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Preface

The 8th International Workshop on Fuzzy Logic and Applications (WILF 2009)
held in Palermo (Italy), June 9-12, 2009, covered topics related to theoretical
and experimental areas of fuzzy sets and systems with emphasis on different
applications.

This event represents the continuation of an established tradition of biannual
interdisciplinary meetings. The previous editions of WILF were held, with an
increasing number of participants, in Naples (1995), Bari (1997), Genoa (1999),
Milan (2001), Naples (2003), Crema (2005) and Camogli (2007). Each event
focused on distinct main thematic areas of fuzzy logic and related applications.

WILF 2009 aimed to highlight connections and synergies of fuzzy sets theory
with nonconventional computing (e.g., neural networks, evolutionary computa-
tion, support vector machines, molecular computing, quantum computing) and
cognitive science, in order to reach a better understanding of both natural and ar-
tificial complex systems as well as computing systems, inspired by nature, which
are able to solve complex problems. From this perspective one of the main goals
of the WILF workshops is to bring together researchers and developers from
both academia and high-tech companies.

WILF 2009 received more than 60 paper submissions from all over the world,
including Algeria, Belgium, Benin, Brazil, Canada, China, France, Greece,
India, Iran, Italy, Japan, Poland, Romania, Slovakia, Spain and the USA. A
rigorous peer-review selection process was applied to ultimately select nearly 40
high-quality manuscripts to be published in this volume.

Moreover, the volume also includes presentations from three keynote speakers
Etienne Kerre (Ghent University, Belgium), Sankar K. Pal (ISI, India) and Enric
Trillas (ECSC, Spain).

The success of this conference is to be credited to the contributions of many
people. Special thanks go to the Program Committee members for their commit-
ment to the task of providing high-quality reviews, and to the local Organizing
Committee.

We cannot conclude without expressing our deepest gratitude to Giosué Lo
Bosco and Cesare Valenti from the University of Palermo, who contributed to the
organization of the workshop with the same passion and rigor that they apply in
their scientific research. Without their help such a great and very special event
could not have been organized.

March 2009 Vito Di Gesù
Sankar Kumar Pal
Alfredo Petrosino



To Our Friend Vito Di Gesú

Professor Vito Di Gesú passed away on March 15, 2009 at the age of 63 after a
courageous struggle with a terminal illness.

Vito Di Gesú was one of the leading researchers in image analysis and pat-
tern recognition after he joined the computer science group at the University of
Palermo, where he served as a Full Professor and founded the PReDiGe research
group.

In 1994 he was honored with the IAPR Fellowship at the very first assignment
and with the Mahalanobis prize. Former President of GIRPR (the IAPR Italian
Society), Vito Di Gesú initiated from 1986 its IAPR-TC13 on Pattern Recog-
nition in Astronomy and Astrophysics. He was responsible for several projects
for the Italian Ministry of Scientific Research and the Italian Space Agency;
moreover, he was the national coordinator and member of the governing boards
of several European projects. He served as member of the governing board of
CINI (Italian Interuniversity Consortium in Informatics) and, at Palermo Uni-
versity, as research director of the CINI research unit, taking responsibility for
the consortium COMETA and for the Socrates/Erasmus program on computer
science.

Vito Di Gesú had a wide impact on our fields of research and pattern recogni-
tion at large, through authoring a large number of quality papers and co-editing
more than two dozen books, organizing a dozen conferences and participating in
about 60 conferences as a member of different committees.

His career was marked by remarkable productivity. His research interests orig-
inated from computer architectures like pyramids for computer vision to symme-
try theory, passing through relevant results about intelligent clustering. As for
applications, on top of his maintained interest in astronomy and astrophysics,
to which he was applying his research on data mining and information fusion,
we can cite his contributions in remote sensing and biomedical engineering, e.g.,
discrete tomography and diagnosis from image analysis.

He contributed significantly to spreading results through the Computer Ar-
chitecture and Machine Perception (CAMP) workshops, sponsored by IEEE, and
International Conferences on Image Analysis and Processing (ICIAP), sponsored
by IAPR, of which he was a constant supportive participant and organizer. His
interests in new disciplines and cross-fertilization between various fields took
their meaning in organizing a series of workshops on Human – Machine Percep-
tion (HMP), where his contribution was really decisive, up to the very successful
Workshop on Data Analysis in Astronomy (ADA) in 2007 where cosmology got
connected with bioinformatics.

His current research dealt mainly with the origin of the synergy between the
fields of soft computing and artificial vision, not only doing research by himself
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in fuzzy clustering or genetic algorithms, but also participating actively in the
success of our WILF conference series, since his first chairing in Naples in 2003.

He had been associated with the Indian Statistical Institute (ISI) for the last
20 years. He had a magical power of establishing both personal and professional
friendship along with scientific collaboration with scientists of different institu-
tions spread all over the world. He first visited ISI in 1988 in connection with
an international conference and since then visited at least ten times, including
his recent participation in PReMI-05 and PReMI-07 as invited speaker. He was
actively connected with the “Center for Soft Computing Research: A National
Facility” at ISI since its inception in 2004.

Vito Di Gesú was basically a man of many dimensions. He touched every one
of us in a different way, both personally and professionally. We very much regret
that some of you will not have the occasion to ever meet him. He would have
surely deeply touched every one of you!

Vito, although of poor health, organized WILF 2009 with the enthusiasm of
always.

We hope that WILF 2009 will serve both as a reminder of our loss and an
inspiration as we venture toward other frontiers.

His friendly demeanor and hearty laugh are difficult to forget.

Sankar Kumar Pal
Alfredo Petrosino
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Non Contradiction, Excluded Middle,

and Fuzzy Sets�

Enric Trillas��

European Centre for Soft Computing, 33600 Mieres, Spain
enric.trillas@softcomputing.es

Abstract. By means of a syntactic concept of self-contradiction, the aris-
totelian principles of non-contradiction and excluded-middle are posed in
some very simple algebraic structures. Once linked with an algebraic rep-
resentation of the relation If/then, such framework allows to represent
both principles, and to prove that there is always the smallest relation for
which they do hold. Finally, in agreement with the semantics of the rela-
tion If/then, the principles are stated with fuzzy sets, and some progress is
reached in this case for what concerns the verification of the two principles.

Keywords: Self-contradiction, Non-contradiction, Excluded-middle, De
Morgan algebras, Algebras of fuzzy sets.

1 Introduction

For some thinkers, the failure of either the principle of non-contradiction, or
that of the excluded-middle, means that the corresponding theoretical develop-
ments are based on ‘trembling grounds’. But things are what they are, and the
principles fail in many cases.

Much earlier than logic were formalized, Aristotle linguistically stated the
principle of non contradiction in [1], by a statement that can be shortened as
‘A and not A is impossible’, and he also added that such a principle is not
susceptible to demonstration.

The term ‘impossible’ is usually taken as a synonym of ‘false’, whose refer-
ence is of a semantic character, and as far as this author knows, and with the
exception of [6], no purely syntactic approach has been done to that principle.
Nevertheless, by interpreting ‘impossible’ as ‘self-contradictory’ the principle can
be algebraically translated, and also ‘proven’ with no previous conditions on the
involved operations and relation, that is, in a totally general framework arisen
from ‘A and not A, self-contradictory’. This paper is devoted to such a goal, and
the ideas in it come from the references [3], and [6].

� This paper is partially supported by the Foundation for the Advancement of Soft Com-
puting (Asturias, Spain), and CICYT (Spain) under grant TIN2008-06890-C02-01.

�� In fond remembrance of my Ph.D. Adviser, the late Prof. F. d’A. Sales i Vallès (1914-
2005), who introduced me in the wellhead of ideas from which this paper comes, the
1964 Bodiou’s book [3].

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 1–11, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 E. Trillas

For what concerns the principle of excluded-middle, Aristotle was actually
less clear about it, although it was furtherly stated by ‘not (A and not A) is
always’, or by ‘A or not A is always’. It is not without some doubt, that this
principle is here understood as ‘not (A or not A) is impossible’, and represented
through ‘not (A or not A), is self-contradictory’.

In order to have an algebraic representation of the above principles, it is
considered a set L whose elements a, b, c, . . . represent statements, endowed with
three operations ·,+,′, representing the connectives and, or , and not, respectively.
To represent the conditionals ‘If A, then B’ it will be taken a binary relation
� in L, allowing to interpret self-contradiction (‘If A, then not A’). In this way
the two principles can be syntactically considered, and the particular cases of
De Morgan and fuzzy set algebras studied. With all that, some ‘progress’ in the
principles’ verification is reached.

2 Basic Concepts

2.1

Let L be a non-empty set whose elements a, b, c, . . . do represent statements
A,B,. . . Furthermore let

– ′ : L → L, is a mapping translating not. A statement like ‘not A’ is repre-
sented by a′.

– · : L × L → L, is an operation translating and. A statement like ‘A and B’
is represented by a · b.

– + : L × L → L, is an operation translating or. A statement like ‘A or B’ is
represented by a + b.

– � ⊂ L × L is a binary relation translating If, then. A statement like ‘If A,
then B’ is represented by a � b.

In what follows, triplets (L, ·,′ ) and (L,+,′ ), as well as quartets (L, ·,+,′ )
will be considered.

Definition 1. a ∈ L is self-contradictory provided a � a′

This definition translates ‘If A, then not A’.

Definition 2. A triplet (L, ·,′ ) verifies the non-contradiction principle with re-
spect to �, provided all elements of the form a · a′ are self-contradictory, that
is

a · a′ � (a · a′)′,
for all a ∈ L (see [6]).

This definition translates ‘If A and not A, then not (A and not A)’.

Definition 3. A triplet (L,+,′ ) verifies the excluded-middle principle with re-
spect to �, provided all elements of the form (a+ a′)′ are self-contradictory, that
is

(a + a′)′ � ((a + a′)′)′,

for all a ∈ L (see [6]).

This definition translates ‘If not (A or not A), then not(not (A or not A))’.
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2.2

Examples of quartets (L, ·,+,′ ) are given by ortholattices and De Morgan alge-
bras (see [2])

An ortholattice (L, ·,+,′ ; 0, 1), is a lattice (L, ·,+) with first (0) and last (1)
elements, endowed with an orthocomplement, that is, with a mapping ′ : L → L
verifying: 1) 0′ = 1; 2) (a′)′ = a, for all a ∈ L; 3) a · a′ = 0 for all a ∈ L; and 4)
a · b = ((a′ + b′)′, for all a, b ∈ L. Orthomodular lattices are those ortholattices
where a ≤ b ⇒ b = a + a′ · b. Distributive ortholattices are Boolean algebras.

A De Morgan algebra (L, ·,+,′ ; 0, 1),is a distributive lattice (L, ·,+) with first
(0) and last (1) elements, endowed with a pseudo-complement, that is, with a
mapping ′ : L → L verifying: 1) 0′ = 1; 2) (a′)′ = a, for all a ∈ L; and 3)
a · b = ((a′ + b′)′, for all a, b ∈ L.

3 The Verification of the Principles

Denote by RNC the set of binary relations � ⊂ L×L for which the triplet (L, ·,′ )
verifies the non-contradiction principle, and by REM that for which the triplet
(L,+,′ ) verifies the excluded-middle principle.

Theorem 1. For no triplet (L, ·,′ ) the set RNC is empty.

Proof. Define the binary relation in L, �NC= {(a ·a′, (a ·a′)′); a ∈ L}. Obviously,
�NC ∈ RNC .

Theorem 2. It is �NC =
⋂

�∈RNC

�.

Proof. The relation
⋂

� is the smallest in RNC , and obviously �NC ⊂ �, for all
� ∈ RNC .

Theorem 3. For no triplet (L,+,′ ) the set REM is empty.

Proof. Define the binary relation in L, �EM= {((a + a′)′, ((a + a′)′)′); a ∈ L}.
Obviously, �EM ∈ REM .

Theorem 4. It is �EM =
⋂

� ∈REM

�.

Proof. The relation
⋂

� is the smallest in REM , and obviously �EM ⊂ �, for all
� ∈ REM .

Theorem 5. For all quartet (L, ·,+,′ ), at least it exits the relation �NC ∪ �EM ,
for which the principles of non-contradiction and excluded-middle do hold.

Proof. Obvious.

Remark 1. Provided the mapping ′ (negation) is strong, that is, verifies (a′)′ = a,
for all a ∈ L, the principle of excluded-middle can be stated by

(a + a′)′ � a + a′,

for all a ∈ L.
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Remark 2. If ′ is strong, the two duality formulas a · b = (a′ + b′)′, and a +
b = (a′ · b′)′, are equivalent. From a · b = (a′ + b′)′, for all a, b in L , follows
a′ · b′ = ((a′)′ + (b′)′)′ = (a + b)′, and (a′ · b′)′ = a + b. From a + b = (a′ · b′)′
follows a′ + b′ = (a · b)′, and (a′ + b′)′ = a · b.

Remark 3. If ′ is strong, · is commutative, and + is dual of ·, that is, (a′)′ = a,
a · b = b · a, a + b = (a′ · b′)′, for all a, b in L, the principle of excluded-middle
follows from that of non-contradiction: (a + a′)′ = ((a′ · (a)′)′ = a′ · a = a · a′,
and ((a + a′)′)′ = (a · a′)′. Hence,

a · a′ � (a · a′)′ ⇒ (a + a′)′ � ((a + a′)′)′,

for all a ∈ L.
If ′ is strong, + is commutative, and · is dual of +, the principle of non-

contradiction follows from that of excluded-middle: (a+ a′)′ = (a′ + a)′ = a · a′,
and ((a + a′)′)′ = a + a′ = a′ + a = (a · a′)′.

Notice that from the duality and the commutativity of +, it follows the com-
mutativity of ·.

Remark 4. As a consequence of remarks 3, it is clear that, provided ′ is strong,
under the commutativity of · and +, and the respective duality of both · or +,
the principles of non-contradiction and excluded-middle are equivalent. In this
case, it is obvious that

�NC = �EM = {(a · a′, a + a′); a ∈ L}

Remark 5. It is worth to notice that, independently of the properties operations
′, ·,+ can have, there are at least the relations �NC ,�EM , and �NC ∪ �EM ,
allowing the verification of either one, or two Aristotelian principles.

Nevertheless, and although this shows the general validity of the principles
under no conditions, at each problem, the relation � allowing them should be
directly related with the particular way of representing ‘If A then B’, namely
with the meaning or use of the conditional statements ‘If A, then not A’. A
relationship that either could or could not exist (see [6]).

4 The Cases of Ortholattices, De Morgan Algebras and
Fuzzy Sets

In [8], the verification of the principles is studied in the case of the major systems
of three-valued logic. It is also interesting to study the cases of ortholattices, De
Morgan algebras (see section 2.2), and fuzzy sets.

4.1

Let (L, ·,+,′ ; 0, 1) be an ortholattice [2]. As it is well known, the two principles
are there usually interpreted by the two axioms: a · a′ = 0, and a + a′ = 1, for
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all a ∈ L. Hence, �NC= �EM= {0, 1} ⊂ ≤, with the lattice’s order ≤ defined by
a ≤ b ⇔ a · b = a ⇔ a + b = b.

In addition, ≤ is the greatest relation in L allowing the two principles, since

a · a′ = 0 ≤ 1 = (a · a′)′, and (a + a′)′ = 1′ = 0 ≤ 1 = a + a′.

for all a ∈ L. Of course, these results also hold in the particular cases of ortho-
modular and boolean lattices.

4.2

Let (L, ·,+,′ ; 0, 1) be a De Morgan algebra [2]. Since it is neither a · a′ = 0, nor
a + a′ = 1 for all a ∈ L, the two principles cannot be stated as in ortholattices.
Since (a + a′)′ = a · a′ and a + a′ = (a · a′)′, it is

�NC = �EM= {(a · a′, a + a′); a ∈ L} ⊂ ≤
with the lattice’s order ≤ defined by a ≤ b ⇔ a · b = a ⇔ a+ b = b. In addition,

– a · a′ ≤ a, a · a′ ≤ a′ ⇒ a′ ≤ (a · a′)′, a ≤ (a · a′)′ ⇒ a · a′ ≤ (a · a′)′,
– a ≤ a + a′, a′ ≤ a + a′ ⇒ (a + a′)′ ≤ a′, (a + a′)′ ≤ a ⇒ (a + a′)′ ≤ a + a′,

for all a ∈ L. Hence �NC= �EM⊂≤, and ≤ is the greatest relation allowing the
two principles.

    
       
NO modular 
       

              
 
 
 

                 
                           

  
  

 
 
      
                   
 
 

1(11)

2(10)

4(8) 

7(5) 6(6)5(7) 

8(4) 9(3) 

10(2) 

11(1) 

3(9) 

In the finite De Morgan algebra in the figure, where the pseudo-complement
a′ of each a appears between parenthesis, it is easy to check that

�NC = �EM = {(1, 11), (2, 10), (3, 9), (4, 8), (6, 6), } ⊂≤

4.3

In the De Morgan algebra ([0, 1],min,max, 1− id), is a ·a′ = min(a, 1−a) ≤ 0.5,
and (a ·a′)′ = 1−a ·a′ ≥ 1−0.5 = 0.5, that is, (a ·a′, (a ·a′)′) ∈ [0, 0.5]× [0.5, 1].
Analogously, since a + a′ = max(a, 1 − a) ≥ 0.5, it also follows ((a + a′)′, ((a +
a′)′)′) ∈ [0, 0.5] × [0.5, 1]. Hence,

�NC = �EM ⊂ [0, 0.5] × [0.5, 1] � ≤
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4.4

The set of fuzzy sets in a universe X , [0, 1]X = {μ;μ : X → [0, 1]}, is pointwise
ordered by the partial order ≤ given by

μ ≤ σ ⇔ μ(x) ≤ σ(x),

for all x ∈ X . This order induces the pointwise identity μ = σ ⇔ μ ≤ σ and
σ ≤ μ ⇔ μ(x) = σ(x) for all x ∈ X .

Among the constant fuzzy sets μr(x) = r, for all x ∈ X , with r ∈ [0, 1], the
ones μ1 (the characteristic function of X), and μ0 (the characteristic function of
∅), verify μ0 ≤ μ ≤ μ1, for all μ ∈ [0, 1]X .

A minimal algebra of fuzzy sets [5] is any quartet ([0, 1]X , ·,+,′ ), with · :
[0, 1]X× [0, 1]X → [0, 1]X ,+ : [0, 1]X× [0, 1]X → [0, 1]X , and ′ : [0, 1]X → [0, 1]X ,
verifying the four axioms:

1. μ · μ1 = μ1 · μ = μ, μ + μ0 = μ0 + μ = μ, for all μ ∈ [0, 1]X
2. If μ ≤ σ, then μ · λ ≤ σ · λ, λ · μ ≤ λ · σ, for all λ ∈ [0, 1]X
3. If μ ≤ σ, then μ + λ ≤ σ + λ, λ + μ ≤ λ + σ, for all λ ∈ [0, 1]X

4. If μ ≤ σ, then σ′ ≤ μ′.

From these axioms follows μ · μ0 = μ0 · μ = μ0, μ + μ1 = μ1 + μ = μ1, and
μ · σ ≤ min ◦(μ× σ) ≤ max ◦(μ× σ) ≤ μ + σ, for all μ, σ ∈ [0, 1]X . No minimal
algebra of fuzzy sets is an ortholattice, but the one with μ · σ = min ◦(μ × σ),
μ + σ = max ◦(μ × σ), μ′ = 1 − μ, is a De Morgan algebra. All these algebras
verify the Kleene’s law μ · μ′ ≤ σ + σ′, for all μ, σ ∈ [0, 1]X , and in general it is
neither μ · μ′ = μ0, nor μ + μ′ = μ1, for all μ, σ ∈ [0, 1]X .

Theorem 6. Minimal algebras of fuzzy sets verify the principles of
non-contradiction and excluded-middle with respect to the ordering relation ≤.

Proof. Since μ · μ′ ≤ μ, μ · μ′ ≤ μ′, it follows μ′ ≤ (μ · μ′)′, and μ · μ′ ≤ (μ · μ′)′.
Since μ ≤ μ+μ′, μ′ ≤ μ+μ′, it follows (μ+μ′)′(μ+μ′)′ ≤ μ′, and (μ+μ′)′ ≤ (μ′)′.
Hence, also (μ′)′ ≤ ((μ + μ′)′)′, and (μ + μ′)′ ≤ ((μ + μ′)′)′.

When μ·σ = T ◦(μ×σ), μ+σ = S◦(μ×σ), μ′ = N◦μ, with T a continuous t-norm,
S a continuous t-conorm, and N a strong negation, the algebras ([0, 1]X , ·,+,′ ) =
([0, 1]X , T, S,N) are called standard algebras of fuzzy sets.

5 Some Basic Ideas on Fuzzy Conditionals

Let us consider an standard algebra of fuzzy sets ([0, 1]X , T, S,N), where ordinal
sums of t-norms or t-conorms will not be considered.

Sometimes, μ ≤ σ is read μ is included in σ, since when μ, σ are in {0, 1}X
(crisp sets), μ ≤ σ is equivalent to μ ⊂ σ.

There are many forms of representing the conditional statements ‘If μ, then
σ’ (μ → σ), but fuzzy logic always deals with functionally expressible represen-
tations of the form

μ → σ = J ◦ (μ× σ),
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with J : [0, 1]×[0, 1] → [0, 1], a T0-conditional, that is, verifying T0(a, J(a, b) ≤ b,
for all a, b in [0, 1], for some continuous t-norm T0 (see [7]). Among these functions
the most usual are the following:

– J(a, b) = S(N(a), b), or S-implications (S for ‘strong’)
– J(a, b) = JT (a, b) = sup{z ∈ [0, 1];T (a, z) ≤ b}, or R-implications (R for

‘residuated’)
– J(a, b) = S(N(a), T (a, b)), or Q-implications (Q for Quantum)
– J(a, b) = T (a, b), or Mamdani-Larsen conditionals

Examples of such J are, respectively,

– J(a, b) = max(1 − a, b), Kleene-Dienes implication, a T0-conditional with
T0 = W

– J(a, b) = 1, if a ≤ b; J(a, b) = b/a, otherwise, Goguen implication, with
T0 = prod

– J(a, b) = max(1 − a,min(a, b)), Early-Zadeh implication, T0 = W
– J(a, b) = min(a, b), Mamdani-conditional, T0 = min
– J(a, b) = a · b, Larsen-conditional, T0 = min.

To check at least one T0, observe that with the Kleene-Dienes implication
is, W (a,max(1 − a, b)) = max(0,max(1 − a, b) + a − 1) = max(0, a + b − 1) =
W (a, b) ≤ b, but neither min(a,max(1−a, b)) ≤ b, nor a. max(1−a, b)) ≤ b, since,
for example, min(0.7,max(1−0.7, 0.1)) = 0.3 > 0.1, and 0.7. max(1−0.7, 0.1) =
0.21 > 0.1.

6 The Case with Fuzzy Sets

Let us suppose an standard algebra ([0, 1]X , T, S,N) in which the conditional ‘If
μ, then σ’ is functionally expressible by means of a T0-conditional J , that is, by
(μ → σ)(x, y) = J(μ(x), σ(y)), for all x, y in X [7].

To relate the principles of non-contradiction and excluded-middle to the mean-
ing of ‘If μ, then σ’ , that is, to the semantics of the corresponding T0-conditional,
define the relation

μ �∗ σ ⇔ (μ → σ)(x, x) = 1 ⇔ J(μ(x), σ(x)) = 1,

for all x ∈ X , reducible to the numerical one

a � b ⇔ J(a, b) = 1,

for all a, b in [0, 1], by μ �∗ σ ⇔ μ(x) � σ(x), for all x ∈ X . The pairs (a, b) ∈ �
are nothing else than the solutions of the two-variables equation J(a, b) = 1. In
what follows only the cases considered in section 5 are taken into account.

6.1 The Case of S-Implications J(a, b) = S(N(a), b)

6.1.1 S = max: J(a, b) = max(N(a), b) = 1 ⇔ a = 0 or b = 1. Hence,
� = {(a, 1); a ∈ [0, 1]}∪{(0, b); b ∈ [0, 1]}, and �⊂ ≤, where ≤ is the linear order
of [0, 1].
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6.1.2 S = prod∗
ϕ: J(a, b) = ϕ−1(ϕ(N(a)) + ϕ(b) − ϕ(N(a)).ϕ(b)) = 1 ⇔

ϕ(N(a))(1 − ϕ(b)) = 1 − ϕ(b) ⇔ b = 1 or (b < 1 and a = 0). Hence

�= {(a, 1); a ∈ [0, 1]} ∪ {(0, b); b ∈ [0, 1]} ⊂≤ .

6.1.3 S = W ∗
ϕ: J(a, b) = ϕ−1(min(1, ϕ(N(a))+ϕ(b))) = 1 ⇔ 1 ≤ ϕ(N(a))+

ϕ(b) ⇔ ϕ−1(1 − ϕ(b)) ≤ N(a), or Nϕ(b) ≤ N(a).
6.1.3.1 If N = Nϕ, J(a, b) = 1 ⇔ Nϕ(b) ≤ Nϕ(a) ⇔ a ≤ b.
Hence, � = ≤ . In this case, J(a, b) = ϕ−1(min(1, 1 − ϕ(a) + ϕ(b))),
is the R-implication JT with T = Wϕ.
6.1.3.2 If N �= Nϕ, then different solutions can arise. For example, with
N(a) =

√
1 − a2, and ϕ = id (Nϕ=1− id), is J(0.5, 0.4) = W ∗(

√
1 − 0.25, 0.4)

= W ∗(0.866, 0.4) = 1, that is, 0.5 � 0.4, but not 0.5 ≤ 0.4. Hence, in this
case, it is not � ⊂ ≤ .
With N(a) = 1−a

1+a , and ϕ = id, is J(a, b) = W ∗(1−a
1+a , b) = min(1, 1−a

1+a + b)
= 1 ⇔ (1 − b)(1 + a) ≤ (1 − a) ⇔ 2a ≤ b(1 − a) ⇒ 2a ≤ 2b, or a ≤ b.
Hence, in this case, � ⊂ ≤ .

6.2 The Case of R-Implications JT (a, b)=sup{z ∈ [0, 1]; T (a, z) ≤ b}
From JT (a, b) = 1 ⇔ a ≤ b, follows � = ≤ .

6.3 The Case of Mamdani-Larsen Conditionals J(a, b) = T (a, b)

Since for either T = min, prodϕ, and Wϕ, is T (a, b) = 1 ⇔ a = b = 1, follows
� = {1, 1} ⊂ ≤ .

6.4 The Case of Q-Conditionals J(a, b) = S(N(a), T (a, b))

6.4.1 S = max : max(N(a), T (a, b)) = 1 ⇔ a = 0 or a = b = 1, hence
� = {(0, b); b ∈ [0, 1]} ∪ {1, 1} ⊂ ≤ .

6.4.2 S = prod∗
ϕ : ϕ(N(a)) + ϕ(T (a, b)) − ϕ(N(a)).ϕ(T (a, b)) = 1 ⇔

ϕ(N(a)).(1 − ϕ(T (a, b))) = 1 − ϕ(T (a, b)) ⇔
{
T (a, b) = 1 ⇔ a = b = 1
T (a, b) < 1, and a = 0.

Hence,

� = {1, 1} ∪ {(0, b); b ∈ [0, 1]} ⊂ ≤ .

6.4.3 S = W ∗
ϕ : min(1, ϕ(N(a)) + ϕ(T (a, b))) = 1 ⇔ 1 ≤ ϕ(N(a)) +

ϕ(T (a, b)) ⇔ ϕ−1(1 − ϕ(T (a, b)) ≤ N(a) ⇔ Nϕ(T (a, b)) ≤ N(a), whose study
can be done like that in 6.1.3. For example, if N = Nϕ, it results a ≤ T (a, b),
that is T (a, b) = a for all a, b in [0, 1], thus

– T = min, gives a ≤ b. Hence, a � b ⇔ a ≤ b, and � = ≤ .
– T = prodϕ, gives ϕ(a).ϕ(b) = ϕ(a) ⇔ a = 0, or b = 1, and � = {(0, b); b ∈

[0, 1]} ∪ {(a, 1); a ∈ [0, 1]} ⊂ ≤ .
– T = Wϕ, gives max(0, ϕ(a) + ϕ(b) − 1) = ϕ(a) ⇔ a = 0, or b = 1, and

� = {(0, b); b ∈ [0, 1]} ∪ {(a, 1); a ∈ [0, 1]} ⊂ ≤ .
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Remark 6. From 6.1 to 6.4 it can be concluded the following

– It is � = ≤, in the case of all R-implications, since in the case 6.4.3, the
Q-implications of the form J(a, b) = W ∗

ϕ(Nϕ(a),min(a, b)) = JWϕ(a, b), are
just R-implications.

– In all the other cases, it is � ⊂ ≤, with the singularity of the Mamdani-Larsen
conditionals, where � = {1, 1} ⊂ ≤ .

6.5

Theorem 7. For all triplet (T, S,N) it is T (a,N(a)) ≤ N(T (a,N(a))) and
N(S(a,N(a))) ≤ S(a,N(a)) for all a ∈ [0, 1].

Proof. For all pairs (T, S) is T ≤ S (see [5]), an equality that also holds if
S = N ◦ T ◦ (N ◦N) -the N-dual t-conorm of T-, or if T = N ◦ S ◦ (N ◦N) -the
N-dual t-norm of S. Hence,

– T (a,N(a)) ≤ N(T (N(a), N(N(a)))) = N(T (N(a), a)) = N(T (a,N(a))), for
all a ∈ [0, 1].

– N(S(a,N(a))) ≤ N(T (N(a), N(N(a)))) = T (N(a), a) = T (a,N(a)) ≤
S(a,N(a)), for all a ∈ [0, 1].

Corollary 1. In all the cases in which � = ≤, ([0, 1]X , T, S,N) does verify the
principles of non-contradiction and excluded-middle.

Proof. Follows immediately from theorem 7, and also from theorem 6,

– μ · μ′ �∗ (μ · μ′)′ ⇔ (μ · μ′)(x) � (μ · μ′)′(x) ⇔ (μ · μ′)(x) ≤ (μ · μ′)′(x) ⇔
T (μ(x), N(μ(x))) ≤ N(T (μ(x), N(μ(x))))

– (μ + μ′)′ �∗ ((μ + μ′)′)′ ⇔ (μ + μ′)′(x) � (μ + μ′)(x) ⇔ (μ + μ′)′(x) ≤
(μ + μ′)(x) ⇔ N(S(μ(x), N(μ(x)))) ≤ S(μ(x), N(μ(x))),

for all x ∈ X

In the cases in which � � ≤, the principles do not hold. To see it, consider
the following relations (section 6.4) :

1. � = {(0, b); (a, 1); a, b ∈ [0, 1]}
2. � = {(0, b); (a, 1); a ∈ [0, 1]a, b ∈ [0, 1)}
3. � = {(0, b); b ∈ [0, 1]} ∪ {(1, 1)}
4. � = {(0, b); (a, 1); a ∈ (0, 1]a, b ∈ [0, 1]}
5. � = {(0, b); (a, 1); a ∈ [0, 1]a, b ∈ [0, 1]}
6. � = {(1, 1)}.

Since μ �∗ σ ⇔ (μ(x), σ(x)) ∈ �, for all x ∈ X , it respectively results

– 1.) μ · μ′ �∗ (μ · μ′)′ ⇔ (μ · μ′)(x) � (μ · μ′)′(x), ∀x ∈ X ⇔ [(μ · μ′)(x) =
0 & (μ ·μ′)′(x) ∈ [0, 1]] or [(μ ·μ′)(x) ∈ [0, 1]&(μ ·μ′)′(x) = 1], for all x ∈ X .
Hence, it should be μ ·μ′(x) = 0 for all x ∈ [0, 1], or μ ·μ′ = μ0. The principle
does not hold, and the only μ in [0, 1]X verifying it are those that μ ·μ′ = μ0
(for example, the crisp sets).
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– 2.), 3.), 4.) and 5.). It follows the same result in (1.)
– 6.) μ · μ′ �∗ (μ · μ′)′ ⇔ (μ · μ′)(x) = 1 & (μ · μ′)′(x) = 1, ∀x ∈ X ⇔ μ · μ′ =

μ1 & μ ·μ′ = μ0, that is absurd. In this case, not only the principle does not
hold, but it is not verified by any μ ∈ [0, 1]X .

6.6

For the principle of excluded-middle, an analogous process of reasoning can be
done.

6.7

Let us remember [5] that the only standard algebras in which it is μ · μ′ = μ0
are those with T = Wϕ and N ≤ Nϕ, and the only for which it is μ + μ′ = μ1
are those with S = W ∗

ψ , N ≥ Nψ.
Hence, the only standard algebras where the above two formulas do hold are

those with T = Wϕ, S = W ∗
ψ , and Nψ ≤ N ≤ Nϕ.

7 Conclusions

7.1

There is a simple way to always have � = ≤ . If suffices to change J , by

J∗(a, b) =
{

1, if a ≤ b
J(a, b), otherwise , with J a T0-conditional.

With this change it results

– J∗ is also a T0-conditional: T0(a, J∗(a, b))=
{
T0(a, 1) = a, if a ≤ b
T0(a, J(a, b)) ≤ b, otherwise

}
≤ b, for all a, b in [0, 1].

– a � b ⇔ J∗(a, b) = 1 ⇔ a ≤ b.

The problem could lie in the corresponding change in the meaning of μ → σ,
that could be non acceptable.

7.2

The relation �NC (section 2.2) is the smallest one for which the principle of
non-contradiction holds, and obviously �NC⊂ ≤. Can it be �NC= ≤?

The answer is negative, since �NC= ≤ would mean that , once given T and
N , for all pair (x, y) ∈ ≤ it should exist a ∈ [0, 1] such that x = T (a,N(a)) and
y = N(T (a,N(a))), equalities implying y = N(x) for all x ≤ y, that is never the
case. For example, with N = 1−id, and (0.6, 0.7) it is 0.7 �= 1 − 0.6 = 0.4.

It can be analogously proceeded with �EM .

7.3

To go a little further from �NC� ≤, and �EM� ≤, let us show that both relations
are included in [0, n] × [n, 1] �≤, with N(n) = n ∈ (0, 1), the fix point of the
strong negation N [4]. From:
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– T (a,N(a)) ≤ n, for all a ∈ [0, 1], follows n ≤ NT (a,N(a))), and �NC⊂
[0, n] × [n, 1]

– n ≤ S(a,N(a)), for all a ∈ [0, 1], follows NT (a,N(a))) ≤ n, and �EM⊂
[0, n] × [n, 1]

For example, with N(a) = 1−a
1+a , for which n =

√
2 − 1 = 0.4142, the point

(0.5, 0.8) is not in [0,
√

2 − 1] × [
√

2 − 1, 1], and hence is neither in �NC , nor in
�EM . A particular case is shown in section 4.3.

7.4

Let us finish by saying which is the ‘progress’ for the principles’ verification that
is obtained in this paper.

a. Independently of the semantics of ‘If μ, then σ’ (μ → σ), and as it was
advanced in [6], by taking � = ≤ all standard algebras of fuzzy sets (either
dual or not) do verify the two principles.

b. By taking into account the semantics of μ → σ,
b.1 The principles are verified in all the cases in which �J = ≤, and they

fail if �J �= ≤.
b.2 If it is semantically acceptable to change J by J∗ (7.1), since �J∗ = ≤,

all standard algebras do verify the principles

Acknowledgements. The author thanks Prof. Claudio Moraga and Dr. Eloy
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paper.
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Abstract. Assessing the parallelism between objects is an important
issue when considering man-made objects such as buildings, roads, etc. In
this paper, we address this problem in the fuzzy set framework and define
novel approximate parallelism notions, for fuzzy segments and non-linear
objects or groups of objects. The proposed definitions are in agreement
with the intuitive perception of this spatial relation, as illustrated on real
objects from satellite images.

1 Introduction

We discuss the problem of defining parallelism between objects and fuzzy objects.
This work is motivated by the importance of this spatial relation for describing
human made objects such as buildings, roads, railways, observed in satellite
images. Parallelism has been widely studied in the computer vision community
in the perceptual organization domain, since it is an important feature of the
grouping principles of the Gestalt theory [4].

Parallelism between linear segments was studied in several works, for example
[7,6,5,8]. In [7] the parallelism is detected by assigning a significance value to
determine that the detected parallelism has not been accidentally originated.
A fuzzy approach is proposed in [6,5], leading to a measure of the degree of
parallelism between two linear segments. The parallelism between curves was
studied in [4,9], where it was treated as a shape matching problem.

The previous works focus on parallelism between crisp segments. We propose
a definition to evaluate parallelism between fuzzy segments. Then we extend it to
non-linear objects and groups of objects (crisp or fuzzy) taking into account the
semantic meaning of the relation. The properties of our definitions are different
from those desired in perceptual organization and are adapted to our purpose.

This paper is organized as follows. Section 2 contains considerations that should
be taken into account when modeling the parallel spatial relation. A model for
fuzzy segments is proposed in Sec. 3 and for non-linear objects in Sec. 4. Experi-
mental results are shown in Sec. 5.
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2 Considerations for Modeling Parallelism

Parallelism can be of interest in multiple situations, between objects or their
boundaries, between lines, between groups of objects, etc.

For linear segments to be parallel, we expect a constant distance between
them, or that they have the same normal vectors and the same orientation.
Although classical parallelism in Euclidean geometry is a symmetric and transi-
tive relation, these properties are subject to discussion when dealing with image
segments of finite length. When segments have different extensions as in Fig.
1(a), where B can be the boundary of a car, and A the boundary of a road,
the symmetry becomes questionable. The statement “B is parallel to A” can be
considered as true, since from every point in B it is possible to see (in the nor-
mal direction) a point of A, and the normal vectors at both points are the same.
On the contrary, the way we perceive “B parallel to A” will change depending
on our position: from point d it is possible to see a point of B in the normal
direction with the same normal vector, while this is not possible from point c.
In both cases (symmetrical and non symmetrical ones) the transitivity is lost.
For example, in Fig. 1(b) and 1(c) the statements “A is parallel to B” and “B is
parallel to C” hold, but “A is not parallel to C” since it is not possible to see C
from A in the normal direction to A. This example also illustrates the interest
of considering the degree of satisfaction of the relation instead of a crisp answer
(yes/no). Then the relation “B parallel to A” will have a higher degree than “A
parallel to B” in Fig. 1(a).

Now, when considering objects, parallelism is often assessed visually for elon-
gated objects, based on the portions of their boundaries that are facing each
other. Figure 1(d) shows two configurations where the portions of the boundary
of object A1 and of A2 that face B have the same length. Do we want to as-
sign the same degree of satisfaction to the parallel relations in both situations?
Therefore, the dimensions of the objects can also influence the way we perceive
parallelism.

The parallel relation can also be considered between a group of objects {Ai}
and an object B, typically when the objects in the group are aligned and B is
elongated. For example a group of boats and a deck in a port. When evaluating
the relation “{Ai} is parallel to B”, actually we are evaluating that the whole set
{Ai} and the boundary of B that faces {Ai} have a similar orientation, and that
there is a large proportion of ∪iAi that sees the boundary of B in the normal
direction to the group. Similar considerations can be derived when considering

(a) (b) (c) (d)

Fig. 1. (a),(b),(c) Examples where parallelism should preferably be considered as a
matter of degree, and should not be necessarily symmetrical and transitive. (d) Exam-
ple of parallelism between objects with different dimensions.
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the relation “B is parallel to {Ai}” or the relation between two groups of objects.
All these considerations form the basis for the formal models provided in the next
sections.

Notations: Let S be the image space, and F the set of fuzzy sets defined over
S. Let A denote a fuzzy set, defined through its membership function μA : S →
[0, 1]. Let uθA denote the normal unit vector to the principal axis of A, with angle
θA with respect to the x-axis. Fuzzy conjunctions (t-norms) and disjunctions (t-
conorms) are denoted by t and T respectively. In this work we make use of some
definitions of fuzzy mathematical morphology and spatial relations, such as the
directional dilation. The directional dilation of a fuzzy set μ in a direction uθ is
defined as [3]:

Dνθ
(μ)(x) = sup

y
t[μ(y), νθ(x− y)] , (1)

where νθ is a fuzzy directional structuring element chosen so as to have high
membership values in the direction uθ and its value at a point x = (r, α) (in
polar coordinates) is a decreasing function of |θ− α| modulo 2π (see Fig. 2(b)).

Another notion that will be useful is the admissibility of a segment: a segment
]a, b[, with a ∈ A and b ∈ B (for A and B closed), is said to be admissible if
it is included in AC ∩ BC [2]. In the fuzzy case, this extends to a degree of
admissibility denoted by μadm(a, b).

3 Parallelism between Fuzzy Segments

In this section we propose a definition of parallelism between fuzzy boundaries or
fuzzy lines, including the particular case of crisp linear segments, and taking into
account the considerations of Sec. 2. The degree of satisfaction of the relation
“A is parallel to B” should depend on the proportion of μA that sees μB in
the normal direction of μA, and be high if the visible part of μB has a similar
orientation to the one of μA. The degree to which a point x ∈ μA sees μB in the
direction uθA is equivalent to the degree to which the point is seen by μB in the
direction uθA+π. To determine this degree we use the directional dilation (Eq.
1), which provides a fuzzy set, where the membership value of a point x ∈ S
corresponds to the degree to which this point is visible from μ in the direction
uθ [1,2].

Definition 1. Let μA, μB ∈ F . The subset of μA that sees μB in the direction
uθA is denoted by μBAθ

and is equivalent to the intersection of μA and the fuzzy
directional dilation of μB in direction uθA+π. It has the following membership
function:

∀x ∈ S, μBAθA
(x) = t[μA(x), DνθA+π

(μB)(x)] . (2)

The set μBAθA
can be interpreted as the projection of μB onto μA. The propor-

tion of μA that sees μB in the normal direction uθA is given by the relation
μP (μA, μB) expressed as: μP (μA, μB) = |μAB

θA

|/|μA|.
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(a) Original Segments (b) νθA (c) DνθA
(μA) (d) μB

Aθ
and μA

BθA+π

Fig. 2. Illustration of the computation of parallelism between segments using direc-
tional dilation. Membership values vary from 0 (white) to 1 (black).

We have μP (μA, μB) = 1 if and only if ∀x ∈ S μBAθA
(x) = μA(x). This occurs

when the projection of the segment μB onto μA is equal to μA.
In a similar way, we define the portion of μB visible from μA as ∀x ∈

S, μABθA+π
(x) = t(μB(x), DνθA

(μA)(x)) (See Fig. 2).

Definition 2. The relation “A is parallel to B” is given by the following mea-
sure:

μ‖N (μA, μB) = t[μP (μA, μB), μα(μABθA+π
, μA)] , (3)

where μα(μ, μ′) is a function that penalizes large orientation differences between
the orientations of μ and μ′, for example:

μα(μ, μ′) =

⎧⎪⎨⎪⎩
1 if 0 ≤ |θμ − θμ′ | < a,

(b − |θμ − θμ′ |)/(b − a) if a ≤ |θμ − θμ′ | < b,

0 if b ≤ |θμ − θμ′ |
(4)

In some contexts a symmetrical relation is needed (for example in perceptual
organization), and is then expressed as “A and B are parallel”. In such cases,
we verify that each set is visible from the other in the normal direction and that
the orientations of both sets are similar, leading to the following definition.

Definition 3. The degree of satisfaction of the symmetrical relation, “A and B
are parallel” is expressed by:

μ‖S(μA, μB) = t[T [μP (μB , μA), μP (μA, μB)], μα(μBAθB+π
, μB), μα(μABθA+π

, μA)],
(5)

Proposition 1. Both relations (Definitions 2 and 3) are invariant with respect
to geometric transformations (translation, rotation, scaling).

None of the relations is transitive, as discussed in Sec. 2. But we have the fol-
lowing partial result in the crisp case:

Proposition 2. Let A, B, C be linear crisp segments, if μ‖N (A, B) = 1,
μ‖N (B, C) = 1 and θA = θB = θC , then μ‖N (A, C) = 1.

This result shows that in the crisp case we have transitivity. To have the tran-
sitivity property, it is necessary that θA = θB = θC , since μα(A, B) = 1 and
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μα(B, C) = 1 do not imply μα(A, C) = 1 due to the tolerance value a of the
function μα (See Eq. 4). To have the transitivity without imposing the condition
θA = θB = θC , it is necessary that μα is a linear function (i.e a = 0). But, this
is restrictive.

It is clear that both relations are reflexive. However, depending on the context
we may not want to consider intersecting objects as parallel. In this case, it is
necessary to combine in a conjunctive way the previous degree (Def. 2 or Def. 3)
with a degree of non-intersection between the two sets.

4 Parallelism between Objects

As explained in Sec. 2, parallelism can occur between more than two objects.
The following paragraphs detail each situation of interest.

Parallelism between Two Objects
For objects of similar spatial extension, we evaluate the relation between the
boundaries that are facing each other. These boundaries correspond to the
boundaries of the objects that delimit the region between the objects, and are
defined as the extremities of the admissible segments [2]. We call this portion of
the boundary, the admissible boundary. When the admissible boundary of each
object can be approximated by one segment the degree of satisfaction of the
relation is evaluated using one of the equations presented in Sec. 3.

For the case where the admissible boundary is approximated by several seg-
ments we concentrate on the non symmetric relation. A is considered parallel to
B if for every segment of the admissible boundary of A there exists a segment
of the admissible boundary of B that is parallel to it.

Definition 4. Let A and B be two fuzzy sets, defined through their membership
functions μA and μB. Let {μδAi}Ii=0 and {μδBj}Jj=0 be the approximation by
fuzzy sets of the admissible boundary of μA with respect to μB, and vice-versa.
The degree of satisfaction of the relation “A is parallel to B” is defined as:

μ‖N (μA, μB) =
∑
i

|μδAi |max
j

μ‖N (μδAi , μδBj )/|T (μδA0 , . . . , μδAI )| . (6)

The degree to which each μδAi is parallel to μδB is equal to
maxj μ‖N (μδAi , μδBj ). Then this degree is weighted by the importance of μδAi

in the admissible boundary of A.
To calculate the degree μ‖N (μδAi , μδBj ) Eq. 2 can be used with a modification

of μBAθA
to take into account potential hidden parts due to concavities or corners

of the objects. A point x ∈ μδA will see a point y ∈ S in the direction uθA if
it is visible according to Eq. 1 and also if the segment ]x, y[ is admissible (with
respect to μA and μB). This is expressed as:

∀x ∈ S, μ̃BAθA
(x) = t[μA(x), DνθA+π

(μB)(x), μadm(]x, y[)] . (7)

When objects have different spatial extensions the boundaries that should be
considered are different if we want to take into account the dimension of the
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object (see Sec. 2). In this case, we can use the admissible or closest boundaries
and/or include a term that expresses the relation between the principal axis of
both objects.

A Ggroup of Objects Parallel to an Object
Let A = {Ai}Ii=0 be a finite set of fuzzy sets with membership functions μAi .
Let B be another fuzzy set with membership function μB.

For A to be parallel to B it is necessary that the objects of A are aligned.
Considering each object of the group as a point (typically its center of mass),
we can say that they are aligned if for every couple of points the orientation of
the vector that joins them is equal to the orientation of the vector that joins the
first and last points.

Definition 5. Let mi be the center of mass of each μAi . Suppose that the set
A = {μAi}Ii=0 is organized by a lexicographic order of its centers. Let μalign be
the relationship of alignment between fuzzy sets. This relationship is defined as:

μalign(A) = min
i<I

μα(T (μA0 , . . . , μAI ), {μAi(mi), μAi+1(mi+1)}), (8)

where the set {μAi(mi), μAi+1(mi+1)} has two points and its central axis is the
vector joining the two centers. The function μα′ has same shape as the function
used in Eq. 4, and it penalizes large orientation differences.

The values of tolerance for μα′ can be different from those used for the parallel
relation. This definition considers that objects have similar dimensions, and it
does not take into account the distance between the objects.

To evaluate the degree of satisfaction of “A is parallel to B”, we calculate for
every i the portion of the closest boundary of μAi to μB, which we denote μγAi .
And for μB we consider the linear boundary μγB that is closest to the group.

Definition 6. The degree of satisfaction of the relation “A is be parallel to B”
is given by:

μ‖N (A, μB) = t[μP (T (μγA0, . . . , μγAI ), μγB),
μα(T (μA0 , . . . , μAI ), μγB), μalign(A)].

(9)

An Object Parallel to a Group of Objects
Using the same notations as above, let us assume that the set {μAi}Ii=0 is orga-
nized by a lexicographic order of its centers. Let βA ∈ F be the region composed
of the union of the regions between two consecutive elements of A (see [2]). For
“B is parallel to A ” to be true, it is necessary that the objects in the group are
aligned, that μγB and the group of objects have a similar orientation and that
there is a large proportion of μγB that sees the group of objects or βA:

Definition 7. The degree of satisfaction of the relation “B is parallel to A” is
given by:

μ‖N (μB,A) = t[μP (μγB, μγA′), μα(T (μA0 , . . . , μAI ), μγB), μalign(A)] , (10)

where μγA′ denotes the admissible boundaries of T (μA0 , . . . , μAI , βA).



18 M.C. Vanegas et al.

Using the same notation as in Def. 7, we can define the parallelism between two
finite sets of fuzzy sets A = {Ai}Ii=0 and B = {Bj}Jj=0 :
Definition 8. The degree of satisfaction of the relation “A is parallel to B” is
given by:

μ‖N (A,B) = t[μP (T (μγA0 , . . . μγAI ), μγB′), μalign(A), μalign(B),
μα(T (μA0 , . . . , μAI ), T (μB0 , . . . , μBJ ))] ,

(11)

5 Results

We evaluated the parallel relation between two objects for the labeled objects
of Figs. 3 and 4. For these examples we used a = π/12 and b = π/6 in Eq. 4.

A B μ||N (A,B) μ||N (B,A)
b2 S4 0.94 0.55
b3 S5 0.97 0.87
b4 S5 0.89 0.66
S2 S4 0.97 0.97
S4 S1 0.87 0.94
S5 S3 0.90 0.95
S3 S1 0.78 0.43
b1 S4 0.90 0.69

Fig. 3. Original image, segmented image and results

To evaluate the relation between objects with different spatial extensions, we
used the closest boundaries that had a similar orientation to the principal axis
of the objects. From Fig. 3 we observe that the obtained results fit with the
intuition. For objects that have similar spatial extensions (S2 and S4 or S3 and
S5), similar values were obtained for μ||N(A, B) and μ||N(B, A). The results for
b2 and S4, b1 and S4 and b4 and S5 reflect that when objects have different
extensions the results are not symmetric.

A B μ||N (A,B) μ||N (B,A)
R1 R2 0.93 0.85
R2 H1 0.14 0.29
R2 H2 0.42 0.69
R2 H3 0.22 0.74
R1 H3 0.00 0.38

Fig. 4. Original image, segmented image and results

Figure 4 shows a fuzzy segmentation of the image. Again the objects with
similar spatial extension R1 and R2 have similar values for μ||N (A, B) and
μ||N(B, A).

Our definitions for the parallelism between a group of objects and an object
(Def. 7 and 6) were applied to the objects in Fig. 5. We used a = π/18 and
b = π/6 in μα′ of Def. 5. As the boundaries involved in the relation of B1,
B2 and D1 have similar spatial extensions the results are almost symmetrical,
agreeing with intuition.
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A B μ||N (A,B) μ||N (B,A)
B1 D1 0.94 0.94
B2 D1 0.95 0.95
B1 B2 0.85 0.87

Fig. 5. Original image, segmented image and results

6 Conclusion

In this work we discussed the considerations that should be taken into account
when modeling the parallel relation. We highlighted that the parallel relation
depends on the situation and the context. We presented a definition of parallelism
between two objects of similar spatial extensions, and briefly discussed the case
of objects with different spatial extensions. Illustrations on real objects show the
interest of the proposed definition.

Future work aims at extending the notion of alignment and parallelism to
objects of different sizes and to more complex situations.

Acknowledgement. This work was done within the CNES-DLR-ENST Com-
petence Center.

References

1. Bloch, I.: Fuzzy spatial relationships for image processing and interpretation: a
review. Image and Vision Computing 23(2), 89–110 (2005)

2. Bloch, I., Colliot, O., Cesar Jr., R.M.: On the ternary spatial relation between.
IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 36(2),
312–327 (2006)
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Abstract. Barycentric algebras have seen widespread application in the
modeling of convex sets, semilattices, and quantum mechanics. Recently,
they were developed further to encompass Boolean logic and if-then-else
algebras. This paper discusses an application of barycentric algebras to
systems biology. Here, they provide a calculus for the conversion from
simplified Boolean models of gene transcription to fuzzy models that give
a more realistic tracking of the biochemistry. Indeed, it appears that logic
gates experimentally observed in cells actually follow the barycentric
algebra format.

1 Introduction

Barycentric algebras (as defined in §2.3 below) are universal algebras used for
modeling convex sets, semilattices, geometry, hierarchical statistical mechanics,
and quantum mechanics [5,6,12,13,14,15,16,17,18]. Recently [17], they have been
developed further (as abstract barycentric algebras) by use of the LΠ-algebras of
fuzzy logic [3,10,11], incorporating B-sets [2,20,21] and if-then-else algebras [8,9].
The aim of the current paper is to show how the calculus of barycentric algebras
may be used in systems biology, to provide a virtually automatic translation from
simplified Boolean models of gene expression to continuous, fuzzy logic models
that give a much more realistic picture of the biochemical processes involved.
Experimentally observed logic gates in cells do not follow the pattern directly
suggested by standard Boolean models, but their features concur exactly with
the models obtained using the barycentric algebra approach [19, Fig. 3b].

The bulk of the paper comprises two parts. Section 2 gives a direct account of
the algebra required. For readers who may be unfamiliar with universal algebra,
§2.2 discusses concatenations of binary operations. The two key incarnations of
abstract barycentric algebras, namely classic “fuzzy” barycentric algebras and
their crisp Boolean counterparts, are described in §2.3.

Section 3 then focusses on the systems biology. For readers unfamiliar with
molecular biology, §3.1 gives a brief account of the way cells use transcription
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factors to respond to signals and regulate gene expression. Subsequent para-
graphs formulate the crisp and fuzzy models of gene regulation in the language
of barycentric algebras. Once this formulation is established, Eqn. (12) provides
the automatic conversion from Boolean models to fuzzy models. In §3.4, the
conversion process is illustrated by the example of the and gate. The final para-
graph explains how fuzzy logic gates that have been observed experimentally in
cells actually follow the barycentric algebra format.

2 Algebra

2.1 Operations on Real Numbers and Binary Digits

Although the algebra of real numbers is traditionally performed in terms of field
operations such as the addition p+q and product pq of real numbers p and q, the
algebra discussed in this paper requires different operations, which specialize to
more familiar Boolean operations on the subset {0, 1} of the reals. In fact, this
specialization will also work in any field. In particular, it works if the set {0, 1}
of binary digits is interpreted as the two-element (Galois) field GF(2) or field of
integers modulo 2.

For a real number p, define the complementation p′ = 1 − p specializing
to the Boolean ¬p or not p on the set {0.1} of binary digits. Note that the
complementation is involutive: p′′ = p . For real numbers p and q, define the
product

p · q = pq (1)

specializing to the Boolean ∧ or and on {0, 1}. Define the dual product

p ◦ q = p + q − pq (2)

specializing to the Boolean ∨ or or on {0, 1}. Note that the dual product may
be defined in terms of the product and complementation using de Morgan’s law
p ◦ q = (p′q′)′ or (p ◦ q)′ = p′q′. Define the implication

p → q = if (p = 0) then 1 else q/p (3)

specializing to the Boolean implication p → q = (¬p) ∨ q on {0, 1}. Note that
the implication (3) is always defined in any field, while the division q/p is not
defined for p = 0.

2.2 Binary Operations

If x and y are elements of a real vector space, and p is a real number, it is
convenient to define

xy p = x(1 − p) + yp = xp′ + yp , (4)

so that p is understood as a binary operation combining the arguments x and y.
Schematically, the binary operation may be understood as a circuit element or
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“black box” combining the inputs x and y to produce the output xy p. For a second
real number q and vector z, one may concatenate circuit elements to yield

xy p z q = (xp′ + yp)zq = xp′q′ + ypq′ + zq . (5)

Alternatively one may concatenate the circuit elements to yield

x yz p q = x(yp′ + zp)q = xq′ + yp′q + zpq . (6)

Note that the parsing of the left hand sides of (5) and (6) is unique, even without
the insertion of any brackets. This is one of the many advantages of the algebraic
notation (4) for binary operations.

If p is an element of the closed real unit interval I = [0, 1] = {p | 0 ≤ p ≤ 1} ,
then the operation (4) makes sense when the inputs x and y lie in some convex
set C, for example some interval on the real line.

If p is a binary digit 0 or 1, the operation (4) makes sense when the inputs x
and y are elements of some arbitrary set S, with

xy p = if (p = 1) then y else x .

Recalling that the truth value [[P ]] of a proposition P is 0 if P is false, and 1 if
P is true, one obtains

xy [[P ]] = if P then y else x . (7)

Given an arbitrary set S, consider the convex set C of all finite probability
distributions on S, identifying each element x of S with the distribution putting
weight 1 on x. For elements x and y of S, and p in I, the operation (4) produces
the distribution selecting y with probability p and x with probability p′.

2.3 Barycentric Algebras and If-Then-Else Algebras

An abstract barycentric algebra is defined as a set A that is equipped with binary
operations xy p satisfying idempotence xx p = x for x in A, skew-commutativity

xy p = yx p′ (8)

for x, y in A, and skew-associativity xy p z q = x yz
(
p ◦ q → q

)
p ◦ q for x, y, z

in A. There are two classical interpretations:

– Taking the operators p, q from the open real unit interval

I◦ =]0, 1[= {p | 0 < p < 1}

yields a barycentric algebra [14,15,16].
– Taking Boolean operators p, q — elements of a Boolean ring such as GF(2)

or its powers — yields B-sets [2,20], including certain types of if-then-else
algebras [8,20].

Within abstract barycentric algebras, concatenations of the type (6) serve to
implement the “and” product (1) as
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xxy p q = xy p · q , (9)

while concatenations of the type (5) implement the dual “or” product (2) as
xy p y q = xy p ◦ q . Of course, skew-commutativity gives a direct implementation
of the complement.

3 Systems Biology

3.1 Transcription Factors

Cells survive and develop by producing proteins in response to various signals
that they receive. We describe a simplified model that will be adequate for
the purposes of this paper. For fuller details, see [1,7]. A specific protein Y is
produced by the expression of a corresponding part of the cell’s DNA, namely
the gene that encodes for protein Y . The gene is first transcribed to messenger
RNA (mRNA). The mRNA is then translated into the required protein. The
transcription process, synthesis of the mRNA, is facilitated by the enzyme RNA
polymerase (RNAp). The enzyme binds itself to a regulatory region of the DNA,
adjacent to the gene, known as the promoter site.

Signals that are of importance to a cell may be physical, such as a change in
temperature, or chemical, such as the presence of a nutrient like glucose. Received
signals switch proteins known as transcription factors from a dormant to an active
state. Active transcription factors attach themselves to the promoter site, where
they change the binding probability of the RNAp. If a transcription factor is an ac-
tivator, it will increase the binding probability of the RNAp, thereby increasing the
rate of transcription and protein production. Other transcription factors, known
as repressors, have the opposite effect of inhibiting the expression of certain genes.

3.2 Crisp Logic

Fig. 1 displays sample dependencies of the transcription rate for production of
a protein on the relative concentration x/k of an activator X . In the absence of
the activator, the transcription rate assumes a residual base level v0, in this case
0.1. (Often, a value of v0 = 0 is appropriate.) If the activator is present in high
concentrations, the transcription rate assumes a maximal expression level v1, in
this case 1.0.

The step function displays a crisp logical dependence of the transcription
rate on the dimensionless ratio x/k between the actual concentration x of the
activator X , and a critical threshold concentration level k. The transcription
rate may be written as

v0v1

[[
1 >

k

x

]]
(10)

in the Boolean notation of (7). If the transcription factor X were a repressor
rather than an activator, the corresponding transcription rate would appear in
any of the forms

v0v1

[[
1 >

k

x

]]′
= v1v0

[[
1 >

k

x

]]
= v0v1

[[
1 >

x

k

]]
(11)
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Fig. 1. Dependence of transcription rate on activator X

that are equivalent by virtue of the skew-commutativity (8) that implements
complementation. (The last form neglects the improbable equality x = k.)

3.3 Fuzzy Logic

Because of its convenience, crisp logic has been used widely for the construction
of network models in systems biology [4,22]. However, the curved graph of Fig. 1
displays a more realistic description of the dependence of transcription rates
on the relative concentrations of transcription factors. One of the main theses
of this paper is the way that the formalism of abstract barycentric algebras
allows one to convert easily from the crisp functions of §3.2 to more realistic
fuzzy functions. The crisp activator dependence (10) is replaced by the classic
barycentric-algebraic expression

v0v1

[
1 +

(
k

x

)n ]−1

— a so-called hill function in the terminology of [1] — interpreted in the closed
interval [v0, v1], a convex set. Fig. 1 illustrates the case n = 4. For n = 1 (and
v0 = 0), the hill function implements Michaelis-Menten kinetics [1, A.7]. The case
n > 1 corresponds to cooperative reactions. The crisp repressor dependencies (11)
are replaced by either of the equivalent forms

v1v0

[
1 +

(
k

x

)n ]−1

= v0v1

[
1 +

(x
k

)n ]−1
.

From these expressions, it is clear that the passage from crisp to fuzzy logic is
formally achieved by the replacement

[[1 > λ]] −→ [1 + λn]−1
. (12)
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Fig. 2. Fuzzy and gate

Here, the dimensionless quantity λ is taken as k/x for activators and x/k for
repressors. The conversion process is illustrated in the following paragraph.

3.4 Logic Gates

Transcription rates may depend on logical combinations of different transcription
factors. For example, the dependence

v0v1

[[
1 >

k

x

]]
·
[[

1 >
l

y

]]
(13)

requires high concentrations of each of two transcription factors X and Y . The
concentration x of X must exceed the critical threshold k; the concentration y
of Y must exceed the critical threshold l. Using (9), the crisp logical expression
(13) may be rewritten as the concatenation

v0 v0v1

[[
1 >

k

x

]] [[
1 >

l

y

]]
which then translates to

v0 v0v1

[
1 +

(
k

x

)n ]−1 [
1 +

(
l

y

)n ]−1
(14)

under the replacement (12). With the previously used parameter values v0 = 0.1,
v1 = 1, k = 1, n = 4, along with l = 1, this fuzzy and gate is displayed in Fig. 2.

3.5 Some Experimental Observations

The fuzzy and gate presented in (14) has the format v0 v0v1 p q of (9). Here,
the concatenated barycentric algebra operations have arguments (corresponding
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Fig. 3. Modified fuzzy and gate

to transcription rates) that are repeated exactly. Exact repeats of this kind are
improbable in biology. At first glance, it might appear that this would argue
against the barycentric algebra approach. However, it turns out that real fuzzy
and gates as observed experimentally [19, Fig. 3b] actually have the format
v0 v01v1 p q of (6) with distinct transcription rates v0 < v01 < v1, as illustrated in
Fig. 3 using an intermediate expression level v01 = 0.55. It thus emerges that the
barycentric algebra formulation gives a natural framework for the dependence
of expression levels on transcription factor concentrations.
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Abstract. We introduce a model for the evaluation of fuzzy quantified
expressions involving imprecise concepts. Imprecise concepts are assumed
to be represented via restriction levels, a recently introduced representa-
tion of imprecision that extends the representation of fuzzy sets and in-
troduces new operators. The proposal verifies all the properties required
for the evaluation of quantified sentences, including all the properties
involving negation. Particularly, the evaluation of “Some of A are ¬A”
is definitely 0 for any fuzzy set A.

Keywords: Fuzzy quantification, restriction level representation.

1 Introduction

Fuzzy quantification extends classical quantification by considering (fuzzy) lin-
guistic quantifiers, a generalization of the ordinary quantifiers ∃ and ∀ of first
order logic [12]. A large number of applications can be found in the literature
in areas like quantifier-guided aggregation, linguistic summarization, computing
with words and quantification in fuzzy description logics, among many others.

The most usual quantified sentences considered in the literature are of the
form “Q of X are A” or “Q of D are A”, called type I and type II sentences,
respectively. Here Q is a linguistic quantifier, X is a (finite) crisp set, and A,D
are fuzzy subsets of X. Linguistic quantifiers are normal, convex fuzzy subsets
of Z (absolute quantifiers) or [0, 1] (relative quantifiers).

There are many different approaches for evaluating quantified sentences [12,
10, 2, 5, 4, 1, 6, 11, 3, 7]. Properties that any suitable method should verify have
been proposed in [5, 4, 6]. However, to the best of our knowledge, no existing
method verifies all the properties. Particularly difficult is to verify simultaneously
the properties of low computational complexity and those involving negation of
properties and quantifiers, and quantifier antonyms.

In this paper we introduce an alternative approach to the evaluation of quan-
tified sentences on the basis of restriction levels (RL), a recently introduced
representation of imprecision that extends the representation of fuzzy sets and
introduces new operators [8, 9]. RL-representation is similar to the representa-
tion of imprecise concepts by means of a collection of α-cuts, but differs from it
in that crisp operations and definitions of any kind are extended to the impre-
cise case by operating on each level independently. This way, the result is not

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 28–35, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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necessarily a fuzzy set, the latter being a particular case of RL-representation.
We employ this approach since, among other properties, operations extended to
the imprecise case using RL-representations verify all the properties of the crisp
case and, in addition, their computational complexity is very close to that of the
crisp case when a finite, fixed number of levels is considered, as usual in practice.

2 Restriction-Level Representation

2.1 Representation

The RL-representation of an imprecise property is a collection of crisp sets, each
crisp set corresponding to a crisp realization of the property under a restriction
rule. We distinguish between atomic and derived properties. Atomic properties
are those that cannot be defined in terms of other properties in our problem.
Derived properties are defined by logical operations on other properties.

In [8] we consider that atomic imprecise properties are represented by fuzzy
sets, and hence restrictions are of the form degree ≥ α with α ∈ (0, 1], and
restriction levels are associated to values α ∈ (0, 1]. In the same case, the crisp
realization of an atomic imprecise property represented by a fuzzy set A in the
restriction level α corresponds to the α-cut Aα.

For every property we assume that there is a finite set of restriction levels
Λ = {α1, . . . , αm} verifying that 1 = α1 > α2 > · · · > αm > αm+1 = 0, m ≥ 1.
We call such sets RL-sets. The consideration that a RL-set is finite is not a
practical limitation since humans are able to distinguish a limited number of
restriction or precision levels and, in practice, the limit in precision and storage
of computers allows us to work with a finite number of degrees (and consequently,
of levels) only. In practice, the RL-set for an atomic property represented by a
fuzzy set A on an universe X is

ΛA = {A(x) | x ∈ support(A)} ∪ {1} (1)

The RL-set employed to represent a derived property is obtained as the union
of the RL-sets of the atomic properties in terms of which the property is defined.
Finally, the RL-representation of an imprecise property on X is defined in [8] as
follows:

Definition 1. A RL-representation is a pair (Λ, ρ) where Λ is a RL-set and ρ
is a function

ρ : Λ → P(X) (2)

The function ρ indicates the crisp realization that represents the imprecise prop-
erty for each restriction level. As an example, the RL-representation for an
atomic imprecise property defined by a fuzzy set A is the pair (ΛA, ρA), where
ΛA is obtained using equation (1), and ρA(α) = Aα ∀α ∈ ΛA.

Given an imprecise property P represented by (ΛP , ρP ), we define the set of
crisp representatives of P , ΩP , as

ΩP = {ρP (α) | α ∈ ΛP } (3)
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For an atomic property A, the set of crisp representatives ΩA is the set of
significant α-cuts of A, as we have seen. However, notice that in definition 1
there is no restriction about the possible crisp representatives for non-atomic
properties. In particular, as a consequence of operations, they don’t need to
be nested, so the final RL-representation of a derived property is not always
equivalent to the α-cut representation of fuzzy sets.

In order to define properties by operations, it is convenient to extend the
function ρ to any RL α ∈ (0, 1]. Let (Λ, ρ) be a RL-representation with Λ =
{α1, . . . , αm} verifying 1 = α1 > α2 > · · · > αm > αm+1 = 0. Let α ∈ (0, 1] and
αi, αi+1 ∈ Λ such that αi ≥ α > αi+1. Then

ρ(α) = ρ(αi) (4)

Finally, let us remark that a RL-representation (Λ, ρ) on X is a crisp set A ⊆ X
iff ∀α ∈ Λ, ρ(α) = A.

2.2 Interpretation in Terms of Evidence

Given a RL-representation (ΛA, ρA) for an atomic property A, the values of
ΛA can be interpreted as values of possibility of a possibility measure defined
∀ρA(αi) ∈ ΩA as

Pos(ρA(αi)) = αi. (5)

Following this interpretation we define a basic probability assignment in the
usual way:

Definition 2. Let (Λ, ρ) be a RL-representation with crisp representatives Ω.
The associated probability distribution m : Ω → [0, 1] is

m(Y ) =
∑

αi | Y=ρ(αi)

αi − αi+1. (6)

The basic probability assignment mF gives us information about how represen-
tative of the property F is each crisp set in ΩF . For each Y ∈ ΩF , the value
mF (Y ) represents the proportion to which the available evidence supports the
claim that the property F is represented by Y . From this point of view, a RL-
representation can be seen as a basic probability assignment in the sense of the
theory of evidence, plus a structure indicating dependencies between the possible
representations of different properties.

2.3 RL-Numbers

On the basis of RL-representations and operations, RL-numbers were introduced
in [9] as a representation of imprecise quantities.

Definition 3. A RL-real number is a pair (Λ,R) where Λ is a RL-set and
R : (0, 1] → R.
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We shall note RRL the set of RL-real numbers. The RL-real number Rx is the
representation of a (precise) real number x iff ∀α ∈ ΛRx , RRx(α) = x. We shall
denote such RL-real number as Rx or, equivalently, x, since in the crisp case,
the set ΛRx is unimportant. Operations are extended as follows:

Definition 4. Let f : Rn → R and let R1 . . .Rn be RL-real numbers. Then
f(R1, . . . , Rn) is a RL-real number with

Λf(R1,...,Rn) =
⋃

1≤i≤n
ΛRi (7)

and, ∀α ∈ Λf(R1,...,Rn)

Rf(R1,...,Rn)(α) = f(RR1(α), . . . ,RRn(α)) (8)

This approach offers two main advantages:

– RL-numbers are representations of imprecise quantities that can be easily
obtained by extending usual crisp measurements to fuzzy sets.

– Arithmetic and logical operations on RL-numbers are straightforward and
unique extensions of the operations on crisp numbers, verifying the following:
• They verify all the usual properties of crisp arithmetic and logical oper-

ations.
• The imprecision does not necessarily increase through operations, and

can even diminish. The maximum imprecision is related to the number
of restriction levels employed.

3 Evaluation of Quantified Sentences

We shall consider the evaluation of quantified sentences of type II because of lack
of space, and since type I sentences are a particular case of type II sentences,
under the following assumptions:

– Q is a fuzzy quantifier
– A,D are imprecise properties defined on a finite, crisp set X by RL-

representations (ΛA, ρA) and (ΛD, ρD), respectively.

Notice that, since fuzzy sets are particular cases of RL-representations, the
proposal in this section is also valid for the evaluation of quantified sentences
when properties A,D are represented by fuzzy sets.

3.1 RL-Evaluation

Definition 5. The evaluation of E ≡ “Q of D are A” is a RL-truth degree, i.e.,
a RL-real number E in [0, 1], defined by (ΛE , ρE), where

ΛE = ΛA ∪ ΛD (9)

and, ∀α ∈ ΛE,

ρE(α) = Q

(
|ρA∧D(α)|
|ρD(α)|

)
= Q

(
|ρA(α) ∩ ρD(α)|

|ρD(α)|

)
(10)



32 D. Sánchez, M. Delgado, and M.-A. Vila

Table 1. RL-representation of several properties derived from two atomic properties
A and B

α ρA(α) ρ¬A(α) ρD(α) ρ¬D(α) ρA∧¬D(α) ρD∧¬A(α)

1 {x1} {x2, x3, x4, x5} ∅ X {x1} ∅
0.9 {x1} {x2, x3, x4, x5} {x1} {x2, x3, x4, x5} ∅ ∅
0.8 {x1, x2} {x3, x4, x5} {x1} {x2, x3, x4, x5} {x2} ∅
0.6 {x1, x2, x3} {x4, x5} {x1, x3} {x2, x4, x5} {x2} ∅
0.5 {x1, x2, x3} {x4, x5} {x1, x3, x4} {x2, x5} {x2} {x4}
0.4 {x1, x2, x3, x5} {x4} {x1, x3, x4} {x2, x5} {x2, x5} {x4}

Table 2. Some quantified sentences involving A and D

E1 Qmost of A are D E3 Qmost of ¬ A are D E5 ∃ of A are ¬ A

E2 Qmost of A are ¬ D E4 Qmost of ¬ A are ¬ D E6 ∃ of (A ∧ ¬ D) are D

As an example, consider the atomic properties A and D defined by the fol-
lowing fuzzy sets:

A = 1/x1 + 0.8/x2 + 0.5/x3 + 0.4/x5

D = 0.9/x1 + 0.6/x3 + 0.5/x4

Then we have ΛA = Λ¬A = {1, 0.8, 0.5, 0.4} and ΛD = Λ¬D = {1, 0.9, 0.6, 0.5}.
In Table 1 we can see several properties derived from A and B using ∧, ∨,
and negation. It is easy to see that the result is not always a fuzzy set, specif-
ically when negation is involved (conjunction and disjunction of fuzzy sets via
levels is equivalent to minimum and maximum, respectively, but not for any
RL-representation in general). Notice that since RL-representations verify the
classical properties, the representation of A ∧ ¬A is ∅ in every level, i.e., a clas-
sical, crisp contradiction.

Table 2 shows a set of quantified sentences involving properties A and D, using
the quantifier Qmost defined as in Equation 11. Table 3 shows the corresponding
RL-evaluation of the sentences in table 2 and the same sentences but replacing
the quantifiers by Q(x) = x (E7 is E1 replacing the quantifier, and so on). The
latter correspond to the measure of the relative cardinality of the corresponding
properties as well.

Qmost(x) =

⎧⎨⎩
0 x ≤ 0.5
1 x ≥ 0.75
4(x− 0.5) otherwise

(11)

3.2 Properties

From definition 5 it is obvious that RL-evaluation performs a crisp evaluation
on each level, where there are crisp representatives of the imprecise properties A
and D. Since both logical and arithmetic operations are performed by definition
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Table 3. RL-evaluation of sentences in Table 2 (E1-E6) and the same sentences with
the quantifier Q(x) = x (E7-E12)

α E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

1 0 1 0 1 0 0 0 1 0 1 0 0

0.9 1 0 0 1 0 0 1 0 0 1 0 0

0.8 0 0 0 1 0 0 1/2 1/2 0 1 0 0

0.6 2/3 0 0 1 0 0 2/3 1/3 0 1 0 0

0.5 2/3 0 0 0 0 0 2/3 1/3 1/2 1/2 0 0

0.4 0 0 1 0 0 0 1/2 1/2 1 0 0 0

Table 4. Numerical evaluation of sentences in Table 2 (E1-E6) and the same sentences
with the quantifier Q(x) = x (E7-E12)

S(E1) S(E2) S(E3) S(E4) S(E5) S(E6) S(E7) S(E8) S(E9) S(E10) S(E11) S(E12)

7/30 0.1 0.4 0.5 0 0 1.6/3 1.4/3 0.45 0.55 0 0

in each level independently, all the properties of quantification on crisp data are
preserved. Due to the properties of RL-representations, two important properties
are verified.

First, the evaluation is efficient in time, since it is a crisp evaluation (O(1)) in
each level, the number of levels depending on either the amount of data (if we do
not fix a precision for the degrees) or the precision considered. In the worst case,
corresponding to A and D being fuzzy sets from which the RL-representation
(representation as a set of α-cuts) must be obtained, the complexity is O(nlogn),
as shown in [4].

But in addition, properties involving the negation of properties are verified.
In particular, there is an intuitive property that, to the best of our knowledge,
is not verified by any other existing method: the evaluation of the sentences E5,
E6, E11 and E12 is definitely 0.

3.3 Numerical Evaluation

The evaluation of quantified sentences yields usually a number in [0, 1]. We can
obtain such summary of the evaluation when that is the final, expected result
of our system; otherwise, following the ideas of RL-representation, we would
proceed operating in each level independently.

In this paper we propose to summarize the information given by the RL-
evaluation as follows:

Definition 6. The numerical summary S(E) of a RL-evaluation E defined by
(ΛE , ρE) is given by

S(E) =
∑
β∈ΩE

mE(β) · β (12)

Table 4 shows the evaluation of quantified sentencesE1 -E12 following definition 6.
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Let us remark again that, as the intuition suggests, the final evaluation of
sentences E5, E6, E11 and E12 is 0, though any existing method would give a
greater value. This is because when representing imprecision by means of fuzzy
sets, A∩A �= ∅ in general. Using RL-representations, we obtain a coherent result
whilst representing properly the imprecision of the properties. Let us remark
that, as can be seen in table 1, RL-representations allow to have the same object
in the representation of A and ¬ A, though in different levels, and at the same
time the representation of A ∧ ¬A is ∅.

In the particular case when A,D are fuzzy sets, the following propositions are
easy to show:

Proposition 1. Let A,D be fuzzy sets and let E be the sentence “Q of D are
A”. Then

S(E) = GDQ(D/A) (13)

where GDQ(D/A) is the evaluation of E as given by the method GD proposed
in [4].

Proposition 2. The following intuitive properties for the evaluation of quan-
tified sentences [1, 6] are verified by both the RL-evaluation and the numerical
evaluation:

1. Correct generalization: in the crisp case, the evaluation of “Q of A are D”
yields the expected result.

2. External negation: the evaluation of “(¬ Q) of A are D” is equal to 1 minus
the evaluation of “Q of A are D”

3. Internal negation: the evaluation of “Q of A are D” is equal to the evalua-
tion of “antQ of A are ¬ D”, where antQ is the antonym of Q defined as
antQ(x)=Q(1-x)

4. Duality: the evaluation of “Q of A are D” is equal to the evaluation of “(¬
antQ) of A are ¬ D”.

4 Conclusions

No existing method for evaluating linguistically quantified sentences verifies all
the intuitive properties proposed by several authors. In particular, the evaluation
of the sentence “∃ of A are ¬ A”, that some authors write “Some A are ¬ A”
yields always a value greater than 0. In this paper we have proposed alternatives
based on the representation of imprecise properties (in particular, of fuzzy sets)
via restriction levels [8]. First, RL-evaluation is defined as an imprecise number
in [0,1] defined by a RL-number [9]. Then, a summary of that information on the
basis of the basic probability assignment associated to each level is proposed,
yielding a numerical result as usual. In both cases, the proposed methods verify
many intuitive properties, including an evaluation definitely 0 of the sentence
“Some A are ¬ A”.

Many work remains to be done. First, we shall study the fulfilment of proper-
ties expected from the numerical summary of the RL-evaluation, like continuity
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and monotonicity with respect to arguments. Let us remark that we expect to
show those properties since, as we have shown in this paper, in the specific case
of fuzzy sets without negation, the proposed numerical method is equivalent to
method GD [4], that verifies these properties. In addition, we shall study syllo-
gisms and reasoning on the basis of our approach. Finally, we plan to apply these
results in data mining, quantification in description logics and summarization.
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Abstract. The least squares method is used to determine the fuzzy re-
gression. The data for the regression equation are observations for the
output and input variables. Analogous assumptions for those used in case
of the classical regression are adopted - concerning the fuzzy random
component of the model. It is shown how to determine the possibilistic
distributions of the output variable and the model coefficients if the ran-
dom component of the model is an L-R fuzzy variable and its generative
probabilistic distribution is known.

Keywords: least squares method, fuzzy regression, L-R fuzzy variable,
possibility theory.

1 Introduction

Since Tanaka, being the first author to do so, proposed a fuzzy econometric
model [13], many different concepts of constructing fuzzy econometric models
have appeared in the literature [8]. Three main streams can be observed. In the
first one the authors take, while building the econometric model, fuzzy numbers
as observations of the dependent (output) variable, e.g. [4],[12]. In the second
concept the input are dependent variable realizations together with the cor-
responding λ-levels, e.g. [7]. In the third approach the authors, construct the
regression using the dependent variable observations from a fixed λ-level, e.g.
[9], [10], [11]. We are proposing an approach analogous to the classical regression
concept, taking as input for the fuzzy econometric model the observations of the
variables, both the independent and the dependent ones. We give an example of
the application of the proposed method in the energy load forecasting.

2 Classical Regression Model

In the classical econometric approach the input data for the regression equation
construction are observations (yt, xt1, . . . , xtk), t = 1, . . . , T . The parameters of
the linear dependency

yt = α0 + α1xt1 + · · · + αkxtk + ξt (1)

where ξt is a random variable, are estimated by means of the least squares
method (LS) [14]. A linear regression equation is obtained: ŷt = a0 + a1xt1 +

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 36–43, 2009.
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· · · + akxtk, where the coefficients aj are estimators of the unknown parameters
αj , and ŷt - estimators of the depended variable yt.

In the LS method the coefficients aj are determined in such a way that the
sum of the squared deviations of the estimated dependent variable values ŷt from
its actual values yt is minimal:

T∑
t=1

u2
t =

T∑
t=1

(yt − ŷt)
2 (2)

This function takes on its minimum in point a =
(
XTX

)−1
XTy, where: y is

the vector of dependent variable observations, X - the matrix of observations of
the independent variables x1, . . . , xk [14].

The following asumptions are made as far as the random component ξt is
concerned:

1. The expected value equals zero: E(ξt) = 0 for t = 1, . . . , T .
2. Identical variance: V (ξt) = σ2 for t = 1, . . . , T .
3. Independency: ξt1 and ξt2 are independent for t1 different from t2.
4. Independency from xj : ξt and xj are independent for all ξt and xj - this

assumption follows immediately from the fact that xj are non-random vari-
ables.

5. Normality: all ξt have a normal ditribution. This assumption, combined with
assumptions 1, 2 and 3 leads to the conclusion that ξt have independent
normal distributions with expected value equal zero and a variance σ2 -
N(0, σ).

From assumptions 1 - 5 it follows [14] that estimators of coefficients αj have
normal distributions with expected values a =

(
XTX

)−1
XTy and variances

σ2d00, . . . , σ
2dkk, where djj are the diagonal elements of matrix

(
XTX

)−1
, j =

0, . . . , k.
The dependend variable yt is a random variable with normal distribution

N (α0 + α1xt1 + · · · + αkxtk, σ).
The distribution of the estimator ŷt of dependent variable yt is a normal

distribution with the expected value and variance respectively α0 +α1xt1 + · · ·+
αkxtk, σ2

(
1 + xT0

(
XTX

)−1
x0

)
.

The estimator of the expected value of the random component is
∑T

t=1 ut

T , and

the estimator of the random component variance is
∑T

t=1 u
2
t

T−k−1 .

3 Fuzzy Regression Model

3.1 Basic Notion

Let X be a single valued variable, whose value is not precisely known. There
is given a normal, quasi concave and upper semicontinuos function μX : � →
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[0, 1] called the possibility distribution for X . The value of μX (x) for x ∈ �
denotes the possibility of the event that X takes the value of x, i.e. μX (x) =
Pos (X = x), [5], [16]. Such a variable X will be called a fuzzy variable. An L-R
fuzzy variable is such a fuzzy variable that such mX ,mX and functions L,R
(continuous, symmetric, attaining value 1 for argument 0 and increasing in the
domain of non-negative numbers) exist that its possibility distribution has the
following form:

μX(x) =

⎧⎨⎩
L ((mX − x) /αX) for x < mX

1 for mX ≤ x ≤ mX

R ((x−mX) /βX) for x > mX

(3)

Functions L and R determine the shape of the corresponding possibility distri-
bution. The shape of possibility distribution (3) is preserved in linear transfor-
mations. A triangular fuzzy number X = (mX , αX , βX) is such an L-R fuzzy
number for which functions L and R are linear functions and mX = mX = mX .

For a given fuzzy variable X and a given λ, the λ -level is defined as the closed
interval [x (λ) , x (λ)] = {x : μX(x) ≥ λ}.

Consider two fuzzy variables X , Y with possibility distributions μX , μY re-
spectively. The possibility distribution of fuzzy variablesZ = X+Y and U = XY
is defined by means of Zadeh extension principle respectively as follows [15]

μZ(z) = supz=x+ymin (μX(x), μY (y)) (4)
μU (u) = supu=x·ymin (μX(x), μY (y)) . (5)

We are interested in comparing X to Y , i.e. we want to characterize the possi-
bility of the event that the value taken by X will be equal to the value taken by
Y . It can be done by the following index [5], [6]:

Pos (X = Y ) = min (Pos (X ≥ Y ) , Pos (Y ≥ X)) , (6)

where Pos (X ≥ Y ) = supx≥ymin (μX(x), μY (y)) .
In the literature there are definitions of the mean and the variance of a fuzzy

variable which follow from so called generative probability distributions of fuzzy
variables [2], [3]. Carlsson and Fullér [2] define crisp possibilistic mean value and
the crisp possibilistic variance as of a fuzzy variable X as

E(X) =
1
2

∫ 1

0
(x (λ) + x (λ)) dλ (7)

V (X) =
1
3

∫ 1

0

[
(x (λ))2 + x (λ)x (λ) + (x (λ))2

]
dλ+

[
1
2

∫ 1

0
(x (λ) + x (λ)) dλ

]2
(8)

From the probabilistic view point, the possibilistic mean and variance of a fuzzy
variable X can be viewed as the expected values of, respectively, the conditional
mean value and variance under a given λ, of the random variable taking on values
x (λ) and x (λ) with probability 0,5, if we treat the λ-level as a random variable
having a Beta distribution Beta(2,1) (λ being the density of the distribution).
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Chanas and Nowakowski [3] proposed a generative expected value and vari-
ance of a fuzzy variable corresponding to a compound random variable, where
both the λ - level and the values from it are generated according to the uniform
distribution.

E(X) =
1
2

∫ 1

0
(x (λ) + x (λ)) dλ (9)

V (X) =
1
3

∫ 1

0

[
(x (λ))2 + x (λ)x (λ) + (x (λ))2

]
dλ+

[
1
2

∫ 1

0
(x (λ) + x (λ)) dλ

]2
(10)

where λ is the uniform random variable over (0, 1].
The expected value and variance for fuzzy variables have the following prop-

erties [2], [3]:

E (aX) = aE (X)
E (X + Y ) = E (X) + E (Y )
V (aX) = a2V (X)
V (X + Y ) = V (X) + V (Y ) - if X,Y are independent fuzzy variables.

(11)

For a triangular fuzzy variable X = (mX , αX , βX) the expected value both
according to the Carlsson and Fullér, the Chanas and Nowakowski definitions
equals E (X) = mX + βX−αX

4 . It is the Steiner point of a triangular fuzzy
variable. The variance according to Carlsson and Fullér equals V (X) = αX+βX

12 ,

and according to Chanas and Nowakowski V (X) = 7α2
X+7β2

X+2αXβX

144 .
Zadeh [16] proposed the following indicator showing to which degree a possibil-

ity distribution fits a probability distribution having the density function f(x):∫ 1
0 μ (x) f (x) dx. The higher the value of the indicator, to the greater degree

the possibility distribution fits the probability distribution. If we are choosing
the probability to generate the values of a triangular symmetric fuzzy variable
X = (mX , αX , αX) from the class of normal distributions N(m,σ), the highest
fitness is achieved when the following equations are satisfied:

mX = m (12)

exp

(
α2
X

2σ2

)
+

α2
X

2σ2 + α2
X − 1 = 0 (13)

3.2 Least Squares Method for Fuzzy Variables

Let us assume again that we have observations (yt, xt1, . . . , xtk), t = 1, . . . , T and
suppose that in (1) ξt are fuzzy variables. Similarly as in case of the classical
regression, function S attains its minimum in point a =

(
XTX

)−1
XT y.

Let us make assumptions 1-3 analogous to those in the classical case (chapter 2)
about the random component ξt. Instead of assumpions 4 and 5, let us now assume
that:
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– 4’ Independency from xj : ξt and xj are independent for all ξt and xj - this
assumption follows from the fact that xj are non-fuzzy variables.

– 5’. All ξt have a L-R possibility distribution of the same membership func-
tion shape, e.g. triangular. This assumption, combined with assumptions 1,
2 and 3 leads to the conclusion that ξt have independent L-R possibility
distributions of the same membership function shape with expected value
equal zero and a variance σ2.

Knowing the realisations ut of the fuzzy random component, we can determine
the estimators of the mean value and the variance of the model error: respectively∑T

t=1 ut

T ,
∑T

t=1 u
2
t

T−k−1 . Further, making use of (7) - (8) or (9) - (10) or (12) depending
on the form of the probabilistic distribution of the random component, we can
determine the parameters of the fuzzy variable if it is a symmetric triangular
fuzzy variable ξ = (mξ, αξ, αξ). For such a fuzzy variable for example from
assumption 1 and (9) - (10) we will get the following equations system:

E (ξ) = 0, V (ξ) = α2
ξ

9
(14)

Thus for a symmetric triangular fuzzy number knowing the variance and the ex-
pected value allows to determine the membership function shape. If the random
component of the model is not a symmetric triangular fuzzy variable, we can
determine from the sample u1, . . . , uT the other parameters of the fuzzy vari-
able, e.g. the median [1], obtaining an equations system which allows to calculate
the respective possibilistic distribution parameters. If we get an infeasible sys-
tem, it means that we have incorrectly estimated the shape of the fuzzy variable
possibilistic distribution.

From assumptions 1 - 3, 4’ - 5’ and from (11) and taking into account that L-R
fuzzy variable membership function shape is preserved in linear transformations
it follows that:

– The estimators of coefficients αj are fuzzy variables with the same mem-
bership function shape as ξt with expected values a =

(
XTX

)−1
XTy and

variances σ2d00, . . . , σ
2dkk (j = 0, . . . , k).

– The possibility distribution of the estimator ŷt of the dependent variable
yt is of the same type (e.g. have the same memership function shape) as
distribution of ξt with the expected value ŷt = a0 + a1xt1 + · · · + akxtk and
variance σ2

(
1 + xT0

(
XTX

)−1
x0

)
.

In order to verify whether individual fuzzy coefficients of model αj (j =
0, . . . , k) are significiant we will make use of relation (6). We will assume that
αj is a significant if Pos(αj = 0) ≤ λ0. The value of λ0 is selected arbitralily,
like the significante level in statistic tests.

4 Example 1

The regression has been constructed for the energy load at midday for a power
region in Poland. The data for the analysis are hour observations of the energy
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load and air temperature throughout four years (January 1998 - September
2001). The observations from September 2001 were not taken into account while
constructing the econometric model, they were used to verify the forecast.Using
the least squares method, the following model was obtained:

ˆL12t = 60565.91 + 0.9L7t − 0.15L7t−1 + 0.1L12t−1, (15)

where Lht - energy load at the hour h at the day t.
Using statistical test we have verified that the random component of this

model has a distribution where both the λ - level and the values form it are
generated according to the uniform distribution with the expected value zero and
the variance 1229309764. According to (14) we can determine the possibilistic
distribution of the estimators of the fuzzy variables the possibilistic distributions
of the coefficients were determined: α0 = (60565.91, 10644.55, 10644.55), αL7t =
(0.90, 0.06, 0.06), αL7t−1 = (−0.15, 0.11, 0.11), αL12t−1 = (0.10, 0.09, 0.09). Also
the significance of the model coefficients has been verified: Pos(αj = 0) = 0 for
j = 0, 1, 2, 3. The fuzzy autoregression model of the energy load (15) is thus a
model, in which all the variable are significant. The determination coefficient of
this model equals to R2 = (ŷt − ȳ)2 / (yt − ȳ)2 = 0.77. We can thus use it in
forecasting. In Table 1 we show the possibilistic distribution of the energy load,
determined according to (9),(10) for individual September days, as well as the
actual values of the energy load L12t and the corresponding possibility, that the
energy load according to model (15) takes on such a value - Pos( ˆL12t = L12t).
The lowest value of Pos( ˆL12t = L12t) equals 0, 48. The model has thus proved
to be useful in forecasting.

Table 1. Observations and possibilistic distributions of the energy load for September

Day Day of the week L12t
ˆL12t Pos

(
ˆL12t = L12t

)
1 Saturday 227059.8 ( 205679 , 40983.6 , 40983.6 ) 0.48
2 Sunday 190561.8 ( 194703 , 41025.3 , 41025.3 ) 0.90
3 Monday 218563.4 ( 217211 , 41014.8 , 41014.8 ) 0.97
4 Tuesday 219109.0 ( 219221 , 40970.1 , 40970.1 ) 1.00
5 Wednsday 221819.4 ( 222233 , 40966.8 , 40966.8 ) 0.99
6 Thursday 225335.0 ( 223303 , 40964.4 , 40964.4 ) 0.95
7 Friday 232474.0 ( 224943 , 40963.5 , 40963.5 ) 0.82

5 Example 2

Let us now consider the problem analyzed by Tanaka [13]. He investigated the
dependency between y=prefabricated house sale price in Japan and x1=quality
of the construction material (1 - low, 2 - medium, 3 - high), x2=area of the
first floor, x3=area of the second floor, x4=total number of room, x5=number
of Japanese room, Table2. He obtained the following form of fuzzy regression:
ŷ = (0, 0, 0)+(245.2, 17.26, 17.26)x1+(5.85, 0, 0)x2+(4.79, 0, 0)x3 + (0, 0, 0)x4+
(0, 0, 0)x5.
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Using the least squares method proposed in the paper, the following model
was obtained ŷ = −107.5 + 236.5x1 + 9.4x2 + 8.2x3 − 38x4 − 18.4x5. The residu-
als probabilistic distribution of this model is a normal one: N(0, 39.7). Thus the
possibilistic distributions of fuzzy coefficients of the fuzzy regression were deter-
mined according to formulae (12)-(13). The model constant and the coefficients
at variables x4, x5 turned out to be insignificant. Variables x4 and x5 were thus
excluded from the model and it was assumed that the constant is equal to zero.
Consequently, according to (2) the following model was obtained:

ŷ = 270x1 + 5.7x2 + 3.9x3. (16)

The determination coefficient for this model equals 0.99, the model residuals have
the normal distribution N(0, 63.67). Using formulae (12)-(13) again, the possi-
bilistic distributions of the coefficients were determined: α1 = (270, 124, 124),
α2 = (5.7, 0, 0), α3 = (3.9, 0, 0). Also the significance of the model coefficients
has been verified: Pos(αj = 0) = 0 for j = 1, 2, 3. The obtained model includes
the same variables as in the Tanaka model. The possibilistic distributions of the
coefficients of both models are similar. Let us now compare the possibilistic dis-

Table 2. Data and possibilistic distributions of house prices

Tanaka LS

y x1 x2 x3 x4 x5 Ŷ αŶ Pos
(
Ŷ = y

)
Ŷ αŶ Pos

(
Ŷ = y

)
606 1 38.09 36.43 5 1 642.5 75.3 0.52 627.8 225.6 0.90
710 1 62.10 25.50 6 1 730.6 75.3 0.73 722.4 217.9 0.94
808 1 63.76 44.71 7 1 832.3 75.3 0.68 806.1 215.7 0.99
826 1 74.52 38.09 8 1 863.6 75.3 0.50 841.9 218.1 0.93
865 1 75.38 41.10 7 2 883.0 75.3 0.76 858.4 220.2 0.97
852 2 52.99 26.49 4 2 927.2 150.5 0.50 944.2 225.5 0.59
917 2 62.93 26.49 5 2 985.4 150.5 0.55 1000.9 210.0 0.60
1031 2 72.04 33.12 6 3 1070.4 150.5 0.74 1078.4 202.1 0.77
1092 2 76.12 43.06 7 2 1141.9 150.5 0.67 1140.1 203.6 0.76
1203 2 90.26 42.64 7 2 1222.6 150.5 0.87 1219.1 209.2 0.92
1394 3 85.70 31.33 6 3 1386.9 225.8 0.97 1419.3 214.7 0.88
1420 3 95.27 27.64 6 3 1425.2 225.8 0.98 1459.6 215.3 0.82
1601 3 105.98 27.64 6 3 1487.9 225.8 0.50 1520.6 219.4 0.63
1632 3 79.25 66.81 6 3 1519.1 225.8 0.50 1519.6 268.2 0.58
1699 3 120.50 32.25 6 3 1594.9 225.8 0.54 1621.2 233.0 0.67

tributions of the house prices determined using both models, Table 2. In model
determined using the least squares method the width (αŶ ) of the possibilistic
distribution of the houses prices is significantly higher in case of houses built
with low grade materials than the corresponding width of the fuzzy price ap-
proximated according to the Tanaka model. In the model obtained using the
least squares method the smallest value Pos(Ŷ = y) equals 0.58 and in the
Tanaka model 0.5.
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6 Conclusions

We have proposed an application of the least squares method to determining
fuzzy regression based on observations of output and input variables. We have
presented the method using two examples. The first one is an autoregressive
model of the energy load in Poland. The second one describes the dependency
between the houses prices in Japan and their surface and the materials quality.
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Abstract. Fuzzy logic programming is a growing declarative paradigm
aiming to integrate fuzzy logic into logic programming (LP). In this set-
ting, the multi-adjoint logic approach represents an extremely flexible
fuzzy language with a procedural principle structured in two separate
phases. During the operational one, admissible steps are systematically
applied in a similar way to classical resolution steps in LP, thus returning
an expression where all atoms have been exploited. This last expression
is then interpreted under a given lattice during the so called interpretive
phase. Whereas the operational phase has been successfully formalized in
the past, more effort is needed to clarify the notion of interpretive step.
In this paper we firstly introduce a refinement of this concept which
fairly models at a very low level the computational behaviour of the in-
terpretive phase. Then, we present a simple but powerful cost measure
induced from such definition which helps to estimate the computational
(interpretive) effort required to solve a goal. The resulting method is
much more accurate and realistic than other simpler cost measures (like
counting the number or the weights of interpretive steps) that we have
proposed in the past for proving efficiency properties in program trans-
formation tasks such as fold/unfold, partial evaluation, and so on.

Keywords: Fuzzy Logic Programming, Cost Measures, Aggregators.

1 Introduction

Fuzzy Logic Programming [1,2,4,8,13] is an interesting and still growing research
area that agglutinates the efforts for introducing fuzzy logic into Logic Pro-
gramming [9], in order to provide techniques and constructs for dealing with
uncertainty and approximated reasoning in a natural way. Most of these sys-
tems replace the classical inference mechanism of SLD–Resolution with a fuzzy
variant which is able to handle partial truth. This is the case of Multi-adjoint
logic programming [11,10] where a program can be seen as a set of rules each
one annotated by a truth degree and a goal is a query to the system plus a
substitution (initially the empty substitution, denoted by id). Admissible steps
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(a generalization of the classical modus ponens inference rule) are systematically
applied on goals in a similar way to classical resolution steps in pure LP, thus
returning an state composed by a computed substitution together with an ex-
pression where all atoms have been exploited. Next, this expression is interpreted
under a given lattice, hence returning a pair 〈truth degree; substitution〉 which is
the fuzzy counterpart of the classical notion of computed answer used in pure
LP. As we showed in [6], this last interpretive process admits a formulation based
on a transition system where each interpretive step solves a concrete connective
of an state. In this paper, we improve such definition by explicitly expanding
connective definitions and evaluating primitive (arithmetic) operators on states.
The method does not alter the final set of solutions, but it has the extra ability
of exhibiting the complexity of the interpretive phase in detail.

In connection with the last statement, we are specially interested in to accu-
rately observe the behaviour of computations performed on programs obtained
via some program transformation techniques developed in our group [5,3]. When
analyzing efficiency, it is convenient to define abstract approaches to cost mea-
surement, such as the usual method of counting the number of derivation steps
required to reach a solution. In [7] we showed that, in the context of multi-adjoint
logic programming, this method was inappropriate when considering the inter-
pretive phase. The problem was partially solved there by defining a more refined
interpretive cost measure based on the weights (that is, the number of connec-
tives and primitive operators) of the connectives evaluated in each interpretive
step of a given derivation. Anyway, such approach fails when dealing with com-
plex connective definitions which possible might emerge at transformation time.
By facing the problem via small interpretive steps, in Section 3 we definitively
overcome these inconveniences in a natural and accurate way.

2 Multi-adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming
(see [11] for a complete formulation of this framework). We work with a first
order language, L, containing variables, constants, function symbols, predicate
symbols, and several (arbitrary) connectives to increase language expressive-
ness: implication connectives (←1,←2, . . .); conjunctive operators (denoted by
&1,&2, . . .), disjunctive operators (∨1,∨2, . . .), and hybrid operators (usually
denoted by @1,@2, . . .), all of them are grouped under the name of “aggrega-
tors”. Although these connectives are binary operators, we usually generalize
them as functions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . ,@(xn−1, xn), . . .). By definition, the truth
function for an n-ary aggregation operator [[@]] : Ln → L is required to be
monotonous and fulfills [[@]](�, . . . ,�) = �, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice,
〈L,�,←1,&1, . . . ,←n,&n〉, equipped with a collection of adjoint pairs 〈←i,&i〉,
where each &i is a conjunctor which is intended to the evaluation of modus
ponens [11]. In general, L may be the carrier of any complete bounded lattice but,
for readability reasons, in the examples we shall select L as the set of real numbers
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in the interval [0, 1]. A L-expression is a well-formed expression composed by
values and connectives of L, as well as variable symbols and primitive operators
(i.e., arithmetic symbols such as ∗,+,min, etc...). In what follows, we assume
that the truth function of any connective @ in L is given by its corresponding
connective definition, that is, an equation of the form @(x1, . . . , xn) � E, where
E is a L-expression not containing variable symbols apart from x1, . . . , xn.

A rule is a formula H ←i B, where H is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn — n ≥ 0 —, truth values of L, conjunctions, disjunctions and aggre-
gations. A goal is a body submitted as a query to the system. Roughly speaking,
a multi-adjoint logic program is a set of pairs 〈R;α〉 (we often write R with α),
where R is a rule and α is a truth degree (a value of L) expressing the confidence
of a programmer in the truth of the rule R. By abuse of language, we sometimes
refer a tuple 〈R;α〉 as a “rule”.

The procedural semantics of the multi–adjoint logic language L can be tho-
ught as an operational phase (based on admissible steps) followed by an inter-
pretive one. In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the –possibly empty– context C[]. Moreover, C[A/A′] means the
replacement of A by A′ in context C[], whereas Var(s) refers to the set of dis-
tinct variables occurring in the syntactic object s, and θ[Var(s)] denotes the
substitution obtained from θ by restricting its domain to Var(s).

Definition 1 (Admissible Step). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is a state and we denote by E the set of states. Given a program
P, an admissible computation is formalized as a state transition system, whose
transition relation →AS ⊆ (E×E) is the smallest relation satisfying the following
admissible rules (where we always consider that A is the selected atom in Q and
mgu(E) denotes the most general unifier of an equation set E):

1) 〈Q[A];σ〉→AS〈(Q[A/v&iB])θ;σθ〉 if θ = mgu({A′ = A}), 〈A′←iB; v〉 in P
and B is not empty.

2) 〈Q[A];σ〉→AS〈(Q[A/v])θ;σθ〉 if θ = mgu({A′ = A}), and 〈A′←i; v〉 in P.

As usual, rules are taken renamed apart. Symbols →AS1 and →AS2 are used
to distinguish between computation steps performed by the specific admissible
rules. The application of a rule on a step will appear as a superscript of →AS .

Definition 2. Let P be a program and let Q be a goal. An admissible deriva-
tion is a sequence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is a formula not containing
atoms (i.e., a L-expression), the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called an
admissible computed answer (a.c.a.) for that derivation.

Example 1. Let P be the following multi-adjoint logic program:
R1 : p(X) ←P &G(∨L(q(X), 0.6), r(X)) with 0.9
R2 : q(a) ← with 0.8 R3 : r(X) ← with 0.7

where the labels L, G and P mean respectively for Łukasiewicz logic, Gödel
intuitionistic logic and product logic, that is, ∨L(x1, x2) � min(1, x1 + x2),
&G(x1, x2) � min(x1, x2) and &P(x1, x2) � x1 ∗ x2. Now, we can generate the
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following admissible derivation (we underline the selected atom in each step):
〈p(X); id〉 →AS1

R1 〈&P(0.9,&G(∨L(q(X1), 0.6), r(X1))); {X/X1}〉
→AS2

R2 〈&P(0.9,&G(∨L(0.8, 0.6), r(a))); {X/a,X1/a}〉
→AS2

R3 〈&P(0.9,&G(∨L(0.8, 0.6), 0.7)); {X/a,X1/a,X2/a}〉
Here, the a.c.a. is the pair: 〈&P(0.9,&G(∨L(0.8, 0.6), 0.7)); θ〉, where θ = {X/a,
X1/a,X2/a}[Var(p(X))] = {X/a}.

If we exploit all atoms of a goal, by applying admissible steps as much as needed
during the operational phase, then it becomes a formula with no atoms (a L-
expression) which can be then directly interpreted w.r.t. lattice L by applying
the following definition we initially presented in [6]:

Definition 3 (Interpretive Step). Let P be a program, Q a goal and σ a sub-
stitution. We formalize the notion of interpretive computation as a state transi-
tion system, whose transition relation →IS⊆ (E × E) is defined as the least one
satisfying: 〈Q[@(r1, . . . , rn)];σ〉 →IS 〈Q[@(r1, . . . , rn)/[[@]](r1, . . . , rn)];σ〉, where
[[@]] is the truth function of connective @ in the lattice 〈L,�〉 associated to P.

Definition 4. Let P be a program and 〈Q;σ〉 an a.c.a., that is, Q is a goal not
containing atoms (i.e., a L-expression). An interpretive derivation is a sequence
〈Q;σ〉 →∗

IS 〈Q′;σ〉. When Q′ = r ∈ L, being 〈L,�〉 the lattice associated to P,
the state 〈r;σ〉 is called a fuzzy computed answer (f.c.a.) for that derivation.

Example 2. If we complete the previous derivation of Example 1 by applying 3
interpretive steps in order to obtain the final f.c.a. 〈0.63; {X/a}〉, we generate
the following interpretive derivation D1: 〈&P(0.9,&G(∨L(0.8, 0.6), 0.7)); θ〉 →IS

〈&P(0.9,&G(1, 0.7)); θ〉 →IS 〈&P(0.9, 0, 7); θ〉 →IS 〈0.63; θ〉.

3 Small Interpretive Steps and Cost Measures

A classical, simple way for estimating the computational cost required to built
a derivation, consists in counting the number of computational steps performed
on it. So, given a derivation D, we define its:

– operational cost, Oc(D), as the number of admissible steps performed in D.
– interpretive cost, Ic(D), as the number of interpretive steps done in D.

Note the operational and interpretive costs of derivation D1 performed in the
previous section are Oc(D1) = 3 and Ic(D1) = 3, respectively. Intuitively, Oc

informs us about the number of atoms exploited along a derivation. Similarly, Ic
seems to estimate the number of connectives evaluated in a derivation. However,
this last statement is not completely true: Ic only takes into account those con-
nectives appearing in the bodies of program rules which are replicated on states
of the derivation, but no those connectives recursively nested in the definition of
other connectives. The following example highlights this fact.

Example 3. A simplified version of rule R1, whose body only contains an ag-
gregator symbol is R∗

1 : p(X)←P@(q(X), r(X)) with 0.9, where @(x1, x2) �
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&G(∨L(x1, 0.6), x2). Note that R∗
1 has exactly the same meaning (interpreta-

tion) that R1, although different syntax. In fact, both of them have the same
sequence of atoms in their head and bodies. The differences are regarding the
set of connectives which explicitly appear in their bodies since in R∗

1 we have
moved &G and ∨L (as well as value 0.6) from the body of the rule (see R1) to
the connective definition of @. Now, we use rule R∗

1 instead of R1 for generating
the following derivation D∗

1 which returns exactly the same f.c.a that D1:
〈p(X); id〉 →AS1

R∗
1 〈&P(0.9,@(q(X1), r(X1)); {X/X1}〉

→AS2
R2 〈&P(0.9,@(0.8, r(a))); {X/a,X1/a}〉

→AS2
R3 〈&P(0.9,@(0.8, 0.7)); {X/a,X1/a,X2/a}〉

→IS 〈&P(0.9, 0.7); {X/a,X1/a,X2/a}〉
→IS 〈0.63; {X/a,X1/a,X2/a}〉

Note that, since we have exploited the same atoms with the same rules (except
for the first steps performed with rules R1 and R∗

1, respectively) in both deriva-
tions, then Oc(D1) = Oc(D∗

1) = 3. However, although connectives &G and ∨L
have been evaluated in both derivations, in D∗

1 such evaluations have not been
explicitly counted as interpretive steps, and consequently they have not been
added to increase the interpretive cost measure Ic. This unrealistic situation is
reflected by the abnormal result: Ic(D1) = 3 > 2 = Ic(D∗

1).

In order to solve this problem, we opt here for redefining the behaviour of the
interpretive phase in a more accurate way than [6], as follows.

Definition 5 (Small Interpretive Step). Let P be a program, Q a goal and σ
a substitution. Assume that the (non interpreted yet) L-expression Ω(r1, . . . , rn)
occurs in Q, where Ω is just a primitive operator or a connective defined in the
lattice 〈L,�〉 associated to P, and r1, . . . , rn are elements of L. We formalize
the notion of small interpretive computation as a state transition system, whose
transition relation →SIS⊆ (E × E) is the smallest relation satisfying the follow-
ing small interpretive rules (where we always consider that Ω(r1, . . . , rn) is the
selected L-expression in Q):

1) 〈Q[Ω(r1, . . . , rn)];σ〉→SIS〈Q[Ω(r1, . . . , rn)/E′];σ〉, if Ω is a connective defined
as Ω(x1, . . . , xn) � E and E′ is obtained from the L-expression E by replac-
ing each variable (formal parameter) xi by its corresponding value (actual
parameter) ri, 1 ≤ i ≤ n, that is, E′ = E[x1/r1, . . . , xn/rn].

2) 〈Q[Ω(r1, . . . , rn)];σ〉→SIS〈Q[Ω(r1, . . . , rn)/r];σ〉, if Ω is a primitive operator
such that, once evaluated with parameters r1, . . . , rn, produces the result r.

From now, we shall use the symbols →SIS1 and →SIS2 to distinguish between
computation steps performed by applying one of the specific “small interpretive”
rules. Moreover, when we use the expression interpretive derivation, we refer to a
sequence of small interpretive steps (according to the previous definition) instead
of a sequence of interpretive steps (regarding Definition 3). Note that this fact,
supposes too a slight revision of Definition 4 which does not affect the essence of
the notion of fuzzy computed answer: the repeated application of both kinds of
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interpretive steps on a given state only affects to the length of the corresponding
derivations, leading both ones to the same final states (fuzzy computed answers).

There are some remarks to do regarding Definition 5. Firstly, compared with
Definition 1, we observe some correspondences among →AS1 and →AS2 with
respect to →SIS1 and →SIS2. Note that both →AS2 and →SIS2 simply replace
a portion of a goal Q (the selected atom or L-expression, respectively) by a
single value of L (the truth degree of a program rule with empty body, or the
result of evaluating a primitive operator, respectively). On the other hand, the
replacements performed by →AS1 and →SIS1 can be seen as the expansion on
the new state of some definitions appearing in the program (i.e., an atom is
replaced by the body of a program rule, or a L-expression is replaced by the
right hand side of a connective definition, respectively). This last similitude is
even more evident if we formalize →SIS1 as follows: "〈Q[Ω(r1, . . . , rn)];σ〉→SIS1
〈(Q[Ω(r1, . . . , rn)/E])θ];σθ〉, if θ = mgu({Ω(x1, . . . , xn) = Ω(r1, . . . , rn)}) and
Ω(x1, . . . , xn) � E is a connective definition in P". The reader may easily check
that, although we have used unifiers in this alternative definition of →SIS1 in
order to evoke Definition 1, we obtain exactly the same effect of Definition 5
(it is easy to see that the matcher θ we have just described is the set of links
x1/r1, . . . , xn/rn, which neither affects Q nor σ, but once applied to E generates
the L-expression E′ used in the original definition of small interpretive step).

Example 4. Recalling again the a.c.a. obtained in Example 1, we can reach the
final fuzzy computed answer 〈0.63; {X/a}〉 (achieved in Example 2 by means of
interpretive steps) by generating now the following interpretive derivation D2
based on “small interpretive steps”:

〈&P(0.9,&G(∨L(0.8, 0.6), 0.7)); {X/a}〉 →SIS1

〈&P(0.9,&G(min(1, 0.8 + 0.6), 0.7)); {X/a}〉 →SIS2
〈&P(0.9,&G(min(1, 1.4), 0.7)); {X/a}〉 →SIS2

〈&P(0.9,&G(1, 0.7)); {X/a}〉 →SIS1

〈&P(0.9,min(1, 0.7)); {X/a}〉 →SIS2

〈&P(0.9, 0.7); {X/a}〉 →SIS1

〈0.9 ∗ 0.7; {X/a}〉 →SIS2
〈0.63; {X/a}〉

Going back now to Example 3, we can rebuild the interpretive phase of Deriva-
tion D∗

1 in terms of small interpretive steps, thus generating the following in-
terpretive derivation D∗

2 . Firstly, by applying a →SIS1 step on the L-expression
&P(0.9,@(0.8, 0.7)), it becomes &P(0.9,&G(∨L(0.8, 0.6), 0.7)), and from here, the
interpretive derivation evolves exactly as derivation D2 we have just done above.

At this moment, it is mandatory to meditate on cost measures regarding deriva-
tions D1, D

∗
1 , D2 and D∗

2 . First of all, note that the operational cost Oc of all them
coincides, which is quite natural. However, whereas Ic(D1) = 3 > 2 = Ic(D∗

1),
we have now that Ic(D2) = 7 < 8 = Ic(D∗

2). This apparent contradiction might
confuse us when trying to decide which program rule (R1 or R∗

1) is “better”.
The use of Definition 5 in derivations D2 and D∗

2 is the key point to solve our
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problem, as we are going to see. In Example 3 we justified that by simply count-
ing the number of interpretive steps performed in Definition 3 might produce
abnormal results, since the evaluation of connectives with different complexi-
ties were (wrongly) measured with the same computational cost. Fortunately,
the notion of small interpretive step makes visible in the proper derivation all
the connectives and primitive operators appearing in the (possibly recursively
nested) definitions of any connective appearing in any derivation state. As we
have seen, in D2 we have expanded in three →SIS1 steps the definitions of three
connectives, i.e. ∨L,&G and &P, and we have applied four →SIS2 steps to solve
four primitive operators, that is, +, min (twice) and ∗. The same computational
effort as been performed in D∗

2 , but also one more →SIS1 step was applied to
accomplish with the expansion of the extra connective @. This justifies why
Ic(D2) = 7 < 8 = Ic(D∗

2) and contradicts the wrong measures of Example 3:
the interpretive effort developed in derivations D1 and D2 (both using the pro-
gram rule R1), is slightly lower than the one performed in derivations D∗

1 and
D∗

2 (which used rule R∗
1), and not the contrary.

The accuracy of our new way for measuring and performing interpretive com-
putations seems to be crucial when comparing the execution behaviour of pro-
grams obtained by transformation techniques such as the fold/unfold framework
we describe in [5,3]. In this sense, instead of measuring the absolute cost of deriva-
tions performed in a program, we are more interested in the relative gains/lost of
efficiency produced on transformed programs. For instance, by applying the so-
called “aggregation operation” described in [3] we can transform rule R1 into R∗

1
and, in order to proceed with alternative transformations (fold,unfold, et...) if the
resulting program degenerates w.r.t. the original one (as occurs in this case), we
need an appropriate cost measure as the one proposed here to help us for taken
decisions. In [7] we faced the same problem in a different way which produced less
accurate results. The idea was to redefine Ic in terms of the “weights” (that is,
the number of primitive operators involved in the definition of) the connectives
evaluated in each interpretive step of a given derivation. Although the method
represents an step beyond the trivial, wrong way of simple counting steps with-
out taken into account the number of primitive operators effectively evaluated
in a derivation (as our new approach captures by means of →SIS2), it was not
capable for distinguishing the number of calls to intermediate connectives (as
our more clever technique do via →SIS1 steps).

This fact has capital importance for discovering drastic situations which can
appear in degenerated transformation sequences such as the generation of highly
nested definitions of aggregators. For instance, assume the following sequence of
connectivedefinitions:@100(x1, x2) � @99(x1, x2),@99(x1, x2) � @98(x1, x2), . . . ,
and finally @1(x1, x2) � x1 ∗ x2. When trying to solve two expression of the form
@99(0.9, 0.8) and @1(0.9, 0.8), cost measures based on number of interpretive steps
([6]) and weights of interpretive steps ([7]) would assign 1 unit of interpretive cost
to both derivations. Fortunately, our new approach is able to clearly distinguish be-
tween both cases, since the number of →SIS1 steps performed in each one is rather
different (100 and 1, respectively).
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4 Conclusions and Future Work

In this paper we were concerned with a pending task related with the formaliza-
tion of the procedural semantics of multi-adjoint logic programming. Firstly, we
have clarified the notion of small interpretive step by extending our preliminary
definition of interpretive step in [6]. Then, we have showed how to accurately
estimate the computational effort developed during the interpretive phase of
derivations involving states with connectives whose definitions also invoke other
connectives. The evaluation of this last kind of connectives consumes computa-
tional resources at execution time which are observed by our technique in a much
more explicit way than the method proposed in [7] (based on weights of con-
nectives in concordance with their complexities). In the near future we plan to
implement the notion of small interpretive step into the FLOPER environment
[12], as well as to take advantage of this concept to formally prove the efficiency
of the fuzzy fold/unfold techniques [5,3] we are developing in our research group.
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Abstract. This paper deals with a new method to construct a new t–
conorm from two previous ones, by what we call a nesting procedure.
After some general considerations about this method, we study those
t–conorms obtained by nesting appropriate t–conorms in the basic max-
imum, drastic and Lukasiewicz t–conorms.

Keywords: binary operation, nesting, ordinal sum, t–conorm.

1 Introduction

It is important to have at hand as many methods as possible for constructing
aggregation operators, to be used in a wide range of applications. It is clear
that the most famous method is the ordinal sum construction, which goes back
to Climescu (1946) and Clifford (1954) for semigroups and can be applied to
t-norms and t–conorms (see for example [1]), copulas [2], or generalized to aggre-
gation operators [3]. Recently, the ordinal sum construction has been considered
as a special case of an orthogonal grid construction [4].

In this paper we study a procedure for constructing t–conorms by a nesting
method that includes the ordinal sum construction as well. This nesting pro-
cedure was first investigated for finitely-valued t–conorms [5,6], and here it is
analyzed for ordinary t–conorms. Of course, equivalent results to those obtained
for t–conorms can be also stated for t–norms, due to the duality that relates
them.

Despite the theoretical character of this work, interesting families of t-conorms
can be obtained by this method, which can be appropriated in specific situations.

The paper is organized as follows. In Section 2, we recall some basic definitions
and properties of t–conorms. In Section 3, after introducing our procedure, we
give a result that characterizes those nestings which are t–conorms, and then,
based on this result, we study in Section 4 nestings in the basic background
t–conorms.

2 Preliminaires

Consider the unit interval I = [0, 1] equipped with the usual ordering. We begin
to recall basic definitions, examples and some properties of t–conorms.
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Definition 1. A triangular conorm (t–conorm for short) on I = [0, 1] is a bi-
nary operation S : [0, 1]2 → [0, 1] such that for all x, y, z ∈ I the following axioms
are satisfied:

1. S(x, y) = S(y, x) (commutativity),
2. S

(
S(x, y), z

)
= S

(
x, S(y, z)

)
(associativity),

3. S(x, y) � S(x′, y′) whenever x � x′ , y � y′ (monotonicity),
4. S(x, 0) = x (boundary condition).

Example 1. We can consider as basic t–conorms the maximum,

SM (x, y) = max(x, y); (1)

the drastic t–conorm,

SD(x, y) =

⎧⎨⎩
x if y = 0,
y if x = 0,
1 otherwise;

(2)

and the bounded sum or �Lukasiewicz t–conorm,

SL(x, y) = min(x + y, 1). (3)

Well known properties of t–conorms are the following.

Proposition 1. Let S be a t–conorm on I = [0, 1]. Then we have:

1. S � SD. Thus, SD is the largest t–conorm.
2. S(x, y) � max(x, y), ∀x, y ∈ I. That is, SM is the smallest t–conorm.
3. S(x, 1) = 1, ∀x ∈ I. In other words, 1 is an annihilator.

Ordinal sums can be defined for a finite number or even a countable collection of
t–conorms. Here we recall the well known ordinal sum theorem, first established
in [7], applied to two t–conorms.

Proposition 2. Let S1 and S2 be two t–conorms on I = [0, 1], and let a ∈ (0, 1).
Consider the binary operation S defined on I as follows:

S(x, y) =

⎧⎨⎩
aS1(xa ,

y
a ) if (x, y) ∈ [0, a]2,

a + (1 − a)S2(x−a1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

max(x, y) otherwise.

Then, S is a t–conorm on I which is called the ordinal sum of the summands
S1 and S2. We will denote it by S = 〈S1, S2〉.

3 Nesting of T–Conorms

In this section we define a nesting procedure for constructing t–conorms. It has
been already applied to the case of finite t–conorms [5,6]; here we apply it to
t–conorms defined on the unit interval.
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G

G GS

S S

a = 0 0 < a < b < 1 b = 1

Fig. 1. The three different ways to nest

Definition 2. Given a t–conorm S, real numbers a, b ∈ [0, 1], a < b, and a
”t–conorm”1 G on [a, b], we define a binary operation [G,S] on [0, 1] as follows:

[G,S](x, y) =
{
G(x, y) if a � x, y � a,
S(x, y) otherwise. (4)

We say that [G,S] is the nesting of G in S (a and b fixed).

Depending on the values of a and b, it can be distinguished three cases, depicted
in Fig. 1:

– a = 0 (and b �= 1),
– 0 < a < b < 1,
– b = 1 (and a �= 0).

For any S, a and G , [G,S] is commutative, non-decreasing in each place, with 0
and 1 as neutral and annihilator elements respectively. We are interested in
obtaining by this method a new t–conorm.

Proposition 3. Given S, a and G as above, the nesting [G,S] is associative (is
a t–conorm) if and only if the following conditions hold, when applicable:

S
(
G(x, y), z

)
= S

(
S(x, y), z

)
, ∀x, y, z : a � x, y � b < z, (5)

S(x, y) = max(x, y), ∀x, y : x < a � y < b. (6)

Proof. Let us assume that [G,S] is a t–conorm. First we observe that the asso-
ciativity of [G,S] and S implies condition (5). From monotonicity of [G,S] and
boundary conditions of G and S we can write

[G,S](0, y) � [G,S](x, y) � [G,S](a, y)

when x < a � y � b, and

y = S(0, y) � S(x, y) � G(a, y) = y.

So, S(x, y) = max(x, y) = y and (6) is satisfied.
1 A ”t–conorm” on [a, b] is a binary operation which is commutative, associative and

monotone, with a as neutral element. A t–conorm means here a ”t–conorm” on the
unit interval [0, 1]. If S is a t–conorm and 0 � a < b � 1 the we denote by Sa,b the
”t–conorm” on [a, b] defined by Sa,b(x, y) = a+(b−a)S(x

b
, y

b
), or simply Sb if a = 0.
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Reciprocally, monotonicity of [G,S] follows from (6) and associativity, from
both (5) and (6). ��

Remarks

1. From this proposition we can see that if S is cancellative for some z > b,
then G(x, y) = S(x, y) for all x, y ∈ [a, b] and so [G,S] = S.

2. In the case a = 0, a situation of interest is when S(b, x) = max(b, x) for
all x ∈ [0, 1]. Under this hypothesis condition (5) is trivially satisfied for all
”t–conorm” G and all b, 0 < b < 1, and [G,S] is just the ordinal sum 〈S1, S2〉
where S1 and S2 are the t–conorms defined by

S1(x, y) =
1
b
G(bx, by), (7)

S2(x, y) =
1

1 − b

(
S(b + (1 − b)x, b + (1 − b)y) − b

)
. (8)

Following with this case a = 0, it is also worth to observe that if [G,S] is
a t–conorm then it is non-Archimedean2 (a is a non trivial idempotent of
[G,S]). Reciprocally, if S is a non-Archimedean t–conorm with a as non-
trivial idempotent, then S is the nesting S = [G,S], where G is the ”t–
conorm” on [0, a] defined by G(x, y) = aS(xa ,

y
a ). In particular, any ordinal

sum 〈S1, S2〉 is a nesting.
Thus the class of non-Archimedean t–conorms is equal to the class of nestings
satisfying condition (5).
Note that [G,S] is left–continuous, and it is continuous if and only if it is
the ordinal sum 〈S1, S2〉 where S1 and S2 are the (continuous) t–conorms
defined in (7) and (8).

3. If 0 < a < b < 1, then condition (6) says that the restriction of [G,S] to
[0, b]2 is a ”t–conorm”; that is, [[G,S]|[0,b]2 , S] is a nesting of the first type.
And for the case b = 1, it follows from the same condition that the resulting
t–conorm is also an ordinal sum and hence it can be interpreted as a nesting
of the first type.

4 Nestings in the Three Basic T–Conorms

We apply now the construction defined in Section 3 to the case of maximum,
drastic and �Lukasiewicz t–conorms; we also consider the iteration of this process.
The study is limited to the nestings of the case a = 0: the other two cases can
be reduced to it, as we have seen in point 3 of the previous remark.

4.1 Nestings in the Maximum T–Conorm

Proposition 4. The nesting [G,SM ] is a t–conorm for all ”t–conorm” G and
all b, 0 < b < 1.

Proof. As said in the remark of the previous section, point 2, a nesting in the
maximum is an ordinal sum, that is, a t–conorm. ��
2 Here we consider Archimedean a t–conorm without non-trivial idempotent elements.
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4.2 Nestings in the Drastic T–Conorm

Proposition 5. The nesting [G,SD] is a t–conorm for all ”t–conorm” G and
all b, 0 < b < 1.

Proof. Only condition (5) must be verified: if a � x, y � b < z, then

SD
(
G(x, y), z

)
= SD

(
SD(x, y), z

)
= 1.

��
Remarks

1. Observe that [G,SD] is a non-Archimedean t–conorm which is not an ordinal
sum.

2. Taking into account nestings in maximum and drastic t–conorm, [G,S] can
be seen as a median:

[G,S] = med
(
S, [G,SM ], [G,SD]

)
3. Note also the possibility of (up)-iteration of the two previous nesting cases,

obtaining at each step new t–conorms:

[G,SM ],
[
[G,SM ]c, SM

]
, . . . [G,SD],

[
[G,SD]c, SD

]
, . . .

where c ∈ (0, 1) and [G,SM ]c, for example, indicates the rescaling of the
t–conorm [G,SM ] to the interval [0, c] (see footnote 1), obtaining in this way
the first iteration. Obviously this process can be repeated indefinitely.

4.3 Nestings in the �Lukasiewicz T–Conorm

Proposition 6. The nesting [G,SL] is a t–conorm if and only if the following
conditions hold:

i) b � 1
2 ,

ii) G(x, y) = x + y if x + y < 1 − b.

Proof. First we observe that condition (5) can be rewritten in our case in this
way:

min
(
G(x, y) + z, 1

)
= min(x + y + z, 1), ∀x, y, z : x, y � b < z. (9)

Let us suppose that this condition is satisfied; thus, G(x, y) = x + y whenever
x + y < 1 − z. This means b � 1

2 : if not, taking z > b such that b < 1 − z we
would have G(x, y) = x + y for all b � x + y < 1 − z, which is not possible.

Now, the condition on G can be given in the form:

G(x, y) = x + y, ∀x, y : x + y < 1 − b,

and conditions i), ii) are satisfied.
Reciprocally, given b � 1

2 and G satisfying the above condition, it can be
proved that (9) is fulfilled and [G,SL] is a t–conorm. ��
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Remarks

1. Note that from the second condition of the above proposition we can deduce
G(x, y) � 1 − a if x + y � 1 − a.

2. It is interesting also to observe that similar conditions as those of the Propo-
sition 6 can be obtained for continuous nilpotent t–conorms. More precisely,
if f is the normalized additive generator of a t–conorm S of this type, then
the conditions are reformulated in this way:
i) b � f−1(1

2 ),
ii) G(x, y) = S(x, y) if y � f−1

(
1 − f(b) − f(x)

)
.

Example 2. For b = 1
2 , the nesting [SL 1

2
, SL] is the left-continuous t–conorm

defined by:

[SL 1
2
, SL](x, y) =

{
min(x + y, 1

2 ) if 0 � x, y � 1
2 ,

min(x + y, 1) otherwise. (10)

The next result states the conditions for an iterated nesting in �Lukasiewicz t–
conorm to be also a t–conorm.

Proposition 7. Let G a ”t–conorm” on [0, b], [G,SL] a t–conorm and c a real
number such that b < c < 1. Then

[
[G,SL]c, SL

]
is a t–conorm if and only if the

following conditions hold:

i) c � 1
1+b ,

ii) G(x, y) = x + y if x + y < 1−c
c .

Corollary 1. Given 0<b, c<1 and a ”t–conorm” G on [0, b], then
[
[G,SL]c, SL

]
is a t–conorm if and only if it fulfils:

i) b � 1
2 , c � 1

1+b ,
ii) G(x, y) = x + y if x + y < max(1 − b, 1−c

c ).

Example 3.

i) If we take b = 1
2 , then

[
[G,SL]c, SL

]
is a t–conorm for all c � 2

3 with
G(x, y) = min(x + y, 1

2 ) (i.e. G = SL 1
2
).

ii) There is no G such that
[
[G,SL] 1

2
, SL
]

is a t–conorm.

As said before, this process of nesting can be up-iterated. In the case of nesting
in �Lukasiewicz t–conorm, we obtain a binary operation which can be denoted
by SLb0,b1,...,bn−1,bn

, with 0 = b0 < b1 < . . . < bn−1 < bn = 1, or SLb1,...,bn−1
:

SLb1,...,bn−1
=
[
[. . . [[SLb1

, SL]b2 , SL]b3 . . .]bn−1 , SL

]
,

which can be expressed as follows:

SLb1,...,bn−1
(x, y) = min(x + y, bk), if bk−1 < max(x, y) � bk.
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]

Proposition 8. The binary operation SLb1,...,bn−1
is a t–conorm if and only if

bi − bi−1 � b1 for all i = 1, . . . , n− 1.

Special t–conorms of this type are SL 1
n

,..., n−1
n

, which will be denoted by SLn for

the sake of brevity.

Example 4. For n = 3, we have the t–conorm SL3 in Fig. 2.

An interesting expression for SLn is

SLn(x, y) = min
(
SL(x, y), SDn(x, y)

)
.

It is the minimum of two t–conorms: the �Lukasiewicz one and the t–conorm SDn ,
or SD 1

n
,..., n−1

n

, which is the result of the up-iteration process of nesting in drastic
t–conorm:

SDn(x, y) =

⎧⎨⎩
x if y = 0,
y if x = 0,
k
n if x, y �= 0 and k−1

n < max(x, y) � k
n .

or, in short,

SDn(x, y) =
�nmax(x, y) 

n
,

where �· is the ceiling function, which maps a real number to the next larger
integer. In this way, SLn can be expressed as (compare with (3)):

SLn(x, y) = min
(
x + y,

�nmax(x, y) 
n

)
.

We finish with an example where these t–conorms are applied.

Example 5. Aspirants to pass an examination carried out two attempts. We can
classify them with the t–conorm SDn at several levels Li = i

n , i = 1, . . . , n, in
this way: if the highest result is between Li−1 and Li, we put them at level Li,
regardless of lowest one.
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But when the sum of both scores of an aspirant does not reach the level Li, we
can penalize him by using the t–conorm SLn , which assigns precisely the value
of this sum in this case.

5 Conclusions

A nesting method to construct binary operations from t–conorms has been in-
troduced, which includes as a particular case the ordinal sum. The general con-
ditions for this method to give as a result also t–conorms have been established
and the nestings in the three basic t–conorms have been specially considered.

Acknowledgments. The authors acknowledge the support of the Govern Balear
grant PCTIB2005GC1-07 and the Spanish DGI grant MTM2006-08322.
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Abstract. In this work we recall the first steps towards the definition
of an answer set semantics for residuated logic programs with negation,
and concentrate on the development of relationships between the notions
of coherence and consistence of an interpretation.

1 Introduction

An answer set semantics has been recently introduced in the framework of resid-
uated logic programming in response of the need of developing new reasoning
paradigms for knowledge representation and non-monotonic deduction problems.

One of the most important areas on which this kind of research can be applied
is in the development of the semantic web. Mainly due to its vast nature, rea-
soning with current technologies has been deliberately chosen to be monotonic.
Although this choice seems to be the right one when dealing with the semantic
web as a whole, the benefits of non-monotonic reasoning become apparent in
a local sense: for instance, when a small number of agents communicate they
need to consider only their own knowledge bases as all the relevant knowledge,
regardless the big amount of information out there. In this case, non-monotonic
reasoning is advantageous over monotonic reasoning, i.e. one can retract previ-
ous inferences on the discovery of new knowledge by one of the agents, or one
can safely assume everything that is not known to the agents as false.

Originally, answer sets semantics was intended to deal with non-monotonic
reasoning, in that it provides a method to handle negation in logic program-
ming. Moreover, two kind of negations, one strong negation and one default
negation, were allowed in the programs. The use of these two types of nega-
tion is advocated in many contexts of interest, in particular in [10] their use
is justified in relation to web rules. Moreover, the overall framework of answer
set programming has important links with description logics, as stated in [2,5].
Specifically, [2] have proposed a combination of logic programming under the
answer set semantics with some description logics in order to build rules on
top of ontologies and, to a limited extent, build ontologies on top of rules; on
its turn, [5] introduces a language that unifies both answer set programming
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V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 60–67, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Fuzzy Answer Set Semantics for Residuated Logic Programs 61

and expressive description logics as an alternative for intuitive non-monotonic
reasoning with possibly infinite knowledge.

It is convenient to note that stable models, from which the answer set se-
mantics arose, were initially aimed at formalizing the use of negation in logic
programming as negation-as-failure and, thus, are closely related to reasoning
under uncertainty. For instance, the closed world assumption for a given pred-
icate P allows for extracting negative knowledge about P from the absence of
positive information about it.

The ideal environment for developing a theory of management of uncertainty
is fuzzy logic in any of its flavours. This is why we chose to introduce negations
in a particular fuzzy logic programming paradigm, specifically the framework
of residuated logic programs (which is negation-free) [1], and consider it as our
target theory for a suitable generalization of answer set semantics.

In this paper, we start by recalling the basic definitions of stable model, answer
set and coherent interpretation in the framework of residuated logic programs
introduced in [7]. Then we initiate the analysis of the relationships between
the notions of coherence of an interpretation with the more common notion of
consistence.

2 On Fuzzy Answer Set Semantics for Residuated
Programs

In this section we include the definitions needed to recall the answer set semantics
for residuated logic programs with negation. Let us start with the definition of
residuated lattice:

Definition 1. A residuated lattice is a tuple (L,≤, ∗,←) such that:

1. (L,≤) is a complete bounded lattice, with top and bottom elements 1 and 0.
2. (L, ∗, 1) is a commutative monoid with unit element 1.
3. (∗,←) forms an adjoint pair, i.e. z ≤ (x ← y) iff y ∗ z ≤ x ∀x, y, z ∈ L.

In residuated lattices one can interpret the operator ∗ like a conjunction and the
operator ← like an implication.

In the rest of the paper we will consider a residuated lattice enriched with
two negation operators, (L,≤, ∗,←,∼,¬). The two negations will modelize the
notions of strong negation ∼ and default negation ¬ often used in logic pro-
gramming. As usual, a negation operator, over L, is any decreasing mapping
n : L → L satisfying n(0) = 1 and n(1) = 0.

The difference between strong and default negation in our context is essentially
semantical, and relates to the method used to infer the truth value of one negated
propositional symbol.

In order to introduce our logic programs, we will assume a set Π of proposi-
tional symbols. If p ∈ Π , then both p and ∼ p are called literals. We will denote
arbitrary literals with the symbol � (possible subscripted), and the set of all
literals as Lit.
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Definition 2. Given a residuated lattice with negations (L,≤, ∗,←,∼,¬), a
general residuated logic program P is a set of weighted rules of the form

〈� ← �1 ∗ · · · ∗ �m ∗ ¬�m+1 ∗ · · · ∗ ¬�n; ϑ〉

where ϑ is an element of L and �, �1, . . . , �n are literals.

Rules will be frequently denoted as 〈� ← B;ϑ〉. As usual, the formula B is called
the body of the rule whereas � is called its head. We consider facts as rules with
empty body, which are interpreted as a rule 〈� ← 1; ϑ〉.
Definition 3. A fuzzy L-interpretation is a mapping I : Lit → L; note that the
domain of the interpretation can be lifted to any rule by homomorphic extension.

We say that I satisfies a rule 〈� ← B; ϑ〉 if and only if I(B) ∗ ϑ ≤ I(�) or,
equivalently, ϑ ≤ I(� ← B).

Finally, I is a model of P if it satisfies all rules (and facts) in P.

A general residuated logic program P is said to be:

– positive if it does not contain negation operators.
– normal if it does not contain strong negation.
– extended if it does not contain default negation.

2.1 Extended Logic Programs and Coherence

In this section, we concentrate on strong negation and, therefore, we will consider
extended residuated logic programs.

Note that, as our interpretations are defined on the set of literals, every ex-
tended program has a least model which can be obtained, for instance, by it-
erating the immediate consequence operator, see [1]. However, one has to take
into account the interaction between opposite literals. For example, in the clas-
sical case we reject the inconsistent models, i.e. p and ∼ p cannot be true at
the same time. The advantage of working in a fuzzy framework is that one can
allow that two opposite literals, such as p and ∼ p, live together . . . under some
requirements.

Our approach will be based on a generalization of the concept of consistency
which we have called coherence, to distinguish it from other existing definitions
of consistency in a fuzzy setting.

Definition 4. A fuzzy L-interpretation I over Lit is coherent if the inequality
I(∼ p) ≤ ∼ I(p) holds for every propositional symbol p.

Now, a natural question arises: why the definition above provides an acceptable
generalization? There are three main reasons: firstly, it is easy to implement,
since it only depends on the negation operator (whereas other definitions use
both a t-norm and a negation); secondly, it allows to handle missing information
(i.e. I such that I(�) = 0 for all � ∈ Lit is always coherent); thirdly, our notion of
coherence coincides with consistency in the classical framework (it is not difficult
to check this).

We will also apply hereafter the term “coherent” to refer to a logic program,
as stated by the following definition.
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Definition 5. Let P be an extended residuated logic program, we say that P is
coherent if its least model is coherent.

In Section 3 we will introduce some results about coherence, in particular that
an extended program is coherent if and only if it has some coherent model, and
we will compare it with other approaches to the generalization of consistency to
a fuzzy framework.

Example 1. Consider the following extended residuated logic program

P = {〈p ←; 1〉, 〈∼ p ←; 0.3〉}

over the unit interval and strong negation ∼ x = 1 − x:
This program is not coherent because its unique minimal model M = {(p, 1),

(∼ p, 0.3)} is not a coherent interpretation, since 0.3 = M(∼ p) > ∼M(p) = 0.

2.2 Fuzzy Answer Sets

Once the concept of coherence has been presented, we can introduce the notion
of fuzzy answer set for extended logic programs. Such a set is a fuzzy set of
literals, similarly to the classical case, the difference is that in our framework it
will be considered a particular case of fuzzy L-interpretation.

Definition 6. Let P be a coherent extended residuated logic program; the fuzzy
answer set of P is its least coherent model of P.

Our aim in this section is to adapt the approach given in [3,4] to the general
residuated logic programs defined above.

Let us consider a general residuated logic program P together with a fuzzy
L-interpretation I. To begin with, we will construct a new normal program PI
by substituting each rule in P of the form

〈� ← �1 ∗ · · · ∗ �m ∗ ¬�m+1 ∗ · · · ∗ ¬�n; ϑ〉

by the rule1

〈� ← �1 ∗ · · · ∗ �m; ¬I(�m+1) ∗ · · · ∗ ¬I(�n) ∗ ϑ〉

Notice that the new program PI is extended, that is, does not contain default
negation; in fact, the construction closely resembles that of a reduct in the clas-
sical case, this is why we introduce the definition below.

Definition 7. The program PI is called the reduct of P wrt the interpretation I.

It is not difficult to prove that every model M of the program P is a model of
the reduct PM .
1 Note the overloaded use of the negation symbol, as a syntactic function in the for-

mulas and as the algebraic negation in the truth-values.
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Remark 1. As a result, note that given two fuzzy L-interpretations I and J ,
then the reducts PI and PJ have the same rules, and might only differ in the
values of the weights. By the monotonicity properties of ∗ and ¬, we have that
if I ≤ J then the weight of a rule in PI is greater or equal than its weight in PJ .

Now we are ready to introduce our notion of (fuzzy) answer set for general
residuated logic program.

Definition 8. Let P be a general residuated logic program and let I be a coherent
fuzzy L-interpretation; I is said to be an answer set2 of P iff I is a minimal model
of PI .

Theorem 1. Any answer set of P is a minimal model of P.

Obviously, this approach is a conservative extension of the classical approach. In
the following example we use a simple normal logic program with just one rule
in order to clarify the definition of answer set.

Example 2. Consider the program 〈p ← ¬q; ϑ〉. Given a fuzzy L-interpretation
I : Π → L, the reduct PI is the rule (actually, the fact) 〈p; ϑ∗¬I(q)〉 for which
the least model is M(p) = ϑ ∗ ¬I(q), and M(q) = 0. As a result, I is an answer
set of P if and only if I(p) = ϑ ∗ ¬I(0) = ϑ ∗ 1 = ϑ and I(q) = 0.

3 On Coherence and Consistence

Let us start this section by introducing the usual extension of the concept of
consistent interpretation to the fuzzy case, which needs both a t-norm and a
negation operator.

Definition 9. Let ∗ be a t-norm and ∼ a negation operator. We say that an
interpretation I : Lit → L on the set of literals is α-consistent if for all proposi-
tional symbol p we have that I(p) ∗ I(∼ p) ≤ α.

Note that, by the adjoint condition, I(p) ∗ I(∼ p) ≤ α iff I(∼ p) ≤ α ← I(p).
In other words, α-consistence provides an upper bound to the value of I(∼ p)
in terms of I(p) and the parameter α. On its turn, recall that a coherent inter-
pretation (Definition 4) directly provides such an upper bound, namely ∼ I(p),
which depends only on the operator intended to interpret the strong negation.

Obviously, in a classical context, both terms are equivalent as stated in the
proposition below:

Proposition 1. In classical logic, an interpretation is coherent if and only if it
is α-consistent for all α ∈ [0, 1).

Example 3. Let us study the set of coherent interpretations associated to two
extreme cases of negation. Firstly, for the least negation operator
2 For normal residuated logic programs, this definition reduces to that of stable set.
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∼(x) =
{

1 if x = 0
0 if x > 0

we have that a coherent interpretation cannot assign a positive value to a propo-
sitional symbol and its negation,i.e if I(p) > 0 then I(∼ p) = 0.

Now, consider the greatest negation operator:

∼(x) =
{

1 if x < 1
0 if x = 1

For this negation, the coherence condition states that if I(p) = 1 then I(∼ p) = 0
or, alternatively, that any positive value of ∼ p (arbitrarily small), implies that
p cannot be certainly true. �

As shown in the previous example, although in a fuzzy context both definitions
differ in general, there exist some relations between them. For instance, given ∗
and ∼, consider the value

α∗
∼ = sup{x ∗ ∼x | x ∈ L}

which will be called the consistence bound. Let us see some examples on the unit
interval.

Example 4. Consider the negation given by ∼ x = 1 − x

1. For Gödel t-norm, min(x, y), the consistence bound is 0.5.
2. For product t-norm, x · y, the consistence bound is 0.25.
3. For �Lukasiewicz t-norm, max(0, x + y − 1), the consistence bound is 0. �

Proposition 2. Let ∗ be a t-norm and ∼ a negation operator, then any coherent
interpretation is α∗

∼-consistent.

Remark 2. Note that, in the above example, any coherent interpretation is 0-
consistent wrt �Lukasiewicz t-norm, which requires the strongest type of consis-
tence; however, in a fuzzy context this does not mean that either p or ∼ p should
be evaluated as 0 since, for instance, if I(p) = 0.5 and I(∼ p) = 0.5 one still has
I(p) ∗ I(∼ p) = 0.

One of the main features of the notion of coherence is that it uniquely depends
on the negation operator in use, contrariwise to the definition of α-consistence,
which involves as well the underlying t-norm and the consistence level. Of course,
Proposition 2 above helps the programmer to implement the intended behaviour
regarding strong negation regarding the maximum common level that both a
propositional symbol and its negation can have maintaining coherence.

Example 5. Assume that we are working with the standard negation operator
∼ x = 1 − x. In order to find what is the maximum possible common value for
I(p) and I(∼ p) in a coherent interpretation I firstly note that, the value of I(∼ p)
should reach its upper bound, that is I(∼ p) = ∼ I(p). By definition of the nega-
tion operator, this amounts to I(∼ p) = 1 − I(p) and, as the values of
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I(p) and I(∼ p) are assume to be the same, the previous equation leads that
I(p) = I(∼ p) = 0.5.

As a result, independently of the underlying t-norm, the use of the stan-
dard negation operator and coherent interpretations does not allow that I(p) =
I(∼ p) > 0.5.

Should we wish a bound different from 0.5, the solution would be to fix a
different negation operator. A more restrictive bound is obtained by using ∼ x =
1 −

√
x; In effect, by the same reasoning as with the standard negation, we are

led to the equation 1 − √
x = x, whose positive solution is x ≈ 0.38. On the

other hand, a less restrictive one is obtained with the operator ∼ x = 1 − x2,
in this case the equation to be solved is 1 − x2 = x, whose positive solution is
x ≈ 0.62. �

The previous example presented some negations which grant more or less re-
strictive consistence values; however, one would like to be able to construct the
corresponding negation to a prescribed consistence value. In the unit interval,
this is given by the following

Proposition 3. Consider ε ∈ [0, 1], then the following negation operator

∼x =

{
1 − 1−ε

ε x if x < ε
ε

1−ε(1 − x) if x ≥ ε

satisfies that in all coherent interpretation

sup{α ∈ [0, 1] | ∃p such that I(p) = I(∼ p) = α} ≤ ε.

Note that the operator given in the previous proposition is not the only one
satisfying the statement, we have just provided a continuous negation operator
with the intended behaviour.

In order to continue with some properties of the notion of coherence, take into
account that an interpretation I assigns a truth degree to any negative literal
∼ p independently from the negation operator. This way, if we have two different
negation operators (∼1 and ∼2) we can talk about the coherence of I wrt any
of these operators.

Proposition 4. Let ∼1 and ∼2 be two negation operators such that ∼1 ≤ ∼2,
then any interpretation I that is coherent wrt ∼1 is coherent wrt ∼2.

Another formulation of the previous property of coherence can be given, this
time in terms of two interpretations and just one negation operator, as follows:

Proposition 5. Let I and J be two interpretations satisfying I ≤ J . If J is
coherent, then I is coherent as well.

Corollary 1. If M is a fuzzy coherent model of P, then any other model T such
that T ≤ M is a coherent model.

Corollary 2. A extended residuated logic program is coherent if and only if it
has at least one coherent model.
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4 Conclusions and Future Work

We have recalled the basic definitions of the answer set semantics of general
residuated logic programs. We have concentrated on the relationships between
the notions of coherence and consistence of an interpretation.

The notion of consistence bound has been introduced for a given t-norm ∗ and
strong negation ∼, and its relationship with coherent interpretations has been
presented. Then, coherence has been studied in terms of the ordering relation
between interpretations.

A number of issues still have to be studied: for instance, the epistemological
implications of the concept of coherence. We have only taken into account that
the resulting fuzzy answer sets should be validated for coherence, as a consistency-
related notion, and developed some of its initial properties. Future work, should go
towards imbricating this notion with threshold computation which turns out to be
an important issue for negation-as-failure. For instance, the absence of evidence
of p could be interpreted that the value of p is at most a threshold value which
cannot be detected by the sensors which provide our information.

Finally, it is important to further relate our approach with other existing
approaches [6,9], and study their possible interactions, as well as studying the
modifications needed in order to extend the answer set semantics to multi-adjoint
logic programs [8].
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Abstract. In this paper, we investigate rule induction from imprecise
decision tables. In the imprecise decision tables, decision attribute values
are specified imprecisely. Under a definition of rough set with respect to
imprecise decision tables, several rule induction schemes are considered.
In each rule induction scheme, the conventional decision matrix method
is extended to the case of imprecise decision tables.

1 Introduction

Rough set approach proposed by Pawlak [6] is known to be a useful tool for
reasoning from data. It has been applied to various fields such as medicine, en-
gineering, management and so on. In order to extend the applicability, rough
sets have been generalized in various ways [2,3,8,9]. Some [5] of rough set ap-
proaches treat imprecise data in decision tables. Decision tables are composed
of objects usually described by combinations of condition attribute values and
a decision attribute value. The approaches to imprecision seem to be mainly
toward condition attribute values. Indeed, precise decision attribute values are
usually obtained.

However, in the real world, we come across cases when we only obtain data
with imprecise decision attribute values. For example, evaluation of the economic
situation would be difficult to tell precisely. Failure diagnosis of complex systems
would start from the expert hunch or conjecture. The conjectured source of
failure is a decision attribute value and it would be imprecise. Consider a forecast,
it would be difficult to be exact and precise. Some tolerance would be necessary.
Moreover, evaluations by humans are often imprecise. Even data with imprecise
decision attribute values would be useful to induce rough knowledge or to find
the condition attributes possibly to effect on the decision attribute value. It is
much more informative than ignorance. Utilization and analyzing such data is
valuable unless a sufficient number of precise data are available.

From this point of view, Inuiguchi and Li [4] have proposed a rough set ap-
proach to imprecise decision tables, i.e., decision tables with imprecise decision
attribute values. They proposed an active approach so that different pieces of
information can cooperate to obtain useful knowledge. Using the defined rough
sets under an imprecise decision table, they investigated attribute reduction.
However, rule induction has not yet been proposed.
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Table 1. The imprecise decision table

Object c1 c2 · · · cm d

u1 c1(u1) c2(u1) · · · cm(u1) F (u1)
u2 c1(u2) c2(u2) · · · cm(u2) F (u2)
...

...
...

...
...

...
un c1(un) c2(un) · · · cm(un) F (un)

In this paper, we investigate rule induction under imprecise decision tables.
We adopt the definition of rough sets proposed by Inuiguchi and Li [4]. As several
attribute reduction schemes are considered in Inuiguchi and Li [4], several rule
induction schemes are conceivable. For each rule induction scheme, we propose
a decision matrix method.

This paper is organized as follows. In next section, imprecise decision tables
are introduced. A few underlying object sets of rule induction are defined and
their properties are described. In Section 3, based on the object sets defined in
the previous section, rule induction schemes are proposed. Then decision matrix
method in each rule induction scheme is given. In Section 4, concluding remarks
are given.

2 Rough Sets under Imprecise Decision Tables

2.1 Imprecise Decision Tables

In this paper, we treat imprecise decision tables, i.e., decision tables with im-
precise decision values shown in Table 1. An imprecise decision table is repre-
sented by a quadruple I = (U,C ∪ {d}, F, V ). U is a finite set of objects, U =
{u1, u2, . . . , un}. C is a finite set of condition attributes, C = {c1, c2, . . . , cm}.
Each attribute ci can be seen as a function from U to Vci , where Vci is the do-
main of condition attribute ci. The function value ci(uj) indicates the attribute
value of uj. d is a decision attribute whose value d(uj) is unique for each object
uj. F is a set-valued function from U to 2Vd , where 2Vd is a power set of Vd
and Vd is the domain of decision attribute d. F (uj) indicates a set of possible
decision attribute values of uj. Finally, V =

⋃
c∈C Vc ∪ Vd.

In Table 1, decision attribute values are allowed to take set-values, while in
the conventional decision tables, decision attribute values should be singletons,
i.e., single values. Each set-value of decision attribute shows possible decision
attribute values of the object. Such set-value may be obtained when decision
attribute values are not specified precisely. For example, when our knowledge is
not complete but partial or when we hesitate our evaluation, we may specify the
decision value such as “not d1” or “d1 or d2”. In those cases, decision attribute
values can be treated as imprecise values. Even imprecise decision values would
be more useful than no information and a number of imprecise decision values
may collaborate to obtain precise value and useful result. Imprecise decision



70 M. Inuiguchi

attribute values can be also regarded as values by conjecture. Then allowing
imprecise decision attribute values enables us to analyze data by conjectures.

2.2 Rough Sets under Imprecise Decision Tables

Considering the imprecise nature of decision attribute values of imprecise deci-
sion tables, we define generalized decision values δP (uj) and aggregated decision
values F̂P (uj) under a given condition attribute set P ⊆ C as follows [4]:

δP (uj) = {F (u) | u ∈ U, ci(u) = ci(uj), ∀ci ∈ P}, (1)

F̂P (uj) =
{⋂

δP (uj), if
⋂
δP (uj) �= ∅,⋃

δP (uj), otherwise. (2)

δP (uj) collects imprecise decision values F (u) of all objects u taking same con-
dition attribute values with respect to P ⊆ C as uj takes. Since we assume the
true decision attribute value of uj is in F (uj) and the same decision attribute
value would be assigned for all objects which share same condition attribute
values, we may obtain a smaller possible range for decision attribute value of uj
by intersecting F (u)’s of all such objects u. However, if the given data is not
totally consistent, the intersection can be empty. If the intersection is empty,
some of F (u) in the given table would be wrong or some condition attribute
would be missing. In this case, the union would show the possible range. Based
on these ideas, F̂P (uj) is defined. Taking union when the intersection is empty
set is similar to Dubois and Prade’s combination rule [1] in evidence theory.

In [4], lower and upper object sets are defined under imprecise decision tables.
However, we use the following underlying object sets of rule induction:

ConfP =
{
u ∈ U |

⋂
δP (u) = ∅

}
, (3)

P∗(X) = {u ∈ U | F̂P (u) ⊆ X}, (4)
CSP (X) = {u ∈ U − ConfP | F̂P (u) ⊇ X}, (5)
CRP (X) = {u ∈ ConfP | F̂P (u) ∩X = ∅}, (6)

where P ⊆ C and X ⊆ Vd. ConfP is a set of conflicting objects. P∗(X) is a
lower object set of X . If u ∈ P∗(X), the decision attribute value of u is in X
with no conflict with given data. In other words, if u ∈ P∗(X), the decision
attribute value of u is surely in X as far as the given decision table is correct.
CSP (X) is the set of objects which consistently support the possible realizations
of their decision attribute values in X . In other words, the possible realization of
decision attribute value x ∈ X for u ∈ CSP (X) is consistently confirmed by the
given decision table. CRP (X) is the set of objects which consistently reject the
possible realizations of their decision attribute values in X . In other words, no
object in the given decision table supports the realization of decision attribute
value x ∈ X for u ∈ CRP (X).
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Table 2. A table of failure conjectures by users

conjecture (case,user) f1 f2 f3 f4 f5 cause F̂C

u1 (P1,E1) yes yes no no yes {B, C} {B, C}
u2 (P1,E2) yes yes no no yes {A, B, C} {B, C}
u3 (P2,E1) yes yes no yes yes {A, B} {A, B}
u4 (P3,E2) yes yes yes yes yes {A} {A, C}
u5 (P4,E1) yes yes no no no {C} {C}
u6 (P3,E1) yes yes yes yes yes {C} {A, C}
u7 (P5,E2) no yes yes yes yes {A, C} {A, C}
u8 (P6,E2) yes no no yes no {B} {B}

Example 1. Consider Table 2 showing conjectures u1, u2, . . . , u8 by two users
E1 and E2 about failure causes of 6 cases P1, P2, . . . , P6 in a complex system
from 5 functions f1, f2, . . . , f5. We assume that users E1 and E2 have difference
experiences so that their conjectures can be different even for the same case.
There are three possible causes A, B and C. In this table, U = {ui | i =
1, 2, . . . , 8}, C = {f1, f2, f3, f4, f5}, Va = {yes, no} for a = f1, . . . , f5 and Vcause =
{A,B,C}. Then V = {yes, no,A,B,C}. The second column of Table 2 shows a
pair (Pi,Ei) of case Pi and user Ei. The pair shows that the failure cause of Pi
is conjectured by Ei and the result is shown in the column of “cause”. For each
conjecture ui, F̂C(ui) is shown in the rightmost column of Table 2. The set of
conflicting objects, some of lower object sets, consistently supporting object sets
and consistently rejecting object sets are obtained as

ConfC = {u4, u6}, C∗({B,C}) = {u1, u2, u5, u8}, CSC({B,C}) = {u1, u2},
CRC({B,C})=∅, C∗({A,C})={u4, u5, u6, u7}, CSC({A,C})={u4, u6, u7},
CRC({A,C}) = {u8}, C∗({B}) = {u8}, CSC({B}) = {u1, u2, u3, u8}
CRC({B}) = {u4, u6}.

Before discussion about rule induction, we note that we have
⋂
δP (X) ⊆⋂

δQ(X) but
⋃
δP (X) ⊇

⋃
δQ(X) for P ⊆ Q ⊆ C. Therefore, P∗(X) ⊆ Q∗(X)

does not always hold for P ⊆ Q ⊆ C. On the contrary, we always have ConfP ⊇
ConfQ and δP (u) ⊆ δQ(u) for P ⊆ Q ⊆ C and u ∈ U . Moreover we have the
following properties:

CSP (X) =
⋂
x∈X

CSP ({x}), CRP (X) =
⋃
x∈X

CRP ({x}). (7)

The properties of P∗(X) are shown in Inuiguchi and Li [4].

3 Rule Induction from Imprecise Decision Tables

3.1 Rule Induction Schemes

Given an imprecise decision table, we induce minimal rules. F̂C(ui) for ui �∈ConfC
is regarded as the certain range of decision attribute values which has no conflict
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in the given imprecise decision table. On the contrary, F̂C(ui) for ui ∈ ConfC
is regarded as the possible range of decision attribute values which is supported
by at least one object in the given imprecise decision table. Let Cond(u) be a
condition for an object. Corresponding to the two ranges described above, we
consider the following rule induction schemes:

(a) Inducing certain range rules: for ui ∈ C∗(F̂C(ui)) such that ui ∈ U−ConfC ,
we induce minimal rules, “if Cond(u) is satisfied then the certain range of
d(u) is F̂C(ui)”. If the premise of this rule is satisfied for an arbitrary object
u, we may infer that any value in F̂C(ui) is highly conceivable for d(u).

(b) Inducing possible range rules: for ui ∈ C∗(F̂C(ui)) such that ui ∈ ConfC , we
induce minimal rules, “if Cond(u) is satisfied then the possible range of d(u)
is F̂C(ui)”. If the premise of this rule is satisfied for an arbitrary object u, we
may infer that any value in F̂C(ui) is possible for d(u).

Moreover, from CSC({x}) and CRC({x}) for x ∈ Vd, we consider the following
rule induction schemes, respectively:

(c) Inducing consistently supported value rules: for x ∈ Vd, we induce minimal
rules, “if Cond(u) is satisfied then d(u) can take x”. If the premise of this
rule is satisfied for an arbitrary object u, we may infer that d(u) can be x.

(d) Inducing consistently rejected value rules: for x ∈ Vd, we induce minimal
rules, “if Cond(u) is satisfied then d(u) will not take x”. If the premise of
this rule is satisfied for an arbitrary object u, we may infer that d(u) will
not be x.

Schemes (a) and (b) are similar to schemes (c) and (d), respectively. However,
schemes (c) and (d) are more active. For example, let F̂C(ui) = {x1, x2, x3} for
ui ∈ C∗(F̂C(ui)) such that u �∈ConfC . In scheme (a), the minimal condition for
x1, x2 and x3 to be simultaneously conceivable is selected as the premises. On
the contrary, in scheme (c), the minimal condition for one of x1, x2 and x3 to
be conceivable is selected as the premises. Similar explanation of the difference
can be applied to schemes (b) and (d).

3.2 Decision Matrix Methods

In the classical rough set approach, all rules are induced by the decision matrix
method [7]. In the method, all rules are obtained as prime implicants of a Boolean
function obtained from a decision matrix.

In this subsection, we extend the decision matrix method [7] to the case of
imprecise decision tables. To this end, we investigate a decision matrix associated
with each rule induction scheme.

First let us discuss a decision matrix for scheme (a), i.e., certain range rules.
Let ui ∈ C∗(F̂C(ui)) such that ui ∈ U −ConfC . For each uj ∈ U , we define the
following component:

Dcer
ij =

{
{(ck, ck(ui)) | ck(ui) �= ck(uj)}, if uj ∈ ConfC or F̂C(uj)�=F̂C(ui),

∅, otherwise.
(8)
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Regarding each element (ck, ck(ui)) of Dcer
ij as a statement “ck(u) = ck(ui)”,

all minimal conditions for F̂C(ui) to be the certain range are obtained as prime
implicants of the following Boolean function:

f cer
i =

∧
uj∈U

∨
Dcer
ij , (9)

where if Dcer
ij is an empty set, it is regarded as a tautology. Then all minimal

rules inferring the certain range as F̂C(ui) are obtained by putting all prime
implicants in the premises of rules.

Repeating this rule induction procedure for each ui ∈ C∗(F̂C(ui)) such that
ui ∈ U − ConfC , we obtain a body of rules. If an unseen object u satisfies
premises of several rules with different certain ranges, F̂C(ui), i = 1, 2, . . . , q,
then the values in

⋂
i=1,2,...,q F̂C(ui) are intuitively most conceivable if they exist.

Otherwise, certain range cannot be estimated. The values in
⋃
i=1,2,...,q F̂C(ui)

are possible.
Now let us discuss a decision matrix for scheme (b), i.e., possible range rules.

Let ui ∈ C∗(F̂C(ui)) such that ui ∈ ConfC . For each uj ∈ U , we define the
following component:

Dpos
ij =

⎧⎨⎩
{(ck, ck(ui)) | ck(ui) �= ck(uj)}, if uj ∈ U − ConfC , FC(uj)�⊆F̂C(ui),
{(ck, ck(ui)) | ck(ui) �= ck(uj)}, if uj ∈ ConfC , F̂C(uj)�=F̂C(ui),

∅, otherwise.
(10)

Regarding each element (ck, ck(ui)) of Dpos
ij as a statement “ck(u) = ck(ui)”,

all minimal conditions for F̂C(ui) to be the possible range are obtained as prime
implicants of the following Boolean function:

fpos
i =

∧
uj∈U

∨
Dpos
ij , (11)

where if Dpos
ij is an empty set, it is regarded as a tautology. Then all minimal

rules inferring the possible range as F̂C(ui) are obtained by putting all prime
implicants in the premises of rules.

Repeating this rule induction procedure for each ui ∈ C∗(F̂C(ui)) such that
u ∈ ConfC , we obtain a body of rules. If an unseen object u satisfies premises
of several rules with different possible ranges, F̂C(ui), i = 1, 2, . . . , q, then the
estimated possible range of d(u) becomes the union,

⋃
i=1,2,...,q F̂C(ui).

Let us discuss a decision matrix for scheme (c), i.e., consistently supported
value rules. Let x ∈ Vd. For each ui ∈ CSC({x}) and for each uj ∈ U−CSC({x}),
we define the following (i, j)-component of decision matrix Dcs(x):

Dcs
ij (x) =

{
{(ck, ck(ui)) | ck(ui) �= ck(uj)}, if uj ∈ ConfC or x�∈F̂C(uj),

∅, otherwise.
(12)
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Regarding each element (ck, ck(ui)) of Dcs
ij (x) as a statement “ck(u) = ck(ui)”,

all minimal conditions for x ∈ Vd to be a conceivable value are obtained as prime
implicants of the following Boolean function:

f cs(x) =
∨

ui∈CSC({x})

∧
uj∈U

∨
Dcs
ij (x), (13)

where if Dcs
ij (x) is an empty set, it is regarded as a tautology. Then all mini-

mal rules inferring x as a conceivable value are obtained by putting all prime
implicants in the premises of rules.

Finally, let us discuss a decision matrix for scheme (d), i.e., consistently re-
jected value rules. Let x ∈ Vd. For each ui ∈ CRC({x}) and for each uj ∈
U − CRC({x}), we define the following (i, j)-component of decision matrix
Dcr(x):

Dcr
ij (x) =

{
{(ck, ck(ui)) | ck(ui) �= ck(uj)}, if x ∈ F̂C(uj),

∅, otherwise.
(14)

Regarding each element (ck, ck(ui)) of Dcr
ij (x) as a statement “ck(u) = ck(ui)”,

all minimal conditions for x ∈ Vd to be a rejected value are obtained as prime
implicants of the following Boolean function:

f cr(x) =
∨

ui∈CRC({x})

∧
uj∈U

∨
Dcr
ij (x), (15)

where if Dcr
ij (x) is an empty set, it is regarded as a tautology. Then all minimal

rules inferring x as a rejected value are obtained by putting all prime implicants
in the premises of rules.

Example 2. Let us apply the proposed rule induction schemes to Table 2. From
u1, let us induce certain range rules. Dcer

1j is obtained as in Table 3. Then the
following certain range rule is obtained:

if f4(u) = no and f5(u) = yes then the certain range is {B,C}.

From u4, let us induce possible range rules. Dpos
44 , Dpos

46 and Dpos
47 are empty and

then omitted. The other Dpos
4j , j = 1, 2, 3, 5, 8 are obtained as in Table 4. Then

the following possible range rule is obtained:

if f3(u) = yes then the possible range is {A,C}.

Moreover, let us induce the consistently supported rules with respect to B.
Dcs(B) is obtained as in Table 5. Then the following consistently supported
rules with respect to B are obtained:

if f3(u) = no and f5(u) = yes then d(u) can be B,
if f4(u) = no and f5(u) = yes then d(u) can be B,
if f3(u) = no and f4(u) = yes then d(u) can be B,
if f2(u) = no then d(u) can be B,
if f4(u) = yes and f5(u) = no then d(u) can be B.
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Table 3. Dcer
1j

u1, u2 u3 u4, u6 u5 u7 u8

u1 ∅ {(f4,no)} {(f3,no),(f4,no)} {(f5,yes)} {(f1,yes),(f3,no), {(f2,yes),(f4,no)
(f4,no)} (f5,yes)}

Table 4. Dpos
4j

u1, u2 u3 u5 u8

u4 {(f3,yes),(f4,yes)} {(f3,yes)} {(f3,yes),(f4,yes),(f5,yes)} {(f2,yes),(f3,yes),(f5,yes)}

Table 5. Dcs(B)

u1, u2, u3, u8 u4, u6 u5 u7

u1, u2 {(f3,no),(f4,no)} {(f5,yes)} {(f3,no),(f4,no)} {(f1,yes),(f3,no),(f4,no)}
u3 {(f3,no)} {(f4,yes),(f5,yes)} {(f3,no)} {(f1,yes),(f3,no)}
u8 {(f2,no),(f3,no), {(f2,no),(f4,yes)} {(f2,no),(f3,no), {(f1,yes),(f2,no),

(f5,no)} (f5,no)} (f3,no),(f5,no)}

Finally, let us induce the consistently rejected rules with respect to B. Dcr(B)
is omitted because its non-empty components are shown in (u1, u2), u3 and u8
columns of Table 4. The following consistently rejected rule with respect to B is
obtained:

if f3(u) = yes then d(u) will not take B.

4 Concluding Remarks

We have investigated rule induction from imprecise decision tables. Four in-
duction schemes have been proposed. It is shown that rules in those induction
schemes can be obtained by decision matrix methods. The applications to real
world data as well as the other conceivable approaches to imprecise decision
tables would be studied in near future.
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Abstract. The aim of this study is to introduce a fuzzy model to process struc-
tured data. A structured organization of information is typically required by sym-
bolic processing. Most connectionist models assume that data are organized in a
form of relatively simple structures such as vectors or sequences. In this work, we
propose a connectionist model that can directly process labeled trees. The model
is based on a new category of logic connectives and logic neurons that use the
concept of uninorms. Uninorms are a generalization of t-norms and t-conorms
used for aggregating fuzzy sets. Using a back-propagation algorithm we optimize
the parameters of the model (relations and membership functions). The learning
issues are presented and some experimental results obtained for synthetic realis-
tic data, are reported.

Keywords: Graphical Models, Trees, Fuzzy Logic Connectives, t-norms
(t-conorms), Uninorms, Structured Data.

1 Introduction

Recently, structured data is becoming more and more important in data mining and
data analysis. Structured domains are characterized by complex patterns which are usu-
ally represented as lists, trees and graphs of variable sizes and complexity. Data can be
naturally represented by tree or graph structures in several application areas, including
proteomics and molecular biology, image analysis, scene description, software engi-
neering, natural language processing, XML document retrieval and others.

While neural networks are able to classify static information or temporal sequences,
the current state of the art does not allow the efficient classification of structures of
different size. The standard way to approach the classification of structured data by
using a neural network is to encode the tree or graph in a fixed-size vector. In detail, it is
encoded in a vector which is fed to a feedforward neural network for classification. The
encoding process is usually defined a priori and does not depend on the classification
task. The a priori definition of the encoding process has two main drawbacks

1. the relevance of different features of the graphs may change dramatically for dif-
ferent learning tasks.

2. each graph must get a different representation; this may result in vectorial repre-
sentaions which are very difficult to classify.

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 77–84, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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To overcome the above difficulties, in [13] the authors propose to adapt the encod-
ing process through an additional neural network which is trained to learn the best
way to encode the graphs for the given classification task. To achieve this aim, they
introduce a generalization of a recursive neuron. Moreover in [7] and [10] a Recursive
Neural Network (RNN) for acyclic graphs was proposed. The RNN model can only pro-
cess Directed Positional Acyclic Graphs (DPAGs). More recently, an extended model
was proposed that can cope with non-positional acyclic graphs with labeled edges (i.e.
DAGs) [2].

To solve the classification of labeled trees and handling encertainty, we propose a
model based on fuzzy information. A fuzzy connectionist structure is developed from
the input tree topology, by extending the capabilities of the RNN model. It is already
demostrated [8] that it is possible to encode a nondeterministic fuzzy tree automata into
a RNN. This encoding has been studied from a theoretical point of view, proving its
stability. This theoretical study led to the model design reported in the present paper.
Specifically, In the structure we propose the nodes are connected by using a relation
and the composition of information is obtained by using an uninorm-based connective.

The paper is organized as follows. In Section 2 the notation about the graph adopted
in the paper is introduced. In Section 3, we describe the uninorm-based generaliza-
tion of norms and in Section 4 we introduce the Fuzzy Recursive Neural Model. In
Section 5, we present several experimental results.

2 Graph and Tree Notation

A labeled graph (or graph) G is a quadruple (N, E, λ, ε), where N is the set of nodes
(or vertices), and E is the set of edges between nodes, i.e. E ⊆ {(u, v)|u, v ∈ N}.
Nodes and edges constitute the skeleton of the graph. The last two items, that associate
vectors of real numbers of dimension respectively �lN and �lE to each node and edge,
are respectively a node-labeling function λ : N → �lN and an edge-labeling function
ε : E → �lE . Node labels are represented by ln and edge labels by luv. If the graph is
directed, an edge (u, v) is an ordered pair of nodes, where u is the father and v its child.
If the graph is undirected, the ordering between u and v in (u, v) is not defined, i.e.
(u, v) = (v, u). A graph is called acyclic if there is no path, i.e. a sequence of connected
edges, that starts and ends at the same node. Combining some properties it is possible to
specify various graph categories: Directed Positional Acyclic Graphs (DPAGs), Directed
Acyclic Graphs (DAGs) and other graph-oriented structures. A tree T could be defined
as an acyclic connected graph, represented by a quadruple (N, E, λ, ε), where each node
has a set of zero or more children nodes and at most one parent node.

3 Uninorms

Triangular norms (t-norms) and the corresponding t-conorms play a fundamental role
in several branches of mathematics [11], e.g., in probabilistic metric spaces, the theory
of generalized measures, game theory, and fuzzy logic. The semantics of logic operators
(logic connectives) in fuzzy sets is enormously rich. Some of the most recent conceptual
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a) b)

Fig. 1. Uninorm based structures : a) uninorm with neutral element e; b) unineuron

developments along this line involve uninorms [12,6,9,14], nullnorms [1] and ordinal
sums [15] of t-norms, just to name a few of them.

We start our discussion about uninorms by recalling that both a neutral element 1 of a
t-norm and the neutral element 0 of a t-conorm are boundary points of the unit interval.
A uninorm is a binary operation u : [0, 1]2 → [0, 1] which satisfies the properties of
Commutativity, Monotonicity, Associativity and it has a neutral element e ∈ [0, 1] (see
Figure 1a). Noticeably, we allow the values of the identity element e to vary in-between
0 and 1. As a result of this, we can implement switching between pure AND and OR
properties of the logic operators occurring in this construct. In this study we confine
ourselves to the following family of constructs that seem to be highly interpretative and
thus intuitively appealing:

Let t be a t-norm, s be a t-conorm and e ∈ [0, 1]. In the spirit of the construction of
Ordinal Sums the following operation ut,s,e,α : [0, 1]2 → [0, 1] (α = min or α = max)
make [0, 1] into fully ordered semigroups with neutral element e:

ut,s,e,α(x, y) =

⎧⎨⎩
e · t(xe ,

y
e ) if (x, y) ∈ [0, e]2

e + (1 − e) · s(x−e1−e ,
y−e
1−e ) if (x, y) ∈]e, 1]2

α(x, y) otherwise
(1)

Obviously, ut,s,e,min is a conjunctive, and ut,s,e,max is a disjunctive uninorm.
Interestingly, we observe that the two intermediate regions deliver some flexibility

to the specific realization of the uninorm [12].

3.1 Uninorm-Based Logic Neuron

The previous studies carried out in the realm of logic-based neurocomputing, we can
distinguish between two general categories of neurons that are OR and AND neurons.
We already proposed in literature extensions of these operators [5,4,12].

Let x be a vector in the unit hypercube, x ∈ [0, 1]n and y denote an element in
[0, 1]. Formally speaking, the underlying logic processing is governed by a composition
between the individual inputs and the corresponding connections (weights) w ∈ [0, 1]n.
In detail, L1 : (xi, wi) → [0, 1] followed by some overall logic aggregation L2 giving
rise to the output y, that is

y = L2[L1(x1, w1), L1(x2, w2), . . . , L1(xn, wn)] (2)
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a b

Fig. 2. Node connection: a) connection between nodes; b) fuzzyfication of the nodes

In the OR neuron, the semantics of L1 is concerned with any realization of the AND
operator (t-norm),L1 = AND. L2 concerns the realization of the OR operator (s-norm),
L2 = OR. On the contrary, in the AND neuron we have these two operations reversed,
that is L1 = OR and L2 = AND.

By using the uninorms, that admit more flexibility into the overall aggregation, we
lead to the expression (see Figure 1b)

y = u[u1(x1, w1, e1, α1), u2(x2, w2, e2, α2), . . . , un(xn, wn, en, αn), e] (3)

where ui = uti,si,ei,αi is the i-th uninorm with parameters ti, si, ei and αi to be esti-
mated by the optimization process. Moreover, u = ut,s,e,α is the uninorm that permits
to obtain the overall composition [5].

4 Uninorm Based Fuzzy Network

In this Section we introduce the proposed Uninorm Based Fuzzy Network (UFN) model.
Our framework for tree processing must implement a function ϕ that computes an out-
put ϕ(T) for each tree T. Each node, that can be considered as a state, is described
by M real attributes xn where the dimension M is a predefined parameter. The state
xn of the n-th node is fuzzy: K membership functions are used to describe the node
information. We denote with μ(xn) this fuzzyfied state. In Figure 2a and 2b we show
a possible connection between the nodes xj , xi and xk with the corresponding fuzzy
sets obtained from the fuzzyfication. The M attributes of the node are also fuzzified.
As show in Figure 3 if we consider the n-th state then the M attributes l1n . . . lMn are
fuzzified obtaining the K fuzzy sets μ1(lin) . . .μK(lin) for each attribute i. Now we
stress that the membership functions μ(ln) = [μ1(ln) . . .μK(ln)] of the n-th node can
be generated by uninorm-based neurons (as shown in Figure 3a). For this reason the
composition of the k-th fuzzy set is

μk(ln) =
M∨
i=1

(
Ratt(μk(lin))

k
i tμ

k(lin)
)

(4)

where Ratt(μk(lin))
k
i is the weight (relation) between the k-th fuzzy set of the i-th

attribute and the k-th membership function of μ(ln), t is a t-norm and
∨

is an s-
norm depending from the uni-neuron definition. To compose the fuzzy state μ(xn)
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a) b)

Fig. 3. Composition of the fuzzy sets for the node labels: a) attribute composition; b) node com-
position

we define a fuzzy relation between the k-th membership μk(ln) and the j-th fuzzy
set μj(xn). We denote this relation as Rlabel(μ(ln))jk. To simplify our derivation, in
the following we consider k = j (diagonal relation) and we denote the relation as
Rlabel(μ(ln))j .

In the same way we can define the membership functions of the edge labels. If we
consider lni to be the label between the states n and i, respectively, then we denote as
μk(lni) the membership function of the k-th fuzzy set. In this case the weights of the
relation become Redge(μ(lni))

j
k (also in this case for k = j, Redge(μ(lni))j).

Further relations are defined between the states. We denote as μk(xi) the k-th fuzzy
set of the i-th state and as Rstate(μ(xni))

j
k (for k = j, Rstate(μ(xni))j ) the rela-

tion between the k-th fuzzy set of the i-th state and the j-th fuzzy set of the n-th
state.

Finally we obtain that the j-th fuzzy set of the n-th state can be estimate as the union
of these relations
μj(xn) =⎛⎝|ch[n]|∨

i=1

(
Rstate(μ(xni))jtμj(xi)

)⎞⎠ ∨

⎛⎝|ch[n]|∨
i=1

(
Redge(μ(lni))jtμj(lni)

)⎞⎠∨ (5)

(
K∨
i=1

(
Rlabel(μ(ln))jtμj(ln)

))
. (6)

To classify the graphs a defuzzyfication stage is added at the root state (or super-source
x0). The defuzzyfication is obtained with a weighted sum of the memberships of the
super-source

oi =
K∑
k=1

wkμk(x0)) (7)

where μk(x0) is the k-th membership of the super-source. The weights wk are deter-
mined during the learning phase. The super-source is the only supervised node, i.e. with
target ti is assigned to it.
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4.1 Optimization Process

In the learning process, the parameters to be estimated are the membership functions of
both labels and edges, and the relations. To estimate those parameters we use a back-
propagation algorithm. The output oi can be calculated starting from the leaves and
proceedings towards up to the super-source node, whereas the error is back-propagated
from the root to the leaves of the UFN model. In our experiments, the optimization is
obtained by minimizing a sum-of-squares error between the output of the model oi(T)
and the target of the graphs ti

E(T) =
1
2

N∑
i=1

(oi(T) − ti)2 (8)

where n is the number of patterns in the training set. The error is successively back-
propagated to each node. In the following, we show how we can obtain the gradient of
this error w.r.t. the parameters to learn.

The partial derivative of the global error with respect to the weights wk of the de-
fuzzyfication is

∂E(T)
∂wk

=
∂E(T)
∂μk(x0)

∂μk(x0)
∂wk

= (oi − ti)μk(x0) (9)

To update the other parameters we need to calculate the gradient of the error w.r.t. this
parameters and successively back-propagate the error from the top to the leaves. For
example, let us consider the computation of the gradient at node 1 that is a child of the
root. We consider the weight Rlabel(μ(l1))j between the fuzzy set μj(l1) and the fuzzy
set μj(x1). In this case the derivative is

∂E(T)
∂Rlabel(μ(l1))j

=
∂E(T)
∂μ(x1)j

∂μ(l1)j

∂Rlabel(μ(l1))j
= (oi − ti)wj

∂μ(x1)j

∂Rlabel(μ(l1))j
(10)

The second derivative in this expression depends on the definition of the uni-norms.
Membership functions are Gaussian in our case. To learn the parameters of this mem-
berships we apply the same back-propragation approach. If we consider the following
j-th Gaussian membership of the i-th attribute

μj(li1) = exp

(
(li1 − mj

i )
2

(σji )2

)
(11)

where mj
i and σji are the mean and standard deviation, respectively, then the partial

derivatives becomes

∂E(T)
∂mj

i

== (oi − ti)wjRlabel(μ(l1))j
li1 − mj

i

(σji )2
μj(li1) (12)

and
∂E(T)
∂σji

== (oi − ti)wjRlabel(μ(l1))j
(li1 − mj

i )
2

(σji )3
μj(li1) (13)
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a) b) c) d)

Fig. 4. Example of graphs: a) 4 nodes graph; b) 4 nodes graph; c) binary; d) ternary

5 Experimental Results

In this Section we investigate the performance of the proposed model to classify labeled
trees. In a first experiment we analyze the capability of the model to discriminate two
classes of trees. Examples of these trees are shown in Figures 4a and 4b, respectively.
For both the graphs each node contains three attributes that identify a bi-dimensional
position in the range [0, 10] and a random attribute in the [0, 1] interval. The objective
of this experiment is to test the capability of the model to discriminate the trees using
both label and positional information.

We created a data set of 500 trees (75% for the training and 25% for the test). The
fuzzyfication is obtained by adopting 3 fuzzy Gaussian memberships and the composition
of the uninorms is obtained by adopting the algebraic product as t-norm and the algebraic
sum as t-conorm. We tested the model varying the neutral element e. We remark that the
optimal performance were obtained varying e in the range [0, 0.6], leading to 100% of
perfect classification for training and test sets. For a neutral element higher than 0.6, in
fact, the model is instable and a low rate of classification is achieved (near 70%).

In the second experiment we consider the same tree topology with the addition of
edge labels. The UFN structure and parameters were set as in the previous experiment.
The best performance were obtained varying e in the range [0, 0.5], leading to 100%
of perfect classification on training and test sets. This confirm also in this case that the
uninorm composition must be OR-dominant.

In the third experiment we consider other two classes of trees. In this case the aim
was to discriminate between binary and ternary trees. The parameters of the model are
as in the previous experiments. In Figure 4c-d we show the topology of this trees. Each
node contains 3 attributes that are randomly chosen in the interval [0, 1]. We generate
500 trees where the attributes are fixed but we randomly delete a node. With this experi-
ment we wish to prove the capability of UFN to learn typologies of trees from corrupted
patterns. Also in this case the best performance is obtained for OR-ness connections.
We note, indeed, that varying e in the range [0, 0.5] the performance is close to 100%
of perfect classification on both training and test set. Moreover, also varying the at-
tributes of the single nodes by adding a Gaussian random noise in the [0, 0.1] range, the
performance are comparable with that previous obtained.

6 Conclusions

In this work, a fuzzy recursive model based on uninorms to process structured data
with a no flat representation has been reported. The model is based on a new category
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of logic connectives and logic neurons based on the concept of uninorms. Uninorms are
a generalization of t-norms and t-conorms used for composing fuzzy sets. To optimize
the parameters of the model we use an encoding network and a back-propagation al-
gorithm. The learning issues are reported to classify classes of labeled trees. Reported
experiments show the capability of the model to approach structured data as in the case
of tRNA structures, Region Adjacent Graph (RAG), HTML or XML page classification,
and so on. Ongoing work is the generalization of the model for more complex struc-
tures described by labeled graphs and the validation of the model from a theoretical and
practical point of view.
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Abstract. The contribution deals with the probability theory on Intui-
tionistic Fuzzy Sets (IF -sets, [1]). It can be considered as a generalization
of the classical probability theory on σ-algebras of sets. From the large
field of operations with IF -sets we use Gödel connectives [5]. We focus
on the conditional expectation: the aim is to formulate the definition of
the conditional expectation of an IF -observable and prove the version
of martingale convergence theorem.

Keywords: IF -event, conditional expectation, martingale convergence
theorem.

1 Introduction

The classical probability theory has three basic terms: random variable, proba-
bility measure and expectation. The probability theory on IF -sets is a genera-
lization of the probability theory on fuzzy sets. But in fuzzy probability theory
there is no concept corresponding to random variables in Kolmogorov probabi-
lity theory or to observables in the quantum structure probability theory. In IF -
probability theory we have the corresponding notions to the probability (state),
random variable (observable) and expectation in Kolmogorov probability theory.
We follow the results in [3,6,7,10] and build up the conditional expectation.

Like in classical probability space we work with random event, also here we
work with an IF -event. Let us consider a measurable space (Ω,S), i.e. a non-
empty set Ω together with the σ-algebra S of its subsets. An IF -event is a couple
of S-measurable functions A = (μA, νA) defined on a nonempty set Ω and with
values in the unit interval, such that μA(x) + νA(x) ≤ 1 holds for any x ∈ Ω.
(Recall that a function f is S-measurable if f−1((−∞, x)) ∈ S for all x ∈ R.)

Denote the family of all IF -events by

F ={A=(μA, νA);μA, νA : Ω → [0, 1];μA, νA are S-measurable; μA+νA ≤ 1Ω}.

The ordering on F is defined by A ≤ B ⇐⇒ μA ≤ μB, νA ≥ νB, the largest
element of F is the couple (1Ω, 0Ω) and the smallest element is (0Ω, 1Ω). Symbol
1Ω denotes the function f(x) ≡ 1 on Ω (similarly for 0Ω). By the notation
An ↗ A we mean μAn ↗ μA, νAn ↘ νA (similarly for An ↘ A).

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 85–92, 2009.
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Gödel operations [5] are for any A,B ∈ F defined by

A ∨B = (μA ∨ μB, νA ∧ νB) ,

A ∧B = (μA ∧ μB, νA ∨ νB) .

Definition 1. M-state is a mapping m : F → [0, 1] which satisfies

1. m((1Ω, 0Ω)) = 1, m((0Ω, 1Ω)) = 0,
2. m(A) + m(B) = m(A ∨B) + m(A ∧B) for any A,B ∈ F ,
3. if An ↗ A, Bn ↘ B then m(An) ↗ m(A), m(Bn) ↘ m(B).

Definition 2. M-observable is a mapping x : B(R) → F satisfying conditions

1. x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω),
2. x(C ∪D) = x(C) ∨ x(D), x(C ∩D) = x(C) ∧ x(D) for any C,D ∈ B(R),
3. if C,Cn, D,Dn ∈ B(R) (n = 1, 2, . . . ), Cn ↗ C, Dn ↘ D

then x(Cn) ↗ x(C), x(Dn) ↘ x(D).

The composite mapping m ◦ x denoted by mx : B(R) → [0, 1] is a probability
measure (see [8, Proposition 1.4]).

To be able to define the indefinite integral we need to define the complement
(denoted by A∗ = (μA∗ , νA∗)) to an IF -event A = (μA, νA) ∈ F . It is natural
to require the following equalities to be satisfied: A ∧ A∗ = (0Ω, 1Ω), A ∨ A∗ =
(1Ω, 0Ω). But that is possible only if we consider the crisp IF -events, i.e. the
functions μA, νA are identical to the characteristic functions μA = χA, νA = χĀ.
In this case A∗ = (1 − χA, χA) will be the complement to A = (χA, 1 − χA).

We will denote by A the family of all crisp IF -events A = (χA, 1−χA) in F .

2 Conditional Expectation

We introduce the definition and some properties of the indefinite integral first.
The motivation comes from the classical probability theory:

∫
C

f dμ =
∫
X

fχC dμ.

Definition 3. Let A ∈ A and x : B(R) → F be an M-observable. We define
xA : B(R) → F for any C ∈ B(R) by

xA(C) =
{
A ∧ x(C), if 0 /∈ C;
(A ∧ x(C)) ∨A∗, if 0 ∈ C.

xA is an M-observable (see Lemma 2 in Appendix).

Proposition 1. If x is an integrable M-observable (i.e.
∫
R

t dmx(t) exists) then

xA is an integrable M-observable too.

Proof. Let x be an integrable M-observable. We will prove the existence of inte-
grals ∫

(−∞,0)

t dmxA(t),
∫

[0,∞)

t dmxA(t) .
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We define the mapping λ : B(R) → R by λ(C) = mxA(C \ {0}) = m(A ∧
x(C \ {0})). Then λ is a measure and

λ(C) = m(A ∧ x(C \ {0})) ≤ m(A ∧ x(C)) ≤ m(x(C)) = mx(C) .

Then

0 ≤
∫

[0,∞)

t dmxA(t) =
∫
{0}

t dmxA(t) +
∫

(0,∞)

t dmxA(t) =

=
∫

(0,∞)

t dλ(t) ≤
∫

(0,∞)

t dmx(t) < ∞ .

For t < 0 is clear that

0 >

∫
(−∞,0)

t dmxA(t) =
∫

(−∞,0)

t dλ(t) ≥
∫

(−∞,0)

t dmx(t) > −∞ .

��

Definition 4. Let x : B(R) → F be an integrable M-observable, A ∈ A. The
indefinite integral ν : A → R is defined by

ν(A) = E(xA) =
∫
R

t dmxA(t) .

Proposition 2. Let x be an integrable M-observable and y : B(R) → A be an M-
observable. Define the mapping κ : B(R) → R by the formula κ(C) = ν(y(C)) =
E(xy(C)). Then κ is a finite generalized measure.

Proof. First we prove σ-additivity. Let C =
∞⋃
i=1

Ci where Ci ∈ B(R), Ci∩Cj = ∅

for i �= j. Then y(C) =
∞∨
i=1

y(Ci) and by Lemma 3 (see Appendix) we get

κ(C) = ν(y(C)) = ν

( ∞∨
i=1

y(Ci)

)
=

∞∑
i=1

ν(y(Ci)) =
∞∑
i=1

κ(Ci) .

Since λ(C) = m(y(C) ∧ x(C \ {0})) ≤ mx(C), then

|κ(C)| =

∣∣∣∣∣∣
∫
R

t dλ(t)

∣∣∣∣∣∣ ≤
∫
R

|t| dλ(t) ≤
∫
R

|t| dmx(t) < ∞. ��

Now we are able to define the conditional expectation of an integrable M-
observable.
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Proposition 3. Let x, y be M-observables where x is an integrable M-observable
and y(C) ∈ A for all C ∈ B(R). Then there exists a Borel function g : R → R
such that

ν(y(C)) =
∫
C

g dmy (1)

for any C ∈ B(R).

Proof. Consider measures κ = ν ◦ y, my in probability space (R,B(R)). Then

κ(C) = ν(y(C)) =
∫
R

t dmxy(C)(t) .

We prove κ ( my. Assume my(C) = m(y(C)) = 0 and D ∈ B(R) be arbitrary.
We have

mxy(C)(D) =
{
m(y(C) ∧ x(D)), 0 /∈ D;
m([y(C) ∧ x(D)] ∨ y∗(C)), 0 ∈ D.

Evidently 0 ≤ m(xy(C)(D)) = m(y(C) ∧ x(D)) ≤ m(y(C)) = 0 and also

m(xy(C)(D)) = m([y(C) ∧ x(D)] ∨ y∗(C)) = m([y(C) ∨ y∗(C)] ∧ [x(D) ∨ y∗(C)]) =

= m((1Ω, 0Ω) ∧ [y∗(C) ∨ x(D)]) = m(y∗(C) ∨ x(D)) ≥ m(y∗(C)) = 1 .

But m is an M-state, i.e. the values are from [0, 1]. Therefore m([y(C)∧x(D)]∨
y∗(C)) = 1. We can see that mxy(C) is a Dirac measure δ0:

mxy(C)(D) = δ0(D) =
{

0, 0 /∈ D;
1, 0 ∈ D.

Therefore

κ(C) =
∫
R

t dmxy(C)(t) =
∫

R\{0}

t dδ0(t) +
∫
{0}

t dδ0(t) = 0 + 0δ0({0}) = 0 .

The existence of an integrable function g : R → R (measurable on B(R)) satis-
fying (1) for any C ∈ B(R) follows from the Radon-Nikodym theorem. ��

Definition 5. Let x, y be M-observables where x is an integrable M-observable
and y(C) ∈ A for all C ∈ B(R). Let C ∈ B(R) be arbitrary. Conditional ex-
pectation E(x|y) is a Borel function g : R → R which for every C ∈ B(R)
satisfies

E(xy(C)) = ν(y(C)) =
∫
C

g dmy .

Remark 1. If g1, g2 satisfy the previous definition then g1 = g2 my-almost
everywhere.

Now we are going to prove the martingale convergence theorem. For the prop-
erties of the joint M-observable see Definition 6 in Appendix. We recall that to
each pair of M-observables x, y there exists their joint M-observable [7].
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Proposition 4. Let x, y be M-observables where x is an integrable M-observable
and y(C) ∈ A. Let h be the joint M-observable for M-observables x and y. Let
ξ, η be random variables defined by ξ(u, v) = u, η(u, v) = v in probability space
(Ω,S, P ) where Ω = R2,S = B(R2), P = m ◦ h. Let Pη be the probability
distribution of random variable η. Then Pη = my and E(x|y) = E(η|ξ) my-
almost everywhere.

Proof. From the definition of Pη follows

Pη(C)=P (η−1(C))=m◦h◦η−1(C) = m(h(R×C)) = m(x(R)∧y(C)) = my(C) .

Further
∫

η−1(C)
ξ dP =

∫
R×C

u dm ◦ h(u, v). The indefinite integral ν(y(C)) can

be expressed as

ν(y(C)) = E(xy(C)) =
∫
R

u dmxy(C)(u) =
∫
R

u dλ(u) ,

where λ(D) = m(y(C) ∧ x(D)) = m ◦ h(D × C) for fixed C ∈ B(R).
We will prove the equality∫

R×C
g(u) dm ◦ h(u, v) =

∫
R

g dλ (2)

for an arbitrary Borel function g : R → R. Put g = χG, G ∈ B(R). Then∫
R×C

χG(u) dm ◦ h(u, v) =
∫

R×R
χR×C(u, v)χG×R(u, v) dm ◦ h(u, v) =

=
∫

R×R
χG×C dm ◦ h = m(h(G× C)) = m(x(G) ∧ y(C)) = λ(G) =

∫
R

χG dλ .

Equality (2) for an arbitrary Borel function g can be simply proved by using the
linearity and continuity of integrals. Now put g(u) = u. Then∫

C

E(x|y) dmy = E(xy(C)) =
∫
R

u dλ(u) =
∫

R×C
g(u) dm ◦ h(u, v) =

=
∫

η−1(C)

ξ dP =
∫
C

E(ξ|η) dPη =
∫
C

E(ξ|η) dmy

holds for any C ∈ B(R). Therefore E(x|y) = E(ξ|η) my-almost everywhere. ��

Proposition 5. Let gn : R → R be Borel functions such that g−1
n (B(R)) ⊂

g−1
n+1(B(R)) for each n ∈ N and

∞⋃
n=1

g−1
n (B(R)) = B(R). Let y : B(R) → F be an

M-observable and let yn = y◦g−1
n , my ( myn for each n ∈ N . Let x : B(R) → F

be an integrable M-observable. Then E(x|yn) → E(x|y) my-almost everywhere.
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Proof. Consider the probability space (R2,B(R2), P = m ◦ h) and let ξ, η be ran-
dom variables defined by ξ(u, v) = u, η(u, v) = v. Put ηn = gn ◦ η and Sn =
η−1(g−1

n (B(R))) = η−1
n (B(R)). Then Sn ⊂ Sn+1 for each n ∈ N and moreover

∞⋃
n=1

Sn =
∞⋃
n=1

η−1(g−1
n (B(R))) = η−1

( ∞⋃
n=1

g−1
n (B(R))

)
= η−1(B(R)) = S .

Then from the martingale convergence theorem [9] follows E(ξ|ηn) → E(ξ|η) Pη-
almost everywhere. Following Proposition 4 we have: Pη = my, E(ξ|η) = E(x|y).
Since for any C ∈ B(R)

Pηn(C) = P (η−1(g−1
n (C)))=m(h(R×g−1

n (C)))=m(x(R)∧y(g−1
n (C)))=myn(C),

then Pηn = myn . Furthermore∫
C

E(ξ|ηn) dPηn =
∫

η−1
n (C)

ξ dP =
∫

η−1(g−1
n (C))

ξ dP =
∫

g−1
n (C)

E(ξ|η) dPη =

=
∫

g−1
n (C)

E(x|y) dmy =
∫

y(g−1
n (C))

x dm =
∫
C

E(x|yn) dmyn .

Since Pηn = myn then E(ξ|ηn) = E(x|yn) myn -almost everywhere. But my (
myn , therefore the equality E(ξ|ηn) = E(x|yn) holds my-almost everywhere.
Finally E(x|yn) = E(ξ|ηn) → E(ξ|η) = E(x|y) my-almost everywhere. ��
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Appendix

Lemma 1. If Ai ∈ F , i = 1, 2, . . . and Ai ∧ Aj = (0Ω, 1Ω) for i �= j then

m

( ∞∨
i=1

Ai

)
=

∞∑
i=1

m(Ai).

Proof. The proof is obvious. ��
Lemma 2. xA is an M-observable.

Proof. Evidently xA satisfies the condition (1) of an M-observable.
(2) If 0 /∈ C and 0 /∈ D then 0 /∈ C ∪D, 0 /∈ C ∩D and we have

xA(C ∪D) = A ∧ x(C ∪D) = A ∧ (x(C) ∨ x(D)) =
= (A ∧ x(C)) ∨ (A ∧ x(D)) = xA(C) ∨ xA(D) ,

xA(C ∩D) = A ∧ x(C ∩D) = A ∧ (x(C) ∧ x(D)) =
= (A ∧ x(C)) ∧ (A ∧ x(D)) = xA(C) ∧ xA(D) .

If 0 ∈ C and 0 /∈ D then 0 ∈ C ∪D, 0 /∈ C ∩D and we get

xA(C ∪D) = (A ∧ x(C ∪D)) ∨A∗ = [(A ∧ x(C)) ∨ (A ∧ x(D))] ∨A∗ =
= [(A ∧ x(C)) ∨A∗] ∨ (A ∧ x(D)) = xA(C) ∨ xA(D) ,

xA(C) ∧ xA(D) = [(A ∧ x(C)) ∨A∗] ∧ (A ∧ x(D)) =
= [(A ∧ x(C)) ∧ (A ∧ x(D))] ∨ [A∗ ∧ (A ∧ x(D))] =
= [A ∧ (x(C) ∧ x(D))] ∨ [(A∗ ∧A) ∧ x(D)] =
= (A ∧ x(C ∩D)) ∨ ((0Ω , 1Ω) ∧ x(D)) =
= (A ∧ x(C ∩D)) ∨ (0Ω, 1Ω) = A ∧ x(C ∩D) = xA(C ∩D) .

Similarly we would prove the property (2) for 0 /∈ C and 0 ∈ D.
Finally if 0 ∈ C and 0 ∈ D then 0 ∈ C ∪D, 0 ∈ C ∩D and

xA(C ∪D) = (A ∧ x(C ∪D)) ∨A∗ = [(A ∧ x(C)) ∨ (A ∧ x(D))] ∨A∗ =
= [(A ∧ x(C)) ∨A∗] ∨ [(A ∧ x(D)) ∨A∗] = xA(C) ∨ xA(D) ,

xA(C ∩D) = (A ∧ x(C ∩D)) ∨A∗ = [A ∧ (x(C) ∧ x(D))] ∨A∗ =
= [(A ∧ x(C)) ∧ (A ∧ x(D))] ∨A∗ =
= [(A ∧ x(C)) ∨A∗] ∧ [(A ∧ x(D)) ∨A∗] = xA(C) ∧ xA(D) .
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(3) Let C ⊂ D. If 0 ∈ C then 0 ∈ D and we have

xA(C) = (A ∧ x(C)) ∨A∗ ≤ (A ∧ x(D)) ∨A∗ = xA(D) .

If 0 /∈ C and 0 ∈ D then xA(C) = A ∧ x(C) ≤ (A ∧ x(D)) ∨A∗ = xA(D).
If 0 /∈ C and 0 /∈ D then xA(C) = A ∧ x(C) ≤ A ∧ x(D) = xA(D).

Let Cn ↗ C and 0 /∈ C. Then 0 /∈ Cn for each n and we get

xA(Cn) = A ∧ x(Cn) ↗ A ∧ x(C) = xA(C) .

Let Cn ↗ C and 0 ∈ C. Then there exists n0 such that 0 ∈ Cn for every n ≥ n0
and we have

xA(Cn) = (A∧ x(Cn))∨A∗ ↗ (A∧ x(C)) ∨A∗ = xA(C). ��

Lemma 3. Let x be an integrable M-observable. Then ν is σ-additive in the
following sense: if Ai ∈ A, (i = 1, 2, . . . ), Ai ∧Aj = (0Ω, 1Ω) for i �= j then

ν

( ∞∨
i=1

Ai

)
=

∞∑
i=1

ν(Ai) .

Proof. If Ai ∈ A, (i = 1, 2, . . . ), Ai ∧Aj = (0Ω, 1Ω) for i �= j, it is evident that

A =
∞∨
i=1

Ai =

( ∞∨
i=1

χAi ,
∞∧
i=1

(1 − χAi)

)
= (χ∪Ai , 1 − χ∪Ai) ∈ A .

When we put λ(C) = mxA(C \ {0}), λi(C) = mxAi
(C \ {0}) for any C ∈ B(R)

then we can write ν(A) =
∫
R

t dλ(t), ν(Ai) =
∫
R

t dλi(t) . Further λ(C) =

m (A ∧ x(C \ {0})) = m

(( ∞∨
i=1

Ai

)
∧ x(C \ {0})

)
= m

( ∞∨
i=1

Ai ∧ x(C \ {0})
)

.

Since (Ai∧x(C \{0}))∧ (Aj ∧x(C \{0})) = (0Ω, 1Ω) for i �= j then by Lemma 1

λ(C) = m

( ∞∨
i=1

Ai ∧ x(C \ {0})
)

=
∞∑
i=1

m(Ai ∧ x(C \ {0})) =
∞∑
i=1

λi(C) .

Therefore

ν(A) =
∫
R

t dλ(t) =
∞∑
i=1

∫
R

t dλi(t) =
∞∑
i=1

ν(Ai). ��

Definition 6 ([7]). Let x, y be M-observables. Joint M-observable is a mapping
h : B(R2) → F satisfying

1. h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω),
2. h(C ∪D) = h(C) ∨ h(D), h(C ∩D) = h(C) ∧ h(D) for any C,D ∈ B(R2),
3. if C,Cn, D,Dn ∈ B(R2), Cn ↗ C, Dn ↘ D then

h(Cn) ↗ x(C), h(Dn) ↘ x(D),
4. h(C ×D) = x(C) ∧ y(D) for any C,D ∈ B(R).
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Abstract. Some relevant algebraic structures involved by the so–called
Intuitionistic Fuzzy Sets (IFS) are discussed, with a wide description of
their relevant properties especially from the point of view of the alge-
braic semantic of a logical system. Algebraic comparison with analogous
structures involving usual Fuzzy Sets are discussed.

1 Introduction

Presently, there is a wide interest in the scientific community of computer science
about the so–called Intuitionistic Fuzzy Set (IFS) theory, introduced for the
first time by Atanassov in his seminal papers [3, 1]. ¿From the foundational
point of view IFS gave rise to an interesting terminological debate about the
improper use of the term “intuitionistic” adopted by Atanassov in defining these
kind of objects, especially related to some algebraic properties of the “negation”
operation. The source of this debate can be dated back to the paper [15, p. 183] in
which it is stressed that the Atanassov negation cannot be considered as a correct
algebraic version of the intuitionist negation. This debate has continued in [6, 7],
and successively in [19, 22] with an answer by Atanassov in [2] and finally in
[10]. Another drawback of the original Atanassov exposition is that the involved
operations are discussed in a “uniform” list, without a systematic organization of
them inside an explicitly introduced algebraic structure. In the present paper, we
adopt this last kind of exposition, unifying a scattered collection of information
about this argument which can be found fragmented in [6, 7, 9, 10, 11].

2 The Logic–Algebraic Approach to Fuzzy Sets

Since IFS are nothing else than pairs of fuzzy sets (f, g) under the orthogonality
condition f + g ≤ 1, in order to make a deep discussion about IFS algebras it
is necessary a brief exposition about the corresponding algebraic structures of
fuzzy sets.
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Let us recall that a fuzzy set (FS) on a universe X is mathematically realized
by a mapping f : X )→ [0, 1], whose collection will be denoted by F(X) in
the sequel. For any such mapping f one can introduce the necessity domain
Δ1(f) := {x ∈ X : f(x) = 1} with corresponding contingency domain Δc(f) :=
{x ∈ X : f(x) �= 1} = Δ1(f)c and the possibility domain Δp(f) := {x ∈ X :
f(x) �= 0} with corresponding impossibility domain Δ0(f) := {x ∈ X : f(x) =
0} = Δp(f)c. As particular subclasses of fuzzy sets we take into account constant
fuzzy sets and crisp sets. The former are defined for any k ∈ [0, 1] as the mapping
k : X → [0, 1] assigning to any point x of the universe the real value k(x) = k.
The latter consist of Boolean valued fuzzy sets χ : X )→ {0, 1} which can be
bijectively expressed as characteristic functionals χA of some subset A of X .

The first, immediate, algebraic structure one introduces on FS is the one of
distributive lattice 〈F(X),∧,∨,0,1〉 with respect to the binary operations of
lattice meet and join defined pointwise as (f ∧ g)(x) := min{f(x), g(x)} and
(f ∨ g)(x) := max{f(x), g(x)}. This distributive (atomic complete) lattice is
bounded by the least element 0 = χ∅ and the greatest element 1 = χX . More-
over, the induced partial order relation (f ≤ g iff f = f ∧ g, or equivalently
g = f ∨ g) is the pointwise one: f ≤ g iff ∀x ∈ X, f(x) ≤ g(x). These binary
operations can be considered as the versions of the logical connectives of conjunc-
tion And and disjunction Or, respectively, in a context of the algebraic semantic
of some (many–valued) logical systems. As to a possible algebraic realization of
the logical Not connective the unary operation usually taken into account is
the correspondence f → ¬f pointwise defined as follows: (¬f)(x) := 1 − f(x).
This is the algebraic version of a Kleene negation since it satisfies the following
Kleene conditions of an orthocomplementation (see [14]):

(ocK1) ¬¬f = f double negation law
(ocK2) ¬(f ∨ g) = ¬f ∧ ¬g first de Morgan law
(ocK3) f ∧ ¬f ≤ 1/2 ≤ g ∨ ¬g Kleene condition

Note that 1 = ¬0. Of course, neither the noncontradiction law ∀f ∈ F(X),
f ∧ ¬f = 0 (for instance, 1/2 ∧ ¬1/2 = 1/2 �= 0) nor the excluded middle
law ∀f ∈ F(X), f ∨ ¬f = 1 (for instance, 1/2 ∨ ¬1/2 = 1/2 �= 1) hold. As
discussed in [5], [10] these results exclude the Kleene negation as a candidate
for an intuitionistic negation since, for instance, intuitionistic logic accepts the
noncontradiction principle which is not verified by the Kleene negation and reject
the strong double negation law in the direction ¬¬f ≤ f , here accepted.

On the basis of the Kleene lattice 〈F(X),∧,∨,¬,0〉 another extension of
Boolean negation can be taken into account: the Brouwer negation associating
with any fuzzy set f the new fuzzy set ∼ f := χΔ0(f), i.e., the crisp set of the
impossibility domain of f explicitly defined by the pointwise rule

(∼ f)(x) =

{
1 if f(x) = 0
0 otherwise

(2.1)
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This is a real intuitionistic negation (see [10]) since it satisfies the conditions

(ocB1) ∼ f ≤∼∼ f weak double negation law
(ocB2) ∼ (f ∨ g) =∼ f∧ ∼ g first de Morgan law
(ocB3) f∧ ∼ f = 0 noncontradiction law

Let us stress that the dual principle ∼∼ f ≤ f does not hold (for instance
∼∼ 1/2 = 1), in agreement with the Heyting analysis of intuitionistic negation
which rejects this condition [24]. Similarly, also the principle of excluded middle
fails, ∀f ∈ F(X), f∨ ∼ f = 1, according to the intuitionistic approach to logic.
Further, let us stress that under (ocB1) the condition (ocB2) is equivalent to
the intuitionistic contraposition law: f ≤ g implies ∼ g ≤∼ f , but in general the
second de Morgan law cannot be obtained as an equivalent formulation of (ocB2).
However, in the present concrete case of fuzzy sets, it is possible to directly prove
that the further second de Morgan law (ocB4) holds: ∼ (f ∧ g) =∼ f∨ ∼ g
which under (ocB1)–(ocB3) is equivalent (see [26]) to the Stone condition: (S)
∼ f∨ ∼∼ f = 1. In this way, we have obtained a structure 〈F(X),∧,∨,¬,∼,0〉,
algebraic semantic of a fuzzy logic with the standard connectives of conjunction
And (∧) and disjunction Or (∨), equipped with a Kleene (also Zadeh) negation
(¬) and a Brouwer (∼) one. This algebraic structure has been called (Stone)
Brouwer–Zadeh (BZS) lattice (see [15] for the definition and properties) since
the interconnection rule (in) ¬ ∼ f =∼∼ f between the two negations holds.

On the basis of a BZ structure, making use of the Kleene and Brouwer nega-
tion, two other connectives can be introduced which can be considered as Many
Valued realizations of modal connectives: the necessity and the possibility of f
which are the crisp sets of the necessity and the possibility domains of f :

�f :=∼ ¬f = χΔ1 and ♦f := ¬ ∼ f = χΔp (2.2)

The role of these two unary operators as algebraic realizations of the connectives
of necessity and possibility of a S5 modal–like system based on a Kleene lattice
(instead of on a Boolean one) is described in [4, 9]. Moreover, these modal
operators satisfies the further distrubitivity properties ν(f) ∨ ν(g) = ν(f ∨ g)
and μ(f) ∧ μ(g) = μ(f ∧ g) of a MDS5 algebra [12].

As final structure about fuzzy sets we mention the one of Heyting–Wajsberg
(HW) algebra introduced and discussed in [4, 13]. This HW algebra is a seman-
tical characterization of a logical system equipped with two implication connec-
tives. In the fuzzy set environment these two connectives are the �Lukasiewicz
implication →L and the Gödel implication →G defined as

(f1 →L f2)(x) : = min{1, 1 − f1(x) + f2(x)}

(f1 →G f2)(x) : =

{
1 f1(x) ≤ f2(x)
f2(x) otherwise

On the basis of the system 〈F(X),→L,→G,0〉 all the previously discussed
connectives of fuzzy set theory can be derived since it is easy to verify that
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¬f = f →L 0 and ∼ f := f →G 0, i.e., the Kleene and the Brouwer negations
are obtained by the �Lukasiewicz and the Gödel implication connectives in the
usual way. Moreover, the meet and the join are obtained by the �Lukasiewicz
implication as f ∧ g = ¬((¬f →L ¬g) →L ¬g) and f ∨ g = (f →L g) →L g.
In this way, the BZ structure of fuzzy sets can be induced as a peculiar sub-
structure of the corresponding HW algebra. We remark that the subsystem
〈F(X),→L,0〉 satisfies the axioms of Wajsberg algebra (and hence also of the
equivalent Chang’s MV algebra), an algebraic model of the �Lukasiewicz many
valued logic. On the other hand, the substructure 〈F(X),∧,∨,→G,¬,0〉 satis-
fies the axioms of a symmetric Heyting algebra (and also of Gödel algebra [23])
formalized in [26] as an algebraic model of intuitionistic logic.

3 The Logic–Algebraic Approach to Intuitionistic Fuzzy
Sets

Let us consider the same set of objects X as universe of the fuzzy set system
F(X) discussed in the previous section 2. An intuitionistic fuzzy set (IFS) on
X is any pair of fuzzy sets A = 〈fA, gA〉 ∈ F(X) × F(X) under the condition
fA + gA ≤ 1, or more formally such that fA ≤ ¬gA or equivalently gA ≤ ¬fA,
which defines a binary relation of orthogonality fA ⊥ gA on F(X) according to
[14]. For this reason we prefer to speak of pair of fuzzy sets in an orthogonality
relation, or orthopair of fuzzy sets (OFS).

Let IF(X) be the collection of IFS on the universe X. Then we can introduce
on it a distributive lattice structure 〈IF(X),∩,∪, (0,1), (1,0)〉 where the meet
and join are defined as

〈fA, gA〉 ∩ 〈fB, gB〉 = 〈fA ∧ fB, gA ∨ gB〉 (3.1a)
〈fA, gA〉 ∪ 〈fB, gB〉 = 〈fA ∨ fB, gA ∧ gB〉 (3.1b)

and whose induced partial order relation is: 〈fA, gA〉 ⊆ 〈fB, gB〉 iff ∀x ∈ X, fA(x)
≤ fB(x) and gB(x) ≤ gA(x), with respect to which O := (0,1) and I := (1,0)
are the least and the greatest element, respectively.

Regarding the negation and implication connectives we have the following sit-
uation. The unary operation defined for any arbitrary IFS 〈fA, gA〉 by−〈fA, gA〉=
〈gA, fA〉 is a de Morgan complementation, i.e., properties (ocK1) and (ocK2) are
satisfied by any pair of IFSs. The Kleene condition (ocK3) is not valid and so
IF(X) with the operation − are examples of de Morgan algebras which are not
Kleene. Furthermore, in [18] it has been proved that any de Morgan negation
on IFS, whatever be its concrete definition, cannot satisfy the Kleene condition
(ocK3). As a consequence, no �Lukasiewicz implication, i.e., an implication ⇒L

which satisfies the Wajsberg axioms, can be defined on IFS since the induced
standard negation 〈fA, gA〉 ⇒L 〈0,1〉 should be necessarily of Kleene type.

On the contrary, an intuitionistic implication can be introduced on IF(X).
This operation was firstly proposed in [17, p. 64] relatively to the unit interval
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[0, 1] and then extended to F(X) in [7]. Let A = 〈fA, gA〉 and B = 〈fB, gB〉 be
two IFSs, then for x ranging on X let us define:

(
〈fA, gA〉 ⇒ 〈fB, gB〉

)
(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0) if fA(x) ≤ fB(x)
and gA(x) ≥ gB(x)

(1 − gB(x), gB(x)) if fA(x) ≤ fB(x)
and gA(x) < gB(x)

(fB(x), 0) if fA(x) > fB(x)
and gA(x) ≥ gB(x)

(fB(x), gB(x)) if fA(x) > fB(x)
and gA(x) < gB(x)

(3.2)

The Brouwer negation induced by the implication connective ⇒ in the usual
manner ∼ 〈fA, gA〉 = 〈fA, gA〉 ⇒ 〈0,1〉 is pointwise defined (and compare for an
analogy with (2.1)) for all x ∈ X as:

∼ 〈fA, gA〉 (x) =

{
(1, 0) if gA(x) = 1
(0, 1) if gA(x) �= 1

(3.3)

We underline that the Brouwer negation, besides (ocB1)–(ocB3), satisfies
also the Stone (S) condition (or equivalently (ocB4)). Thus, the structure
〈IF(X),∩,∪,⇒G, 〈0,1〉〉 is a Gödel algebra. Further, if we add the de Mor-
gan negation on IFS −, we obtain the structure 〈IF(X),∩,∪,⇒G, −, 〈0,1〉〉
which is a symmetric Heyting algebra.
By the combination of these two non standard negations we obtain, similarly
to the equations (2.2) of the fuzzy sets case, the modal operators of necessity
�A :=∼ −A and possibility ♦A := − ∼ A pointwise defined as:

� 〈fA, gA〉 (x) =

{
(1, 0) if fA(x) = 1
(0, 1) if fA(x) �= 1

(3.4a)

♦ 〈fA, gA〉 (x) =

{
(0, 1) if fA(x) = 1
(1, 0) if fA(x) �= 1

(3.4b)

which also in the case of IFS satisfy a S5 modal-like behavior but on a De Morgan
lattice (differently from the pure fuzzy case in which the basic structure is of
Kleene lattice). Finally, another possibility to define a negation is to consider
the unary operation introduced in [15] as

≈ 〈fA, gA〉 = 〈gA,¬gA〉 (3.5)

which is a weaker form of Brouwer negation; indeed, it satisfies only properties
(ocB1) and (ocB2) but not the non contradiction law (ocB3). However, if we
use this negation and the de Morgan one to define the modal operators by the
usual compositions, one obtains the following necessity and possibility on IFS
introduced in [1]: �〈fA, gA〉 = 〈fA,¬fA〉 and 	〈fA, gA〉 = 〈¬gA, gA〉 and also
they show a S5 modal behavior on a de Morgan lattice. The peculiarity of these
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modal operators with respect to the above equations (3.4) is that in general they
are not {(0, 1), (1, 0)} valued.

4 The Logic–Algebraic Approach to ICS

In this subsection, we investigate the particular subclass IC(X) ⊆ IF(X) of all
ortho–pairs of characteristic functions 〈χA1 , χA0〉 of subsets A1, A0 of X with
χA1 + χA0 ≤ 1, that is IC(X) is the collection of all orthogonal crisp sets (ICS)
on the universe X . Trivially χA1 ⊥ χA0 iff A1∩A0 = ∅ that is, we can identify
the ICS 〈χA1 , χA0〉 with the pair 〈A1, A0〉 of disjoint subsets of X . The subset
A1 (resp., A0) is the certainty (resp., impossibility) domain of the involved ICS
〈A1, A0〉. This terminology is strictly linked to the fact that an interesting sub-
case of ICS is represented by rough sets [28], where given a set A, A1 is the lower
approximation of A and A0 the exterior region (i.e., whose complement is the
upper approximation of A as its possibility domain Ap = Ac0).

The lattice operations induced by (3.1) in this particular case assume the form
〈A1, A0〉 ∩ 〈B1, B0〉 = 〈A1 ∩B1, A0 ∪B0〉 and 〈A1, A0〉 ∪ 〈B1, B0〉 =
〈A1 ∪B1, A0 ∩B0〉. The complementation induced by the IFS de Morgan one
−〈A1, A0〉 = 〈A0, A1〉 is now a Kleene complementation, that is in this par-
ticular subcase also property (ocK3) is satisfied. Moreover, it is possible to de-
fine a �Lukasiewicz implication as 〈A1, A0〉 ⇒L 〈B1, B0〉 = 〈(Ac1 ∩ Bc

0) ∪ A0 ∪
B1, A1 ∩B0〉 whose induced negation is just the above introduced Kleene nega-
tion 〈A1, A0〉 ⇒L 〈0,1〉 = −〈A1, A0〉.

The restriction to the present case of the intuitionistic implication (3.2) pro-
duces the ICS implication:

〈A1, A0〉 ⇒G 〈B1, B0〉 = 〈(Ac1 ∩Bc
0) ∪A0 ∪B1, A

c
0 ∩B0〉 (4.1)

We remark that these implication connectives coincide with the implications
introduced in the context of rough set theory by Pagliani [27, 9]. Moreover, it is
possible to show that the structure 〈IC(X),⇒L,⇒G, (∅, X)〉 is a HW algebra.
The complementation ∼ induced by (3.3) (or equivalently obtained from (4.1))
in the present case assumes the form ∼ 〈A1, A0〉 = 〈A0, (A0)c〉, which is also
equal to the rescrition to IC(X) of equation (3.5). The modal operators induced
by the two negations are the necessity �(A1, A0) = (A1, A

c
1) and possibility

♦(A1, A0) = (Ac0, A0). The structure 〈IC(X),∩,∪,−,♦,�, (X, ∅), (∅, X)〉 is a
DD5 algebra according to [12]. Finally, any ICS satisfies the three–value condition
(3) a∨ ∼ a = a∨−a, property which allows one to characterize ICS as different
from FS and IFS, which, in general, do not satisfy it.

Remark 4.1. The concept of ICS has been considered also in [15] and later on in
[16]. It has also been studied in an equivalent form in [21], [25] and [30]. Indeed,
in these last papers pairs of ordinary subsets of the universe X of the kind
〈A1, Ap〉, under the condition A1 ⊆ Ap are considered. The mapping 〈A1, A0〉 →
〈A1, (A0)c〉 institute a one-to-one and onto correspondence which allows one to
identify the two approaches.
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Remark 4.2. ICS are equivalent to shadowed sets, a different approach to vague-
ness proposed by Pedrycz [29]. A shadowed set on a universe X is any mapping
s : X → {0, (0, 1), 1}. Once introduced for any ICS 〈A1, A0〉 its uncertainty
domain Au = X \ (A1 ∪ A0), then the mapping 〈A1, A0〉 → χA1 + (0, 1) · χAu

is a one-to-one and onto correspondence which allows one to identify ICS and
shadowed sets. For a more detailed investigation about the theoretical approach
to shadowed sets see [8, 11].

5 Conclusions

We gave an algebraic framework to FS, IFS and ICS investigating in particular,
their behavior with respect to �Lukasiewicz and intuitionistic logic. We can con-
clude that there is at least a property which enable to differentiate these three
way to address vagueness from the algebraic standpoint. In particular, when
considering the two ortho–complementations ∼ and ¬, ICS satisfy the Kleene
(K), Stone (S) and three–value condition (3), whereas FS satisfy (K) and (S)
but not (3), and finally IFS only (S). We note that this is not the only one
algebraic approach to IFS (or equivalent structures, see for instance [20]) and a
comparison will be presented in a forthcoming work.
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Abstract. The paper has two aims. First, a review of various definitions
of probabilities on Atanassov IF-sets, and corresponding representation
theorems. Secondly, a new representation theorem is proved for so-called
ϕ-probabilities including a large variety of special cases.

Keywords: IF-events, probability.

1 IF-Events

According to Atanassov ([1]), an IF-set is a mapping

A = (μA, νA),

defined on an non-empty set Ω to [0, 1]2 (i.e. μA : Ω → [0, 1], νA : Ω → [0, 1]),
such that

μA(x) + νA(x) ≤ 1

for any x ∈ Ω. An IF-set A = (μA, νA) is called an IF-event, if μA, νA : Ω → [0, 1]
are measurable mappings with respect to the given σ-algebra S of subsets of Ω.
Recall that μA is called a membership function, νA the non-membership function.
Therefore it is natural to define

A = (μA, νA) ≤ B = (μB , νB)

if and only if
μA ≤ μA, νA ≥ νB.

Denote by F the family of all IF-events. With respect to the preceding definition
it is easy to see that (0Ω, 1Ω) is the smallest element of F , (1Ω, 0Ω) is the greatest
element of F .

Probability of an IF-event A was defined first constructively (see [7,6]) as a
compact interval, lately axiomatically (see [11,12,13]) as a mapping

P : F → J
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where J is the family of all compact subintervals [c, d] of [0,1] in the real line.
Since

P(A) = [P�(A),P�(A)],

we obtain two real functions

P�,P� : F → [0, 1].

These functions will be called states (analogously as in quantum structures [5]).
Evidently any solution of the problem of IF - states on F leads naturally to a
solution of the problem of IF - probabilities.

Similarly as in the classical or quantum case resp., IF - state m : F → [0, 1]
can be defined as a normalized, additive and continuous mapping. The first
condition is clear:

(1) m((0Ω, 1Ω)) = 0,m((1Ω, 0Ω)) = 1.

Similarly continuity is determine uniquely:

(2) An ↗ A =⇒ m(An) ↗ m(A).

Here An ↗ A is equivalent with two convergences of real functions:

μAn ↗ μA, νAn ↘ νA.

Of course, the additivity cannot be determined uniquely. First it was defined by
the help of Lukasiewicz connectives.

2 Lukasiewicz States

If f, g : Ω → [0, 1] are two fuzzy sets. then the Lukasiewicz connectives are

f ⊕L g − min(f + g, 1), f +L g − max(f + g = 1, 0).

Therefore for A,B ∈ F we define

A⊕L B = (μA ⊕L μB, νA +L νB),

A+L B = (μA +L μB, νA ⊕L νB).

Hence L-additivity means the implication

(3) A+L B = (0Ω, 1Ω) =⇒ m(A⊕L B) = m(A) + m(B).

A mapping m : F → [0, 1] is called L-state if the conditions (1), (2) and (3) hold.
The first important result was the representation theorem ([13]):
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Theorem 1. Let m : F → [0, 1] be an L-state and there exists a probability
measure P : S → [0, 1] and a function f : [0, 1]2 → [[0, 1] such that

(∗) m(A) = f(
∫
Ω

μAdP,

∫
Ω

νAdP ).

Then f is linear, hence there exists α ∈ [0, 1] such that

m(A) = (1 − α)
∫
Ω

μAdP + α(1 −
∫
Ω

νAdP )

for any A ∈ F .

Recently L. Ciungu proved that the assumption (*) can be omitted (see [3]).

Theorem 2. Let m : F → [0, 1] be an L-state. Then there are probability mea-
sures P,Q : S → [0, 1] and α ∈ [0, 1] such that

m(A) = (1 − α)
∫
Ω

μAdP + α(1 −
∫
Ω

νAdQ)

for any A ∈ F .

The second important result is in the following theorem ([14,15,4]).
Theorem 3. To any F with an L-state m : F → [0, 1] there exists an MV alge-
bra M with a state μ : M → [0, 1] such that (F ,m) and (M,μ) are isomorphic.

Theorem 3 gives possibility to use well developed probability theory on MV
algebras (see [16]). Of course, later there appeared alternative definitions using
alternative connectives and corresponding states.

1. M -probability with

A⊕M B = (max(μA, μB),min(nuA, νB))

A+M B = (min(μA, μB),max(nuA, νB)).
(see [8,15,4]).

2. Q-probability with

A⊕Q B = (
√
μ2
A + μ2

B , 1 −
√

(1 − νA)2 + (1 − νB)2),

A+Q B = (min(μA + μB , 1),max(νA + νB − 1, 0)).

(see [2]).
3. P -probability with

A⊕P B = (μA + μB − μAμB, νAνB),

A+P B = (μAμB, νA + νB − νAνB).
(see [2]).

The aim of this paper is to prove a representation theorem for so-called ϕ-
states. Here ϕ : [0, 1] → [0, 1] is an increasing bijection such that ϕ(u) ≤ u(u ∈
[0, 1]). Following [9] we shall consider the following pair of connectives

A⊕ϕB = (ϕ−1(min(ϕ(μA)+ϕ(μB), 1)), 1−ϕ−1(min(ϕ(1−νA)+ϕ(1−νB), 1))),

A+B = (max(μA + μB − 1, 0),min(νA + νB, 1)).
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3 ϕ -States

ϕ-state is a mapping m : F → [0, 1] such that

(i) m((0Ω, 1Ω)) = 0,m((1Ω, 0Ω)) = 1;

(ii) A+B = (0Ω, 1Ω) =⇒ m(A⊕ϕ B) = m(A) + m(B);

(iii) An ↗ A =⇒ m(An) ↗ m(A).

Evidently any L-state is a ϕ-state, where ϕ(u) = u, u ∈ [0, 1]. Similarly any
Q-state is a ϕ-state, where ϕ(u) = u2. Moreover, in [9] the Yager state was
considered where ϕ(u) = un(n ∈ N ;for n = 1 we obtain the Lukasiewicz state,
for n = 2 the Yager state). In [9] also the cases ϕ(u) = 2u and ϕ(u) = logu were
considered.

In [10] Renčová introduced the notion of the strong additivity using the
operation

A+ϕ B = ((ϕ(μA) + ϕ(μB) − 1) ∨ 0, (ϕ(1 − νA) + ϕ(1 − νB)) ∧ 1).

The state m is strongly additive, if

A+ϕ B = (0Ω, 1Ω) =⇒ m(A⊕ϕ B) = m(A) + m(B).

Since ϕ(u) ≤ u for any u ∈ [0, 1], it is not difficult to show that

A+B = (0Ω, 1Ω) =⇒ A+ϕ B = (0Ω, 1Ω).

Therefore any strongly ϕ-additive state is ϕ-additive. Renčová using Theorem 1
proved the representation theorem for strongly ϕ-additive states:

m(A) = (1 − α)
∫
Ω

ϕ(μA)dP + α

∫
Ω

ϕ(1 − νA)dP.

In the following theorem the same result will be proved for arbitrary ϕ-state, of
course again with the following additional assumption:

(∗∗) m(A) = f(
∫
Ω

ϕ(μA)dP,
∫
Ω

ϕ(1 − νA)dQ),

where P,Q : S → [0, 1] are some probability measures and f : [0, 1]2 → [0, 1] is
a continuous function.

Theorem 4. To any ϕ-state m satisfying the condition (**) there exists α ∈
[0, 1] such that

m(A) = (1 − α)
∫
Ω

ϕ(μA)dP + α

∫
Ω

ϕ(1 − νA)dQ

for any A ∈ F .
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Proof. First we see that

0 = m((0Ω, 1Ω)) = f(
∫
Ω

ϕ(0Ω)dP,
∫
Ω

ϕ(1 − 1Ω)dQ) = f(0, 0)

hence f(0, 0) = 0. Similarly

1 = m((1Ω, 0Ω)) = f(
∫
Ω

ϕ(1Ω)dP,
∫
Ω

ϕ(1 − 0Ω)dQ) = f(1, 1),

hence f(1, 1) = 1. Let A + B = (0Ω, 1Ω). It means μA + μB ≤ 1, νA + νB ≥ 1,
hence (1 − νA) + (1 − νB) ≤ 1. Therefore

ϕ(μA) + ϕ(μB) ≤ 1, ϕ(1 − νA) + ϕ(1 − νB) ≤ 1,

A⊕ϕ B = (ϕ−1(ϕ(μA) + ϕ(μB)), 1 − ϕ−1(ϕ(1 − νA) + ϕ(1 − νB))).

Put ∫
Ω

ϕ(μA)dP = u1,

∫
Ω

ϕ(1 − νA)dQ = u2,∫
Ω

ϕ(μB)dP = v1,

∫
Ω

ϕ(1 − νB)dQ = u2.

Then
m(A) = f(u1, u2),m(B) = f(v1, v2),

m(A⊕ϕ B)=f(

∫
Ω

ϕ(ϕ−1(ϕ(μA)+ ϕ(μB)))dP,

∫
Ω

ϕ(1− 1+ ϕ−1(ϕ(1− νA) +ϕ(1− νB)))dQ)=

= f(
∫
Ω

ϕ(μA)dP +
∫
Ω

ϕ(μB)dP,
∫
Ω

ϕ(1 − νA)dQ +
∫
Ω

ϕ(1 − νB)dQ) =

= f(u1 + v1, u2 + v2),

hence we have obtained the identity

(1) f(u1 + v1, u2 + v2) = f(u1, u2) + f(v1 + v2).

Putting A = B and using induction we obtain

(2) f(kx) = kf(x)

for any k ∈ N such that kx ∈ [0, 1]2. Let p
q ∈ Q with p

qx ∈ [0, 1]2. Then

f(x) = f(
1
q
x) + ...f(

1
q
x) = qf(

1
q
x),

hence
f(

1
q
x) =

1
q
f(x),

and
(3)

p

q
f(x) = f(

p

q
x).
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Since f is continuous, we obtain the identity

(4) f(ax) = af(x), a ∈ [0, 1], x ∈ [0, 1]2, ax ∈ [0, 1]2.

We have seen that
f(0, 0) = 0, f(1, 1) = 1.

Put f(0, 1) = α. By (1) we obtain

1 = f(1, 1) = f(0, 1) + f(1, 0) = α + f(1, 0),

hence
f(1, 0) = 1 − α.

Finally
m(A) = f(u1, u2) = f(u1, 0) + f(0, u2) =

= u1f(1, 0) + u2f(0, 1) = (1 − α)u1 + αu2 =

= (1 − α)
∫
Ω

ϕ(μA)dP + α

∫
Ω

ϕ(1 − νA)dQ.

��
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4. Čunderĺıková, K., Riečan, B.: Intuitionistic fuzzy probability theory. Edited volume
on Intuitionistic Fuzzy Sets: recent Advances of the series Studies on Fuzziness and
Soft Computing. Springer, Heidelberg (2008)
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On the E-Probability on IF-Events

Magdaléna Renčová

Matej Bel University, Tajovského 40, SK-974 01 Banská Bystrica, Slovakia
rencova@fpv.umb.sk

Abstract. Following [2] some properties of E-probability and E-states
are studied. The existence of the joint observable and the central limit
theorem are proved.

Keywords: probability, state, representation theorem, IF-events.

1 Introduction

Although there are different opinions about IF-events, the following definitions
are accepted generally ([1], [5]). Let (Ω,S) be a measurable space. By an IF-event
([5]) we mean any pair

A = (μA, νA)

of S−measurable functions, such that μA, νA : Ω → [0, 1] and μA + νA ≤ 1.
The function μA is the membership function and the function νA is the non-

membership function. The familyF of all IF-events is ordered in the following way:

A ≤ B ⇔ μA ≤ μB, νA ≥ νB .

Evidently the notion of IF-event is a natural generalization of the notion of a
fuzzy event. Hence we want to define probability on IF-events generalizing prob-
ability on fuzzy events. And actually, two constructions were proposed indepen-
dently by Gregorzewski [5] and Gerstenkorn [4], both based on the �Lukasiewicz
operations. Operations on [0, 1]2 (not necessarily �Lukasiewicz operations) can be
naturally extended to IF-events in the following way

A ⊕ B = (μA ⊕ μB, νA + νB),

A + B = (μA + μB, νA ⊕ νB),

where A = (μA, νA) and B = (μA, νB).
If μ : Ω → [0, 1] is a fuzzy set, then (μ, 1−μ) is an IF set corresponding to this

fuzzy set. Similarly as in the classical case, in the fuzzy case and in the quantum
case, a probability (or state) has been introduced as a mapping m : F → [0, 1]
being continuous, additive and satisfying some boundary conditions. Here the
main difference is the additivity which is now of the following form

m(A) + m(B) = m(A ⊕ B) + m(A + B).

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 108–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The obtained IF-probability is very successful (see [11]). First, any IF-
probability space can be included into an MV-algebra probability space, hence
the well developed MV-algebra probability theory can be applied directly. Sec-
ond, there exists a general representation theorem for IF-probability. If (Ω,S, P )
is a probability space, then to any �Lukasiewicz state m : F → [0, 1] there exists
α ∈ [0, 1] such that

m(A) = (1 − α)
∫
Ω

μAdP + α(1 −
∫
Ω

νAdP )

for any A ∈ F (see [2]).
Throughout this paper we consider the following operations with IF-events

A ⊕E B = (μA, νA) ⊕E (μB, νB) =

= ((loga(a
μA + aμB − 1)) ∧ 1; 1 − (loga(a

1−νA + a1−νB − 1)) ∧ 1)

A+B = (μA, νA) + (μB, νB) = ((μA + μB − 1) ∨ 0; (νA + νB) ∧ 1)

Remark 1. This is a special case of operations studied in [8], where ϕ(u) = au−1
a−1 ,

a > 1, a ∈ R is fixed for each u ∈ [0, 1].

We are not able to embed the family F with these operations into an MV-
algebra. Of course, we are able to prove probability representation theorems, to
construct the joint observable and prove such fundamental theorems as central
limit theorem or laws of large numbers.

2 E-Probability and E-Observables

Definition 1. Let F be the family of all IF-events, J be the family of all
compact subintervals of the unit interval [0, 1]. E-probability is any mapping
P : F → J satisfying the following conditions:

(i) P((1,0)) = [1, 1],P((0,1)) = [0, 0];
(ii) A + B = (0, 1) ⇒ P(A ⊕E B) = P(A) + P(B);
(iii) An ↗ A ⇒ P(An) ↗ P(A). (Here [an, bn] ↗ [a, b], if an ↗ a, bn ↗ b.)

Definition 2. A mapping m : F → [0, 1] is called an E-state, if the following
conditions are satisfied:

(i) m((1,0))=1, m((0,1))=0;
(ii) A + B = (0, 1) ⇒ m(A ⊕E B) = m(A) + m(B);
(iii) An ↗ A ⇒ m(An) ↗ m(A).

Example 1. Let (Ω,S, p) be a probability space, then natural example of E-state
is a function m : F → [0, 1] defined for fixed a ∈ R, a > 1 by the following

m((μA, νA)) =
∫
Ω

aμA − 1
a− 1

dp.
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Proposition 1. Let α ∈ [0, 1] be real number, than any mapping mα : F → [0, 1]
defined by the following

mα((μA, νA)) = (1 − α)
∫
Ω

aμA − 1
a− 1

dp + α(
∫
Ω

a1−νA − 1
a− 1

dr),

where n ∈ N is fixed and p, r are probability measures, is E-state.

Proof. We will show, that mα : F → [0, 1] is an E-state:

(i) mα((1,0)) = (1 − α)
∫
Ω

1dp + α(
∫
Ω

1dr) = 1 − α + α = 1;

mα((0,1)) = (1 − α)
∫
Ω

0dp + α(
∫
Ω

0dr) = 0;

(ii) If A + B = (0,1), i.e. μA + μB ≤ 1, νA + νB ≥ 1 then

mα(A ⊕E B)=mα((loga(a
μA + aμB − 1)); 1 − (loga(a

1−νA + a1−νB − 1)))=

= (1 − α)
∫
Ω

aμA + aμB − 2
a− 1

dp + α

∫
Ω

a1−νA + a1−νB − 2
a− 1

dr =

= (1 − α)
∫
Ω

aμA − 1
a− 1

dp + α

∫
Ω

a1−νA − 1
a− 1

dr+

+ (1 − α)
∫
Ω

aμB − 1
a− 1

dp + α

∫
Ω

a1−νB − 1
a− 1

dr =

= mα(A) + mα(B),

(iii)

mα(An) = (1 − α)
∫
Ω

aμAn − 1
a− 1

dp + α

∫
Ω

a1−νAn − 1
a− 1

dr ↗

↗ (1 − α)
∫
Ω

aμA − 1
a− 1

dp + α

∫
Ω

aνA − 1
a− 1

dr) = mα(μA, νA) = mα(A).

��

Let us suppose, that P maps F to J . We will present this mapping with functions
P�,P� : F → [0, 1] in the following manner P(A) = [P�(A),P�(A)],A ∈ F .
Shorter notation is used further on is P = [P�,P�].

Theorem 1. P : F → J , is an E-probability if and only if P�,P� : F → [0, 1]
are E-states.

Proof. Let us suppose that P is an E- probability, then since

[1, 1] = P((1,0)) = [P�((1,0)),P�((1,0))],

we have 1 = P�((1,0)) and 1 = P�((1,0)).
Further let A + B = (0,1). Then
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[P�(A) + P�(B),P�(A) + P�(B)] = [P�(A),P�(A)] + [P�(B),P�(B)] =
P(A) + P(B) = P(A ⊕E B) = [P�(A ⊕E B),P�(A ⊕E B)],

hence P�(A)+P�(B) = P�(A⊕EB) and P�(A)+P�(B) = P�(A⊕EB). Finally

An ↗ A implies [P�(An),P�(An)] = P(An) ↗ P(A),

hence

P�(An) ↗ P�(A) and P�(An) ↗ P�(A).

The opposite implication can be proved similarly. ��

3 E-Observables and P-Joint E-Observables

Definition 3. A mapping x : B(R) → F is called an E-observable, if the fol-
lowing conditions are satisfied:

(i) x(R) = (1, 0), x(∅) = (0, 1);
(ii) if A ∩B = ∅ then x(A) + x(B) = (0,1), and x(A ∪B) = x(A) ⊕E x(B);
(iii) An ↗ A ⇒ x(An) ↗ x(A).

Theorem 2. Let x : B(R) → F be an E-observable, P = [P�,P�] : F → J be
an E-probability. Then the functions P�◦x : B(R) → [0, 1],P�◦x : B(R) → [0, 1],
are probability measures.

Proof. The proof is straight forward. ��

Theorem 3. Let x : B(R) → F be an E-observable, x(A) = (x�(A), 1 − x�(A));
ω ∈ Ω. Then the functions p�ω, p

�
ω : B(R) → [0, 1] defined by

p�ω(A) =
ax

�(A)(ω) − 1
a− 1

; p�ω(A) =
ax

�(A)(ω) − 1
a− 1

are probability measures.

Proof. Theorem follows by the Theorem 2.7 in [8]. ��

Definition 4. Let x, y : B(R) → F be E-observables. By the p-joint E-
observable h of x, y we understand a mapping h : B(R2) → F satisfying the
following conditions

(i) h(R2) = (1,0);h(∅) = (0,1);
(ii) if A ∩B = ∅ then h(A) + h(B) = (0,1) and h(A ∪B) = h(A) ⊕E h(B);
(iii) An ↗ A ⇒ h(An) ↗ h(A);
(iv) h(C × D) = x(C).y(D) for any C,D ∈ B(R), where (μC , νC).(μD, νD) =

(loga(
(aμC −1)(aμD−1)

a−1 + 1) ∧ 1, 1 − loga(
(a(1−νC )−1)(a(1−νD)−1)

a−1 + 1) ∧ 1)

Remark 2. Analogously we can extend Definition 4 for finite collection of
E-observables.
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Theorem 4. To any E-observables x, y : B(R) → F there exists their p-joint
E-observable h : B(R2) → F .

Proof. For fixed ω ∈ Ω we define

p�ω(A) = ax�(A)(ω)−1
a−1 , p�ω(A) = ax�(A)(ω)−1

a−1 ,

q�ω(A) = ay�(A)(ω)−1
a−1 , q�ω(A) = ay�(A)(ω)−1

a−1 ,

We showed in Theorem 3 that p�ω, p
�
ω, q

�
ω, q

�
ω are probability measures on B(R).

Let us construct the following p�ω × q�ω : B(R) → [0, 1], p�ω × q�ω : B(R) → [0, 1],
and let us defined

h�(A)(ω) = loga((a− 1)p�ω × q�ω(A) + 1),
h�(A)(ω) = loga((a− 1)p�ω × q�ω(A) + 1), h(A) = (h�(A), 1 − h�(A)).

We shows, that h : B(R2) → F holds properties (i) − (iii) :
(i) h(R2) = (h�(R2), 1 − h�(R2)), so for each ω ∈ Ω there holds

h�(R2)(ω) = loga((a− 1)p�ω × q�ω(R2) + 1) = loga((a− 1) + 1) = 1,

and also there holds h�(R2)(ω) = 1 and therefore

h(R2) = (h�(R2), 1 − h�(R2)) = (1,0).

Analogously h(∅) = (h�(∅), 1 − h�(∅)) = (0,1).
(ii) Let A∩B = ∅, then because the function ϕE(u) = au−1

a−1 is increasing, convex
bijection for a > 1, the following holds for each ω ∈ Ω

h�(A)(ω) + h�(B)(ω) = loga
(
(a− 1)(p�ω × q�ω(A)) + 1

)
+

+ loga
(
(a− 1)(p�ω × q�ω(B)) + 1

)
=

= loga

⎛⎝(a− 1)(

1∫
0

q�ω(Ax)dp�ω(x)) + 1

⎞⎠+

+ loga

⎛⎝(a− 1)(

1∫
0

q�ω(Bx)dp�ω(x)) + 1

⎞⎠ ≤

≤ loga

⎛⎝(a−1)(

1∫
0

q�ω(Ax)dp�ω(x)+

1∫
0

q�ω(Bx)dp�ω(x))+1

⎞⎠=

= loga

⎛⎝(a− 1)(

1∫
0

q�ω((A ∪B)x)dp�ω(x)) + 1

⎞⎠ =

= h�(A ∪B)(ω) ≤ 1,

let us denote by Ax = {(x, y) ∈ A} the x cut of A.
Analogously there holds h�(A)(ω) + h�(B)(ω) ≤ 1 and then
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h(A) + h(B) = (h�(A), 1 − h�(A)) + (h�(B), 1 − h�(B)) =
((h�(A) + h�(B) − 1) ∨ 0, (1 − h�(A) + 1 − h�(B)) ∧ 1) = (0,1).

Let us show that

h(A) ⊕E h(B) = (h�(A), 1 − h�(A)) ⊕E (h�(B), 1 − h�(B)) =

= (loga

(
(a− 1)

(
ah

�(A) − 1
a− 1

+
ah

�(B) − 1
a− 1

)
+ 1

)
,

1 − loga

(
(a− 1)

(
a1−h�(A) − 1

a− 1
+

1 − ah
�(B) − 1

a− 1

)
+ 1

)
) =

= (loga
(
(a− 1)(p�ω × q�ω(A) + p�ω × q�ω(B)) + 1

)
,

1 − loga
(
(a− 1)(p�ω × q�ω(A) + p�ω × q�ω(B)) + 1

)
) =

= (h�(A ∪B), 1 − h�(A ∪B)) = h(A ∪B)

(iii) Let An ↗ A then (An)x ↗ Ax then q�ω((An)x) ↗ q�ω(Ax), and so

h�(An)(ω) = loga
(
(a− 1)(p�ω × q�ω(An)) + 1

)
=

= loga

⎛⎝(a− 1)

1∫
0

q�ω((An)x)dp�ω(x) + 1

⎞⎠↗

↗ loga

⎛⎝(a− 1)(

1∫
0

q�ω(Ax)dp�ω(x)) + 1

⎞⎠ =

= p�ω × q�ω(A) = h�(A)(ω),

analogously
h�(An)(ω) ↗ h�(A)(ω).

And so

h(An) = h�(An), 1 − h�(An) ↗ h�(A), 1 − h�(A) = h(A).

Finally we prove (iv):

x(C).y(D) = (x�(C), 1 − x�(c)).(y�(D), 1 − y�(D)) =

= (loga

(
(a − 1)(

(x�(C) − 1)

a − 1
.
(y�(D) − 1)

a − 1
) + 1

)
,

1 − loga

(
(a − 1)

(x�(C) − 1)

a − 1
.
(y�(D) − 1)

a − 1
+ 1

)
) =

= (loga

(
(a − 1)(p�

ω(C).q�
ω(D)) − 1

)
, 1 − loga

(
(a − 1)(p�

ω(C).q�
ω(D)) + 1

)
) =

= (loga

(
(a − 1)(p�

ω × q�
ω(C × D))+1

)
, 1 − loga

(
(a − 1)(p�

ω × q�
ω(C × D))+1

)
) =

= (h�(C × D), 1 − h�(C × D)) = h(C × D). ��
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4 Application of E-Observables

Let us mention one version of Central limit theorem: let (ξi)∞i=1 be a sequence
of independent, equally distributed, square integrable random variables,

E(ξi) = a, σ2(ξi) = σ2 for all i ∈ N.

Then for any t ∈ R there holds

lim
n→∞ p

({
ω;

ζn(ω) − a

σ

√
n < t

})
= Φ(t).

Here ζn = 1
n

n∑
i=1

ξi and Φ(t) = 1√
2π

t∫
−∞

e−
u2
2 du.

Now we are going to formulate an analogous assertion for E-observables.
First, we shall mention some useful definitions:

Definition 5. For any probability P = [P�,P�] : F → J and any E-observable
x : B(R) → F we define the expected values by

E�(x) =
∫
R

tdP�
x(t); E�(x) =

∫
R

tdP�
x(t)

and the variances by

σ2
� (x) =

∫
R

(t− E�(x))2dP�
x(t); σ2

� (x) =
∫
R

(t− E�(x))2dP�
x(t),

where P�
x = P� ◦ x,P�

x = P� ◦ x, assuming that the integrals exist.

Assume T = (ξ1, ..., ξn) : Ωn → Rn is a random vector and g : Rn → R is

a Borel measurable function (e.g. g(u1, ..., un) = 1
n

n∑
i=1

ui). Then g(ξ1, ..., ξn) =

g ◦ T : Ωn → Rn, is a transformation of T. Hence we get the following formula

(g ◦ T )−1(A) = T−1(g−1(A))

for any A ∈ B(R). The formula justifies the following definition.

Definition 6. Let gn : Rn → R be a Borel function, x1, ..., xn : B(R) → F be E-
observables, hn : B(Rn) → F their joint observable. Then the gn−transformation
of hn is an E-observable yn : B(R) → F given by yn(A) = hn(g−1

n (A)) for any
A ∈ B(R).

Definition 7. Let (xn)∞n=1 be a sequence of E-observables,(hn)∞n=1 be a sequence
of the joint E-observables hn : B(Rn) → F of x1, x2, ..., xn (for n ∈ N), m : F →
[0, 1] be a P-state. The sequence (xn)∞n=1 is independent (with respect to m), if
for any n ∈ N and any C1, C2, ..., Cn ∈ B(R) there holds

m(hn(C1 × C2 × ... × Cn)) = m(x1(C1))...m(xn(Cn)).
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Definition 8. A sequence (xn)∞n=1 of E-observables is equally distributed, if
m(xn(A)) = m(x1(A)) for any n ∈ N and A ∈ B(R).

Theorem 5. (Central limit theorem)
Let (xn)∞n=1 be a sequence of independent, equally distributed, square integrable
E-observables, where E�(xn) = a�, (E�(xn) = a�) σ2

� (xn) = σ2
� , (σ2

� (xn) = σ2
� )

for each n ∈ N. Then for any t ∈ R there hold

lim
n→∞P�

(
x1+...+xn−na�

σ�

√
n

((−∞, t))
)

= 1√
2π

t∫
−∞

e−
u2
2 du,

( lim
n→∞P�

(
x1+...+xn−na�

σ�
√
n

((−∞, t))
)

= 1√
2π

t∫
−∞

e−
u2
2 du).

Proof. Theorem follows by the Theorem 4.1 in [8]. ��
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Abstract. Combining the results of a number of individually trained
classification systems to obtain a more accurate classifier is a widely
used technique in pattern recognition. In this article, we have introduced
a rough set based meta classifier (RSM). Theoretical analysis of the pro-
posed RSM is carried out in relation to Bayes classifier since Bayes clas-
sifier is the best classifier. It has been shown that the performance of
the meta classifier is at least as good as the best constituent classifier,
and if one of the base classifiers of RSM converges to Bayes then RSM
converges to Bayes classifier. Experimental studies show that the meta
classifier improves accuracy of classification and beats other ensemble
approaches in accuracy by a decisive margin, thus demonstrating the
theoretical results.

Keywords: Classification, Rough set, Ensemble classifier, Combination
method, Redundant classifiers, Meta data, Base-level classifier.

1 Introduction

Ensemble of classification is a method for improving accuracy in supervised
learning. Ensemble classifier combines the decisions of its constituent individual
classifiers to results in a new classification rule. One of the most active areas
of research in supervised learning has been to study methods for combining the
decisions for improving classification accuracy [1].

The work presented here focuses on performance of a rough set based ensem-
ble classifier which combines the predictions of base-level classifiers induced by
applying different learning algorithms to a single data set. It adopts the stacking
framework, where we have to learn how to combine the base-level classifiers.

While ensemble classifiers are accurate classifiers, there exists some problems
that may limit their practical application. One problem is the need for a large
number of base classifiers for achieving good performance. So an important line
of research, therefore, is to find ways of converting the informations from base
classifier into less redundant representations. Our approach tries to solve the
problem of representing less redundant ensemble classifier by using a rough set
based attribute reduction on the granular meta data generated by the decisions
of base classifiers (section 2.3).

It may be noted that, no ensemble classification technique existing in the lit-
erature ensures that it will work better than its constituent individual classifiers.

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 116–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In our article, it has been shown that the performance of the meta classifier is
at least as good as the best constituent classifier (section 2.3).

Another difficulty with an ensemble classifier is that the classifier provides
little insight into the correctness of the decision making process for the classi-
fication task. In this article, it has been shown that the rough set based meta
classifier is an optimal combination technique with respect to a quality measure
for evaluating combination techniques (section 2.3).

Comparison with respect to Bayes classifier is an effective way of evaluating the
performance of a classifier. It has been shown that if one of the base classifiers of
RSM converges to Bayes then the RSM converges to Bayes classifier (section 3).

In order to realize the specified objectives, section 2 describes the rough set
theoretic analysis of the meta-level patterns and a new meta classifier termed as
RSM. Sections 3 present the theoretical results of an RSM. Section 3 presents
comparison of RSM with relation to Bayes classifier. Finally, the classification
results of RSM on different data sets are reported in section 4.

2 Pattern Analysis of Meta-level Data in Rough Set
Framework

2.1 Rough Set Theory

Rough set theory was developed by Pawlak in the early 1980’s [2]. The rough set
theory is a mathematical framework for analyzing granular data. It deals with
the classificatory analysis of data tables. The main goal of the rough set analysis
is to synthesize approximation of concepts from the acquired data. The theory
sees the data in terms of equivalence classes i.e. partitions. A rough set is a set
of objects that cannot be uniquely represented by these equivalence classes since
the set only partly overlaps with at least one of them. It may be approximately
described either by the equivalence classes completely contained in the set (the
lower approximation) or the equivalence classes with at least one object in the
set [3] (the upper approximation).

2.2 Ensemble Classification Problem in Rough Set Terminology

In the problem of classification we train a learning algorithm and validate the
trained algorithm. This task is performed, using some test-train split on a given
labelled dataset. In the notion of rough set, let U be the given categorized dataset
and P = {C1, C2, ...., Ck} where Ci �= φ for i = 1, 2, 3..., k, ∪ki=1Ci = U and
Ci ∩ Cj = φ for i �= j and i, j = 1, 2, 3..., k, be a partition on U which provides
the given k categories of U . Output of a classifier determines a new partition on
U . In rough set terminology each class of the given partition P is a given concept
about dataset and output of a classifiers determines new concepts about the same
dataset. The given concepts can be expressed approximately by upper and lower
approximations constructed by generated concepts.
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2.3 Rough Set Meta Classifier (RSM)

The rough set meta classifier (RSM) is designed to extract decision rules from
trained classifier ensembles that perform classification tasks [4]. RSM utilizes
trained ensembles to generate a number of instances consisting of prediction of
individual classifiers as conditional attribute values and actual classes as deci-
sion attribute values. Then a decision table is constructed using all the instances
with one instance in each row. Once the decision table is constructed, rough set
attribute reduction is performed to determine core and minimal reducts. The
classifiers corresponding to a minimal reduct are then taken to form classifier
ensemble for RSM classification system. From the minimal reduct, the decision
rules are computed by finding mapping between decision attribute and condi-
tional attributes. These decision rules obtained by rough set technique are then
used to perform classification tasks. Following theorems exists in this regard.

– Theorem 1. Rough set based combination is an optimal classifier combina-
tion technique [4].

– Theorem 2. The performance of the rough set based ensemble classifier is
at least same as every one of its constituent single classifiers [4].

3 Comparison of RSM in Relation to Bayes Classifier

If prior probabilities and conditional density functions of the classes are known,
Bayes decision rule is known to be the best decision rule, since it minimizes
the probability of misclassification. However, in reality, the density functions
are generally not known. Thus several classifiers exist for doing classification.
However one needs to compare the performance of any proposed classifier with
Bayes classifier to verify its validity. The comparison may be done in several ways.
One way is to construct a few artificial data sets where the prior probabilities
and class conditional probability density functions are known, and then compare
the error rates of Bayes classifier with the proposed classifier. Another way is to
show theoretically that as the number of observations tends to infinity, the error
rate of the proposed classifier goes to the error probability of the Bayes classifier,
whatever may be the prior probability and class conditional probability density
functions are. In this article, we have chose the later one. In this section we shall
establish a few theoretical results in this regard.

3.1 Notations, Definitions and Assumptions

(1) Let the number of instances be n, number of classes be k, number of base level
classifiers be m and Un be the set of n given observations. Let Ω be the space of
all possible instances. Let π1, π2, . . . , πk be the prior probabilities of the classes
and p1, p2, . . . , pk be the corresponding continuous class conditional density func-
tions. Let (Ω1, Ω2, . . . ,Ωk) be a partition of the Ω. Let for the said partition,
the corresponding decision rule is: x is put in class i if x ∈ Ωi, 1 ≤ i ≤ k. Then
the probability of misclassifications of the partition (Ω1, Ω2, . . . , Ωk) denoted by
ε(Ω1, Ω2, . . . , Ωk), is defined as: ε(Ω1, Ω2, . . . , Ωk) = Σk

i=1πi
∫
Ωc

i
pi(x)dx.
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(2) Let p(x) = Σk
i=1πipi(x), p is known as mixture density function. Let

x1, x2, . . . , xn, ... be a sequence of independent and identically distributed ran-
dom vectors following p. Let yi = 1 if xi is misclassified using the decision rule
for the partition (Ω1, Ω2, . . . , Ωk), yi = 0 otherwise. Then it can be shown
from Strong Law of Large Numbers that ε̂n(Ω1, Ω2, . . . , Ωk) = 1

nΣ
n
i=1yi →a.e

ε(Ω1, Ω2, . . . , Ωk). It is also true that E( 1
nΣ

n
i=1yi) = ε(Ω1, Ω2, . . . , Ωk) ∀ n

where 1
nΣ

n
i=1yi is known as error rate for the partition (Ω1, Ω2, . . . , Ωk).

(3) Let Bayes classifier and RSM for n instances be represented by fnB and
fnRSM respectively. Let partitions on the sample space and population corre-
sponding to fnB be (PB1n, PB2n, . . . , PBkn), (ΩB

1 , ΩB
2 , . . . , ΩB

k ) respectively. And
partitions on the sample space and population corresponding to fnRSM be (PRSM1n ,
PRSM2n , . . . , PRSMkn ) and (ΩRSM

1n , ΩRSM
2n , . . . , ΩRSM

kn ) respectively. These nota-
tions have been followed throughout this section.

(4) Bayes decision rule is: put x in ith class if πipi(x) ≥ πjpj(x) ∀i �= j
(resolve ties arbitrarily). It has been shown that the Bayes decision rule pro-
vides minimum misclassification probability [5]. Error probability of any parti-
tion (ΩB

1 , ΩB
2 , . . . , ΩB

k ) of Ω based on n observations corresponding to Bayes
decision rule, is denoted by ε0.

(5) Let X and Y be two compact subsets of Ra, where a is the number of
features. The Hausdorff distance dH(X,Y ) is the minimal number r such that
the closed r-neighborhood of X contains Y and the closed r-neighborhood of Y
contains X . In other words, if d(x, y) denotes the Euclidean distance in Ra, then
dH(X,Y ) = max{supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y) }. The Hausdorff
distance between two general bounded subsets can be defined as the Hausdorff
distance between their closures.The Hausdorff distance between any two sets
with the same closure is zero.

(6) A classifier f is said to be convergent to Bayes classifier if dH(ΩO
in ∩

Un, Ω
B
i ∩ Un) → 0 as n → ∞, where (ΩO

1n, Ω
O
2n, . . . , ΩO

kn) is the parti-
tion of Ω corresponding to f based on n observations. Then it follows that
εn(ΩO

1n, Ω
O
2n, . . . , Ω

O
kn) →a.e ε0.

(7) We assume that, for a partition (Ω1, Ω2, . . . , Ωk) of Ω, each Ωi is compact.
This assumption is possible because sets considered in real life are generally
bounded and inclusion of boundary points in a set would generally not change
their probability because the probability density functions are continuous.

3.2 Theorems

Theorem 3: If one of the base classifiers of RSM converges to Bayes then RSM
converges to Bayes classifier.

Proof: Let ΩO
n = {ΩO

1n, Ω
O
2n, . . . , Ω

O
kn} be the partition corresponding to the

classifier for the given set of n points which converges to Bayes. Therefore,
dH(ΩO

in ∩ Un, Ω
B
i ∩ Un) → 0 as n → ∞, where dH is the Hausdorff metric.

Now, since SPt belongs to a finer partition of Ω than Ωo
n, for any SPt ∈ SP

SPt ∩ (ΩO
in ∩ Un) = SPt or SPt ∩ (ΩO

in ∩ Un) = φ.
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Since, dH(ΩO
in ∩ Un, Ω

B
i ∩ Un) → 0 as n → ∞.

Therefore, ΩO
in = {x : πipi(x) ≥ πjpj(x), ∀1 ≤ i, j ≤ k&j �= i} almost

everywhere as n → ∞.
For any SPt ∈ SP , SPt is assigned to class i

⇔ |SPt ∩ Pi| ≥ |SPt ∩ Pj | ∀ j �= i,

where |.| denotes cardinality of a set. Now, 1
n

∑
x∈SPt

P (ci|x) is an unbiased
estimate of |SPt∩Pi|

n and 1
n

∑
x∈SPt

P (cj |x) is an unbiased estimate of |SPt∩Pj |
n .

Therefore, ∑
x∈SPt

P (ci|x) ≥
∑
x∈SPt

P (cj |x) ∀ j �= i.

Let ξi = {SPt : |SPt ∩ Pi| ≥ |SPt ∩ Pj | ∀j �= i} and αi =
⋃
SPt∈ξi

SPt ∀i.
Note that, |SPt ∩ Pi| ≥ |SPt ∩ Pj | ∀j �= i and SPt ∩ (ΩO

j0n
∩ Un) = SPt for

some j0 �= iis not possible, since ∀x ∈ ΩO
j0n

∩ Un ⇒ P (cj0 |x) ≥ P (ci|x) ∀i �= j0
as n → ∞ ⇒ |SPt ∩ Pj | ≥ |SPt ∩ Pi| ∀i �= j as n → ∞.

Similarly, |SPt ∩ Pi| ≤ |SPt ∩ Pj | ∀j �= i and SPt ∩ (ΩO
in ∩ Un) = SPt is not

possible for sufficiently large n.
Now we have∑

x∈αi

P (ci|x) ≥
∑
x∈αj

P (cj |x) ∀ j �= i for sufficiently large n.

Average misclassified points for class i or misclassification rate for class i for
RSM classification,

=
1
n

∑
x∈αi

k∑
t=1,t�=i

P (ct|x) for sufficiently large n.

Average misclassified points or misclassification rate for RSM classification,

=
1
n

k∑
i=1

∑
x∈αi

(1 − P (ci|x)) for sufficiently large n.

This is a consistent unbiased estimate of,

1
n

k∑
i=1

∑
x∈ΩB

i ∩Un

(1 − πipi(x)∑k
t=1 πtpt(x)

) →a.e. ε0.

Therefore,
1
n

k∑
j=1

∑
x∈αi

∑k
i=1,i�=j πipi(x)∑k
t=1 πtpt(x)

→a.e. ε0.

Hence the theorem is proved.
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3.3 Remark

Generally k-nearest neighbor classifier estimates the Bayes error rate within a
bound. Therefore considering k-nearest neighbor classifier as one of the base
classifiers of RSM is an easy way of getting good classification results using
RSM.

4 Experimental Results

The main goal of the experiments we performed is to evaluate the performance
of RSM, especially in comparison to other methods for combining classifiers,
such as bagging, boosting, voting and stacking with other machine learning ap-
proaches. We also investigate the use of different meta-level attributes in RSM.
We performed experiments on a collection of data sets from the UCI Repository
of Machine Learning Databases and text corpus data sets. These data sets have
been widely used in other comparative studies. We listed all the base-level and
meta-level learning algorithms used in this study and compared the performance
of meta-level learning algorithms.

4.1 Base-Level Algorithms

Five learning algorithms have been used in the base-level experiments: tree-
learning algorithm C4.5 [6], the rule-learning algorithm CN2 [7], the k-nearest
neighbor (k-NN) algorithm [8], support vector machine (SVM) [9], and naive
bayes method [10]. All algorithms have been used with their default parameters
settings. The output of each base-level classifier for each example in the test set
is the predicted class.

4.2 Meta-level Algorithms

At the meta-level, we evaluate the performances of six different algorithms for
constructing ensembles of classifiers. Four of these make use of exactly the same
set of five base-level classifiers induced by the five algorithms from the previous
section. These four classifier combination techniques are P-vote [11], SCANN
[12], MDT [13] and DECORATE [14]. P-vote algorithm performs stacking [11]
with simple plurality vote. SCANN [12] performs stacking with nearest neighbor
after analyzing dependencies among the base-level classifiers. MDT corresponds
to meta decision tree learning algorithm [13]. DECORATE stance for Diverse En-
semble Creation by Oppositional Relabeling of Artificial Training Examples [14].
In addition, boosting [15] and bagging [16][17] of decision trees are considered,
which create larger ensembles (100 trees). The competitive ensemble classifiers
considered here are well known for their good performance. Accuracy of RSM
with five heterogeneous base classifiers, and the accuracies of other methods are
shown in table 1.
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Table 1. Percentage of correct classification of RSM with other ensemble classifiers

Dat
a set

Bag
gin

g

Ada
Boo

st

P-
vo

te

SC
ANN

M
DT

DEC
ORAT

E

S-
RSM

australian 86.75 86.77 86.41 86.41 85.30 85.05 88.23
balance 83.46 75.47 85.95 89.71 92.91 92.92 94.04
breast-w 95.54 96.78 96.22 96.22 95.30 97.37 97.89
bridges-td 85.27 81.92 86.14 86.14 84.00 84.49 87.31
car 93.61 96.90 93.81 94.12 95.38 94.49 97.53
chess 99.44 99.68 99.05 99.05 99.48 99.44 99.62
diabetes 76.59 74.41 76.73 76.71 76.68 77.31 78.27
echo 69.29 65.29 68.63 67.60 67.29 67.46 70.50
german 75.54 74.39 74.42 74.63 73.21 75.45 76.41
glass 76.03 79.23 71.29 71.61 69.91 67.51 80.65
heart 81.04 79.89 83.48 84.03 80.02 84.20 85.28
hepatitis 82.98 83.50 82.64 84.12 81.64 83.37 85.13
hypo 99.24 98.94 98.99 99.18 99.22 99.28 99.51
image 97.65 98.64 97.63 98.05 97.38 96.72 99.07
ionosphere 93.02 93.99 91.37 92.42 90.19 89.88 94.22
iris 94.20 94.47 96.00 96.14 97.53 97.53 98.72
soya 93.23 93.38 93.57 93.80 93.87 94.32 95.03
tic-tac 94.88 99.15 90.06 96.28 97.20 98.51 99.18
vote 96.32 95.68 96.04 96.04 94.74 96.16 97.86
waveform 83.66 84.77 85.65 85.89 85.94 86.02 87.94
wine 96.17 96.91 98.48 98.59 97.96 97.96 99.24

4.3 Statistical Significance of the Results Corresponding to Table 1

Tests of significance were performed for the equality of means (of the accura-
cies) obtained using the RSM and the other ensemble classification techniques
compared. Since both mean pairs and the variance pairs are unknown and dif-
ferent, a generalized version of t-test is appropriate in this context. The above
problem is the classical Behrens-Fisher problem in hypothesis testing [18]. The
level of significance considered, is 0.01. The accuracies obtained by our method
are found to be significantly better than all other methods considered, on all
datasets except for chess data, where our method is found to be not significantly
different with AdaBoost classifier.

5 Conclusion

RSM views a classifier’s output as a partition on the dataset. It tries to find the
effectiveness of classifiers to build the combination classifier. Our method uses
decision rules to make final prediction about the category of data instances. It
has been shown mathematically that RSM is an optimal combination scheme,
and is at least as good as the best base learner in terms of classification accuracy.
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Experimental studies show that it provides more accurate classifications of the
datasets than other ensemble classification techniques.
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Abstract. The paper describes an application of a fuzzy one-class clas-
sifier (FOC) for the identification of different signal patterns embedded
in a noise structured background. The classification phase is applied af-
ter a preprocessing phase based on a Multi Layer Model (MLM) that
provides a preliminary signal segmentation in an interval feature space.
The FOC has been tested on synthetic and real microarray data in the
specific problem of DNA nucleosome and linker regions identification.
Results have shown, in both cases, a good recognition rate.

1 Introduction

Classification algorithms are usually based on a training set, where both positive
and negative examples are considered. However, in many cases either only posi-
tive examples are available or the two classes are very much unbalanced. Within
these hypothesis, we talk about Novelty or Outlier Detection, and more generally,
One Class Classification [1]. One-class classifiers have been introduced in order to
discriminate a target class from the rest of the feature space using only the target
training examples. Generally, the classical approach is based on finding the small-
est volume hypersphere (in the feature space) that encloses most of the training
data. Many real cases needs the use of such approach to classification: documents
analysis [2], masquerader intrusion detection [3],[4],[5] facial expression [6], on-
line signature verification [7], signal identification [8], showing also, in [4,7] that
the combination of several one-class classifiers may improve the overall perfor-
mances. In this paper, a fuzzy one class classifier (FOC) [4], is applied in order
to identify signal patterns slightly differentiated and embedded in a noise struc-
tured background. Examples of such kind of signal are those provided by microar-
ray data of the Saccharomyces cerevisiae [9], where the goal, in this case, is the
identification of nucleosomes and linker regions across DNA. This problem is very
challenging because nucleosomes are the fundamental repeating units of eukary-
otic chromatin and their organization can result in a variety of diseases, including
cancer [10,11,12]. To measure nucleosome positions on a genomic scale a DNA mi-
croarray method has been developed [9], allowing, to represent microarray data
as a signal of green/red ratio values that shows nucleosomes as peaks of about 150
base pairs long, surrounded by lower ratio values corresponding to linker regions.
Note that the identification of nucleosomes as patterns around peaks, is not simple

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 124–131, 2009.
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Fig. 1. (a) Input Signal: The input signal is the logarithmic ratio of the green channel
to red channel value for each spot of the microarray. Nucleosomes correspond to peaks
(marked by black circle), surrounded by lower ratio values corresponding to linker
regions (marked by dashed circles) that are nucleosome free. (b) Pattern identification
and extraction: In this example 6 patterns are retrieved, identified by rhombus, circle,
square, triangle down, triangle up, star. Each pattern identifier is replicated for each
of its feature values and pointed in each one of its middle point.

because of noise in the data signal and large-scale trends in mean hybridization
values. Therefore, a Hidden-Markov Model (HMM) approach has been used to
discriminate two classes of patterns, the well positioned nucleosomes (WPN) and
the linkers (LN). However, this approach suffers from the constrain imposed by
its static topology, as a consequence lots of potential good input data are discarded
from the analysis. Moreover, this method does not take into account the shape in-
formation of the green/red ratio values. For an example of an input signal which
also shows the two pattern classes see Figure 1a.

The fuzzy one-class classifier is applied after a preprocessing phase, based on
a Multi Layer Model (MLM) [13,14] that provides a preliminary signal segmen-
tation in an interval feature space. In this work the FOC has been tested on
real microarray data of the Saccharomyces cerevisiae, showing a good accordance
with the HMM for nucleosome and linker regions discrimination. The paper is
organized as follow: Section 2 describes the FOC classifier and its assessment;
the MLM preprocessing phase is outlined in Section 3; in Section 4 the adapta-
tion of the MLM on a particular biological problem is outlined and the results
of the FOC on real biological data are shown; final remarks and discussion are
given in Section 5.

2 Fuzzy One Class Classifier

A classifier for an M classes problem can be defined as a mapping from the set
of observation X to a set of labels Y = {y0, · · · , yM−1}. In the case of supervised
classification, the classifier is based on a training (learning) set T (m) for each
class 0 ≤ m ≤ M − 1, moreover, if ym ∈ {0, 1} we talk about crisp classifiers,
otherwise, if ym ∈ [0, 1], about fuzzy classifiers.
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In the specific case of binary classifiers (M = 2), the fuzzy classifier can
be defined by a membership function μm : X → [0, 1] for each m = 0, 1. In
particular, one class classifiers are binary classifiers able to learn by using the
training set TU = {t1, t2, .., tR} of the target class only. Generally, a classifier
can be defined by using a proper dissimilarity function, δ between elements in
X . By using δ, we can define the set Δ = {δ(x, x′)|x, x′ ∈ TU , x �= x′} of all the
difference between distinct elements of TU , and estimate the p.d.f. of Δ, fΔ by
kernel density estimation. Finally, the proposed new fuzzy one class classifier,
called FOC, is based on a fuzzy membership function μ0 of an unknown element,
x, defined as it follows:

μ0(x, a, b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, δ(x, ·) ≤ a

2 ∗ (b− δ(x,·)
b−a )2, a ≤ δ(x, ·) ≤ a+b

2

1 − 2 ∗ ( δ(x,·)−ab−a )2, a+b
2 ≤ δ(x, ·) ≤ b

1, δ(x, ·) ≥ b

Where δ(x, ·) = Σy∈TU ,x �=yδ(x, y)/|TU | is the average dissimilarity of x in TU .
Ultimately, the performance of the FOC depends on the values of a and b, such
value can be set by properly using fΔ, depending on the classification problem
to solve. Finally, the defuzzification phasecan be done by a simple threshold at
a fixed value α. More formally:

χ0(x, a, b, α) =

{
1, μ0(x, a, b) > α

0, otherwise
(1)

Where χ0 defines the crisp membership to the target class, while χ1 = 1 − χ0
the membership of the class of negatives. In section 4 the details about the
choice of a,b and α on the specific biological problem of nucleosome positioning
is described.

3 Multi Layer Model

In this section an outline of the MLM for the analysis of mono-dimensional
signal is provided. It can be considered a preliminary step that provides to the
one-class classifier the proper feature space and input pattern to be classified.
The MLM procedure is carried out as follows:

Preprocessing. A preprocessing is necessary in order to reduce the effect of
the signal noise. Starting from the input signal, S, each fragment St, 1 ≤ t ≤ T ,
is convolved by a generic kernel window. After this process, X represents the
convolved signal.

Training set and model construction. A model set M = {Xt|Xt ⊆ X} is built
by extracting subsignals Xt of the convolved signal X that satisfy a particular
set of conditions. Such conditions are defined with respect to the shape of the
pattern we want to identify. For example, in the case of the signals resulting
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from tiling microarray data, we select particular bell shaped subsignals centered
on the local maxima of the input signal.

Interval identification.The core of the method is the interval identification by
consideringH threshold levels th (h = 1, ..., H) of the convolved signalX. For each
th a set of intervalsRh =

{
I1
h, I

2
h, · · · , I

nh

h

}
is obtained; where, Iih = [bih, e

i
h], where

bih, e
i
h are the lower and upper limits of the interval and X(bih) = X(eih) = th.

Interval merging, pattern definition and selection. This step is performed by
taking into account again the shape of the pattern to classify. In particular, a set
of rules R on the intervals extracted in the previous step is defined respecting
several conditions inspired from the knowledge of the pattern to search (shape,
persistence, etc.). The application of such rules on the set of intervals R =
{Rh|1 ≤ h ≤ H} groups such intervals, defining the patterns:

Pi = {Iijj , I
ij+1
j+1 , · · · , I

ij+l

j+l | R(Iijj , I
ij+1
j+1 , · · · , I

ij+l

j+l ) is satisfied}

Feature extraction. Each pattern Pi is identified by I
ij
j , · · · , Iij+l

j+l . Straightfor-
wardly, the feature vector of Pi is a 2 × l matrix where each column represents
the lower and upper limits of each interval from the lower threshold j to the up-
per threshold j + l. The representation in this multi-dimensional feature space
is used to characterize different types of patterns.

Dissimilarity function. A dissimilarity function between patterns is defined in
order to measure their dissimilarity. This is fundamental in the case of Classifi-
cation.

4 Experiments and Results

The FOC has been tested on mono-dimensional signals provided by microarray
data of Saccharomyces cerevisiae DNA [9]. Here, the goal is the identification
of nucleosomes and linker regions. In particular, each spot of the microarray
represents a probe i of resolution r = 50 base pairs overlapping o = 20 base
pairs with probe i + 1. The microarray follows the tiling approach, where the
chromosome is spanned by moving a window (probe) i of width r base pairs
from left to right, measuring both the percentage of mononucleosomal DNA Gi
(green channel) and whole genomic DNA Ri (red channel) within such window,
respecting also that two consecutive windows (probes) have an overlap of o base
pairs. The resulting signal V (i) for each probe i is the logarithmic ratio of the
green channel Gi to red channel Ri. Intuitively, nucleosomes presence is related
to peaks of V which correspond to higher logarithmic ratio values, while lower
ratio values shows nucleosome free regions called linker regions.

4.1 MLM Rules on Biological Data

The key steps of the MLM are the Training set and model construction, the
Interval merging, pattern definition and selection, which have to be defined in
a personalized way depending on the property of the pattern to retrieve. In
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the following, these steps are defined in the case of the mono-dimensional sig-
nal showing nucleosome positioning information. Note that, in such case, the
Preprocessing phase consists in a convolution by an averaging kernel window
w = [14 ,

1
2 ,

1
4 ].

Training set construction. Since we know that WPN are shown as peaks of
a bell shaped curve, in order to locate the position of a nucleosome, all local
maxima of the input signal are automatically extracted from the convolved signal
X of S. Each convolved fragment Xt is processed in order to find L(Xt) local
maxima M

(l)
t for l = 1, · · · , L(Xt). The extraction of each sub-fragment for each

M
(l)
t is performed by assigning all values in a window of radius os centered in

M
(l)
t to a vector, F lt of size 2 × os + 1: F lt (j) = Xt(M

(l)
t − os + j − 1), for

j = 1, 2, ..., 2× os+1. The selection of the significant sub-fragments - to be used
in the model definition - is performed by satisfying the following rule:{

F lt (j + 1) − F lt (j) > 0 j = 1, · · · , os
F lt (j + 1) − F lt (j) < 0 j = os + 1, · · · , 2 × os

(2)

After the selection process G(Xt) sub-fragments remain for each Xt. The
training set of the interesting pattern is TU = {F lt |1 ≤ t ≤ T , 1 ≤ l ≤ G(Xt)}.

Interval merging and pattern definition. This step is performed by taking in
account that bell shaped pattern must be extracted for the classification phase.
Such kind of patterns are characterized by sequences of intervals

{
I1
j , · · · , Inj+l

}
such that Iij ⊇ Ii+1

j+1; more formally a pattern Pi is defined as:

Pi = {Iijj , I
ij+1
j+1 , · · · , I

ij+l

j+l | ∀Iihh ∃!I ∈ Rh−1 : I = I
ih−1
h−1 ⊇ Iihh }

where, j defines the threshold, tj , of the widest interval of the pattern. From the
previous definition it follows that Pi is build by adding an interval Iih+1

h+1 only if
it is the unique in Rh+1 that includes Iihh . Note that, this criterion is inspired
by the consideration that a nucleosome is identified by bell shaped fragment of
the signal, and the intersection of such fragment with horizontal threshold lines
results on a sequence of nested intervals.

Pattern selection. In this step the interesting patterns P(m) are selected fol-
lowing the criterium:

P(m) = {Pi : |Pi| > m}
i.e. patterns containing intervals that persists at least for m increasing thresh-
olds. This further selection criterion is related to the height of the shaped bell
fragment, in fact a small value of m could represents noise rather than nucleo-
somes. The value m is said the minimum number of permanence.

Dissimilarity function. A dissimilarity function between patterns is defined in
order to characterize their shape:

δ(Pr , Ps) =
H∑
h=1

(arh

h − ash

h ) (3)

where arh

h = erh

h − brh

h , ash

h = esh

h − bsh

h .
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Fig. 2. Best Accuracy and FPR values versus SNR

In particular, this dissimilarity is a distance that takes into account the shape
of a pattern. An example of signal and the relative interesting patterns is given
in Figure 1b.

4.2 Results

The following experiments have been carried out by measuring the correspon-
dence between Nucleosome and linker regions. In the case of the synthetic signal,
the output of the classifier has been compared with a binary mask M revealing
the real nucleosomal (linker) regions RNR (RLR) as contiguous sequence of 1’s
(0’s)., in the case of the real data set the mask M is built by the output of the
Hidden Markov model (HMM) used in the paper of Yuan et Al [9] optimally
converted into a binary string, and considered as truth.

Moreover, by biological consideration, the radius os has been set to os = 4.
The performances have been evaluated in terms of Recognition Accuracy, RA:
a nulceosomal (linker) region CNR (CLR) is classified correctly if there is a
match of at least l = 0.7×L contiguous 1’s (0’s) between CNR (CLR) and the
corresponding RNR (RLR) in M where L is the length RNR (RLR). The value
0.7 has been chosen because it represents a 70% of regions overlap very unlikely
to be due to chance. Moreover, the parameters b,a,α of the FOC has been set
to b = E(Δ),a such that fΔ(a) = 10−5 and α = 0, 5. The choice of a and
b is motivated by the fact that the distribution fDelta has resulted very close
to a normal distribution, thus b represent the mean value, and a is the 10−5
critical value. The value of α = 0, 5 has been decided because the condition
μ0(x, a, b) > α corresponds to the defuzzification by the highest membership
since χ1 = 1 − χ0 (see eq. 1).

4.3 Results on Synthetic Data

Such experiments allows to test the robustness of the FOC to signal noise. A
procedure to generate synthetic signal has been recently developed allowing us
to assess the feasibility of our method on controlled data. For details about
the procedure and the setting parameters see [8,14]. All parameters used in
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the generation of synthetic data have been inspired by biological considerations
and are nn = 200, nl = 250, λ = 200, r = 50, o = 20, nr = 100, dp = 0,
dr = 0, pur = 0.8, nsv = 0.01, SNR = {1, 2, 4, 6, 8, 10} and ra = 4, resulting
in 6 synthetic signals at different SNR. The training set TU is represented by
all WPN ’s that fit better the conditions in Eq. 2 with os = 4, because, by
biological consideration, we know that a nucleosome is around 150 base pairs
which corresponds to 8 probes. Thus, the training set TU and consequently its
size TL, are automatically selected by the MLM depending on the generated
input signal, resulting that, for the specific experiments reported here, TL =
{63, 98, 127, 142, 145, 147} for SNR = {1, 2, 4, 6, 8, 10} respectively. The optimal
parameters for the MLM are derived by a calibration phase described in [13]
and have resulted H = 40 and m = 6. The performances have been evaluated
measuring the correspondence between the classified WPN or LN regions and
the ones imposed in the generated signal. Fig. 2 reports the best Accuracy and
FPR values versus SNR. From this study, it results that the average accuracy
and FPR over the 6 experiments is 94% and 12% respectively.

4.4 Results on Real Data

In this experiment, we have compared the accordance of the FOC with the Hidden
Markov model (HMM) used by Yuan et Al [9] on the Saccharomyces cerevisiae
real data. The training set TU has been decided as described above, moreover, we
have chosen H = 40, m = 6 by the calibration phase (m = 0.15×40). and, by bio-
logical consideration, the radius os has been set to os = 4. The confusion matrices
which show the RA ofHMM considering FOC as the truth classification and RA
of FOC consideringHMM as the truth classification are reported in Table 1. The
results can be summarized in an overall RA of (0.82) for the HMM (FOC true)
and 0.69 for FOC (HMM true). From this studies we can conclude that FOC
does not fully agree with HMM on the nucleosome patterns. In particular, the
FOC recognizes most of the nucleosomes classified by HMM , and other patterns
that could be nucleosomes too. Such considerations indicate that the integration
of the two methods could improve the overall classification.

Table 1. Agreement between the HMM and FOC (and viceversa) on the Saccha-
romyces cerevisiae data set for Nucleosomes (N) and Linker (L) regions. The table on
the left shows the RA results of HMM when considering FOC as the truth classifica-
tion, while the opposite is shown on the right table.

F O C H M M

H L N F L N
M L 0.77 0.23 O L 0.54 0.46
M N 0.13 0.87 C N 0.15 0.85

5 Final Remarks

In this paper we have shown that a fuzzy One class classifier, by using the pre-
processing of the Multi Layer method, is able to distinguish between nucleosome
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and linker patterns in the particular problem of the nucleosome positioning. We
have performed our experiment on a real and synthetic data-set, comparing, in
the real case the result of the new classifier with an HMM classifier recently
used for the same purpose. In the future we aim to properly integrate the two
methods of classification (HMM and MLM) in the same biological problem in
order to increase the overall classification performances.

References

1. Tax, D.M.J.: One-class classification, Ph.D. thesis (June 2001)
2. Manevitz, L., Yousef, M.: One-Class SVMs for Document Classification. Journal

of Machine Learning Research 2, 139–154 (2001)
3. Wang, K., Stolfo, S.J.: One-Class Training for Masquerade Detection. In: Workshop

on Data Mining for Computer Security, Melbourne, Florida, November 19-22, 2003,
pp. 10–19 (2003)
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13. Corona, D.F.V., Di Gesú, V., Lo Bosco, G., Pinello, L., Yuan, G.C.: A new Multi-
Layers Method to Analyze Gene Expression. In: Apolloni, B., Howlett, R.J., Jain,
L. (eds.) KES 2007, Part III. LNCS, vol. 4694, pp. 862–869. Springer, Heidelberg
(2007)
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Abstract. Measuring the similarity between clusterings is a classic problem with
several proposed solutions. In this work we focus on measures based on co-
association of data pairs and perform some experiments to investigate whether
specificities can be highlighted in their behaviour. A unified formalism is used,
which allows easy generalization of several indexes to a fuzzy setting. A selec-
tion of indexes is presented, and experiments investigate simplified cases and a
paradigmatic real-world case, as an illustration of application.

1 Introduction

Fuzzy clustering [1] is a well established procedure and a useful data analysis tool,
often providing more flexibility and expressive power than crisp techniques. In general,
clustering quality assessment is a problem without a satisfactory solution [2] due to the
unsupervised nature of the task. Several cluster validity indexes [3,4] take into account
cluster size and composition. However, if we have additionally class labels available,
comparisons may be performed according to this external information, although the fact
that these reflect the natural grouping of the data is only to be regarded as a working
hypothesis. Another form of quality assessment for clusters is stability analysis [5],
where comparison is necessary to evaluate cluster variability.

Cluster similarity (or diversity) can also be used to achieve better performance by
ensemble clustering [6]. Another use of cluster comparison is biclustering [7] i.e., clus-
tering rows and columns at the same time. Fuzzy biclustering [8] is available. In both
crisp and fuzzy cases, many methods only produce one bicluster for each run, so the
question arises of whether two biclusters are similar enough to be considered the same.

In all these examples, the problem may be reduced to measuring the similarity be-
tween two fuzzy partitions. In this paper, we analyze some methods to compare fuzzy
partitions. The contributions of this work consist in:

– A unified formalism useful for the implementation of several clustering comparison
indexes, which are all represented by means of co-association matrices;

– The use of this framework to generalize several indexes to a fuzzy setting; some
indexes are presented, but the generalization can be extended to many other cases;

– Some experimental insight on the behaviour of these indexes in both simplified
cases, where the relationship between the partitions is clear, and a paradigmatic
real-world case, as an illustration of application.
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2 Measures Based on Data Pairs

Clustering induces a partitions of the data, so measuring the agreement or overlap be-
tween two clusterings amounts to measuring the similarity between two partitions.

There are several partition similarities available in the literature. A first distinction
can be made between pairwise similarity indexes, which apply to pairs of partitions, and
non-pairwise ones, which can work on an arbitrary number of partitions. The difference
is of a practical nature only, since in principle a non-pairwise index can always be
obtained by computing a pairwise index for all possible pairs, and then averaging.

A more fundamental distinction refers to the way partitions are compared. The two
main approaches include comparing matching subsets, and comparing co-association
information. The first approach is not reliable when the partitions are not very similar,
and in any case require some criterion for matching subsets. In principle, we can expect
these methods to be of linear complexity w.r.t. data cardinality.

In this study, we concentrate on the second approach. Co-association information is
obtained by analyzing whether pairs of points in the data set are co-attributed to the
same cluster by both partitions. These methods require building a co-association matrix
[9], by scanning all possible data pairs, so they run quadratically with cardinality.

Given a data set X , suppose we have two fuzzy or soft partitions A and B of X . Soft
partitions means that ∀x ∈ X there is a membership μ(x, ai) for each subset ai ∈ A
(similarly for B – and this comment applies throughout). We assume normal mem-
berships. For a proper partition we ask that

∑
i μ(x, ai) = 1. (Note that possibilistic

subsets –not proper partitions– are also possible by removing this constraint.)
Each data point is thus represented by a coordinate vector, whose dimension is the

number of subsets (clusters) in the partition, and whose components are the membership
values, which we assume normalized in [0, 1]. Each data pair is described by the degree
of similarity between the two objects x and y under the partition A.

Similarity of strings of memberships can be measured by Hamming distance for
crisp bits, which is equivalent to summing the bits of the bitwise-AND between the
two words. The fuzzy generalization of this operation is defined once we appropriately
define the conjunction connective AND [10]. We adopt the product t-norm [11], which
is appealing because it is related to the scalar product operation between vectors, which
in turn can be used to define popular distance measures, and also to the concept of
a joint probability. This allows some generality in the indexes studied, although the
product logic arising from this particular choice does not have some of the properties
found in other cases [12] (e.g., Gödel or Łukasiewicz fuzzy logics). In particular, some
of the derivations have been obtained by assuming a specific relationship between the
AND and OR connectives which is not necessarily satisfied by all possible definitions.

Given two fuzzy memberships/truth values μ and ν, the conjunction logical connec-
tive is defined as μAND ν = μν. The co-association of a given pair of data points to
a given cluster ai is the conjunction of the respective point memberships to ai, and the
degree of similarity of two points is the average of these values. The co-association
matrix sA under partition A is:

sAij = sA(xi, xj) =
|A|∑
l=1

μ(xi, al)μ(xj , al) (1)
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Note that in the crisp case this definition collapses to the proposition “partition A
puts x and y in the same cluster”, but in the fuzzy case it is necessary to take all clusters
into considerations because, in general, none of them will be exactly zero or one.

3 Indexes

Once the co-association matrices sA and sB are built, we can treat their entries as two
paired samples and compare them with appropriate measures.

To simplify notations, we will serialize the matrices sA and sB so that they may be
indexed as vectors, so that: sAij = σAh . To avoid redundancy, the index h scans only the
upper triangular matrix, excluding the diagonal (which is trivial), so i ∈ [1, |X | − 1],
j ∈ [i + 1, |X |], and h = |X |(i − 1) − i(i + 1)/2 + j. Moreover, we define H =
|X |(|X | − 1)/2 so that h ∈ [1, H ].

Indexes of partition similarity based on the co-association matrix can be computed
by several approaches. Some of them are reviewed in [13] and some are experimentally
compared in [6]. These may include Ward’s linkage criterion [14], Student’s t formula
[15], information-theoretic criteria as in [6] and [13], and well-known partition overlap
measures like Jaccard’s [16] or Rand’s [17] or Fowlkes and Mallows’ [18] indexes, and
subsequent work [19].

In general, measures for paired samples can be based on different criteria. Methods
like Ward or Student are focused on comparing average and dispersion of the two sam-
ples. Another approach is to compute some statistic on the differences between the two
data in each pair (that is, σAh − σBh ∀h). Yet another criterion is to exploit the [0, 1]
range of the values and analyze other types of combination between data, as in the
Pearson correlation and the Jaccard index. We will focus on some indexes which are
representative of each approach.
Average linkage – This measure of distance is based on comparing the centroids of two
sets, i.e., on computing the average of the two sets and measuring their distance.

This criterion is simple-minded, since it is prone to false positives: two sets with the
same centroid are considered coincident even if one has a larger variance than the other.
However, for normalized data, it may be reasonable.
Correlation – The standard Pearson correlation coefficient, a measure of similarity:

corr =
1
H

∑
h(σ

AσB) − 1
H

∑
h(σ

A) 1
H

∑
h(σ

B)√
1
H

∑
h((σA)2) −

( 1
H

∑
h(σA)

)2 √ 1
H

∑
h((σB)2) −

( 1
H

∑
h(σB)

)2 (2)

Since this is a similarity measure between -1 and 1, the correlation distance is

C(A,B) = (1 − corr)/2. (3)

Jaccard – The Jaccard coefficient [16] is a classic measure of set similarity, and one of
the most general. It is the ratio of the intersection of two sets to their union: J(A,B) =
|A ∩B|/|A ∪B|. In the crisp case, this pairwise index can be practically computed by
counting the number N11 = |A∩B| of points put in the same cluster by both partitions,
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the number N10 of points assigned to the same cluster only by partition A, and the
number N01 similarly defined, so that N10 + N01 + N11 = |A ∪B| and

J(A,B) =
N11

N10 + N01 + N11
. (4)

In the fuzzy case, the concept of coincidence must be redefined as a degree of coinci-
dence. By taking advantage of the reasonable assumption that a generalization of De
Morgan’s law holds, for the product t-norm we can define the associated disjunction
operator as the probabilistic sum t-conorm, so that μOR ν = μ + ν − μν. Therefore,
in terms of σA and σB , the actual computation in this case is:

A ∩B =
∑
h

σAh σ
B
h and A ∪B =

∑
h

(
σAh + σBh − σAh σ

B
h

)
(5)

The Jaccard distance between A and B is 1 − J(A,B).
Student distance – This index exploits the well-known Student’s t statistic to obtain a
distance measurement which takes into account not only the estimated overlap, but also
its significance in terms of variance.

S(A,B) =

(∑
h |σAh − σBh |

)
0.5 +

∑
h |σAh − σBh |2/H − (

∑
h |σA − σB |/H)2

(6)

With respect to the Student’s t formula, this is compensated to avoid a vanishing de-
nominator.
The Rand index – This index was explicitly proposed for comparing clusterings [17],
but it is computed similarly to the Jaccard index which was introduced in a more generic
setting. It is defined as

R(A,B) =
∑
h(σ

A
h + σBh ) + 1
H

(7)

4 Experiments

We present some experiments aimed at highlighting the behaviors of these indexes.
We use three kinds of data: two families of simple datasets, represented through the
membership (directly as partitions, regardless of how they were obtained); then we use
the Iris data set as an illustration of real-world application.

4.1 Experiments with Toy Problems

Experiment set 1 – The aim of this experiment set is to compare several synthetic par-
titions. The family of toy datasets used is composed of 20 data objects in 2 partitions,
one of 2 clusters, the other of 3 clusters. The presented methods are insensitive to the
number of clusters in partitions, although this sensitivity may be easily introduced. The
datasets used are tabulated in Table 1. Table 2 presents the results.
Experiment set 2 – The second toy dataset family is composed of 20 data objects; 2
partitions of 2 clusters each are used. The second partition is fixed as follows:
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Table 1. The family of datasets used in the first experiment set

toy0

A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B
1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

toy1

A
1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0

toy2

A
0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

B 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

toy3

A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8 0.8 0.8 0.8

toy4

A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

toy5

A 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 1.0 1.0 1.0 1.0 1.0

B 1.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0

object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
cluster1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
cluster2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

In the first experiment of this set we investigate the variation of indexes in a crisp
case. The data start equally clustered in both cases (two equal partitions). Then, in 10
further steps, each data object is moved from one cluster to the other in the first partition;
the second is left as is. In the second experiment, the variation of indexes in a simple
fuzzy case is analyzed. The partitions start identical, with data equidistributed in the two
clusters. One data object in the first partition is gradually moved from the first cluster
to the second by changing its memberships in steps of 0.1, as follows:

step 0 1 2 3 4 5 6 7 8 9 10
cluster1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
cluster2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The third experiment involves changing the memberships of all data in a partitions
from crisp to totally fuzzy, i.e., in the first partition all memberships of the first 10
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Table 2. Results on the first toy problem set

Average Rand Student Correl. Jaccard
toy0 0.0000 0.0000 0.0000 0.0000 0.0000
toy1 0.8497 0.4248 0.5707 0.8211 0.6566
toy2 0.0000 0.4352 0.0000 0.0000 0.5976
toy3 0.4455 0.2227 0.3845 0.1610 0.4207
toy4 1.0980 0.5490 0.7344 1.0811 0.8000
toy5 0.9707 0.4854 0.8205 0.9489 0.7595

Fig. 1. Results on the second experiment set

points in the first cluster are gradually moved from 1 to 0.5 and all memberships of
points 11-20 are moved from 0 to 0.5; memberships in the second cluster are obviously
complementary. The second partition is held fixed.

The results of these experiments are illustrated by the graphs in Figure 1. We can
observe that in general all the indexes considered feature similar behavior, having value
0 for equal partitions and monotonically increasing behavior (they are not normalized
on a single scale, however). The graph also show that, while this similarity holds for
most types of variation, there are cases where some index does not agree with others
(see Jaccard on the first experiment).

4.2 Real Data: Iris

Anderson’s Iris data [20] is an almost mandatory testbed, since it is so well-known.
Here we use it to show how the properties of the indexes may be exploited. For this
dataset the following two features are used: sepal width × sepal length; petal width ×
petal length. These allow a low error with linear separation. In this experiment, two
partitions are compared: the ground truth provided by the true classes and the central
clustering obtained by taking the averages of each class as centroids. Therefore there
are 3 clusters in both the target and class-induced clustering.

Experiments have been made with both crisp and fuzzy partitions. In the crisp case,
the memberships are obtained with the simple nearest centroid rule. In the fuzzy case,
a membership model similar to the “Maximum Entropy” approach [21] has been used,

where membership of data point xi is computed as μj(xi) = e−dij /β∑
l e

−dIla/β , where dij is
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Table 3. Results on the Iris dataset

Crisp case Average Rand Student Correl. Jaccard
Complete 0.5589 0.2795 0.3985 0.5962 0.5552
Setosa vs Versicolor 0.3790 0.1895 0.2899 0.4492 0.5043
Setosa vs Virginica 1.1055 0.5527 0.7397 1.1562 0.8761
Virginica vs Versicolor 0.1523 0.0762 0.1335 0.2175 0.2902
Fuzzy case Average Rand Student Correl. Jaccard
Complete 0.8010 0.4005 0.5639 0.5506 0.6311
Setosa vs Versicolor 0.2916 0.1458 0.2828 0.0763 0.4260
Setosa vs Virginica 0.9465 0.4733 0.8101 0.8406 0.7576
Virginica vs Versicolor 0.1624 0.0812 0.1608 0.0127 0.2939

Fig. 2. The Iris data, with class centroids

the (Euclidean) distance between data point xi and the j-th centroid yj and β is a scale
parameter imposing the degree of fuzziness, here set to 1.

Table 3 presents the results. In both the crisp and the fuzzy case, the first row refers
to the whole dataset (three classes), while the remaining rows represent all possible
pairing of the three classes. We notice that representation with three centroids is not very
good, even if these are chosen as the mean of the respective classes. This can be easily
inferred from Fig. 2, showing centroids and data. The results indicate that, although
with different numerical values, all the indexes correctly reflect the well-known fact
that the separation between the Versicolor and Virginica varieties is hard.

5 Conclusion

We introduced a possible fuzzy framework for applying traditional and novel partition
similarity measures to fuzzy clustering. Some indexes have already been generalized to
the fuzzy setting in the literature [22], but we provide a more systematic procedure while
also introducing some new indexes. Several other formulations are of course possible
in addition to the three proposed here; we only provide these as examples.
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The experimental result show that, while all indexes retain the same general be-
haviour, there are indeed some occasional differences that may deserve to be studied
and exploited. Further research will focus on characterizing these fuzzy indexes and on
their application in tasks involving clustering comparison, e.g., ensemble clustering.
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13. Meilă, M.: Comparing clusterings–an information based distance. Journal of Multivariate

Analysis 98(5), 873–895 (2007)
14. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American

Statistical Association 58, 236–244 (1963)
15. Student: The probable error of a mean. Biometrika 6(1), 1–25 (March 1908)
16. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura.
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Abstract. An important task for the cloud monitoring in several frame-
works is providing maps of the cloud coverage. In this paper we present
a method to detect cloudy pixels for images taken from ground by an
infra-red camera. The method is a three-steps algorithm mainly based on
a Fuzzy C-Mean clustering, that works on a feature space derived from
the original image and the output of the reconstructed image obtained
via normalized convolution. Experiments, run on several infra-red images
acquired under different conditions, show that the cloud maps returned
are satisfactory.

Keywords: Cloudiness mask, fuzzy set, infra-red images.

1 Introduction

Automated cloud detection is a challenging issue, crucial for cloud monitoring.
Clouds play an important role in several fields such as the global climate change,
weather forecast, climate modeling. For example the global change of the Sea
Surface Temperature (SST) due to the greenhouse effect, is a study where it is
necessary filtering out cloudy pixels from the satellite data, in order to avoid
cloud contamination in the measurements of the temperature. For this purpose
auxiliary cloud masks are used that indicate wether the single pixel is affected
or not by clouds. Cloud detection process in the images from space, should take
into account that cloud appearance is similar to other entities and also changes
depending on the region, hence the discrimination is not a straightforward task.
It is difficult to discriminate ice or snow from clouds in the polar regions, because
of their similar reflectiveness in the visible and small contrast in the infra-red
wavelengths. Cloud and volcanic ashes in volcanic areas, cloud and fire, cloud and
dust over the deserts etc. [1]. Moreover in both space and ground observations,
it must be taken into account that edges in cloud images are generally smoothed
and sharp outlines are hard to be detected. The recent literature proposes meth-
ods for clear sky determination based on the idea that brightness temperature of
cloudy pixels show different relationships and properties from those expected for
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clear conditions. A set of combined tests are applied on images from space and
generally infra-red and visible bands are used. In [2] a pixel is labeled as cloudy
if all tests indicate the presence of cloud. Different approaches exploit features
non related to the physics of the clouds but to the spatial/temporal relationships
between pixels of the same or consecutive frames [3] or determined by machine
learning processes using Bayesian classification [4], decision trees [1], or support
vector machines [5]. It is important to take into account that validation of a
cloud mask is a very difficult issue. A way to proceed for quality estimation is
assessing the agreement with the human analysis, combined with comparisons
against masks detected with different algorithms.

In this paper we present an algorithm for detecting clouds from infra-red
images. The algorithm is based on the Fuzzy C-Mean clustering method, and
it is structured in three steps: Fuzzy C-mean clustering on the whole image,
Gaussian classification on the detected clusters, Fuzzy C-mean clustering only
on one of the two final clusters. The features used for clustering are the original
grey-level and the value of the same image reconstructed using the normalized
convolution.

The paper is structured as follows. Next section describes the method, to-
gether with a short description of the techniques used. Section 3 discusses the
assessment of the method on a data set of infra-red images including different
kinds of clouds. Section 4 is left to the final remarks.

2 Description of the Method

The proposed method for cloud mask detection is mainly based on three steps:
Fuzzy C-mean clustering on the whole image, Gaussian classification on the
detected clusters, Fuzzy C-mean clustering only on one of the two final clusters.
The first step is a coarse segmentation of the image in three clusters representing
sky, cloud or other scene objects. These three clusters have been used to include
the most representative entities of a general cloudy scene. But in our experiments
the sky and the other non-cloud elements (sky in the following) were joined
because this paper focusses the attention only on cloud/non-cloud segmentation.
The second step analyzes the outliers of each clusters and reassigns them by
means of the normal distribution. Finally the last step is applied on the sky
cluster to identify the misclassified cloud pixels, typically the border ones.

The representation of information has a relevant role in the image analysis,
some different features have been considered to identify the map of cloud cover-
age (Grey Level, Mean and STD, Gradient, Local Histogram, Entropy,...), and
an exhaustive analysis has been done to identify the best set of features. In the
end the grey level feature resulted good for a first rough segmentation of the IR
image, but the final mask needed to be improved by means of the support of
other different features. To the scope a transformation of the grey level image
based on normalized convolution, has been adopted.

Normalized Convolution: The Normalized Convolution is a method for signal
analysis that takes into account uncertainties in signal values and at the same
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a) b)

c) d)

Fig. 1. Results of the normalized convolution algorithm on an IR cloud image. a)
Original image, b) 10% Sampled image, c) Reconstructed image d) Difference between
the original image and the reconstructed one.

time allows spatial localization of the possible unlimited functions by means
their analysis.

The equation U(ε) =
∑
X a(x)B(x) + c(ε− x)T (ε− x) expresses the general

formulation of convolution, where +, in the standard convolution, is the scalar
multiplication. While the normalized convolution of aB and cT can be formu-
lated as UN = {aB+̂cT }N = N−1D where D={aB+̂cT } and N={aB +B ∗ ·̂c}.
Summation is an example to produce D and N over the corresponding indexes,
and to give an example for a we can use the following function:

a =
{
r−α cosβ( πr

2rmax
) r < rmax

0 otherwise

where r is the distance between the center and the nearest pixel, α and β are
two positive integers. [6,7]. In figure 1 an example of the normalized convolution
applied on an infra-red cloud image is shown.

The normalized convolution step extracts a sample of the pixels from the IR
image (figure 1.b) and reconstructs the original image (figure 1.c). Dissimilarities
among the input image and the reconstructed image result especially in the
border pixels (figure 1.d). From the thermographic point of view, in these points
there is a big variety of temperatures with large mutual exchanges and the
uncertainty to assign these points to the sky or to the cloud sets, grows. The
normalized convolution is a good support for the next step that tries to reassign
those points. Therefore the original and the reconstructed grey levels are the
only two characteristics considered by the next step to cluster the clouds. Note
that the normalized convolution grey level is used as feature just to improve the
border pixel classification.
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A Fuzzy C-mean algorithm for three clusters has been chosen for the first step
of the segmentation.

Fuzzy C-Mean: Standard segmentation is based on the use of attributes
or features to distinguish different objects inside an image. Such characteris-
tics are extracted during the low level vision phase to characterize afterwards
objects in the high level vision step. In image data acquisition, all pixels of
each frame are acquired in synchronous way. Let is k the number of obser-
vations of different elements, they can be grouped in N-dimensional vectors
zk = [z1k, z2k, ...znk]T , zkRn We can define a set of N observations as follows:

Z =

⎛⎜⎜⎝
z11 z12 · · · z1N
z21 z22 · · · z2N
...

...
...

...
zn1 zn2 · · · znN

⎞⎟⎟⎠ (1)

In the case of dynamic systems the matrix Z can contain sample of signals or
different scale of signal. In our case two columns have been considered at different
level of signal. Aim of the clustering is to segment the data in different classes.
K-means clustering, is one of the simplest unsupervised classification algorithm,
it can be arranged to segment objects that appear in the images [8]. Defined the
number of clusters, the procedure follows a simple way to classify the data-set.
The algorithm partitions a set of N vectors X = {xj, j = 1..N} into C classes
ci, i = 1, .., C. It finds a starting cluster centre for each class, named cluster cen-
troid, then an objective function of dissimilarity has to be minimized [9]. If an Eu-
clidean function is considered, the function P =

∑c
i=1

(∑
k,xk∈ci

‖ xk − vi ‖2
)

must be minimized where vi is the centroid of the cluster vi. A binary matrix
U = (uij) defines a membership matrix as

uij =
{

1 if ‖ xj − vi ‖2≤‖ xj − vk ‖2, ∀k �= i
0 otherwise

where vi =
∑N

xj∈vij=1Xj

‖ci‖ . Outcome of this step is a rough segmentation of the
image according to the selected features and the defined clusters. The next two
steps refine the retrieved clustering improving the classification of the outliers
and resuming the likely misclassified cloudy pixels. In fact the Gaussian classifi-
cation step identifies some few outliers present in each cluster and switch them
to the correct cluster. Then the Fuzzy C-mean algorithm, assuming that the
cloud cluster is correct, extracts from the sky cluster some points that could be
included in the other one.

3 Experiments

The method described in the previous section can be summarized as follows:

Norm Conv: Computes the Normalized Convolution for a 10% pixels of the
original image;
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Fuzzy Im: Runs the Fuzzy C-Mean algorithm on the whole image to segment
sky and cloud areas;

Gauss Im: Applies a Gaussian function to include outlier pixels to the correct
cluster;

Fuzzy Sky: Runs Fuzzy C-Mean algorithm only on the sky cluster, to move
wrongly classified pixels into the cloud cluster.

The step Norm Conv requires some parameters where windows, on which to
apply the Gaussian function for the convolution, and radius, are the most im-
portant ones. Their values have been set to 2 and 4 based on experimental tests.
Moreover the method works on 10% uniform random selection of pixels of the
input image. The step Fuzzy Im segments the image in sky and cloud pixels, ac-
cording to a set of parameters: maximum number of iterations, minimum amount
of improvement, and number of clusters present in the data set. We have defined
14 as maximum number of iterations, e−5 as minimum amount of improvement
and 3 as cluster number. Cloudy and non cloudy pixels characterize the step
Gauss Im. Mean and standard deviation are calculated for each cluster, then
two gaussian probability values are evaluated for each pixel. Their maximum
value allows to reassign the pixel to another cluster leaving the outliers moving
from a cluster to another one. In the step Fuzzy Sky has been applied a Fuzzy
C-Mean on the non cloudy cluster with the cluster parameter equal to 2 and the
other options defined equal to the ones in the step Fuzzy Im.

3.1 Data

In order to test the algorithm efficiency, we selected some different infra-red cloud
images and figure 2 shows some of them. Cloud images acquired in the infra-red

a) b)

c) d)

Fig. 2. Some examples of infrared cloud images
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a) b)

c) d)

Fig. 3. Results after the first step

a) b)

c) d)

Fig. 4. Intermediate and final results for the image in figure 2 a). a) Normalized convo-
lution step, b) First Fuzzy C-mean on whole image, c) Gaussian step; d) Second Fuzzy
C-mean step on the sky cluster.

spectrum were selected from the archives of the Department of Mathematics
and Application (DMA), University of Palermo, they include different kind of
clouds such as cirrus, strato-cumulus, cumulonimbus,etc. The image sequences
were acquired by the FLIR S-65 thermal-camera with a 18mm lens, spectral
range 7.5-13μm and 320 × 240 pixels. The sequences have been processed by
a FLIR software to extract single frames. At present our database includes a
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a) b)

c) d)

Fig. 5. Intermediate and final results for the image in figure 2 c). a) Normalized convo-
lution step, b) First Fuzzy C-mean step on whole image, c) Gaussian step; d) Second
Fuzzy C-mean step on the sky cluster.

large amount of sequences and many frames have been analyzed to evaluate the
goodness of the method.

3.2 Results

Figure 3 depicts the images proposed in figure 2 after the first step of the method.
Although the result of this step gives a reasonable classification of the pixels, we
can observe that some pixels of cloud are lost and some other pixels are wrongly
assigned as cloud, around the edges of the image. The background or sky pixels
will be eliminated from the cloud cluster by the next step.

Figures 4 and 5 show the output of each step of the method for two portions
of sky present in figure 2 a) and c) : sub-image a) shows the first step (Fuzzy
C-mean algorithm), sub-images b) and c) illustrate the middle steps and finally
the sub-image d) displays the cloudiness mask.

4 Conclusion

In this paper we tackled the problem of cloud segmentation from infra-red im-
ages, proposing a method that combines the normalized convolution with the
Fuzzy C-mean clustering algorithm. Cloudiness masks were computed on infra-
red images acquired from ground including mainly two entities: sky and clouds.
Furthermore the method was assessed considering several kind of clouds with
different configurations. The quality of the results is satisfactory, although we
could also give a qualitative validation. In the near future we plan to validate the
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algorithm on different kind of images from different sensors and also on images
from space where different entities should be taken into account such as land,
snow, sea etc. Finally it needs to be tested against other methods.
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Abstract. This paper presents a novel method aimed to free form de-
formation function approximation for purpose of image registration. The
method is currently feature-based. The algorithm is inspired to concepts
derived from Fuzzy C-means clustering technique such as membership
degree and cluster centroids. After algorithm explanation, tests and rel-
ative results obtained are presented and discussed. Finally, considerations
on future improvements are elucidated.

Keywords: free form deformation, image registration, fuzzy clustering.

1 Introduction

Image registration is the process of overlaying two or more datasets (generally 2d
or 3d), by finding a transform function which allows to match every correspon-
dent pixel or voxel in the datasets. Such task is useful, among others, in many
fields of Imaging and Computer Vision and is of great importance for Medical
Imaging purposes. The registration procedure is an indispensable step for sev-
eral purposes, such merging data captured from different modality (for example
MR and PET), evaluate the effects of a therapy observable by the changes in
two images acquired in different times, or to compare datasets available in the
atlases containing known structures.

Feature based registration techniques compute the datasets-matching trans-
form using a sparse set of data, i.e. the features. Such features are salient cor-
respondences of the images, such as points or lines. Knowing the displacement
vectors of these features is possible to interpolate the complete displacement
function.

Several interpolation schemes have been proposed in literature, one of most
popular is the Thin-Plate Spline surface fitting [1], with a number of variants,
such as [2], [3], [4] and [5].

Thin-Plate Splines can model a surface constrained to contain several node
points using an elegant algebraic solution. This is done by decomposing the whole
transformation function in a linear (affine) part and the superposition of princi-
pal warps, each one independent from the others. Although the need for a search
procedure is removed due to the existence of an affordable analytical solution,
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the computing cost of the TPS is still high. In this paper a novel registration
method is proposed. This method requires no minimization at all, strongly im-
proving the overall performance of the registration task. The algorithm is based
on concepts derived from Fuzzy C-means clustering algorithm. Even though C-
means relies on the determination of the clustering centroids, and this requires
a minimization iterative procedure, for our method purposes the disposition of
such centroids is given as a known starting condition. As a result, the optimiza-
tion step is removed and the displacement function determination is the results
of quick and simple sum and product operations.

The paper is arranged as follows: in sect. 2, after some remarks on the Fuzzy
C-means algorithm, the registration algorithm is presented, in sect. 3 the tests
conducted to validate the algorithm are described and the results, compared
with TPS approach, are summarized. Section 4 contains considerations on the
algorithm performance and the evaluation of the results obtained. Section 5
discusses how method performance can be improved and states the roadmap for
further development of this Fuzzy-Inspired Registration project.

2 Methods

The proposed method works like other free form deformation feature-basaed
techniques: provided a list of landmarks correspondence between a pair of im-
ages, namely the input and the target image, the algorithm finds a transfor-
mation function f(x, y) which realizes a mapping between the pixels of the two
images. The approximation of the function is constrained by the value of the dis-
placements between the landmark points. These features can be manually chosen
or automatically detected. The result is the interpolation of the displacements
of every points pair in the images.

Provided that the landmarks points represent the evidence of the unknown
displacement field required to align the two datasets, an inference should be
made to estimate the whole displacement function.

In our framework the actual computation of this function is not obtained proba-
bilistically but simplificated using Fuzzy C-means clustering derived technique.[6].
Anyway, even tough the centroids and the fuzzy membership concepts are useful
for our deformation purpose, no clustering process is required, so, as a result, no
minimization is performed actually.

Each landmark point could be considered as a cluster centroid in the feature
space defined by spatial coordinates x and y. Then, for each pixel of the image a
membership value relative to the spatial region centered in each of the landmarks
could be assigned. In this way the displacement of each pixel can be chosen as the
sum of every landmark displacement weighted by the relative membership value.
This allows every landmark to have a stronger influence on closer pixels rather
than on farther, in a proportional way. The amount of decay related to distance
variation, and consequently the membership value, is controlled by means of the
s exponent, the unique adjustable parameter in this registration scheme.
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Fig. 1. Example of plot of a transform function for x values displacements

Given the above conditions, the displacement vector vij of the pixel at position
i, j is given by:

vij =
m∑
l=1

uij,lvl (1)

where uij, l is the membership degree of the pixel i, j to the l-th centroid while
vl is the displacement of the l-th landmark, which is known.

This results in a transformation function with no discontinuities that exhibits
nice properties such as interpolation with exact approximation of the landmark
points and governable smoothness without no needs for a regularization param-
eter. An example of such functions is shown in Fig. 1.

Another remarkable advantage is that no time-consuming minimization proce-
dure is required to obtain the transformation function since each of the required
values is known in advance, what needs to be computed is just the membership
matrix U using (2). The metric used is the Euclidean distance because is suffi-
cient to take into account just spatial closeness between pixels and landmarks.

Such method can be used both for 2-D images and 3-D models, unique dif-
ference is the number of transformation functions to compute, one for each di-
mension.

uij =
1

m∑
l=1

(
d(xi,cj)
d(xi,cl)

) 2
s−1

(2)

3 Results

Once the method was designed, several kinds of tests were conducted on sets of
photographic and synthetic medical images provided by Brainweb [7,8,9,10].

A preliminary test was operated on a dummy picture consisting of a white
circle on black background, Fig. 2a. The image was strongly deformed as in
Fig. 2b Then the registration procedure was applied using a different number
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(a) (b)

(c) (d) (e)

Fig. 2. From left to right: original test pattern (a), deformed version of test pattern
(b), registered versions with 16 landmarks: proposed method (c), TPS approximation
(d), difference between two results, edges shown (e)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. From left to right: ground truth (a), initial registration grid (b), deformed ver-
sione of the image (c), initial error image (d), deformation field (e), deformed registration
grid (f), registered version with 18 landmark points (g), final error image (h)

of landmarks both with our and TPS algorithms, the results are shown in Fig.
2c and Fig. 2d. Differences between the two methods are elucidated in Fig. 2e,
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Table 1. Results summary, best measures underlined

Fuzzy Approximation TPS Approx
s MSE SSD MI SSIM MSE SSD MI SSIM

1.2 30.0057 1098447 1.2673 0.7842
1.4 29.6038 1083737 1.2690 0.7903
1.6 29.3464 1074314 1.2693 0.7894
1.8 30.6666 1122642 1.2650 0.7723
2.0 32.2718 1181406 1.2584 0.7424 31.0487 113631 1.2669 0.7889
2.2 34.6014 1266688 1.2509 0.7133
2.4 36.9765 1353635 1.2435 0.6808
2.6 38.7948 1420200 1.2378 0.6544
2.8 40.1140 1468493 1.2331 0.6337
3.0 41.4389 1516997 1.2292 0.6153

(a) (b) (c)

Fig. 4. Example of morphing: acoustic guitar (a) morphed (b) into an electric guitar
(c) using 31 landmark points

where the brighter contour represents the TPS approximation scheme, while the
darker one refers to the proposed method.

The results exhibit that the two methods act in a similar way; small differences
are present just in correspondence of large deformations (like in the middle part
of the pattern).

The second class of tests consists on the registration of a manually deformed
image onto its original version. Method performance is then evaluated using
several similarity metrics: sum of squared difference (SSD), mean squared error
(MSE) and mutual information (MI) as objective measures, and Structural
Similarity (SSIM) [11] as the subjective one. The algorithm was ran using
different fuzziness values s, visual results for the proposed method are depicted
in Fig. 2 and measures are summarized in Table 1. Comparisons with thin-plate
spline approach are also presented.

Other qualitative tests, merely visual, were performed on various photographic
images in order to evaluate the goodness of the algorithm for other purposes,
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such as morphing. In Fig. 4 are shown the results obtained executing the morph
of two sample images.

4 Discussion

The tests conducted showed that the framework exhibits good performance for
landmarks based registration of 2-D images.

The comparisons with TPS technique showed that the two methods have sim-
ilar performances. However, the presented algorithm results preferable since it
is by far faster: for example on a P4 processor machine equipped with Matlab
R2008a, for the registration of a 208x176 pixels image using 16 landmarks, our
technique takes around 17% of the time taken by TPS approximation (approxi-
mately 6.4 seconds versus 37.2 seconds). This difference is due to the fact that
using TPS approximation implies, in order to obtain the transform function, to
compute the solution of a variational problem, i.e. executing an optimization
procedure, which is not required for our technique that relies on simple distance
measures and weighted sums.

Even tough there exists the problem of the tuning of the smoothing parameter
s, experiments shown that the optimal value generally lies in a range between
1.4 and 2, and a few monodimensional search attempts (on average 3-4) using
bisectional strategies such as golden ratio, are enough to find the right solution,
keeping the method convenient.

Comparing the size of data structures it can be seen that in our approach M
values need to be stored for the landmarks displacements and M values for the
membership degrees of each point. However, once every single pixel has been
transformed, its membership degree can be dropped, so the total data structure
is 2M large. TPS approximation has a little more compact structure, in fact it
needs just to maintain the M + 3 surface coefficients (M for the non-linear part
and 3 for the linear one). However, the storing complexity is O(M) for both
methods, i.e. linear in the number of landmarks used, and thus equivalent.

5 Conclusions and Future Works

A novel method aimed to free form deformation and registration of 2d images has
been presented. This technique was inspired by the Fuzzy C-means clustering
algorithm, although just the concept of centroids and fuzzy membership degree
are used and no clustering operation needs to be performed at all. The proposed
methods performance was evaluated with several tests using both objective and
subjective measures and the results were compared to free form deformation
technique based on Thin-Plate Spline surface approximation. From the study it
resulted that both techniques provide similar results. However, our method is
about 6 times faster due to its straightforward computation requiring no opti-
mization process.

The next step of the study will be the use of the same technique for register-
ing 3-D medical volume datasets usingn an automatic landmarks detection. The
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feature points are intended to be chosen by means of contour curvature infor-
mation and similarity considerations on the inner structures. Subsequently, the
landmark points-based approach will be left toward a fully automatic pixel-based
elastic registration framework.
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Abstract. Interpretability is one of the most important driving forces
for the adoption of fuzzy rule-based classifiers. However, it is not given
for granted, especially when fuzzy models are acquired from data. There-
fore, evaluation of interpretability should be regarded as a major research
topic. In this paper, we describe a technique for automatic interpretabil-
ity assessment, based on the co-intension of the semantics of the knowl-
edge base with the intrinsic semantics designated by linguistic labels.
The core of the evaluation technique relies on the propositional view of
rules and on logical operations. An illustrative example shows how the
proposed approach can be useful in detecting lacks of interpretability for
a simple knowledge base.

1 Introduction

Interpretability is one of the most important driving forces for the adoption of
fuzzy rule-based systems, since they are intended to perform intelligent tasks
while allowing for a representation of knowledge that can be easily read and
understood by their users. Interpretability, however, is not given for granted
when fuzzy models are used, especially when they are acquired from data. The
main problem is that data-driven design has a great number of degrees of freedom
(number of fuzzy sets, their shape, position, etc.) and may end up with fuzzy
models that are very accurate but very hard to comprehend. For this reason,
interpretability constraints have been defined so as to bind data-driven design in
order to derive interpretable fuzzy models [1]. This usually comes to a price, that
is a lower accuracy with respect to unconstrained design. Furthermore, often
interpretability is accounted without taking care of accuracy. This approach
has been criticized, since interpretable but inaccurate models are as useless as
very accurate but not interpretable ones [2]. Therefore, a proper evaluation of
interpretability should be regarded as a major research topic.

However, interpretability assessment is an ill-posed problem because the def-
inition of interpretability eludes any formal characterization. In [3], Michalski
gives a referential definition of interpretability, the so-called “comprehensibility
postulate”. In short, a rule base is interpretable if it is defined by symbolic struc-
tures, semantically and structurally similar to human knowledge, so as to be in-
terpretable in natural language (for a more extensive discussion of the postulate,
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see [4]). This postulate justifies the use of linguistic values in rule-based fuzzy
systems, but that is not enough to guarantee interpretability. In [5] Zadeh intro-
duces the notion of co-intension, a semantic relation between concepts. Roughly
speaking, two concepts are co-intensive if they refer to almost the same objects.
In fuzzy rule-based systems, rules are defined by composition of linguistic terms,
which are related to the two different semantics defined by the fuzzy model and
designated by the linguistic label. By merging the notion of co-intension with the
comprehensibility postulate, we derive a formulation of interpretability that can
be more helpful for designing assessing techniques: a rule base is interpretable if
the two semantics related to each linguistic label are co-intensive.

On the basis of this definition, we propose an automatic technique for eval-
uating interpretability. Our approach evaluates interpretability by assessing the
co-intension of the semantics of the rule base of a fuzzy model with the intrinsic
semantics designated by linguistic labels. The core of the evaluation technique re-
lies on the propositional view of rules and on logical operations. We expect that,
for interpretable knowledge bases, logical operations on rules do not change their
semantics and, hence, do not affect accuracy. If this is assumption is violated,
we deduce a lack of interpretability.

We focus our research on fuzzy rule-based classifiers, described in Section 2.
The proposed approach is then described, by first focusing on its rationale and
then on the methodology (Sections 3.1 and 3.2, respectively). An illustrative
example is reported in Section 4, to show how the proposed approach can be
useful in detecting lacks of interpretability for a simple knowledge base. The
paper is concluded with some final remarks.

2 Fuzzy Rule-Based Classifiers

We consider a classifier as a system computing a function of type:

f : X −→ Λ, (1)

where X ⊆ Rn is an n-dimensional input space, and Λ = {λ1, λ2, . . . , λc} is a
set of class labels. If a dataset D of pre-classified data is given, i.e.

D = {(xi, li)|xi ∈ X, li ∈ Λ, i = 1, 2, . . . , N}, (2)

then the classification error can be computed as:

E(f,D) =
1
N

N∑
i=1

(1 − χ(li, f(xi))), (3)

being χ(a, b) = 1 iff a = b and 0 otherwise.
A fuzzy rule-based classifier (FRBC) is a system that carries out classification

(1) through inference on a knowledge base. The knowledge base includes the
definition of a linguistic variable for each input. Thus, for each j = 1, 2, . . . , n,
linguistic variables are defined as:

Vj = (vj , Xj , Qj , Sj, Ij), (4)
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being:

– vj the name of the variable;
– Xj the domain of the variable (it is assumed that X = X1 ×X2 × · · ·×Xn);
– Qj = {qj1, qj2, . . . , qjmj ,Any} is a set of labels denoting linguistic values for

the variable (e.g. Small, Medium, Large);
– Sj = {sj1, sj2, . . . , sjmj+1} is a set of fuzzy sets on Xj , sjk : Xj → [0, 1];
– Ij associates each linguistic value qjk to a fuzzy set sjk. We will assume that

Ij(qjk) = sjk.

We assume that each linguistic variable contains the linguistic value “Any”
associated to a special fuzzy set s ∈ Sj such that s(x) = 1, ∀x ∈ Xj .

The knowledge base of a FRBC is defined by a set of R rules. Each rule can
be represented by the schema:

IF v1 is [Not] q(r)
1 AND · · · AND vn is [Not] q(r)

n THEN λ(r), (5)

being q
(r)
j ∈ Qj and λ(r) ∈ Λ. Symbol Not is optional for each linguistic value.

If for some j, q(r)
j = Any, then the corresponding atom “vj is Any” can be

removed from the representation of the rule.1

Inference is carried out as follows. When an input x = (x1, x2, . . . , xn) is
available, the strength of each rule is calculated as:

μr(x) = s
(r)
1 (x1) ⊗ s

(r)
2 (x2) ⊗ · · · ⊗ s(r)

n (xn), (6)

being s
(r)
j = ν

(r)
j (Ij(q

(r)
j )), j = 1, 2, . . . , n, r = 1, 2, . . . , R. Function ν

(r)
j (t)

is 1 − t if Not occurs before q
(r)
j , otherwise it is defined as t. The operator

⊗ : [0, 1]2 → [0, 1] is usually a t-norm, such as minimum or product.
The degree of membership of input x to class λi is computed by considering

all the rules of the FRBC as:

μλi(x) =
∑R
r=1 μr(x)χ(λi, λ(r))∑R

r=1 μr(x)
. (7)

Finally, since just one class label has to be assigned for the input x, the FRBC
assigns the class label with highest membership (ties are solved randomly):

fFRBC(x) = λ ⇔ μλ(x) = max
i=1,2,...,c

μλi(x). (8)

3 Interpretability Assessment

We assume the availability of an interpretable FRBC, verifying a number of
interpretability constraints so that the rule base is described in terms of linguistic
values.
1 The sequence Not Any is not allowed.



158 C. Mencar, C. Castiello, and A.M. Fanelli

3.1 Rationale

The proposed approach for interpretability assessment relies on the formal struc-
ture of the FRBC. The rationale behind this approach comes from the obser-
vation that the rule base is the linguistic interface of the FRBC to the user.
For an interpretable knowledge base, the user should be able to understand the
classification rules by simply observing their linguistic representation. All the
semantic information (fuzzy sets attached to linguistic values, t-norm used for
conjunction, etc.) should be hidden to the user because – this is the key point of
interpretability – the semantics of FRBC knowledge should be co-intensive with
the user’s knowledge, recalled by the linguistic terms.

To assess interpretability, we exploit the cognitive structures that are shared
by users and FRBC. In particular, we observe a strict affinity of a FRBC rule base
to logical propositions. Actually, rules are formed so as to resemble propositions,
so that they can be understood by users. In consequence of this, FRCB and
users share the propositional view of rules. Being like propositions, rules could be
transformed by truth-preserving operators without any change of the semantics.
This is not completely true since the application of such operators may distort the
semantics of rule (which is fuzzy); however, we should expect small distortions
due to the shared propositional view between FRBC and users.

The core of our approach is the following: given a rule base of a FRBC, we
represent it as a collection of propositions, then we transform it through a truth-
preserving operator, thus obtaining a new set of propositions, that represents a
new rule base. We then compare the two rule bases on the basis of their classifi-
cation ability: if they differ too much, then we conclude that the logical view of
rules is wrong. Also, since rules are defined so as to resemble logical propositions,
we derive that the semantics of rules (which is responsible of classification) is
such that logical view is not possible. This means that the semantics of rules is
not co-intensive with user knowledge, since users expect that truth-preserving
transformations of propositions do not change (too much) their semantics.

An issue arises in the choice of the truth-preserving transformation. Actually,
several transformations can be considered, but we choose to apply a transfor-
mation that minimizes the number of linguistic terms used. This choice has a
twofold advantage. First, by eliminating as many terms as possible, we test if
logical view of rules is preserved with the minimum required information. Sec-
ond, if assessment leads to positive results, we could retain the simplified rule
base because it is easier to read than the original.

3.2 Methodology

The proposed approach for interpretability assessment is based on a four-stage
strategy.

Definition of Truth Tables. Each rule of the FRBC is seen as a proposition,
i.e. a combination of propositional variables that is considered true for a class.

For each class label λi ∈ Λ and for each rule r, a truth function πi is defined
on the propositional variables defined for the FRBC as:
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πi(χ
(r)
11 , . . . , χ

(r)
1m1

, χ
(r)
21 , . . . , χ

(r)
2m2

, . . . , χ
(r)
n1 , . . . , χ

(r)
nmn

) = χ(λi, λ(r)), (9)

being χ
(r)
jk = χ(q(r)

j , qjk). Inputs χ
(r)
jk assume value X (“don’t care”) if the cor-

responding linguistic value is ANY or, in other words, the linguistic variable Vj
does not occur in the r-th rule. For any other combination of inputs, the output
of πi is undefined, i.e. any truth value is possible (again, this condition is usually
referred as “don’t care”).

Each truth function πi can be represented as a truth table, which enumerates
any combination of assignments to the propositional variables of the FRCB
and associates the value of πi to each combination. Combinations associated to
undefined values of πi are not included in the table. The number of rows of
each truth table matches the number of rules of the FRCB. This prevents the
combinatorial explosion of rows that would be expected in the general case of
truth function representation.

Minimization. Once each truth table has been built, it can be processed so
as to be minimized. The minimization procedure produces a new truth table
without modifying the truth function (where it is defined). The new truth table
has a number of rows not greater than the original truth table. It also has a
number of X values in its inputs not smaller than in the original truth table.
Furthermore, minimization guarantees that any further simplification (in terms
of rows and inputs) provides for a truth function different from the original.

The Quine-McCluskey (QMC) algorithm represents an effective mechanism
for minimization of truth tables [7]. It is mainly based on the distributive prop-
erty, which simplifies propositions according to the law: ABC + AB̄C ≡ AC.

Although computationally expensive, the QMC algorithm can be implemented
by an efficient procedure that exploits the peculiar structure of truth tables
derived from FRBC rules to perform minimization quickly.

Reconstruction. After minimization, a new FRBC is built from the rows of
the minimized truth table. For each class label λi ∈ Λ we consider the minimized
table associated to the truth function πi. A rule is built for each row with
output equal to 1. It is easy to show that for each j there is at most one k

such that χ
(r)
jk �= X . Therefore, the antecedent of the rule can be defined by

atoms vj is [Not] q(r)
j where:

– q
(r)
j = qjk if χ(r)

jk �= X ;

– Not occurs if χ(r)
jk = 0 and it does not occur if χ(r)

jk = 1;

– q
(r)
j = Any if ∀k : χ(r)

jk = X ;

Atoms with Any are removed to improve the readibility of the rule. The conse-
quent of the rule is λi.

Comparison. The two FRBCs, the first with the original rule base and the
second with the minimized version, are compared in terms of classification error
on the same data.
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If Flavonoids is Low THEN Class 1
If Flavonoids is Medium THEN Class 2
If Flavonoids is High AND Proline is Low THEN Class 2
If Flavonoids is High AND Proline is High THEN Class 3
If Magnesium is Medium AND Flavonoids is High AND Proline is Medium THEN Class 3

Fig. 1. The rule base of the FRBC considered in the example

If the two errors differ too much, we conclude that the original FRBC lacks of
interpretability. Its accuracy is mainly due to the semantic definition of linguistic
values, which do not correspond to the propositional view of rules. The FRBC
can be used for classification as a “grey box”, but its labelling is arbitrary and
not co-intensive with user knowledge. Attaching natural language terms to such
FRCB is useless and potentially misleading.

If the two errors are very similar, we conclude that the original FRBC is inter-
pretable. The semantic definition of linguistic values is coherent with the logic
operators used in minimization. In this sense, the semantic of linguistic values is
co-intensive with user knowledge. We could retain the simplified FRBC because
its interpretability is greater than the original (due to its higher simplicity) while
its accuracy is almost the same of the original.

There is no threshold to decide if a FRBC is interpretable or not, but rather a
continuous spectrum of possibilities. Interpretability – as expected – is a matter
of degree, and the degree of interpretability is, in our approach, inversely pro-
portional to the difference of accuracies. Even with small variations of accuracy,
some considerations can be drawn on the interpretability of the FRBC, as shown
in the next Section.

4 Illustrative Example

We consider a FRBC obtained from the application of HILK [6], a tool for
building interpretable fuzzy rule-based systems. HILK allows for the definition of
fuzzy rule-based systems from empirical learning, expert knowledge, or both. The
resulting systems are considered highly interpretable because fuzzy sets defined
for each input satisfy a number of interpretability constraints. Furthermore, the
number of fuzzy sets per input, the number of inputs and the number of rules
are kept as small as possible since, in principle, the simplest is the knowledge
representation, the easier is to read and understand.

In our experimentation, the FRBC obtained from HILK was acquired from
data, in order to classify Wine data, a well-known benchmark dataset, freely
available from UCI repository [8]. The knowledge base of the FRBC is reported
in fig. 1, while the linguistic variables are shown in fig. 2. The FRBC provided
10.67% of classification error on the entire dataset. We transformed the rule
base of the FRBC into three truth tables – one for each class – minimizing them
with QMC algorithm; then we rebuilt the FRBC obtaining the simplified rule
base reported in fig. 3.
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(a) Magnesium (b) Flavonoids

(c) Proline

Fig. 2. The linguistic variables used in the example

If Flavonoids is Low THEN Class 1
If Flavonoids is Medium THEN Class 2
If Flavonoids is High AND Proline is Low THEN Class 2
If Flavonoids is High AND Proline is NOT Low THEN Class 3

Fig. 3. The rule base of the FRBC after minimization

We observe that the number of rules has been reduced to four, and the linguis-
tic variable “Magnesium” has been removed. From the logical viewpoint, the two
rule bases are equivalent since they compute the same truth functions. However,
after applying the minimized rule base to the dataset, we obtained 11.24% of clas-
sification error, i.e. an increase of +0.57%, corresponding to one more misclas-
sified pattern over 178, which is defined as (Magnesium=162, Flavonoids=2.27,
Proline=937). For the misclassified pattern we observe that, according to the
definitions of the linguistic variables, Magnesium is high, Proline is medium,
and Flavonoids is both medium and high to a significant degree. However, in
the original rule base, there is not any classification rule activated when Magne-
sium is high, Proline is medium and Flavonoids is high. From the logical view-
point, the truth functions are undefined for this condition. As a consequence,
the simplified rule base subsumes this condition in the fourth rule, assigning
the pattern to class 3, while the original FRBC arbitrarily assigns the pattern
to class 2. The correct classification of the pattern performed by the original
FRBC is due to the semantic specification of linguistic values, which does not
emerge from the propositional view of rules. In this sense, the original FRBC
lacks of interpretability for a specific case. However, due to the reduced in-
crease of classification error, we conclude that the original FRBC is highly inter-
pretable and we can retain the simplified version, which offers a further simplified
knowledge base.
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5 Conclusion

Assessment of interpretability is not an easy task. Difficulty is mainly due to
the blurry definition of interpretability, which requires co-intension with hu-
man knowledge. Evaluating interpretability is a subjective task, which could be
tedious and even ill-posed, therefore automatic techniques for interpretability
assessment are useful, but they should embody some information on semantic
co-intension. In this paper, we have proposed an approach for automatically eval-
uating interpretability of rule-based fuzzy classifiers, exploiting the propositional
view of rules as a mean to define co-intension. On the basis of this hypothesis, a
procedure has been devised, so as to evaluate how much the semantics of fuzzy
rules is coherent with their logical view.

The illustrative example shows the effects of the proposed approach for a
simple knowledge base. Actually, we were able to detect a flaw in interpretability
for a FRBC that verifies several interpretability constraints.

Research on this topic is in progress, especially in the direction of enhancing
the efficiency of the minimization algorithm. That will allow an extensive exper-
imentation over a wider class of knowledge bases, in order to promote deeper
insights of the proposed technique. Further enhancements could spring from the
use of additional information to refine the definition of co-intension in compu-
tational terms.
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Abstract. Clustering of real-world datasets is a complex problem. Op-
timization models seeking to maximize a fitness function assume that
the solution corresponding to the global optimum is the best clustering
solution. Unfortunately, this is not always the case, mainly because of
noise or intrinsic ambiguity in the data. In this work we present a set
of tools implementing classical and novel techniques to approach clus-
tering in a systematic way, with an application example to a complex
biological dataset. The tools deal with the problem of generating multi-
ple clustering solutions, performing cluster analysis on such clusterings
(i.e. Meta Clustering) and reducing the final number of clusterings by
the appropriate application of different Consensus techniques. A subse-
quent crossing of prior knowledge to the obtained clusters helps the user
in better understanding its meaning and validates the solutions.

Keywords: meta clustering, data visualization, consensus clustering.

Introduction

Two main problems arise when dealing with clustering of multidimensional data:
the former regards multiple different solutions, the latter concerns the visualiza-
tion of the results, in terms of different ways of grouping high-D data.

The most used clustering algorithms start from a random or arbitrary initial
configuration and then evolve to a local minimum of the objective function. In
complex problems (in many real cases) there are several minima and more than
one can explain in a convincing manner the data distribution. We described the
process of generating many solutions corresponding to local minima in [7].

At this point, the problem of analyzing many different solutions arises. One
possible approach to this problem is to merge more solutions to obtain a new
clustering: that is called Consensus Clustering [2,6,14,19,11]. Another approach
consists in the process of clustering such solutions, namely Meta Clustering [12].
The problem is that both the approaches alone are not adequate to give the
required information to the domain expert, because consensus algorithms give a
unique solution which is ”the most similar” to all the clusterings, while the meta

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 163–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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clustering gives only subsets of solutions. We put the two approaches together
to extract few solutions from each meta cluster.

As a final step, we cross the obtained multiple solutions with different kinds of
prior knowledge. We analyze the matching between clusterings and prior knowl-
edge labels by searching for the most enriched clusters, that is clusters that are
best characterized for some labels. This can help the users on two sides: val-
idating the obtained clusters with respect to the chosen labels and stimulate
hypotheses about unlabeled data falling into strongly characterized clusters.

Our software implementation of the system is called Modular Interactive Den-
drogram Analyzer (MIDA [23]) and is developed for the Matlab environment.
We will show an application of the ideas presented in this paper through the use
of MIDA with an elaboration of the HeLa-cell dataset [22, 17].

1 Our Approach to Clustering

When clustering complex datasets, the existence of a unique optimal solution is
usually questionable. In such cases, the problem of extrapolating a small number
of good different solutions becomes crucial. Our approach to clustering includes
the generation of a large number of solutions, the clustering of such solutions,
their reduction through consensus clustering applied to the clusters of solutions
and the analysis of the obtained final solutions supported by prior knowledge.
In the following, some details are given for each of the steps.

1.1 Generation of Multiple Clustering Solutions

The generation of multiple clustering solutions is performed exploiting a Global
Optimization approach. However, in many applications the function of interest
is multi-modal and possibly not differentiable and it is with this view in mind
that the Controlled Random Search (CRS) algorithm [18] was initially devel-
oped. Some CRS algorithms also include genetic techniques [9, 10]. We applied
such technique to cluster analysis. We used a Price based Global Optimization
algorithm to explore local minima of the K-means or Expectation Maximiza-
tion (EM) objective functions. Instead of sticking to the best found solution, we
collect all the solutions corresponding to local minima.

1.2 Clustering the Clustering Solutions

The first step towards the analysis of the solutions obtained as previously shown,
consists in grouping together the similar ones, that is in turn a clustering problem.
This process is called Meta Clustering [12]. The subset of clusterings can be evalu-
ated by the domain expert or by quality indices. Meta-Clustering is completely
based on a similarity measure between partitioning. Many such similarities are
known in literature, such as Minkowski Index, JaccardCoefficient, Correlationand
Matching Coefficients (all found in [3]). Once the similarity between each couple
of solutions is obtained (similarity matrix), a hierarchical clustering can be directly
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applied to it. The result is a meta-clustering dendrogram in which leaves represent
the clustering solutions obtained in the previous step.

1.3 Reducing the Number of Solutions

Consensus clustering, also known in literature as clustering ensembles or cluster-
ing aggregation, is the process of extrapolating a single clustering solution from
a collection, in such a way to maximize a measure of agreement. This problem is
NP complete [2]. We implemented software modules for seven different Consensus
techniques, including an intersection-based method developed by us [6]. The other
modules resulted from an integration of the software released by the respective au-
thors of the implemented methods into our interactive framework. They include:
Furthest Consensus Algorithm (FC) [14] and BallClust [14], based on pairwise
similarity; Best [14], based on objective function; Cluster-based Similarity Par-
titioniong Algorithm (CSPA) [19]; Iterative Voting Consensus [11] and Iterative
Probabilistic Voting Consensus (IPVC) [11] based on iterative approach.

1.4 Validating the Final Solutions

The analysis of the final (small) set of clustering solutions is the real objective of the
entire process. For this step we propose an exhaustive enrichment analysis based
on prior knowledge. This information can be exploited in at least two ways: to val-
idate a clustering result and to infer new knowledge. The validation of a clustering
can be obtained comparing the prior knowledge and the knowledge obtained from
the clustering itself. The validation of the clustering methodology can work only if
there exist a clear correspondence between the variables used to produce the clus-
tering and prior knowledge used to validate it: this is not always the case.

The prior knowledge can also be used to produce new knowledge inferred
by the presence or absence of objects of a given class in a cluster. This is the
approach embraced here, where we seek for clusters (in the final solutions set)
that are the most enriched with respect to some prior knowledge about the data.
When a cluster is highly characterized by the presence of a given type of points,
hypotheses can be made about the points that belong to different classes or that
are not known to belong to any class. We perform an exhaustive search for such
enriched clusters: consensus clustering is applied to all the nodes of the meta-
clustering tree and each obtained solution is searched for enriched clusters. Of
course, this phase is done in a non-interactive way, while the results are shown
visually as explained in section 2.

2 Visual and Interactive Tools

The human eyes and brain together make a formidable pattern detection tool, but,
for them to work, the data must be represented in a low-dimensional space, usually
of two or three-dimensions. Our tools enable the user to go through the entire clus-
tering process with the support of ad hoc visualizations and interactive tools. The
software we developed runs in the MATLAB environment and is mainly integrated
in the MIDA (Modular Interactive Dendrogram Analyzer, [23], Fig. 1) project.
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Fig. 1. The HeLa-Cell dataset as analyzed in MIDA. Top line: MIDA core, displaying
the interactive dendrogram. Bottom line: Info Module, showing statistics about current
Consensus (left) and Clustering Map module, showing the Clustering Map on the left
part and currently selected clustering on the right part (right)

Fig. 2. MIDA running consensus modules. When the user selects a subtree on the meta-
clustering dendrogram, each consensus module apply a different consensus technique
and shows the resulting clustering. From top to bottom, left to right: FC, Intersection,
IPVC, CSPA and BallClust modules are shown.
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2.1 MIDA

MIDA (Modular Interactive Dendrogram Analyzer, [23], Fig. 1) is the software
framework we use to integrate most of our visualizations and interactive tools.
The core of MIDA is an interactive dendrogram in which, when used for meta
clustering, each leaf is associated to a clustering. A dashed line, representing
the current threshold, can be dragged to obtain the corresponding clustering
in real time. Each subtree of the dendrogram corresponds to a meta cluster.
With a mouse click, consensus modules start applying consensus directly on
the solutions belonging to such subtree and all currently open visualizations are
updated accordingly.

Inadedicatedmodule, indicators of the consensus solutionare summarized, such
as distortion value, number of clusters, number of points per cluster, number of
points eliminated by the intersection method, the mean distance between the solu-
tion and the leaves of the subtree, and other information about the current solution.

The space of clustering solutions is visualized through a dedicated module.
The MDS technique can be exploited to represent each clustering as a point
in the plane, with the distance between points representing the dissimilarity
between the corresponding clusterings. Finally, adding the fitness value as the
third coordinate for each point, we obtain a clustering map as that in Fig. 1.

Fig. 3. Same clustering population, different labellings. Top row: meta-clustering den-
drograms obtained optimizing the distortion function. The circles show the roots of
the subtrees whose consensus produces the most enriched clusters for the Cell Cycle
GO annotation (left) and Transport GO annotation (right). Bottom row: MDS with
red dots showing points belonging to the most enriched cluster for the Cell Cycle label
(left) and the Transport label (right). Stars show positively annotated genes for the
corresponding label. The corresponding consensus methods are respectively CSPA and
FC. The enrichment for the two clusters is respectively 2.46 and 2.30.
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Fig. 4. Different clustering populations, same labelling. Top row: meta-clustering den-
drograms obtained optimizing the distortion function (left) or the EM objective func-
tion (right) for the Cell Proliferation GO annotation. The circles show the roots of the
subtrees whose consensus produces the most enriched clusters for such labelling. Bot-
tom row: MDS with red dots showing points belonging to the most enriched cluster for
the distortion function clustering population (left) and the EM objective function clus-
tering population (right). Stars show positively annotated genes for the corresponding
label. The consensus method is IPVC for both of the populations. The enrichment for
the two clusters is respectively 4.58 and 4.80.

Clustering maps allow to intuitively represent the space of clustering solutions
for a given dataset, independently from the algorithm producing the clusterings.

2.2 Visualization of Validation

In section 1.4 we described the validation step, that is a non-visual process. Here
we describe how the results of such process can be visualized. We are interested
in analyzing mainly two aspects of the validation phase: where is located the
consensus solution containing the most enriched clusters on the meta-clustering
dendrogram and where the points belonging to such clusters are localized in the
data space. Our tools visualize such information in a simple way. For the former
we highlight the node of the meta-clustering tree that is the root of the best
subtree. This gives important insight on the usefulness of the whole process: if
the best solution was found on the root of the tree, than meta clustering would
not be necessary (the best solution is obtained applying consensus to all the
solutions); if the best solution was found on a leaf of the tree, than both meta
clustering and consensus would not be necessary (the best solution is just one
of the starting solutions). Information about localization of the most enriched
clusters inside the data space is shown through a simple 2D MDS visualization:
we plot all the points using a different color for those belonging to the cluster
and a different shape for the points belonging to the class whose enrichment is
high for that cluster.
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3 Application Example

As an example, we applied our framework to the well known HeLa-cell dataset
[22, 17]. In this context, we are not interested in actual biological findings. We
chose the HeLa dataset just for its complexity, due to its size and ambiguity from
the standpoint of clustering. The dataset we consider is an elaboration of the
HeLa cell dataset, as explained in [17,13]. The dataset is composed by 1099 genes
with 10 values for each gene (as resulting from a non-linear PCA reduction of
48 expression values). As prior knowledge, we used two labellings obtained from
the Gene Ontology (GO) database, namely Cell Cycle, Cell Proliferation and
Transport. We performed the exhaustive application of 8 consensus methodolo-
gies to all the nodes of the meta clustering dendrogram. Some results are shown
in Fig. 3 and 4.

4 Conclusions

In this paper we showed how Meta Clustering, Consensus Clustering and prior
knowledge can be exploited to extract well characterized groups of data. We
showed how a systematic approach to clustering can help in extensively search-
ing the space of clustering solutions towards a better understanding of data
structure. Superimposition of prior knowledge can help in both validating clus-
ters and formulate hypotheses about missing information. We developed Matlab
visual and interactive tools that simplify and speed up the entire process. Most
of the tools are integrated in a modular environment called MIDA [23].
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Abstract. In concrete, metallic bars are used to reinforce the mechanic
resistance of the structures. When the structural element is subject to
strong traction stresses, the main efforts load just on the bars. Thus,
they are mainly subject to problems of ruptures within the concrete.
Therefore, a very useful application of Non Destructive Testing could be
the implementation of decisional tool for characterizing the status of the
bars, and the eventually existing breaks and cracks. This relevant inverse
problem is solved by means of a system which extracts information on
the specimen under test from the measurements and implements a priori
constraints to facilitate the detection of defect, if any. A Neuro-Fuzzy
approach is proposed in this paper to locate defects on reinforcing bars
in concrete specimens applying eddy current-based measurements. The
method exploits the concepts of fuzzy inference to localize and estimate
the defect. A comparison with Neural Network estimators is presented.

Keywords: Slim Structures, Eddy-currentNon Destructive Tests, Neuro-
Fuzzy Systems, Non Linear Systems.

1 Introduction

Non Destructive Testing and Evaluation (NDT/E) are more and more utilized
to quickly and cheaply recognize and identify flaws within the inspected mate-
rials with special regard to those sectors where the integrity of the material is
strictly required. This is the case of civil engineering, where the safety of build-
ings is related to the specific purposes (e.g. private houses, hospitals, stations
and soon). Anyway, the general requirement is a good state of the structural
integrity, in order to have no sudden risk of collapses. In concrete structures
the rule of the reinforcing bars stands out when the structural element is sub-
ject to strong traction stresses, since concrete cannot withstand these strains
but only compression stresses. Several theoretical model have been developed
by researchers on thin reinforced concrete structures [1,2] with the aim to re-
produce with adequate reliability the rising and spreading of fissuring, and the
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loads leading to collapses. In our work, in-lab experimentations have been car-
ried out on a defectless reinforced concrete specimen, which underwent to rising
traction up to the fissuring. After each traction, the specimen has been analyzed
by the well-known eddy current (EC) NDT/E. The obtained maps of magnetic
field distribution constitute an electromagnetic representation of the tensional
condition of the specimen at the different values of the applied traction [3]. In
this way, it has been possible to collect a suitable experimental database, useful
to extract inferences for assessing the growth of defects in reinforced concrete
elements similar to the exploited specimen. An heuristic approach has been ex-
ploited in order to characterize such kind of flaw in bars, thus regularizing the
inverse problem [4].

 

NECKING  

(a) Typical necking occurring in a steel
beam after the elastic behavior and before
the cracking

 

FRACTURE 
CUP AND CONE 

 
(b) Graphical example of a cracked steel
beam

Fig. 1. A sketch of the behavior of necking and cracking in steel beams

2 Mechanical Behavior of Reinforced Concrete under
Fatigue Stress

Considering the Cervenska’s model [5], possible slots can appear and develop
in a normal direction than the main traction’s stress. The behavior of the re-
inforcement steel is considered elastic-perfectly plastic; after the yielding the
perfect plasticity is imposed. In purely membrane condition, the stress into the
concrete is zero, while it is maximum inside the rods. Therefore, limitations in
medium main traction stress should be introduced. These are due to loading
capacity limits subsequently the plasticization of the steel. If the critical limit is
exceeded due to further load increases, the final strength relies on the integrity of
the tight rods. The adherence between steel and concrete is expressed according
to the following well-known relationship, in case of planar and lateral traction,
F = σs · As = τ · p · l. Here F is the applied mechanical force, As is the steel
area, σs is the tension along the external section, l is the length of the bar, τ
is the adherence tension, p is the adherence perimeter. If the yielding of the
rod occurs, the Hooke’s law cannot be applied anymore [4]. In particular, when
traction takes place inside the structural element, fracture phenomena arise in-
ducing, next to the cracks, a widespread tensional state, at the same time with
zero traction inside the concrete. Consequently, reinforcing bars are subjected
to stretching, with a corresponding increase of their tensional state. In order to
ensure structural safety, the bars must withstand the traction due to the fracture
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without overcoming neither their yielding limit nor exhibiting high plasticity. In
modern structures these aspects are rarely involved, whereas the problem has
a major impact when the integrity of old decaying structural elements is taken
into consideration. In order to understand how much the full integrity of the
bars in reinforced concrete is concerned to guarantee in-service structural safety,
just consider oxidation-reduction phenomena, imperfect soldering of the bars,
very reduced adherence due to smooth bars. Both during the construction and
inspection after lengthy in-service periods the need comes out to get info on the
structural integrity of the concerned element without damaging it. Up-to-date
technologies present remarkable procedural methodologies to properly evaluate
the state of health of structural elements. But most of them are highly invasive,
often leading to the destruction of the element itself.

3 Evaluation of Fatigue Cracked Reinforced Concrete
with Fuzzy Based Systems

In order to improve manufacturing quality and ensure public safety, compo-
nents and structures are commonly inspected for early detection of defects. In
experimental NDT/E, the available measurement data are explored in order to
some clues may emerge, with the advantage of leaving the specimen undam-
aged after the inspection [5,6]. In our in-study case, the concrete surrounding
the bars doesn’t introduce any disturbing noise, being totally transparent to the
employed electromagnetic fields. If the microscopic structure of the defect has no
relevance, the aim of the reconstruction problem being to characterize the defect.
An heuristic approach could be helpful in solving this kind of ill-posed inverse
problems (since the nonlinearity of the direct electromagnetic problem) [7], in
a sort of learning by sample paradigm. In particular, we exploited the concept
of Neuro-Fuzzy Systems (NFSs) [8]. NFS models are basically feed-forward net-
works that use a Fuzzy Inference System (FIS) [9] as a first guess model of the
underlying dynamic process and then tune the initial choice of the model’s pa-
rameters according with the available input-output pairs. FISs allows us to treat
and exploit uncertainty [9]. Thus the inputs of the procedure are interpreted as
fuzzy variables, characterized by Fuzzy Membership Functions (FMFs). FMFs
are overlapped to allow an input to be distributed across a number of rules,
giving rise to an interpolation effect. Typical FMFs are continuous, monotonic
and piecewise-differentiable functions, such as the commonly used trapezoidal
or triangular-shaped functions. However, the FIS can be useful as a first guess
model, whose performances can be improved both using an algorithm of auto-
matic extraction of FIS [7] from numerical data and introducing learning [10].
According to the previously proposed sketch of the FIS and NFIS theory, the
identification problem can be formulated as the search of a suitable mapping
between the set of available measurements and the selected set of parameters.
Our goal was to associate the position and the entity of the defect in the bar to
a particular pattern of measurements.
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3.1 The Experimental Database

Non destructive damage analysis of slim structures in thin walls is an aspect of
the structural mechanics, which offers interesting perspectives of practical rele-
vance. NDT/E has been carried out by exciting currents over the specimen, thus
inducing eddy currents inside it and finally picking-up by a FLUXSET c© sen-
sor [6] a signal which is a measure of the variations of the overall magnetic field,
including the contribution due to the presence of a defect. The FLUXSET c©
sensor consists of three coils: exciting coil (to induce eddy currents in the sam-
ple), driving coil (to saturate the FLUXSET c© core material), pick-up coil (the
sensor strictly speaking). A hard device is able and used to convert the magnetic
variations to electric variations [11], so providing in output a voltage signal,
called pick-up voltage signal (or more easily pick-up voltage). The sample was a
concrete block, with reinforcement steel bar located along the longitudinal axis
(Fig. 2). An artificial cut, roughly two third of the cross section, was done in
the rod [5]. According to the geometry of the experimental set-up, the distance
between the sensor and the rod is approximately 10 mm. Phase demodulation
of the pick-up voltage gives a measurement proportional to the magnetic field
parallel to the plane of the sample. The specimen has been investigated with
a 10 Vpp sinusoidal signal at a frequency of 1.022 kHz, suitable to explore the
whole cross section of the bar. The sensor was moved over the block by means of
a 0.5 mm step-by-step automatic scanning, along x and y axes, in order to map
the area neighboring the cut. Figs. 3(a) and 3(b) clearly show the presence of
the cut, which exhibits an inclination with respect to the axis of the rod itself.

The collected database is composed by: 10 ECT maps characterized by pres-
ence of defect and 10 ECT maps showing absence of defect, with different ten-
sional states and analyzed with different current values. Each flawed specimen
has an unflawed correspondent specimen, and thus it has been possible to nor-
malize the collected data. Subsequently, the dataset has been split in training and
test subsets. In order to set the amount of training signals, we made a trade-off
between the requirements of an as large as possible training subset and a signif-
icant availability of testing signals. Thus, in our experimentations, training set
has been composed by randomly selected areas taken from 7 ECT maps with
defect’s presence and 7 ECT maps of unflawed specimens. Remaining maps com-
pose the test subset. Inputs system are: normalized impedance Z̃ = Ẑi

Z0,i
where
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Fig. 2. Sketch of the investigated specimen
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(a) Cross section view (b) Front view

Fig. 3. Magnitude of the pick-up voltage
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Fig. 4. Graphic depiction of system performances according to the variation of the
%RMSE values

Ẑi represents the impedance of the i-th point on computed map of specimen
with defect and Z0,i the corresponding value for the specimen without crack;

μratio = μ̂10x10
i

μ10x10
i

, σratio = σ̂10x10
i

σ10x10
i

, Sratio = Ŝ10x10
i

S10x10
i

, Kratio = K̂10x10
i

K10x10
i

, where μ̂10x10
i ,

σ̂10x10
i , Ŝ10x10

i , K̂10x10
i are the average, standard deviation, skewness and kur-

tosis of a 10x10 mm squared centered on the i-th pixel of flawed specimen, and
μ10x10
i , σ10x10

i , S10x10
i , K10x10

i are the corresponding values on the undamaged
specimen. Voltage signal (|V |) represents the FIS’ output.
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Fig. 5. Three-dimensional view of the magnitude of the pick-up voltage reconstructed
by a NFS with a three rules FIS

3.2 Comparison between Experimental and Numerical Results

In order to increase the flexibility of the model, Gaussian FMFs were run in our
work. The procedure to design a FIS is usually the following: fuzzification of the
input-output variables; fuzzy inference through the bank of fuzzy rules; defuzzi-
fication of the fuzzy output variables. Artisan-type fuzzy behaviour rules are
usually obtained from a simple visual analysis of the single bi-dimensional plots,
relevant to input and input-output pairs. MATLAB
 GENFIS system [10,12]
generates fuzzy rules with multiple antecedents in number equal to the number of
the inputs. FMF labeling has been automatically done in growing numbers. Per-
formances have been evaluated by calculating Root Mean Square Error (RMSE):

RMSE =

√∑N
i=1
∑M

j=1 (xij − x̂ij)
2

N ·M (1)

where xij and x̂ij are the observed and estimated values for the point at coordi-
nates (i, j) on the inspected specimen, respectively. Generally, obtained results
are very encouraging, with an average performances of about 98.2%. The lowest
%RMSE value is equal to 1.8%, corresponding to a clustering radius equal to
0.74 (three rules). Thus, several FISs have been carried out to tune the sys-
tem, by proposing them as the starting point of NFS approach. In this way, the
MATLAB
 ANFIS tool, starting from the generated FIS, allowed us to evaluate
the performances of such a kind of regressors. Maps in Figs. 5 and 6(a) corre-
spond to maps shown in Figs. 3(a) and 3(b), respectively. They were obtained
applying the Neuro-Fuzzy Inference to the experimental database with radius of
subtractive clustering [13] equal to 0.74. What can be seen is that the presence
of the cut clearly stands up, but the info relevant to its inclination is lost. By
using the same FIS, but adding three more rules (which means a computational
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(a) Front view (three rules FIS)

 

(b) Front view (six rules FIS)

Fig. 6. Magnitude of the pick-up voltage reconstructed by a NFS

increase of third order) an outcome NFS comparable to Fig. 3(b) was achieved
(see Fig. 6(b)).

4 Conclusions

The proposed approach offers the possibility to build the model (i.e. to determine
the rules) both by a-priori knowledge of the system under investigation and learn-
ing evidence. The resulting system has a ”readable” structure given by the FIS
rules, and the advantage of the neural learning adopted by the additional Neural
knowledge, in contrast to the ”black box” structure of simple Neural Networks.
Performing a careful analysis of the experimental database it has been possible
to significantly reduce the number of the inputs and the cardinality of the fuzzy
data bank. This feature turns out to be decisive in practical real time applica-
tions, where the reduction of the inspection time is a major demand, and in the
design of novel large systems, like nuclear fusion reactors, where an effort must be
made to reduce diagnostic concerns. The NFS technique offers in addition a novel
opportunity given to designers and technicians to solve the inverse problem by
inspecting the rules which are automatically generated. In authors’ opinion, the
most remarkable conclusion of the work is that it is possible to design inference
models with reduced computational complexity by NFSs. Since the presence of
Neural paradigm, they are able to estimate defects in terms of their position and
size, and the attained accuracy has been improved by adding qualitative knowl-
edge on the problems in terms of fuzzy expert linguistic rules.
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Abstract. The calculus of relations has been very important during the
past 40 years from theoretical as well as from practical point of view. The
development of fuzzy set theory, particularly in the framework of rela-
tional calculus has substantially increased the interest in this domain of
science. In this paper we will give a brief overview of the recent devel-
opments in crisp as well as in fuzzy relational calculus and illustrate its
applicability in image processing.

1 New Concepts in Classical Relational Calculus

The concept of a relation is fundamental since only in a few steps one can
introduce this concept in the framework of set theory. Indeed as soon as the
meaning of the so-called classifier {z|P}, i.e., the class of all objects z that
satisfy a given property P , has been introduced one may define consecutively a
singleton, a doubleton, an ordered pair, the cartesian product of two sets and
finally a relation from X to Y as a subset of the cartesian product X × Y . This
concept may be extended to a relation between n universes X1, X2, . . . , Xn as a
subset of X1 ×X2 × . . .×Xn. Some auxiliary notions with respect to a relation
R from X to Y are:

– The domain dom(R) consisting of all elements of X that are linked by R to
at least one element of Y .

– The range rng(R) consisting of all elements of Y that are linked to at least
one element of X .

– The inverse relation R−1 consisting of all ordered pairs (y, x) such that (x, y)
belongs to R.

– The R-afterset of x (denoted xR) consisting of all elements of Y that are
linked to x.

– The R-foreset of y (denoted Ry) consisting of all elements of X that are
linked to y.

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 179–188, 2009.
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Due to the last two notions introduced by Bandler and Kohout [1] in the
80’s, a lot of new images and compositions could be introduced. These concepts
substantially enlarge the toolkit of relational calculus.

Since relations are sets all set-theoretic operations such as union, intersec-
tion, complementation, difference and symmetric difference can be applied to
relations. For example suppose that R1 and R2 are relations from X to Y , then
the union R1 ∪R2 consists of all ordered pairs (x, y) that belong to R1 or to R2.
It is interesting to note that all these operations can be directly applied to after-
sets and foresets, i.e., the (R1 ∪ R2)-afterset of x ∈ X equals the union of xR1
and xR2, i.e., the family of aftersets (xR)x∈X contains all relevant information
concerning the relation R and similarly for the family of foresets (Ry)y∈Y .

Important notions in mathematics like continuity and measurability are based
on the concept of direct and inverse image of a set under a (functional) relation.

Let R be a relation from X to Y , A a subset of X and B a subset of Y , then

– the direct image of A under R is given by:

R(A) = {y|(∃x ∈ A)((x, y) ∈ R)}
= {y|A ∩Ry �= ∅}
= ∪

x∈A
xR

– the inverse image of B under R is given by:

R−1(B) = {x|(∃y ∈ B)((x, y) ∈ R)}
= {x|B ∩ xR �= ∅}
= ∪

y∈B
Ry

Inspired by the work of Bandler-Kohout [1] on the new compositions, De
Baets-Kerre [2]–[5] have introduced some new images that could be defined using
after- and foresets:

– the subdirect image of A under R:

R�(A) = {y|A ∩Ry �= ∅ and A ⊆ Ry}
= {y|A �= ∅, Ry �= ∅ and A ⊆ Ry}

– the superdirect image of A under R:

R�(A) = {y|A ∩Ry �= ∅ and Ry ⊆ A}
= {y|A �= ∅, Ry �= ∅ and Ry ⊆ A}

– the squaredirect image of A under R:

R�(A) = {y|A ∩Ry �= ∅ and A = Ry}
= {y|A �= ∅, Ry �= ∅ and A = Ry}

Finally we mention the most important operation on relations, namely com-
position or product and its useful extensions introduced by Bandler-Kohout [1]
and afterwards modified by De Baets-Kerre [2]–[5].
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Let R1 be a relation from X to Y and R2 a relation from Y to Z, then:

– the round product of R1 and R2 (read: R1 before R2, R1 followed by R2) is
defined as the relation from X to Z given by:

R1 ◦R2 = {(x, z)|(∃y)((x, y) ∈ R1 and (y, z) ∈ R2)}
= {(x, z)|xR1 ∩R2z �= ∅}

– the subproduct of R1 and R2:

R1 � R2 = {(x, z)|xR1 ∩R2z �= ∅ and xR1 ⊆ R2z}
= {(x, z)|xR1 �= ∅, R2z �= ∅ and xR1 ⊆ R2z}

– the superproduct of R1 and R2:

R1  R2 = {(x, z)|xR1 ∩R2z �= ∅ and R2z ⊆ xR1}
= {(x, z)|xR1 �= ∅, R2z �= ∅ and R2z ⊆ xR1}

– the squareproduct of R1 and R2:

R1�R2 = {(x, z)|xR1 ∩R2z �= ∅ and xR1 = R2z}
= {(x, z)|xR1 �= ∅, R2z �= ∅ and xR1 = R2z}

2 A Brief Outline of Fuzzy Relational Calculus

Since the old Greeks, scientists have recognized that binary or black-or-white
logic is not sufficient to model our knowledge which is mostly pervaded with
imprecision. We have to wait until 1965 when Lotfi Zadeh introduced the con-
cept of a fuzzy set in his seminal paper entitled “Fuzzy Sets”,in order to model
imprecise terms as “sets” with unsharp boundaries where the transition from be-
longing to not belonging is rather gradual than abrupt. In the same spirit Zadeh
introduced the concept of a fuzzy relation from a universe X to a universe Y as
a fuzzy set R in the cartesian product X×Y where R(x, y) denotes the strength
of relationship between x ∈ X and y ∈ Y .

More formally a fuzzy relation R from X to Y is a mapping from X × Y into
the unit interval [0, 1], attaching to every ordered pair (x, y) in X × Y a degree
of relationship R(x, y) belonging to [0, 1].

The basic concepts introduced in section 1 can be generalized or fuzzified as
follows. Let R be a fuzzy relation from X to Y , then:

– the domain of R is a fuzzy set in X given by:

dom(R)(x) = sup{R(x, y)|y ∈ Y }, ∀x ∈ X

– the range of R is a fuzzy set in Y given by:

rng(R)(y) = sup{R(x, y)|x ∈ X}, ∀y ∈ Y
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– the inverse R−1 of R is the fuzzy relation from Y to X given by:

R−1(y, x) = R(x, y), ∀(y, x) ∈ Y ×X

– the R-afterset of x ∈ X is the fuzzy set in Y given by:

xR(y) = R(x, y), ∀y ∈ Y

– the R-foreset of y ∈ Y is the fuzzy set in X given by:

Ry(x) = R(x, y), ∀x ∈ X

All the set-theoretic operations have been extended in an infinite number of
ways to fuzzy sets and a fortiori to fuzzy relations using the concepts of triangular
norms T and conorms S introduced by Schweizer-Sklar in the framework of
probabilistic metric spaces. The T -intersection (S-union) of two fuzzy relations
R1 and R2 from X to Y is defined as a fuzzy relation from X to Y given as:

R1 ∩T R2(x, y) = T (R1(x, y), R2(x, y))

R1 ∪S R2(x, y) = S(R1(x, y), R2(x, y))

for all (x, y) ∈ X × Y .
In order to fuzzify the concepts of images and compositions we need an ex-

tension of the classical intersection or conjunction operation and the binary
implication to model the inclusion. As said before the intersection of two fuzzy
sets in some universe may be modelled by a triangular norm T . In this way we
obtain for the T -direct image of a fuzzy set A in X under a fuzzy relation R
from X to Y :

RT (A) : Y → [0, 1]
y )→ sup

x∈X
T (A(x), R(x, y)), ∀y ∈ Y

Similarly for the T -round composition of a fuzzy relation R1 from X to Y
followed by a fuzzy relation R2 from Y to Z we obtain:

R1 ◦T R2 : X × Z → [0, 1]
(x, z) )→ sup

y∈Y
T (R1(x, y), R2(y, z)), ∀(x, z) ∈ X × Z

A fuzzy implication is defined as a [0, 1]2 − [0, 1] mapping I satisfying the
boundary conditions: I(0, 0) = I(0, 1) = I(1, 1) and I(1, 0) = 0. Putting ex-
tra conditions such as hybrid monotonicity, neutrality principle and exchange
principle leads to more specific implication operators. Some popular opera-
tors are IKD(x, y) = max(1 − x, y) (Kleene-Dienes implication), IL(x, y) =
min(1, 1 − x + y) (Lukasiewicz implication) and IR(x, y) = 1 − x + xy (Re-
ichenbach implication).

For more recent developments on fuzzy implication operators such as S-
implications, R-implications and QL-implications we refer to [6,7].

Let R be a fuzzy relation from X to Y , A a fuzzy set in X , T a triangular
norm and I a fuzzy implication. Then we define the following extensions of the
triangular images:
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– the T -I subdirect image of A under R as:

R�T,I(A) : Y → [0, 1]
y )→ min(sup

x∈X
T (A(x), R(x, y)), inf

x∈X
I(A(x), R(x, y))), ∀y ∈ Y

– the T -I superdirect image of A under R as:

R�T,I(A) : Y → [0, 1]
y )→ min(sup

x∈X
T (A(x), R(x, y)), inf

x∈X
I(R(x, y), A(x))), ∀y ∈ Y

– the T -I squaredirect image of A under R as:

R�
T,I(A) : Y → [0, 1]

y )→ min(R�T,I(A)(y), R�T,I(A)(y)), ∀y ∈ Y

Finally let us fuzzify the new compositions of fuzzy relations. Let R1 be a
fuzzy relation from X to Y , R2 a fuzzy relation from Y to Z, T a triangular
norm and I a fuzzy implication. Then we define:

– the T -I subproduct of R1 and R2 as:

R1 �T,I R2 :X × Z → [0, 1]
(x, z) )→min(sup

y∈Y
T (R1(x, y), R2(y, z)), inf

y∈Y
I(R1(x, y), R2(y, z))),

∀(x, z) ∈ X × Z

– the T -I superproduct of R1 and R2 as:

R1  T,I R2 : X × Z → [0, 1]
(x, z) )→min(sup

y∈Y
T (R1(x, y), R2(y, z)), inf

y∈Y
I(R2(y, z), R1(x, y))),

∀(x, z) ∈ X × Z

– the T -I squareproduct of R1 and R2 as:

R1�T,IR2 : X × Z → [0, 1]
(x, z) )→min(R1 �T,I R2(x, z), R1  T,I R2(x, z)), ∀(x, z) ∈X× Z

For more detailed information about the basics of fuzzy relational calculus
and some of its extensions such as to intuitionistic fuzzy set theory and rough
set theory we refer to [8]–[18].

3 Application to Image Processing

Also from application point of view the concept of a relation is a very fundamen-
tal one. More precisely, relations and their fuzzification have been successfully
applied in relational databases, information retrieval, approximate reasoning,
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preference modelling, ordering techniques, medical diagnosis, modelling tempo-
ral and spatial information. For a short overview of these applications, as well
as an extensive list of references for more detailed information, we refer to [19].

In this section we focus on the application of fuzzy relational calculus in image
processing. The field of image processing has led to many interesting theories and
corresponding practical algorithms that can extract specific information from
images (e.g. edges, patterns, ...), improve their quality (e.g. denoising, deblur-
ring, ...) or prepare them for other applications (e.g. compression). Mathematical
morphology is one of the theories which offers a wide range of tools for image
processing and computer vision. The basic morphological operators dilation and
erosion constitute the fundamentals of this theory [20]. A morphological operator
transforms an image into another image, using a structuring element (usually
chosen by the user).

Binary morphology was developed to process binary images. From a mathe-
matical point of view, such images can be modeled as X −{0, 1} mappings (i.e.,
as crisp subsets of X), with X the considered universe (usually a finite subset
of R × R) and {0, 1} the set of possible values (0 representing black and 1 rep-
resenting white). The dilation D(A,S) and erosion E(A,S) of a binary image A
using a structuring element S is defined as follows:

D(A,S) = {y|y ∈ X and Ty(S) ∩A �= ∅},
E(A,S) = {y|y ∈ X and Ty(S) ⊆ A},

with Ty(S) = {x|x ∈ X and x− y ∈ S} the translation of S by the point y.
The binary dilation and erosion have a very nice geometrical interpretation.

The dilation D(A,S) consists of all points y in X such that the translation Ty(S)
of the structuring element has a non-empty intersection with the image A. Con-
sequently, the dilation will typically extend the contours of objects in the image,
and fill up small gaps and channels. The erosion E(A,S) consists of all points y
in X such that the translation Ty(S) of the structuring element completely fits
within the image A. Consequently, the erosion will typically reduce (erode) the
contours of objects in the image, and delete small gaps and channels.

The original binary morphology, which was developed for binary images, was
soon extended to grayscalemorphology for grayscale images. Such images aremod-
eled as X − [0, 1] mappings, with [0, 1] the interval of possible values (0 represent-
ing black, 1 representing white, and intermediate values representing intermediate
shades of gray). The first extensions can be divided in two categories: either us-
ing the threshold approach [20] (in which grayscale images are transformed using
binary structuring elements), or either using the umbra approach [21] (in which
grayscale images are transformed using grayscale structuring elements).

Later, different models based on fuzzy set theory were introduced and studied
[22]–[27]. These models were inspired by the observation that grayscale images
and fuzzy sets can be modeled in the same way, namely as mappings from a
universe X into the unit interval [0,1], i.e., as fuzzy subsets of X . This formal
resemblance between these two different notions (fuzzy sets versus grayscale
images) allows us to use techniques from fuzzy set theory and to apply them in



Fuzzy Relational Calculus and Its Application to Image Processing 185

an image processing context. Using a triangular norm T and a fuzzy implication
I, the binary dilation and erosion can be fuzzified as follows:

DT (A,S)(y) = sup
x∈X

T (S(x− y), A(x)),

EI(A,S)(y) = inf
x∈X

I(S(x − y), A(x)),

for all y in X . This fuzzification is straightforward, and based on the extension
of set-theoretic notions from a binary to a fuzzy context.

At this point the reader surely will detect some similarity between the ex-
pressions of the fuzzy dilation DT (A,S) (with A and S grayscale images, i.e.,
fuzzy sets) and of the T -direct image RT (A) (with A a fuzzy set and R a fuzzy
relation). This can be formalized as follows: let V denote the subtraction in X ,
i.e., V (x, y) = x− y, for all x and y in X , and let A and S be fuzzy sets in X .
We can then define the fuzzy set R = S ◦ V , which is a binary fuzzy relation in
X . It easily follows that DT (A,S) = RT (A) with R = S ◦V . In other words: the
fuzzy dilation of A can be regarded as the T -direct image of A under a specific
relation that is defined using the structuring element of the dilation.

A similar statement can be made for the fuzzy erosion, provided that a weak
condition is imposed on the structuring element (i.e., on one of the images) and
on the fuzzy implication (i.e., on one of the fuzzy logical operators). In many
image processing applications it will be required that S(0) = 1, i.e. the origin
completely belongs to the structuring element. This condition implies that the
relation R = S ◦ V is a reflexive binary fuzzy relation in X . Furthermore it will
be required that the fuzzy implication I is a fuzzy border implication, i.e., I
has to satisfy the neutrality principle: I(1, x) = x for all x in [0, 1]. Under these
conditions it can be shown that EI(A,S) = R�T,I(A) with again R = S ◦ V . In
other words: the fuzzy erosion of A can be regarded as the T -I superdirect image
of A under a specific relation that is defined using the structuring element of the
erosion. The condition on the structuring element will cause that the part with
the triangular norm in the definition of R�T,I becomes irrelevant, so that only
the part with the fuzzy implication remains.

To summarize we have that:

DT (A,S) = RT (A),
EI(A,S) = R�T,I(A),

with T a triangular norm, I a fuzzy border implication, R = S ◦ V and the
latter equivalency under the restriction that S(0) = 1. Note that the left hand
side of these equalities are operators that find their origin in the field of image
processing, while the right hand side of these equalities are concepts from fuzzy
relational calculus. Although this concerns two different fields, these equivalen-
cies enable us to derive properties in one field (e.g., mathematical morphology
in image processing) from properties in the other field (e.g., fuzzy relational
calculus). We illustrate this with the properties of monotonicity, expansiveness
and restrictiveness, and interaction with union. First we give the properties in
a relational context, and next we interpret these properties in the context of
mathematical morphology.
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Property 1. Let R be a binary fuzzy relation in X. RT (A) is increasing w.r.t.
T and R�T,I(A) is increasing w.r.t. T and I; i.e. if T1 ≤ T2 and I1 ≤ I2, then:

RT1(A) ⊆ RT2(A)
R�T1,I1(A) ⊆ R�T2,I2(A).

RT (A) is increasing w.r.t. R; i.e. if R1 ⊆ R2, then:

(R1)T (A) ⊆ (R2)T (A).

RT (A) and R�T,I(A) are increasing w.r.t. A; i.e. if A1 ⊆ A2, then:

RT (A1) ⊆ RT (A2)
R�T,I(A1) ⊆ R�T,I(A2).

The first property expresses that we can strenghten or weaken the direct images
by adjusting the logical operators. In the context of image processing this implies
that we can manipulate the effect of the fuzzy dilation and erosion by choosing
larger or smaller triangular norms and/or fuzzy implications. For example, if
T1 ≤ T2 then we know that the dilated image DT1(A,S) will be smaller than
the dilated image DT2(A,S). “Smaller” in this context means that contours of
objects in the image will be extended to a lesser degree. The two other proper-
ties reflect the influence of a larger structuring element or a larger image. For
example, if A1 ⊆ A2 then the latter property leads to the conclusion that the
fuzzy erosion EI(A1, S) will be smaller than the fuzzy erosion EI(A2, S).

Property 2. Let R be a reflexive binary fuzzy relation in X and I a fuzzy border
implication, then:

R�T,I(A) ⊆ A ⊆ RT (A)

This property shows that the fuzzy T -I superdirect image is smaller (i.e. more
specific) than the original fuzzy set, but that the T -direct image is larger (i.e.
less specific) than the original fuzzy set. In the context of image processing this
property translates to the statement that the erosion of a grayscale image is
contained in that grayscale image, and that this grayscale image is contained in
its dilation. Note the requirement that R must be a reflexive fuzzy relation. In
the context of image processing this is satisfied when S(0) = 1 (with R = S ◦V ).

Property 3. It holds that:

RT (A1 ∪A2) = RT (A1) ∪RT (A2)
R�T,I(A1 ∪A2) ⊇ R�T,I(A1) ∩R�T,I(A2).

The T -direct image of the union of two fuzzy sets can be expressed as the union
of the fuzzy direct images of the separate fuzzy sets. For the superdirect image
only a containment relation w.r.t. the intersection of the separate fuzzy direct
images holds.
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In the context of image processing, the above property implies that the di-
lation of the union of two grayscale images can be computed by considering
the two separate dilations of each grayscale image. A similar property holds for
the union of structuring elements. Both properties also have computational ad-
vantages: one can decompose a grayscale image or a structuring element into
different standard objects, calculate the corresponding standard dilation, and
then assemble these results to obtain the dilation of the original grayscale image
by the original grayscale structuring element.

A more detailed overview and discussion can be found in [28]–[30].
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Università degli studi di Palermo
DINFO - Dipartimento di Ingegneria Informatica

Viale delle Scienze - Ed.6 - 3◦ piano - 90128 Palermo (ITALY)
{robertogallea,lacascia,marcomorana}@unipa.it

Abstract. With the wide diffusion of digital image acquisition devices,
the cost of managing hundreds of digital images is quickly increasing.
Currently, the main way to search digital image libraries is by keywords
given by the user. However, users usually add ambiguos keywords for
large set of images. A content-based system intended to automatically
find a query image, or similar images, within the whole collection is
needed. In our work we address the scenario where medical image col-
lections, which nowadays are rapidly expanding in quantity and hetero-
geneity, are shared in a distributed system to support diagnostic and
preventive medicine. Our goal is to produce an efficient content-based
description of each image collection in order to perform content-based
image retrieval (CBIR) just in the node where the searched images are
supposed to be. A novel combined fuzzy and probabilistic data descrip-
tor is presented and experimental results are illustrated.

Keywords: Fuzzy clustering, distributed CBIR, medical images.

1 Introduction

With the wide diffusion of digital image acquisition devices (e.g. digital cameras,
MRI scanners, PET scanners), the cost of managing hundreds of digital images
is quickly increasing. For instance, medical centers take thousands of datasets
everyday, but storing them without a proper organization becomes useless.

Currently, the main way to search digital image libraries is by keywords given
by the user. However, this process has been observed to be unsatisfactory since
users add few, often subjective, keywords for large set of images, raising ambi-
guities. In this scenario the need for organizing and finding data in distributed
systems represents a further challenging task. A content-based system intended
to automatically find a query image, or similar images, within the whole collec-
tion is needed.

Content-based image retrieval (CBIR) copes with the difficulties of describing
multimedia content in text format. Several works on resource description and se-
lection for text data has been proposed [1,2]. Some works [3,4] rely on keywords
frequencies to route a given query to a resource. However, image database man-
agement requires visual content description to avoid text keywords ambiguity,
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typical of manual labeling. Due to multimedia capabilities of modern comput-
ing, this issue is currently subject of many studies and relevant works were
conducted. In [5] a metadatabase records visual content of images per database
through image templates and statistical features. Resource selection is done by
an histogram-based procedure. A probabilistic model of the database feature
space is proposed by [6,7]. In [6] the feature space is fitted by a parametric
Gaussian Mixture, while [7] considers features as statistically independent and
uses monodimensional histograms for each distribution. Since both have been
used to validate our work, more details will be given in Sect. 2.2.

In this paper we address a scenario where medical image collections are shared
in a distributed system. Users search through collections of classified data pro-
viding a new, unclassified, query image. This can be useful to support doctors’
activities, for instance to diagnose already known pathologies. A rough approach
is to broadcast the query across the whole network, that is each node has to exe-
cute local queries on his data and to return a set of results. Clearly this approach
causes query flooding and usually generates network congestion.

Our goal is to produce an efficient content-based description of each image
collection in order to perform content-based image retrieval (CBIR) just in the
node where the searched image is supposed to be.

This task develops upon two different processes: resource description and
resource selection.

The resource description process aims to the extraction of feature vectors [8]
that represent the content information of each image. These vectors are then
combined, in some way, to give a resource compact description. The resource
description is finally used to support resource selection, that is a score is assigned
to all nodes and the query is issued to winning resources only.

The paper will show the following structure: an analysis of the feature space
characteristics will be given (Sect. 2.1). The Sect. 2.2 will give an overview of
probabilistic methods for data description and retrieval, while the proposed c-
means clustering approach is described in Sect. 2.3. Experimental results are
shown in Sect. 3 and discussed in Sect. 4. Conclusions will follow in Sect. 5.

2 Methods

In the scenario we supposed to address, a virtual or phisical network is supposed
to exist. Each node of such network owns an arbitrary collection of images de-
picting anatomical structures acquired by means of an MRI scanner. When a
new node intends to connect to the network, it constructs a compact summary of
all of its data. Then this information is spread across the whole network. When
a node wants to submit a query it makes some inference on these descriptors
and determines which nodes are most likely to contain the required information.
A priority list is created and the queries are then forwarded following this list.
When a network node receives the query, it performs a local search and the
results are sent back to the node which made the request.
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In our work we focus on the first part of the scenario, designing the nodes data
descriptor and a procedure to choose how to estabilish the query order among
the nodes, so we make no considerations on how the local search is performed.

2.1 Feature Space and Content Description

Each image in the collection can be represented by a finite set of discriminating
features. Various features can be used for this purpose, we chose to adopt Haral-
ick’s [8] texture-based set of measures such as Mean, Variance, Covariance, Con-
trast, Energy, Entropy, Homogeneity, etc. In addition to these we added some
other application-relevant morphological features like shape perimeter and area.

Each vector represents a point in a k-dimension space where k is the cardinal-
ity of the features. If the features are chosen in a proper way, the points (i.e. the
images) are expected to be distributed along the whole space to form clusters
more or less defined.

2.2 Probabilistic Approaches

In order to obtain a description of the content of a node, an intuitive method is to
construct a compact description of its feature space. This can be done by means
of probabilistic models fitting, either parametric (e.g. using Gaussian Mixtures
[6]), or non-parametric (e.g. histograms [7]). Such methods grant good results but
are not practicable using high dimensional feature space. The solution adopted
by [7] is to consider each feature statistically independent so that the model
is fitted just over k monodimensional single feature distributions. Altough this
effectively reduces the complexity of the method, the assumption that features
are independent is not always admissible. In all of these methods, the problem
of finding the node n most likely to contain the required image is reduced to find
the node which maximizes the probability

n = arg max
a

(P (X = x|A = a)) (1)

where x is the query data vector and A is the random variable representing
the node containing a given feature vector. In case of statistical independece
approximation reduces to

n = argmax
a

⎛⎝ k∏
j=1

P (Xj = xj |A = a)

⎞⎠ (2)

2.3 Combined Fuzzy and Probabilistic Data Descriptor

In our approach we abandoned the probabilistic framework and adopted Fuzzy
C-means [9] as clustering technique. The original algorithm is based on the min-
imization of the following objective function:

Js =
m∑
j=1

k∑
i=1

(uij)
s
d (xi, cj)

2
, 1 ≤ s ≤ ∞ (3)
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where the membership degrees uij are positive and structured such that ui,1 +
ui,2 + . . . + ui,m = 1.

The method proceeds as an iterative procedure that terminates after a fixed
number of iterations or when the improvement of each iteration is substantially
small.
The descriptor is constructed as follows:

– Features values are extracted from the images in the whole local database
– Feature space is populated with features vectors
– Fuzzy C-means is applied to find cluster centroids in the feature space
– The descriptor is given by coordinates of centroids:

DF =

⎡⎢⎢⎢⎣
c11 c12 · · · c1j
c21 c22 · · · c2j
...

...
. . .

...
ck1 ck2 · · · ckj

⎤⎥⎥⎥⎦ (4)

Using this approach the problem of finding the node most likely to contain a
required query image can be chosen in several ways, provided that a score for
each node has been assigned. Each query image has some fuzzy membership
degree for each of the clusters resulted from C-means. Taking the maximum of
the membership degrees, the image is assigned to belong to a single cluster and
the score of the node is represented by this membership degree itself. Note that
different, perhaps more efficient methods can be used to give a score measure to
each node, and this will be subject of further study.

In addition, hybrid fuzzy-probabilistic descriptors can be designed to overcome
and mitigate the weakness of both techniques. In such case the descriptors are
given by both fuzzy centroids and probabilistic model parameters. We chose to
fit 1-D Gaussian Mixtures over single-feature distributions. The model is fitted
using an Expectation Maximization [10] algorithm, which gives as output a set
of means, variances and reconstruction factors.

DP =

⎡⎢⎢⎢⎣
μ11, σ11, τ11 μ12, σ12, τ12 · · · μ1m, σ1m, τ1m
μ21, σ21, τ21 μ22, σ22, τ22 · · · μ2m, σ2m, τ2m

...
...

. . .
...

μk1, σk1, τk1 μk2, σk2, τk2 · · · μkm, σkm, τkm

⎤⎥⎥⎥⎦ (5)

where m is the number of Gaussian used in each mixture.
The resulting descriptor is the concatenation of C-means cluster centroids and

Gaussian Mixture model parameter vector:

DH = [DF |DP ] (6)

Finally a further adaptive mixing parameter λ can be added to adjust the weight
of the two aggregated descriptors.
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3 Experimental Tests and Results

To validate our framework, several tests were conducted on simulated networks
using real datasets. Each node of such networks has been preloaded with a a
random set of 7696 MRI brain images, obtained slicing a subset of the OASIS
volumes [11]. OASIS consists of a cross-sectional collection of 416 subjects aged
18 to 96. For each subject, 3 or 4 individual T1-weighted MRI scans obtained in
single scan sessions are included. For each node the features have been extracted
and feature spaces have been built. The proposed descriptors (C-means based,
Gaussian Mixture based and hybrid) have been computed and system simula-
tions have been run. For each simulation 7500 queries have been executed.
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Fig. 1. (a) Rate of success searching the query image in first 10% of network. (b)
Cumulative success curve diagram.

The second measure is about efficiency of the system. The concept is explained
directly from considerations on the graphical diagram in Fig. 1 (b). Plotting on
the y axis the cumulative successes after querying the i-th node, an efficiency
curve is obtained. The slope of such curve indicates the system quality. The
steeper the curve, the better the system performs. For reference purposes, an
approximately straight line resulting from the random querying scheme is de-
picted too.

Both described tests search for an exact match of the query image, additional
tests have been performed to simulate the complete CBIR system, that is search-
ing not just for the very same image, but even similar ones as well. Similarity
between two images refers to their visual and structural differences; in order
to measure it, SSIM [12] has been used. The SSIM index is a value between 0
(i.e. mean zero correlation with the original image) and 1 (i.e. same image). The
system has been evaluated using Fuzzy descriptors and the same network config-
uration of the first test. The number of images found in each node whose SSIM
index exceeds a given threshold is recorded. Table 2 summarizes the means of
images found for best five nodes of priority list after 7500 queries.
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Fig. 2. Examples of query images (first column) and relative results (right) for three
different views of MRI images

Table 1. Rate of success searching the query image in first 10% of network using
different number of nodes, images and clusters. Results (%) for our Fuzzy method, GM
model and Hybrid approach are shown.

Nodes Images Fuzzy GM Hybrid

9 Clusters

100 75 18.49 20.55 18.68
75 100 18.46 19.25 17.15
50 150 14.51 15.66 14.70
37 200 14.81 15.46 14.12
20 375 12.51 13.49 12.39
10 750 11.63 11.69 11.51

16 Clusters

100 75 26.93 20.33 26.02
75 100 23.96 18.95 23.87
50 150 18.02 15.87 18.25
37 200 19.27 16.00 17.73
20 375 12.85 12.45 13.60
10 750 12.52 11.84 11.70

24 Clusters

100 75 38.33 20.05 38.16
75 100 32.13 17.74 32.64
50 150 23.44 16.54 24.23
37 200 23.15 17.53 23.00
20 375 15.81 13.53 16.80
10 750 13.21 11.89 12.47

4 Discussion

Experimental results showed that our Fuzzy descriptor performs generally bet-
ter than Gaussian Mixture model descriptor. Even though using the same de-
scriptor size leads to similar results, our descriptor scales better. While Fuzzy
descriptor performance can be improved increasing the number of clusters, in-
creasing Gaussian Mixture model performance is not as easy: in the linearly
independent features case, adding more Gaussians does not improve the dis-
tributions fitting (i.e. performance does not change). Instead, fitting the whole



A Combined Fuzzy and Probabilistic Data Descriptor for Distributed CBIR 195

Table 2. Means of images found for best five nodes of priority list, after 7500 queries,
using different number of nodes, images and clusters

Nodes Images 1st 2nd 3rd 4th 5th

9 Clusters

100 75 7.12 6.01 5.23 5.31 4.83
75 100 9.31 8.25 7.45 7.03 6.38
50 150 14.01 13.26 13.12 12.67 11.78
37 200 18.22 17.46 16.28 15.55 15.18
20 375 35.51 34.39 32.73 31.15 30.68
10 750 71.63 70.29 69.51 67.45 67.11

16 Clusters

100 75 9.51 9.02 8.32 7.71 7.13
75 100 11.64 10.82 10.05 9.34 9.03
50 150 16.72 15.96 15.21 14.67 13.97
37 200 21.24 20.86 19.78 19.25 18.53
20 375 37.14 35.23 35.07 34.64 33.98
10 750 74.31 73.92 72.52 72.15 71.77

24 Clusters

100 75 10.31 10.01 9.62 8.41 7.73
75 100 13.42 12.89 12.01 11.53 10.68
50 150 17.28 16.66 15.84 15.13 14.31
37 200 23.02 22.46 22.08 21.65 21.03
20 375 39.01 38.37 37.77 37.01 36.12
10 750 76.23 75.02 75.21 74.12 73.22

feature space with more Gaussians would actually improve the overall system
performance, but is too hard to achieve using an high number of features. Gaus-
sian Mixture approach results more effective when few images are available in
the node. Using an hybrid approach can represent a good choice in this case.
The λ parameter can be set to automatically adapt to the local collection size,
weighting more Gaussian Mixture approach in small image databases, Fuzzy one
otherwise.

Obviously this adaptive solution is not for free, since the descriptor size in-
creases to the sum of both descriptors.

5 Conclusions

In this work was addressed the task of searching medical images shared in a
distributed system. In this scenario, an efficient content-based description of
each collection is needed in order to perform content-based image retrieval
(CBIR) just in the nodes where the searched image is supposed to be. Prob-
abilistic approaches are usually based on models fitting, either parametric or
non-parametric. However, these methods are not practicable using high dimen-
sional correlated-feature space. A novel Fuzzy content-based image descriptor
has been presented. Firstly, features values are extracted from the images con-
tained in each node, then Fuzzy C-means clustering is applied to find cluster cen-
troids in the feature space. The descriptor is given by coordinates of centroids.
In addition, a combined Fuzzy and Probabilistic descriptor has been designed
to overcome and mitigate the weakness of both techniques. An adaptive mixing
parameter λ can be added to adjust the weight of the two aggregated descriptors
and this will be subject of further study.
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Abstract. The main purposes of this work are to demonstrate the role
of directional symmetry as a second order principle that polarizes the
perception of the shape and to show how this preference can be easily
encoded in an algorithm using a fuzzy operator for symmetry detection.

The role of grouping in influencing shape perception and the role of di-
rectional symmetry was demonstrated through small triangles that create
a large triangle. The specific questions answered in the psychophysical
experiments were the following: Can the grouping by similarity influ-
ence both the pointing and the shape of the small and the large isosceles
triangles? Conversely, can the shape of the large triangle influence the
perceptual strength and direction of the grouping of the inner elements?
As for the algorithm implementation, we wanted show that a fuzzy op-
erator, usually employed in symmetry detection, can as well represent
such a preference by obtaining a human-like performance.

The results demonstrated that the grouping principles influence not
only the way elements in the visual field “go together” to form an inte-
grated, holistic (Gestalt) percept, but also the local and the whole shape
perception: the grouping by similarity influences both the pointing and
the shape of both the small and the large isosceles triangles. This cre-
ates the illusion of a scalene triangle: small and large isosceles triangles
appear as scalene. Conversely, the shape variation of the large triangle
induced by the bevelling of the large triangle influences the perceived
strength and direction of the grouping of the inner small triangles.

We suggest that the preference for such principles can be emulated
using a fuzzy algorithm that capture the gist of humans’ preferences for
symmetry.

Keywords: symmetry, fuzzy operators, shape formation, perception.

1 Visual Organisation and Shape Perception

1.1 The Form of Grouping

The problem of perceptual organization, first studied by Gestalt psychologists,
is one of the central issues of Vision Science. It is related to the perception of
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a world made up of phenomenal objects but not differences of luminance and
edges. The main question [11,12,13,14] asked is: how do the elements in the visual
field ‘go together’ to form an integrated, holistic percept (Gestalt)? The answer
to this question brought Wertheimer to discover the well-known ‘principles of
grouping’.

In Figs. 1a-b, two large square shapes made up of rows (a) or columns (b)
of small squares are perceived. In Fig. 1c, the small squares do not show any
preferential direction of the inner organization, i.e. neither rows nor columns,
but a lattice of small squares is globally perceived. Under these conditions, the
row or column organization can be induced through the visual attention but it
appear not as clearly as in Figs. 1a-b and easily reversible when the attention is
switched in one or in the other result.

The inner local organization of the small squares in rows or columns is due to
the Gestalt grouping principle of similarity [14], stating that, all else being equal,
the most similar elements (in color, brightness, size, empty/filled, shapes, etc.)
are grouped together. The outer global organization in large square shapes is
due to the principle of similarity of shape and to the principle of exhaustiveness,
according to which, all else being equal, all the components of a stimulus pattern
tend not to be left outside but included as parts in a grouped whole.

1.2 The Form of Shape: The Rectangle Illusion

On a closer observation of Fig. 1, nave subjects agreed to report more subtle
and precise properties of the perceived shapes [8,9].

Fig. 1. Two large square shapes made up of rows (a) or columns (b) of small squares.
In (c), rows and columns are not perceived as clearly and stably as in (a), (b), but
they appear reversible. Both small and large squares appear similar to vertical (a) and
horizontal (b) rectangles.

The shapes of small and large squares are not perceived isotropic (directional
invariant) but with a clear directional symmetry. These results emerge more
clearly by comparing them with those of the control illustrated in Fig. 1c. The
inner organization in rows or column orients and elongates the shape of both the
small and the large squares in the same direction as the one of the perceptual
grouping. In other words, the perception of the rows distorts by widening the base
of both the small and the large squares that appear like horizontal rectangles.
On the contrary, the column organization induces a perceptual lengthening of
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the height of both small and large squares that appear similar to vertically
rectangles.

These apparent deformations of the whole and local geometric shapes persist
or are even stronger by zooming the focus of attention only on a small array
of squares, e.g. the extreme 3X3 squares in the left or right upper side of Figs.
1a-b. Similarly to the whole deformation, each small square appears distorted
like a rectangle.

This effect can be related to Oppel-Kundt’s group of illusions, according to
which an empty (unfilled) space looks wider than a space filled by some objects
[2,4] and to Helmholtz’s square illusion, where a square appears wider when it is
filled with vertical lines and higher when filled with horizontal lines [3]. However,
our effects show several important differences: (i) the whole shape distortion is
induced by grouping and not by filled vs. unfilled space; (ii) the direction of the
illusory distortion is the opposite of the one perceived in both Oppel-Kundt’s
and Helmholtz’s square illusions, and (iii) the shape distortion involves both the
small squares and the whole square shape. The previous descriptions suggest
that the form of grouping can influence the form of shape: squares “become”
rectangles, and this might depend on the directional symmetry derived from the
grouping by similarity. They also demonstrate a relation, to be studied in depth,
between the problem of grouping and the process of shape perception. In Fig. 1,
the perceptual results show how individual elements group into wholes separated
from others. Grouping per se does not make any prediction about shape. The
role of the gestalt principles is to define the rules of “what is or stay with what”
and, then, the grouping and not the shape. The notion of whole due to grouping
is phenomenally different from the one depending on shape and represents the
groups of elements that assume the role of “parts” of a holistic percept. The form
of shape is instead the result of a global perceptual process emerging likely paral-
lel to or after the form of grouping and giving to the whole a unitary form along
the boundary contours. Nevertheless, grouping and shape formation can be con-
sidered as two complementary integrated processes of perceptual organization.
This is not a literal or a fictitious distinction but a phenomenal necessity that
can have consequences in terms of neural circuitry. [8] (in press) and [9] (under
revision) have recently distinguished a further kind of perceptual organization
called “form of meaning” to be added to the other two forms.

The main purposes of this work are (i) to demonstrate the role of directional
symmetry as a second order principle that polarizes the perception of the shape
and (ii) to show how this preference can be encoded in an algorithm using a
fuzzy operator for symmetry detection.

2 The Illusion of the Scalene Triangle: Phenomenology,
Psychophysics and Fuzzy Modelling

The role of grouping in influencing shape perception and the role of directional
symmetry can be demonstrated by using small triangles that create a large
triangle. The purpose of the next experiments and of the following adaptation



200 B. Pinna and M.E. Tabacchi

of a symmetry detection fuzzy model is to answer the following questions: Can
the grouping by similarity influence both the pointing and the shape of the
small and the large isosceles triangles? Conversely, can the shape of the large
triangle influence the perceptual strength and direction of the grouping of the
inner elements? What is the role of symmetry in determining grouping and shape
perception? Is this role easily implementable using a fuzzy model?

2.1 Methods

Subjects. Independent groups of 14 nave undergraduate students participated
to the experiments. All subjects had normal or corrected-to-normal acuity.

Stimuli. The stimuli were composed of small isosceles triangles connected in
their vertexes as to create a large isosceles triangle (see Fig. 2).

Fig. 2. (a) Small isosceles triangles create a large isosceles triangle pointing toward
the top left-hand corner. (b) The grouping of the triangles on the basis of similarity
of lightness makes the large elongated isosceles shape to appear more pronounced
than the one of (a) and more strongly determining the pointing of both large and
small rectangles toward the top right-hand corner. (c) When the grouping of isosceles
triangles is parallel to one of the two equal sides of each small triangle, the three sides of
both the small and large triangles appear unequal, i.e. scalene, pointing preferentially
toward the bottom left-hand corner.

Four variations were created: 3 directions of grouping by similarity and 1
where the grouping is absent and then all the triangles are black. The two sides
of the isosceles small and large triangles were respectively: 48.12 arcmin and
57.74 arcmin. The stimuli were presented on a computer screen with ambient
illumination from a Osram Daylight fluorescent light (250 lux, 5600°K). The
luminance of the white background was 88.3 cd/m2. Black and gray triangles
had a luminance contrast of 0.97 and 0.45 respectively (luminance value of 2.6
and 51.3 cd/m2). Stimuli were presented in a frontoparallel plane and viewed
binocularly at a distance of 50 cm. During the experiment the orientation of
the large triangle was randomly varied from one subject to another. The head
position of the observer was stabilized by a chin rest.
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Procedure. The method of forces choice and adjustment were used respec-
tively in the complete and bevelled psychophysical conditions. Before starting
the experiment the subjects familiarized with the notion of isosceles and scalene
triangles seeing some examples of both complete or bevelled triangles on a com-
puter screen. Then, for practicing, the subjects were invited to press one of the
two buttons labelled “I” for “isosceles” or “S” for “scalene” and, by adjusting the
position of an arrow, to define its perceived pointing.

By pressing a button two independent groups of 14 subjects chose the per-
ceived shapes, isosceles or scalene, of the small or large triangles. By positioning
an arrow, two independent groups of 14 subjects chose the direction of the per-
ceived pointing of the small or large triangles. Each type of measurement was
randomized and repeated three times.

At the end of the previous experimental sessions, the task of the subjects was
to scale the relative strength of the perceived grouping effect due to similarity, i.e.
how easy, immediate and direct is to perceive the grouping by similarity with re-
spect to the perceived shape and pointing of the small and large triangles. The
range values were from 1 to 6, the same as the number of stimuli with black and
gray triangles. The upper value “6” was defined by the perceived strongest group-
ing among the six stimuli, i.e. by the one most easily and immediately perceived in
relation to the shape and pointing. Whereas the value “1” was defined as the min-
imum grouping perceived, i.e. the least easy, immediate and direct. The stimuli
were present all at the same time to each observer in a random order.

2.2 Replicating the Scalene Triangle Illusion Using a Fuzzy Model

In order to replicate human performance in the judgment of directionality we
have chosen to use FiST [10], a fuzzy model we have already used at the purpose
of exposing preferential biases regarding vertical axes in human judgment when
detecting symmetry in single objects.

The Field Symmetry Transform (FiST for short) is an algorithmic approach
to the problem of symmetry detection in digital objects. FiST takes as input a
digital raster image, and outputs an histogram of the symmetry distribution in
the image itself; analysis of maxima and minima in the histogram reveals how
the main symmetric axes are angled.

The process employed by the algorithm is as follows: FiST treats the input
image as a bidimensional plane, in which each pixel p(x, y) is a virtual charged
particle at continue plane coordinates (x, y), with positive intensity proportional
to the fuzzy grey intensity of p. Once all of the pixel have been represented as
virtual charged particles, an equal-spaced orthogonal grid is superimposed on
the bidimensional plane, and the vector field resulting from the contribution
of all the virtual charges is computed at each crossing point of the grid. The
contribution given by the charged particle p lying at coordinates (x, y) to the
field at grid point h of coordinates (i, j), according to Coulomb’s law, is:

E(h)
p =

1
4
π
Qx

r2 r̂
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where Q is the charge of the particle p, and r is the unit vector pointing form
the particle p to the evaluation point h (or from the point (x, y) to the point
(i, j)). Due to the superimposition principle of the charges, the total field vector
E in h from all the points in grid G is given by:

Ep =
∑
h∈G

E(h)
p

The vectors obtained through this process are then clustered according to
their direction, and a histogram is obtained by counting the number of vectors
in each cluster. The resulting histogram is the FiST of the original image, and
by appropriate rescaling it is interpreted as a fuzzy degree of membership to the
symmetric set: when only one main symmetry is found, the result is directly in-
terpretable as a fuzzy number centered on the maximum symmetric axis, while
when different symmetry axis are found, the obtained histogram can be de-
composed as the union of different fuzzy numbers, with their relative degree of
membership rescaled for comparative purposes. Choice of parameters for FiST
(resolution of the grid, width of the clusters, linearity of the charge in function
of the pixel intensity) depends strictly on the type of image taken in input,
its resolution and bit depth. Due to the theoretical approach used, FiST has
some interesting peculiarities: among them the fact that, being based on a field
metaphor, specific preferences for directions (such as the vertical bias usually
observed in humans) can easily be encoded by directly manipulate the field.

Stimuli. Triangles shown in Fig. 2 has been digitalised using standard 4 × 4
antialiasing techniques, at 512 × 512 pixels.

Procedure. FiST has been applied as follows: the vector grid has been sized
at 128 × 128, using only the vectors lying inside a digital circle with 256 pixels
radius co-centered with the original image, in order to balance the geometrical
contribution of the original image. The interval used for histogram building has
been chosen as 6°, in order to minimize interferences due to the discrete nature of
the image and the ensuing noise. The algorithm has been applied using custom
code developed in MATLAB.

2.3 Results and Conclusions

In Fig. 3a, the mean ratings of choices of the isosceles triangle for the small
and large triangles are plotted as a function of each stimulus (black triangles,
gray/black synergistic, gray/black antagonistic and gray/black antagonistic). In
Fig. 3b, the rates of choices of the pointing in the direction of the most acute
angle of the isosceles triangle are plotted as a function of each stimulus. When
the grouping is absent and all the triangles are black (see Fig. 3a), the subjects
perceived small isosceles triangles creating a large isosceles triangle all point-
ing toward a univocal direction – the geometrical one. When the grouping by
similarity of lightness is synergistic with or parallel to the smallest side of both
small and large triangles (see Fig. 2b), the small and large isosceles triangles ap-
peared more pronounced, elongated and pointed than the one of Fig. 2a. When
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Fig. 3. (a) Rates of choices of the isosceles triangle for both small and large trian-
gles plotted as a function of each stimulus (black triangles, gray/black synergistic,
gray/black antagonistic and gray/black antagonistic). (b) Rates of choices of the point-
ing in the direction of the most acute angle of the large isosceles triangle plotted as a
function of each stimulus.

Fig. 4. Results form FiST. In Synergistic (a) or Uniform (b) condition, the direction of
the figure is clearly determined by its predominant axis. In Contrasting condition (c),
a different axis emerges. In this graph, angles are normalised as if shown in horizontal
position.

the grouping of isosceles triangles is parallel to one of the two equal sides of
both small and large triangles (Fig. 2c), a local and global scalene shape illu-
sion emerged: the small and large triangles appear scalene, pointing preferably
toward the direction opposite to the direction of the grouping.

As shown in Figure 4, results form the application of FiST share the same
underlying meaning with results obtained from the psycho physical experiment.
When there is no explicit grouping (Fig. 4a), or internal and general directions
agrees (Synergistic condition, Fig. 4b) the direction is univocally determined by
this agreement. In the contrasting condition (Fig. 4c), a symmetry axis, corre-
sponding to the opposite direction respect to the original grouping, absent in the
other conditions, emerges. We call this effect “the illusion of the scalene triangle”.
These results are phenomenally corroborated by the spontaneous descriptions of
the subjects. Results of a two-way mixed factorial ANOVA (figure variation –
within-subjects variable, small and the large triangles – between-subjects vari-
able) was significant only for the difference between the figures in both choices
(isosceles triangle –F3,24=6.6, P<0.01; pointing –F3,24=5.4, P<0.01).
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A Unified Algebraic Framework for Fuzzy Image

Compression and Mathematical Morphology

Ciro Russo
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Abstract. In this paper we show how certain techniques of image pro-
cessing, having different scopes, can be joined together under a common
“algebraic roof”.

Introduction

In the last years, fuzzy logics and fuzzy set theory have been widely applied
to image processing tasks. In particular, the theory of fuzzy relation equations,
deeply investigated in [2], is involved in many algorithms for compression and
reconstruction of digital images (see, for example, [1, 5, 7]).

In such techniques, however, the approach is mainly experimental and the al-
gebraic context is seldom clearly defined. Basically, most of the fuzzy algorithms
for image compression, make use of join-product operators; after all, a complete
lattice order and a multiplication that is residuated w.r.t. the lattice-order are
the fundamental ingredients of these operators.

On the other hand, there exists another class of operators acting on digital
images that, although having a completely different scope, has the same alge-
braic form: mathematical morphological operators. Mathematical Morphology is
a technique for image processing and analysis whose birth can be traced back
to the book [6] by G. Matheron and whose establishment is due mainly to the
work of Heijmans and Serra (e.g. [3, 4, 10]). The basic problem in mathematical
morphology is to design nonlinear operators that extract relevant topological or
geometric information from images. This requires the development of a math-
ematical model for images and a rigorous theory that describes fundamental
properties of the desirable image operators.

Essentially, mathematical morphological operators analyse the objects in an
image by “probing” them with a small geometric “model-shape” (e.g., line seg-
ment, disc, square) called the structuring element. These operators are defined
on spaces having both a complete lattice order (set or fuzzy set inclusion, in
concrete applications) and an external action from another ordered structure
(the set of translations); more, they are usually coupled in adjoint pairs.

Regarding these different classes operators, what is really outstanding from
an algebraic point of view is the fact that they can both be expressed in terms
of a complete lattice order and a residuated product. Our aim is to show how all
these operators can be joined together in a common mathematical context: the

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 205–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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categories of quantale modules and the operators called Q-module transforms.
We will also show that such operators

– are precisely the Q-module homomorphisms between free modules,
– are completely determined by the mathematical counterpart of the coder

(for compression algorithms) and of the structuring element (in the case of
mathematical morphology).

Throughout the paper, due to space constraint, we will omit all the proofs of
propositions and theorems; however they can all be found in [9].

1 Preliminaries

In this section we will briefly recall some basic notions on several ordered alge-
braic structures.

Definition 1. Let 〈X,≤〉 and 〈Y,≤〉 be two posets. A map f : X −→ Y is said
to be residuated iff there exists a map g : Y −→ X such that, for all x ∈ X and
for all y ∈ Y , f(x) ≤ y ⇐⇒ x ≤ g(y).

It is immediate to verify that the map g is uniquely determined; we will call
it the residual map or the residuum of f , and denote it by f∗. The pair (f, f∗)
is called adjoint ; a residuated map preserves all existing joins and its residuum
preserves all existing meets.

The category SL of sup-lattices is the one whose objects are complete lattices and
morphisms are maps preserving arbitrary joins or, that is the same, residuated
maps. For a sup-lattice L, we will use the notation L = 〈L,∨,⊥〉. For any sup-
lattice L = 〈L,∨,⊥〉, it is possible to define a dual sup-lattice in an obvious way:
if we consider the opposite partial order ≥, then Lop = 〈L,∧,�〉 is a sup-lattice
and, clearly, (Lop)op = L.

Proposition 2. Let 〈X,≤〉 and 〈Y,≤〉 be posets, and let (f, f∗) be an adjoint
pair, with f : X −→ Y . Then the following hold:

(i) f is surjective ⇐⇒ f∗ is injective ⇐⇒ f ◦ f∗ = idY ;
(ii) f is injective ⇐⇒ f∗ is surjective ⇐⇒ f∗ ◦ f = idX .

A binary operation · on a partially ordered set 〈P,≤〉 is said to be residuated
iff there exist binary operations \ and / on P such that for all x, y, z ∈ P ,
x ·y ≤ z iff x ≤ z/y iff y ≤ x\z. The operations \ and / are referred to as the left
and right residua of ·, respectively. In other words, a residuated binary operation
over 〈P,≤〉 is a map from P × P to P that is residuated in both arguments. In
the situations where · is a monoid operation with a unit element e and the partial
order is a lattice order, we can add the monoid unit and the lattice operations
to the similarity type to get an algebraic structure R = 〈R,∨,∧, ·, \, /, e〉 called
residuated lattice.

In the category Q of quantales, Obj(Q) is the class of complete residuated
lattices and the morphisms are the maps preserving products, the unit, arbi-
trary joins and the bottom element. An alternative, yet equivalent, definition of
quantale is the following.
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Definition 3. A quantale is an algebraic structure Q = 〈Q,∨, ·,⊥, e〉 such that
(Q1) 〈Q,∨,⊥〉 is a sup-lattice,
(Q2) 〈Q, ·, e〉 is a monoid,

(Q3) x ·
∨
i∈I

yi =
∨
i∈I

(x · yi) and
(∨
i∈I

yi

)
· x =

∨
i∈I

(yi · x) for all x ∈ Q,

{yi}i∈I ⊆ Q.

Q is said to be commutative if so is the multiplication. Obviously, if Q is com-
mutative then the two residua coincide and x/y = y\x is denoted by y → x.

Before giving examples of quantale structures interesting for the scope of this
paper, we recall that a binary operation ∗ : [0, 1]2 −→ [0, 1] is called a triangular
norm, t-norm for short, provided it is associative, commutative, monotone in
both arguments and has 1 as the neutral element. A t-norm ∗ is called left-
continuous if, for all {xn}n∈N, {yn}n∈N ∈ [0, 1]N,(∨

n∈N
xn
)
∗
(∨

n∈N
yn
)

=
∨
n∈N

(xn ∗ yn).
In this case, clearly, ∗ is residuated and its residuum (unique, since ∗ is commu-
tative) is given by x → y =

∨
{z ∈ [0, 1] | z ∗ x ≤ y}.

Example 4. If ∗ is any left-continuous t-norm on the real unit interval, then
〈[0, 1],∨, ∗, 0, 1〉 is a commutative quantale.

2 Join-Product Operators in Image Processing

2.1 Fuzzy Algorithms for Image Compression and Reconstruction

In the literature of image compression, the fuzzy approach is based essentially
on the theory of fuzzy relation equations. The underlying idea is the following:
a grey-scale image is a matrix in which every element represents a pixel and its
value, included in the set {0, . . . , 255} in the case of a 256-bit encoding, is the
grey-level. Then, if we normalize the set {0, . . . , 255} by dividing each element
by 255, grey-scale images can be modeled equivalently as fuzzy relations, fuzzy
functions (i.e. [0, 1]-valued maps), fuzzy subsets of a given set or [0, 1]-valued
matrices. A similar model is used for RGB colour images, where each image is
represented by three fuzzy relations (respectively: functions, sets or matrices).

So, if we consider a grey-scale image I of sizes m × n (m,n ∈ N), we can
see it as an m × n matrix Iij whose values are in [0, 1]. Now we consider two
natural numbers a ≤ m and b ≤ n and fix a [0, 1]-valued map in four variables
C ∈ [0, 1]m×n×a×b — usually called coder or codebook ; then we compress the
image I into an image I ′ = I ′hk of sizes a× b by setting

I ′hk =
∨
i,j

Iij ∗ Cijhk, (1)

where ∗ is any left-continuous t-norm on [0, 1]. The reconstructed image I ′′ = I ′′ij
is defined by

I ′′ij =
∧
h,k

Cijhk →∗ I ′hk, (2)

where →∗ is the residuum of ∗.
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Even if some fuzzy algorithms for image compression may look different at
a first glance, most of them can be rewritten in a form similar to (1), with a
reconstruction process that will consequently look like (2).

2.2 Dilation and Erosion in Mathematical Morphology

In Mathematical Morphology binary images are modeled, in the wake of tradition
and intuition, as subspaces or subsets of a suitable space E, which is assumed to
possess some additional structure (topological space, metric space, graph, etc.),
usually depending on the kind of task at hand.

Concretely, the class of n-dimensional binary images is represented as P(E),
where E is, in general, Rn or Zn. In the first case we have continuous binary
images, otherwise we are dealing with discrete binary images. The basic rela-
tions and operations between images of this type are essentially those between
sets, namely set inclusion, union, intersection and complementation. It is intu-
itively clear, then, that complete lattices are the algebraic structures required
for abstracting the ideas introduced so far.

Definition 5. Let L, M be complete lattices. A map δ : L −→ M is called a
dilation if it distributes over arbitrary joins: δ

(
L∨X

)
= M∨ δ(X), for every

X ⊆ L. A map ε : M −→ L is called an erosion if it distributes over arbitrary
meets: ε

(
M∧Y

)
= L∧ ε(Y ), for every Y ⊆ M .

Two maps δ : L −→ M and ε : M −→ L are said to form an adjunction,
(δ, ε), between L and M if δ(x) ≤ y ⇐⇒ x ≤ ε(y), for all x ∈ L and y ∈ M .1

Assume that δ : L −→ M is a dilation. For x ∈ L, we can write δ(x) =∨
y≤x δ(y), where we have used the fact that δ distributes over join. Every

dilation defined on L is of the form above, and the adjoint erosion is given by
ε(y) =

∨
δ(x)≤y x.

Now, keeping in mind the models Rn and Zn, it is possible to introduce the
concepts of translation of an image and translation invariance of an operator, by
means of the algebraic operation of sum. Indeed, let E be Rn or Zn and consider
the complete lattice P(E); given an element h ∈ E, we define the h-translation
τh on P(E) by setting, for all X ∈ P(E), τh(X) = X + h = {x + h | x ∈ X},
where the sum is intended to be defined coordinatewise.

Next, we consider the case of operators that are translation invariant; here the
sets δ({x}) are translates of a fixed set, called the structuring element, by {x}.
An operator f : P(E) −→ P(E) is called translation invariant, T-invariant for
short, if τh ◦ f = f ◦ τh for all h ∈ E. It is proved in [4] that every T-invariant
dilation on P(E) is given by δA(X) =

⋃
x∈X A+x, and every T-invariant erosion

is given by εA(X) = {y ∈ E | A + y ⊆ X} = {y ∈ E | y ∈ X + Ă}, where A is

1 Notice that the notation used in the literature of Mathematical Morphology is
slightly different. Indeed, an adjunction is presented with a dilation in the second
coordinate and an erosion in the first. Here we use such a reversed notation because,
as we will see, adjunctions are adjoint pairs in the sense of Definition 1.
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an element of P(E), called the structuring element, and Ă = {−a | a ∈ A} is
the reflection of A around the origin.

Now we observe that the above expressions for erosion and dilation can also
be written, respectively, as

δA(X)(y) =
∨
x∈E

A(y − x) ∧X(x), εA(Y )(x) =
∧
y∈E

A(y − x) → Y (y), (3)

where each subset X of E is identified with its (Boolean) membership function
and X → Y =: Xc∨Y . Moving from these expressions, and recalling that ∧ is a
residuated commutative operation (that is, a continuous t-norm) whose residuum
is →, it is possible to extend these operations from the complete lattice of sets
P(E) = {0, 1}E to the complete lattice of fuzzy sets [0, 1]E, by means of left-
continuous t-norms and their residua. What we do, concretely, is to extend the
morphological image operators of dilation and erosion, from the case of binary
images, to the case of grey-scale images.

So let ∗ be a left-continuous t-norm and → be its residuum; a grey-scale
image X is a fuzzy subset of E. Given a fuzzy subset A ∈ [0, 1]E, called a fuzzy
structuring element, the operators

δA(X)(y) =
∨
x∈E A(y − x) ∗X(x), εA(X)(x) =

∧
y∈E A(y − x) → X(y)

are, respectively, a translation invariant dilation and erosion on [0, 1]E.

3 Quantale Modules

Definition 6. Let Q be a quantale and M = 〈M,∨,⊥〉 a sup-lattice. M is a
(left) Q-module if there exists an external binary operation, called scalar multi-
plication, ! : (q,m) ∈ Q×M )−→ q ! m ∈ M , such that

(M1) (q1 · q2) ! m = q1 ! (q2 ! m), for all q1, q2 ∈ Q and m ∈ M ;
(M2) the external product is distributive with respect to arbitrary joins in both

coordinates or — that is the same — it is residuated;
(M3) e ! m = m.

From (M2) it follows that, for all q ∈ Q, there exists the residual map (q�)∗ of
q�, and for all m ∈ M there exists the residual map (�m)∗ of �m. In particular
it is possible to define another external operation over M :

\� : (q,m) ∈ Q×M )−→ q\�m = (q�)∗(m) ∈ M.

Example 7. Let Q be a quantale and X be an arbitrary non-empty set. We
can consider the sup-lattice QX = 〈QX ,∨X ,⊥X〉, where ⊥X is the ⊥-constant
function from X to Q and the join and the scalar multiplication ! are defined
pointwisely from those in Q.

Then QX is a left Q-module and, for all q ∈ Q, f ∈ QX and x ∈ X ,
(q\�f)(x) = q\f(x).
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It is easy to show that the module in the previous example is the free Q-module
over the set of generators X .

Definition, and properties, of right Q-modules are completely analogous. If
Q is commutative, right and left Q-modules coincide and we will say simply
Q-modules. If Q is a quantale and M is a left Q-module, the dual sup-lattice
Mop is a right Q-module (and vice versa) with the external multiplication \�.2

Let Q be a quantale and M1,M2 be two Q-modules. A map f : M1 −→ M2 is
a Q-module homomorphism if f

(
M1
∨
i∈I mi

)
= M2

∨
i∈I f(mi) for any family

{mi}i∈I ⊆ M1, and f(q !1 m) = q !2 f(m), for all q ∈ Q and m ∈ M1, where !i
is the external product of Mi, for i = 1, 2.

Proposition 8. Let Q be a quantale, M1, M2 be two Q-modules and f :
M1 −→ M2 be a homomorphism. Then f is a residuated map and the resid-
ual map f∗ : M2 −→ M1 is a Q-module homomorphism between Mop

2 and Mop
1 .

Definition 9. Let M and N be two Q-modules and HomQ(M,N), the set of
all the homomorphisms from M to N. Then the structure HomQ(M,N) =
〈HomQ(M,N),�,⊥⊥〉, with the pointwise join and the ⊥-constant homomor-
phism as bottom element, is a sup-lattice; moreover, if Q is a commutative
quantale, HomQ(M,N) is a Q-module with the scalar multiplication / defined,
again, pointwisely: for all q ∈ Q and h ∈ HomQ(M,N), q / h is the homomor-
phism defined by (q / h)(x) = q ! h(x) = h(q ! x), for all x ∈ M .

If N = M, HomQ(M,M) is denoted by EndQ(M) = 〈EndQ(M),�,⊥⊥〉.

4 Q-Module Transforms

In this section we introduce the Q-module transforms and we list some results
about them. Then we present a classification of these operators that have in-
teresting theoretical and concrete consequences. For an extensive treatment of
Q-module transforms, the reader may refer to [9].

Definition 10. Let Q ∈ Q and X,Y be non-empty sets and let us consider the
free Q-modules QX and QY . We will call a Q-module transform between QX

and QY , with kernel p, the operator Hp : QX −→ QY defined by

Hpf(y) =
∨
x∈X f(x) · p(x, y) for all y ∈ Y,

where p ∈ QX×Y . Its inverse transform Λp : QY −→ QX is the map defined by

Λpg(x) =
∧
y∈Y g(y)/p(x, y) for all x ∈ X.

Theorem 11. Let Q ∈ Q, X,Y be two non-empty sets and p ∈ QX×Y . If Hp

is the Q-module transform, with kernel p, between QX and QY , and Λp is its
inverse transform, then the following hold:
2 In what follows, in all the definitions and results that can be stated both for left and

right modules, we will refer generically to “modules” — without specifying left or
right — and we will use the notations of left modules.
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(i) (Hp, Λp) is an adjoint pair, i.e. Hp is a residuated map and Λp = Hp∗;
(ii) Hp ∈ HomQ

(
QX ,QY

)
and Λp ∈ HomQ

((
QY
)op

,
(
QX
)op).

The following classification of the kernels has a few interesting theoretical impli-
cations but it is important for applications to image processing. We refer to [1]
(where an orthonormal transform is presented), [8] and [9] for details.

Definition 12. Let Q ∈ Q, and X,Y be non-empty sets. Let us consider a map
p ∈ QX×Y ; we set the following definitions:

(i) p is called a coder iff there exists an injective map ε : Y −→ X such that
e ≤ p(ε(y), y) for all y ∈ Y ;

(ii) p is said to be normal iff there exists an injective map ε : Y −→ X such
that p(ε(y), y) = e for all y ∈ Y ;

(iii) p is said to be strong iff it is normal and p(ε(y1), y2) = ⊥ for all y1 �= y2 ∈
Y ;

(iv) p is said to be orthogonal iff p(x, y1) · p(x, y2) = ⊥ for all y1, y2 ∈ Y such
that y1 �= y2 and for all x ∈ X ;

(v) p is said to be orthonormal iff it is orthogonal and normal.

If p is a coder, the Q-module transform Hp is called faithful and, if p is normal,
strong, orthogonal or orthonormal, the corresponding transform will have the
same adjective. Also, we observe that (v) =⇒ (iii) =⇒ (ii) =⇒ (i).

Theorem 13. Let Q ∈ Q and let Hp be a Q-module strong transform, by the
coder p ∈ QX×Y , with inverse transform Λp. Then Hp ◦ Λp = idQY ; thus Hp

is onto and, by Proposition 2, Λp is one-one.

Lemma 14. Let Q ∈ Q, X be a non-empty set, Y be a non-empty subset of X
and p, p′ ∈ QX×Y be two maps. Then Hp = Hp′ if and only if p = p′.

The previous result ensures us that a Q-module transform Hp is completely
determined by its kernel p, while next result is the converse of Theorem 11(ii);
it proves that all the homomorphisms between free modules are transforms.

Theorem 15. The sup-lattices HomQ(QX ,QY ) and QX×Y are isomorphic.
And, if Q is commutative, they are isomorphic also as Q-modules. In particular
EndQ(QX) ∼= QX×X .

Here we just “scratched the surface” of Q-module transforms, especially in order
to focus the attention on the main thesis of the present paper, i.e. the fact that
fuzzy image compression and mathematical morphological operators fall within
the same class of operators under an algebraic point of view. We, again, refer
to [8] or [9] the reader who may be interested in Q-module transforms.

5 Conclusion

As the reader may have already noticed, the operators in Section 2 are all special
cases of [0, 1]-module transforms. We will now analyse them in detail.
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Let us consider the compression operator defined in Subsection 2.1. Its domain
is [0, 1]m×n and its codomain is [0, 1]a×b; in the light of the definitions and results
presented so far, we get immediately that (1) is the [0, 1]-module transform HC :
[0, 1]m×n −→ [0, 1]a×b with kernel C ∈ [0, 1]m×n×a×b and the reconstruction (2)
is its inverse transform ΛC : [0, 1]a×b −→ [0, 1]m×n.

We already observed in Subsection 2.2 that dilations are precisely the sup-
lattice homomorphisms while erosions are their residua. In order to faithfully
represent dilations and erosions that are translation invariant as Q-module trans-
forms from a free [0, 1]-module to itself, we make the further assumption that
the set over which the free module is defined has the additional structure of
Abelian group. So let X = 〈X,+,−, 0〉 be an Abelian group, ∗ a t-norm on
[0, 1] and consider the free [0, 1]-module [0, 1]X . For any element k ∈ [0, 1]X , we
define the two variable map k : (x, y) ∈ X × X )−→ k(y − x) ∈ [0, 1]. Then, for
all k ∈ [0, 1]X , the translation invariant dilation, on [0, 1]X , whose structuring
element is k, is precisely the Q-module transform Hk : [0, 1]X −→ [0, 1]X , with
the kernel k defined above. Obviously, the translation invariant erosion whose
structuring element is k is Λk.

Then the representation of both classes of operators as Q-module transforms
is rather trivial. Actually, what we want to point out here is that, if we drop
the assumption that our quantale is defined on [0, 1], the classes of transforms
defined in this section become much wider. The purpose of this consideration
is not to suggest purely speculative abstractions but, rather, to underline that
suitable generalizations of these operators exist already and they may be useful
provided their underlying ideas are extended to tasks involving other quantales.
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Abstract. In this paper, an adaptive image watermarking approach is
introduced, which consists of kernel fuzzy c-means (KFCM) clustering
algorithm and human visual system (HVS). Firstly, the host image is di-
vided into image blocks and block-wise DCT transform is accomplished.
Then, three local features of image blocks are extracted from its DCT
coefficients, and these features are used to train KFCM in order to se-
lect the embedding position and determine the embedding strength of
image blocks adaptively. The experimental results show the proposed
algorithm is robust to common attacks such as JPEG, filtering, noise
addition, scaling, sharpen, etc.

1 Introduction

Digital image watermarking technique provides copyright protection of image
data by hiding appropriate information in the original image. The embedded
watermark should be robust and imperceptible, but the ways of pursuing im-
perceptibility and robustness are conflict. It is an important issue to find a fair
balance between imperceptibility and robustness. In recent years, a number of
adaptive watermarking methods for digital image have been proposed. Espe-
cially, the adaptive watermarking technique for incorporating the features of the
human visual system (HVS) model can provide an excellent solution.

Recently, intelligent algorithms, such as neural networks, support vector ma-
chines and fuzzy methods, are introduced into digital watermarking technique,
and can simultaneously improve robustness and visual quality of the water-
marked image [1,2,3,4,5,6,7]. In [3], Lou et al. proposed an adaptive water-
marking method using fuzzy logic technique. Wu et al. [4] proposed a digital
watermarking scheme in DCT domain based on fuzzy clustering technique, which
can adaptively control the embedding strength of different blocks. Sakr et al. [5]
proposed an adaptive image watermarking algorithm based on dynamic fuzzy
inference system. In [6], Chang et al. proposed a Fuzzy-ART based adaptive

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 213–220, 2009.
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digital watermarking scheme in DCT domain. In [7], Wang et al. presented a
DWT-based robust watermarking scheme with Fuzzy-ART.

In this paper, we propose a robust adaptive watermarking approach, which in-
corporates the features of the humanvisual system (HVS) andkernel fuzzy c-means
(KFCM) clustering algorithm. Firstly, we divide image into non-overlapping image
blockswith size 8×8.Andwe extract the local features of image blocks, that is, local
luminance feature, local texture feature and the frequency feature of image blocks.
Secondly, By running KFCM on these features, we obtain the maximal fuzzy mem-
bership degree for each image block. According the fuzzy membership degree, we
can select the embedding position and determine the embedding strength of image
block adaptively. The proposed approach can simultaneously improve the robust-
ness and visual quality of the the watermarked image.

2 Preliminaries

2.1 Kernel Fuzzy C-Means Algorithm

Given an unlabeled data set X = {x1, x2, . . . , xm} ⊆ Rd, and a mapping φ :
Rd → F , the kernel fuzzy c-means algorithm in the feature space F by a mapping
φ minimizes the function Jr [9,10]:

Jr(X) =
c∑
i=1

m∑
j=1

(μij)r‖φ(xj) − vφi ‖2, (1)

where μij is the membership degree of data point xj to the ith fuzzy cluster, and
r is a fuzziness coefficient. The ith cluster centroid is vφi = n−1

i

∑m
j=1(μij)

rφ(xj)
and ni =

∑m
j=1(μij)

r. The key notion in the kernel fuzzy c-means algorithm
lies in the calculation of the distance in the feature space. The distance between
φ(xj) and vφi in the feature space is calculated through the kernel in the input
space:

‖φ(xj) − vφi ‖2 = φ(xj) · φ(xj) − 2φ(xj) ·
∑m

k=1(μik)
rφ(xk)∑m

k=1(μik)r

+
∑m
k=1(μik)

rφ(xk)∑m
k=1(μik)r

·
∑m
l=1(μil)

rφ(xl)∑m
l=1(μil)r

= φ(xj) · φ(xj) −
2
∑m
k=1(μik)

rφ(xk) · φ(xj)∑m
k=1(μik)r

+
∑m
k=1

∑m
l=1(μik)

r(μil)rφ(xk) · φ(xl)
(
∑m

k=1(μik)r)2

= K(xj , xj) −
2
∑m
k=1(μik)

rK(xk, xj)∑m
k=1(μik)r

+
∑m
k=1

∑m
l=1(μik)

r(μil)rK(xk, xl)
(
∑m

k=1(μik)r)2
, (2)
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where K(xk, xl) = φ(xk) · φ(xl). By using ni =
∑m

j=1(μij)
r, we have

‖φ(xj) − vφi ‖2 = K(xj , xj) −
2
ni

m∑
k=1

(μik)rK(xk, xj)

+
1
n2
i

m∑
k=1

m∑
l=1

(μik)r(μil)rK(xk, xl). (3)

Therefore, the objective function can be rewritten as follows:

Jr(X) =
c∑
i=1

m∑
j=1

(μij)r
(
K(xj , xj) −

2
ni

m∑
k=1

(μik)rK(xk, xj)

=
1
n2
i

m∑
k=1

m∑
l=1

(μik)r(μil)rK(xk, xl)
)

. (4)

The kernel fuzzy c-means algorithm iteratively updates the new membership
degree μij at each iteration. The update of μij in the feature space is defined
through the kernel in the input space as follows:

μij =
( c∑
k=1

(
‖φ(xj) − vφi ‖2

‖φ(xj) − vφk‖2

)1/(r−1))−1

. (5)

From Eq.(3), the kernel fuzzy c-means algorithm does not need to calculate the
cluster centroids because the centroid information is considered in updating the
membership degree μij .

The proposed kernel fuzzy c-means algorithm can be summarized in the fol-
lowing steps:

Step 1: Fix c, tmax, r > 1 and ε > 0 for some positive constant.
Step 2: Initialize the memberships μ0

ij .
Step 3: For t = 1, 2, . . . , tmax, do:
(a) Update all memberships μtij with Eq.(5);
(b) Compute Et = maxij |μtij − μt−1

ij |, if Et ≤ ε, stop;
end;

In this paper, we will use kernel fuzzy c-means technique to classify image
blocks, and select more suitable image blocks which have larger the fuzzy mem-
bership degree μij to embed the watermark.

2.2 The HVS Model

Generally, the watermark is a weak signal which is embedded into a strong back-
ground, and if it is lower than JND (Just Noticeable Difference), the watermark
is unable to sense by human eye. So, the watermark strength can be determined
by HVS. In HVS model, a number of factors affect the noise sensitively of the
eye like luminance, texture and frequency. In order to better fit the behavior of
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the HVS to the watermarking problem, the following considerations have been
taken into account [5].

The first term takes into account the local luminance of image. Human eye is
less sensitive to the areas of image, where the brightness is the too high or too
low. The luminance sensitivity can be taken into account as follows:

Lk =
(
CDC,k
C̄DC

)γ
, (6)

where CDC,k is the DC coefficient of the DCT of the kth image block, C̄DC is the
mean value of all CDC,k coefficients of a image, and γ is set to 0.649 to control
the degree of luminance sensitivity as in [5].

The second term takes into account the local texture of the image. The
stronger the texture, the lower the visibility of the embedded signal. Thus, a
stronger signal can be embedded. Texture sensitivity can be estimated by quan-
tizing the DCT coefficients of an image block using the JPEG quantization table.
The result is the rounded to the the nearest integers. The texture sensitivity can
be calculated by the following formula (as in [5]):

Tk =
m∑

i,j=1

cond

([
Ck(i, j)
Q(i, j)

])
, (7)

where cond(x) takes the rounded value of x, and return “1” if the value is not
equal to zero, “0” otherwise.

The third term takes into account the frequency of the image. The frequency
sensitivity can be defined as the response of a human perceptual system to
differences in the frequencies of stimuli. High frequencies are less visible to the
human eye, while in the basic visual model the variance of low frequencies is more
sensitive. The frequency sensitivity Fk is represented by the JPEG quantization
table (luminance).

In this paper, for each image block, we extract its three features, luminance
feature Lk, texture feature Tk and frequency Fk, and form a vector xk =
(Lk, Tk, Lk) which is used as the input vector of kernel fuzzy c-means method.

3 Proposed Watermarking Approach

3.1 Watermark Embedding

Let host image I be a gray-scale image with size M1 × M2, and watermark W
be a binary logo image with size N1 ×N2. The watermark embedding process is
described as follows:

Step 1. Dividing image.
The host image I is divided into non-overlapping image blocks with size 8×8.

Let Ik notes k-th image block, k = 1, 2, . . . ,m, where m = [(M1 × M2)/(8 ×
8)]. Then, each image block Ik is transformed by DCT independently, and its
coefficient block is denoted by Ck.
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Step 2. Calculating the local features of image blocks.
For each image block Ik, we calculate its three features, luminance feature Lk,

texture feature Tk and frequency Fk, and form a vector xk = (Lk, Tk, Lk) which
is used as the input vector of kernel fuzzy c-means method.

Step 3. Preprocessing by kernel fuzzy c-means clustering.
After calculating the local features of all image blocks, we obtain a data set

D = {x1, x2, . . . , xm}. Let c is the number of clustering. We run the kernel
fuzzy c-means algorithm, and then obtain the fuzzy membership degrees μik,
1 ≤ i ≤ c, 1 ≤ k ≤ m. Thus, for each image block Ik, we obtain the corresponding
fuzzy membership degrees μk = max{μik | 1 ≤ i ≤ c}, 1 ≤ k ≤ m.

Step 4. Selecting the embedding position.
Firstly, we select m1 image blocks from the m image blocks, which has larger

fuzzy membership degrees μk. Then, for each selected image block, we select two
low-middle frequency coefficients as the embedding position, which is larger AC
coefficient. These selected coefficients are denoted by V = {ci | i = 1, 2, . . . , n},
where n = 2 ×m1, and n ≥ N1 ×N2.

Step 5. Embedding the watermark.
For each coefficient in V , watermark embedding is accomplished by using

following rule:
c′i = ci(1 + μk · β · wi) (8)

where ci is original coefficient, and c′i is the coefficient of watermarked image. β
is a constant, and μk is the fuzzy membership degrees of kth image block where
ci is the coefficient of kth image block.

Step 6. Lastly, each image block is reconstructed by applying the inverse
DCT transform respectively, and then all image blocks are combined into the
final watermarked image I ′.

3.2 Watermark Extraction

The watermark extraction process is described as follows:

Step 1. Dividing image.
The input image I ′ is partitioned into non-overlapping image blocks with size

8 × 8. Let I ′k notes k-th image block, k = 1, 2, . . . ,m. Then, each image block
I ′k is transformed by DCT independently, and its coefficient block is denoted by
C′
k.
Step 2. Calculating the local features of image blocks.
For each image block I ′k, we calculate its three features, luminance feature

L′
k, texture feature T ′

k and frequency F ′
k, and form a vector x′

k = (L′
k, T

′
k, L

′
k).

Step 3. Preprocessing by kernel fuzzy c-means clustering.
After calculating the local features of all image blocks, we obtain a data set

D′ = {x′
1, x

′
2, . . . , x

′
m}. By use the kernel fuzzy c-means algorithm in the same

manner as in the embedding process, we obtain the fuzzy membership degrees
μk of each image block Ik, 1 ≤ k ≤ m.

Step 4. Extracting the watermark.
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We select the embedding position of the watermark in the same manner as
in the embedding process, and the selected coefficients are denoted by V ′ =
{c′i | i = 1, 2, . . . , n}. The watermark extraction can be described by the following
equation:

wi =
(c′i − ci)

(μk · β · ci)
(9)

where i = 1, 2, . . . , N1 ×N2.
Step 5. Lastly, the one-dimensional sequence w1w2 . . .wN1×N2 is converted

into the two-dimensional logo watermark image W ′.

4 Experimental Results

In our experiment, the proposed method has been extensively tested on various
standard images under different kinds of attack. Due to the limitation of space,
here we only demonstrate the experimental results on ”Lena” image with size
256 × 256, shown in Fig.1(a). The watermark is a binary ”Beijing Olympic”
logo image with size 32 × 32, shown in Fig.1(b). Firstly, we should decide some
parameters in the experiment. For KFCM, we select Gaussian kernel as the
kernel function of KFCM, and its the width parameter σ = 200. Set the number
of clustering c = 256, and the constant β = 0.3.

Fig.1(c) depicts the watermarked image, which has PSNR value of 43.635dB.
If the original and the watermarked images are observed, we cannot find any
perceptual degradation. When there is no attack, the watermark can be extracted
without a bit errors, shown in Fig.1(d).

Yi et al. [8] has proposed that the original image is decomposed into non
overlapping blocks, and all blocks are classified into four categories by using
the human visual system. Then, according to the classification, the watermark
components with different strength are embedded into the original image. The
comparative results with Yi’s method against different attacks are detailedly
shown as follows. When the image is median filtered, the watermark extracted
by our method has only 6 bit errors, shown in Fig.2(a), whereas the water-
mark extracted by Yi’s method has totally about 19 bit errors (Fig.2(b)). Af-
ter average filtering, our method can extract the watermark with bit errors 65
(Fig.2(c)), and the watermark extracted by Yi’s method has about 144 bit er-
rors (Fig.2(d)). When the watermarked image is rotated to the left 75o, the
images are greatly degraded, but our method can extract the watermark with
bit errors 138 (Fig.2(e)), whereas the watermark extracted by Yi’s method has
about 211 bit errors, which shown in Fig.2(f). To test the robustness against
adding noise, adding 5% salt and pepper noise randomly degrades the water-
marked image, the performance of the propose method has low satisfaction, but
the watermark can be recognized, shown in Fig.2(g). However, the watermark
extracted by Yi’s method is difficult to be recognized (Fig.2(h)). The proposed
method has been extensively tested under other various attacks. Results of com-
paring with Yi’s are illustrated in Table 1, in which MAE (the Mean Absolute
Error) is measurement of the difference between an original watermark and the
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Fig. 1. (a)Original image; (b)Original watermark; (c)Watermarked image;
(d)Extracted watermark

Fig. 2. The extracted binary watermark image after (a) median filtering by the pro-
posed method, (b) median filtering by Yi’s method (c) average filtering by the proposed
method, (d)average filtering by Yi’s method, (e) rotating to the left 75o by the pro-
posed method,(f) rotating to the left 75oby Yi’s method, (g) 5% noise adding by the
proposed method, (h) 5% noise adding by Yi’s method

Table 1. The experimental results comparison under different attacks

Attacks PSNR The proposed method Yi’s method
(dB) MAE MAE

Bluring 39.062 0 0.0872
Sharpen 33.853 0.0385 0.0703

Scaling(75%) 39.109 0 0.0171
Scaling(50%) 33.986 0 0.0279

gaussian noise(5%) 24.584 0.4794 0.1224
gaussian filter(3 × 3) 41.761 0.0108 0.0430

JPEG (QF=80) 38.235 0.0061 0.0725
JPEG (QF=60) 36.792 0.2235 0.3423

corresponding extracted watermark. These extensive experiments show that our
technique possesses significant robustness against the various attacks.

5 Conclusion

In this paper, we proposed an adaptive image watermarking approach based
on kernel fuzzy c-means (KFCM) clustering algorithm and human visual sys-
tem (HVS). We extract three local image features from image blocks, which can
well reflect the visual characteristic of image. According to these image features,
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KFCM is used to select the embedding position and determine the embedding
strength of image block adaptively. The proposed approach can simultaneously
improve robustness and visual quality of the watermarked images. The exper-
imental results show that the proposed method possess significant robustness
against the various attacks.
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Abstract. Three-dimensional object analysis is of particular interest in many re-
search fields. In this context, the most common data representation is boundary
mesh, namely, 2D surface embedded in 3D space. We will investigate the prob-
lem of 3D edge extraction, that is, salient surface regions characterized by high
flexure. Our automatic edge detection method assigns a value, proportional to the
local bending of the surface, to the elements of the mesh. Moreover, a proper
scanning window, centered on each element, is used to discriminate between
smooth zones of the surface and its edges. The algorithm does not require input
parameters and returns a set of elements that represent the salient features on the
model surface. This method is general enough, returns representative structures
of the object, as edges, and can be considered as a pre-processing step for further
applications, such as 3D compact representation, matching and recognition.

Keywords: Surface segmentation, automatic three-dimensional edge detection.

1 Introduction

Edge detection is one of the most important tasks of any vision system since it reduces
significantly the amount of data, still preserving the relevant structural properties, and
provides strong visual clues that can help the recognition process. This problem is still
challenging in the three-dimensional space, since it requires geometrical information.

There is a wide range of 3D acquisition modalities, such as laser scan, multiple view
and shape from shading that require different data representations to handle properly
the object surface [1]. A triangular mesh is defined as M ={V,E, F}, where V , E, and
F represent the sets of vertices, edges and facets of the model surface, respectively. 3D
model analysis is a general concept and the final segmentation depends on the specific
application; a description of the issue and general techniques can be found in [2], where
the segmentation problem is formulated as a constrained optimization task.

This paper describes a novel three-dimensional edge detector, based on a fuzzy ap-
proach. The proposed algorithm computes the so called saliency of each arc on the
surface, through a fuzzy membership defined on a continuous domain. This domain is
automatically generated and the fuzzification process infers a natural segmentation of
the surface, useful for locating contours and edge-type features to represent the objects.

Section 2 briefly reviews the state of the art algorithms for edge detection and illus-
trates our methodology. Section 3 reports conclusions on the experimental results and
introduces possible future works.

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 221–228, 2009.
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2 3D Edge Detection

Mesh segmentation algorithms can help in locating the edges on the surface of the
objects: these contours should lie on the zones that separate different regular surfaces. A
region growing strategy is reported in [3], while two watershed approaches are proposed
in [4,5]. Unfortunately, these methods require thresholding and are not fully automatic.

The algorithm presented in [6] locates line-type features representing edges and
ridges, which can be used as a starting point for further segmentation procedures. This
technique requires several control parameters to be set and the selection of the operator
that must be applied on the mesh. The algorithm performs two phases: the classification
to assign a curvature weight to each arc and the selection of the candidate edges by a
standard or an hysteresis threshold method. The result are sets of edges (called patches),
that are reduced to line-type features by a successive thinning procedure.

Mean curvature flow and anisotropic diffusion are used in [7], where the authors
give a theoretic formulation for fairing and segmenting 3D surfaces. Nevertheless, this
method, in order to perform the segmentation stage, needs the tuning of a threshold
parameter and a pre-filtering step for a more reliable computation of the shape operator.

According to the related literature, we propose here an heuristic approach, able to ex-
tract salient features from the surface of an object. Our algorithm relies on a weighting
function that assigns a measure to the elements of the mesh, proportional to the local
bending degree of the surface. Different weighting functions, namely Second Order Dif-
ference Operator, Extended Second Order Difference Operator [6] and tensor and nor-
mal voting [5], have been introduced and a comparison of their performance/complexity
has been already reported in [5,6]. These operators require the setting of parameters
(e.g. the number of elements within the weighting window) that are very dependent
on the input mesh and that must be manually set. Obviously, this process is time-
consuming, subjective and error-prone. Moreover, real objects can be acquired at differ-
ent samplings by laser scanner devices and the resulting mesh can be modified by using
simplification techniques [8]. From this point of view, an automatic methodology, able
to return stable three-dimensional segmentations, is highly desirable.

Given an arc a∈E, let Li(a)={a′ : such that the length of the minimum path from
a to a′ is i}, that is L0(a)=a and L0(a), L1(a), L2(a),... are disjointed layers. For the
sake of simplicity, each Li(a) is the i-th layer of the breadth first search tree with root

a. We define the neighborhood Nr(a) with radius r of a as Nr(a) �
r⋃
i=0

Li(a), as in

figure 1. Later on, the area covered by Nr(a) (i.e. the sum of the areas of the triangles
in Nr(a)) will be indicated by Ar(a).

According to the second order difference operator, the weight w(a) of the arc a,
shared by two facets f1 and f2, with normal versors n1 and n2 respectively, (see fig-
ure 2a) is equal to the dihedral angle between them:

w(a)=arccos(n1 · n2)

where ( · ) indicates the usual inner product.
In the case of the extended second order difference operator, the normal versors n1

and n2 are computed as average normal vectors to the facets that share the vertices,
v1∈f1 and v2∈f2, opposite to a (see figure 2b).
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Fig. 1. The first 4 neighborhoods N0(a), N1(a), N2(a) and N3(a), obtained by visiting the arcs
according to a breadth first search. New layers have been marked in orange

Our method classifies a, according to the distribution of w, with respect to the neigh-
borhoods Nr(a), of increasing radius r: from an ideal point of view, an edge separates
different smooth surfaces which, on average, show a decreasing trend for w. Vice versa,
arcs close to edges, namely ramps, have an increasing trend for w. Smooth surfaces,
which are zones without edges, are characterized by a constant trend of w.

Let νr(a) be the variance of the weights w relative to the arcs that fall into the
window Nr(a), centered on a and with radius r. We define the saliency s(a), to be
assigned to a, as:

s(a) =
∑
i>0

φi(a) with φi(a) = ηi(a)
∂νi(a)
∂r

|ν1(a) − νi(a)|

where ηi(a) = eAmin−Ai(a) is used to lower the resulting values φi, when moving far
from a, with respect to the smallest window of radius r=1, that is Amin =min

a∈E
{A1(a)}.

Though the whole mesh should be scanned to compute s, it can be seen that, due to
the effect of η, the contribution of large radii is close to zero and can be neglected. The
normalization coefficient η avoids to consider structures too far from the center a of the
neighborhood and ensures a coherent saliency even in the case of meshes with variable
samplings which results in facets with different dimensions. Often, this is due to tech-
niques applied to decimate the facets, while preserving the overall appearance of the
object [8]. Moreover, it must be noted that the resolution of a mesh can be normalized
by properly setting the length of its arcs [9].

(a)

a

f1

f2
n1

n2

(b)

a
f1

f2

n1

n2

v1

v2

Fig. 2. (a) SOD: facets f1 and f2, with versors n1 and n2, share the bolded arc a. (b) ESOD:
versors n1 and n2 are computed as average normals of the other facets adjacent to f1 and f2.
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Fig. 3. Typical trends of variance νi (a,c) and score φi (b,d) for an arc, classified as edge (a,b) or
ramp (c,d), respectively. The dashed line indicates the value ν1, used as reference mark by φi.
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Fig. 4. Color representation of the fuzzy sets SE (edges, in blue), SS (smooth surfaces, in green)
and SR (ramps, in red). Membership to the sets has been represented by color gradients (line in
bold). Author’s note: coloured original image.

The derivative ∂νi(a)
∂r = νi(a)−νi−1(a) measures how fast the variance changes. In

particular, sharp edges are characterized by a fast decreasing f and, vice versa, smooth
details have slower decreasing f . The term |ν1(a)−νi(a)| further exalts the changes of f ,
with respect to the initial value ν1, since we are interested in the comparison between
the smallest neighborhood N1(a) and the arcs in a variety of Nr>1(a). This term is
needed because it is possible for two given f trends to have locally similar derivatives,
though different values of f should suggest different values of s (see figure 3).

Actually, negative values of s correspond to edges, positive values indicate ramps,
while values close to zero denote smooth surfaces. Therefore, the saliency formula s
assigns a score to each arc a, thus to discriminate among edges, ramps and smooth
surfaces. In order to classify the arcs into these three categories, we have implemented
a fuzzy set approach. The fuzzy sets (SE ,mE), (SR ,mR) and (SS ,mS) of figure 4
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identify edges, ramps and smooth surfaces, respectively. The extrema of SE and SR are
bounded by the minimum value smin and the maximum value smax of s, normalized in
the interval [−1, 1], so that SE � [smin, 0]≡ [−1, 0] and SR � [0, smax]≡ [0, 1]. Though
the user has the opportunity to choose the bounds of SS , thus to select structures that
belong to both edges and ramps, we set SS � [smin, smax]≡ [−1, 1].

The [0, 1]-valued membership m(a) of a given arc a was defined as the maximum
value of its memberships mE(a), mR(a) and mS(a). For the sake of clarity, we indicate
in the following figures (the online version of this paper contains coloured images)
edges in blue, ramps in red and smooth zones in green. Hue transitions represent the
membership degree to a particular set, that is, the membership value is mapped into the
RGB color space (coded by mR , mS and mE , in this order).

3 Experimental Results and Conclusions

We presented a methodology for adaptive mesh surfaces segmentation based on mesh
elements weighting. The analysis is performed at local level and the segmentation sim-
plifies the object representation for inspection, recognition, matching, etc. We tested the
soundness of our algorithm on freely available objects [10] that have different shapes,
resolutions and surface complexities, without any data pre-filtering for noise reduction.

The normalization coefficient η ensures a coherent weighting when the resolution of
the input object changes according to some decimation algorithm. Otherwise, a set of
scanning windows with a variety of sizes would be required to correctly segment not
uniformly sampled surfaces. Vice versa, our approach lets obtain a robust segmentation

(a) (b) (c) (d)

Fig. 5. A three-dimensional object (a) and the effect of different scanning radii (b,c,d:r = 10,
r = 20, d:r = 30). Of course, some small detail may vary, but the overall result is quite stable.
Colors refer to the interpretation given in figure 4. Author’s note: coloured original image.
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(a) (b) (c) (d)

Fig. 6. The proposed algorithm is almost invariant with respect to scale. This example shows the
segmentation computed on the full resolution mesh (a) and its reduced versions (b:75% of the
original vertices, c:50% and d:25%). Author’s note: coloured original image.

and avoids the definition of a maximum scanning radius (see figure 5). The example
of figure 6 shows the same object at different resolutions, obtained by reducing the
original number of vertices down to 25%. Obviously, many details are missing on this
rough surface, but nonetheless our algorithm is almost able to detect the same most
evident features, as for any other resolution.

In this paper, we compared the second order difference operator and its extended ver-
sion, because they do not need any parameter. Figures 7–8 reports a qualitative compar-
ison between objects segmented through these operators. The use of the former has to
be preferred because it detects small, but usually important details. Indeed, this means
also that this function is more sensible to noise, while the latter tends to erase small
components because it performs an averaging on the normal vectors.

The algorithm is resolution independent and automatic, since it accepts just the mesh
to analyze and returns a reasonable segmentation without predefined or user-tuned
parameters. Ad hoc aggregation procedures group together the output into distinctive
features. In our case, to isolate the three-dimensional edges, we introduced a fuzzy mea-
sure, based on the saliency degree. This approach takes advantage of the ability to locate
in an intuitive fashion important zones on the surface of the objects (e.g. its edges and
ramps).

Future work will focus on the definition of geometric descriptors of the features,
for recognition and matching tasks. Lastly, we will test also the goodness of set SE ,
obtained by our method, as a sub-sample of the object’s surface to solve problems as
object alignment and symmetry detection.
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(a) (b) (c)

(d) (e) (f )

Fig. 7. Dinosaur (a) with SOD (b) and ESOD (c) results with respective zooms (d,e,f ). Author’s
note: coloured original image.

The computational time of the method is strictly related to the breadth first search
algorithm. For an efficient elaboration of each neighborhood Nr(a), memory accesses
must be optimized in order to reduce cache misses. This issue has been handled by
scanning the mesh according to a locality principle, that is, arcs near to each other are
processed sequentially for trying to access previously created windows, already avail-
able in the cache. This locality principle was implemented by sorting the elements of
the mesh (i.e. its sets V , E and F ) through an octree subdivision and by processing the
arcs included in each single cube. For a computed window Nr(a), the time complexity
to perform the variance analysis is linear with respect to |Nr(a)|. Table 1 illustrates
an average execution time, obtained with our C language implementation on a 2.8GHz
dual core CPU with 2GB RAM. The number of facets and vertices is also reported.

For the sake of completeness, we provide a graphical user interface, downloadable
from http://www.math.unipa.it/˜mcipolla/edges.html, to view the results presented here.

Table 1. Time analysis versus size of the mesh

Object Facets Vertices Time

Indian Goddess 274822 137406 40´02´́
Dinosaur 80354 112384 17´37´́

Venus 268686 134345 36´27´́
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(a) (b) (c)

(d) (e) (f )

Fig. 8. Venus (a) with SOD (b) and ESOD (c) results with respective zooms (d,e,f ). Author’s
note: coloured original image.
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Abstract. In this paper, the ”coarseness” texture property is modelled
by means of fuzzy sets, relating representative coarseness measures (our
reference set) with the human perception of this type of feature. In our
study, a wide variety of measures are analyzed, and the coarseness hu-
man perception are collected from polls filled by subjects. The capability
of each measure to discriminate different coarseness degrees is analyzed,
taking into account this capability for defining the membership function.

Keywords: Image features, texture features, fuzzy texture, visual coarse-
ness.

1 Introduction

Texture is, together with color and shape, one of the most used feature for
image analysis. It is usual for humans to describe visual textures according to
some vague ”textural concepts” like coarseness/fineness, orientation or regularity
[1,2]. From all of them, the coarseness/fineness is the most popular one, being
common to associate the presence of fineness with the presence of texture. In
this sense, a fine texture corresponds to small texture primitives (e.g. the image
in figure 1(A)), whereas a coarse texture corresponds to bigger primitives (e.g.
the image in figure 1(I)).

There are many measures in the literature that, given an image, capture the
fineness (or coarseness) presence in the sense that the greater the value given by
the measure, the greater the perception of texture [3]. However, given a certain
measure value, there is not an immediate way to decide whether there is a fine
texture, a coarse texture or something intermediate (i.e. there is not a textural
interpretation). In this sense, the majority of the approaches in the literature
are crisp proposals where uncertainty is not properly taken into account.

To face this problem, fuzzy logic has been recently employed for representing
the imprecision related to texture. However, in many of these approaches, fuzzy
logic is usually applied just during the process, but the output do not habitually
model the imprecision (being often a crisp one) [4]. Other interesting approaches
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Fig. 1. Some examples of images with different degrees of fineness

emerge from the content-based image retrieval scope, where semantic data is
managed by means of fuzzy sets [5]. However, these fuzzy sets are not obtained
by considering the relationship between the feature and the human perception
of texture.

In our approach, we propose to model fineness by means of fuzzy sets relating
representative coarseness measures (our reference set) with the human percep-
tion of this type of feature. For this purpose, pools are used for collecting data
about the human perception of fineness. This data is used to analyze the capa-
bility of each measure to discriminate different coarseness degrees, and to define
the membership function on the basis of this capability.

The rest of the paper is organized as follows. In section 2 we introduce our
methodology to obtain the fuzzy sets. Results are shown in section 3, and the
main conclusions and future work are sumarized in section 4.

2 Fineness Modelling

As it was pointed, there is not a clear perceptual interpretation of the value
given by a fineness measure. To face this problem, we propose to model the
fineness perception as a fuzzy set defined on the domain of a given measure1.
Let P = {P1, . . . , PK} be a set of measures of fineness and let Tk be a fuzzy set
defined on the domain of Pk ∈ P representing the concept of ”fineness”. Thus,
the membership function associated to Tk will be defined as2

Tk : R→ [0, 1] (1)

where a value of 1 will mean fineness presence while a value of 0 will mean no
fineness presence (i.e. coarseness presence).

1 Let us remark that ”coarseness” and ”fineness” are opposite but related properties.
2 To simplify the notation, as it is usual in the scope of fuzzy sets, we will use the

same notation Tk for the fuzzy set and for the membership function that defines it.
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Given a measure Pk ∈ P , we propose to obtain Tk by finding a functional
relationship between Pk and the perception degree of fineness. To do it, we will
use a set I = {I1, . . . , IN} of N images that fully represent the different degrees
of fineness. Thus, for each image Ii ∈ I, we will obtain (a) a human assessment
of the fineness degree perceived, noted as vi, which will be collected by means of
a poll with human subjects (section 2.1), and (b) a value calculated applying the
measure Pk ∈ P to the image Ii, noted as mi

k (section 2.2). From the multiset
Ψk = {(m1

k, v
1), . . . , (mN

k , vN )}, the function Tk will be estimated (section 2.3).

2.1 Assessment Collection

In this section, the way to obtain a vector Γ = [v1, . . . , vN ] of the assessments
from the image set I = {I1, . . . , IN} will be described.

The Texture Image Set. A set I = {I1, . . . , IN} of N = 80 images represen-
tative of the concept of fineness has been selected. Figure 1 shows some images
extracted from the set I. The selection was done to cover the different perception
degrees of fineness with a representative number of images. Furthermore, the im-
ages have been chosen so that, as far as possible, just one perception degree of
fineness is perceived.

The Poll. In order to obtain assessments about the perception of fineness, L
subjects will be asked to assign images from I to classes, so that each class has
associated a perception degree of fineness. In particular, L = 20 subjects have
participated in the poll and 9 classes have been considered (the first nine images
in figure 1 show the nine representative images for each class used in this poll).
As result, a vector of 20 assessments Θi = [oi1, . . . , o

i
20] is obtained for each image

Ii ∈ I. The degree oij associated to the assessment given by the subject Sj to
the image Ii is computed as oij = (9 − k) ∗ 0.125, where k ∈ {1, . . . , 9} is the
index of the class Ck to which the image is assigned by the subject.

Assessment Aggregation. For each image in I, one assessment vi that sum-
marizes the Θi values is needed. To aggregate opinions, an OWA operator guided
by a quantifier have been used. Concretely, the quantifier ”the most” has been
used, which allows to represent the opinion of the majority of the subjects [6].

2.2 Fineness Measures

In this paper, we propose to use the 17 measures shown in table 1 (that includes
classical statistical measures well known in the literature, measures in the fre-
quency domain, etc.). As it was expected, some of them have better ability to
represent fineness than the others. Thus, to study the ability of each measure to
discriminate different degrees of fineness (i.e. how many classes can Pk actually
discriminate), we propose to analyze each Pk ∈ P by applying a set of multiple
comparison tests following the algorithm 1. This algorithm starts with an initial
partition and iteratively joins clusters until a partition in which all classes are
distinguishable is achieved. In our proposal, the initial partition will be formed
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Algorithm 1. Obtaining the distinguishable clusters
Input:

Part0 = C1, C2, . . . , Cn: Initial Partition
δ: distance function between clusters
φ: Set of multiple comparison tests
NT : Number of positive tests to accept distinguishability

1.-Initialization
k = 0
distinguishable = false

2.- While (distinguishable = false) and (k < n)
Apply the multiple comparison tests φ to Partk

If for each pair Ci, Cj ∈ Partk more than NT of the multiple comparison tests
φ show distinguishability

distinguishable = true
Else

Search for the pair of clusters Cr, Cr+1, verifying
δ(Cr, Cr+1) = min{δ(Ci, Ci+1), Ci, Ci+1 ∈ Partk}

Join Cr and Cr+1 on a cluster Cu = Cr ∪ Cr+1

Partk+1 = Partk − Cr − Cr+1 + Cu

k = k + 1
3.- Output: P̃ artk = C1, C2, . . . , Cn−k

by the 9 classes used in our poll (where each class will contain the images as-
signed to it by the majority of the subjects), as δ the Euclidean distance between
the centroids of the involved classes will be used, as φ a set of 5 multiple compari-
son tests will be considered (concretely, the tests of Scheffé, Bonferroni, Duncan,
Tukey’s least significant difference, and Tukey’s honestly significant difference
[7]), and finally the number of positive tests to accept distinguishability will be
fixed to NT = 3.

From now on, we shall note as Υk = Ck1 , C
k
2 , . . . , C

k
NCk

the NCk classes that
can be discriminated by Pk. For each Ckr , we will note as c̄kr the class repre-
sentative value and as v̄kr the presence degree of fineness associated to Ckr . In
this paper, we propose to compute c̄kr as the mean of the measure values in the
class Ckr and v̄kr as the mean of the presence degrees of fineness associated to the
classes grouped into Ckr .

Table 1 shows the parameters obtained by applying the proposed algorithm 1
with the different measures considered in this paper. The second column of this
table shows how the initial classes have been grouped. The columns from third
to eighth show the representative values c̄kr and v̄kr associated to each cluster.

2.3 Obtaining the Membership Function

In this section we will deal with the problem of obtaining the membership func-
tion for the fuzzy set Tk. In our proposal, the following properties will be con-
sidered in order to define this function:
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Table 1. Clusters, representatives of each class and RMSE found by applying the
estimated membership function

Measures Classes (c̄5, v̄5) (c̄4, v̄4) (c̄3, v̄3) (c̄2, v̄2) (c̄1, v̄1) RMSE

Correlation [3] {1,2-4,5-6,7-8,9} (0.122,1) (0.403,0.812) (0.495,0.562) (0.607,0.219) (0.769,0) 0.278

Abbadeni [8] {1,2-8,9} - - (0.089,1) (0.166,0.566) (0.404,0) 0.287

Amadasun [1] {1,2-6,7-8,9} - (5.621,1) (8.945,0.812) (11.63,0.391) (26.94,0) 0.293

ED [9] {1,2,3-5,6-8,9} (0.348,1) (0.282,0.719) (0.261,0.344) (0.238,0.125) (0.165,0) 0.332

Tamura [2] {1,2-6,7-8,9} - (1.540,1) (1.864,0.812) (2.125,0.242) (3.045,0) 0.366

SRE [10] {1,2-8,9} - - (0.995,1) (0.987,0.477) (0.966,0) 0.370

LH [3] {1,2-8,9} - - (0.023,1) (0.052,0.621) (0.127,0) 0.390

FD [11] {1,2,3-8,9} - (3.383,1) (3.174,0.539) (2.991,0.125) (2.559,0) 0.393

DGD [12] {1,2-8,9} - - (0.020,1) (0.038,0.621) (0.091,0) 0.396

Weszka [13] {1,2-6,7-8,9} - (0.153,1) (0.113,0.812) (0.099,0.258) (0.051,0) 0.398

SNE [14] {1,2-8,9} - - (0.879,1) (0.775,0.477) (0.570,0) 0.401

Contrast [3] {1,2-5,6-8,9} - (3312,1) (2529,0.781) (1863,0.234) (790.8,0) 0.420

Newsam [15], Entropy [3], Uniformity[3], FMPS [16], Variance[3]: {1-9}

– Tk should be a monotonic function
– Tk(c̄kr ) = v̄kr ∀r = 1, . . . , NCk, i.e., for the representative values c̄kr of each

class Ckr ∈ Υk, the membership function Tk should return the mean assess-
ment given by the subjects to that class.

– The values Tk(x) = 0 and Tk(x) = 1 should be achieved from a certain value

To take into account the above considerations, in this paper we propose to
define Tk as a function that associates the values given by a certain measure
with the assessments given by the human subjects3, i.e.:

Tk(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 x ≤ x1
f1(x) x ∈ (x1, x2]
f2(x) x ∈ (x2, x3]
...

...
1 x > xNCk

(2)

with f r(x) being a line defined as f r(x) = ar1x + ar0.
To define the knots xr of equation 2, the representatives of the classes Ckr , with

r = 1, . . . , NCk, will be used (recall that these classes were obtained considering
the ability of the measure Pk to discriminate the perception of fineness following
the algorithm 1). Thus, we propose to define xr = c̄kr , with r = 1, . . . , NCk, and
with c̄kr being the centroid of Ckr . Note that the way the function is defined allows
to ensure that, for the representative values c̄kr of each class, the membership
function returns the mean assessment given by the subjects to that class (i.e.,
Tk(c̄kr ) = v̄kr according with the second constraint). From this point of view,

3 Note that this function is defined for measures that increases according to the per-
ception of fineness. For those that decreases, the function needs to be changed ap-
propriately.
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Fig. 2. Results for a mosaic image. (A) Original mosaic image with the assessment
values given by users -v- and the value estimated with our model -e- (B)Membership
function associated to the proposed fuzzy set.

f r(x) may be considered as a function that represents the transition between
the classes Ckr and Ckr+1.

The function f r(x) will be obtained as the line defined between the points
(c̄kr , v̄kr ) and (c̄kr+1, v̄

k
r+1), with v̄kr being the fineness degree of presence related

to the cluster Ckr . Thus, the parameters ar1 and ar0 of f r(x) are computed as

ar1 = v̄k
r+1−v̄k

r

c̄k
r+1−c̄k

r
and ar0 = v̄kr − c̄kra

r
1, respectively.

The above approach has been used to define the membership functions Tk
associated to the 17 measures studied in this paper. These functions have been
applied to each image Ii ∈ I and the obtained value has been compared with
the one assessed by human subjects. Table 1 shows the RMSE obtained for the
different fuzzy sets considered in this paper (it has been sorted according to the
RMSE value).

3 Results

In this section, the membership function Tk with least fitting error (obtained for
the measures Correlation and defined by the parameter values shown in Table 1)
will be applied in order to analyze the performance of the proposed model. Let’s
consider Figure 2(A) corresponding to a mosaic made by several images, each one
with a different increasing perception degree of fineness. The perception degree
of fineness for each subimage has been calculated using the proposed model and
the numerical results are shown in Figure 2(A): v is the value of the human
assessment and e is the computed degree. It can be noticed that our model
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Fig. 3. Pattern recognition (A) Original image (B1) Binary image obtained by thresh-
olding the original one (B2) Region outlines of B1 superimposed on original image
(C1) Fineness membership degrees obtained with our model from the original image
(C2) Binary image obtained by thresholding C1 (C3) Region outlines of C2 superim-
posed on original image

captures the evolution of the perception degrees of fineness. Figure 2(B) shows
the membership function associated to the fuzzy set used in this experiment.

Figure 3 presents an example where the proposed fuzzy set has been employed
for pattern recognition. In this case, the Figure shows a microscopy image (Fig-
ure 3(A)) corresponding to the microstructure of a metal sample. The lamellae
indicates islands of eutectic, which are to be separated from the uniform light
regions. The brightness values in regions of the original image are not distinct,
so texture information is needed for extracting the uniform areas. This fact is
showed in Figure 3(B1,B2), where a thersholding on the original image is dis-
played (homogeneous regions cannot be separated from the textured ones as they
”share” brightness values). Figure 3(C1) shows a mapping from the original im-
age to its ”fineness” membership degree. In this case, we use a window of size
20× 20. Thus, Figure 3(C1) represents the degree in which the human perceives
the texture and it can be noticed that uniform regions correspond to areas with
low degrees of fineness (i.e., high coarseness), so if only the pixels with fineness
degree lower than 0.1 are selected (which it is equivalent to a coarseness degree
upper than 0.9), the uniform light regions emerge with ease (Figure 3(C2,C3)).

4 Conclusions and Future Works

In this paper, fuzzy sets for representing the fineness/coarseness concept have
been proposed. The memberships functions have been defined relating fineness
measures with the human perception of this texture property. Pools have been
used for collecting data about the human perception of fineness, and the ca-
pability of each measure to discriminate different coarseness degrees has been
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analyzed. The results given by our approach show a high level of connection
with the assessments given by subjects. As future work, the performance of the
fineness functions will be analyzed in applications like textural classification or
segmentation.
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Abstract. We propose in this paper new tools for dealing with bipolar
fuzzy spatial information: particular geometrical objects are defined, as
well as measures such as cardinality and perimeter, represented as bipolar
fuzzy numbers. A definition of distance from a point to a bipolar fuzzy
set is introduced as well. These definitions are based on mathematical
morphology operators, recently proposed in the framework of bipolar
fuzzy sets.

1 Introduction

Bipolarity has not been much exploited in the spatial domain yet, although it
has many features to manage imprecise and incomplete information that could
be interesting in this domain. As highlighted e.g. in [1,2], positive information
represents what is guaranteed to be possible, for instance because it has al-
ready been observed or experienced, while negative information represents what
is impossible or forbidden, or surely false. This paper aims at introducing new
geometrical tools for dealing with bipolar fuzzy spatial information. After re-
calling some definitions in Section 2, we propose to extend the notion of bipolar
fuzzy number to define particular geometrical objects such as points, disks and
rectangles in Section 3. Geometrical measures such as cardinality (Section 4) and
perimeter based on gradient (Section 5) are then proposed. They are defined as
bipolar fuzzy numbers, in order to reflect the bipolar and fuzzy nature of the
objects. Finally, we introduce a definition of distance from a point to a bipolar
fuzzy set in Section 6. These definitions are based on mathematical morphology
operators, recently proposed in the framework of bipolar fuzzy sets [3,4].

2 Background: Bipolar Fuzzy Numbers and Spatial
Bipolar Fuzzy Sets

Interval-valued fuzzy numbers and intervals have been defined in [5,6]. Similarly,
we define a bipolar fuzzy number as a pair of fuzzy sets μ and ν such that μ and
1− ν are fuzzy numbers and ∀α ∈ R (orN), μ(α) + ν(α) ≤ 1. This definition can
be relaxed by allowing 1 − ν to be a fuzzy interval (i.e. its core is an interval).
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If both μ and 1 − ν are fuzzy intervals, then (μ, ν) will be called bipolar fuzzy
interval.

Let us now move to spatial information and let S denote the spatial domain.
It could typically be Rn or Zn. Here we consider a finite bounded domain S. A
bipolar fuzzy set on S is defined by a pair of functions (μ, ν) such that ∀x ∈
S, μ(x) + ν(x) ≤ 1. Note that a bipolar fuzzy set is formally equivalent to an
intuitionistic fuzzy set [7] or an interval-valued fuzzy set [8], where the interval
at each point x is [μ(x), 1 − ν(x)]. For each point x, μ(x) defines the degree to
which x belongs to the bipolar fuzzy set (positive information) and ν(x) the non-
membership degree (negative information). This formalism allows representing
both bipolarity and fuzziness. Semantically, a bipolar fuzzy set is not one physical
object, but may represent information coming from different sources: for instance
the positive part may represent observed or preferred positions for a spatial
object, while the negative part may represent constraints on this position, and
1 − μ− ν indifferent or neutral positions.

Let B denote the set of bipolar fuzzy sets on S, (B,�) is a complete lat-
tice for the partial order defined as: (μ1, ν1) � (μ2, ν2) iff ∀x ∈ S, μ1(x) ≤
μ2(x) and ν1(x) ≥ ν2(x). The supremum and the infimum are denoted by ∧ and
∨, respectively.

An equivalent of the extension principle writes [5,6] ((μ1, ν1) � (μ2, ν2))(γ) =
∨γ=α�β(μ1, ν1)(α) ∧ (μ2, ν2)(β), where � denotes any operation. This principle
can in particular be applied to define operations on fuzzy numbers or intervals.

On the lattice (B,�), a dilation is defined as an operation that commutes with
the supremum and an erosion as an operation that commutes with the infimum,
as shown in our previous work [3,4]. Particular forms, invariant under translation
and involving a bipolar fuzzy structuring element, have also been detailed in this
work, along with their properties.

3 Bipolar Fuzzy Points, Spheres and Parallelepipeds

We propose to use the notion of bipolar fuzzy number to derive particular geo-
metrical bipolar fuzzy sets on S.

Bipolar fuzzy points, disks (in 2D) or spheres (in 3D) can be defined by
applying a rotation invariance principle, while rectangles or parallelepipeds can
be defined based on a Cartesian product.

Definition 1. Let (μ1, ν1) be a bipolar fuzzy number, and let d(x0, x) denote
the distance between two points x0 and x in S (Euclidean distance, or a dis-
crete version of it for instance). A bipolar fuzzy point is defined as: ∀x ∈
S, (μx0 , νx0)(x) = (μ1(d(x0, x)), ν1(d(x0, x))).

Definition 2. Let (μ1, ν1) be a bipolar fuzzy interval, and let d(x0, x) denote
the distance between two points x0 and x in S. A bipolar fuzzy disk (in 2D) or
sphere (in 3D) is defined as: ∀x ∈ S, (μD, νD)(x) = (μ1(d(x0, x)), ν1(d(x0, x))).

Definition 3. Let (μi, νi) be bipolar fuzzy intervals defined on each axis of the
coordinate frame. A bipolar fuzzy rectangle (in 2D) or parallelepiped
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(in 3D) is defined as the Cartesian product of these bipolar fuzzy intervals: ∀x ∈
S, (μR, νR)(x)=∧i((μi, νi)(xi))= (mini(μi(xi)),maxi(νi(xi))) where x1, x2(, x3)
denote the coordinates of x (x = (x1, x2(, x3))t) and ∧ denotes the conjunction
of bipolar fuzzy sets.

These definitions extend the notion of fuzzy point [9], fuzzy disk [10] and fuzzy
rectangle [10] to the bipolar case. Note that μD is a convex fuzzy disk, and
νD the complement of a convex fuzzy disk. Relaxing the convexity assumption
would lead to more general bipolar fuzzy disks and spheres. As for rectangles, the
conjunction is expressed as a minimum of the positive parts and the maximum
of the negative parts. The positive part is exactly a fuzzy rectangle.

Proposition 1. Definitions 1, 2 and 3 actually provide bipolar fuzzy sets in S.

Proposition 2. If the bipolar fuzzy numbers or intervals involved in Defini-
tions 1–3 are not bipolar (i.e. νi = 1 − μi), then these definitions provide non-
bipolar fuzzy sets and are consistent with the existing definitions in the fuzzy
case. If moreover μi is crisp, then the defined sets are crisp and are points, disks
and rectangles in the classical sense.

An example of bipolar fuzzy disk is shown in Figure 1.

Fig. 1. A bipolar fuzzy disk with its positive part μ (left) and its negative part ν
(middle). The indetermination (or neutral area) π = 1 − μ − ν is shown on the right.

4 Cardinality, Surface and Volume

Let (μ, ν) ∈ B be a bipolar fuzzy set defined in the spatial domain S. The car-
dinality of intuitionistic or interval-valued fuzzy sets has been introduced e.g.
in [11] as an interval: [

∑
x∈S μ(x),

∑
x∈S(1 − ν(x))], with the lower bound rep-

resenting the classical cardinality of the fuzzy set defining the positive part (the
least certain cardinality), and the upper bound the cardinality of the complement
of the negative part (i.e. the whole not impossible region is considered, leading
to the largest possible cardinality). The length of the interval reflects the inde-
termination encoded by the bipolar representation. Several authors have used a
similar approach, based on interval representations of the cardinality.

When dealing with fuzzy sets, it may be more interesting to consider the
cardinality as a fuzzy number, instead as a crisp number, for instance using the
extension principle: |μ|(n) = sup{α ∈ [0, 1] : |μα| = n}, where μα denotes α-cuts,
defining the degree to which the cardinality of μ is equal to n.
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Fig. 2. Cardinality of the bipolar fuzzy set of Figure 3 represented as a bipolar fuzzy
number (the negative part, represented by the upper curve is inverted)

Here we propose a similar approach for defining the cardinality of a bipolar
fuzzy set as a bipolar fuzzy number, which contrasts with the previously interval-
based approaches [4].

Definition 4. Let (μ, ν) ∈ B. Its cardinality is defined as: ∀n, |(μ, ν)|(n) =
(|μ|(n), 1 − |1 − ν|(n)).

Proposition 3. The cardinality introduced in Definition 4 is a bipolar fuzzy
number on N (with ∀n, |μ|(n) + (1 − |1 − ν|(n)) ≤ 1).

In the spatial domain, the cardinality can be interpreted as the surface (in 2D)
or the volume (in 3D) of the considered bipolar fuzzy set.

An example is shown in Figure 2, for the bipolar fuzzy object displayed in
Figure 3. For this example, the cardinality computed as an interval would provide
[11000, 40000], which approximately corresponds to the 0.5-level of the bipolar
fuzzy number.

5 Gradient and Perimeter

A direct application of erosion and dilation is the morphological gradient, which
extracts boundaries of objects by computing the difference between dilation and
erosion, as introduced in [4] for bipolar fuzzy sets.

Definition 5. Let (μ, ν) be a bipolar fuzzy set. We denote its dilation by a bipo-
lar fuzzy structuring element by (δ+, δ−) and its erosion by (ε+, ε−). We define
the bipolar fuzzy gradient as: ∇(μ, ν) = (min(δ+, ε−),max(δ−, ε+)) which is the
set difference, expressed as the conjunction between (δ+, δ−) and the negation
(ε−, ε+) of (ε+, ε−).

Proposition 4. The bipolar fuzzy gradient has the following properties: (i) Def-
inition 5 defines a bipolar fuzzy set; (ii) If the dilation and erosion are defined us-
ing t-representable bipolar t-norms and t-conorms (see [3,4] for details), we have:
∇(μ, ν) = (min(δμB (μ), δμB (ν)),max(ε1−νB (ν), ε1−νB (μ))). Moreover, if (μ, ν)
is not bipolar (i.e. ν = 1 − μ), then the positive part of the gradient is equal to
min(δμB (μ), 1 − εμB (μ)), which is exactly the morphological gradient in the fuzzy
case.
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Fig. 3. Gradient of a bipolar fuzzy object

An illustration is displayed in Figure 3. It illustrates both the imprecision
(through the fuzziness of the gradient) and the indetermination (through the
indetermination between the positive and the negative parts). The object is here
somewhat complex, and exhibits two different parts, that can be considered as
two connected components to some degree. The positive part of the gradient
provides a good account of the boundaries of the union of the two components,
which amounts to consider that the region between the two components, which
has lower membership degrees, actually belongs to the object. The positive part
has the expected interpretation as a guaranteed position and extension of the
contours. The negative part shows the level of indetermination in the gradient:
the gradient could be larger as well, and it could also include the region between
the two components.

Now the perimeter (in 2D) or surface (in 3D) of a bipolar fuzzy set can
be derived from the notions of cardinality and gradient. It is then a bipolar
fuzzy number. As for the cardinality, this representation is suitable to account
for both fuzziness and indetermination. This is a richer representation than a
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gradient
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simple number, that could be obtained for instance as a weighted sum of the
cardinalities of the cuts, as done in the fuzzy case in [10].

Definition 6. Let (μ, ν) be a bipolar fuzzy set. Its perimeter (or surface) is
defined as the bipolar fuzzy number |∇(μ, ν)|, where the gradient ∇(μ, ν) is given
in Definition 5 and the cardinality |.| in Definition 4.

An example is shown in Figure 4.

6 Distance from a Point to a Bipolar Fuzzy Set

While there is a lot of work on distances and similarity between interval-valued
fuzzy sets or between intuitionistic fuzzy sets (see e.g. [12,13]), none of the exist-
ing definitions addresses the question of the distance from a point to a bipolar
fuzzy set, nor includes the spatial distance in the proposed definitions. As in the
fuzzy case [14], we propose to define the distance from a point to a bipolar fuzzy
set using a morphological approach. In the crisp case, the distance from a point
x to a set X is equal to n iff x belongs to the dilation of size n of X (the dilation
of size 0 being the identity), but not to dilations of smaller size (it is sufficient
to test this condition for n − 1 in the discrete case). The transposition of this
property to the bipolar fuzzy case leads to the following novel definition, using
bipolar fuzzy dilations introduced in [3].

Definition 7. The distance from a point x of S to a bipolar fuzzy set (μ, ν)
(∈ B) is defined as: d(x, (μ, ν))(0) = (μ(x), ν(x)) and ∀n ∈ N∗, d(x, (μ, ν))(n) =
δn(μB ,νB)(x)∧c(δn−1

(μB ,νB)(x)), where c is a complementation (typically the standard
negation c(a, b) = (b, a) is used) and δn(μB ,νB) denotes n iterations of the dilation,
using the bipolar fuzzy set (μB , νB) as structuring element.

In order to clarify the meaning of this definition, let us consider the case where
the structuring element is not bipolar, i.e. νB = 1 − μB. Then the dilation
writes (see [3,4] for details): δ(μB ,1−μB)(μ, ν) = (δμB (μ), εμB (ν)), where δμB (μ)
is the fuzzy dilation of μ by μB and εμB (ν) is the fuzzy erosion of ν by μB
(see [15] for fuzzy mathematical morphology). The bipolar degree to which the
distance from x to (μ, ν) is equal to n then writes: d(x, (μ, ν))(n) = (δnμB

(μ) ∧
εn−1
μB

(ν), εnμB
(ν)∨δn−1

μB
(μ)), i.e. the positive part is the conjunction of the positive

part of the dilation of size n (i.e. a dilation of the positive part of the bipolar
fuzzy object) and the negative part of the dilation of size n− 1 (i.e. an erosion
of the negative part of the bipolar fuzzy object), and the negative part is the
disjunction of the negative part of the dilation of size n (erosion of ν) and the
positive part of the dilation of size n− 1 (dilation of μ).

Proposition 5. The distance introduced in Definition 7 has the following prop-
erties: (i) it is a bipolar fuzzy set on N; (ii) it reduces to the distance from
a point to a fuzzy set, as defined in [14], if (μ, ν) and (μB, νB) are not bipo-
lar (hence the consistency with the classical definition of the distance from a
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point to a set is achieved as well); (iii) the distance is strictly equal to 0 (i.e.
d(x, (μ, ν))(0) = (1, 0) and ∀n �= 0, d(x, (μ, ν))(n) = (0, 1)) iff μ(x) = 1 and
ν(x) = 0, i.e. x completely belongs to the bipolar fuzzy set.

An example is shown in Figure 5. The results are in agreement with what would
be intuitively expected. The positive part of the bipolar fuzzy number is put
towards higher values of distances when the point is moved to the right of the
object. After a number n of dilations, the point completely belongs to the dilated
object, and the value to which the distance is equal to n′, with n′ > n, becomes
(0, 1). Note that the indetermination in the membership or non-membership
to the object (which is truly bipolar in this example) is also reflected in the
distances.

These distances can be easily compared using the extension principle given in
Section 2, providing a bipolar degree d≤ to which a distance is less than another
one. For the examples in Figure 5, we obtain for instance : d≤[d(x1, (μ, ν)) ≤
d(x2, (μ, ν))] = [0.69, 0.20] where xi denotes the ith point from left to right
in the figure. In this case, since x1 completely belongs to (μ, ν), the degree

Bipolar fuzzy object:
positive part negative part

Test points in red (numbered 1..5 from left to right)
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to which its distance is less than the distance from x2 to (μ, ν) is equal to
[supa d+(a), infa d−(a)], where d+ and d− denote the positive and negative parts
of d(x2, (μ, ν)). As another example, we have d≤[d(x5, (μ, ν)) ≤ d(x2, (μ, ν))] =
[0.03, 0.85], reflecting that x5 is clearly not closer to the bipolar fuzzy set (μ, ν)
than x2.

7 Conclusion

We have shown in this paper how the set of operations on bipolar fuzzy ob-
jects (or equivalently interval-valued or intuitionistic fuzzy sets) can be en-
hanced with new geometrical features, having nice properties. This enriches
existing tools developed for image thresholding or edge detection based on in-
tuitionistic or interval-valued fuzzy sets [16,17,13] or for mathematical mor-
phology [3,4,18]. Extensions to other types of operations will be the aim of
future work.
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Abstract. In this paper, an interactive image retrieval scheme using
MPEG-7 visual descriptors is proposed. The performance of image re-
trieval systems is still limited due to semantic gap, which is created
from the discrepancies between the computed low-level features (color,
texture, shape, etc.) and user’s conception of an image. As a result,
more interest has been created towards development of efficient learning
mechanism other than designing sophisticated low-level feature extrac-
tion algorithms. A simple relevance feedback mechanism is proposed,
that learns user’s interest and updates feature weights based on a fuzzy
feature evaluation measure. This has an advantage of handling compar-
atively small number of samples over those using standard classifiers
involving large number of training samples and having more complexity.
Extensive experiments have been performed to test to what extent the
performance of an image retrieval system can be enhanced further using
MPEG-7 standard visual features at minimum cost.

Efficient image retrieval techniques from a large database have become an active
field of research with the advent of the World-Wide Web. Content-Based Image
Retrieval(CBIR) techniques are becoming more important with this basic re-
quirement [1]. It is aimed at retrieving relevant images from an image database
by measuring similarity between the automatically derived low-level features
(color, texture, shape, etc. ) of the query image and the images stored in the
database. Although different image characterization methods [2],[3] have been
explored to represent images with basic low-level features but their usefulness is
limited by the gap, between low-level features and high-level concepts known as
semantic gap. Performance of CBIR is still far from user’s expectations owing
to semantic gap.

To facilitate effective use of audio, visual(color, texture, shape, etc.) and motion
descriptors, ISO/IEC has launched MPEG-7 to address multimedia retrieval. It
provides a collection of specific, standard descriptors [4] used as a benchmark for
evaluation of new schemes for image retrieval [5]. Among various state-of-the-art
techniques in narrowing down the semantic gap, relevance feedback mechanism
has been identified as an essential tool to provide significant performance boost
in CBIR systems [6], [7], [8], through continuous learning and interaction with
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end-users. The system provides initial retrieval results through query-by-example,
sketch, etc., based on which the user judges the retrieved results as to whether and
to what degree, they are relevant (positive examples)/irrelevant (negative exam-
ples) to the query. Machine learning algorithm is then applied to learn the user’s
feedback and improve the results iteratively till user’s satisfaction.

Most of the relevance feedback methods employ two approaches [6] namely,
query vector moving technique and feature re-weighting technique to improve
retrieval results. In the first approach, the query is reformulated by moving the
vector towards positive examples and away from the negative examples, assuming
that all positive examples will cluster in the feature space. Feature re-weighting
method is used to enhance the importance of those components of a feature
vector, that help in retrieving relevant images, while reducing the importance of
the features that does not help. However in such cases, the selection of positive
and negative examples, from a small number of samples having large number of
features, still remain as a problem.

Relevance feedback techniques in CBIR, have mostly utilized information of
the relevant images but have not made use of the information from irrelevant
images. Zin et al., [9] have proposed a feature re-weighting technique by using
both the relevant and the irrelevant information, to obtain more effective results.

Recently, relevance feedback has been considered as a learning and classifica-
tion process, using classifiers like Bayesian classifiers [10], neural network [11],
etc. However trained classifiers become less effective when the training samples
are insufficient in number. To overcome such problems, active learning methods
have been used in [12].

Our contributions in this paper deal with studying the performance of a CBIR
system using MPEG-7 visual descriptors. We present a simple relevance feedback
method which uses the concept of combining information from both relevant and
irrelevant images, from a small number of retrieved images. The motivation is
to test how far it can enhance the performance of a CBIR system already using
MPEG-7 visual features by using a simple feedback mechanism requiring less
computational time and managing small samples opposed to different classifiers
[11], [10] used for relevance feedback. We also present a comparison of the system
against a CBIR system which uses moments of significant points (corners and
around) [13] of a color image involving 6 feature components only.

1 Evaluating Importance of a Feature from Relevance
Rating

In conventional CBIR approaches an image I is usually represented by a set
of features, F ={fq}Nq=1, where fq is the qth feature component in the N di-
mensional feature space. The commonly used decision function for measuring
similarity between the query image Iqr and other images I, is represented as,

Dis(I, Iqr) =
N∑
q=1

wq||fq(I) − fq(Iqr)|| (1)
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where ||fq(I)−fq(Iqr)|| is the Euclidean distance between the qth component and
wq is the weight assigned to the qth feature component. The weights should be
adjusted such that, the features have small variation over the relevant images and
large variation over the irrelevant images. Let k similar images Is={I1,I2,...,Ik}
where, Ik ∈ Is, are returned to the user. Let Ir be the set of relevant images and
Iir be the set of irrelevant images as marked by the user. Ir = {Ij | Ij relevant,
for Ij ∈ Is} and Iir = {Ij | Ij irrelevant, for Ij ∈ Is}. The information from
Ir and Iir are combined to compute the relative importance of the individual
featues, from fuzzy feature evaluation index (FEI) [14] in pattern classification
problems.

The (FEI) is defined from interclass and intraclass ambiguities as follows : Let
C1, C2,.... Cj ... Cm be the m pattern classes in an N dimensional (f1, f2, fq, ...fN)
feature space where class Cj contains, nj number of samples. It can be shown
that entropy of a fuzzy set [15] gives a measure of ’intraset ambiguity ’ along
the qth co-ordinate axis in Cj is computed as,

H(A) = (
1

nj ln 2
)
∑
i

Sn(μ(fiqj)); i = 1, 2...nj (2)

where the Shannon’s function, Sn(μ(fiqj))=-μ(fiqj)lnμ(fiqj)-{1-μ(fiqj)}ln
{1-μ(fiqj)} Entropy is dependent on the absolute values of membership (μ)
Hmin = 0 for μ=0 or 1, Hmax = 1 for μ=0.5 Entropy (H) of Cj along qth
component can be computed using a standard S-type membership function as
shown in (3).

S(x; a, b, c) = 0 x ≤ a

= 2 × { (x−a)
(c−a) }2 a ≤ x ≤ b

= 1 − 2 × { (x−c)
(c−a)}2 b ≤ x ≤ c

= 1 x ≥ c

(3)

where,
b = (fqj)av
c = b + max{|(fqj)av − (fqj)max|, |(fqj)av − (fqj)min|}
a = 2b− c

(fqj)av, (fqj)max, (fqj)min denote the mean, maximum and minimum values
respectively computed along the qth co-ordinate axis over all the nj samples in
cj . Since μ(b) =μ(fqj)av =0.5, the values of H are 1.0 at b = (fqj)av and would
tend to zero when moved away from b towards either c or a of the S function.
Selecting b= (fqj)av indicates that, the cross over point is near the query feature
component. Higher value of H ,indicates more number of samples having μ(f)
equal to 0.5. with a tendency of the samples to cluster around the mean value,
resulting in less internal scatter within the class.

After combining the classes Cj and Ck the mean, maximum and minimum
values (fqkj)av, (fqjk)max, (fqjk)min respectively of qth dimension over the
samples (nj + nk) are computed similarly, where nk are the samples in class Ck.
The criteria of a good feature is that, it should be nearly invariant within class,
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while emphasizing differences between patterns of different classes [14]. The value
of H would therefore decrease, after combining Cj and Ck as the goodness of
the qth feature in discriminating pattern classes Cj and Ck increases. The mea-
sure denoted as Hqjk is called ”interset ambiguity” along qth dimension between
classes Cj and Ck. Considering the two types of ambiguities, the proposed Fea-
ture evaluation index (FEI) for the qth feature is,

(FEIq) =
Hqjk

Hqj + Hqk
(4)

Lower value of FEIq, indicates better quality of importance of the qth feature
in recognizing and discriminating different classes. The precision of retrieval can
be improved with these values.

In the proposed algorithm, the number of classes are two. The relevant/
positive images constitute the (intraclass) and the irrelevant/negative images
constitute the (interclass) image features. To evaluate the importance of the qth

feature, the qth component of the retrieved images is considered. i.e., I(q) ={I(q)
1 ,

I
(q)
2 , I(q)

3 ,, ....I(q)
k }

Hqj is computed from I
(q)
r = {I(q)

r1 , I(q)
r2 , I(q)

r3 ,, ....I(q)
rk }. Similarly Hqk is com-

puted from the set of images, I(q)
ir ={I(q)

ir1, I
(q)
ir2, I

(q)
ir3,, ....I(q)

irk}. Hqkj is computed
combining both the sets. Images are ranked according to Euclidean distance.
The user marks the relevant and irrelevant set from 20 returned images, for au-
tomatic evaluation of (FEI). The weight wq is a function of the evaluated (FEIq)
as shown in eqn. 5

wq = Fq(FEIq) (5)

Now the problem is, what would be weight updation function for the automati-
cally evaluated important features, when all feature elements are merged into a
big overall feature vector. Owing to such situations, different feature updation
functions like, [wq= FEI2

q ,
1

FEI2q
, exp(FEIq)] could be tested. Whichever is the

best strategy can be decided by selecting a better performing wq for majority
of the queries in the database. For the query feature vector F , the individual
components of relevant images are expected to vary within a smaller range say
(ε) and may be represented as.

Ir = {Ij ∈ Is :
δfq
|F | ≤ ε} (6)

In the first pass, all features are considered to be equally important. Hence
w1=w2,...=wq=1. The feature spaces of the relevant images are therefore altered
in a similar fashion after updating the components with wq. As a result, the ranks
of the relevant images are not affected much. For irrelevant images, one feature
component may be very close to the query, whereas other feature component
may be far away from the query feature. But the magnitude of the similarity
vector may be close to the relevant ones. These images may be characterized as,

Iir = {Ij ∈ Is :
δfql
|F | 1 ε and

δfqm
|F | ( ε} (7)
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where, l ∈ 1, 2....N and m=lc. For example, multiplying by FEi2q will in effect
decrease the component feature separation such that, the relevant component
i.e., the term δfqm

|F | ( ε of (6) will be more closer to the query than the irrele-
vant component and due to combined distance within the similarity metric, the
relevant images may come up. Multiplying by 1

FEI2q
increases the feature sepa-

ration between the irrelevant component, such that due to the combined effect
the irrelevant image may be pulled down.

2 Experimentation

To prove the effectiveness of the proposed relevance feedback mechanism, ex-
tensive experiments have been performed on MPEG-7 standard visual features
downloaded from http://standards.iso.org/ittf/licence.html, upon two databases
namely, (A) SIMPLIcity images consisting of 1000 images from 10 different cate-
gories (B) Corel 10000 miscellaneous database which is labeled into 79 semantic
categories and downloaded from http://wang.ist.psu.edu/IMAGE. The upda-
tion formula wq=FEI2

q is used in each iteration as it generated better results in
majority of the cases.

Among the different representation schemes used as the MPEG-7 core fea-
tures, CSD(Color Structure Descriptor) and EHD (Edge Histogram Descriptor)
[5] are chosen as color and texture features, to evaluate overall similarity be-
tween images. Shape could be more important if region based properties were
extracted. The color structure descriptor histogram aims at identifying localized
color distribution using a small sliding structuring window, which is constructed
in the hue-min-max-difference (HMMD). CSD is defined by non linear quanti-
zation of the color space, and represented by a 184 bin histogram. A 184 bin
of CSD can be mapped to lower number of bins (120, 64, or 32) by coarsely
quantizing the color space and L2 (Euclidean) distance is used for similarity
evaluation. In Edge Histogram Descriptor the original image is divided into 16
subimages, each subimage is divided into a fixed number of blocks. Each image
block is partitioned into 2x2 block of pixels. The edge detector operators are then
applied to 2X2 blocks, treating each block as a pixel and the average intensity as
the corresponding block intensity value. A total of 80 bins, 3 bits/bin, are used
for representing the edge histogram while L2 distance is used as the metric.

As representation schemes associated with the traditional color histograms,
suffer from problems associated with high-dimensional indexing, the performance
is also evaluated against a CBIR system, using color moments at significant spa-
tial locations (corners and around) with a feature vector size of six components
only [13].

MPEG-7 CSD feature extraction approximately takes 1-2 secs, whereas EHD
takes approximately 500ms. Such a difference can be accounted to the use of
sliding structuring window depending upon the image size in the case of CSD
descriptors. The proposed relevance feedback has been tested independently us-
ing the features (CSD, EHD and moment based [13]) and retrieval performance
measured in terms of precision as shown in eqn. (8).
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As low-level features are not always powerful in representing the semantic
concepts, the images similar in semantic contents are selected as positive exam-
ples among the first twenty retrieved set, in each round of feedback iteration
and the remaining are negative examples for updating the weight parameters
and revising the features. In most of the cases, CSD has been able to produce
better results than EHD in terms of color distribution. EHD produced better re-
sults where spatial distribution of edges, is more important. However, with CSD
descriptors the retrieval accuracy is limited when semantic significance is more
important than color distribution only. One such example may be the case of an
elephant where the improvement in precision is from 50 % - 75% at third itera-
tion as shown in Figs. 1 -2. The weight updating approach is tested in terms of
Average precision (with n=20 images) which is the average value obtained using
eqn. 8 considering all randomly selected queries of the databases. The average
precision obtained from the set of same query after different iterations are shown
in Fig. 3(a). As seen from Fig. 3(a) that EHD and moment based methods gen-
erated almost similar results whereas CSD features performed better in terms of
average retrieval precision. The experiments have been implemented on a Dell
(T7400, 4GB, RAM) machine using MATLAB R2008a package. The cputime
taken for each iteration is approximately 500ms. for database (A) and 3 secs for
database (B).

(a) (b)

Fig. 1. The proposed relevance feedback scheme on MPEG-7, CSD visual descriptors,
(a)First pass (b) iteration1

The results for different queries are defined in terms of Precision as,

P (n) =
target images within n positions

n
× 100 (8)

The average precision as obtained from other two methods namely, (a) Ratio
approach [16] in which the relative ratios of standard deviations of the component
features of positive and negative examples are considered (b) Rui’s method [6] in
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(a) (b)

Fig. 2. The proposed relevance feedback scheme on MPEG-7, CSD visual descriptors,
(a)iteration2 (b) iteration3
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Fig. 3. Comparative studies (a) using different feature extraction schemes (b) using
different weight updation schemes

which a feature’s weight is assigned in inverse proportion to the features variance
across the images marked relevant is shown in Fig. 3(b). Experimental results
show that, the proposed relevance feedback mechanism enhances the results
using the MPEG-7 feature descriptors better than Ratio and Rui’s method in
most of the cases. As the computed FEI is the measure of heterogeneity in the
relevant and irrelevant set of the component feature space it is able to improve
the results consistently, with the S-type function in the interval (0, +1).

3 Conclusion

Experimental results show that the proposed image retrieval system based on
MPEG-7 features is able to improve the retrieval performance more than 20%
in most of the cases, within two iterations of relevance feedback. Since, MPEG-7
Visual descriptors, describe features for effective image or video retrieval, effec-
tiveness of the proposed feedback mechanism could be tested for video retrieval
as future scope of research.
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Abstract. Symmetry is a crucial dimension which aids the visual system, hu-
man as well as artificial, to organize its environment and to recognize forms and
objects. In humans, detection of symmetry, especially bilateral and rotational, is
considered to be a primary factor for discovering and interacting with the sur-
rounding environment. Rotational symmetry detecting can be affected by less-
known factors, such as the stimulus internal texture. This paper explores how
fuzzy operators can be usefully employed in modeling the effects of the internal
texture on symmetry detection. To this aim, we selected two symmetry detection
algorithms, based on different computational models, and compared their output
with the outcome of an experiment in symmetry preferences on humans.

1 Introduction

Symmetry is a fundamental principle, which aids the visual system, human as well as
artificial, to organize its environments and to recognize natural and artificial forms and
objects. From a Gestaltist point of view, the law of symmetry stresses that we tend to
perceive objects as symmetrical structures around a center, and it assigns a relevant role
in attentive mechanism both in visual and auditory systems. In particular, by facilitat-
ing perceptual grouping [1], as well as figure/ground organization, symmetry is one of
the most important factors allowing perceptual structures to emerge. Indeed, when we
perceive disconnected but alike elements, that are symmetrical to each other, we tend to
integrate them in a coherent percept. Moreover, in figure/ground segregation process,
symmetrical images generally emerge as ”figure”, rather than as ”ground”. Symme-
try detection is also highly relevant in shape recognition. Indeed, the description of a
shape may be different when it is embedded in a context with horizontal or vertical
symmetry [2]. Besides, in tasks requiring the completion of partially occluded visual
stimuli, subjects tend to produce systematically symmetrical figures [3]. The concept
of symmetry is not univocal: various kinds of properties of an image are defined as
symmetry [4,5]; in this paper we will specifically focus on the rotational symmetry. A
figure has rotational symmetry when it can be rotated less than 360◦ around its central
point, or axis, and still match the original figure. In order to explore how fuzzy operators
can be successfully employed in modeling the effects of such external cues as internal
texture on symmetry detection, we compared the results obtained from an experiment

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 254–262, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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on humans with the output of two algorithms based on different computational models,
a field metaphor and a memetic algorithm, respectively. In this paper Sect. 2 briefly re-
ports the results from the experiment on humans; Sect. 3 and 4 show the used algorithms
and their results; finally, in Sect. 5 we compares the results and present the conclusions.

2 Human Judgement of Symmetry

From a human point of view, the vertical axis is predominant in rotational symmetry.
Since early Mach’s intuitions on the predominance of vertical symmetry axis in humans,
the axial symmetry effects have been fully confirmed by the literature: symmetry detec-
tion is easier and faster when the symmetry axis is vertical [6]. More recent researches
showed how detecting symmetry in human observers is influenced also by scanning
strategies and attentional cueing effects [5]. Concerning this, several studies stressed
the facilitating effects produced by external frames or cue lines aligned at the symmetry
axis [7,8]. Other studies showed that in symmetry detection scanning strategies are also
affected by qualitative features of the figure, i.e. presence of curvature minima along
boundaries, concavity of the figure and number of vertices mismatches [9]. Moreover,
symmetry judgment is faster and more accurate if the figure contains multiple symme-
tries. Other less studied variables could be relevant. In particular, the internal structure
(texture) of stimulus and its interaction with the vertical bias has often been neglected.

2.1 An Experiment on Human Subjects

Here, are presented results obtained from an evaluative experiment with human subjects
on equilateral triangles. Human observers had to choose the main symmetry axis on a
equilateral triangle having global symmetries along three axes (30◦, 90◦ and 150◦). By
manipulating internal texture, four triangles were generated (see Fig. 1): TR1 and TR2
globally maintain the three main symmetries, and are called tri-symmetric, whereas
TR3 and TR4 maintain only one symmetry and are called mono-symmetric. All the test
triangles have the same number of black areas (4) and the same ratio between gray and
black areas (7:9). When the triangles are set as shown in Fig. 1, we call A, B and C their
vertices starting from top in clockwise order (see Fig. 1(a)). It notice that we will use
the same set of images and the same nomenclature as input for our algorithms.

2.2 Results

Statistical analysis revealed significant differences between responses to three-
symmetry triangles vs one-symmetry ones. When three-symmetry triangles (as well

A

BC

(a) (b) (c) (d) (e)

Fig. 1. Triangles used in the experiments. PRO (a); TR1 (b); TR2 (c); TR3 (d); TR4 (e).
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as the blank one) were rotated 0◦ or 180◦, the subjects selected the vertex A, following
the vertical axis, while when they were rotated 40◦, 320◦, 140◦ or 220◦ no specific axis
was preferred. Instead in one-symmetry triangles subjects tended to select the vertex A
regardless of the rotation, hence the texture could have led the choice of the symmetry
axis. These results indicate the possibility that human symmetry detection is due not
only to vertical axis or to external frames, but also to internal structure of the stimulus.

3 Field Symmetry Transform

The Field Symmetry Transform (FiST) is a novel algorithmic approach to detect the
symmetry in digital objects. The FiST algorithm takes as input an image I , and outputs
an histogram of the symmetry distribution in the image itself; analysis of maxima and
minima in the histogram reveals the main symmetric axes. The process employed by
the algorithm is illustrated in Fig. 2: FiST treats the input image as a bidimensional
plane (see Fig. 2(a)), in which each pixel p is a virtual charged particle at continue
plane coordinates (x, y), with positive intensity proportional to the fuzzy grey intensity
of p: e.g., in a black-object-on-white-background 8 bit image context, this means that
a black pixel represents a positive unitary charged particle, while a pixel with intensity
128 (mid-grey) is considered as a positive charged particle of intensity 1

2 . Once all of
the pixel have been represented as virtual charged particles, an equal-spaced orthogonal
grid is superimposed on the plane (see Fig. 2(b)), and the vector field resulting from the
contribution of all the virtual charges is computed at each crossing point of the grid (see
Fig. 2(c)). The contribution given by the charged particle p lying at coordinates (x, y)
to the field in a grid point g of coordinates (i, j), according to Coulomb’s law, is:

Ep(g) =
1
4π

Q

r2 r̂

where Q is the charge of p, and r̂ is the unit vector pointing from the particle p to the
evaluation point g, or from (x, y) to (i, j). Due to the superimposition principle of the
charges, the total field vector E in p given by from all the points g of G is:

E(g) =
∑
g∈G

Ep(g).

The vectors obtained through this process are then clustered according to their direc-
tion, and a histogram (see Fig. 2(d)) is obtained by counting the number of vectors in
each cluster; the resulting histogram is the FiST of the original image, on which further
analysis can be done in order to extract information pertaining the symmetry axes of the
image. The choice of parameters for FiST (resolution of the grid, width of the clusters,
linearity of the charge with respect to the pixel intensity) depends strictly on the kind
of image in input, its resolution and bit depth. FiST has some interesting peculiarities:
the algorithm is highly parallelizable, the only serial step is the construction of the fi-
nal histogram; while not real-time for any reasonable sized input, the algorithm is quite
fast. The fuzzy nature of the algorithm (pixel values are treated as fuzzy charges) means
that the input images is not limited in bit depth, allowing the same implementation to
manipulate high-bit depth images such as the ones in the medical imaging field; the



Modelling the Effects of Internal Textures on Symmetry Detection 257

(a) (b) (c) (d)

Fig. 2. The FiST process

0 π 2π 0 π 2π0 π 2π 0 π 2π0 π 2π

T4

(a) (b) (c) (d) (e)

Fig. 3. Results using FiST. PRO (a); TR1(b); TR2 (c); TR3 (d); TR4 (e).

algorithm is not restricted to greyscale: since the charges’ values are conventional, the
method can be used as well with color images, providing some sensible interpretation
of the chrominance data; the algorithm can easily be extended to include a pyramidal
iterative version by varying the resolution of the superimposed grid.

3.1 Experiment

The triangles were rendered at an height of 400 pixels, in order to allow enough white
space at the borders, and then placed in a 512 × 512 white pixels image box; rendering
of the originally vectorial triangles used anti-aliasing techniques. Procedure FiST has
been applied to our stimuli as follows: the FiST grid was set to 128×128 points, starting
at the top left of the image, and in order to balance the contribution from each part of
the image, the vectors considered were the ones lying in a circle centred on the image,
with a 256 pixels radius. The interval considered for the histogram building phase was
of 6◦, in order to obtain a smoothing of the interferences due to the digital nature of the
image. The whole procedure was carried on using custom developed MATLAB code.

3.2 Results

As evident from the results shown in Fig. 3, in both the reference triangle PRO and
the two tri-symmetric triangles TR1 and TR2, the histogram has almost-equal minima
corresponding to the axes di 30◦, 90◦ and 150◦), and almost-equal maxima (or, in the
case of TR2, double-peaked maxima) corresponding to the vertices of the triangle (at
90◦, 210◦ and 330◦). Meanwhile, the two mono-symmetric triangles TR3 and TR4
present a well-defined minimum only in correspondence to the axis passing through to
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the vertex determining the symmetry. FiST results are invariant to rotation, although a
gravity can be included by constant alteration of the field.

4 Memetic Symmetry Transform

The Memetic Symmetry Transform (MST) is an application of memetic algorithms
[10,11] which are evolutionary algorithms inspired by the culture evolution in the
human civilization and by models of adaptation in natural systems. They combine evo-
lutionary adaptation of populations of individuals with individual learning within a life-
time.

4.1 Preliminaries

Agents. Let n be the number of grey or black equilateral triangles (texture triangles)
adjacent to one side of the input triangle, the texture is a composition of n2 texture
triangles belonging to one of two disjointed sets: Δ− up or Δ− down, triangles with
one vertex directed upward or downward, respectively (see Fig. 4 a,b). We assign to
each texture triangle one direction among those indicated by its vertices and we call
agent an array V = (v1, v2, . . . vn2) of integer, where vi = 1, 2 or 3 is the direction of
the i− th texture triangle (see Fig. 4 c).

Fitness function. Let V be an agent and ai the line with direction i, where i = 1, 2, 3,
passing through the center of mass of the triangle, the value of the fitness function is:

f(V ) = max
i=1,2,3

fi(V ) where fi(V ) =
n2∑
j=1

αij +

n2
2∑
j=1

βij i = 1, 2, 3

and the coefficients αij and βij are the following:

αij =

⎧⎨⎩
3/2 if the j − th texture triangle is black and its direction is parallel to ai
1 if the j − th texture triangle is gray and its direction is parallel to ai
0 otherwise.

and

βij =
{

+1/5 if the j − th texture triangle has a simmetrical with respect to ai
−1/5 otherwise.

(a) (b) (c)

Fig. 4. Δ − up (a) and Δ − down (b) texture triangles with their three possible directions 1, 2
and 3. An example (c) of agent V = (1, 2, 1, 1, 2, 3, 3, 2, 1, 2, 3, 3, 3, 2, 2, 3) with n = 4.
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a b c da b c d

Fig. 5. Two parents (a and b) and their respective offsprings (c and d), when cut-points are h = 4
and k = 11

Fig. 6. Agent V (a) and mutated agent V (b) when T={5,13,14,16}

The values of αij is equal to the ratio between the values of the colors of the texture
(gray=169 and black=255), while the value of βij has been chosen after several experi-
mental sessions.

Operators. The crossover operator produces two new agents by combining two parents
agents. It chooses two cut-points h and k, such that 1 ≤ h ≤ k ≤ n2, in a random fash-
ion and swaps the subsequences of the agents between the two cut-points. Formally,
the offsprings obtained from V = (v1, v2, . . . , vn2) and W = (w1, w2, . . . , wn2) are
Ṽ = (v1, . . . , vh, . . . , wk, . . . , vn2) and W̃ = (w1, . . . , wh, . . . , vk, . . . , wn2) (Fig. 5).
Mutation changes the orientations of some texture triangles. This operator randomly
chooses a subset of indices T={t1, t2, . . . , tm : 1 ≤ ti ≤ n2 ∀ 1 ≤ i ≤ m} and reas-
signs the directions of the corresponding texture triangles in V. Hence, the mutated
agent will be V = (v1, v2, . . . , vn2), with vi = vi if i �= tj (see Fig. 6).

Selection Function. The selection function selects the agents with the best fitness val-
ues. It has be noted that this function maintains constant the population size and it
preserves the best agent produced during the evolution.

4.2 Algorithm

We designed the MST taking inspiration from the human subjects’ behavior, who carry
out their choices by combining a limited number of particular symmetries and colors
arrangements. The algorithm generates a starting population P of m agents in a random
fashion, then it evaluates each agent to find an optimal solution, that is an assignation
of the same direction to all texture triangles; in the case of n2 texture triangles the
probability of finding it is m

3n2−1 . If the solution is not in P then MST evolves P , by
adding new agents obtained by applying both crossover and mutation to all individuals
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Fig. 7. Results using MST: PRO (a); TR1(b); TR2 (c); TR3 (d); TR4 (e)

of P . The fitness function evaluates the agents and the selection function takes the best
individuals to create the next generation. If a solution is found then algorithm stops, else
it continues the evolution until a solution is found or maximum number of generations
(gmax) is reached. The MST algorithm can be sketched as follows:

MST
generating a population P of m agents;
evaluating the fitness for each agent in P ;
g ← 1;
while no solution is in P and g ≤ gmax

P ′ ← applying the crossover to each agent in P ;
P ′′ ← applying the mutation to each agent in P ;
evaluating the fitness for each agent in P ′⋃ P ′′;
P ← selecting m best agents in P

⋃
P ′⋃ P ′′;

g ← g + 1;
end;
return direction of the best agent in P ;

According to fuzzy logic’s principles [12], the MST does not determine exact solutions
of the problem, but it often chooses as solution the direction of the agent having the best
fitness value. Moreover, it has to be note that MST is triangle’s rotation independent.

4.3 Experiment and Results

The experiments have been carried out by running the MST 100 times for each triangle
in Fig. 1 and results are reported in Fig. 7. It is evident the strong correlation between
human decision, when no external cues are given, and the behavior of MST. The human
preference for vertex A in mono-symmetric triangles also with rotations different from
0◦ or 180◦ is matched by the preference for 90◦ orientation of MST; instead, in tri-
symmetric triangles, rotated as above, there are no evident preferences among vertices
in humans such as orientations in MST. We can consider each run as an human subject
and each agent as a possible decision. Since the human subject has to choose among a
limited number of changes by taking into account both personal bias and remarks, then
both population size and maximum number of generations was set to 50.

5 Conclusion and Further Works

We analyzed a less-known aspect concerning the effects of the stimulus internal texture
on the rotational symmetry detection. Results of an experiment carried out with human
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subjects have been compared with those of symmetry detection algorithms, showing
both interesting analogies and differences between human/artificial symmetry detec-
tion. In particular, it was possible to recognize a generalized behavioral pattern in hu-
man observers: exposed to tri-symmetric triangles rotated 0◦ or 180◦ human subjects
were led by the vertical orientation, while, when these triangles were rotated 40◦, 320◦,
140◦ and 220◦, no axis was preferred. Also observing mono-symmetric triangles ro-
tated 0◦ or 180◦, human subjects selected the vertical axis, but when these triangles
were rotated 40◦, 320◦, 140◦ and 220◦, internal texture forced their choice toward the
specific axis emphasized by the symmetry. These results suggest that when the texture
appears as visually pregnant, it plays a role of reference frame, facilitating human ob-
servers’ detection of the symmetry primary axis. About computational results (invariant
to roto-translation), in this preliminary approach we noted that the algorithm based on
geometrical or physical models, such as FiST, tends to provide a stable output when the
input is constant, which means no disturbance from contingent factors usually present
in human judgment (subjective preferences, external cues, etc). Contrarily, the evolu-
tive based approach of MST is less precise in spotting physical aspects of symmetry
devoid of contest, but it takes into account the whole visual experience. Since the hu-
man assessment of visual properties is subjective, in the framework we are dealing with,
they can be measured only as mean of the different individuals’ responses and hence
each run of the MST can be considered as an individual. This leads us to believe that
the symmetry detection algorithms cannot abstract from the usually cognitive dual ap-
proach (bottom-up or top-down). Hence, algorithms based on low-level features (such
as FiST) are more sensible to physical and geometrical measures such in the case of tex-
ture, and they have properties of precision, repeatability and focus. Instead, high-level
algorithms (such as MST), take into account bottom-up information as well as knowl-
edge from external cues, both needed to the specific visual task. Such properties derive
from the evolutive nature of the MST that searches for near optimal solutions in a quite
similar way to the adaptive human behavior. These results have important applications
ranging from the low level computer vision tasks or integration of stimuli, to building
or improving tools able to measure and compare human perceptive abilities. From a
cognitive point of view, further development will explore the role of other perceptual
factors on the human symmetry judgment, while from a computational point of view,
new studies will be aimed to the design of even more refined computational models of
human perception.
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Abstract. The detection of moving objects is usually approached by
background subtraction, i.e. by constructing and maintaining an up-to-
date model of the background and detecting moving objects as those that
deviate from such a model. We adopt a previously proposed approach
to background subtraction based on self organization through artificial
neural networks, that has been shown to well cope with several of the
well known issues for background maintenance, featuring high detection
accuracy for different types of videos taken with stationary cameras.
Here we formulate a fuzzy approach to the background model update
procedure to deal with decision problems typically arising when crisp
settings are involved. We show through experimental results that higher
accuracy values can be reached for color video sequences that represent
typical situations critical for moving object detection.

Keywords: moving object detection, background subtraction, multival-
ued background modeling, self organization, neural network.

1 Introduction

Many computer vision applications, such as video surveillance or video compres-
sion, rely on the task of detecting moving objects in video streams, that provides
the segmentation of the scene into background and foreground components.

The usual approach to moving object detection is through background sub-
traction, that consists in maintaining an up-to-date model of the background and
detecting moving objects as those that deviate from such a model. Compared
to other approaches, such as optical flow (e.g. [3]), this approach is computa-
tionally affordable for real-time applications. The main problem is its sensitivity
to dynamic scene changes, and the consequent need for the background model
adaptation via background maintenance. Such problem is known to be signifi-
cant and difficult [14], and it has to take into account several well known issues in
background maintenance, such as light changes, moving background, cast shad-
ows, bootstrapping, and camouflage. Due to its pervasiveness in various contexts,
background subtraction has been afforded by several researchers, and plenty of
literature has been published (see surveys in [4,10,11], and more recently in [6]).
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In [9] we proposed the Self-Organizing Background Subtraction (SOBS) algo-
rithm, which implements an approach to moving object detection based on the
background model automatically generated by a self-organizing method without
prior knowledge about the involved patterns. Such adaptive model can handle
scenes containing moving backgrounds, gradual illumination variations and cam-
ouflage, has no bootstrapping limitations, can include into the background model
shadows cast by moving objects, and achieves robust detection for different types
of videos taken with stationary cameras.

One of the main issues to be pursued in background subtraction is the un-
certainty in the detection caused by the cited background maintenance issues.
Usually, crisp settings are needed to define the method parameters, and this
does not allow to properly deal with uncertainty in the background model. Re-
cently several authors have explored the adoption of fuzzy approaches to tackle
different aspects of detecting moving objects. In [16] an approach using fuzzy
Sugeno integral is proposed to fuse texture and color features for background
subtraction, while in [2] the authors adopt the Choquet integral to aggregate
the same features. In [12] a fuzzy approach to selective running average back-
ground modeling is proposed, and in [1] the authors model the background by
the Type-2 Fuzzy Mixture of Gaussian Model proposed in [15].

Here we propose a fuzzy approach to the background model update proce-
dure of SOBS algorithm, where a fuzzy function is computed, pixel-by-pixel, on
the basis of the background subtraction phase. The idea is to introduce into
the update phase an automatic and data dependent mechanism for further rein-
forcing into the background model the contribution of pixels that belong to it.
It will be shown that the fuzzy approach, implemented in what will be called
MSOBS (Multivalued SOBS) algorithm, further improves the accuracy of the
corresponding crisp moving object detection procedure.

The paper is organized as follows. In Section 2 we detail the proposed fuzzy
approach to moving object detection, describing the basic model adopted from
[9] and the proposed modifications. In Section 3 we give a qualitative and quanti-
tative evaluation of the proposed approach accuracy, comparing obtained results
with those obtained by the crisp analogous approach. Conclusions are drawn in
Section 4.

2 MSOBS Algorithm

The background model constructed and maintained in SOBS algorithm [9], here
adopted, is based on a self organizing neural network, inspired by Kohonen [7],
organized as a 2-D flat grid of neurons. Each neuron computes a function of the
weighted linear combination of incoming inputs, with weights resembling the
neural network learning, and can be therefore represented by a weight vector
obtained collecting the weights related to incoming links. An incoming pattern
is mapped to the neuron whose set of weight vectors is most similar to the
pattern, and weight vectors in a neighborhood of such node are updated.

For each pixel we build a neuronal map consisting of n×n weight vectors, all
represented in the HSV color space, that allows to specify colours in a way that
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is close to human experience of colours. Each weight vector ci, i = 1, . . . , n2, is
therefore a 3D vector, initialized to the HSV components of the corresponding
pixel of the first sequence frame I0. The complete set of weight vectors for all
pixels of an image I with N rows and M columns is represented as a neuronal
map B̃ with n × N rows and n × M columns, where adjacent blocks of n × n
weight vectors correspond to adjacent pixels in image I.

By subtracting the current image from the background model, each pixel pt
of the t-th sequence frame It is compared to the current pixel weight vectors
to determine if there exists a weight vector that matches it. The best matching
weight vector is used as the pixel’s encoding approximation, and therefore pt is
detected as foreground if no acceptable matching weight vector exists; otherwise
it is classified as background.

Matching for the incoming pixel pt is performed by looking for a weight vector
cm in the set C = (c1, . . . , cn2) of the current pixel weight vectors satisfying:

d(cm, pt) = min
i=1,...,n2

d(ci, pt) ≤ ε , (1)

where the metric d(·) and the threshold ε are suitably chosen as in [9].
The best matching weight vector cm = B̃t(x, y) and all other weight vectors

in a n × n neighborhood of the background model B̃ are updated according to
selective weighted running average:

B̃t(i, j) = (1−αi,j(t))B̃t−1(i, j)+αi,j(t)pt(x, y),
i = x− 2n2 3, . . . , x + 2n2 3
j = y − 2n2 3, . . . , y + 2n2 3

(2)

Values for αi,j(t) chosen in [9] can be expressed as

αi,j(t) = M(pt) α(t) wi,j , (3)

where wi,j are Gaussian weights in the n× n neighborhood, α(t) represents the
learning factor, that is the same for each pixel of the t-th sequence frame and
depends on scene variability, and M(pt) is the crisp hard-limited function

M(pt) =
{

1 if d(cm, pt) ≤ ε
0 otherwise (4)

that gives the background/foreground segmentation for pixel pt.
It should be observed that if the best match cm is not found, the background

model B̃ remains unchanged. Such selectivity allows to adapt the background
model to scene modifications without introducing the contribution of pixels not
belonging to the background scene.

In this paper we propose to substitute the crisp function M(·) in eq. (3) with
a fuzzy function that allows to take into account uncertainty in the background
model. Specifically, we modify eq. (3) as follows:

αi,j(t) = (1 − F (pt)) α(t) wi,j , (5)

where F (pt) is a saturating linear function given by
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F (pt) =

{
d(cm, pt)

ε
if d(cm, pt) ≤ ε

1 otherwise
(6)

Values of the function F (·) are normalized in [0, 1]; the closer is the incom-
ing sample pt to the background model C = (c1, c2, . . . , cn2), the smaller is
the corresponding value F (pt). Therefore, choosing αi,j(t) as in eq. (5) ensures
that the closer is the incoming sample pt to the background model, the more it
contributes to the background model update, thus further reinforcing the corre-
sponding weight vectors.

Other choices for learning factors αi,j(t) as a function of F (pt) could have been
considered according to the above considerations; for example, in [12] the authors
propose a fuzzy running average approach where learning factors are chosen as an
exponential function that, adapted to our case and notation, is given by

αi,j(t) = exp(−5 ∗ F (pt)) α(t) wi,j . (7)

Summarizing, the background subtraction and update procedure considered
in [9], as well as the modified versions proposed in the present paper, can all be
stated in a similar way. Given an incoming pixel value pt in sequence frame It,
the estimated background model B̃t is obtained through the following algorithm:

Background subtraction and update algorithm

Initialize weight vectors C for pixel p0 and store it into B̃0
for t=1, LastFrame

Find best match cm in C to current sample pt as in eq. (1)
Compute learning factors αi,j(t)
Update B̃t−1 in the neighborhood of cm as in eq. (2)

endfor

The original crisp SOBS algorithm is obtained if learning factors αi,j(t) for the
update step are chosen as in eq. (3), while the proposed multivalued algorithm,
in the following denoted as MSOBS, is obtained if learning factors are chosen as
in eq. (5). An alternative version of the multivalued algorithm, in the following
denoted as MSOBS2, can be obtained if learning factors are chosen as in eq. (7).
Results for all such algorithms will be compared in the following Section 3.

3 Experimental Results

Experimental results for moving object detection using the proposed approach
have been produced for several image sequences. Here we describe two different
publicly available sequences1, that represent typical situations critical for moving
object detection, and present qualitative and quantitative results obtained with
the proposed method.

Sequence WS (Water Surface), where a person walks at a waterfront, has been
chosen in order to test our method ability to cope with moving background (the
1 http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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(a) (b) (c) (d)

Fig. 1. Segmentation of sequence WS: (a) test image; (b) ground truth; (c) MSOBS
detection mask; (d) SOBS detection mask

water surface). The sequence contains 633 frames of 160 × 128 spatial resolution.
One representative frame is reported in Fig. 1-(a) and the corresponding hand-
segmented background in Fig. 1-(b).

The indoor scene of sequence MR (Curtain) consists in an initially empty
meeting room, with a curtain slightly blowing in the wind, where a man comes
in and starts making his presentation. The sequence consists of 2964 frames of
160 × 128 spatial resolution, and we consider the hand-segmented background
mask available for frame 1773. The considered test image and the related binary
ground truth are reported in Figs. 2-(a) and 2-(b), respectively.

(a) (b) (c) (d)

Fig. 2. Segmentation of sequence MR: (a) test image; (b) ground truth; (c) MSOBS
detection mask; (d) SOBS detection mask

The foreground masks computed by the proposed MSOBS algorithm are re-
ported in Fig. 1-(c) for sequence WS and in Fig. 2-(c) for sequence MR, and those
computed by SOBS algorithm are reported in Figs. 1-(d) and 2-(d), respectively.
From such results it can be observed that both MSOBS and SOBS algorithms
were quite successful in modeling the moving background (water surface and
blowing curtain) and in detecting the moving person, both in the outdoor and
in the indoor scene.

Results obtained by the proposed MSOBS algorithm have been compared with
those obtained by the corresponding crisp SOBS algorithm in terms of different
pixel-based metrics, namely Precision, Recall, and F1.

Recall, also known as detection rate, gives the percentage of detected true
positive pixels as compared to the total number of true positive pixels in the
ground truth:

Recall =
tp

tp + fn
,
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where tp is the total number of true positive pixels, fn is the total number of
false negative pixels, and (tp + fn) indicates the total number of pixels present
in the ground truth.

Recall alone is not enough to compare different methods, and is generally used
in conjunction with Precision, also known as positive prediction, that gives the
percentage of detected true positive pixels as compared to the total number of
pixels detected by the method:

Precision =
tp

tp + fp
,

where fp is the total number of false positive pixels and (tp + fp) indicates the
total number of detected pixels.

Using the above mentioned metrics, generally a method is considered good if
it reaches high Recall values, without sacrificing Precision.

Moreover, we considered the F1 metric, also known as Figure of Merit or
F-measure, that is the weighted harmonic mean of Precision and Recall:

F1 =
2 ∗Recall ∗ Precision

Recall + Precision
.

Such measure allows to obtain a single measure that can be used to “rank”
different methods.

All the above considered measures attain values in [0, 1], and the higher is
the value, the better is the accuracy.

Accuracy values obtained by MSOBS and SOBS algorithms for sequences WS
and MR are reported in Table 1. Here we can observe that both algorithms per-
form quite well, and that MSOBS performs slightly better than SOBS for both
the sequences. More specifically, we can observe that the fuzzy approach achieves
higher Recall values, but correspondingly lower Precision values. This is due to
the fact that the fuzzy approach indeed allows to reinforce the contribution to
the updating of the background model of pixels close to the model, thus leading
to higher Recall values. At the same time, however, the fuzzy approach reinforces
also the contribution of false positive pixels, thus reducing the Precision values.
Nonetheless, results obtained by MSOBS algorithm are to be preferable to those
obtained with the crisp approach, as shown by higher F1 values.

Moreover, concerning different possible choices of learning factors for back-
ground updating, in Table 1 we also compare results obtained with MSOBS and
with MSOBS2. Accuracy results attained are quite similar, and therefore we
prefer to adopt learning factors defined as in eq. (5), since their computation is
less computationally demanding.

Since we have already shown [9] that SOBS results are generally more ac-
curate than those obtained by several state-of-the-art background subtraction
algorithms (such as BNN [5], Mixture of Gaussian [13], and the method of Li et
al. [8]), we can conclude that the proposed MSOBS algorithm compares favor-
ably with them, too.
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Table 1. Accuracy values for sequences WS and MR

WS MR

Recall Precision F1 Recall Precision F1

SOBS 0.8606 0.9684 0.9113 0.8751 0.9496 0.9108

MSOBS 0.8788 0.9571 0.9163 0.8653 0.9679 0.9138

MSOBS2 0.8844 0.9402 0.9114 0.8968 0.9288 0.9125

4 Conclusions

In this paper we propose to extend a previously proposed method for moving
object detection [9] by introducing a fuzzy learning factor into the background
model update procedure. The adopted method is based on self organization
through artificial neural networks, and implements the idea of using visual at-
tention mechanisms to help detecting objects that keep the user attention in
accordance with a set of predefined scene features. Here we introduce a fuzzy
function, computed pixel-by-pixel on the basis of the background subtraction
phase. Such function is used in the background model update phase, provid-
ing an automatic and data dependent mechanism for further reinforcing into
the background model the contribution of pixels that belong to it. It has been
shown that the proposed fuzzy approach further improves the accuracy of the
corresponding crisp moving object detection procedure, providing experimental
results on real color video sequences that represent typical situations critical for
moving object detection.
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Abstract. Digital video stabilization approaches typically degrade their
performances in presence of periodic patterns. Any kind of matching be-
tween consecutive frames is not usually able to work in presence of these
kind of signals: the motion estimation engine is deceived and its perfor-
mances degrade abruptly. In this paper we propose a fast fuzzy classifier
able to recognize periodic and aperiodic pattern in the images that takes
into account the peculiarities of digital video stabilization. Finally, the
proposed classifier can be used as a filtering module in a block based
video stabilization approach.

Keywords: Video Stabilization, periodic pattern, fuzzy classifier.

1 Introduction

In the last years video stabilization techniques have gained consensus, for they
permit to obtain high quality and stable video footages even in non-optimal
conditions. The best techniques, by using some mechanical tools, measure camera
shake and then control the jitter acting on lens or on the CCD/CMOS sensor
[1]. On the other hand, digital video stabilization techniques [2,3,4,5,6] make use
only of information drawn from footage images and do not need any additional
knowledge about camera physical motion.

Digital video stabilization systems have been widely investigated and several
techniques have been proposed, with different issues and weak points. However
in presence of regular or near regular texture, digital video stabilization ap-
proaches typically fail. These patterns, due to their periodicity, create multiple
matching that degrade motion estimator performances. Even if some interesting
approaches able to reliable find near regular texture have been recently developed
[7,8], they are pretty complex and cannot be applied in real-time digital video
stabilization. In this paper we propose a fast fuzzy classifier able to find regular
and low distorted near regular texture tacking into account video stabilization
peculiarities.

The rest of the paper is organized as follows. In Section 2 the analysis of the
regular texture is performed. In Section 3 the classifier effectiveness applied to
the video stabilization problem is shown whereas conclusions are summarized in
Section 4.
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2 Regular Texture Analysis

In real images we can find many regular and near regular texture such us: build-
ings, wallpapers, windows, floors, etc. In particular regular texture and low
distorted near regular texture, due to the multiple matching candidates, typ-
ically create a lot of problems to motion estimation algorithms. On the contrary,
in presence of high distorted near regular texture (very often created by per-
spectively skewed patterns) video stabilization algorithms typically work in the
correct way. Due to the limited number of samples in each selected patch and
the spectral leakage that disperses frequencies over the entire spectrum a sim-
ple analysis (with proper thresholding) on Fourier peaks cannot be done. Also
methods based on a simple analysis of bank filters (e.g., Gabor, etc.) are not
able to properly detect the presence of such regions.

In this paper we propose a fuzzy classifier able to detect this kind of pattern in
presence of some predefined constraints. It is based on Fourier domain analysis
taking into account the following considerations (Fig. 1, 2):

1. The highest Fourier spectrum values of a periodic signal have a greater dis-
tance from the axes origin than aperiodic signal values;

2. Fourier components of periodic signals typically have a lower density than
aperiodic signal values.

(a) (b)

Fig. 1. Example of 1-D periodic signal (a) with its spectrum (b)

The classifier makes use of the following two formulas:

distance =

∑N
2 −1
i=− N

2

∑M
2 −1
j=− M

2
fa(i, j)d(i, j)∑N

2 −1
i=−N

2

∑M
2 −1
j=− M

2
fa(i, j) − fa(0, 0)

(1)

where d(i, j) is the Euclidean distance from the axes origin and fa(i, j) is the
Fourier spectrum component (defined in [−N

2 ,
N
2 −1]×[−M

2 , M2 −1]) of a sequence
of size N ×M .
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(a) (b)

Fig. 2. Example of 1-D aperiodic signal (a) with its spectrum (b)

density =
∑componentsNumber

k=1 neighbors(k)
componentsNumber

(2)

where componentsNumber represents the number of non-zero values of the
Fourier spectrum and neighbors(k) the number of non-zero values close to the
component k. The concept of closeness depends on the constraints of the partic-
ular application.

The noise contribution in the formulas described above has been reduced
considering only the most important Fourier component values. We discard all
the values less than 30% of the maximum without considering the DC (Direct
Current) component.

3 Regular Texture Fuzzy Classifier

The formulas (1) and (2) can be effectively used as discriminant features in a
simple fuzzy classifier with rules listed in Table 1.

The membership values of the fuzzy system have been derived considering
the peculiarities of the particular application. We consider a video stabilization
technique using a BM (block matching) estimation module with block size 16×16
and search range ±16 pixels. Block size defines the upper limit of periodic signal
to be detected. The only periodic signals that must be taken into account, in
this case, have a period less than 17 pixels.

A proper dataset containing both periodic and aperiodic images has been
built by considering both synthetic and real texture downloaded from 1 2 3. All
the dataset (200 images) has been manually labeled in two classes: periodic and
aperiodic. In the aperiodic group are also present corners, edges, regular texture

1 http://www.ux.uis.no/ tranden/brodatz.html
2 http://texturewarehouse.com/
3 http://www.mayang.com/textures/
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Table 1. Fuzzy rules of the system

distance density periodicity

if Low and Low then Low1

if Low and Medium then Low2

if Low and High then V eryLow

if Medium and Low then High1

if Medium and Medium then Medium

if Medium and High then Low3

if High and Low then V eryHigh

if High and Medium then High2

if High and High then Low4

(a) (b)

Fig. 3. Some periodic (a) and aperiodic (b) images belonging to our dataset (comprising
images with period greater than 16 pixels)

with period greater than 16 pixels (our motion estimation algorithm, due to its
local view considers them aperiodic) and irregular texture (Fig. 3).

In order to obtain better classification performances we have analyzed the
distribution of periodic and aperiodic images by considering different image di-
mension and neighborhood size (Equation 2). As can be seen from Fig. 4, 5
image dimension equal to (64 × 64 pixels) and neighborhood size equal to 2
pixels provide the best distribution: periodic and aperiodic images are divided
pretty well.

The training process, devoted to find membership parameters, has been per-
formed using a continuous GA (genetic algorithm), an optimization and search
technique based on the principle of genetics and natural selection. An initial
population, usually randomly selected, of possible solutions evolves toward a
better solution. In each step some population elements are stochastically se-
lected based on their fitness (the function to be optimized), and new elements
are created through some techniques inspired by evolutionary biology (muta-
tion, crossover). Genetic algorithms have found application in many fields [9]:
computer science, engineering, economics, chemistry, physics, etc. Notice that
for training simplicity we have considered a Sugeno fuzzy model.
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(a) (b)

Fig. 4. Periodic and aperiodic images (32 × 32 pixels) in the features space just con-
sidering the neighborhood size equal to 1 (a) and 2 (b)

(a) (b)

Fig. 5. Periodic and aperiodic images (64 × 64 pixels) in the features space just con-
sidering the neighborhood size equal to 1 (a) and 2 (b)

Genetic optimization is realized by using standard approaches in the field.
In particular we have used default crossover and mutation algorithms provided
by Genetic Toolbox functions of MATLAB 7. In order to speed-up the overall
process, the initial population has been carefully defined. For our purposes the
following considerations can be done (Fig. 6):

1. the minimum distance value of periodic patterns typically is greater than 4;
2. periodic signal typically have density values minor than 3.

The initial population elements have been derived through a gaussian random
perturbation of the parameters shown in Fig. 7 and Tab. 2.

To validate our classifier we have performed a leave-one-out cross-validation.
A single data is considered the validation dataset, and the remaining data the
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(a) (b) (c) (d)

Fig. 6. Histograms of distance (a, b) and density (c, d) features for periodic (a, c) and
aperiodic signals (b, d)

(a) (b)

Fig. 7. Fuzzy membership functions for distance (a) and density (b) features

Table 2. Fuzzy membership output values

membership V eryLow Low1 Low2 Low3 Low4 Medium High1 High2 V eryHigh

value 0 0.25 0.1 0.1 0.25 0.5 0.75 0.75 1

Table 3. Confusion matrix

periodic aperiodic

periodic 95 5

aperiodic 9 91

training dataset. Such procedure has been repeated until each data has been
used as validation dataset.

For each input signal our fuzzy system produces a value belonging to [0-1] that
is related to its degree of periodicity. In our case we choose as defuzzification
strategy a simple thresholding process (threshold equal to 0.5). Table 3 reports
the relative confusion matrix that confirms the robustness of the method for
both classes, reaching an overall accuracy of 93%.

The proposed classifier can be used as a filtering module in the video stabi-
lization algorithms. Each region classified as periodic should be removed before
starting the actual video stabilization process. In order to confirm the effective-
ness of the classifier for this purpose we have compared the performances of a
block based video stabilization approach [2] with and without periodic patterns
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Stabilized images obtained by [2] with (d, e, f) and without (a, b, c) the periodic
pattern removal step. The grid is overlaid for better visualization.

removal step. As can be easily seen from Fig. 8, periodic patterns degrade [2]
performances. On the contrary by simply using the filtering step proposed in
this paper the video stabilization systems works pretty well.

4 Conclusions

In this paper we have proposed a novel fast fuzzy classifier for low distorted
near regular texture detection (and removal). For each input signal our system
produces a value belonging to [0-1] that is related to its degree of periodicity.
The classifier has been validated with a leave-one-out cross-validation obtaining
an accuracy of 93%.

Future works will be devoted to extend this approach to other motion esti-
mation constraints. Also feature extraction on DCT domain will be analyzed.
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Abstract. In this paper, we present a system designed to discover rec-
ommendation fuzzy rules useful to provide personalized link suggestions
to the users of a Web site. The system is mainly based on two processes.
A fuzzy clustering process is applied to identify user categories by group-
ing users with similar interests. Then, a neuro-fuzzy strategy is applied
to derive a set of recommendation fuzzy rules. A tool for the proposed
system provides a wizard-based interface made of a sequence of panels
that support users in the overall rule extraction process. An illustrative
example is provided to show the performance of the system through the
use of the developed tool.

Keywords: Web mining, Fuzzy clustering, access log, Web personaliza-
tion, user profiling.

1 Introduction

The proliferation of information available on the Web has prompted the need
for Web personalization. Recommendation systems represent the most notable
application of Web personalization. Such systems attempt to meet the interests
of their users by suggesting them information/services that they need without
explicitly asking for them [7]. Hence, in the development of a recommendation
system, the process of knowledge discovery from Web data covers a fundamen-
tal role. In literature, the Web Usage Mining (WUM) methodology was widely
adopted to discover information about the user preferences that can be used
to derive a knowledge base (i.e. recommendation model) useful to determine
recommendations. In general, WUM involves the application of Data Mining
techniques on usage data (characterizing the interactions of users with the Web
site) to extract interesting patterns in the user navigational behavior [5], [9]. One
of the most important sources of usage data is represented by log files storing
all the information about the accesses made by users to a Web site. Starting
from these, it is possible to understand the user interests and to identify user
categories by grouping together users exhibiting similar behavior. This knowl-
edge can be conveniently employed to derive a model that could be exploited to
online recommend interesting items.

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 279–286, 2009.
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In this paper, we present a system for deriving a neuro-fuzzy recommendation
model from user behavior data identified by preprocessing log files. The system,
called REXWERE (Rule EXtraction for WEb REcommendation), employs a hy-
brid approach based on the combination of fuzzy reasoning and neural learning
to extract knowledge in two successive phases: user categorization and recom-
mendation model discovery. In user categorization, users with similar interests
are grouped into clusters (user categories) through a fuzzy clustering approach.
Then, a neuro-fuzzy strategy is applied to learn fuzzy rules capturing the asso-
ciation between user behaviors and Web pages to recommend. In this paper, we
present an extended version of the system that has been presented in a previous
work which includes additional fuzzy clustering algorithms and provides several
indexes to evaluate the results of clustering.

The rest of the paper is organized as follows. Section 2 describes the working
scheme of the proposed system. In sections 3, 4 and 5, we detail the functions of
the three modules involved in REXWERE, as well as the user category extrac-
tion, dataset creation and recommendation model extraction. Finally, section 6
concludes the paper by providing an application example and giving the obtained
results.

2 Working Scheme of the System

The starting point for the rule extraction process in REXWERE is represented
by the behavior data derived by LODAP [2], a tool which we implemented to
preprocess log files. Behavior data express models of the navigational behavior
which the users exhibit during their visits to the Web site. To create such models,
for each user, LODAP evaluates the interest degree for each visited page by
considering two factors: the access frequency and the visit time of the user to
each page. Finally, LODAP maps these values into a n × m behavior matrix
B = [bij ] where n is the number of users, m is the number of pages and each
component bij represents the interest degree of the i-th user for the j-th page. In
this way, the navigational behavior of the i-th user is modeled by the behavior
vector bi , i.e. the i-th row of the behavior matrix.

Starting from the behavior data, REXWERE executes two main activities:
identification of user categories and extraction of the recommendation model.
The tool organizes these activities into three modules:

– The User Category Extraction (UCE) module that extracts categories of
users sharing common interests by clustering the available behavior data;

– The Dataset Creation (DC) module that creates the training set and the
test set needed for the learning process of the fuzzy recommendation rules;

– The Recommendation Model Extraction (RME) module that derives a fuzzy
rule base representing the recommendation model by means of the learning
of a neuro-fuzzy network.

The recommendation rules extracted by means of REXWERE can be used for the
online suggestion of interesting links to the users of a Web site. REXWERE has
been implemented in the Matlab environment (ver. 7) using GUIDE (Graphical
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Fig. 1. The panels of REXWERE

User Interface Development Environment) for the development of the graphical
interfaces. It provides a wizard-based user interface that supports the overall
knowledge discovery process through a sequence of panels. Each panel is associ-
ated to a procedural module (as can be seen in fig. 1) and it consists in a window
that offers, through a graphical user interface, the basic functionalities concern-
ing the related module of the tool (such as data loading, data saving, parameter
configuration, etc.). Moreover, the tool has been endowed with a tutorial that
provides information about the use of the tool. The graphical interface of the
tool includes a start-up window (see fig. 1) that lists all the modules involved
in its working scheme. On the architectural level, all the information coming
from each panel are collected and properly organized into a shared workspace.
This enables the exchange of the information between the different tool panels
and their use in separate experimental sessions involving each single phase of
the entire knowledge discovery process. In the following, we detail the functions
performed by each module of REXWERE.

3 The User Category Extraction Module

The extraction of user categories is performed by clustering the available be-
havior data with the aim of grouping together users with similar navigational
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behavior. Due to their capacity to examine large quantity of data in a fairly rea-
sonable amount of time, clustering algorithms are widely used to identify user
categories. In particular, fuzzy clustering techniques reveal to be suited to this
aim due to their ability to derive overlapping clusters (user categories). Hence, a
user may belong to more than one category with a certain membership degree.
To extract user categories, three different fuzzy clustering algorithms have been
implemented:

– The well-known Fuzzy C-Means (FCM) algorithm [1];
– The Competitive Agglomeration Relational Data (CARD) algorithm [8];
– The CARD+ algorithm that is a modified version of CARD [3].

These algorithms differ in some features. While FCM belongs to the category
of clustering algorithms working on object data expressed in the form of feature
vectors, CARD and CARD+ fall in the category of fuzzy clustering algorithms
based on the relational approach. This means that both these algorithms work
on a relation matrix, typically containing the dissimilarity values among all pairs
of data (user behavior vectors in our case). A variety of measures may be used to
evaluate the (dis)similarity among data. In REXWERE, two different measures
are included to estimate the similarity among behavior vectors: the cosine mea-
sure that defines the similarity degree by considering only the common pages
accessed by the users and a fuzzy similarity measure which we proposed in [3].
In addition, unlike the other two algorithms, CARD+ allows to automatically
determine the final number of clusters starting from an initial random number.
Since the actual number of user categories visiting a Web site is not known in
advance, this feature is especially required in the task of user categorization.

At the end of the clustering process, all algorithms provide the following
results:

– C cluster prototypes represented as vectors vc = (vc1, vc2, ..., vcm) for c =
1, ..., C corresponding to the extracted user categories.

– A fuzzy partition matrix M = [mic]c=1...C
i=1...n where each component mic rep-

resents the membership degree of the i-th user to the c-th category.

To evaluate the quality of the obtained partitions, different validity indexes
have been implemented: the Xie-Beni index, the Dunn index, the Davies-Bouldin’s
index, the average intercluster and intracluster distances [6]. For good partitions,
we expect small values for the Xie-Beni index, the Dunn index and the interclus-
ter distances and high values for the Davies-Bouldin’s index and the intracluster
distances. On the basis of these index values, the user can establish the better
partition to be used for providing user categories.

The panel of the UCE module enables the user to choose between the three
clustering algorithms and the validity indexes. The panel also provides a graph-
ical representation of data and a summary of the most important information
about data, as well as the results of clustering and the validity index values.
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4 The Dataset Creation Module

The DC module is mainly devoted to the creation of the dataset needed for
the learning of the network employed to extract recommendation rules. Specifi-
cally, the dataset contains examples of associations between user behaviors and
relevance of Web site pages to be suggested. These associations are derived by
combining information about the available behavior data and the extracted user
categories. More precisely, the dataset is composed of a set of n input-output
samples expressed in the following form:

T = 〈(bi, rdi)〉i=1,...,n (1)

where the input vector bi represents the i-th user behavior vector and the output
vector rdi expresses the amount of page recommendation for the i-th user. To
compute the values in rdi, information embedded in the user categories are
exploited. Precisely, for each vector bi, its membership to the user categories
expressed by membership values {mic}c=1,...,C in the partition matrix M are
considered. Then, the l top matching user categories c1, . . . , cl ∈ {1, . . . , C} are
identified as those with the highest membership values. The number l may be
set by the user. The values in the output vector rdi = (rdi1, rdi2, . . . , rdim),
(i = 1, . . . , n) are hence calculated as:

rdij = mic1vjc1 + . . . + micl
vjcl

j = 1, . . . ,m (2)

Starting from the constructed dataset, the user can create a training set and a
test set by specifying a percentage of the total number n of samples as size of
the training set (as can be seen in fig. 1).

5 The Recommendation Model Extraction Module

The RME module extracts the recommendation model by the learning of a spe-
cific neuro-fuzzy network. Such model represents the knowledge base expressed
as a set of fuzzy rules which may be used for the online suggestion of interesting
links. Each recommendation rule expresses a fuzzy relation between a behavior
vector bi = (bi1, bi2, ..., bim) and relevance of pages in the following form:

IF b1 is A1k AND . . . AND bm is Amk
THEN relevance of Page1 is r1k AND . . . AND relevance of Pagem is rmk

for k = 1, . . . ,K where K is the number of fuzzy rules, Ajk, j = 1, . . . ,m are
fuzzy sets with Gaussian membership functions defined over the input variables
bj and rjk, j = 1, . . . ,m are fuzzy singletons expressing the amount of recom-
mendation (relevance degree) of the j-th page.

The main advantage of using a fuzzy knowledge base for recommendation is
the readability of the extracted knowledge. Actually, a fuzzy rule for recommen-
dation can assume the following linguistic form:
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IF (the interest degree for Page1 is LOW) AND . . .
(the interest degree for Pagem is HIGH)
THEN (recommend Page1 with relevance 0.3) AND . . .
(recommend Pagem with relevance 0.8)

Starting from the training set, the network can enter the learning phase to
extract the knowledge embedded into the available data and represent it as a
collection of fuzzy rules.

Firstly, the structure and the parameters of the network are initialized de-
riving an initial fuzzy rule base. In particular, the number of fuzzy rules (and
the number of fuzzy sets used to partition data) together with the parameters
that define the premise and the consequence of each rule are established. More
precisely, a fuzzy rule is derived from each user category. The premise param-
eters of each rule depend on the center (cluster prototype) and the spread of
the corresponding cluster. Hence, the centers of Gaussian membership functions
coincide with the centers of clusters and their widths are simply determined by
using a first-nearest-neighbor heuristic. The consequent values of each rule are
calculated by weighting each of the data in the output domain by the degree of
activation of the premise part of such a rule. Successively, the neural network
enters in a learning phase by a back-propagation algorithm to optimally adjust
the premise and the consequent parameters of the derived initial fuzzy rule base.
Once the learning process has been completed, a set of fuzzy rules is derived rep-
resenting the recommendation model that can be used in the online module to
suggest interesting links.

6 Results and Conclusions

As an application example, REXWERE was applied to extract recommendation
rules starting from log files of the Italian Web site of the Japanese movie Dragon
Ball. In particular, we considered a 200×42 behavior matrix derived by LODAP
from the log files of the considered site.

Firstly, the UCE module was run on the behavior matrix to derive user cat-
egories. All the implemented clustering algorithms were applied. Different runs
of the FCM algorithm were carried out by setting, in each trial, a different value
for the initial number of clusters (C=5,6,7,8,9,10). CARD and CARD+ were
executed by using both the cosine measure and the fuzzy similarity measure.
Several trials were performed by setting a different initial number of clusters
Cmax = (5, 10, 15). At the end of each run, we calculated the values of the va-
lidity indexes. Among the validity indexes included in REXWERE, to establish
the best partition, we considered the values obtained for the Dunn index and the
Davies-Bouldin’s index shown in fig. 2. In this figure, for CARD and CARD+, in
correspondence of each trial, the final number of obtained clusters is indicated.
By analyzing the obtained values, we observed that a good partition categorizes
the available data into 5 final clusters. CARD with the use of both the similarity
measures was not very stable by providing different final number of clusters in
each trial. Moreover, by comparing the values of the validity indexes obtained
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Fig. 2. The values obtained for the Dunn index and the Davies-Bouldin’s index

Fig. 3. Graphical representation of the identified user categories

by FCM (in correspondence of C=5) and CARD+ with both the similarity mea-
sures the best values correspond to the partition derived by CARD+ equipped
with the fuzzy similarity measure. Fig. 3 shows a graphical representation of
clusters identified by CARD+ with the fuzzy similarity measure. Here, each row
represents a user category and each column represents a page. Different gray
levels are used for different pages; for pages which are not visited the white color
is used.

Next, the DC module was run. A dataset of 200 input-output samples was
created, where each sample included 84 components (42 corresponding to the
pages of each behavior vector and the remaining 42 to the relevance degrees).
We set the size of the training set to the 70% of the dataset and the number of
top matching categories to 3.

Finally, the RME module was applied to learn the fuzzy rule base. A neuro-
fuzzy network with 42 inputs (corresponding to the components of the behavior
vector), 42 outputs (corresponding to the relevance values of the Web pages)
and 5 rule nodes was trained for 1000 epochs. In order to evaluate the quality of
the recommendation model, a 10-fold cross-validation procedure was performed.
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Among the 10 created models, we choose as final recommendation model the
model having the lowest error on the test set (the mean error on the test set was
equal to 0.18).

The derived recommendation model is represented by a fuzzy rule base com-
posed of 5 rules. For each input variable of each rule, only two fuzzy sets are
identified. In this way, rules can be expressed in a linguistic fashion making the
recommendation model more comprehensible.

This model can be exploited to determine pages to be recommended to users
visiting the considered site. How to provide recommendations to the users is
addressed in our ongoing works.
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Abstract. The paper presents a method for the approximation of the
interval type-2 fuzzy logic system (FLS) by the type-1 FLS, when the
interval type-2 FLS is assumed to perform the extended minimum Carte-
sian product and to have singleton consequents. The approximation error
is discussed in details.

1 Introduction

Many authors [1,2,3,4,5,6,7,8,9] employ interval type-2 fuzzy logic systems
(IT2FLSs) for variety of application tasks. Quite often noisy training data are
acknowledged as ones of the sources of uncertainty. Usually the system designers
translate input uncertainties into interval antecedent type-2 membership func-
tions. The common approach is to equip all antecedents with an equal interval
of membership and to use algebraic product or minimum reasoning mechanism.
To our knowledge, this approach discards the potential of type-2 fuzzy sets.

In this letter we demonstrate that under specific working conditions, which
commonly occur, there exist type-1 fuzzy logic system (T1FLS) equivalent to
IT2FLS. However, we examine this type-1 system and similar one in the context
of an approximation of ITFLSs with no specific conditions. Accordingly, the
letter presents two methods for approximation of IT2FLSs by T1FLSs.

1.1 Type-2 Fuzzy Logic System

Let us now recall some basic preliminaries about type-2 sets. Let the set of all
fuzzy subsets of the unit interval [0, 1] be denoted by F ([ 0, 1]). The type-2 fuzzy
set in the real line R, denoted by Ã, is a set of pairs {x, μÃ (x)}, denoted in the
fuzzy union notation Ã =

∫
x∈R

μÃ (x) /x, where x is an element of the fuzzy set
associated with the fuzzy membership function μÃ : R → F ([0, 1]). The values
of μÃ are fuzzy membership grades μÃ (x) being classical fuzzy subsets of the
unit interval [0, 1], i.e.,

μÃ (x) =
∫
u∈[0,1]

fx (u) /u , (1)
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2009, Polish-Singapore Research Project 2008–2010).
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where fx : [0, 1] → [0, 1]. The membership function (MF) fx is referred as a
secondary MF. Although, the secondary MF may take various shapes, almost
all applications employ normal and rectangular secondary MFs constituting so
called interval type-2 fuzzy sets [1,4,6,9]. This study is devoted to the logical
systems based on the interval type-2 fuzzy sets, called Interval Type-2 Fuzzy
Logic Systems (IT2FLS).

We start from the typical type-2FLS architecture [10] that consists of the type-2
fuzzy rule base, the type 2 fuzzifier, the inference engine modified to deal with type
2 fuzzy sets, and the defuzzifier split into the type reducer and type 1 defuzzifier.

The rule base is composed of K rules:

R̃k : IF x1 is Ã1 and x2 is Ã2 and · · · and xN is ÃN THEN y is B̃.

where Ãn, is the n-th antecedent fuzzy set of type 2, B̃ is the consequent type
2 fuzzy set, xn is the n-th input variable, k = 1, . . . ,K. Fuzzy rules are fuzzy
relations usually expressed by extended t-norms. The inference engine produces
the type-2 fuzzy consequence by means of the extended sup-star composition
[10] of the premise and the type 2 fuzzy relation, i.e.,

μB̃′k (y) = s̃up
x∈X

T̃ (μÃ′ (x) , μR̃k (x, y)) . (2)

If fuzzy premises Ã′
n are singletons, i.e., Ã′

n = (1/1)/x′
n, the inference is based

on the premises combined by an extended T-norm (Cartesian product) and on
the consequents according to the following scheme:

hk (y) = μB̃′k (y) = μÃ′◦(Ãk∩B̃k) (y) = T̃ (μÃk (x′) , μB̃k (y))

= T̃

[
N

T̃
n=1

μÃk
n

(x′
n) , μB̃k (y)

]
. (3)

Commonly the consequents are also singletons at each point yk. Therefore the
k-th conclusion MF may be expressed as:

hk (yk) = μB̃′k (yk) =
N

T̃
n=1

μÃk
n

(x′
n) , (4)

while in all other points y �= yk the membership is certainly 0, i.e. 1/0.
In the case of interval type-2 fuzzy sets, the well known Karnik&Mendel type-

reduction method is a standard transformation of type-2 fuzzy conclusions into
a type-1 fuzzy set [11]. In the assumed case of singleton consequents, the discrete
version of the Karnik&Mendel type-reduction, i.e. the height type-reduction, is
employed. Let us denote the bounds of the type-reduced fuzzy set as ymin and
ymax. Throughout this study, only the overall output will be taken into account,

yT2 =
ymin + ymax

2
. (5)

Since throughout this study only interval memberships of type-2 FLS are
considered, any type-2 fuzzy set Ã is described by a fuzzy membership grade of
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Fig. 1. Example of Type-2 Antecedent with Uniform Interval of Uncertainty

the form μÃ (x) = 1/[μ
A

(x) , μA (x)], where the lower and upper boundaries are
called respectively an upper membership grade and a lower membership grade.
That reduces calculations of extended t-norms to the following:

T̃ (μÃ, μB̃) = 1/
[
T
(
μ
A
, μ
B

)
, T (μA, μB)

]
. (6)

2 Mean Type-1 Approximation of IT2FLS for Equal
Uncertainties and Minimum Cartesian Product

Consider the IT2FLS with all antecedents having equal intervals of uncertainty
as one shown in Fig. 1. The upper and lower memberships are almost entirely
equidistant except the parts clipped by x axis. We may denote the interval of
uncertainty by δ, as the distance between the upper and the lower membership
grades at the center of the interval type-2 fuzzy set.

Combining all degrees of compatibility between inputs and antecedents by the
minimum Cartesian product, we obtain the function of the lower firing grade as
a dependence of the upper firing grade.

hk =
n

min
i=1

μki , (7)

hk =
n

min
i=1

(
max

(
0, μki − δ

))
= max

(
0,

n
min
i=1

μki − δ

)
= max

(
0, hk − δ

)
. (8)

The proposed method for the type-1 approximation relies on the substitution
of type-2 antecedents by arithmetic means of upper and lower boundaries μki =
(μki + μk

i
)/2, i.e.,

μki =

{
μki − δ

2 if μki ∈ (δ, 1]
μk

i

2 if μki ∈ (0, δ)
= max

(
μki
2
, μki − δ

2

)
. (9)
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Therefore, the k-th rule firing grade of the approximation T1FLS is as follows:

hk =
n

min
i=1

(
max(

μki
2
, μki − δ

2
)
)

= max
(

n
min
i=1

μki
2
,
n

min
i=1

(
μki − δ

2

))
= max

(
1
2
hk, hk − δ

2

)
. (10)

Recall that we assumed the consequents of IT2FLS to be singletons. In the case
of only one active rule, it would be trivial to demonstrate that both IT2FLS
and T1FLS give the same output value. Hence, we shall analyze the cases of
multiple active rules. In the most typical circumstances, the fuzzy partition of
the input domain is such uniform that it guarantees the firing at most two
of rules. Although the use of non-zero membership functions as Gaussian ones
always brings about the firing of many rules, we may assume that only two of
them are of the great importance. Consequently, the objective is to compare
the overall output of the IT2FLS with the approximation T1FLS in the most
frequent instances of two fired rules. Singleton inputs may be projected on type-2
antecedents in the ways depicted by lines L1, L2 and L3 in Fig. 1. In the sequel
we distinguish several combinations of firing grades.

2.1 Case 1 — Equivalence between IT2FLS and T1FLS

Suppose that distance δ between the upper and the lower firing grades is con-
stant, i.e. hk − hk = δ for the two fired rules. Evidently, the lower firing grade
shall be positive, hk− δ ≥ 0, k = 1, 2. According to (5), the IT2FLS output is an
average of the maximal and minimal bounds of the type-reduced set obtained by
the discrete version of the Karnik&Mendel iterative type-reduction procedure.
With the restriction of two fired rules and constant δ, the output of the type-2
system is calculated as

yT2 =
1
2

(
h1y1 +

(
h2 − δ

)
y2

h1 + h2 − δ
+

(
h1 − δ

)
y1 + h2y2

h1 − δ + h2

)

=

(
h1 − δ

2

)
y1 +

(
h2 − δ

2

)
y2(

h1 − δ
2

)
+
(
h2 − δ

2

) = yT1 . (11)

Surprisingly, the interval type-2 system has given the same output as the cor-
responding T1FLS such that we have no approximation error. We have noticed
this property in [12,13]. Moreover, this case is the most common situation in
fuzzy reasoning.

2.2 Case 2 — Clipping the Interval of Uncertainty for One Rule

Suppose the second rule has a clipped interval as projection L2 in Fig. 1, such
that 0 < h2 ≤ δ, h1 > δ. It ensures that h2 = 0 and h2 = h2/2. Therefore, the
type-2 output is
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yT2 =
1
2

(
h1y1 + 0y2

h1 + 0
+

(
h1 − δ

)
y1 + h2y2

h1 − δ + h2

)

=
1
2

(
2h1 + h2 − 2δ
h1 + h2 − δ

y1 +
h2

h1 + h2 − δ
y2

)
(12)

and the corresponding type-1 system output is

yT1 =

(
h1 − δ

2

)
y1 + h2

2 y2

h1 − δ
2 + h2

2

. (13)

The difference between the outputs may be converted as follows:

e =
1
2

(
2h1 + h2 − 2δ
h1 + h2 − δ

y1 +
h2

h1 + h2 − δ
y2

)
−
(
h1 − δ

2

)
y1 + h2

2 y2

h1 − δ
2 + h2

2

=

(
δ − h2

)
h2

2
(
h1 + h2 − δ

) (
2h1 + h2 − δ

) (y2 − y1) . (14)

We define the approximation error that its formula does not depend on y dimen-
sion.

ε =
e

y2 − y1
=

(
δ − h2

)
h2

2
(
h1 + h2 − δ

) (
2h1 + h2 − δ

)
=

(δ − h2)h2

2 (h1 + h2 − δ) (2h1 + h2 − δ)
. (15)

Since ∂ε
∂h2

= −h1−δ
2(h1+h2)2 < 0, the error achieves its maximum when δ is maximal

and both h1 and h2 are minimal. It means that δ → 1, h2 → δ
2 , h1 → δ and the
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error value is 0.5. Choosing lower value of interval δ diminishes the approximation
error.

2.3 Case 3 — Clipping the Interval of Uncertainty for Two Rules

Suppose that the firing intervals of both rules are clipped, i.e., 0 < h2 ≤ δ, 0 <
h1 ≤ δ. Therefore, h2 = 0, h1 = 0 and h2 = h2/2, h1 = h1/2. The type-2 system
output becomes

yT2 =
1
2

(
h1y1

h1
+

h2y2

h2

)
=

1
2

(y1 + y2) . (16)

It is interesting that the firing grades do not have any effect on the output of
the IT2FLS, while the corresponding T1FLS has the following output value:

yT1 =
h1
2 y1 + h2

2 y2

h1
2 + h2

2

=
h1y1 + h2y2

h1 + h2
. (17)

The difference between outputs is

e =
1
2

(y1 + y2) −
h1y1 + h2y2

h1 + h2
=

(
h2 − h1

)
y1 +

(
h1 − h2

)
y2

2
(
h1 + h2

)
=

1
2
h1 − h2

h1 + h2
(y2 − y1) , (18)

and the approximation error is

ε =
1
2
h1 − h2

h1 + h2
. (19)

Obviously, the theoretical maximal approximation error occurs for the maximal
difference between h1 and h2. Consequently, it should be that h1 = δ, h2 → 0.
As a result, the error ε → 0.5.

2.4 Approximation Error

In Fig. 3, the approximation error surfaces are demonstrated. For small values δ,
there is no difference between type-2 and type-1 fuzzy systems in most configu-
rations of the firing degrees. Hence, for thin and uniform intervals of uncertainty,
the profits of the type-2 fuzzy logic are not great.

3 Simulation

In order to demonstrate the accuracy of our type-1 approximation, we used
IT2FLSs to the ”Glass” classification problem, from the UCI Repository of ma-
chine learning databases. The dataset consisting 214 patterns belonging to 6
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classes was divided into two equal parts, the one used for training and the sec-
ond used for testing. We implemented our approximation method with respect
to the One-against-All fuzzy classification system, i.e., each class was trained
against all other classes in independent IT2FLS. Hence, the number of these in-
dependent subsystems was equal to the number of classes. The maximal output
of the subsystems indicated the implied class.

Each interval type-2 fuzzy logic subsystem had 3 rules with the triangular
upper and lower antecedent MFs (Fig. 1). The rules were set up by the standard
FCM algorithm (m = 2) and the least squares fitting. We assumed the interval
of uncertainty to be 0.2. Due to the uniform uncertainty and the minimum
Cartesian product, we could apply the type-1 approximation of the system. In
both systems, IT2FLS and the approximation T1FLS, the number of correct
classifications on the testing set was equal to 57. Although the classification
accuracy could be improved with the use of gradient learning techniques, it is
only important that in the case of uniform uncertainty the performance of the
typical T1FLS is identical as the performance of the expensive IT2FLS.

4 Conclusion

In many practical situations developers do not know whether the interval type-2
fuzzy logic approach is more appropriate than the type-1 fuzzy logic. Quite often
their simulation results are not so successful as they wish to be. For this reason,
we proposed the method of approximation of the minimum-based IT2FLS by the
classical T1FLS. The method is accurate for uniform membership uncertainties,
if they are not too wide. This restricted the type of problems the interval type-
2 fuzzy logic can be addressed to the problems requiring not uniform or wide
membership uncertainty. The approximation method can be easily extended to
the systems based on triangular type-2 fuzzy sets [14] (for its mathematical
background see [15]). We hope the proposed method will be very useful for vali-
dations of the type-2 FL applications by the comparison with the approximation
T1FLSs.
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Control of a Non-isothermal CSTR by Type-2

Fuzzy Logic Controllers
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Abstract. The paper describes the application of a type-2 fuzzy logic
controller (FLC) to a non-isothermal continuous stirred tank reactor
(CSTR) characterized by the presence of saddle node and Hopf bifur-
cations. Its performance is compared with a type-1 fuzzy logic controller
performance. A full analysis of the uncontrolled CSTR dynamic was car-
ried out and used for the feedback-feedforward fuzzy controllers devel-
opment. Simulation results confirm the effectiveness and the robustness
of the type-2 FLCs which outperform their type-1 counterparts, partic-
ularly when uncertainties are present in the system.

Keywords: Type-2 fuzzy logic controller; Non-isothermal CSTR; Bifur-
cation; Non-linear system.

1 Introduction

The dynamics of many non linear systems can be strongly dependent on one or
more parameters since their operative condition remains stable only if the values
of these parameters remain in a limited range [1]. If the system parameters go
out of this range then the equilibrium point becomes unstable. For this reason,
nonlinear controllers like fuzzy logic controllers are used to control such systems
because they are more robust then traditional controllers and can handle the
changes in the system parameters. In the last years fuzzy logic controllers (FLCs)
that use type-2 fuzzy sets [2,3] have been developed. It has been shown that
often their performance is higher than type-1 FLCs [4,5,6] and also of traditional
Proportional-Integrative-Derivative (PID) controllers [7]. With type-2 fuzzy logic
it is in fact possible to handle the uncertainties [8,9] present in the system and
in the input data to the controller. A few type-2 FLCs have been developed
for applications in the field of process control [4,6,7]. In this paper the use of
type-2 FLC for the control of a continuous stirred tank reactor (CSTR) that is
characterized by the presence of saddle node and Hopf bifurcations is analyzed. A
feedback and a feedback-feedforward control strategy are adopted and simulated
in the presence of uncertain parameters and measurement noise. The simulation
results are compared with those obtained using type-1 FLCs in the same contest.
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2 Non-isothermal CSTR

The case considered in this paper is the non-isothermal CSTR reported in [10],
where an irreversible reaction A → B occurs.

2.1 Model Equations

The equations of the mathematical model are obtained by a component mass bal-
ance, an energy balance in the reactor and a energy balance in the jacket. The
dynamics related to the jacket temperature can be considered much faster than
that related to the reactor temperature thus the jacket time constant is negligi-
ble. The water cooling jacket is assumed to be perfectly mixed, and the mass of
the metal walls are considered negligible, so that the thermal inertia of the metal
is not considered. Therefore a simplified model with two equations can be derived
and to generalize the mathematical model of the reactor, the equations can be ex-
pressed in a dimensionless way (1), (2), that represent the state-space model in
the dimensionless reactor concentration x2 and temperature x3:

dx2

dt
=

x60

x1
(x20 − x2) − c0x2e

− 1
x3 . (1)

dx3

dt
=

x60

x1
(x30 − x3) + c1x2e

− 1
x3 − c2c3x5 (x3 − x40)

x1 (c3x5 + c4)
. (2)

A more detailed description of the model and the dimensionless variables can be
found in [10].

2.2 Control Strategy

The considered exothermic CSTR without control can have multiple steady
states and bifurcation points. The bifurcation parameter of this case is the
coolant flow rate (dimensionless parameter x5). Figure 1 explains the effect on
the system of a disturbance in the dimensionless inlet temperature x30. The
line with pronounced stroke is the equilibrium curve corresponding to the ini-
tial stable condition of the reactor obtained with constant reactant flow rate
x60 = 1.5 and constant input temperature x30 = 0.0373. The horizontal line
indicates instead the desired dimensionless temperature of the reactor (set-point
value = 0.039). If x30 assumes the value 0.038, the initial curve moves to the
right and the CSTR remains in the stable region. A decrease of x30 to 0.0353
moves instead the curve to the left and the CSTR into the unstable region (the
horizontal line is now included in the dash line of the new curve obtained at
x60 = 1.5 and x30 = 0.0353). The behavior of the system in this zone is char-
acterized by oscillations with a large amplitude. A possible solution to control
the system is to increase the proportional gain of a feedback controller, until
the oscillations disappear; but experience has however shown that this solution
is not acceptable in real systems because it would result in noise amplification
and instability. An alternative solution could be to manipulate a second process
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Fig. 1. Bifurcation plots x3 vs x5 for different values of parameters x30 and x60

variable such as the inlet flow rate of the CSTR (x60) in a feedforward control
loop, measuring the disturbance variable x30. By manipulating x60 it is in fact
possible to shift the unstable region of the equilibrium curve over the set-point
value, making sure to keep the system in a stable region, without oscillations.

3 Type-2 Fuzzy Logic

3.1 Type-2 Fuzzy Sets

A type-2 fuzzy set Ã is characterized by a type-2 membership μÃ(x, u), where
x ∈ X and u ∈ Jx ⊆ [0, 1], and defined as:

Ã =
∫
x∈X

∫
u∈Jx

μÃ(x, u)
x, u

. (3)

0 ≤ μÃ(x, u) ≤ 1 . (4)

In (3) and (4) μÃ(x, u) is the secondary grade while the primary membership of x
is the domain of the secondary membership function. For computational reasons
in this paper only a particular case of type-2 fuzzy sets is used: the interval type-2
fuzzy sets (IT2FS) [3,11]. An interval type-2 fuzzy set is defined as:

ÃI =
∫
x∈X

∫
u∈Jx⊆[0,1](

1
u )

x
. (5)

In a fuzzy system there can be different causes of uncertainty: from the mean-
ing of words used in defining rules to the uncertainty (noise) present in mea-
surements. The main characteristic of type-2 fuzzy sets is that they take into
account the uncertainty of a system through a bounded region (in the primary
membership) that is called the Footprint of Uncertainty (FOU ) [9]. For a de-
tailed general discussion about uncertainty see also [8]. The FOU is used to
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Fig. 2. (a) FOU (shaded), LMF (dashed), UMF (solid) for IT2FS ; (b) Type-2 FLS

model the shape and the position of all the uncertainties present in a system.
For an IT2FS the shaded region in Fig. 2(a) denotes interval sets for the sec-
ondary membership functions. The FOU can be described in terms of upper
(UMF) and lower (LMF) membership functions [11]. For a specific value of the
definition interval there is no longer a single value for the membership function
but the membership function takes on values wherever the vertical line inter-
sects the blur between the two type-1 membership functions. Type-2 fuzzy logic
systems are very useful in all circumstances in which measurements are charac-
terized by uncertainty and when it is difficult to determine an exact membership
function.

3.2 Type-2 Fuzzy Logic Systems

As for a type-1 fuzzy logic system (FLS), also a type-2 FLS contains four compo-
nents: rules, fuzzifier, inference-engine and output-processor. The main difference
between type-2 and type-1 FLS is the output-processor, in fact for a type-1 FLS
it is just a defuzzifier, while, for a type-2 FLS it contains two components: the
first component, the type-reducer, maps a type-2 fuzzy set into a type-1 fuzzy
set, while the second component is just a normal defuzzifier that transforms a
fuzzy output in a crisp output. In Fig. 2(b) a general type-2 FLS is depicted. The
rules for a type-2 FLS represent a type-2 relation between the input space and
the output space. Their structure is the same of type-1 rules, the only difference
consists in the membership functions nature i.e.

R1 : IF x1 is F̃ l1 and ... and xp is F̃
l
p,

THEN y is G̃l l = 1, ...,M . (6)

Equation (6) is the lth rule for a type-2 FLS with p inputs and 1 output. As
we have already outlined the output of the inference engine in a type-2 FLS is a
type-2 fuzzy set and it must be type-reduced before it can be defuzzified by the
defuzzifier. One of the most used type-reduction methods is the center of sets
type reducer, which can be expressed as:
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Ycos(x) = [yl, yr] =
∫
y1∈[y1

l ,y
1
r ]
· · ·
∫
yM∈[yM

l ,yM
r ]∫

f1∈[f1,f
1]
· · ·
∫
fM∈[fM ,f

M ]

∑M
i=1 f

i∑M
i=1 f

iyi
. (7)

In (7) Ycos(x) is an interval set while yl and yr are its end-points, [f i, f
i
] and [yil , y

i
r]

are respectively the interval firing level of the ith rule and the centroid of the type-
2 interval consequent set. With the Karnik-Mendel iterative method [2,12] it is
possible to compute the equation (7). Ycos(x) as interval set must be defuzzified;
this operation can be carried out very simply because of the use of interval type-2
fuzzy sets: in this case the defuzzified output is the average of yi and yr.

The control of the CSTR makes use of two FLCs with Sugeno inference, the
first in a feedback control loop and the second in a feedforward control loop. All
feedback FLCs use two input variables, error (e) and integral error (inte), and
one dimensionless output variable (x5) with a TISO (two inputs - single output)
structure. The structure of the feedforward FLC is instead SISO (single input -
single output) and it is very simple consisting of only two membership functions
and two rules. Both the type-1 and the type-2 feedback FLCs have seven Gaus-
sian membership functions. They were chosen minimizing the Integral of Square
Error (ISE) for set point changes. For the variables of all fuzzy feedback con-
trollers, seven Gaussian membership functions were chosen. The rule base used
in the feedback FLCs was designed by simulation runs. The structure of type-
1 FLC is the same of type-2 FLC and the only difference consists of Gaussian
membership functions amplitude. Each type-1 fuzzy Gaussian membership func-
tion has in fact an amplitude value that is the average of type-2 fuzzy internal
and external Gaussian membership functions amplitude values.

4 Results and Discussion

The objective of the CSTR control is to keep the reactor in the chosen initial
equilibrium point (point A in Fig. 1) even in the presence of large disturbances
and parameter changes. The use of a simple feedback control loop using the
coolant flow rate as manipulative variable allows to control the reactor temper-
ature at the set point value (x3 = 0.0369) in some cases, for instance for a step
change in the inlet temperature x30 from 0.0373 to 0.0378. But when a step
change is introduced in x30 in the opposite direction, from 0.0373 to 0.0353, the
feedback controller, both with type-1 and type-2 fuzzy logic, cannot control the
reactor and the temperature oscillates, as it can be seen in Fig. 3. The response
of the type-2 FLC slightly outperforms that of the type-1 FLC when feedforward
action is added (see Fig. 4). With both controllers the response starts to oscillate
around the set point value after the introduction of the step change at τ = 20
with decreasing amplitude until the set point value is reached. The oscillations of
the type-2 FLC are slightly smaller than those of the type-1 FLC and reach the
set point in a reduced time. The superiority of type-2 FLCs over type-1 FLCs
is more evident when uncertainty is present in the system. Figure 5 illustrates
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Fig. 3. Response of temperature x3 to a step change in the disturbance (input temper-
ature) from x30 = 0.037 to x30 = 0.0353 at τ = 20 with a constant set-point (0.0369)
with type-1 and type-2 fuzzy feedback control

Fig. 4. Response of temperature x3 to a step change in the disturbance (input temper-
ature) from x30=0.037 to x30 = 0.0353 at τ = 20 with a constant set-point (0.0369)
with type-1 and type-2 fuzzy feedback-feedforward control

Fig. 5. Response of temperature x3 to a step change in the disturbance (input tem-
perature) from x30 = 0.037 to x30 = 0.0353 at τ = 20, with a constant set-point
(0.0369) and random variation of some system parameters, with type-1 and type-2
fuzzy feedback-feedforward control

the behaviour of both controller types when uncertainties are introduced as ran-
dom variations of some system parameters (c0 and c2), making more difficult
the control of the system. It can be seen that the control configuration using
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Fig. 6. Response of temperature x3 to a step change in the disturbance (input temper-
ature) from x30 = 0.037 to x30 = 0.0353 at τ = 20, with a constant set-point (0.0369)
and noise in the measurement of the disturbance x30 in the feedforward control loop,
with type-1 and type-2 fuzzy feedback-feedforward control

type-2 FLCs is able to keep the reactor temperature under control reducing the
amplitude of oscillations with time better than using type-1 FLCs, showing a
greater robustness and minimizing the effects of the uncertainties present in the
system. The superiority is even more evident when the uncertainty is introduced
as a noise in the measurement of the disturbance x30, in the feedforward control
loop. In this case, see Fig. 6, the behaviour of the two fuzzy controllers is very
similar until τ = 170 (with a slightly better performance of the type-2) but then
at τ = 170 the type-2 FLC outperforms its type-1 counterpart, reducing the
amplitude of the oscillations and reaching the set-point value. Type-1 FLC in-
stead is not able to handle the uncertainties, showing a behaviour characterized
by oscillations with constant amplitude.

5 Conclusions

It has been shown by simulation that the control of the considered non-isothermal
CSTR with bifurcation points cannot be achieved through a simple feedback
control loop in the presence of disturbances in the reactant temperature. A
feedback-feedforward control scheme is able to maintain the control of the reactor
temperature even in the presence of changes in some reactor parameters. If the
disturbance measurement is affected by noise only using type-2 FLCs in the
feedback-feedforward control scheme can avoid the oscillations of the reactor
temperature. In all cases type-2 FLCs have a higher performance than type-1
FLCs.
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Abstract. Fuzzy control is well known as a powerful technique for designing and
realizing controllers. However, statistical evidence for their correct behavior may
be not enough, even when it is based on a large number of samplings. Therefore,
much work is being done to provide a systematic verification of fuzzy controllers
and to asses their robustness, that is the ability of a controller to maintain good per-
formance even in the presence of significant disturbances or parameter variations.
In the present paper, we introduce a model checking based methodology for the
fuzzy controller robustness analysis, that can be applied on plant-controller pairs
in a nearly automatic way, giving higher precision results than other approaches,
such as cell mapping. We support our conclusions with a case study that compares
two different fuzzy controllers for the inverted pendulum on a cart problem.

1 Introduction

A control system (or, shortly, controller) is a small hardware/software component that
controls the behavior of a larger system, called plant. In a closed loop configuration,
the controller reads the plant state (looking at its state variables) and adjusts its con-
trol variables in order to keep it in a particular state, called setpoint, which represents
its normal or correct behavior. In the last years, the use of sophisticated controllers
has become very common in robotics, critical systems and, in general, in the hard-
ware/software embedded systems contained in a growing number of everyday products
and appliances.

Fuzzy control is well known as a powerful technique for designing and realizing con-
trollers [1], especially suitable when a mathematical model is lacking or is too complex
to allow an analytical treatment.

1.1 Motivations

The robustness of a controller is the ability to maintain good performance even in the
presence of disturbances and/or parameter variations outside the design ranges.

Namely, if the state read from the plant is unexpected, i.e., not considered in the
controller design, the controller may not be able to determine the right control action
to take. In real applications, many causes, including environmental conditions, physical
errors, deformation of materials, etc. may actually affect the state variables detection
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(or the state variables themselves) as well as the plant execution, and produce unex-
pected states. Therefore, ensuring a suitable robustness degree in the controller is often
required, especially when the plant is a critical system, i.e., when malfunctioning may
cause damage to persons or relevant economic losses.

For special kinds of systems this problem can be handled by analytical methods,
directly including the robustness requirements into the controller design [2,3]. Unfor-
tunately, these methods cannot be applied to fuzzy controllers, since they are defined
in linguistic (and thus non-analityc) terms. In other cases, robustness problems can be
handled by interpolation techniques. However, when the plant has a complex nonlinear
dynamics the interpolation approach does not work well.

Cell mapping technology has been used to assess the robustness of fuzzy controllers
[4]. Cell mapping allows an approximated analysis of the whole dynamics of the system.
In particular, the state space is partitioned into a finite number of disjoint cells and the
system dynamics is always approximated to the behavior of the geometric centers of
the cells [5].

Since this technique involves a complete analysis of the approximated system dy-
namics, the increase of the number of cells gives rise to a noticeable increase of the
computational effort. Therefore only a limited precision in the system analysis is possi-
ble. Moreover, due to the coarse granularity, it is difficult to analyze the effects of small
disturbances on the executions of the control actions.

1.2 Our Contribution

In a previous paper, we applied explicit model checking techniques to the correctness
verification of fuzzy controllers [6]. In this paper we extend the approach of [6] to a
general methodology for the robustness analysis of fuzzy controllers, that can be easily
applied to nonlinear systems. Our technique is based on the CMurϕ explicit model
checker [7], whose special features, described in Section 3, allow to easily interface
with plant simulators and fuzzy controllers.

The use of explicit model checking, together with the features of CMurϕ, allows
us to handle very large systems (say, millions of states) without incurring in the mem-
ory explosion problem. Moreover, we can easily manage continuous systems with very
high approximation, generating more complete robustness certifications. Finally, our
technique is nearly automatic, requiring small efforts to be applied to any system.

The paper is organized as follows. In Section 2 we describe the parameters and mea-
sures used to evaluate the fuzzy controller robustness. In Section 3 we briefly introduce
model checking techniques and the CMurϕ tool, and give details about how we modeled
robustness analysis within it. Section 4 shows the experimental results of our technique
applied to the analysis of two different fuzzy controllers for the inverted pendulum on
a cart problem. Finally, Section 5 contains some concluding remarks.

2 Controller Robustness Measures

To evaluate the robustness of a fuzzy controller, we analyze how it reacts to stimuli that
are not addressed by the plant specification.

More formally, let a plant with discrete time dynamics f(x, u) be given, where x
is the vector of state variables and u the vector of control variables. Then a controller
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is a function k (x) that, given a plant state x, returns the values of control variables
u = k (x) that are required to reach the plant setpoint xG from x.

A trajectory is a sequence of states (x0, . . . , xn) where xn = xG is the setpoint and
xi+1 = f(xi, k(xi)) for all i = 0 . . .n−1. In other words, a trajectory is the sequence
of states of the plant driven by the controller from an initial state to the setpoint.

To evaluate the controller robustness we measure how much a disturbed trajectory t̃=
(x̃0, x̃1, . . . , x̃n) deviates from the corresponding ideal trajectory t=(x0, x1, . . . , xn)
[4]. Here, an ideal trajectory is generated in the (ideal) environment given by the plant
specification, whereas a disturbed trajectory is generated in a context that applies ran-
dom or systematic variations to the plant parameters and/or variables, as it usually hap-
pens when the plant is executed in a real environment.

In particular we consider the following disturbances applied to trajectories:

– Parameters Variation. In this case, we test if the controller can handle plants
whose design parameters are different, to a given extent, from the specification. In-
deed, these variations occur in practice when the plant is a complex system, whose
implementation is subject to errors and approximations.

– State/Control Disturbances. In this case, we test if the controller is able to drive
the plant to its setpoint when the control and/or state variables are subject to ex-
ternal disturbances. This is very common in plants due to physical effects (such as
friction).

In general, there are many different parameters that can be used to measure the deviation
of such trajectories. As in [4], we consider the following measures.

1. Final Trajectory Error. The final error, ef , is the Euclidean distance between the
final state of a disturbed trajectory t̃ and the final state of the ideal trajectory t with
the same starting point x0 = x̃0. It is given by ef = ‖xG − x̃G‖ where the symbol
‖ · ‖ denotes the Euclidean norm. We consider the maximum and average values of
this error, calculated in each controller trajectory.

2. Actual Trajectory Error. The actual trajectory error, et, is an averaged Euclidean
distance between a disturbed trajectory and its ideal trajectory. It is computed by
averaging the distances between corresponding points in the two trajectories. It is
given by et =

∑n
i=1 ‖xi−x̃i‖

n where n is the number of states in the trajectory.
When a trajectory terminates at its setpoint before the other, distances continue to
be measured between points of the unterminated trajectory and the setpoint of the
terminated trajectory. We consider the maximum and average values of this error,
calculated in each controller trajectory.

3. Trajectory Length Error. The trajectory length error, ed, is the difference between
the lengths of a disturbed trajectory and its ideal counterpart measured as follows:

etl =
∥∥∥∑n−1

i=1 ‖xi+1 − xi‖ −
∑n−1

i=1 ‖x̃i+1 − x̃i‖
∥∥∥. We consider the maximum,

minimum and average values of this error, calculated in each controller trajectory.
4. Number of Controllable States. A controllable state is a plant state from which

the controller is able to reach the setpoint. Therefore, every state in a trajectory that
reaches the setpoint is controllable. This value measures the difference between the
number of controllable states of ideal and disturbed trajectories, to see if distur-
bances make some state not controllable.
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5. Time Optimality. The time optimality value is computed as the difference between
the average number of steps required to reach the setpoint in each disturbed and
ideal trajectory, respectively.

3 Model Checking

Generally speaking, model checking [8,9,10,11,12] can be defined as the formal process
of verifying the validity of a set of assertions on the behavior of a system, modeled by
a Finite State System. The model checking algorithms always involve a (symbolic or
explicit) analysis of the state space, reachable from the initial states. This analysis is
called reachability analysis.

In our case, the continuous plant dynamics f(x, u) is transformed, by a direct quanti-
zation of the continuous variables [13], into a discrete transition relation. This relation,
in turn, defines a graph, (transition graph). The set of reachable states is obtained by
visiting the transition graph, starting from the initial states. We consider as initial states
all the states whose variables values range over suitable intervals or sets (the so-called
computational space or region).

During the visit, the verifier checks whether the given constraints are satisfied by
each state reached. Therefore, since the system has a finite number of states, the verifier
will eventually explore all the transition graph, thus certifying that the constraints hold
in each possible system state. Otherwise, if a state is reached that does not satisfy one
of the constraints (i.e., it is an error state), the verifier will dump the graph path that led
to this error state (the error trace).

In our robustness application, as described in Section 3.1, we take advantage of the
reachability analysis algorithms to simultaneously generate a disturbed trajectory and
the corresponding ideal trajectory, and set the constraints to verify that the robustness
measures never exceed a specified threshold. This is accomplished using the CMurϕ
tool [7], an extended version of the Murϕ [11] model checker, originally developed to
verify protocol-like systems.

CMurϕ has two important functionalities required to deal with the complexity of the
plant simulators and the fuzzy controller [14], which make many other well-known ver-
ifiers such as SPIN [12] unsuitable for our purposes. Indeed, the verifier can use external
C/C++ functions, so it can embed the fuzzy controller and the plant simulator, without
having to re-model them in terms of another language, which could introduce errors and
approximations in the system behavior and require substantial rewriting efforts. More-
over, CMurϕ is able to handle (finite precision) real numbers, and this is important
since most plants work on continuous variables or combinations of discrete/continuous
variables.

3.1 Measuring Robustness with CMurϕ

To measure the robustness of a fuzzy controller FC applied to the plant P , we use a
particular CMurϕ model MP that embeds two copies of the plant model, P1 and P2,
both controlled by FC.
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The system state is a pair (s1, s2) where s1 is the state of P1 and s2 of P2, respec-
tively. The model allows both plants to evolve in parallel, under the guidance of the
same controller, starting from the same initial state and with the same setpoint.

In particular, P1 is defined with the exact parameters given by the plant specifica-
tion, and generates ideal trajectories, whereas P2 is initialized with different parameters
and/or has random disturbances added to each state (or control actions), so it generates
the corresponding disturbed trajectory.

Note that the controller, and possibly the plant model simulator, are external pro-
grams linked to the CMurϕ model, which acts as a simulation “runner” and “observer”.
Therefore, the use of CMurϕ does not introduce any external error or approximation in
the plant and controller behavior, ensuring a correct robustness measure.

While the model evolves, we use the CMurϕ invariants to obtain the needed mea-
sures. In particular, we collect the information needed to measure the robustness param-
eters described in Section 2.

Thanks to the exhaustive state space exploration performed by the model checker,
we are able to take our measures on a very large number of trajectories, so obtaining
the full coverage of all the possible trajectories handled by the controller, within the
given approximations. Then we use the minimum, maximum and average value of such
measures to generate the final robustness report.

4 Experimental Results

To show the potential of our model checking based approach to the robustness evalua-
tion, in this Section we present the experimental results related to the same case study
proposed by Papa et al. in [4]. Namely, we consider a Feedback Takagi-Sugeno (TS)
fuzzy controller [15], and a Smith-Comer TS fuzzy controller [16] for an inverted pen-
dulum on a cart.

The robustness analysis and comparison have been performed considering both types
of disturbances and parameter variations described in Section 2, namely variations in
the half length of the inverted pendulum and random disturbances applied to the control
force value.

In the following, we first describe the inverted pendulum problem, then we give
some details about the two controllers and finally we compare their performances by
considering the measures discussed in Section 2.

4.1 Inverted Pendulum on a Cart

A controller for the inverted pendulum on a cart has to bring the pendulum to equilib-
rium by applying a horizontal force to the cart.

The pendulum state is described by two real variables: the pendulum angle w.r.t. the
vertical axis θ and the angular velocity θ̇.

The normalized system is described by the differential equation

ẋ(1) = x(2)

ẋ(2) =
ge sin(x1)−[cos(x1)/(mp+mc)][mplx2

2 sin(x1)+u]
4l/3−[mp/(mp+mc)]l cos2(x1)
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where x(1) = θ, x(2) = θ̇, ge is the gravitational constant, mp is the mass of the pole,
mc is the mass of the cart, l is the half-length of the pole and u is the force applied to
the cart. The model parameters are as follows: θ ∈ [−1.5, 1.5]rad, θ̇ ∈ [−8, 8] radsec ,
u ∈ [−50, 50]N , eg = 9.8m/s2, l = 0.5m, mp = 0.1kg, mc = 0.9kg. The sampling
period Ts is 0.01s.

4.2 The Takagi-Sugeno Fuzzy Controllers

In this section we give a short description of the two controllers under analysis. A more
detailed explanation of their characteristics can be found in the cited papers.

Feedback TS Fuzzy Controller. We consider a Feedback TS Fuzzy controller de-
signed using the methodology presented in [15]. The authors use genetic algorithms
with cell map information as feedback, so obtaining a controller with maximal stability
and controllability. The controller has nine linguistic rules of the form: IF error(x1) is
Region AND error-change(x2) is Region THEN control action is cj1x1 + cj2x2 + cj3,
where Region={Pos, Zero, Neg}. The values of cj1, cj2, cj3 can be found in [4].

Smith-Comer TS Fuzzy Controller. The controller described in [16] is generated
through an automated method for calibrating fuzzy controllers, based on the cell state
space concept. In particular, the system state space is quantized into cells, creating a
discrete model of the system behavior. Then, given a cost function and a plant simu-
lation model, the technique generates a numerical controller (of minimum cost) that is
finally approximated using a fuzzy logic controller.

The control algorithms have been implemented as described in corresponding papers
and embedded as external C functions in CMurϕ model to perform the verification.

4.3 The Model Checking Framework

To set up our model checking framework, we discretized the model as follows. We used
for the state variables a discretization step of 0.001rad for θ and 0.01 radsec for θ̇. In this
way, we have a computable region of 4,804,601 states. We fixed a time horizon of 60
steps: that is, if the controller is not able to drive the pendulum to the setpoint in no more
than 60 steps, we mark as not controllable the initial state of the current trajectory.

The experiments have been carried on a Intel Core2 Duo T5600 1,83GHz machine
with 2 Gb of RAM. To define the initial states, we discretized the variables splitting
both θ and θ̇ in 502 regions, and thus resulting in 252,004 initial states. However, note
that, since each state in a trajectory is also an initial state of a (sub)trajectory, actually
with these settings our experiments cover more than 3,5 millions of states.

4.4 Controller Robustness in the Presence of Parameter Variations

To test robustness with respect to parameter variations, we considered variations in the
inverted pendulum half length (l) ranging from 0.5m to 0.75m, that is up to 50% of
its design value. The mass (m) has been adjusted accordingly. Results are in Table 1,
where column Ctrl indicates the controller used (i.e., FB for the Feedback TS Fuzzy
Controller and SC for the Smith-Comer TS Fuzzy Controller) and column Dist indi-
cates the l parameter variation. The other columns contain the robustness measures dis-
cussed in Section 2. In particular, column Controllable States indicates the percentage
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Table 1. Experimental results for parameters variation

Ctrl Dist Controllable Time Traj Length Err Final Traj Err Actual Traj Err
States Optim. avg min max avg max avg max

FB 0.5 79.67% 25.2049 — — — — — — —
FB 0.55 76.96% 28.6845 0.0107 -0.01 0.08 0.0631 0.2 0.4088 8.1544
FB 0.6 76.36% 30.6161 0.0215 -0.01 0.12 0.0744 0.2021 0.6760 8.4856
FB 0.65 75.48% 31.4019 0.0283 0 0.16 0.0777 0.203 0.8842 8.7161
FB 0.7 74.27% 32.3019 0.036 0 0.19 0.081 0.2057 1.0519 9.0669
FB 0.75 72.85% 33.0624 0.0446 0 0.23 0.0835 0.2112 1.1971 9.1865

SC 0.5 76.93% 27.6753 — — — — — — —
SC 0.55 74.26% 33.0622 0.0193 -0.03 0.08 0.0582 0.2002 0.4701 9.0952
SC 0.6 73.19% 33.7244 0.0294 -0.04 0.15 0.0603 0.2003 0.8118 9.033
SC 0.65 70.92% 34.3319 0.0409 -0.05 0.2 0.0619 0.2043 1.063 9.1693
SC 0.7 68.97% 35.2210 0.0533 -0.04 0.23 0.0651 0.2077 1.2562 9.4164
SC 0.75 66.71% 36.2353 0.0678 -0.04 0.3 0.0678 0.2227 1.3999 9.8515

of controllable states with respect to the whole computable region of 4,804,601 states.
Figure 1 shows a graphical comparison of some relevant measures.

Comparing our results with those of [4] we find that the general assessment of the
performances of the two controllers are qualitative similar. However, there are several
differences: as an example, we find that the Smith-Comer Controller has a better per-
formance w.r.t. the final trajectory error, contrary to the findings of [4]. We think that
our results are more accurate since our evaluation is based on the analysis of 3,827,825
states, to be compared with the analysis of 10,201 cells in [4].
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Fig. 1. Controllability and trajectory length error with parameters variation

4.5 Controller Robustness in the Presence of Random Disturbances

To test robustness with respect to state and control variables disturbances, we applied
random disturbances of 5%,10%,15%,20%,25% to the force value (that is the output
of the controller). Results are in Table 2, where columns have the same meaning of
Table 1. Figure 2 shows a graphical comparison of some relevant measures. The results
are comparable with the ones in Table 1.

Note that this kind of analysis cannot be performed with the cell mapping techniques
since, generally speaking, the disturbances are small and do not essentially change the
cell dynamics.
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Table 2. Experimental results for random control disturbances

Ctrl Dist Controllable Time Traj Length Err Final Traj Err Actual Traj Err
States Optim. avg min max avg max avg max

FB 0% 79.67% 25.2049 — — — — — — —
FB 5% 79.64% 25.3292 0.0003 -0.02 0.02 0.0127 0.07 0.0068 0.16
FB 10% 79.59% 25.5568 0.0004 -0.02 0.03 0.0239 0.11 0.0167 0.24
FB 15% 79.53% 25.9439 0.0005 -0.02 0.03 0.0336 0.16 0.0269 0.3
FB 20% 79.46% 26.4289 0.0007 -0.03 0.04 0.0419 0.2 0.0376 0.41
FB 25% 79.23% 26.9306 0.0008 -0.03 0.06 0.0495 0.2001 0.0485 0.55

SC 0% 76.93% 27.6753 — — — — — — —
SC 5% 76.88% 27.8387 0.0001 -0.02 0.02 0.017 0.16 0.009 5.1349
SC 10% 76.37% 28.2155 0.0003 -0.03 0.03 0.0301 0.18 0.0217 6.5223
SC 15% 76.53% 28.6886 0.0007 -0.03 0.03 0.0396 0.19 0.0356 6.873
SC 20% 76.25% 29.1636 0.0014 -0.03 0.05 0.0454 0.2 0.0492 8.4425
SC 25% 76.06% 29.6458 0.0019 -0.04 0.08 0.0491 0.2 0.0641 8.513
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Fig. 2. Controllability and time optimality with random control disturbances

5 Conclusions

In this paper we showed a general methodology for the robustness analysis of fuzzy
controllers. Our methodology exploits model checking techniques and, in particular,
the CMurϕ verifier, to deal with the complexity of the plant-controller pair, and can be
therefore applied to fuzzy controllers even on nonlinear systems with minimal effort.

The results show that this technique can achieve a better precision than the one ob-
tained with the cell mapping approach.

Indeed, the two techniques can be considered as complementary, since the cell map-
ping gives information about the global dynamics of the system.

Therefore the proposed technique, and in particular the CMurϕ verifier, can be actu-
ally considered as an effective tool for robustness verification in real world applications.
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Abstract. To create a Fuzzy System from a numerical data, it is nec-
essary to generate rules and memberships representing the analyzed set.
This goal demands to break the problem into two parts: one responsible
for learning the rules and another responsible for optimizing the mem-
berships. This paper uses a Gradient-based Artificial Immune System
with a different population for each of these parts. By simultaneously
co-evolving these two populations, it is possible to exchange information
between them enhancing the fitness of the final generated system. To
demonstrate this approach, a fuzzy system for autonomous vehicle ma-
neuvering was developed by observing a human driver.

Keywords: Autonomous Vehicle, Co-Evolutionary Artificial Immune
Systems, Fuzzy System Learning.

1 Introduction

In some applications the expert knowledge can be imprecise or may not be
enough to assemble fuzzy controllers. In scenarios like these, concepts about
Machine Learning and Data Mining can be used to analyze an initial data set
(IDS) and generate both fuzzy rules and membership functions.

The literature presents several methodologies to extract fuzzy rules from nu-
merical data [1]- [4]. One of the most citted approaches is presented in [4], which
shows an algorithm that uses standard memberships and a simple logic to ex-
tract fuzzy rules capable of representing a given data set. This logic is based
on associating the input and the output over the standard memberships where
each entry of the original data set may generate a rule. The output of this step
is a set of rules, which will be treated to eliminate inconsistency. This method
also presents good results and is able to deal with large data sets. However, this
approach assumes standard and fixed memberships and the final rule set may
be quite inexpressive, because it uses several considerations to avoid inconsis-
tency and redundancy. To improve a similar approach presented in [5], this work
developed a method using a Co-Evolutionary Gradient-Based Artificial-Immune-
System with two different types of populations: one is responsible for optimizing

V. Di Gesù, S.K. Pal, and A. Petrosino (Eds.): WILF 2009, LNAI 5571, pp. 312–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Learning Fuzzy Systems by a Co-Evolutionary AIS Algorithm 313

the memberships and the other for learning the rules. The Co-Evolutionary pro-
cess enables information change between the populations enabling to find a more
representative fuzzy system at the end of simulation.

In order to evaluate this methodology, an application of automatic parallel
parking will be used, where a fuzzy system for autonomous maneuvering will be
learnt by a data set of actions taken by a human driver.

2 Generating a Fuzzy System from a Numerical Data Set

Suppose a given numerical input and output data set acquired from a given en-
vironment. The goal is to automatically generate a fuzzy system that represents
the relation between the inputs and outputs of this application. Such system is
composed of two types of elements: membership functions and rules. Member-
ship functions may be present in different sets of numbers, shapes and positions,
and finding the best configuration depends on the systems data and rules. The
literature presents several works dedicated to generating fuzzy systems from
data [6]-[8] using three different approaches. One approach gets the rules from
an expert and uses population-based algorithms to optimize the memberships
[9], the second approach provides the memberships and learns the rules [4], and,
finally, some algorithms use two different populations to learn both rules and
memberships [6]. As the optimization of membership functions and the rule in-
ference process are dependent on each other, they should be modeled together
to reach the best representation. Adopting this approach, we present CAISFLO,
which stands for Co-Evolutionary Artificial-Immune-Based Algorithm Applied
to Fuzzy Systems Learning and Optimization, based on two different sets of pop-
ulations co-evolving together to find the best representation of a real application.
One set of population is responsible for optimizing the memberships while the
other for learning the rules. However, even though they have the same goal, i.e.
to generate an accurate representation of a data set, changes that improve one
population may destroy the other. To avoid this situation, a full Pareto opti-
mization [5] is adopted, meaning that improvements in one population will be
only allowed if it does not jeopardize the other. As already stated, fuzzy rules
are strongly connected and depended on membership functions. It is impossible
to find any rule in a data set if these functions have not been defined. Thus, the
first step of assembling a fuzzy system is to generate a population of membership
functions fmPop= {fAb1,. . .,fAbn}. For each individual fAbi, a new population
rPopi = {riAb1,. . .,riAbm} responsible for learning the inference rules is created
and evolved. After the rules are learnt, each individual fAbi of the first popula-
tion will have its memberships optimized to enhance the accuracy. This process
is shown in Fig. 1 and continues until the end of the simulation.

As the main purpose of this approach is to correctly represent a real system
given a data set, the fitness of antibody fAbi is given by

fitness(fAbi) =
ne∑
a=1

(fAbi(ipDsa) − opDsa)2 + penalty(ipDsa). (1)
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Fig. 1. Diagram of the Co-Evolutionary process

where, Ne is the number of entries in the data set (Ds), ipDSa represents the
input variables vector in entry a of Ds, opDsa represents the output value of
entry a, and Penalty(.) is a function that returns a very large value (i.e. 1099)
if fAbi does not have any rule to deal with ipDsa. The main idea of how these
populations individually work are shown next.

3 Learning Fuzzy Rules

In order to facilitate and emphasize the explanation of the proposed method,
suppose a numerical data set with two input variables (x1 and x2) and an output
variable (y). The given members of the data set are represented as:

(x1
1, x

1
2; y

1), (x2
1, x

2
2; y

2), ..., (xn1 , x
n
2 ; yn). (2)

The first step of the proposed methodology consists of generating an available
rule table (ART). This table contains all possible rules from a given data input
taking into consideration a set of membership function configuration. The ART
is generated from the division of the input and output range into fuzzy regions,
similarly to step 1 of the proposal made by [4]. Each domain interval, i.e., the
range comprehended between the minimum and the maximum values of a data
set variable must be divided into 2N+1 regions where N can be different for each
variable. Fig. 2 shows the division of the interval domains into fuzzy regions. In
this case, the domain interval of the input variable x1 is divided into three regions
(N=1), the input variable x2 into five regions (N=2), and the output variable y
also into five regions (N=2). After that, according to [4], each data set entry may
generate a single fuzzy rule based on the highest membership degree of every
variable. For example, Figure 2 shows that x1

1 has a membership degree of 0.6
at S1, 0.4 at M and zero at the other regions. Likewise, x1

2 has a degree of 1 at
M and zero at the other regions, whereas y1 has a degree of 0.8 at L1 and 0.2 at
M. Thus, this entry generates the following rule:

It is well-known that the numerical output value of a fuzzy system depends on
the activated membership functions with its respective degree. It is important to
highlight that all of the activated membership functions with a higher or a lower
degree contribute to the output value calculation. Therefore, generating fuzzy
rules based on the highest membership degree, as previously shown, means a
simplification of the problem. Instead of generating rules based on membership
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Fig. 2. Division of the input and output space into fuzzy regions

degrees, our proposal is to generate a set of rules combining all fuzzy regions
that have activated membership functions, whatever the membership degree is.
Thus, instead of generating a single fuzzy rule according to what was shown in
Eq. 3, the given member of the data set (x1

1, x1
2, y1) will generate:

(x1
1,x

1
2;y

1) ⇒ IF x1 is S1 AND x2 is M, THEN y is B1 ⇒ Rule 1
(x1

1,x1
2;y1) ⇒ IF x1 is S1 AND x2 is M, THEN y is M ⇒ Rule 2

(x1
1,x

1
2;y

1) ⇒ IF x1 is M AND x2 is M, THEN y is B1 ⇒ Rule 3
(x1

1,x
1
2;y

1) ⇒ IF x1 is M AND x2 is M, THEN y is M ⇒ Rule 4

(3)

At first, several conflicting rules, i.e., rules that have the same antecedent (IF
part) but a different consequent (THEN part), are generated when this procedure
is adopted. In order to solve this problem, the ART is built in a way that each
line represents a unique antecedent and each column of the consequent part
represents the output membership functions. Each antecedent will be associated
with a certain number of activated output memberships, signed with a digit ”1”
in the ART. As an example, Tab. 1 shows the generated ART from the given
members (x1

1, x1
2; y1) and (x2

1, x2
2; y2) taken from Fig. 2 In this case, the output

variable y is represented by five columns, S2, S1, M, B1 and B2, that correspond
to their membership functions.

Table 1. Available Rules Table - ART

4 The Gradient-Based Artificial Immune System

The main purpose of the Artificial Immune System (AIS) is to use the success-
ful Nature Immune System process in optimization and learning [10]. As every
intelligence-based method, AIS is a search methodology that uses heuristics to
explore only interesting areas in the solution space. However, unlike other in-
telligent methods, it provides tools to simultaneously perform local and global
searches. These tools are based on two concepts: hypermutation and receptor
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Fig. 3. GbCLONALG flowchart

editing. While hypermutation is the ability to execute small steps toward a
higher affinity Ab leading to local optima, receptor editing provides large steps
through the solution space, which may lead to a region where the search for a
hAb is more promising.

The technical literature shows several AIS algorithms with some variants. One
of the most interesting ones is the GbCLONALG algorithm presented in [11].
The main statement of GbCLONALG is that progressive adaptive changes can
be achieved by using numerical information captured during the hypermutation
process. There are several possible ways to capture this information. The one
used in this article is the tangent vector technique, because it treats the objective
function as a ”black box”, where small disturbances are individually applied over
each dimension of the input vector yielding the vector:

TV f x x

f x x x f x x

x

f x x x
n

n n

n n

1

1 1 1

1

1

, ,

, , , ,

, ,

…( )( ) =

+ …( ) − …( )

… +( )

Δ
Δ

Δ
M

−− …( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

f x x

x
n

n

1, ,

Δ

(4)

where: n is the number of control or input variables, f(.) is the objective function
to be optimized; x1, ..., xn are input variables; and Δxk is a random increment
applied to xk. This approach enhances the algorithm efficiency and enables a
well defined stop criterion. The complete algorithm is shown in Fig.3.

Each step or block of the previous diagram is detailed as follows: 1. Ran-
domly choose a population w = Ab1, ..., Abn, with each individual defined as
Abi = x1, ..., xj , ..., xnc, where nc represents the number of control variables or
actions; 2. Calculate the value of the objective function for each individual; this
result provides the population affinity for the optimization process; 3. Proceed
with the Hypermutation process. 4. The bests nb individuals among the orig-
inal w population are selected to stay for the next generation. The remaining
individuals are replaced by randomly generated new Ab’s. This process simu-
lates the receptor editing and helps in searching for better solutions in different
areas.

Although this algorithm has presented very good results in continuous opti-
mization scenarios [11] it is necessary to adapt its principles to carry out combi-
natorial search problems. To accomplish that goal, some considerations about the
definition of antibodies, the tangent vector calculation and the receptor editing
must be taken into account.
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Fig. 4. Simulation software and the variables considered in the fuzzy control

Fig. 5. (a) Membership Functions without optimization (b) Optimized Membership
Functions, and (c) Optimized Membership Functions after co-evolution

5 Applications and Results

In order to validate the proposed method, this paper presents an application of
automatic parallel parking using a 3D software [12] that allows the reproduction
of vehicle dynamics. Fig. 4 illustrates the environment, as well as the considered
input variables.

To build the data set, a parallel parking maneuver was manually carried out
by using a joystick. During this process, the input variables XA, YD and Θ as
well as the OUTPUT value obtained by reading a virtual encoder connected to
the steering wheel, are stored in a data set, yielding 256 entries.

To extract a fuzzy system from this data set, capable of reproducing the hu-
man control over the vehicle the CAISFLO algorithm was used. The first step
is to generate an initial population of memberships and, for each one, build
the ART. To illustrate this process, Figure 5(a) shows the initial membership
configuration of an antibody generated according to [4] for comparison reasons.
For this antibody, the ART is shown in Table 2a, where 22 possible rules were
considered. If the methodology proposed in Wang&Mendel [4] had been used,
just 6 rules would have been generated, as shown in Table 2b. As the popula-
tions evolve, the memberships and rules start to assume new shapes with better
results. Figure 5(b) shows the result of CAISFLO’s first generation where it is
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Table 2. (a) Available Rules Table (b) ART, Rules obtained from Wang and Mandel
(c) Rules obtained from CAISFLO

Fig. 6. The original (TRUE) output from the data set, the results of the W&M method,
and the 1st and final generations of CAISFLO

possible to see that the membership function MXA assumed a trapezoidal shape.
Figure 5(c) and Table 2c showed the final result of memberships and the rules,
respectively, obtained after 3 generations. It is important to note that the final
number of rules obtained from the present proposal have found only 5 rules.
Although it was just one rule lower than the method of W&M, the rules are
different and have more accuracy, as can be seen in Figure 6 where the y-axis
represents the virtual encoder value and the x-axis the entries in the data set.

6 Conclusion

This paper presented a co-evolutionary artificial immune based algorithm ap-
plied to generate fuzzy systems from numerical data. For that purpose, two sets
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of populations were used: one designed to learn rules and another to optimize
membership functions. To reduce the solution space two strategies were adopted.
The first one was to build a table containing just valid rules. The second was
to adopt GbCLONALG in order to reduce the number of clones and to search
just interesting areas. CAISFLO algorithm was tested in a maneuver learning
scenario, where a user parked a virtual car and, using the stored data, the re-
spective fuzzy system was achieved, tested and compared with another method.
The results proved the efficiency of the algorithm. As future work, the algorithm
will be tested in a real autonomous car maneuvering scenario.
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Abstract. Naval military units are complex systems required to oper-
ate in fixed time frames in offshore tasks where maintenance operations
are drastically limited. A failure during a mission is a critical event that
can drastically influence the mission success. The decision of switching a
unit to a mission hence requires complex judgments involving information
about the health status of machineries and the environmental conditions.
The present procedure aims to support the decision about switching a unit
to a mission considering the vagueness and uncertainty of information by
means of fuzzy theory and emulates the decision process of a human ex-
pert by means of a rule-based inference engine. A numerical application is
presented to prove the effectiveness of the approach.

Keywords: fuzzy inference, decision support system, mission reliability.

1 Introduction

Naval military units are complex systems required to operate in fixed time frames
in offshore tasks where maintenance operations are drastically limited. The se-
quence of operations to be performed in a fixed time frame constitutes the mis-
sion the ship is engaged for. A failure during a mission is a critical event that in
some cases can be handled on board, but that in other cases, when it affects a
critical component such as an engine or a steering mechanism, requires the ship
to return to a port with suitable repair facilities. Critical failures may hence
prevent the ship to return to the port and consequently require the ship to be
towed by another vessel. In such situations, the impossibility to perform the
mission tasks in the time frame assigned eventually results in a mission failure.
The evaluation of the likelihood of a failures is hence an issue of primary inter-
est for commercial and military navies, not only because it prevents the ship to
perform its functions, but also because it can be a costly event and a treat for
the safety of the crew. In the traditional military, in particular, units must be
”operation ready”, meaning they must be ready to accomplish the missions they
are assigned to. The decision of switching a unit to a mission however involves
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complex judgments requiring information about the health status of machineries,
the available resources and the environmental conditions. The health status of
machineries here refers mainly to information about the availability and condi-
tion of equipment, resource information concerns the availability and condition
of personnel, the types of training available and the training actually received,
and environmental information, refers to information about the threat situations
and alert conditions in which units must operate, and information about weather
and ocean conditions etc. As it frequently happens in decision problems, some of
these of information can be quantified, and some are merely descriptive: purely
descriptive information may however be very valuable in the decision process.

In the present paper a support tool is presented to assist the decision maker
in the decision of deploying a military unit to a mission. A problem that fre-
quently arises when designing a decision support tool is to represent the vague-
ness and uncertainty that typically affects information which cannot be handled
with traditional (crisp) mathematical models. The proposed approach takes into
account such vagueness and uncertainty by means of fuzzy sets and emulates
the decision process of a human expert by means of a rule-based inference en-
gine. Experts’ knowledge may in fact efficiently be represented in the form of
rules when fuzzy logic is employed. Rule-based expert systems use human ex-
pert knowledge to solve real-world problems that normally would require human
intelligence. Fuzzy Inference Systems (FIS) are popular computing frameworks
based on the concepts of fuzzy set theory, which have been applied with success
in many fields like control [1] [2], decision support [3], system identification, etc.
Their success is mainly due to their closeness to human perception and reason-
ing, as well as to their intuitive handling and simplicity, which are important
factors for acceptance and usability of the systems [4].

2 The Fuzzy Rule-Based Expert System for Decision
Support

The procedure here presented, aims to be a support tool to make a decision about
the switching a unit to a specific mission. As stated before several parameters
that influence such decision should be taken into account, this paper however
aims at presenting a methodology rather than formalizing the complete decision
framework, therefore three representative parameters only have been taken into
account and they have been identified by interviewing some captains of military
ships. Such parameters are the reliability, the distance from the closest port (in
marine miles) and the conditions of the sea.

The reliability of the system involved in a mission is a primary concern since,
as stated before, maintenance operations are drastically limited in offshore con-
ditions. In addition the operating conditions of systems and machineries must
be considered according to the specific mission profile since only a limited num-
ber of machines are required in each mission. For this reason it is preliminarily
needed to individuate the ship subsystems (propulsion, power generation, etc..)
required to accomplish mission tasks. Moreover, for each subsystem, the crit-
ical components must be identified and their reliability must be linked to the
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reliability of the entire ship according to the functional relations expressed by
the reliability block diagrams (RBD). As mentioned before, the two more input
parameters here proposed in addition to the reliability are the (maximum) dis-
tance from the closest port which is a key parameter in estimating the likelihood
of returning to port in case of failure [5] and the sea conditions.

The FIS is applied to each subsystem by using IF-THEN rules and fuzzy
operators to determine the impact of each subsystem on the operational readi-
ness. The minimum of the values thus obtained represents the overall operational
readiness of the ship related to a given mission. The minimum operator is cho-
sen to assure a pessimistic assessment of the likelihood to successfully perform
mission tasks.

Fig. 1 shows the whole procedure to evaluate the ship operational readiness
with relation to a mission.

Fuzzy inferenze

d j

cj

I OR 1j minimum among the
fuzzy inference
output values

OR jR 1j

I OR 2j I OR 3j

I OR 4j

Fig. 1. Proposed procedure block diagram

where
i = 1, . . . , I is the generic subsystem;
j = 1, . . . , J represents the mission for which to make the decision;
Rij = subsystem i reliability with relation to the mission j;
dj = mission distance;
cj = conditions of the sea;
I ORij = impact of subsystem i on the global score of the likelihood to perform
mission j;
ORj = global score expressing the likelihood of mission j.

As it is well known, a basic fuzzy logic system is constituted by four compo-
nents: a rules set, a fuzzifier, an inference engine and a defuzzifier. The core of a
FIS is its knowledge base, which is expressed in terms of fuzzy rules and allows
for approximate reasoning [6]. The fuzzy logic system here used is a Multi Input-
Single Output System (MISO), using the Mamdani implication [7] and the center
of area method (COA) as defuzzifier. At the first step of the inference process, it
is needed to define the fuzzy sets to represent the crisp input values, that is the
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fuzzification process, which consists in assigning fuzzy linguistic variables in the
universe of discourse of each input value. In particular, in this paper each input
parameter is described by triangular and trapezoidal fuzzy numbers. Triangular
fuzzy numbers are widely used for their simplicity and solid theoretical basis [8].
The membership function of a triangular fuzzy number A is μA : R → [0, 1] and
it can be represented by the set of equations 1, where l < m < u. Consequently,
a triangular fuzzy number is fully characterized by three real numbers (l,m, u).
The parameter m corresponds to the maximum grade of μA(x) that is equal to
1, l and u are the lower and upper bounds of the definition interval.

μA(x) =

⎧⎪⎨⎪⎩
x−1
m−l when x ∈ [l,m]
u−x
u−m when x ∈ [m,u]
0 otherwise

(1)

Analogously, the membership function of a trapezoidal fuzzy number B is μB :
R → [0, 1] and it can be represented by the set of equations 2:

μB(x) =

⎧⎪⎨⎪⎩
x−1
m−l when x ∈ [l,m]
l when x ∈ [m,n]
u−x
u−n when x ∈ [n, u]
0 otherwise

(2)

where l < m < n < u.
Similarly, a trapezoidal fuzzy number is fully characterized by four real num-

bers (l,m, n, u). The parameters m and n give the maximum grade of μB(x).
The next step in the fuzzy logic system is to define the possible rules arising
from combining the fuzzy inputs. Rules are usually provided by a team of ex-
perts in the form of IF-THEN sentences and are introduced into the FIS. Later,
since the values of the assessment parameters are crisp, the fuzzifier maps the
input crisp numbers into the fuzzy sets to obtain their degrees of membership.
The inference engine of the FIS maps the antecedent fuzzy (IF part) sets into
consequent fuzzy sets (THEN part) taking into account the rules already stated.
The inference process determines the fuzzy subset of the output variable for each
rule by using the MIN (Mamdani operator) as implication operator. If more than
one rule produces the same consequence, an operator must aggregate the results
of these rules. In particular, the MAX operator is used. Finally, the defuzzifier
maps the fuzzy output into a crisp number, which becomes the output of the
FIS, that is, in the case here considered, the impact of generic subsystem on the
ship operational readiness.

As mentioned before in this case the COA method is applied which is the
most prevalent of all the defuzzification methods [9], [10]. The Fig. 2 represents
the inference process.

3 Numerical Application

The proposed procedure is here applied to a simulated case referred to a military
ship. The inference process is carried out by Informs software package Fuzzy Tech.
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Input parameters
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Crisp output
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If....then rules
Linguistic variables

described by fuzzy sets

Fig. 2. Block diagram of fuzzy inference procedure
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Fig. 6. Impact of each subsystem on the ship operational readiness

Table 1. Subsystem reliability

Subsystem Reliability

Propulsion 0.98
Power generation 0.96

Command and control 0.94
Weapon 0.93

It is supposed that the ship is constituted by the following subsystems individu-
ated as critical for the mission success: propulsion; power generation; command
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Table 2. Other input parameters

Distance Sea condition

220 5

Table 3. Set of rules

if then

Reliability Distance Sea condition Impact on ship O.R.

Low Low Low Low
Low Low Medium Very Low
Low Low High Very Low
Low Medium Low Low
Low Medium Medium Very Low
Low Medium High Very Low
Low High Low Low
Low High Medium Very Low
Low High High Very Low

Medium Low Low High
Medium Low Medium High
Medium Low High Medium
Medium Medium Low Medium
Medium Medium Medium Medium
Medium Medium High Low
Medium High Low Medium
Medium High Medium Medium
Medium High High Low

High Low Low Very High
High Low Medium High
High Low High medium
High Medium Low High
High Medium Medium Medium
High Medium High Low
High High Low High
High High Medium Medium
High High High Low

and control and weapon. Such systems may undergo different loading and em-
ployment conditions in different mission profiles thus resulting in different relia-
bility values. For example, the propulsion subsystem is constituted by redundant
engines and, depending on the speed required to perform the mission, they can
be employed in different configurations: the reliability relation is hence different
according to the specific stand-by/parallel or series configuration. The concep-
tual framework here considered is hence constituted by the systems reliability, the
distance from the closest port and the conditions of the sea (according to the mis-
sion profile). Each input parameter has three linguistic variables (low, medium
and high) described by triangular and trapezoidal fuzzy numbers, as shown in the
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Table 4. Subsystem impact on mission likelihood

Subsystem Impact on mission success.

Propulsion 0.4630
Power generation 0.455

Command and control 0.2974
Weapon 0.2029

Fig. 3, 4 and 5. Instead, the output parameter has five linguistic variables (very
low, low, medium, high and very high) as shown in the Fig. 6.

The contribution of the generic subsystem i to the likelihood of performing
the mission j, ORij is expressed by values in the range [0, 1] and it can be
represented, for example, by a corresponding chromatic scale. The reliability of
each subsystem i against the generic mission j, which constitutes an input to
the decision system, is given in table 1. The other input data of the mission j
are shown in table 2. The set of rules individuated by the experts is given in
table 3. The related output values obtained by the inference process are reported
in table 4. Thus, in this simulated case, by applying the proposed procedure, that
is by taking the minimum value among the output values, the ship operational
readiness with relation to a given mission is 0.2029 measured in the range [0, 1].

4 Conclusions

In the present paper the decision of deploying a military naval unit to a mission
has been considered. Such decision generally requires a human decision process
involving information about the environmental conditions, the operational sta-
tus of machines etc. Such information can be hardly formalized by means of
traditional (crisp) mathematical models, due to its vagueness and uncertainty,
whereas such characteristics can be efficiently taken into account using approx-
imate reasoning. In the present paper an expert decision support system based
upon a fuzzy inference engine is presented, which allows to take into account
experts’ experience in the judgments of the likelihood of a military naval unit
performing a mission. The mission is described by a specific mission profile which
defines the distance from the closest port, the conditions of the sea, and the re-
liability values of the subsystem involved. The numerical application shows that
the methodology presented may efficiently be employed to support the decision
maker in the decision process providing a global score expressing the likelihood
of the ship to perform the mission tasks, thus confirming the effectiveness of
fuzzy inference systems in decision analysis.
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Abstract. Question Answering Systems or (QA systems for short) are
regarded as the next generation of the current search engines. Instead of
returning a list of relevant documents, QA systems find the direct answer
to the query posed in natural language. The key difficulty in designing
such systems is to perform reasoning on natural language knowledgebase.
The theory of Computing with Words (CW), proposed by Zadeh, offers
a mathematical tool to formally represent and reason with perceptive
information. CW views a proposition in natural language as imposing
a soft/hard constraint on an attribute and represents it in form of a
generalized constraint. In this paper we develop a reasoning methodol-
ogy for the restricted domain CW-based QA systems. This methodology
takes, as input, the knowledgebase and the query in form of generalized
constraints and organizes the knowledge related to the query in a new
tree structure, referred to as a constraint propagation tree. The constraint
propagation tree generates a plan to find the most relevant answer to the
query and allows improving the answer by establishing an information-
seeking dialog with user.

Keywords: Reasoning methodology, Question Answering, Computing
with Words, Generalized Constraint.

1 Introduction

The current search engine technologies are much limited to pattern matching
and are still relied on human effort for providing useful information. Instead of
a direct answer to the query, users receive thousands of documents that con-
tain the input keywords and they have to manually process these documents to
extract the desired information. The QA systems are regarded as the next gen-
eration of the current search engines. They receive a query expressed in natural
language, process their knowledge base (KB), which is also in natural language,
and return the most relevant answer to the query. Therefore QA systems need
more complex natural language processing than other type of information re-
trieval systems. The key difficulty in designing such systems lies in the imprecise
nature of natural language expressions. The theory of Computing with Words
[7], which is rooted in fuzzy set and fuzzy logic, provides a mathematical tool to
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model the imprecision of natural language propositions and perform reasoning
among perceptions. CW views a proposition in natural language as imposing
a soft/hard constraint on an attribute and represents it in form of a General-
ized Constraint (GC).GC provides a basis for approximate reasoning. It serves
as a generalized language for representing different kinds of uncertainty such as
probability, possibility, truth qualification and so forth. A proposition in natural
language may be expressed in GC with the form GC : X isr R, where X is the
constraint variable, R is the constraint on the values that X can take and is
called the constraining relation, and r is the semantic modality of the constraint
that specifies how R is related to X. There are three primary modalities which
represent the three primary aspects of uncertainty: probabilistic (r=p), possi-
bilistic (r=blank), and veristic (r=v). Other types of constraints can be viewed
as the mixture of the primary constraints [7].

For example the proposition: “gas is expensive” can be represented in GC
as: “price(gas) is expensive”. New GCs may be derived from sets of existing
GCs by conjunction, projection and propagation operations (For more details
on generalized constraint theory refer to [7]).

After representing knowledge in form of a GC, a set of deduction rules need
to be defined to perform reasoning. To do so, a GC is then summarized and ab-
stracted into a protoform (PF), abbreviation for prototypical form. Informally a
protoform is an abstracted summary of an object and represents the semantic of
such objects [6]. For example the GC expression “price(gas) is expensive”, can
be abstracted to protoform:“A(B) is C”, where A is an abstraction of linguistic
variable “price”, B is an abstraction of “gas” and C is an abstraction of the
granule value “young”. The concept of protoform plays an important role in
reasoning; it allows classifying the objects of the same semantic structure and
defining inference rules for manipulating them. These rules are drawn from var-
ious domains such as probability, possibility, fuzzy arithmetic, fuzzy logic and
so forth and they basically govern propagation of GCs. Some examples of these
rules are listed in table 1. More rules can be found in [7]. Each rule has a symbolic
part, which is in terms of protoforms, and a computational part which defines
the computation that has to be carried out to arrive at a conclusion. The focus
of this paper is to develop a methodology that uses GC propagation rules to
make a sequence of inferences on a GC knowledgebase, in order to provide an
answer to the input query. Although fuzzy set theory and fuzzy logic are well
defined and have been extensively studied in literature, there are not yet many
works that extended and utilized CW to develop a working QA system.

Sufyan Beg et.al. [4] designed a hybrid framework for a QA deduction engine
that combines the phrase-based deduction with CW reasoning. This framework
identifies and tags the query as well as the sentences in KB and extracts the facts
that are relevant to the query. If the relevant facts are tagged as a protoform,
then they will be processed according to protoform deduction rules. Otherwise
the standard bivalent logic reasoning will be applied to find the appropriate
answer to the question.Ahmad, et.al. [1] proposed a framework for developing a
CW-based fuzzy expert system for automated question answering. The focus of



330 E.S. Khorasani, S. Rahimi, and B. Gupta

Table 1. Examples of protoform deduction rules

rule symbolic part computational part

rule (1)
interpolation

X is A∑
i if xi is Ai then Y is Bi

Y is B

μB(v) =
∑

i mi ∧ Bi

mi = supu(μA(u) ∧ μAi(u)),
i = 1, . . . , n

rule (2)
intersection
syllogism

Q1A
′s are B′s

Q2(A&B)′s are C′s
Q2A

′s are (B&C)′s

Q3 = Q1 × Q2

rule (3)
basic
extension
principle

Y = f(X1, .., Xn)
XiisAi i = 1, . . . , n
Y is B

μf(A1,..,An)(v) =
supu1,...,un(μA1(u1)∧· · ·∧μAn(un))
mi = supu(μA(u) ∧ μAi(u)),
i = 1, . . . , n

rule (4)
compositional
rule
of inference

X is A
(x, y) is B
Y isA ◦ B

μA◦B(v) = supu(μA(u), μB(u, v))

rule (5)
Basic
Probability

prob(XisA) is B)
prob(XisC) is D

μD(v) = supr(μB(
∫

U
(μA(u)r(u)d(u)))

v =
∫

U
μc(u)r(u)d(u),

∫
u

r(u)d(u) = 1
r(u) = probability denssity function of u

this framework is on using a probabilistic context-free grammar for translating
the natural language sentences into GCs and protoforms.

None of the frameworks mentioned above presented a well-defined inference
methodology that would be able to address the following issues:

– How to find the set of propositions in the knowledgebase that are relevant
to the query?

– What is the inference chain for propagating constraints from a set of relevant
propositions to the query?

– How to combine different answers obtained for the query?
– How to improve the quality of the answer obtained for the query?

This paper presents a reasoning methodology that addresses the above issues.
The methodology that we propose here organizes the knowledge in a tree struc-
ture that we call a constraint propagation tree (CP). CPT extracts and organizes
the set of relevant propositions in knowledgebase in response to a query. An eval-
uation algorithm then traverses the tree and propagates the constraints from this
set to the query while aggregating different answers obtained for the query. CPT
also allows one to identify the missing knowledge and establish a dialog with user
when the information in knowledgebase is not enough for providing an answer.

2 The Reasoning Methodology

The reasoning methodology that is presented here takes the GC form of the
query and the knowledgebase as input and makes a sequence of inferences to
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obtain a direct answer to the query. We assume the availability of a tool that
translates the knowledgebase and the query in to generalized constraints.

The query posed to the system may be of various types. Generally a query can
be viewed as seeking a value for one or more variables. Given the GC expression
“X is R?”, the query may ask for instantiation of the constraint variable (X ) or
the constraining relation (R). This view of the query includes a wide range of
question types such as factual questions, list questions, definitions, and so forth.
Our reasoning methodology instantiates the query variables in two phases: first
the information relevant to the query is extracted and organized in a constraint
propagation tree. Next the tree is evaluated to find the value for the query
variables and combine different values obtained for these variables.

There are two types of relevancy: direct and indirect. Direct relevancy can be
assessed by pattern matching while indirect relevancy requires reasoning and de-
duction on knowledgebase. For example if the query is Q:“price(gas) is ?”, and
the knowledge base contains the propositions: p1: “relation(price(gas), produc-
tion(oil)) is direct”, and p2:“production(oil) is low”, then p1 is directly and p2
is indirectly relevant to the query. Formally a proposition p is directly relevant
to the query if it satisfies one the following conditions:

1. p contains the constraint variable and the subject of the query. For example
p: “relation(price(gas),production(oil)) is direct”, is directly related to the
Q: “price(gas) is ?”, because it contains the constraint variable of the query
price as well as its subject gas.

2. p contains the constraint variable of the query with a generic subject. For ex-
ample p: “if Age(x) is young then risk(BreastCancer(x)) is high”, is directly
related to Q: “risk(BreastCancer(Mary)) is ?”.

CPT applies the protoform deduction rules in a hierarchical way to extract the
propositions that are directly or indirectly relevant to the query and determine
how they are related. The root node in CPT represents the input query and
the intermediate nodes are sub goals. Each node is connected to its children
through a protoform rule, where the parent node represents the consequent and
the children represent the antecedents of the rule. A node in CPT is represented
by a tuple: (N, GC, E ), where:

– N: is an integer that represents the node number.
– GC: is a generalized constraint that has zero or more uninstanti-

ated variables, e.g., “Age(Mary) is ?R” or “if Age(x) is over 40 then
risk(breastCancer(x)) is high”.

– E: indicates the connection between the node and its children. E =
{(r, {C})}, where r is the rule number and {C} is a set of integers rep-
resenting a group of immediate child nodes that form the antecedents of r.
For example let us assume that a node i has children {j, k,m, n} where nodes
{j, k} and {m, p} are connected to their parent by rules a and b respectively.
In this case E = {(a, {j, k}), (b, {m, p})}.
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The following algorithm shows the procedure of generating a CPT.

Algoirthm CPTGeneration

Begin

initialize the root node to the query

repeat until no new nodes can be created

let DRS be the set of propositions in KB that are directly

related to the query.

If DRS is not empty then

for each proposition p in DRS

if p matches with the query then

instantiate the query variables

if there is more than one instantiation for a variable then

if the variable is veristic

instantiate it to the disjunction of individual values

else instantiate it to the conjunction of individual values

convert p and the query to protoforms: PF(p) and PF(Q)

for each rule r in the protoform deduction rules:

if PF(p) matches withthe antecedent of r &

PF(Q) matches with the consequent of r then

create child nodes for the antecedents of r

set the query to an uninstantiated leaf node

End

This algorithm first initializes the root node and extracts the set of proposi-
tions that are directly relevant to the query. This set is called directly related set
(DRS). Then for each proposition in DRS, if it matches with the query, the query
variables will be instantiated accordingly. This is the case where the answer to
the query is explicitly stored in knowledgebase. For example, if we are interested
to know the age of Mary: Q:“Age(Mary) is ?R”, and the knowledgebase contains
the proposition “Age(Mary) is middle-age”, then we can instantiate R with the
fuzzy subset that represents the granule value “middle-age”. If there is more than
one proposition in DRS that matches with the query, the query variable will be
instantiated to the conjunction of individual values. If for the above example
KB also includes the proposition “Age(Mary) is older than 30”, then R will be
instantiated to: middle-aged ∧ older than 30. If the query variable is veristic [5],
it will be instantiated to the disjunction of individual matches with DRS1.

CPT allows seeking additional information from the user when the information
in KB is not enough to answer a query. A leaf node in CPT can be tagged as
a missing knowledge if it has at least one un-instantiated variable. Instantiating
this variable may or may not be necessary for answering the query; however
in the latter case it might improve the quality of answer by providing more
constraints and thereby more robust estimates for the query variables.

1 There are two classes of fuzzy variables verisitc and possibilistic. Possiblistic vari-
ables are disjunctive and can take only one value (e.g., “Age(Mary)”). In contrast
the veristic variables are conjunctive and can take more than one value (e.g., “big-
Countries”).
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The second phase of reasoning is to propagate the constraints from the bottom
of CPT to the top while combining different constraints obtained for each node.
The propagation and aggregation algorithm is straightforward. It starts with
the nodes in the level before the last level and applies the protoform inference
rules (table 1) to the appropriate group of children to obtain a constraint for
the parent node.If more than one value is obtained for a node variable then it
will be instantiated to the conjunction of these constraints, however if the node
variable is verisitic, it will be instantiated to the disjunction of the individual
values.After instantiation, the value of a variable can be stored and reused for
future queries, provided that the information about that variable will not change
in the knowledgebase.It is worth noting that the fuzzy set obtained from applying
the protoform rules should be normalized before being propagated to its upper
level.

2.1 Evaluation of the Methodology

To evaluate our methodology, we applied it to a real world example taken from
a web article about causes of breast cancer. Suppose that our knowledgebase
consists of the following information:

The average chance that a woman being diagnosed by breast cancer is a function of
age. From age 30 through age 39, it is about 0.4 %; from age 40 through age 49, it is
about 1.5 %; from age 50 through age 59, it is about 2.5 % , and from age 60 through
age 69 it is about 3.5 %. There are some factors that affect the average risk of breast
cancer. Alcohol increases the average risk of breast cancer significantly; pregnancy in
the age of 30 or before reduces the average risk of breast cancer by about 3 %, and in
older women being overweight can increase the average risk of breast cancer slightly.

Suppose also that we have the following information about Mary:
Mary has a son who is about 20. She gave birth to her son when she was in her 20s.

Mary is few years younger than Ann who is in her mid 50. Mary consumes about 1400
to 2000 calories a day. And she drinks moderately.

As rules of thumb, we also know that:
Overeating causes being overweight and the age of mother is equal to age of her son

plus the age that she gave birth to her son.
Given the above information we are interested to know what Mary’s chances

of developing a breast cancer are. As mentioned before, the query and knowl-
edgebase must be translated to GCs before the reasoning methodology can be
applied. Generally this translation is not unique and depends on the question
that is asked. Thus a proposition in knowledgebase can be translated according
to all possible questions that may be asked about that proposition. Although
this approach guarantees to find an answer for a question, if such answer exists,
it can degrade the time performance considerably for large knowledgebases. A
better approach is to find the questions that are most likely to be asked and
translate the propositions in knowledgebase accordingly. For the purpose of this
paper we assume that there exists a tool that performs such translation. By
translating the above information to GCs we get:

1. if age(x) is in 30s then average(risk(bc(x))) is about 0.4 % +If age(x) is in 40s then
average(riskbc(x)) is about 1.5 % + If age(x) is in 50s then average(riskbc(x)) is
about 2.5 % + If age(x) is in 60s then average(riskbc(x)) is about 3.5 %
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2. if dirnkhabit(x) is regularly then alcoholFactor(riskbc(x)) is significant
3. if age(pregnancy(x)) is about 30 or before then pregnancyFactor(riskbc(x)) is about

3 %
4. if age(x) is old and weight(x) is overweight then weightFactor(riskbc(x)) is slightly
5. riskbc(x) is average(riskbc(x)) + alcoholFactor(riskbc(x)) + weightFac-

tor(riskbc(x)) - pregnancyFactor(riskbc(x))
6. age(son(Mary)) is about 20
7. age(Mary) is Age(Ann) few years
8. age(Ann) is mid-50
9. age(pregnancy(Mary)) is in 20s

10. eatingHabit(Mary) is about 1400 to 2000 calories per day
11. if eatinghabit(x) is overeat then weight(x) is oveweight
12. age(x) = age(son(x)) +age(pregnancy(x))
13. drinkhabit(Mary) is moderate

The CPT of this example is shown in figure 1. After defining appropriate
fuzzy sets for the linguistic terms such as: “about 3%”, “old”, ”significant”,
”overweight”, “mid-50”, and so forth, we calculated and deffuzified the answer
as “Risk(bc(Mary)) is 4 %”.

 

N=1
GC=riskbc(Mary) is?

E={(rule3, {2,3,4,5})}

N=3
GC=alcoholFactor(riskbc(Mary)) is?

E={(rule1, {8,9})}

N=4
GC=pregnancyFactor(riskbc(Mary)) is?

E={(rule1,{10,11})}

N=5
GC=weightFactor(riskbc(Mary)is?

E={(rule1, {12,13,7})}

N=2

GC=average(riskbc(Mary)) is ?

E={(rule, {6,7})}

ifage(Mary) is in 50s then

N=6
GC=if age(Mary is in 30s then  

average(riskbc(Mary)) is about 0.4% +
if age(Mary) is in 40s then 

average(riskbc(Mary)) is about 1.5% +

averagae(riskbc(Mary)) is abput 2.5% +
if age(Mary) is 60 or above then

average(riskbc(Mary) is about 3.5%
E={}

N=7
GC=age(Mary) is?

E={(rule3, {14}), (rule3, {15,10})}

GC=if drinkingHabit(Mary) is regular 
N=8

alcoholFactor(riskbc(Mary)) is significant
E={}

N=10

E={}
GC=agePregnancy(Mary) is in 20s

or before then
\if agePregnancy(Mary) is 30

pregnancyFactor(riskbc(Mary) is
about 3%

E={}

N=11

weight(Mary) is overweight then
weightFactor(riskbc(Mary)) is slightly

GC=if Age(Mary) is old &
N=13

E={}

N=12
GC=weight(Mary) is?
E={(rule1, {16,17})}

N=14
GC=age(Ann) is mid−50

E={}
GC=age(son(Mary) is about 20

N=15

E={}

N=16
GC=if eatingHabit(Mary) is 

overeat then
weight(Mary) is overweight

E={}

N=17
GC=eatingHabit(Mary) is

about 1400−2000 calories 

E={}

E={}

N=9
GC=drinkingHabit(Mary) is moderate

Fig. 1. The CPT of the example. Numbers of the rules are according to those listed in
table 1.

3 Discussion and Summary

Current CW-based QA frameworks do not provide a systematic approach for
extracting and combining the information in knowledgebase. In this work we
developed a methodology that automates the process of inference in a CW-
based QA system. The core of the methodology is the generation of a constraint
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propagation tree which extracts and organizes the knowledge relevant to the
query. CPT also helps to achieve a more robust answer by identifying the missing
information in knowledge base in response to a query.

Two issues remain to be addressed as a future work to scale up this method-
ology to a larger domain knowledgebase such as World Wide Web.

1. Time performance. An open domain QA system contains a vast dynamic
knowledge source with various types of questions posed to the system. In
such systems CPT can be excessively large and it may not be effective to
generate and evaluate CPT for each question posed to the system. Thus
appropriate techniques should be developed to store data from a previously
generated CPT in an indexed database for use in later queries. This data
should also be kept updated due to the highly dynamic nature of the web. In
order to reduce the size of CPT, the generation algorithm can be modified
to stop searching after finding a reasonable answer according to the user
expectations.

2. Commonsense knowledge. The commonsense knowledge is usually generic,
context dependent and uncertain (for example the famous proposition birds
can fly). Including commonsense knowledge to the knowledgebase introduces
nonmontonicity and adds a great complexity to the reasoning process. Deal-
ing with commonsense knowledge is an open research area and is studied
under the name of default reasoning [2,3].
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Abstract. In order to respond effectively to the environment uncer-
tainties, autonomous vehicles are generally equipped with sensors. The
proposed car guidance system is equipped with an intelligent controller,
based on fuzzy logic, which calculates the speed and wheels orientation
in order to follow a path while it is avoiding unknown obstacles. Better
fluidity of driving are obtained using future-path, car dimension and car
position prevision. Vehicle symmetries also speed-up and simplify the
guidance system reducing the inputs and the rules numbers.

Keywords: Fuzzy Logic, Intelligent Guidance, Obstacle Avoidance.

1 Introduction

Autonomous vehicle moves in two main types of environment: simple and obstacle-
free or complex and unknown (with moving obstacles). The second case requires
Obstacle Avoidance (OA) strategies for safe navigation. The literature [3], [5] also
considers the bounded steering wheel orientation angle speed since, if the cruise
speed is high, a curvature discontinuity of the path cannot be followed correctly
and the path will be lost. In [12], a dynamic window approach provides a local
vs. global relationship and is used to store obstacles in memory for later anal-
ysis. In [9] a speed-dependent OA by dynamic active regions algorithm is pre-
sented. Heuristics along with additional feedback from sensors are used to provide
motion and obstacle locations as seen in [6]. Other OA decisions are to use the
cell-decomposition methods of VFH* [13] and Sentzs A* algorithm [7]. The prob-
abilistic roadmap planners [8] output is a roadmap graph that connects, as nodes,
points (called waypoint W) that are collision-free vehicle placements used to find
out the best path that drives the vehicle to the target. In [1] a Continuous Curva-
ture (CC) path planner algorithm for car-like vehicles is presented. The curvature
and the sharpness of the path are considered but not the consequent path follow-
ing problem. In [11] the line-of-sight (LOS) guidance scheme is applied in order
to allow waypoint following diminishing the heading error in a finite time inter-
val. In [2], a variable structure control based on fuzzy logic for car-like vehicle is
presented. In [5], a fuzzy path-tracker for car-like vehicles is presented. The path
to be followed is pre-encoded in order to obtain a matrix of point and angles used
to calculate the fuzzy inputs as angle errors. In [10], hybrids control strategy for
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bounded-curvature vehicle that follow path (made of circular arc or line trajecto-
ries) with constant speed is presented.

In this paper, a car Guidance System (GS) with intelligent dynamic OA and
a pseudo continuous Curvature Optimizer (CO) is presented. It is based on the
Fuzzy Car Driver (FCD) OA controller and a CO that allows the following of
paths (generated by an outside roadmap planner) with optimized curvature pro-
file. The FCD takes place, gradually, when there are obstacles nearby otherwise
the CO deforms the trajectory generated using the LOS in order to optimize
the vehicle trajectory. In order to engage FCD gradually two adjustable wait are
used (waitfuzzy and waitLOS). These solutions allow efficient decomposed path
following since the controller calculates the speed and the steering angle with-
out vehicle parameters knowledge and model dependencies. The vehicle speed
is calculated in real-time, instead of constant speed, in order to reject noise,
wheels slipping and curvature discontinuity. Considering future positions and
distances with respect to the front and the backs of the vehicle gives also better
performance with long vehicles.

The developed GS is implemented using the VVM [4] that allows, real-time,
realistic vehicle dynamics simulation and real vehicle control. The GS is tested,
with some VVM experiments, in order to evaluate its performances in realistic
real-time motion control applications.

2 Car-Like Vehicles Models and Sensor

The kinematics model [5], [3] of non-holonomic car-like vehicle (see Fig. 1.a), in
the hypothesis of rolling without sliding, can be described as a bicycle-vehicle
(with the limitations |φ̇| < φ̇Max = 0.5r/s and |φ| < φMax = 1.2r):

ẋ = v cos(φ)cos(θ) ẏ = v cos(φ)sin(θ) θ̇ = v sin(φ)/L . (1)

where (x, y) are the coordinates of the mid-point P of the rear axis, L is the
distance between the front and rear axles, θ is its orientation angle, φ is the front
wheels average orientation with respect to θ and v is the driving speed.

A reliable prediction of the vehicle future position Pt2 (at time t2 > t1) with
respect to the last state Pt1 can be done considering constant φ and v. In these
hypotheses, Pt2 will be in position (see Fig. 1.b): A (if φt1 = 0), in B (if φt1 > 0)
or in C (if φt1 < 0). The Pt2 can be calculated as Pt variation ΔP(ΔX, ΔY)

a b

Fig. 1. Car-like vehicle schema and future position prediction
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with respect Pt1 during the time interval dt = t2− t1. The θ variation Δθ, from
(1), can be written as:

Δθ = v ∗ sin(φt2)/L− v ∗ sin(φt1)/L . (2)

From (2) Δθ ∼= 0, then can be written: θt2 ∼= θt1 + Δθ ∼= θt1. Then, from (1)
(ΔX,ΔY) can be calculated as (prediction began exactly when t2∼=t1):

ΔX = v ∗ cos(φt1) ∗ cos(θt1) ∗ ds . (3)

ΔY = v ∗ cos(φt1) ∗ sin(θt1) ∗ ds . (4)

where ds (used to control |ΔP |) depend on dt, v and environment complexity.
Since the value of cos(φt1), sin(θt1) and cos(θt1) are known, the computation of
(3) and (4) are fast and well suited for real-time computation.

The sensor range is typically a cone (whose amplitude∼= 30o) centered on its
pointing direction which has a fixed angular offset δ with respect to θ. Then an
obstacle can be approximated with a point placed (on the pointing direction)
at the minimum distance (LateralDist) reported by the sensor (see Fig. 2.a). Its
position, detected, as example, by the right (left is analogue) side sensor can be
calculated, with respect Pt, as (see Fig. 2.b):

ΔXoRight = SensorXR + LateralDistRight ∗ cos(θ + δR) . (5)

ΔY oRight = SensorYR + LateralDistRight ∗ sin(θ + δR) . (6)

where (SensorXR, SensorYR) is the right sensor positions with respect Pt.

Remarks: A) Since the (3), (4) and (5), (6) are increments with respect Pt, for
the OA, the Pt given from GPS is not necessary. It is a good feature of the OA
since in narrow places the GPS signal can be lost. B) Happens that unrecognized
obstacle (because it is out of the front sensor range) collide with the vehicle back.
For this motivation, the obstacle data are stored in order to consider also the
dimension/length of the vehicle using reliable data generating realistic obstacle
position previsions. As example in Fig. 2.b an obstacle detected since t0, at the
time t4 is unrecognized by the left sensor. In this case, the last known obstacle
position, at t3, can be used to decide were we go on time t5.

a b

Fig. 2. Vehicle sensor specifications (a) and its employment with obstacle (b)
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3 Intelligent Guidance System

The GS must control the vehicle so that it follows the roadmap. If near the
vehicle there are obstacles the FCD calculates φ (phi) and v (ws) which allows
waypoint-following while avoiding obstacles. Better driving capability are ob-
tained processing the distances of the vehicle from the Wi and the obstacles,
given by the Distance Computer (DC), in order to obtain simple inputs for the
FCD. The GS, at time t, works as follow (see the schema on Fig. 3):

- it calculates the estimated position of obstacles (see Fig. 2);
- it calculates the future position Pt+dt of the vehicle (see Fig. 1);
- are calculated the distances, which the sensors would recognize in Pt+dt;
- it decides which side of the vehicle is more critical;
- the FCD, calculates phi and ws optimizing the future position of the vehicle;
- the LOS calculates the required φd for the obstacle-free path;
- the curvature are optimized by the CO;

Fig. 3. Guidance System schema

Remark: The time interval dt vary depending on the situation (ex. it increase if
there are no obstacles and decrease vice versa. It also depends on the dynamism
of the environment (dt is great if the obstacles are slow, and small vice versa.
Conversely, if the environment is highly dynamic, dt must be small in order to
consider the obstacles stationary.

The LOS guidance scheme [11] calculates the steering φd required by the
vehicle to reach the desired vehicle position Wi(xd, yd). The φd is computed as
(see Fig. 4.a):

φd = k ∗ (ψd − θ) = k ∗Δφ . (7)

where k is a constant and ψd is the desiderate angle between Wi and Pt(x, y)
(i.e. the desired vehicle direction) given by: ψd = tan−1 [ (yd-y) / ( xd-x) ].

The classic waypoints following, with arc of circle, produce a path made of
constant-curvature elementary trajectory that drives the vehicle from Wi−1 to
Wi. Unfortunately, it does not take in consideration the next-waypoint (Wi+1)
approach and then the vehicle orientation (near Wi) can be not well suited to
reach Wi+1 (see circular trajectory from W1 to W2 of Fig. 4.b). An alternative
trajectory that reaches the Wi with an optimal vehicle orientation that mini-
mizes curvature discontinuity can be obtained considering Wi+1 approach. The
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a b

Fig. 4. LOS and CO. The trajectory i=2 (radius rC1) have a bad approach for Wi+1.

CO basic idea is: knowing if Wi+1 requires a steering to the right or left, alter
the trajectory of the vehicle so as to facilitate the arrival to Wi+1 before Wi. The
trajectory is altered, near the Wi, by adding to φd the angle βi if dwi > di/2
or -βi if dwi+1 < di/2 (where βi=αi/2, αi is the angle of rotation led by 3
consecutive Wi, di is the distance Wi−1 ↔ Wi and dwi the distance Pt ↔ Wi).

Figure 5.a/b shows two cases in witch the vehicle sensors find obstacles. If the
vehicle side (vSide) that has the biggest risk to collide (i.e. the side where there
are smaller distances from the obstacles) is known, the OA can be simplified
focusing on this side since gives rise to more dangerous situations. Then the
GS will avoid the nearest side-obstacles and go where it has a greater margin
of movement (i.e. lowest risk). The FCD consider only the half vehicle sensors
data of vSide: the front plus the vSide instead of all. Then, with N sensors, the
numbers of FCD inputs decrease from N to approximately N/2. Consequently,
the rules to be evaluated decrease significantly in number and complexity and
their evaluation can be very fast. The vSide and the distance LDist are obtained
considering the minimum with a small threshold in order to avoid oscillation:

Fig. 5. Future vehicle position, target classification and FCD specification
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if (LateralDistRight <LateralDistLeft + threshold)|t+dt
then vSide = Right and LDist = LateralDistRight
else vSide = Left and LDist = LateralDistLeft

The current target position Wi, with respect to Pt+dt, is also considered (see
Fig. 5) using the Target-Classification (TClass) variable. Wi position can be:
lateral, front or behind (with respect the obstacle) then:

if (vSide=Right) { if (TargeIsOnFront) then TClass = front;
else if (TargeIsOnRight) then TClass = lateral;
else TClass = behind; }

else if (vSide=Left) { if (TargeIsOnFront) then TClass = front;
else if (TargeIsOnRight) then TClass = behind;
else TClass = lateral; }

Using as inputs the distances LDist, FrontDist (FDist) and the TClass variable
the FCD calculate the values of phi and ws. Since classical FIS is used the fuzzy
rules are in the classical form: if FDist is [ ] and LDist is [ ] and TClas is [ ] then
phi is [ ] and ws is [ ]. The chosen FCD inputs/outputs and MFs are:

- FDist: zero, low, med, high.
- LDist: zero, low, med, high.
- TClass: lateral, front, behind.
- phi: veryLateral, lateral, front, behind, veryBehind.
- ws: zero, low, med, high.
Using the knowledge of the car guidance and reasoning as in Fig. 5.a (i.e.

lateral=left and behind=right) since the case .b is symmetric a very small rule
set can be written (see Fig. 5.c). It is obtained by fusion of many rules in order
to speed up the Fuzzy evaluation. After the fuzzy inference, the sigh of phi must
be changed in order to agree with vSide: if (vSide=Right) ⇒ phi = −phi.

4 Vehicle Guidance System Test with VMM

VVM is a client/server modular environment for vehicle dynamics control and
simulation. Its great advantage is that the same control system is used both for
the simulation and, as it is and with the same software, for the vehicle control.
The GS is implemented extending the built-in VVM modules and also using the
A.I. module for the FCD. In order to perform tests with a realistic car model, the
ODE simulation module is extended with the equation (1) and its limitations.

Two types of test are performed: curvature optimization in simple environ-
ment and OA in complex environment. The GS performances are compared
with a continuous curvature planner that generates trajectory (tagged as ”circu-
lar trajectory”) between consecutive Wi as a curve having the form of a portion
of a circle or straight line.

In Fig. 6, simulated data obtained with VVM, are painted. The vehicle (see
lines tagged as ”GS trajectory”) reaches all waypoints of the path (that can
generate curvature discontinuity even if vehicle steering angle and steering speed
are bounded) avoiding moving obstacles (see ”other vehicles” in Fig.6.b) with a
waypoint approach that avoids curvature discontinuity. The GS is then tested
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a

b

c d

Fig. 6. GS experiments comparing its performance with classical guidance system in
different situations

with simple path (see Fig. 6.c) and complex unstructured environment (see Fig.
6.d). These experiments demonstrates the proposed GS and also its VVM im-
plementation performances since the vehicle reaches all the waypoints with good
precision avoiding all unknown obstacles.

5 Conclusions

In this paper, a synergic combination of a curvature optimization algorithm
and an obstacle avoidance system designed for four wheels car-like vehicles is
presented. The curvature optimization system deforms the vehicle trajectory to



An Intelligent Car Driver for Safe Navigation with Fuzzy OA 343

obtain a better waypoint approach. The obstacle avoidance is based on a fuzzy
controller that use the prevision of the vehicle position and sensor data of the
side of the vehicle closed to the obstacle. The GS is also well suited for long
vehicle since the obstacle avoidance takes in consideration the front and the rear
of the vehicle simultaneously.
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Abstract. We report an application for extending a fuzzy set with new
information to improve recognition rates in a sign language recognition
system. The fuzzy sets in the rule base are provided by experts, based
on linguistic models of sign languages, which are then extended by fuzzy
sets estimated from actual data. The extension algorithm unites an ini-
tial knowledge entity and a piece of new information, which is iteratively
incorporated until convergence is reached. Experiments show that com-
bining prior information and new evidence improves recognition rates
beyond what can be achieved using either body of knowledge by itself.

Keywords: Uncertain knowledge updating, Information fusion, Fuzzy
sets.

1 Introduction

Contemporary sign language recognition systems [1,2], based on machine learning
approaches, have achieved impressive results, but they suffer from a seemingly ir-
reconcilable conflict between incorporating linguistic knowledge and learning ev-
erything from data, as entities learned from data often have no direct linguistic
counterpart and cannot easily be manipulated by humans. Unless we solve this
problem, it is doubtful that the field of sign language recognition can advance
much beyond the current state of the art.

At the core we have the following problem: Given prior knowledge — such as
linguistic information —, how can we extend it with additional evidence from
data? To this end, in this paper we represent information with fuzzy sets, which
have the advantage that the initial body of knowledge can be designed more
easily by human experts than it could with other methods for representing
uncertainty. Then incorporating information from data becomes equivalent to
extending a fuzzy set with new evidence.

Frequently, the extension of prior information is realized through an aggre-
gation procedure involving fuzzy sets. Many proposals for this procedure have
appeared, which focus mainly on the mathematical requirements of the opera-
tors, and on examining the optimistic-pessimistic character of the process [3,4].
In this paper we take a different approach that focuses on the set-theoretic and
pragmatic aspects of extending fuzzy sets [5,6].
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We demonstrate and test this approach within a sign language recognition
system. Such systems provide an ideal test bed, for several reasons: First, we use
large amounts of data, making experimental results more representative. Second,
there exists a wealth of material on sign languages linguistics, so having human
experts devise the initial models and fuzzy sets is a natural approach. More-
over, there are discrepancies between what humans perceive and what happens
physically during the execution of signs, so human-devised models should benefit
greatly from being refined with information taken from data.

2 Fuzzy Sets

Knowledge representation in the sign language recognition system is based on
fuzzy sets [7]; that is, classes of objects in which the transition of membership
is gradual rather than abrupt. Thus, if F is a fuzzy set in a universe U of
discourse, then every member of U has a grade of membership in F between 0
and 1, where 0 represents non-membership and 1 represents full membership.
F is characterized by a membership function μF : U → [0, 1], which associates
with each element x ∈ U a number μF(x) ∈ [0, 1].

A discrete fuzzy set is the set defined over a discrete domain. Given a fuzzy
set F , its support set is defined as the crisp set

SF := {x ∈ U : μF(x) �= 0} . (1)

2.1 Extending Fuzzy Sets with New Evidence

The knowledge updating process enriches the initial fuzzy set with elements from
the new evidence, thereby producing a more general fuzzy set. It can be com-
pared with the initial one within a probabilistic framework, since the probability
distribution over the initial set of elements is enlarged to include new data. This
process manifests itself in a change of the shape of the initial fuzzy set.

More specifically, consider two discrete fuzzy sets F and G, which represent
existing uncertain information and new evidence, respectively. Let T denote the
set of elements in U that belong to the support set of G, but not to the support
set of F :

T := {x ∈ U : μG(x) �= 0 ∧ μF(x) = 0} . (2)

The updating algorithm extends F to a new fuzzy set H, containing all the ele-
ments in F plus elements from T , such that for its support set SH the following
holds:

SH = SF ∪ T ′ where 5 �= T ′ ⊆ T . (3)

This process implements a monotonic information gain for the initial set.
Given the fuzzy set F , and the corresponding possibility distribution {Fi,mi},

we assign the respective basic probability masses m1,m2, . . . ,mnto the focal
elements F1 ⊆ F2 ⊆ . . . ⊆ Fn [8]. Similarly, let G1 ⊆ G2 ⊆ . . . ⊆ Gq be the
corresponding family of focal elements for the fuzzy set G. For the first focal,
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Fig. 1. Updating a fuzzy set from the sign language recognition application with
new evidence. Left to right: Human-generated set (solid) and set generated from data
(dashed); Snapshot of the updating process; Converged fuzzy set after 4 iterations.

which contains all elements with full membership in G, we can locate a focal
element Fk, such that the two sets are disjoint. More formally, there exists an
index k ∈ {1, . . . , n}, such that for some Fk in {F1, . . . , Fn} the following holds:

G1 ∩ Fk = 5 and G1 ∩ Fk+1 �= 5. (4)

Subsequently, we create the family of focals {F1, F2, . . . , Fk ∪G1, Fk+1 ∪G2, . . . ,
Fn ∪ Gq} resulting from the union of the focal elements of the fuzzy set G with
the subset of the focals from the fuzzy set F starting from Fk. To this family we
assign the basic probability masses m1, . . . ,mn from F .

If n − k �= q − 1; that is, if the families of focal elements are not aligned,
either we repeat the final focal element Fn of the fuzzy set F with its mass mn

accordingly divided, or we repeat the final focal Gq. The outcome is a new fuzzy
set H, which represents an extension of F toward the support set of G that also
preserves the existing information in F . The following holds for the support sets:

SF ⊆ SH and SG ⊆ SH. (5)

H represents an information gain over F , induced by the new evidence in G. This
process can be continued by repeatedly extending H (in place of F) with G, until
it converges to the point where further updates have no effect (cf. Fig. 1).

The above-defined number k ∈ {1, . . . , n} indicates the number of permissible
repetitions. The number of these iterations can be considered as an indication of
the conceptual distance of the entities represented by the two fuzzy sets — the
greater the number of repetitions, the more dissimilar are the two concepts [5,6].

2.2 Obtaining New Evidence from Data

Given the possibility distribution {Fi,mi} for μF (xk), we calculate the proba-
bility distribution

PrF (xk) =
n∑
i=k

mi

|Fi|
, (6)

which with the one-to-one correspondence via the recurrence

mn = |Fn|PrF (xn) and mk = |Fk| (PrF (xk) − PrF(xk+1)) (7)
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shows that PrF(xk) is a dual representation of the membership function μF (xk).
Given a list of data points P = {p1, . . . , pn|pi ∈ U}, we estimate its representative
fuzzy set by calculating PrF , via counting how often each xk occurs in P :

PrF (xk) =
|{pj ∈ P|pj = xk}|wk∑n
i=1 |{pl ∈ P|pl = xi}|wi

, (8)

where wi = 1
fi

is a weight that normalizes each estimate by the overall frequency
fi with which xi occurs in U . An example of a human-generated fuzzy set, new
evidence from sign language data, and the generalization toward a new fuzzy set
is shown in Fig. 1.

2.3 Reasoning with Support Intervals

In the sign language recognition application, the fuzzy sets are applied as part of
a rule-based reasoning system implemented in the programming language Fril [9].
Formally, the format of each rule is

((property of_X is f) if
(feature_1 of_X is f1) weight w1 and
· · ·
(feature_n of_X is fn) weight wn): Pos [n1, p1], Neg [n2, p2].

The intervals after the keywords Pos and Neg are probability intervals that
describe the likelihood of the rule and its negation, respectively. For any specific
case on which the rule is evaluated, the degree to which the case satisfies the
prototypical concept represented by the rule, is calculated in three steps:

Each condition of the rule is matched against the relevant data, yielding a
partial probability interval for each respective characteristic. These are combined
into a collective interval for the entire rule through a weighted sum. Finally, the
collective interval is applied to the Pos and Neg intervals in the definition,
giving the final probability interval for the satisfaction of the rule.

More formally, during the evaluation of the rule, a case’s characteristic is
matched against the relevant rule, thus giving a partial probability interval,
support pair, [αi, βi] [9]. In this way, the rule body (set of conditions) is assigned
a probability interval, computed from the formula

[α, β] =

[
S

(
n∑
i=1

wiαi

)
, S

(
n∑
i=1

wiβi

)]
, (9)

where S is a user-defined function, S : [0, 1] → [0, 1], which acts as a filter. This
allows the combination of the conditions of the rule to take intermediate values;
that is, values between those of their disjunction and conjunction.

The degree of rule satisfaction is indicated by a final interval (support pair)
[γ1, γ2] that denotes the probability for the rule to be true, and is calculated as

γ1 =
{
n1β + n2(1 − β) if n1 ≤ n2
n1α + n2(1 − α) if n1 > n2

, γ2 =
{
p1α + p2(1 − α) if p1 ≤ p2
p1β + p2(1 − β) if p1 > p2

. (10)
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(a) Extended (b) Bent (c) Spread (d) Opposed

Fig. 2. Examples of hand configuration primitives. A handshape consists of the com-
position of multiple primitives.

3 Application: Sign Language Recognition System

We now describe a sign language recognition system to test the above algorithm.
The task is to recognize sequences of handshapes from continuous sentences.

3.1 Hand Configuration Model

The hand configurations are recognized from their underlying joint angle repre-
sentation. Note that, in principle, a similar approach can be taken when joint
angles are replaced with other features, such as the ones extracted from video.

Our underlying assumption is that, although joint angles are continuous, a
small set of discrete finger primitives is sufficient for describing the full range of
hand configurations. This assumption is supported by linguistic research [10].

Hand Configuration Primitives. The primitives belong to four orthogonal
groups that describe the finger states, the finger and thumb abductions (spread),
and the thumb rotations (Fig. 2). A complete hand configuration composes five
finger states, three finger abductions, and thumb abduction and rotation.

Each primitive is classified through the values of the involved joint angles,
which in turn are represented by discrete labels, each of which corresponds to
a continuous fuzzy set. As our generalization algorithm requires discrete fuzzy
sets (Sec. 2.1), we quantize the joint angles (which fall between [−π

4 , π]) into a
number of clusters, ranging from 8 to 22, depending on the affected joint.

In order to classify a primitive, we subject the joint angle measurements and
corresponding fuzzy labels to a set of rules. Consider the rule for a bent finger:

((finger X is bent)
(metacarpophalangeal joint_of X is extended_or_bent) and
(proximal interphalangeal joint_of X is bent) and
(distal interphalangeal joint_of X is bent)) : Pos [n1, p1], Neg [n2, p2]

where extended_or_bent and bent are fuzzy sets. Applying these rules to each
data frame yields the support intervals that measure the possibility of each
respective primitive occurring at that particular frame. In summary, constructing
the hand configuration in terms of primitives based on fuzzy joint angle labels
allows us to deal with uncertain or noisy joint angles.
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Hand Configuration Rules. The next layer of rules expresses hand configu-
rations in terms of finger states, with weighted clauses, as discussed in Sec. 2.3.
The weights, at present, need to be assigned by a human expert, chosen such that
they favor the most prominent and most discriminative features of a handshape;
for example, non-curled fingers have larger weights than curled fingers:

((X is_a 1-handshape)
(index finger_of X is extended) weight 0.3
(middle finger_of X is curled) weight 0.15
. . . : Pos [n1, p1]

3.2 Sequences of Handshapes

The rules described in the previous sections calculate the support intervals of
all possible handshapes for each frame. Before making a decision on each hand-
shape in each frame, the recognizer has to apply any constraints on the possible
sequences of handshapes.

For this paper we implemented only a constraint that aims at eliminating fast
oscillations between handshapes. To this end, we let Pr(Hq) = αq+βq

2 where αq
and βq are the endpoints of the support interval associated with the handshape.
Then we calculate the sequence of handshapes of length T :

H1H2 . . .Hn := arg maxHq

T∏
t=1

Pr(Hq,t|Hq,t−1) where (11)

Pr(Hq,t|Hq,t−1) =
{
Pr(Hq,t) if Hq,t = Hq,t−1
ξ Pr(Hq,t) otherwise , (12)

where ξ is a probability less than one that penalizes a change of handshapes.

4 Experiments and Results

The purpose of the experiments was to compare the recognition accuracy using
models provided by a human expert, models purely generated from data, and
the human-generated models augmented with evidence from data.

4.1 Setup

The data set consisted of 499 sentences, between 2 and 7 signs long, and a
total of 1604 signs from the 22-sign vocabulary that was used by Vogler and
Metaxas [11]. These data were collected from the right hand with a Virtual
Technologies CybergloveTM, which records the joint and abduction angles of the
fingers, at 60 frames per second.

To evaluate the proposed approach, we followed Vogler and Metaxas [2] and
split the data into 400 training sentences and 99 test sentences. No part of the
test set was used for obtaining the fuzzy sets with the new evidence; conversely,
no part of the training set was used for the recognition experiments. The data
were labeled, which allowed us to assign each frame to the correct respective
fuzzy sets, and then to calculate their probability duals (cf. Sec. 2.2).
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Table 1. Recognition results. H, D, S, I, N denote the number of correctly recognized
handshapes, deletion errors, substitution errors, insertion errors, and total number of
handshapes in the data set, respectively.

Type of experiment Correct Accuracy Details
Sets designed by human 57.78% 36.68% H=219, D=58, S=102, I=80,

N=379
Sets derived from data 52.54% 37.20% H=198, D=64, S=117, I=57,

N=379
Sets designed by human
extended with sets derived
from data

63.32% 39.05% H=240, D=51, S=88, I=92, N=379

4.2 Evaluation Criteria

The main evaluation criterion was the percentage of correctly recognized hand-
shapes. We distinguish among three different types of recognition errors. Assume
that the correct sequence of handshapes is denoted by A B C. Then a substitu-
tion error, such as A S C, consists of a confusion of one handshape with another.
An insertion error, such as A B I C, consists of the insertion of an incorrect hand-
shape into a sequence of correct ones. A deletion error, such as A C, consists of
the deletion of a handshape from a correct sequence.

The word accuracy constitutes the overall percentage of handshapes that the
recognizer handles correctly. Let H = N − S − D, where H is the number
of correctly spotted handshapes, N is the total number of handshapes in the
test set, S and D are the number of substitution errors and deletion errors,
respectively. Then Acc = H − I , where I is the number of insertion errors.

4.3 Results

The experimental results are given in Table 1. Overall, they show that in this
application, enhancing the fuzzy sets provided by human experts with the ones
derived from the actual data does better than either method by itself. At the
same time, recognition rates are not yet competitive with pure machine learning-
based methods [11,1].

The recognition rates of the experiment with sets derived from data, in the
second row of the table, suggest that the main problem lies not so much with
the data or the extension algorithm, but rather with the chosen representation
of the handshapes in terms of primitives. Therefore, the most promising step
toward improving results likely consists of changing or replacing the primitives
for each handshape, such that the linguistics-based conceptual description of a
handshape matches the actual data better.

5 Conclusions

The algorithm reported in this paper exhibits some interesting properties: It im-
plements information extension as an aggregation of fuzzy information, thereby



Extending Fuzzy Sets for Improving a Sign Language Recognition System 351

preserving existing information. Furthermore, it is based on set theory, which
provides for a certain robustness in its behavior; namely, avoiding point-wise
updating and the problems caused by outliers. Finally, it is realized through a
gradual process, which adds flexibility to the decision maker’s choices.

All these properties make it ideal for combining expert knowledge with infor-
mation derived from data. If results can be improved to the point where they
become competitive with pure machine machine learning-based approaches, it
will mean a giant step forward for the entire field of sign language recognition,
which currently suffers from a severe lack of integration of linguistic knowledge
into recognition systems.
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Abstract. A number of generalizations of answer set programming have
been proposed in the literature to deal with vagueness, uncertainty, and
partial rule satisfaction. We introduce a unifying framework that entails
most of the existing approaches to fuzzy answer set programming. In
this framework, rule bodies are defined using arbitrary fuzzy connectives
with monotone partial mappings. As an approximation of full answer
sets, k–answer sets are introduced to deal with conflicting information,
yielding a flexible framework that encompasses, among others, existing
work on valued constraint satisfaction and answer set optimization.
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Satisfaction.

1 Introduction

Answer set programming [1] (ASP) is a form of non-monotonic reasoning which
is based on the stable model semantics for logic programming [2]. Intuitively,
in calculating answer sets of a logic program (rule base), we are interested in
what can be derived from given facts by applying rules (forward chaining). This
corresponds to a form of skeptical reasoning, where we are only interested in well-
motivated models. When there are no occurrences of negation-as-failure in the
rules, there is exactly one answer set, which corresponds to the unique minimal
model of the rule base. In general, with negation-as-failure, there may be several
answer sets which are defined using stable model semantics.

Various extensions of ASP have been proposed to deal with different facets of
imperfect information, most notably probabilistic extensions to deal with uncer-
tainty and fuzzy extensions to deal with vagueness. Consider, for example, the
following rules:

r1 : bad weather ← rainy
r2 : bad weather ← ∼ sunshine
r3 : bbq ← ∼ bad weather ∧ hungry
r4 : sunshine ← true

� Funded by a joint Research Foundation–Flanders (FWO) project.
�� Research Assistant of the Research Foundation - Flanders (FWO).
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where ∼ is used to denote negation-as-failure. These rules encode that we would
like to have a barbecue, provided that the weather is not bad and we are hungry.
Clearly, concepts such as rainy (dry – drizzle – sprinkle – shower – downpour),
sunshine (open sky – partially clouded – overcast) and hungry can be a matter
of degree. This can be taken into account, by allowing propositions to be true to
a certain degree in [0, 1], interpreting logical connectives using fuzzy logic opera-
tors, and generalizing the notion of an answer set in an appropriate way [3,4,5,6].
To indicate that it is partially cloudy, the fact r4 could then, for instance, be
replaced by

r4 : sunshine ← 0.6

Most existing approaches are limited to standard fuzzy connectives such as t–
norms, negators, and t–conorms. This, however, severely limits the expressive-
ness of the approach, and often more subtle aggregation strategies are desired.

A second problem with existing approaches concerns the treatment of partial
rule satisfaction. While ideally all rules should be completely satisfied, in prac-
tice, available knowledge is often inconsistent (overconstrained). In this case, we
are interested in models that satisfy the available rules to the maximal extent
possible. One possibility, which is, among others, adopted in [4,7], is to assign a
score to each of the rules, indicating to what extent they should at least be satis-
fied. This, however, introduces the problem of choosing optimal values for these
weights, which may be far from trivial, limiting the flexibility thus obtained.

In this paper, we propose a generalization of existing work on fuzzy ASP,
addressing the aforementioned shortcomings. Specifically, we define an answer
set semantics for rules whose body may contain arbitrary fuzzy connectives with
monotone partial mappings. To cope with the problems of using weights for
partial rule satisfaction, we propose a solution which uses variables, rather than
constants, as rule weights, combined with an aggregator expression defining a
preference ordering on solutions. Furthermore we introduce the notion of a k–
answer set, which resembles a similar concept from the field of valued constraint
satisfaction problems (VCSPs) [8].

2 General Fuzzy Programs

Definitions. In the following, let (L,≤) be a bounded, complete lattice of
truth values, and let (∧,→) be a residual pair on L, i.e. ∧ is a t–norm and
→ an implicator such that a ∧ b ≤ c ⇔ a ≤ b → c for all a, b, and c in
L. A function f : Ln )→ L is called acceptable iff for all 1 ≤ i ≤ n, f is
monotonically increasing or decreasing in its ith argument. We will consider rules
over a signature S = 〈L, F,V〉, where F =

⋃
0≤i≤n Fi is a finite set of acceptable

functions such that ∀0 ≤ i ≤ n · ∀f ∈ Fi · f : Ln )→ L, and V is a countable set
of propositions (or variables). We require F2 to contain at least the operators ∧
and →, but it may also contain other residual pairs, as well as other types of
connectives. Throughout this paper, we will use ∧m, ∧p and ∧l to denote the
minimum, product, and �Lukasiewicz t–norms, when L = [0, 1], and →g, →p and
→l to denote their residual implicators.
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A V -valuation, V ⊆ V , is an L-fuzzy set on V , i.e. a V )→ L mapping. The
set E(S) of expressions over the signature S is defined as usual. A subexpression
e′ of e is said to occur positively in e if either e′ = e or e′ occurs positively in
an increasing argument, or negatively in a decreasing argument of e = f(. . .).
Negative occurrences of subexpressions are defined similarly. The Herbrand base
Be of an expression e ∈ E(S) is the set of propositions appearing in e; if all
propositions from Be appear only positively in e then e is called positive. A Be-
valuation is called an interpretation of e. The value [e]I ∈ L of an expression e
w.r.t. an interpretation I is defined by:

[e]I =

⎧⎨⎩
I(e) if e ∈ Be
e if e ∈ F0
f([e1]I , . . . , [em]I) if e = f(e1, . . . , em)

Rules. General fuzzy programs will consist of rules, which are expressions of the
form r = a ← α, with ← a residual implicator, a ∈ L∪V and α ∈ E(S)1. We will
refer to a as the head (consequent) of the rule and to α as the body (antecedent);
we use ∧r to denote the t-norm forming a residual pair with ←. Note that the
head of a rule can either be a variable or a constant. In the latter case, the rule is
often called a constraint. As rules are expressions, the interpretation of a rule is
the interpretation of the corresponding expression, as defined above. We extend
this to sets of rules and define an interpretation of a set of rules {r1 , . . . , rn}
(commonly referred to as a rulebase) as being a Br1 ∪ . . . ∪ Brn-valuation.

Aggregator Expressions. While we are, in principle, mainly interested in
interpretations that satisfy all of the available rules, practical considerations
may lead to weaker requirements. Time restrictions, for instance, may cause us
to prefer interpretations that satisfy the rules to a suboptimal degree, if they
can be found significantly faster. Second, and perhaps more fundamentally, when
there exist no perfect interpretations, we may still be interested in interpretations
that satisfy the rules to the best extent possible.

For example, consider a weighted graph coloring problem, where edges of
a graph are given a weight in [0, 1] indicating how important it is that the
nodes they connect are given a different color. Let eij be the weight of the edge
connecting nodes i and j; for each color c and each node i, we introduce a variable
ci to encode whether i is given color c. Let R be given by (n being the number of

1 Note that we only consider residual implicators to implement rules. However, S–
implicators, for instance, could easily be added as syntactic sugar. Indeed, for any
De Morgan triplet (∧,∨,∼), where ∼ is an involutive negator, we can show that
(k ∈ L)

[a ←s α]I ≥ k ⇔ [a ←r∼ (∼ k ←r α)]I ≥ 1

where ←s and ←r are the S–implicator and residual implicator induced by ∧ and ∼,
respectively. This observation essentially means that we get S–implicators for free
when we have residual implicators.
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nodes, and C the set of all available colors for which an arbitrary total ordering
≤ is defined):

R ={rci : ci ←l 1|1 ≤ i ≤ n, c ∈ C}
∪ {li : 0 ←l 1 − atLeastOne({ci|c ∈ C})|1 ≤ i ≤ n}
∪ {exicc′ : 0 ←l ci ∧m c′i|1 ≤ i ≤ n, (c, c′) ∈ C2, c < c′}
∪ {acij : 0 ←l ci ∧l cj ∧l eij |1 ≤ i < j ≤ n, c ∈ C}

where, for A ⊆ [0, 1], atLeastOne(A) is true iff
∑

a∈A a ≥ 1. Obviously this
function is monotonically increasing and therefore also acceptable. Note that in
this particular example, due to the rules li and exicc′ , each variable ci is only
allowed to take values from {0, 1}. We now want to be able to either find the
optimal (but not necessarily perfect) graph coloring, or the optimal solution that
can be found in a given time frame. To denote the appropriateness of a solution,
we use the concept of an aggregator expression.

Formally, we define an aggregator expression as a positive expression over a
signature SA = 〈P ,FA,RA〉, where P = (OA,≤OA) is a partially ordered set
(preference ordering), FA is a set of operators on OA, and RA is a set of variables
which are called rule propositions. When there is no cause for confusion, we will
usually write ≤ instead of ≤OA .

In the graph coloring example, one possible choice of aggregator is

A = (
∏
i

li) · (
∏
i,c,c′

exicc′) · (
∑
c,i,j

acij)

where we do not care at all to what degree the choice rules rci are satisfied.
Furthermore we insist that the hard constraints li and exicc′ are all satisfied
to degree 1. Indeed, these rules can only be satisfied to degree 0 and 1. As
soon as one of them is satisfied to degree 0, A evaluates to 0. Finally, according
to A, the best solution is the one that maximizes the sum of the degrees to
which the rules acij are satisfied. Note that in this case, P = ([0,+∞[,≤), and
in particular, our preference ordering is total. In general, a large number of
alternative strategies to select Pareto–optimal solutions are available, only some
of which induce preference orderings that are total. Such strategies have been
extensively studied in the context of valued constraint satisfaction problems; see,
for instance, [8,9].

A (general fuzzy) program (short: gfasp) P is then defined as a tuple P =
〈A,R, φ, γ〉, where A is an aggregator expression over the signature SA, R is
a set of rules, φ a bijective mapping from the rule propositions in RA to rules
from R and γ an order-preserving mapping from (L,≤) to (OA,≤). When the
mappings φ and γ are clear from the context, we will usually omit them. In
particular, we write r : a ← α to denote that the rule a ← α corresponds to
rule proposition r. Furthermore, when the aggregator expression A corresponds
to the minimum of all rule propositions, we will usually identify a program with
its set of rules R. The Herbrand Base of such a gfasp–program is denoted as BP
and defined as BP =

⋃
r∈R Br.
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A mapping ρ from R to L is called a rule interpretation of a program P =
〈A,R, φ, γ〉. Note that any interpretation I of the rule base R induces a rule
interpretation ρI , defined by ∀r ∈ R · ρI(r) = [r]I . For the ease of presentation,
we will also write ρ to denote the induced mapping from RA to OA, i.e. we define
∀r ∈ RA · ρ(r) = γ(ρ(φ(r))). A ρ-rule model, with ρ a rule interpretation, is any
interpretation I of R satisfying ∀r ∈ R · [r]I ≥ ρ(r). Finally, an interpretation
I of R is called a k-model of R, k ∈ OA, if [A]ρI ≥ k. Obviously, all ρ1-rule
models of a program are also ρ2-rule models when ρ2 ≤ ρ1 (≤ being the pointwise
extension of ≤OA). Similarly, all k-models of R are also m-models, for any m ≤ k.

3 Answer Sets for General Fuzzy Programs

Not all models correspond to our intuition about reasoning using rules. For
example, while {ai} is a 1-model of the program {a ←g .5} as soon as i ≥ 0.5,
the idea of parsimonious rule application only justifies deriving a.5. Similarly,
the program {a ←g b, b ←g a} admits {ai , bi} as a 1-model for any i ∈ L but
only {a0 , b0} is intuitively acceptable. In general, we insist that a nonzero value
of a proposition in a model must be motivated by a non-cyclic rule, i.e. if al is
to be accepted (l > 0), it must be implied by a rule a ← α for which no element
in the rule body depends (either directly or indirectly) on a. This consideration
also clarifies the role of constraints: since a constraint’s consequent is a constant,
it cannot be used to motivate a valuation of a proposition; rather it constrains
the acceptable valuations of the propositions appearing in its antecedent.

These considerations are captured by the minimal support of a rule, defined
for a rule r: a ← α, a Br-valuation I and a truth value μ as

Is(r, μ) = inf{y ∈ L | (y ← [α]I ) ≥ μ}

Clearly, the minimal support of a rule corresponds to the minimal degree to
which the head must be assumed, given the required satisfaction degree μ. Note
that from the residuation principle, we straightforwardly find that Is(r, μ) =
[α]I ∧r μ. The immediate consequence operator maps interpretations to the in-
terpretations that result after applying each of the rules once. Specifically, for a
set of rules R and a rule interpretation ρ : R )→ L, we define

ΠR,ρ(I)(a) = sup{Is(r , ρ(r)) | (r : a ← α) ∈ R}

Note that a similar consequence operator was introduced in [7]. One can
(easily) verify that the fixpoints of ΠR,ρ are ρ-rule models of P , P being an
arbitrary program with rule base R. To define acceptable models, called answer
sets of programs, we will first deal with the simplest case: positive (or simple)
programs, i.e. programs without constraints such that the bodies of all rules are
positive expressions.

3.1 Simple Programs

It is easy to see that for simple programs, the immediate consequence opera-
tor is monotonically increasing over interpretations, i.e. if I(a) ≤ I ′(a) for every
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proposition a, then also ΠR,ρ(I)(a) ≤ ΠR,ρ(I ′)(a) for every proposition a. From
[10], we then know that the smallest fixpoint Π�

R,ρ of ΠR,ρ exists and can be
obtained by repeated application of ΠR,ρ, starting from the minimal interpre-
tation I0 defined by ∀a ∈ BP · I0(a) = 0. Note, however, that this fixpoint may
not be reachable in a finite number of steps [5,7].

Definition 1. Let P = 〈A,R, φ, γ〉 be a simple program. An interpretation M
is a k-answer set of P iff [A]ρM ≥ k and M = Π�

R,ρM
.

Thus answer sets correspond to the maximal amount of knowledge derivable by
applying rules (i.e. the immediate consequence operator), starting without any
prior assumptions (i.e. the zero interpretation I0). Note that all k-answer sets
are k-models since [A]ρM ≥ k. As the next proposition reveals, there is a close
connection between answer sets and minimal models.

Proposition 1. Let P = 〈A,R, φ, γ〉 be a simple program with an interpretation
M . Then M is an [A]ρM -answer set of P iff M is a minimal ρM -rule model of P .

3.2 General Programs

To define answer sets of general programs, first note that any program can be
transformed to a program without constraints, by introducing a proposition ct
for each truth value t occurring in the heads of the constraints, and adding rules
to ensure that ct is always interpreted by t; due to space restrictions, we omit
the details. Therefore, we will only consider programs without constraints below.
To define answer sets for constraint–free programs, we generalize the Gelfond-
Lifschitz transformation from [2]. Similar to [4], we reduce the program P to a
simple program PM , called the reduct of P w.r.t. a candidate answer set M .

Definition 2. Let I be an interpretation. The simple reduct of a rule r: a ← α,
w.r.t. I, denoted rI , is defined by rI = a ← αI− where αI− is obtained from α by
replacing all negative occurrences of propositions from

Bα by their value in I. Similarly, the simple reduct of a program P w.r.t. I,
denoted P I , is obtained by replacing each rule r by its reduct rI .

Obviously, if P is constraint-free, P I is a simple program as all negative occur-
rences of propositions are replaced by a value from L. It is easy to see that this
is indeed a generalisation of the Gelfond-Lifschitz transformation: in traditional
logic programming the only negative occurrence of a proposition a in a rule body
is by the use of negation-as-failure.

Definition 3. Let P be a program without constraints. An interpretation M is
a k-answer set of P iff M is a k-answer set of PM .

Although the immediate consequence operator for constraint-free programs is, in
general, not monotonic (consider e.g. the program a ←g ∼ b), it turns out that
an answer set of such a program is still a minimal fixpoint.

Proposition 2. Let P be a constraint-free program with a k-answer set M .
Then M is a minimal fixpoint of ΠP,M .

Note, however, that the converse of Proposition 2 does not hold.
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4 Related Work

Over the past years, there have been various proposals for many-valued logic
programming, most of which can be seen as special cases of our approach.

For example, the proposals in [5,6,11] contain general expressions as rule bod-
ies and many-valued predicates, although they do not feature partial rule ful-
fillment. Such approaches can be readily integrated into ours by using a crisp
aggregator expression of the form r1 ≥ 1 ∧ r2 ≥ 1 ∧ · · · ∧ rn ≥ 1.

Other approaches (e.g. [4,7]) do feature partial rule fulfillment, but use weights
to express the relative importance of rules. Furthermore, in the proposal of
Lukasiewicz & Straccia [4] rule bodies are restricted to applications of t–norms
and negators, whereas Damasio et al. [7] only allow monotonically increasing
operators in rule bodies. These proposals are special cases of our approach, in
which a rule of the form a

w← α is transformed to a gfasp rule a ← α∧rw and the
aggregator expression is of the form ∀r ∈ P · r = 1. Due to this observation, our
approach inherits the modelling power of [7], and thus also generalizes, among
others, hybrid probabilistic logic programs [12].

There is also a strong link between our general fuzzy answer set programming
framework and valued constraint satisfaction problems in the sense of [8]. Specif-
ically, it is easy to see that such problems correspond to general fuzzy programs
involving only choice and constraint rules. Finally, note that the underlying idea
of aggregation expressions also bears resemblance to preference-based frame-
works in classical ASP (e.g. [13]). We can show that using suitable constraint
rules, such preference-based frameworks can be encoded in our framework, thus
yielding a generalization of approaches such as [13] to fuzzy ASP.

5 Conclusions

We introduced general fuzzy answer set programs as an extension of fuzzy answer
set programs in the sense of [3]. Rather than restricting rule bodies to be vari-
adic applications of t-norms on (negated) propositions, we allow rule bodies to
be defined in terms of arbitrary operators with monotone partial mappings. This
is made possible by a generalization of the well-known Gelfond-Lifschitz trans-
formation, whose soundness was demonstrated by linking (partial) answer sets
to minimal fixpoints of the immediate consequence operator. Furthermore, we
decoupled the order structure used in the aggregator expression from the truth
lattice used to interpret the rules, opening up various possibilities for modelling
preference amongst rules. In particular, this allows us to define optimal partial
answer sets (i.e. k-answer sets), when full answer sets (i.e. answer sets fulfilling
all rules fully) do not exist, or cannot be found within a reasonable time frame.
The resulting framework turns out to generalize most of the current approaches
to many-valued logic programming, including fuzzy and hybrid probabilistic ex-
tensions to ASP, as well as various approaches to answer set optimization and
valued constraint satisfaction. While we have only discussed our framework from
a theoretical perspective, we intend to explore the use of expressive fuzzy SAT
solvers to find k-answer sets in practice, generalizing a technique proposed in [14].
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Abstract. In the last years microarray technology has revolutionised
the fields of genetics, biotechnology and drug discovery. Due to its high
parallelity, different analyses can be accomplished in one single experi-
ment to generate vast amounts of data. In this paper we propose a new
approach to solve the reverse engineering of regulatory relations task into
gene networks from high-throughput data. We develop an Inference of
Regulatory Interaction Schema (IRIS) algorithm that uses an iterative
method to map gene expression profile values (steady-state and time-
course) into discrete states, so that, a probabilistic approach can be used
to infer gene interaction rules. IRIS provides two different descriptions
of each regulatory relation: the description in which interactions are de-
scribed as conditional probability tables (CPT-like) and descriptions in
which regulations are truth tables (TT-like). We test IRIS on two syn-
thetic networks and on real biological data showing its accuracy and
efficiency.

At URL http://bioinformatics.biogem.it a Matlab implementa-
tion of IRIS is available.

1 Introduction

Although all cells in the human body contain the same genetic material, the
same genes are not active in all of those cells. Studying which genes are active
and which are inactive in different kinds of cells helps scientists understand
more about how these cells work and about what happens when the genes in
a cell don’t work properly. Recent years witnessed an information revolution,
following the advent of novel high-throughput experimentation methods which
encompass biological system on a new scale. Most notable of these methods are
transcription profiling using oligonucleotide chips and DNA microarrays. With
the development of these technologies, scientists can now examine thousands of
genes at the same time.

In this scenario, molecular genetics and biology are rapidly evolving into a
quantitative science, and such as, it is increasingly relying on engineering and
physics to make sense of high-throughput data. Development of reliable data
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analysis methods to infer complex networks of a living system based on high-
throughput data, is a major issue in current bioinformatics research. Algorithms
that solve this task are called reverse engineering algorithms [1]. We can dis-
tinguish two kinds of reverse engineering algorithms: algorithms inferring gene
network topologies and algorithms learning regulation rules.

In literature several approaches to infer gene networks exist. Each proposed
method is based on a particular mathematical formalism as information-theoretic
[2,3], ordinary differential equations [4,5,6] and Bayesian networks [7,8,9]. These
algorithms provide either none or few informations of regulation rules which
represent another fundamental aspect in the complex orchestration of a cell.
Gat-Viks et al. [10] recently proposed a method that can be used for this pur-
pose. The major disadvantage of their approach is that a set of initial regulation
functions must be user-defined which are then integrated with experimental ob-
servations to compute refined regulations. In this way the results are strongly
influenced by the initial user-defined regulations. As an alternative to manual
setting of regulation rules, methods based on Bayesian networks and Maximum
likelihood estimation can be used to infer automatically parameters into directed
acyclic graphs [11,12]. Here we propose an iterative approach to learn regulatory
relations from gene expression profiles. In our approach only the topology of
a network is required, which can be represented by any direct graph including
graphs with cycles.

2 Model for Biological Networks

A biological network can be modeled by a direct graph G(V,E). Each node v ∈ V
represents a gene, which may attain a discrete state D = {0, 1} to represent
inactive and active state respectively. If a gene v ∈ V has at least one parent
then it is called regulatee, we define as Rv the set of its parents (regulators). If a
gene v ∈ V has none parent, then it is a stimulator and we define as Vs the set
of all stimulators. Our biological model follows the notation described in [13].
In addition a matrix M = n × m is used to represent experimental data (n is
the number of genes and m is the number of performed experiments). For each
1 ≤ i ≤ n and 1 ≤ j ≤ m M [i, j] is defined as:

M [i, j]
{

∈ R if the gene i is measured into experiment j
= NaN if the gene i is not measured into experiment j

(1)

3 IRIS Algorithm

In this section we describe our approach to infer regulatory relations in gene
networks from gene expression data. IRIS needs of a network topology G defining
relationships between genes, a gene expression profile matrix data M and a
constant α:

We notice that regulation functions are inferred only for genes that have at
least one regulator (line 1).
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(a) (b)

Fig. 1. (a) Hypothetical experimental matrix data for three genes A, B and C, where
A and B are regulators of C. (b) The experimental sub-matrix data after compacting
action.

Algorithm 1.1 IRIS(G = (V,E), M , α)
1: for each gene g ∈ V \ Vs do
2: INITIALIZATION
3: DISCRETIZATION
4: LEARNING REGULATION FUNCTION
5: end for

3.1 Initialization

Aim of this step is both to handle missing data and to calculate specific param-
eters for each gene. Handling of missing data is done by a compacting action.
In this step we store for each regulation only the experiments in M where all
involved genes are measured (Fig. 1). We refer to this new matrix as sub-matrix
Ms. This compacting action allows to use both steady-state and time-course ex-
pression profiles. We note that a sub-matrix for each regulatee gene exists. For
each row i of the current sub-matrix we also compute the following parameters:
mean μi, standard deviation σi and two thresholds:

upi = μi + α σi and downi = μi − α σi (2)

3.2 Discretization

In this step we map real-valued measurements into discrete states. We fix the
values that can be considered with high likelihood as an active/inactive state
using the thresholds defined in (2) and the derivative concept. Let Ms be a sub-
matrix, we compute the discretized derivative as M ′

s[i, j] = Ms[i, j]−Ms[i, j−1]
for j = 2, . . . ,ms where ms is the number of columns of Ms. Let S be the matrix
of discrete states (S[i, j] contains the discretized state of the real value Ms[i, j]).
We compute a first discretization step using the rule:

S[i, j] =

{
0 if M ′

s[i, j] ≤ 0 AND Ms[i, j] ∈ (−∞, downi]
1 if M ′

s[i, j] ≥ 0 AND Ms[i, j] ∈ [upi, +∞)
NaN Otherwise

(3)
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Fig. 2. Example of matrix S

with 2 ≤ j ≤ ms. Figure 2 shows an example of matrix S for three genes and
for a sub-matrix Ms with 11 experiments.

This discretization rule is very strict so it provides a matrix S where the
values identified as active/inactive can be considered as fixed points. However,
there can be many uncertain values, so we need to recover some of these. We
perform the recovery step as follows:

S[i, j] =
{

0 if S[i, j − 1] = 0 AND S[i, j + 1] = 0 AND Ms[i, j] ≤ μi

1 if S[i, j − 1] = 1 AND S[i, j + 1] = 1 AND Ms[i, j] ≥ μi
(4)

S[i, j] =

⎧⎪⎨⎪⎩
1 if S[i, j − 1] = 1 AND S[i, j + 1] = NaN AND M ′

s[i, j] ≥ 0
1 if S[i, j − 1] = NaN AND S[i, j + 1] = 1 AND M ′

s[i, j] ≥ 0
0 if S[i, j − 1] = 0 AND S[i, j + 1] = NaN AND M ′

s[i, j] ≤ 0
0 if S[i, j − 1] = NaN AND S[i, j + 1] = 0 AND M ′

s[i, j] ≤ 0

(5)

with 2 ≤ j ≤ ms − 1. We use an iterative approach that reapplies (4) and (5)
until either all values have been assigned to a valid active/inactive state or in
the last iteration no recovery action has been performed.

3.3 Learning Regulation Function

In this step we use the matrices S to learn the conditional probability tables
(CPTs) for all regulatee genes. We compute for each regulatee gene also a reg-
ulation function TT-like. To infer the regulation functions CPT-like we use the
theory of the relative frequency [14]. Let us consider a gene v and the set of its
regulators Rv then the matrix S will contain several state assignments for the
genes in Rv and v itself. Let Γv be the set of all possible state assignments of
the variables in Rv, then we have:

freq({rv, v = 0}) = |{rv, v = 0}|
with rv ∈ Γv

freq({rv, v = 1}) = |{rv, v = 1}|
(6)

where |{rv, v = s}| are the occurrences number in S of the state assignment
{rv ∪ v = s}. Let P ({v = s}|{rv}) be the conditional probability of gene v to
attain the state s ∈ D given the state assignment rv ∈ Γv, then we have:
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P ({v = 0}|{rv}) =
freq({rv, v = 0})

freq({rv, v = 0}) + freq({rv, v = 1})
∀ rv ∈ Γv in S

P ({v = 1}|{rv}) =
freq({rv, v = 1})

freq({rv, v = 0}) + freq({rv, v = 1})

(7)

Using the (7) we compute the truth table for each gene, as:

T ({rv}) =

⎧⎨⎩
0 if P ({v = 0}|{rv}) > P ({v = 1}|{rv})
1 if P ({v = 1}|{rv}) > P ({v = 0}|{rv}) ∀ rv ∈ Γv
−1 Otherwise

(8)

where T ({rv}) represents the state response of the regulatee gene v to state
assignment rv of all its regulators.

Note if P ({v = 0}|{rv}) = P ({v = 1}|{rv}) = 0.50 we cannot distinguish
between active and inactive state, so we have a undefined response. Into truth
tables this situation is indicates as −1.

4 Results

In this section the results of our method are shown. In detail, we apply our
approach both on two synthetic networks and on a real biological dataset. The
synthetic networks are generated by SynTReN [15] which allows to generate
both well-known networks and gene expression profile dataset. For both syn-
thetic networks we generate nine datasets using nine different biological noise
levels: 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50. To validate the accuracy
of our approach we use the Expectation Maximization Maximum a Posteriori
(EM-MAP) algorithm [12] as comparison method. The Kullback-Leibler Diver-
gence (KLD) [16] is used to compare the CPTs generated by IRIS with the ones
generated by EM-MAP. The results are depicted in Fig. 3. Both methods use as
input the discrete data computed by IRIS discretization step using as constant
α = 0.11, so they differ just in the CPT computation method.

The first observation is that both methods have KLDs close to zero, which
represent KLD of two equal probability distributions. In this way we show that
the proposed discretization method maps with a good accuracy real values into
discrete states. In addition, for each biological noise level IRIS provides CPTs
that better approximates true probability distribution then EM-MAP. We also
apply IRIS algorithm to solve the regulation function reverse engineering task on
real gene expression profiles [17] for the yeast mitotic cell-cycle. The target gene
network, depicted in Fig. 4, has been extracted from the work of Noman and
Iba [18]. We obtain a description of all regulatory relations for this network from
the literature [19] [20]. This relations can be considered to be true tables for this

1 The value α = 0.1 has been assessed by a tuning process.
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(a) (b)

Fig. 3. Graphical results on synthetic networks (a) E. coli (b) S. cerevisiae

Fig. 4. Cell-cycle network of S. cerevisiae

pathway with an high degree of confidence. We compare the true tables with
the regulatory relations computed by IRIS using again α = 0.1 and we obtain:
79.55% of correct states, 11.36% of incorrect states and 9.09% of undefined
states. The percentage of the correct valuations increases if we don’t consider
the undefined states (which cannot be considered neither correct nor incorrect
states), so we have: 87.50% of correct states and 12.50% of incorrect states.
Using the regulation functions TT-like obtained by IRIS we can also compute
the steady states [13] of the network and two well-known steady states [20]
are obtained (Tab. 1). Integrating the inferred regulation functions CPT-like
in factor graph probabilistic graphical model and using an inference algorithm,
known as sum-product [21], we can compute the posterior distribution of hidden

Table 1. Well-known steady states obtained using the regulation functions TT-like
computed by IRIS algorithm

CLN3 MBP1 SWI6 SWI4 CLN1 CLN2 CLB5 CLB6 SIC1

0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0
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variables given the observed ones. Using this approach we found well-known
features of the network [20,22,23,24,25,26].

5 Conclusions

In this paper a new approach to infer regulatory relations into gene networks
from microarray data has been proposed. This approach provides an iterative
method to translate gene expression profiles into two discrete states (active and
inactive). It allows to describe each gene interaction as CPT and truth table.

We demonstrated on two synthetic networks that our method has a good
accuracy. In detail, The results show that our algorithm (IRIS) provides more
accurate results than EM-MAP algorithm. Moreover, we tested our approach on
real gene expression profiles for the yeast mitotic cell-cycle showing that IRIS
allows to infer regulatory relations with an accuracy of 79.55% and to obtain
findings well-known in literature.
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Abstract. No matter how prepared a population may be, bioterrorism cannot be
prevented: the first clues will always be given by ill people. Temporal analysis
applied to this type of scenarios could be an additional tool for limiting disrup-
tion among civilians allowing for recognizing typical temporal progression and
duration of symptoms in first infected people. We propose the application of a
fuzzy temporal reasoning system we have developed for biomedical temporal
data analysis in different scenarios after a hypothetical attack. The system is able
to handle both qualitative and metric temporal knowledge affected by vagueness
and uncertainty, taking into account in this way the vagueness of patients reports
expressed in natural language.

1 Introduction

In case of biological attacks, the effects of a deliberate release will be obvious if a large
number of troops become ill with similar symptoms at the same time. It may be less
clear in a civilian population [1], supposed to be in a period of peace. For this reason
establishing a diagnosis is critical to the public health response to a bioterrorism-related
epidemic, since the diagnosis will guide the use of vaccinations, medications, and other
interventions [2]. Moreover, new or reemerging infectious diseases have relevant im-
plications: during the past 20 years, over 30 new lethal pathogens have been identified;
for example the emergence of Severe Acute Respiratory Syndrome (SARS) in South-
east Asia rapidly spread to 29 countries in less than 90 days [3]. Emerging disease
outbreaks may be difficult to distinguish from the intentional introduction of infectious
diseases for nefarious purposes, when considering that Genetic Engineering of biologi-
cal warfare agents can alter their pathogenicity, incubation periods, or even the clinical
syndromes they cause. For this reason, it is important to develop automatic Syndromic
Surveillance Systems [2] able to notify as soon as possible the early manifestations of
bioterrorism-related diseases from population monitoring. A preliminary step towards
the design of a component of such a System could be based on the use of temporal
reasoning techniques in order to identify typical temporal progression of diseases.

Taking into account that medical data relative to temporal evolution of diseases are
often affected by vagueness and uncertainty, the temporal reasoning model that seems
to be more adequate for such real application could be the Fuzzy Temporal Reasoning
System (FTR in the following) that we developed in a previous research [4].

The system is based on the integration of temporal information both qualitative and
metric represented as fuzzy constraints in a network and extends a previously proposed
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system [5] that dealt with fuzzy qualitative temporal reasoning. We have applied our
System in several diagnostic problems. In [6], we applied it for discriminating exan-
thematic diseases from temporal patterns of patient symptoms and in [7] we studied
how our system could represent temporal evolutions of symptoms in different patients
affected by SARS, thus making possible to deduce characteristic periods of a new
disease.

Dealing with the study of biological warfare, we address the problem of the auto-
mated analysis of temporal medical data in order to obtain information useful for early
detection of biological attacks. In particular, we will start from the temporal evolution
of five NIAID (National Institute of Allergy and Infectious Diseases) diseases repre-
sented as fuzzy constraint temporal networks. Then we will check the consistency of
temporal data relative to a set of ten patients reports [8] with respect to the previously
considered diseases; we will use the algorithmic methodologies for checking temporal
consistency offered by the FTR system. Two are the main objectives:

– to find the most plausible disease and, once found it,
– to exploit the information in order to infer the possible contagion.

The paper is organized as follows. Section 2 describes the problem of identifying bio-
logical attacks while Section 3 is dedicated to a brief presentation of the FTR System.
In Section 4 the considered diseases are summarized and in Section 5 the results about
temporal analysis of patients data is shown.

2 Identifying Biological Attacks

Early symptoms of disease induced by a biological warfare agent may be non-specific
or difficult to recognize, for example a simple febrile illness; the disease itself could
affect individuals living in widely dispersed areas, who may then present to several
different healthcare providers [1]; once the disease has been diagnosed, appropriate
prophylaxis, treatment, and other measures to decrease spreading, such as quarantine
(for a contagious illness) would be adopted.

As said before, many diseases caused by bioterrorism present with relatively com-
mon features, such as fever or headache, but there are several considerations that can
ease the identification of a Bioterrorism-related scenario [9]:

symptoms: a number of patients that abruptly present to care providers or emergency
rooms manifesting similar and unexpected symptoms;

zoonoses: most of the agents used in biological warfare are diseases that affect animals,
for this reasons sudden deaths between animals can anticipate diffusion among
humans;

unexplained factors: whenever an unusual pattern is detected a biological attack may
be suspected: unexplained deaths for an usually mild disease, unusual exposure
routes for a pathogen, for a geographical area, for a season;

diffusion patterns: higher symptoms manifestations in certain areas, for example
buildings, or in short time periods. The abrupt onset and single peak of cases would
implicate a point-source exposure without secondary transmission [10].

In this paper only considerations about time will be taken into account.
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3 The Fuzzy Temporal Reasoning System

In the present section we will summarize the main characteristics of the FTR System
(for a more detailed description cfr. [4]).

In Allen’s Interval Algebra [11] the temporal qualitative knowledge is represented as
a binary relation between a pair of intervals in terms of atomic relations:

I1 (rel1, . . . , relm) I2

where each rel i is one of the 13 mutually exclusive atomic relations that may exist
between two intervals (such as equal, before, meets etc.).

To deal with vague and uncertain temporal information Allen’s Interval Algebra has
been extended in [5] with the Possibility Theory by assigning to every atomic relation
rel i a degree αi, which indicates the preference degree of the corresponding assignment
among the others

I1 R I2 with R = (rel1[α1], . . . , rel13[α13])

where αi is the preference degree of rel i (i = 1, . . . , 13); preferences can be defined in
the interval [0, 1]. If we take the set {0, 1} the classic approach is obtained.

Intervals are interpreted as ordered pairs (x, y) : x ≤ y of �2, and soft constraints
between them as fuzzy subsets of �2 ×�2 in such a way that the pairs of intervals that
are in relation relk have membership degree αk.

Temporal metric constraints have been extended to the fuzzy case starting from the
traditional TCSPs [12] in many ways [13,14,15]. To represent fuzzy temporal metric
constraints we adopt trapezoidal distributions [4], since they seem enough expressive
and computationally less expensive than general semi-convex functions [16].

Each trapezoid is represented by a 4-tuple of values describing its four characteristic
points plus a degree of consistency αi denoting its height.

Tk =( ak, bk, ck, dk 1 [αk]

with ak, bk ∈ � ∪ {−∞}, ck, dk ∈ � ∪ {+∞}, αk ∈ (0, 1], ( is either ( or [ and 1
is either ) or ]. The points bk and ck determine the interval of those temporal values
which are likely, whereas ak and dk determine the interval out of which the values are
absolutely impossible. The generalized definition of trapezoid extreme increases the
expressiveness of the language.

As far as integration is concerned, we have defined the fuzzy extensions PAfuz ,
PIfuz , IP fuz and IAfuz of the corresponding classical algebras PA, PI , IP and
IA referring to point-point, point-interval, interval-point and interval-interval relations
[17,4,5], we have extended the composition operation and the transitivity table [18]. In
the integrated framework we can manage temporal networks where nodes can represent
both points and intervals, and where edges are accordingly labeled by qualitative and
quantitative fuzzy temporal constraints.

Path-Consistency and Branch & Bound algorithms have been generalized to the
fuzzy case adding some relevant refinements that improve their efficiency. Path-consi-
stency has a polynomial computing time and it is used to prune the search space in the
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Branch & Bound algorithm; however for real world applications tractable subsets of re-
lations such as those belonging to the Convex Pointizable Algebra SAc should be used,
since in that case Path-consistency is sufficient to find the minimal network [19].

4 Biological Agents

Before presenting the application of the Temporal Reasoning system it is useful to
briefly describe the biological agents that will be considered.

4.1 NIAID “Category A” Main Diseases

NIAID (National Institute of Allergy and Infectious Diseases) is the primary Institute at
NIH, the US National Institute of Health, for emerging infectious diseases research, in-
cluding research on agents of bioterrorism. This institute has grouped biological agents
in three categories according to their ease of use for a biological attack; the most dan-
gerous are in Category A (Table 1) and are agents that can be easily disseminated or
transmitted person to person, that have high mortality and can cause public panic and
social disruption, therefore needing special action for public preparedness.

Table 1. Category A agents

• Bacillus anthracis (Anthrax)
• Clostridium botulinum toxin (Botulism)
• Yersinia pestis (Plague)
• Variola major (Smallpox) and other pox viruses
• Francisella tularensis (Tularemia)
• Viral hemorrhagic fevers (VHF)

We have considered the timelines of five diseases: Anthrax, Tularemia, Smallpox,
Plague and Ebola. These timelines can be obtained from temporal characteristics of the
diseases themselves and are reported in Figure 1. In the following just Anthrax and
Plague are described.

Anthrax (Bacillus anthracis). Anthrax is one of the most serious diseases: when in-
haled it can be quite lethal [9].

Most of the early symptoms of inhalation Anthrax are similar to those for other infec-
tious diseases, making a differential diagnosis difficult during flu season, for example
[20]. The distribution of the incubation period for inhalational Anthrax can be relatively
broad as observed in Sverdlovsk (2-43 days); in any case, it does not extend more than
60 days. The clinical presentation has been described as a 2-phases illness: the nonspe-
cific prodrome for Anthrax may last from several hours to several days [2]. The second
phase develops abruptly, with sudden fever, dyspnea, diaphoresis, and shock.

Case fatality rates of 80% or more, with nearly half of all deaths occurring within 24
to 48 hours, is highly likely to be Anthrax or pneumonic plague. A temporal constraint
network for modelling Anthrax can be composed by four vertices: the contagion (1),
the first symptom (2), the worsening phase (3) and the death or recovery.

The constraints, deduced from the previous description, are expressed in hours.
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Fig. 1. Timelines for the considered diseases; for each disease the incubation period, the worsen-
ing period and the death have been represented (in days)

– Incubation lasts no more than 60 days: 1 {(−∞,−∞, 1440, 1440]} 2
– First phase lasts from several hours to several days: 2 {(6, 12, 24, 96)} 3
– Death occurs within 24 to 48 hours: 3{(12, 24, 48, 60)} 4

Plague (Yersinia pestis). Plague is of great concern in a biological attack scenario,
since it is available around the world, it is easy to produce and disseminate it through
aerosolization; moreover, it causes high fatality rates and can rapidly spread during an
epidemic [21]. Vaccine has limited efficacy following aerosol dispersion [9].

A pneumonic plague outbreak would result with symptoms initially resembling those
of other severe respiratory illnesses. Exposure to aerosolized Y. pestis results in pneu-
monic plague, which has a typical incubation period of 2 to 4 days (range 1-6 days).

The fatality rate of patients with pneumonic plague when treatment is not com-
menced within 24 hours of symptoms onset is extremely high [21]. In modelling plague
constraint network notice that second phase is almost immediate, therefore, assuming
that the same vertices are used for all diseases, the constraint between vertex 3 and 4
could be:

3{before[0.5],meets[1.0]}4
Notice that in the description of Anthrax fuzzy metric constraints were used, while

here also a qualitative fuzzy temporal constraint has been specified. This shows that a
user can represent the temporal knowledge as it is available.

5 Temporal Analysis

To develop a general framework for automated temporal analysis of biological warfare
data different aspects can be considered. Here first we apply the solver to match tempo-
ral data coming from patients with the typical evolution of the five diseases previously
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cited in order to identify the most plausible disease. Second, when the disease has been
selected its characteristic development is used to infer the contagion period.

5.1 Patients Reports

Fig. 2. Timelines for patients (S = first symptom, H =
hospitalization, W = worsening, D = death/discharge)

We consider a set of medical data
concerning 10 patients reports [8].
These descriptions contain tempo-
ral information that can be mod-
elled using a temporal constraint
network according to the FTR rep-
resentation system.

The timetable of all the ten pa-
tients is shown in Figure 2. In the
following we report as a detailed
example the description and the
modelling of the first patient.

Patient 1. On October 2, 2001,
a 63-year-old Caucasian person
awoke early with nausea, vom-
iting, and confusion and was
taken to a local emergency room
for evaluation. His illness, which
started on September 27 was
characterized by malaise, fatigue,
fever, chills, anorexia and sweats. [...] On hospital day 2, penicillin G, levofloxacin,
and clindamycin were begun. He remained febrile and became unresponsive to deep
stimuli. His condition progressively deteriorated, with hypotension and worsening re-
nal insufficiency. The patient died on October 5.

A temporal constraint network for modelling, for instance, Patient1 can be composed
by five vertices:

1. the origin of time t0; 4. hospitalization (H);
2. first symptom (S); 5. death / discharge from hospital (D).
3. worsening (W);

The constraints, deduced from the previous reports and expressed in hours from Jan
1 (t0), can be represented as:

• 1 [6456, 6456, 6480, 6480] 2 (on Sep 27)
• 1 [6576, 6576, 6600, 6600] 4 (on Oct 2)
• 1 [6624, 6624, 6648, 6648] 3 (on Oct 4)
• 1 [6648, 6648, 6672, 6672] 5 (on Oct 5)

Now, to find the most plausible disease we combine the patients networks with the
network of each agent. In this way, by means of a consistency analysis, we can have an
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idea of the disease that has the highest compatibility with the considered scenario and
then infer the contagion period.

Assuming that the outbreak is located in a single source, all patients should become
ill within the incubation period. Applying the FTR system it results that Anthrax is the
only disease among the 5 considered which is consistent with all patients; for example
the Plague incubation period is too short to fully accommodate a range of 1 month
between the appearing of the symptoms in the patients. This inference confirms the
hypothesis about Anthrax found by laboratory tests [8].

Then, taking into account that Anthrax incubation lasts no more than 60 days and that
symptoms in all patients appeared from September 24 to October 26, the FTR system
can deduce that contagion of all these patients could have occurred from the end of July
to few days before September 22.

6 Conclusions

In this paper we have studied how to develop a Temporal Reasoner for an automatic
Syndromic Surveillance System able to notify as soon as possible the early manifes-
tations of bioterrorism-related diseases from population monitoring. To this aim the
detection of temporal characteristic features become an important aspect that we have
addressed using the Fuzzy Temporal Reasoning System. This system has allowed in-
ferring information about possible contagion period in an Anthrax attack scenario hap-
pened in U.S. in 2001.

As future directions are concerned, we intend to enrich the analysis capabilities of
the FTR system for example to identifying clusters in contagion dynamics. In this way
we aim to develop a more sophisticated system to face this global threat.
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Mâıtre, Henri 12
Mart́ın, Javier 52
Mart́ınez-Jiménez, Pedro 229
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Valenčáková, Veronika 85
Valenti, Cesare 221
Vanegas, Maria Carolina 12
Vermaas, Luiz Lenarth G. 312
Vermeir, Dirk 352
Versaci, Mario 171
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