
Chapter 2
Hermite’s Constant and Lattice Algorithms

Phong Q. Nguyen

Abstract We introduce lattices and survey the main provable algorithms for solving
the shortest vector problem, either exactly or approximately. In doing so, we empha-
size a surprising connection between lattice algorithms and the historical problem
of bounding a well-known constant introduced by Hermite in 1850, which is related
to sphere packings. For instance, we present the Lenstra–Lenstra–Lovász algorithm
(LLL) as an (efficient) algorithmic version of Hermite’s inequality on Hermite’s
constant. Similarly, we present blockwise generalizations of LLL as (more or less
tight) algorithmic versions of Mordell’s inequality.

Introduction

Informally, a lattice is an infinite arrangement of points in R
n spaced with sufficient

regularity that one can shift any point onto any other point by some symmetry of the
arrangement. The simplest example of a lattice is the hypercubic lattice Z

n formed
by all points with integral coordinates. Geometry of numbers [1–4] is the branch
of number theory dealing with lattices (and especially their connection with convex
sets), and its origins go back to two historical problems:

1. Higher-dimensional generalizations of Euclid’s algorithm. The elegance and sim-
plicity of Euclid’s greatest common divisor algorithm motivate the search for
generalizations enjoying similar properties. By trying to generalize previous work
of Fermat and Euler, Lagrange [5] studied numbers that can be represented by
quadratic forms at the end of the eighteenth century: given a triplet .a; b; c/ 2 Z

3,
identify which integers are of the form ax2CbxyCcy2, where .x; y/ 2 Z

2. Fer-
mat had for instance characterized numbers that are sums of two squares: x2Cy2,
where .x; y/ 2 Z

2. To answer such questions, Lagrange invented a generaliza-
tion [5, pages 698–700] of Euclid’s algorithm to binary quadratic forms. This
algorithm is often attributed (incorrectly) to Gauss [6], and was generalized in

P.Q. Nguyen
INRIA, Ecole normale supérieure, Département d’informatique, 45 rue d’Ulm, 75005 Paris, France
e-mail: http://www.di.ens.fr/�pnguyen/

P.Q. Nguyen and B. Vallée (eds.), The LLL Algorithm, Information Security
and Cryptography, DOI 10.1007/978-3-642-02295-1 2,
c� Springer-Verlag Berlin Heidelberg 2010

19

20 P.Q. Nguyen

the nineteenth century by Hermite [7] to positive definite quadratic forms of arbi-
trary dimension. Let q.x1; : : : ; xn/ D P

1�i;j�n qi;jxixj be a positive definite
quadratic form over R

n, and denote by �.q/ D det1�i;j�n qi;j 2 R
C its discrim-

inant. Hermite [7] used his algorithm to prove that there exist x1; : : : ; xn 2 Z such
that

0 < q.x1; : : : ; xn/ � .4=3/.n�1/=2�.q/1=n: (2.1)

If we denote by kqk the minimum of q.x1; : : : ; xn/ over Z
n nf0g, (2.1) shows that

kqk=�.q/1=n can be upper bounded independently of q. This proves the existence
of Hermite’s constant �n defined as the supremum of this ratio over all positive
definite quadratic forms:

�n D max
q positive definite over Rn

kqk
�.q/1=n

; (2.2)

because it turns out that the supremum is actually reached. The inequality (2.1) is
equivalent to Hermite’s inequality on Hermite’s constant:

�n � .4=3/.n�1/=2; n � 1; (2.3)

which can be rewritten as

�n � �n�1
2 ; n � 1; (2.4)

because Lagrange [5] showed that �2 D
p
4=3. Though Hermite’s constant

was historically defined in terms of positive definite quadratic forms, it can be
defined equivalently using lattices, due to the classical connection between lat-
tices and positive definite quadratic forms, which we will recall precisely in
section “Quadratic Forms.”

2. Sphere packings. This famous problem [8] asks what fraction of R
n can be cove-

red by equal balls that do not intersect except along their boundaries. The prob-
lem is open as soon as n � 4 (see Fig. 2.1 for the densest packing for n D 2),
which suggests to study simpler problems.

Fig. 2.1 The densest packing
in dimension two: the
hexagonal lattice packing

2 Hermite’s Constant and Lattice Algorithms 21

Of particular interest is the lattice packing problem, which asks what is the
densest packing derived from lattices (such as the packing of Fig. 2.1): any full-
rank lattice L induces a packing of R

n whose centers are the lattice points,
and the diameter of the balls is the minimal distance �1.L/ between two lat-
tice points. The density ı.L/ of the lattice packing is equal to the ratio between
the volume of the n-dimensional ball of diameter �1.L/ and the volume of any
fundamental domain of L (i.e., the volume of the compact set R

n=L). There is
the following simple relationship between Hermite’s constant �n and the supre-
mum ın D maxL ı.L/ over all full-rank lattices L of R

n, due to the alternative
lattice-based definition of �n previously mentioned:

�n D 4
�
ın

vn

�2=n

; (2.5)

where vn denotes the volume of the n-dimensional unit ball. Thus, the problem of
finding the maximal density of lattice packings is equivalent to finding the exact
value of Hermite’s constant �n, which is currently open for n � 9, n ¤ 24.

Lattice algorithms deal with integral lattices, which are usually represented by
a matrix with integer coefficients. This means that the lattice L is formed by all
integral linear combinations of the row vectors of a given integral matrix B:

L D fa1b1 C � � � C anbn; ai 2 Zg;

where b1;b2; : : : ;bn 2 Z
m denote the row vectors of B . The most famous lattice

problem is the so-called shortest vector problem (SVP), which asks to find a short-
est nonzero vector in L, that is, a nonzero vector of the form a1b1 C � � � C anbn

(where ai 2 Z) and of minimal Euclidean norm �1.L/. SVP can be viewed as
a geometric generalization of gcd computations: Euclid’s algorithm actually com-
putes the smallest (in absolute value) nonzero linear combination of two integers, as
gcd.a; b/Z D aZC bZ, which means that we are replacing the integers a and b by
an arbitrary number of vectors b1; : : : ;bn with integer coordinates.

When the vectors bi ’s span a low-dimensional space, one can solve SVP as
efficiently as Euclid’s algorithm. But when the dimension increases, NP-hardness
looms (see [9]), which gives rise to two types of algorithms:

(a) Exact algorithms. These algorithms provably find a shortest vector, but they are
expensive, with a running time at least exponential in the dimension. Intuitively,
these algorithms perform an exhaustive search of all extremely short lattice vec-
tors, whose number is exponential in the dimension (in the worst case): in fact,
there are lattices for which the number of shortest lattice vectors is already expo-
nential. The best deterministic algorithm is Kannan’s enumeration [10,11], with
super-exponential worst-case complexity, namely nn=.2e/Co.n/ polynomial-time
operations (see [12, 13]), where n denotes the lattice dimension. The best ran-
domized algorithm is the sieve of Ajtai, Kumar, and Sivakumar (AKS) [14,15],
with exponential worst-case complexity of 2O.n/ polynomial-time operations

22 P.Q. Nguyen

(whereO./ can be taken to be 5.9 [15]): this algorithm also requires exponential
space, whereas enumeration requires only negligible space.

(b) Approximation algorithms. The Lenstra–Lenstra–Lovász algorithm (LLL) and
other efficient lattice reduction algorithms known provide only an approxima-
tion of SVP, in the sense that the norm of the nonzero output vector can be upper
bounded using some function of the dimension, either absolutely or relatively to
the minimal norm �1.L/. We will see that all polynomial-time approximation
algorithms known [16–19] can be viewed as (more or less tight) algorithmic ver-
sions of upper bounds on Hermite’s constant. For instance, LLL can be viewed
as an algorithmic version of Hermite’s inequality (2.3): it can be used to find
efficiently x1; : : : ; xn 2 Z satisfying essentially (2.1), which corresponds to
short lattice vectors within Hermite’s inequality. Similarly, the recent block-
wise algorithm of Gama and Nguyen [19] can be viewed as an algorithmic
version of Mordell’s inequality, which itself is a generalization of Hermite’s
inequality (2.3).

In high dimension (say, higher than 150), only approximation algorithms are prac-
tical, but both categories are in fact complementary: all exact algorithms known
first apply an approximation algorithm (typically at least LLL) as a preprocessing,
while all approximation algorithms known call many times an exact algorithm in
low dimension as a subroutine.

In this article, we will survey the main provable algorithms for solving the short-
est vector problem, either exactly or approximately. This is related to Hermite’s
constant as follows:

� The analysis of exact algorithms involves counting the number of lattice points
inside balls, for which good estimates are related to Hermite’s constant.

� All approximation algorithms known are rather designed to find short nonzero
lattice vectors in an absolute sense: the fact that the norm of the output is also
relatively close to the first minimum can be viewed as a by-product. This means
that any proof of correctness of the algorithm will have to include a proof that
the output lattice vector is short in an absolute sense, which gives rise to an
upper bound on Hermite’s constant. In fact, it turns out that all approximation
algorithms known are related (in a more or less tight manner) to a classical upper
bound on Hermite’s constant.

The rest of the article is organized as follows. Section “Background and Lattices”
introduces lattices and their mathematical background. Section “Lattice Reduc-
tion” introduces lattice reduction and the main computational problems. Subsequent
sections present the main lattice algorithms. Section “Two-Dimensional Case”
deals with the two-dimensional case: Lagrange’s algorithm. Section “Hermite’s
Inequality and the Lenstra–Lenstra–Lovász Algorithm” deals with the first efficient
approximation algorithm in high dimension: the LLL algorithm. Section “Solving
Exact SVP” deals with exact algorithms for SVP, which all use the LLL algo-
rithm. Finally, section “Mordell’s Inequality and Blockwise Algorithms” deals with
polynomial-time generalizations of LLL that have a better approximation factor.

2 Hermite’s Constant and Lattice Algorithms 23

Background on Lattices

Notation

We consider R
n with its usual topology of an Euclidean vector space. We use bold

letters to denote vectors, usually in row notation. The Euclidean inner product of
two vectors x D .xi /

n
iD1 and y D .yi /

n
iD1 is denoted by

hx; yi D
nX

iD1

xiyi :

The corresponding Euclidean norm is denoted by

kxk D
q
x2

1 C � � � C x2
n:

Denote by B.x; r/ the open ball of radius r centered at x:

B.x; r/ D fy 2 R
n W kx � yk < rg:

Definition 1. A subsetD of R
n is called discrete when it has no limit point, that is,

for all x 2 D, there exists � > 0 such that B.x; �/ \D D fxg.
As an example, Z

n is discrete (because � D 1=2 clearly works), while Q
n and R

n

are not. The set f1=n W n 2 N
�g is discrete, but the set f0g [f1=n W n 2 N

�g is not.
Any subset of a discrete set is discrete.

For any ring R, we denote by Mn;m.R/ (resp. Mn.R/) the set of n � m (resp.
n � n) matrices with coefficients in R. GLn.R/ denotes the group of invertible
matrices in the ring Mn.R/. For any subset S of R

n, we define the linear span of S ,
denoted by span.S/, as the minimal vector subspace (of R

n) containing S .

Definition 2. Let b1; : : : ;bm be in R
n. The vectors bi ’s are said to be linearly

dependent if there exist x1; : : : ; xm 2 R, which are not all zero and such that

mX

iD1

xi bi D 0:

Otherwise, they are said to be linearly independent.

Definition 3. The Gram determinant of b1; : : : ;bm 2 R
n, denoted by �

.b1; : : : ;bm/, is the determinant of the m �m Gram matrix
�hbi ;bj i

�
1�i;j�m

.

We list basic properties of the Gram determinant:

� The Gram determinant �.b1; : : : ;bm/ is always � 0. It is equal to zero if and
only if the bi ’s are linearly dependent.

24 P.Q. Nguyen

� The Gram determinant is invariant by any permutation of the m vectors, and by
any integral linear transformation of determinant ˙1, such as adding to one of
the vectors a linear combination of the others.

� The Gram determinant has a very important geometric interpretation: when the
bi ’s are linearly independent,

p
�.b1; : : : ;bm/ is the m-dimensional volume

vol.b1; : : : ;bm/ of the parallelepiped fPm
iD1 xi bi W 0 � xi � 1; 1 � i � mg

spanned by the bi ’s.

Denote by vn the volume of the n-dimensional unit ball B.0; 1/. Then

vn D 	n=2

 .1C n=2/ �
�
2e	

n

�n=2
1p
	n

; (2.6)

where
 .x/ D R1
0
tx�1e�t dt .

Lattices

Definition 4. A lattice of R
n is a discrete subgroup of .Rn;C/; that is any subgroup

of .Rn;C/ which has the discreteness property.

Notice that an additive group is discrete if and only if 0 is not a limit point,
which implies that a lattice is any nonempty set L 	 R

n stable by subtraction (in
other words: for all x and y inL, x�y belongs toL), and such thatL\B.0; �/ D f0g
for some � > 0.

With this definition, the first examples of lattices that come to mind are the zero
lattice f0g and the lattice of integers Z

n. Our definition implies that any subgroup of
a lattice is a lattice, and therefore, any subgroup of .Zn;C/ is a lattice. Such lattices
are called integral lattices. As an example, consider two integers a and b 2 Z: the
set aZC bZ of all integral linear combinations of a and b is a subgroup of Z, and
therefore a lattice; it is actually the set gcd.a; b/Z of all multiples of the gcd of a
and b. For another example, consider n integers a1; : : : ; an, together with a modulus
M . Then the set of all .x1; : : : ; xn/ 2 Z

n such that
Pn

iD1 aixi
 0 .mod M/ is a
lattice in Z

n because it is clearly a subgroup of Z
n.

We give a few basic properties of lattices:

Lemma 1. Let L be a lattice in R
n.

1. There exists � > 0 such that for all x 2 L:

L\ B.x; �/ D fxg:

2. L is closed.
3. For all bounded subsets S of R

n, L \ S is finite.
4. L is countable.

2 Hermite’s Constant and Lattice Algorithms 25

Notice that a set that satisfies either property 1 or 3 is necessarily discrete, but an
arbitrary discrete subset of R

n does not necessarily satisfy property 1 nor 3. It is the
group structure of lattices that allows such additional properties.

Bases

Let b1; : : : ;bm be arbitrary vectors in R
n. Denote by L.b1; : : : ;bm/ the set of all

integral linear combinations of the bi ’s:

L.b1; : : : ;bm/ D
(

mX

iD1

ni bi W n1; : : : ; nm 2 Z

)
: (2.7)

This set is a subgroup of R
n, but it is not necessarily discrete. For instance, one

can show that L..1/; .
p
2// is not discrete because

p
2 62 Q. However, the following

elementary result gives sufficient conditions for this set to be discrete:

Theorem 1. The subgroup L.b1; : : : ;bm/ is a lattice in either of the following two
cases:

1. b1; : : : ;bm 2 Q
n.

2. b1; : : : ;bm 2 R
n are linearly independent.

Proof. Case 1 is trivial. Now consider Case 2, and let L D L.b1; : : : ;bm/. It
suffices to show that 0 is not a limit point of L. Consider the parallelepiped P
defined by

P D
(

mX

iD1

xi bi W jxi j < 1
)
:

As the bi ’s are linearly independent, L \ P D f0g. Besides, there exists � > 0

such that B.0; �/ 	 P , which shows that 0 cannot be a limit point of L. ut
Definition 5. WhenL D L.b1; : : : ;bm/ is a lattice, we say thatL is spanned by the
bi ’s, and that the bi ’s are generators. When the bi ’s are further linearly independent,
we say that .b1; : : : ;bm/ is a basis of the lattice L, in which case each lattice vector
decomposes itself uniquely as an integral linear combination of the bi ’s:

8v 2 L; 9Šv1; : : : ; vm 2 Z s.t. v D
mX

iD1

vi bi :

Bases and sets of generators are useful to represent lattices and to perform com-
putations. One will typically represent a lattice on a computer by some lattice basis,
which can itself be represented by a matrix with real coefficients. In practice, one
will usually restrict to integral lattices, so that the underlying matrices are integral
matrices.

26 P.Q. Nguyen

Definition 6. We define the dimension or rank of a lattice L in R
n, denoted by

dim.L/, as the dimension d of its linear span denoted by span.L/. The lattice is
said to be full-rank when d D n: in the remaining, we usually denote the dimension
by n when the lattice is full-rank, and by d otherwise.

The dimension is the maximal number of linearly independent lattice vectors. Any
lattice basis of L must have exactly d elements. There always exist d linearly inde-
pendent lattice vectors; however, such vectors do not necessarily form a basis, as
opposed to the case of vector spaces. But the following theorem shows that one can
always derive a lattice basis from such vectors:

Theorem 2. Let L be a d -dimensional lattice of R
n. Let c1; : : : ; cd 2 L be linearly

independent vectors. There exists a lower triangular matrix .ui;j / 2Md .R/ such
that the vectors b1; : : : ;bd defined as bi D Pi

jD1 ui;j cj are linearly independent
and such that L D L.b1; : : : ;bd /.

This proves the unconditional existence of lattice bases:

Corollary 1. Any lattice of R
n has at least one basis.

Thus, even if sets of the form L.b1; : : : ;bm/ may or may not be lattices, all
lattices can be written as L.b1; : : : ;bm/ for some linearly independent bi ’s. Corol-
lary 1 together with Theorem 1 give an alternative definition of a lattice: a nonempty
subset L of R

n is a lattice if only if there exist linearly independent vectors
b1;b2; : : : ;bd in R

n such that

L D L.b1; : : : ;bd /:

This characterization suggests that lattices are discrete analogues of vector spaces.
The following elementary result shows the relationship between two bases:

Theorem 3. Let .b1; : : : ;bd / be a basis of a lattice L in R
n. Let c1; : : : ; cd be

vectors of L. Then there exists a unique d � d integral matrix U D .ui;j /1�i;j�d 2
Md .Z/ such that ci DPd

jD1 ui;j bj for all 1 � i � d . And .c1; : : : ; cd / is a basis
of L if and only if the matrix U has determinant˙1.

As a result, as soon as the lattice dimension is � 2, there are infinitely many lattice
bases.

Quadratic Forms

Historically, lattices were first studied in the language of positive definite quadratic
forms. Let .b1; : : : ;bd / be a basis of a lattice L in R

n. Then the function

q.x1; : : : ; xd / D k
dX

iD1

xi bik2; (2.8)

defines a positive definite quadratic form over R
d .

2 Hermite’s Constant and Lattice Algorithms 27

Reciprocally, let q be a positive definite quadratic form over R
d . Then Cholesky

factorization shows the existence of linearly independent vectors b1; : : : ;bd of R
d

such that (2.8) holds for all .x1; : : : ; xd / 2 R
d .

Volume and the Gaussian Heuristic

Let .b1; : : : ;bd / and .c1; : : : ; cd / be two bases of a lattice L in R
n. By Theorem 3,

there exists a d�d integral matrixU D .ui;j /1�i;j�d 2Md .Z/ of determinant˙1
such that ci DPd

jD1 ui;j bj for all 1 � i � d . It follows that the Gram determinant
of those two bases are equal:

�.b1; : : : ;bd / D �.c1; : : : ; cd / > 0;

which gives rise to the following definition:

Definition 7. The volume (or determinant) of the lattice L is defined as

vol.L/ D �.b1; : : : ;bd /
1=2;

which is independent of the choice of the basis .b1; : : : ;bd / of the lattice L.

We prefer the name volume to the name determinant because of its geometric inter-
pretation: it corresponds to the d -dimensional volume of the parallelepiped spanned
by any basis. In the mathematical literature, the lattice volume we have just defined
is sometimes alternatively called co-volume, because it is also the volume of the
torus span.L/=L. For full-rank lattices, the volume has the following elementary
properties:

Lemma 2. Let L be a full-rank lattice in R
n. Then:

1. For any basis .b1; : : : ;bn/ of L, vol.L/ D j det.b1; : : : ;bn/j.
2. For any r > 0, denote by sL.r/ the number of x 2 L such that kxk � r . Then

lim
r!1

sL.r/

rnvn

D 1=vol.L/:

The second statement of Lemma 2 says that, as the radius r grows to infinity, the
number of lattice vectors inside the ball (centered at zero) of radius r is asymptoti-
cally equivalent to the ratio between the volume rnvn of the n-dimensional ball of
radius r and the volume of the lattice. This suggests the following heuristic, known
as the Gaussian Heuristic:

Definition 8. Let L be a full-rank lattice in R
n, and C be a measurable subset of

R
n. The Gaussian Heuristic “predicts” that the number of points ofL\C is roughly

vol.C /=vol.L/.

28 P.Q. Nguyen

We stress that this is only a heuristic: there are cases where the heuristic is proved
to hold, but there are also cases where the heuristic is proved to be incorrect.

Given a lattice L, how does one compute the volume of L? If an explicit basis of
L is known, this amounts to computing a determinant: for instance, the volume of
the hypercubic lattice Z

n is clearly equal to one. But if no explicit basis is known,
one can sometimes use full-rank sublattices, as we will see in the next subsection.

Sublattices

Definition 9. Let L be a lattice in R
n. A sublattice of L is a lattice M included in

L: clearly, the sublattices of L are the subgroups of L. If the rank of M is equal to
the rank of L, we say that M is a full-rank sublattice of L.

Lemma 3. Let L be a lattice in R
n. A sublattice M of L is full-rank if and only if

the group index ŒL WM� is finite, in which case we have

vol.M/ D vol.L/ � ŒL WM�:

As an illustration, consider n integers a1; : : : ; an, together with a modulus M .
We have seen in section “Lattices” that the set L of all .x1; : : : ; xn/ 2 Z

n such thatPn
iD1 aixi
 0 .mod M/ is a lattice in Z

n because it is a subgroup of Z
n. But

there seems to be no trivial basis of L. However, note that L 	 Z
n and that the

dimension of L is n because L contains all the vectors of the canonical basis of R
n

multiplied by M . It follows that

vol.L/ D ŒZn W L�:

Furthermore, the definition of L clearly implies that

ŒZn W L� D M= gcd.M; a1; a2; : : : ; an/:

Hence,

vol.L/ D M

gcd.M; a1; a2; : : : ; an/
:

Definition 10. A sublatticeM of L is said to be primitive if there exists a subspace
E of R

n such that M D L \E.

It follows from Theorem 2 that:

Lemma 4. A sublattice M of L is primitive if and only if every basis of M can
be completed to a basis of L, that is, for any basis .b1; : : : ;br / of M , there exist
brC1; : : : ;bd 2 L such that .b1; : : : ;bd / is a basis of L.

2 Hermite’s Constant and Lattice Algorithms 29

Definition 11. Let b1; : : : ;bk 2 L. They are primitive vectors of L if and only if
L.b1; : : : ;bk/ is a primitive sublattice of L.

In particular, any nonzero shortest vector of L is primitive.

Projected Lattices

LetL be a lattice in R
n. The (orthogonal) projection of L over a subspace of R

n is a
subgroup of R

n, but it is not necessarily discrete. However, with suitable choices of
the subspace, one can ensure discreteness, in which case the projection is a lattice:

Lemma 5. Let L be a d -rank lattice in R
n, andM be a r-rank primitive sublattice

of L: 1 � r � d . Let 	M denote the orthogonal projection over the orthogonal
supplement of the linear span of M . Then 	M .L/ is a lattice of R

n, of rank d � r ,
and of volume vol.L/=vol.M/.

Proof. Let .b1; : : : ;br/ be a basis ofM . AsM is primitive sublattice ofL, this basis
can be extended to a basis ofL: there exist brC1; : : : ;bd 2 L such that .b1; : : : ;bd /

is a basis of L. Clearly, the set 	M .L/ is equal to L.	M .brC1/; : : : ; 	M .bd //.
As 	M .brC1/; : : : ; 	M .brC1/ are linearly independent, the subgroupL.	M .brC1/;

: : : ; 	M .bd // is a lattice, and so is 	M .L/. ut
The following corollary will be used many times in lattice reduction:

Corollary 2. Let .b1; : : : ;bd / be a basis of a lattice L in R
n. For 1 � i � d , let 	i

denote the orthogonal projection over the orthogonal supplement of the linear span
of b1; : : : ;bi�1; in particular, 	1 is the identity. Then 	i .L/ is a lattice of R

n, of
rank d � i C 1, and of volume vol.L/=vol.L.b1; : : : ;bi�1//.

We will often use the notation 	i .
It is classical to prove statements by induction on the lattice rank using projected

lattices, such as in the classical proof of Hermite’s inequality: see Theorem 8 of
section “Hermite’s Inequality and the Lenstra–Lenstra–Lovász Algorithm.” More
precisely, for any basis .b1; : : : ;bd / of L, we have dim.	2.L// D dim.L/� 1, and
any nonzero vector v 2 	2.L/ can be lifted into a nonzero vector u 2 L such that
v D 	2.u/ and kuk2 � kvk2 C kb1k2=4. This means that if one can find a short
vector in 	2.L/, then one can also find a reasonably short vector in L.

Duality

Let L be a lattice in R
n. The dual lattice of L is defined as

L	 D fy 2 span.L/ such thathx; yi 2 Z for all x 2 Lg:

30 P.Q. Nguyen

Lemma 6. If L is a d -rank lattice of R
n, then L	 is a d -rank lattice of R

n such
that

vol.L/ � vol.L	/ D 1:
Duality also allows to consider sublattices of lower dimension, which can be used
in proofs by induction, such as the classical proof of Mordell’s inequality (see sec-
tion “Classical Proofs of Mordell’s Inequality”). For instance, ifL is a d -rank lattice
and v is a nonzero vector of L	, then L\H is a .d �1/-rank sublattice ofL, where
H D v? denotes the hyperplane orthogonal to v.

Gram–Schmidt and Triangularization

Definition 12. Let b1; : : : ;bd be linearly independent vectors in R
n. Their Gram–

Schmidt orthogonalization (GSO) is the orthogonal family .b?
1 ; : : : ;b

?
d
/ defined as

follows: b?
1 D b1 and more generally b?

i D 	i .bi / for 1 � i � d , where 	i denotes
(as in Corollary 2) the orthogonal projection over the orthogonal supplement of the
linear span of b1; : : : ;bi�1.

We have the recursive formula

b?
i D bi �

i�1X

jD1

�i;j b?
j ; where �i;j D

hbi ;b?
j i			b?

j

			
2

for all 1 � j < i � d (2.9)

The main reason why the Gram–Schmidt orthogonalization is widely used in lat-
tice reduction is because it allows to triangularize the basis. More precisely, the fam-
ily .b?

1=kb?
1k; : : : ;b?

d
=kb?

d
k/ is an orthonormal basis of R

n. And if we express the
vectors b1; : : : ;bd with respect to the orthonormal basis .b?

1=kb?
1k; : : : ;b?

d
=kb?

d
k/

(rather than the canonical basis), we obtain the following lower-triangular matrix,
with diagonal coefficients kb?

1k; : : : ; kb?
d
k:

0
BBBBBBB@

kb?
1k 0 : : : 0

�2;1kb?
1k kb?

2k
: : :

: : :
: : :

:::
:::

: : :
: : : 0

�d;1kb?
1k : : : �d;d�1kb?

d�1
k kb?

d
k

1
CCCCCCCA

(2.10)

This can be summarized by the matrix equality B D �B?, where B is the
d � n matrix whose rows are b1; : : : ;bd , B? is the d � n matrix whose rows are
b?

1 ; : : : ;b
?
d

, and � is the d � d lower-triangular matrix whose diagonal coefficients
are all equal to 1, and whose off-diagonal coefficients are the �i;j ’s. It follows that

2 Hermite’s Constant and Lattice Algorithms 31

the lattice L spanned by the bi ’s satisfies

vol.L/ D
dY

iD1

		b?
i

		 (2.11)

Notice that the GSO family depends on the order of the vectors. If bi 2 Q
n,

then b?
i 2 Q

n and �i;j 2 Q. The GSO of .b1; : : : ;bd / is .�i;j /1�j <i�d together
with .kb?

i k/1�i�d . Geometrically, kb?
i k is the distance of bi to spanb1; : : : ;bi�1.

The basis triangularization could have been obtained with other factorizations.
For instance, if we had used Iwasa’s decomposition of the row matrix B corre-
sponding to .b1; : : : ;bd /, we would have obtained B D UDO , where U is a
lower-triangular matrix with unit diagonal, D is diagonal, and O is an orthogonal
matrix. In other words, U would be the matrix defined by the �i;j ’s (lower-
triangular with unit diagonal, where the remaining coefficients are the �i;j ’s), D
would be the diagonal matrix defined by the kb?

i k’s, and O would be the row
representation of .b?

1=kb?
1k; : : : ;b?

d
=kb?

d
k/.

Finally, it is worth noting that Gram–Schmidt orthogonalization is related to
duality as follows. For any i 2 f2; : : : ; d g, the vector b?

i =kb?
i k2 is orthogonal to

b1; : : : ;bi�1 and we have hb?
i =kb?

i k2;bi i D 1, which implies that

b?
i =kb?

i k2 2 	j .L.b1; : : : ;bi //
	;8j 2 f1; : : : ; ig:

Lattice Reduction

A fundamental result of linear algebra states that any finite-dimensional vector space
has a basis. We earlier established the analogue result for lattices: any lattice has a
basis. In the same vein, a fundamental result of bilinear algebra states that any finite-
dimensional Euclidean space has an orthonormal basis, that is, a basis consisting
of unit vectors that are pairwise orthogonal. A natural question is to ask whether
lattices also have orthonormal bases, or at least, orthogonal bases. Unfortunately, it
is not difficult to see that even in dimension two, a lattice may not have an orthogonal
basis, and this is in fact a typical situation. Informally, the goal of lattice reduction is
to circumvent this problem: more precisely, the theory of lattice reduction shows that
in any lattice, there is always a basis, which is not that far from being orthogonal.
Defining precisely what is meant exactly by not being far from being orthogonal is
tricky, so for now, let us just say that such a basis should consist of reasonably short
lattice vectors, which implies that geometrically such vectors are not far from being
orthogonal to each other.

Minkowski’s Minima

To explain what is a reduced basis, we need to define what is meant by short lattice
vectors. Let L be a lattice of dimension � 1 in R

n. There exists a nonzero vector
u 2 L. Consider the closed hyperball B of radius kuk centered at zero. By Lemma

32 P.Q. Nguyen

1, L \ B is finite and contains u, so it must have a shortest nonzero vector. The
Euclidean norm of that shortest nonzero vector is called the first minimum of L,
and is denoted by �1.L/ > 0 or kLk. By definition, any nonzero vector v of L
satisfies kvk � �1.L/, and �1.L/ is the minimal distance between two distinct
lattice vectors. And there exists w 2 L such that kwk D �1.L/: any such w is
called a shortest vector of L, and it is not unique as �w would also be a shortest
vector. The kissing number of L is the number of shortest vectors in L: it is upper
bounded by some exponential function of the lattice dimension (see [8]).

We noticed that if w is a shortest vector of L, then so is �w. Thus, one must be
careful when defining the second-to-shortest vector of a lattice. To circumvent this
problem, Minkowski [1] defined the other minima as follows.

Definition 13. Let L be a lattice of R
n. For all 1 � i � dim.L/, the i th minimum

�i .L/ is defined as the minimum of max1�j�i kvj k over all i linearly independent
lattice vectors v1; : : : ; vi 2 L.

Clearly, the minima are increasing: �1.L/ � �2.L/ � � � � � �d .L/. And the
Gram–Schmidt triangularization implies:

Lemma 7. If .b1; : : : ;bd / is a basis of a lattice L, then its GSO satisfies for all
1 � i � d

�i .L/ � min
i�j�d

kb?
j k:

It is not difficult to see that there always exist linearly independent lattice vectors
v1; : : : ; vd reaching simultaneously the minima, that is, kvik D �i .L/ for all i .
However, surprisingly, as soon as dim.L/ � 4, such vectors do not necessarily form
a lattice basis. The canonical example is the four-dimensional lattice L defined as
the set of all .x1; x2; x3; x4/ 2 Z

4 such that
P4

iD1 xi is even. It is not difficult to
see that dim.L/ D 4 and that all the minima of L are equal to

p
2. Furthermore, it

can be checked that the following row vectors form a basis of L:

0

BB@

1 �1 0 0
1 1 0 0

1 0 1 0

1 0 0 1

1

CCA :

The basis proves in particular that vol.L/ D 2. However, the following row
vectors are linearly independent lattice vectors, which also reach all the minima:

0

BB@

1 �1 0 0

1 1 0 0

0 0 1 1

0 0 1 �1

1

CCA :

But they do not form a basis, as their determinant is equal to 4: another reason
is that for all such vectors, the sum of the first two coordinates is even, and that

2 Hermite’s Constant and Lattice Algorithms 33

property also holds for any integral linear combination of those vectors, but clearly
not for all vectors of the lattice L. More precisely, the sublattice spanned by those
four row vectors has index two in the lattice L.

Nevertheless, in the lattice L, there still exists at least one basis that reaches all
the minima simultaneously, and we already gave one such basis. This also holds
for any lattice of dimension � 4, but it is no longer true in dimension � 5, as was
first noticed by Korkine and Zolotarev in the nineteenth century, in the language of
quadratic forms. More precisely, it can easily be checked that the lattice spanned by
the rows of the following matrix

0

BBBBB@

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

1 1 1 1 1

1

CCCCCA

has no basis reaching all the minima (which are all equal to two).

Hermite’s Constant and Minkowski’s Theorems

Now that successive minima have been defined, it is natural to ask how large those
minima can be. Hermite [7] was the first to prove that the quantity �1.L/=vol.L/1=d

could be upper bounded over all d -rank lattices L.

Definition 14. The supremum of �1.L/
2=vol.L/2=d over all d -rank lattices L is

denoted by �d , and called Hermite’s constant of dimension d .

The use of quadratic forms in [7] explains why Hermite’s constant refers to
maxL �1.L/

2=vol.L/2=d and not to maxL �1.L/=vol.L/1=d . It can be noted that
�d could also be equivalently defined as the supremum of �1.L/

2 over all d -rank
lattices L of unit volume.

It is known that �d is reached, that is, for all d � 1, there is a d -rank lattice
L such that �d D �1.L/

2=vol.L/2=d , and any such lattice is called critical. But
finding the exact value of �d is a very difficult problem, which has been central
in Minkowski’s geometry of numbers. The exact value of �d is known only for
1 � d � 8 (see the book [20] for proofs) and very recently also for d D 24

(see [21]): the values are summarized in the following table.

d 2 3 4 5 6 7 8 24
�d 2=

p
3 21=3

p
2 81=5 .64=3/1=6 641=7 2 4

Approximation 1.1547 1.2599 1.4142 1.5157 1.6654 1.8114 2 4

Furthermore, the list of all critical lattices (up to scaling and isometry) is known for
each of those dimensions.

34 P.Q. Nguyen

However, rather tight asymptotical bounds are known for Hermite’s constant.
More precisely, we have

d

2	e
C log.	d/

2	e
C o.1/ � �d � 1:744d

2	e
.1C o.1//:

For more information on the proof of those bounds: see [22, Chap. 2] for the
lower bound (which comes from the Minkowski–Hlawka theorem), and [8, Chap. 9]
for the upper bound. Thus, �d is essentially linear in d . It is known that �d

d
2 Q

(because there is always an integral critical lattice), but it is unknown if .�d /d
1 is
an increasing sequence.

Hermite’s historical upper bound [7] on his constant was exponential in the
dimension:

�d � .4=3/.d�1/=2:

The first linear upper bound on Hermite’s constant is due to Minkowski, who viewed
it as a consequence of his Convex Body Theorem:

Theorem 4 (Minkowski’s Convex Body Theorem). Let L be a full-rank lattice of
R

n. Let C be a measurable subset of R
n, convex, symmetric with respect to 0, and

of measure > 2nvol.L/: Then C contains at least a nonzero point of L.

This theorem is a direct application of the following elementary lemma (see [2]),
which can be viewed as a generalization of the pigeon-hole principle:

Lemma 8 (Blichfeldt). Let L be a full-rank lattice in R
n, and F be a measurable

subset of R
n with measure > vol.L/. Then F contains at least two distinct vectors

whose difference belongs to L.

Indeed, we may consider F D 1
2
C , and the assumption in Theorem 4 implies

that the measure of F is > vol.L/. From Blichfeldt’s lemma, it follows that there
exist x and y in F such that x � y 2 L n f0g. But

x � y D 1

2
.2x � 2y/;

which belongs to C by convexity and symmetry with respect to 0. Hence, x � y 2
C \ .L n f0g/, which completes the proof of Theorem 4.

One notices that the bound on the volumes in Theorem 4 is the best possible, by
considering

C D
(

nX

iD1

xi bi W jxi j < 1
)
;

where the bi ’s form an arbitrary basis of the lattice. Indeed, the measure of this C
is exactly 2nvol.L/, but by definition of C , no nonzero vector of L belongs to C .

In Theorem 4, the condition on the measure of C is a strict inequality, but it is not
difficult to show that the strict inequality can be relaxed to an inequality� 2nvol.L/
if C is further assumed to be compact. By choosing for C a closed hyperball of

2 Hermite’s Constant and Lattice Algorithms 35

sufficiently large radius (so that the volume inequality is satisfied), one obtains the
following corollary:

Corollary 3. Any d -dimensional lattice L of R
n contains a nonzero x such that

kxk � 2
�

vol.L/

vd

� 1
d

;

where vd denotes the volume of the closed unitary hyperball of R
d . In other words,

�d �
�
4

vd

�2=d

; d � 1:

Note that if the Gaussian heuristic (see Definition 8 of section “Volume and the
Gaussian Heuristic”) held for all hyperballs, we would expect �1.L/ to be close to
.vol.L/=vd /

1=d � pd=.2	e/vol.L/1=d by (2.6). This means that the proved upper
bound is only twice as large as the heuristic estimate from the Gaussian heuristic.

Using well-known formulas for vd , one can derive a linear bound on Hermite’s
constant, for instance

8d; �d � 1C d

4
:

Notice that this bound is reached by L D Z
d .

Now that we know how to bound the first minimum, it is natural to ask if a
similar bound can be obtained for the other minima. Unfortunately, one cannot hope
to upper bound separately the other minima, because the successive minima could
be unbalanced. For instance, consider the rectangular two-rank lattice L spanned by
the following row matrix: �

" 0

0 1="

�
;

where " > 0 is small. The volume of L is one, and by definition of L, it is clear
that �1.L/ D " and �2.L/ D 1=" if " � 1. Here, �2.L/ can be arbitrarily large
compared to the lattice volume, while �1.L/ can be arbitrarily small compared to
the upper bound given by Hermite’s constant.

However, it is always possible to upper bound the geometric mean of the first
consecutive minima, as summarized by the following theorem (for an elementary
proof, see [2?]):

Theorem 5 (Minkowski’s Second Theorem). Let L be a d -rank lattice of R
n.

Then for any integer r such that 1 � r � d ,

rY

iD1

�i .L/

!1=r

� p�d vol.L/1=d :

36 P.Q. Nguyen

Rankin’s Constant

In 1953, Rankin [24] introduced the following generalization of Hermite’s constant.
For any n-rank lattice L and 1 � m � n, the Rankin invariant �n;m.L/ is defined as

�n;m.L/ D min
x1; : : : ; xm 2 L

vol.x1; : : : ; xm/ ¤ 0

�
vol.x1; : : : ; xm/

vol.L/m=n

�2

D min
S sublattice of L

dimS D m

�
vol.M/

vol.L/m=n

�2

(2.12)

Using a family of linearly independent lattice vectors simultaneously reaching
all the minima and Theorem 5, one obtains

�n;m.L/ �
�Qm

iD1 �i .L/

vol.L/m=n

�2

� �m
n :

It follows that Rankin’s constant �n;m D max �n;m.L/ over all n-rank lattices
L is well-defined, and we have �n;m � �m

n . This upper bound is not tight: using
HKZ reduction (which we will define later) as in [17, 18], it can be shown that for
1 � m � n=2,

�n;m � O.n/.n�m/	.1=.n�1/C1=.n�2/C���C1=.n�m// (2.13)

Rankin’s constants satisfy the following three relations, which are proved in [20,
24]:

8n 2 N; �n;n D 1; �n;1 D �n (2.14)

8n;m with m < n �n;m D �n;n�m (2.15)

8r 2 ŒmC 1; n � 1�; �n;m � �r;m.�n;r/
m=r (2.16)

The only known values of Rankin’s constants are �4;2 D 3
2

, which is reached
for the D4 lattice, and those corresponding to the nine Hermite constants known. In
the definition of �n;m.L/, the minimum is taken over sets ofm linearly independent
vectors of L, but we may restrict the definition to primitive sets of L or pure sublat-
tices of L, as for any sublattice S of L, there exists a pure sublattice S1 of L with
span.S/ D span.S1/ and vol.S/=vol.S1/ D ŒS W S1�. If vol.S/ is minimal, then
ŒS W S1� D 1 so S D S1 is pure.

Thunder [25] and Bogulavsky [26] proved the following lower bound on Rankin’s
constant, as a generalization of Minkowski–Hlawka’s theorem:

2 Hermite’s Constant and Lattice Algorithms 37

�n;m �

n

Qn
jDn�mC1Z.j /Qm

jD2Z.j /

! 2
n

(2.17)

where Z.j / D �.j /
 . j
2
/=	

j
2 and � is Riemann’s zeta function: �.j / D P1

pD1

p�j . This shows that for 1 � m � n=2,

�n;m � ˝.n/m.n�mC1/=n (2.18)

Hermite–Korkine–Zolotarev (HKZ) Reduction

Hermite [7] introduced the following weak reduction notion in the language of
quadratic forms:

Definition 15. A basis .b1; : : : ;bd / of a lattice is size-reduced if its Gram–Schmidt
orthogonalization satisfies, for all 1 � j < i � d ,

j�i;j j � 1

2
: (2.19)

Geometrically, this means that the projection bi �b?
i of bi over the linear span of

b1; : : : ;bi�1 is inside the parallelepiped P D fPi�1
jD1 xi bi ; jxj j � 1=2g spanned

by b?
1 ; : : : ;b

?
i�1 with coefficients � 1=2 in absolute value, one tries to reduce the

component of bi over the linear span of b1; : : : ;bi�1. Then (2.19) implies for all
1 � i � d :

kb?
i k2 � kbik2 � kb?

i k2 C
1

4

i�1X

jD1

kb?
j k2: (2.20)

Korkine and Zolotarev [27, 28] strengthened Hermite’s size-reduction as follows:

Definition 16. A basis .b1; : : : ;bd / of a lattice is Hermite–Korkine–Zolotarev-
reduced (HKZ-reduced) if it is size-reduced and such that for all 1 � i � d ,
kb?

i k D �1.	i .L//.

Note that b?
i 2 	i .L/ and b?

i ¤ 0, so it is natural to ask that kb?
i k D �1.	i .L//.

Note also that the condition kb?
d
k D �1.	d .L// is necessarily satisfied.

HKZ-reduced bases have two interesting properties. The first is that an HKZ-
reduced basis provides a very good approximation to the successive minima:

Theorem 6. Let .b1; : : : ;bd / be an HKZ-reduced basis of a lattice L, then for all
index i such that 1 � i � d ,

4

i C 3 �
� kbik
�i .L/

�2

� i C 3
4

38 P.Q. Nguyen

The upper bound is easy to prove and can be attributed to Mahler [29]: it suffices
to notice that kb?

i k D �1.	i .L// � �i .L/ (where the right-hand inequality can be
proved by considering a set of linearly independent vectors reaching all the minima
simultaneously), and to use the right-hand inequality of (2.20). The lower bound
is proved in [30]: first, notice that HKZ-reduction implies that for all 1 � j � i ,
kb?

j k � kbik, therefore kbj k2=kbik2 � .jC3/=4 by (2.20). It should be noted that
it is not necessarily true that kbik � �i .L/ because it does not necessarily hold that
kb2k � kb3k � � � � � kbdk. Thus, the gap between an HKZ-reduced basis and the
successive minima of a lattice is at most polynomial, namely less than

p
.i C 3/=4.

The article [30] shows that the bounds of Theorem 6 are not far from being tight in
the worst case.

The second interesting property of HKZ-reduced bases is that they have local
properties. Indeed, if .b1; : : : ;bd / is HKZ-reduced, then .	i .bi /; 	i .biC1/; : : : ;

	i .bj // is HKZ-reduced for all 1 � i � j � d . Thus, by studying low-dimensional
HKZ-reduced bases, one can deduce properties holding for any dimension. For
instance, any two-dimensional HKZ-reduced basis .c1; c2/ satisfies kc1k=kc?

2k �p
4=3, which implies that ay HKZ-reduced basis .b1; : : : ;bd / satisfies kb?

i k=
kb?

iC1k �
p
4=3 for all 1 � i � d . It is by using such reasonings that Korkine

and Zolotarev found better upper bounds on Hermite’s constant than Hermite’s
inequality.

Algorithmic Lattice Problems

In the previous section, we presented lattice reduction from a mathematical point of
view. In this section, we introduce the main algorithmic problems for lattices.

Representation

In practice, one deals only with rational lattices, that is, lattices included in Q
n. In

this case, by a suitable multiplication, one needs only to be able to deal with integral
lattices, those which are included in Z

n. Such lattices are usually represented by
a basis, that is, a matrix with integral coefficients. When we explicitly give such a
matrix, we will adopt a row representation: the row vectors of the matrix will be the
basis vectors. The size of the lattice is measured by the dimensions of the matrix
(the number d of rows, which correspond to the lattice dimension, and the number
n of columns), and the maximal bit-length logB of the matrix coefficients; thus, the
whole matrix can be stored using dn logB bits.

Lattice problems are often relative to norms: here, we will only be concerned
with the Euclidean norm. Before describing hard problems, let us recall two easy
problems that can be solved in deterministic polynomial time:

2 Hermite’s Constant and Lattice Algorithms 39

� Given a generating set of an integral lattice L, find a basis of the lattice L.
� Given a basis of an integral lattice L 	 Z

n and a target vector v 2 Z
n, decide if

v 2 L, and if so, find the decomposition of v with respect to the basis.

The Shortest Vector Problem (SVP)

The most famous lattice problem is the following:

Problem 1 (Shortest Vector Problem (SVP)). Given a basis of a d -rank integral
lattice L, find u 2 L such that kuk D �1.L/.

In its exact form, this problem is known to be NP-hard under randomized reduc-
tions (see the survey [9]), which suggests to relax the problem. There are two
approximation versions of SVP: approx-SVP (ASVP) and Hermite-SVP (HSVP),
which are defined below.

Problem 2 (Approximate Shortest Vector Problem (ASVP)). Given a basis of a
d -rank integral lattice L and an approximation factor f � 1, find a nonzero u 2 L
such that kuk � f �1.L/.

Problem 3 (Hermite Shortest Vector Problem (HSVP) [31]). Given a basis of a
d -rank integral lattice L and an approximation factor f > 0, find a nonzero u 2 L
such that kuk � f vol.L/1=d .

When f D 1, ASVP is exactly SVP. As opposed to SVP and ASVP, it is possible
to easily check a solution to HSVP: indeed, given u, L and f , one can check in
polynomial time whether or not u 2 L and kuk � f vol.L/1=d . By definition of
Hermite’s constant, if one can solve ASVP with an approximation factor f , then
one can solve HSVP with a factor f

p
�d . Reciprocally, it was shown in [32] that if

one has access to an oracle solving HSVP with a factor f , then one can solve ASVP
with a factor f 2 in polynomial time using a number of oracle queries linear in the
dimension d . Hence, solving ASVP with an approximation factor polynomial in the
dimension is equivalent to solving HSP with an approximation factor polynomial in
the dimension.

Hardness results for SVP are surveyed in [9, 33], so let us just briefly summa-
rize. SVP was conjectured NP-hard as early as 1981 [34] (see also [32]). Ajtai
showed NP-hardness under randomized reductions in 1998 [35], but the historical
conjecture with deterministic reductions remains open. The best result so far [12]
suggests that it is unlikely that one can efficiently approximate SVP to within
quasi-polynomial factors. But NP-hardness results have limits: essentially, approx-
imating SVP within a factor

p
d= logd is unlikely to be NP-hard. More precisely,

Aharonov and Regev [37] showed that there exists a constant c such that approxi-
mating SVP with a factor c

p
d is in the l0 intersection NP\coNP, while Goldreich

and Goldwasser [38] showed that each constant c approximating SVP with a factor
c
p
d= logd is in NP\coAM.

40 P.Q. Nguyen

We will present the main algorithms for solving SVP, either exactly or approx-
imately, but we can already summarize the situation. The LLL algorithm [16]
(section “The LLL Algorithm”) solves ASVP with factor .4=3 C "/.d�1/=2, and
HSVP with factor .4=3C "/.d�1/=4, in time polynomial in 1=" and the size of the
lattice basis. This algorithm is used in the best exact-SVP algorithms:

� Kannan’s deterministic algorithm [10] has super-exponential complexity
2O.d log d/ polynomial-time operations (see [12] for a tight analysis of the con-
stant).

� The randomized algorithm of Ajtai et al. [14] has exponential complexity 2O.d/

polynomial-time operations.

The best polynomial-time algorithms known to approximate SVP (better than LLL)
are blockwise algorithms that use such exact-SVP algorithms in low dimension:
indeed, in dimension d , one can use a subroutine an exact-SVP algorithm in dimen-
sion k D f .d/, if the function f .d/ is sufficiently small that the cost of the
subroutine remains polynomial in d . For instance, the super-exponential running-
time 2O.k log k/ of Kannan’s algorithm [10] remains polynomial in d if we select
k D logd= log logd .

With a number of calls to the SVP-oracle in dimension � k, Schnorr [17]
showed one could approximate SVP with a factor .2k/2d=k and HSVP with a fac-
tor .2k/d=k. Gama et al. [18] proved that Schnorr’s analysis [17] was not optimal:
one can raise to the power ln 2 � 0:69 < 1 both approximation factors. Gama
et al. [18] also presented a slightly better variant: it can approximate SVP with a
factor O.k/d=k and HSVP with a factor O.k/d=.2k/, still with a polynomial num-
ber of calls to the SVP-oracle in dimension � k. The best blockwise algorithm
known is Gama–Nguyen’s slide algorithm [19], which approximates SVP with a

factor ..1C"/�d /
.d�k/=.k�1/ and HSVP with a factor

p
.1C "/�d

.d�1/=.k�1/
, with

a polynomial (in 1=" and the size of the lattice basis) number of calls to a SVP-oracle
in dimension� k. When k is fixed, the approximation factors of all these blockwise
algorithms remain exponential in d , like for LLL. But if one takes k D logd and use
the AKS algorithm [14] as a SVP-subroutine, one obtains a randomized polynomial-
time algorithm approximating SVP and HSP with slightly sub-exponential factors:
2O.d log log d= log d/.

The Closest Vector Problem

The closest vector problem can be viewed as a homogeneous problem: one is look-
ing for the radius of the smallest hyperball (centered at zero) intersecting the lattice
nontrivially. One obtains a nonhomogeneous version by considering hyperballs cen-
tered at any point of the space, rather than zero. For any point x of R

n, and a lattice
L of R

n, we will thus denote by dist.x; L/ the minimal distance between x and a
lattice vector of L. The corresponding computational problem is the following:

2 Hermite’s Constant and Lattice Algorithms 41

Problem 4 (Closest Vector Problem (CVP)). Given a basis of a d -rank integer
lattice L 	 Z

n, and a point x 2 Z
n, find y 2 L such that kx � yk D dist.x; L/.

Similarly to SVP/ASVP, one can define the following approximate version:

Problem 5 (Approximate Closest Vector Problem (ACVP)). Given a basis of a
d -rank integer lattice L 	 Z

n, a point x 2 Z
n, and an approximation factor f � 1,

find y 2 L such that kx � yk � f � dist.x; L/.

In this article, we will not further discuss CVP: we only survey SVP algorithms.

The Two-Dimensional Case

Lagrange’s Reduction and Hermite’s Constant in Dimension Two

Lagrange [5] formalized for the first time a reduction notion for rank-two lattices,
in the language of quadratic forms. This reduction notion is so natural that all other
reduction notions usually match in dimension two.

Definition 17. Let L be a two-rank lattice of R
n. A basis .b1;b2/ of L is said

to be Lagrange-reduced (or simply L-reduced) if and only if kb1k � kb2k and
jhb1;b2ij � kb1k2=2.

Geometrically, this means that b2 is inside the disc of radius kb1k centered at the
origin, and that the angle .b1;b2/ modulo 	 is between 	=3 and 2	=3. Note that
the second condition jhb1;b2ij � kb1k2=2 is equivalent to size-reduction.

The definition implies that it is trivial to check whether a given basis is L-reduced
or not. The following result shows that this reduction notion is optimal in a natural
sense:

Theorem 7. Let .b1;b2/ be a basis of a two-rank latticeL of R
n. The basis .b1;b2/

is Lagrange-reduced if and only if kb1k D �1.L/ and kb2k D �2.L/.

Assuming this result, it is clear that there always exist L-reduced bases. And by
definition, the first vector of any such basis satisfies

kb1k � .4=3/1=4vol.L/1=2:

In particular, one can deduce the inequality �2 �
p
4=3. But one also knows

that �2 �
p
4=3, by considering the hexagonal lattice spanned by .b1;b2/ such that

kb1k D kb2k and hb1;b2i D kb1k2=2, which is the equality case of Lagrange’s
reduction.

In other words, one can arguably summarize Lagrange’s reduction by a single
equality

�2 D
p
4=3:

42 P.Q. Nguyen

Lagrange’s Algorithm

Lagrange’s algorithm [5] solves the two-rank lattice reduction problem: it finds a
basis achieving the first two minima, in a running time similar to Euclid’s algorithm.
It is often incorrectly attributed to Gauss [6]. Lagrange’s algorithm can be viewed
as a two-dimensional generalization of the centered variant of Euclid’s algorithm
(Algorithm 1).

Input: .n;m/ 2 Z
2.

Output: gcd.n;m/.
1:
2: if jnj � jmj then
3: swap n and m.
4: end if
5:
6: whilem ¤ 0 do
7: r � n� qm where q D

n
m

�
.

8: n � m
9: m � r

10: end while
11: Output jnj.

Algorithm 1: Euclid’s centered algorithm

This algorithm corresponds to a reduction in dimension one. Indeed, the gcd is
simply the first minimum of the lattice nZ C mZ spanned by n and m. The only
difference with the classical Euclidean algorithm is in Step 7, where one takes for q
the closest integer to n

m
, rather than its integral part. This amounts to selecting the

integer q to minimize jn � qmj, which guarantees jn � qmj � jmj
2
: It is easy to

show that Euclid’s centered algorithm has quadratic complexity without fast integer
arithmetic.

Lagrange’s algorithm (Algorithm 2) is a natural generalization in dimension two.

Input: a basis .u; v/ of a two-rank lattice L.
Output: an L-reduced basis of L, reaching �1.L/ and �2.L/.
1: if kuk < kvk then
2: swap u and v
3: end if
4: repeat

5: r � u� qv where q D
j

hu;vi

kvk
2

m
.

6: u � v
7: v � r
8: until kuk � kvk
9: Output .u; v/.

Algorithm 2: Lagrange’s reduction algorithm

2 Hermite’s Constant and Lattice Algorithms 43

The analogy is clear: Step 5 selects the integer q such that r D u� qv is as short
as possible. This is precisely the case when the orthogonal projection of r over v is
as short as possible, and this projection can have length less than� kvk=2. This can

be viewed geometrically, and an elementary computation shows that q D
j hu;vi
kvk2

m

works.
One can show that Lagrange’s algorithm has quadratic complexity (in the maxi-

mal bit-length of the coefficients of the input basis) without fast integer arithmetic,
see [39]. For further generalizations of Lagrange’s algorithm, see [39, 40].

Gram–Schmidt Orthogonalization and Size-Reduction

If b1; : : : ;bd 2 Z
n have norms bounded by B , the computation of all Gram–

Schmidt coefficients (i.e., of the rational numbers �i;j and kb?
i k2) can be done in

time O.d 5 log2 B/ without fast arithmetic.
From the triangular representation of the basis, it is very easy to see how to

size-reduce a basis (See Algorithm 3): the vectors bi ’s are modified, but not their
projections b?

i .

Input: A basis .b1; : : : ; bd / of a lattice L.
Output: A size-reduced basis .b1; : : : ; bd /.
1: Compute all the Gram–Schmidt coefficients �i;j .
2: for i D 2 to d do
3: for j D i � 1 downto 1 do
4: bi � bi � d�i;j cbj
5: for k D 1 to j do
6: �i;k � �i;k � d�i;j c�j;k
7: end for
8: end for
9: end for

Algorithm 3: A size-reduction algorithm

Hermite’s Inequality and the Lenstra–Lenstra–Lovász
Algorithm

All the algorithms of this section can be viewed as algorithmic versions of the
following elementary result:

Theorem 8 (Hermite’s inequality [7]). For all integer d � 2,

�d � �d�1
2 : (2.21)

44 P.Q. Nguyen

Proof. We give a proof by induction, slightly different from the historical proof of
Hermite. As the inequality is trivial for d D 2, assume that it holds for d � 1.
Consider a shortest nonzero vector b1 of a d -rank lattice L. Denote by L0 D 	2.L/

the .d � 1/-rank lattice obtained by projecting L over b?1 . Its volume is vol.L0/ D
vol.L/=kb1k. Let b02 be a shortest nonzero vector of L0. The induction assumption
ensures that

kb02k � .4=3/.d�2/=4vol.L0/1=.d�1/:

We can lift b02 (by size-reduction) into a nonzero vector b2 2 L such that kb2k2 �
kb02k2 C kb1k2=4. As b1 cannot be longer than b2, we deduce

kb1k �
p
4=3kb02k � .4=3/d=4vol.L0/1=.d�1/;

which can be rewritten as

kb1k � .4=3/.d�1/=4vol.L/1=d ;

which completes the proof. In retrospect, one notices that with the inequality kb1k �p
4=3kb?

2k, one has in fact proved the inequality

�d � .4�d�1=3/
.d�1/=d :

By composing all these inequalities, one indeed obtains Hermite’s inequality

�d � .4=3/.d�1/=dC.d�2/=dC���C1=d D .4=3/.d�1/=2:

The historical proof given by Hermite in his first letter [7] to Jacobi also pro-
ceeded by induction, but in a slightly different way. Hermite considered an arbitrary
primitive vector b1 of the lattice L. If b1 satisfies Hermite’s inequality, that is, if
kb1k � .4=3/.d�1/=4vol.L/1=d , there is nothing to prove. Otherwise, one applies
the induction assumption to the projected lattice L0 D 	2.L/: one knows that
there exists a primitive vector b?

2 2 L0 satisfying Hermite’s inequality: kb?
2k �

.4=3/.d�2/=4vol.L0/1=.d�1/. One can lift this vector b?
2 2 L0 into a primitive vector

b2 2 L such that kb2k2 � kb?
2k2 C kb1k2=4. As b1 does not satisfy Hermite’s

inequality, one notices that kb2k < kb1k: one can therefore replace b1 by b2 and
start again. But this process cannot go on indefinitely: indeed, there are only finitely
many vectors ofL that have norm� kb1k. Hence, there must exist a nonzero vector
b1 2 L satisfying Hermite’s inequality. ut

The inequality (2.21) suggests to use two-dimensional reduction to find in any
d -rank lattice a nonzero vector of norm less than

q
�d�1

2 vol.L/1=d D .4=3/.d�1/=4vol.L/1=d :

This is somewhat the underlying idea behind all the algorithms of this section:
Hermite’s algorithms and the LLL algorithm. In fact, the proof of (2.21) that we gave

2 Hermite’s Constant and Lattice Algorithms 45

provides such an algorithm, implicitly. This algorithm makes sure that the basis is
size-reduced and that all the local bases .	i .bi /; 	i .biC1// D .b?

i ;b
?
iC1C�iC1;i b?

i /

are L-reduced: these local bases correspond to the 2 � 2 matrices on the diagonal,
when we represent the basis in triangular form. In other words, the reduced bases
obtained are size-reduced and such that for all 1 � i � d :

kb?
iC1k2 �

3

4
kb?

i k2; (2.22)

that is, the decrease of the norms of the Gram–Schmidt vectors (which are the diag-
onal coefficients in the triangular representation) is at most geometric, which is
sometimes called Siegel’s condition [2]. It is then easy to see that the first vector
of such a basis satisfies

kb1k � .4=3/.d�1/=4vol.L/1=d ;

as announced. But it is unknown if this algorithm and those of Hermite are poly-
nomial time: the LLL algorithm guarantees a polynomial running-time by relaxing
inequalities (2.22).

Hermite’s Algorithms

We now describe the first reduction algorithms in arbitrary dimension, described
by Hermite in his famous letters [7] to Jacobi, in the language of quadratic forms.
They are very close to the algorithm underlying the proof of (2.21), but they do
not explicitly rely on Lagrange’s algorithm, although they try to generalize it. They
were historically presented in a recursive way, but they can easily be made iterative,
just like LLL.

Input: A basis .b1; : : : ; bd / of a d -rank lattice L.
Output:
1: if d D 1 then
2: output b1
3: end if
4: Apply recursively the algorithm to the basis .	2.b2/; : : : ; 	2.bd // of the projected lattice
	2.L/.

5: Lift the vectors .	2.b2/; : : : ; 	2.bd // into b2; : : : ; bd 2 L in such a way that they are size-
reduced with respect to b1.

6: if b1 satisfies Hermite’s inequality, that is kb1k � .4=3/.d�1/=4vol.L/1=d then
7: Output .b1; : : : ; bd /
8: end if
9: Swap b1 and b2 since kb2k < kb1k, and restart from the beginning.

Algorithm 4: A simplified version of Hermite’s first reduction algorithm, described
in the first letter to Jacobi [7]

46 P.Q. Nguyen

Hermite’s first algorithm was described in the first letter [7] to Jacobi:
Algorithm 4 is a simplified version of this algorithm; Hermite’s historical algo-
rithm actually uses duality, which we ignore for simplicity. It is easy to see that
Algorithm 4 terminates, and that the output basis .b1; : : : ;bd / satisfies the following
reduction notion (which we call H1):

� The basis is size-reduced.
� For all i , b?

i verifies Hermite’s inequality in the projected lattice 	i .L/:

kb?
i k � .4=3/.d�i/=4vol.	i .L//

1=.d�iC1/

Notice that this reduction notion is rather weak: for instance, the orthogonal-
ity defect of a H1-reduced basis can be arbitrarily large, as soon as the dimension
is greater than 3, as shown by the following triangular basis (where " > 0 tends
to 0): 0

@
1 0 0

1=2 " 0

1=2 "=2 1="

1

A :

By the way, Hermite notices himself that his first algorithm does not match with
Lagrange’s algorithm in dimension two. It seems to be one of the reasons why he
presents a second algorithm (Algorithm 5) in his second letter [7] to Jacobi.

Input: a basis .b1; : : : ; bd / of a lattice L.
Output: a size-reduced basis .b1; : : : ; bd / such that for all i , kb?i k=kb?iC1k � �2 D p4=3. In

particular, each b?i satisfies Hermite’s inequality in the projected lattice 	i .L/.
1: if d D 1 then
2: output b1
3: end if
4: By making swaps if necessary, ensure that kb1k � kbik for all i
 2.
5: Apply recursively the algorithm to the basis .	2.b2/; : : : ; 	2.bd // of the projected lattice
	2.L/.

6: Lift the vectors .	2.b2/; : : : ; 	2.bd // to b2; : : : ; bd 2 L in such a way that they are size-
reduced with respect to b1.

7: if kb1k � kbik for all i
 2 then
8: output .b1; : : : ; bd /
9: else

10: restart from the beginning.
11: end if

Algorithm 5: Hermite’s second reduction algorithm, described in his second letter
to Jacobi [7]

It is easy to see that this algorithm terminates and that the output basis
.b1; : : : ;bd / satisfies the following reduction notion (which we call H2):

� The basis is size-reduced.
� For all i , b?

i has minimal norm among all the vectors of the basis .	i .bi /; 	i

.biC1/ : : : ; 	i .bd // of the projected lattice 	i .L/, that is kb?
i k � k	i .bj /k for

all 1 � i � j � d .

2 Hermite’s Constant and Lattice Algorithms 47

Notice that an H2-reduced basis necessarily satisfies (2.22), that is, for all i

kb?
i k=kb?

iC1k � �2 D
p
4=3:

This implies that its orthogonality defect is bounded:

dY

iD1

kb?
i k � .4=3/d.d�1/=4vol.L.b1; : : : ;bd //:

And this also shows that an H2-reduced basis is necessarily H1-reduced.
Hermite’s second algorithm is very close to the so-called deep insertion variant

of LLL by Schnorr and Euchner [41]: both algorithms want to achieve the same
reduction notion.

The LLL Algorithm

Surprisingly, it is unknown if Hermite’s algorithms are polynomial time for vary-
ing dimension. It is also the case for Lenstra’s algorithm [42], which is a relaxed
variant of Hermite’s second algorithm, where the inequalities kb?

i k � k	i .bj /k
are replaced by ckb?

i k � k	i .bj /k, where c is a constant such that 1=4 <

c < 1. However, Lenstra proved that his algorithm was polynomial time for
any fixed dimension, which was sufficient for his celebrated result on integer
programming [42].

It is Lenstra et al. [16] who invented in 1982 the first polynomial-time reduction
algorithm outputting basis nearly as reduced as Hermite’s. This algorithm, known
as LLL or L3, is essentially a relaxed variant of Hermite’s second algorithm: László
Lovász discovered that a crucial modification guaranteed a polynomial running-
time; more precisely, compared to the H2 reduction notion, one replaces for each i
all the inequalities kb?

i k � k	i .bj /k by a single inequality ckb?
i k � k	i .biC1/k,

where c is a constant such that 1=4 < c < 1. The final algorithm was published
in [16].

Let ı be a real in Œ1
4
; 1�. A numbered basis .b1; : : : ;bd / of L is said to be LLL-

reduced with factor ı if it is size-reduced, and if it satisfies Lovász’ condition: for
all 1 < i � d , 		b?

iC1 C �iC1;i b?
i

		2 � ıkb?
i k2:

Let us explain this mysterious condition. As Gram–Schmidt orthogonalization
depends on the order of the vectors, its vectors change if bi and biC1 are swapped;
in fact, only b?

i and b?
iC1 can possibly change. And the new b?

i is simply b?
iC1 C

�iC1;i b?
i ; therefore, Lovász’ condition means that by swapping bi and biC1, the

norm of b?
i does not decrease too much, where the loss is quantified by ı: one

cannot gain much on kb?
i k by swap. In other words,

48 P.Q. Nguyen

ıkb?
i k2 � k	i .biC1/k2;

which illustrates the link with the H2 reduction notion. The most natural value for
the constant ı is therefore ı D 1 (in dimension 2, this matches with Lagrange’s
reduction), but then, it is unknown if such a reduced basis can be computed in poly-
nomial time. The LLL-reduction was initially1 presented in [16] with the factor
ı D 3

4
, so that in the literature, LLL-reduction usually means LLL-reduction with

the factor ı D 3
4

.
Lovász’ condition can also be rewritten equivalently: for all i ,

kb?
iC1k2 �

�
ı � �2

iC1;i

� kb?
i k2;

which is a relaxation of (2.22). Thus, LLL reduction guarantees that each b?
iC1 can-

not be much shorter than b?
i : the decrease is at most geometric. This proves the

following result:

Theorem 9. Assume that 1
4
< ı � 1, and let ˛ D 1=.ı � 1

4
/. Let .b1; : : : ;bd / be

an LLL-reduced basis with factor ı of a lattice L in R
n. Then

1. kb1k � ˛.d�1/=4.volL/1=d .
2. For all i 2 f1; : : : ; d g, kbik � ˛.d�1/=2�i .L/:

3. kb1k � � � � � kbdk � ˛d.d�1/=4 detL:

Thus, an LLL-reduced basis provides an approximation of the lattice reduction
problem. By taking ı very close to 1, one falls back on Hermite’s inequality in
an approximate way, where the constant 4=3 is replaced by 4=3C ".

The other interest of this reduction notion is that there exists a simple algo-
rithm to compute such reduced bases, and which is rather close to Hermite’s second
algorithm (Algorithm 5). In its simplest form, the LLL algorithm corresponds to
Algorithm 6.

Input: a basis .b1; : : : ; bd / of a lattice L.
Output: the basis .b1; : : : ; bd / is LLL-reduced with factor ı.
1: Size-reduce .b1; : : : ; bd / (using Algorithm 3).
2: if there exists an index j which does not satisfy Lovász’ condition then
3: swap bj and bjC1 , then return to Step 1.
4: end if

Algorithm 6: The basic LLL algorithm

Compared to this simple version, the so-called iterative versions of the LLL algo-
rithm consider instead the smallest index j not satisfying Lovász’ condition: in
contrast, Hermite’s second algorithm considered the greatest index j refuting H2.

1 This simplifies the exposition.

2 Hermite’s Constant and Lattice Algorithms 49

Theorem 10. Assume that 1
4
< ı < 1. If each bi 2 Q

n, Algorithm 6 computes an
LLL-reduced basis in time polynomial in the maximal bit-length of the coefficients
of the bi ’s, the lattice rank d , and the space dimension n.

Let us sketch a proof of this fundamental result, assuming to simplify that bi 2 Z
n.

First of all, it is clear that if the algorithm terminates, then the output basis is LLL-
reduced with factor ı. To see why the algorithm terminates, let us analyze each
swap (Step 3). When bj and bjC1 are swapped, only b?

j and b?
jC1 can be modified

among all the Gram–Schmidt vectors. Let us therefore denote by c?
j and c?

jC1 the
new Gram–Schmidt vectors after swapping. As the product of all the Gram–Schmidt
vector norms is equal to vol.L/, we have

kc?
j k � kc?

jC1k D kb?
j k � kb?

jC1k:

As Lovász’ condition is not satisfied, kc?
j k2 < ıkb?

j k2: Hence,

kc?
j k2.d�jC1/kc?

jC1k2.d�j / < ıkb?
j k2.d�jC1/kb?

jC1k2.d�j /:

This suggests to consider the following quantity:

D D kb?
1k2dkb?

2k2.d�1/ � � � � � kb?
dk2:

At each swap, D decreases by a factor ı < 1. Notice that D can be decomposed as
a product of d Gram determinants Di D �.b1; : : : ;bi / for i going through 1 to d .
Therefore,D is in fact an integer, as bi 2 Z

n. It follows that the number of swaps is
at most logarithmic in the initial value of D, which can be upper bounded by B2d ,
where B is the maximum of the initial norms kbik. To bound the complexity of the
algorithm, one also needs to upper bound the size of the rational coefficients �i;j

and kb?
i k2 during the reduction. A careful analysis based on the Di ’s shows that all

the �i;j ’s always have polynomial size (see [16, 32, 43, 44]).
By coupling Theorem 9 with Theorem 10, we can summarize the LLL result as

follows:

Corollary 4. There exists an algorithm which, given as input a basis of a
d -dimensional integer lattice L 	 Z

n and a reduction factor " > 0, outputs a
basis .b1; : : : ;bd / of L, in time polynomial in 1=" and the size of the basis, such
that

kb1k=vol.L/1=d �
�
.1C "/

p
4=3

�.d�1/=2

;

kbik=�i .L/ �
�
.1C "/

p
4=3

�d�1

; 1 � i � d;

dY

iD1

kbik
!
=vol.L/ �

�
.1C "/p4=3

�d.d�1/=2

:

50 P.Q. Nguyen

Solving Exact SVP

In this section, we survey the two main algorithms for finding the shortest vector in a
lattice: enumeration [10,45,46] and sieving [14], which both use the LLL algorithm
in their first stage. In section “Mordell’s Inequality and Blockwise Algorithms”,
we use such algorithms in low dimension as subroutines to obtain polynomial-time
algorithms with better approximation factors than LLL.

Enumeration Algorithms

The simplest method consists in enumerating the coordinates of a shortest lattice
vector, and this idea goes back to the early 1980s with Pohst [45], Kannan [10], and
Fincke-Pohst [46]. More precisely, by using LLL-reduced bases or other reduced
bases not far from being orthogonal, it is possible to exhaustive search the projec-
tions of any shortest vector in the projected lattices 	i .L/.

Consider a basis .b1; : : : ;bd / of a lattice L. Let x 2 L be a (nonzero) shortest
vector of L: x D x1b1 C � � � C xd bd , where the xi ’s are integers. We have

x D
dX

iD1

xi bi D
dX

iD1

xi

0

@b?
i C

i�1X

jD1

�i;j b?
j

1

A D
dX

jD1

0

@xj C
dX

iDjC1

�i;jxi

1

A b?
j :

It follows that the projections of x, together with their norms, are given by

	k.x/ D
dX

jDk

0

@xj C
dX

iDjC1

�i;jxi

1

A b?
j ; 1 � k � d; (2.23)

k	k.x/k2 D
dX

jDk

0

@xj C
dX

iDjC1

�i;jxi

1

A
2

kb?
j k2; 1 � k � d: (2.24)

Now, let B be an upper bound on �1.L/ D kxk, we take B D p�d vol.L/1=d ,
but we could also have taken B D kb1k; if ever one knows a better upper bound
B , which might be the case for special lattices, then this will decrease the running
time of enumeration. Using (2.24), the d inequalities k	k.x/k � B enable us to
exhaustive search of the coordinates xd ; xd�1; : : : ; x1 of x:

dX

jDk

0

@xj C
dX

iDjC1

�i;jxi

1

A
2

kb?
j k2 � B2; 1 � k � d;

2 Hermite’s Constant and Lattice Algorithms 51

which can be rewritten as

ˇ̌
ˇ̌
ˇ̌xk C

dX

iDkC1

�i;jxi

ˇ̌
ˇ̌
ˇ̌ �

r
B2 �Pd

jDkC1

�
xj CPd

iDjC1�i;jxi

�2 kb?
j k2

kb?
k
k ;

1 � k � d: (2.25)

We start with (2.25), with k D d , that is, jxd j � B=kb?
d
k. This allows to exhaus-

tive search of the integer xd . Now assume that the projection 	kC1.x/ has been
guessed for some k: the integers xkC1; : : : ; xd are known. Then (2.25) enables to
compute an interval Ik such that xk 2 Ik , and therefore to exhaustive search xk .
For a full description of an exact algorithm implementing this exhaustive search, we
refer to [41].

Rigorous Upper Bounds

We start with an elementary result:

Lemma 9. Let .b1; : : : ;bd / be an LLL-reduced basis and B D kb1k. Then for
each .xkC1; : : : ; xd / 2 Z

d�k , the number of xk 2 Z satisfying (2.25) is at most

b2kb1k=kb?
kkc C 1 D 2O.k/:

This implies that if .b1; : : : ;bd / is an LLL-reduced basis and B D kb1k, then
the cost of enumeration is, up to a polynomial-time multiplicative factor,

dY

kD1

2O.k/ D 2O.d 2/:

Kannan [10–12] showed how to decrease 2O.d 2/ to 2O.d log d/ using a stronger
reduction notion than LLL, close to HKZ-reduction. More precisely, Kannan used
quasi-HKZ-reduction, which means that .	2.b2/; : : : ; 	2.bd // is HKZ-reduced,
and that kb1k is not much longer than kb?

2k. And Kannan [10] noticed that by apply-
ing recursively the enumeration algorithm, one could transform an LLL-reduced
basis into a quasi-HKZ-reduced basis in 2O.d log d/ polynomial-time operations.
Kannan [10]’s recursive enumeration algorithm has therefore a total complexity
of 2O.d log d/ polynomial-time operations. Recently, Hanrot and Stehlé [12, 13]
showed that the worst-case complexity of Kannan’s algorithm is dd=.2e/Co.d/

polynomial-time operations.
Unfortunately, the practical interest of Kannan’s algorithm is unclear. More pre-

cisely, Nguyen and Vidick [15] provides experimental evidence that for dimensions
of practical interest, the 2O.d log d/ polynomial-time operations of Kannan [10] are
much slower than the 2O.d 2/ polynomial-time operations of basic enumeration

52 P.Q. Nguyen

from an LLL-reduced basis. This can be explained as follows: in both cases, the
polynomial-time operations and the O./ constants are not the same.

Heuristic Estimates

The previous analysis gave only upper bounds. To provide an intuition on the exact
cost of enumeration, we now give a heuristic analysis. The cost of enumeration
is
Pd

kD1Nk up to a multiplicative polynomial-time factor, where Nk is the num-
ber of .xk ; : : : ; xd / 2 Z

d�kC1 satisfying (2.25). Thus, Nk is exactly the number
of vectors in 	k.L/ of norm � B . By the Gaussian heuristic (see Definition 8 of
section “Volume and the Gaussian Heuristic”), we hope that Nk � Hk defined by

Hk D Bd�kC1vd�kC1

vol.	k.L//
D Bd�kC1vd�kC1vol.b1; : : : ;bk�1/

vol.L/
(2.26)

Let us try to estimate (2.26) for typical reduced bases. It has been reported
(see [31,47]) that for most practical reduction algorithms in high dimension, except
when the lattice has a very special structure, applying the reduction algorithm
to a sufficiently randomized input basis gives rise to a reduced basis such that
kb?

i k=kb?
iC1k � q, where q depends on the algorithm:

� for LLL, q � 1:022 � 1:04 in high dimension.
� for BKZ-20 [41], q � 1:025.

It follows that kb1k � q.d�1/=2vol.L/1=d and

vol.b1; : : : ;bk�1/

vol.L/
� kb1kk�1

q1C2C���Ck�2vol.L/
D kb1kk�1

q.k�2/.k�1/=2vol.L/
:

Then (2.26) becomes

Hk � Bd�kC1vd�kC1kb1kk�1

q.k�2/.k�1/=2vol.L/
: (2.27)

The complexity will depend on the choice of the upper bound B:

� If one takes B D kb1k, then (2.27) becomes

Hk � kb1kd vd�kC1

q.k�2/.k�1/=2vol.L/
D qd.d�1/=2vd�kC1

q.k�2/.k�1/=2

D qŒd.d�1/�.k�2/.k�1/�=2vd�kC1

Thus,
Hk � qd 2=2Co.d 2/:

2 Hermite’s Constant and Lattice Algorithms 53

� If one takes B D p�d vol.L/1=d , then
p
�d D �.

p
d/ implies that (2.27)

becomes

Hk � kb1kk�12O.d/

q.k�2/.k�1/=2vol.L/.k�1/=d
D q.k�1/.d�1/=22O.d/

q.k�2/.k�1/=2

D q.k�1/.d�kC1/=22O.d/;

where the right-hand term is always less than qd 2=8�1=22O.d/, because
.k � 1/.d � k C 1/ is maximized for k D d=2. Hence,

Hk � qd 2=82O.d/:

In both cases, maxk Hk is super-exponential in d , but the exponentiation base
(q1=2 or q1=8) is very close to 1.

A Heuristic Lower Bound

One might wonder if Kannan’s worst-case complexity of dd=.2e/Co.d/ polynomial-
time operations can be improved using a different reduction notion. By definition of
Rankin’s constant, we have:

Hk � Bd�kC1vd�kC1

p
�d;k�1.L/vol.L/.k�1/=d

vol.L/
D Bd�kC1vd�kC1

p
�d;k�1.L/

vol.L/d�kC1
:

If we take B D p�d vol.L/1=d , we obtain

Hk � p�d
d�kC1vd�kC1

q
�d;k�1.L/:

Now recall that
p
�d D �.

p
d/; which implies that

Hk � vd�kC1�.
p
d/d�kC1

q
�d;k�1.L/:

An elementary (but tedious) computation shows that as d grows to infinity, for all
1 � k � d ,

vd�kC1�.
p
d/d�kC1 D 2�.d/:

Hence:
Hk � 2�.d/

q
�d;k�1.L/:

But using (2.18) with m D bn=2e, we know that

d
max
kD2

�d;k�1 � ˝.d/d=4Co.d/:

54 P.Q. Nguyen

Therefore,
Hbd=2e � 2�.d/dd=8Co.d/:

This suggests that, independently of the quality of the reduced basis, the com-
plexity of enumeration will be at least dd=8 polynomial-time operations for many
lattices.

Sieve Algorithms

In 2001, Ajtai et al. [14] discovered a randomized algorithm, which is asymptot-
ically much better than Kannan’s deterministic super-exponential algorithm [10].
Indeed, the AKS algorithm outputs with overwhelming probability a shortest vec-
tor of a lattice L in 2O.d/ polynomial-time operations. Running time apart, the
algorithm is interesting because it is based on totally different principle: sieving.

We just give the main idea, making significant simplifications: for more details,
see [14] or [15], which presents the most practical variant known of AKS. This
heuristic variant [15] has complexity .4=3/d polynomial-time operations, but the
output is not guaranteed to be a shortest vector.

Consider a ball S centered at the origin and of radius r such that �1.L/� r �O
.�1.L//. Then jL \ S j D 2O.d/. If we could exhaustive search L \ S , we could
output the shortest vector within 2O.d/ polynomial-time operations. Enumeration
algorithms do perform an exhaustive search of L\S , but to do so, they also require
to go through all the points of [1�k�d	k.L/ \ S . Because

Pd
kD1 j	k.L/ \ S j D

2O.d log d/ in the worst case for HKZ-reduced bases, and the worst-case complexity
of Kannan’s algorithm is 2O.d log d/, rather than 2O.d/, up to some polynomial-time
factor .

The main idea of sieve algorithms is to do a randomized sampling of L \ S ,
without going through the much larger set [1�k�d	k.L/ \ S . If sampling was
such that each point of L \ S was output with probability roughly jL \ S j�1,
and if N � jL \ S j, then one of N samples would be a shortest vector with
probability close to 1. Unfortunately, it is unclear if this property is satisfied by the
AKS sampling. However, it can be shown that there exists w 2 L\S such that both
w and w C s, where s is a shortest vector, can be output with nonzero probability.
Thus, by computing the shortest difference between theN sampled vectors inL\S ,
where N � jL\ S j, one obtains a shortest vector of L with probability close to 1.

However, sampling directly in a ball centered at 0 and of radius r such that
�1.L/ � r � O.�1.L// is difficult. But, starting with an LLL-reduced basis, it
is easy to sample with a radius 2O.d/�1.L/. To decrease the factor 2O.d/ to O.1/,
one uses a sieve, which is the most expensive stage of the algorithm.

Sieving iteratively shortens the vectors of S by a geometric factor of at least �
(such that 0 < � < 1) at each iteration; thus, a linear number of sieve iterations
suffices to decrease the multiplicative factor 2O.d/ to O.1/. At each iteration, each
vector output by the sieve is a subtraction of two input vectors. In other words, the

2 Hermite’s Constant and Lattice Algorithms 55

sieve will select a subset C of the initial set S , and the output set will be obtained
by subtracting a vector of C to each vector of S n C . By volume arguments, one
can choose a set C , which is never too large, so that the number of samples does not
decrease too much. Intuitively, one uses the fact that for any 0 < � < 1, a ball of
radius R can be recovered by at most an exponential number of balls of radius �R.

We just described the principles of the AKS algorithm [14], but the proved
algorithm is a bit more complex, and its analysis is nontrivial.

HKZ Reduction

It is easy to see that any exact SVP algorithm allows to find an HKZ-reduced basis,
within the same asymptotic running time, by calling the algorithm a linear number
of times. For instance, one can do as follows:

� Call the SVP algorithm on L to obtain a shortest vector b1 of the lattice L.
� Extend b1 into a basis .b1; c2; : : : ; cd / of L and compute a basis of the projected

lattice 	2.L/.
� Call the SVP algorithm on 	2.L/ to obtain a shortest vector b02 of the projected

lattice 	2.L/.
� Lift b02 into a vector b2 of L by adding an appropriate multiple of b1 so that
.b1;b2/ is size-reduced.

� Extend .b1;b2/ into a basis .b1; ;b2; c3; : : : ; cd / of L and use this basis to
compute a basis of the projected lattice 	3.L/. And so on.

Mordell’s Inequality and Blockwise Algorithms

We saw in section “Hermite’s Inequality and the Lenstra–Lenstra–Lovász
Algorithm” the LLL algorithm [16] (see Corollary 4): given a basis of an d -
dimensional integer lattice L 	 Z

n and a reduction factor " > 0, LLL outputs
(in time polynomial in 1=" and the size of the basis) a reduced basis .b1; : : : ;bd /

whose first vector is provably short, namely,

kb1k=vol.L/1=d �
�
.1C "/p4=3

�.d�1/=2

; (2.28)

kb1k=�1.L/ �
�
.1C "/p4=3

�d�1

: (2.29)

We noted that the first inequality (2.28) was reminiscent of Hermite’s inequality [7]
on �d :

�d �
�p

4=3
�d�1 D �d�1

2 ; (Hermite’s inequality) (2.30)

56 P.Q. Nguyen

which means that L has a nonzero vector of norm � .
p
4=3/.d�1/=2vol.L/1=d .

Thus, we viewed LLL as an algorithmic version of Hermite’s inequality (2.21), and
this connection was strengthened by the fact that LLL is a variant of an algorithm
introduced by Hermite [7] to prove (2.21), based on Lagrange’s two-dimensional
algorithm [5].

The second inequality (2.29) means that LLL approximates the shortest vector
problem (SVP) within an exponential factor. On the other hand, we saw in sec-
tion “Solving Exact SVP” the best algorithms for exact-SVP, which are exponential:
Kannan’s deterministic algorithm [10] requires 2O.d log d/ polynomial-time oper-
ations, and the AKS probabilistic algorithm [14] requires 2O.d/ polynomial-time
operations.

A natural question is whether the upper bounds of (2.28) or (2.29) can be
decreased in polynomial time. The only polynomial-time algorithms achieving bet-
ter inequalities than (2.28) or (2.29) are blockwise generalizations of LLL: Schnorr’s
algorithm [17], the transference algorithm by Gama et al. [18], and Gama–Nguyen’s
slide algorithm [19], the latter one offering better theoretical guarantees than the first
two. Blockwise algorithms rely on a SVP-subroutine [10, 14] (see section “Solv-
ing Exact SVP”) computing shortest vectors in smaller lattices of dimension � k,
where k is an additional input parameter referred to as the blocksize. Note that
the exponential cost of the SVP-subroutine can be kept polynomial in the size of
the basis if the blocksize k is sufficiently small: namely, k D O.logd/ (resp.
k D O.logd= log logd/) suffices with AKS [14] (respectively [10]) as the SVP
subroutine. As the cost of the SVP-subroutine is exponential in the blocksize, it is
important to use the SVP-subroutine as efficiently as possible for a given output
quality.

In this section, we will describe Gama–Nguyen’s slide algorithm [19], which
improves [17, 18], and is simpler in several respects. For instance, it might be
argued that the inequalities achieved by [17, 18] are not very natural: more pre-
cisely, in Schnorr’s algorithm [17], k must be even, d must be a multiple of k=2,
and the upper bound of (2.29) is replaced by

p
2�k=2˛k=2..1C"/ˇk=2/

d=k�1, where
˛k=2 and ˇk=2 are technical constants bounded in [13, 17, 18]; and in the GHKN

algorithm [18], the upper bound of (2.28) is replaced by � .dCk�1/=.4.k�1//

k�1
..1 C

"/�k/
k.d�kC1/=.4.k�1/2/, while the upper bound of (2.29) is replaced by the square

of the previous expression. The new algorithm [19] is a blockwise algorithm
achieving better and more “natural” upper bounds, corresponding to the follow-
ing classical generalization of Hermite’s inequality (2.21), known as Mordell’s
inequality [20, 48]:

Theorem 11 (Mordell’s Inequality [48]). For all integers d and k such that 2 �
k � d :

�d � � .d�1/=.k�1/

k
(2.31)

This implies that any d -rank lattice L has a nonzero vector of norm:

2 Hermite’s Constant and Lattice Algorithms 57

� p�k
.d�1/=.k�1/vol.L/1=d :

By analogy with the LLL case, Mordell’s inequality (2.31) suggests that there might
exist a blockwise reduction algorithm calling polynomially many times a SVP-
subroutine in dimension � k, and which outputs a basis whose first vector b1 2 L
would satisfy

kb1k=vol.L/1=d �
p
.1C "/�k

.d�1/=.k�1/
(2.32)

Such an algorithm would be a polynomial-time version of Mordell’s inequality,
just as LLL is a polynomial-time version of Hermite’s inequality. And an old result
of Lovász [32] shows that by calling d times such an algorithm, we would also
obtain a nonzero lattice vector b1 2 L satisfying

kb1k=�1.L/ � ..1C "/�k/
.d�1/=.k�1/ (2.33)

Note that (2.28) and (2.29) are exactly the k D 2 case of (2.32) and (2.33).
Unfortunately, the classical proof [20] of Mordell’s inequality (2.31) does not give
such an algorithm. And the blockwise algorithms [17, 18] turn out to be loose
algorithmic versions of Mordell’s inequality: for any k, the best upper bounds
known on kb1k for [17, 18] are worse than (2.32) and (2.33). For instance, the
best upper bound known on kb1k=�1.L/ for Schnorr’s algorithm is essentially�
.1C "/.k=2/2 ln 2

�d=k�1
.

Slide reduction [19] is an algorithmic version of Mordell’s inequality in the fol-
lowing sense: given a basis of an d -dimensional integer lattice L 	 Z

n, a blocksize
k dividing d , a reduction factor " > 0, and a SVP-subroutine computing shortest
vectors in any lattice of dimension� k, slide reduction outputs (in time polynomial
in the size of the basis and 1=") a basis whose first vector b1 satisfies (2.32) and the
following inequality:

kb1k=�1.L/ � ..1C "/�k/
.d�k/=.k�1/ ; (2.34)

and the number of calls to the SVP-subroutine is polynomial in the size of the basis
and 1=". Surprisingly, (2.34) is slightly better than the speculated inequality (2.33),
by a multiplicative factor close to �k . Hence, slide reduction is theoretically better
than Schnorr’s algorithm [17] and Gama et al.’s transference algorithm [18] for any
fixed k, but does not improve the asymptotical sub-exponential approximation factor
when k D O.logd/.

Like all known proofs of Mordell’s inequality, slide reduction is based on dual-
ity. Furthermore, it was proved in [19] that in the worst case, (2.32) and (2.34)
are essentially tight: namely, there exist slide reduced bases such that these upper
bounds become lower bounds if we replace �k by a slightly smaller linear function
of k, namely �k=2 or even .1 � "0/k=.2	e/ for all "0 > 0. Ajtai proved [49] an
analogue result for Schnorr’s algorithm [17], without effective constants.

58 P.Q. Nguyen

Classical Proofs of Mordell’s Inequality

We give here the classical argument showing Mordell’s inequality (2.31), such as the
one given in [20, Theorem 2.3.1]: this argument can actually be found earlier than
Mordell’s article [48], for instance when Korkine and Zolotarev [28] determined
the value of �4 by showing first that �4 � �

3=2
3 , and also somewhat implicitly in

Hermite’s first letter [7].
We first notice that it suffices to show the inequality for k D d � 1: indeed,

if (2.31) holds for k D d � 1, then by applying recursively the inequality, we
obtain (2.31) for all k. In fact, Mordell’s inequality is equivalent to showing that the
sequence .�1=.d�1/

d
/d
2 decreases.

LetL be a d -rank lattice. Let x be a shortest nonzero vector of the dual lattice L	
and letH be the hyperplane x?. Denote byM the .d �1/-rank lattice L\H . Then
vol.M/ D vol.L/kxk and kxk � p�d vol.L	/1=d D p�d vol.L/�1=d ; therefore,

vol.M/ � p�d vol.L/1�1=d :

In particular,

�1.M/ � p�d�1

�p
�d vol.L/1�1=d

�1=.d�1/ D p�d�1

p
�d

1=.d�1/vol.L/1=d :

Furthermore, we have �1.L/ � �1.M/. Hence, by definition of �d ,

p
�d � p�d�1

p
�d

1=.d�1/
:

The proof of (2.31) is now over, since we can rewrite the previous inequality as

�d � � .d�1/=.d�2/

d�1
:

This classical proof of Mordell’s inequality cannot be directly translated into a recur-
sive algorithm: indeed, it considers shortest vectors in the .d � 1/-rank lattice M ,
and also in the d -rank lattice L	. In the next subsection, we slightly modify the
argument so that only .d � 1/-rank lattices are considered, which naturally gives
rise to algorithms.

Mordell’s Inequality by Reduction

We introduce the following reduction notion, which we dub Mordell’s reduction
because it is inspired by Mordell’s inequality or rather its proof:

Definition 18. Let d � 2. A basis .b1; : : : ;bd / of a lattice L is Mordell-reduced
with factor " � 0 if and only if the following two conditions hold:

2 Hermite’s Constant and Lattice Algorithms 59

kb1k D �1.L.b1; : : : ;bd�1// (2.35)

and

1=kb?
dk � .1C "/�1.	2.L/

	/; (2.36)

where 	2.L/ denotes the orthogonal projection of L over the hyperplane b?1 , and
b?

d
denotes as usual the component of bd which is orthogonal to the hyperplane

spanned by b1; : : : ;bd�1.

The inequality (2.36) is motivated by the fact that b?
d
=kb?

d
k2 2 	2.L/

	 (which we
previously mentioned at the end of section “Gram–Schmidt and Triangularization”
giving a link between duality and Gram–Schmidt orthogonalization), because the
vector is orthogonal with b1; : : : ;bd�1, and its dot product with bd is equal to 1.

Note that there always exist Mordell-reduced bases for all " � 0. Indeed, con-
sider an HKZ-reduced basis .b1; : : : ;bd / of L. Then (2.35) holds. Next, consider a
shortest vector c in 	2.L/

	 and modify b2; : : : ;bd in such a way that b?
d
=kb?

d
k D c

and .b1; : : : ;bd / remains a basis of L: then both (2.36) and (2.35) hold.
Mordell’s reduction has the following properties:

Lemma 10. Let .b1; : : : ;bd / be a Mordell-reduced basis of L with factor " � 0

and d � 3. Then

1. Primal inequality:

kb1k � p�d�1
.d�1/=.d�2/

d�1Y

iD2

kb?
i k
!1=.d�2/

: (2.37)

2. Dual inequality:

d�1Y

iD2

kb?
i k
!1=.d�2/

� �.1C "/p�d�1

�.d�1/=.d�2/ kb?
dk: (2.38)

3. Primal–dual inequality:

kb?
1k=kb?

dk � ..1C "/�d�1/
.d�1/=.d�2/: (2.39)

4. Relaxed Mordell’s inequality:

kb1k �
�
.1C "/1=dp�d�1

�.d�1/=.d�2/

vol.L/1=d : (2.40)

Proof. Equation (2.37) follows from kb1k D �1.L.b1; : : : ;bd // and the definition
of �d . Indeed, we have

60 P.Q. Nguyen

kb1k � p�d�1

d�1Y

iD1

kb?
i k
!1=.d�1/

:

Therefore,

kb1kd�1 � p�d�1
d�1

d�1Y

iD1

kb?
i k;

which can be rewritten as (2.37). Similarly, 1=kb?
d
k � .1C "/�1.	2.L/

	/ implies
that

1=kb?
dk � .1C "/

p
�d�1

dY

iD2

1=kb?
i k
!1=.d�1/

I

therefore,
dY

iD2

kb?
i k �

�
.1C "/p�d�1=kb?

dk
�d�1

;

which implies (2.38). And (2.39) follows from multiplying (2.37) and (2.38).
Furthermore, we have

vol.L/ D
dY

iD1

kb?
i k

D kb?
dk � kb?

1k �
d�1Y

iD2

kb?
i k

�
�Qd�1

iD2 kb?
i k
�1=.d�2/

..1C "/p�d�1/.d�1/=.d�2/
� kb?

1k �
d�1Y

iD2

kb?
i k by (2.38)

D kb?
1k

..1C "/p�d�1/.d�1/=.d�2/
�

d�1Y

iD2

kb?
i k
!1C1=.d�2/

� kb?
1k

..1C "/p�d�1/.d�1/=.d�2/
�

kb?
1kp

�d�1
.d�1/=.d�2/

!.d�2/C1

by (2.37)

D kb?
1kd

.1C "/.d�1/=.d�2/
p
�d�1

.1C.d�2/C1/.d�1/=.d�2/

D kb?
1kd

.1C "/.d�1/=.d�2/
p
�d�1

d.d�1/=.d�2/
;

which proves (2.40). ut
Theorem 12. Let k � 2. Let .b1; : : : ;b2k/ be a basis of a lattice L such that
.b1; : : : ;bkC1/ is Mordell-reduced and b?

kC1
is a shortest vector in the projected

2 Hermite’s Constant and Lattice Algorithms 61

lattice 	kC1.L/. Then

Qk
iD1 kb?

i kQ2k
iDkC1 kb?

i k
� ..1C "/�k/

k2=.k�1/ : (2.41)

Proof. As b?
kC1

is a shortest vector of the projected lattice 	kC1.L/, we can apply
(2.37) to obtain

kb?
kC1k �

p
�k

k=.k�1/

0

@
2kY

iDkC2

kb?
i k
1

A
1=.k�1/

I

therefore, we can lower bound the denominator of (2.41) as

2kY

iDkC1

kb?
i k � kb?

kC1k �
 kb?

kC1
k

p
�k

k=.k�1/

!k�1

D kb?
kC1kk=

p
�k

k
: (2.42)

On the other hand, .b1; : : : ;bkC1/ is Mordell-reduced, so (2.38) implies that

kY

iD2

kb?
i k �

�
.1C "/p�k

�k kb?
kC1kk�1;

and (2.39) implies that

kb?
1k � ..1C "/�k/

k=.k�1/ � kb?
kC1k:

By multiplying the previous two inequalities, we can upper bound the numerator of
(2.41) as

kY

iD1

kb?
ik � kb?

kC1kk � ..1C "/�k/
k=.k�1/ � �.1C "/p�k

�k
: (2.43)

Hence, (2.43) and (2.42) imply that

Qk
iD1 kb?

i kQ2k
iDkC1 kb?

i k
� ..1C "/�k/

k=.k�1/ � �.1C "/p�k

�k �p�k
k

D ..1C "/�k/
kCk=.k�1/

D ..1C "/�k/
k2=.k�1/ ;

which proves (2.41). ut

62 P.Q. Nguyen

We later show (and it is not difficult to see) that there exist bases satisfying the
assumptions of Theorem 12 for any " � 0: by taking " D 0, this proves that for all
k � 2

�2k;k � �k2=.k�1/

k
:

Blockwise Reduction

For any basis B D Œb1; : : : ; bd �, we use the notation BŒi;j � for the pro-
jected block Œ	i .bi /; : : : ; 	i .bj /�, where 	i is the orthogonal projection over
span.b1; : : : ;bi�1/

?. When looking at the lower-triangular representation of B ,
BŒi;j � corresponds to the (lower-triangular) submatrix of the lower-triangular matrix
within row i to row j . Note that BŒi;j � always represents a linearly independent
family of j � i C 1 vectors, whose first vector is b?

i . For example, BŒi;i � D Œb?
i �

and BŒ1;i � D Œb1; : : : ;bi � for all i 2 Œ1; d �. If B has integer coefficients, then BŒi;j �

has rational coefficients if i > 1 and integer coefficients if i D 1. As an important
particular case, if T is a lower triangular matrix (such as the � matrix of the Gram–
Schmidt orthogonalization), then TŒi;j � is simply the inner triangular matrix within
the indices Œi; j �.

In the LLL algorithm, vectors are considered two by two. At each loop iteration,
the two-dimensional lattice Li D Œ	i .bi /; 	i .biC1/� is partially reduced (through a
swap) to decrease kb?

i k by at least some geometric factor. When all such lattices are

almost reduced, every ratio kb?
i k=kb?

iC1k is roughly less than �2 D
q

4
3

.

In blockwise generalizations of LLL, we select an integer k � 2 dividing d ,
called the blocksize. Then, the vectors b?

i are “replaced” by k-dimensional blocks
Si D BŒik�kC1;ik�, where 1 � i � d

k
. The analogue of the two-dimensional

Li in LLL are the 2k-dimensional large blocks Li D BŒik�kC1;ikCk�, where
1 � i � d

k
� 1. The link between the small blocks S1; : : : ; Sd=k and the large

blocks L1; : : : ; Ld=k�1 is that Si consists of the first k vectors of Li , while
SiC1 is the projection of the last k vectors of Li over span.Si /

?. As a result,
vol.Li / D vol.Si / � vol.SiC1/. By analogy with LLL, the blockwise algorithm
will perform operations on each large block Li so that vol.Si /=vol.SiC1/ can be
upper bounded.

Gama and Nguyen [19] introduced the following blockwise version of Mordell’s
reduction (in fact, the reduction in [19] is a bit stronger, but the difference is minor
and not relevant):

Definition 19. Let d � 2 and k � 2 dividing d . A basis .b1; : : : ;bd / of a lattice
L is block-Mordell-reduced with factor " � 0 and blocksize k if and only if it is
size-reduced and the following two conditions hold:

� For each i 2 f1; : : : ; d=k � 1g, the block BŒik�kC1;ikC1� is Mordell-reduced.
� We have, kb?

d�kC1
k D �1.L.BŒd�kC1;d�//.

This is equivalent to asking that the basis is size-reduced and the following two
conditions hold:

2 Hermite’s Constant and Lattice Algorithms 63

1. Primal conditions: for each j 2 f1; : : : ; d g such that j
 1 .mod k/,

kb?
j k D �1.L.BŒj;jCk�1�//: (2.44)

Note that BŒj;jCk�1� is one of the small blocks Si , namely S1C.j�1/=k .
2. Dual conditions: for each j 2 f1; : : : ; d � kg such that j
 1 .mod k/,

1=kb?
jCkk � .1C "/�1.L.BŒjC1;jCk�/

	/: (2.45)

Note that BŒjC1;jCk� is not one of the small blocks Si , because there is a shift of
index: the block starts at index j C 1 rather than j .

Let us explain the intuition behind block-Mordell reduction. Conditions (2.44)
and (2.45) imply that each vector b?

j such that j 2 fk; : : : ; d g and j
 1 .mod k/
is neither too large, nor too short:

� Not too large because kb?
j k D �1.L.BŒj;jCk�1�//;

� Not too short because 1=kb?
j k � .1C "/�1.L.BŒj�kC1;j �/

	/.
These conditions are inspired by the fact that b?

j is connected to two natural k-rank
lattices:

� b?
j belongs to the projected lattice L.BŒj;jCk�1�/: it is in fact the first vector of
BŒj;jCk�1�.

� b?
j =kb?

j k2 belongs to the dual-projected lattice L.BŒj�kC1;j �/
	: see the end of

section “Gram–Schmidt and Triangularization” for links between duality and
Gram–Schmidt orthogonalization.

We now give elementary properties of block-Mordell-reduced bases, which
follow from Mordell reduction:

Lemma 11. Let .b1; : : : ;bd / be a block-Mordell-reduced basis of a lattice L with
factor " � 0 and blocksize k � 2 dividing d . Then,

1. Primal inequality: for each j 2 f1; : : : ; d g such that j
 1 .mod k/;

kb?
j k �

p
�k

k=.k�1/

0

@
jCk�1Y

iDjC1

kb?
i k
1

A
1=.k�1/

: (2.46)

2. Dual inequality: for each j 2 f1; : : : ; d � kg such that j
 1 .mod k/;

0

@
jCk�1Y

iDjC1

kb?
i k
1

A
1=.k�1/

� �.1C "/p�k

�k=.k�1/ kb?
jCkk: (2.47)

3. Primal-dual inequality: for each j 2 f1; : : : ; d � kg such that j
 1 .mod k/;

kb?
j k=kb?

jCkk � ..1C "/�k/
k=.k�1/: (2.48)

64 P.Q. Nguyen

4. Half-volume inequality: for each j 2 f1; : : : ; d � kg such that j
 1 .mod k/;

QjCk�1
iDj kb?

i k
QjC2k�1

iDjCk
kb?

i k
� ..1C "/�k/

k2=.k�1/ : (2.49)

Proof. Equation (2.46) follows from (2.37), (2.47) follows from (2.38), (2.48) fol-
lows from (2.39), and (2.49) follows from (2.41). ut
Theorem 13. Let .b1; : : : ;bd / be a block-Mordell-reduced basis of a lattice L with
factor " � 0 and blocksize k � 2 dividing d . Then,

kb1k=vol.L/1=d � p�k
.d�1/=.k�1/ �p1C ".d�k/=.k�1/

: (2.50)

kb1k=�1.L/ � ..1C "/�k/
.d�k/=.k�1/ ; (2.51)

Proof. We have,

vol.L/ D
d=kY

iD1

vol.Si /;

where, by (2.49), for each i 2 f1; : : : ; d=k � 1g:

vol.Si /=vol.SiC1/ � ..1C "/�k/
k2=.k�1/ :

This implies that, similar to LLL,

vol.S1/ � ..1C "/�k/
k2=.k�1/	.d=k�1/=2 vol.L/1=.d=k/:

And (2.44) implies that kb?
1k D �1.L.BŒ1;k�// D �1.S1/; therefore,

kb?
1k �

p
�kvol.S1/

1=k

� p�k ..1C "/�k/
k=.k�1/	.d=k�1/=2 vol.L/1=d

D p�k
1C.d�k/=.k�1/

.1C "/.d�k/=.2.k�1//vol.L/1=d

D p�k
.d�1/=.k�1/

.1C "/.d�k/=.2.k�1//vol.L/1=d ;

which implies (2.50). Now, consider a shortest vector u of L. Then kuk D �1.L/

and u can be written as u D Pm
iD1 ˛i bi , where each ˛i 2 Z and ˛m ¤ 0. If

we let q D b.m � 1/=kc, then 	qkC1.u/ is a nonzero vector of L.BŒqkC1;qkCk�/.
But by definition of block-Mordell reduction, b?

qkC1
is a shortest vector of

L.BŒqkC1;qkCk�/; therefore,

kb?
qkC1k � k	qkC1.u/k � kuk D �1.L/;

2 Hermite’s Constant and Lattice Algorithms 65

which implies that
kb1k=�1.L/ � kb1k=kb?

qkC1k:
However, note that

kb1k
kb?

qkC1
k D

q�1Y

iD0

kb?
ikC1
k

kb?
.iC1/kC1

k ;

which, by (2.48), is

�
�
..1C "/�k/

k=.k�1/
�q D ..1C "/�k/

qk=.k�1/;

where qk � d � k. Hence,

kb1k=�1.L/ � ..1C "/�k/
.d�k/=.k�1/ ;

which proves (2.51). ut

The Slide Algorithm

Gama and Nguyen [19] presented a polynomial-time algorithm to block-Mordell-
reduce a basis, using an SVP-oracle in dimension � k: Algorithm 7 is a simplified
version, to make exposition easier. By an SVP-oracle, [19] means any algorithm
which, given as input the Gram matrix of a basis .b1; : : : ;bk/ of an integer latticeL,
outputs .u1; : : : ; uk/ 2 Z

k such that kPk
iD1 ui bik D �1.L/.

Input: a basis .b1; : : : ; bd / of a lattice L, together with a reduction factor "
 0 and a blocksize
k
 2 dividing d .

Output: the basis .b1; : : : ; bd / is block-Mordell-reduced with factor " and blocksize k
 2.
1: LLL-reduce .b1; : : : ; bd / using Algorithm 6.
2: if there exists j 2 f1; : : : ; dg such that j � 1 .mod k/ and j does not satisfy (2.44) then
3: Use an SVP-oracle in dimension � k to locally HKZ-reduce the block BŒj;jCk�1� //, which

implies that (2.44) holds; then return to Step 1. Basis vectors outside the block BŒj;jCk�1�//

are not modified.
4: end if
5: if there exists j 2 f1; : : : ; d � kg such that j � 1 .mod k/ and j does not satisfy (2.45)

then
6: Use an SVP-oracle in dimension � k to reduce the block BŒjC1;jCk� in such a way that

1=kb?jCkk D �1.L.BŒjC1;jCk� /
�/, which implies that (2.45) holds; then return to Step 1.

Basis vectors outside the block BŒjC1;jCk� are not modified.
7: end if

Algorithm 7: The basic slide algorithm [19]

Tests in Steps 2 and 5 are performed using an SVP-oracle in dimension k. We
will not describe the local reductions performed in Steps 3 and 6: they are natural

66 P.Q. Nguyen

and are presented in [19]. Their cost is a linear number of calls to an SVP-oracle in
dimension � k, together with polynomial-time operations, like an HKZ-reduction
of a k-dimensional basis.

What is clear is that if the slide algorithm of Fig. 7 terminates, then the final basis
is block-Mordell-reduced with factor " and blocksize k. What is less clear is why the
algorithm terminates, and what is its complexity. By analogy with the complexity
analysis of LLL, one considers the following integral potential:

D0 D
d=kY

iD1

vol.L.BŒ1;ik�//
2 2 Z

C:

ThenD can be rewritten as

D0 D
d=kY

iD1

iY

jD1

vol.Sj /
2 D

d=kY

jD1

vol.Sj /
2.d=kC1�j /; (2.52)

which is the blockwise analogue of D D kb?
1k2dkb?

2k2.d�1/ � � � � � kb?
d
k2, which

was used for analyzing LLL. Clearly, logD0 is initially polynomial in the size of the
basis.

We use D0 to show that the number of times that the slide algorithm
(Algorithm 7) goes through Step 1 is polynomially bounded, just as D was used
to show that number of swaps in LLL was polynomially bounded. Let us look at the
operations of Algorithm 7, which could possibly modify the integerD0: it turns out
that only Steps 1 and 6 can modify D0, because Step 3 only modifies one block Si

(for some i), but the volume of this block cannot change, as the volume of the whole
lattice remains the same. We discuss Steps 1 and 6 separately:

� Step 1 is an LLL reduction, which performs only size-reductions and swaps.
Size-reductions do not modify any of the b?

i , and therefore cannot modify D0.
And we note that swaps of vectors bi�1 and bi can modify D0 only if i
 1

.mod k/. When this is the case, i D 1 C k` for some integer ` � 1, and we
see that the last vector of the block S`�1 is the projection of bi�1, while the first
vector of the block S` is the projection of bi . This means that in (2.52) of D0,
only vol.S`�1/ and vol.S`/may change. On the other hand, vol.S`�1/� vol.S`/

remains the same because vol.L/ D Qd=k
jD1 vol.Sj / cannot change. But if LLL

swapped bi�1 and bi , this means that Lovász’ condition failed for .i � 1; i/,
which implies that kb?

i�1k will decrease strictly (in fact, by some multiplicative
factor < 1): in this case, vol.S`�1/ will decrease, and therefore D0. Hence, only
two situations can occur:

Case 1: Step 1 never swaps vectors bi�1 and bi such that i
 1 .mod k/, in which
case D0 does not change. Here, the swaps are always within a block S`,
never between two consecutive blocks S`�1 and S`.

2 Hermite’s Constant and Lattice Algorithms 67

Case 2: Step 1 swaps at least once a pair of vectors bi�1 and bi such that i
 1

.mod k/, in which case D0 decreases by some multiplicative factor < 1

depending on ". This means that this situation occurs at most polynomially
many times.

� Step 6 modifies the block BŒjC1;jCk� so that 1=kb?
jCk
k D �1.L.BŒjC1;jCk�/

	/,
which implies (2.45). As j
 1 .mod k/, we may write j D 1 C k` for
some integer ` � 0. We see that in (2.52) of D0, only vol.S`C1/ and vol.S`C2/

change. On the other hand, vol.S`C1/ � vol.S`C2/ remains the same because
vol.L/ D Qd=k

jD1 vol.Sj / cannot change. Before Step 6, (2.45) did not hold,
which means that 1=kb?

jCk
k > .1C"/�1.L.BŒjC1;jCk�/

	/. But after Step 6, we
have 1=kb?

jCk
k D �1.L.BŒjC1;jCk�/

	/, which implies that 1=kb?
jCk
k decreases

by a multiplicative factor � 1=.1C "/ < 1. As b?
jCk

is the first vector of S`C2,
this means that vol.S`C2/ increases by a multiplicative factor� 1C", and there-
fore vol.S`C1/ decreases by a multiplicative factor � 1=.1C "/ < 1. Hence,D0
also decreases by a multiplicative factor � 1=.1C "/2 < 1. Thus, the number of
times Step 6 is performed is at most polynomial in 1=" and the size of the basis.

We showed that the steps of the slide algorithm (Algorithm 7) either preserve or
decrease the integer D0 by a mulplicative factor < 1 depending on ". As D0 � 1

and logD0 is initially polynomial in the size of the basis, this means that number of
steps for which there is a strict decrease is at most polynomial in 1=" and the size of
the basis. On the other hand, it is not difficult to see that the number of consecutive
steps for which D0 is preserved is also polynomially bounded: for instance, once
Steps 6 are all performed, then all the blocks Si are HKZ-reduced, which implies
that during Step 1, Case 1 cannot occur.

We have seen the main argument why the slide algorithm is polynomial: the
number of steps is polynomial. Like in LLL, it would remain to check that all
the numbers remain polynomially bounded, which is done in [19]. We only have
sketched a proof of the following result:

Theorem 14 ([19]). There exists an algorithm which, given as input a basis of a
d -dimensional integer lattice L 	 Z

n, a reduction factor " > 0, a blocksize k � 2
dividing d , and access to an SVP-oracle in dimension� k, outputs a block-Mordell-
reduced basis of L with factor " and blocksize k, such that

1. The number of calls to the SVP-oracle is polynomial in the size of the input basis
and 1=".

2. The size of the coefficients given as input to the SVP-oracle is polynomial in the
size of the input basis.

3. Apart from the calls to the SVP-oracle, the algorithm only performs arithmetic
operations on rational numbers of size polynomial in the size of the input basis,
and the number of arithmetic operations is polynomial in 1=" and the size of the
basis.

Acknowledgements We thank Nicolas Gama and Damien Stehlé for helpful comments.

68 P.Q. Nguyen

References

1. H. Minkowski. Geometrie der Zahlen. Teubner, Leipzig, 1896
2. C. L. Siegel. Lectures on the Geometry of Numbers. Springer, 1989
3. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1987
4. J. Cassels. An Introduction to the Geometry of Numbers. Springer, 1997
5. L. Lagrange. Recherches d’arithmétique. Nouv. Mém. Acad., 1773
6. C. Gauss. Disquisitiones Arithmeticæ. Leipzig, 1801
7. C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie

des nombres, deuxième lettre. J. Reine Angew. Math., 40:279–290, 1850. Also available in the
first volume of Hermite’s complete works, published by Gauthier-Villars

8. J. Conway and N. Sloane. Sphere Packings, Lattices and Groups. Springer, 1998. Third edition
9. S. Khot. Inapproximability results for computational problems on lattices. Springer, 2009. In

this book
10. R. Kannan. Improved algorithms for integer programming and related lattice problems. In

Proc. of 15th STOC, pages 193–206. ACM, 1983
11. R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,

12(3):415–440, 1987
12. G. Hanrot and D. Stehlé. Improved analysis of Kannan’s shortest lattice vector algorithm. In

Advances in Cryptology – Proc. CRYPTO 2007, volume 4622 of Lecture Notes in Computer
Science, pages 170–186. Springer, 2007

13. G. Hanrot and D. Stehlé. Worst-case Hermite-Korkine-Zolotarev reduced lattice bases. CoRR,
abs/0801.3331, 2008

14. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In Proc. 33rd STOC, pages 601–610. ACM, 2001

15. P. Q. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical. J.
of Mathematical Cryptology, 2(2):181–207, 2008

16. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Ann., 261:513–534, 1982

17. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theor. Comput.
Sci., 53:201–224, 1987

18. N. Gama, N. Howgrave-Graham, H. Koy, and P. Q. Nguyen. Rankin’s constant and blockwise
lattice reduction. In Proc. of Crypto ’06, volume 4117 of LNCS, pages 112–130. Springer,
2006

19. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequality. In STOC
’08 – Proc. 40th ACM Symposium on the Theory of Computing. ACM, 2008.

20. J. Martinet. Perfect lattices in Euclidean spaces, volume 327 of Grundlehren der Mathematis-
chen Wissenschaften. Springer, Berlin, 2003

21. H. Cohn and A. Kumar. The densest lattice in twenty-four dimensions. Electron. Res. Announc.
Amer. Math. Soc., 10:58–67 (electronic), 2004

22. J. Milnor and D. Husemoller. Symmetric Bilinear Forms. Springer, 1973
23. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspec-

tive. Kluwer Academic Publishers, 2002
24. R. A. Rankin. On positive definite quadratic forms. J. London Math. Soc., 28:309–314, 1953
25. J. L. Thunder. Higher-dimensional analogs of Hermite’s constant. Michigan Math. J.,

45(2):301–314, 1998
26. M. I. Boguslavsky. Radon transforms and packings. Discrete Appl. Math., 111(1–2):3–22,

2001
27. A. Korkine and G. Zolotareff. Sur les formes quadratiques positives ternaires. Math. Ann.,

5:581–583, 1872
28. A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Ann., 6:336–389, 1873
29. K. Mahler. A theorem on inhomogeneous diophantine inequalities. In Nederl. Akad. Wetensch.,

Proc., volume 41, pages 634–637, 1938

2 Hermite’s Constant and Lattice Algorithms 69

30. J. C. Lagarias, H. W. Lenstra, Jr., and C. P. Schnorr. Korkin-Zolotarev bases and successive
minima of a lattice and its reciprocal lattice. Combinatorica, 10:333–348, 1990

31. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology – Proc.
EUROCRYPT ’08, Lecture Notes in Computer Science. Springer, 2008

32. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50. SIAM
Publications, 1986. CBMS-NSF Regional Conference Series in Applied Mathematics

33. O. Regev. On the Complexity of Lattice Problems with Polynomial Approximation Factors.
Springer, 2009. In this book

34. P. Emde Boas. Another NP-complete problem and the complexity of computing short vectors
in a lattice. Technical report, Mathematische Instituut, University of Amsterdam, 1981. Report
81-04. Available at http://turing.wins.uva.nl/˜peter/

35. M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions. In Proc. of
30th STOC. ACM, 1998. Available at [36] as TR97-047

36. ECCC. http://www.eccc.uni-trier.de/eccc/. The Electronic Colloquium on
Computational Complexity

37. D. Aharonov and O. Regev. Lattice problems in NP \ coNP. J. ACM, 52(5):749–765
(electronic), 2005

38. O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. In
Proc. of 30th STOC. ACM, 1998. Available at [36] as TR97-031

39. I. A. Semaev. A 3-dimensional lattice reduction algorithm. In Proc. of CALC ’01, volume 2146
of LNCS. Springer, 2001

40. P. Q. Nguyen and D. Stehlé. Low-dimensional lattice basis reduction revisited (extended
abstract). In Proc. of the 6th Algorithmic Number Theory Symposium (ANTS VI), volume
3076 of LNCS, pages 338–357. Springer, 2004. Full version to appear in ACM Transactions
on Algorithms, 2009

41. C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and
solving subset sum problems. Math. Programming, 66:181–199, 1994

42. H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Technical report,
Mathematisch Instituut, Universiteit van Amsterdam, April 1981. Report 81-03

43. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1995. Second
edition

44. C. Dwork. Lattices and Their Application to Cryptography. Stanford University, 1998. Lecture
Notes, Spring Quarter. Several chapters are translations of Claus Schnorr’s 1994 lecture notes
Gittertheorie und algorithmische Geometrie, Reduktion von Gitterbasen und Polynomidealen

45. M. Pohst. On the computation of lattice vectors of minimal length, successive minima and
reduced bases with applications. ACM SIGSAM Bull., 15(1):37–44, 1981

46. U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis. Math. Comp., 44(170):463–471, 1985

47. P. Q. Nguyen and D. Stehlé. LLL on the average. In Proc. of ANTS-VII, volume 4076 of LNCS.
Springer, 2006

48. L. J. Mordell. Observation on the minimum of a positive quadratic form in eight variables. J.
London Math. Soc., 19:3–6, 1944

49. M. Ajtai. The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero
vector in a lattice. In Proc. 35th Annual ACM Symposium on Theory of Computing, pages
396–406 (electronic), ACM, 2003

	2 Hermite's Constant and Lattice Algorithms
	Introduction
	Background on Lattices
	Notation
	Lattices
	Bases
	Quadratic Forms
	Volume and the Gaussian Heuristic
	Sublattices
	Projected Lattices
	Duality
	Gram–Schmidt and Triangularization

	Lattice Reduction
	Minkowski's Minima
	Hermite's Constant and Minkowski's Theorems
	Rankin's Constant
	Hermite–Korkine–Zolotarev (HKZ) Reduction

	Algorithmic Lattice Problems
	Representation
	The Shortest Vector Problem (SVP)
	The Closest Vector Problem

	The Two-Dimensional Case
	Lagrange's Reduction and Hermite's Constant in Dimension Two
	Lagrange's Algorithm

	Gram–Schmidt Orthogonalization and Size-Reduction
	Hermite's Inequality and the Lenstra–Lenstra–Lovász Algorithm
	Hermite's Algorithms
	The LLL Algorithm

	Solving Exact SVP
	Enumeration Algorithms
	Rigorous Upper Bounds
	Heuristic Estimates
	A Heuristic Lower Bound

	Sieve Algorithms
	HKZ Reduction

	Mordell's Inequality and Blockwise Algorithms
	Classical Proofs of Mordell's Inequality
	Mordell's Inequality by Reduction
	Blockwise Reduction
	The Slide Algorithm

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

