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Abstract. We introduce AdaptPD, an automated physical design tool
that improves database performance by continuously monitoring changes
in the workload and adapting the physical design to suit the incoming
workload. Current physical design tools are offline and require specifi-
cation of a representative workload. AdaptPD is “always on” and in-
corporates online algorithms which profile the incoming workload to
calculate the relative benefit of transitioning to an alternative design.
Efficient query and transition cost estimation modules allow AdaptPD
to quickly decide between various design configurations. We evaluate
AdaptPD with the SkyServer Astronomy database using queries sub-
mitted by SkyServer’s users. Experiments show that AdaptPD adapts to
changes in the workload, improves query performance substantially over
offline tools, and introduces minor computational overhead.

1 Introduction

Automated physical design tools are vital for large-scale databases to ensure op-
timal performance. Major database vendors such as Microsoft, IBM, and Oracle
now include tuning and design advisers as part of their commercial offerings.
The goal is to reduce a DBMS’ total cost of ownership by automating physi-
cal design tuning and providing DBAs with useful recommendations about the
physical design of their databases. However, current tools [1,2,3,1] provide limited
automation; they take an offline approach to physical design and leave several
significant decisions during the tuning process to DBAs. Specifically, DBAs need
to explicitly specify representative workloads for the tuning tool. DBAs are also
required to know when a tuning session is needed and guesstimate the relative
benefit of implementing the recommendations.

Complete automation is a critical requirement of libraries which will soon
become data centers for curation of large scientific data. A notable example is
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the Sloan Digital Sky Survey (SDSS) [4] project whose data will soon be curated.
The project receives a diverse workload, which exceeds a million queries every
month. As such, finding a representative workload is challenging because query
access patterns exhibit considerable evolution within a week [5].

The straightforward approach of running an offline tool after each query or
invoking it periodically for continuous evaluation of physical design achieves most
of the automation objectives. However, this approach requires further tuning by
a DBA to ensure that the tool does not react too quickly or slowly and result
in poor design choices. Recent research [6,7,8] on the online physical design
problem focuses on index design. Bruno and Chaudhari [8] infer costs and plan
properties during the query optimization phase to efficiently decide between
various index configurations in an online fashion. In this paper, we focus on
vertical partitioning, which is complementary to index selection. In SDSS and
other scientific databases, vertical partitioning is often used because it does not
replicate data, thereby reducing space requirements [1].

Contributions. To provide complete automation, we model the physical design
problem in AdaptPD as an online problem and develop algorithms that minimize
the combined cost of query execution and the cost of transitioning between con-
figurations. We also develop efficient and accurate cost estimation modules that
reduce the overhead of AdaptPD. AdaptPD is evaluated within the Astronomy
database of SDSS. Experiments indicate up to two fold improvement in query
response time when compared with offline tuning techniques.

We develop online algorithms that search the space of physical design alter-
natives without making assumptions about the workload. Analysis shows that
the algorithm provides a minimum level of guarantee of adapting to workload
changes. Current tools provide such guarantees only for two configurations.

Our algorithms assume a general transition model in which transition costs be-
tween configurations are asymmetric and positive. This is in contrast to current
works for index design, which assume a constant cost of creating a physical de-
sign structure and zero cost of deleting them [8]. We validate our model through
experiments and show that transition costs are asymmetrical and the asymmetry
is bounded by a constant factor.

We develop a novel “cache-and-reuse” technique for query cost estimation.
The technique caches distinct query plans that do not change across several con-
figurations and reuses the plans for estimating query costs. By reusing cached
plans, the technique minimizes computationally-intensive optimizer invocations
by as much as 90%. Current tools, both offline and online, employ no such meth-
ods for query estimation and are therefore much slower to run. We also develop
the first-known technique, based on bulk-inserts, for estimating the cost of tran-
sitioning from one configuration to another. In current online tools, transition
costs are either fixed or assigned arbitrarily.

Our online vertical partitioning techniques have applicability beyond the au-
tomation of curated relational databases. For example, our algorithm for the re-
grouping of columns can also provide automation for column-store databases [9].
In particular, the algorithm is independent of whether the database is
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implemented as a row-store or a column-store. The techniques also have ap-
plicability in schema design of proxy database caches. We recently showed that
inefficiencies in the physical design of cached objects offsets some of the benefits
of deploying a cache and automated physical design can recoup that loss [10].

2 Related Work

Automated physical design tools use cost estimates from the optimizer or ana-
lytical I/O cost-based models to evaluate attribute groupings [1,2,3] for a given
query workload. These solutions are offline, i.e., they assume a priori knowl-
edge of the entire workload stream and therefore provide a single, static physical
design for the entire workload.

Current research [7,8] emphasizes the need for automated design tools that
are always-on and, as new queries arrive, continuously adapt the physical design
to changes in the workload [11]. Quiet [6] describes an incremental adaptive al-
gorithm for index selection which is not fully integrated with the optimizer. In
Colt [7], Schnaitter et al. present a similar algorithm which relies heavily on the
optimizer for cost estimation. Both approaches do not take into account transi-
tion costs. Bruno et al. present a formal approach to online index selection [8]
that takes into account transition costs. Their algorithms are limited to choos-
ing among configurations in which the only difference is the set of indices being
used. Our core algorithm is general purpose in that physical design decisions
are not limited to index selection. In this paper, the system is developed for
configurations that are vertical partitions. We also assume that transition costs
are asymmetric which is not the case in [8].

Our formulation is similar to that of task systems introduced by Borodin et
al. [12]. Task systems have been researched extensively, particularly when the
transition costs form a metric [12]. Our costs are not symmetric and do not
form a metric. This asymmetry in transition costs exists because the sequence
of operations (i.e. insertion or deletion of tables or columns) required for making
physical design changes in a database exhibit different costs. The Work-Function
algorithm [13] is an online algorithm for such asymmetrical task systems, but it
is impractical with respect to the efficiency goals of AdaptPD. The algorithm
solves a dynamic program with each query that takes θ(N2) time, even in the
best case, in which N is the number of configurations. In AdaptPD we present
a simpler algorithm that takes O(N) time at each step in the worst case.

Read-optimized column-stores have been used for commercial workloads with
considerable success [9,14]. They perform better than row-stores by storing com-
pressed columns contiguously on disk. Column-stores, however, pose several
hurdles for SDDS implementation. The implementation is well-optimized for
commercial row-store databases on existing workloads and a complete migra-
tion to column-store is prohibitively expensive. Moreover, it consists of mostly
floating point data that are not compressible using the RLE and bitmap com-
pression schemes used by column-stores, thereby eliminating a crucial advantage
of column-store. Our solution is an intermediate step at the storage-layer that
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performs workload-based regrouping of columns on a row-store and avoids in-
creased tuple reconstruction cost associated with a column-store.

Our query cost estimation module is similar to other configuration paramet-
ric query optimization techniques, such as INUM [15], and C-PQO [16]. These
techniques exploit the fact that the plan of a query across several configurations
is an invariant and can be reused to reduce optimizer calls. These techniques
reuse the plans when configurations are limited to sets of indices on tables. We
extend plan reuse to configurations that correspond to vertical partitions.

3 The AdaptPD Tool

The AdaptPD tool automates several tasks of a DBA. The DBA often per-
forms the following tasks to maintain a workload-responsive physical design: a)
Identifies when workload characteristics have changed significantly such that the
current physical design is no longer optimal. b) Chooses a new physical design
such that excessive costs are not incurred in moving from the current physical
design, relative to the benefit. The AdaptPD tool performs these tasks in an
integrated fashion by continuously monitoring the workload at the granularity
of a query; DBAs often monitor at the granularity of thousands of queries. It
uses cost-benefit analysis to decide if the current physical design is no longer ef-
ficient and a change is required. The tool consists of three components : the core
algorithm behind adaptive physical design (Section 4), a cost estimator (Section
5), and a configuration manager (Section 6).

The core algorithm solves an online problem in which the objective is to adap-
tively transition between different database configurations in order to minimize
the total costs in processing a given query sequence. Given a data model, let
D = {o1, . . . , on} be the set of all possible physical design structures that can
be constructed, which includes vertical partitions of tables, materialized views,
and indices1. A database instance is a combination of physical design struc-
tures subject to a storage size constraint T and is termed as a configuration.
Let S = {S1, . . . , SN} be the set of all possible configurations on D. The cost of
processing a query q in a configuration Si is denoted q(Si) (if q cannot be pro-
cessed in Si we set q(Si) = ∞). Often it is necessary to change configurations to
reduce query processing costs. The cost for transitioning between any two given
configurations is given by the function d : S × S → �+. d is any function that
satisfies the following properties:

1. d(Si, Sj) ≥ 0, ∀i �= j, Si, Sj ∈ S (positivity);
2. d(Si, Si) = 0, ∀i ∈ S (reflexivity); and
3. d(Si, Sj) + d(Sj , Sk) ≥ d(Si, Sk), ∀Si, Sj , Sk ∈ S (triangle inequality)

In particular, d does not satisfy the symmetry property, i.e.,∃Si, Sj∈ Sd(Si, Sj)�=
d(Sj , Si). Asymmetry exists because the sequence of operations (i.e. insertion or
deletion) required for making physical design changes exhibit different costs.

1 In [11], physical design structures are referred to as access paths.
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Given σ = q1, . . . , qn, a finite sequence of queries, the objective in AdaptPD
is to obtain a sequence of configurations S = (S0, S1, ..., Sn), Si ∈ S such that
the total cost of σ under S is minimized. The total cost is defined as

cost(σ, S) =
n∑

i=1

qi(Si) +
n−1∑

i=0

d(Si, Si+1), (1)

in which the first term is the sum of costs of each query in σ under the cor-
responding configuration and the second term is the total cost to transition
between configurations in S. Note, if Si+1 = Si there is no real change in the
configuration schedule. An offline optimal algorithm OPT knows the entire σ and
obtains a configuration schedule S with the minimum cost. An online algorithm
ALG for AdaptPD determines S = (S0, ..., Sn) without seeing the complete
workload σ = (q1, ..., qn). Thus, ALG determines each configuration, Si, based
on the workload (q1, ..., qi) seen so far.

In this paper we focus on configurations that arise from different vertical
partitions in the data model [1]. Let R = {R1, . . . , Rk} be the given set of
relations in the data model. Each configuration S ∈ S now consists of a set
of fragments F = {F1, . . . , FN} that satisfies the following two conditions: (1)
every fragment Fi consists of an identifier column and a subset of attributes of
a relation Rj ∈ R; and (2) each attribute of every relation Rj is contained in
exactly one fragment Fi ∈ F , except for the primary key.

4 Algorithms in AdaptPD

In this section we describe two online algorithms for the AdaptPD tool: OnlinePD
and HeuPD. OnlinePD provides a minimum level of performance guarantee
and makes no assumptions about the incoming workload. HeuPD is greedy and
adapts quickly to changes in the incoming workload.

4.1 OnlinePD

We present OnlinePD, which achieves a minimum level of performance for any
workload. In particular, we show its cost is always at most 8(N − 1)ρ times that
of the optimal algorithm, where N is the total number of configurations in the
set S and ρ is the asymmetry constant of S. Further, to achieve this performance,
OnlinePD does not need to be trained with a representative workload. OnlinePD
is an amalgamation of algorithms for two online sub-problems: (1) the on-line
ski rental problem and (2) the online physical design problem in which the cost
function d(·) is symmetrical. We first describe the sub-problems.

Related Problems. Online ski rental is a classical rent-or-buy problem. A
skier, who does not own skis, needs to decide before every skiing trip that she
makes whether she should rent skis for the trip or buy them. If she decides to
buy skis, she will not have to rent for this or any future trips. Unfortunately, she
does not know how many ski trips she will make in future, if any. This lack of
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Fig. 1. Example of conversion from asymmetric transition costs to symmetric costs

knowledge about the future is a defining characteristic of on-line problems [17].
A well known on-line algorithm for this problem is rent skis as long as the total
paid in rental costs does not match or exceed the purchase cost. Irrespective of
the number of future trips, the cost incurred by this online algorithm is at most
twice that of the optimal offline algorithm.

If there were only two configurations and the cost function d(·) satisfies sym-
metry, the OnlinePD problem will be nearly identical to online ski rental. Staying
in the current configuration corresponds to renting skis and transitioning to an-
other configuration corresponds to buying skis. Since the algorithm can start
in any state, this leads to an algorithm that cost no more than four times the
optimal.

In larger number of configurations, the key issue in establishing a correspon-
dence with the online ski rental problem is in deciding which configuration to
compare with the current one. When the costs are symmetrical, Borodin et. al
[12] use components instead of configurations to perform an online ski rental. In
particular, their algorithm recursively traverses one component until the query
execution cost incurred in that component is approximately that of moving to
the other component. A decision is then made to move to the other component
(traversing it recursively) before returning to the first component and so on. To
identify the components, they consider a complete, undirected graph G(V, E) on
S in which V represents the set of all configurations, E represents the transitions,
and the edge weights are the transition costs. By fixing a minimum spanning
tree (MST) on G, components are recursively determined by pick the maximum
weight edge in the MST and removing it. This partitions all the configurations
into two smaller components and the MST into two smaller trees.

This algorithm is shown to be 8(N−1)-competitive [12]. ALG is α-competitive
if there exists a constant b such that for every finite query sequence σ,

cost(ALG on σ) ≤ α ∗ cost(OPT on σ) + b. (2)

OPT is the offline optimal that has complete knowledge of σ. OnlinePD extends
the above algorithm to solve the problem in which costs are asymmetrical. It
does so by transforming its complete, directed graph on S and d(·) into a com-
plete, undirected graph and applying any algorithm for online physical design in
which costs are symmetrical. We describe the transformation and use Borodin’s
algorithm to show that it increases cost at most 8(N − 1)ρ times of OPT.
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Transformation in OnlinePD. When there are only two configurations, a
simple transformation in which graph edges are replaced by the sum of transi-
tion costs gives a 3-competitive algorithm [10]. However, adding transition costs
provides poor bounds for an N node graph. To achieve better competitive per-
formance, we transform the directed graph into a undirected graph as follows:

Let G′ be the directed graph. In G′, replace every pair of directed edges (u, v)
and (v, u) with an undirected edge (u, v) and a corresponding transition cost
equal to

√
d(u, v).d(v, u) irrespective of the direction. This transforms G′ into H .

H has the following two properties because of the transformation: a) If p is a path
in H and p′ is the corresponding path in G′ (in any one direction), then cost(p)√

ρ ≤
cost(p′) ≤ √

ρcost(p). The inequality allows us to bound the error introduced by
using H instead of G′. b) H violates the triangle inequality constraint. This is
shown by a simple three-node example in Figure 1(a). In this example, a three
node directed, fully connected graph with ρ = 10 is transformed to an undirected
graph in Figure 1(b). The resulting triangle does not obey triangle inequality.
OnlinePD exploits the fact that Borodin’s algorithm constructs an MST, which
makes it resilient to the triangle inequality violation.

Algorithm 1 details OnlinePD in which Algorithm 2 is a subroutine. To con-
struct the traversal before processing queries, the MST is built on a graph in
which edge weights are rounded to the next highest power of two. Let the maxi-
mum rounded weight in the MST, denoted by F in the Algorithm 1, be 2M . We
establish the proof using F .

Input: Directed Graph: G(V, Eo) with weights d(·), Query Sequence: σ
Output: Vertex Sequence to process σ: u0, u1, . . .
Transform G to undirected graph H(V,E) s.t. ∀(u, v) ∈ E weight
dH(u, v)←

√
d(u, v) · d(v, u);

Let B(V, E) be the graph H modified s.t. ∀(u, v) ∈ E weight
dB(u, v)← dH(u, v) rounded to next highest power of 2;
Let F be a minimum spanning tree on B;
T ← traversal(F ); u← S0;
while there is a query q to process do

c← q(u);
Let v be the node after u in T ;
while c ≥ dB(u, v) do

c← c− dB(u, v); u← v;
v ← the node after v in T ;

end
Process q in u;

end Algorithm 1: OnlinePD(G)

Lemma 1. Any edge in T of rounded weight 2m is traversed exactly 2M−m

times in each direction.

Proof. We prove by induction on the number of edges in F . For the base case,
there are no edges in F , and the lemma is trivially true. For the inductive case,
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Input: Tree: F (V, E)
Output: Traversal for F : T
if E = {} then
T ← {};

else if E = {(u, v)} then
Return T : Start at u, traverse to v, traverse back to u;

else

Let (u, v) be a maximum weight edge in E, with weight 2M ;
On removing (u, v) let the resulting trees be F1(V1, E1) and F2(V2, E2),
where u ∈ V1, and v ∈ V2;
Let maximum weight edges in E1 and E2 have weights 2M1 and 2M2

respectively; T1 ← traversal(F1);
T2 ← traversal(F2);
Return T : Start at u, follow T1 2M−M1 times, traverse (u, v), follow T2
2M−M2 times;

end Algorithm 2: traversal(F )

let (u, v) be the maximum weight edge in F used in traversal(·), and similarly
let F1 and F2 be the trees obtained by removing (u, v). Now the edge (u, v)
is traversed exactly once in each direction as required by the lemma. By the
inductive hypothesis, each edge of F1 of rounded weight 2m is traversed exactly
2M1−m times in each direction in the traversal T1, in which M1 is the maximum
rounded weight in F1. Since T includes exactly 2M−M1 traversals of T1, it follows
that each such edge is traversed 2M−m times in each direction in T . The same
reasoning applies to edges in F2.

Theorem 1 Algorithm OnlinePD is 4(N − 1)(ρ +
√

ρ)-competitive for the
OnlinePD problem with N configurations and asymmetry constant ρ.

Proof. During each traversal of F , the following two statements are true: (i)
the cost of OnlinePD is at most 2(N − 1)2M (1 +

√
ρ), and (ii) the cost of the

offline optimal is at least 2M−1/
√

ρ. The theorem will then follow as the cost
of OnlinePD during any single traversal is constant with respect to the length
of σ. We prove (i) following Lemma 1 and (ii) from induction. (See proof in
Appendix).

The bound of 8(N − 1)ρ in OnlinePDis only a worst case bound. In our exper-
iments, OnlinePD performs much better than best known offline algorithms for
this problem and tracks closely with the workload adaptive algorithm HeuPD.

4.2 HeuPD

HeuPD chooses between neighboring configurations greedily. The current config-
uration in HeuPD ranks its neighboring configurations based on the estimated
query execution costs in the neighboring configurations. HeuPD keeps track of
the cumulative penalty of remaining in the current configuration relative to ev-
ery other neighboring configuration for each incoming query. A transition is
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made once HeuPD observes that the benefit of a new configuration exceeds a
threshold. The threshold is defined as the sum of the costs of the most recent
transition and next transition. HeuPD is described in detail in [10] and presented
here as an alternative algorithm in AdaptPD. AdaptPD combines HeuPD with
cost-estimation procedures described in this paper.

Let x ∈ S be the current configuration and y ∈ S be the neighboring config-
uration in which y �= x. Define δy

max(k) as the maximum cumulative penalty of
remaining in x rather than transitioning to y at query qk (the penalty of remain-
ing in x for qk is qk(x)−qk(y)). In HeuPD, this transition threshold is a function
of the configuration immediately prior to x and the alternative configuration
being considered. Let z be the configuration immediately prior to x in which
the threshold required for transitioning to y is d(z, x) + d(x, y). The decision to
transition is greedy; that is, HeuPD transitions to the first configuration y that
satisfies δy

max(k) > d(z, x) + d(x, y).

5 Cost Estimation in AdaptPD

OnlinePD and HeuPD require O(NlogN) time and space for pre-processing and
O(N) processing time per query. In this section we describe techniques to reduce
N . Physical design tools also incur significant overhead in query cost estimation.
Transition costs are often assigned arbitrarily, providing no correlation between
the costs and actual time required to make transitions. Thus, we describe tech-
niques for accurate and efficient cost estimation for vertical partitioning.

5.1 Transition Cost Estimation

We present an analytical transition model that estimates the cost of transitions
between configurations. In an actual transition, data is first copied out of a
database and then copied into new tables according to the specification of the
new configuration. Gray and Heber [18] recently experimented with several data
loading operations in which they observed that SQL bulk commands such as
BULK INSERT command in SQL Server work much like standard bulk copy (bcp)
tools but are far more efficient than bcp as it runs inside the database. We base
our analytical model on performance results obtained from using BULK INSERT
on a 300 column table.

We observe two artifacts of the BULK INSERT operation. First, copying data
into the database is far more expensive than copying data out of the database.
Second, cost of importing the data scales linearly with the amount of data being
copied into the database. The first artifact is because data is normally copied out
in native format but is loaded into the database with type conversions and key
constraints. The linear scaling is true because BULK INSERT operations mostly
incur sequential IO. We model the cost of importing a partition P :

BCP (P ) = cRP WP + kRP (3)

in which RP is the number of rows, WP is the sum of column widths, c is
the per byte cost of copying data into the database, and k is the per row cost
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of constructing the primary key index. Thus, the estimated cost is the sum of
importing data and the cost of creating a primary key index. Index creation
cost is linear due to a constant overhead with each new insert. Constants c
and k are system dependent and can be easily determined using regression on
few “sample” BULK INSERT operations. In this model, we assume no cost for
transaction logging, which is disabled for fast copy.

The transition cost model uses Equation 3 to model the cost of moving from
a configuration Si to another configuration Sj . Let configuration Si consists of
partitions {T1i,...,Tmi}, Sj consists of partitions {T1j,...,Tnj} and Δij be the
partition set difference {T1j,...,Tnj} - {T1i,...,Tmi}, The transition cost is:

d(Si, Sj) =
∑

t∈Δij

BCP (t) (4)

5.2 Query Cost Estimation

We present an efficient and yet accurate technique for estimating query costs
across several configurations. The technique is based on the idea that cached
query plans can be reused for query cost estimation. The traditional approach
of asking the optimizer for the cost of each query on each configuration is well-
known to be very expensive [15]. By caching and reusing query plans, the tech-
nique avoids invoking the optimizer for cost estimation and achieves an order of
magnitude improvement in efficiency. To maintain high accuracy, the technique
relies on recent observations that the plan of a query across several configu-
rations is an invariant. By correctly determining the right plan to reuse and
estimating its cost, the technique achieves the complementary goals of accuracy
and efficiency. We describe conditions under which plans remain invariant across
configurations and therefore can be cached for reuse. We then describe methods
to cache the plans efficiently and methods to estimate costs on cached plans.

Plan Invariance. We illustrate with an example when the plan remains invari-
ant across configurations and when it does not. Figure 2 shows three different
configurations S1, S2, S3 on two tables T1(a,b,c,d) and T2(e,f,g,h) with pri-
mary and join keys as a and e, respectively. Consider a query q that has predicate
clauses on c and d and a join clause on a and e: select T1.b, T2.f from T1,
T2 where T1.a = T2.e and T1.c > 10 and T1.d = 0. Let the query be op-
timized in S1 with the shown join methods and join orders. The same plan is
optimal in S2 and can be reused. This is because S2’s partitions with respect to
columns c and d are identical to S1’s partitions. In S3, however, the plan cannot
be used as columns c and d are now merged into a single partition. This is also
reflected by the optimizer’s choice which actually comes with a different plan
involving different join methods and join orders.

Plan invariance can be guaranteed if the optimizer chooses to construct the
same plan across different configurations.

Theorem 1. The optimizer constructs the same query plan across two configu-
rations S1 and S2, if the following three conditions are met:
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Fig. 2. Plan reuse across configurations. (Estimated costs are for illustration only).

1. Configurations have the same number of partitions with respect to all columns
mentioned in the query.

2. The division of the predicate columns in S1 and S2 is exactly the same.
3. If δ(S1) and δ(S2) define the page size distributions of S1 and S2 respectively,

then dist(δ(S1), δ(S2)) < ε. Where dist function determines the distance
between two page distributions, and ε is a DBMS dependent constant.

Condition 1 guarantees the same number of joins in the plan for any two configu-
rations. For instance, if S2 partitions T1 into three partitions, then the optimizer
joins twice instead of once to reconstruct the rows of the original table. Since
the resulting plan is different from S1, plan reuse cannot be guaranteed. If the
query does not select on b, then the same plan can still be reused.

Condition 2 guarantees similar cardinality of the intermediate join results so
that the optimizer selects the same join order and method to find the optimal
plan. Condition 2 is illustrated in Figure 2 in which keeping c and d in different
partitions leads to a merge joins in S1 and S2. A hash join is preferred in S3

when c and d are grouped together.
Condition 3 avoids comparing drastically different configurations in terms of

page distribution. The dist function can be a standard distribution distance,
such as KL-divergence [19], and ε can be determined by experimenting over
large number of plans. That is if a large table, with say 100 columns, has two
configurations and if in the first configuration partitions are of uniform sizes,
(i.e. two partitions with each partition containing 50 columns) and in the second
configuration partitions are highly skewed (i.e. one partition has one column and
the second has all the remaining columns), then the optimizer does not construct
the same plan. In particular, the optimizer prefers to join equi-sized partition
tables earlier and delays joining skewed tables as long as possible. Hence reusing
the plan of one configuration for the other provides inaccurate results.

If above three conditions are satisfied, we prove by contradiction that the
optimizer generates the same plan for any given two configurations. Suppose the
join method and join order for Si is J1 and for Sj is J2. By our assumption, J1

and J2 are different. Without loss of generality, let J1 costs less than J2 if we
ignore the costs of scanning partitions. Since the configurations Si and Sj have
the same orders (primary key orders for all partitions), select the same number
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of rows from the partitions, and the page size of the filtered rows are similar,
J1 can still be used for Sj . Since using J1 reduces the total cost for running the
query on Sj , it implies that J2 is not the optimal plan, which contradicts our
assumption that J2 is part of the optimal plan.

The Plan Cache. We cache the query plan tree with its corresponding join
methods, join-orders, and partition scans. The stripped plan tree is uniquely
identified by <query id, partition list, page distribution>. The first part of the
string identifies the query for which the plan is cached, the second part specifies
the list of partitions in which columns in the predicate clause of the query occur,
and the third part specifies the page distribution of each partition.
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Fig. 3. The plan for S1 cached with the key [query − id, T1((c), (d)), T1(128, 64)] on
the left. On the right is the estimated plan for the new configuration S2.

Cost Estimation. Cost estimation involves accurate estimation of partition
scan costs and join costs. Thus given a new configuration, we first retrieve its
corresponding plan from the cache using the key and then estimate the costs of
partition scans and join methods. Partition scan costs are estimated by comput-
ing the average cost of scanning the partition in the cached plan and multiplying
it with actual size of partition in the new configuration. Thus if c is the I/O cost
of the scanning operation in the cached plan, and s0 is the size of the vertical
partition in the cached plan, the cost of partition scan in the new configuration
is estimated as f = c× s

s0
. In this s is the size of the new partition. To estimate

the cost for joining partitions using the join methods from the cache, we adopt
the System-R’s cost model, developed by Selinger et al. [20]. The System-R cost
model gives us an upper bound on the actual join costs, and according to our
experiments predicts the plan cost with 98.7% accuracy on average.

6 Experiments

We implement our online partitioning algorithms and cost estimation techniques
in the SDSS [4] Astronomy database. We describe the experimental setup before
presenting our main results. This includes analysis of workload evolution over
time, performance of various online and offline algorithms, and accuracy of cost
estimation.
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Fig. 4. Affinity matrix (co-access frequency) for ten select attributes from the
PhotoObjAll table

6.1 Experimental Setup

Workload Characteristics. We use a month-long trace from SDSS consist-
ing of 1.4 million read-only queries. The queries consist of both simple queries
on single tables and complex queries joining multiple tables. Also, queries are
template-based [5] and can be summarized compactly using templates. How-
ever, considerable evolution occurs in the workload in that new templates are
introduced continually and prior templates may disappear entirely.

Figure 4 captures workload evolution for the first three weeks of the trace. It
shows the affinity matrix for ten attributes from a single table in which each grid
entry corresponds to the frequency with which a pair of attributes are accessed
together (ordering of attributes are the same along the row and column). The
basic premise is that columns that occur together and have similar frequencies
should be grouped together in the same relation [21]. The results show that
column groupings change on a weekly basis. An online physical design tool which
continuously monitors the workload can evaluate whether transitioning to a new
configuration will lead to a improvement in overall cost.

Comparison Methods. We contrast the performance of OnlinePD with sev-
eral online and offline algorithms. OnlinePD has polynomial-time complexity
and finds the minimal spanning tree using the Prim’s algorithm. While it makes
no assumptions about the workload, this generality comes at a cost. Namely,
given domain specific knowledge about the workload, highly tuned workload
adaptive algorithms can be designed. To measure the cost of generality, we com-
pare OnlinePD with HeuPD (Section 4.2). We also compare against AutoPart,
an existing, offline vertical partitioning algorithm. AutoPart is presented with
the entire workload as input during initialization. This incurs an initial over-
head to produce a physical design layout for the workload, but it can service the
workload with no further tuning. AutoPartPD is another physical design strategy
that employs the offline AutoPart algorithm. Unlike AutoPart, it is adaptive by
running AutoPart daily (incurs one transition at the beginning of each day) and
it is prescient in that the workload for each day is provided as input a priori.
Finally, NoPart serves as the base case in which no vertical partitioning is used.

Costs. The transition costs are estimated using the analytical model each time
a new template is introduced. The estimates show that the asymmetry constant
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(Section 4) ρ is bounded and its maximum value is approximately 3.25. The
model itself estimates the transition costs with 87% accuracy in which transition
costs are considered accurate if they are within 10% of the actual costs. Query
cost estimation is done using the cache and reuse technique, which provides 94%
accuracy in our experiments.

Database. For I/O experiments, we execute queries against a five percent
sample (roughly 100GB in size) of the DR4 database. Although sampling the
database is less than ideal, it is necessary to finish I/O experiments in a rea-
sonable time for real workloads. Given the time constraints, we compromised
database size in order to accommodate a larger workload, which captures work-
load evolution over a longer period. To sample the database, we first sample the
fact table consisting of all celestial objects (PhotoObjAll) and then sample the
remaining tables through foreign key constraints.

The data is stored in Microsoft’s SQL Server 2000 on a 3GHz Pentium IV
workstation with 2GB of main memory and two SATA disks (a separate disk is
assigned for logging to ensure sequential I/O). Microsoft SQL Server does not
allow for queries that join on more than 255 physical tables. This is required
in extreme cases in which the algorithm partitions each column in a logical
relation into separate tables. Hammer and Namir [22] show that between the two
configurations with each column stored separately or all columns stored together,
the preferred configuration is always the latter. In practice, this configuration
does not arise because the cost of joining across 255 tables is so prohibitive that
our algorithm never selects this configuration. To reduce the configuration space,
we do not partition tables that are less than 5% of the database size. This leads
to a large reduction in the number of configurations with negligible impact on
performance. The total number of configurations is around 5000.

Performance Criteria. We measure the cost of algorithms in terms of average
query response time. This is the measure from the time a query is submitted
until the results are returned. If a transition to a new configuration is necessary,
the algorithm undergoes a transition before executing the query. This increases
the response time of the current query but amortizes the benefit over future
queries. Our results reflect average response time over the entire workload.

6.2 Results

We compute the query performance by measuring its response time on the proxy
cache using the sampled database. Figure 5(a) provides the division of response
time for query execution, cost estimation using the optimizer, and transitions
between configurations. (The total response time is averaged over all queries).
OnlinePD improves on the performance of NoPart by a factor of 1.5 with an av-
erage query execution time of 991 ms. Not surprisingly, HeuPD, which is tuned
specifically for SDSS workloads, further improves performance by 40% and ex-
hibits two times speedup over NoPart. This improvement is low considering that
OnlinePD is general and makes no assumptions regarding workload access pat-
terns. NoPart suffers due to higher scan costs associated with reading extraneous
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(a) SDSS Workload (b) Adversarial Workload

Fig. 5. Distribution of response time overhead

columns from disk. Likewise, AutoPart suffers by treating the entire workload
as an unordered set of queries and providing a single, static configuration during
initialization. Even AutoPartPD did not improve response time beyond the of-
fline solution because the benefits of periodic physical design tuning is offset by
high, daily transition costs. Thus, adapting offline solutions such as AutoPart
to evolving workloads is challenging because they do not continuously monitor
for workload changes nor account for transition cost in tuning decisions.

Another interesting feature of the results is that OnlinePD incurs much lower
transition costs than HeuPD. This artifact is due to the conservative nature of
OnlinePD. It evaluates only two alternatives at a time and transitions only if
it expects significant performance advantages. On the other hand, HeuPD re-
sponds quicker to workload changes by evaluating all candidate configurations
simultaneously and choosing a configuration that benefits the most recent se-
quence of queries. This optimism of HeuPD is tolerable in this workload but can
account for significant transition costs in workloads that change more rapidly
relative to SDSS. To appreciate the generality of OnlinePD over a heuristic so-
lution, we evaluated a synthetic SDSS workload that is adversarial with respect
to HeuPD in Figure 5(b). In particular, the workload is volatile and exhibits no
stable state in the access pattern, which causes HeuPD to make frequent, non-
beneficial transitions. As a result, Figure 5(b) shows that OnlinePD exhibits a
lower query execution time and a factor of 1.4 improvement over HeuPD.

Figure 5(a) also shows the average response time of performing cost esti-
mation (time spent querying the optimizer). For AutoPart, this is a one-time
cost incurred during initialization. In contrast, cost estimation is an incremen-
tal overhead in OnlinePD and HeuPD. HeuPD incurs a ten folds overhead in
cost estimation over OnlinePD (43 ms versus 4 ms). This is because HeuPD in-
curs 93 calls to the optimizer per query. Thus, HeuPD benefits immensely from
QCE due to the large number of configurations that it evaluates for each query.
Reusing cached query plans allow HeuPD to reduce cost estimation overhead
by ten folds and avoid 91% of calls to the optimizer. Without QCE, the total
average response time of HeuPD is 1150 ms, which would lag the response time
of OnlinePD by 4 ms. As such, HeuPD scales poorly as the number of alternative
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Fig. 6. Average daily response time overhead normalized to NoPart

configurations increases. This make OnlinePD attractive for proxy caches which
receive a continuous stream of queries and decisions have to be made rapidly.

Finally, we refer to the average transition cost (cost of changing between
configurations) from Figure 5(a). AutoPart only incurs a single transition dur-
ing initialization while NoPart incurs no transition cost. AutoPartPD incurs the
highest overhead, requiring a complete reorganization of the database on a daily
basis. HeuPD makes 768 minor configuration changes compared with 92 for
OnlinePD which leads to a three times per query overhead in transition cost
(113 ms compared with 43 ms). Thus, while OnlinePD is slower than HeuPD
at detecting and adapting to changes in the workload, it benefits with fewer
transitions that disrupt the execution of incoming queries.

Figure 6 charts the average daily response time (both query execution and
transition cost) for various algorithms normalized to NoPart. There is signifi-
cant fluctuations in average response times resulting from workload changes over
time. While all algorithms improve on NoPart, AutoPart tracks most closely with
NoPart since neither implements changes to the physical design after initializa-
tion. OnlinePD and HeuPD further improves response time, but exhibits several
performance spikes (most notably on days one, six, and thirteen) that perform
no better than NoPart. These indicate significant workload changes that cause
more transitions to occur that delay completion of certain queries. The tran-
sition overhead is greatest for OnlinePD and HeuPD on day one and remains
more stable afterward because at initialization, all tables are unpartitioned.

Figure 7 shows the cumulative distribution function (CDF) of the error in cost
estimation using QCE instead of the optimizer. This error is determined by:

abs

(
1 −

(
QCE est. query cost

Optimizer est. query cost

))
(5)

Consider the dashed-line in the plot, which corresponds to the errors in cost
estimation for all queries. Although the average cost estimation error is only
1.3%, the plot shows that the maximum error in cost estimation is about 46%,
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Fig. 7. Error in cost estimation for QCE. Dashed line represents all queries and solid
line represents queries with higher than 5 unit cost.

with about 14% of the estimations with more than 10% error. Inspecting high
error estimations reveals that the errors occur in queries with estimated costs
below 5 optimizer cost units. We plot the CDF for errors after removing those
light queries. The solid line in Figure 7 shows the cost estimation error for these
filtered set of queries. The maximum error for the filtered queries is about 11%,
and about 94% of the estimations have less than 5% error.

The inaccuracies in the light queries comes from the approximations discussed
in Section 5.2. Since the contribution of light queries to workload cost is insignif-
icant compared to the heavy queries (4% of our workload), the inaccuracy in es-
timating their costs does not affect the configurations selected by our algorithm.

7 Summary and Future Work

In this paper, we have presented AdaptPD, a workload adaptive physical design
tool that automates some of the DBA tasks such as estimating when to tune
the current physical design and finding representative workloads to feed the
physical design tool. The tool quantitatively compares the current configuration
with other possible configurations, giving the DBA a good justification of the
usefulness of the recommended design. Automation of such tasks reduces the
cost of ownership of large database systems such as the SDSS in which physical
design tuning is routinely performed by DBAs. Since these tools gradually change
ownership from DBAs to curators, it is essential to minimize the overhead of
administration and yet ensure good performance.

We have developed novel online techniques that adapt to drastic changes in
the workload without sacrificing the generality of the solution. The techniques
are supported by efficient cost estimation modules that make them practical for
continuous evaluation. Experimental results for the online algorithm show signif-
icant performance improvement over existing offline methods and tracks closely
with heuristic solution tuned specifically for SDSS workloads. These tuning tools
are not specific to vertical partitions and can be extended to index design, which
is our primary focus going forward.
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Appendix: Competitiveness of OnlinePD

We prove that OnlinePD algorithm is O(4ρ(N − 1)) competitive. Reusing the
notations from Section 4, in Algorithm 1 we construct the graph B by rounding
up the cost of edges on the undirected transition graph to a power of two.
We build an MST on B and call it F . We then build a traversal on F using
Algorithm 2 and denote that traversal as T . Let the maximum rounded weight
in the tree F be 2M . The following proof is inspired by the proof in [12]

Lemma 2. If the maximum edge weight in T is 2M , any edge in T of rounded
weight 2m is traversed exactly 2M−m times in each direction.

Proof. We prove by induction on the number of edges in F . For the base case,
there are no edges in F , and the lemma is trivially true. For the inductive case, let
(u, v) be the maximum weight edge in F used in the traversal(·), and similarly
let F1 and F2 be the trees obtained by removing (u, v). Now the edge (u, v)
is traversed exactly once in each direction as required by the lemma. By the
inductive hypothesis, each edge of F1 of rounded weight 2m is traversed exactly
2M1−m times in each direction in the traversal T1, in which M1 is the maximum
rounded weight in F1. Since T includes exactly 2M−M1 traversals of T1, it follows
that each such edge is traversed 2M−m times in each direction in T . Exactly the
same reasoning applies for edges in F2.

Theorem 2 Algorithm OPDA is 4(N−1)(ρ+
√

ρ)-competitive for the OnlinePD
problem with N configurations and asymmetry constant ρ.

Proof. We shall prove that during each traversal of F : (i) the cost of OPDA is
at most 2(N − 1)2M (1 +

√
ρ), and (ii) the cost of the offline optimal is at least

2M−1/
√

ρ. The theorem will then follow as the cost of OPDA during any single
traversal is constant with respect to the length of σ.

To prove (i), recall from Lemma 2 that any edge in T of rounded weight 2m

is traversed exactly 2M−m times. Thus the total rounded weight traversed for
an edge is 2 · 2M−m · 2m = 2 · 2M . By construction of the algorithm the total
processing cost incurred during T at a node just before a traversal of this edge
is 2 · 2M . The total transition cost incurred during T in a traversal of this edge
is at most 2 · 2M√

ρ, since the cost d(·) can be at most
√

ρ times larger than the
corresponding dB(·). This proves (i) as there are exactly N − 1 such edges.

We prove (ii) by induction on the number of edges in F . Suppose F has at least
one edge, and (u, v), F1, and F2 are as defined in traversal(·). If during a cycle of
T , OPT moves from a vertex in F1 to a vertex in F2, then since F is a minimum
spanning tree, there is no path connecting F1 to F2 with a total weight smaller than
dB(u, v)/(2

√
ρ) = 2M−1/

√
ρ. Otherwise during the cycle of T , OPT only stays in

one of F1 or F2; w.l.o.g. assume F1. If F1 consists of just one node u, and OPT
stays there throughout the cycle of T , then by definition of the algorithm, OPT
incurs a cost of at least dB(u, v) = 2M ≥ 2M−1/

√
ρ. If F1 consists of more than one

node, then by the induction hypothesis, OPT incurs a cost of at least 2M1−1/
√

ρ
per cycle of T1. Since during one cycle of T there are 2M−M1 cycles of T1, OPT
incurs a cost of at least 2M−1/

√
ρ. This completes the proof.
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