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Probabilistic Analyses of Lattice
Reduction Algorithms

Brigitte Vallée and Antonio Vera

Abstract The general behavior of lattice reduction algorithms is far from being
well understood. Indeed, many experimental observations, regarding the execution
of the algorithms and the geometry of their outputs, pose challenging questions,
which remain unanswered and lead to natural conjectures yet to be settled. This sur-
vey describes complementary approaches which can be adopted for analyzing these
algorithms, namely, dedicated modeling, probabilistic methods, and a dynamical
systems approach. We explain how a mixed methodology has already proved fruit-
ful for small dimensions p, corresponding to the variety of Euclidean algorithms
(p D 1) and to the Gauss algorithm (p D 2). Such small dimensions constitute an
important step in the analysis of lattice reduction in any (high) dimension, since the
celebrated LLL algorithm, due to Lenstra, Lenstra, and Lovász, precisely involves a
sequence of Gauss reduction steps on sublattices of a large lattice.

General Context

The present study surveys the main works aimed at understanding, both from a the-
oretical and an experimental viewpoint, how the celebrated LLL algorithm designed
by Lenstra, Lenstra, and Lovász performs in practice. The goal is to precisely quan-
tify the probabilistic behavior of lattice reduction and attain a justification of many
of the experimental facts observed. Beyond its intrinsic theoretical interest, such a
justification is important as a fine understanding of the lattice reduction process con-
ditions algorithmic improvements in major application areas, most of them being
described in this book: cryptography (see [28, 31]), computational number theory
(see [21, 22, 35]), integer programming (see [1]), etc. The results obtained in this
perspective may then be applied for developing a general algorithmic strategy for
lattice reduction.

B. Vallée (B)
Laboratoire GREYC, CNRS UMR 6072, Université de Caen and ENSICAEN,
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Varied Approaches

We briefly describe now three different points of view: dedicated modeling, proba-
bilistic methods, and dynamical systems approach.
Dedicated Modeling. Probabilistic models are problem-specific in the various appli-
cations of lattice reduction. For each particular area, special types of lattice bases are
used as input models, which induce rather different quantitative behaviors. An anal-
ysis of the lattice reduction algorithms under such probabilistic models aims at
characterizing the behavior of the main parameters – principally, the number of
iterations, the geometry of reduced bases, and the evolution of densities during an
execution.

Probabilistic Methods. The probabilistic line of investigation has already led to tan-
gible results under the (somewhat unrealistic) models where vectors of the input
basis are independently chosen according to a distribution that is rotationally invari-
ant. In particular, the following question has been answered: what is the probability
for an input basis to be already reduced? A possible extension of this study to realis-
tic models and to the complete algorithm (not just its input distribution) is discussed
here.

Dynamical Systems Approach. Thanks to earlier results, the dynamics of Euclid’s
algorithm is now well-understood – many results describe the probabilistic behav-
ior of that algorithm, based on dynamical systems theory as well as related tools,
like transfer operators. These techniques are then extended to dimension p D 2

(Gauss’ algorithm). We examine here the possible extensions of the “dynamical
analysis methodology” to higher dimensions. The first step in such an endeavor
should describe the dynamical system for the LLL algorithm, which is probably a
complex object, for p > 2.

Historical and Bibliographic Notes

Over the past 20 years, there have been several parallel studies dedicated to the
probabilistic behavior of lattice reduction algorithms, in the two-dimensional case
as well as in the general case.

The Two-Dimensional Case. The history of the analysis of lattice reduction algo-
rithms starts before 1982, when Lagarias [23] performs in 1980 a first (worst–case)
analysis of the Gauss algorithms in two and three dimensions. In 1990, Vallée [38]
exhibits the exact worst–case complexity of the Gauss algorithm. In the same year,
Flajolet and Vallée [16] perform the first probabilistic analysis of the Gauss algo-
rithm: they study the mean value of the number of iterations in the uniform model.
Then, in 1994, Daudé et al. [14] obtain a complete probabilistic analysis of the
Gauss algorithm, with a “dynamical approach,” but still under the uniform model.
The same year, Laville and Vallée [24] study the main output parameters of the algo-
rithm (the first minimum, Hermite’s defect), under the uniform model, still. In 1997,
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Vallée [39] introduces the model “with valuation” for the Sign Algorithm: this is an
algorithm for comparing rationals, whose behavior is similar to the Gauss algorithm.
In 2000, Flajolet and Vallée [17] precisely study all the constants that appear in the
analysis of the Sign Algorithm. Finally, in 2007, Vallée and Vera [45, 47] study
all the main parameters of the Gauss algorithm (execution parameters and output
parameters) in the general model “with valuation.”

The Dynamical Analysis Methodology. From 1995, Vallée has built a general method
for analyzing a whole class of gcd algorithms. These algorithms are all based on the
same principles as the Euclid algorithms (divisions and exchanges), but they differ
on the kind of division performed. This method, summarized for instance in [37],
views an algorithm as a dynamical system and uses a variety of tools, some of them
coming from analysis of algorithms (generating functions, singularity analysis, etc.)
and other ones being central in dynamical systems, like transfer operators. The inter-
est of such an analysis becomes apparent in the work about the Gauss Algorithm
[14], previously described, which is in fact the first beginning of dynamical anal-
ysis. The dynamical systems underlying the Gauss algorithms are just extensions
of systems associated to the (centered) Euclid algorithms, which first need a sharp
understanding. This is why Vallée returns to the one-dimensional case, first performs
average-case analysis for a large variety of Euclidean algorithms and related param-
eters of interest: number of iterations [41], bit-complexity (with Akhavi) [5], and
bit-complexity of the fast variants of the Euclid algorithms (with the CAEN group)
[10]. From 2003, Baladi et al. [6, 27] also obtain distributional results on the main
parameters of the Euclid algorithms – number of iterations, size of the remainder
at a fraction of the execution, and bit-complexity – and show that they all follow
asymptotic normal laws.

It is now natural to expect that most of the principles of dynamical analysis can
be applied to the Gauss algorithm. The first work in this direction is actually done
by Vallée and Vera, quite recently (2007), and completes the first work [14].

The General Case. The first probabilistic analysis of the LLL algorithm is performed
by Daudé and Vallée on 1994 [15] under the “random ball model.” These authors
obtain an upper bound for the mean number of iterations of the algorithm. Then,
in 2002, Akhavi [3] studies the probabilistic behavior of a random basis (again,
under the random ball model) and he detects two different regimes, according to
the dimension of the basis relative to the dimension of the ambient space. In 2006,
Akhavi et al. [4] improve on the previous study, while generalizing it to other ran-
domness models (the so-called spherical models): they exhibit a limit model when
the ambient dimension becomes large. These studies illustrate the importance of the
model “with valuation” for the local bases associated to the input.

In 2003, Ajtai [2] exhibits a randomness model of input bases (which is called
the Ajtai model in this paper), under which the probabilistic behavior of the LLL
algorithm is close to the worst-case behavior. In 2006, Nguyen et al. [30] study
random lattices together with their parameters relevant to lattice reduction algo-
rithms. In 2006, Nguyen and Stehlé [30] conduct many experiments for the LLL
algorithms under several randomness models. They exhibit interesting experimental
phenomena and provide conjectures that would explain them.

Probabilistic Analyses of Lattice Reduction Algorithms
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The Two-Dimensional Case as a Main Tool for the General Case. This paper
describes a first attempt to apply the dynamical analysis methodology to the LLL
algorithm: the LLL algorithm is now viewed as a whole dynamical system that runs
in parallel many two-dimensional dynamical systems and “gathers” all the dynam-
ics of these small systems. This (perhaps) makes possible to use the precise results
obtained on the Gauss algorithm – probabilistic and dynamic – as a main tool for
describing the probabilistic behavior of the LLL algorithm and its whole dynamics.

Plan of the Survey

Section “The Lattice Reduction Algorithm in the Two-Dimensional Case” explains
why the two-dimensional case is central, introduces the lattice reduction in this par-
ticular case, and presents the Gauss algorithm, which is our main object of study.
Section “The LLL Algorithm” is devoted to a precise description of the LLL algo-
rithm in general dimension; it introduces the main parameters of interest: the output
parameters, which describe the geometry of the output bases, and the execution
parameters, which describe the behavior of the algorithm itself. The results of the
main experiments conducted regarding these parameters on “useful” classes of lat-
tices are also reported there. Finally, we introduce variants of the LLL algorithm,
where the role of the Gauss algorithm becomes more apparent than in standard
versions. Section “What is a Random (Basis of a) Lattice?” describes the main prob-
abilistic models of interest that appear in “real life” applications – some of them are
given because of their naturalness, while other ones are related to actual applications
of the LLL algorithm. Section “Probabilistic Analyses of the LLL Algorithm in the
Spherical Model” is devoted to a particular class of models, the so-called spherical
models, which are the most natural models (even though they do not often surface
in actual applications). We describe the main results obtained under this model: the
distribution of the “local bases,” the probability of an initial reduction, and mean
value estimates of the number of iterations and of the first minimum.

The first step towards a precise study of other, more “useful,” models is a
fine understanding of the two-dimensional case, where the mixed methodology is
employed. In Section “Returning to the Gauss Algorithm”, we describe the dynam-
ical systems that underlie the (two) versions of the Gauss algorithms, together with
two (realistic) input probabilistic models of use: the model “with valuation” and the
model “with fixed determinant.” Sections “Analysis of Lattice Reduction in Two-
Dimensions: The Output Parameters” and “Analysis of the Execution Parameters
of the Gauss Algorithm” on the precise study of the main parameters of inter-
est – either output parameters or execution parameters – under the model “with
valuation.” Finally, Section “First Steps in the Probabilistic Analysis of the LLL
Algorithm” returns to the LLL algorithm and explains how the results of Sections
“Returning to the Gauss Algorithm – Analysis of the Execution Parameters of the
Gauss Algorithm” could (should?) be used and/or extended to higher dimensions.
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The Lattice Reduction Algorithm
in the Two-Dimensional Case

A lattice L � R
n of dimension p is a discrete additive subgroup of R

n. Such
a lattice is generated by integral linear combinations of vectors from a family
B WD .b1; b2; : : : bp/ of p � n linearly independent vectors of R

n, which is called a
basis of the lattice L. A lattice is generated by infinitely many bases that are related
to each other by integer matrices of determinant ˙1. Lattice reduction algorithms
consider a Euclidean lattice of dimension p in the ambient space R

n and aim at
finding a “reduced” basis of this lattice, formed with vectors almost orthogonal and
short enough. The LLL algorithm designed in [25] uses as a sub-algorithm the lat-
tice reduction algorithm for two dimensions (which is called the Gauss algorithm):1

it performs a succession of steps of the Gauss algorithm on the “local bases,” and
it stops when all the local bases are reduced (in the Gauss sense). This is why it is
important to precisely describe and study the two-dimensional case. This is the pur-
pose of this section: it describes the particularities of the lattices in two dimensions,
provides two versions of the two-dimensional lattice reduction algorithm, namely
the Gauss algorithm, and introduces its main parameters of interest.

We also see in this article that the Gauss algorithm solves the reduction problem
in an optimal sense: it returns a minimal basis, after a number of iterations, which is
at most linear with respect to the input size. This type of algorithms can be general-
ized in small dimensions. For instance, in the three-dimensional case, Vallée in 1987
[42] or Semaev more recently [33] provide optimal algorithms, which directly find a
minimal basis, after a linear number of iterations. However, algorithms of this qual-
ity no longer exist in higher dimensions, and the LLL algorithm can be viewed as
an approximation algorithm that finds a good basis (not optimal generally speaking)
after a polynomial number of iterations (not linear generally speaking).

Lattices in Two-Dimensions

Up to a possible isometry, a two-dimensional lattice may always be considered
as a subset of R

2. With a small abuse of language, we use the same notation for
denoting a complex number z 2 C and the vector of R

2 whose components are
.<z;=z/. For a complex z, we denote by jzj both the modulus of the complex z and
the Euclidean norm of the vector z; for two complex numbers u; v, we denote by
.u � v/ the scalar product between the two vectors u and v. The following relation
between two complex numbers u; v will be very useful in the sequel

v

u
D .u � v/
juj2 C i

det.u; v/

juj2 : (3.1)

1 It seems that the Gauss algorithm, as it is described here, is not actually due to Gauss, but due to
Lagrange.

Probabilistic Analyses of Lattice Reduction Algorithms
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Fig. 3.1 A lattice and three of its bases represented by the parallelogram they span. The basis on
the left is minimal (reduced), while the two other ones are skew

A lattice of two-dimensions in the complex plane C is the set L of elements of C

(also called vectors) defined by

L D Zu˚ Zv D fauC bvI a; b 2 Zg;

where .u; v/, called a basis, is a pair of R-linearly independent elements of C.
Remark that in this case, due to (3.1), one has =.v=u/ 6D 0.

Amongst all the bases of a lattice L, some that are called reduced enjoy the prop-
erty of being formed with “short” vectors. In dimension 2, the best reduced bases
are minimal bases that satisfy optimality properties: define u to be a first minimum
of a lattice L if it is a nonzero vector of L that has smallest Euclidean norm; the
length of a first minimum of L is denoted by �1.L/. A second minimum v is any
shortest vector amongst the vectors of the lattice that are linearly independent of
one of the first minimum u; the Euclidean length of a second minimum is denoted
by �2.L/. Then a basis is minimal if it comprises a first and a second minimum
(See Fig. 3.1). In the sequel, we focus on particular bases that satisfy one of the two
following properties:

.P / It has a positive determinant [i.e., det.u; v/ > 0 or =.v=u/ > 0]. Such a basis
is called positive.

.A/ It has a positive scalar product [i.e., .u � v/ � 0 or <.v=u/ � 0]. Such a basis is
called acute.

Without loss of generality, we may always suppose that a basis is acute (resp.
positive), as one of .u; v/ and .u;�v/ is.
The following result gives characterizations of minimal bases. Its proof is omitted.

Proposition 1. [Characterizations of minimal bases.]

.P / [Positive bases.] Let .u; v/ be a positive basis. Then the following two condi-
tions .a/ and .b/ are equivalent:

.a/ The basis .u; v/ is minimal

.b/ The pair .u; v/ satisfies the three simultaneous inequalities:
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.P1/ W
ˇ̌
ˇ
v

u

ˇ̌
ˇ � 1; .P2/ W

ˇ̌
ˇ<
� v

u

�ˇ̌
ˇ � 1

2
; and .P3/ W =

� v

u

�
> 0:

.A/ [Acute bases.] Let .u; v/ be an acute basis. Then the following two conditions
.a/ and .b/ are equivalent:

PGAUSS.u; v/

Input. A positive basis .u; v/ of C with jvj � juj; j�.v; u/j � .1=2/.
Output. A positive minimal basis .u; v/ of L.u; v/ with jvj 
 juj.
While jvj < juj do

.u; v/ WD .v;�u/;
q WD b�.v; u/e;
v WD v� qu;

.a/ The basis .u; v/ is minimal

.b/ The pair .u; v/ satisfies the two simultaneous inequalities:

.A1/ W
ˇ̌
ˇ
v

u

ˇ̌
ˇ � 1 and .A2/ W 0 � <

� v

u

�
� 1

2
:

The Gaussian Reduction Schemes

There are two reduction processes, according as one focuses on positive bases or
acute bases. Accordingly, as we study the behavior of the algorithm itself, or the
geometric characteristics of the output, it will be easier to deal with one version
than with the other one: for the first case, we will choose the acute framework, and
for the second case, the positive framework.

The Positive Gauss Algorithm

The positive lattice reduction algorithm takes as input a positive arbitrary basis and
produces as output a positive minimal basis. The positive Gauss algorithm aims at
satisfying simultaneously the conditions .P / of Proposition 1. The conditions .P1/

and .P3/ are simply satisfied by an exchange between vectors followed by a sign
change v WD �v. The condition .P2/ is met by an integer translation of the type

v WD v � qu with q WD b�.v; u/e ; �.v; u/ WD <
� v

u

�
D .u � v/
juj2 ; (3.2)

where bxe represents the integer nearest2 to the real x. After this translation, the
new coefficient �.v; u/ satisfies 0 � j�.v; u/j � .1=2/.

2 The function bxe is extended to the negative numbers with the relation bxe D �b�xe.

Probabilistic Analyses of Lattice Reduction Algorithms
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On the input pair .u; v/ D .v0; v1/, the positive Gauss Algorithm computes a
sequence of vectors vi defined by the relations

viC1 D �vi�1 C qi vi with qi WD b�.vi�1; vi /e : (3.3)

Here, each quotient qi is an integer of Z, the final pair .vp; vpC1/ satisfies the
conditions .P / of Proposition 1, and P.u; v/ WD p denotes the number of iterations.
Each step defines a unimodular matrix Mi with detMi D 1,

Mi D
�
qi �1
1 0

�
; with

�
viC1

vi

�
DMi

�
vi

vi�1

�
;

so that the algorithm produces a matrix M for which

�
vpC1

vp

�
DM

�
v1

v0

�
with M WDMp �Mp�1 � : : : �M1: (3.4)

The Acute Gauss Algorithm

The acute reduction algorithm takes as input an arbitrary acute basis and produces as
output an acute minimal basis. This AGAUSS algorithm aims at satisfying simulta-
neously the conditions .A/ of Proposition 1. The condition .A1/ is simply satisfied
by an exchange, and the condition .A2/ is met by an integer translation of the type

v WD ".v � qu/ with q WD b�.v; u/e ; " D sign .�.v; u/� b�.v; u/e/ ;

where �.v; u/ is defined as in (3.2). After this transformation, the new coefficient
�.v; u/ satisfies 0 � �.v; u/ � .1=2/.

AGAUSS.u; v/

Input. An acute basis .u; v/ of C with jvj � juj; 0 � �.v; u/ � .1=2/.
Output. An acute minimal basis .u; v/ of L.u; v/ with jvj 
 juj.
While jvj < juj do

.u; v/ WD .v; u/;
q WD b�.v; u/e I " WD sign .�.v; u/� b�.v; u/e/;
v WD ".v� qu/;

On the input pair .u; v/ D .w0;w1/, the Gauss Algorithm computes a sequence
of vectors wi defined by the relations wiC1 D "i .wi�1 �eqi wi / with

eqi WD b�.wi�1;wi /e ; "i D sign .�.wi�1;wi / � b�.wi�1;wi /e/ : (3.5)

Here, each quotient eqi is a positive integer, p 
 P.u; v/ denotes the number
of iterations [this equals the previous one], and the final pair .wp ;wpC1/ satisfies
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the conditions .A/ of Proposition 1. Each step defines a unimodular matrix Ni with
detNi D �"i D ˙1,

Ni D
��"ieqi "i

1 0

�
; with

�
wiC1

wi

�
D Ni

�
wi

wi�1

�
;

so that the algorithm produces a matrix N for which

�
wpC1

wp

�
D N

�
w1

w0

�
with N WD Np �Np�1 � : : : �N1:

Comparison Between the Two Algorithms

These algorithms are closely related, but different. The AGAUSS Algorithm can
be viewed as a folded version of the PGAUSS Algorithm, in the sense defined in
[7]. We shall come back to this fact in Section “Relation with the Centered Euclid
Algorithm”, and the following is true.

Consider two bases: a positive basis .v0; v1/ and an acute basis .w0;w1/, which
satisfy w0 D v0 and w1 D 
1 v1 with 
1 D ˙1. Then the sequences of vectors .vi /

and .wi / computed by the two versions of the Gauss algorithm (defined in (3.3) and
(3.5)) satisfy wi D 
i vi for some 
i D ˙1 and the quotienteqi is the absolute value
of quotient qi .

Then, when studying the two kinds of parameters – execution parameters or
output parameters – the two algorithms are essentially the same. As already said,
we shall use the PGAUSS Algorithm for studying the output parameters, and the
AGAUSS Algorithm for the execution parameters.

Main Parameters of Interest

The size of a pair .u; v/ 2 ZŒi � � ZŒi � is

`.u; v/ WD maxf`.juj2/; `.jvj2/g � 2maxf`.juj/; `.jvj/g;

where `.x/ is the binary length of the integer x. The Gram matrix G.u; v/ is
defined as

G.u; v/ D
� juj2 .u � v/
.u � v/ jvj2

�
:

In the following, we consider subsets ˝M , which gather all the (valid) inputs of
size M relative to each version of the algorithm. They will be endowed with some
discrete probability PM , and the main parameters become random variables defined
on these sets.

All the computations of the Gauss algorithm are done on the Gram matrices
G.vi ; viC1/ of the pair .vi ; viC1/. The initialization of the Gauss algorithm computes

Probabilistic Analyses of Lattice Reduction Algorithms
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the Gram Matrix of the initial basis: it computes three scalar products, which takes
a quadratic time3 with respect to the length of the input `.u; v/. After this, all the
computations of the central part of the algorithm are directly done on these matri-
ces; more precisely, each step of the process is an Euclidean division between the
two coefficients of the first line of the Gram matrixG.vi ; vi�1/ of the pair .vi ; vi�1/

for obtaining the quotient qi , followed with the computation of the new coefficients
of the Gram matrix G.viC1; vi /, namely

jviC1j2 WD jvi�1j2�2qi .vi �vi�1/Cq2
i jvi j2; .viC1 �vi / WD qi jvi j2�.vi�1 �vi/:

Then the cost of the i th step is proportional to `.jqi j/ � `.jvi�1j2/, and the bit-
complexity of the central part of the Gauss Algorithm is expressed as a function
of

B.u; v/ D
P.u;v/X

iD1

`.jqi j/ � `.jvi�1j2/; (3.6)

where P.u; v/ is the number of iterations of the Gauss Algorithm. In the sequel, B
will be called the bit-complexity.

The bit-complexity B.u; v/ is one of our main parameters of interest, and we
compare it to other simpler costs. Define three new costs, the quotient bit-cost
Q.u; v/, the difference cost D.u; v/, and the approximate difference cost D:

Q.u; v/ D
P.u;v/X

iD1

`.jqi j/; D.u; v/ D
P.u;v/X

iD1

`.jqi j/
�
`.jvi�1j2/ � `.jv0j2/



;

(3.7)

D.u; v/ WD
P.u;v/X

iD1

`.jqi j/ lg
ˇ̌
ˇ
vi�1

v

ˇ̌
ˇ
2

;

which satisfy D.u; v/ �D.u; v/ D �.Q.u; v// and

B.u; v/ D Q.u; v/ `.juj2/CD.u; v/C ŒD.u; v/�D.u; v/� : (3.8)

We are then led to study two main parameters related to the bit-cost, which may be
of independent interest:

(a) The additive costs, which provide a generalization of costs P and Q. They are
defined as the sum of elementary costs, which depend only on the quotients qi .
More precisely, from a positive elementary cost c defined on N, we consider the
total cost on the input .u; v/ defined as

C.c/.u; v/ D
P.u;v/X

iD1

c.jqi j/ : (3.9)

3 We consider the naive multiplication between integers of size M , whose bit-complexity is
O.M2/.
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When the elementary cost c satisfies c.m/ D O.logm/, the cost C is said to be
of moderate growth.

(b) The sequence of the i th length decreases di for i 2 Œ1::p� (with p WD P.u; v/�)
and the total length decrease d WD dp, defined as

di WD
ˇ̌
ˇ̌ vi

v0

ˇ̌
ˇ̌
2

; d WD
ˇ̌
ˇ̌vp

v0

ˇ̌
ˇ̌
2

: (3.10)

Finally, the configuration of the output basis .bu;bv/ is described via its Gram–
Schmidt orthogonalized basis, that is, the system .bu?;bv?/, wherebu? WDbu andbv? is
the orthogonal projection ofbv onto the orthogonal of <bu>. There are three main
output parameters closely related to the minima of the lattice L.u; v/,

�.u; v/ WD �1.L.u; v// D jbuj; �.u; v/ WD j det.u; v/j
�.u; v/

D jbv?j; (3.11)

�.u; v/ WD �2.u; v/

j det.u; v/j D
�.u; v/

�.u; v/
D jbujjbv?j : (3.12)

We return later to these output parameters and shall explain in Section “A Varia-
tion for the LLL Algorithm: The Odd-Even Algorithm” why they are so important
in the study of the LLL algorithm. We now return to the general case of lattice
reduction.

The LLL Algorithm

We provide a description of the LLL algorithm, introduce the parameters of interest,
and explain the bounds obtained in the worst-case analysis. Then, we describe the
results of the main experiments conducted for classes of “useful” lattices. Finally,
this section presents a variant of the LLL algorithm, where the Gauss algorithm
plays a more apparent rôle: it appears to be well-adapted to (further) analyses.

Description of the Algorithm

We recall that the LLL algorithm considers a Euclidean lattice given by a system B

formed of p linearly independent vectors in the ambient space R
n. It aims at find-

ing a reduced basis, denoted by bB formed with vectors almost orthogonal and short
enough. The algorithm (see Figure 3.2) deals with the matrix P , which expresses the
system B as a function of the Gram–Schmidt orthogonalized system B�; the coef-
ficient mi;j of matrix P is equal to �.bi ; b

?
j /, with � defined in (3.2). The algorithm

performs two main types of operations (see Figure 3.2):

Probabilistic Analyses of Lattice Reduction Algorithms
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P WD

0

BBBBBBBBBB@

b?1 b?2 : : : b?i b?iC1 : : : b?p
b1 1 0 : : : 0 0 0 0

b2 m2;1 1 : : : 0 0 0 0

:
:
:

:
:
:

:
:
:

: : :
:
:
:

:
:
:

:
:
:

:
:
:

bi mi;1 mi;2 : : : 1 0 0 0

biC1 miC1;1 miC1;2 : : : miC1;i 1 0 0

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

: : :
:
:
:

bp mp;1 mp;2 : : : mp;i mp;iC1 : : : 1

1

CCCCCCCCCCA

Uk WD
� b?k b?kC1

uk 1 0

vk mkC1;k 1

�

LLL .t/ [t > 1]

Input. A basis B of a lattice L of dimension p.
Output. A reduced basis bB of L.
Gram computes the basis B? and the matrix P .
i WD 1;
While i < p do

1– Diagonal-Size-Reduction .biC1/

2– Test if local basis Ui is reduced : Is jvi j > .1=t/jui j?
if yes : Other-size-reduction .biC1/

i WD i C 1I
if not: Exchange bi and biC1

Recompute .B?;P/;
If i 6D 1 then i WD i � 1;

Fig. 3.2 The LLL algorithm: the matrix P , the local bases Uk , and the algorithm itself

1. Size-reduction of vectors. The vector bi is size-reduced if all the coefficientsmi;j

of the i th row of matrix P satisfy jmi;j j � .1=2/ for all j 2 Œ1::i � 1�. Size-
reduction of vector bi is performed by integer translations of bi with respect to
vectors bj for all j 2 Œ1::i � 1�:
As subdiagonal coefficients play a particular rôle (as we shall see later), the
operation Size-reduction .bi / is subdivided into two main operations:

Diagonal-size-reduction .bi /;
bi WD bi � bmi;i�1ebi�1I

followed with
Other-size-reduction .bi /;

For j WD i � 2 downto 1 do bi WD bi � bmi;jebj .
2. Gauss-reduction of the local bases. The i th local basis Ui is formed with the two

vectors ui ; vi , defined as the orthogonal projections of bi ; biC1 on the orthogonal
of the subspace hb1; b2; : : : ; bi�1i. The LLL algorithm performs the PGAUSS
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algorithm [integer translations and exchanges] on local bases Ui , but there are
three differences with the PGAUSS algorithm previously described:

.a/ The output test is weaker and depends on a parameter t > 1: the classical
Gauss output test jvi j > jui j is replaced by the output test jvi j > .1=t/jui j.

.b/ The operations that are performed during the PGAUSS algorithm on the
local basis Ui are then reflected on the system .bi ; biC1/: if M is the matrix
built by the PGAUSS algorithm on .ui ; vi /, then it is applied to the system
.bi ; biC1/ in order to find the new system .bi ; biC1/.

.c/ The PGAUSS algorithm is performed on the local basis Ui step by step. The
index i of the local basis visited begins at i D 1, ends at i D p, and is
incremented (when the test in Step 2 is positive) or decremented (when the
test in Step 2 is negative and the index i does not equal 1) at each step. This
defines a random walk. The length K of the random walk is the number of
iterations, and the number of steps K� where the test in step 2 is negative
satisfies

K � .p � 1/C 2K�: (3.13)

The LLL algorithm considers the sequence `i formed with the lengths of the
vectors of the Gram orthogonalized basis B? and deals with the Siegel ratios ri ’s
between successive Gram orthogonalized vectors, namely

ri WD `iC1

`i

; with `i WD jb?
i j: (3.14)

The steps of Gauss reduction aim at obtaining lower bounds on these ratios. In
this way, the interval Œa; A� with

a WD minf`i I 1 � i � pg; A WD maxf`i I 1 � i � pg; (3.15)

tends to be narrowed as, all along the algorithm, the minimum a is increasing and
the maximumA is decreasing. This interval Œa; A� plays an important rôle because it
provides an approximation for the first minimum �.L/ of the lattice (i.e., the length
of a shortest nonzero vector of the lattice), namely

�.L/ � App; �.L/ � a: (3.16)

At the end of the algorithm, the basis bB satisfies the following:4 each local bases
is reduced in the t-Gauss meaning. It satisfies conditions that involve the subdiag-
onal matrix coefficients bmiC1;i together with the sequence b̀i , namely the t-Lovász
conditions, for any i; 1 � i � p � 1,

4 All the parameters relative to the output basis bB are denoted with a hat.

Probabilistic Analyses of Lattice Reduction Algorithms
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jbmiC1;i j � 1

2
; t2 .bm2

iC1;i
b̀2

i C b̀2
iC1/ � b̀2

i ; (3.17)

which imply the s-Siegel conditions, for any i; 1 � i � p � 1,

jbmiC1;i j � 1

2
; bri WD

b̀
iC1

b̀
i

� 1

s
; with s2 D 4t2

4 � t2 and s D 2p
3

for t D 1.

(3.18)
A basis fulfilling conditions (3.18) is called s-Siegel reduced .

Main Parameters of Interest

There are two kinds of parameters of interest for describing the behavior of the
algorithm: the output parameters and the execution parameters.

Output Parameters

The geometry of the output basis is described with three main parameters – the
Hermite defect �.B/, the length defect �.B/, or the orthogonality defect �.B/. They
satisfy the following (worst-case) bounds that are functions of parameter s, namely

�.B/ WD jbb1j2
.detL/2=p

� sp�1; �.B/ WD j
bb1j
�.L/ � s

p�1; (3.19)

�.B/ WD
Qd

iD1 jbbi j
detL � sp.p�1/=2:

This proves that the output satisfies good Euclidean properties. In particular, the
length of the first vector of bB is an approximation of the first minimum �.L/ – up
to a factor that exponentially depends on dimension p.

Execution Parameters

The execution parameters are related to the execution of the algorithm itself : the
length of the random walk (equal to the number of iterations K), the size of the
integer translations, the size of the rationalsmi;j along the execution.

The product D of the determinants Dj of beginning lattices Lj WD
hb1; b2; : : : ; bj i, defined as

Dj WD
jY

iD1

`i ; D D
p�1Y

jD1

Dj D
p�1Y

jD1

jY

iD1

`i ;
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is never increasing all along the algorithm and is strictly decreasing, with a factor
of .1=t/, for each step of the algorithm when the test in 2 is negative. In this case,
the exchange modifies the length of `i and `iC1 – without modifying their product,
equal to the determinant of the basis Ui . The new `i , denoted by L̀i , is the old jvi j,
which is at most .1=t/jui j D .1=t/`i . Then the ratio between the new determinant
LDi and the old one satisfies LDi=Di � .1=t/, while the otherDj are not modified.

Then, the ratio between the final bD and the initialD satisfies .bD=D/ � .1=t/K�

,
where K� denotes the number of indices of the random walk when the test in 2 is
negative (see Section “Description of the Algorithm”). With the following bounds
on the initial D and the final bD, as a function of variables a;A, defined in (3.15),

D � Ap.p�1/=2; bD � ap.p�1/=2;

together with the expression ofK as a function ofK� given in (3.13), the following
bound on K is derived,

K � .p � 1/C p.p � 1/ logt

A

a
: (3.20)

In the same vein, another kind of bound involves N WD max jbi j2 and the first
minimum �.L/, (see [15]),

K � p2

2
logt

N
p
p

�.L/ :

In the case when the lattice is integer (namely L � Z
n), this bound is slightly

better and becomes

K � .p � 1/C p.p � 1/ M
lg t

:

It involves lg t WD log2 t and the binary size M of B , defined as M WD
max `.jbi j2/, where `.x/ is the binary size of integer x.

All the previous bounds are proven upper bounds on the main parameters. It is
interesting to compare these bounds to experimental mean values obtained on a
variety of lattice bases that actually occur in applications of lattice reduction.

Experiments for the LLL Algorithm

In [30], Nguyen and Stehlé have made a great use of their efficient version of the
LLL algorithm [29] and conducted for the first time extensive experiments on the
two major types of useful lattice bases: the Ajtai bases, and the knapsack-shape
bases, which will be defined in the next section. Figures 3.3 and 3.4 show some of
the main experimental results. These experimental results are also described in the
survey written by D. Stehlé in these proceedings [36].

Probabilistic Analyses of Lattice Reduction Algorithms
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Main parameters. bri � � � K

Worst-case 1=s sp�1 sp�1 sp.p�1/=2 �.Mp2/

(Proven upper bounds)

Random Ajtai bases 1=˛ ˛p�1 ˛.p�1/=2 ˛p.p�1/=2 �.Mp2/

(Experimental mean values)

Random knapsack–shape bases 1=˛ ˛p�1 ˛.p�1/=2 ˛p.p�1/=2 �.Mp/

(Experimental mean values)

Fig. 3.3 Comparison between proven upper bounds and experimental mean values for the main
parameters of interest. Here p is the dimension of the input (integer) basis and M is the binary size
of the input (integer) basis: M WD �.logN/, where N WD max jbi j2
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Fig. 3.4 Left: experimental results for log2 � . The experimental value of parameter
Œ1=.2p/�EŒlog2 �� is close to 0.03, so that ˛ is close to 1:04. Right: the output distribution of
“local bases”

Output geometry. The geometry of the output local basis bUk seems to depend neither
on the class of lattice bases nor on index k of the local basis (along the diagonal of
P), except for very extreme values of k. We consider the complex numberbzk that is
related to the output local basis bUk WD .buk;bvk/ via the equality bzk WD bmk;kC1Cibrk .
Because of the t-Lovász conditions on bUk , described in (3.17), the complex number
bzk belongs to the domain

Ft WD fz 2 CI jzj � 1=t; j<.z/j � 1=2g;

and the geometry of the output local basis bUk is characterized by a distribution,
which much “weights” the “corners” of Ft defined by Ft \ fzI =z � 1=tg [see
Fig. 3.4 (right)]. The (experimental) mean values of the output Siegel ratiosbrk WD
=.bzk/ appear to be of the same form as the (proven) upper bounds, with a ratio ˛
(close to 1.04), which replaces the ratio s0 close to 1:15 when t0 is close to 1. As a
consequence, the (experimental) mean values of parameters �.B/ and �.B/ appear
to be of the same form as the (proven) upper bounds, with a ratio ˛ (close to 1.04)
that replaces the ratio s0 close to 1:15.
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For parameter �.B/, the situation is slightly different. Remark that the estimates
on parameter � are not only a consequence of the estimates on the Siegel ratios,
but they also depend on estimates that relate the first minimum and the determinant.
Most of the lattices are (probably) regular: this means that the average value of the
ratio between the first minimum �.L/ and det.L/1=p is of polynomial order with
respect to dimension p. This regularity property should imply that the experimental
mean value of parameter � is of the same form as the (proven) upper bound, but
now with a ratio ˛1=2 (close to 1.02), which replaces the ratio s0 close to 1:15.

Open Question. Does this constant ˛ admit a mathematical definition, related for
instance to the underlying dynamical system [see Sections “Returning to the Gauss
Algorithm and First Steps in the Probabilistic Analysis of the LLL Algorithm”?

Execution parameters. Regarding the number of iterations, the situation differs
according to the types of bases considered. For the Ajtai bases, the number of itera-
tionsK exhibits experimentally a mean value of the same order as the proven upper
bound, whereas, in the case of the knapsack-shape bases, the number of iterations
K has an experimental mean value of smaller order than the proven upper bound.

Open question. Is it true for the “actual” knapsack bases that come from crypto-
graphic applications? [See Section “Probabilistic Models: Continuous or Discrete”]

All the remainder of this survey is devoted to presenting a variety of methods
that could (should?) lead to explaining these experiments. One of our main ideas is
to use the Gauss algorithm as a central tool for this purpose. This is why we now
present a variant of the LLL algorithm, where the Gauss algorithm plays a more
apparent rôle.

A Variation for the LLL Algorithm:
The Odd-Even Algorithm

The original LLL algorithm performs the Gauss Algorithm step by step, but does not
perform the whole Gauss algorithm on local bases. This is due to the definition of
the random walk of the indices on the local bases (See Section “Description of the
Algorithm”). However, this is not the only strategy for reducing all the local bases.
There exists for instance a variant of the LLL algorithm, introduced by Villard [48],
which performs a succession of phases of two types, the odd ones and the even
ones. We adapt this variant and choose to perform the AGAUSS algorithm, because
we shall explain in Section “Returning to the Gauss Algorithm” that it has a better
“dynamical” structure.

During one even (respectively, odd) phase (see Figure 3.5), the whole AGAUSS

algorithm is performed on all local bases Ui with even (respectively, odd) indices.
Since local bases with odd (respectively, even) indices are “disjoint,” it is possible
to perform these Gauss algorithms in parallel. This is why Villard has introduced
this algorithm. Here, we will use this algorithm in Section “First Steps in the Proba-
bilistic Analysis of the LLL Algorithm”, when we shall explain the main principles
for a dynamical study of the LLL algorithm.

Probabilistic Analyses of Lattice Reduction Algorithms



88 B. Vallée and A. Vera

Odd–Even LLL .t/ [t > 1]

Input. A basis B of a lattice L of dimension p.
Output. A reduced basis bB of L.
Gram computes the basis B? and the matrix P .
While B is not reduced do

Odd Phase .B/:
For i D 1 to bn=2c do

Diagonal-size-reduction .b2i /;
Mi := t–AGAUSS .U2i�1/;
.b2i�1; b2i / WD .b2i�1; b2i /

tMi ;
For i D 1 to n do Other-size-reduction .bi /;
Recompute B?;P;

Even Phase .B/:
For i D 1 to b.n� 1/=2c do

Diagonal-size-reduction .b2iC1/;
Mi := t–AGAUSS .U2i /;
.b2i ; b2iC1/ WD .b2i ; b2iC1/

tMi ;
For i D 1 to n do Other-size-reduction .bi /;
Recompute B?;P;

Fig. 3.5 Description of the Odd–Even variant of the LLL algorithm, with its two phases, the Odd
Phase and the Even Phase

Consider, for an odd index k, two successive bases Uk WD .uk; vk/ and UkC2 WD
.ukC2; vkC2/. Then, the Odd Phase of the Odd–Even LLL algorithm (completely)
reduces these two local bases (in the t-Gauss meaning) and computes two reduced
local bases denoted by .buk;bvk/ and .bukC2;bvkC2/, which satisfy in particular

jbv?
kj D �.uk; vk/; jbukC2j D �.ukC2; vkC2/;

where parameters �;� are defined in (3.11). During the Even phase, the LLL algo-
rithm considers (in parallel) all the local bases with an even index. Now, at the
beginning of the following Even Phase, the (input) basis UkC1 is formed (up to a
similarity) from the two previous output bases, as ukC1 Dbv?

k
; vkC1 D �bv?

k
CbukC2;

where � is a real number of the interval Œ�1=2;C1=2�. Then, the initial Siegel
ratio rkC1 of the Even Phase can be expressed with the output lengths of the Odd
Phase, as

rkC1 D �.ukC2; vkC2/

�.uk; vk/
:

This explains the important rôle that is played by these parameters�;�. We study
these parameters in Section “Analysis of Lattice Reduction in Two-Dimensions:
The Output Parameters”.
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What is a Random (Basis of a) Lattice?

We now describe the main probabilistic models, addressing the various applications
of lattice reduction. For each particular area, there are special types of input lattice
bases that are used and this leads to different probabilistic models dependent upon
the specific application area considered. Cryptology is a main application area, and
it is crucial to describe the major “cryptographic” lattices, but there also exist other
important applications.

There are various types of “interesting” lattice bases. Some of them are also
described in the survey of Stehlé in this book [36].

Spherical Models

The most natural way is to choose independently p vectors in the n-dimensional
unit ball, under a distribution that is invariant by rotation. This is the spherical model
introduced for the first time in [15], then studied in [3,4] (See Section “Probabilistic
Analyses of the LLL Algorithm in the Spherical Model”). This model does not seem
to have surfaced in practical applications (except perhaps in integer linear program-
ming), but it constitutes a reference model, to which it is interesting to compare the
realistic models of use.

We consider distributions �.n/ on R
n that are invariant by rotation, and satisfy

�.n/.0/ D 0, which we call “simple spherical distributions.” For a simple spherical
distribution, the angular part �.n/ WD b.n/=jb.n/j is uniformly distributed on the unit
sphere �.n/ WD fx 2 R

n W kxk D 1g. Moreover, the radial part jb.n/j2 and the angu-
lar part are independent. Then, a spherical distribution is completely determined by
the distribution of its radial part, denoted by �.n/.

Here, the beta and gamma distribution play an important rôle. Let us recall that,
for strictly positive real numbers a; b 2 R

C?, the beta distribution of parameters
.a; b/ denoted by ˇ.a; b/ and the gamma distribution of parameter a denoted by
�.a/ admit densities of the form

ˇa;b.x/ D 
 .aC b/

 .a/
 .b/

xa�1.1 � x/b�1 1.0;1/.x/; �a.x/ D e�xxa�1


 .a/
1Œ0;1/.x/:

(3.21)

We now describe three natural instances of simple spherical distributions.

1. The first instance of a simple spherical distribution is the uniform distribution in
the unit ball B.n/ WD fx 2 R

n W kxk � 1g. In this case, the radial distribution
�.n/ equals the beta distribution ˇ.n=2; 1/.

2. A second instance is the uniform distribution on the unit sphere S.n/, where the
radial distribution �.n/ is the Dirac measure at x D 1.

3. A third instance occurs when all the n coordinates of the vector b.n/ are indepen-
dent and distributed with the standard normal law N .0; 1/. In this case, the radial
distribution �.n/ has a density equal to 2�n=2.2t/.

Probabilistic Analyses of Lattice Reduction Algorithms
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When the system Bp;.n/ is formed with p vectors (with p � n), which are
picked up randomly from R

n, independently, and with the same simple spherical
distribution �.n/, we say that the system Bp;.n/ is distributed under a “spherical
model.” Under this model, the system Bp;.n/ (for p � n) is almost surely linearly
independent.

Ajtai Bases

Consider an integer sequence ai;p defined for 1� i �p, which satisfies the condi-
tions

For any i ,
aiC1;p

ai;p

! 0 when p !1:

A sequence of Ajtai bases B WD .Bp/ relative to the sequence a D .ai;p/ is
defined as follows: the basis Bp is of dimension p and is formed by vectors bi;p 2
Z

p of the form

bi;p D ai;p ei C
i�1X

jD1

ai;j;p ej ; with ai;j;p D rand
�
�aj;p

2
;
aj;p

2

�
for j < i:

[Here, .ej / (with 1� j �p) is the canonical basis of R
p]. Remark that these

bases are already size-reduced, as the coefficientmi;j equals ai;j;p=aj;p. However,
all the input Siegel ratios ri , defined in (3.14) and here equal to aiC1;p=ai;p, tend to
0 when p tends to 1. Then, such bases are not reduced “at all,” and this explains
why similar bases have been used by Ajtai in [2] to show the tightness of worst-case
bounds of [32].

Variations Around Knapsack Bases and Their Transposes

This last type gathers various shapes of bases, which are all formed by “bordered
identity matrices”; see Fig. 3.6.

1. The knapsack bases themselves are the rows of the p � .p C 1/ matrices of
the form of Fig. 3.6a, where Ip is the identity matrix of order p and the com-
ponents .a1; a2; : : : ap/ of vector A are sampled independently and uniformly
in Œ�N;N � for some given boundN . Such bases often occur in cryptanalyses of
knapsack-based cryptosystems or in number theory (reconstructions of minimal
polynomials and detections of integer relations between real numbers).

2. The bases relative to the transposes of matrices described in Fig. 3.6b arise in
searching for simultaneous Diophantine approximations (with q 2 Z) or in
discrete geometry (with q D 1).
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�
A Ip

�
 
y 0

x qIp

!  
Ip Hp

0p qIp

!  
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!

.a/ .b/ .c/ .d/

Fig. 3.6 Different kinds of lattice bases useful in applications. Type (a) Knapsack bases; Type
(b) bases used for factoring polynomials, for solving Diophantine equations; Type (c) Bases for
NTRU; Type (d) bases related to random lattices

3. The NTRU cryptosystem was first described in terms of polynomials over finite
fields, but the public-key can be seen [12] as the lattice basis given by the rows
of the matrix .2p � 2p/ described in Fig. 3.6c, where q is a small power of 2
and Hp is a circulant matrix whose line coefficients are integers of the interval
� � q=2; q=2�.

Random Lattices

There is a natural notion of random lattice, introduced by Siegel [34] in 1945.
The space of (full-rank) lattices in R

n modulo scale can be identified with the quo-
tient Xn D SLn.R/=SLn.Z/. The group Gn D SLn.R/ possesses a unique (up to
scale) bi-invariant Haar measure, which projects to a finite measure on the space Xn.
This measure �n (which can be normalized to have total volume 1) is by definition
the unique probability on Xn, which is invariant under the action of Gn: if A 	 Xn

is measurable and g 2 Gn, then �n.A/ D �n.gA/. This gives rise to a natural notion
of random lattices. We come back to this notion in the two-dimensional case in
Section “Relation with Eisenstein Series”.

Probabilistic Models: Continuous or Discrete

Except two models – the spherical model or the model of random lattices – that
are continuous models, all the other ones (the Ajtai model or the various knapsack-
shape models) are discrete models. In these cases, it is natural to build probabilistic
models that preserve the “shape” of matrices and replace discrete coefficients by
continuous ones. This allows to use in the probabilistic studies all the continuous
tools of (real and complex) analysis.

1. A first instance is the Ajtai model relative to sequence a WD .ai;p/, for which the
continuous version of dimension p is as follows:

bi;p D ai;p ei C
i�1X

jD1

xi;j;p aj;p ej ; with xi;j;p D rand .�1=2; 1=2/

for all j < i � p:

Probabilistic Analyses of Lattice Reduction Algorithms



92 B. Vallée and A. Vera

2. We may also replace the discrete model associated to knapsack bases of Fig. 3.6a
by the continuous model, whereA is replaced by a real vector x uniformly chosen
in the ball kxk1 � 1 and Ip is replaced by �Ip, with a small positive constant
0 < � < 1. Generally speaking, choosing continuous random matrices indepen-
dently and uniformly in their “shape” class leads to a class of “knapsack-shape”
lattices.

Remark 1. It is very unlikely that such knapsack-shape lattices share all the same
properties as the knapsack lattices that come from the actual applications – for
instance, the existence of an unusually short vector (significantly shorter than
expected from Minkowski’s theorem).

Conversely, we can associate to any continuous model a discrete one: consider a
domain X � R

n with a “smooth” frontier. For any integer N , we can “replace” a
(continuous) distribution in the domain X relative to some density f of class C1 by
the distribution in the discrete domain

XN WD X \ Z
n

N
;

defined by the restriction fN of f to XN . WhenN !1, the distribution relative to
density fN tends to the distribution relative to f , due to the Gauss principle, which
relates the volume of a domain A � X (with a smooth frontier @A) and the number
of points in the domain AN WD A\ XN ,

1

N n
card.AN / D Vol.A/CO

�
1

N

�
Area.@A/:

We can apply this framework to any (simple) spherical model and also to the models
that are introduced for the two-dimensional case.

In the same vein, we can consider a discrete version of the notion of a random
lattice: consider the set L.n;N / of the n-dimensional integer lattices of determi-
nant N . Any lattice of L.n;N / can be transformed into a lattice of Xn (defined in
4.4) by the homothecy �N of ratio N�1=n. Goldstein and Mayer [20] show that for
largeN , the following is true: given any measurable subset An 	 Xn whose bound-
ary has zero measure with respect to �n, the proportion of lattices of L.n;N / whose
image by �N lies in An tends to �n.A/ as N tends to infinity. In other words, the
image by �N of the uniform probability on L.n;N / tends to the measure �n.

Thus, to generate lattices that are random in a natural sense, it suffices to gener-
ate uniformly at random a lattice in L.n;N / for large N . This is particularly easy
when N D q is prime. Indeed, when q is a large prime, the vast majority of lattices
in L.n; q/ are lattices spanned by rows of the matrices described in Fig. 3.6d, where
the components xi (with i 2 Œ1::n � 1�) of the vector x are chosen independently
and uniformly in f0; : : : ; q � 1g.
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Probabilistic Analyses of the LLL Algorithm
in the Spherical Model

In this section, the dimension of the ambient space is denoted by n, and the dimen-
sion of the lattice is denoted by p, and a basis of dimension p in R

n is denoted by
Bp;.n/. The codimension g, equal by definition to n � p, plays a fundamental rôle
here. We consider the case where n tends to1 while g WD g.n/ is a fixed function
of n (with g.n/ � n). We are interested in the following questions:

1. Consider a real s > 1. What is the probability 	p;.n/;s that a random basisBp;.n/

was already s-reduced in the Siegel sense [i.e., satisfy the relations (3.18)]?
2. Consider a real t > 1. What is the average number of iterations of the LLL.t/

algorithm on a random basis Bp;.n/?
3. What is the mean value of the first minimum of the lattice generated by a random

basis Bp;.n/?

This section answers these questions in the case when Bp;.n/ is randomly chosen
under a spherical model, and shows that there are two main cases according to the
codimension g WD n� p.

Main Parameters of Interest

Let Bp;.n/ be a linearly independent system of vectors of R
n whose codimension

is g D n � p. Let B?
p;.n/

be the associated Gram–Schmidt orthogonalized system.
We are interested by comparing the lengths of two successive vectors of the orthog-
onalized system, and we introduce several parameters related to the Siegel reduction
of the system Bp;.n/.

Definition 1. To a system Bp;.n/ of p vectors in R
n, we associate the Gram–

Schmidt orthogonalized system B?
p;.n/

and the sequence rj;.n/ of Siegel ratios,
defined as

rj;.n/ WD
`n�jC1;.n/

`n�j;.n/

; for gC 1 � j � n � 1;

together with two other parameters

Mg;.n/ WD minfr2
j;.n/I gC 1 � j � n� 1g Ig;.n/ WD min

n
j W r2

j;.n/ DMg;.n/

o
:

The parameter Mg;.n/ is the reduction level, and the parameter Ig;.n/ is the index
of worst local reduction.

Remark 2. The ratio rj;.n/ is closely related to the ratio ri defined in Section
“Description of the Algorithm” [see (3.14)]. There are two differences: the rôle of
the ambient dimension n is made apparent, and the indices i and j are related via

Probabilistic Analyses of Lattice Reduction Algorithms



94 B. Vallée and A. Vera

rj WD rn�j . The rôle of this “time inversion” will be explained later. The variable
Mg;.n/ is the supremum of the set of those 1=s2 for which the basis Bn�g;.n/ is
s-reduced in the Siegel sense. In other words, 1=Mg;.n/ denotes the infimum of val-
ues of s2 for which the basis Bn�g;.n/ is s-reduced in the Siegel sense. This variable
is related to our initial problem due to the equality

	n�g;.n/;s WD PŒBn�g;.n/is s–reduced� D P

�
Mg;.n/ � 1

s2

�
;

and we wish to evaluate the limit distribution (if it exists) of Mg;.n/ when n!1.
The second variable Ig;.n/ denotes the smallest index j for which the Siegel condi-
tion relative to the index n � j is the weakest. Then n � Ig;.n/ denotes the largest
index i for which the Siegel condition relative to index i is the weakest. This index
indicates where the limitation of the reduction comes from.

When the system Bp;.n/ is chosen at random, the Siegel ratios, the reduction
level, and the index of worst local reduction are random variables, well-defined
whenever Bp;.n/ is a linearly independent system. We wish to study the asymptotic
behavior of these random variables (with respect to the dimension n of the ambient
space) when the system Bp;.n/ is distributed under a so-called (concentrated) spher-
ical model, where the radial distribution �.n/ fulfills the following Concentration
Property C.
Concentration Property C. There exist a sequence .an/n and constants d1; d2;

˛>0, �0 2 .0; 1/ such that, for every n and � 2 .0; �0/, the distribution function
�.n/ satisfies

�.n/ .an.1C �// � �.n/ .an.1 � �// � 1 � d1 e�nd2�˛

: (3.22)

In this case, it is possible to transfer results concerning the uniform distribu-
tion on S.n/ [where the radial distribution is Dirac] to more general spherical
distributions, provided that the radial distribution be concentrated enough. This
Concentration Property C holds in the three main instances previously described
of simple spherical distributions.

We first recall some definitions of probability theory, and define some notations:
A sequence .Xn/ of real random variables converges in distribution towards the

real random variable X iff the distribution function Fn of Xn is pointwise con-
vergent to the distribution function F of X on the set of continuity points of F .
A sequence .Xn/ of real random variables converges in probability to a constant a
if, for any " > 0, the sequence PŒjXn � aj > "� tends to 0. The two situations are
respectively denoted as

Xn

.d/��!
n
X; Xn

proba:����!
n

a:

We now state the main results of this section, and provide some hints for the proof.
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Theorem 1. (Akhavi et al. [4] 2005)
Let Bp;.n/ be a random basis with codimension g WD n � p under a concentrated
spherical model. Let s > 1 be a real parameter, and suppose that the dimension n
of the ambient space tends to1.

i. If g WD n� p tends to infinity, then the probability 	p;.n/;s that Bp;.n/ is already
s–reduced tends to 1.

ii. If g WD n � p is constant, then the probability 	p;.n/;s that Bp;.n/ is already s-
reduced converges to a constant in .0; 1/ (depending on s and g). Furthermore,
the index of worst local reduction Ig;.n/ converges in distribution.

The Irruption of ˇ and � Laws

When dealing with the Gram–Schmidt orthogonalization process, beta and gamma
distributions are encountered in an extensive way. We begin to study the variables
Yj;.n/ defined as

Yj;.n/ WD
`2

j;.n/

jbj;.n/j2 for j 2 Œ2::n�;

and we show that they admit beta distributions.

Proposition 2. (Akhavi et al. [4] 2005)

1. Under any spherical model, the variables `2
j;.n/

are independent.
Moreover, the variable Yj;.n/ follows the beta distribution ˇ..n� j C1/=2; .j �
1/=2/ for j 2 Œ2::n�, and the set fYj;.n/; jbk;.n/j2I .j; k/ 2 Œ2::n� � Œ1::n�g is
formed with independent variables.

2. Under the random ball model Un, the variable `2
j;.n/

follows the beta distribution
ˇ..n� j C 1/=2; .j C 1/=2/.

Proposition 2 is now used for showing that, under a concentrated spherical model,
the beta and gamma distributions will play a central rôle in the analysis of the main
parameters of interest introduced in Definition 1.

Denote by .
i /i
1 a sequence of independent random variables where 
i fol-
lows a Gamma distribution �.i=2/ and consider, for k � 1, the following random
variables

Rk D 
k=
kC1; Mk D minfRj I j � kC1g; IkD minfj � kC1I Rj DMkg:

We will show in the sequel that they intervene as the limits of variables (of the same
name) defined in Definition 1. There are different arguments in the proof of this fact.

(a) Remark first that, for the indices of the form n � i with i fixed, the variable
r2

n�i;.n/
tends to 1when n!1. It is then convenient to extend the tuple .rj;.n//

(only defined for j � n � 1) into an infinite sequence by setting rk;.n/ WD 1 for
any k � n.

Probabilistic Analyses of Lattice Reduction Algorithms
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(b) Second, the convergence

Rj
a:s:��!
j

1;
p
k.Rk � 1/ .d/���!

k
N .0; 4/;

leads to consider the sequence .Rk � 1/k
1 as an element of the space Lq , for
q > 2. We recall that

Lq WD fx; kxkq < C1g; with kxkq WD
0

@
X

i
1

jxi jq
1

A
1=q

; for x D .xi /i
1:

(c) Finally, classical results about independent gamma and beta distributed ran-
dom variables, together with the weak law of large numbers and previous
Proposition 2, prove that

For each j � 1; r2
j;.n/

.d/���!
n

Rj : (3.23)

This suggests that the minimum Mg;.n/ is reached by the r2
j;.n/

corresponding
to smallest indices j and motivates the “time inversion” done in Definition 1.

The Limit Process

It is then possible to prove that the processes R.n/ WD .rk;.n/ � 1/k
1 converge
(in distribution) to the process R WD .Rk � 1/k
1 inside the space Lq when the
dimension n of the ambient space tends to1. As Mg;.n/ and Ig;.n/ are continuous
functionals of the process R.n/, they also converge in distribution, respectively, to
Mg and Ig .

Theorem 2. (Akhavi et al. [4] 2005) For any concentrated spherical distribution,
the following holds:

1. The convergence .r2
k;.n/
� 1/k
1

.d/��!
n

.Rk � 1/k
1 holds in any space Lq , with

q > 2.

2. For any fixed k, one has Mk;.n/

.d/���!
n

Mk; Ik;.n/

.d/���!
n

Ik .

3. For any sequence n 7! g.n/ with g.n/ � n and g.n/ ! 1, the convergence

Mg.n/;.n/

proba:����!
n

1 holds.

This result solves our problem and proves Theorem 1. We now give some pre-
cisions on the limit processes

p
Rk;
p
Mk , and describe some properties of the

distribution function Fk of
p
Mk , which is of particular interest due to the equality

limn!1 	n�k;.n/;s D 1 � Fk.1=s/.
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Proposition 3. (Akhavi et al. [4] 2005) The limit processes
p
Rk;
p
Mk admit

densities that satisfy the following:

1. For each k, the density 'k of
p
Rk is

'k.x/ D 2B
�
k

2
;
k C 1
2

�
xk�11Œ0;1Œ.x/

.1C x2/kC.1=2/
; with B.a; b/ WD 
 .a/
 .b/


 .aC b/ :
(3.24)

2. For each k, the random variables
p
Mk;Mk have densities, which are positive

on .0; 1/ and zero outside. The distribution functions Fk; Gk satisfy for x near 0,
and for each k,




�
k C 2
2

�
Fk.x/ � xkC1; Gk.x/ D Fk.

p
x/:

There exists � such that, for each k and for x 2 Œ0; 1� satisfying jx2 � 1j �
.1=
p
k/;

0 � 1 � Fk.x/ � exp

�
�
� �

1 � x2

�2
�
:

3. For each k, the cardinality of the set fj � kC 1I Rj DMkg is almost surely
equal to 1.

In particular, for a full-dimensional lattice,

lim
n!1	n;.n/;s �s!1 1 � 1

s
; lim

n!1	n;.n/;s � exp

"
�
�
�s2

s2 � 1
�2
#

when s ! 1:

Figure 3.7 shows some experiments in the case of a full-dimensional lattice
(g D 0). In this case, the density g0 of M0 is proven to be �.1=

p
x/ when

x ! 0 and tends rapidly to 0 when x ! 1. Moreover, the same figure shows
that the worst reduction level for a full-dimensional lattice is almost always very
small: that means that the first index i where the test in step 2 of the LLL algorithm
(see Section “Description of the Algorithm”) is negative is very close to n.

These (probabilistic) methods do not provide any information about the speed
of convergence of 	n�g;.n/ towards 1 when n and g tend to 1. In the case of the
random ball model, Akhavi directly deals with the beta law of the variables `i and
observes that

1 � 	p;.n/;s �
p�1X

iD1

P

�
`iC1 � 1

s
`i

�
�

p�1X

iD1

P

�
`iC1 � 1

s

�

�
p�1X

iD1

exp

�
n

2
H

�
i

n

�� �
1

s

�n�i

;
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Fig. 3.7 Left: simulation of the density of M0 with 108 experiments. Right: the histogram of
I0 provided by 104 simulations. For any g, the sequence k 7! ‘ŒIg D k� seems to be rapidly
decreasing

whereH is the entropy function defined as H.x/ D �x logx � .1� x/ log.1� x/,
for x 2 Œ0; 1�, which satisfies 0 � H.x/ � log 2. This proves :

Proposition 4. (Akhavi [3] 2000) Under the random ball model, the probability
that a basis Bp;.n/ be reduced satisfies, for any n, for any p � n, for any s > 1,

1 � 	p;.n/;s � 1

s � 1 .
p
2/n

�
1

s

�n�p

:

In particular, for any s >
p
2, the probability that Bcn;.n/ be s-reduced tends

exponentially to 1, provided 1 � c is larger than 1=.2 lg s/.

A First Probabilistic Analysis of the LLL Algorithm

In the case of the random ball model, Daudé and Vallée directly deal with the beta
law of the variables `i and obtain estimates for the average number of iterations K
and the first minimum �.L/. They consider the case of the full-dimensional lattices,
namely the case when p D n. However, their proof can be extended to the case of a
basis Bp;.n/ in the random ball model with p � n.

Using properties of the beta function, they first obtain a simple estimate for the
distribution for the parameter `i ,

PŒ`i � u� � .upn/n�iC1

and deduce that the random variable a WD min `i satisfies
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PŒa � u� �
pX

iD1

PŒ`i � u� � .2pn/un�pC1; E

�
log

�
1

a

��

� 1

n� p C 1
�
1

2
lognC 2

�
:

The result then follows from (3.16) and (3.20). It shows that, as previously, there are
two regimes according to the dimension p of the basis relative to the dimension n
of the ambient space.

Theorem 3. (Daudé and Vallée [15] 1994) Under the random ball model, the
number of iterationsK of the LLL algorithm on Bp;.n/ has a mean value satisfying

Ep;.n/ŒK� � p � 1C p.p � 1/
n � p C 1

�
1

log t

��
1

2
lognC 2

�
:

Furthermore, the first minimum of the lattice generated by Bp;.n/ satisfies

Ep;.n/Œ�.L/� � n � p C 1
n � p C 2

�
1

2
p
n

�1=.n�pC1/

:

In the case when p D cn, with c < 1,

Ecn;.n/ŒK� � cn

1 � c
�

1

log t

��
1

2
lognC 2

�
;

Ecn;.n/Œ�.L/� � exp

�
1

2.1� c/n log
1

4n

�
:

Conclusion of the Probabilistic Study
in the Spherical Model

In the spherical model, and when the ambient dimension n tends to1, all the local
bases (except perhaps the “last” ones) are s-Siegel reduced. For the last ones, at
indices i WD n � k, for fixed k, the distribution of the ratio ri admits a density
'k , which is given by Proposition 5.5. Both when x ! 0 and when x ! 1,
the density 'k has a behavior of power type 'k.x/ D �.xk�1/ for x ! 0, and
'k.x/ D �.x�k�2/ for x ! 1. It is clear that the potential degree of reduction
of the local basis of index k is decreasing when k is decreasing. It will be interest-
ing in the sequel to consider local bases with an initial density of this power type.
However, the exponent of the density and the index of the local basis may be chosen
independent, and the exponent is no longer integer. This type of choice provides a
class of input local bases with different potential degree of reduction and leads to the
so-called model “with valuation,” which will be introduced in the two-dimensional

Probabilistic Analyses of Lattice Reduction Algorithms
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case in Section “Probabilistic Models for Two-Dimensions” and studied in Sec-
tions “Analysis of Lattice Reduction in Two-Dimensions: The Output Parameters”
and “Analysis of the Execution Parameters of the Gauss Algorithm”.

Returning to the Gauss Algorithm

We return to the two-dimensional case, and describe a complex version for each of
the two versions of the Gauss algorithm. This leads to consider each algorithm as a
dynamical system, which can be seen as a (complex) extension of a (real) dynamical
system relative to a centered Euclidean algorithm. We provide a precise description
of the linear fractional transformations (LFTs) used by each algorithm. We finally
describe the (two) classes of probabilistic models of interest.

The complex Framework

Many structural characteristics of lattices and bases are invariant under linear trans-
formations – similarity transformations in geometric terms – of the form S� W u 7!
�u with � 2 C n f0g.
.a/ A first instance is the execution of the Gauss algorithm itself: it should be

observed that translations performed by the Gauss algorithms depend only
on the quantity �.v; u/ defined in (3.2), which equals <.v=u/. Furthermore,
exchanges depend on jv=uj. Then, if vi (or wi ) is the sequence computed by the
algorithm on the input .u; v/, defined in (3.3) and (3.5), the sequence of vec-
tors computed on an input pair S�.u; v/ coincides with the sequence S�.vi / (or
S�.wi /). This makes it possible to give a formulation of the Gauss algorithm
entirely in terms of complex numbers.

.b/ A second instance is the characterization of minimal bases given in Proposi-
tion 2.1 that only depends on the ratio z D v=u.

.c/ A third instance are the main parameters of interest: the execution parameters
D;C; d defined in (3.7), (3.9), and (3.10) and the output parameters �;�; �
defined in (3.11) and (3.12). All these parameters admit also complex versions:
for X 2 f�;�; �;D;C; d g, we denote by X.z/ the value of X on basis .1; z/.
Then, there are close relations between X.u; v/ and X.z/ for z D v=u:

X.z/ D X.u; v/

juj ; for X 2 f�;�g; X.z/ D X.u; v/; for X 2 fD;C; d; �g:

It is thus natural to consider lattice bases taken up to equivalence under similarity,
and it is sufficient to restrict attention to lattice bases of the form .1; z/. We denote
by L.z/ the lattice L.1; z/. In the complex framework, the geometric transformation
effected by each step of the algorithm consists of an inversion-symmetry S W z
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7! 1=z, followed by a translation z 7! T �qz with T .z/ D zC 1, and a possible sign
change J W z 7! �z.

The upper half plane H WD fz 2 CI =.z/ > 0g plays a central rôle for the
PGAUSS Algorithm, while the right half plane fz 2 CI <.z/ � 0; =.z/ 6D 0g
plays a central rôle in the AGAUSS algorithm. Remark just that the right half plane
is the union HC [ JH�, where J W z 7! �z is the sign change and

HC WD fz 2 CI =.z/ > 0; <.z/ � 0g; H� WD fz 2 CI =.z/ > 0; <.z/ � 0g:

The Complex Versions for the GAUSS Algorithms

In this complex context, the PGAUSS algorithm brings z into the vertical strip B D
BC [ B�, with

B D
�

z 2 HI j<.z/j � 1

2

�
; BC WD B \HC; B� WD B \H�;

reduces to the iteration of the mapping

U.z/ D �1
z
C
�
<
�
1

z

��
D �

�
1

z
�
�
<
�
1

z

���
; (3.25)

and stops as soon as z belongs to the domain F D FC [ F�, with

F D
�

z 2 HI jzj � 1; j<zj � 1

2

�
; FC WD F \HC; F� WD F \H�: (3.26)

Such a domain, represented in Fig. 3.8, is closely related to the classical funda-
mental domain bF of the upper half plane H under the action of the group

PSL2.Z/ WD fh W z 7! h.z/I h.z/ D azC b
czC d ; a; b; c; d 2 Z; ad � bc D 1g:

More precisely, the difference F n bF is contained in the frontier of F .
Consider the pair .B; U /, where the map U W B ! B is defined in (3.25)

for z 2 B n F and extended to F with U.z/ D z for z 2 F . This pair .B; U /
defines a dynamical system,5 and F can be seen as a “hole”: as the PGAUSS algo-
rithm terminates, there exists an index p � 0, which is the first index for which
U p.z/ belongs to F . Then, any complex number of B gives rise to a trajectory
z; U.z/; U 2.z/; : : : ; U p.z/, which “falls” in the hole F , and stays inside F as soon
as it attains F . Moreover, as F is, up to its frontier, a fundamental domain of the

5 We will see a formal definition of a dynamical system in Section “Analysis of the Execution
Parameters of the Gauss Algorithm”.

Probabilistic Analyses of Lattice Reduction Algorithms
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Fig. 3.8 The fundamental domains F ; eF and the strips B; eB defined in Section “The Complex
Versions for the GAUSS Algorithms”

upper half plane H under the action of PSL2.Z/, there exists a topological tessel-
lation of H with transforms of F of the form h.F/ with h 2 PSL2.Z/. We will
see later in Section “The LFTs Used by the AGAUSS Algorithm. The COREGAUSS

Algorithm” that the geometry of B nF is compatible with this tessellation.
In the same vein (see Figure 3.8), the AGAUSS algorithm brings z into the vertical

strip

B WD
�

z 2 CI =.z/ 6D 0; 0 � <.z/ � 1

2

�
D BC [ JB�;

reduces to the iteration of the mapping

eU .z/ D "
�
1

z

� �
1

z
�
�
<
�
1

z

���
; with ".z/ WD sign.<.z/ � b<.z/e/;

(3.27)
and stops as soon as z belongs to the domain eF

eF D
�

z 2 CI jzj � 1; 0 � <.z/ � 1

2

�
D FC [ JF�: (3.28)

Consider the pair .eB; eU /, where the map eU W eB ! eB is defined in (3.27) for
z 2 eB n eF and extended to eF with eU .z/ D z for z 2 eF . This pair .eB; eU / also defines
a dynamical system, and eF can also be seen as a “hole.”
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Relation with the Centered Euclid Algorithm

It is clear (at least in an informal way) that each version of Gauss algorithm is an
extension of the (centered) Euclid algorithm:

– For the PGAUSS algorithm, it is related to a Euclidean division of the form
v D quC r with jr j 2 Œ0;Cu=2�

– For the AGAUSS algorithm, it is based on a Euclidean division of the form
v D quC "r with " WD ˙1; r 2 Œ0;Cu=2�

If, instead of pairs, that are the old pair .u; v/ and the new pair .r; u/, one con-
siders rationals, namely the old rational x D u=v or the new rational y D r=u, each
Euclidean division can be written with a map that expresses the new rational y as a
function of the old rational x, as y D V.x/ (in the first case) or y D eV .x/ (in the
second case). With I WD Œ�1=2;C1=2� andeI WD Œ0; 1=2�, the maps V W I ! I or
eV W eI ! eI are defined as follows

V.x/ WD 1

x
�
�
1

x

�
; for x 6D 0; V .0/ D 0; (3.29)

eV .x/ D "
�
1

x

� �
1

x
�
�
1

x

��
; for x 6D 0; eV .0/ D 0: (3.30)

[Here, ".x/ WD sign.x � bxe/].
This leads to two (real) dynamical systems .I; V / and .eI; eV / whose graphs are

represented in Fig. 3.9. Remark that the tilded system is obtained by a folding of the
untilded one (or unfolded one), first along the x axis, then along the y axis, as it
is explained in [7]. The first system is called the F-EUCLID system (or algorithm),
while the second one is called the U-EUCLID system (or algorithm).

Of course, there are close connections between U and �V , on the one hand, and
eU and eV , on the other hand: even if the complex systems .B; U / and .eB; eU / are

Fig. 3.9 The two dynamical systems underlying the centered Euclidean algorithms
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defined on strips formed with complex numbers z that are not real (i.e., =z 6D 0),
they can be extended to real inputs “by continuity”: This defines two new dynamical
systems .B; U / and (eB; eU /, and the real systems .I;�V / and .eI; eV / are just the
restriction of the extended complex systems to real inputs. Remark now that the
fundamental domains F ; eF are no longer “holes” as any real irrational input stays
inside the real interval and never “falls” in them. On the contrary, the trajectories of
rational numbers end at 0, and finally each rational is mapped to i1.

The LFTs Used by the PGAUSS Algorithm

The complex numbers that intervene in the PGAUSS algorithm on the input z0 D
v1=v0 are related to the vectors .vi / defined in (3.3) via the relation zi D viC1=vi .
They are directly computed by the relation ziC1 WD U.zi /, so that the old zi�1 is
expressed with the new one zi as

zi�1 D hŒmi �.zi /; with hŒm�.z/ WD 1

m � z
:

This creates a continued fraction expansion for the initial complex z0, of the form

z0 D 1

m1 � 1

m2 � 1

:::
mp � zp

D h.zp/; with h WD hŒm1� ı hŒm2� ı : : : hŒmp �;

which expresses the input z D z0 as a function of the outputbz D zp . More generally,
the i th complex number zi satisfies

z0 D hi .zi /; with hi WD hŒm1� ı hŒm2� ı : : : hŒmi �:

Proposition 5. (Folklore) The set G of LFTs h W z 7! .az C b/=.czC d/ defined
with the relation z D h.bz/, which sends the output domain F into the input domain
B nF , is characterized by the set Q of possible quadruples .a; b; c; d /. A quadruple
.a; b; c; d / 2 Z

4 with ad � bc D 1 belongs to Q if and only if one of the three
conditions is fulfilled

1. (c D 1 or c � 3) and (jaj � c=2)
2. c D 2; a D 1; b � 0; d � 0
3. c D 2; a D �1; b � 0; d < 0
There exists a bijection between Q and the set P D f.c; d / 2 Z

2I c � 1;

gcd.c; d / D 1g : On the other hand, for each pair .a; c/ in the set

C WD f.a; c/I a

c
2 Œ�1=2;C1=2�; c � 1I gcd.a; c/ D 1g; (3.31)
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Fig. 3.10 Left: the “central” festoon F.0;1/. Right: three festoons of the strip B, relative to
.0; 1/; .1; 3/; .�1; 3/ and the two half-festoons at .�1; 2/ and .1; 2/

each LFT of G, which admits .a; c/ as coefficients can be written as h D h.a;c/ıT q ,
with q 2 Z and h.a;c/.z/ D .azC b0/=.czC d0/, with jb0j � ja=2j; jd0j � jc=2j:
Definition 2. [Festoons] If G.a;c/ denotes the set of LFTs of G, which admit .a; c/
as coefficients, the domain

F.a;c/ D
[

h2G.a;c/

h.F/ D h.a;c/

0

@
[

q2Z

T qF

1

A (3.32)

gathers all the transforms of h.F/ which belong to B nF for which h.i1/ D a=c.
It is called the festoon of a=c.

Remark that, in the case when c D 2, there are two half-festoons at 1=2 and
�1=2 (See Fig. 3.10).

The LFTs Used by the AGAUSS Algorithm. The COREGAUSS

Algorithm

In the same vein, the complex numbers that intervene in the AGAUSS algorithm on
the input z0 D w1=w0 are related to the vectors .wi / defined in (3.5) via the relation
zi D wiC1=wi . They are computed by the relation ziC1 WD eU .zi /, so that the old
zi�1 is expressed with the new one zi as

zi�1 D hhmi ;"i i.zi /; with hhm;"i.z/ WD 1

mC "z :

Probabilistic Analyses of Lattice Reduction Algorithms
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D

ST2J F +

STF −

STJ F +

SF −

F +

ST2J SF –

Fig. 3.11 Left: the six domains which constitute the domain BC n DC. Right: the disk D is not
compatible with the geometry of transforms of the fundamental domains F

This creates a continued fraction expansion for the initial complex z0, of the form

z0 D 1

m1 C �1

m2 C �2

: : :
mp C �pzp

D eh.zp/ with eh WD hhm1;�1iıhhm2;�2iı: : : hhmp ;�pi:

More generally, the i th complex number zi satisfies

z0 D ehi .zi / with ehi WD hhm1;"1i ı hhm2;"2i ı : : : hhmi ;"i i: (3.33)

We now explain the particular rôle that is played by the disk D of diametereI D
Œ0; 1=2�. Figure 3.11 shows that the domain eB n D decomposes as the union of six
transforms of the fundamental domain eF , namely

eB nD D
[

h2K
h.eF/; with K WD fI; S; STJ; ST; ST 2J; ST 2JSg: (3.34)

This shows that the disk D itself is also a union of transforms of the fundamental
domain eF . Remark that the situation is different for the PGAUSS algorithm, as the
frontier of D lies “in the middle” of transforms of the fundamental domain F (see
Fig. 3.11).

As Fig. 3.12 shows it, there are two main parts in the execution of the AGAUSS

Algorithm, according to the position of the current complex zi with respect to the
disk D of diameter Œ0; 1=2� whose alternative equation is
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COREGAUSS.z/

Input. A complex number in D.

Output. A complex number in eB nD.
While z 2 D do z WD eU .z/;

FINALGAUSS.z/

Input. A complex number in eB nD.

Output. A complex number in eF .
While z 62 eF do z WD eU .z/;

AGAUSS.z/

Input. A complex number in eB n eF .

Output. A complex number in eF .

COREGAUSS .z/;
FINALGAUSS .z/;

Fig. 3.12 The decomposition of the AGAUSS Algorithm into two parts: its core part (the
COREGAUSS Algorithm) and its final part (the FINALGAUSS Algorithm)

D WD
�

zI <
�
1

z

�
� 2

�
:

While zi belongs to D, the quotient .mi ; "i / satisfies .mi ; "i / � .2;C1/ (wrt the
lexicographic order), and the algorithm uses at each step the set

H WD fhhm;"iI .m; "/ � .2;C1/g

so that D can be written as

D D
[

h2HC

h.eB nD/ with HC WD
X

k
1

Hk: (3.35)

The part of the AGAUSS algorithm performed when zi belongs to D is called the
COREGAUSS algorithm. The total set of LFTs used by the COREGAUSS algorithm
is then the set HC D [k
1Hk . As soon as zi does not any longer belong to D, there
are two cases. If zi belongs to eF , then the algorithm ends. If zi belongs to eBn.eF[D/,
there remains at most two iterations (due to (3.34) and Fig. 3.11), that constitutes
the FINALGAUSS algorithm, which uses the set K of LFTs, called the final set of
LFTs and described in (3.34). Finally, we have proven the decomposition of the
AGAUSS Algorithm, as is described in Fig. 3.12, and summarized in the following
proposition:

Proposition 6. (Daudé et al. [14] (1994), Flajolet and Vallée [16,17] (1990–1999))
The set eG formed by the LFTs that map the fundamental domain eF into the set eBn eF
decomposes as eG D .H? �K/ n fI g , where

H? WD
X

k
0

Hk ; H WD fhhm;"iI .m; "/ � .2;C1/g;

K WD fI; S; STJ; ST; ST 2J; ST 2JSg:

Probabilistic Analyses of Lattice Reduction Algorithms
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Here, if D denotes the disk of diameter Œ0; 1=2�, then HC is the set formed by the
LFTs that map eB nD into D and K is the final set formed by the LFTs that map eF
into eB n D. Furthermore, there is a characterization of HC due to Hurwitz, which
involves the golden ratio � D .1Cp5/=2:

HC WD
�
h.z/ D azC b

czC d I .a; b; c; d / 2 Z
4; b; d � 1; ac � 0;

jad � bcj D 1; jaj � jcj
2
; b � d

2
;� 1

�2
� c

d
� 1

�

�
:

Comparing the COREGAUSS Algorithm and the F-EUCLID

Algorithm

The COREGAUSS algorithm has a nice structure as it uses ateach step the same set
H. This set is exactly the set of LFTs that are used by the F-EUCLID Algorithm,
closely related to the dynamical system defined in (3.30). Then, the COREGAUSS

algorithm is just a lifting of this F-EUCLID Algorithm, while the final steps of
the AGAUSS algorithm use different LFT’s, and are not similar to a lifting of
a Euclidean Algorithm. This is why the COREGAUSS algorithm is interesting
to study: we will see in Section “Analysis of the Execution Parameters of the
Gauss Algorithm” why it can be seen as an exact generalization of the F-EUCLID

algorithm.
For instance, ifR denotes the number of iterations of the COREGAUSS algorithm,

the domain ŒR � k C 1� gathers the complex numbers z for which eU k.z/ are in D.
Such a domain admits a nice characterization, as a union of disjoint disks, namely

ŒR � k C 1� D
[

h2Hk

h.D/; (3.36)

which is represented in Figure 3.13. The disk h.D/ for h 2 HC is the disk whose
diameter is the interval Œh.0/; h.1=2/� D h.eI/. Inside the F-EUCLID dynamical
system, the interval h.eI/ (relative to a LFT h 2 Hk) is called a fundamental interval
(or a cylinder) of depth k: it gathers all the real numbers of the intervaleI that have
the same continued fraction expansion of depth k. This is why the disk h.D/ is
called a fundamental disk.

This figure shows in a striking way the efficiency of the algorithm, and asks nat-
ural questions: Is it possible to estimate the probability of the event ŒR � k C 1�?
Is it true that it is geometrically decreasing? With which ratio? We return to
these questions in Section “Analysis of the Execution Parameters of the Gauss
Algorithm”.
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Fig. 3.13 The domains ŒR D k� alternatively in black and white. The figure suggests that
reduction of almost-collinear bases is likely to require a large number of iterations

Worst-Case Analysis of the Gauss Algorithm

Before beginning our probabilistic studies, we recall the worst-case behavior of
execution parameters and give a proof in the complex framework.

Theorem 4. (Vallée [38] 1991) Consider the AGAUSS Algorithm, with an input
.u; v/ of length max.juj; jvj/ at most equal to N . Then, the maximum number of iter-
ations PN , and the maximum value CN of any additive cost C of moderate growth6

are �.logN/, while the maximal value BN of the bit-complexity B is �.log2N/.
More precisely, the maximal value PN of the number of iterations P satisfies

PN �N!1
1

log.1Cp2/ logN:

Proof. We here use the complex framework of the AGAUSS algorithm, and the
study of the maximum number of iterations is the complex version of Vallée’s result,
initially performed in the vectorial framework [38].

Number of iterations. It is sufficient to study the number R of iterations of the
COREGAUSS Algorithm as it is related to the total number of iterations P via the
inequality P � RC 2. The inclusion

ŒR � k C 1� �
(

zI j=.z/j � 1

2

�
1

1Cp2
�2k�1

)
(3.37)

6 This means that the elementary cost c satisfies c.q/ D O.log q/ (see Section “Main Parameters
of Interest”).

Probabilistic Analyses of Lattice Reduction Algorithms
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will lead to the result: as any nonreal complex z D v=u relative to an integer pair
.u; v/ has an imaginary part at least equal to 1=juj2, then z belongs to the domain
ŒR � k� as soon as juj2 � 2.1Cp2/2k�1.

We now prove Relation (3.37): Indeed, we know from (3.36) that the domain
ŒR � kC1� is the union of transforms h.D/ for h 2 Hk , where D and H are defined
in Proposition 6. The largest such disk h.D/ is obtained when all the quotients .m; "/
are the smallest ones, that is, when all .m; "/ D .2;C1/. In this case, the coefficients
.c; d / of h are the terms Ak ; AkC1 of the sequence defined by

A0 D 0; A1 D 1; and AkC1 D 2Ak C Ak�1 for k � 1;

which satisfy Ak � .1C
p
2/k�2. Then, the largest such disk has a radius at most

equal to .1=2/.1Cp2/1�2k .

Additive costs. As we restrict ourselves to costs c of moderate growth, it is sufficient
to study the cost C relative to the step cost c.q/ WD log q.

Consider the sequence of vectors w0 D u;w1 D v; : : : ;wkC1 computed by the
AGAUSS algorithm on the input .u; v/ withM WD `.juj2/. We consider the last step
as a special case, and we use for it the (trivial) upper bound jmkC1j � juj2; for
the other steps, we consider the associated complex numbers zi defined by zi�1 D
hi .zi / [where the LFT hi has a digit qi at least equal to 2] and the complex Lz WD zk

before the last iteration that belongs to eB n eF . Then the expression z D z0 D h.Lz/
involves the LFT h WD h1ıh2 : : :ıhk , which corresponds to the algorithm except its
last step. As any complex z D v=u relative to an integer pair .u; v/ has an imaginary
part at least equal to 1=juj2, one has

1

juj2 � j=h.Lz/j D j=.Lz/j � jh
0.Lz/j �

kY

iD1

jh0i .zi /j �
kY

iD1

1

jqi � .1=2/j2 � 2
k

kY

iD1

1

q2
i

:

This proves that the cost C.u; v/ relative to c.q/ D log q satisfies C.u; v/ D O.M/.
Bit-complexity. The result is obtained, thanks to (3.8).

Probabilistic Models for Two-Dimensions

We now return to our initial motivation, and begin our probabilistic studies. As we
focus on the invariance of algorithm executions under similarity transformations, we
assume that the two random variables juj and z D v=u are independent and consider
densities F on pairs of vectors .u; v/, which only depend on the ratio z D v=u, of
the form F.u; v/ D f .v=u/. Moreover, it is sufficient to consider pairs .u; v/ with a
first vector u of the form u D .N; 0/. Finally, we define in a generic way the discrete
model˝N as

˝N WD
n
z D v

u
I u D .N; 0/; v D .a; b/; .a; b;N / 2 Z

3; z 2 X
o
;
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and there are three main cases, according to the algorithm of interest, namely X D
B nF for PGAUSS, X D eB n eF for AGAUSS, or X D D for COREGAUSS.

In each case, the complex z D v=u belongs to QŒi �\X and is of the form .a=N /C
i.b=N /. Our discrete probabilistic models are defined as the restrictions to ˝N of a
continuous model defined on X . More precisely, we choose a density f on X , and
consider its restriction on ˝N . Normalized by the cardinality j˝N j, this gives rise
to a density fN on ˝N , which we extend on X as follows: fN .x/ WD fN .!/ as
soon as x belongs to the square of center ! 2 ˝N and edge 1=N . We obtain, in
such a way, a family of functions fN defined on X . When the integer N tends to
1, this discrete model “tends” to the continuous model relative to the density f (as
we already explained in Section “Probabilistic Models: Continuous or Discrete”).

It is sometimes more convenient to view these densities as functions defined on
R

2, and we will denote by the same symbol the function f viewed as a function of
two real variables x; y. It is clear that the rôles of two variables x; y are not of the
same importance. In our asymptotic framework, where the size M becomes large,
the variable y D =.z/ plays the crucial rôle, while the variable x D <.z/ plays
an auxiliary rôle. This is why the two main models that are now presented involve
densities f .x; y/, which depend only on y.

The Model with “Valuation”

In Section “Probabilistic Analyses of the LLL Algorithm in the Spherical Model”,
it is shown that each input local basis Un�k in the spherical model with ambient
dimension n admits (for n!1) a distribution with a density 'k defined in (3.24).
We are then led to consider the two-dimensional bases .u; v/, which follow the so-
called model of valuation r (with r > �1), for which

P

�
.u; v/I j det.u; v/j

max.juj; jvj/2 � y
�
D �.yrC1/; when y ! 0:

We note that, when the valuation r tends to �1, this model tends to the “one-
dimensional model,” where u and v are collinear. In this case, the Gauss Algorithm
“tends” to the Euclidean Algorithm, and it is important to precisely describe the
transition. This model “with valuation” was already presented in [39] in a slightly
different context, but not actually studied there.

The model with valuation defines a scale of densities for which the weight of
skew bases may vary. When r tends to �1, almost all the input bases are formed of
vectors which form a very small angle, and with a high probability, they represent
hard instances for reducing the lattice.

In the complex framework, a density f on the set S � C n R is of valuation r
(with r > �1) if it is of the form

f .z/ D j=.z/jr � g.z/; where g.z/ 6D 0 for =.z/ D 0: (3.38)

Probabilistic Analyses of Lattice Reduction Algorithms
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Such a density is called of type .r; g/. We often deal with the standard density of
valuation r , denoted by fr ,

fr.z/ D 1

A.r/
j=.z/jr ; with A.r/ D

“

BnF
yr dxdy: (3.39)

Of course, when r D 0, we recover the uniform distribution on B n F with
A.0/ D .1=12/.2	 C 3

p
3/. When r ! �1, then A.r/ is �Œ.r C 1/�1�. More

precisely

A.r/ � 1

r C 1 ; r ! �1:
The (continuous) model relative to a density f is denoted with an index of the

form hf i, and when the valuation is the standard density of valuation r , the model
is denoted with an index of the form .r/. The discrete models are denoted by two
indices, the integer sizeM and the index that describes the functionf , as previously.

The Ajtai Model in Two-Dimensions

This model (described in the general case in Section “Ajtai Bases”) corresponds to
bases .u; v/ for which the determinant det.u; v/ satisfies

j det.u; v/j
max.juj; jvj/2 D y0 for some y0 2�0; 1�:

In the complex framework, this leads to densities f .z/ on B n F (or on the tilde
corresponding domain) of the form f .z/ D Dirac.y0/ for some y0 2�0; 1�. When
y0 tends to 0, then the model also tends to the “one-dimensional model” (where u
and v are collinear) and the Gauss Algorithm also “tends” to the Euclidean Algo-
rithm. As in the model “with valuation,” it is important to precisely describe this
transition and compare to the result of Goldstein and Mayer [20].

Analysis of Lattice Reduction in Two-Dimensions: The Output
Parameters

This section describes the probabilistic behavior of output parameters: we first
analyze the output densities, then we focus on the geometry of our three main
parameters defined in (3.11) and (3.12). We shall use the PGAUSS Algorithm for
studying the output parameters.
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Output Densities

For studying the evolution of distributions (on complex numbers), we are led to
study the LFTs h used in the Gauss algorithm [Section “Returning to the Gauss
Algorithm”], whose set is G for the PGAUSS Algorithm [Section “The LFTs Used
by the PGAUSS Algorithm”]. We consider the two-variables function h that cor-
responds to the complex mapping z 7! h.z/. More precisely, we consider the
function h, which is conjugated to .h; h/ W .u; v/ 7! .h.u/; h.v// with respect to
map ˚ , namely h D ˚�1 ı .h; h/ı˚ , where mappings˚;˚�1 are linear mappings
C

2 ! C
2 defined as

˚.x; y/ D .z D x C iy; Nz D x � iy/; ˚�1.z; Nz/ D
�

zC Nz
2
;

zC Nz
2i

�
:

As ˚ and ˚�1 are linear mappings, the Jacobian Jh of the mapping h satisfies

Jh.x; y/ D jh0.z/ � h0.Nz/j D jh0.z/j2; (3.40)

as h has real coefficients. Let us consider any measurable set A � F , and study the
final density bf on A. It is brought by all the antecedents h.A/ for h 2 G, which
form disjoints subsets of B n F . Then,

“

A
bf .bx;by/ dbxdby D

X

h2G

“

h.A/

f .x; y/ dxdy:

Using the expression of the Jacobian (3.40), and interchanging integral and sum
lead to the equality

“

A
bf .bx;by/dbx dby D

“

A

0

@
X

h2G
jh0.bz/j2f ı h.bx;by/

1

A dbxdby:

Finally, we have proven:

Theorem 5. (Vallée and Vera [45, 47] 2007) The output density bf of each of the
three algorithms satisfies the following:

i. The output density bf of the PGAUSS Algorithm on the fundamental domain F
is expressed as a function of the input density f on B nF as

bf .z/ D
X

h2G
jh0.z/j2 f ı h.z/;

where G is the set of LFTs used by the PGAUSS algorithm described in Proposi-
tion 5.

Probabilistic Analyses of Lattice Reduction Algorithms
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ii. The output density bf of the AGAUSS Algorithm on the fundamental domain eF
is expressed as a function of the input density f on eB n eF as

bf .z/ D
X

h2eG
jh0.z/j2 f ı h.z/;

where eG is the set of LFTs used by the AGAUSS algorithm defined in Proposi-
tion 6.

iii. The output density bf of the COREGAUSS Algorithm on the domain eB n D can
be expressed as a function of the input density f on D as

bf .z/ D
X

h2HC

jh0.z/j2 f ı h.z/;

where H is the set of LFTs used by each step of the COREGAUSS algorithm
defined in Proposition 6. and HC WD [k
1Hk .

Relation with Eisenstein Series

We now analyze an important particular case, where the initial density is the stan-
dard density of valuation r defined in (3.39). As each element of G gives rise to a
unique pair .c; d / with c � 1; gcd.c; d / D 1 [see Section “The LFTs Used by the
PGAUSS Algorithm”] for which

jh0.bz/j D 1

jcbzC d j4 ; fr ı h.bx;by/ D 1

A.r/

byr

jcbzC d j2r
; (3.41)

the output density on F is bfr .bx;by/ D 1

A.r/

X

.c;d/D1
c
1

byr

jcbzC d j4C2r
: (3.42)

It is natural to compare this density with the density relative to the measure rel-
ative to “random lattices” defined in Section “Random Lattices”. In the particular
case of two-dimensions, the fundamental domain for the action of PSL2.Z/ on H

equals F up to its frontier. Moreover, the measure of density f .z/ D =.z/�2 is
invariant under the action of PSL2.Z/: indeed, for any LFT h with det h D ˙1,
one has j=.h.z//j D j=.z/j � jh0.z/j; so that

“

h.A/

1

y2
dxdy D

“

A
jh0.z/j2 1

=.h.z//2 dxdy D
“

A

1

y2
dxdy:

Then, the probability �2 defined in Section “Random Lattices” is exactly the
measure on F of density
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.x; y/ WD 3

	

1

y2
as

“

F

1

y2
dxdy D 	

3
: (3.43)

If we make apparent this density 
 inside the expression of bfr provided in (3.42),
we obtain:

Theorem 6. (Vallée and Vera [45, 47] 2007) When the initial density on B n F is
the standard density of valuation r , denoted by fr and defined in (3.39), the output
density of the PGAUSS algorithm on F involves the Eisenstein series Es of weight
s D 2C r: With respect to the Haar measure �2 on F , whose density 
 is defined in
(3.43), the output density bfr is expressed as

bfr .x; y/ dxdy D 	

3A.r/
F2Cr .x; y/ 
.x; y/ dxdy;

where Fs.x; y/ D
X

.c;d/D1
c
1

ys

jczC d j2s

is closely related to the classical Eisenstein series Es of weight s, defined as

Es.x; y/ WD 1

2

X

.c;d/2Z2

.c;d/ 6D.0;0/

ys

jczC d j2s
D �.2s/ � ŒFs.x; y/C ys � :

When r ! �1, classical results about Eisenstein series prove that

Es.x; y/ �s!1

	

2.s � 1/ so that lim
r!�1

	

3A.r/
F2Cr .x; y/ D 1:

Then, when r tends to �1, the output distribution relative to an input distribution,
which is standard and of valuation r , tends to the distribution �2 relative to random
lattices.

The series Es are Mass forms (see for instance the book [8]): they play an impor-
tant rôle in the theory of modular forms, because Es is an eigenfunction for the
Laplacian, relative to the eigenvalue s.1 � s/. The irruption of Eisenstein series in
the lattice reduction framework is unexpected, and at the moment, it is not clear
how to use the (other) classical well-known properties of the Eisenstein series Es

for studying the output densities.

Geometry of the Output Parameters

The main output parameters are defined in (3.11,3.12). For X 2 f�;�; �g, we
denote by X.z/ the value of X on basis .1; z/, and there are close relations between

Probabilistic Analyses of Lattice Reduction Algorithms



116 B. Vallée and A. Vera

X.u; v/ and X.z/ for z D v=u:

�.u; v/ D juj � �.z/; �.u; v/ D juj � �.z/; �.u; v/ D �.z/:

Moreover, the complex versions of parameters �;�; � can be expressed with the
input–output pair .z;bz/.

Proposition 7. If z D x C iy is an initial complex number of B n F leading to a
final complexbz D bx C iby of F , then the three main output parameters defined in
(3.11) and (3.12) admit the following expressions:

detL.z/ D y; �2.z/ D y

by
; �2.z/ D yby; �.z/ D 1

by
:

The following inclusions hold:

Œ�.z/ D t � �
"
=.z/ �

p
3

2
t2

#
; Œ�.z/ D u� �

�
=.z/ � 2p

3
u2

�
: (3.44)

If z leads tobz by using the LFT h 2 G with z D h.bz/ D .abzC b/=.cbzC d/, then

�.z/ D jcz � aj; �.z/ D jcz � aj2
y

; �.z/ D y

jcz � aj :

Proof. If the initial pair .v1; v0/ is written as in (3.4) as

�
v1

v0

�
DM�1

�
vpC1

vp

�
; with M�1 WD

�
a b

c d

�
and z D h.bz/ D abzC b

cbzC d ;

then the total length decrease satisfies

jvpj2
jv0j2 D

jvpj2
jcvpC1 C dvpj2 D

1

jcbzC d j2 D jh
0.bz/; (3.45)

[we have used the fact that detM D 1.] This proves that �2.z/ equals jh0.bz/j as
soon as z D h.bz/. Now, for z D h.bz/, the relations

y D by
jcbzC d j2 ; by D y

jcz � aj2

easily lead to the result.
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Domains Relative to the Output Parameters

We now consider the following well-known domains defined in Fig. 3.14. The Ford
disk Fo.a; c; �/ is a disk of center .a=c; �=.2c2// and radius �=.2c2/: it is tangent
to y D 0 at point .a=c; 0/. The Farey disk Fa.a; c; t/ is a disk of center .a=c; 0/
and radius t=c. Finally, the angular sector Se.a; c; u/ is delimited by two lines that
intersect at a=c, and form with the line y D 0 angles equal to˙ arcsin.cu/.
These domains intervene for defining the three main domains of interest.

Theorem 7. (Laville and Vallée [24] (1990), Vallée and Vera [45] (2007)) The
domains relative to the main output parameters, defined as


 .�/ WD fz 2 B nF I �.z/ � �g; �.t/ WD fz 2 B n F I �.z/ � tg;

M.u/ WD fz 2 B n F I �.z/ � ug;
are described with Ford disks Fo.a; c; �/, Farey disks Fa.a; c; t/, and angular sec-
tors Se.a; c; u/. More precisely, if F.a;c/ denotes the Festoon relative to pair .a; c/
defined in (3.32) and if the set C is defined as in (3.31), one has:


 .�/ D
[

.a;c/2C
Fo.a; c; �/ \ F.a;c/; �.t/ D

[

.a;c/2C
Fa.a; c; t/ \ F.a;c/;

M.u/ D
[

.a;c/2C
Se.a; c; u/ \F.a;c/:

Fo.a; c; �/ WD
�
.x; y/I y > 0;

�
x � a

c

�2 C
�
y � �

2c2

�2 �
� �

2c2

�2 �

Fa.a; c; t / WD
�
.x; y/I y > 0;

�
x � a

c

�2 C y2 �
� t
c

�2 �

Se.a; c; u/ WD
�
.x; y/I y > 0; y � jcjup

1� c2u2
ˇ̌
ˇx � a

c

ˇ̌
ˇ
�

for jcju < 1

Se.a; c; u/ WD f.x; y/I y > 0; g for jcju 
 1

Fig. 3.14 The three main domains of interest: the Ford disks Fo.a; c; �/, the Farey disks
Fa.a; c; t /, and the angular sectors Se.a; c; u/
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Each of these descriptions of �;
;M can be transformed in a description that no
more involves the festoons. It involves, for instance, a subfamily of Farey disks (for
�), or a subfamily of angular sectors (forM ) [see Fig. 3.15].

Consider the set P WD f.c; d /I c; d � 1; .c; d / D 1g, already used in Sec-
tion “The LFTs Used by the PGAUSS Algorithm”, and its subset P.t/ defined
as

P.t/ WD f.c; d /I c; d � 1; ct � 1; dt � 1; .c C d/t > 1; .c; d / D 1g:

Consider a pair .c; d / 2 P.t/. There exists a unique pair .a; b/ for which the ratio-
nals a=c and b=d belong to Œ�1=2;C1=2� and satisfy ad � bc D 1. We then
associate to the pair .c; d / the intersection of the vertical strip f.x; y/I .a=c/ �
x � .b=d/g with B n F , and we denote it by S.c; d /. Remark that the definition of
P.t/ implies that the only rationals of the strip S.c; d / with a denominator at most
.1=t/ are a=c and b=d .
Domain�.t/. For any t > 0 and any pair .c; d / 2 P.t/, there exists a characteriza-
tion of the intersection of the domain �.t/ with the vertical strip S.c; d /, provided
in [24], which does not depend any longer on the festoons, namely

�.t/ \ S.c; d / D Fa.a; c; t/ [ Fa.b; d; t/ [ Fa.aC b; c C d; t/: (3.46)

Here, the pair .a; b/ is the pair associated to .c; d /, the domains
Fa.a; c; t/; Fa.b; d; t/ are the intersections of Farey disks Fa.a; c; t/, Fa.b; d; t/
with the strip S.c; d /. The domain in (3.46) is exactly the union of the two disks
Fa.a; c; t/ and Fa.b; d; t/ if and only if the condition .c2Cd 2C cd/t2 � 1 holds,
but the Farey disk relative to the median .aCb/=.cCd/ plays a rôle otherwise. The
proportion of pairs .c; d / 2 P.t/ for which the condition .c2 C d 2 C cd/t2 � 1
holds tends to 2 � .2	/=.3p3/ � 0:7908 when t ! 0.
Then, the following inclusions hold (where the “left” union is a disjoint union)

[

.a;c/2C
c�1=.2t/

Fa.a; c; t/ � �.t/ �
[

.a;c/2C
c�2=.

p

3t/

Fa.a; c; t/: (3.47)

Domain M.u/. For any u > 0 and any pair .c; d / 2 P.u/, there exists a char-
acterization of the intersection of the domain M.u/ with the vertical strip S.c; d /,
provided in [47], which does not depend any longer on the festoons, namely

M.u/\ S.c; d / D Se.a; c; u/ \ Se.b; d; u/\ Se.b � a; d � c; u/: (3.48)

Here, the pair .a; b/ is the pair associated to .c; d /, the domains Se.a; c; u/;
Se.b; d; u/ are the intersections of Se.a; c; u/, Se.b; d; u/ with the strip S.c; d /.
The domain in (3.48) is exactly the triangle Se.a; c; u/ \ Se.b; d; u/ if and only if
one of the two conditions .c2 C d 2 � cd/u2 � .3=4/ or cd u2 � .1=2/ holds, but
this is a “true” quadrilateral otherwise. The proportion of pairs .c; d / 2 P.u/ for
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which the condition Œ.c2 C d 2 � cd/u2 � .3=4/ or cd u2 � .1=2/� holds tends to
.1=2/C .	p3=12/ � 0:9534 when u! 0.

Distribution Functions of Output Parameters:
Case of Densities with Valuations

Computing the measure of disks and angular sectors with respect to a standard den-
sity of valuation r leads to the estimates of the main output distributions. We first
present the main constants that will intervene in our results.

Constants of the Analysis

The measure of a disk of radius � centered on the real axis equals 2A2.r/ �
rC2.

The measure of a disk of radius � tangent to the real axis equals A1.r/ .2�/
rC2.

Such measures involve constants A1.r/; A2.r/, which are expressed with the ˇ
law, already defined in (3.21) as

A1.r/ WD
p
	

A.r/


 .r C 3=2/

 .r C 3/ ; A2.r/ WD

p
	

2A.r/


 ..r C 1/=2/

 .r=2C 2/ : (3.49)

For a triangle with basis a on the real axis and height h, this measure equals
A3.r/ a h

rC1, and involves the constant

A3.r/ WD 1

A.r/

1

.r C 2/.r C 1/ : (3.50)

For .˛; ˇ/ that belongs to the triangle T WD f.˛; ˇ/I 0 < ˛; ˇ < 1; ˛ C ˇ > 1g,
we consider the continuous analogs of the configurations previously described:

Disks. We consider the figure obtained with three disks D˛;Dˇ ;D˛Cˇ when these
disks satisfy the following: For any ı; 
 2 f˛; ˇ; ˛ C ˇg, the center xı is on the
real axis, the distance between xı and x� equals 1=.ı
/ and the radius ofDı equals
1=ı. We can suppose x˛ < x˛Cˇ < xˇ . Then, the configurationD.˛; ˇ/ is defined
by the intersection of the union [ıDı with the vertical strip hx˛; xˇ i. The constant
A4.r/ is defined as the integral

A4.r/ D 1

A.r/

“

T
d˛dˇ

 “

D.˛;ˇ/

yr dxdy

!
: (3.51)
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Sectors. In the same vein, we consider the figure obtained with three sectors
S˛; Sˇ ; Sˇ�˛ when these sectors satisfy the following:7 for any ı 2 f˛; ˇ; ˇ � ˛g,
the sector Sı is delimited by two half lines, the real axis (with a positive orienta-
tion) and another half-line, that intersect at the point xı of the real axis. For any
ı; 
 2 f˛; ˇ; ˇ � ˛g, the distance between xı and x� equals 1=.ı
/. We can sup-
pose xˇ�˛ < x˛ < xˇ ; in this case, the angle of the sector Sı equals arcsin ı for
ı 2 fˇ � ˛; ˛g and equals 	 � arcsin ı for ı D ˇ. The configuration S.˛; ˇ/ is
defined by the intersection of the intersection \ıSı with the vertical strip hx˛ ; xˇ i.
The constant A5.r/ is defined as the integral

A5.r/ D 1

A.r/

“

T
d˛dˇ

 “

S.˛;ˇ/

yr dxdy

!
: (3.52)

Theorem 8. (Vallée and Vera [45,47] 2007) When the initial density on BnF is the
standard density of valuation r , the distribution of the three main output parameters
involves the constantsAi .r/ defined in (3.49), (3.50), (3.51), and (3.52) and satisfies
the following:

1. For parameter � , there is an exact formula for any valuation r and any � � 1,

P.r/Œ�.z/ � �� D A1.r/ � �.2r C 3/
�.2r C 4/ � �

rC2 for � � 1

2. For parameter �, there are precise estimates for any fixed valuation r > �1,
when t ! 0,

P.r/Œ�.z/ � t � �t!0

�.r C 1/
�.r C 2/ A2.r/ � trC2 for r > 0;

P.r/Œ�.z/ � t � �t!0

1

�.2/
A2.0/ � t2j log t j for r D 0,

P.r/Œ�.z/ � t � �t!0

1

�.2/
A4.r/ � t2rC2 for r < 0.

Moreover, for any fixed valuation r > �1 and any t > 0, the following inequality
holds

P.r/Œ�.z/ � t � � 1

A.r/

1

r C 1

 p
3

2

!rC1

t2rC2: (3.53)

3. For parameter �, there is a precise estimate for any fixed valuation r > �1,
when u! 0,

7 The description is given in the case when ˇ > ˛.
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P.r/Œ�.z/ � u� �u!0

1

�.2/
A5.r/ � u2rC2:

Moreover, for any fixed valuation r > �1 and any u > 0, the following
inequalities hold:

A3.r/

 p
3

2

!rC1

� u2rC2 � P.r/Œ�.z/ � u� � A3.r/ � u2rC2: (3.54)

Proof. [Sketch] If ' denotes the Euler quotient function, there are exactly '.c/
coprime pairs .a; c/ with a=c 2� � 1=2;C1=2�. Then, the identity

X

c
1

'.c/

cs
D �.s � 1/

�.s/
; for <s > 2;

explains the occurrence of the function �.s�1/=�.s/ in our estimates. Consider two
examples:

.a/ For � � 1, the domain 
 .�/ is made with disjoint Ford disks of radius �=.2c2/.
An easy application of previous principles leads to the result.

.b/ For�.t/, these same principles together with relation (3.47) entail the following
inequalities

trC2

0

@
X

c�1=.2t/

'.c/

crC2

1

A � 1

A2.r/
P.r/Œ�.z/ � t � � trC2

0

@
X

c�2=.
p

3t/

'.c/

crC2

1

A ;

and there are several cases when t ! 0 according to the sign of r . For r > 0,
the Dirichlet series involved are convergent. For r � 0, we consider the series

X

c
1/

'.c/

crC2Cs
D �.s C r C 1/
�.s C r C 2/ ;

(which has a pôle at s D �r), and classical estimates entail an estimate for

X

c�N

'.c/

crC2
�N!1

1

�.2/

N�r

jr j ; (for r < 0/, and
X

c�N

'.c/

c2
�N!1

1

�.2/
logN:

For domainM.u/, the study of quadrilaterals can be performed in a similar way.
Furthermore, the height of each quadrilateral of M.u/ is �.u2/, and the sum of
the bases a equal 1. Then P.r/Œ�.z/ � u� D �.u2rC2/. Furthermore, using the
inclusions of (3.44) leads to the inequality.

Probabilistic Analyses of Lattice Reduction Algorithms
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Interpretation of the Results

We provide a first interpretation of the main results described in Theorem 8.

1. For any y0 � 1, the probability of the event Œby � y0� is

P.r/Œby � y0� D P.r/

�
�.z/ � 1

y0

�
D A1.r/

�.2r C 3/
�.2r C 4/

1

yrC2
0

:

This defines a function of the variable y0 7!  r .y0/, whose derivative is a power
function of variable y0, of the form �.y�r�3

0 /. This derivative is closely related

to the output density bfr of Theorem 6 via the equality

 0r .y0/ WD
Z C1=2

�1=2

bfr.x; y0/ dx:

Now, when r ! �1, the function  0r .y/ has a limit, which is exactly the den-
sity 
, defined in (3.43), which is associated to the Haar measure �2 defined in
Sections “Random Lattices and Relation with Eisenstein Series”.

2. The regime of the distribution function of parameter � changes when the sign
of valuation r changes. There are two parts in the domain �.t/: the lower part,
which is the horizontal strip Œ0 � =.z/ � .2=p3/t2�, and the upper part defined
as the intersection of �.t/ with the horizontal strip Œ.2=

p
3/t2 � =.z/ � t �. For

negative values of r , the measure of the lower part is dominant, while for positive
values of r , it is the upper part that has a dominant measure. For r D 0, there is
a phase transition between the two regimes: this occurs in particular in the usual
case of a uniform density.

3. In contrast, the distribution function of parameter� has always the same regime.
In particular, for negative values of valuation r , the distribution functions of the
two parameters, � and �, are of the same form.

4. The bounds (3.53, 3.54) prove that for any u; t 2 Œ0; 1�, the probabilities PŒ�.z/ �
t �, PŒ�.z/ � u� tend to 1, when the valuation r tends to �1. This shows that the
limit distributions of � and � are associated to the Dirac measure at 0.

5. It is also possible to conduct these studies in the discrete model defined in Sec-
tion “Probabilistic Models for Two-Dimensions”. It is not done here, but this type
of analysis will be performed in the following section.

Open question. Is it possible to describe the distribution function of parameter �
for � > 1? Figure 3.15 [top] shows that its regime changes at � D 1. This will be
important for obtaining a precise estimate of the mean value E.r/Œ�� as a function of
r and comparing this value to experiments reported in Section “A Variation for the
LLL Algorithm: The Odd-Even Algorithm”.

The corners of the fundamental domain. With Theorem 8, it is possible to com-
pute the probability that an output basis lies in the corners of the fundamental
domain, and to observe its evolution as a function of valuation r . This is a first
step for a sharp understanding of Fig. 3.4 [right].
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Fig. 3.15 Above: the domain 
 .�/ WD fzI �.z/ � �g. On the left, � D 1 (in white). On
the right, the domain F.0;1/ \ Fo.0; 1; �/ for � D 1; �0 D 2=

p
3; �1 D .1 C �0/=2. – In the

middle: the domain �.t/ \ BC, with �.t/ WD fzI �.z/ � tg and the domain M.u/ \ BC with
M.u/ WD fzI �.z/ � ug for u D t D 0:193.– Below: the same domains for u D t D 0:12

Probabilistic Analyses of Lattice Reduction Algorithms



124 B. Vallée and A. Vera

Proposition 8. When the initial density on BnF is the standard density of valuation
r , the probability for an output basis to lie on the corners of the fundamental domain
is equal to

C.r/ WD 1 � A1.r/ � �.2r C 3/
�.2r C 4/ ;

where A1.r/ is defined in Section “Distribution Functions of Output Parameters:
Case of Densities with Valuations”. There are three main cases of interest for
1 � C.r/, namely

Œr ! �1� W 3
	
; Œr D 0� W 3	

2	 C 3p3
�.3/

�.4/
; Œr !1� W

r
	

r
e�3=2:

Distribution Functions of Output Parameters:
Case of Fixed Determinant

Computing the measure of disks and angular sectors with respect to the mea-
sure concentrated on the line y D y0 leads to the estimates of the main output
distributions. We here focus on the parameter � .

The intersection of the disk Fo.a; c; �/ with the line y D y0 is nonempty as soon
as y0 is less than �=c2. The intersection 
 .�/ \ Œy D y0� is just “brought” by the
Ford disks for which the integer c is less than x0 D

p
�=y0. Then, for � < 1, the

Ford disks Fo.a; c; �/ are disjoint and

PŒy0�Œ�.z/ � �� D 2� Sg.x0/ with Sg.x0/ D 1

x0

X

c�x0

'.c/

c
g

�
c

x0

�
;

and g.t/ D p1 � t2. For any function g smooth enough, one has

lim
x!1Sg.x/ D 1

�.2/

Z 1

0

g.t/ dt:

This proves that when y0 tends to 0, the probability PŒy0�Œ�.z/ � �� tends to .3=	/�.
We recover the result of [20] in the two-dimensional case.

A Related Result which also Deals with Farey Disks

For analyzing integer factoring algorithms, Vallée was led in 1988 to study the set
of “small quadratic residues” defined as

B D B.N; h; h0/ WD fx 2 Œ1::N �I x2 modN 2 Œh; h0�g; for h0�h D 8N 2=3;
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and its distribution in Œ1::N �. She described in [43,44] a polynomial–time algorithm,
called the Two-Thirds Algorithm, which draws elements from B in a quasi-uniform
way.8 This was (for her) a main tool for obtaining a provable complexity bound for
integer factoring algorithms based on congruences of squares. Fifteen years later,
Coron in [13], then Gentry in [19], discovered that such an algorithm also plays
a central rôle in cryptography, more precisely in security proofs (see the survey
of Gentry [18] in these proceedings). Furthermore, Gentry in [19] modified Vallée’s
algorithm and obtained an algorithm that draws elements fromB in an exact uniform
way. This constitutes a main step in the security proof of Rabin partial-domain-hash
signatures.

The main idea of Vallée, which has been later adapted and made more precise
by Gentry, is to perform a local study of the set B. In this way, she refines ideas of
the work done in [46]. This last work was one of the first works that relates general
small modular equations to lattices, and was further generalized ten years later by
Coppersmith [11]. Consider an integer x0, for which the rational 2x0=N is close to a
rational a=c with a small denominator c. Then, the set of elements of B near x0 can
be easily described with the help of the latticeL.x0/ generated by the pair of vectors
.2x0; 1/; .N; 0/. More precisely, the following two conditions are equivalent:

1. x D x0 C u belongs to B
2. There exists w such that the point .w; u/ belongs to L.x0/ and lies between two

parabolas with respective equations

wC u2 C x2
0 D h; wC u2 C x2

0 D h0:

This equivalence is easy to obtain (just expand x2 as .x0Cu/2 D x2
0C2x0uCu2)

and gives rise to an efficient drawing algorithm ofB near x0, provided that the lattice
L.x0/ has a sufficiently short vector in comparison to the gap h0�h between the two
parabolas. Vallée proved that this happens when the complex z0 D 2x0=N C i=N
relative to the input basis ofL.x0/ belongs to a Farey disk Fa.a; c; t/, with t D .h0�
h/=N D 4N�1=3. In 1988, the rôle played by Farey disks (or Farey intervals) was
surprising, but now, from previous studies performed in Section “Domains Relative
to the Output Parameters”, we know that these objects are central in such a result.

Analysis of the Execution Parameters of the Gauss Algorithm

We finally focus on parameters that describe the execution of the algorithm: we are
mainly interested in the bit-complexity, but we also study additive costs that may be
of independent interest. We here use an approach based on tools that come both from
dynamical system theory and analysis of algorithms. We shall deal here with the

8 We use the term quasi-uniform to mean that the probability that x 2 B is drawn in between
`1=jBj and `2=jBj, for constants independent on x and N .

Probabilistic Analyses of Lattice Reduction Algorithms
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COREGAUSS algorithm, using the decomposition provided in Section “Returning
to the Gauss Algorithm” Proposition 6.

Dynamical Systems

A dynamical system is a pair formed by a set X and a mapping W W X ! X

for which there exists a (finite or denumerable) set Q (whose elements are called
digits) and a topological partition fXqgq2Q of the set X in subsets Xq such that the
restriction of W to each element Xq of the partition is of class C2 and invertible.
Here, we deal with the so-called complete dynamical systems, where the restriction
of W jXq

W Xq ! X is surjective. A special rôle is played by the set H of branches
of the inverse functionW �1 of W that are also naturally numbered by the index set
Q: we denote by hhqi the inverse of the restriction W jXq

, so that Xq is exactly the
image hhqi.X/. The set Hk is the set of the inverse branches of the iterate W k ; its
elements are of the form hhq1i ıhhq2i ı � � �ıhhqki and are called the inverse branches
of depth k. The set H? WD [k
0Hk is the semi-group generated by H.

Given an initial point x in X , the sequence W.x/ WD .x;Wx;W 2x; : : :/ of
iterates of x under the action ofW forms the trajectory of the initial point x. We say
that the system has a hole Y if any point of X eventually falls in Y : for any x, there
exists p 2 N such that W p.x/ 2 Y .

We will study here two dynamical systems, respectively, related to the F-EUCLID

algorithm and to the COREGAUSS algorithm, previously defined (in an informal
way) in Section “Returning to the Gauss Algorithm”.

Case of the F-EUCLID Algorithm. Here, X is the interval eI D Œ0; 1=2�. The map
W is the map eV defined in Section “Relation with the Centered Euclid Algorithm”.
The set Q of digits is the set of pairs q D .m; "/ with the condition .m; "/ �
.2;C1/ (with respect to the lexicographic order). The inverse branch hhm;"i is a
LFT, defined as hhm;"i.z/ D 1=.m C "z/. The topological partition is defined by
X.m;"/ D hhm;"i.eI/.
Case of the COREGAUSS Algorithm. Here,X is the vertical strip eB. The mapW is
equal to the identity on eBnD and coincides with the map eU defined in Section “The
Complex Versions for the GAUSS Algorithms” otherwise. The set Q of digits is
the set of pairs q D .m; "/ with the condition .m; "/ � .2;C1/ (with respect to
the lexicographic order). The inverse branch hhm;"i is a LFT defined as hhm;"i.z/ D
1=.mC "z/. The topological partition is defined by X.m;"/ D hhm;"i.eB/ and drawn
in Fig. 16. The system has a hole, namely eB nD.

Transfer Operators

The main study in dynamical systems concerns itself with the interplay between
properties of the transformation W and properties of trajectories under iteration
of the transformation. The behavior of typical trajectories of dynamical systems
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Fig. 3.16 The topological partitions of the COREGAUSS dynamical system. The intersection of
this partition with the real axis gives rise to the topological partition of the F-EUCLID dynamical
system

is more easily explained by examining the flow of densities. The time evolu-
tion governed by the map W modifies the density, and the successive densities
f0; f1; f2; : : : ; fn; : : : describe the global evolution of the system at discrete times
t D 0; t D 1; t D 2; : : :.

Consider the (elementary) operator Xs;Œh�, relative to an inverse branch h 2 H,
which acts on functions f W X ! R, depends on some parameter s, and is formally
defined as

Xs;Œh�Œf �.x/ D J.h/.x/s � f ı h.x/; where J.h/ is the Jacobian of branch h.
(3.55)

The operator X1;Œh� expresses the part of the new density f1, which is brought
when the algorithm uses the branch h, and the operator that takes into account all
the inverse branches of the set H, defined as

Hs WD
X

h2H
Xs;Œh�; (3.56)

is called the transfer operator. For s D 1, the operator H1 D H is the density
transformer, (or the Perron–Frobenius operator) which expresses the new density
f1 as a function of the old density f0 via the relation f1 D HŒf0�. The operators
defined in (3.56) are called transfer operators. For s D 1, they coincide with density
transformers, and for other values of s, they can be viewed as extensions of density
transformers. They play a central rôle in studies of dynamical systems.

We will explain how transfer operators are a convenient tool for studying the
evolution of the densities, in the two systems of interest.

Probabilistic Analyses of Lattice Reduction Algorithms
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Case of the F-EUCLID system. This system is defined on an interval, and the
Jacobian J.h/.x/ is just equal to jh0.x/j. Moreover, because of the precise expres-
sion of the set H, one has, for any x 2 eI D Œ0; 1=2�,

HsŒf �.x/ D
X

.m;"/
.2;1/

�
1

mC "x
�2s

� f
�

1

mC "x
�
: (3.57)

The main properties of the F-EUCLID algorithm are closely related to spectral
properties of the transfer operator Hs when it acts on a convenient functional space.
We return to this fact in Section “Functional Analysis”.

Case of the COREGAUSS algorithm. We have seen in Section “Output Densities”
that the Jacobian of the transformation .x; y/ 7! h.x; y/ D .<h.x C iy/;=h.x C
iy// equals jh0.x C iy/j2. It would be natural to consider an (elementary) transfer
operator Ys;Œh�, of the form

Ys;Œh�Œf �.z/ D jh0.z/js � f ı h.z/:

In this case, the sum of such operators, taken over all the LFTs that intervene in
one step of the COREGAUSS algorithm, and viewed at s D 2, describes the new
density that is brought at each point z 2 eB nD during this step, when the density on
D is f .
However, such an operator does not possess “good” properties, because the map
z 7! jh0.z/j is not analytic. It is more convenient to introduce another elementary
operator Xs;Œh�, which acts on functions F of two variables, and is defined as

X2s;Œh�ŒF �.z; u/ D Lh.z/s � Lh.u/s � F.h.z/; h.u//;

where Lh is the analytic extension of jh0j to a complex neighborhood ofeI WD Œ0; 1=2�.
Such an operator acts on analytic functions, and the equalities, which relate F.z; u/
and its diagonal f defined by f .z/ WD F.z; Nz/,

Xs;Œh�ŒF �.z; Nz/ D Ys;Œh�Œf �.z/; Xs;Œh�ŒF �.x; x/ D Xs;Œh�Œf �.x/ (3.58)

prove that the elementary operators Xs;Œh� are extensions of the operators Xs;Œh� that
are well-adapted to our purpose. Furthermore, they are also well-adapted to deal
with densities with valuation. Indeed, when applied to a density f of valuation r ,
of the form f .z/ D F.z; Nz/, where F.z; u/ D jz � ujrL.z; u/ involves an analytic
function L, which is nonzero on the diagonal z D u, one has

X2s;Œh�ŒF �.z; Nz/ D jyjr X2sCr;Œh�ŒL�.z; Nz/:

Finally, for the COREGAUSS Algorithm, we shall deal with the operator Hs

defined as Hs D
P

h2H Xs;Œh�; which, in this case, admits a nice expression
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HsŒF �.z; u/ D
X

.m;"/
.2;1/

�
1

mC "z
�s �

1

mC "u
�s

� F
�

1

mC "z ;
1

mC "u
�
:

(3.59)
Because of (3.58), this is an extension of the operator Hs, defined in (3.57), which

satisfies the equality

Hs ŒF �.x; x/ D HsŒf �.x/; when f is the diagonal map of F .

The operators Xs;Œh�, underlined or not, satisfy a crucial relation of composition
due to multiplicative properties of the derivative of g ı h. We easily remark that

Xs;Œh� ı Xs;Œg� D Xs;Œgıh�; Xs;Œh� ı Xs;Œg� D Xs;Œgıh�:

We recall that the set HC D [k>0Hk is the set of the transformations describing
the whole executions of our two algorithms of interest. Then, the transfer oper-
ator relative to HC, denoted by Gs (for the EUCLID Algorithm) or Gs (for the
COREGAUSS Algorithm), satisfies

Gs D Hs ı .I �Hs/
�1 or Gs D Hs ı .I �Hs/

�1; (3.60)

and the assertion .3/ of Theorem 6 can be re-written as

Theorem 9. [Dynamical version of Theorem 6]. Consider the COREGAUSS algo-
rithm, with its input density f on D and its output density bf on eB n D, viewed
as functions of two complex variables z; Nz, namely f .x; y/ D F.z; Nz/; bf .x; y/ D
bF .z; Nz/.
Then, one has bF D G2ŒF �, where the operator G2 is the “total” density trans-
former of the COREGAUSS algorithm, which is related to the density transformer
H2 via the equality G2 D H2 ı .I � H2/

�1: When the input density F is of type
.r; L/, then the equality bF .z; Nz/ D yrG2Cr ŒL� holds.

Consider the COREGAUSS algorithm with an initial density, standard of valua-
tion r . Such a density is defined on the input disk D and involves constant A0.r/

[related with constant A2.r/ defined in (3.49)] under the form

yr

A0.r/
with A0.r/ D 1

4rC2
A2.r/ D

p
	

4rC2


 ..r C 1/=2/

 .r=2C 2/ : (3.61)

Remark that A0.r/ � 1=.r C 1/ when r ! �1. Then, the Hurwitz characterization
provided in Proposition 6 gives rise to a nice expression for the output density bF in
the case of a standard input density of valuation r , namely

bFr .z; Nz/ D 1

A0.r/

1

�.2r C 4/
X

c;d�1

d�<c<d�2

yr

jczC d j2rC4
:
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Execution Parameters in the Complex Framework

We are now interested in the study of the following costs:

1. Any additive cost C.c/, defined in (3.9), relative to a cost c of moderate growth.
There are two particular cases of interest: the number of iterations P , relative to
c D 1, and the length Q of the continued fraction, relative to the case when c is
the binary length `,

Q.u; v/ D
P.u;v/X

iD1

`.jqi j/:

2. The bit-complexity B defined in Section “Main Parameters of Interest”. It is
explained (see 3.8) that the cost B decomposes as

B.u; v/ D Q.u; v/ `.juj2/CD.u; v/C� .Q.u; v// ; (3.62)

where Q is the length of the continued fraction, already studied in .1/, and cost
D is defined by

D.u; v/ D 2
P.u;v/X

iD1

`.jqi j/ lg
ˇ̌
ˇ
vi�1

v

ˇ̌
ˇ :

It is then sufficient to study costs Q and D.

All these costs are invariant by similarity, that is, X.�u; �v/ D X.u; v/ for X 2
fQ;D;P g and � 2 C

?. If, with a small abuse of notation, we let X.z/ WD X.1; z/,
we are led to study the main costs of interest in the complex framework. We first
provide precise expressions for all these costs in the complex framework.

An additive cost C.c/, defined more precisely in (3.9), is related to an elementary
cost c defined on quotients q. Such a cost can be defined on H via the equality
c.h/ D c.q/ for h D hhqi, and is extended to the total set of LFTs in a linear way:
for h D h1ıh2ı: : :ıhp, we define c.h/ as c.h/ WD c.h1/Cc.h2/C: : :Cc.hp/. This
gives rise to another definition for the complex version of cost defined by C.z/ WD
C.1; z/. If an input z 2 D leads to an outputbz 2 eB nD by using the LFT h 2 G with
z D h.bz/, then C.z/ equals c.h/.

In the same vein as in (3.45), the i th length decrease can be expressed with the
derivative of the LFT gi WD h�1

i (with hi defined in (3.33)) as

jvi j2
jv0j2 D

1

jg0i .z/j
D jci z � ai j2 so that 2 lg

�jvi j
jv0j

�
D � lg jg0i .z/j D � lg jci z � ai j2;

where ai ; ci are coefficients of the LFT hi . Finally, the complex versions of costD is

D.z/ D
P.z/X

iD1

`.jqi j/ lg jh0i�1.zi�1/j D �2
P.z/X

iD1

`.jqi j/ lg jci�1z � ai�1j: (3.63)
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The main idea of the dynamical analysis methodology is to use the transfer oper-
ators (introduced for studying dynamical systems) in the analysis of algorithms;
for this aim, we modify the operators Xs;Œh� defined in Section “Transfer Opera-
tors” in such a way that they become “generating operators” that play the same role
as generating functions in analytic combinatorics. In fact, these operators generate
themselves... generating functions of the main costs of interest.

Generating Operators for Additive Costs C and Cost D

We now explain how to modify transfer operator in the two main cases: additive
cost C and cost D.

Case of additive costs. It is natural to add a new parameter w inside the transfer
operator Xs;Œh� for “marking” the cost: we consider the two-parameters operator
Xs;w;.c/;Œh� defined as

X2s;w;.c/;Œh�ŒF �.z; u/ D expŒwc.h/� � Lh.z/s � Lh.u/s � F.h.z/; h.u//:

Of course, when w D 0 or c D 0, we recover the operator X2s;Œh�. When the cost c
is additive, that is, c.g ı h/ D c.g/C c.h/, the composition relation

Xs;w;.c/;Œh� ı Xs;w;.c/;Œg� D Xs;w;.c/;Œgıh�

entails, an extension of (3.60) as

Gs;w;.c/ D Hs;w;.c/ ı .I �Hs;w;.c//
�1; (3.64)

where the operators Gs;w;.c/;Hs;w;.c/ are defined in the same vein as in (3.56). In
particular,

Hs;w;.c/ŒF �.z; u/ D
X

.m;"/
.2;1/

expŒwc.m; "/�

�
1

mC "z
�s �

1

mC "u
�s

(3.65)

� F
�

1

mC "z ;
1

mC "u
�
: (3.66)

The operator Gs;w;.c/ generates the moment generating function of the cost C.c/,
as we will see now. The moment generating function Ehf i.expŒwC.c/�/ is defined as

Ehf i.expŒwC.c/�/ WD
X

h2HC

expŒwc.h/� � Phf iŒC D c.h/�

D
X

h2HC

expŒwc.h/�
“

h.eBnD/

f .x; y/ dxdy:

Probabilistic Analyses of Lattice Reduction Algorithms



132 B. Vallée and A. Vera

Using a change of variables and the expression of the Jacobian leads to

Ehf i.expŒwC.c/�/ D
X

h2HC

expŒwc.h/�
“

eBnD
jh0.z/j2f .h.z/; h.Nz// dxdy

D
“

eBnD
G2;w;.c/Œf �.z; Nz/ dxdy:

Now, when the density F is of type .r; L/, using relation (3.41) leads to

Ehf i.expŒwC.c/�/ D
“

eBnD
yr G2Cr;w;.c/ŒL�.z; Nz/ dxdy: (3.67)

The expectation Ehf iŒC.c/� is just obtained by taking the derivative with respect
to w (at w D 0). This is why we introduce the functional W.c/, which takes the
derivative with respect to w, at w D 0. It then “weights” the operator Xs;Œh� with the
cost c.h/, as

W.c/Xs;Œh� WD @

@w
Xs;w;.c/;Œh�jwD0 D c.h/Xs;Œh�:

When extended via linearity, it defines the generating operator of cost C as

Gs;C WD W.c/ŒGs � D W.c/

�
Hs ı .I �Hs/

�1


: (3.68)

This provides an alternative expression for the expectation of any additive cost:

Ehf iŒC.c/� D
“

eBnD
G2;C ŒF �.z; Nz/ dxdy D

“

eBnD
yr G2Cr;C ŒL�.z; Nz/ dxdy;

(3.69)

the last equality holding for a density F of type .r; L/.

Case of CostD. Remark that, in (3.63), the quantity lg jh0i .zi /j�jh0i .z/js is just the
derivative of .1= log2/jh0i.z/js with respect to s. This is why we introduce another
functional �, in the same vein as previously, where the functional W relative to
the cost was introduced. To an operator Xs;Œh�, we associate an operator �Xs;Œh�

defined as

�Xs;Œh� D
1

log 2

@

@s
Xs;Œh�:

The functional� weights the operator Xs;Œh� with the weight � lg jh0j.
Now, with the help of these two functionalsW WD W.`/ and �, we can build the

generating operator forD. The decomposition of the set HC as HC WD H? �H �H?

gives rise to the parallel decomposition of the operators (in the reverse order). If we
weight the second factor with the help of W WD W.`/, we obtain the operator

.I �Hs/
�1 ıW ŒHs� ı .I �Hs/

�1 D W Œ.I �Hs/
�1�;
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which is the “generating operator” of the cost Q.z/. If, in addition of weighting the
second factor with the help ofW , we take the derivative� of the third one, then we
obtain the operator

Gs;D WD .I �Hs/
�1 ıW ŒHs � ı�

�
.I �Hs/

�1


;

Gs;D D .I �Hs/
�1 ıW ŒHs� ı .I �Hs/

�1 ı� ŒHs � ı .I �Hs/
�1; (3.70)

which is the “generating operator” of the cost D.z/, as the equalities hold,

Ehf iŒD� WD
“

D
D.z/ F.z; Nz/ dxdy;

D
“

eBnD
G2;D ŒF �.z; Nz/ dxdy D

“

eBnD
yr G2Cr;D ŒL�.z; Nz/ dxdy; (3.71)

the last equality holding for a density F of type .r; L/.

Case of costs C;B in the Euclid Algorithm. These functionalsW;� are also cen-
tral in the analysis of the bit-complexity of the Euclid Algorithm [5,27]. One deals in
this case with the Dirichlet series relative to costX , forX 2 fId; C.c/; Bg, defined as

FX .s/ WD
X

.u;v/2Z2

v=u2eI;gcd.u;v/D1

X.u; v/

v2s
:

These series admit alternative expressions that involve the quasi-inverse .I �
Hs/
�1 of the plain operator Hs, together with functionals W.c/ and �. Finally, the

following equalities

FId.s/ D GsŒ1�.0/; FC .s/ D Gs;C Œ1�.0/; FB .s/ D �Gs;DŒ1�.0/: (3.72)

hold, and involve the non-underlined9 versions Gs;Gs;C ;Gs;D of the generating
operators Gs , Gs;C , Gs;D defined in (3.68, 3.70).

Functional Analysis

We need precise information on the quasi-inverse .I �Hs/
�1, which is omnipresent

in the expressions of our probabilistic studies (see 3.67, 3.69, 3), as the quasi-inverse
.I �Hs/

�1 was already omnipresent in the probabilistic analyses of the F-EUCLID

Algorithm.

9 These operators are defined in the same vein as underlined versions, replacing each occurrence
of the underlined operator Hs by the plain operator Hs .

Probabilistic Analyses of Lattice Reduction Algorithms
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It is first needed to find convenient functional spaces where the operators Hs;Hs

and its variants Hs;w;.c/ will possess good spectral properties. Consider the open disk
V of diameter Œ�1=2; 1� and the functional spacesA1.V/; B1.V/ of all functions f
(of one variable) or F (of two variables) that are holomorphic and continuous on the
frontier: A1.V/ is the space of functions f holomorphic in the domain V and con-
tinuous on the closure NV, while B1.V/ is the space of functions F holomorphic in
the domain V�V and continuous on the closure NV� NV . Endowed with the sup-norm,
these are Banach spaces; for<.s/ > .1=2/, the transfer operator Hs acts onA1.V/,
the transfer operator Hs acts on B1.V/, and these are compact operators. Further-
more, when weighted by a cost of moderate growth [i.e., c.hhqi/ D O.log q/], for
w close enough to 0, and<s > .1=2/, the operator Hs;w;.c/ also acts onB1.V/, and
is also compact.

In the case of the F-EUCLID Algorithm, the spectral properties of the transfer
operator defined in (3.57) play a central rôle in the analysis of the algorithm. For
real s, the transfer operator Hs has a unique dominant eigenvalue �.s/, which is real
and separated from the remainder of the spectrum by a spectral gap. For s D 1,
the dominant eigenvalue of the density transformer H satisfies �.1/ D 1, and the
dominant eigenfunction .x/ (which is then invariant under the action of H) admits
a closed form that involves the golden ratio � D .1Cp5/=2,

 .x/ D 1

log�

�
1

� C x C
1

�2 � x
�
:

This is the analog (for the F-EUCLID algorithm) of the celebrated Gauss density
associated with the standard Euclid algorithm and equal to .1= log2/1=.1C x/.

Moreover, the quasi-inverse .I �Hs/
�1 has a pôle at s D 1, and satisfies

.I �Hs/
�1Œf �.z/ �s!1

1

s � 1
1

h.E/  . z/
Z

eI
f .x/ dx; (3.73)

where the constant h.E/ is the entropy of the F-EUCLID dynamical system, and
satisfies

h.E/ D j�0.1/j D 	2

6 log�
� 3:41831: (3.74)

The operator Hs;w;.c/ also possesses nice spectral properties (see [40], [9]): for a
complex number s close enough to the real axis, with <s > .1=2/, it has a unique
dominant eigenvalue, denoted by �.c/.s;w/, which is separated from the remainder
of the spectrum by a spectral gap. This implies the following: for any fixed s close
enough to the real axis, the quasi-inverse w 7! .I � Hs;w;.c//

�1 has a dominant
pôle located at w D w.c/.s/ defined by the implicit equation �.c/.s;w.c/.s// D 1.
More precisely, when w D 0, one recovers the plain operator Hs , which has the
same dominant eigenvalue �.s/ as the operator Hs. For s D 1, it has a dominant
eigenvalue �.1/ D 1 with a dominant eigenfunction  , which is an extension of
the invariant density  of the F-EUCLID Algorithm, and satisfies  .x; x/ D  .x/.
An exact expression for  is provided in [40],
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 .z; u/ D 1

log�

1

u � z

�
log

� C u

� C z
C log

�2 � u

�2 � z

�
for z 6D u, and  .z; z/ D  .z/:

(3.75)

Near s D 1, the quasi-inverse satisfies

.I �Hs/
�1ŒF �.z; u/ �s!1

1

s � 1
1

h.E/ I ŒF � .z; u/; with I ŒF � WD
Z

eI
F.x; x/ dx:

(3.76)

We consider, in the sequel of this section, the COREGAUSS algorithm with an
initial density, standard of valuation r . Such a density is defined as yr=A0.r/, with
A0.r/ defined in (3.61). In this case, there are nice expressions for the moment gen-
erating functions E.r/Œexp.wC/�, for the expectations E.r/ŒC �;E.r/ŒD�, described
in (3.67, 3.69, 3), where we let L D 1.

Probabilistic Analysis of the F-EUCLID Algorithm

We wish to compare the behavior of the two algorithms, the COREGAUSS Algo-
rithm and the F-EUCLID Algorithm, and we first recall here the main facts about
the probabilistic behavior of the F-EUCLID Algorithm.

Theorem 10. (Akhavi and Vallée [5] (1998), Vallée [37, 41] (2003-2007)) On the
set !N formed with input pairs .u; v/ for which u=v 2 eI and jvj � N , the mean
number of iterations P , the mean value of a cost C of moderate growth, the mean
value of the bit-complexity B satisfy, when M !1,

EN ŒP �� 2 log 2

h.E/ lgN; EM ŒC.c/�� 2 log 2

h.E/ EŒc� lgN; EM ŒB�� log 2

h.E/ EŒ`� lg2N:

Here, h.E/ denotes the entropy of the F-EUCLID dynamical system, described in
(3.74), and EŒc� denotes the mean value of the step-cost c with respect to the
invariant density  . This is a constant of Khinchin’s type, of the form

EŒc� WD
X

h2H

Z

h.eI/

`.h/ .x/ dx:

In particular, when c is the binary length `, there is a nice formula for EŒ`�, namely

EŒ`� D 1

log�
log

Y

k
1

2k�2 C �
2k�2 � 1 � 2:02197:

Probabilistic Analyses of Lattice Reduction Algorithms
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Proof (Sketch). One deals with the Dirichlet series FX .s/ relative to costX , defined
in (3.72). Using the spectral relation (3.73) together with Tauberian Theorems leads
to the asymptotic study of the coefficients of the series and provides the result.

Moreover, there exist also more precise distributional results [6, 27] which
show that all these costs P;C.c/, together with a regularized version of B , admit
asymptotic Gaussian laws for M !1.

What can be expected about the probabilistic behavior of the COREGAUSS

Algorithm? On the one hand, there is a strong formal similarity between the
two algorithms, as the COREGAUSS Algorithm can be viewed as a lifting of the
F-EUCLID Algorithm. On the other hand, important differences appear when we
consider algorithms: the F-EUCLID algorithm never terminates, except on rational
inputs that fall in the hole f0g, while the COREGAUSS Algorithm always terminates,
except for irrational real inputs. However, it is clear that these differences disappear
when we restrict to rational inputs, real or complex ones. In this case, both algo-
rithms terminate, and it is quite interesting to determine if there exists a precise
transition between these two (discrete) algorithms.

Distribution of Additive Costs

We wish to prove that k 7! P.r/ŒC.c/ D k� has a geometrical decreasing, with a
precise estimate for the ratio. For this purpose, we use the moment generating func-
tion E.r/.expŒwC.c/�/ of the cost C.c/, for which we have provided an alternative
expression in (3.67). We first study any additive cost, then we focus on the number
of iterations.
General additive cost. The asymptotic behavior of the probability P.r/ŒC.c/ D k�

(for k ! 1) is obtained by extracting the coefficient of expŒkw� in the moment
generating function. Then the asymptotic behavior of P.r/ŒC.c/ D k� is related to
singularities of E.r/.expŒwC.c/�/. This series has a pôle at ew.c/.rC2/, where w D
w.c/.s/ is defined by the spectral equation �.c/.s;w/ D 1 that involves the dominant
eigenvalue �.c/.s;w/ of the operator Hs;w;.c/, which is described in (3.65). Then,
with classical methods of analytic combinatorics, we obtain:

Theorem 11. (Daudé et al. [14] (1994), Vallée and Vera [45] (2007)) Consider the
COREGAUSS algorithm, when its inputs are distributed inside the disk D with the
continuous standard density of valuation r . Then, any additive cost C.c/ defined
in (3.9), associated to a step-cost c of moderate growth asymptotically, follows a
geometric law.

The ratio of this law, equal to expŒ�w.c/.rC2/�, is related to the solution w.c/.s/

of the spectral relation �.c/.s;w/ D 1, which involves the dominant eigenvalue
of the transfer operator Hs;w;.c/. It satisfies, for any cost c of moderate growth,
w.c/.r C 2/ D �.r C 1/ when r ! �1. More precisely, one has

P.r/ŒC.c/ D k�� k!1a.r/ expŒ�kw.c/.r C 2/�; for k !1; (3.77)

where a.r/ is a strictly positive constant that depends on cost c and valuation r .
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Number of iterations. In the particular case of a constant step-cost c D 1, the cost
C.c/ is just the number R of iterations and the operator Hs;w;.1/ reduces to ew �
Hs. In this case, there exists a nice alternative expression for the mean number of
iterations of the COREGAUSS algorithm which uses the characterization of Hurwitz
(recalled in Proposition 6.2). Furthermore, the probability of the event ŒR � k C 1�
can be expressed in an easier way using (3.36), as

P.r/ŒR � kC1� D 1

A0.r/

X

h2Hk

“

h.D/

yrdxdy D 1

A0.r/

“

D
yr Hk

2Cr Œ1�.z/ dxdy;

where A0.r/ is defined in (3.61). This leads to the following result:

Theorem 12. (Daudé et al. [14] (1994), Vallée [40] (1996)) Consider the CORE-
GAUSS algorithm, when its inputs are distributed inside the disk D with the
continuous standard density of valuation r . Then, the expectation of the number
R of iterations admits the following expression:

E.r/ŒR� D 22rC4

�.2r C 4/
X

c;d�1

d�<c<d�2

1

.cd/2Cr
:

Furthermore, for any fixed valuation r > �1, the number R of iterations asymptot-
ically follows a geometric law

P.r/ŒR � k C 1� �k!1 ea.r/ �.2C r/k ;

where �.s/ is the dominant eigenvalue of the transfer operator Hs and ea.r/ is a
strictly positive constant that depends on the valuation r .

It seems that there does not exist any close expression for the dominant eigenvalue
�.s/. However, this dominant eigenvalue is polynomial-time computable, as it is
proven by Lhote [26]. In [17], numerical values are computed in the case of the
uniform density, that is, for �.2/ and E.0/ŒR�,

E.0/ŒR� � 1:08922; �.2/ � 0:0773853773:
For r ! �1, the dominant eigenvalue�.2Cr/ tends to �.1/ D 1 and �.2Cr/�1 �
�0.1/.1 C r/. This explains the evolution of the behavior of the Gauss Algorithm
when the data become more and more concentrated near the real axis.

Mean Bit-Complexity

We are now interested in the study of the bit-complexity B ,10 and we focus on a
standard density of valuation r . We start with the relation betweenB , and costsC;D

10 We study the central part of the bit-complexity, and do not consider the initialization process,
where the Gram matrix is computed; see Section “Main Parameters of Interest”.
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recalled in Section “Execution Parameters in the Complex Framework”, together
with the expressions of the mean values of parameters C;D obtained in (3.69, 3).
We state three main results: the first one describes the evolution in the continuous
model when the valuation r tends to �1; the second one describes the evolution of
the discrete model when the integer size M tends to1, the valuation being fixed;
finally, the third one describes the evolution of the discrete model when the valuation
r tends to �1 and the integer size M tends to1.

Theorem 13. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its inputs are distributed inside the input disk D with the standard
density of valuation r > �1. Then, the mean value E.r/ŒC � of any additive cost
C of moderate growth, and the mean value E.r/ŒD� of cost D are well-defined and
satisfy when r ! �1,

E.r/ŒC � � 1

r C 1
EŒc�

h.E/ ; E.r/ŒD� � � 1

.r C 1/2
1

log2

EŒ`�

h.E/ :

When r tends to �1, the output density, associated with an initial density of

valuation r , tends to
1

h.E/
1

y
 , where  is the invariant density for H1 described in

(3.75).

Remark that the constants that appear here are closely related to those which
appear in the analysis of the Euclid algorithm (Theorem 10). More precisely, the
asymptotics are almost the same when we replace 1=.r C 1/ (in Theorem 13) by
logN (in Theorem 10). Later, Theorem 15 will make precise this observation.

Proof. For any valuation r , the variables C;D are integrable on the disk D: this is
due to the fact that, for X 2 fId; C;Dg, the integrals taken over the horizontal strip
HN WD D \ fzI j=zj � .1=N /g satisfy, with M D logN ,

1

A0.r/

“

HN

yr X.z/ dxdy D M e.X/

N rC1
O .1C .r C 1/M/ ;

where the exponent e.X/ depends on costX ; one has e.Id/ D 0; e.C / D 1; e.D/ D
2. This proves that costX is integrable on D. Furthermore, when r ! �1, relations
(3.76, 3.73) prove the following behaviors:

G2Cr;IdŒF � �
1

r C 1
1

h.E/ I ŒF � ;

G2Cr;C.c/
ŒF �� 1

.r C 1/2
EŒc�

h.E/2 I ŒF � ; G2Cr;DŒF �� �
1

.r C 1/3
EŒ`�

h.E/2 I ŒF � ;

where the integral I ŒF � is defined in (3.76) and  is described in (3.75). The first
equality, together with the definition of A0.r/ and the fact that A0.r/ � .r C 1/�1
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for r ! �1, implies the equality

“

eBnD
1

y
�.z; Nz/ dxdy D h.E/:

Using a nice relation between I Œ�� and h.E/ finally leads to the result.

It is now possible to transfer this analysis to the discrete model defined in Sec-
tion “Probabilistic Models for Two-Dimensions”, with the Gauss principle recalled
in Section “Probabilistic Models: Continuous or Discrete”.

Theorem 14. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its integer inputs .u; v/ of length M WD maxf`.juj2; `.jvj2g are
distributed inside the input disk D with the standard density of valuation r > �1.
Then, the mean value E.r;M/ŒX� of cost X – where X is any additive cost C of
moderate growth, or cost D – tends to the mean value E.r/ŒX� of cost X , when
M !1. More precisely,

E.r;M/ŒX� D E.r/ŒX�C M e.X/

N rC1
O .maxf1; .r C 1/M g/ ;

where the exponent e.X/ depends on cost X and satisfies e.C / D 1; e.D/ D 2.
The mean value E.r;M/ŒB� of the bit-complexity B satisfies, for any fixed r > �1,
when M !1,

E.r;M/ŒB� � E.r/ŒQ� �M:
In particular, the mean bit-complexity is linear with respect to M .

Finally, the last result describes the transition between the COREGAUSS algorithm
and the F-EUCLID Algorithm, obtained when the valuation r tends to �1, and the
integer size M tends toD 1:

Theorem 15. (Vallée and Vera [45, 47], 2007) Consider the COREGAUSS Algo-
rithm, where its integer inputs .u; v/ of length M WD maxf`.juj2; `.jvj2g are
distributed inside the input disk D with the standard density of valuation r > �1.
When the integer size M tends to 1 and the valuation r tends to �1, with
.r C 1/M D ˝.1/, the mean value E.r;M/ŒX� of cost X , where X can be any
additive cost C of moderate growth, or cost D, satisfies

E.r;M/ŒX� D E.r/ŒX�

"
1CO

 
.M.r C 1//e.X/C1

N rC1

!#�
1

1 �N�.rC1/

�
;

where the exponent e.X/ depends on cost X and satisfies e.C / D 1; e.D/ D 2.

Probabilistic Analyses of Lattice Reduction Algorithms
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Then, if we let .r C 1/M DW M ˛ ! 1 (with 0 < ˛ < 1), then the mean values
satisfy

E.r;M/ŒC � � EŒc�

h.E/M
1�˛; E.r;M/ŒD� � � EŒ`�

h.E/
1

log 2
M 2�2˛

E.r;M/ŒB� � EŒ`�

h.E/M
2�˛:

If now .r C 1/M is �.1/, then

E.r;M/ŒC � D �.M/; E.r;M/ŒD� D �.M 2/; E.r;M/ŒB� D �.M 2/:

Open question. Provide a precise description of the phase transition for the behavior
of the bit-complexity between the Gauss algorithm for a valuation r ! �1 and the
Euclid algorithm: determine the constant hidden in the � term as a function of
.r C 1/M .

First Steps in the Probabilistic Analysis
of the LLL Algorithm

We return now to the LLL algorithm and explain how the previous approaches can
be applied for analyzing the algorithm.

Evolution of Densities of the Local Bases

The LLL algorithm aims at reducing all the local bases Uk (defined in Sec-
tion “Description of the Algorithm”) in the Gauss meaning. For obtaining the output
density at the end of the algorithm, it is interesting to describe the evolution of
the distribution of the local bases along the execution of the algorithm. The variant
ODDEVEN described in Section “A Variation for the LLL Algorithm: The Odd-Even
Algorithm” is well-adapted to this purpose.

In the first Odd Phase, the LLL algorithm first deals with local bases with odd
indices. Consider two successive bases Uk and UkC2, respectively, endowed with
some initial densities Fk and FkC2. Denote by zk and zkC2 the complex numbers
associated with local bases .uk; vk/ and .ukC2; vkC2/ via relation (3.1). Then, the
LLL algorithm reduces these two local bases (in the Gauss meaning) and computes
two reduced local bases denoted by .buk;bvk/ and .bukC2;bvkC2/, which satisfy11 in
particular

jbv?
kj D jukj � �.zk/; jbukC2j D jukC2j � �.zkC2/:

11 The notation ? refers to the Gram–Schmidt process as in Sections “The Lattice Reduction
Algorithm in the Two-Dimensional Case and The LLL Algorithm”.
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Then, Theorem 8 provides insights on the distribution of �.zk/; �.zkC2/. As, in
our model, the random variables jukj and zk (respectively, jukC2j and zkC2) are
independent (see Section “Probabilistic Models for Two-Dimensions”), we obtain a
precise information on the distribution of the norms jbv?

k
j; jbukC2j.

In the first Even Phase, the LLL algorithm considers the local bases with an even
index. Now, the basis UkC1 is formed (up to a similarity) from the two previous
output bases, as

ukC1 D jbv?
kj; vkC1 D �jbv?

kj C i jbukC2j;

where � can be assumed to follow a (quasi-)uniform law on Œ�1=2;C1=2�. More-
over, at least at the beginning of the algorithm, the two variables jbv?

k
j; jbukC2j are

independent. All this allows to obtain precise information on the new input density
FkC1 of the local basis UkC1. We then hope to “follow” the evolution of densities
of local bases along the whole execution of the LLL algorithm.
Open question: Is this approach robust enough to “follow” the evolution of densi-
ties of local bases along the whole execution of the LLL algorithm? Of course, in
the “middle” of the algorithm, the two variablesbv?

k
;bukC2 are no longer independent.

Are they independent enough, so that we can apply the previous method? Is it true
that the variables � at the beginning of the phase are almost uniformly distributed
on Œ�1=2;C1=2�? Here, some experiments will be of great use.

The Dynamical System Underlying the ODD–EVEN–LLL
Algorithm

We consider two dynamical systems, the Odd dynamical system (relative to the
Odd phases) and the Even dynamical system (relative to the Even phases). The Odd
(respectively, Even) dynamical system performs (in parallel) the same operations as
the AGAUSS dynamical system, on each complex number zi of odd (respectively,
even) indices. Between the end of one phase and the beginning of the following
phase, computations in the vein of Section “Evolution of Densities of the Local
Bases” take place.

The dynamics of each system, Odd or Even, is easily deduced from the dynamics
of the AGAUSS system. In particular, there is an Even Hole and an Odd Hole, which
can be described as a function of the hole of the AGAUSS system. But the main
difficulty for analyzing the ODD–EVEN Algorithm will come from the difference
on the geometry of the two holes – the Odd one and the Even one. This is a work in
progress!
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coefficients. Mathematische Annalen 261, (1982), 513–534

26. L. LHOTE. Computation of a class of continued fraction constants. Proceedings of ALENEX-
ANALCO’04, 199–210
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