
Chapter 11
Practical Lattice-Based Cryptography:
NTRUEncrypt and NTRUSign

Jeff Hoffstein, Nick Howgrave-Graham, Jill Pipher, and William Whyte

Abstract We provide a brief history and overview of lattice based cryptography
and cryptanalysis: shortest vector problems, closest vector problems, subset sum
problem and knapsack systems, GGH, Ajtai-Dwork and NTRU. A detailed discus-
sion of the algorithms NTRUEncrypt and NTRUSign follows. These algorithms
have attractive operating speed and keysize and are based on hard problems that are
seemingly intractable. We discuss the state of current knowledge about the security
of both algorithms and identify areas for further research.

Introduction and Overview

In this introduction, we will try to give a brief survey of the uses of lattices in
cryptography. Although it is rather a dry way to begin a survey, we should start with
some basic definitions related to the subject of lattices. Those with some familiarity
with lattices can skip the following section.

Some Lattice Background Material

A lattice L is a discrete additive subgroup of R
m. By discrete, we mean that there

exists an � > 0 such that for any v 2 L, and all w 2 R
m, if kv � wk < �, then w

does not belong to the lattice L. This abstract sounding definition transforms into a
relatively straightforward reality, and lattices can be described in the following way:
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Definition of a lattice

� Let v1; v2; : : : ; vk be a set of vectors in R
m. The set of all linear combi-

nations a1v1 C a2v2 C � � � C akvk , such that each ai 2 Z, is a lattice.
We refer to this as the lattice generated by v1; v2; : : : ; vk .
Bases and the dimension of a lattice

� If L D fa1v1 C a2v2 C : : : C anvnjai 2 Z; i D 1; : : : ng and
v1; v2; : : : ; vn are n independent vectors, then we say that v1; v2; : : : ; vn

is a basis for L and that L has dimension n. For any other basis
w1;w2; : : : ;wk , we must have k D n.

Two different bases for a lattice L are related to each other in almost the same
way that two different bases for a vector space V are related to each other. That is,
if v1; v2; : : : ; vn is a basis for a lattice L then w1;w2; : : : ;wn is another basis for L
if and only if there exist ai;j 2 Z such that

a1;1v1 C a1;2v2 C � � � C ˛1;nvn D w1

a2;1v1 C a2;2v2 C � � � C a2;nvn D w2

:::

an;1v1 C an;2v2 C � � � C an;nvn D wn

and the determinant of the matrix
0
BBB@

a1;1 a1;2 � � � a1;n

a2;1 a2;2 � � � a2;n

:::

an;1 an;2 � � � an;n

1
CCCA

is equal to 1 or �1. The only difference is that the coefficients of the matrix must
be integers. The condition that the determinant is nonzero in the vector space
case means that the matrix is invertible. This translates in the lattice case to the
requirement that the determinant be 1 or �1, the only invertible integers.

A lattice is just like a vector space, except that it is generated by all linear combi-
nations of its basis vectors with integer coefficients, rather than real coefficients. An
important object associated to a lattice is the fundamental domain or fundamental
parallelepiped. A precise definition is given by:

Let L be a lattice of dimension n with basis v1; v2; : : : ; vn. A fundamental
domain for L corresponding to this basis is

F.v1; : : : ; vn/ D ft1v1 C t2v2 C � � � C tnvn W 0 � ti < 1g:

The volume of the fundamental domain is an important invariant associated to a
lattice. If L is a lattice of dimension n with basis v1; v2; : : : ; vn, the volume of the
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fundamental domain associated to this basis is called the determinant of L and is
denoted det.L/.

It is natural to ask if the volume of the fundamental domain for a lattice L
depends on the choice of basis. In fact, as was mentioned previously, two differ-
ent bases for L must be related by an integer matrix W of determinant ˙1. As a
result, the integrals measuring the volume of a fundamental domain will be related
by a Jacobian of absolute value 1 and will be equal. Thus, the determinant of a lattice
is independent of the choice of basis.

Suppose, we are given a lattice L of dimension n. Then, we may formulate the
following questions.

1. Shortest vector problem (SVP): Find the shortest non-zero vector in L, i.e., find
0 ¤ v 2 L such that kvk is minimized.

2. Closest vector problem (CVP): Given a vector w which is not inL, find the vector
v 2 L closest to w, i.e., find v 2 L such that kv �wk is minimized.

Both of these problems appear to be profound and very difficult as the dimension
n becomes large. Solutions, or even partial solutions to these problems also turn
out to have surprisingly many applications in a number of different fields. In full
generality, the CVP is known to be NP-hard and SVP is NP-hard under a certain
“randomized reduction” hypothesis.1 Also, SVP is NP-hard when the norm or dis-
tance used is the l1 norm. In practice, a CVP can often be reduced to a SVP and
is thought of as being “a little bit harder” than SVP. Reduction of CVP to SVP is
used by in [2] to prove that SVP is hard in Ajtai’s probabilistic sense. The interested
reader can consult Micciancio’s book [3] for a more compete treatment of the com-
plexity of lattice problems. In practice it is very hard to achieve “full generality.” In
a real world scenario, a cryptosystem based on an NP-hard or NP-complete problem
may use a particular subclass of that problem to achieve efficiency. It is then possible
that this subclass of problems could be easier to solve than the general problem.

Secondary problems, that are also very important, arise from SVP and CVP. For
example, one could look for a basis v1; : : : ; vn of L consisting of all “short” vec-
tors (e.g., minimize max kvik). This is known as the Short Basis Problem or SBP.
Alternatively, one might search for a nonzero vector v 2 L satisfying

kvk �  .n/kvshortestk;

where  is some slowly growing function of n, the dimension of L. For example,
for a fixed constant �, one could try to find v 2 L satisfying

kvk � �pnkvshortestk;

and similarly for CVP. These generalizations are known as approximate shortest and
closest vector problems, or ASVP, ACVP.

1 Under this hypothesis, the class of polynomial time algorithms is enlarged to include those that
are not deterministic but will with high probability terminate in polynomial time. See Ajtai [1]

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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How big, in fact, is the shortest vector in terms of the determinant and the dimen-
sion of L? A theorem of Hermite from the nineteenth century says that for a fixed
dimension n there exists a constant �n so that in every lattice L of dimension n, the
shortest vector satisfies

kvshortestk2 � �n det.L/2=n:

Hermite showed that �n � .4=3/.n�1/=2. The smallest possible value one can
take for �n is called Hermite’s constant. Its exact value is known only for 1 � n � 8
and for n D 24 [4]. For example, �2 D

p
4=3: We now explain why, for large n,

Hermite’s constant should be no larger than O.n/.
Although exact bounds for the size of the shortest vector of a lattice are unknown

for large n, one can make probabilistic arguments using the Gaussian heuristic. One
variant of the Gaussian heuristic states that for a fixed lattice L and a sphere of
radius r centered at 0, as r tends to infinity, the ratio of the volume of the sphere
divided by detL will approach the number of points of L inside the sphere. In two
dimensions, if L is simply Z

2, the question of how precisely the area of a circle
approximates the number of integer points inside the circle is a classical problem in
number theory. In higher dimensions, the problem becomes far more difficult. This
is because as n increases the error created by lattice points near the surface of the
sphere can be quite large. This becomes particularly problematic for small values
of r . Still, one can ask the question: For what value of r does the ratio

Vol.S/

detL

approach 1. This gives us in some sense an expected value for r , the smallest radius
at which the expected number of points of L with length less than r equals 1. Per-
forming this computation and using Stirling’s formula to approximate factorials, we
find that for large n this value is approximately

r D
r

n

2	e
.det.L//1=n :

For this reason, we make the following definition:
If L is a lattice of dimension n, we define the Gaussian expected shortest length

to be

�.L/ D
r

n

2	e
.det.L//1=n :

We will find this value �.L/ to be useful in quantifying the difficulty of locating
short vectors in lattices. It can be thought of as the probable length of the shortest
vector of a “random” lattice of given determinant and dimension. It seems to be the
case that if the actual shortest vector of a lattice L is significantly shorter than �.L/,
then LLL and related algorithms have an easier time locating the shortest vector.
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A heuristic argument identical to the above can be used to analyze the CVP.
Given a vector w which is not in L, we again expect a sphere of radius r centered
about w to contain one point of L after the radius is such that the volume of the
sphere equals det.L/. In this case also, the CVP becomes easier to solve as the ratio
of actual distance to the closest vector of L over “expected distance” decreases.

Knapsacks

The problems of factoring integers and finding discrete logarithms are believed to
be difficult since no one has yet found a polynomial time algorithm for producing a
solution. One can formulate the decision form of the factoring problem as follows:
does there exist a factor of N less than p? This problem belongs to NP and another
complexity class, co-NP. Because it is widely believed that NP is not the same as
co-NP, it is also believed that factoring is not an NP-complete problem. Naturally,
a cryptosystem whose underlying problem is known to be NP-hard would inspire
greater confidence in its security. Therefore, there has been a great deal of interest
in building efficient public key cryptosystems based on such problems. Of course,
the fact that a certain problem is NP-hard does not mean that every instance of it is
NP-hard, and this is one source of difficulty in carrying out such a program.

The first such attempt was made by Merkle and Hellman in the late 70s [5], using
a particular NP-complete problem called the subset sum problem. This is stated as
follows:

The subset sum problem

Suppose one is given a list of positive integers
fM1;M2; : : : ;Mng. An unknown subset of the list is
selected and summed to give an integer S . Given S , recover
the subset that summed to S , or find another subset with the
same property.

Here, there is another way of describing this problem. A list of positive integers
M D fM1;M2; : : : ;Mng is public knowledge. Choose a secret binary vector x D
fx1; x2; : : : ; xng, where each xi can take on the value 1 or 0. If

S D
nX

iD1

xiMi

then how can one recover the original vector x in an efficient way? (Of course, there
might also be another vector x0 which also gives S when dotted with M.)

The difficulty in translating the subset sum problem into a cryptosystem is
that of building in a trapdoor. Merkle and Hellman’s system took advantage of the
fact that there are certain subset sum problems that are extremely easy to solve.
Suppose that one takes a sequence of positive integers r D fr1; r2; : : : ; rng with
the property that riC1 � 2ri for each 1 � i � n. Such a sequence is called super
increasing. Given an integer S , with S D x � r for a binary vector x, it is easy to
recover x from S .

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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The basic idea that Merkle and Hellman proposed was this: begin with a secret
super increasing sequence r and choose two large secret integers A, B , with B >

2rn and .A;B/ D 1. Here, rn is the last and largest element of r, and the lower
bound condition ensures that B must be larger than any possible sum of a subset
of the ri . Multiply the entries of r by A and reduce modulo B to obtain a new
sequence M, with each Mi 
 Ari .mod B/. This new sequence M is the public
key. Encryption then works as follows. The message is a secret binary vector x
which is encrypted to S D x �M. To decrypt S , multiply by A�1 .mod B/ to obtain
S 0 
 x � r .mod B/. If S 0 is chosen in the range 0 � S 0 � B � 1, one obtains an
exact inequality S 0 D x � r, as any subset of the integers ri must sum to an integer
smaller than B . The sequence r is super increasing and x may be recovered.

A cryptosystem of this type is known as a knapsack system. The general idea
is to start with a secret super increasing sequence, disguise it by some collection
of modular linear operations, then reveal the transformed sequence as the public
key. The original Merkle and Hellman system suggested applying a secret permuta-
tion to the entries of Ar .mod B/ as an additional layer of security. Later versions
were proposed by a number of people, involving multiple multiplications and reduc-
tions with respect to various moduli. For an excellent survey, see the article by
Odlyzko [6].

The first question one must ask about a knapsack system is concerns what mini-
mal properties must r; A, and B have to obtain a given level of security? Some very
easy attacks are possible if r1 is too small, so one generally takes 2n < r1. But, what
is the minimal value of n that we require? Because of the super increasing nature of
the sequence, one has

rn D O.S/ D O.22n/:

The space of all binary vectors x of dimension n has size 2n , and thus an exhaus-
tive search for a solution would require effort on the order of 2n. In fact, a meet in
the middle attack is possible, thus the security of a knapsack system with a list of
length n is O.2n=2/.

While the message consists of n bits of information, the public key is a list of n
integers, each approximately 2n bits long and there requires about 2n2 bits. There-
fore, taking n D 160 leads to a public key size of about 51200 bits. Compare this to
RSA or Diffie-Hellman, where, for security on the order of 280, the public key size
is about 1000 bits.

The temptation to use a knapsack system rather than RSA or Diffie-Hellman
was very great. There was a mild disadvantage in the size of the public key, but
decryption required only one (or several) modular multiplications and none were
required to encrypt. This was far more efficient than the modular exponentiations in
RSA and Diffie-Hellman.

Unfortunately, although a meet in the middle attack is still the best known attack
on the general subset sum problem, there proved to be other, far more effective,
attacks on knapsacks with trapdoors. At first, some very specific attacks were
announced by Shamir, Odlyzko, Lagarias, and others. Eventually, however, after
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the publication of the famous LLL paper [7] in 1985, it became clear that a secure
knapsack-based system would require the use of an n that was too large to be
practical.

A public knapsack can be associated to a certain lattice L as follows. Given a
public list M and encrypted message S , one constructs the matrix

0

BBBBBBB@

1 0 0 � � � 0 m1

0 1 0 � � � 0 m2

0 0 1 � � � 0 m3

:::
:::

:::
: : :

:::
:::

0 0 0 � � � 1 mn

0 0 0 � � � 0 S

1

CCCCCCCA

with row vectors v1 D .1; 0; 0; : : : ; 0;m1/; v2 D .0; 1; 0; : : : ; 0;m2/; : : : ; vn D
.0; 0; 0; : : : ; 1;mn/ and vnC1 D .0; 0; 0; : : : ; 0; S/. The collection of all linear com-
binations of the vi with integer coefficients is the relevant lattice L. The determinant
of L equals S . The statement that the sum of some subset of the mi equals S
translates into the statement that there exists a vector t 2 L,

t D
nX

iD1

xi vi � vnC1 D .x1; x2; : : : ; xn; 0/;

where each xi is chosen from the set f0; 1g. Note that the last entry in t is 0 because
the subset sum problem is solved and the sum of a subset of the mi is canceled by
the S .

The crux of the matter

As the xi are binary, ktk � pn. In fact, as roughly half of the xi will be
equal to 0, it is very likely that ktk �pn=2. On the other hand, the size
of each kvik varies between roughly 2n and 22n. The key observation
is that it seems rather improbable that a linear combination of vectors
that are so large should have a norm that is so small.

The larger the weights mi were, the harder the subset sum problem was to solve
by combinatorial means. Such a knapsack was referred to as a low density knapsack.
However, for low density knapsacks, S was larger and thus the ratio of the actual
smallest vector to the expected smallest vector was smaller. Because of this, the LLL
lattice reduction method was more more effective on a low density knapsack than
on a generic subset sum problem.

It developed that, using LLL, if n is less than around 300, a secret message x can
be recovered from an encrypted message S in a fairly short time. This meant that in
order to have even a hope of being secure, a knapsack would need to have n > 300,
and a corresponding public key length that was greater than 180000 bits. This was
sufficiently impractical that knapsacks were abandoned for some years.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Expanding the Use of LLL in Cryptanalysis

Attacks on the discrete logarithm problem and factorization were carefully analyzed
and optimized by many researchers, and their effectiveness was quantified. Curi-
ously, this did not happen with LLL, and improvements in lattice reduction methods
such as BKZ that followed it. Although quite a bit of work was done on improving
lattice reduction techniques, the precise effectiveness of these techniques on lattices
of various characteristics remained obscure. Of particular interest was the question
of how the running times of LLL and BKZ required to solve SVP or CVP varied
with the dimension of the lattice, the determinant, and the ratio of the actual shortest
vector’s length to the expected shortest length.

In 1996–1997, several cryptosystems were introduced whose underlying hard
problem was SVP or CVP in a lattice L of dimension n. These were, in alphabetical
order:

� Ajtai-Dwork, ECCC report 1997 [8]
� GGH, presented at Crypto ’97 [9]
� NTRU, presented at the rump session of Crypto ’96 [10]

The public key sizes associated to these cryptosystems wereO.n4/ for Ajtai-Dwork,
O.n2/ for GGH, and O.n log n/ for NTRU.

The system proposed by Ajtai and Dwork was particularly interesting in that
they showed that it was provably secure unless a worst case lattice problem could
be solved in polynomial time. Offsetting this, however, was the large key size. Sub-
sequently, Nguyen and Stern showed, in fact, that any efficient implementation of
the Ajtai-Dwork system was insecure [11].

The GGH system can be explained very simply. The owner of the private key
has the knowledge of a special small, reduced basis R for L. A person wishing to
encrypt a message has access to the public key B , which is a generic basis for L.
The basis B is obtained by multiplying R by several random unimodular matrices,
or by putting R into Hermite normal form, as suggested by Micciancio.

We associate toB andR, corresponding matrices whose rows are the n vectors in
the respective basis. A plaintext is a row vector of n integers, x, and the encryption
of x is obtained by computing e D xB C r, where r is a random perturbation vector
consisting of small integers. Thus, xB is contained in the lattice L while e is not.
Nevertheless, if r is short enough, then with high probability, xB is the unique point
in L which is closest to e.

A person with knowledge of the private basis R can compute xB using Babai’s
technique [12], from which x is then obtained. More precisely, using the matrix R,
one can compute eR�1 and then round each coefficient of the result to the near-
est integer. If r is sufficiently small, and R is sufficiently short and close to being
orthogonal, then the result of this rounding process will most likely recover the
point xB .

Without the knowledge of any reduced basis for L, it would appear that breaking
GGH was equivalent to solving a general CVP. Goldreich, Goldwasser, and Halevi
conjectured that for n > 300 this general CVP would be intractable. However, the
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effectiveness of LLL (and later variants of LLL) on lattices of high dimension had
not been closely studied. In [13], Nguyen showed that some information leakage in
GGH encryption allowed a reduction to an easier CVP problem, namely one where
the ratio of actual distance to the closest vector to expected length of the shortest
vector of L was smaller. Thus, he was able to solve GGH challenge problems in
dimensions 200, 250, 300, and 350. He did not solve their final problem in dimen-
sion 400, but at that point the key size began to be too large for this system to
be practical. It also was not clear at this point how to quantify the security of the
n D 400 case.

The NTRU system was described at the rump session of Crypto ’96 as a ring
based public key system that could be translated into an SVP problem in a special
class of lattices.2 Specifically, the NTRU lattice L consists of all integer row vectors
of the form .x; y/ such that

y 
 xH .mod q/:

Here, q is a public positive integer, on the order of 8 to 16 bits, andH is a public
circulant matrix. Congruence of vectors modulo q is interpreted component-wise.
Because of its circulant nature, H can be described by a single vector, explaining
the shorter public keys.

An NTRU private key is a single short vector .f; g/ in L. This vector is used,
rather than Babai’s technique, to solve a CVP for decryption. Together with its rota-
tions, .f; g/ yields half of a reduced basis. The vector .f; g/ is likely to be the shortest
vector in the public lattice, and thus NTRU is vulnerable to efficient lattice reduction
techniques.

At Eurocrypt ’97, Coppersmith and Shamir pointed out that any sufficiently
short vector in L, not necessarily .f; g/ or one of its rotations, could be used as a
decryption key. However, they remarked that this really did not matter as:

“We believe that for recommended parameters of the NTRU cryptosystem, the
LLL algorithm will be able to find the original secret key f...”

However, no evidence to support this belief was provided, and the very interest-
ing question of quantifying the effectiveness of LLL and its variants against lattices
of NTRU type remained.

At the rump session of Crypto ’97, Lieman presented a report on some prelimi-
nary work by himself and the developers of NTRU on this question. This report, and
many other experiments supported the assertion that the time required for LLL-BKZ
to find the smallest vector in a lattice of dimension n was at least exponential in n.
See [14] for a summary of part of this investigation.

The original algorithm of LLL corresponds to block size 2 of BKZ and provably
returns a reasonably short vector of the lattice L. The curious thing is that in low
dimensions this vector tends to be the actual shortest vector of L. Experiments have
led us to the belief that the BKZ block size required to find the actual shortest vector

2 NTRU was published in ANTS ’98. Its appearance in print was delayed by its rejection by the
Crypto ’97 program committee.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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in a lattice is linear in the dimension of the lattice, with an implied constant depend-
ing upon the ratio of the actual shortest vector length over the Gaussian expected
shortest length. This constant is sufficiently small that in low dimensions the rele-
vant block size is 2. It seems possible that it is the smallness of this constant that
accounts for the early successes of LLL against knapsacks. The exponential nature
of the problem overcomes the constant as n passes 300.

Digital Signatures Based on Lattice Problems

In general, it is very straight forward to associate a digital signature process to a
lattice where the signer possess a secret highly reduced basis and the verifier has
only a public basis for the same lattice. A message to be signed is sent by some
public hashing process to a random point m in Z

n. The signer, using the method
of Babai and the private basis, solves the CVP and finds a lattice point s which is
reasonably close to m. This is the signature on the message m. Anyone can verify,
using the public basis, that s 2 L and s is close to m. However, presumably someone
without the knowledge of the reduced basis would have a hard time finding a lattice
point s0 sufficiently close to m to count as a valid signature.

However, any such scheme has a fundamental problem to overcome: every valid
signature corresponds to a vector difference s�m. A transcript of many such s�m
will be randomly and uniformly distributed inside a fundamental parallelepiped
of the lattice. This counts as a leakage of information and as Nguyen and Regev
recently showed, this vulnerability makes any such scheme subject to effective
attacks based on independent component analysis [15].

In GGH, the private key is a full reduced basis for the lattice, and such a digital
signature scheme is straightforward to both set up and attack. In NTRU, the pri-
vate key only reveals half of a reduced basis, making the process of setting up an
associated digital signature scheme considerably less straightforward.

The first attempt to base a digital signature scheme upon the same principles
as “NTRU encryption” was NSS [16]. Its main advantage, (and also disadvantage)
was that it relied only on the information immediately available from the private key,
namely half of a reduced basis. The incomplete linkage of the NSS signing process
to the CVP problem in a full lattice required a variety of ad hoc methods to bind
signatures and messages, which were subsequently exploited to break the scheme.
An account of the discovery of the fatal weaknesses in NSS can be found in Sect. 7
of the extended version of [17], available at [18].

This paper contains the second attempt to base a signature scheme on the NTRU
lattice (NTRUSign) and also addresses two issues. First, it provides an algorithm
for generating the full short basis of an NTRU lattice from the knowledge of the
private key (half the basis) and the public key (the large basis). Second, it described
a method of perturbing messages before signing to reduce the efficiency of tran-
script leakage (see Section “NTRUSign Signature Schemes: Perturbations”). The
learning theory approach of Nguyen and Regev in [15] shows that about 90,000
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signatures compromises the security of basic NTRUSign without perturbations.
W. Whyte pointed out at the rump session of Crypto ’06 that by applying rotations
to effectively increase the number of signatures, the number of signatures required
to theoretically determine a private key was only about 1000. Nguyen added this
approach to his and Regev’s technique and was able to, in fact, recover the private
key with roughly this number of signatures.

The NTRUEncrypt and NTRUSign Algorithms

The rest of this article is devoted to a description of the NTRUEncrypt and
NTRUSign algorithms, which at present seem to be the most efficient embodiments
of public key algorithms whose security rests on lattice reduction.

NTRUEncrypt

NTRUEncrypt is typically described as a polynomial based cryptosystem involving
convolution products. It can naturally be viewed as a lattice cryptosystem too, for a
certain restricted class of lattices.

The cryptosystem has several natural parameters and, as with all practical cryp-
tosystems, the hope is to optimize these parameters for efficiency while at the same
time avoiding all known cryptanalytic attacks.

One of the more interesting cryptanalytic techniques to date concerning NTRU-
Encrypt exploits the property that, under certain parameter choices, the cryp-
tosystem can fail to properly decrypt valid ciphertexts. The functionality of the
cryptosystem is not adversely affected when these, so-called, “decryption failures”
occur with only a very small probability on random messages, but an attacker can
choose messages to induce failure, and assuming he knows when messages have
failed to decrypt (which is a typical security model in cryptography) there are effi-
cient ways to extract the private key from knowledge of the failed ciphertexts (i.e.,
the decryption failures are highly key-dependent). This was first noticed in [19, 20]
and is an important consideration in choosing parameters for NTRUEncrypt.

Other security considerations for NTRUEncrypt parameters involve assessing
the security of the cryptosystem against lattice reduction, meet-in-the-middle attacks
based on the structure of the NTRU private key, and hybrid attacks that combine both
of these techniques.

NTRUSign

The search for a “zero-knowledge” lattice-based signature scheme is a fascinat-
ing open problem in cryptography. It is worth commenting that most cryptog-
raphers would assume that anything purporting to be a signature scheme would

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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automatically have the property of “zero-knowledge,” i.e., the definition of a sig-
nature scheme implies the problems of determining the private key or creating
forgeries should become not easier after having seen a polynomial number of
valid signatures. However, in the theory of lattices, signature schemes with reduc-
tion arguments are just emerging and their computational effectiveness is currently
being examined. For most lattice-based signature schemes, there are explicit attacks
known which use the knowledge gained from a transcript of signatures.

When considering practical signature schemes, the “zero-knowledge” property
is not essential for the scheme to be useful. For example, smart cards typically burn
out before signing a million times, so if the private key in infeasible to obtain (and
a forgery is impossible to create) with a transcript of less than a million signatures,
then the signature scheme would be sufficient in this environment. It, therefore,
seems that there is value in developing efficient, non-zero-knowledge, lattice-based
signature schemes.

The early attempts [16, 21] at creating such practical signature schemes from
NTRU-based concepts succumbed to attacks which required transcripts of far too
small a size [22, 23]. However, the known attacks on NTRUSign, the currently
recommended, signature scheme, require transcript lengths of impractical length,
i.e., the signatures scheme does appear to be of practical significance at present.

NTRUSign was invented between 2001 and 2003 by the inventors of NTRUEn-
crypt together with N. Howgrave-Graham and W. Whyte [17]. Like NTRUEncrypt
it is highly parametrizable and, in particular, has a parameter involving the num-
ber of perturbations. The most interesting cryptanalytic progress on NTRUSign has
been showing that it must be used with at least one perturbation, i.e., there is an
efficient and elegant attack [15, 24] requiring a small transcript of signatures in the
case of zero perturbations.

Contents and Motivation

This paper presents an overview of operations, performance, and security consid-
erations for NTRUEncrypt and NTRUSign. The most up-to-date descriptions of
NTRUEncrypt and NTRUSign are included in [25] and [26], respectively. This
paper summarizes, and draws heavily on, the material presented in those papers.

This paper is structured as follows. First, we introduce and describe the algo-
rithms NTRUEncrypt and NTRUSign. We then survey known results about the
security of these algorithms, and then present performance characteristics of the
algorithms.

As mentioned above, the motivation for this work is to produce viable crypto-
graphic primitives based on the theory of lattices. The benefits of this are twofold:
the new schemes may have operating characteristics that fit certain environments
particularly well. Also, the new schemes are based on different hard problems from
the current mainstream choices of RSA and ECC.
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The second point is particularly relevant in a post-quantum world. Lattice reduc-
tion is a reasonably well-studied hard problem that is currently not known to
be solved by any polynomial time, or even subexponential time, quantum algo-
rithms [27, 28]. While the algorithms are definitely of interest even in the classical
computing world, they are clearly prime candidates for widespread adoption should
quantum computers ever be invented.

NTRUEncrypt: Overview

Parameters and Definitions

An implementation of the NTRUEncrypt encryption primitive is specified by the
following parameters:

N Degree Parameter. A positive integer. The associated NTRU lattice has
dimension 2N .

q Large Modulus. A positive integer. The associated NTRU lattice is a
convolution modular lattice of modulus q.

p Small Modulus. An integer or a polynomial.
Df ;Dg Private Key Spaces. Sets of small polynomials from which the private

keys are selected.
Dm Plaintext Space. Set of polynomials that represent encryptable mes-

sages. It is the responsibility of the encryption scheme to provide a
method for encoding the message that one wishes to encrypt into a
polynomial in this space.

Dr Blinding Value Space. Set of polynomials from which the temporary
blinding value used during encryption is selected.

center Centering Method. A means of performing mod q reduction on decryp-
tion.

Definition 1. The Ring of Convolution Polynomials is

R D ZŒX�

.XN � 1/ :

Multiplication of polynomials in this ring corresponds to the convolution product of
their associated vectors, defined by

.f � g/.X/ D
N�1X

kD0

� X

iCj�k .mod N /

fi � gj

�
Xk :

We also use the notationRq D .Z=qZ/ŒX�

.XN�1/
: Convolution operations in the ring Rq are

referred to as modular convolutions.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Definition 2. A polynomial a.X/ D a0 C a1X C � � � C aN�1X
N�1 is identified

with its vector of coefficients a D Œa0; a1; : : : ; aN�1�. The mean Na of a polynomial
a is defined by Na D 1

N

PN�1
iD0 ai . The centered norm kak of a is defined by

kak2 D
N�1X

iD0

a2
i �

1

N

 
N�1X

iD0

ai

!2

: (11.1)

Definition 3. The width Width.a/ of a polynomial or vector is defined by

Width.a/ D Max.a0; : : : ; aN�1/ �Min.a0; : : : ; aN�1/ :

Definition 4. A binary polynomial is one whose coefficients are all in the set f0; 1g.
A trinary polynomial is one whose coefficients are all in the set f0;˙1g. If one of
the inputs to a convolution is a binary polynomial, the operation is referred to as a
binary convolution. If one of the inputs to a convolution is a trinary polynomial, the
operation is referred to as a trinary convolution.

Definition 5. Define the polynomial spaces BN .d/; TN .d/; TN .d1; d2/ as follows.
Polynomials in BN .d/ have d coefficients equal to 1, and the other coefficients
are 0. Polynomials in TN .d/ have d C 1 coefficients equal to 1, have d coefficients
equal to �1, and the other coefficients are 0. Polynomials in TN .d1; d2/ have d1

coefficients equal to 1, have d2 coefficients equal to �1, and the other coefficients
are 0.

“Raw” NTRUEncrypt

Key Generation

NTRUEncrypt key generation consists of the following operations:

1. Randomly generate polynomials f and g in Df , Dg , respectively.
2. Invert f in Rq to obtain fq , invert f inRp to obtain fp , and check that g is invertible

in Rq [29].
3. The public key h D p � g � fq .mod q/. The private key is the pair .f; fp/.

Encryption

NTRUEncrypt encryption consists of the following operations:

1. Randomly select a “small”polynomial r 2 Dr .
2. Calculate the ciphertext e as e 
 r � hCm .mod q/.
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Decryption

NTRUEncrypt decryption consists of the following operations:

1. Calculate a 
 center.f � e/, where the centering operation center reduces
its input into the interval ŒA;AC q � 1�.

2. Recover m by calculating m 
 fp � a .mod p/.

To see why decryption works, use h 
 p � g � fq and e 
 r � hCm to obtain

a 
 p � r � gC f �m .mod q/ : (11.2)

For appropriate choices of parameters and center, this is an equality over Z, rather
than just over Zq . Therefore, step 2 recovers m: the p � r � g term vanishes, and
fp � f �m D m .mod p/.

Encryption Schemes: NAEP

To protect against adaptive chosen ciphertext attacks, we must use an appropriately
defined encryption scheme. The scheme described in [30] gives provable security
in the random oracle model [31, 32] with a tight (i.e., linear) reduction. We briefly
outline it here.

NAEP uses two hash functions:

G W f0; 1gN�l � f0; 1gl ! Dr H W f0; 1gN ! f0; 1gN

To encrypt a message M 2 f0; 1gN�l using NAEP one uses the functions

compress.x/ D .x .mod q// .mod 2/;

B2P W f0; 1gN ! Dm [ “error”; P2B W Dm ! f0; 1gN

The function compress puts the coefficients of the modular quantity x .mod q/
in to the interval Œ0; q/, and then this quantity is reduced modulo 2. The role of
compress is simply to reduce the size of the input to the hash function H for
gains in practical efficiency.The function B2P converts a bit string into a binary
polynomial, or returns “error” if the bit string does not fulfil the appropriate criteria –
for example, if it does not have the appropriate level of combinatorial security. The
function P2B converts a binary polynomial to a bit string.

The encryption algorithm is then specified by:

1. Pick b
R f0; 1gl .

2. Let r D G.M; b/, m D B2P. .M jjb/˚H.compress.r � h// /.
3. If B2P returns “error”, go to step 1.
4. Let e D r � hCm 2 Rq .

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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Step 3 ensures that only messages of the appropriate form will be encrypted.
To decrypt a message e 2 Rq , one does the following:

1. Let a D center.f � e .mod q//.
2. Let m D f�1

p � a .mod p/.
3. Let s D e �m.
4. Let M jjb D P2B.m/˚H.compress.P2B.s///.
5. Let r D G.M; b/.
6. If r � h D s .mod q/, and m 2 Dm, then return the message M , else return the

string “invalid ciphertext.”

The use of the scheme NAEP introduces a single additional parameter:

l Random Padding Length. The length of the random padding b concatenated
with M in step 1.

Instantiating NAEP: SVES-3

The EESS#1 v2 standard [21] specifies an instantiation of NAEP known as SVES-
3. In SVES-3, the following specific design choices are made:

� To allow variable-length messages, a one-byte encoding of the message length in
bytes is prepended to the message. The message is padded with zeroes to fill out
the message block.

� The hash function G which is used to produce r takes as input M ; b; an OID
identifying the encryption scheme and parameter set; and a string htrunc derived
by truncating the public key to length lh bits.

SVES-3 includes htrunc in G so that r depends on the specific public key. Even
if an attacker was to find an .M; b/ that gave an r with an increased chance of a
decryption failure, that .M; b/ would apply only to a single public key and could not
be used to attack other public keys. However, the current recommended parameter
sets do not have decryption failures and so there is no need to input htrunc to G. We
will therefore use SVES-3but set lh D 0.

NTRUEncrypt Coins!

It is both amusing and informative to view the NTRUEncrypt operations as working
with “coins.” By coins, we really mean N -sided coins, like the British 50 pence
piece.

An element of R maps naturally to anN -sided coin: one simply write the integer
entries of a 2 R on the side-faces of the coin (with “heads” facing up, say). Mul-
tiplication by X in R is analagous to simply rotating the coin, and addition of two
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elements in R is analagous to placing the coins on top of each other and summing
the faces. A generic multiplication by an element in R is thus analagous to multiple
copies of the same coin being rotated by different amonuts, placed on top of each
other, and summed.

The NTRUEncrypt key recovery problem is a binary multiplication problem,
i.e., given df copies of the h-coin the problem is to pile them on top of eachother
(with distinct rotations) so that the faces sum to zero or one modulo q.

The raw NTRUEncrypt encryption function has a similar coin analogy: one
piles dr copies of the h-coin on top of one another with random (but distinct) rota-
tions, then one sums the faces modulo q, and adds a small f0; 1g perturbation to
faces modulo q (corresponding to the message). The resulting coin, c, is a valid
NTRUEncrypt ciphertext.

The NTRUEncrypt decryption function also has a similar coin analogy: one
piles df copies of a c-coin (corresponding to the ciphertext) on top of each other
with rotations corresponding to f . After summing the faces modulo q, centering,
and then a reduction modulo p, one should recover the original message m.

These NTRUEncrypt operations are so easy, it seems strong encryption could
have been used centuries ago, had public-key encryption been known about. From
a number theoretic point of view, the only nontrivial operation is the creation of the
h coin (which involves Euclid’s algorithm over polynomials).

NTRUSign: Overview

Parameters

An implementation of the NTRUSign primitive uses the following parameters:

N Polynomials have degree < N
q Coefficients of polynomials are reduced modulo q

Df ;Dg Polynomials in T .d/ have d C 1 coefficients equal to 1, have d coeffi-
cients equal to �1, and the other coefficients are 0.

N The norm bound used to verify a signature.
ˇ The balancing factor for the norm k � kˇ . Has the property 0 < ˇ � 1.

“Raw” NTRUSign

Key Generation

NTRUSign key generation consists of the following operations:

1. Randomly generate “small” polynomials f and g in Df , Dg , respectively, such
that f and g are invertible modulo q.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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2. Find polynomials F and G such that

f �G � g � F D q ; (11.3)

and F and G have size

kFk � kGk � kfkpN=12 : (11.4)

This can be done using the methods of [17]
3. Denote the inverse of f in Rq by fq , and the inverse of g in Rq by gq . The public

key h D F � fq .mod q/ D G � gq .mod q/. The private key is the pair .f;g/.

Signing

The signing operation involves rounding polynomials. For any a 2 Q, let bae denote
the integer closest to a, and define fag D a � bae. (For numbers a that are midway
between two integers, we specify that fag D C1

2
, rather than �1

2
.) If A is a poly-

nomial with rational (or real) coefficients, let bAe and fAg be A with the indicated
operation applied to each coefficient.

“Raw” NTRUSign signing consists of the following operations:

1. Map the digital documentD to be signed to a vector m 2 Œ0; q/N using an agreed
hash function.

2. Set

.x; y/ D .0;m/
�

G �F
�g f

�
=q D

��m � g
q

;
m � f
q

�
:

3. Set
� D �fxg and �0 D �fyg : (11.5)

4. Calculate s, the signature, as

s D �fC �0g : (11.6)

Verification

Verification involves the use of a balancing factor ˇ and a norm bound N . To verify,
the recipient does the following:

1. Map the digital document D to be verified to a vector m 2 Œ0; q/N using the
agreed hash function.

2. Calculate t D s � h mod q, where s is the signature, and h is the signer’s public
key.
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3. Calculate the norm

� D min
k1;k22R

�ksC k1qk2 C ˇ2k.t �m/C k2qk2
�1=2

: (11.7)

4. If � � N , the verification succeeds, otherwise, it fails.

Why NTRUSign Works

Given any positive integers N and q and any polynomial h 2 R, we can construct a
lattice Lh contained in R2 Š Z

2N as follows:

Lh D Lh.N; q/ D
˚
.r; r 0/ 2 R � R ˇ̌

r 0 
 r � h .mod q/
�
:

This sublattice of Z
2N is called a convolution modular lattice. It has dimension

equal to 2N and determinant equal to qN .
Since

det

�
f F
g G

�
D q

and we have defined h D F=f D G=g mod q, we know that

�
f F
g G

�
and

�
1 h
0 q

�

are bases for the same lattice. Here, as in [17], a 2-by-2 matrix of polynomials is
converted to a 2N -by-2N integer matrix matrix by converting each polynomial in
the polynomial matrix to its representation as an N -by-N circulant matrix, and the
two representations are regarded as equivalent.

Signing consists of finding a close lattice point to the message point .0;m/ using
Babai’s method: express the target point as a real-valued combination of the basis
vectors, and find a close lattice point by rounding off the fractional parts of the real
coefficients to obtain integer combinations of the basis vectors. The error introduced
by this process will be the sum of the rounding errors on each of the basis vectors,
and the rounding error by definition will be between �1

2
and 1

2
. In NTRUSign, the

basis vectors are all of the same length, so the expected error introduced by 2N
roundings of this type will be

p
N=6 times this length.

In NTRUSign, the private basis is chosen such that kfk D kgk and kFk � kGk �p
N=12kfk. The expected error in signing will therefore be

p
N=6kfk C ˇ.N=6p2/kfk: (11.8)

In contrast, an attacker who uses only the public key will likely produce a
signature with N incorrect coefficients, and those coefficients will be distributed

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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randomly mod q. The expected error in generating a signature with a public key is
therefore

ˇ
p
N=12q : (11.9)

(We discuss security considerations in more detail in Section “NTRUSign Security
Considerations” and onwards; the purpose of this section is to argue that it is plau-
sible that the private key allows the production of smaller signatures than the public
key).

It is therefore clear that it is possible to choose kfk and q such that the knowledge
of the private basis allows the creation of smaller signing errors than knowledge of
the public basis alone. Therefore, by ensuring that the signing error is less than that
could be expected to be produced by the public basis, a recipient can verify that the
signature was produced by the owner of the private basis and is therefore valid.

NTRUSign Signature Schemes: Chosen Message Attacks,
Hashing, and Message Preprocessing

To prevent chosen message attacks, the message representative m must be gener-
ated in some pseudo-random fashion from the input document D. The currently
recommended hash function for NTRUSign is a simple Full Domain Hash. First
the message is hashed to a “seed” hash value Hm. Hm is then hashed in counter
mode to produce the appropriate number of bits of random output, which are treated
as N numbers mod q. Since q is a power of 2, there are no concerns with bias.

The above mechanism is deterministic. If parameter sets were chosen that gave a
significant chance of signature failure, the mechanism can be randomized as follows.
The additional input to the process is rlen, the length of the randomizer in bits.

On signing:

1. Hash the message as before to generateHm.
2. Select a randomizer r consisting of rlen random bits.
3. Hash Hmkr in counter mode to obtain enough output for the message represen-

tative m.
4. On signing, check that the signature will verify correctly.

a. If the signature does not verify, repeat the process with a different r .
b. If the signature verifies, send the tuple .r; s/ as the signature.

On verification, the verifier uses the received r and the calculatedHm as input to
the hash in counter mode to generate the same message representative as the signer
used.

The size of r should be related to the probability of signature failure. An attacker
who is able to determine through timing information that a givenHm required mul-
tiple rs knows that at least one of those rs resulted in a signature that was too big,
but does not know which message it was or what the resulting signature was. It is
an open research question to quantify the appropriate size of r for a given signature
failure probability, but in most cases, rlen D 8 or 32 should be sufficient.



11 369

NTRUSign Signature Schemes: Perturbations

To protect against transcript attacks, the raw NTRUSign signing algorithm defined
above is modified as follows.

On key generation, the signer generates a secret perturbation distribution
function.

On signing, the signer uses the agreed hash function to map the document D to
the message representative m. However, before using his or her private key, he or
she chooses an error vector e drawn from the perturbation distribution function that
was defined as part of key generation. He or she then signs m C e, rather than m
alone.

The verifier calculates m, t, and the norms of s and t�m and compares the norms
to a specified bound N as before. Since signatures with perturbations will be larger
than unperturbed signatures, N and, in fact, all of the parameters will in general be
different for the perturbed and unpertubed cases.

NTRU currently recommends the following mechanism for generating perturba-
tions.

Key Generation

At key generation time, the signer generates B lattices L1 : : : LB . These lattices are
generated with the same parameters as the private and public key lattice, L0, but are
otherwise independent of L0 and of each other. For each Li , the signer stores fi ,
gi , hi .

Signing

When signing m, for each Li starting with LB , the signer does the following:

1. Set .x; y/ D
��m�gi

q
;

m�fi
q

�
:

2. Set � D �fxg and �0 D �fyg :
3. Set si D �fi C �0gi .
4. Set s D sC si .
5. If i = 0 stop and output s; otherwise, continute
6. Set ti D si � hi mod q
7. Set m D ti � .si � hi�1/ mod q.

The final step translates back to a point of the form .0;m/ so that all the signing
operations can use only the f and g components, allowing for greater efficiency. Note
that steps 6 and 7 can be combined into the single step of setting m D si�.hi�hi�1/

to improve performance.
The parameter sets defined in [26] take B D 1.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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NTRUEncrypt Performance

NTRUEncrypt Parameter Sets

There are many different ways of choosing “small” polynomials. This section
reviews NTRU’s current recommendations for choosing the form of these polynomi-
als for the best efficiency. We focus here on choices that improve efficiency; security
considerations are looked at in Section “NTRUEncrypt Security Considerations”.

Form of f

Published NTRUEncrypt parameter sets [25] take f to be of the form f D 1C pF.
This guarantees that fp D 1, eliminating one convolution on decryption.

Form of F, g, r

NTRU currently recommends several different forms for F and r. If F and r take
binary and trinary form, respectively, they are drawn from BN .d/, the set of binary
polynomials with d 1s and N � d 0s or TN .d/, the set of trinary polynomials with
dC1 1s, d -1s andN �2d�1 0s. If F and r take product form, then F D f1� f2Cf3,

with f1; f2; f3
R BN .d/; TN .d/, and similarly for r. (The value d is considerably

lower in the product-form case than in the binary or trinary case).
A binary or trinary convolution requires on the order of dN adds mod q. The

best efficiency is therefore obtained when d is as low as possible consistent with the
security requirements.

Plaintext Size

For k-bit security, we want to transport 2k bits of message and we require l �
k, l the random padding length. SVES-3 uses 8 bits to encode the length of the
transported message.N must therefore be at least 3kC8. SmallerN will in general
lead to lower bandwidth and faster operations.

Form of p, q

The parameters p and q must be relatively prime. This admits of various combi-
nations, such as .p D 2; q D prime/, .p D 3; q D 2m/, and .p D 2 C X; q D
2m/.
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The B2P Function

The polynomial m produced by the B2P function will be a random trinary poly-
nomial. As the number of 1s, (in the binary case), or 1s and �1s (in the trinary
case), decreases, the strength of the ciphertext against both lattice and combinatorial
attacks will decrease. The B2P function therefore contains a check that the number
of 1s in m is not less than a value dm0

. This value is chosen to be equal to df . If,
during encryption, the encrypter generatesm that does not satisfy this criterion, they
must generate a different value of b and re-encrypt.

NTRUEncrypt Performance

Table 11.1 and Table 11.2 give parameter sets and running times (in terms of opera-
tions per second) for size optimized and speed optimized performance, respectively,
at different security levels corresponding to k bits of security. “Size” is the size of
the public key in bits. In the case of NTRUEncrypt and RSA, this is also the size
of the ciphertext; in the case of some ECC encryption schemes, such as ECIES,
the ciphertext may be a multiple of this size. Times given are for unoptimized C
implementations on a 1.7 GHz Pentium and include time for all encryption scheme
operations, including hashing, random number generation, as well as the primitive
operation. dm0

is the same in both the binary and product-form case and is omitted
from the product-form table.

For comparison, we provide the times given in [33] for raw elliptic curve point
multiplication (not including hashing or random number generation times) over the

Table 11.1 Size-optimized NTRUEncrypt parameter sets with trinary polynomials

k N d dm0 q size RSA ECC enc/s dec/s ECC Enc ECC Dec ECC
size size mult/s ratio ratio

112 401 113 113 2,048 4;411 2;048 224 2,640 1;466 1;075 4.91 1.36
128 449 134 134 2,048 4;939 3;072 256 2,001 1;154 661 6.05 1.75
160 547 175 175 2,048 6;017 4;096 320 1,268 718 n/a n/a n/a
192 677 157 157 2,048 7;447 7;680 384 1,188 674 196 12.12 3.44
256 1;087 120 120 2,048 11;957 15; 360 512 1,087 598 115 18.9 5.2

Table 11.2 Speed-optimized NTRUEncrypt parameter sets with trinary polynomials

k N d dm0 q size RSA ECC enc/s dec/s ECC Enc ECC Dec ECC
size size mult/s ratio ratio

112 659 38 38 2,048 7; 249 2,048 224 4,778 2,654 1,075 8.89 2.47
128 761 42 42 2,048 8; 371 3,072 256 3,767 2,173 661 11.4 3.29
160 991 49 49 2048 10; 901 4,096 320 2,501 1,416 n/a n/a n/a
192 1; 087 63 63 2,048 11; 957 7,680 384 1,844 1,047 196 18.82 5.34
256 1; 499 79 79 2,048 16; 489 15,360 512 1,197 658 115 20.82 5.72
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NIST prime curves. These times were obtained on a 400 MHz SPARC and have been
converted to operations per second by simply scaling by 400=1700. Times given are
for point multiplication without precomputation, as this corresponds to common
usage in encryption and decryption. Precomputation improves the point multipli-
cation times by a factor of 3.5–4. We also give the speedup for NTRUEncrypt
decryption vs. a single ECC point multiplication.

NTRUSign Performance

NTRUSign Parameter Sets

Form of f, g

The current recommended parameter sets take f and g to be trinary, i.e., drawn from
TN .d/. Trinary polynomials allow for higher combinatorial security than binary
polynomials at a given value of N and admit efficient implementations. A trinary
convolution requires .2d C 1/N adds and one subtract mod q. The best efficiency
is therefore obtained when d is as low as possible consistent with the security
requirements.

Form of p, q

The parameters q and N must be relatively prime. For efficiency, we take q to be a
power of 2.

Signing Failures

A low value of N , the norm bound, gives the possibility that a validly generated sig-
nature will fail. This affects efficiency, as if the chance of failure is non-negligible,
the signer must randomize the message before signing and check for failure on sig-
nature generation. For efficiency, we want to set N sufficiently high to make the
chance of failure negligible. To do this, we denote the expected size of a signature
by E and define the signing tolerance � by the formula

N D �E :

As � increases beyond 1, the chance of a signing failure appears to drop off expo-
nentially. In particular, experimental evidence indicates that the probability that a
validly generated signature will fail the normbound test with parameter � is smaller
than e�C.N /.��1/, where C.N/ > 0 increases with N . In fact, under the assumption
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that each coefficient of a signature can be treated as a sum of independent identi-
cally distributed random variables, a theoretical analysis indicates that C.N/ grows
quadratically in N . The parameter sets below were generated with � D 1:1, which
appears to give a vanishingly small probability of valid signature failure forN in the
ranges that we consider. It is an open research question to determine precise signa-
ture failure probabilities for specific parameter sets, i.e., to determine the constants
in C.N/.

NTRUSign Performance

With one perturbation, signing takes time equivalent to two “raw” signing operations
(as defined in Section “Signing”) and one verification. Research is ongoing into
alternative forms for the perturbations that could reduce this time.

Table 11.3 gives the parameter sets for a range of security levels, correspond-
ing to k-bit security, and the performance (in terms of signatures and verifications
per second) for each of the recommended parameter sets. We compare signature
times to a single ECC point multiplication with precomputation from [33]; with-
out precomputation, the number of ECC signatures/second goes down by a factor of
3.5–4. We compare verification times to ECDSA verification times without memory
constraints from [33]. As in Tables 11.1 and 11.2, NTRUSign times given are for
the entire scheme (including hashing, etc.), not just the primitive operation, while
ECDSA times are for the primitive operation alone.

Above the 80-bit security level, NTRUSign signatures are smaller than the
corresponding RSA signatures. They are larger than the corresponding ECDSA sig-
natures by a factor of about 4. An NTRUSign private key consists of sufficient space
to store f and g for the private key, plus sufficient space to store fi , gi , and hi for
each of the B perturbation bases. Each f and g can be stored in 2N bits, and each h
can be stored inN log2.q/ bits, so the total storage required for the one-perturbation

Table 11.3 Performance measures for different NTRUSign parameter sets. (Note: parameter sets
have not been assessed against the hybrid attack of Section “The Hybrid Attack” and may give less
than k bits of security)

Parameters Public key and sign/s vfy/s

k N d q NTRU ECDSA ECDSA RSA NTRU ECDSA Ratio NTRU ECDSA Ratio
key sig

80 157 29 256 1,256 192 384 1,024 4,560 5,140 0.89 15,955 1,349 11.83
112 197 28 256 1,576 224 448 �2,048 3,466 3,327 1.04 10,133 883 11.48
128 223 32 256 1,784 256 512 3,072 2,691 2,093 1.28 7,908 547 14.46
160 263 45 512 2,367 320 640 4,096 1,722 – – 5,686 – –
192 313 50 512 2,817 384 768 7,680 1,276 752 1.69 4,014 170 23.61
256 349 75 512 3,141 512 1024 15,360 833 436 1.91 3,229 100 32.29
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case is 16N bits for the 80- to 128-bit parameter sets below and 17N bits for the
160- to 256-bit parameter sets, or approximately twice the size of the public key.

Security: Overview

We quantify security in terms of bit strength k, evaluating how much effort an
attacker has to put in to break a scheme. All the attacks we consider here have vari-
able running times, so we describe the strength of a parameter set using the notion
of cost. For an algorithm A with running time t and probability of success ", the
cost is defined as

CA D t=" :

This definition of cost is not the only one that could be used. For example, in the
case of indistinguishability against adaptive chosen-ciphertext attack, the attacker
outputs a single bit i 2 f0; 1g, and obviously has a chance of success of at least
1
2

. Here, the probability of success is less important than the attacker’s advantage,
defined as

adv.A.ind// D 2:.PŒSuccŒA�� � 1=2/ :

However, in this paper, the cost-based measure of security is appropriate.
Our notion of cost is derived from [34] and related work. An alternate notion

of cost, which is the definition above multiplied by the amount of memory used, is
proposed in [35]. The use of this measure would allow significantly more efficient
parameter sets, as the meet-in-the-middle attack described in Section “Combinato-
rial Security” is essentially a time-memory tradeoff that keeps the product of time
and memory constant. However, current practice is to use the measure of cost above.

We also acknowledge that the notion of comparing public-key security levels
with symmetric security levels, or of reducing security to a single headline measure,
is inherently problematic – see an attempt to do so in [36], and useful comments on
this in [37]. In particular, extrapolation of breaking times is an inexact science, the
behavior of breaking algorithms at high security levels is by definition untested, and
one can never disprove the existence of an algorithm that attacks NTRUEncrypt (or
any other system) more efficiently than the best currently known method.

Common Security Considerations

This section deals with security considerations that are common to NTRUEncrypt
and NTRUSign.

Most public key cryptosystems, such as RSA [38] or ECC [39, 40], are based on
a one-way function for which there is one best-known method of attack: factoring
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in the case of RSA, Pollard-rho in the case of ECC. In the case of NTRU, there are
two primary methods of approaching the one-way function, both of which must be
considered when selecting a parameter set.

Combinatorial Security

Polynomials are drawn from a known space S. This space can best be searched by
using a combinatorial technique originally due to Odlyzko [41], which can be used
to recover f or g from h or r and m from e. We denote the combinatorial security of
polynomials drawn from S by CombŒS�

CombŒBN .d/� �
�

N=2
d=2

�
p
N

: (11.10)

For trinary polynomials in TN .d/, we find

CombŒT .d/� >
 

N

d C 1

!
=
p
N: (11.11)

For product-form polynomials in PN .d/, defined as polynomials of the form
a D a1 �a2Ca3, where a1;a2;a3 are all binary with da1

; da2
; da3

1s respectively,
da1 D da2 D da3 D da, and there are no further constraints on a, we find [25]:

CombŒPN .d/� � min

0

@
 
N � dN=de
d � 1

!2

;

max

  
N � dN

d
e

d � 1

! 
N � d N

d�/
e

d � 2

!
;

 
N

2d

!!
;

max

  
N

d

! 
N

d � 1

!
;

 
N � d N

2d
e

2d � 1

!!!

Lattice Security

An NTRU public key h describes a 2N -dimensional NTRU lattice containing the
private key (f, g) or (f, F). When f is of the form f D 1CpF, the best lattice attack on
the private key involves solving a Close Vector Problem (CVP).3 When f is not of the

3 Coppersmith and Shamir [42] propose related approaches which turn out not to materially affect
security.
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form f D 1C pF, the best lattice attack involves solving an Approximate Shortest
Vector Problem (apprSVP). Experimentally, it has been found that an NTRU lattice
of this form can usefully be characterized by two quantities

a D N=q;
c D

p
4	ekFkkgk=q (NTRUEncrypt);

D
p
4	ekfkkFk=q (NTRUSign):

(For product-form keys the norm kFk is variable but always obeys jFj
� p

D.N �D/=N , D D d 2 C d . We use this value in calculating the lattice
security of product-form keys, knowing that in practice the value of c will typically
be higher.)

This is to say that for constant .a; c/, the experimentally observed running times
for lattice reduction behave roughly as

log.T / D AN CB ;

for some experimentally-determined constants A and B .
Table 11.4 summarizes experimental results for breaking times for NTRU lattices

with different .a; c/ values. We represent the security by the constantsA andB . The
breaking time in terms of bit security is AN C B . It may be converted to time in
MIPS-years using the equality 80 bits� 1012 MIPS-years.

For constant .a; c/, increasing N increases the breaking time exponentially. For
constant .a;N /, increasing c increases the breaking time. For constant .c;N /,
increasing a decreases the breaking time, although the effect is slight. More details
on this table are given in [14].

Note that the effect of moving from the “standard” NTRUEncrypt lattice to the
“transpose” NTRUSign lattice is to increase c by a factor of .N=12/1=4. This allows
for a given level of lattice security at lower dimensions for the transpose lattice than
for the standard lattice. Since NTRUEncrypt uses the standard lattice, NTRUEn-
crypt key sizes given in [25] are greater than the equivalent NTRUSign key sizes at
the same level of security.

The technique known as zero-forcing [14,43] can be used to reduce the dimension
of an NTRU lattice problem. The precise amount of the expected performance gain
is heavily dependent on the details of the parameter set; we refer the reader to [14,
43] for more details. In practice, this reduces security by about 6–10 bits.

Table 11.4 Extrapolated bit security constants depending on .c; a/

c a A B

1.73 0.53 0:3563 �2:263
2.6 0.8 0:4245 �3:440
3.7 2.7 0:4512 C0:218
5.3 1.4 0:6492 �5:436
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The Hybrid Attack

In this section, we will review the method of [44]. The structure of the argument
is simpler for the less efficient version of NTRU where the public key has the
form h 
 f �1 � g .mod q/. The rough idea is as follows. Suppose one is given
N; q; d; e; h and hence implicitly an NTRUEncrypt public lattice L of dimension
2N . The problem is to locate the short vector corresponding to the secret key .f; g/.
One first chooses N1 < N and removes a 2N1 by 2N1 lattice L1 from the center
of L. Thus, the original matrix corresponding to L has the form

 
qIN 0

H IN

!
D

0

B@
qIN�N1

0 0

� L1 0

� � IN�N1

1

CA (11.12)

and L1 has the form  
qIN1

0

H1 IN1

!
: (11.13)

Here, H1 is a truncated piece of the circulant matrix H corresponding to h
appearing in (11.12). For increased flexibility, the upper left and lower right blocks
of L1 can be of different sizes, but for ease of exposition, we will consider only the
case where they are equal.

Let us suppose that an attacker must use a minimum of k1 bits of effort to
reduce L1 until all N1 of the q-vectors are removed. When this is done and
L1 is put in lower triangular form, the entries on the diagonal will have values
fq˛1 ; q˛2 ; : : : ; q˛2N1 g, where ˛1 C � � � C ˛2N1

D N1, and the ˛i will come very
close to decreasing linearly, with

1 � ˛1 > � � � > ˛2N1
� 0:

That is to say, L1 will roughly obey the geometric series assumption or GSA.
This reduction will translate back to a corresponding reduction of L, which when
reduced to lower triangular form will have a diagonal of the form

fq; q; : : : ; q; q˛1 ; q˛2 ; : : : ; q˛2N1 ; 1; 1; : : : ; 1g:

The key point here is that it requires k1 bits of effort to achieve this reduction,
with ˛2N1

� 0. If k2 > k1 bits are used, then the situation can be improved to
achieve ˛2N1

D ˛ > 0. As k2 increases the value of ˛ is increased.
In the previous work, the following method was used to launch the meet in the

middle attack. It was assumed that the coefficients of f are partitioned into two
blocks. These are of sizeN1 andK D N �N1. The attacker guesses the coefficients
of f that fall into the K block and then uses the reduced basis for L to check if his
or her guess is correct. The main observation of [44] is that a list of guesses can
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be made about half the coefficients in the K block and can be compared to a list of
guesses about the other half of the coefficients in the K block. With a probability
ps.˛/, a correct matching of two half guesses can be confirmed, where ps.0/ D 0

and ps.˛/ increases monotonically with ˛. In [44], a value of ˛ D 0:182 was used
with a corresponding probability ps.0:182/ D 2�13. The probability ps.0:182/ was
computed by sampling and the bit requirement, k2 was less than 60:3. In general,
if one used k2 bits of lattice reduction work to obtain a given ps.˛/ (as large as
possible), then the number of bits required for a meet in the middle search through
the K block decreases as K decreases and as ps.˛/ increases.

A very subtle point in [44] was the question of how to optimally choose N1 and
k2. The objective of an attacker was to choose these parameters so that k2 equalled
the bit strength of a meet in the middle attack on K , given the ps.˛/ corresponding
to N1. It is quite hard to make an optimal choice, and for details we refer the reader
to [44] and [45].

One Further Remark

For both NTRUEncrypt and NTRUSign the degree parameter N must be prime.
This is because, as Gentry observed in [46], if N is the composite, the related lat-
tice problem can be reduced to a similar problem in a far smaller dimension. This
reduced problem is then comparatively easy to solve.

NTRUEncrypt Security Considerations

Parameter sets for NTRUEncrypt at a k-bit security level are selected subject to the
following constraints:

� The work to recover the private key or the message through lattice reduction
must be at least k bits, where bits are converted to MIPS-years using the equality
80 bits� 1012 MIPS-years.

� The work to recover the private key or the message through combinatorial search
must be at least 2k binary convolutions.

� The chance of a decryption failure must be less than 2�k .

Decryption Failure Security

NTRU decryption can fail on validly encrypted messages if the center method
returns the wrong value of A, or if the coefficients of prg C fm do not lie in an
interval of width q. Decryption failures leak information about the decrypter’s pri-
vate key [19, 20]. The recommended parameter sets ensure that decryption failures
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will not happen by setting q to be greater than the maximum possible width of
prg Cm C pFm. q should be as small as possible while respecting this bound, as
lowering q increases the lattice constant c and hence the lattice security. Centering
then becomes simply a matter of reducing into the interval Œ0; q � 1�.

It would be possible to improve performance by relaxing the final condition
to require only that the probability of a decryption failure was less than 2�K .
However, this would require improved techniques for estimating decryption failure
probabilities.

N , q, and p

The small and large moduli p and q must be relatively prime in the ring R.
Equivalently, the three quantities

p; q; XN � 1

must generate the unit ideal in the ring ZŒX�. (As an example of why this is nec-
essary, in the extreme case that p divides q, the plaintext is equal to the ciphertext
reduced modulo p.)

Factorization of XN � 1 .mod q/

If F.X/ is a factor of XN � 1 .mod q/, and if h.X/ is a multiple of F.X/, i.e., if
h.X/ is zero in the field K D .Z=qZ/ŒX�=F.X/, then an attacker can recover the
value of m.X/ in the field K .

If q is prime and has order t .mod N/, then

XN � 1 
 .X � 1/F1.X/F2.X/ � � �F.N�1/=t .X/ in .Z=qZ/ŒX�;

where each Fi .X/ has degree t and is irreducible mod q. (If q is composite, there
are corresponding factorizations.) If Fi .X/ has degree t , the probability that h.X/
or r.X/ is divisible by Fi .X/ is presumably 1=qt . To avoid attacks based on the
factorization of h or r, we will require that for each prime divisorP of q, the order of
P .mod N/must beN �1 or .N �1/=2. This requirement has the useful side-effect
of increasing the probability that randomly chosen f will be invertible in Rq [47].

Information Leakage from Encrypted Messages

The transformation a! a.1/ is a ring homomorphism, and so the ciphertext e has
the property that

e.1/ D r.1/h.1/Cm.1/ :

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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An attacker will know h.1/, and for many choices of parameter set r.1/ will also
be known. Therefore, the attacker can calculate m.1/. The larger jm.1/ � N=2j is,
the easier it is to mount a combinatorial or lattice attack to recover the msssage, so
the sender should always ensure that kmk is sufficiently large. In these parameter
sets, we set a value dm0

such that there is a probability of less than 2�40 that the
number of 1s or 0s in a randomly generated m is less than dm0

. We then calculate
the security of the ciphertext against lattice and combinatorial attacks in the case
where m has exactly this many 1s and require this to be greater than 2k for k bits of
security.

NTRUEncrypt Security: Summary

In this section, we present a summary of the security measures for the parameter
sets under consideration. Table 11.5 gives security measures optimized for size.
Table 11.6 gives security measures optimized for speed. The parameter sets for
NTRUEncrypt have been calculated based on particular conservative assumptions
about the effectiveness of certain attacks. In particular, these assumptions assume
the attacks will be improved in certain ways over the current best known attacks,
although we do not know yet exactly how these improvements will be implemented.
The tables below show the strength of the current recommended parameter sets
against the best attacks that are currently known. As attacks improve, it will be
instructive to watch the “known hybrid strength” reduce to the recommended secu-
rity level. The “basic lattice strength” column measures the strength against a pure
lattice-based (nonhybrid) attack.

NTRUSign Security Considerations

This section considers security considerations that are specific to NTRUSign.

Table 11.5 NTRUEncrypt security measures for size-optimized parameters using trinary poly-
nomials

Recommended N q df Known hybrid c Basic lattice
security level strength strength

112 401 2,048 113 154:88 2:02 139:5

128 449 2,048 134 179:899 2:17 156:6

160 547 2,048 175 222:41 2:44 192:6

192 677 2,048 157 269:93 2:5 239

256 1,087 2,048 120 334:85 2:64 459:2
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Table 11.6 NTRUEncrypt security measures for speed-optimized parameters using trinary
polynomials

Recommended N q df Known hybrid c Basic lattice
security level strength strength

112 659 2,048 38 137:861 1.74 231:5

128 761 2,048 42 157:191 1.85 267:8

160 991 2,048 49 167:31 2.06 350:8

192 1; 087 2,048 63 236:586 2.24 384

256 1; 499 2,048 79 312:949 2.57 530:8

Security Against Forgery

We quantify the probability that an adversary, without the knowledge of f; g, can
compute a signature s on a given documentD. The constants N; q; ı; ˇ;N must be
chosen to ensure that this probability is less than 2�k , where k is the desired bit
level of security. To investigate this, some additional notation will be useful:

1. Expected length of s: Es

2. Expected length of t �m: Et

By Es, Et , we mean, respectively, the expected values of ksk and kt � mk
(appropriately reduced modq) when generated by the signing procedure described
in Section “Signing”. These will be independent of m but dependent on N; q; ı. A
genuine signature will then have expected length

E D
q
E2

s C ˇ2E2
t

and we will set

N D �
q
E2

s C ˇ2E2
t : (11.14)

As in the case of recovering the private key, an attack can be made by com-
binatorial means, by lattice reduction methods or by some mixing of the two. By
balancing these approaches, we will determine the optimal choice of ˇ, the public
scaling factor for the second coordinate.

Combinatorial Forgery

Let us suppose thatN; q; ı; ˇ;N ; h are fixed. An adversary is givenm, the image of
a digital documentD under the hash functionH . His or her problem is to locate an
s such that

k.s mod q; ˇ.h � s �m/ mod q/k < N :
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In particular, this means that for an appropriate choice of k1; k2 2 R

.k.s C k1qk2 C ˇ2kh � s �mC k2q/k2/1=2 < N :

A purely combinatorial attack that the adversary can take is to choose s at random
to be quite small, and then to hope that the point h � s �m lies inside of a sphere of
radius N=ˇ about the origin after its coordinates are reduced modq. The attacker
can also attempt to combine guesses. Here, the attacker would calculate a series of
random si and the corresponding ti and ti � m, and file the ti and the ti � m for
future reference. If a future sj produces a tj that is sufficiently close to ti �m, then
.si C sj / will be a valid signature on m. As with the previous meet-in-the-middle
attack, the core insight is that filing the ti and looking for collisions allow us to
check l2 t-values while generating only l s-values.

An important element in the running time of attacks of this type is the time that
it takes to file a t value. We are interested not in exact collisions, but in two ti that
lie close enough to allow forgery. In a sense, we are looking for a way to file the
ti in a spherical box, rather than in a cube as is the case for the similar attacks on
private keys. It is not clear that this can be done efficiently. However, for safety, we
will assume that the process of filing and looking up can be done in constant time,
and that the running time of the algorithm is dominated by the process of searching
the s-space. Under this assumption, the attacker’s expected work before being able
to forge a signature is:

p.N; q; ˇ;N / <

s
	N=2


 .1CN=2/ �
�N
qˇ

�N

: (11.15)

If k is the desired bit security level it will suffice to choose parameters so that the
right hand side of (11.15) is less than 2�k .

Signature Forgery Through Lattice Attacks

On the other hand, the adversary can also launch a lattice attack by attempting to
solve a closest vector problem. In particular, he can attempt to use lattice reduc-
tion methods to locate a point .s; ˇt/ 2 Lh.ˇ/ sufficiently close to .0; ˇm/ that
k.s; ˇ.t �m//k < N . We will refer to k.s; ˇ.t �m//k as the norm of the intended
forgery.

The difficulty of using lattice reduction methods to accomplish this can be tied
to another important lattice constant:

�.N; q; ˇ/ D N
�.N; q; ı; ˇ/

p
2N

: (11.16)
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Table 11.7 Bit security against lattice forgery attacks, !lf, based on experimental evidence for
different values of .�; N=q/

Bound for � and N=q !lf.N /

� < 0:1774 and N=q < 1:305 0:995113N � 82:6612
� < 0:1413 and N=q < 0:707 1:16536N � 78:4659
� < 0:1400 and N=q < 0:824 1:14133N � 76:9158

This is the ratio of the required norm of the intended forgery over the norm of the
expected smallest vector of Lh.ˇ/, scaled by

p
2N . For usual NTRUSign param-

eters, the ratio, �.N; q; ˇ/
p
2N ; will be larger than 1. Thus, with high probability,

there will exist many points of Lh.ˇ/ that will work as forgeries. The task of an
adversary is to find one of these without the advantage that knowledge of the pri-
vate key gives. As �.N; q; ˇ/ decreases and the ratio approaches 1, this becomes
measurably harder.

Experiments have shown that for fixed �.N; q; ˇ/ and fixed N=q the running
times for lattice reduction to find a point .s; t/ 2 Lh.ˇ/ satisfying

k.s; t �m/k < �.N; q; ˇ/p2N�.N; q; ı; ˇ/

behave roughly as

log.T / D AN CB

as N increases. Here, A is fixed when �.N; q; ˇ/;N=q are fixed, increases as
�.N; q; ˇ/ decreases and increases as N=q decreases. Experimental results are
summarized in Table 11.7.

Our analysis shows that lattice strength against forgery is maximized, for a fixed
N=q, when �.N; q; ˇ/ is as small as possible. We have

�.N; q; ˇ/ D �
r

	e

2N 2q
� .E2

s =ˇ C ˇE2
t / (11.17)

and so clearly the value for ˇ which minimizes � is ˇ D Es=Et . This optimal choice
yields

�.N; q; ˇ/ D �
s
	eEsEt

N 2q
: (11.18)

Referring to (11.15), we see that increasing ˇ has the effect of improving com-
binatorial forgery security. Thus, the optimal choice will be the minimal ˇ � Es=Et

such that p.N; q; ˇ;N / defined by (11.15) is sufficiently small.
An adversary could attempt a mixture of combinatorial and lattice techniques,

fixing some coefficients and locating the others via lattice reduction. However, as
explained in [17], the lattice dimension can only be reduced a small amount before
a solution becomes very unlikely. Also, as the dimension is reduced, � decreases,
which sharply increases the lattice strength at a given dimension.
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Transcript Security

NTRUSign is not zero-knowledge. This means that, while NTRUEncrypt can have
provable security (in the sense of a reduction from an online attack method to
a purely offline attack method), there is no known method for establishing such
a reduction with NTRUSign. NTRUSign is different in this respect from estab-
lished signature schemes such as ECDSA and RSA-PSS, which have reductions
from online to offline attacks. Research is ongoing into quantifying what informa-
tion is leaked from a transcript of signatures and how many signatures an attacker
needs to observe to recover the private key or other information that would allow
the creation of forgeries. This section summarizes existing knowledge about this
information leakage.

Transcript Security for Raw NTRUSign

First, consider raw NTRUSign. In this case, an attacker studying a long transcript
of valid signatures will have a list of pairs of polynomials of the form

s D �fC �0g; t �m D �FC �0G
where the coefficients of �, �0 lie in the range Œ�1=2; 1=2�. In other words, the signa-
tures lie inside a parallopiped whose sides are the good basis vectors. The attacker’s
challenge is to discover one edge of this parallelopiped.

Since the �s are random, they will average to 0. To base an attack on averaging s
and t�m, the attacker must find something that does not average to zero. To do this,
he uses the reversal of s and t�m. The reversal of a polynomial a is the polynomial

Na.X/ D a.X�1/ D a0 C
N�1X

iD1

aN�iX
i :

We then set

Oa D a � Na:
Notice that Oa has the form

Oa D
N�1X

kD0

�N�1X

iD0

ai aiCk

�
Xk :

In particular, Oa0 D P
i a2. This means that as the attacker averages over a

transcript of Os; t̂ �m, the cross-terms will essentially vanish and the attacker will
recover

hO�0i.OfC Og/ D N

12
.OfC Og/

for s and similarly for t �m, where h:i denotes the average of : over the transcript.
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We refer to the product of a measurable with its reverse as its second moment. In
the case of raw NTRUSign, recovering the second moment of a transcript reveals
the Gram Matrix of the private basis. Experimentally, it appears that significant
information about the Gram Matrix is leaked after 10,000 signatures for all of the
parameter sets in this paper. Nguyen and Regev [15] demonstrated an attack on
parameter sets without perturbations that combines Gram matrix recovery with cre-
ative use of averaging moments over the signature transcript to recover the private
key after seeing a transcript of approximately 70,000 signatures. This result has been
improved to just 400 signatures in [24], and so the use of unperturbed NTRUSign
is strongly discouraged.

Obviously, something must be done to reduce information leakage from tran-
scripts, and this is the role played by perturbations.

Transcript Security for NTRUSign with Perturbations

In the case with B perturbations, the expectation of Os and Ot� Om is (up to lower order
terms)

E.Os/ D .N=12/.Of0 C Og0 C � � � C OfB C OgB /

and
E.Ot� Om/ D .N=12/.Of0C Og0 C � � � C OfB C OgB/:

Note that this second moment is no longer a Gram matrix but the sum of .B C 1/
Gram matrices. Likewise, the signatures in a transcript do not lie within a paral-
lelopiped but within the sum of .B C 1/ parallelopipeds.

This complicates matters for an attacker. The best currently known technique for
B D 1 is to calculate

the second moment hOsi
the fourth moment hOs2i
the sixth moment hOs3i :

Since, for example, hOsi2 ¤ hOs2i, the attacker can use linear algebra to eliminate
f1 and g1 and recover the Gram matrix, whereupon the attack of [15] can be used
to recover the private key. It is an interesting open research question to determine
whether there is any method open to the attacker that enables them to eliminate
the perturbation bases without recovering the sixth moment (or, in the case of B
perturbation bases, the .4B C 2/-th moment). For now, the best known attack is
this algebraic attack, which requires the recovery of the sixth moment. It is an open
research problem to discover analytic attacks based on signature transcripts that
improve on this algebraic attack.
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We now turn to estimate � , the length of transcript necessary to recover the sixth
moment. Consider an attacker who attempts to recover the sixth moment by averag-
ing over � signatures and rounding to the nearest integer. This will give a reasonably
correct answer when the error in many coefficients (say at least half) is less than
1=2. To compute the probability that an individual coefficient has an error less than
1=2, write .12=N /Os as a main term plus an error, where the main term converges
to Of0 C Og0 C Of1 C Og1. The error will converge to 0 at about the same rate as the
main term converges to its expected value. If the probability that a given coefficient
is further than 1=2 from its expected value is less than 1=.2N /, then we can expect
at least half of the coefficients to round to their correct values (Note that this con-
vergence cannot be speeded up using lattice reduction in, for example, the lattice Oh,
because the terms Of , Og are unknown and are larger than the expected shortest vector
in that lattice).

The rate of convergence of the error and its dependence on � can be estimated
by an application of Chernoff-Hoeffding techniques [48], using an assumption of a
reasonable amount of independence and uniform distribution of random variables
within the signature transcript. This assumption appears to be justified by experi-
mental evidence and, in fact, benefits the attacker by ensuring that the cross-terms
converge to zero.

Using this technique, we estimate that, to have a single coefficient in the 2k-th
moment with error less than 1

2
, the attacker must analyze a signature transcript of

length � > 22kC4d 2k=N . Here, d is the number of 1s in the trinary key. Experimen-
tal evidence for the second moment indicates that the required transcript length will
in fact be much longer than this. For one perturbation, the attacker needs to recover
the sixth moment accurately, leading to required transcript lengths � > 230 for all
the recommended parameter sets in this paper.

NTRUSign Security: Summary

The parameter sets in Table 11.8 were generated with � D 1:1 and selected to
give the shortest possible signing time �S . These security estimates do not take the
hybrid attack of [44] into account and are presented only to give a rough idea of the
parameters required to obtain a given level of security.

The security measures have the following meanings:

!lk The security against key recovery by lattice reduction
c The lattice characteristic c that governs key recovery times

!cmb The security against key recovery by combinatorial means
!frg The security against forgery by combinatorial means
� The lattice characteristic � that governs forgery times
!lf The security against forgery by lattice reduction
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Table 11.8 Parameters and relevant security measures for trinary keys, one perturbation, � D 1:1,
q = power of 2

Parameters Security measures

k N d q ˇ N !cmb c !lk !frg � !lf log2.�/
80 157 29 256 0.38407 150.02 104:43 5.34 93.319 80 0.139 102.27 31.9

112 197 28 256 0.51492 206.91 112:71 5.55 117.71 112 0.142 113.38 31.2
128 223 32 256 0.65515 277.52 128:63 6.11 134.5 128 0.164 139.25 32.2
160 263 45 512 0.31583 276.53 169:2 5.33 161.31 160 0.108 228.02 34.9
192 313 50 512 0.40600 384.41 193:87 5.86 193.22 192 0.119 280.32 35.6
256 349 75 512 0.18543 368.62 256:48 7.37 426.19 744 0.125 328.24 38.9

Quantum Computers

All cryptographic systems based on the problems of integer factorization, discrete
log, and elliptic curve discrete log are potentially vulnerable to the development of
an appropriately sized quantum computer, as algorithms for such a computer are
known that can solve these problems in time polynomial in the size of the inputs. At
the moment, it is unclear what effect quantum computers may have on the security
of the NTRU algorithms.

The paper [28] describes a quantum algorithm that square-roots asymptotic lat-
tice reduction running times for a specific lattice reduction algorithm. However,
since, in practice, lattice reduction algorithms perform much better than they are
theoretically predicted to, it is not clear what effect this improvement in asymp-
totic running times has on practical security. On the combinatorial side, Grover’s
algorithm [49] provides a means for square-rooting the time for a brute-force
search. However, the combinatorial security of NTRU keys depends on a meet-
in-the-middle attack, and we are not currently aware of any quantum algorithms
to speed this up. The papers [50–54] consider potential sub-exponential algorithms
for certain lattice problems. However, these algorithms depend on a subexponen-
tial number of coset samples to obtain a polynomial approximation to the shortest
vector, and no method is currently known to produce a subexponential number of
samples in subexponential time.

At the moment, it seems reasonable to speculate that quantum algorithms will
be discovered that will square-root times for both lattice reduction and meet-in-the-
middle searches. If this is the case, NTRU key sizes will have to approximately
double, and running times will increase by a factor of approximately 4 to give the
same security levels. As demonstrated in the performance tables in this paper, this
still results in performance that is competitive with public key algorithms that are
in use today. As quantum computers are seen to become more and more feasible,
NTRUEncrypt and NTRUSign should be seriously studied with a view to wide
deployment.

Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
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