that applies reduction on multi-dimensional arrays. We discuss the methods used
to implement tile reduction, including the required OpenMP API extension and the
associated code generation technique.

3. We evaluate the tile reduction technique with a set of benchmarks. The experimen-
tal results show that using tile reduction can make the code parallelization more
natural and flexible. It not only can expose more parallelism in the program but
also can improve its data locality.

The rest of the paper is organized as follows. In Section 2, we use a motivating example
to show why tile reduction is necessary. Section 3 will discuss how to implement tile
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reduction in the OpenMP compiler. We present our experimental data in Section 4 and
make our conclusions in Section 5.

2 Motivation

In this section, we use the ”histogram reduction” [16] code as an example to demon-
strate the limits of the current OpenMP reduction clause. We will also use the same
example to show the advantages of extending scalar reduction to tile reduction.

long long A[][2][2];
...

1 for (k=1; k<10000000; k++)
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

k

j

i

re
du

ce

32 Bytes

1

2

3

4

5

k = 0

[00] [01] [10] [11][i,j]

(a) Original Histogram Reduction Code (b) The 3D Diagram (c) A’s Memory Layout

Fig. 1. The Histogram Reduction Example

Figure 1(a) shows the code of the histogram reduction program. The code works
on A[][][], a 3-dimensional array with each element containing an 8-byte long
long. It aggregates all elements along the k dimension and stores the results in the
2x2 tile A[0][][]. The diagram in Figure 1(b) shows these operations. We assume
that the cache line size is 32 bytes and that the the array is stored in a row-major order in
the memory. Therefore, elements with the same k coordinate can be fed into the same
cache line, as shown in Figure 1(c). There are three nested loops in the code. Each loop
traverses one of the i, j, k dimension of the array. Data dependence only exit in loop
k because of the recursive calculation.

0 for (k=1; k<10000000; k++)
1 #pragma omp parallel for
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

0 for (k=1; k<10000000; k++)
1 #pragma omp parallel for collapse(2)
2 for (i=0; i<2; i++)
3 for (j=0; j<2; j++)
4 A[0][i][j] += A[k][i][j]

(a) Parallelize loop ”i” (b) Parallelize loop ”i” and ”j” using the collapse clause

Fig. 2. Parallelize the Histogram Reduction Program Without Changing the Code

Given the code in Figure 1(a), there are many different ways to parallelize it. How-
ever, due to the data dependence in loop k, we cannot parallelize this loop. Therefore,
without changing the code, we can only parallelize loop i and j, as shown in Figure
2(a) and 2(b). It is obvious that there are trivial workload and little parallelism in loop
i and loop j. Thus, it is not worthwhile to parallelize these two loops, even while using
the collapse clause (supported in OpenMP 3.0 [15]).

To get a larger workload and more parallelism, we can interchange the loops man-
ually before parallelizing the code, as shown in Figure 3. In Figure 3(a) and 3(b), the
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0 #pragma omp parallel for
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 A[0][j][i] += A[k][j][i]

0 #pragma omp parallel for collapse(2)
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 A[0][j][i] += A[k][j][i]

(a) Parallelize the outer loop (b) Parallelize the outer two loops

0 #pragma omp parallel for private(sum) collapse(2)
1 for (j=0; j<2; j++)
2 for (i=0; i<2; i++) {
3 sum = 0; 4 #pragma omp parallel for shared(sum)
reduction(+:sum) 5 for (k=0; k<10000000; k++)
6 sum += A[k][j][i]
7 A[0][j][i] = sum;
8 }

1
2
3
4
5

k = 0
[00] [01] [10] [11][i,j]

(c) Nested parallelization to harvest more parallelism (d) Data access pattern

Fig. 3. More Parallelization for Histogram Reduction Code

workload that can be assigned to the threads is large enough. However, the available
parallelism is still very small (only supports two or four concurrent threads). Figure
3(c) shows a better solution. In Figure 3(c), a nested parallel for directive is used
to parallelize the recursive addition using the reduction clause (with trivial code
change). Although the code in Figure 3(c) can leverage all levels of parallelism in the
program, its strided data access pattern would cause a great number of unnecessary
cache misses, as shown in Figure 3(d). Code in Figure 3(a) and 3(b) have the same
data locality problem. Apparently, the current OpenMP parallelization techniques can-
not harvest the maximum parallelism and data locality in the code at the same time.
They suffer from either insufficient parallelism or poor data locality.

....

+ + + + 1
2
3
4
5

k = 0
[00] [01] [10] [11][i,j]

(a) Schema of tile reduction (b) Better locality

Fig. 4. The Ideal Parallelization Schema for the Histogram Reduction Code

The ideal parallelization is shown in Figure 4. Logically, the recursive addition can
be viewed as being performed on an array of 2x2 data tiles. In theory, these tiles can be
added together in parallel by multiple threads, as shown in Figure 4(a). In this way, the
code can achieve both the maximum parallelism and the best data locality (see Figure
4(b)). Besides, from the programmers’ angle, this is the most natural way to perform
parallelization on this piece of code. However, the current OpenMP specification does
not provide any mechanism to support such kind of parallelization. This motivates us
to extend the traditional scalar reduction to tile reduction.
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3 Tile Reduction

In this section, we will discuss the techniques used to implement tile reduction. They
include the extended OpenMP programming interface and the required code generation
design. The related runtime support will be mentioned when needed.

3.1 Programming Interface Extension

In order to support tile reduction, we need to extend the current OpenMP programming
interface. The extension was made based on three criteria. First, it must be able to
cover most of the common cases of tile reduction code. Second, it must be simple
and easy to use and provide the programmers with the maximal flexibility. Third, the
extension should not complicate the code generation of the OpenMP compiler and the
OpenMP runtime. Figure 5(a) shows the OpenMP API (C/C++) extension we proposed
for the reduction clause. Figure 5(b) gives a simple example that uses the extended
reduction clause to parallelize the tile reduction code.

reduction(operator : T[jk, Lk, Uk]...[j2, L2, U2][j1, L1, U1])

T: Tile name
k: Dimension of the tile
ji: the loop index that is used in the traversal of the ith dimension of the tile
Li: the lower bound of ji

Ui: the strict upper bound of ji

(a) OpenMP API (C/C++) extension for the reduction clause

int B[2][2] = {{0,0},{0,0}};
...

0 #pragma omp parallel for reduction(+: B[j,0,2][i,0,2])
1 for (k=0; k<10000000; k++)
2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 B[j][i] += A[k][j][i]

(b) Simple example using the extended API

Fig. 5. OpenMP API (C/C++) extension and a simple example code

Compared with the current OpenMP API specification, the difference is in the list
construct. In addition to the ”named scalar” variables, we allow the programmers to
put a ”multi-dimensional array” in the list construct. This ”multi-dimensional array”
is not a real array data structure in the language sense. It is a language construct that
conveys important information to the OpenMP compiler. It tells the compiler the shape,
the size, and the element type of the tile and how its elements are traversed by the loops.

To make the paper easy to follow, we call the tile under reduction as the reduction
tile; the ”multi-dimensional array” in the list construct as the tile descriptor; and
the loops involved in performing ”one” recursive calculation as the reduction kernel
loops. For the example in Figure 5(b)1, the reduction tile is B[][], the tile descriptor

1 Index variable k starts from zero because array B[][] is used to store the accumulation results,
otherwise it starts from one.
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is B[j,0,2][i,0,2], and the reduction kernel loops are the j and i loops (not
including the k loop, i.e., the parallelized loop). In our design, the shape of the reduction
tile must be a rectangle or a high-dimensional rectangle. Triangle or other shapes are
not yet supported. The exact shape and size of the reduction tile are determined by the
tile descriptor.

The format of the tile descriptor is shown in Figure 5(a). It has two parts: the tile
name (i.e., T) and the dimension descriptor (i.e., [jk, Lk, Uk]...[j2, L2, U2][j1, L1, U1]).
Tile name must be the same as the multi-dimensional array variable on which the re-
cursive calculations are performed. For the example in Figure 5(b), this corresponds to
the name of the lhs variable in line 4, which is B. It tells the OpenMP compiler the data
type of the tile element, which must be a built-in scalar type. The dimension descriptor,
on the other hand, is an array of 3-tuples. Each 3-tuple corresponds to one dimension of
the tile and stores important information of that dimension. These 3-tuples are listed in
the dimension descriptor in descendant order (higher dimension first). Each 3-tuple has
three elements: loop index variable, upper bound expression, and lower bound expres-
sion. The loop index variable identifies a loop in the reduction kernel loops. Since stride
accesses are not allowed, the loop stride is always 1, so it is omitted from the tuple. The
size of the k-dimensional tile is calculated from equation (1).

(Uk − Lk) × ...(U2 − L2) × (U1 − L1) (1)

The information stored in the tile descriptor is very important for the OpenMP compiler
to generate correct parallel code.

The operator, as usual, must be a mathematically associative and commutative
operator that performs the recursive calculation. In our current example, it is a ”+”.

0 #pragma omp parallel for reduction(+: A[j,0,2][i,0,2])
1 for (k=1; k<10000000; k++)
2 for (j=0; j<2; j++)
3 for (i=0; i<2; i++)
4 A[0][j][i] += A[k][j][i]

Fig. 6. Tile reduction: tile is part of a bigger multi-dimensional array

The reduction tile is not required to be a standalone multi-dimensional array. Instead,
it can be part of another larger multi-dimensional array. For example, in the code in
Figure 6, the reduction tile is A[0][j][i] (j = {0, 1}, i = {0, 1}). It is a 2× 2 slice
cut out from the 3-dimensional array A[][][];

Besides, as we have mentioned before, the lower and upper bounds in the dimension
descriptor are expressions. They are not required to be constants. Generally, the lower
and upper bounds can be a function of other variables, as long as the result of the func-
tion can be decided at runtime. Figure 7 shows such an example. The code in Figure 7
is a blocked matrix multiplication program. It is easy to see that there is an opportunity
to apply tile reduction on the loop in line 3, i.e., the kk loop. The diagram on the right
hand side gives an intuitive illustration. In this example, the reduction tiles are blocks
cut out from a big 2× 2 matrix (C[][]). Therefore, the lower and upper bounds of the
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0 for (ii=0; ii<n; ii+=b)
1 for (jj=0; jj<n; jj+=b)
2 #pragma parallel for reduction(+: \

C[i,ii,min(ii+b,n)][j,jj,min(jj+b,n)])
3 for (kk=0; kk<n; kk+=b)
4 for (i=ii; i<min(ii+b,n); i++)
5 for (j=jj; j<min(jj+b,n); j++)
6 for (k=kk; k<min(kk+b,n); k++)
7 C[i][j]+=A[i][k]*B[k][j];
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Fig. 7. Tile reduction: upper and lower bounds are functions

reduction tiles are not fixed values. In addition, the matrix C[][] might not be able to
be evenly blocked. So, the tiles located at the margin of the matrix are usually smaller
than the tiles located inside of the matrix. Thus, the sizes of the reduction tiles are not
necessarily the same. All these information is reflected in the lower and upper bound
expressions (or functions) in the dimension descriptor. Moreover, there is a restriction
for the lower bound and upper bound expressions. They should not be functions of any
index variable in the reduction kernel loops, i.e., they are orthogonal. This is to make
sure that the shape of the reduction tile is a rectangle, or high-dimensional rectangle.

An interesting observation of this example code is that the number of the reduction
kernel loops (which is 3, from line 4 to line 6) is not the same as the dimension of the
reduction tile (which is 2). Generally, we do not require the number of the reduction
kernel loops to be the same as the dimension of the reduction tile. We only require that
the operations performed by the code in the reduction kernel loops can be viewed as one
associative and commutative macro operation performed on the entire reduction tile.

3.2 Code Generation

Since tile reduction is derived from scalar reduction, its code generation shares the
same framework as scalar reduction. Thus, we illustrate the code generation for tile
reduction under the same framework as scalar reduction and use the code generation
for scalar reduction as a reference. Generally, the code generation needs to deal with
the following problems:

1. Distribute the iterations of the parallelized loop among the threads;
2. Allocate memory for the private copy of the tile used in the local recursive calcula-

tion;
3. Perform the local recursive calculation which is specified by the reduction kernel

loops;
4. Update the global copy of the reduction tile;

Figure 8 shows the code generated for the tile reduction example in Figure 7. To make
the paper easy to follow, we present the pseudo C code in the figure.

As we have mentioned at the beginning of Section 3.1, we try to avoid complicat-
ing the code generation when we were developing the extension for the reduction
clause. A good example is the code generation for distributing the iterations of the
parallelized loop among the dynamic threads. Actually, this part of the code generation
for tile reduction is the same as that for scalar reduction.



Tile Reduction: The First Step towards Tile Aware Parallelization in OpenMP 147

0
1 /* statically partition the iteration space among the threads */
2 num_thr = __builtin_omp_get_num_threads ();
3 thr_id = __builtin_omp_get_thread_num ();
4 chunk_size = (((n+(b-1))/(b-1))%num_thr) == 0 ? \

(((n+(b-1))/(b-1))/num_thr) : (((n+(b-1))/(b-1))/num_thr)+1;
5 lb = chunk_size * thr_id; /* lower bound */
6 ub = min((lb+chunk_size),n); /* upper bound */
7
8 /* allocate memory for private tile */
9 private_tile = (int
*)__builtin_omp_memory_alloc( \

(min(ii+b,n)-ii)*(min(jj+b,n)-jj)*sizeof(int));
10
11 /* local tile reduction: serial */
12 for (kk=lb; kk<ub; kk+=b)
13 for (i=ii; i<min(ii+b,n), i++)
14 for (j=jj; j<min(jj+b,n), j++)
15 for (k=kk; k<min(kk+b,n), kk++)
16 private_tile[i-ii][j-jj] += A[i][k]*B[k][j]
17
18 /* update the global reduction tile */
19 __builtin_omp_atomic_start ();
20 for (i=ii; i<min(ii+b,n), i++)
21 for (j=jj; j<min(jj+b,n), j++)
22 C[i][j] += private_tile[i-ii][j-jj];
23 __builtin_omp_atomic_end ();
24
25 free(private_tile);
26

Fig. 8. Pseudo code generated for the matrix multiplication example to perform tile reduction

In the tile reduction program, the reduction kernel loops can be viewed as a single
statement that performs the recursive calculation, which is the same as its counterpart
in the scalar reduction program. So, from the angle of iteration distribution, the scalar
reduction code and the tile reduction code are logically the same. Therefore, the method
used to generate iteration distribution code for scalar reduction can also be used to gen-
erate iteration distribution code for tile reduction. It doesn’t matter which schedule
policy (static, dynamic, guided, or runtime) is deployed.

In Figure 8, we use the static scheduling policy as an example. In the code from
line 2 to line 6, the iterations of the kk loop (line 3 in Figure 7) are evenly distributed
among the threads. The iterations of the loop are divided into chunks and each chunk is
assigned to one dynamic thread. The iteration chunk assigned to the thread is delimited
by the lower bound variable "lb" and the upper bound variable "ub", which are
determined by the thread number of the owner thread. This piece of code only deals
with the parallelized loop and the user specified OpenMP parameters. It does not even
need to look into the code of the reduction kernel loops. This is the same for other
schedule policies.

In line 9, the OpenMP runtime routine allocates memory for the the private tile
(private tile), which is a 2-dimensional array. This private tile is used by the
thread as a temporary storage to perform the local sequential tile reduction. Its size is
calculated from the parameters specified in the dimension descriptor (see equation 1).
Its element data type is inferred from the tile name. All this information is obtained
from the extended reduction clause.
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The local sequential tile reduction is performed in the code from line 12 to line 16.
This piece of code is almost the same copy as the original sequential program (line
3 to line 7 in Figure 7) except two places. In line 12, the lower and upper bounds of
the loop are changed to "lb" and "ub". This is to restrict the range of the iteration
space in the chunk assigned to the current thread. Besides, in line 16, we replace the
original reduction tile with the private tile and update its indices. This index calibration
is required because the global reduction tile is cut out from a bigger multi-dimensional
array, while the private tile is a standalone array. This piece of code performs local tile
reduction sequentially, as in the original un-parallelized code.

After finishing the local tile reduction, the thread must update the global reduction
tile. The code is shown in line 19 to line 23. The runtime routines in lines 19 & 23
ensure atomic access to the global reduction tile. The loops in line 20 and line 21 are
extracted from the reduction kernel loops. Only the loops listed in the tile descriptor are
selected. So, the loop k in the reduction kernel loops is not included. The lhs variable of
the statement in line 22 is the same variable as in the original code (line 7 in Figure 7).
However, the rhs variable has been replaced with the private tile, in which the indices
have been updated.

From the code in Figure 8, it is easy to see that the code generation for the tile reduc-
tion is as easy as that for the traditional scalar reduction. Meanwhile, no extra runtime
supports is required. These advantages make the implementation of tile reduction in
the OpenMP compiler very easy. In the next section, we will present the experimental
results of applying the tile reduction on several typical benchmarks.

4 Experiments

We have applied tile reduction on three benchmarks: the 2D histogram reduction,
matrix-matrix multiplication and matrix-vector multiplication. The required code gen-
eration was implemented through source-to-source transformation and was prototyped
in the Omni-1.6 OpenMP compiler [17]. The machine used in the experiments has 4
Intel Dual-Core Xeon (Paxville) chips, which are clocked at 3.0 GHz. Each core has
HyperThreading (HT) enabled. Therefore, the machine can be viewed as a 16-processor
shared memory parallel computer. Each chip has 4MB L2 cache (2MB each core) and
each core has 16KB L1 cache.

Figure 9 shows the experimental data of the three benchmarks. The curve graphs
on the left column display the speedup of the benchmark programs parallelized either
through the tile reduction clause (w/ tile reduction) or through the standard OpenMP
APIs (w/o tile reduction). The bar charts on the right column demonstrate the difference
of the absolute execution time between the corresponding programs (w/ and w/o tile
reduction) of the same set of benchmarks.

Figure 9(b) shows great performance enhancement if we parallelize the 2D histogram
reduction benchmark with the tile reduction clause. Generally, compared with the pro-
gram parallelized with standard OpenMP pragma, the absolute execution time of the tile
reduction version decreased about 90% and its speedup on 8 threads increased from 1.5
to 4.5. The performance gain comes from the improved data locality, which owes to the
tile reduction optimization. Without using tile reduction, the 2D histogram reduction
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Fig. 9. Comparison of the speedup and execution time between the program parallelized with tile
reduction and the program parallelized with the standard OpenMP pragma

program exhibit very poor scalability (shown in Figure 3). The tile reduction paral-
lelization successfully rectifies the data access pattern and thus significantly improves
its scalability. However, no matter what kind of optimizations are used, this benchmark
stops scaling beyond 8 threads. This is because of the huge number of memory ref-
erences in the code, which results in that its performance is finally restricted by the
bandwidth of the shared memory bus.

The same phenomena are also observed in the matrix-matrix multiplication bench-
mark (see Figure 9(c) and 9(d)). Tile reduction can also decrease its execution time
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and improve its scalability. However, the magnitude of the performance enhancement
caused by tile reduction is not as big as that of the 2D histogram reduction bench-
mark. This is also the same for the scalability enhancement. The reason is that the
data locality of the tiled matrix-matrix multiplication program is better than the 2D
histogram reduction benchmark. Therefore, the performance gain from tile reduction
in the matrix multiplication program is less than that in the 2D histogram reduction
program. On average, the execution time decreased 34% after applying tile reduction
and its speedup increased from 2.15 to 3.18 on 8 threads and from 2.26 to 3.32 on 16
threads.

For the matrix-vector multiplication case, the performance enhancement brought
about by tile reduction is smaller than that of the previous two benchmarks. The reason
is the same as the previous one. Moreover, compared with the other two benchmarks,
there are less data memory references in this benchmark. So, the program’s perfor-
mance degrades a little bit when it runs with 8 or 16 threads. This is because of the
synchronization overhead caused by the code in line 19 and 23 in Figure 8. In average,
its execution time decreased 0.28%.

5 Summary and Conclusions

In this paper, we introduced the concept of tile aware parallelization for OpenMP. Mean-
while, we developed the first tile aware parallelization technique - tile reduction, and
illustrated the details of code generation for the tile reduction clause. We also designed
a series of experiments to evaluate the tile reduction technique. From the experimen-
tal results and our experience of parallelizing the benchmarks, we have the following
conclusions:

1. As a building block of the tile aware parallelization theory, tile reduction brings
more opportunities to parallelize dense matrix applications.

2. For some benchmarks, tile aware parallelization is a more natural and intuitive way
to reason about the best parallelization decision.

3. Tile reduction not only can improve data locality for some programs, but also can
expose more parallelism.

6 Related Work

Parallel reduction operations are supported in many parallel programming languages.
They include C**[18], SAC [19], ZPL [16], UPC [12], and MPI [13]. Most of them sup-
port user-defined reduction operations, either through language constructs or through
library routines. User-defined reduction operation provides a flexible way to implement
tile reduction. However, programmers need to change both data structures and algo-
rithms, which, sometimes, is not a tirivial job.

Another piece of work that we need to mention is [20]. In [20], the authors pro-
pose to extend the OpenMP reduction clause to parallelize C++ generic algorithms.
They propose to support user-defined types, overloaded operators, and function objects
in the same way as the built-ins supported in the current OpenMP reduction clause.
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Their work is very close to that presented in this paper. However, we study the reduc-
tion problem from a different angle. We propose tile reduction as one of the tile aware
parallelizing technique for OpenMP, while [20] proposes user-defined reduction oper-
ation to complete their OpenMP extensions for parallelizing generic libraries. In our
tile aware parallelization technique, we are concerned with the data partition, locality
and a more flexible and efficient way to parallelize dense matrix programs written in
cannonical C syntax, while the purpose of [20] is to allow people to parallelize pro-
grams written in modern C++ idioms such as iterators and function objects, which
are not cannonical C syntax. Second, due to the non-trivial dynamic overhead of the
generic techniques, generic libraries are not widely used in programming high perfor-
mance scientific and engineering algorithms. Finally, there are no experimental data
in [20].

7 Future Work

Tile reduction is one of the building block of the tile aware paralleization technique de-
veloped for OpenMP. One of our future work is to develop more parallelizing techniques
(like tile reduction) such that OpenMP compiler can ”recognize” data tiles and allow its
runtime library to manipulate them. Our goal is to add tile aware parallelizing directives
or clauses into the OpenMP programming interface. The purpose is to evolve OpenMP
into an appropriate programming model for many-core processors with explicitly man-
aged memory hierarchy [21], e.g. the IBM CELL [22] and the IBM Cyclops-64 [23]
processor.
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Abstract. OpenMP has evolved recently towards expressing unstruc-
tured parallelism, targeting the parallelization of a broader range of
applications in the current multicore era. Homogeneous multicore ar-
chitectures from major vendors have become mainstream, but with clear
indications that a better performance/power ratio can be achieved us-
ing more specialized hardware (accelerators), such as SSE-based units
or GPUs, clearly deviating from the easy-to-understand shared-memory
homogeneous architectures. This paper investigates if OpenMP could
still survive in this new scenario and proposes a possible way to extend
the current specification to reasonably integrate heterogeneity while pre-
serving simplicity and portability. The paper leverages on a previous
proposal that extended tasking with dependencies. The runtime is in
charge of data movement, tasks scheduling based on these data depen-
dencies and the appropriate selection of the target accelerator depending
on system configuration and resource availability.

1 Introduction and Motivation

Computer architecture is under a revolution. The gigahertz race has stopped
due to power dissipation problems. Fortunately, extra transistors continue be-
ing available in new chip generations, thanks to the technological reduction in
transistor area. So new solutions are needed to use the extra transistors, and get
lower power consumption at the same time. As a nice alternative to the gigahertz
race, and instead of going for more complex pipelined and superscalar processors,
the new transistors are used to incorporate functionalities that were external to
the processor, into a single chip. For instance, GPUs, which are currently being
used for general purpose computing, are becoming part of the processing chip
[1,2]. Other approaches, like the Cell/B.E. processor [3] are targeting physics,
encryption, and encoding. The purpose is to accelerate specific algorithms, so
that applications can take advantage of the extra performance.

Future supercomputers will be equipped with heterogeneous hardware, includ-
ing Cell processors, GPUs and even FPGAs. This hardware can provide dramatic
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performance advantages for high-performance computing applications, specially
for applications featuring data-parallelism. In this scenario, programmers will
have to deal with architectures composed by a mix of regular multicore CPUs
and accelerators, possibly several types of accelerators, each one with its own
programming environment and libraries, and possibly its own memory address
space.

In order to overcome the programming challenges introduced by accelerator-
based architectures, programming models need to evolve including features that
allow to migrate applications to heterogenous architectures in a simple and
portable way. If current application developers are still having a hard time trying
to extract reasonable performance from homogeneous multicore architectures,
the situation is about to get even worse with the emergence of heterogeneous
multicore architectures.

The majority of proposals today assume a host-directed programming and ex-
ecution model with attached accelerator devices. The bulk of a user application
executes on the host while user-specified code regions are offloaded to the acceler-
ator. In general, the specifics of the different accelerator architectures makes pro-
gramming extremely difficult if one plans to use the vendor-provided SDKs (libspe
for Cell, CUDA for Nvidia GPUs [4], ...). It would be desirable to retain most of
the advantages of using these SDKs but in a much more accessible way, avoiding
the mix of hardware specific code (for task offloading, data movement, ...) with
application code.

In order to motivate the paper and show the complexities in using vendor-
provided SDKs, we consider a simple matrix multiplication example in
Figure 1. In this code, the programmer defines that each element of matrices
A, B and C is a pointer to a block of BS*BS elements, which are allocated from
inside the main function.

This simple example would require very different accelerator-dependent code
in order to offload the execution, transfer data and synchronize host and acceler-
ator(s). For example, to program an Nvidia GPU using CUDA, the programmer
has to write the host and device codes. Figure 2 shows the code executed on the
host, in which the programmer first needs to allocate memory on the GPU for
the blocks of A, B and C (since the GPU executes from its own separate mem-
ory). Then the host copies matrices from host memory to GPU memory. The
arguments give the destination pointer, the source pointer, the two dimension
sizes, and copy direction. Then the host specifies the execution parameters and
instantiates the kernel itself. Finally the host waits for the kernel to finish, moves
results back from the GPU to the host and deallocates memory on the GPU.

For the Cell/B.E. the programmer would have to write two codes: one for the
PPE (Figure 3) and one for the SPE (Figure 4). The PPE code handles thread
allocation and resource management among the SPEs. In the example, the PPE
code is creating a thread context, loading program, creates the thread and gets
thread control for each of the SPEs. Then PPE code leaves the SPEs to perform
the computation and afterwards waits for the SPE threads to finish. The SPE
code iterates while there are matrix blocks to calculate. The function next block
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1 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
2 for ( int i =0; i < BS ; i++)
3 for ( int j =0; j < BS ; j++)
4 for ( int k=0; k < BS ; k++)
5 C[ i ∗BS+j ] += A[ i ∗BS+k ] ∗ B[ k∗BS+j ] ;
6 }
7

8 f loat ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;
9

10 int main ( void ){
11 int i , j , k ;
12

13 for ( i = 0 ; i < NB; i++)
14 for ( j = 0 ; j < NB; j++) {
15 A[ i ] [ j ] = ( f loat ∗ ) mal loc (BS∗BS∗ s izeof ( f loat ) ) ;
16 B[ i ] [ j ] = ( f loat ∗ ) mal loc (BS∗BS∗ s izeof ( f loat ) ) ;
17 C[ i ] [ j ] = ( f loat ∗ ) mal loc (BS∗BS∗ s izeof ( f loat ) ) ;
18 }
19

20 for ( i = 0 ; i < NB; i++)
21 for ( j = 0 ; j < NB; j++)
22 for ( k = 0 ; k < NB; k++)
23 matmul ( A[ i ] [ k ] , B[ k ] [ j ] , C[ i ] [ j ] ) ;
24 }

Fig. 1. Matrix multiplication example to motivate the extension of OpenMP for het-
erogeneous architectures

1 g l o b a l void matmul kerne l ( f loat ∗A, f loat ∗B, f loat ∗C ) ;
2

3#define THREADS PER BLOCK 16
4

5 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
6 . . .
7 // a l l o c a t e d e v i c e memory
8 f loat ∗d A , ∗d B , ∗d C ;
9 cudaMalloc ( ( void∗∗) &d A , BS∗BS∗ s izeof ( f loat ) ) ;

10 cudaMalloc ( ( void∗∗) &d B , BS∗BS∗ s izeof ( f loat ) ) ;
11 cudaMalloc ( ( void∗∗) &d C , BS∗BS∗ s izeof ( f loat ) ) ;
12

13 // copy h o s t memory t o d e v i c e
14 cudaMemcpy (d A , A, BS∗BS∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;
15 cudaMemcpy (d B , B, BS∗BS∗ s izeof ( f loat ) , cudaMemcpyHostToDevice ) ;
16

17 // s e t u p e x e c u t i o n p a r a m e t e r s
18 dim3 threads (THREADS PER BLOCK, THREADS PER BLOCK) ;
19 dim3 gr i d (BS/ threads . x , BS/ threads . y ) ;
20

21 // e x e c u t e t h e k e r n e l
22 matmul kernel<<< grid , threads >>>(d A , d B , d C ) ;
23

24 // copy r e s u l t f r om d e v i c e t o h o s t
25 cudaMemcpy (C, d C , BS∗BS∗ s izeof ( f loat ) , cudaMemcpyDeviceToHost ) ;
26

27 // c l e a n up memory
28 cudaFree (d A ) ;
29 cudaFree ( d B ) ;
30 cudaFree ( d C ) ;
31 }

Fig. 2. Matrix multiplication example (non optimized) targeting CUDA
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1 void matmul spe ( f loat ∗A, f loat ∗B, f loat ∗C ) ;
2

3 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
4 for ( i =0; i<num spus ; i++) {
5 // I n i t i a l i z e t h e t h r e a d s t r u c t u r e and i t s p a r a m e t e r s
6 . . .
7 // C r e a t e c o n t e x t
8 threads [ i ] . id = sp e con t ex t c r e a t e (SPE MAP PS, NULL) ;
9 // Load p rog ram

10 rc = spe program load ( threads [ i ] . id , &matmul spe ) ) != 0 ;
11 // C r e a t e t h r e a d
12 rc = pth r e ad c r e a t e (&threads [ i ] . pthread , NULL,
13 &ppu pthread funct ion , &threads [ i ] . id ) ;
14 // Get t h r e a d c o n t r o l
15 threads [ i ] . c t l a r e a = ( sp e s pu co n t r o l a r e a t ∗)
16 s p e p s a r e a g e t ( threads [ i ] . id , SPE CONTROL AREA) ;
17 }
18 // S t a r t SPUs
19 for ( i =0; i<spus ; i++) send mai l ( i , 1 ) ;
20 // Wai t f o r t h e SPUs t o c omp l e t e
21 for ( i =0; i<spus ; i++)
22 rc = pth r e ad j o i n ( threads [ i ] . pthread , NULL) ;
23 }

Fig. 3. Matrix multiplication example (non optimized and omitting conditional state-
ments to control error codes) for Cell/B.E. using IBM’s SDK: PPE side

1 void matmul spe ( f loat ∗A, f loat ∗B, f loat ∗C )
2 {
3 . . .
4 while ( b l o c k s t o p r o c e s s ( ) ){
5 next b lock ( i , j , k ) ;
6 ca l c u l a t e add r e s s ( baseA , A, i , k ) ;
7 ca l c u l a t e add r e s s ( baseB , B, k , j ) ;
8 ca l c u l a t e add r e s s ( baseC , C, i , j ) ;
9 mfc get ( localA , baseA , s izeof ( f loat )∗BS∗BS , i n tag s , 0 , 0 ) ;

10 mfc get ( localB , baseB , s izeof ( f loat )∗BS∗BS , i n tag s , 0 , 0 ) ;
11 mfc get ( localC , baseC , s izeof ( f loat )∗BS∗BS , i n tag s , 0 , 0 ) ;
12 mfc wr i te tag mask ((1<<( i n t a g s ) ) ) ;
13 mf c r e ad t a g s t a t u s a l l ( ) ; /∗ Wait f o r i n p u t d a t a
14 f o r ( i i =0; i i < BS ; i i ++)
15 f o r ( j j =0; j j < BS ; j j ++)
16 f o r ( kk =0; kk < BS ; kk++)
17 l o c a l C [ i ] [ j ]+= l o c a l A [ i ] [ k ]∗ l o c a l B [ k ] [ j ] ;
18 mfc pu t ( l o c a l C , baseC , s i z e o f ( f l o a t )∗BS∗BS , o u t t a g s , 0 , 0 ) ;
19 m f c w r i t e t a g m a s k ((1<<( o u t t a g s ) ) ) ;
20 m f c r e a d t a g s t a t u s a l l ( ) ; /∗ Wait f o r o u t p u t d a t a
21 }
22 . . .
23 }

Fig. 4. Matrix multiplication example for Cell/B.E. (non optimized) using IBM’s SDK:
SPE side

performs atomic counter increments between all SPEs. The SPE code performs
three DMA read operations (for blocks from matrices A, B and C) and blocks
until the transfers have finished. The block matrix operation is then performed
locally and finally a DMA write operation is performed for the block from matrix
C. This code is quite naive, since for example no double buffering nor SIMDization
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1 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
2 // c o n f i g u r e d e v i c e
3 int a l d e s c = r a s c l i b a l g o r i t hm op en ( " matrixmult " ) ;
4

5 // qu eu e s up command to s end i n p u t s
6 r e s = ra s c l i b a l g o r i t hm send ( a l d e s c , "a" , A, BS∗BS∗ s izeof ( f loat ) ) ;
7 r e s = ra s c l i b a l g o r i t hm send ( a l d e s c , "b" , B, BS∗BS∗ s izeof ( f loat ) ) ;
8 r e s = ra s c l i b a l g o r i t hm send ( a l d e s c , "c" , C, BS∗BS∗ s izeof ( f loat ) ) ;
9

10 // qu eu e s up command to e x e c u t e b i t s t r e a m
11 r a s c l i b a l g o r i t hm go ( a l d e s c ) ;
12

13 // qu eu e s up command to r e c e i v e r e s u l t s
14 r e s = r a s c l i b a l g o r i t hm r e c e i v e ( a l d e s c , "c" , C, BS∗BS∗ s izeof ( f loat ) ) ;
15

16 // w a i t f o r t e r m i n a t i o n
17 r a s c l i b a l go r i thm commi t t ( a l d e s c , NULL) ;
18 r a s c l i b a l g o r i t hm wa i t ( a l d e s c ) ;
19 }

Fig. 5. Matrix multiplication example (non optimized and omitting conditional state-
ments to control error codes) targeting a RASC Altix blade

are used to optimize the code. The samplematrix multiply code from the IBM SDK
hasmore than600 lines for thePPEcode andmore than1300 lines for theSPEcode.

For a system like the SGI Altix with a Reconfigurable Application Specific
Computing (RASC) FPGA blade, the code in Figure 5 using calls to the RASClib
library would be used (in addition to generate the bitstream matrixmult with
the FPGA compiler). The code assumes that the application has already re-
served and configured the FPGA device. The rasclib algorithm open allo-
cates all necessary internal data structures for a logical algorithm. The three
rasclib algorithm send calls pull data down to the input data areas on the
device. The rasclib algorithm go starts execution. The rasclib algorithm
receive call pushes the result back out to host memory. The rasclib
algorithm commit causes all of the commands that have been queued up by
the previous calls to be sent to the device. The rasclib algorithm wait blocks
until all the command thatwere sent to all of the devices are complete, then returns.

There have been substantial efforts to propose and develop programming mod-
els for hybrid architectures that abstract the target architecture. These differ in
the objects they manipulate, in general arrays or matrices. For example both
RapidMind [5] and PeakStream are stream languages that operate on streams
(vectors of arbitrary length) of data embedded in C or C++ and they are ori-
ented to GPGPUs. For the ClearSpeed floating-point accelerator, the Cn pro-
gramming language adds new datatypes (mono and poly) to indicate if there is
only one instance of the data or all functional units have a portion of the data.
Others (e.g. PGI) propose directives to delineate accelerator regions and extract
parallelism in loops or follow a task parallelism model, and offer architecture
independent abstractions for offloadable functions (e.g. Sequoia [6], Merge [7],
CellSs [8], HMPP [9]). A growing number of OpenMP compiler frameworks are
also intended to offer support for heterogeneous architectures (e.g. Octopiler [10]
for Cell or PGI [11] and [12] for CUDA).
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Most of the proposals and environments available target a single type of accel-
erator at a time. In order to have the same code prepared to compile for several
target accelerators, the programmer needs to use conditional compilation to iso-
late declaration of variables and calls to different APIs for the different target
devices.

2 Proposed OpenMP Extensions

In this section we propose a set of extensions to OpenMP 3.0 to express the
execution of tasks on a hardware accelerator. This extension leverages on a
previous proposal to allow the specification of dependencies between tasks [13],
although it can be considered totally independent.

Tasks are the most important new feature of OpenMP 3.0. A programmer can
define deferrable units of work, called tasks, and later ensure that all the tasks
defined up to some point have finished.

#pragma omp task [clause-list]
structured-block

Valid clauses are shared, private, firstprivate and untied. The first three
are used for setting data sharing attributes of variables in the task body; the
last one specifies that the task can be resumed by a different thread after a
possible task switching point. The proposal in [13] extended the task construct
with some additional clauses that are used to derive dependencies among tasks
at runtime: input, output and inout. Although in some cases the compiler can
analyze the code and determine the input and output data sets, we provided
these additional clauses to modify or augment the compiler analysis.

OpenMP allows the specification of any structured block inside the task con-
struct. This motivates the presentation of our proposal in two parts. The first
part of our proposal just allows the specification of target devices for the exe-
cution of a task. In the second part, we consider a subset of the possible tasks
than can be expressed in OpenMP: tasks composed of a function call. In this
case, the programmer will be able to specify alternative implementations for dif-
ferent target devices. For the general case we have not found a portable way to
specify alternative implementations (each one targeting an accelerator device)
for structured blocks of code.

2.1 Specifying Target Devices

Our proposal consists of a new pragma that may precede an existing pragma
task:

#pragma omp target device(device-name-list) [clause-list]

The target construct specifies that the execution of the task could be offloaded
on any of the devices specified in device-name-list (and as such its code must
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be handled by the proper compiler backends). If the task is not preceded by a
target directive, then the default device-name, which is smp and corresponds
to a homogeneous shared-memory multicore architecture, will be used. Other
device-names are vendor specific (we will use along this paper three possible
examples: cell, cuda and fpga). When a task is ready for execution (i.e. it has
no dependencies with other previously generated tasks) the runtime can choose
among the different available targets to decide in which device to execute the
task. This decision is implementation-dependent but it will ideally be tailored to
resource availability. If no resource is available, the runtime will stall that task
until one becomes available.

Some restrictions may apply to tasks that target a specific device (for example,
they may not contain any other OpenMP directives, do any input/output, ...).
In addition, tasks offloaded in some specific devices should be tied or they should
execute in the same type of device if thread switching is allowed.

Some additional clauses can be used with this pragma device:

– copy_in(data-reference-list)

– copy_out(data-reference-list)

These two clauses, which are ignored for the smp device, specify data move-
ment for shared variables used inside the task. Copy in will move variables in
data-reference-list from host to device memory. Copy out will move vari-
able in data-reference-list back from device to host memory. Once the task
is ready for execution, the runtime system will move variables in the copy in
list. Once the task finishes execution, the runtime will move variables in the
copy out list, if necessary.

A data-reference in a data-reference-list can contain a variable identifier or
a reference to subobjects. References to subobjects include array element ref-
erences (like a[4]), array sections (like a[3:6]), field references (like a.b) and
shaping expressions (like [10][20] p). Since C does not have any way to express
ranges of an array, we have borrowed the array-section syntax from Fortran 90.
These array sections, with syntax a[e1:e2], designate all elements from a[e1]
to a[e2] (both ends are included and e1 shall yield a lower or equal value than
e2). Multidimensional arrays are eligible for multidimensional array sections (like
a[1:2][3:4]). While not technically naming a subobject, non-multidimensional
array section syntax can also be applied to pointers (i.e.: pA[1:2] is valid
for int *pA, but note that pB[1:2][3:4] is invalid for int **pB, also note
that pC[1:2][3:4] is valid for int *a[N] and so it is pD[1:2][3:4][5:6]
for int *a[N][M]). For syntactic economy a[:x] is the same as a[0:x] and,
only for arrays where the upper bound is known, a[x:] and a[:] mean respec-
tively a[x:N] and a[0:N]. Designating an array (i.e.: a) in a data reference
list, with no array section nor array subscript, is equivalent to the whole array-
section (i.e.: a[:]). Shaping expressions are a sequence of dimensions, enclosed
in square brackets, and a data reference, that should refer to a pointer type (like
[10][20] p). These shaping expressions are aimed at those scenarios where an
array-like structure has been allocated but only a pointer to its initial element
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is available. The goal of shaping expressions is to provide to the compiler such
unavailable structural information.

Other vendor-specific clauses in the target construct for each particular
device-name are possible.

2.2 Taskifying Functions

Our second proposal applies to those tasks that are just composed of a function
call

#pragma omp task [clause-list]
function-call

In this paper we also consider another way to specify tasks in OpenMP, which
we have found very convenient to taskify functions that are always executed as
tasks:

#pragma omp task [clause-list]
{function-header|function-definition}

Whenever the program calls a function annotated in this way, the runtime will
create an explicit task.

In this case, the pragma proposed in the previous subsection applies to a
function header or definition:

#pragma omp target device(device-name-list) [clause-list]
{function-header|function-definition}

The target construct specifies that the function contains code prepared for its
execution on all devices specified in device-name-list. If a function is not
preceded by a target directive, then the default smp device is used. In addition
to the possible clauses specified in the previous section, we allow in this case the
following one:

– implements(function-name)

This clause implements is used to specify an alternative implementation for a
function. For example:

#pragma omp task
void matmul( float *A, float *B, float *C );
...
#pragma omp target device(cell) implements(matmul)
void matmul_cell( float *A, float *B, float *C ) {
... // optimized version for target device
}

or directly in the header of a routine in an optimized library:
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#pragma omp task
void matmul( float *A, float *B, float *C );
...
#pragma omp target device(cell) implements(matmul)
void matmul_spe( float *A, float *B, float *C );

The programmer is specifying that the alternative function (matmul cell or
matmul spe) should be used instead of function matmul when offloading the
task to one of the Cell SPE units. If the device cell is not available, then the
runtime will launch the execution of the original matmul function on the default
smp device. Different names are used for the different implementations in order
to avoid duplicated symbols.

If the original implementation is appropriate for one of the accelerator types,
then the programmer should precede the definition of the task with the specifi-
cation of the target device

#pragma omp target device(smp,cell)
#pragma omp task
void matmul ( float *A, float *B, float *C ) {
... // original sequential code
}

In this case, the compiler would generate two versions for the same function,
one going through the native optimizer for the default device and another going
through the accelerator-specific compiler.

2.3 A Couple of Examples

Figure 6 shows the same matrix multiplication example used in section 1. The
programmer specifies in the code example that the task could be offloaded into
one of the Cell SPEs. The code to be offloaded should be generated by the native
compiler for Cell using the function definition in matmul. Note that the inout
clause [13] is used in the definition of the task to express the data dependence
that exists among tasks computing the same block of C.

Several target accelerator devices can be specified in the application. For ex-
ample in Figure 7 the programmer is specifying three possible options to execute
function matmul. The first one is using the original definition of function matmul
for the default target architecture. Two alternatives specified by the user are
the implementation specified in matmul cuda for an Nvidia GPU or the library
implementation named matmul spe for the IBM Cell. For all the devices, the
runtime is in charge of moving data before and after the execution of the task.

2.4 Changing Memory Association for Data

In some kind of accelerators, as for instance in the Cell SPUs or in GPUs, it may
be necessary to change the memory association for the data in memory prior to
the execution on the device. Our proposal based on alternative implementations
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1#pragma omp t a r g e t device (smp , c e l l ) copy_in (A[BS ] [ BS ] , B[BS ] [ BS ] , C[BS ] [ BS ] )
2 copy_out (C[BS ] [ BS ] )
3#pragma omp task inout (C[BS ] [ BS ] )
4 void matmul ( f loat ∗A, f loat ∗B, f loat ∗C ) {
5 // o r i g i n a l s e q u e n t i a l c ode i n F i g u r e 1
6 }
7

8 f loat ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;
9

10 int main ( void ){
11 for ( int i = 0 ; i < NB; i++)
12 for ( int j = 0 ; j < NB; j++)
13 for ( int k = 0 ; k < NB; k++)
14 matmul ( A[ i ] [ k ] , B[ k ] [ j ] , C[ i ] [ j ] ) ;
15 }

Fig. 6. Example specifying the execution on a device

1#pragma omp task inout (C[BS ] [ BS ] )
2 void matmul( f loat ∗A, f loat ∗B, f loat ∗C) {
3 // o r i g i n a l s e q u e n t i a l code i n F i g u r e 1
4 }
5

6#pragma omp t a rge t device ( cuda ) implements (matmul)
7 copy_in (A[BS ] [ BS ] , B[BS ] [ BS ] , C[BS ] [ BS ] ) copy_out (C[BS ] [ BS ] )
8 void matmul cuda ( f loat ∗A, f loat ∗B, f loat ∗C) {
9 // o p t i m i z e d k e r n e l f o r cuda

10 }
11

12#pragma omp t a rge t device ( c e l l ) implements (matmul)
13 copy_in (A[BS ] [ BS ] , B[BS ] [ BS ] , C[BS ] [ BS ] ) copy_out (C[BS ] [ BS ] )
14 void matmul spe ( f loat ∗A, f loat ∗B, f loat ∗C) ;
15

16 f loat ∗A[NB] [NB] , ∗B[NB] [NB] , ∗C[NB] [NB] ;
17

18 int main ( void ){
19 for ( int i = 0 ; i < NB; i++)
20 for ( int j = 0 ; j < NB; j++)
21 for ( int k = 0 ; k < NB; k++)
22 matmul (A[ i ] [ k ] , B[ k ] [ j ] , C[ i ] [ j ] ) ;
23 }

Fig. 7. Example with the specification of alternative implementations for several target
devices

could allow a runtime to change of memory association by specifying different
headers for the implemented functions.

For example consider the code in Figure 8 that uses contiguous storage for
matrices A, B and C. Notice that matmul defines the arguments as [N][N] and
only accesses blocks of size [BS][BS] while matmul block defines the arguments
as [BS][BS]. The compiler can recognize this and instruct the runtime system
to do the data movement to the local memory of the Cell SPE in a blocked way.

The extensions proposed in this paper are orthogonal to other possible exten-
sions to generate efficient code by a compiler (e.g., vectorization width, number
of threads running on accelerators, code transformations, ...) could be neces-
sary for the compiler to generate good code for the target device. Proposals
commented in the next section address some of these issues.
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1#pragma omp task inout (C[BS ] [ BS ] )
2 void matmul ( f loat A[N ] [N] , f loat B[N ] [N] , f loat C[N ] [N] ) {
3 // o r i g i n a l s e q u e n t i a l c ode i n F i g u r e 1
4 }
5

6#pragma omp t a r g e t device ( c e l l ) implements (matmul ) copy_in (A, B, C) copy_out (C)
7 void matmul block ( f loat A[BS ] [ BS ] , f loat B[BS ] [ BS ] , f loat C[BS ] [ BS ] ) {
8 // o r i g i n a l s e q u e n t i a l c ode i n F i g u r e 1
9 }

10

11 f loat A[N ] [N] , B[N ] [N] , C[N ] [N ] ;
12

13 int main ( void ){
14 for ( int i = 0 ; i < N; i=i+BS)
15 for ( int j = 0 ; j < N; j=j+BS)
16 for ( int k = 0 ; k < N; k=k+BS)
17 matmul ( &A[ i ] [ k ] , &B[ k ] [ j ] , &C[ i ] [ j ] ) ;
18 }

Fig. 8. Example with the specification of an implementations with change of memory
association

3 Related Work

In this section we focuss on two approaches more closely related to our proposal
(HMPP [9] and PGI [11]). We summarize both proposals in terms of specification
of code regions to be executed on accelerator devices and how/when they decide
to offload the execution.

3.1 CAPS Hybrid Multi-core Parallel Programming (HMPP)

HMPP [9] is designed to simplify the use of accelerators while keeping the ap-
plication code portable (a sequential binary version can be built using a tra-
ditional compiler). The HMPP approach is to declare, by means of directives,
functions (named codelets) suitable for hardware acceleration and callsites to
them. Codelets are pure functions (i.e. functions that always evaluate the same
result value given the same argument value(s), and have no side effects and no
I/O). The accelerator functions are written in the own accelerator language in
a specific file while keeping the original computation in the main source; then
the developer uses the accelerator specific provided tools (compiler, library, ...)
to generate the function binary.

The general syntax of the HMPP pragmas

#pragma hmpp <label> <directive-type> [, <directive-parameter>]*

The main directive-types are codelet (allows the declaration of a function as
a codelet) and callsite (allows the call of a codelet). label is a unique identi-
fier for a couple (codelet, callsite). The directive-parameters also specify the
accelerator target (e.g. target=cuda:sse), conditional execution of the codelets
(e.g. cond=expr("n==1024"), their desired synchronous or asynchronous prop-
erties and the data transfers (input, output and inout followed by the name
of a function argument). In order to support these data transfers, there are con-
straints on how the codelet arguments are specified (the argument coding rules
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have to permit to compute the amount of data to transfer runtime). For example,
for n-dimensional data structures, the argument is followed by a one-dimensional
array argument whose n elements give the size of each dimension.

The synchronize directive types allow to wait for the termination of a
codelet. Other directive types are for decoupling the data transfers from the
computations. By preloading (advanceload) data and downloading the results
(delegatedstore) whenever they are required in the main application, the pro-
grammer can optimize the use of the memory bandwidth. Programmer can use
the asynchronous directive parameter to interlace data transfers and codelet
execution or the const directive parameter to preload data only once.

At execution, the HMPP runtime takes care of discovering the attached ac-
celerators and their availability. When a codelet is indicated to be run on an
accelerator, if the device is available and if the shared library corresponding
codelet is present, HMPP loads it just as a software plug-in. Otherwise the na-
tive version is run on the host CPU or in a worker thread. The use of dynamic
linking in HMPP allows to add improved codelet versions or add codelets for
new hardware accelerators, without recompiling the overall application source.

The HMPP approach is quite similar to the proposal in this paper, since it
also annotates functions to be offloaded in the accelerators that are specified in
the target clause. We think that our approach has a better potential to express
multiple implementations of functions, it is better integrated in the OpenMP
specification and makes programming easier by delegating intelligence to the
runtime system.

3.2 PGI Directives and Intrinsic Functions

The directives and programming model defined by PGI [11] allow programmers
to specify the regions of a host program to be targeted for offloading to an
accelerator device (mainly GPUs), without the need to explicitly initialize the
accelerator and manage data or program transfers between the host and acceler-
ator. Rather, all of these details are implicit in the programming model and are
managed by their accelerator compilers. The bulk of a user’s program are exe-
cuted on the host. Their current version does not support multiple accelerators
of the same type or different types.

The proposed directives are used to: 1) delineate accelerator regions and 2)
augment information available to the compiler for scheduling of loops. #pragma
acc region defines the region of the program in which loops will be compiled
into accelerator kernels. It accepts clauses to specify data that needs to be copied
from the host memory to the accelerator memory (copyin) and result data that
needs to be copied back (copyout). The local clause is used to declare that the
data needs to be allocated in the accelerator memory. The programmer can use
the if(condition) clause to instruct the compiler to generate two copies of the
region, one copy to execute on the accelerator and one copy to execute on the
host, and decide which one to execute based on the evaluation of condition.
The accelerator loop mapping directive #pragma acc for applies to loops. It can
describe what type of parallelism to use to execute the loop (host [(width)],
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parallel [(width)], seq [(width)] and vector [(width)]). If more than
one scheduling clause appears on the loop directive, the compiler will strip-mine
the loop to get at least that many nested loops, applying one loop scheduling
clause to each level. The pragma also allows to declare loop private and cache
variables, arrays and subarrays.

In summary, the main differences with our proposal is that PGI is based on
compiler technology to optimize the offloading of loops in accelerators. Also the
data movement between the memories is managed by the compiler, not by the
runtime system.

4 Conclusions and Future Work

This paper proposes an extension to the OpenMP 3.0 tasking model to rea-
sonably integrate heterogeneity while preserving simplicity and portability. Our
proposal allows the programmer to easily specify the target devices for the ex-
ecution of a task as well as, for a subset of the tasks that can be expressed in
OpenMP, alternative implementations of the task for different target devices.
We have shown how with this proposal the programmer could extend a simple
matrix multiply to specify the execution in an heterogenous environment.

An implementation of this proposal is currently undergoing. We are currently
trying accommodate in our extension other proposals targeting streaming ar-
chitectures, such as the one proposed in [14], in which tasks become stream
filters and copy in and copy out clauses are used to indicate input and out-
put streams. Finally, we are also investigating new pragmas to direct program
transformation (for instance to specify loop blocking) and their interaction with
OpenMP constructs and our proposed extensions.
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13. Duran, A., Pérez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the
OpenMP tasking model to allow dependent tasks. In: Eigenmann, R., de Supinski,
B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg
(2008)

14. Martorell, X., Ramirez, A., Carpenter, P., Rodenas, D., Ayguade, E.: Streaming
machine description and programming model. In: Proceedings of the 7th Interna-
tional Symposium on Systems, Architectures, Modeling and Simulation (SAMOS),
pp. 107–116 (2007)

http://www.rapidmind.com/pdfs/RapidmindDatasheet.pdf


Identifying Inter-task Communication in Shared
Memory Programming Models

Per Larsen, Sven Karlsson, and Jan Madsen

DTU Informatics
Technical University of Denmark

{pl,ska,jan}@imm.dtu.dk

Abstract. Modern computers often use multi-core architectures, cov-
ering clusters of homogeneous cores for high performance computing,
to heterogeneous architectures typically found in embedded systems. To
efficiently program such architectures, it is important to be able to par-
tition and map programs onto the cores of the architecture. We believe
that communication patterns need to become explicit in the source code
to make it easier to analyze and partition parallel programs. Extraction
of these patterns are difficult to automate due to limitations in compiler
techniques when determining the effects of pointers.

In this paper, we propose an OpenMP extension which allows pro-
grammers to explicitly declare the pointer based data-sharing between
coarse-grain program parts. We present a dependency directive, express-
ing the input and output relation between program parts and pointers to
shared data, as well as a set of runtime operations which are necessary to
enforce declarations made by the programmer. The cost and scalability
of the runtime operations are evaluated using micro-benchmarks and a
benchmark from the NAS parallel benchmark suite. The measurements
show that the overhead of the runtime operations is small. In fact, no
performance degradation is found when using the runtime operations in
the benchmark from the NAS parallel benchmark suite.

1 Introduction

The adoption of parallel programming is starting to reach outside the parallel
and scientific computing communities and the use of multi-core processors in
desktop and embedded systems calls for parallel programming in all application
areas. Parallel programming requires the programmer to partition and map the
program onto the different processing elements.

A key challenge in partitioning a program is determining the communication
between coarse-grain program parts also known as tasks. In shared memory
programming models, communication is done through memory which means that
it is important to determine the effects of pointers. However, analysis techniques
to determine the effects at compile time produce over-approximations leading
to pessimistic choices in the subsequent scheduling and mapping steps. The
alternative, which is to determine dependencies by hand, is time-consuming and
error prone.
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Due to the relaxed-consistency shared memory model used in OpenMP
[1, p. 21], a conforming program can be viewed as being partitioned, by syn-
chronization operations, into a set of tasks. Programmer declarations of each
task’s access to shared data through pointers are used, rather than program
analysis, to determine data dependencies between tasks. As programmers may
make errors, we do not assume that the program is correct with respect to the
declarations. Instead, run-time checks are used to verify that the program con-
form to the communication patterns described in the directives.

This paper seeks to answer the following questions: i) can the programmer
mitigate the limitations of analysis of pointer effects by explicitly declaring de-
pendencies between tasks? ii) if so, can the correctness of the task dependency
declarations be checked dynamically with a negligible run-time overhead?

In this paper, we will allow ourself to pessimistically overestimate the com-
munication between tasks in two cases. First, data decomposition of arrays is
not taken into account. Instead, we rather assume the entire array to be shared.
Secondly, we assume that shared data structures are partially updated and ig-
nore the possible optimizations that can be done if a data structure is written
in its entirely by a task. Finally, we do not discuss the use of type systems for
data sharing – various approaches have been compared by Liblit et al. [2].

The main contributions in this paper are the following. We propose an ex-
tension to OpenMP that, using directives, describes the data sharing patterns
and hence the communication patterns in applications. We also describe the
runtime support needed so that object code generated by a compiler can check
at runtime that the program match the programmer declarations. Finally, we
measure the overhead of the proposed extension using a kernel from the NAS
parallel benchmarks [3,4] and in more detail using a set of micro-benchmarks.
The measurements show that the run-time overhead of checking the declarations
of a single task is approximately 2 microseconds whereas the cost of executing
a single OpenMP parallel section is 42 microseconds using 8 threads. Also, no
difference in execution time was observed between the original and instrumented
versions of the benchmark kernel when measured with the GNU time utility.

The remainder of the paper is structured as follows. After a brief note on
terminology, the proposed task dependency directive is introduced in Sect. 2.
Section 3 discusses the background of our work and related work. Section 4
illustrates the pointer aliasing problem and discusses how it can be mitigated
with the proposed task dependency declarations. Implementation of the runtime
support is outlined in Sect. 5 after which the performance results are given in
Sect. 6. Section 7 concludes the paper.

2 Task Dependency Declarations

Performance enhancing features of modern computer architectures as well as
compiler optimizations may lead to overlapping as well as reordering of memory
operations [5]. This also applies to OpenMP where each thread has a tempo-
rary view of memory that is not necessarily consistent with the main memory
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between memory synchronization operations [1]. A thread’s view of memory is
made consistent with the main memory by a memory synchronization operation
or, in OpenMP terminology, a flush. Apart from flush operations performed
explicitly by the programmer, many OpenMP sections imply a flush operation
on entry and/or exit as will be explained shortly.

Due to the relaxed-consistency memory model, a properly written OpenMP
program can not rely on writes made by one thread to be visible to another
thread before both threads have executed a flush. Consequently, such programs
can be viewed as being partitioned into a set of of tasks, each of which is a
sequence of instructions delimited by flush operations. Conceptually, a task
can not execute before all its inputs are available and no outputs are available
before its computation has finished.

This definition is compatible with the general tasking concept found in the
task scheduling literature [6] but differs from the notions of a task used to support
irregular parallelism in OpenMP 3.0 [1] and SmpSs [7]. There, a task refers
specifically to a sequence of instructions enclosed by an omp task or a smpss
task directive, respectively.

The following definitions are used in this paper:

Task. A sequence of instructions delimited by any OpenMP directive or routine
which includes, either implicitly or explicitly, a flush operation [1, p. 72].
All instructions belonging to the same task are executed in sequence.

Task-shared object. A C object which is accessed within more than one task.
If the object is a structure, its fields are also task-shared.

Task-private object. A C object which is not task-shared.
Runtime-checked pointer. A pointer which may point to task-shared objects

which is therefore subject to runtime checks as described in Sect. 2.

Two examples are given in Fig. 1. We use C as the base language but our work
can be applied to all languages currently supported by OpenMP.

Fig. 1. a) Structure of a program using OpenMP parallel and barrier directives to
fork, synchronize and join the execution of four tasks. b) Two snippets of code which
belong to separate tasks. The pointer x is accessed directly on lines 1,2 and 4, arr

is accessed via x on lines 2 and 4 and both are therefore task-shared whereas z is
task-private – in addition x is a checked pointer as its pointee is task-shared.
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2.1 The depends Directive

Inspired by the declaration of data-dependencies in Jade [8] and SmpSs [7], we
propose an extension such that a task must declare not only which pointers provide
input but also the tasks that produced the input. Similarly, a task that produces
output through pointers must declare which tasks can consume the output.

The ability to precisely determine which tasks communicate through pointers
via the proposed declarations depends on the correctness of the declarations.
Therefore, it must be possible to detect whenever the declarations made by
the programmer are incorrect. Verifying the correctness of the declarations at
compile time is infeasible as we will explain in Sect. 4. Simple cases may be
handled statically, but in the remaining cases the declarations must be enforced
via runtime checks.

To enable efficient runtime checks, certain restrictions are put upon checked
pointers. As they are compared by their value, checked pointers should always hold
the address of the first element in case the pointee is of an array or aggregate type.
For this reason pointer arithmetic is not allowed on runtime checked pointers.

The depends directive must be used to declare dependencies with other tasks
through shared data. It must be placed immediately before the task boundary
(defined below) which begins the task to which the declarations applies.

The syntax of a task dependency directive is given below using the informal
notation of the OpenMP 3.0 specification [1].

#pragma depends (name) [clause[[,] clause]. . . ] new-line
task-boundary

where a valid task-boundary is at one of the following memory synchronization
points as defined by the OpenMP specification [1, p. 291]

• a barrier.
• a flush with an empty flush-set.
• entry to or exit from a parallel, critical or ordered region.
• exit from a worksharing region unless a nowait clause is present.
• entry to or exit from a combined parallel worksharing region.
• immediately before or after an omp task scheduling point.
• entry to or exit from a omp set lock and omp unset lock region.

and name assigns a name to the task and clause is one of

input (rt-checked-ptr, task-name[,task-name]. . . )
output(rt-checked-ptr, task-name[,task-name]. . . )
inout (rt-checked-ptr, task-name[,task-name]. . . )

The input clause requires two types of arguments – rt-checked-ptr is a run-
time checked pointer and each task-name is the name of a task that may have
modified the pointee of rt-checked-ptr prior to the execution of the task which
the input clause applies to. The arguments of the output clause is similar ex-
cept that each task-name identifies a task that may read the pointee of rt-
checked-ptr after the execution of the task which the output clause applies to.
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The inout clause is a syntactic shorthand and inout(ptr,t1,t2) is equivalent
to input(ptr,t1,t2), output(ptr,t1,t2).

Any checked pointer which is accessed by a task must appear in the depends
directive of that task. A pointer which is assigned to the value of a checked
pointer is also checked cf. our definition.

A task t is only allowed to read a task-shared object pointed to by p when all
of the following criteria are met:

– the pointer p appears in an input or inout clause in the depends statement
of t; and

– any task twr, that writes to the task-shared pointee of p and can execute
before t, appears in an output or inout clause in the depends directive of
t. If control-flow analysis [9] can not determine that twr may only execute
after t it must appear in the depends directive of t.

The conditions for dereferencing a checked pointer for writing are analogous.
To detect when the above criteria are violated, the value held in the checked

pointer, i.e. the address of the task-shared object, is used as the key in a per-
mission table which is initialized from the depends statements of an annotated
program. As previously mentioned, a checked pointer must therefore point to the
beginning of the shared object and thus we have chosen not to permit pointer
arithmetic on checked pointers. An alternative solution would be to represent
checked pointers as two regular pointers - one which holds first address of the
task-shared object and one which can point to any part of the object. However,
the use of such pointers to shared objects doubles the storage needed to hold
a checked pointer and conversions may be required when interoperating with
program libraries.

The proposed directives are assumed to be processed by a compiler. In this
paper, we only translate the directives into calls to runtime functions by hand to
provide a proof of concept. However, we have completed a full implementation
of the necessary run-time functionality.

Section 5 will provide more insight on how to detect undeclared accesses to
shared objects.

3 Background and Related Work

One of the most central aspects in parallel computing is the communication be-
tween parallel entities. We argue that i) the coarse-grain communication patterns
in parallel code have to be explicit and ii) having such information available at
compile time is of value as outlined in the following sections.

3.1 Mapping Applications to Heterogeneous Platforms

A task graph is a graph model that abstracts the performance and resource char-
acteristics of a single application or workload. Task graphs are used in many



Identifying Inter-task Communication in Shared Memory Programming 173

contexts including system-level design where an optimal mapping of an ap-
plication to a heterogeneous, application specific platform is sought after [10].
Premised on a survey of well known graph models for representation of paral-
lel computation, Sinnen and Sousa [11] define a general graph model in which
computation is associated with the vertices, called nodes, and communication is
associated with its edges. One type of node is a task as defined in Sect. 2.

To be useful, the nodes and edges of a graph model must represent the compu-
tation and communication, respectively, of the actual application as precisely as
possible. Approaches to graph model generation include extraction from source
code by hand [10], via compiler analysis and instrumentation [12] or by exe-
cuting the program in a simulator [13]. While the manual approach potentially
benefits from high-level human comprehension of the source code, it is also time-
consuming and error-prone. The compiler approach is automatic but the use of
naive analysis techniques generates many false dependencies as its correctness
relies on conservative assumptions about pointer effects. When used to allocate
tasks to processing elements, the extra edges in the task graph over-constrain
the problem and reduce the available mapping choices. The simulation approach
relies on a single execution and does not take task dependencies over all possible
program paths into account. Consequently, the result of such an approach is only
valid for a particular program execution.

In comparison, our proposal complements the information that may be gath-
ered from points-to analysis. It reduces excess edges in a task graph by captur-
ing precise information on inter-task dependencies since all communication via
pointers is either declared or causes a runtime error.

3.2 Reducing Communication between Processing Elements

Programming models supporting the abstraction of a global shared memory
provide a coherent view of the memory hierarchy to all processing elements.
To maintain the view of the memory hierarchy, the processing elements com-
municate information on memory updates among themselves. Although several
optimizations exist [14,15] which reduce the communication, the overhead of
communicating remains significant. Information about inter-task dependencies
may be used to limit the traffic by only communicating updates to processing
elements which run dependent tasks. We envision the optimizations to be useful
in systems where the communication protocols maintaining the memory view
can be altered to fit the requirements of applications.

3.3 Improving Program Analysis

Pointers and arrays are used in almost all programming languages. While be-
ing useful programming abstractions, they also pose problems for tools, such as
compilers, that analyse programs. These tools must take the effect of operations
through pointers into account. Points-to analysis [16,17] is used to approximate
the effects of operations through pointers. If two pointers point to the same
storage location they are said to be aliases. Similarly, the array-indexing expres-
sions a[i] and a[j] alias if i equals j. Many algorithms performing points-to
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analysis exist. Each of them offers a different trade-off in terms of scalability of
the algorithm and precision of the result. However, precise points-to analysis has
been shown to be undecidable [18]. The limitation on precision is demonstrated
by an example in Sect. 4. In a survey, Hind [17] suggests using programmer
annotations to improve precision.

We believe the runtime checks which enforce the task dependency declara-
tions, as explained in Sect. 5, can be used for this purpose. They allow a points-
to analysis for an annotated program to assume that, for a task t, a pointer
can only alias i) pointers which are task-private to t or ii) task-shared pointers
contained in tasks with a declared dependency on t. All other aliasing will cause
runtime errors.

This leads to more precise analysis. In addition, the input to the analysis
algorithms becomes smaller yielding a shorter execution time. The smaller input
set also makes it possible to use more advanced analysis algorithms that have a
higher computational complexity.

3.4 Related Work

We are not aware of any previous work which annotates OpenMP programs
to identify communication between tasks. Adve and Sakellariou [19] have im-
plemented compiler supporting synthesis of task graphs from High-Performance
Fortran programs which use MPI [20] for message passing. They also argue in
favor of generating task graphs from OpenMP programs.

The Jade [8] programming language uses dependency declarations as the
primary means of expressing parallelism, communication and synchronization.
SmpSs [7] is a more recent proposal which aims at extending the OpenMP tasking
model [21] to add support for dependent tasks using declarations with semantics
similar to those in Jade.

Compared to Jade and SmpSs, the task dependency directive proposed in
this paper differs by capturing not only the names of input and output variables
but also those of input and output generating tasks. Furthermore, Jade and
SmpSs use dependency information to dynamically schedule irregular workloads
whereas our proposal uses dependencies for compile time identification of inter-
task communication for the full range of parallel patterns supported by OpenMP.

4 Limitations of Points-to Analysis

Listing 1 illustrates a situation in which points-to analysis is forced to pessimisti-
cally assume that b, c and d may alias which is safe but also restrictive for clients
of the analysis. Consequently, points-to analysis can not, in general, determine
if two tasks in a shared memory program communicate or not.

One can use message passing to make communication between different pro-
gram parts or tasks explicit but it is not a universal panacea however [22]. Stud-
ies comparing benchmarks using message passing, MPI [20], and shared memory
programming using ccNUMA or software distributed-shared memory architec-
tures have shown that the message passing implementations deliver the best
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Listing 1. Pointer aliasing problem. Since the behavior of the function f can be arbi-
trarily complex, points-to analysis must assume that b, c and d may alias a to be safe.
It is therefore unknown if the tasks first, second and third share data.

1 int a, *b, *c, *d, *f(void); /* f is an arbitrary function */

2 void first (int *x) { ... }

3 void second(int *y) { ... }

4 void third (int *z) { ... }

5
6 void g(void) {

7 b = &a; c = f(); d = f(); /* b, c and d may alias */

8 #pragma omp parallel

9 {

10 #pragma omp task

11 first (b);

12 #pragma omp task

13 second(c);

14 #pragma omp task

15 third (d);

16 }

17 }

Listing 2. Declaration of task dependencies using the proposed directive. The output

clause on line 5 means that the first task will write data to the variable x which is
read by tasks second and third. Similarly, task second declares that y provides input
from first and output to a task fourth which is not shown.

1 void g(void) {

2 b = &a; c = f(); d = f(); /* b, c and d may alias */

3 #pragma omp parallel

4 {

5 #pragma depends first output(x,second ,third)

6 #pragma omp task

7 first (b);

8 #pragma depends second input(y,first) output(y,fourth)

9 #pragma omp task

10 second(c);

11 #pragma depends third input(z,first)

12 #pragma omp task

13 third (d);

14 }

15 }

performance but are also more cumbersome to write since the explicit handling
of communication imposes an additional burden on the programmer [4,23,24].

4.1 Using Task Dependency Declarations

In Listing 2, the function g from the previous example has been adapted such
that tasks mention its dependent tasks in the input and output declarations.
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Compared to Listing 1, the extended declarations make it trivial to determine
that the task first provides output to second and third and that second does
not provide output to third.

As discussed in Sect. 3.4, the task dependency declarations used in Jade and
SmpSs do not contain the names of dependent tasks in the input and output
clauses, e.g., line 8 in Listing 2 would be reduced to input(y) output(y).
If task names were removed from the input and output clauses in Listing 2
it must once again be pessimistically assumed that communication is possible
between all three tasks. This justifies the inclusion of task names in our proposed
directive.

5 Runtime Implementation

The task dependency declarations must be enforced dynamically and this section
describes how this is accomplished. Most importantly, it must be ensured that a
task will not dereference a checked pointer which is not declared as a dependency.
This section will also discuss the runtime calls which can be emitted by a compiler
to enforce the dependency declarations.

We define a function rd(p) which maps a runtime checked pointer p to the
set of all tasks which may read its pointee. Each task and pointer pair 〈t, p〉
is mapped to the set of tasks which are declared as readers of shared objects
through p in the depends statement of t by rddeps(p, t). Finally, rdpre(p, t) is the
function which gives the set of tasks which are readers of shared objects through
p but may only execute before the first execution of t. Analogous definitions
exists for writes through runtime checked pointers as shown in Table 1.

Before a task t reads the pointee of p it must be checked that

t ∈ rd(p) ∧ wr(p) = wrdeps(p, t) ∪ wrpost(p, t) (1)

Table 1. Auxiliary functions which define the sets of tasks used when describing the
functioning of the runtime operations

Function Output

rd(p) the set of all tasks which may read task-shared objects pointed to by p
wr(p) the set of all tasks which may write task-shared objects pointed to by

p
rddeps(p, t) the set of tasks which are declared as readers of task-shared objects

pointed to by p in the depends statement of t
wrdeps(p, t) the set of tasks which are declared as writers of task-shared objects

pointed to by p in the depends statement of t
rdpre(p, t) the set of tasks which may read task-shared objects pointed to by p but

never execute after or in parallel with t
wrpost(p, t) the set of tasks which may write task-shared objects pointed to by p

but never execute before or in parallel with t



Identifying Inter-task Communication in Shared Memory Programming 177

rd(p) = {t0, t2, t3} wr(p) = {t1, t4}
rdpre(p, t1) = {t0} wrpost(p, t3) = {t4}
rddeps(p, t1) = {t2, t3} wrdeps(p, t3) = {t1}

Output check of p before its pointee is written by t1:
t1 ∈ wr(p) ∧ rd(p) = rddeps(p, t1) ∪ rdpre(p, t1) →
t1 ∈ {t1, t4} ∧ {t0, t2, t3} = {t2, t3} ∪ {t0}

Input check of p before its pointee is read by t3:
t3 ∈ rd(p) ∧ wr(p) = wrdeps(p, t3) ∪ wrpost(p, t3) →
t3 ∈ {t0, t2, t3} ∧ {t1, t4} = {t1} ∪ {t4}

a b

Fig. 2. a) Program fragment showing the control flow between seven tasks that share
data through a pointer p. Tasks tx and ty are omitted for clarity. b) Example runtime
checks which apply (1) to p in t3 and (2) to p in t1. Although both of tasks t1 and t4
write to the pointee of p, tasks t2 and t3 need only declare an input dependency on
t1 because t4 is always executed after t3. Similarly, the output clause of t1 need not
mention t0 as it always executes before t1.

and similarly, it must be checked that

t ∈ wr(p) ∧ rd(p) = rddeps(p, t) ∪ rdpre(p, t) (2)

before the pointee of p is written to by a task t. An concrete example is shown
in Fig. 2. Since the second part of the conjunction is the same for all tasks which
read or write p, the necessary dependency information is stored in a global hash
table in which each pair of bit-vectors 〈rd(p), wr(p)〉 is keyed on p.

A runtime check is simply a lookup on p in the dependency hash table followed
by one bit-vector membership test and one bit-vector comparison corresponding
to the left and right-hand side respectively of conjunction (1) or (2). Bit-vectors
are represented as machine word sized elements in a fixed size array meaning
that operations on bit-vectors can be supported efficiently.

To determine where runtime checks should be performed, the relaxed-
consistency memory model [5] of OpenMP must be taken into account. All the
task-boundary points defined in Sect. 2 implies a flush operation. Consequently,
given a conforming OpenMP program, a single runtime check inserted between
each flush and dereference of a runtime checked pointer p is sufficient to detect
violations of a task dependency declaration.

Besides the runtime checks themselves, we have implemented the following
operations which update the dependency hash table.

register input(p, input tasks) Sets the initial value of rd(p) in the de-
pendency table. Called at program start-up to register checked, file-scope
pointers. It is also called at runtime to set dependencies of runtime checked
pointers to dynamically allocated memory.
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register output(p, output tasks) Sets the initial value of wr(p). Otherwise
it is similar to register input.

update input(p, input tasks) Updates rd(p) in the dependency table such
that the new value equals rd(p) ∪ input tasks. Called to update the input
dependencies rd′(p1) ← rd(p1) ∪ rd(p2) when a runtime checked pointer p1
is assigned the value of a runtime checked pointer p2.

update output(p, output tasks) Updates wr(p). Otherwise it is similar to
update input.

unregister(p) Removes rd(p) and wr(p) in the dependency table. Called im-
mediately after dynamic memory deallocation.

Accesses to the dependency table need to be synchronized since it is potentially
read and updated concurrently.

We currently use a read/write lock [25] provided by the POSIX threads [26]
implementation on our platform. This means that the runtime checks can happen
concurrently by acquiring the lock for reading while the register, update and
remove operations may need to update the dependency table under a write lock.
The unregister operation always acquires the lock for writing. Since the time
to acquire the lock for reading is several orders of magnitude slower than a
lookup in the dependency table, the synchronization overhead is amortized by
only acquiring the lock for reading once for all necessary runtime checks at a
task-boundary.

6 Results

We have conducted two types of experiments. First, the cost and scalability of
each of the runtime operations were investigated. Second, the effort to annotate a
sample programand the performance impact of the runtime checkswere examined.

All benchmarks were compiled with GCC 4.3.2 with the optimizations implied
by the -02 flag and run under the Ubuntu 8.10 Linux distribution using a 2.66
GHz Intel Core i7 CPU. Due to slight variations in the results of the individual
benchmark runs, we use averages calculated from thirty consecutive benchmark
executions.

6.1 Runtime Operations

Each of the runtime operations discussed in Sect. 5 were benchmarked and the
results are shown in Fig. 3. Each operation was executed repeatedly in a tight
loop to increase execution times well above the timer resolution.

The measurements of the operations which may insert a key into the depen-
dency table is split into two cases: key present and key not present. To compare
the cost of the runtime operations with the cost of entry and exit of a task-
boundary, the performance of the OpenMP parallel construct is also included
in the graph. It was measured using the EPCC micro-benchmark suite [27].

The check input and check output takes at most two microseconds. Since
the cost is dominated by the time to acquire the lock for reading, this value is also
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Fig. 3. Time taken by a single execution of each runtime operation and the OpenMP
parallel directive in microseconds as a function of the number of threads

a good indicator of the total cost incurred by all checks at a task-boundary such
as entry to a parallel section. Thus, we expect the added cost of performing
runtime checks at task-boundaries to be insignificant.

Replacing the read/write lock with read-copy-update synchronization [28]
would allow read operations to become lock-free. As read-only runtime checks
typically execute much more frequently than the other operations we expect this
to significantly lower the overhead and improve the scalability of our implemen-
tation.

The register and update operations which need not insert a key into the
dependency table take at most five microseconds and reflects the cost of creat-
ing an alias of a checked pointer which is already registered with the runtime.
Unregistering a shared object takes slightly longer but is only necessary when
deallocation of the object which itself is typically a costly operation.

Finally, the operations which need to insert a key into the dependency table
under a write-lock have the highest execution time which is approximately fif-
teen microseconds in case of eight threads. Again, these more costly operations
occur only in context of memory allocation which itself may be costly and thus
is likely to be used sparingly by a skilled programmer.

For all operations except omp parallel, check input and check output, a
super-linear increase in execution time is observed when going from four to
eight threads. This is most likely explained by the fact that in the latter case
two threads must share the resources of a single processor core as the bench-
mark system only contains four processor cores even though it can execute eight
threads simultaneously.

6.2 Sample Application: Integer Sort

The task dependency directives were applied to the integer sort kernel, IS, in the
NAS parallel benchmarks1 [3,4] to determine the impact on programming effort
and runtime performance. The IS program performs integer sort on a large array
1 http://www.nas.nasa.gov/Resources/Software/npb.html was used to obtain ver-

sion 3.3 of the NAS parallel benchmarks.
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and tests integer computation as well as communication performance [3]. The
workload is distributed primarily by means of loop-parallelism.

First we identified the set of task boundaries. Then the set of runtime checked
pointers was identified and depends statements were added. Finally, the calls
required to register, update and check task dependencies were added by hand as
we have yet to automate this step.

The source contained 4 parallel sections, 5 worksharing sections which par-
titions the program into 14 tasks. There were 8 runtime checked pointers. We in-
serted 7 calls to register input, 8 to register output, 3 to update input, 1 to
update output and finally 19 and 11 calls to check input and check output re-
spectively. It was not necessary to call unregister as no memory was deallocated.

The execution time of the instrumented and un-instrumented versions of the
IS kernel was measured using the GNU time utility. The timing facility built into
the benchmark was not used as it would not account for the cost of initializing
our runtime. The benchmark was executed repeatedly for class S, A and B
workloads which sorts 216, 223 and 225 32-bit integers respectively. For none
of the workloads were there a detectable change in execution time above the
measurement accuracy.

7 Conclusions

We have presented an extension to OpenMP that makes it possible to declare
inter-task communication patterns. The depends construct increases the amount
of knowledge of inter-task communication which is available statically. The tech-
nique presented in this paper will pessimistically overestimate the communica-
tion between tasks in two cases. First, we do not take array slicing into account
and rather assume the entire array to be shared. Secondly, we assume that shared
data structures are partially updated and ignore the possible optimizations that
can be done if a data structure is written in its entirely by a task.

Our technique was evaluated using the IS benchmark from the NPB bench-
mark suite. The measurement shows no performance degradation from the run-
time checks that was inserted into the programcode to test if the programbehavior
conform to the specified communication patterns. The result was generated using
an Intel Core i7-based workstation supporting the execution of up to eight threads
in parallel.

We also used a set of micro-benchmarks to further evaluate the cost and
scalability of the individual runtime operations. It was found that even though
the execution time is dominated by the time taken to acquire locks, the cost of
the runtime checks executed at entry to a task is an order of magnitude lower
than the cost of entering and exiting an omp parallel section.
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