
Chapter 9
The LLL Algorithm and Integer Programming

Karen Aardal and Friedrich Eisenbrand

Abstract The LLL algorithm has proven to be a powerful theoretical and practical
tool in many areas of discrete mathematics. In this chapter, we review some struc-
tural and algorithmic results involving basis reduction and integer programming.

Introduction

Let P D fx 2 IRn j Ax � dg, where the m � n matrix A and the m-vector d are
given by integer input. Assume P is bounded and full-dimensional. The Integer
programming feasibility problem is defined as:

Does there exist a vector x 2 P \ ZZn‹ (9.1)

This problem is NP-complete [1, 2] and is related to the Integer programming
optimization problem,

maxfcT x j x 2 P \ ZZng ; (9.2)

where c is an n-dimensional vector. We call the problem maxfcT x j x 2 P g the
linear programming relaxation of (9.2). A combinatorial optimization problem is
typically an integer optimization problem in which the integer variables take values
0 or 1 only. Well-known examples of combinatorial optimization problems are the
subset sum problem, the matching problem and the traveling salesman problem.

In 1981, Lenstra, [3, 4] proved that the integer programming feasibility problem
(9.1) can be solved in polynomial time if the dimension n is fixed. The proof was
algorithmic, and the main auxiliary algorithm was lattice basis reduction. In the
research report [3], a reduction algorithm with polynomial running time for fixed
n was used, but in the published version [4], Lenstra used the LLL basis reduction
algorithm [5] that had been developed in the meantime.

K. Aardal (B)
Delft Institute of Applied Mathematics, TU Delft, Mekelweg 4, 2628 CD Delft, The Netherlands
and CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands,
e-mail: k.i.aardal@tudelft.nl

P.Q. Nguyen and B. Vallée (eds.), The LLL Algorithm, Information Security
and Cryptography, DOI 10.1007/978-3-642-02295-1 9,
c� Springer-Verlag Berlin Heidelberg 2010

293

k.i.aardal@tudelft.nl

294 K. Aardal and F. Eisenbrand

Not only was Lenstra’s result important in that it answered a prominent open
complexity question, but it also introduced geometry of numbers to the field of
optimization. Many results, inspired by this paper, have since then been obtained.

The purpose of this paper is to provide a glimpse of some of the important theo-
retical and computational consequences of the LLL algorithm in relation to integer
programming, rather than giving a complete overview of all such results. The inter-
ested reader can consult the following references for a thorough treatment of the
topic. A good undergraduate level introduction to integer programming is given
by Wolsey [6]. Graduate textbooks on integer and combinatorial optimization are
Grötschel, Lovász, and Schrijver [7], Nemhauser and Wolsey [8], and Schrijver
[9,10]. Cassels [11] is a classical book on the geometry of numbers, while the recent
books by Barvinok [12] and by Micciancio and Goldwasser [13] focus on algorith-
mic aspects. Lattices, representations of lattices, and several problems on lattices
wherein basis reduction plays a prominent role are presented in the introductory
chapter by Lenstra [14]. Lovász [15] treats basis reduction, integer programming,
and classical lattice problems such as the shortest vector problem. Kannan [16] pro-
vides a nice overview of topics related to lattices and convex bodies, and Aardal and
Eisenbrand [17] review results on integer programming in fixed dimension.

Notation

Vectors and matrices are written in boldface. By xj , we mean the j th vector in a
sequence of vectors. The i th element of a vector x is denoted by xi . Element .i; j /
of the matrix A is denoted by Aij . The Euclidean length of a vector x 2 IRn is
denoted by kxk and is computed as kxk D pxT x, where xT is the transpose of the
vector x.
Let b1; : : : ;bl be linearly independent vectors in IRn. The set

L D
n
x 2 IRn j x D

lX

jD1

�j bj ; �j 2 ZZ; 1 � j � l
o

(9.3)

is called a lattice. The set of vectors fb1; : : : ;blg is called a lattice basis. If we
want to emphasize that we are referring to a lattice L that is generated by the basis
B D .b1; : : : ;bl /, then we use the notation L.B/.

The rank of L, rk L, is equal to the dimension of the Euclidean vector space
generated by a basis of L. The determinant of L can be computed as d.L/ Dp

det.BT B/, where BT is the transpose of the matrix B that is formed by taking
the basis vectors as columns. Notice that if l D n, i.e., L is full-dimensional, then
d.L/ D j det.B/j.

Let L.B/ be a full-dimensional lattice in IRn generated by B. Its dual lattice
L�.B/ is defined as

9 The LLL Algorithm and Integer Programming 295

L�.B/ D
n
x 2 IRn j xT y 2 IR for all y 2 L

o
:

The columns of the matrix .BT /�1 form a basis for the dual lattice L�.B/. For a
lattice L and its dual, we have d.L/ D d.L�/�1.

Integer Programming: A Brief Background Sketch

Cutting Planes

The history of integer programming is, compared to many other mathematical sub-
jects, quite brief. The first papers on determining optimal solutions to general integer
linear optimization problems were published by Ralph E. Gomory; see, for instance,
[18,19]. It is also interesting to read Gomory’s [20] own remarks on how he entered
the field and viewed the topic. Gomory, while at Princeton, worked as a consultant
for the US Navy, and there he was presented with a problem from the Navy Task
Force. It was a linear programming problem with the additional important feature
that the answer should be given in integer numbers. After having a thorough look
at the problem at hand, Gomory made the following observation: all objective func-
tion coefficients are integer, so the optimal value should also be integer. One could
solve the linear programming relaxation of the problem first, and if the variable val-
ues come out integer, then of course the integer optimum has been found. If not, it is
valid to add the restriction that the objective value should be less than or equal to the
linear programming objective value rounded down. Gomory describes this as “push-
ing in” the objective function. After some more thinking, Gomory realized that the
same thing can be done with other integer forms as well, and the theory of cutting
planes was born. Gomory proved the important result that, under certain technical
conditions, the integer optimum will be obtained after adding a finite number of
the so-called Gomory cutting planes. It is important to notice that an algorithm for
solving linear optimization problems had been developed in the 1950s by Dantzig
[21], so it was natural to use the linear relaxation as a starting point for solving the
integer optimization problem.

In a more problem-specific setting, the idea of cutting planes was introduced by
Dantzig, Fulkerson, and Johnson [22,23], who used this approach to solve a 49-city
traveling salesman instance by the combination of linear programming and cutting
planes. This approach grew increasingly popular with, for instance, the work on the
matching problem by Edmonds [24], the traveling salesman problem by Grötschel
[25], and Grötschel and Padberg [26–28], and on the knapsack problem by Balas
[29], Hammer et al. [30], and Wolsey [31]. The problem of finding good partial
descriptions of the convex hull of feasible solutions to various problems has played
a prominent role in the research on integer and combinatorial optimization up to
this day.

296 K. Aardal and F. Eisenbrand

Branch-and-Bound and Branch-and-Cut

In 1960, Land and Doig [32] introduced branch-and-bound. This is an algorithm for
integer optimization that implicitly enumerates solutions. Solving linear program-
ming relaxations is the main engine of the algorithm, and information from these
relaxations is used to prune the search, with the aim of avoiding complete enumer-
ation. The algorithm can be illustrated by a search tree as follows. In each node of
the tree, the linear relaxation of the problem corresponding to that node is solved.
When we start out, we are at the root node, where we solve the linear relaxation of
the original problem. Let z be the value of the best known integer feasible solution.
We can stop investigating further at a certain node k, called pruning at node k, if
one of the following things happens:

1. The solution of the linear programming relaxation of the subproblem corre-
sponding to node k is integer (prune by optimality). If the solution value is
better than z, then update z.

2. The linear relaxation at node k is infeasible (prune by infeasibility).
3. The objective function value of the linear relaxation at node k is less than or

equal to z (prune by bound).

If we cannot prune at node k, we need to branch, which simply means that we
create two subproblems as follows. Choose a variable that has a fractional value in
the optimal linear programming solution. Assume this is variable xi with current
fractional value f . One subproblem is created by adding the constraint xi � bf c
to the linear relaxation of node k, and the other subproblem is created by adding
the constraint xi � df e. In this way, we do not cut off any integer solution. The
algorithm continues as long as there are unpruned leaves of the tree. Notice that we
can also solve the feasibility problem (9.1) by branch-and-bound by just introducing
an arbitrary objective function and terminate the search as soon as a feasible integer
solution has been found or when integer infeasibility has been established.

Modern integer programming algorithms use a combination of branch-and-
bound and cutting planes, both general and problem-specific, where the cutting
planes are used to strengthen the linear relaxation in a selection of the nodes of
the search tree. We refer to such algorithms as branch-and-cut. Branch-and-cut is
not only used in academic research codes, but also in commercial software such as
CPLEX [33] and Xpress [34].

Complexity Issues

The early work on integer programming took place before there was a formaliza-
tion of computational complexity, but it was clear from the very beginning that the
number of cutting planes needed in a cutting plane algorithm could grow expo-
nentially, and if we consider branch-and-bound, a 2-dimensional example similar
to the one given in Example 1 below, illustrates that a branch-and-bound tree can
become arbitrarily deep. With the language of computational complexity at hand,

9 The LLL Algorithm and Integer Programming 297

these phenomena could be described more formally. From the cutting plane point-
of-view, Karp and Papdimitriou [35] proved that it is not possible to find a concise
linear description of the convex hull of feasible solutions for an NP-hard optimiza-
tion problem unless NPDco-NP. This means that we cannot, a priori, write down
such a linear description even if we allow for exponentially sized classes of linear
inequalities, such as the subtour elimination constraints for the traveling salesman
problem.

Example 1. Consider the integer programming feasibility problem (9.1) with the
polytope P , illustrated in Fig. 9.1, as input:

If we solve this feasibility problem by branch-and-bound, we first need to
introduce an objective function. Let us choose

max z D x1 C x2 :

If we solve the linear relaxation of our problem, we obtain the vector .x1; x2/
T D

.6 4
5
; 5/. We illustrate P and some of the constraints (dashed lines) added

during branch-and-bound in Fig. 9.1, and the search tree corresponding to the

P

x1

x2
x1 ³ 7

x2 ³ 5

x1 £ 6

x2 £ 4

Fig. 9.1 The polytope P of Example 1, and some constraints added in branch-and-bound

298 K. Aardal and F. Eisenbrand

P1
x1 =
x2 =

x1 ³ 7

x2 ³ 5

x1 £ 6

P2 P3
x1 = 6
x2 =

21
5

P4 P5

P28 P29

P26

x2 £ 4

x1 =
29
5

x2 = 4

x2 =
x1 = 0

− 6
5

x2 £ −2
x2 ³ −1

34
5
5

Fig. 9.2 The branch-and-bound search tree

branch-and-bound procedure in Fig. 9.2. Since .6 4
5
; 5/ is not an integer vector, we

create two branches at the root node of our search tree: one corresponding to x1 � 6
(subproblem P2) and the other corresponding to x1� 7 (subproblem P3). Again,
solving the linear relaxation corresponding to subproblem P2 gives the solution
.x1; x2/

T D .6; 4 1
5
/, whereas subproblem P3 is infeasible. Branch-and-bound con-

tinues in a similar fashion until subproblems P28 and P29, in which all nodes of the
search tree are pruned and it is finally verified that P does not contain any integer
vector. �

By “stretching” the polytope given in Example 1 arbitrarily far in both directions,
we see that even in dimension n D 2, we can obtain a search tree that is arbitrarily
deep.

The Integer Linear Feasibility Problem

The above example indicates that branching on variables xi � ˇ and xi � ˇ � 1,
for ˇ 2 ZZ can result in an algorithm for integer programming that is exponential

9 The LLL Algorithm and Integer Programming 299

P

x1

x2

Fig. 9.3 None of the hyperplanes �x1 C x2 D ˇ; ˇ 2 ZZ intersect P

in the binary input encoding of the problem, even in dimension 2. If we allow for
hyperplanes that are more general than the single-variable hyperplanes, then we can
observe that, for instance, the hyperplanes �x1 C x2 D ˇ; ˇ 2 ZZ do not even
intersect with the polytope. Yet, the hyperplanes do contain all points in ZZ2. This
observation yields a certificate of integer infeasibility of our example; see Fig. 9.3.

The idea of enumerating parallel hyperplanes that cover all lattice points is called
branching on hyperplanes, and can be described as follows. Let d 2 ZZn � f0g be a
nonzero integer vector. An integer point x 2 P \ ZZn satisfies

dT x D ˇ; where ˇ 2 ZZ and min
x2P

dT x � ˇ � max
x2P

dT x:

This implies that we can continue to search for an integer point in the lower-
dimensional polytopes P \ .dT x D ˇ/ for each integer ˇ 2 ZZ satisfying

min
x2P

dT x � ˇ � max
x2P

dT x: (9.4)

300 K. Aardal and F. Eisenbrand

The question is which direction d to choose such that the number of integers ˇ
satisfying (9.4) is small. Clearly, such an integer direction does not need to exist.
Simply consider a ball of sufficiently large radius. The flatness theorem, attributed to
Khinchin 1948, however, ensures that there exists a nonzero integer vector d 2 ZZn

such that the number of integers in the interval 9.4 is bounded by a constant if the
polytope does not contain an integer point. A convex body is a convex and compact
set K 	 IRn with a nonempty interior. If we define the width of K along d as
w.K;d/ D maxfdT x j x 2 Kg�minfdT x j x 2 Kg, the theorem reads as follows.

Theorem 1 (Khinchin’s flatness theorem [36]). Let K 	 IRn be a closed convex
set; then, eitherK contains an integer point, or there exists a nonzero integer vector
d such that w.K;d/ � f .n/, where f .n/ is a constant depending on the dimension
only.

In the following subsection, we will present Lenstra’s algorithm as an algorith-
mic version of the flatness theorem. This is different from the way the algorithm was
presented originally, but our presentation below not only links the algorithm explic-
itly to the flatness theorem, but also highlights the relationship to other traditional
lattice problems such as the closest and the shortest vector problems.

Lenstra’s Algorithm

Here, whenever we consider a polytope P , we assume it is full-dimensional, and we
use the notation d for a nonzero integer vector of appropriate dimension.

Lenstra’s algorithm finds either an integer point in the polytope P 	 IRn, or an
integer direction d such that P is flat in this direction, i.e., a direction d such that
w.P;d/ is bounded by a constant in fixed dimension. Thus, Lenstra’s algorithm
solves the following problem, which we call the Integer feasibility problem (IP)

Given a polytope P 	 IRn, compute an integer point x 2 P \ ZZn or a nonzero

integer vector d with w.P;d/ � f .n/; (9.5)

where f .n/ is a constant depending on the dimension only.
If problem IP is solvable in polynomial time in fixed dimension, then the integer

programming feasibility problem (9.1) is also solvable in polynomial time in fixed
dimension. This follows by induction, since in the case in which the algorithm solv-
ing IP returns a direction d, one continues the search for an integer point in P in the
constantly many lower-dimensional polytopes

P \ .dT x D ˇ/; ˇ 2 ZZ; min
n
dT x j x 2 P

o
� ˇ � max

n
dT x j x 2 P

o
:

In the remainder of this section, we describe Lenstra’s result by a series of reductions
that ends up with a problem on a lattice L of finding either a lattice vector close to a

9 The LLL Algorithm and Integer Programming 301

given vector u, or a short vector in the dual lattice L�. We call this problem CSVP.
In addition, we highlight the role that the LLL algorithm [5] plays in solving the
integer programming feasibility problem.

Problem Reductions

An ellipsoid is a set E.C; c/ D fx 2 IRn j kC.x � c/ k� 1g, where C 2 IRn	n

is a nonsingular matrix. In a first step, Lenstra computes an ellipsoid E.C; c/ with
C 2 Qn	n and c 2 Qn such that E.C; c/ is contained in the polytope P 	 Qn and
such that if E.C; c/ is scaled from its center by 2 � n3=2, then it contains P .

Since the width of the scaled ellipsoid is the width of the original ellipsoid scaled
by the same factor, we have

w.E.C; c/;d/ � w.P;d/ � 2 � n3=2 � w.E.C; c/;d/:

This shows that we can solve the problem IP in polynomial time in fixed dimen-
sion, if we can solve the following analogous problem for ellipsoids, which we call
Integer feasibility of an ellipsoid (EIP), in polynomial time in fixed dimension.

Given a nonsingular rational matrix C 2 Qn	n and a rational point c 2 Qn,
compute an integer point x 2 E.C; c/\ ZZn or determine an integer nonzero vector
d such that w.E.C; c/;d/ � f2.n/,
where f2.n/ is a constant depending on the dimension n only. Following this
approach yields f .n/ D 2 � n3=2 � f2.n/ in (9.5).

In problem EIP, we have to compute a lattice point v 2 L.C/, such that its
Euclidean distance from the point Cc is at most 1, or find an integer direction d such
that the ellipsoid is flat along this direction. Since the width along d of an ellipsoid is
invariant under translation of the ellipsoid, one has w.E.C; c/;d/ D w.E.C; 0/;d/.

In other words, if we are not able to find an integer vector x in E.C; c/ we have
to compute an integer direction d such that

max
n
dT x j x 2 IRn; kCxk � 1

o
�min

n
dT x j x 2 IRn; kCxk � 1

o
� f2.n/

holds. Now, we have

max
˚
dT x j x 2 IRn; kCxk � 1� D max

˚
dT C�1Cx j x 2 IRn; kCxk � 1�

D max
˚
dT C�1y j y 2 IRn; kyk � 1� (9.6)

D k.CT /�1dk: (9.7)

In (9.6) we have used the variable substitution y D Cx, and in (9.7), we have used
the fact that a linear function fT y with f ¤ 0 achieves its maximum over the unit
ball B D fy j y 2 IRn; kyk � 1g at the point y D f=kfk. Similarly, we obtain

min
n
dT x j x 2 IRn; kCxk � 1

o
D �k.CT /�1dk:

302 K. Aardal and F. Eisenbrand

From this, we can deduce that the width of E.C; c/ along an integer direction d is
twice the length of the vector .CT /�1d

w.E.C; c/;d/ D 2 � k.CT /�1dk: (9.8)

Next, we observe that the vector v D .CT /�1d is a lattice vector in the dual lattice

L�.C/ D ˚.CT /�1x j x 2 ZZn
�

of the lattice L.C/. Hence, problem EIP has been reduced to the following problem,
which we call problem CSVP:

Given a nonsingular rational matrix B 2 Qn	n and a rational vector u 2 Qn,
compute a lattice vector x 2 L.B/ with kx � uk � 1 or determine a nonzero vector
w 2 L�.B/ with kwk � f3.n/.

In other words, we either have to find a lattice vector close to a given vector u, or
compute a short nonzero vector in the dual lattice. We set f2.n/ D 2 � f3.n/, where
the factor of 2 comes from expression (9.8). Tracing back, we have now obtained
f .n/ D 2 � n3=2 � f2.n/ D 4 � n3=2 � f3.n/. Notice that finding a short vector in
the dual lattice L�.B/ in the Euclidean vector space E is equivalent to finding a
hyperplane H in E such that L.B/ is contained in widely spaced translates of H ;
see Lenstra [14].

Using Lenstra’s Algorithm to Solve CSVP

Suppose that B D .b1; : : : ;bn/ 2 Qn	n is a basis of the full-dimensional rational
lattice L.B/. The orthogonality defect of B is the number � 2 IR such that

kb1k � � � � � kbnk D � � d.L.B// D � � j det.B/j:

Notice that � D 1 if and only if the basis vectors are pairwise orthogo-
nal. Hermite showed that every lattice in IRn has a basis b1; : : : ;bn such that
� � .4=3/n.n�1/=4, but no polynomial time algorithm is known that can determine
a basis with this orthogonality defect guarantee.

Assume further that the longest basis vector is bn, that is, kbnk � kbj k for
1 � j � n � 1. Let B� be the matrix such that

B D B� � R;

where R 2 Qn	n is an upper-triangular matrix with Ri i D 1 for each 1 � i � n.
The matrix B� D .b�1; : : : ;b�n/ is the Gram-Schmidt orthogonalization of B. Since
we have kbj k � kb�j k for each 1 � j � n and since

d.L/ D j det.B/j D j det.B�/j D kb�1k � � � � � kb�nk ;

9 The LLL Algorithm and Integer Programming 303

it follows that � � 1, which implies the so-called Hadamard inequality

kb1k � � � � � kbnk � j det.B/j:

Our first goal is to find a vector in the lattice L.B/ that is close to the given vector
u 2 Qn. Since B is a basis of IRn, we can write

u D
nX

jD1

�j bj ;

with �j 2 IR. The vector

v D
nX

jD1

b�j ebj

belongs to the lattice L.B/, where b�j e denotes the closest integer to �j . We have

kv � uk D k
nX

iD1

.b�ie � �i /bik �
nX

iD1

k.b�ie � �i /bik � 1

2

nX

iD1

kbik

� n

2
kbnk ; (9.9)

where inequality (9.9) holds as the last basis vector bn is the longest one in the basis.
If kv � uk � 1, we have solved problem CSVP as stated at the end of Section

“Problem Reductions”. Suppose, therefore, that kv � uk > 1. We now need to find
a short vector in the dual lattice L�.B/: From inequality (9.9), we obtain

kbnk � 2=n : (9.10)

If we combine
kb1k � � � � � kbnk D � � kb�1k � � � � � kb�nk

and
kbj k � kb�j k; 1 � j � n ;

we obtain kbnk � � � kb�nk, which together with 9.10 implies

kb�nk � 2=.n � �/:

The vector b�n is orthogonal to the vectors b�j , 1 � j � n � 1, and since R is

an upper triangular matrix with only 1’s on its diagonal, it follows that .b�n/T B� �
R D .0; : : : ; 0; kb�nk2/. Next, let v D Bx; x 2 ZZ. Notice that v 2 L.B/. We now
show that the vector .1=kb�nk2/b�n belongs to the dual lattice L�.B/ by showing that
.1=kb�nk2/b�nT v 2 ZZ:

.1=kb�nk2/b�nT v D .1=kb�nk2/b�nT B�Rx

304 K. Aardal and F. Eisenbrand

D .0; : : : ; 0; 1/ x

D xn 2 ZZ;

Hence,
w D .1=kb�nk2/ b�n 2 L�.B/ ; (9.11)

and the norm of w satisfies
kwk � .n � �/=2 : (9.12)

The length of w can be bounded by a constant depending only on n if the orthogo-
nality defect � can be bounded by such a constant.

The Role of the LLL Algorithm for Solving IP

As described above, Lenstra [4] has shown that any basis reduction algorithm that
runs in polynomial time in fixed dimension and returns a basis, such that its orthog-
onality defect is bounded by a constant in fixed dimension suffices to solve CSVP in
polynomial time in fixed dimension, and consequently the integer feasibility prob-
lem for a rational polytope. If the LLL algorithm is applied to reduce the basis B,
then � � 2n.n�1/=4. Our discussion above shows now that IP can be solved in
polynomial time with f .n/ D 4 � n3=2 � f3.n/ D 2 � n5=2 � 2n.n�1/=4. In fact, this
constant can be slightly improved by a better bound for 9.9. More precisely, for a
given u 2 Qn, one can compute, using the Gram-Schmidt orthogonalization of B,
a lattice vector v 2 L.B/ with

kv � uk � .pn=2/ � kbnk:

By propagating this improvement through the constants, we obtain the bound
f .n/ � 2 � n2 � 2n.n�1/=4, yielding Lenstra’s main result.

Theorem 2 ([3, 4]). Given a rational polytope P D fx 2 ZZn j Ax � bg, one can
compute either an integer point x 2 P \ ZZn or a nonzero integer vector d 2 ZZn

with w.P;d/ � 2 � n2 � 2n.n�1/=4 in polynomial time. The integer linear feasibility
problem can be solved in polynomial time, if the dimension is fixed.

Related Results

Lovász [15] obtained the following result by combining basis reduction and a differ-
ent way of obtaining an inscribed ellipsoid. His result is more general in the sense
that it applies to convex bodies. Let K be a convex body. The unique maximum-
volume ellipsoid that is contained in K is called Löwner-John ellipsoid. If this
ellipsoid is scaled from its center by a factor of n, then it contains the body K . The
Löwner-John ellipsoid can be found with the ellipsoid method [7] in polynomial

9 The LLL Algorithm and Integer Programming 305

time, provided one can solve the weak separation problem [7] for K in polynomial
time.

This, together with the LLL algorithm, yields the following result.

Theorem 3 ([15]). LetK 	 IRn be a convex body for which one can solve the weak
separation problem in polynomial time. We can achieve, in polynomial time, one of
the following:

(i) find an integer vector in X , or
(ii) find an integer vector c 2 ZZn with

max
n
cT x j x 2 X

o
�max

n
cT x j x 2 X

o
� 2 � n2 � 9n:

The polynomial running time in the above theorem depends on the binary encod-
ing length of the radii of a ball, which is inscribed in K and a ball containing K
respectively, see [7].

Lovász and Scarf [37] developed a basis reduction algorithm, called general-
ized basis reduction, based on a polyhedral norm, and used it to solve the integer
programming feasibility problem. No polynomial algorithm is known to find a gen-
eralized reduced basis in the sense of Lovász and Scarf. Such a basis can, however,
be derived in polynomial time if the dimension is fixed. Since a reduced basis can be
found by solving a sequence of linear programs, this algorithms is still interesting
from the implementation point of view. See also the comments at the end of this
section.

The packing radius �.L/ of a lattice L 	 IRn is half the length of the short-
est nonzero vector of L. It is the largest number ˛ such that the interior of balls
centered at lattice points of radius ˛ does not intersect. The covering radius �.L/
is the smallest number ˇ such that the balls of radius ˇ centered at lattice points
cover the whole space IRn. The number �.L/ is the largest distance of a point
in IRn to the lattice L. The flatness theorem implies that �.L/ � �.L�/ � c.n/,
where c.n/ is a constant depending on the dimension n only. Lagarias, Lenstra,
and Schnorr [38] have shown that c.n/ � n3=2=4. Banaszczyk [39] proved that
c.n/ D O.n/. This shows that a closest vector in L to a vector u can be computed
with O ..c � n/Š/ shortest vector queries, where c is some constant. The dependence
on the dimension n in Lenstra’s algorithm is O.2n3

/. Kannan [40], see also [16],
presented an algorithm for integer programming with running time nO.n/. Kannan
and Lovász [41] have shown that the constant in Kinchines flatness theorem is
O.n2/ ifK is a rational polytope. The fastest algorithm to compute a shortest vector
is by Ajtai [42] is randomized and has an expected running time of 2O.n/ times a
polynomial in the input encoding of the basis. Blömer [43] presented a deterministic
algorithm that computes the closest vector in time nŠ times a polynomial in the input
encoding length of the basis.

Barvinok [44] considered the problem of counting integer points in a polytope,
which is a generalization of the integer feasibility problem. He used an approach
based on an identity of Brion for exponential sums over polytopes. Lenstra’s

306 K. Aardal and F. Eisenbrand

algorithm was used as a subroutine, but later Dyer and Kannan [45] showed, in
a modification of Barvinok’s algorithm, that this subroutine was in fact not needed.

A topic related to the integer feasibility problem (9.1), is the problem of find-
ing the Hermite normal form of a matrix A. The Hermite normal form of a matrix
A2ZZm	n of full row rank, HNF.A/, is obtained by multiplying A by an n� n uni-
modular matrix U to obtain the form .D; 0/, where D 2 ZZm	m is a nonsingular,
nonnegative lower triangular matrix with the unique row maximum along the diag-
onal. An integer nonsingular matrix U is unimodular if det.U/ D ˙1. If the matrix
A is rational, then it has a unique Hermite normal form.

Given is a system of rational equations Ax D d. The question is whether this sys-
tem has a solution in integers. Frumkin [46, 47] and von zur Gathen and Sieveking
[48] showed that solving such a system of linear Diophantine equations can be done
in polynomial time. Von zur Gathen and Sieveking, and Votyakov and Frumkin [49]
showed that it is possible to find a basis for the lattice L D fx 2 ZZn j Ax D 0g
is polynomial time. From this result, Frumkin [50] deduced that it is possible to
find HNF.A/ in polynomial time. Kannan and Bachem [51] developed a direct
polynomial time algorithm for finding HNF.A/.

Theorem 4 ([48,49]). Given a feasible system Ax D d of rational linear equations,
one can find, in polynomial time, integer vectors x0; x1; : : : ; xt such that

n
x 2 ZZn j Ax D d

o
D
n
x0 C

tX

jD1

�j xj j � 2 ZZt
o

(9.13)

Let AU D .D; 0/ be the Hermite normal form of A. Then, we can choose

x0 D U
�

D�1d
0

�
; xj D U

�
0
ej

�
; 1 � j � t :

Notice that Ax0 D d and that Axj D 0; 1 � j � t .
Schrijver [9], p. 74, discusses how one can use the LLL algorithm to find the

Hermite normal form of a matrix; see also [52].
Aardal, Hurkens and Lenstra [53] used the representation (9.13) in which the

vectors xj ; 1 � j � t are LLL-reduced basis vectors of the lattice L0 D fy 2 ZZn j
Ay D 0g, i.e., they use the reformulation

x D x0 C B0�; � 2 ZZt ; (9.14)

where x0 satisfies Ax0 D d, and B0 is a reduced basis for the lattice L0. If A is an
m� n matrix of full row rank, we have t D n�m. Aardal et al. obtain the basis B0

and the vector x0 by a single application of the LLL algorithm as follows. Consider
the system of linear Diophantine equations: Ax D d and let N1; N2 2 IN. Without
loss of generality, we assume that gcd.ai1; ai2; : : : ; ain/ D 1 for 1 � i � m, and

9 The LLL Algorithm and Integer Programming 307

that A has full row rank. Furthermore, let

B D
0

@
I 0
0 N1

N2A �N2d

1

A ; (9.15)

and let OB be the basis resulting from applying the LLL algorithm to B in 9.15. The
lattice L.B/ 2 IRnCmC1 is a lattice of rank nC 1.

Theorem 5 ([53]). Assume that there exists an integer vector x satisfying the ratio-
nal system Ax D d. There exist numbersN01 andN02 such that ifN1 > N01, and if
N2 > 2

nCmN 2
1 CN02, then the vectors Obj 2 ZZnCmC1 of the reduced basis OB have

the following properties:

1. ObnC1;j D 0 for 1 � j � n �m,
2. Obij D 0 for nC 2 � i � nCmC 1 and 1 � j � n �mC 1,
3. j ObnC1;n�mC1j D N1.

Moreover, the sizes of N01 and N02 are polynomially bounded by the sizes of A
and d.

Theorem 5 implies that if N1 and N2 are chosen appropriately, then the first
n �mC 1 columns of the reduced basis OB are of the following form:

0

@
B0 x0

0 ˙N1

0 0

1

A ;

Aardal and Lenstra [54], and Aardal and Wolsey [55] study the lattice reformulation
9.14 for integer equality knapsack problems in more detail.

To conclude this section, we mention some computational results using LLL-
inspired techniques to solve integer programming problems. Gao and Zhang [56]
have implemented Lenstra’s algorithm. Cook et al. [57] implemented the Lovász-
Scarf integer programming algorithm based on generalized basis reduction and
reported on computational results of solving several, up to then, unsolved telecom-
munication network design problems. Aardal, Hurkens, Lenstra [53], Aardal et al.
[58], and Aardal and Lenstra [54] report on using the LLL-reduced lattice basis for-
mulation 9.14 and a enumerative algorithm inspired by Lenstra [4] to solve several
hard integer feasibility problems.

The Integer Linear Optimization Problem

In this section, we want to consider the integer optimization problem in fixed
dimension

max
n
cT x j Ax � b; x 2 ZZn

o
: (9.16)

308 K. Aardal and F. Eisenbrand

In the analysis of the algorithms that follow, we use the parameters m and s, where
m is the number of inequalities of the system Ax � b, and s is an upper bound on
the binary encoding length of a coefficient of A;b, and c.

The greatest common divisor of two integers a and b can be computed with the
Euclidean algorithm withO.s/ arithmetic operations, where s is an upper bound on
the binary encoding length of the integers a and b. On the other hand, we have the
following well-known formula

gcd.a; b/ D minfa x1 C b x2 j a x1 C b x2 � 1; x1; x2 2 ZZg:

This implies that the greatest common divisor can be computed with an algorithm
for the integer optimization problem in dimension 2 with one constraint.

The integer optimization problem can be reduced to the integer feasibility prob-
lem with binary search. The integer feasibility problem in fixed dimension has
complexityO.mC s/. This follows from an analysis of Lenstra’s algorithm in com-
bination with efficient algorithm to compute a Löwner-John ellipsoid; see [59, 60].
With binary search for an optimal point, one obtains a running time ofO.m �sCs2/.
If, in addition to the dimension, also the number of constraints is fixed, this results
in an O.s2/ algorithm for the integer optimization problem, which is in contrast to
the linear running time of the Euclidean algorithm.

Clarkson [61] has shown that the integer optimization problem withm constraints
can be solved with an expected number ofO.m/ arithmetic operations andO.logm/
calls to an oracle solving the integer optimization problem on a constant size subset
of the input constraints. Therefore, we concentrate now on the integer optimization
problem with a fixed number of constraints. In this section, we outline an algorithm
that solves the integer optimization problem in fixed dimension with a fixed number
of constraints with O.s/ arithmetic operations on rational numbers of size O.s/.
The algorithm relies on the LLL algorithm.

The first step is to reduce the integer optimization problem over a full-dimensional
polytope with a fixed number of facets to a disjunction of integer optimization
problems over a constant number of two-layer simplices. A two layer simplex is
a full-dimensional simplex, whose vertices can be partitioned into two sets V and
W , such that the objective function values of the elements in each of the sets V and
W agree, i.e., for all v1; v2 2 V , one has cT v1 D cT v2, and for all w1;w2 2 W ,
one has cT w1 D cT w2.

How can one reduce the integer optimization problem over a polytope P to a
sequence of integer optimization problems over two-layer simplices? Simply con-
sider the hyperplanes cT x D cT v for each vertex v ofP . If the number of constraints
defining P is fixed, then these hyperplanes partition P into a constant number
of polytopes, whose vertices can be grouped into two groups, according to the
value of their first component. Thus, we can assume that the vertices of P itself
can be partitioned into two sets V and W , such that the objective function values
of the elements in each of the sets V and W agree. Carathéodory’s theorem, see
Schrijver [9, p. 94], implies that P is covered by the simplices that are spanned by
the vertices of P . These simplices are two-layer simplices. Therefore, the integer

9 The LLL Algorithm and Integer Programming 309

optimization problem in fixed dimension with a fixed number of constraints can be
reduced in constant time to a constant number of integer optimization problems over
a two-layer simplex.

The key idea is then to let the objective function slide into the two-layer simplex,
until the width of the truncated simplex exceeds the flatness bound. In this way,
one can be sure that the optimum of the integer optimization problem lies in the
truncation, which is still flat. Thus, one has reduced the integer optimization problem
in dimension n to a constant number of integer optimization problems in dimension
n � 1, and binary search can be avoided.

How do we determine a parameter 	 such that the truncated two-layer simplex
˙ \ .cT x � 	/ just exceeds the flatness bound? We explain the idea with the help
of the 3-dimensional example in Fig. 9.4.

Here, we have a two-layer simplex ˙ in dimension three. The set V consists of
the points 0 and v1 andW consists of w1, and w2. The objective is to find a highest
point in the vertical direction. The picture on the left describes a particular point
in time, where the objective function slid into ˙ . So we consider the truncation
˙ \ .cT x � 	/ for some 	 � cT w1. This truncation is the convex hull of the points

0; v1; �w1; �w2; .1 � �/v1 C �w1; .1 � �/v1 C �w2;

where � D 	=cT w1. Now consider the simplex ˙V;�W , which is spanned by the
points 0; v1; �w1; �w2. This simplex is depicted on the right in Fig. 9.4. If this sim-
plex is scaled by 2, then it contains the truncation ˙ \ .cT x � 	/. This is easy to
see, since the scaled simplex contains the points 2.1��/ v1; 2 �w1 and 2�w2. So
we have the condition ˙V;�W 	 ˙ \ .cT x � 	/ 	 2˙V;�W . From this, we can
infer the important observation

w.˙V;�W / � w.˙ \ .cT x � 	// � 2w.˙V;�W /:

0

v1

w1

w2

(1–m)v1+ m w1

(1–m)v1+ m w2

m w1
m w2

0

v1

w1

w2

m w2m w1

(1–m)v1+ m w1

(1–m)v1+ m w2

Fig. 9.4 Solving the parametric lattice width problem

310 K. Aardal and F. Eisenbrand

This means that we essentially determine the correct 	 by determining a � � 0,
such that the width of the simplex˙V;�W just exceeds the flatness bound. The width
of˙V;�W is roughly (up to a constant factor) the length of the shortest vector of the
lattice L.A�/ , where A� is the matrix

A� D
0

@
�wT

1

�wT
2

v1

1

A :

Thus, we have to find a parameter �, such that the shortest vector of L.A�/ is
sandwiched between f .n/C1 and � � .f .n/C1/ for some constant � . This problem
can be understood as a parametric shortest vector problem.

To describe this problem, let us introduce some notation. We define for an n �
n-matrix A D .aij /8i;j , the matrix A�;k D .aij /

�;k
8i;j , as

a
�;k
ij D

(
� � aij ; if i � k;
aij ; otherwise:

In other words, the matrix A�;k results from A by scaling the first k rows with �.
The parametric shortest vector problem is now defined as follows.
Given a nonsingular matrix A 2 ZZn	n and some U 2 IN, find a parameter p 2 IN
such that U � SV.L.Ap;k// � 2nC1=2 � U or assert that SV.L/ > U .
It turns out that the parametric shortest vector problem can be solved in linear time
when the dimension is fixed with a cascaded LLL algorithm. From this, it follows
that the integer optimization problem in fixed dimension with a fixed number of
constraints can be solved in linear time. Together with Clarkson’s result, we obtain
the following result.

Theorem 6 ([62]). The integer optimization problem (9.16) can be solved with an
expected number ofO.mCs logm/ arithmetic operations on rationals of sizeO.s/.

Open Problems and Discussion

In the above section, we have sketched a result showing that the integer linear opti-
mization problem can be solved with a linear number of arithmetic operations, if the
number of constraints is fixed. The binary encoding length of the numbers in the
course of the algorithm remains linear in the input encoding size. Therefore, this
result matches the complexity of the Euclidean algorithm if we count arithmetic
operations only. When the number m of constraints is arbitrary, Clarkson’s algo-
rithm provides a running time of O.m C s logm/, where s is the largest binary
encoding length of a coefficient in the input. Clarkson’s algorithm is a randomized
algorithm. The first question is, whether a deterministic algorithm with running time
O.mC s logm/ exists.

9 The LLL Algorithm and Integer Programming 311

In the case of two variables, Eisenbrand and Laue [63] have shown that there
exists an algorithm that requires only O.m C s/ arithmetic operations. Another
question is, whether this result can be extended to any fixed dimension.

The complexity model that reflects the fact that arithmetic operations on large
numbers do not come for free is the bit-complexity model. Addition and subtraction
of s-bit integers take O.s/ time. The current state of the art method for multipli-
cation [64] shows that the bit complexity M.s/ of multiplication and division is
O.s log s log log s/.

Recently, Nguyen and Stehlé [65] have presented an LLL-variant that computes
an LLL-reduced basis in time O.n5.n C logB/ logB/ bit-operations, where B is
an upper bound on the norm of the vectors in the input. This holds even if the multi-
plications and divisions are carried out with the straightforward quadratic methods.
This means that if the naive algorithms for multiplication and division with remain-
der are used, the dependence of the running time on the encoding length of the
largest binary encoding of a basis-vector component matches exactly the running
time of the Euclidean algorithm. In addition, the dependence on the dimension is
polynomial. This raises the question, whether these results carry over to the bit-
complexity of the integer optimization problem in fixed dimension. In particular, is
it possible that this problem can be solved with O.ms2/ bit operations. This would
match the complexity of checking whether an integer point is feasible, if the naive
methods for multiplication are used.

Acknowledgements This work was partly carried out within the framework of ADONET,
a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.
The first author is financed in part by the Dutch BSIK/BRICKS project.

References

1. Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear Diophantine
equations. Proceedings of the American Mathematical Society 55, 299–304 (1976)

2. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer
Computations, pp 85–103. Plenum Press, NY (1972)

3. Lenstra, Jr., H.W.: Integer programming with a fixed number of variables. Technical Report
81-03, University of Amsterdam, Amsterdam (1981). Available at
http://staff/science/uva.nl/˜peter/mi8103/mi8103c.html

4. Lenstra, Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of
Operations Research 8(4), 538–548 (1983)

5. Lenstra, A.K., Lenstra, Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients.
Mahematische Annalen 261, 515–534 (1982)

6. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)
7. Grötschel, M. Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimiza-

tion. Springer, Berlin (1988)
8. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York

(1988)
9. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

10. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency (3 volumes). Algorithms
and Combinatorics 24. Springer, Berlin (2003)

312 K. Aardal and F. Eisenbrand

11. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Classics in Mathematics.
Springer, Berlin (1997). Second Printing, Corrected, Reprint of the 1971 ed.

12. Barvinok, A.: A Course in Convexity. Graduate Studies in Mathematics 54. American
Mathematical Society, Providence, RI (2002)

13. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective. The Kluwer International Series in Engineering and Computer Science 671.
Kluwer Academic Publishers, Boston, Massachusetts (2002)

14. Lenstra, Jr., H.W.: Lattices. Chapter 6 in Algorithmic Number Theory, Mathematical Sciences
Research Institute Publications, Vol 44, Cambridge University Press, Cambridge, UK, 127–
181, 2008.

15. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM, Philadelphia,
PA (1986)

16. Kannan, R.: Algorithmic geometry of numbers. Annual Review of Computer Science 2,
231–267 (1987)

17. Aardal, K., Eisenbrand, F.: Integer programming, lattices and results in fixed dimension.
In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds) Handbook on Discrete Optimization,
Chapter 4. North Holland, Amsterdam (2005)

18. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Society 64, 275–278 (1958)

19. Gomory, R.E.: An algorithm for integer solutions to linear programs. In: Graves, R.L., Wolfe,
P. (eds) Recent Advances in Mathematical Programming, pp 269–302. McGraw-Hill (1963)

20. Gomory, R.E.: Early integer programming. In: Lenstra, J.K., Rinnooy Kan, A.H.G., Schrijver,
A. (eds) History of Mathematical Programming: A Collection of Personal Reminiscences,
pp 55–61. CWI and North-Holland, Amsterdam (1991)

21. Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities.
In: Koopmans, T.C. (ed) Activity Analysis of Production and Allocation, pp 339–347. John
Wiley & Sons, New York (1951)

22. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling-salesman
problem. Operations Research 2, 393–410 (1954)

23. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: On a linear-programming, combinatorial
approach to the traveling-salesman problem. Operations Research 7, 58-66 (1959)

24. Edmonds, J.: Paths, trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)
25. Grötschel, M.: On the symmetric traveling salesman problem: Solution of a 120-city problem.

Mathematical Programming Study 12, 61–77 (1980)
26. Grötschel, M., Padberg, M.W.: Partial linear characterizations of the asymmetric traveling

salesman problem. Mathematical Programming 8, 378–381 (1975)
27. Grötschel, M., Padberg, M.W.: On the symmetric traveling salesman problem I: Inequalities.

Mathematical Programming 16, 265–280 (1978)
28. Grötschel, M., Padberg, M.W.: On the symmetric traveling salesman problem I: Lifting

theorems and facets. Mathematical Programming 16, 281–302 (1978)
29. Balas, E.: Facets of the knapsack polytope. Mathematical Programming 8, 146–164 (1975)
30. Hammer, P.L., Johnson, E., Peled, U.N.: Facets of regular 0-1 polytopes. Mathematical

Programming 8, 179–206 (1975)
31. Wolsey, L.A.: Faces for a linear inequality in 0-1 variables. Mathematical Programming 8,

165–178 (1975)
32. Land, A., Doig, A.: An automatic method of solving discrete programming problems.

Econometrica 28, 497–520 (1960)
33. ILOG. Cplex. http://www.ilog.com/products/cplex
34. Dash Optimization. Xpress-mp optimization software.

http://www.dashoptimization.com/home/index.html
35. Karp, R.M., Papadimitriou, C.H.: On linear characterizations of combinatorial optimization

problems. In: 21st Annual Symposium on Foundations of Computer Science, Syracuse, N.Y.,
pp 1–9. IEEE, New York (1980)

36. Khinchine, A.: A quantitative formulation of Kronecker’s theory of approximation (in russian).
Izvestiya Akademii Nauk SSR Seriya Matematika 12, 113–122 (1948)

9 The LLL Algorithm and Integer Programming 313

37. Lovász, L., Scarf, H.E.: The generalized basis reduction algorithm. Mathematics of Operations
Research 17(3), 751–764 (1992)

38. Lagarias, J., Lenstra, Jr., H.W., Schnorr, C.: Korkin-zolotarev bases and successive minima of
a lattice and its reciprocal lattice. Combinatorica 10(4), 333–348 (1990)

39. Banaszczyk, W.: Inequalities for convex bodies and polar reciprocal lattices in IRn. II.
Application of K-convexity. Discrete Computational Geometry 16(3), 305–311 (1996)

40. Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research 12(3), 415–440 (1987)

41. Kannan, R., Lovász, L.: Covering minima and lattice-point-free convex bodies. Annals of
Mathematics 128, 577–602 (1988)

42. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem.
Proceedings of the 33rd Annual ACM symposium on Theory of Computing, pp 601–610.
ACM Press, New York (2001)

43. Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In: Montanari,
U., Rolim, J.D.P., Welzl, E. (eds) Automata, Languages and Programming, 27th International
Colloquium, ICALP 2000, Geneva, Switzerland, July 9–15, 2000, Proceedings. Lecture Notes
in Computer Science 1853, pp 248–259. Springer, Berlin (2000)

44. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when
the dimension is fixed. Mathematics of Operations Research 19(4), 769–779 (1994)

45. Dyer, M.E., Kannan, R.: On Barvinok’s algorithm for counting lattice points in fixed
dimension. Mathematics of Operations Research 22(3), 545–549 (1997)

46. Frumkin, M.A.: Algorithms for the solution in integers of systems of linear equations. In:
Fridman, A.A. (ed) Studies in discrete optimization (Russian), pp 97–127, Izdat. “Nauka”,
Moscow (1976)

47. Frumkin, M.A.: An application of modular arithmetic to the construction of algorithms for the
solution of systems of linear equations. Doklady Akademii Nauk SSSR 229(5), 1067–1070
(1976) [English translation: Soviet Mathematics Doklady 17, 1165–1168 (1976)]

48. Gathen, von zur, J., Sieveking, M.: Weitere zum Erfüllungsproblem polynomial äquivalente
kombinatorische Aufgaben. In: Specker, E. Strassen, V. (eds) Komplexität von Entschei-
dungsproblemen: Ein Seminar, Lecture Notes in Computer Science 43, pp 49–71. Springer,
Berlin (1976)

49. Votjakov, A.A., Frumkin, M.A.: An algorithm for finding the general integer solution of a
system of linear equations. In: Studies in discrete optimization (Russian), pp 128–140. Izdat.
“Nauka”, Moscow (1976)

50. Frumkin, M.A.: An algorithm for the reduction of a matrix of integers to triangular form with
power complexity of the computations. Èkonomika i Matematicheskie Metody 12(1), 173–178
(1976)

51. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite normal
forms of an integer matrix. SIAM Journal on Computing 8(4), 499–507 (1979)

52. Havas, G., Majewski, B.S., Matthews, K.R.: Extended GCD and Hermite normal form algo-
rithms via lattice basis reduction. Experimental Mathematics 7(2), 125–136 (1998) (Addenda
and errata: Experimental Mathematics 8, 179–206)

53. Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of linear Diophantine equations
with lower and upper bounds on the variables. Mathematics of Operations Research 25(3),
427–442 (2000)

54. Aardal, K.A., Lenstra, A.K.: Hard equality constrained integer knapsacks. Mathematics of
Operations Research, 29(3), 724–738 (2004). Erratum: Mathematics of Operations Research
31(4), 846 (2006)

55. Aardal, K., Wolsey, L.A.: Lattice based extended formulations for integer linear equality
systems. Mathematical Programming 121, 337–352 (2010).

56. Gao, L., Zhang, Y.: Computational experience with Lenstra’s algorithm. Technical Report
TR02-12, Department of Computational and Applied Mathematics, Rice University, Houston,
TX (2002)

314 K. Aardal and F. Eisenbrand

57. Cook, W., Rutherford, T., Scarf, H.E., Shallcross, D.: An implementation of the general-
ized basis reduction algorithm for integer programming. ORSA Journal on Computing 5(2),
206–212 (1993)

58. Aardal, K., Bixby, R.E., Hurkens, C.A.J., Lenstra, A.K., Smeltink, J.W.: Market split and
basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS Journal
on Computing 12(3), 192–202 (2000)

59. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming.
Algorithmica 16(4–5), 498–516 (1996)

60. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New results and new trends
in computer science (Graz, 1991), Lecture Notes in Computer Science 555, pp 359–370.
Springer, Berlin (1991)

61. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension
is small. Journal of the Association for Computing Machinery 42, 488–499 (1995)

62. Eisenbrand, F.: Fast integer programming in fixed dimension. In: Battista, G.D., Zwick, U.
(eds) Algorithms – ESA 2003. Lecture Notes in Computer Science 2832, 196–207. Springer,
Berlin (2003)

63. Eisenbrand, F., Laue, S.: A linear algorithm for integer programming in the plane. Mathemat-
ical Programming 102(2), 249 – 259 (2005)

64. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen (Fast multiplication of
large numbers). Computing 7, 281–292 (1971)

65. Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed) Advances in
Cryptology — EUROCRYPT 2005. Lecture Notes in Computer Science 3494, pp 215–233.
Springer, Berlin (2003)

	9 The LLL Algorithm and Integer Programming
	Introduction
	Notation
	Integer Programming: A Brief Background Sketch
	Cutting Planes
	Branch-and-Bound and Branch-and-Cut
	Complexity Issues

	The Integer Linear Feasibility Problem
	Lenstra's Algorithm
	Problem Reductions
	Using Lenstra's Algorithm to Solve CSVP
	The Role of the LLL Algorithm for Solving IP

	Related Results

	The Integer Linear Optimization Problem
	Open Problems and Discussion

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

