
Chapter 15
On the Complexity of Lattice Problems
with Polynomial Approximation Factors

Oded Regev

Abstract Lattice problems are known to be hard to approximate to within
sub-polynomial factors. For larger approximation factors, such as

p
n, lattice prob-

lems are known to be in complexity classes, such as NP \ coNP, and are hence
unlikely to be NP-hard. Here, we survey known results in this area. We also discuss
some related zero-knowledge protocols for lattice problems.

Introduction

A lattice is the set of all integer combinations of n linearly independent vectors
v1; : : : ; vn in R

n. These vectors are known as a basis of the lattice. Lattices have
been investigated by mathematicians for decades and have recently also attracted
considerable attention in the computer science community following the discovery
of the LLL algorithm by Lenstra, Lenstra, and Lovász [1]. Many different problems
can be phrased as questions about lattices, such as integer programming [2], factor-
ing polynomials with rational coefficients [1], integer relation finding [3], integer
factoring, and Diophantine approximation [4]. More recently, the study of lattices
attracted renewed attention due to the fact that lattice problems were shown, by
Ajtai [5], to possess a particularly desirable property for cryptography: worst-case
to average-case reducibility.

Lattice problems, such as the shortest vector problem (SVP) and the closest
vector problem (CVP), are fascinating from a computational complexity point
of view (see Fig. 15.1). On one hand, by the LLL algorithm [1] and subsequent
improvements [6], we are able to efficiently approximate lattice problems to within
essentially exponential factors, namely 2n.log log n/2= log n, where n is the dimension
of the lattice. In fact, if we allow randomization, the approximation factor improves
slightly to 2n log log n= log n [7]. On the other hand, we know that for some c > 0,
no efficient algorithm can approximate lattice problems to within nc= log log n, unless
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Fig. 15.1 The complexity of lattice problems (some constants omitted)

P D NP or another unlikely event occurs. This was established in a long sequence
of works, including [8–14]. See also Khot’s chapter [15] in these proceedings.

Considering the above results, one immediate question arises: what can we
say about approximation factors in between these two extremes? There is a very
wide gap between the approximation factor achieved by the best known algorithm
(2n log log n= log n) and the best known hardness result (nc= log log n). Of particular impor-
tance is the range of polynomial approximation factors. The reason for this is that
the security of lattice-based cryptographic constructions following Ajtai’s seminal
work [5] is based on the worst-case hardness of approximating lattice problems
in this region (see also [16–18] and Micciancio’s chapter [19] in these proceed-
ings). If, for instance, we could prove that approximating lattice problems to within
O.n2/ is NP-hard, then this would have the tremendous implication of a public key
cryptosystem whose security is based solely on the P ¤ NP conjecture.

This scenario, however, is unlikely to happen. There are several results indicating
that approximating lattice problems to within polynomial factors is unlikely to be
NP-hard. These results are sometimes known as “limits on inapproximability.” They
are established by showing containment in complexity classes such as NP\ coNP.
As is well known, if a problem in NP \ coNP is NP-hard, then NPD coNP and
the polynomial hierarchy collapses. For lattice problems, this is true even under
Cook-reductions, as we show in Appendix 15.

To state these results precisely, let us first recall the promise problems associated
with the shortest vector problem and the closest vector problem. Below, we use
L.B/ to denote the lattice generated by the basis B . Moreover, all distances and
lengths in this survey are with respect to the `2 norm (but see [20] for an interesting
extension of the results described here to other `p norms).

Definition 1. GapCVP

YES instances: triples .B; v; d /, such that dist.v;L.B// � d
NO instances: triples .B; v; d /, such that dist.v;L.B// > �d ,

whereB is a basis for a lattice in Q
n, v 2 Q

n is a vector, and d 2 Q is some number.

Definition 2. GapSVP

YES instances: pairs .B; d/, such that �1.L.B// � d
NO instances: pairs .B; d/, such that �1.L.B// > �d ,

where B is a basis for a lattice in Q
n, d 2 Q is some number, and �1 denotes the

length of the shortest nonzero vector in a lattice.

Note that in both cases, setting d to some fixed value (say 1) leads to an essentially
equivalent definition (as one can easily rescale the input).
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The oldest result showing a limit on the inapproximability of lattice problems
is by Lagarias, Lenstra, and Schnorr [21], who showed that GapCVPn1:5 is in
NP \ coNP. As we mentioned above, this shows that GapCVPn1:5 is highly
unlikely to be NP-hard. Let us remark at the outset that showing containment in
NP is trivial: a witness for dist.v;L.B// � d is simply a vector u 2 L.B/, such that
kv�uk � d . The more interesting part is providing a witness for the fact that a point
is far from the lattice. Some thought reveals that this is no longer a trivial task: there
is a huge number of lattice vectors that can potentially be very close to v. The way
containment in coNP is usually shown is by utilizing properties of the dual lattice.
Let us also mention that although we state this result and the results below only for
GapCVP, they all hold also for GapSVP. This follows from a simple approxima-
tion preserving reduction from GapSVP to GapCVP [22], which we include for
completeness in Appendix 15.

An improvement of the Lagarias et al. result was obtained by Banaszczyk [23]
who showed that GapCVPn is in NP \ coNP. This was recently further improved
by Aharonov and Regev [24] to GapCVPpn.

Theorem 1 ([24]). There exists c > 0 such that GapCVPc
p

n is in NP \ coNP.

In their coNP proof, the witness simply consists of a list of short vectors in the dual
lattice. The verifier then uses these vectors to determine the distance of the target
vector v from the lattice. A sketch of this proof appears in Section “Containment in
coNP”.

Another “limits on inapproximability” result is by Goldreich and Goldwasser
[25], who showed that GapCVPp

n= log n
is in NP \ coAM (where containment

in coAM means that the complement of the problem is in the class AM defined in
Definition 3).

Theorem 2 ([25]). For any c > 0, GapCVP
c
p

n= log n
is in NP\ coAM.

We present a proof of this theorem in Section “The Goldreich–Goldwasser Proto-
col”. The proof uses an elegant protocol in which an all-powerful prover convinces
a computationally limited verifier that a point v is far from the lattice. We note that
their result is incomparable with that of [24] since it involves a slightly harder prob-
lem (GapCVPp

n= log n
), but shows containment in a somewhat wider class (coAM).

It is an interesting open question whether containment in NP\coNP holds also for
gaps between

p
n= logn and

p
n.

In Section “Zero-Knowledge Proof Systems”, we will discuss the topic of zero-
knowledge protocols. We will observe that the Goldreich–Goldwasser protocol is
zero-knowledge (against honest verifiers). We will then describe two zero-
knowledge protocols with efficient provers, one for coGapCVP and one for
GapCVP.

We can summarize our current state of knowledge by saying that for approxima-
tion factors beyond

p
n= logn, lattice problems are unlikely to be NP-hard. This

naturally brings us to one of the most important questions regarding the complexity
of lattice problems: is there an efficient algorithm for approximating lattice problem
to within polynomial factors? Given how difficult it is to come up with algorithms



478 O. Regev

that perform even slightly better than the exponential factor achieved by the LLL
algorithm, many people conjecture that the answer is negative. This conjecture lies
at the heart of latticed-based cryptographic constructions, such as Ajtai’s [5], and is
therefore of central importance. How can we hope to show such hardness, if we do
not believe the problem is NP-hard? One promising direction is by relating lattice
problems to other problems that are believed to be hard. For instance, a reduction
from factoring to, say, GapSVPn2 would give a strong evidence to the conjecture,
and would also establish the remarkable fact that lattice-based cryptosystems are at
least as secure as factoring-based cryptosystems.

Outline:

In Section“The Goldreich–Goldwasser Protocol”, we present a proof of Theorem 2,
including some of the technical details that go into making the proof completely
rigorous. These technical details, especially how to work with periodic distribu-
tions, appear in many other lattice-related results and are therefore discussed in
detail. Then, in Section “Containment in coNP”, we present a sketch of the proof
of Theorem 1. This sketch contains all the important ideas of the proof, but proofs
of technical claims are omitted. The two sections are independent. Then, in Sec-
tion “Zero-Knowledge Proof Systems”, we discuss zero-knowledge proof systems
for lattice problems, and in particular, sketch the prover-efficient zero-knowledge
protocol of Micciancio and Vadhan [26]. This section requires a basic understand-
ing of Section“The Goldreich–Goldwasser Protocol”. Finally, in Appendix 15, we
show in what sense the two theorems above imply “limits on inapproximability,”
and in Appendix 15, we show how to extend our results to GapSVP.

The Goldreich–Goldwasser Protocol

In this section, we prove Theorem 2. For simplicity, we will show that GapCVPpn

2 coAM. A slightly more careful analysis of the same protocol yields a gap of
c
p
n= logn for any constant c > 0. First, let us define the class AM.

Definition 3. A promise problem is in AM, if there exists a protocol with a con-
stant number of rounds between a BPP machine Arthur and a computationally
unbounded machine Merlin, and two constants 0 � a < b � 1 such that

� Completeness: For any YES input, there exists a strategy for Merlin such that
Arthur accepts with probability at least b, and

� Soundness: For any NO input, and any strategy for Merlin, Arthur accepts with
probability at most a.

To prove Theorem 2, we present a protocol that allows Arthur to verify that
a point is far from the lattice. Specifically, given .B; v; d /, Arthur accepts with
probability 1, if dist.v;L.B// >

p
nd , and rejects with some positive probability, if

dist.v;L.B// � d .
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dist >
√

nd dist ≤ d

Fig. 15.2 The two distributions

Informally, the protocol is as follows. Arthur first flips a fair coin. If it comes up
heads, he randomly chooses a “uniform” point in the lattice L.B/; if it comes up
tails, he randomly chooses a “uniform” point in the shifted lattice vC L.B/. Let w
denote the resulting point. Arthur randomly chooses a uniform point x from the ball
of radius 1

2

p
nd around w and then sends x to Merlin. Merlin is supposed to tell

Arthur if the coin came up heads or not.
The correctness of this protocol follows from the following two observations

(see Fig. 15.2). If dist.v;L.B// >
p
nd , then the two distributions are disjoint

and Merlin can answer correctly with probability 1. On the other hand, if
dist.v;L.B// � d , then the overlap between the two distributions is large and
Merlin must make a mistake with some positive probability.

This informal description hides two technical problems. First, we cannot really
work with the point x, since it is chosen from a continuous distribution (and hence
cannot be represented precisely in any finite number of bits). This is easy to take
care of by working with an approximation of x with some polynomial number of
bits. Another technical issue is the choice of a “random” point from L.B/. This
is an infinite set and there is no uniform distribution on it. One possible solution
is to take the uniform distribution on points in the intersection of L.B/ with, say,
some very large hypercube. This indeed solves the problem, but introduces some
unnecessary complications to the proof, since one needs to argue that the probability
to fall close to the boundary of the hypercube is low. The solution we choose here
is different and avoids this problem altogether by working with distributions on the
basic parallelepiped of the lattice. We describe this solution in Section “Working
with Periodic Distributions”.

In the next few subsections, we present the necessary preliminaries for the proof.

Statistical Distance

Definition 4. The statistical distance between two distributions X , Y on some set
˝ is defined as

�.X; Y / D max
A�˝
jP.X 2 A/ � P.Y 2 A/j:
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One useful special case of this definition is the case where X and Y are discrete
distributions over some countable set ˝ . In this case, we have

�.X; Y / D 1

2

X

!2˝

jP.X D !/ � P.Y D !/j:

Another useful special case is when X and Y are distributions on R
n with density

functions f; g. In this case, we have

�.X; Y / D 1

2

Z

Rn

jf .x/ � g.x/j dx:

For any distributions X; Y , �.X; Y / obtains values between 0 and 1. It is 0 if
and only if X and Y are identical and 1 if and only if they are disjoint. It is helpful
to consider the following interpretation of statistical distance. Assume we are given
a sample that is taken from X with probability 1

2
or from Y with probability 1

2
.

Our goal is to decide which distribution the sample comes from. Then, it can be
seen that our best strategy succeeds with probability 1

2
C 1

2
�.X; Y /.

One important fact concerning the statistical distance is that it cannot increase by
the application of a possibly randomized function. In symbols, �.f .X/; f .Y // �
�.X; Y / for any (possibly randomized) function f . This fact follows easily from
the above interpretation of �.

Balls in n-Dimensional Space

Let B.v; r/ denote a ball of radius r around v. It is known that the volume of the unit
ball B.0; 1/ in n dimensions is

Vn
defD 	n=2

.n=2/Š
;

where we define nŠ D n.n � 1/Š for n � 1 and 1
2
Š D 1

2

p
	 . It can be shown that

.nC 1
2
/Š

nŠ
� nŠ

.n � 1
2
/Š
� pn:

Lemma 1. For any " > 0 and any vector v of length kvk � ", the relative volume
of the intersection of two unit balls whose centers are separated by v satisfies

vol.B.0; 1/\ B.v; 1//
vol.B.0; 1//

� " .1 � "
2/

n�1
2

3

p
n
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Fig. 15.3 A cylinder in the
intersection of two balls

1

Proof. It suffices to consider the case kvk D ". As shown in Fig. 15.3, the intersec-
tion contains a cylinder of height " and radius

p
1� "2 centered around v=2. Hence,

the volume of the intersection satisfies:

vol.B.0; 1/\ B.v; 1//
vol.B.0; 1//

>
"Vn�1.

p
1 � "2/n�1

Vn

D ".1 � "2/
n�1

2
	

n�1
2 =.n�1

2
/Š

	
n
2 =.n

2
/Š
� ".1 � "2/

n�1
2

p
n=2p
	
:

�
Notice that for " D 2p

n
, the right hand side of the expression in Lemma 1 is

bounded from below by some positive constant independent of n. This yields the
following corollary.

Corollary 1. There exists a constant ı > 0 such that for any d > 0 and any y 2 R
n

such that kyk � d ,

�
�
U.B.0; 1

2

p
nd//; U.B.y; 1

2

p
nd//

�
< 1 � ı;

where U.�/ denotes the uniform distribution on a set.

Proof. This statistical distance is exactly the volume of the symmetric difference of
two balls divided by the sum of their volumes. According to the above lemma, this
is bounded away from 1. �
Remark. When " D c

p
logn=n for some c > 0, the right hand side of the expres-

sion in Lemma 1 is still greater than some 1=poly.n/. Using this, one can obtain the
improved result GapCVP

c
p

n= log n
2 coAM.

Working with Periodic Distributions

In the informal description above, we talked about the “uniform distribution” on the
lattice. This is clearly not defined. One possible solution is to restrict our attention
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Fig. 15.4 A periodic distribution on Z
2 (left), restricted P..0; 1/; .1; 0// (center), and to

P..0; 1/; .1; 1// (right)

to some large enough cube Œ�K;K�n. While possible, this solution introduces some
technical annoyances as one has to argue that the probability to fall too close to the
boundary of the cube (where the protocol might behave badly) is small.

Instead, our solution will be to work with only one period of the distribution.
To demonstrate this approach, let us first consider the one-dimensional case. Assume
we want to represent the distribution intuitively described as follows: choose a
random point from the lattice 3Z and add to it a number chosen uniformly from
Œ�0:1; 0:1�. The first solution above would require us to take some large segment,
say, Œ�1000; 1000�, and to restrict our distribution to it. Instead, we take one period
of the distribution, say the segment Œ0; 3�, and consider the distribution on it. Hence,
we obtain the uniform distribution on Œ0; 0:1� [ Œ2:9; 3�. Notice that we could take
another period, say the segment Œ�3; 0�, and work with it instead. Crucially, the
transformation from one representation to another can be performed efficiently (by
subtracting or adding 3 as needed).

A similar idea works for higher dimensions (see Fig. 15.4). If we want to rep-
resent a periodic distribution on a lattice, we consider it as a distribution on some
period of the lattice. A common choice is to take a basic parallelepiped of the lattice,
defined as

P.B/ D P.v1; : : : ; vn/ D
(

nX

iD1

xi vi

ˇ̌
ˇ̌ xi 2 Œ0; 1/

)
;

where B D .v1; : : : ; vn/ is some basis of the lattice. As before, we have several
possible representations, depending on the choice of basis B . The transformation
from a representation using B1 to one using B2 can be done efficiently by reduc-
ing points modulo P.B2/ (see Definition 5 below). Mathematically speaking, the
objects we work with are distributions on the quotient R

n=L.B/, and P.B/ is its
set of representatives.

We emphasize that it is much easier to imagine “periodic distributions” on R
n.

However, technically, it is much easier to work with distributions on P.B/.

The Protocol

We will now show using Protocol 1 that GapCVPpn 2 coAM. The protocol uses
the following definition.
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Definition 5. For x 2R
n, x mod P.B/ is the unique y 2P.B/ satisfying

x � y 2 L.B/.

Protocol 1 The Goldreich–Goldwasser AM protocol

1. Arthur selects � 2 f0; 1g uniformly and a random point t in the ball B.0; 1
2

p
nd/. He then

sends x D .�vC t / mod P.B/ to Merlin.
2. Merlin checks if dist.x;L.B// < dist.x; vCL.B//. If so, he responds with � D 0; otherwise,

he responds with � D 1.
3. Arthur accepts if and only if � D � .

Remark. For simplicity, we ignore issues of finite precision; these can be dealt with
by standard techniques. One issue that we do want to address is how to choose
a point from the ball B.0;R/ uniformly at random. One option is to use known
algorithms for sampling (almost) uniformly from arbitrary convex bodies and apply
them to the case of a ball. A simpler solution is the following. Take n independent
samples u1; : : : ; un 2 R from the standard normal distribution and let u be the vector
.u1; : : : ; un/ 2 R

n. Then, u is distributed according to the standard n-dimensional
Gaussian distribution, which is rotationally invariant. Now, choose r from the dis-
tribution on Œ0; R� whose probability density function is proportional to rn�1 (this
corresponds to the .n � 1/-dimensional surface area of a sphere of radius r).
The vector r

kuku is distributed uniformly in B.0;R/.

Claim (Completeness). If dist.v;L.B//>
p
nd , then Arthur accepts with prob-

ability 1.

Proof. Assume � D 0. Then,

dist.x;L.B// D dist.t;L.B// � ktk � 1

2

p
nd:

On the other hand,

dist.x; vC L.B// D dist.t; vC L.B// D dist.t � v;L.B//

� dist.v;L.B//� ktk > 1

2

p
nd:

Hence, Merlin answers correctly and Arthur accepts. The case � D 1 is similar. �

Claim (Soundness). If dist.v;L.B// � d , then Arthur rejects with some constant
probability.

Proof. Let y be the difference between v and its closest lattice point. So, y is such
that v�y 2 L.B/ and kyk � d . Let 0 be the uniform distribution on B.0; 1

2

p
nd/

and let 1 be the uniform distribution on B.y; 1
2

p
nd/. Notice that the point Arthur

sends can be equivalently seen as a point chosen from 
 reduced modulo P.B/.
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According to Corollary 1, �.0; 1/ is smaller than 1 � ı. Since statistical distance
cannot increase by the application of a function,

�.0 mod P.B/; 1 mod P.B// � �.0; 1/ < 1 � ı

and Arthur rejects with probability at least ı. �

Containment in coNP

In this section, we sketch the proof of Theorem 1. For more details, see [24].
As mentioned in the introduction, containment in NP is trivial and it suffices to
prove, e.g., that GapCVP100

p
n is in coNP (we make no attempt to optimize the

constant 100 here). To show this, we construct an NP verifier that, given a witness
of polynomial size, verifies that the given point v is far from the lattice. There are
three steps to the proof.

1. Define f
In this part, we define a function f W Rn ! R

C that is periodic over the lattice
L, i.e., for all x 2 R

n and y 2 L, we have f .x/ D f .x C y/ (see Fig. 15.5).
For any lattice L, the function f satisfies the following two properties: it is non-
negligible (i.e., larger than some 1=poly.n/) for any point that lies within distancep

logn from a lattice point and is exponentially small at distance� pn from the
lattice. Hence, given the value f .v/, one can tell whether v is far or close to the
lattice.

2. Encode f
We show that there exists a succinct description (which we denote by W ) of a
function fW that approximatesf at any point in R

n to within polynomially small
additive error (see Fig. 15.5). We use W as the witness in the NP proof.

Fig. 15.5 The function f (left) and its approximation fW (right) for a two-dimensional lattice
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3. Verify f
We construct an efficient NP verifier that, given a witness W , verifies that v is
far from the lattice. The verifier verifies first that fW .v/ is small and also that
fW .x/ � 1=2, for any x that is close to the lattice.

We now explain each of these steps in more detail. For all missing proofs and
more details, see [24].

Step 1: Define f

Define the function g W Rn ! R as

g.x/ D
X

y2L
e��kx�yk2 ;

and let

f .x/ D g.x/

g.0/
:

Hence, f is a sum of Gaussians centered around each lattice point and is nor-
malized to be 1 at lattice points. See Fig. 15.5 for a plot of f . The function f was
originally used by Banaszczyk [23] to prove “transference theorems,” i.e., theorems
relating parameters of a lattice to those of its dual.

The two properties mentioned above can be stated formally as follows.

Lemma 2. Let c > 1p
2�

be a constant. Then for any x 2 R
n, if d.x;L/ � c

p
n

then f .x/ D 2�˝.n/.

Lemma 3. Let c > 0 be a constant. Then for any x 2 R
n, if d.x;L/ � cplogn

then f .x/ > n�10c2
.

Step 2: Encode f

This step is the core of the proof. Here, we show that the function f can be approx-
imated pointwise by a polynomial size circuit with only an inverse polynomial
additive error. A naive attempt would be to store f ’s values on some finite subset of
its domain and use these points for approximation on the rest of the domain. How-
ever, it seems that for this to be meaningful, we would have to store an exponential
number of points.

Instead, we consider the Fourier series of f , which is a function Of whose domain
is the dual lattice L� (defined as the set of all points in R

n with integer inner product
with all lattice points). For any w 2 L�, it is given by
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Fig. 15.6 The Fourier series Of of f

Of .w/ D 1

det.B/

Z

z2P.B/

f .z/e�2�ihw;zidz;

where B is some basis of L. (It can be shown that this definition is independent of
the basis we choose for L.) A short calculation, which we omit here, shows that Of
has a nice form, namely

Of .w/ D e��kwk2
P

z2L� e��kzk2 :

See Fig. 15.6 for a plot of Of . One very useful and crucial property of Of is that it is
a probability distribution over the dual lattice L�. In other words, it is a non-negative
function and the sum of all its values is 1.

A basic result in Fourier analysis is the Fourier inversion formula. It says that a
function f can be recovered from its Fourier series Of by using the formula

f .x/ D
X

w2L�

Of .w/e2�ihw;xi:

Since in our case, both f and Of are real, we can simplify it to

f .x/ D
X

w2L�

Of .w/ cos.2	hw; xi/
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by taking the real part of both sides. By thinking of Of as a probability distribution,
we can rewrite this as

f .x/ D E
w� Of Œcos.2	hw; xi/� :

Hence, f .x/ can be seen as the expectation of cos.2	hw; xi/ (whose values range
between �1 and 1), where w is chosen according to the probability distribution Of .

This brings us to the main idea of this step: we can approximate f by replacing
the expectation with an average over a large enough sample from Of . More formally,
for some large enough N D poly.n/, let W D .w1; : : : ;wN / be N vectors in the
dual lattice chosen randomly and independently from the distribution Of and define

fW .x/
defD 1

N

NX

iD1

cos.2	hx;wi i/: (15.1)

See Fig. 15.5 for a plot of fW . Then, one can show that with high probability,
jfW .x/ � f .x/j � n�10 for all x 2 R

n. The proof of this statement is based on the
Chernoff–Hoeffding bound.

Given the above, it is natural to choose our NP witness to be the list W D
.w1; : : : ;wN / of vectors in the dual lattice. We note that these vectors are typically
short and hence computing them directly seems difficult.

Step 3: Verify f

Here, we construct an efficient NP verifier that, given the witness W , verifies that
a point is far from the lattice. More precisely, given a lattice L and a vector v, it
accepts if the distance of v from L is greater than

p
n and rejects if this distance

is less than 1=100. This shows that GapCVP100
p

n is in coNP (after appropriate
rescaling).

The verifier starts by performing the following test: compute fW .v/, as defined in
(15.1), and reject if it is at least, say, 1=2. We can do this because when the distance
of v from L is greater than

p
n, f .v/ is exponentially small by Lemma 2 and hence

fW .v/ must be at most 1=poly.n/ < 1=2 (assuming the witness W is chosen from
Of , as it should be).

This verifier, however, is clearly not strong enough: the prover can “cheat” by
sending wi ’s that have nothing to do with Of or with the lattice, and for which fW .v/
is small even though v is within distance 1=100 of the lattice. One might try to
avoid such cheating strategies by verifying that fW is close to f everywhere, or,
alternatively, that the wi ’s were indeed chosen from the correct distribution Of . It is
not known how to construct such a verifier. Instead, we will now show a somewhat
weaker verifier. (This weaker verifier is what limits the proof to a gap of

p
n and
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not
p
n= logn as one could expect, given the properties of f stated in Lemmas 2

and 3.)
To test the witnessW , we verify that the wi ’s “look like” vectors chosen from Of ,

according to some simple statistical tests. We will later see that these tests suffice
to provide soundness. But, what do vectors chosen from Of look like? We identify
two important properties. First, by definition, we see that all the wi ’s are in L�.
Second, it turns out that with high probability, for any unit vector u 2 R

n, it holds
that 1

N

PN
iD1hu;wii2 is bounded from above by some constant, say 3. Intuitively,

this follows from the fact that the length of the wi ’s is roughly
p
n and that they are

not concentrated in any particular direction (the proof of this fact is not trivial and
is based on a lemma by Banaszczyk [23]).

Fortunately, the verifier can check these two properties efficiently. The first prop-
erty is easy to check by, say, solving linear equations. But, how can we check the
second property efficiently? It seems that we have to check it for all unit vectors u.
The main observation here is that we can equivalently check that the largest eigen-
value of the n � n matrix W �W T , where W is the n � N matrix whose columns
are the vectors w1; : : : ;wN , is at most 3N . This can be done in polynomial time by
known algorithms for computing the eigenvalues of a matrix.

To summarize, the verifier performs the following three tests and accepts if and
only if all of them are satisfied:

1. Checks that fW .v/ < 1=2;
2. Checks that W consists of vectors in the dual lattice L�;
3. Checks that the maximal eigenvalue of the n � n positive semidefinite matrix
WW T is at most 3N .

As mentioned above, if v is a YES instance, i.e., its distance from L is at least
p
n,

then a witness W chosen according to Of satisfies all the tests with high probability.
Hence, completeness holds. To complete the proof, we need to prove soundness. We
will show that any witnessW that passes tests (2) and (3) must satisfy fW .x/ � 1=2,
for all x within distance 1=100 from the lattice. In particular, if v is a NO instance,
i.e., its distance from L is at most 1=100, then test (1) must reject.

To see this, we note that by the definition of fW , the fact that W consists of
vectors in L� guarantees that the function fW is periodic on L. Indeed, for any
v 2 L,

hvC x;wi i D hv;wi i C hx;wi i

with the first term being integer by the definition of a dual lattice. Hence, it suffices
to show that fW .x/ � 1=2 for any x satisfying kxk � 1=100. For such x, the
eigenvalue test implies that for most i ’s, jhx;wi ij is small. Therefore, for such x,
most of the cosines in the definition of fW .x/ are close to 1. This implies that
fW .x/ is greater than 1=2 and soundness follows. In more detail, let x be such that
kxk � 1=100. Since test .c/ accepts, we have that
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1

N

NX

jD1

hx;wj i2 D 1

N
xTWW T x � 1

N

3N

10000
D 3

10000

where the inequality follows by expressing x in the eigenvector basis of WW T .
Using the inequality cosx � 1 � x2=2 (valid for any x 2 R), we get

fW .x/ D 1

N

NX

jD1

cos.2	hx;wj i/ � 1 � 4	
2

2N

NX

jD1

hx;wj i2 � 1 � 6	2

10000
>
1

2
:

Zero-Knowledge Proof Systems

The containments in NP, coNP, and coAM discussed in the previous sections can be
stated equivalently in terms of proof systems between a computationally unbounded
prover and a polynomial time verifier. For instance, Theorem 1 gives a proof system
for coGapCVPpn, in which the prover simply sends one message to the verifier
who then decides whether to accept or reject. Similarly, Theorem 2 gives a proof
system for coGapCVPp

n= log n
, in which the prover and verifier exchange a small

number of messages. Finally, for any � , GapCVP clearly has a proof system in
which the prover simply sends the nearby lattice point.

In addition to the usual requirements of completeness and soundness, one can ask
for proof systems that satisfy the zero-knowledge property. Intuitively, we say that a
proof system is zero-knowledge, if in the case of a true statement, the verifier learns
nothing beyond the validity of the statement. There are in fact two natural notions
of zero-knowledge: the first is zero-knowledge against honest verifiers, which are
verifiers that obey the protocol but still try to extract some information from the
interaction: the second and stronger notion is zero-knowledge against all verifiers,
which says that even if the verifier deviates from the protocol he can still learn
nothing from the interaction with the prover.

Although for our purposes the above intuitive description suffices, let us men-
tion that the formal definition of zero-knowledge uses the notion of a simulator.
Specifically, one says that a proof system is (statistical) zero-knowledge against
honest verifiers, if there exists an efficient algorithm, known as a simulator, that
produces communication transcripts whose distribution is statistically close to that
of the actual transcripts of communication between the verifier and the prover.
The existence of such a simulator captures the intuitive idea that the verifier learns
nothing from the interaction. A similar definition exists for zero-knowledge against
all verifiers. The concept of zero-knowledge has led to many important develop-
ments in cryptography and complexity over the past two decades. For the formal
definition and further discussion, see [27].

Among the three proof systems mentioned above, the only one that is zero-
knowledge is the one by Goldreich and Goldwasser. (The other two are clearly
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not zero-knowledge, since the verifier receives the witness.) Indeed, consider the
protocol described in Section “The Protocol” in the case of a true statement,
i.e., dist.v;L.B// >

p
nd . Notice that the answer � received by the verifier is

always identical to his bit � . Hence, the verifier already knows the answer the
prover is about to send him, and therefore can learn nothing from the protocol
(beyond the fact that dist.v;L.B// >

p
nd ). This argument (once written for-

mally) establishes that the Goldreich–Goldwasser protocol is a statistical (and in
fact perfect) zero-knowledge protocol against honest verifiers, or in complexity-
theoretic terms, that the class coGapCVPp

n= log n
is contained in a complexity

class known as Honest Verifier Statistical Zero Knowledge, or HVSZK. This proto-
col is not zero-knowledge against dishonest verifiers, since by deviating from the
protocol, a dishonest verifier can find out if certain points are close to the lat-
tice or not (which seems to be something he cannot do without the help of the
prover). Still, using the remarkable fact that HVSZK D SZK [27], we obtain that
coGapCVPp

n= log n
2 SZK, i.e., that coGapCVPp

n= log n
has a zero-knowledge

proof system that is secure also against dishonest verifiers. Another truly remarkable
fact regarding zero-knowledge proof systems is that SZK is closed under com-
plement [27, 28]. This implies that we also have that GapCVPp

n= log n
2 SZK,

i.e., there exists a zero-knowledge proof system that allows a prover to convince a
verifier that a point is close to the lattice.

Proof Systems with Efficient Provers

In the traditional complexity-theoretic definition of zero-knowledge protocols, the
complexity of the prover does not play any role. However, from a cryptographic
standpoint, in order for these proof systems to be useful, the prover must be effi-
ciently implementable. This gives rise to the following question: do all problems in
NP \ SZK have a statistical zero-knowledge proof system in which the prover can
be implemented efficiently when given an NP witness? Note that without providing
the prover with an NP witness, this task is clearly impossible. This is also the reason
the question makes sense only for problems in NP \ SZK.

In the context of lattice problems, this question was raised by Micciancio and
Vadhan [26], who also made some progress toward answering the question for gen-
eral problems in NP\ SZK. Building on their work, Nguyen and Vadhan [29] very
recently gave a positive answer to the question: any problem in NP \ SZK has a
statistical zero-knowledge proof system with an efficient prover. Their protocol is
secure even against dishonest verifiers.

From a theoretical point of view, Nguyen and Vadhan’s exciting result gives a
complete answer to our question. Yet, their construction is very complicated and
does not seem to yield protocols that are efficient in practice. For this reason, we
will now describe two examples of “practical” proof systems for lattice problems.
Such direct constructions of proof systems with efficient provers have applications
in cryptography, as described in [26].
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The first problem we consider is coGapCVP. As we have seen, coGapCVPpn

is in NP \ SZK. However, in the Goldreich–Goldwasser proof system, the prover
is required to solve a nontrivial problem, namely to tell whether a point x is within
distance 1

2

p
nd from L.B/ or within distance 1

2

p
nd from v C L.B/, under the

assumption that dist.v;L.B// >
p
nd . This seems like a hard problem, even

when given the NP witness described in Section “Containment in coNP”. How-
ever, the Goldreich–Goldwasser protocol as described in Section “The Protocol”
does have an efficient prover, if we consider it as a protocol for the (easier) problem
coGapCVPn. Indeed, the prover’s task in this protocol is to tell whether a point x is
within distance 1

2

p
nd from L.B/ or within distance 1

2

p
nd from vCL.B/, under

the assumption that dist.v;L.B// > nd . Notice that in the latter case, the distance of
x from L.B/ is at least nd � 1

2

p
nd � nd=2. Hence, the gap between the two cases

is at least
p
n and therefore the prover can distinguish between them by using the

witness described in Section “Containment in coNP”. This proof system, just like
the original Goldreich–Goldwasser protocol, is secure only against honest verifiers.

The second problem we consider is GapCVPpn. Here, the prover’s task is to
convince the verifier through a zero-knowledge protocol that a point v is close to the
lattice. An elegant protocol for this task was presented by Micciancio and Vadhan
in [26]. Their protocol is secure even against dishonest verifiers, and in addition,
the prover’s strategy can be efficiently implemented, given a lattice point close to v.
The main component in their protocol is given as Protocol 2. We use D0 to denote
the set of points that are within distance 1

2

p
nd of the lattice L.B/ andD1 to denote

the set of points that are within distance 1
2

p
nd of the shifted lattice vC L.B/ (see

Fig. 15.2).

Protocol 2 Part of the Micciancio–Vadhan zero-knowledge protocol for
GapCVPpn

1. The prover chooses uniformly a bit � 2 f0; 1g and sends to the verifier a point x chosen
“uniformly” from D� .

2. The verifier then challenges the prover by sending him a uniformly chosen bit � .
3. The prover is supposed to reply with a point y.
4. The verifier accepts if and only if dist.x; y/ � 1

2

p
nd and y 2 �vC L.B/ (i.e., y is a lattice

point if � D 0, and a point in the shifted lattice, if � D 1).

The soundness of this protocol is easy to establish: if dist.v;L.B// >
p
nd then

the verifier accepts with probability at most 1
2

, no matter what strategy is played by
the prover, since no point x can be within distance 1

2

p
nd both from L.B/ and from

v C L.B/. To prove completeness, consider the case dist.v;L.B// � d=10. Using
a proof similar to the one of Lemma 1, one can show that the relative volume of the
intersection of two balls of radius 1

2

p
nd , whose centers differ by at most d=10 is

at least 0:9. This means that with probability at least 0:9, the point x chosen by the
prover from D
 is also in D1�
 . In such a case, the prover is able to reply to both
possible challenges � and the verifier accepts. Notice, moreover, that the prover can
be efficiently implemented, if given a lattice point w within distance d=10 of v: by
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adding or subtracting w� v as necessary, the prover can respond to both challenges
in case x falls in D0 \D1.

Unfortunately, Protocol 2 is not zero-knowledge. Intuitively, the reason for that
is when the prover is unable to answer the verifier’s challenge, the verifier learns
that x is outside D0 \ D1, a fact which he most likely could not have established
alone. We can try to mend this by modifying the prover to only send points x that
are in D0 \ D1. This still does not help, since now the verifier obtains a uniform
point x in D0 \ D1, and it seems that he could not sample from this distribution
alone. (This modification does, however, allow us to obtain perfect completeness.)

Instead, the solution taken by [26] is to “amplify” Protocol 2, so as to make the
information leakage negligible. Instead of just sending one point x, the prover now
sends a list of 2k points x1; : : : ; x2k , each chosen independently as in the original
protocol, where k is some parameter. The verifier again challenges the prover with a
random bit � . The prover is then supposed to reply with a list of points y1; : : : ; y2k .
The verifier accepts if and only if for all i , dist.xi ; yi / � 1

2

p
nd and yi is either in

L.B/ or in vCL.B/, and moreover, the number of yi ’s contained in L.B/ is even, if
� D 0, and odd, otherwise. The idea in this modified protocol is to allow the prover to
respond to the challenge whenever there is at least one point xi that falls inD0\D1.
This reduces the probability of failure from a constant to an exponentially small
amount in k. The soundness, completeness, prover efficiency, and zero-knowledge
property of the modified protocol are established similarly to those of the original
protocol. For further details, see [26].

NP-Hardness

In this section we show that Theorem 1 implies that GapCVPpn is unlikely to be
NP-hard, even under Cook reductions. One can also show that Theorem 2 implies
that GapCVPp

n= log n
is unlikely to be NP-hard. However, for simplicity, we show

this only for a
p
n gap. Our proof is based on [17, 30, 31].

First, let us consider the simpler case of Karp reductions. If a problem in coNP
is NP-hard under a Karp reduction (i.e., there is a many-to-one reduction from SAT
to our problem) then the following easy claim shows that NP 	 coNP (and hence
the polynomial hierarchy collapses).

Claim. If a promise problem˘ D .˘YES; ˘NO/ is in coNP and is NP-hard under
Karp reductions, then NP 	 coNP.

Proof. Take any language L in NP. By assumption, there exists an efficient proce-
dure R that maps any x 2 L to R.x/ 2 ˘YES and any x … L to R.x/ 2 ˘NO.
Since˘ 2 coNP, we have an NP verifier V such that for any y 2 ˘NO there exists
a w such that V.y;w/ accepts, and for any y 2 ˘YES and any w, V.y;w/ rejects.
Consider the verifier U.x;w/ given by V.R.x/;w/. Notice that for all x … L there
exists a w such that U.x;w/ accepts and moreover, for all x 2 L and all w U.x;w/
rejects. Hence, L 2 coNP. �
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The case of Cook reductions requires some more care. For starters, there is noth-
ing special about a problem in coNP that is NP-hard under Cook reductions (for
example, coSAT is such a problem). Instead, we would like to show that if a prob-
lem in NP \ coNP is NP-hard under Cook reductions, the polynomial hierarchy
collapses. This implication is not too difficult to show for total problems (i.e., lan-
guages). However, we are dealing with promise problems and for such problems this
implication is not known to hold (although still quite believable). In a nutshell, the
difficulty arises because a Cook reduction might perform queries that are neither a
YES instance nor a NO instance and for such queries we have no witness.

This issue can be resolved by using the fact that not only GapCVPpn 2 NP but
also GapCVP1 2 NP. In other words, no promise is needed to show that a point
is close to the lattice. In the following, we show that any problem with the above
properties is unlikely to be NP-hard.

Lemma 4. Let˘ D .˘YES; ˘NO/ be a promise problem and let˘MAYBE denote
all instances outside ˘YES [˘NO . Assume that ˘ is in coNP and that the (non-
promise) problem˘ 0 D .˘YES[˘MAYBE; ˘NO/ is in NP. Then, if˘ is NP-hard
under Cook reductions then NP 	 coNP and the polynomial hierarchy collapses.

Proof. Take any language L in NP. By assumption, there exists a Cook reduction
from L to ˘ . That is, there exists a polynomial time procedure T that solves L
given access to an oracle for ˘ . The oracle answers YES on queries in ˘YES and
NO on queries in˘NO. Notice, however, that its answers on queries from˘MAYBE
are arbitrary and should not affect the output of T .

Since ˘ 2 coNP, there exists a verifier V1 and a witness w1.x/ for every x 2
˘NO such that V1 accepts .x;w1.x//. Moreover, V1 rejects .x;w/ for any x 2
˘YES and any w. Similarly, since˘ 0 2 NP, there exists a verifier V2 and a witness
w2.x/ for every x 2 ˘YES [˘MAYBE such that V2 accepts .x;w2.x//. Moreover,
V2 rejects .x;w/ for any x 2 ˘NO and any w.

We now show thatL is in coNP by constructing an NP verifier. Let˚ be an input
to L and let x1; : : : ; xk be the set of oracle queries which T performs on input ˚ .
Our witness consists of k pairs, one for each xi . For xi 2 ˘NO we include the pair
.NO;w1.xi // and for xi 2 ˘YES [ ˘MAYBE we include the pair .YES;w2.xi //.
The verifier simulates T ; for each query xi that T performs, the verifier reads the
pair corresponding to xi in the witness. If the pair is of the form .YES;w/ then the
verifier checks that V2.xi ;w/ accepts and then returns YES to T . Similarly, if the
pair is of the form .NO;w/ then the verifier checks that V1.xi ;w/ accepts and then
returns NO to T . If any of the calls to V1 or V2 rejects, then the verifier rejects.
Finally, if T decides that ˚ 2 L, the verifier rejects and otherwise it accepts.

The completeness follows easily. More specifically, if ˚ … L then the witness
described above will cause the verifier to accept. To prove soundness, assume that
˚ 2 L and let us show that the verifier rejects. Notice that for each query xi 2 ˘NO
the witness must include a pair of the form .NO;w/ because otherwise V2 would
reject. Similarly, for each query xi 2 ˘YES the witness must include a pair of the
form .YES;w/ because otherwise V1 would reject. This implies that T receives the
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correct answers for all of its queries inside˘NO[˘YES and must therefore output
the correct answer, i.e., that ˚ 2 L and then the verifier rejects. �

We just saw that the promise problem GapCVPpn is unlikely to be NP-hard,
even under Cook reductions. Consider now the search problem CVPpn where given
a lattice basis B and a vector v, the goal is to find a lattice vector w 2 L.B/
such that dist.v;w/ � pn dist.v;L.B//. This problem is clearly at least as hard
as GapCVPpn. Can it possibly be NP-hard (under Cook reductions)? A similar
argument to the one used above shows that this is still unlikely, as it would imply
NP 	 coNP. Let us sketch this argument. Assume we have a Cook reduction from
any NP languageL to the search problem CVPpn. Then we claim that L 2 coNP.
The witness used to show this is a list of valid answers by the CVPpn oracle to
the questions asked by the reduction, together with a witness that each answer is
correct. More precisely, for each question .B; v/, the witness is supposed to con-
tain the vector w 2 L.B/ closest to v together with an NP proof that the instance
.B; v; dist.v;w/=

p
n/ is a NO instance of GapCVPpn. Having the NP proof for

each answer w assures us that dist.v;w/ � pn dist.v;L.B// and hence w is a valid
answer of the CVPpn oracle.

Reducing GapSVP to GapCVP

Both Theorem 1 and Theorem 2 hold also for GapSVP. The following lemma
shows this for Theorem 1. A similar argument shows this for Theorem 2.

Lemma 5. If for some ˇ D ˇ.n/, GapCVPˇ is in coNP then so is GapSVPˇ .

Proof. Consider an instance of GapSVPˇ given by the lattice L whose basis is
.b1; : : : ; bn/ (in this proof we use Definitions 1 and 2 with d fixed to 1). We map
it to n instances of GapCVPˇ where the i th instance, i D 1; : : : ; n, is given by
the lattice Li spanned by .b1; : : : ; bi�1; 2bi ; biC1; : : : ; bn/ and the target vector bi .
In the following we show that this mapping has the property that if L is a YES

instance of GapSVPˇ then at least one of .Li ; bi / is a YES instance of GapCVPˇ

and if L is a NO instance then all n instances .Li ; bi / are NO instances. This will
complete the proof of the lemma since a NO witness for L can be given by n NO

witnesses for .Li ; bi /.
Consider the case where L is a YES instance. In other words, if

u D a1b1 C a2b2 C � � � C anbn

denotes the shortest vector, then its length is at most 1. Notice that not all the ai ’s
are even for otherwise the vector u=2 is a shorter lattice vector. Let j be such that
aj is odd. Then the distance of bj from the lattice Lj is at most kuk � 1 since
bj C u 2 Lj . Hence, .Lj ; bj / is a YES instance of GapCVPˇ . Now consider the
case where L is a NO instance of GapSVPˇ , i.e., the length of the shortest vector
in L is more than ˇ. Fix any i 2 Œn�. By definition, bi … Li and therefore for
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any w 2 Li the vector bi � w ¤ 0. On the other hand, bi � w 2 L and hence
kbi � wk > ˇ. This shows that d.bi ;Li / > ˇ and hence .Li ; bi / is a NO instance
of GapCVPˇ . �
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