
Chapter 10
Using LLL-Reduction for Solving RSA
and Factorization Problems

Alexander May

Abstract Twenty five years ago, Lenstra, Lenstra and Lovász presented their cel-
ebrated LLL lattice reduction algorithm. Among the various applications of the
LLL algorithm is a method due to Coppersmith for finding small roots of poly-
nomial equations. We give a survey of the applications of this root finding method
to the problem of inverting the RSA function and the factorization problem. As we
will see, most of the results are of a dual nature, they can either be interpreted as
cryptanalytic results or as hardness/security results.

Introduction

The RSA cryptosystem invented by Rivest, Shamir, and Adleman in 1977 [1] is
today’s most important public-key cryptosystem. Let us denote by N D pq an
RSA-modulus which is the product of two primes p; q of the same bit-size. Let e
be an integer co-prime to Euler’s totient function �.N / D .p � 1/.q � 1/. The
RSA encryption function takes a message m to the eth power in the ring ZN . The
security of RSA relies on the difficulty of inverting the RSA encryption function on
the average, i.e., extracting eth roots in the ring ZN . We call this problem the RSA
inversion problem or the RSA problem for short.

Let d be the inverse of e modulo �.N /. Computing d th powers in ZN inverts
the RSA encryption function. Since d can be easily computed when the prime fac-
torization ofN is known, the RSA cryptosystem is at most as secure as the problem
of computing d and the problem of factoring N . Indeed, we will see that the last
two problems are polynomial time equivalent. However, it is one of the most chal-
lenging problems to prove or disprove the polynomial time equivalence of the RSA
problem and the problem of factoring N . There are results that these problems are
not equivalent under restricted reductions [2]. On the other hand, one can show that
in restricted generic attack models both problems appear to be equivalent [3, 4].
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Despite considerable efforts to attack RSA (see [5, 6] for surveys), currently, the
best way is still to factor the RSA modulus. Consequently, researchers focussed
for a long time on the construction of factorization algorithms for attacking RSA.
In this factorization line of research, the goal is to minimize the computational
complexity in the common Turing machine model. The most important milestones
in the construction of factorization algorithms in the 80s and 90s are the inven-
tion of the Quadratic Sieve [7], the Elliptic Curve Method [8] and the Number
Field Sieve (NFS) [9,83]. The NFS is currently the best algorithm for factoring RSA
moduli. It factorsN in subexponential time and spaceLN Œ

1
3
; c�DO.exp.c.logN/

1
3

.log logN/
2
3 // for c � 1:9.

Of course, ultimately, the cryptanalyst’s ultimate goal is the construction of a
polynomial time algorithm for either the RSA problem or the factorization problem.
Since it is unknown whether there exist algorithms for these problems with Turing
complexity LN Œ˛; c� for ˛ < 1

3
, one might ask for polynomial time algorithms in

other machine models or for interesting relaxations of the RSA and factorization
problem.

In 1994, Shor [10] presented an algorithm for solving the factorization prob-
lem in time and space polynomial in the bit-length of N , provided that the model
of Turing machines is replaced by the model of quantum Turing machines. This
ground-breaking theoretical result led to intensive engineering efforts for building
quantum computers in practice. However, today, it is still unclear whether quantum
computers with a large number of quantum bits can ever be constructed.

In the 90s, another interesting line of research evolved, which uses polynomial
time algorithms in the Turing machine model. However, in order to achieve polyno-
mial complexity, one has to relax the RSA and factorization problem. So instead of
changing the model of computation, one relaxes the problems themselves by look-
ing at restricted instances. The most natural restriction is realized by limiting the
parameter set of the instances to an interval which is smaller than in the general
setting, but still of exponential size.

A variation of this limiting approach addresses full parameter sets but allows
additional access to an oracle for parts of the solution, e.g., for some of the bits.
Notice that the oracle queries have the effect of cutting down the search space
for the solution. The so-called oracle complexity measures the number of oracle
queries that is required in order to solve the underlying problem in polynomial
time. Of course, one is interested in minimizing the number of oracle queries and
in restricting the oracle’s power, i.e., the type of queries that an oracle replies to.
Oracles are motivated by other cryptographical mechanisms, so-called side-channel
attacks, that often leak partial information of the secrets and therefore behave in
practice like an oracle.

In the following, we will call both approaches, limiting the parameter sets and
allowing for an oracle, relaxations of the problem instances. In order to solve these
relaxed instances, one models them as a polynomial equation and tries to find the
integer solutions.

Let us illustrate this approach by a simple example. The RSA factorization prob-
lem is the problem of finding p; q on inputN . This can be modeled by a polynomial
equation f .x; y/ D N � xy. The positive integer roots of this polynomial equation
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are .1;N /; .p; q/; .q; p/; .N; 1/. Since we assume that p; q are of the same bit-size,
finding all integer solutions which are in absolute value smaller than roughly

p
N

suffices to solve the factorization problem. Thus, one only has to find small solu-
tions, where small means that the size of the root is small compared to the size of
the coefficients of the polynomial. Naturally, one can define upper bounds X; Y for
the size of the roots in x; y, respectively. The ultimate goal is to find a polynomial
time algorithm which succeeds whenever XY � N . Since we do not know how to
achieve this bound, we relax the factorization problem.

A natural relaxation of this problem is to narrow down the search space for the
prime factors. Assume that we are given oracle access to the most significant bits
of p. This allows us to compute an approximation Qp of p such that jp� Qp j is signif-
icantly smaller than

p
N . Then, Qq D N

Qp defines an approximation of q. Therefore,
we obtain the polynomial equation f .x; y/ D N �. QpCx/. QqCy/ with a small root
.p � Qp; q � Qq/, where the size of the root depends on the quality of the approxima-
tion. It was shown by Coppersmith in 1996 [11], that the solution of this problem
can be found in polynomial time if XY � N 1

2 .
Building on works in the late 80s [12, 13], Coppersmith [11, 14–16] derived a

general algorithm for finding small roots of polynomial equations. This root finding
algorithm in turn is essentially based on the famous LLL-reduction algorithm by
Lenstra, Lenstra and Lovász [17]. The key idea is to encode polynomial equations
with small solutions as coefficient vectors that have a small Euclidean norm. These
coefficient vectors can efficiently be found by an application of the LLL-reduction
algorithm.

We will survey several applications of Coppersmith’s algorithm to relaxations of
the RSA problem and the factorization problem. Many of these applications natu-
rally allow for a dual interpretation, both as a cryptanalytic result and as a security
result. Let us give an example for this duality. In 1996, Coppersmith [14] showed
that for RSA with e D 3, an attacker who knows 2=3 of an RSA-encrypted mes-
sage m can recover the remaining third from the ciphertext in polynomial time. The
cryptanalytic interpretation is that knowing only a 2=3-fraction of the plaintext is
already enough to recover the whole. The security interpretation is that recovering a
2=3-fraction must be hard, provided that solving the RSA problem for e D 3 is hard.
Thus, this result establishes the security of a 2=3-fraction of the underlying plaintext
under the RSA assumption. This security interpretation was used by Shoup [18] to
show the security of RSA-OAEP for e D 3 under chosen ciphertext attacks. We will
elaborate a bit more on this duality effect in the paper.

This survey is organized as follows. We start in Section “How to Find Small
Roots: The Univariate Case” by giving a high-level description of Coppersmith’s
algorithm for finding small roots of univariate modular polynomials. We state a the-
orem which provides us with an upper bound for the size of the roots of a univariate
polynomial that can efficiently be found.

The details of the theorem’s proof are given in Section “Proof of Theorem 1
and Algorithmic Considerations”. This section is devoted to people who are inter-
ested in the technical details of the method, and those who want to implement
a Coppersmith-type univariate root finding algorithm. It is the only section that
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requires some basic knowledge of lattice theory from the reader. People who are
mainly interested in the applications of Coppersmith’s method can proceed to the
subsequent section.

In Section “Modeling RSA Problems as Univariate Root Finding Problems”,
we will extensively use our theorem for finding small roots. We will model cer-
tain relaxed RSA and factorization problems as univariate polynomial equations.
For instance, we present Coppersmith’s attack on RSA with stereotyped mes-
sages [14] and show its dual use in Shoup’s security proof [18] and for the
construction of an RSA-based pseudorandom number generator proposed by Ste-
infeld, Pieprzyk, and Wang [19]. Moreover, we will show a generalization of
Håstad’s broadcast attack [12] on RSA-encrypted, polynomially related messages
that provides a natural link to Coppersmith’s attack on stereotyped RSA mes-
sages.

We then describe the factoring with high bits known results from Copper-
smith [11] and Boneh, Durfee, and Howgrave-Graham [20]. Furthermore, we show
a deterministic polynomial time reduction of factoring to computing d [21, 22],
which establishes the hardness of the so-called RSA secret key recovery problem
under the factorization assumption. We conclude this section by stating Boneh’s
algorithm [23] for finding smooth integers in short intervals. The problem of finding
smooth integers is related to classical factorization algorithms such as the Number
Field Sieve.

In Section “Applications of Finding Roots of Multivariate Equations”, we will
turn our focus to multivariate extensions of Coppersmith’s LLL-based method. We
present Wiener’s attack [24] on RSA with d � N 1

4 as a bivariate linear equation,
which was originally phrased in terms of the continued fraction algorithm. We then
present the bivariate polynomial equation of Boneh and Durfee [25,26] that led to a
heuristic improvement of the bound to d � N 0:292. As an example of an application
with more variables, we present a heuristic polynomial time attack of Jochemsz and
May [27] for RSA with so-called CRT-exponents d mod p�1; d mod q�1 smaller
than N 0:073. Dually to these attacks, the server-based RSA signature generation
proposals of Boneh, Durfee, Frankel [28] and Steinfeld, Zheng [29] are constructive
security applications.

Since the number of applications of Coppersmith’s LLL-based method for the
RSA/factorization problem is already far too large to capture all the different results
in this survey, we try to provide a more comprehensive list of references in Section
“Survey and References for LLL-Based RSA and Factoring Results”. We are aware
of the fact that it is impossible to achieve completeness of such a list, but our
references will serve the purpose of a good starting point for further reading.

In Section “Open Problems and Speculations”, we give some open problems
in this area and try to speculate in which direction this line of research will go.
Especially, we discuss to which extent we can go from relaxed instances toward
general problem instances, and where the limits of the method are. This discussion
naturally leads to speculations whether any small root finding algorithm based on
LLL-reduction will eventually have the potential to solve general instances of the
RSA problem or the factorization problem in polynomial time.
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How to Find Small Roots: The Univariate Case

We first introduce the problem of finding solutions of a modular univariate poly-
nomial equation. Then, we argue that this approach extends to polynomials in more
variables in a heuristic manner.

Let N be a positive integer of unknown factorization with divisor b � N ˇ ,
0 < ˇ � 1.1 Let f .x/ be a monic univariate polynomial of degree ı. We are looking
for all small roots of the polynomial f modulo b. That is, we want to efficiently find
all solutions x0 satisfying

f .x0/ D 0 mod b with jx0j � X;

where X is an upper bound on the size of the solutions. Our goal is to maximize
the bound X , with the restriction that the running time of our method should be
polynomial in the input size, i.e., polynomial in the parameters .logN; ı/.

We would like to stress that N is an integer of unknown factorization, which
makes the above root finding problem hard to solve. If the prime factors of N are
given, efficient algorithms with finite field arithmetic are known for the problem.

In 1996, Coppersmith [15] proposed an elegant LLL-based method for finding
small solutions of univariate polynomial equations. Here, we describe his approach
using the notion of Howgrave-Graham’s reformulation [30] of the method. Copper-
smith’s approach is basically a reduction of solving modular polynomial equations
to solving univariate polynomials over the integers. That is, one constructs from
f .x/ another univariate polynomial g.x/ that contains all the small modular roots
of f .x/ over the integers:

f .x0/ D 0 mod b ) g.x0/ D 0 over Z for all jx0j � X:

The algorithmic idea for the construction of g.x/ from f .x/ can be described via
the following two steps:

1. Fix an integerm. Construct a collectionC of polynomialsf1.x/; f2.x/; : : : ; fn.x/

that all have the small roots x0 modulo bm. As an example, take the collection

fi .x/ D Nm�if i .x/ for i D 1; : : : ; m
fmCi .x/ D xif m.x/ for i D 1; : : : ; m:

2. Construct an integer linear combination g.x/ DPn
iD1 aifi .x/, ai 2 Z such that

the condition

jg.x0/j < bm

1 An important special case is b D N , i.e., ˇ D 1.
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holds. Notice that bm divides all fi .x0/ by construction. Therefore, bm also
divides g.x0/. But then g.x0/ D 0 mod bm and jg.x0/j < bm, which implies
that g.x0/ D 0 over the integers.

The construction in step (2) is realized by an LLL-based approach. Namely,
one can easily show that every polynomial g whose coefficient vector of g.xX/
has sufficiently small norm fulfills the condition jg.x0/j < bm. The integer lin-
ear combinations of the coefficient vectors of fi .xX/, i D 1 : : : n, form a lattice L.
Applying a lattice basis reduction algorithm to a basis ofL yields a small norm coef-
ficient vector g.xX/. One can show that in our case the LLL-reduction algorithm
of Lenstra, Lenstra and Lovász [17] outputs a sufficiently small vector. Therefore,
g.x/ can be computed in polynomial time via LLL-reduction.

Eventually, one has to find the roots of g.x/ over the integers. This can be done
by standard polynomial factorization methods such as the Berlekamp–Zassenhaus
algorithm. Interestingly, the initial application of the LLL algorithm was a determin-
istic polynomial time algorithm [17] for factoring polynomials in QŒX�. In 2001,
van Hoeij [31, 32] proposed an improved, highly efficient LLL-based factorization
algorithm (see [33] for an introduction). Thus, we cannot only use LLL to construct
g but also to find its integer roots.

The details of the proof of the following result can be found in Section “Proof of
Theorem 1 and Algorithmic Considerations”.

Theorem 1. Let N be an integer of unknown factorization, which has a divisor
b � N ˇ , 0 < ˇ � 1. Let f .x/ be a univariate monic polynomial of degree ı and
let c � 1. Then we can find all solutions x0 of the equation

f .x/ D 0 mod b with jx0j � cN ˇ2

ı

in time O.cı5 log9N/:

Although LLL reduction only approximates a shortest vector up to some factor
that is exponential in the lattice dimension, it is important to point out that lat-
tice reduction techniques which give better approximations do not help improve the
bound given in Theorem 1.

Coppersmith proved this result for the special case ˇ D 1, i.e., b D N . The term
ˇ2 first appeared in Howgrave-Graham’s work [34] for the special case ı D 1, i.e.,
for a linear polynomial. A proof of Theorem 1 first appeared in [35].

Coppersmith’s method generalizes in a natural way to modular multivariate
polynomials f .x1; : : : ; x`/. The idea is to construct ` algebraically independent
polynomials g.1/; : : : ; g.`/ that all share the desired small roots over the integers.
The roots are then computed by resultant computations. For ` � 2, this is a
heuristic method because although the LLL-algorithm guarantees linear indepen-
dence of the coefficient vectors, it does not guarantee algebraic independence of the
corresponding polynomials.

The case of solving multivariate polynomial equations over the integers – not
modular – uses similar techniques. In the integer case, the method of finding small
roots of bivariate polynomials f .x; y/ is rigorous, whereas the extension to more
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than two variables is again a heuristic. Coron showed in [36, 37], that the case of
solving integer polynomials can, in principle, be reduced to the case of solving
modular polynomials.

Proof of Theorem 1 and Algorithmic Considerations

In this section, we will give a complete proof of Theorem 1. Readers who are
mainly interested in the method’s applications can skip this section and proceed
to Section “Modeling RSA Problems as Univariate Root Finding Problems”.

We provide an algorithm that on input

� An integer N of unknown factorization
� A monic, univariate polynomial f .x/ of degree ı
� A bound ˇ 2 .0; 1�, such that b � N ˇ for some divisor b of N

outputs in time polynomial in logN and ı all solutions x0 such that

� f .x0/ D 0 mod b and

� jx0j � N ˇ2

ı .

Normally, the property that f .x/ is monic is no restriction in practice. Assume
that f .x/ has a leading coefficient aı 6D 1. Then, we can either make f .x/monic by
multiplying with the inverse of aı modulo N , or we find a non-trivial factorization
of N . In the latter case, we can work modulo the factors of N .

The following theorem of Howgrave-Graham [30] gives us two criteria under
which we can find a polynomial g.x/ that evaluates to zero over the integers at
small roots.

Theorem 2 (Howgrave-Graham). Let g.x/ be a univariate polynomial with n
monomials. Further, let m be a positive integer. Suppose that

1. g.x0/ D 0 mod bm where jx0j � X
2. jjg.xX/jj < bmp

n

Then g.x0/ D 0 holds over the integers.

Proof. We have

jg.x0/j D
X

i

cix
i
0 �

X

i

jcix
i
0j

�
X

i

jci jX i � pnjjg.xX/jj < bm:

But g.x0/ is a multiple of bm, and, therefore, it must be zero.
Using powers of f , we construct a collection f1.x/; : : : ; fn.x/ of polynomi-

als that all have the desired roots x0 modulo bm. Thus, for every integer linear
combination g, we have
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g.x0/ D
nX

iD1

aifi .x0/ D 0 mod bm; ai 2 Z:

Hence, every integer linear combination satisfies condition (1) of Lemma 2.
Among all integer linear combinations, we search for one that also satisfies con-
dition (2). In other words, we have to search among all integer linear combinations
of the coefficient vectors fi .xX/ for a vector with Euclidean norm smaller than
bmp

n
. This can be achieved by finding a short vector in the lattice L spanned by the

coefficient vectors of fi .xX/.
Our goal is to ensure that the LLL algorithm finds a vector v with jjvjj < bmp

n
in L.

By a theorem of Lenstra, Lenstra and Lovász [17], the norm of a shortest vector
v in an LLL-reduced lattice basis can by related to the determinant det.L/ of the
corresponding lattice L with dimension n via

jjvjj � 2 n�1
4 det.L/

1
n :

The determinant det.L/ can be easily computed from the coefficient vectors of
fi .xX/. If we could satisfy the condition

2
n�1

4 det.L/
1
n <

N ˇm

p
n
; (10.1)

then we obtain the desired inequality jjvjj < N ˇmp
n
� bmp

n
.

Neglecting low-order terms in (10.1), i.e., terms that do not depend on N , we
obtain the simplified condition

det.L/ < N ˇmn:

Let L be a lattice of dimension n with basis B satisfying this condition. Then
on average, a basis vector v 2 B contributes to the determinant with a factor less
than N ˇm. We call such a basis vector a helpful vector. Helpful vectors will play a
central role for the construction of an optimized lattice basis.

The following theorem of Coppersmith states that for a monic polynomial f .x/

of degree ı, all roots x0 with jx0j � 1
2
N

ˇ2

ı
�� can be found in polynomial time.

We will later show that the error term � and the factor 1
2

can be easily eliminated,
which will lead to a proof of Theorem 1.

Theorem 3 (Coppersmith). Let N be an integer of unknown factorization, which
has a divisor b � N ˇ , 0 < ˇ � 1. Let 0 < � � 1

7
ˇ. Furthermore, let f .x/ be a

univariate monic polynomial of degree ı. Then, we can find all solutions x0 for the
equation

f .x/ D 0 mod b with jx0j � 1

2
N

ˇ2

ı
�� :
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The running time is dominated by the time to LLL-reduce a lattice basis of dimen-
sion O.��1ı/ with entries of bit-size O.��1 logN/. This can be achieved in time
O.��7ı5 log2N/:

Proof. Define X WD 1
2
N

ˇ2

ı
�� . Let us apply the two steps of Coppersmith’s method

as described in Section “How to Find Small Roots: The Univariate Case”. In the
first step, we fix

m D
�
ˇ2

ı"

�
: (10.2)

Next, we choose a collectionC of polynomials, where each polynomial has a root
x0 modulo bm whenever f .x/ has the root x0 modulo b. In our case, we include in
C the polynomials

Nm; xNm; x2Nm; : : : xı�1Nm;

Nm�1f; xNm�1f; x2Nm�1f; : : : xı�1Nm�1f;

Nm�2f 2; xNm�2f 2; x2Nm�2f 2; : : : xı�1Nm�2f 2;
:::

:::
:::

:::

Nf m�1; xNf m�1; x2Nf m�1; : : : xı�1Nf m�1:

Additionally, we take the polynomials

f m; xf m; x2f m; : : : ; xt�1f m

for some t that has to be optimized as a function of m.
Note that by our ordering the kth polynomial of C is a polynomial of degree

k. Thus, it introduces the new monomial xk . We could also write the choice of our
polynomials inC in a more compact form. Namely, we have chosen the polynomials

gi;j .x/ D xjN if m�i .x/ for i D 0; : : : ; m � 1; j D 0; : : : ; ı � 1 and
hi .x/ D xif m.x/ for i D 0; : : : ; t � 1:

In Step 2 of Coppersmith’s method, we construct the lattice L that is spanned by the
coefficient vectors of gi;j .xX/ and hi .xX/. As we noticed before, we can order the
polynomials gi;j and hi in strictly increasing order of their degree k. Therefore,
the basis B of L, that has as row vectors the coefficient vectors of gi;j .xX/ and
hi .xX/, can be written as a lower triangular matrix. Let n WD ımC t , then we write
B as the .n � n/-matrix given in Table 10.

Since B is in lower triangular form, det.L/ is simply the product of all entries on
the diagonal:

det.L/ D N 1
2

ım.mC1/X
1
2

n.n�1/: (10.3)
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Table 10.1 Basis B of the lattice L. We use the following notation: Every nonspecified entry is
zero. The entries marked with “–” may be nonzero, but the determinant of the lattice does not
depend on these values

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Nm

NmX

:: :

NmXı�1

: : :
: : :

: : :
: : :

� � : : : � : : : NXım�ı

� : : : � : : : � NXım�ıC1

: : :
: : :

: : :
: : :

: : :
: : :

� : : : � � : : : NXım�1

� � : : : � : : : � � � � Xım

� : : : � : : : � � � � � XımC1

: : :
: : :

: : :
: : :

: : :
: : :

: : :
: : :

� � � � � � : : : XımCt�1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Now, we want to optimize the parameter t , which is equivalent to the optimization of
n D ımCt . Remember that we argued before that every vector which contributes to
the determinant by a factor less than N ˇm is helpful. In our setting, this means that
we have to ensure that the entries of the coefficient vectors hi .xX/ on the diagonal
are all less than N ˇm, i.e., we have the condition

Xn�1 < N ˇm:

Since Xn�1 < N .
ˇ2

ı
��/.n�1/ < N

ˇ2

ı
n this condition is satisfied for the choice

n � ı

ˇ
m: (10.4)

According to (10.2), we know thatm � ˇ2

ı�
C1. Then, we immediately have a bound

for the lattice dimension

n � ˇ

�
C ı

ˇ
:

Using 7ˇ�1 � ��1, we obtain n D O.��1ı/. We choose n as the maximal integer
that satisfies inequality (10.4). This yields a lower bound of

n >
ı

ˇ
m � 1 � ˇ

�
� 1 � 6:
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In order to prove the running time, we also need to upper-bound the bit-size of
the entries in B . Notice that for every power f m�i in the definition of gi;j and
hi , we can reduce the coefficients modulo Nm�i , since x0 must be a root modulo
Nm�i . Thus, the largest coefficient in a product N if m�i has a bit-size of at most

m log.N / D O.��1 logN/. Powers ofX D 1
2
N

ˇ2

ı
�� occur with exponents smaller

than n. Thus, the bit-size of powers of X can also be upperbounded by

n � ˇ
2

ı
logN D O

�
ı

�
� ˇ

2

ı

�
logN D O

�
��1 logN

�
:

Nguyen and Stehlé [38, 39] recently proposed a modified version of the LLL-
algorithm called L2-algorithm. The L2-algorithm achieves the same approximation
quality for a shortest vector as the LLL algorithm, but has an improved worst case
running time analysis. It takes time O.n5.nC log bm/ log bm/, where log bm is the
maximal bit-size of an entry in B . Thus, we obtain for our method a running time of

O
 �

ı

�

�5 �
ı

�
C logN

�

�
logN

�

!
:

Notice that we can assume ı � logN , since otherwise our bound jx0j � N ˇ2

ı
��

is vacuous. Therefore, we obtain a running time of O.��7ı5 log2N/.
It remains to show that LLL’s approximation quality is sufficient for our pur-

pose. In order to apply the theorem of Howgrave-Graham (Theorem 2), we have
to ensure that the LLL algorithm finds a vector in L with norm smaller than
bmp

n
. Since the LLL algorithm finds a vector v in an n-dimensional lattice with

jjvjj � 2 n�1
4 det.L/

1
n , we have to satisfy the condition

2
n�1

4 det.L/
1
n <

bm

p
n
:

Using the term for det.L/ in (10.3) and the fact b � N ˇ , we obtain the new
condition

N
ım.mC1/

2n X
n�1

2 � 2�n�1
4 n� 1

2N ˇm:

This gives us a condition on the size of X :

X � 2�1
2 n�

1
n�1N

2ˇm
n�1 � ım.mC1/

n.n�1/ :

Notice that n� 1
n�1 D 2�

log n
n�1 � 2� 1

2 for n > 6. Therefore, our condition
simplifies to

X � 1

2
N

2ˇm
n�1
� ım.mC1/

n.n�1/ :
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Remember that we made the choice X D 1
2
N

ˇ2

ı
�� . Hence, in order to finish the

proof of the theorem, it suffices to show that

2ˇm

n � 1 �
ım2.1C 1

m
/

n.n � 1/ � ˇ2

ı
� �:

We obtain a lower bound for the left-hand side by multiplying with n�1
n

. Then,
we use n � ı

ˇ
m which gives us

2
ˇ2

ı
� ˇ

2

ı

�
1C 1

m

�
� ˇ2

ı
� �:

This simplifies to

�ˇ
2

ı
� 1
m
� ��:

This in turn gives us the conditionm � ˇ2

ı�
, which holds by the choice of m that

we made in (10.2).
Let us briefly summarize the whole algorithm which finds all roots of f .x/

modulo b that are in absolute value smaller than X .�

�

�

�

Coppersmith’s method in the univariate case
INPUT: Polynomial f .x/ of degree ı, modulus N of unknown factorization
that is a multiple of b, a lower bound b � N ˇ , � � 1

7
ˇ

Step 1: Choose m D dˇ2

ı�
e and t D bım. 1

ˇ
� 1/c.

Compute the polynomials

gi;j .x/ D xjN if m�i .x/ for i D 0; : : : ; m � 1; j D 0; : : : ; ı � 1 and
hi .x/ D xif m.x/ for i D 0; : : : ; t � 1:

Step 2: Compute the bound X D 1
2
dN ˇ2

ı
��e. Construct the lattice basis B ,

where the basis vectors of B are the coefficient vectors of gi;j .xX/ and
hi .xX/.

Step 3: Apply the LLL algorithm to the lattice basis B . Let v be the shortest
vector in the LLL reduced basis. The vector v is the coefficient vector of
some polynomial g.xX/. Construct g.x/ from v.

Step 4: Find the set R of all roots of g.x/ over the integers using standard meth-
ods. For every root x0 2 R check whether gcd.N; f .x0// � N ˇ . If this
condition is not satisfied then remove x0 from R.

OUTPUT: Set R, where x0 2 R whenever f .x0/ D 0 mod b for an jx0j � X .
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As we noticed before, all steps of the algorithm can be done in time
O.��7ı5 log2N/; which concludes the proof of the theorem.

One should remark that the polynomial g.x/ that we construct in Coppersmith’s
method may contain integer roots that are not roots of f .x/ modulo b. Therefore,
we use in Step 4 of the above algorithm a simple test whether f .x0/ contains a
divisor of N of size at least N ˇ .

It is also worth noticing the following point: The LLL approximation factor of
2

n�1
4 for the shortest vector is exponentially in the lattice dimension n, but this

factor essentially translates in the analysis of Theorem 3 to the term 1
2

for the upper
bound of the size of the roots x0. Thus, computing a shortest vector instead of an
LLL approximate version would only improve the bound by a factor of roughly 2
(i.e., only one bit).

Moreover, Theorem 1 is a direct implication of Theorem 3 and shows that we
can avoid the terms 1

2
and � from the upper bound on x0. The proof uses a simple

brute-force search.

Theorem 1. Let N be an integer of unknown factorization, which has a divisor
b � N ˇ , 0 < ˇ � 1. Furthermore, let f .x/ be a univariate monic polynomial of
degree ı. Then we can find all solutions x0 for the equation

f .x/ D 0 mod b with jx0j � cN ˇ2

ı :

in time O.cı5 log9N/:

Proof. An application of Theorem 3 with the parameter choice � D 1
log N

shows
that we can find all roots x0 with

jx0j � 1

4
N

ˇ2

ı

in time O.ı5 log9N/.

In order to find all roots that are of size at most cN
ˇ2

ı in absolute value, we

divide the interval Œ�cN ˇ2

ı ; cN
ˇ2

ı � into 4c subintervals of size 1
2
N

ˇ2

ı centered at
some xi . For each subinterval with center xi , we apply the algorithm of Theorem 3
to the polynomial f .x � xi / and output the roots in this subinterval.

For completeness reasons and since it is one of the most interesting cases of
Coppersmith’s method, we explicitly state the special case b D N and c D 1, which
is given in the work of Coppersmith [15].

Theorem 4 (Coppersmith). Let N be an integer of unknown factorization. Fur-
thermore, let fN .x/ be a univariate monic polynomial of degree ı. Then we can
find all solutions x0 for the equation

fN .x/ D 0 mod N with jx0j � N 1
ı

in time O.ı5 log9N/.
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Modeling RSA Problems as Univariate Root Finding Problems

We address several RSA related problems that can be solved by finding small
roots of univariate modular polynomial equations. Throughout this section, we will
assume that N D pq is a product of two primes, and that e 2 Z

�
�.N /

. Both N and e
are publically known.

Relaxed RSA Problem: Stereotyped Messages

The RSA problem is the problem of inverting the RSA function. Givenme mod N ,
one has to find the unique eth root m 2 ZN . The RSA assumption states that the
RSA problem is difficult to solve for randomly chosenm 2 ZN .

Notice that the RSA problem is trivial to solve for small m and small e. Namely,
if m < N

1
e then me mod N D me over Z. Therefore, computation of the eth roots

over the integers yields the desired root.
�

�

�

�

RSA problem

Given: me mod N
Find : m 2 ZN

Relaxed RSA problem: Small e, High Bits Known

Given: me; Qm with jm � Qm j � N 1
e

Find : m 2 ZN

Coppersmith extended this result to the case where m is not small, but we know
m up to a small part. Namely, we assume the knowledge of an approximation Qm
such that m D QmC x0 for some unknown part jx0j � N 1

e . This can be modeled as
the polynomial equation

f .x/ D . QmC x/e �me mod N:

Let us apply Theorem 1. We set ˇ D 1, ı D e and c D 1. Therefore, we can
recover x0 as long as jx0j � N 1

e : This extends the trivial attack where m is small
to the inhomogenous case: The most significant bits of m are not zero, but they are
known to an attacker.

Clearly, one can interpret this as a cryptanalytic result. For example, if e D 3,
then an attacker who can guess the first 2=3-fraction of the message m is able to
reconstruct the last 1=3-fraction of m in polynomial time. This might happen in
situations were the plaintext has a stereotype form like “The password for today is:
xxxx.” Therefore, this is often called an attack on stereotyped messages. Loosely
speaking, the cryptanalytic meaning is that an attacker gets an 1

e
-fraction of the

RSA message efficiently. We will see in Section “Related RSA Messages: Extending
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Håstad’s Attack” that this cryptanalytic interpretation can be generalized to the case
where the same message m is sent several times.

On the other hand, one can interpret this result in a dual sense as a security result
for a 2=3-fraction of the plaintext bits in an RSA ciphertext. It is as difficult to
compute a 2=3-fraction of m as inverting the RSA problem for e D 3. In general,
there is a tight reduction from the RSA problem to the problem of finding an e�1

e
-

fraction of the most significant bits. Under the RSA assumption, this shows that the
most significant bits of an RSA plaintext are hard to find. Even stronger results on
the security of RSA bits were given by Håstad and Näslund [40].

Constructive Applications of the Relaxed RSA Problem:
RSA-OAEP and RSA Pseudorandom Generator

The dual security interpretation of the Relaxed RSA problem was used by Shoup
[18] in 2001. He gave a security proof of the padding scheme OAEP [41] when
instantiated with the RSA trapdoor function. Here, we only sketch Shoup’s proof.
More details on the proof and on cryptographic security notations can be found in
Gentry’s survey [42].

In RSA-OAEP, the plaintext is split into two parts s and t . The first part s depends
on the message m, a fixed padding and some randomization parameter r of length
k bits. The fixed padding ensures that s fulfills a well-defined format that can be
checked. The second part t is simply h.s/ ˚ r for some hash function h, which is
modeled as a random oracle. One encrypts the padded message s � 2k C t . Let c be
the corresponding ciphertext.

Bellare and Rogaway [41] showed that RSA-OAEP is CCA1-secure, i.e., secure
against so-called lunch-time attacks. It was widely believed that RSA-OAEP is
also CCA2-secure, i.e., that it provides security against adaptive chosen ciphertext
attacks. In 2001, Shoup [18] showed that the original proof of Bellare and Rogaway
does not offer this level of security. However, using an analogous reasoning as in the
stereotyped message attack, he could easily derive CCA2-security for RSA-OAEP
with exponent 3.

In order to prove CCA2-security, we assume the existence of an adversary that
successfully attacks RSA-OAEP under chosen ciphertext attacks. This adversary is
then used to invert the RSA function. One defines a simulator in order to answer
the adversary’s decryption and hash queries. Shoup showed that any adversary that
never explicitly queries h on s has a negligible probability to pass the format check
for the s-part. Thus, one can assume that the first part s has to appear among the
attacker’s queries. This in turn is already sufficient to extract t as a root of

f .t/ D .s � 2k C t/e � c mod N;

provided that jt j < N 1
e which is fulfilled whenever k < logN=e. This condition is

satisfied for e D 3 by the RSA-OAEP parameters. One should notice the correspon-
dence to the Relaxed RSA problem: s plays the role of the known message part Qm,
whereas t is the small unknown part.
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We have reduced the RSA problem to an algorithm for attacking RSA-OAEP.
The reduction is tight up to a factor of qh, the number of hash queries an adversary
is allowed to ask. Namely, the running time is qh times the time to run the LLL-based
algorithm for finding small eth roots. The success probability of the RSA inverter
is roughly the same as the success probability of the adversary. This reduction is
tighter than the original reduction by Bellare-Rogaway for CCA1-security.

RSA-OAEP was shown to be CCA2-secure for arbitrary e by Fujisaki et al [43]
in 2001, using a 2-dimensional lattice technique. However, their reduction is also
less tight than Shoup’s: If the RSA attacker has success probability �, then the RSA
inversion algorithm of [43] has success probability only �2.

Another constructive application of Coppersmith’s attack on stereotyped mes-
sages is used for the definition of an efficient RSA-based pseudorandom number
generator (PRNG) in a recent paper by Steinfeld, Pieprzyk, and Wang [19], which
in turn builds on a work of Fischlin and Schnorr [44]. In the Fischlin-Schnorr RSA-
PRNG, one starts with a random seed x0 and generates a sequence x1; x2; : : : by
successively applying the RSA function, i.e., xi D xe

i�1 mod N . In each iteration,
one outputs the r least significant bits of xi .

In the security proof, Fischlin and Schnorr show that any efficient algorithm that
distinguishes the generator’s output from the uniform distribution can be used to
invert the RSA function, i.e., to solve the RSA problem. However, the reduction
is not tight. Namely, if TD is the running time of the distinguisher, then the inver-
sion algorithm’s running time is roughly 22rTD . Therefore, one can only output
r DO.log logN/ in each iteration in order to preserve a polynomial reduction.

In 2006, Steinfeld, Pieprzyk, and Wang showed that one can securely output
�.logN/ bits if one replaces the RSA assumption in the Fischlin-Schnorr proof
by a relaxed RSA inversion assumption. Namely, we already know that one can
recover an 1

e
-fraction of the message from an RSA ciphertext given the rest of the

plaintext. Steinfeld et al. make the assumption that this bound is essentially tight.
More precisely, they assume that any algorithm that recovers an 1

e
C �-fraction for

some constant � already requires at least the same running time as the best factoring
algorithm for N .

In fact, one replaces the RSA assumption by a stronger assumption which states
that the bound 1

e
for the Coppersmith attack on stereotyped messages cannot be

significantly improved. This stronger assumption is sufficient to increase the gen-
erator’s output rate from r DO.log logN/ to the full-size of r D�.logN/ bits.
The efficiency of the Steinfeld, Piepryzk, Wang construction is comparable to
the efficiency of the Micali-Schnorr generator [45] from 1988, but uses a weaker
assumption than in [45].

Another construction of an efficient PRNG and a MAC based on small root
problems was proposed by Boneh, Halevi, and Howgrave-Graham [46]. Its secu-
rity is proved under the hardness of the so-called modular inversion hidden number
problem. The best algorithmic bound for attacking this problem is based on an LLL-
approach. The security proofs for the PRNG and the MAC again assume that one
cannot go significantly beyond this bound.
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Affine Padding: Franklin-Reiter’s Attack

The following attack was presented by Franklin and Reiter [47] in 1995. The attack
was 1 year later extended by Coppersmith, Franklin, Patarin, and Reiter [48].

Assume that two RSA plaintexts m, m0 satisfy an affine relation m0 D m C r .
Let c D m3 mod N and c0 D .mC r/3 mod N their RSA ciphertexts, respectively.
Franklin and Reiter showed that any attacker with knowledge of c; c0; r , and N can
efficiently recoverm by carrying out the simple computation

c0r C 2cr � r4

c0 � c C 2r3
D 3m3r C 3m2r2 C 3mr3

3m2r C 3mr2 C 3r3
D m mod N:

What happens in the case where r is unknown but small?�

�

�

	

Affine related messages

Given: cDme mod N; c0D .mC r/e mod N with jr j � N 1

e2

Find : m

If one is able to determine r from the ciphertexts, then m can be computed
efficiently. The resultant computation

Resm.c �m3; c0 � .mC r/3/ D r9 C 3.c � c0/r6 C 3.c2 C c02 C 7cc0/r3

C .c � c0/3 mod N

yields a monic univariate polynomial f .r/ of degree 9. An application of Theorem 1
shows that r can be recovered as long as jr j � N

1
9 . For arbitrary e, the bound

generalizes to jr j � N 1

e2 .

Related RSA Messages: Extending Håstad’s Attack

Assume that we want to broadcast a plain RSA encrypted message to a group of k
receivers all having public exponent e and co-prime moduliN1; : : : ; Nk . That is, we
send the messagesme mod N1; : : : ; m

e mod Nk . From this information, an attacker
can computeme mod

Qk
iD1Ni . Ifme is smaller than the product of the moduli, he

can compute m by eth root computation over the integers. If all Ni are of the same
bit-size, we need k � e RSA encrypted messages in order to recoverm.

So naturally, an attacker gains more and more information by receiving differ-
ent encryptions of the same message. Notice that this observation nicely links with
the attack on stereotyped RSA messages from Section “Relaxed RSA Problem:
Stereotyped Messages”. Recall that the cryptanalytic interpretation of the attack
in Section “Relaxed RSA Problem: Stereotyped Messages” was that one gets an
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1
e

-fraction of the plaintext efficiently. The above broadcast attack can thus be inter-
preted as an accumulation of this result. If one gets k � e times an 1

e
-fraction of m

efficiently, then one eventually obtains the whole m.
The question is whether this is still true when the public exponents are differ-

ent and when the messages are preprocessed by simple padding techniques, e.g., an
affine transformation with a fixed known padding pattern. We show that whenever
the messages are polynomially related, then the underlying plaintext can still be dis-
covered given sufficiently many encryptions. This result is an extension of Håstad’s
original result [12] due to May, Ritzenhofen [49].

Assume that the message m is smaller than minj fNj g. We preprocess the
message by known polynomial relations g1; : : : ; gk with degrees ı1; : : : ; ık , respec-
tively.�

�

�

	

Polynomially related RSA messages

Given: ci Dgi .m/
ei mod Ni for i D 1; : : : ; k with

Pk
iD1

1
ıi ei
� 1.

Find : m

Assume that gi .x/ has leading coefficient ai 6D 1. Compute a�1
i mod Ni . If this

computation fails, we obtain the factorization of Ni , which enables us to compute
m. Otherwise, we replace ci and gi .x/ by a�ei

i ci and a�1
i gi .x/, respectively. This

makes all gi .x/ monic.
Let ı D lcmifıieig be the least common multiple of all ıiei . Define

N D Qk
iD1N

ı
ıi ei

i . We know that for all i D 1; : : : ; k we have

.gi .m/
ei � ci /

ı
ıi ei D 0 mod N

ı
ıi ei

i :

Let us compute by Chinese Remaindering a polynomial

f .x/ D
kX

iD1

bi .gi .x/
ei � ci /

ı
ıi ei mod N;

where the bi are the Chinese remainder coefficients satisfying bi mod

Nj D
�
1 for i D j
0 else

:

Notice that f .m/ D 0 mod N and that f .x/ is by construction a univariate
monic polynomial of degree ı. Let us now upper-bound the size of our desired
root m. Using the condition 1 �Pk

iD1
1

ıi ei
, we obtain

m < min
j
fNj g �

�
min

j
fNj g

�Pk
iD1

1
ıi ei �

kY

iD1

N
1

ıi ei

i :
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By applying Theorem 1 with the parameters ˇ; c D 1, we can find all rootsm up
to the same bound

m � N 1
ı D

kY

iD1

N
1

ıi ei

i ;

which completes the description of the attack.
Let us look at our condition

Pk
iD1

1
ıi ei
� 1 when we encrypt the plain message

m without any further transformation. Then gi .x/ D x is the identity with degree
ıi D 1, i.e., we obtain the simplified condition

kX

iD1

1

ei

� 1:

Again this can be interpreted as an accumulation of the results for stereotyped
RSA messages in Section “Relaxed RSA Problem: Stereotyped Messages”. Recall
that for each encryption of m under exponent ei , we can compute an 1

ei
-fraction of

m efficiently. This information accumulates such that whenever the sum
P

i
1
ei

of
all the fractions exceeds 1, we eventually obtain the whole plaintextm.

Factoring with High Bits Known

Let N D pq, w.l.o.g. p > q. Assume that we are given an oracle for the most
significant bits of p. Our task is to find the factorization of N in time polynomial
in the bit-size of N with a minimal number of queries to the oracle, i.e., we want to
minimize the oracle complexity.

One can view this problem as a natural relaxation of the factorization problem.
Without knowing any bits of the prime factor p, i.e., without using the oracle, we
have to solve the general factorization problem. For the general problem, it is unclear
whether there exists a polynomial time algorithm in the Turing machine model.
So, we provide the attacker with an additional sufficiently strong hint given by the
oracle answers that allows him to find the factorization in polynomial time.

In 1985, Rivest and Shamir [50] published an algorithm that factors N given a
2
3

-fraction of the bits of p. Coppersmith [51] improved this bound to 3
5

in 1995. One
year later, Coppersmith [11, 15] gave an algorithm using only half of the bits of p.

The factoring with high bits known problem can again be reduced to the problem
of solving modular univariate polynomial equations with the LLL algorithm. Let us
assume that we are given half of the high-order bits of p. Omitting constants, we
know an approximation Qp of p that satisfies jp � Qp j � N 1

4 .
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�

�

�

�

Factorization problem

Given: N D pq
Find : p

Relaxed Factorization: High Bits Known

Given: N D pq; Qp with jp � Qp j � N 1
4

Find : p

Our goal is to recover the least-significant bits of p, i.e., we want to find the root
of the univariate, linear modular polynomial

f .x/ D Qp C x mod p:

Observe that p � Qp is a root of f .x/ with absolute value smaller than N
1
4 .

We apply Theorem 1 with f .x/ D Qp C x, i.e., we have degree ı D 1, ˇ D 1
2

and c D 1. Therefore, we can find all roots x0 with size

jx0j � N ˇ2

ı D N 1
4 :

This enables us to recover the low-order bits of p in polynomial time with the
LLL algorithm, which yields the factorization.

The factorization with high bits known approach can be extended to moduli
N D prq, where p and q have the same bit-size. This extension was proposed by
Boneh, Durfee, and Howgrave-Graham [20]. For simplicity, we assume that p and
q are of the same bit size. For fixed bit-size of N and growing r , these moduli
should be – from an information theoretical point of view – easier to factor than
usual RSA moduli. Moreover, an attacker should learn from an approximation of p
more information than in the standard RSA case. This intuition turns out to be true.

We model this variant of the factorization problem as the univariate polynomial

f .x/ D . Qp C x/r mod pr :

Set ˇ D r
rC1

, ı D r and c D 1. An application of Theorem 1 shows that the
LLL algorithm recovers all roots x0 with

jx0j �M ˇ2

ı D N r

.rC1/2 :

Since N is roughly of the size prC1, this means that we need an approximation
Qp with jp� Qp j � p r

rC1 . Or in other words, we need a 1
rC1

-fraction of the most sig-
nificant bits in order to factorN in polynomial time. That is, for the RSA case r D 1,
we need half of the bits, whereas, e.g., for r D 2, we only need a third of the most
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significant bits of p. For r D˝.
q

log N
log log N

/, one only has to guess O.log logN/ bits
of p, which can be done in polynomial time.

Computing d � Factoring

Our next application of the LLL algorithm addresses the difficulty of computing
the RSA secret exponent from the public information .N; e/. We show that any
algorithm that computes d in deterministic polynomial time can be transformed into
an algorithm that factors N in deterministic polynomial time.

Let N D pq be an RSA-modulus. Let e; d 2 Z�.N / be the public/secret
exponents, satisfying the equation ed D 1 mod �.N /. If we are given the public
information .N; e/ and the factorization of N , then d can be computed in poly-
nomial time using the Euclidean algorithm. Rivest, Shamir, and Adleman showed
that the converse is also true: Given .N; e; d/, one can factor N in probabilistic
polynomial time by an algorithm due to Miller [52].

In 2004, it was shown in [21, 22] that there is also a deterministic reduction
of factoring to computing d using Coppersmith’s method. This establishes the
deterministic polynomial time equivalence of both problems.

It is not hard to see that the knowledge of �.N / D N � .p C q � 1/ yields the
factorization ofN in polynomial-time. Our goal is to compute �.N /. Since p; q are
of the same bit-size, the term N is an approximation of �.N / up to roughly N

1
2 .

Therefore, the polynomial

f .x/ D N � x mod �.N /

has a root x0 D p C q � 1 of size N
1
2 . Let M D ed � 1 D N ˛ for some ˛ � 2.

We know that M is a multiple of �.N /.
Now, we can apply the LLL algorithm via Theorem 1 with the parameter setting

ı; c D 1, b D �.N /, M D N ˛ the integer of unknown factorization and ˇ D 1
˛

.
We conclude that we can find all roots x0 within the bound

jx0j �M ˇ2

ı D .N ˛/
1

˛2 D N 1
˛ :

Since ˛ � 2, we can find all roots within the boundN
1
2 , as desired.

Finding Smooth Numbers and Factoring

The following link between finding smooth integers with Coppersmith’s LLL-based
algorithm and factoring composite integers N was introduced by Boneh [23] in
2001.
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Many classical factorization algorithms such as the Quadratic Sieve and the
Number Field Sieve have to find values slightly larger than

p
N such that their

square modulo N is B-smooth. A number is called B-smooth if it splits into prime
factorsp1; p2; : : : ; pn smaller thanB . We can model this by a univariate polynomial
equation

fc.x/ D .x C
p
cN /2 � cN;

for small values of c. Given an interval size X , the task is to find all solutions
jx0j � X such that fc.x0/ has a large B-smooth factor. Whenever this factor
is as large as fc.x0/ itself, then fc.x0/ factors completely over the factor base
p1; : : : ; pn.�

�

�

	

Finding Integers with Large Smooth Factor

Given: fc.x/; B;X

Find : jx0j � X such that fc.x0/ has a large B-smooth factor.

Let us defineP D Qn
iD1 p

ei

i . For simplicity reasons, we will assume here ei D 1
for all exponents, although we could handle arbitrary multiplicities as well. We are
interested in integers x0 such that many pi divide fc.x0/, i.e., fc.x0/ D 0 mod b
for a modulus b DQi2I pi , where I 	 f1; : : : ; ng is a large index set.

Applying Theorem 1, it is easy to see that b � P
q

2 log X
log P is sufficient to find all

jx0j � P ˇ2

ı D P 2 log X

2 log P D 2log X D X:

Boneh [23] illustrates his result by giving numerical examples where just one
application of LLL on a 50-dimensional lattice yields all numbers in an interval of
size X D 2500 that have a sufficiently large smooth factor.

At the moment, however, the technique does not lead to improvements to clas-
sical factorization algorithms, since it is unlikely that randomly chosen intervals of
the given size contain sufficiently many smooth numbers. Moreover, classical algo-
rithms usually need fully smooth numbers, whereas with the present method one
only finds numbers with a large smooth factor.

Applications of Finding Roots of Multivariate Equations

In this section, we study applications of the LLL algorithm for solving multi-
variate polynomial equations. We start by presenting the two most famous RSA
applications for solving bivariate modular polynomial equations: The attacks of
Wiener [24] and Boneh-Durfee [25] on RSA with small secret exponent d .
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�

�

�

�

RSA Key Recovery Problem

Given: N; e

Find : d with ed D 1 mod �.N /
Relaxed RSA Key Recovery Problem: Small key

Given: N; e with ed D 1 mod �.N / for some d � N ı

Find : d

Let us briefly describe Wiener’s polynomial time attack on RSA for secret keys
d � N

1
4 . Although this attack was originally presented using continued frac-

tions, we will describe it within the framework of small solutions to linear bivariate
equations.

We can write the RSA key equation ed D 1 mod �.N / in the form

ed C k.p C q � 1/� 1 D kN; (10.5)

for some k 2 N. This leads to a linear bivariate polynomial f .x; y/ D ex C y that
has the root .x0; y0/ D .d; k.p C q � 1/ � 1/ modulo N . It is not hard to see that
k < d . In the case of balanced prime factors, we have pC q � pN . For d � N 1

4 ,
the product x0y0 of the desired roots can therefore be upper-bounded by N .

It is well-known that linear modular polynomial equations can be heuristically
solved by lattice reduction whenever the product of the unknowns is smaller than
the modulus. For the bivariate case, this lattice technique can be made rigorous.
In our case, one has to find a shortest vector in the lattice L spanned by the row
vectors of the following lattice basis

B D
 
NX 0

eX Y

!
; where X D N 1

4 and Y D N 3
4 .

Using an argumentation similar to the one in Section “How to Find Small Roots:
The Univariate Case”, one can see that a shortest vector v D .c0; c1/ � B yields a
polynomial c0Nx C c1f .x; y/ that evaluates to zero over the integers at the point
.x0; y0/ D .d; k.p C q � 1/� 1/. Since f .x0; y0/ D kN , we have

c0Nd D �c1Nk:

Because v is a shortest vector, the coefficients c0 and c1 must be co-prime. There-
fore, we conclude that jc0j D k and jc1j D d . From this information, we can derive
via (10.5) the term p C q which in turn yields the factorization of N in polynomial
time.

Instead of using a two-dimensional lattice, one could compute the tuple .k; d/
by looking at all convergents of the continued fraction expansion of e and N . This
approach was taken in Wiener’s original work.
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In 1999, Boneh and Durfee improved Wiener’s bound to d � N 1�
q

1
2 � N 0:292.

This result was achieved by writing the RSA equation as

k.N C 1 � .p C q//C 1 D ed:

This in turn yields a bivariate polynomial f .x; y/ D x.N C 1� y/C 1 with the
root .x0; y0/ D .k; p C q/ modulo e. Notice that f has the monomials x; xy, and
1. As in Wiener’s attack, the product x0 � x0y0 can be bounded by N whenever d �
N

1
4 . Thus, for e of size roughlyN , we obtain the same bound as in the Wiener attack

if we linearize the polynomial. However, Boneh and Durfee used the polynomial
structure of f .x; y/ in order to improve the bound toN 0:292 by a Coppersmith-type
approach.

Wiener as well as Boneh and Durfee posed the question whether there is also
a polynomial time attack for RSA with small secret CRT-exponent d . We call d a
small CRT-exponent if the values dp D d mod p � 1 and dq D d mod q � 1 are
small. This enables a receiver to efficiently decrypt modulo p and q and combine
the results using the Chinese remainder theorem (CRT) [53].�

�

�

�

RSA Key Recovery Problem

Given: N; e

Find : d with ed D 1 mod �.N /
Relaxed RSA Key Recovery Problem: Small CRT-key

Given: N; e with edp D 1 mod p � 1 and edq D 1 mod q � 1 for dp; dq �
N ı

Find : d with d D dp mod p � 1 and d D dq mod q � 1

Recently, Jochemsz and May [27] presented a polynomial time attack for RSA
with dp; dq � N 0:073, building on an attack of Bleichenbacher and May [54]. The
basic idea is to write the RSA key equation in the form

ˇ̌
ˇ̌ edp C kp � 1 D kpp

edq C kq � 1 D kqq

ˇ̌
ˇ̌ ;

with the unknowns dp; dq; kp ; kq; p, and q. We eliminate the unknowns p; q by
multiplying both equations. Rearranging terms yields

e2dpdq C e.dp.kq � 1/C dq.kp � 1//C kpkq.1 �N/C .kp C kq C 1/ D 0:

In [54], the authors linearize this equation and derive attacks for variants of the
RSA cryptosystem where e is significantly smaller than N . In [27], the full poly-
nomial structure is exploited using a Coppersmith technique in order to extend the
linearization attack to full size e.
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Fig. 10.1 Partial key exposure attack

By assigning the variables x1; x2; x3; x4 to the unknowns dp; dq ; kp; kq , respec-
tively, one obtains a 4-variate polynomial equation which evaluates to zero over the
integers. A Coppersmith-type analysis results in a heuristic polynomial time attack
that works for dp; dq � N 0:073.

Several results in the literature also address the inhomogenous case of small
RSA secret key relaxations, where d is not small but parts of d ’s bits are known
to an attacker. Boneh, Durfee, and Frankel introduced several of these so-called
Partial Key Exposure attacks, which were later extended in Blömer, May [55] and
EJMW [56]. In the latter work, the authors showed that the Boneh-Durfee attack
naturally extends to the inhomogenous case for all d smaller than �.N /. The larger
d is, the more bits of d an attacker has to know (see Fig. 10.1).

Again, the former cryptanalytic results have a dual interpretation as security
results. They establish the security of certain parts of the bits of the RSA secret key.
More precisely, the results state that recovering these bits is as hard as factoring the
RSA modulus given only the public information .N; e/. This opens the possibility
to publish the remaining bits of the secret key, which can be used, e.g., in server-
aided RSA systems, where parts of an RSA signature computation are outsourced to
an untrusted server. This dual application was first proposed by Boneh, Durfee, and
Frankel [20]. Later, Steinfeld and Zheng [29] proposed another server-based RSA
system, which provides provable security against Partial Key Exposure attacks.

Survey and References for LLL-Based RSA
and Factoring Results

The following table gives an overview and references of various applications of
Coppersmith’s LLL-based methods for finding small roots when applied to relaxed
RSA or factorization problems. Although not all of these results are originally
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described in terms of small root problems, they all more or less fit in this framework
and might serve as useful pointers for further reading.

Method
Method/variants Håstad 88 [12], Girault,Toffin,Vallée 88 [13]

Coppersmith 96,97,01 [11, 14–16], Howgrave-
Graham 98,01 [30, 57], Jutla 98 [58], May 03 [35],
Bernstein 04 [59], Coron 05,07 [36, 37], Bauer, Joux 07 [60]

Optimize bounds Blömer,May [61] , Jochemsz, May [27]

RSA
Inverting RSA Håstad 89 [12], Coppersmith 96 [14, 15],

May, Ritzenhofen 08 [49]
Small d Wiener 90 [24], Boneh, Durfee 98 [25, 26],

Durfee, Nguyen 00 [62], Blömer, May 01 [63],
de Weger 02 [64], Hinek 02 [65], May 01, 04 [63, 81]

Known bits of d Boneh, Durfee, Frankel 96 [28, 82], Blömer, May 03 [55],
Ernst, Jochemsz, May, de Weger 05 [56]

Key recovery May 04 [21], Coron, May 07 [22],
Kunihiro, Kurosawa 07 [67]

Small CRT-d May 02 [68], Hinek, Sun, Wu 05[69],
Galbraith, Heneghan, McKee 05 [71, 72],
Bleichenbacher, May 06 [54], Jochemsz, May 06 [27, 73]

Proving Security Shoup 01 [18], Boneh 01 [74], Steinfeld, Zheng 04 [29]
PRNG, MAC Boneh, Halevi, Howgrave-Graham 99 [46],

Steinfeld, Pieprzyk, Wang 06 [19]

Factoring
High Bits known Rivest, Shamir 86 [50], Coppersmith 95,96 [14, 51],

Boneh, Durfee, Howgrave-Graham 99 [20],
Crépeau, Slakmon 03 [75],
Santoso, Kunihiro, Kanayama, Ohta 06 [76],
Herrmann, May 08 [77]

Finding relations Schnorr 01 [78], Boneh 00 [23]

Open Problems and Speculations

Optimizing Bounds: On Newton Polytopes and Error Terms

In this section, we will explain how to optimize the upper bounds up to which small
roots can be found. Here, a polynomial’s Newton polytope will play a central role.
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We will also see that the upper bounds usually incorporate some error term, which
in many cases can be eliminated by splitting the search interval into smaller pieces
and treating each subinterval separately (see, e.g., the proof of Theorem 1).

In all applications of Coppersmith’s method, one starts with either a polyno-
mial modular equation f .x1; : : : ; xm/ D 0 mod b or a polynomial integer equation
f .x1; : : : ; xm/ D 0. Using this equation, one defines algebraic multiples f1; : : : ; fn

of f which contain the same small roots. For instance, if f is a univariate polyno-
mial equation in x as in Section “How to Find Small Roots: The Univariate Case”,
this is done by multiplying f with powers of x and by taking powers of f itself. In
the univariate case, it is clear which set of algebraic multiples maximizes the size of
the roots x0 that we can efficiently recover. Indeed, we will argue, in Section “What

are the Limitations of the Method?”, that the bound jx0j � N ˇ2

ı from Section “How
to Find Small Roots: The Univariate Case” cannot be improved in general, since
beyond this bound f may have too many roots to output them in polynomial time.

For univariate modular polynomial equations f .x/, one looks for an integer
linear combination g.x/ D P

i aifi .x/, ai 2 Z, such that g.x0/ D 0 over the
integers for all sufficiently small roots. These roots can then be found by standard
root finding methods.

For irreducible bivariate polynomials f .x; y/, one similarly defines algebraic
multiples f1.x; y/; : : : ; fn.x; y/. The goal is to find a polynomial g.x; y/ DP

i aifi .x; y/ by LLL-reduction such that gi .x; y/ is not a multiple of f .x; y/.
Then the roots can be found by resultant computations.

Whereas the choice of the algebraic multiples is quite straightforward for univari-
ate polynomials, for multivariate polynomials, the choice of the algebraic multiples
appears to be a complex optimization problem. The bounds for the roots that one
computes mainly depend on the largest coefficient of the polynomial and the poly-
nomial’s Newton polytope – i.e., the convex hull of the monomials’ exponents when
regarded as points in the Euclidean space.

Let us give an example for this. As explained in Section “Modeling RSA Prob-
lems as Univariate Root Finding Problems”, we can factor N D pq with known
high bits of p by using the univariate polynomial equation f .x/ D Qp C x mod p,
where Qp is an approximation of p up to N 1=4. The same result can be achieved
by computing Qq D N

Qp and solving the bivariate integer polynomial f .x; y/ D
. Qp C x/. Qq C y/ � N . The largest coefficient in this equation is Qp Qq � N , which is
roughly of the size W D N 3=4. The monomials of f .x; y/ are 1; x; y, and xy, i.e.,
the Newton polytope is a square defined by the points .0; 0/; .0; 1/; .1; 0/, and .1; 1/.
Optimizing the upper bounds X; Y for the size of the roots in x; y, respectively,
yields the conditionXY � W 2=3. This is equivalent toXY � N 1

2 orX; Y � N 1=4.
Thus, we achieve the same result as in the univariate modular case.

We could however also look at the bivariate polynomial f .x; y/ D . Qp C x/

y � N . The largest coefficient is W D N and the Newton polytope defined by
.0; 0/; .0; 1/; .1; 1/ is a triangle. Optimizing the bounds for this shape of the Newton
polytope yields the condition .XY /4 � W 3. Setting Y D N 1=2 andW D N yields
X4 � N which leads again to X � N 1=4.

Interestingly, we do not need the approximation of q for achieving the same
result. Since we do not need the bits of q, one should ask whether he or she indeed
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needs to know the bits of p. Let us look at the polynomial equation f .x; y/ D
xy � N , where W D N and the Newton polytope is a line formed by .0; 0/ and
.1; 1/. Applying a Coppersmith-type analysis to this polynomial yields the bound
XY � W 1�� D N 1��, for some error term �. Notice that a bound of XY � 2N
would easily allow to factor N D pq if p; q have equal bit-size, since p � pN D
X and q � 2pN D Y .

What does the bound XY � N 1�� imply? Can we remove the error term � and
derive the desired bound by running the algorithm on 2N � copies, where we search
in each copy for the roots in an interval of size N 1��? That is, can we factor in time
QO.N �/? And provided that the error term � satisfies � D O. 1

log N
/, can we factor in

polynomial time?
(Un)fortunately, the answer is NO, at least with this approach. The reason is

that as opposed to other polynomials, we cannot simply guess a few bits of the
desired small root .x0; y0/ D .p; q/, since this would either change the structure
of the Newton polytope or the size of W . If we guess bits of x0, we introduce the
monomial y, and symmetrically for y0, we introduce the x-monomial. But as shown
above, this changes our bound to an inferior XY � N 3

4 . On the other hand, if we
guess bits of x0y0, our largest coefficient decreases accordingly.

Notice that, e.g., for the polynomial . QpC x/y �N guessing bits of x0 is doable
since the guessing does not introduce new monomials. Thus, in this case a small
error term in the bound can be easily eliminated by a brute-force search technique.

Applying the Method to Multivariate
Polynomial Equations

Another challenging problem is to obtain provability of the algorithm in the mul-
tivariate setting. This problem is not only of theoretical interest. There have been
cases reported, where the heuristic method – which computes the roots by resultant
computations – for multivariate polynomials systematically fails [63].

Let us see why the method provably works for the bivariate integer case and
what causes problems when extending it to a third variable. Coppersmith’s original
method for bivariate integer polynomials constructs on input f .x; y/ a polynomial
g.x; y/, such that g.x; y/ cannot be a polynomial multiple of f .x; y/. In other
words, g.x; y/ does not lie in the ideal hf i generated by f , and, therefore, the
resultant of f and g cannot be the zero polynomial.

Heuristically, one extends this approach to three variables by constructing two
polynomials g1; g2 with LLL-reduction. The resultants r1 D Res.f; g1/ and r2 D
Res.f; g2/ are bivariate polynomials. The resultant Res.r1; r2/ is then univariate
and yields one coordinate of the roots, provided that the resultant does not vanish.
The other coordinates of the roots can be found by back-substitution. The resultant
is non-vanishing iff g1 and g2 are algebraically independent.

Recently, Bauer and Joux [60] proposed a twist in the above construction which
in some cases enables to guarantee algebraic independence also for polynomials
in three or more variables. Basically, their approach is an iterative application of
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Coppersmith’s original technique for bivariate polynomials. Given a trivariate poly-
nomial f .x; y; z/, one constructs a polynomial g.x; y; z/ such that g does not lie in
hf i. Afterward, one uses a Gröbner Basis approach and another iteration of the LLL
procedure to construct a third polynomial h.x; y; z/, which does not lie in hf; gi.

Unfortunately, Bauer and Joux’s approach still incorporates a heuristic assump-
tion. For trivariate polynomials of a special shape, however, the approach can be
made fully rigorous.

What are the Limitations of the Method?

Coppersmith’s method outputs all sufficiently small solutions of a polynomial equa-
tion. Since the method runs in polynomial time, it can only output a polynomial
number of solutions. Thus, the method proves in a constructive way a limit for the
number of roots within a certain interval. This limit matches for univariate modular
polynomials the bounds by Konyagin and Steeger [79]. The number of roots of each
polynomial equation thus limits the size of the interval that we are able to search
through in polynomial time. Let us demonstrate this effect for univariate modular
polynomial equations.

Let N D pr . Assume that we want to solve the equation f .x/ D xr mod N .
Clearly, all x0 D kp; k 2 N, are solutions. Hence, solving this equation for solu-
tions jx0j � p1C� would imply that one has to output p� solutions, an exponential
number.

This argument serves as an explanation why the bound jx0j D N
1
ı from Sec-

tion “How to Find Small Roots: The Univariate Case” cannot be improved in
general. On the other hand, for the following two reasons, this argument does not
fundamentally rule out improvements for any of the applications’ current bounds
mentioned in this survey.

First, the factorization of N Dpr can be easily determined. Hence, there might
be an improved method which exploits this additional information. Indeed,
Bleichenbacher and Nguyen [80] describe a lattice-based method for Chinese Rem-
aindering with errors that goes beyond the Coppersmith-type bound in cases where
the factorization of the modulus is known.

Second, in all the applications we studied so far, an improvement of the bound
would not immediately imply an exponential number of solutions. Look for instance
at the factoring with high bits problem and let us take the polynomial f .x/ D QpCx
mod p. The solution of this polynomial is unique up to the bound jx0j � p. So
although we have no clue how to solve the factorization problem with the help of
lattice reduction techniques, there is also no limiting argument which tells us that it
is impossible to extend our bounds to the general case.

As a second example, look at the Boneh-Durfee attack on RSA with d � N 0:292

which introduces the bivariate polynomial equations f .x; y/ D x.N C 1 � y/C 1
mod e. Assume that e is roughly of sizeN . Since y is the variable for pCq, its size
can be roughly bounded by

p
N . Assume that for a fixed candidate y the mapping
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g W x 7! x.N C 1 � y/ C 1 mod e takes on random values in Ze . If we map
p
N

candidates for x for every of the
p
N choices of y, we expect to map to zero at most

a constant number of times.
This counting argument let Boneh and Durfee conjecture that one can achieve a

bound of d � pN in polynomial time attacks on RSA with small secret d . More-
over, if one used the fact that y represents p C q, which implies that y0 is already
fully determined by N , then the counting argument would not rule out a bound
beyond

p
N . If we could make use of this information about y0, then there would

be a unique candidate for x0 in Z�.N /, and recovering this candidate would solve
the RSA problem as well as the factorization problem. However, despite consider-
able research efforts, the bound d � N 0:292 is still the best bound known today.
It remains an open problem to further push it.

Summary

The invention of the LLL algorithm in 1982 was the basis for the construction of
an efficient algorithm due to Coppersmith for finding small solutions of polynomial
equations in 1996. This in turn opened a whole new line of research and enabled
new directions for tackling challenging problems such as the RSA problem or the
factorization problem from a completely different angle. As opposed to traditional
approaches such as the Elliptic Curve Method and the Number Field Sieve, the LLL-
based approach is polynomial time but solves only relaxed versions of the RSA and
the factorization problem.

Today, the relaxed versions are still pretty far away from the general instances.
But, there appears to be a steady progress in finding new interesting applications,
and the existing bounds are continuously pushed. From a research point of view, it
is likely that the young field of LLL-based root finding still hides many fascinating
results that await their discovery.
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39. D. Stehlé, Floating-Point LLL: Theoretical and Practical Aspects, LLL+25 Conference in
honour of the 25th birthday of the LLL algorithm, 2007
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63. J. Blömer, A. May, Low Secret Exponent RSA Revisited, Cryptography and Lattice Conference
(CaLC 2001), Lecture Notes in Computer Science Volume 2146, Springer, pp. 4–19, 2001.

64. B. de Weger, Cryptanalysis of RSA with small prime difference, Applicable Algebra in
Engineering, Communication and Computing ,Vol. 13(1), Springer, pp. 17–28, 2002

65. M.J. Hinek, Another Look at Small RSA Exponents, Topics in Cryptology – CT-RSA 2006,
Lecture Notes in Computer Science Vol. 3860, pp. 82–98, 2006

66. A. May, Secret Exponent Attacks on RSA-type Schemes with Moduli N D prq, Practice
and Theory in Public Key Cryptography – PKC 2004, Lecture Notes in Computer Science
Vol. 2947, Springer, pp. 218–230, 2004

67. N. Kunihiro, K. Kurosawa, Deterministic Polynomial Time Equivalence between Factoring
and Key-Recovery Attack on Takagi’s RSA, Practice and Theory in Public Key Cryptography –
PKC 2007, Lecture Notes in Computer Science, Springer, 2007

68. A. May, Cryptanalysis of Unbalanced RSA with Small CRT-Exponent, Advances in Cryptol-
ogy – Crypto 2002, Lecture Notes in Computer Science Vol. 2442, Springer, pp. 242–256,
2002

69. H.-M. Sun, M.J. Hinek, and M.-E. Wu, An Approach Towards Rebalanced RSA-CRT with
Short Public Exponent, revised version of [70], online available at http://www.cacr.math.
uwaterloo.ca/techreports/2005/cacr2005-35.pdf

70. H.-M. Sun, M.-E. Wu, An Approach Towards Rebalanced RSA-CRT with Short Public
Exponent, Cryptology ePrint Archive: Report 2005/053, online available at http://eprint.iacr.
org/2005/053

71. S.D. Galbraith, C. Heneghan, and J.F. McKee, Tunable Balancing of RSA, Proceedings of
ACISP 2005, Lecture Notes in Computer Science Vol. 3574, pp. 280–292, 2005

72. S.D. Galbraith, C. Heneghan, and J.F. McKee, Tunable Balancing of RSA, full version of [71],
online available at http://www.isg.rhul.ac.uk/ sdg/full-tunable-rsa.pdf



348 A. May

73. E. Jochemsz, A. May, A Strategy for Finding Roots of Multivariate Polynomials with New
Applications in Attacking RSA Variants, Advances in Cryptology – Asiacrypt 2006, Lecture
Notes in Computer Science Vol. 4284, pp. 267–282, Springer, 2006

74. D. Boneh, Simplified OAEP for the RSA and Rabin Functions, Advances in Cryptology –
Crypto 2001, Lecture Notes in Computer Science Vol. 2139, pp. 275–291, Springer, 2001
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