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Preface

This volume contains the proceedings of SSDBM 2009, the 21st International
Conference on Scientific and Statistical Database Management. SSDBM 2009
took place during June 2–4, 2009, at the Hotel Monteleone in New Orleans,
USA. The SSDBM conference series brings together scientific domain experts,
database researchers, practitioners, and developers for the presentation and ex-
change of current research concepts, tools, and techniques for scientific and sta-
tistical database applications. SSDBM organizers strive to provide a stimulating
environment to encourage discussion, fellowship, and exchange of ideas in all
aspects of research related to scientific and statistical databases, including both
original research contributions and insights from practical system design, imple-
mentation, and evaluation.

SSDBM 2009 received 76 submissions from 18 countries. Each submission
was reviewed by three Program Committee members, leading to the acceptance
of 29 long papers and 12 short papers. The short papers include a mix of demon-
strations, poster papers, and traditional conference presentations. This year we
had the goal of increasing our acceptance rate while maintaining or increasing
the quality of our papers; to this end, 17 of our accepted papers were shepherded.

This year we also benefitted from three invited talks. Our keynote presenta-
tion was from Kate Keahey of Argonne National Laboratory, who talked about
scientific computing on cloud platforms. Bertram Ludaescher from the University
of California Davis explained what makes scientific workflows scientific, and Arie
Shoshani gave an overview of new technology developed at the Scientific Data
Management Center at Lawrence Berkeley National Laboratory for exploring
scientific datasets.

Organizing SSDBM 2009 was a team effort that involved many people. I
thank our General Chairs Mahdi Abdelguerfi and Shengru Tu for their care-
ful attention to so many details, and the SSDBM Steering Committee for their
guidance. The Program Committee and our external referees did an excellent
job with their timely review and careful discussion of all our submissions. I
thank our 17 shepherds for their extra effort to ensure that SSDBM remains a
premier forum. I also appreciate EasyChair’s great facilities for assembling the
camera-ready version of the proceedings, and Ragib Hasan’s help in assembling
the proceedings. We are also grateful to our conference sponsors, who provided
financial support for SSDBM 2009: Louisiana Technology Group (LATG), Dia-
mond Data Systems (DDS), Sun Microsystems, NOVACES, and the Department
of Computer Science at the University of New Orleans.

I hope that you enjoy the proceedings!

April 2009 Marianne Winslett
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Matthias Renz

Reverse k-Nearest Neighbor Search Based on Aggregate Point Access
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

Hans-Peter Kriegel, Peer Kröger, Matthias Renz,
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The Scientific Data Management Center:
Providing Technologies for Large Scale Scientific

Exploration

Arie Shoshani

Lawrence Berkeley National Laboratory
shoshani@lbl.gov

Managing scientific data has been identified by the scientific community as one of
the most important emerging needs because of the sheer volume and increasing
complexity of data being collected. Effectively generating, managing, and ana-
lyzing this information requires a comprehensive, end-to-end approach to data
management that encompasses all of the stages from the initial data acquisition
to the final analysis of the data. Fortunately, the data management problems
encountered by most scientific domains are common enough to be addressed
through shared technology solutions. Based on community input, the SDM cen-
ter has identified three significant requirements. First, more efficient access to
storage systems is needed. In particular, parallel file system and I/O system im-
provements are needed to write and read large volumes of data without slowing
a simulation, analysis, or visualization engine. These processes are complicated
by the fact that scientific data are structured differently for specific application
domains, and are stored in specialized file formats. Second, scientists require
technologies to facilitate better understanding of their data, in particular the
ability to effectively perform complex data analysis and searches over extremely
large data sets. Specialized feature discovery and statistical analysis techniques
are needed before the data can be understood or visualized. Furthermore, inter-
active analysis requires indexing techniques for efficiently searching and selecting
subsets of interest are needed. Finally, generating the data, collecting and storing
the results, keeping track of data provenance, data post-processing, and analysis
of results is a tedious, fragmented process. Workflow tools for automation of this
process in a robust, tractable, and recoverable fashion are required to enhance
scientific exploration.

Over the last several years, the technologies developed by the SDM center,
which is supported by the Department of Energy in the U.S. have been de-
ployed in a variety of application domains. Some of the technologies that will be
described in this talk include:

– More than a tenfold speedup in writing and reading netCDF files has been
achieved by developing MPI-IO based Parallel netCDF software being uti-
lized by astrophysics, climate, and fusion scientists.

– A method for the correct classification of orbits in puncture plots from the
National Compact Stellarator eXperiment (NCSX) at PPPL was developed

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 1–2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 A. Shoshani

by converting the data into polar coordinates and fitting second-order poly-
nomials to the data points.

– A new bitmap indexing method has enabled efficient search over billions of
collisions (events) in High Energy Physics, and is being applied to combus-
tion, astrophysics, and visualization domains. It achieves more than a tenfold
speedup relative to ant known indexing methods.

– The development of a Parallel R, an open source parallel version of the
popular statistical package R. These are being applied to climate, GIS, and
mass spec proteomics applications.

– An easy-to-use GUI-based software, called ProRata, has provided Biology re-
searchers with robust quantification of protein abundance in high-throughput
shotgun proteomics data.

– A scientific workflow management and execution system (called Kepler) has
been developed and deployed within multiple scientific domains, including
genomics and astrophysics. The system supports design and the execution
of flexible and reusable, component-oriented workflows.



Query Recommendations for Interactive
Database Exploration

Gloria Chatzopoulou1,�, Magdalini Eirinaki2, and Neoklis Polyzotis3

1 Computer Science Dept., University of California Riverside, USA
chatzopd@cs.ucr.edu

2 Computer Engineering Dept., San Jose State University, USA
magdalini.eirinaki@sjsu.edu

3 Computer Science Dept., University of California Santa Cruz, USA
alkis@cs.ucsc.edu

Abstract. Relational database systems are becoming increasingly pop-
ular in the scientific community to support the interactive exploration
of large volumes of data. In this scenario, users employ a query interface
(typically, a web-based client) to issue a series of SQL queries that aim
to analyze the data and mine it for interesting information. First-time
users, however, may not have the necessary knowledge to know where to
start their exploration. Other times, users may simply overlook queries
that retrieve important information. To assist users in this context, we
draw inspiration from Web recommender systems and propose the use of
personalized query recommendations. The idea is to track the querying
behavior of each user, identify which parts of the database may be of in-
terest for the corresponding data analysis task, and recommend queries
that retrieve relevant data. We discuss the main challenges in this novel
application of recommendation systems, and outline a possible solution
based on collaborative filtering. Preliminary experimental results on real
user traces demonstrate that our framework can generate effective query
recommendations.

1 Introduction

Relational database systems are becoming increasingly popular in the scientific
community to manage large volumes of experimental data. Examples include the
Genome browser1 that provides access to a genomic database, and Sky Server2

that stores large volumes of astronomical measurements. The main advantage
of a relational database system is that it supports the efficient execution of
complex queries, thus enabling users to interactively explore the data and retrieve
interesting information. It should be noted that the aforementioned systems
employ web-based query interfaces in order to be accessible to a broad user
base.
� This work was performed while the author was affiliated with UC Santa Cruz.
1 http://genome.ucsc.edu/
2 http://cas.sdss.org/

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 3–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Even though a database system offers the means to run complex queries over
large data sets, the discovery of useful information remains a big challenge.
Users who are not familiar with the database may overlook queries that retrieve
interesting data, or they may not know what parts of the database provide useful
information. This issue clearly hinders data exploration, and thus reduces the
benefits of using a database system.

To address this important problem, we draw inspiration from the successful
application of recommender systems in the exploration of Web data. In partic-
ular, we focus on approaches based on user-based collaborative filtering. The
premise is simple: If a user A has similar querying behavior to user B, then they
are likely interested in the same data. Hence, the queries of user B can serve as
a guide for user A.

The transfer of this paradigm entails several challenging problems. In web
collaborative filtering systems, a user-item matrix approach is used to generate
recommendations. More specifically, each user is represented as an item vector,
where the values of the vector elements correspond to the user’s preferences for
each item (such as movie ratings, purchased products, read articles, etc.) The
similarities between users in this representation can be easily computed using
vector similarity metrics. Given the most similar users and their preferences, the
collaborative filtering system can subsequently predict what items will interest
each user, and generate item recommendations.

The aforementioned methodology cannot be directly applied to the context of
a relational database for several reasons. First, we observe that in the case of a
database the “items” of interest are database records, and the users access these
items indirectly by posing SQL queries. Thus, even though the users’ behavior
is identified by the set of queries they send to the database, their interest lies
on the database tuples they retrieve. Given that SQL is a declarative language,
however, the same data can be retrieved in more than one way. This complicates
the evaluation of similarity among users based on their queries alone, since it is
no longer obvious whether they are interested in the same “items”.

This raises a second important issue that needs some consideration. The sim-
ilarity between users can be expressed as the similarity between the fragments
of their queries or, alternatively, the data that they retrieve. This is not as
straightforward, since a query fragment or a tuple might have different levels
of importance in different user sessions. Thus, we must be able to create im-
plicit user profiles that model those levels of importance, in order to effectively
compare the users.

Finally, contrary to the user-based collaborative filtering approach, the rec-
ommendation to the users have to be in the form of SQL queries, since those
actually describe what the retrieved data represent. Thus, we need to “close the
loop” by first decomposing the user queries into lower-level components in order
to compute similarities and make predictions, and then re-construct them back
to SQL queries in order to recommend them. Moreover, these SQL queries must
be meaningful and intuitive, so that users can parse them and understand their



Query Recommendations for Interactive Database Exploration 5

intent and usefulness. All those issues make the problem of interactive database
exploration very different from its web counterpart.

In this paper, we present our work in the development of a query recom-
mender system for relational databases. We first discuss an abstract framework
that conceptualizes the problem and defines specific components that must be
instantiated in order to develop a solution. Based on this framework, we de-
velop a solution that transfers the paradigm of collaborative filtering in the
context of relational queries. The recommended solution can be implemented
using existing technology, and is thus attractive for a real-world deployment. Fi-
nally, we present an experimental study on real user traces from the Sky Server
database. Our results indicate that our first-cut solution can provide effective
query recommendations, and thus demonstrate the potential of our approach in
practice.

The remainder of the paper is structured as follows. We review the related
work in Section 2 and cover some preliminaries in Section 3. Section 4 discusses
the conceptual framework and its instantiation. The experimental results are
presented in Section 5. Section 6 concludes the paper and outlines directions for
future work.

2 Related Work

So far, the work that has been done in the area of personalized databases has
focused to keyword-based query recommendation systems [1]. In this scenario, a
user can interact with a relational database through a web interface that allows
him/her to submit keywords and retrieve relevant content. The personalization
process is based on the user’s keyword queries, those of previous users, as well
as an explicit user profile that records the user’s preferences with regards to the
content of the database. Clearly, our approach is different from this scenario in
several ways. First, the proposed framework is meant to assist users who pose
complex SQL queries to relational databases. Moreover, the system does not
require from its users to create an explicit profile. This gives a higher level of
flexibility to the system, since the same user might have different information
needs during different explorations of the database.

Our inspiration draws from the successful application of user-based collabora-
tive filtering techniques, proposed in the Web context [2, 3, 4, 5, 6, 7, 8, 9, 10]. As
previously mentioned, this approach cannot be directly applied to the relational
database context. The inherent nature of interactive database exploration raises
certain implications that cannot be addressed by the straightforward collabora-
tive filtering approach. In this work, we are based on its premises, but extend
them in order to apply them in the database environment.

The challenges of applying data mining techniques to the database query logs
are also addressed in [11]. In this work, the authors outline the architecture of
a Collaborative Query Management System targeted at large-scale, shared-data
environments. As part of this architecture, they independently suggest that data
mining techniques, such as clustering or association rules, can be applied to the
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query logs in order to provide the users with query suggestions. We should stress,
however, that contrary to our work, the authors do not provide any technical
details on how such a recommendation system could be implemented.

The work presented in this paper is part of the QueRIE (Query Recommenda-
tions for Interactive database Exploration) project. In this project, we investigate
the application of personalization techniques in interactive database exploration,
particularly to assist the user in discovering interesting subsets of the database
with minimal effort.

3 Preliminaries

Our work considers the interactive exploration of a relational database using
SQL queries. In what follows, we summarize some basic notions in this context
that will be used in the remainder of the paper.

3.1 Database and Querying Model

We consider a relational database comprising N relations denoted as R1, . . . , RN .
We use Q to denote a Select-Project-Join (SPJ) query over the database, and
ans(Q) for its result set. We focus on the class of SPJ queries because they are
common in interactive database exploration, particularly among the group of
novice users which is the focus of our work.

We say that a tuple τ of some relation Rn, 1 ≤ n ≤ N , is a witness for a query
Q if τ contributes to least one result in ans(Q). We use RQ

n to denote the set of
witnesses for Q from relation Rn. (For notational convenience, we assume that
RQ

n = ∅ if relation Rn is not mentioned in Q.) Overall, the subsets RQ
1 , . . . , RQ

N

contain the tuples that are used to generate the results of Q. In that respect, we
say that RQ

1 , . . . , RQ
N is the subset of the database touched by Q.

3.2 Interactive Data Exploration

Users typically explore a relational database through a sequence of SQL queries.
The goal of the exploration is to discover interesting information or verify a
particular hypothesis. The queries are formulated based on this goal and reflect
the user’s overall information need. As a consequence, the queries posted by a
user during one “visit” (commonly called session) to the database are typically
correlated in that the user formulates the next query in the sequence after having
inspected the results of previous queries.

We identify users with unique integer identifiers. Given a user i, let Qi denote
the set of SQL queries that the user has posed. In accordance with the previous
definitions, we assume that the SQL queries belong to the class of SPJ queries.
We define Ri

n, 1 ≤ n ≤ N as the union of RQ
n for Q ∈ Qi, i.e., the set of tuples of

relation Rn that the user’s queries have touched. Hence, Ri
1, . . . , R

i
N represent

the subset of the database that has been accessed by user i. A summary of the
notation used throughout this paper is included in Table 1.
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Table 1. Notation Summary

Rn Relation n

RQ
n Set of witnesses for query Q from Rj

Ri
n Set of tuples of Rn that queries of user i have retrieved

Si Session summary of user i

Spred
0 Extended session summary for current user

4 Personalized Query Recommendations

The problem of personalized query recommendations can be formulated as fol-
lows: Given a user that is currently exploring the database, recommend queries
that might be of interest to him/her. To generate such recommendations, the
system will rely on information gathered from the querying behavior of past
users, as well as the queries posed by the current user so far.

The information flow of the QueRIE framework is shown in Figure1. The
active user’s queries are forwarded to both the DBMS and the Recommendation
Engine. The DBMS processes each query and returns a set of results. At the
same time, the query is stored in the Query Log. The Recommendation Engine
combines the current user’s input with information gathered from the database
interactions of past users, as recorded in the Query Log, and generates a set of
query recommendations that are returned to the user.

Fig. 1. QueRIE Architecture

In what follows, we identify the current user with the id 0, and note that
Q0 contains the queries that the user has posed thus far. We use {1, . . . , h} to
denote the set of past users based on which recommendations are generated.

The following sections describe a solution to this interesting problem of gener-
ating personalized query recommendations. We begin by discussing a conceptual
framework that can encompass different approaches, and then propose an instan-
tiation based on collaborative filtering.
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4.1 Conceptual Framework

Clearly, the queries of each user touch a subset of the database that is relevant for
the analysis the user wants to perform. We assume that this subset is modeled as
a session summary. This summary captures the parts of the database accessed
by the user and incorporates a metric of importance for each part. For instance,
a crude summary may contain the names of the relations that appear in the
queries of the user, and the importance of each relation can be measured as the
number of queries that reference it. On the other extreme, a detailed summary
may contain the actual results inspected by the user, along with an explicit
rating of each result tuple. Assuming that the choice of the summary is fixed for
all users, we use Si to denote the summary for user i.

To generate recommendations, our framework generates a “predicted” sum-
mary Spred

0 . This summary captures the predicted degree of interest of the active
user with respect to all the parts of the database, including those that the user
has not explored yet, and thus serves as the seed for the generation of recommen-
dations. As an example, if the summary S0 contains the names of the relations
that the user has referenced so far, then Spred

0 may contain more relations that
might be of interest, along with the respective degree of “interestingness” for
each part.

Using Spred
0 , the framework constructs queries that cover the subset of the

database with the highest predicted importance. In turn, these queries are pre-
sented to the user as recommendations.

Overall, our framework consists of three components: (a) the construction of a
session summary for each user i based on the queries in Qi, (b) the computation
of Spred

0 based on the active user S0 and the summaries S1, . . . , Sh of past users,
and (c) the generation of queries based on Spred

0 . An interesting point is that
components (a) and (c) form a closed loop, going from queries to summaries and
back. This is a conscious design choice following the fact that all user interaction
with a relational database occurs through declarative queries.

4.2 A Witness-Based Collaborative Filtering Approach

We now discuss an instantiation of the previously described framework. In the
following sections, we discuss the model and construction of session summaries
using witnesses, the computation of the extended summary Spred

0 , and the rec-
ommendation algorithm.

Session Summaries. The session summary Si is represented as a weighted
vector that corresponds to the database tuples. We assume that the total number
of tuples in the database, and as a consequence the length of the vector, is T .
The weight Si[τ ] represents the importance of a given tuple τ ∈ T in session Si.
In what follows, we describe the computation of tuple weights in Si.

We assume that the vector SQ represents a single query Q ∈ Qi. The value of
each element SQ[τ ] signifies the importance of the tuple as the witness for Q. We
propose two different weighting schemes for computing the tuple weights in Si:
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Binary weighting scheme.

SQ[τ ] =

{
1 if τ is a witness;
0 if τ is not a witness.

(1)

This is the most straightforward approach. There are two options: either a tuple
is a witness in Q, or not. All participating tuples receive the same importance
weight.

Result weighting scheme.

SQ[τ ] =

{
1/|ans(Q)| if τ is a witness;
0 if τ is not a witness.

(2)

Here ans(Q) is the result-set of Q. The intuition is that the importance of τ is
diminished if Q returns many results, as this is an indication that the query is
“unfocused”. On the other hand, a small ans(Q) implies that the query is very
specific, and thus the witnesses have high importance.

Given the vectors SQ for Q ∈ Qi, we define the session summary of user i as:

Si =
∑

Q∈Qi

SQ. (3)

Using the session summaries of the past users, we can construct the (h ×
T ) session-tuple matrix which, as in the case of the user-item matrix in web
recommender systems, will be used as input to our recommendation algorithm.

Computing Spred
0 . Similarly to session summaries Si, the predicted summary

Spred
0 is a vector of tuple weights. Each weight signifies the predicted impor-

tance of the corresponding tuple for the active user. In order to compute those
weights, we adopt the method of a linear summation that has been successfully
employed in user-based collaborative filtering. More specifically, we assume the
existence of a function sim(Si, Sj) that measures the similarity between two
session summaries and takes values in [0, 1]. The similarity function sim(Si, Sj)
can be realized with any vector-based metric. In this work, we employ the cosine
similarity:

sim(Si, Sj) =
SiSj

‖Si‖2‖Sj‖2
. (4)

This implies that two users are similar if their queries imply similar weights for
the database tuples.

The predicted summary is defined as a function of the current user’s summary
S0 and the normalized weighted sum of the existing summaries:

Spred
0 = α ∗ S0 + (1− α) ∗

∑
1≤i≤h sim(S0, Si) · Si∑

1≤i≤h sim(S0, Si)
(5)

The value of the “mixing” factor α ∈ [0, 1] determines which users’ traces will be
taken into consideration when computing the predicted summary. If α = 0, then
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we follow the user-based collaborative filtering approach and take into account
only the past users’ traces. On the other hand, when α = 1, only the active
user’s session summary is taken into account when generating recommendations,
resulting in what is known in the recommendation systems as content-based
filtering. Finally, any value in between allows us to bias the predicted vector
and assign more “importance” to either side, or equal “importance” to both
the current and the previous users (when α = 0.5). This bias can be useful for
two reasons. First, we do not want to exclude from the recommendation set any
queries that touch the tuples already covered by the user. Even though there
might exist some overlap, such queries may provide a different, more intuitive
presentation (e.g., a different PROJECT clause), making it easier for the user
to search for the information she is looking for. Second, by including the covered
tuples in Spred

0 , we are able to predict queries that combine the seen tuples
with unseen tuples from other relations. In other words, we are able to predict
queries that “expand” on the results already observed by the user. Intuitively,
we expect from the active user to behave in a similar way by posing queries
that cover adjacent or overlapping parts of the database, in order to locate the
information they are seeking. These two observations derive from the nature of
database queries and are in some sense inherent in the problem of personalized
query recommendations.

Generating Query Recommendations. Having computed Spred
0 , the algo-

rithm recommends queries that retrieve tuples of high predicted weights. One
possibility would be to automatically synthesize queries out of the predicted
tuples in Spred

0 , but this approach has an inherent technical difficulty. Another
drawback of this approach is that the resulting queries may not be intuitive and
easily understandable. This is important in the context of query recommenda-
tions, as users must be able to interpret the recommended queries before deciding
to use them.

To avoid the aforementioned issues, we choose to generate recommendations
using the queries of past users. Such recommendations are expected to be eas-
ily understandable, since they have been formulated by a human user. More
concretely, we maintain a sample of the queries posed by previous users. In the
context of predicting queries for the active user, we assign to each query Q in the
sample an “importance” with respect to Spred

0 . This importance is computed as
the similarity between the query vector SQ and Spred

0 , and is defined as follows:

rank(Q, Spred
0 ) = sim(SQ, Spred

0 ). (6)

Hence, a query has high rank if it covers the important tuples in Spred
0 . The top

ranked queries are then returned as the recommendation.

5 Experimental Evaluation

We completed a prototype implementation of the framework described in the
previous section. We are also in the process of developing a visual query interface
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that employs our framework to provide on-demand recommendations to users
who navigate the database. In this section we present preliminary experimental
results of using our system with real database traces, as well as examples of
queries and the related recommendations generated for this data set.

5.1 Data Set

We evaluated our framework using traces of the Sky Server database3. The traces
contain queries posed to the database between the years 2006 and 2008. We used
the methods described in [12] to clean and separate the query logs in sessions.
The characteristics of the data set and the queries are summarized in Table 2.

Table 2. Data Set Statistics

Database size 2.6TB
#Sessions 720
#Queries 6713
#Distinct queries 4037
#Distinct witnesses 13,602,430
Avg. number of queries per session 9.3
Min. number of queries per session 3

5.2 Methodology

We employ 10-fold cross validation to evaluate the proposed framework. More
concretely, we partition the set of user sessions in 10 equally sized subsets, and in
each run we use 9 subsets as the training set and we generate recommendations
for the sessions in the remaining subset. For each test user session of size L,
we build the session summary S0 using L − 1 queries and we thus generate
recommendations for the L-th query of the user. In order to generate the top-n
recommendations we use the queries in the current training set.

We experimented with different values for n. In this paper we report the
results for n = 3 and n = 5. A larger recommendation set might end up being
overwhelming for the end user, who is usually interested in selecting only a few
recommended queries.

The effectiveness of each recommended query is measured against the L-th
query of the session, using the following precision and recall metrics:

precision =
| τQL ∩ τQR |
| τQR |

(7)

recall =
| τQL ∩ τQR |
| τQL |

(8)

where τQL represents the witnesses of the L-th query and τQR represents the
witnesses of the recommended query. The precision metric shows the percentage
3 We used version BestDR6.
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of “interesting” tuples to the user with respect to all the recommended tuples.
The recall metric captures the hit ratio of each recommended query with respect
to the last query of the user.

Following the practice of previous studies in recommender systems [13], we re-
port for each user session the maximum recall over all the recommended queries,
and compute the precision for the query that achieved maximum recall. We also
report the average precision and recall for one set of recommendations. Unless
otherwise noted, we set α = 0.5.

5.3 Results

We conducted several experiments to evaluate different aspects of our system.
Overall, the results show the feasibility of query recommendations as a guide for
interactive data exploration.

In the first experiment, we evaluate the effectiveness of recommendations for
the two different tuple-weighting schemes described in Section 4.2, namely the
Binary and the Result methods. Figures 2 and 3 show the inverse cumulative
frequency distribution (inverse CFD) of the recorded precision and recall for
the test sessions. (Recall that all sessions are used as test sessions, using the
10-fold cross validation methodology described earlier.) A point (x, y) in this
graph signifies that x% of user sessions had precision/recall ≥ y. For instance,
as shown in Figure 3, the Binary method achieves a perfect recall (i.e., the
recommendations cover all the tuples that the user covers with his/her last
query) for more than half of the test sessions. We also observe that several
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Fig. 2. Inverse CFD of precision for top-5 recommendations
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Fig. 3. Inverse CFD of recall for top-5 recommendations
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Fig. 4. Precision of top-3 and top-5 recommendations

test sessions have a precision and recall of 0, i.e., the recommendations did not
succeed in predicting the intentions of the user. On closer inspection, these test
sessions are very dissimilar to training sessions, and thus the framework fails to
compute useful weights for Spred

0 .
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Fig. 5. Recall of top-3 and top-5 recommendations
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Fig. 6. Average precision and recall of top-5 recommendations

Overall, we observe that both methods achieve similar precision. This means
that both methods’ recommended queries cover the same percentage of inter-
esting tuples for the user. The Binary method, however, achieves much better
results than the Result one in terms of recall. As previously mentioned, recall
represents the number of recommended tuples that were of interest to the user
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Fig. 7. Precision of top-5 recommendations for different α values
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Fig. 8. Recall of top-5 recommendations for different α values

with respect to the user’s last query, and is a better predictor in terms of useful-
ness of the recommended query. This finding implies that the result size of the
query may not be a good indicator of the focus of users. Thus, in the experiments
that follow, we report the results of the Binary weighting scheme only.
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In the next set of experiments, we compare the recommendations with regards
to the size of the recommendation set. More specifically, in Figures 4 and 5 we
compare the top-3 and top-5 recommendation sets in terms of precision and re-
call respectively. Both recommendation sets achieve good results, being 100%
accurate in almost half test sessions. The top-5 recommendation set seems to
be performing better than the top-3 one, both in terms of precision and recall.
This can be justified by the fact that we report the maximum recall over all
the recommended queries and compute the precision for the query that achieved
maximum recall. This query might not always be included in the top-3 ones,
but is very often included in the top-5 recommendations. Notably, in about
55% of the test sessions, the maximum recall was 1, meaning that the recom-
mended query covered all the tuples that were retrieved by the user’s original
one.

Figure 6 shows the average recall andprecision of all top-5 recommendedqueries.
In this case we achieve high precision and recall for almost 1/3 of the test sessions.
The lower average precision and recall for the remaining sessions means that some
recommended queries might not be as accurate in covering the interesting subsets
of the database, dragging the overall average down. In real-life applications, how-
ever, it is likely that the active user will be able to select the few recommendations
closest to his/her interests. This motivates the use of the maximum recall metric,
which is used in the experiments of Figures 4 and 5.

Next, we evaluate the effect of the mixing factor α (Equation 5). More specif-
ically, we evaluate the precision and recall of the top-5 recommendations for
the pure user-based collaborative filtering approach (α = 0), the content-based
filtering approach (α = 1), as well as the case when both inputs are given equal
importance (α = 0.5). As shown in Figures 7 and 8, the pure collaborative
filtering approach (α = 0) yields worst results with respect to the other two
approaches, in terms of both the precision and the recall of the recommenda-
tions. The comparison of the other two approaches (α = 0.5 and α = 1) shows
that the combination of both sources (α = 0.5) yields slightly better results
in terms of recall. We should point out, however, that the results shown here
are tightly connected to the specific data set and workload. In practice, we ex-
pect that α will be calibrated prior to deploying the recommendation algorithm,
based on the characteristics of the database and a representative user work-
load.

Finally, we present some examples of recommended queries for sessions in
which the recommendations were 100% successful in terms of maximum recall
and precision. Table 3 shows a description of the session’s characteristics and
the recommended query. The table lists recommendations for three user ses-
sions, where the users had a very different progression in terms of the submitted
queries. Our system was able to recommend a query that returned exactly the
same results as the actual last query of the user, without the two queries being
necessarily identical. This evidence demonstrates the usefulness of our approach
in assisting users to interactively explore a relational database.
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Table 3. Query recommendations examples

Session description Recommended query

Each consecutive query was
posted to a different table.

SELECT *
FROM PhotoZ
WHERE objId = 0x082802f0c19a003e;

The user kept refining the
same query adding exactly
one selection predicate in ev-
ery consecutive query.

SELECT p.ra, p.dec, s.z, s.ew, s.ewErr
FROM specLine s, PhotoObj p
WHERE s.specObjId = p.specObjid AND s.specLineId = 1549;

The user posted queries to the
same tables, but each query
had several selection clauses
in addition to the previous
one.

SELECT top 10 L1.height Halpha h, L2.height Hbeta h,
L3.height OIII h, L4.height NII h, L1.sigma Halpha sig,
L2.sigma Hbeta sig, L3.sigma OIII sig, L4.sigma NII sig

FROM Specline L1, Specline L2, Specline L3, Specline L4, SpecObj
WHERE SpecObj.SpecObjID = L1.SpecObjID AND

SpecObj.SpecObjID = L2.SpecObjID AND
SpecObj.SpecObjID = L3.SpecObjID AND
SpecObj.SpecObjID = L4.SpecObjID AND
SpecObj.specClass = 3 AND
L1.lineID = 6565 AND
L2.lineID = 4863 AND
and L3.lineID = 5008 AND
L4.lineID = 6585;

6 Conclusions

In this paper, we present a query recommendation framework supporting the in-
teractive exploration of relational databases and an instantiation of this frame-
work based on user-based collaborative filtering. The experimental evaluation
demonstrates the potential of the proposed approach.

We should stress that this is a first-cut solution to the very interesting problem
of personalized query recommendations. There are many open issues that need to
be addressed. For instance, an interesting problem is that of identifying “similar”
queries in terms of their structure and not the tuples they retrieve. Two queries
might be semantically similar but retrieve different results due to some filtering
conditions. Such queries need to be considered in the recommendation process. We
are currently working on extending our framework to cover such query similarities.
Another interesting direction is to apply item-based collaborative filtering instead
of the user-based approach of the current framework. We also intend to explore
other approaches for instantiating the proposed conceptual framework.

We are also in the process of developing a visual query interface for the
QueRIE system and plan to evaluate its performance using real users. To ensure
that the system generates real-time recommendations for the active users of a
database, we need to devise smart methods to compress the session-tuple matrix
and to speed up the computation of similarities. In this direction, we plan to
leverage randomized sketching techniques as a compression method [14, 15, 16].
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Abstract. Mashups are gaining popularity as a rapid-development, re-
use-oriented programming model to replace monolithic, bottom-up appli-
cation development. This programming style is attractive for the “long
tail” of scientific data management applications, characterized by ex-
ploding data volumes, increasing requirements for data sharing and col-
laboration, but limited software engineering budgets.

We observe that scientists already routinely construct a primitive,
static form of mashup—an ensemble of related visualizations that convey
a specific scientific message encoded as, e.g., a Powerpoint slide. Inspired
by their ubiquity, we adopt these conventional data-product ensembles
as a core model, endow them with interactivity, publish them online, and
allow them to be repurposed at runtime by non-programmers.

We observe that these scientific mashups must accommodate a wider
audience than commerce-oriented and entertainment-oriented mashups.
Collaborators, students (K12 through graduate), the public, and pol-
icy makers are all potential consumers, but each group has a different
level of domain sophistication. We explore techniques for adapting one
mashup for different audiences by attaching additional context, assigning
defaults, and re-skinning component products.

Existing mashup frameworks (and scientific workflow systems) empha-
size an expressive “boxes-and-arrows” abstraction suitable for engineer-
ing individual products but overlook requirements for organizing products
into synchronized ensembles or repurposing them for different audiences.

In this paper, we articulate these requirements for scientific mashups,
describe an architecture for composing mashups as interactive, reconfig-
urable, web-based, visualization-oriented data product ensembles, and
report on an initial implementation in use at an Ocean Observatory.

1 Introduction

A mashup is a web-based, lightweight, situational application integrating services
and data that were not necessarily designed to interoperate. The term was coined
to describe web applications developed by the general public exercising Google’s
Map API, but has come to refer to any “quick and dirty” web application based
on pre-existing data or services.
� Work performed while author was at Oregon Health & Science University.
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Fig. 1. A data product ensemble from a physical oceanography presentation on “cli-
matologies” (long-term averages). Each map displays the Columbia River Estuary with
the Pacific Ocean cropped at left and colored by bottom salinity. The large map at left
is the bottom salinity averaged over the entire time period 1999-2006. The six maps
at right are arranged in two colums: the left column is the yearly average, and the
right column the average bottom salinity subtracted from the overall average to give
an indication of variability from the mean.

The popularity of mashups is attributable to the enormous rate of collective
data acquisition. Gray and Szalay argued that derived data dominates the total
data volume due to pairwise comparisons [4]. That is, N source datasets leads to
O(N2) derived comparison datasets. Similarly, the number of mashups deployed
on the web scales as O(N2) in the number of services available. For example, one
application overlays crime scenes on Google’s satellite images (via a join on loca-
tion) [2], another links your Twitter microblog with your Flickr photstream (via a
join on time) [15], another integrates your bank statements with your investment
portfolio [11], and so on. The quadratic growth rate in the number of applications
must be balanced by a reduction in development time, recruitment of a new class
of developer, a higher degree of reuse, or all three.

Of course, personal data management and social networking applications are
relatively simple problems — the amount of data processed in each operation is
small (a single RSS message, a screenful of search results), and the analysis to be
performed is predictable (items equipped with a latitude and longitude are dis-
played on a map, images are displayed in the browser using thumbnails). Many
mashup frameworks rely crucially on these simplifying assumptions [6,12,20], mak-
ing them inappropriate for enterprise mashups characterized by larger datasets,
specialized users, and domain-specific processing [7]. For example, an enterprise
mashup might be required to access data from relational databases, spreadsheets,
documents, and other in-house proprietary data sources in order to display the
combined data in a business-specific format, whereas a “consumer grade” mashup
will usually access a smaller set of standard data formats, but produce result de-
signed to be as generally accessible as possible.
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Fig. 2. A data product comparing observed conductivity (top), simulated conductivity
(middle) and their difference (bottom) against depth from a vertically mobile platform.
In our framework, this kind of static data product becomes mashable: parameterized,
and reusable in various situational applications.

Scientific mashups push the requirements of enterprise mashups even further.
In addition to large datasets and domain-specialization, scientific mashups are
relevant to a much broader range of potential customers. Besides highly special-
ized domain experts (e.g., the seven people in the world who understand your
research the best), students from K12 through post-graduate, collaborators from
different fields, the press, the general public, industry colleagues, and policy mak-
ers are all potential consumers of scientific results delivered by a mashup. In con-
trast, an enterprise mashup is intended for a much narrower range of user types
— perhaps just one or two specialized analysts or a set of identically trained
customer-service agents. Further, significant scientific findings are intrinsically
non-obvious, complicating their exposition. Although a map of addresses can be
interpreted by nearly anyone, the meaning of Figure 1 is difficult to ascertain
without explanation. (The reader is encouraged to try to interpret the ensemble
before reading the explanation in Section 2.)

Scientific mashups are also expected to present rather large datasets at one
time. For example, the timeseries in Figure 2 displays two days of measurements
from a profiling mooring managed by the Center for Coastal Margin Obser-
vation and Prediction (CMOP). The sensor climbs up and down within the
water column sampling at around 6Hz, generating over 1 million measurements
over a two-day period. Apprehending the gross features of a million data points
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requires the higher bandwidth of the human eye — visualization must replace
top-k filtering and coarse statistical aggregation at this scale and complexity.

Our work aims to simplify authorship and customization of scientific, visual-
ization-oriented “mashup” applications for diverse audiences.

2 Modeling Scientific Mashups

Our design of a mashup framework suitable for scientific data communication was
inspired by the ubiquity of visual data product ensembles in scientific discourse.

Example: Figure 1 provides an example of an ensemble from a Powerpoint pre-
sentation. Each map represents the Columbia River Estuary colored by the wa-
ter’s salinity along the river bottom as computed by the SELFE ocean-circulation
model [21]. The large map at the left is the average bottom salinity from 1999-
2006. The dense, salty water at the bottom is less dominated by river discharge
and tidal influences, and is therefore a better characterization of estuary behav-
ior than other variables such as temperature. The six smaller maps at the right
are organized into two columns. Each row is a different year, and only data from
the two-month period of December and January is shown for each year. The left
column is the average bottom salinity for each of three years: 1999, 2001, 2006.
The right column is the average bottom salinity subtracted from the overall
average salinity, indicating anomalies. The bar chart at the lower left indicates
anomolies for salinity intrusion length year-by-year.

This ensemble was constructed from static images by Antonio Baptista, di-
rector of CMOP, as part of a presentation on climatological (i.e., long-term)
variability. Each static image was generated by the programming staff at CMOP
specifically for the presentation. The ensemble was crafted to convey a specific
message — that the long-term collection of hindcast results generated from the
SELFE ocean-circulation model was accurately capturing climatological vari-
ability, including known anomalies. Specifically, this ensemble demonstrates that
the model captures the fact that 1999 was fresher than average, while 2006 was
unremarkable. The year 1999 is known to have exhibited extremely high river
discharge in late December, so a fresh estuary agrees with observation.

2.1 Injecting Interactivity

The example ensemble in Figure 1 immediately suggests a family of related
ensembles designed to answer related questions: Is the temperature signature
anomalous in 1999 as well? Does the 1999 anomaly persist through the Spring
freshet in May? This situation illustrates one goal of this research: to allow
scientists to re-parameterize and re-purpose this ensemble without relying on
programming staff.

To maximize the return on programmer effort, a scientific mashup framework
should allow a non-programmer to reuse and repurpose programmer-crafted data
products. In contrast, consider workflow systems, which also aim to raise the level
of abstraction for authoring data-processing pipelines [8,16] and visual scientific
applications [18,1]. Workflow systems generally support reuse — a workflow
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Fig. 3. A mashup in use at the NSF Science and Technology Center for Coastal Margin
Observation and Prediction built to review profile measurements taken during research
cruises. The are four main sections: 1) a chain of parameters specifying which visualiza-
tions to display, 2) the cast profile plot with two simultaneous variables on the x-axis
and depth on the y-axis, 3) a pair of maps providing spatial context for the cast, and
4) a set of timeseries displaying surface measurements gathered from the vessel during
the same day.

authored by one programmer can be accessed by other users of the same platform
[8,16,18]. However, our stakeholders find the expressive data-flow abstractions
adopted by most workflow systems to be only marginally more accessible than
general purpose programming languages — and therefore effectively inaccessible
to non-programmers.

The ensemble in Figure 1 is not designed to be interactive — it conveys a
specific scientific message without requiring additional user input. In contrast,
consider Figure 3. This ensemble is divided into four areas:

1. User controls: Users can select a completed research cruise using the top-
most select widget in area (1). The vessel of interest can be chosen using the
second select widget. The available vessels depend on the currently chosen
cruise. The third and fourth select widgets allow the user to choose the day
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the cast was taken and particular cast, respectively. The choices available in
these selects are dependent on the chosen cruise and vessel. The final two
select widgets allow the user to choose the two x-axis variables that will be
displayed in the cast profile image.

2. Cast profile: The y-axis of the cast profile is depth, and the configurable
top and bottom axes each reflect a measured variable.

3. Daily Map: The daily maps show vessel activity for the chosen day. The
vessel-path map shows the vessel path colored by time of day (red is later,
blue is earlier). The pink diamond shows the final vessel location at midnight.
The black dots show cast locations. The cast-location map shows the cast
locations as blue circles, with the selected cast highlighted in orange. These
maps provide spatial context needed to interpret the the cast profile. For
example, if a cast profile is near the estuary (as is the cast if Figure 3), then
a strong freshwater signal at the surface is expected.

4. Daily Timeseries: The timeseries plots show tidal elevations, near-surface
salinity, and near-surface temperature from the flow-through sensor package
on board the vessel. The tidal elevations provide temporal context — the
plume is fresher during low tide.

In contrast to the “display-only” mashup of Figure 1, Figure 3 involves user
controls for re-parameterizing the mashup. Our mashup model erases the dis-
tinction between input and output components, allowing any mashable item to
both display a set of values to the user, and (optionally) allow the user to select
a subset of values to return to the system. Using this simple data model, we
are able to express a wide variety of lightweight science applications without
requiring mashup developers to learn a broad repertoire of tools. That is, every
component is an instance of one underlying class: an adapted mashable.

2.2 Inferring Data Flow

Consider the following definitions. We adopt a parameterized type syntax bor-
rowed from the polymorphic features of C++ and Java. Each type variable is a
scheme — set of attribute names.

Environment〈E〉 :: E → list of strings
Domain〈T 〉 :: a relation with attributes T

Mashable〈E, T 〉 :: Environment〈E〉 → Domain〈T 〉
Adaptor〈E, T 〉 ::Environment〈E〉→Domain〈T 〉→Environment〈E∪T 〉

AdaptedMashable〈E, T 〉 :: Environment〈E〉 → Environment〈E ∪ T 〉

Each Mashable is a simple function abstraction for web services, database
queries, shell programs, etc: given a set of parameters, return a set of tuples.
Each formal parameter is a string (e.g.“cruise”, “date”). Parameter values are
sequences of strings to allow multi-valued selections (e.g., a range of dates instead
of a single date). Individual values are untyped; their interpretation is left up to
the consumer, following conventions of REST.
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Informally, each adaptor takes a set of tuples, displays them to the user,
allows the user to select some subset, and then converts that subset to an envi-
ronment. The keys of the resulting environment are the attributes of the source
relation (as expressed in the definition of Adaptor above). For example, the
first select box in area (1) of Figure 3 is populated from a relation with at-
tributes (cruise, startdate). These tuples are converted into a drop down menu
by an appropriate adaptor. When the user selects a particular cruise, the adaptor
(back on the server, after appropriate translations) receives the user’s selection
[(“July 2007”, “7/4/2007”)]. The environment passed to the next mashable is
the current environment E updated with values from the new environment T
with keys (cruise, startdate).

In this model, a mashup is a graph where each vertex is an AdaptedMashable
(AM). Edges are derived implicitly from parameter dependency information. For
example, in Figure 3, one of the select widgets allows the user to choose a par-
ticular day of the research cruise. The two maps at the upper right both make
use of the selected day value to determine which data to display. No explicit
link between the day select widget and the two context maps is required. Simply
by appearing in the same scope, consumers of the day parameter are implicitly
dependent on the producer of the day parameter. By synchronizing the param-
eters of each mashable to common sources, we reduce the chance of presenting
a dangerously misleading mashup. For example, Figure 1 only make sense if all
products pertain to bottom salinity — the system can help enforce this con-
straint by keeping all products synchronized (unless explicitly overridden by the
user — see below).

Edge Inference. More precisely, we heuristically infer an edge between two
vertices X〈EX , TX〉 and Y 〈EY , TY 〉 if EY ⊂ TX . That is, if one AM supplies all
the parameters that another AM needs, then connect them. Next, we infer edges
wherever two upstream AMs together can supply the necessary parameters. That
is, given a vertex X〈EX , TX〉, and an edge (Y 〈EY , TY 〉, Z〈EZ , TZ〉), infer an edge
(Z, X) if EX ⊂ TY ∪ TZ . We continue this process for longer paths through the
graph until we converge. For example, the plot in area (2) of Figure 3 (call it P1)
requires values for cruise, vessel, and castId. The first select box S1 provides
values for cruise and startdate, the second select box S2 requires values for
vessel (given a cruise), and the third S3 provides values for castid (given a
cruise and a vessel), so we infer a path in the graph S1→ S2→ S3→ P1.

Since we rely on an implicit dependency graph among AMs, we must tolerate
both underspecified and overspecified mashups. An underspecified mash-up in-
volves AMs that require values for parameters not supplied by any other AMs.
We address underspecified mashups by requiring that all mashables either adopt
default values for all required parameters or tolerate their omission. For exam-
ple, the right-hand map plot in area (3) of Figure 3 displays all casts for a given
day, but also highlights a particular cast. The author of the underlying adaptor
is expected to handle the case where no cast is specified: perhaps no cast is
highlighted, or the first cast in the list is highlighted, for example. By requir-
ing that all mashables tolerate missing parameters, we reduce the number of
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invalid mashups that can be expressed by the user. Anecdotally, we observe that
exceptions and error messages are to be avoided at all costs: Users simply assume
that the system is not working and stop using it rather than read the message
and correct the problem.

An overspecified mashup provides multiple sources for the same parameter
values. For example, the choice of a cast implies a temporal context: the time
the cast was taken. However, the choice of a cruise also implies a temporal
context: the start time of the cruise itself. A mashable that looks up the tidal
elevation based on time must choose between these two timestamps, but there
is not necessarily an unambiguous way to do so. In this case, we break the tie
by observing that the cast is influenced by the cruise, so the cast time is in a
sense more specific — it already takes into account the information supplied
by the cruise. We refer to this heuristic as the path of greatest influence (PGI).
The PGI is simply the backwards path through the directed graph that passes
through largest number of competing sources for a parameter. The source to use
is the nearest node along the PGI. The algorithm to implement this decision is
straightforward: reverse the edges, find the longest path from the target vertex
to a vertex supplying the overspecified parameter, and select the first vertex.
Ties are currently broken by document order in the HTML — nearest nodes
in document order are linked, under the assumption that products are usually
added to the mashup in dependency order. Another tie-breaking strategy we are
exploring is to automatically multiplex the overspecified product. For example,
if two casts are in scope and the designer appends a tidal chart product, there is
no unambiguous way to choose between them. Rather than assume the second
cast is preferable to first, we can simply insert an additional copy of the tidal
chart — one for each cast. This feature is not yet tested.

The implicit dependency graph is one mechanism for specifying data flow, but
there are two others. Each mashup is equipped with a root environment config-
ured by the mashup designer. The root environment is by default empty, but
can be populated with metadata (parameter-value pairs) to resolve ambiguities
in the dependency graph or to supply information that cannot be derived any-
where else. For example, the colors in Figure 1 all pertain to bottom salinity in
the period 1999-2006. The pairs (variable = bottomsalinity, startyear = 1999,
and endyear = 2006) can be inserted into the root environment. The root envi-
ronment is just another node in the dependency graph — products will still pull
their parameters from the nearest upstream source unless explicitly overridden
by the designer.

Mashup developers may also individually set parameter values for individual
products. Parameters set explicitly for individual products override other sources
of parameters and allow fine-tuning of the mashup. For example, the individual
years selected for the rows at the right-hand side of Figure 1 are explicitly set
by the designer rather than being passed by the dataflow graph.

2.3 Tailoring Mashups for Specific Audiences

Consider the context provided by the static ensemble in Figure 1 for interpreting
the underlying data, both explicit and implicit. The title at the upper left gives
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explicit context: the proper interpretation of the color (bottom salinity) and the
overall time period considered (1999-2006). The fact that all the map images
pertain to the same geographical region (the Columbia River Estuary) is implicit.
The units of the color bar (practical salinity units, or just psu) are also implicit,
since no other units are in common usage. The meaning of the y-axis label (SIL
stands for Salinity Intrusion Length) is also implicit. Even knowledge of the
expanded acronym does not necessarily help a novice interpret the graph. The
intrusion length is in meters, but what distance is it measuring? Domain experts
will understand that an estuary length is measured along its primary channel,
which is usually well-defined for ship traffic, but a novice will find it difficult to
develop intuition for the physics without further explanation.

We therefore seek transformations that preserve the scientific meaning of the
mashup but tailor it to different audiences. We define three techniques for tailoring
mashups: inserting context products, changing application style, and re-skinning.

The first method is to insert new products into the mashup that expose what
was going on “nearby” — not just in time and space, but nearby in the overall pa-
rameter space. For example, information on tides, weather, daylight, other obser-
vational platforms, other models, and so on all potentially enhance interpretation.
Additional products that simply display values in the root environment are also
applicable here: the title bar in Figure 1 is an example of a simple “product.”

The second method is to tailor the application style for different audiences.
Anecdotally, we find that experts prefer to fill screen real estate with additional
data, but novices prefer to study one product at a time to avoid feeling over-
whelmed. The mashup framework supports converting from a dashboard-style
interface (all products at once) to a wizard-style interface (one product at at
time) without additional programming.

Finally, mashups can be re-purposed for display to different audiences by
re-skinning the mashable components of the mashup with different adaptors.
The mashup in Figure 3 depicts temperature as a variable on the x-axis of a
cast-profile plot. This succinct approach to data visualization is desirable when
the intended audience is a group of domain experts. However, this visualization
is likely difficult to understand and un-engaging for elementary-school science
students. In order to address this issue, the original mashup can be re-skinned
to appeal to a wider audience. As shown in Figure 4, the product which displays
depth on the y-axis and temperature and salinity on the x-axis is replaced by a
product which displays depth as an animation of a cast-profiling device beneath
the vessel moving up and down in the water column, with the corresponding
temperature and salinity displayed as familiar graphical thermometers. In this
fashion, re-skinning makes the same data product accessible to users of widely
differing backgrounds and skill sets.

The discussion in this section exposes three steps in creating a scientific
mashup:

1. Wrap. Programmers must wrap each data source as a mashable accepting
an arbitrary environment of parameters mapped to sequences of values and
returning a set of tuples.
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Fig. 4. Different adaptors can present data from the same mashable in different ways.
The adaptor on the left displays depth along the y-axis and temperature and salinity
along the x-axis of the cast plot. The adaptor on the right illustrates the dependency
between temperature and salinity and depth by allowing the user to drag the cast probe
up and down within the water column in order to see the change in temperature and
salinity associated with the change in depth.

2. Synch. Mashup authors (usually non-programmers) choose from a set of
adapted mashables — each one a mashable with a specific visual “skin.” The
set of selected mashables are wired together as a data flow graph derived
using heuristics involving document order, implicit dependency information,
and user input.

3. Tailor. Mashups can be re-purposed for different audiences by attaching ad-
ditional adapted mashables, using different adaptors for the same mashables,
or re-organizing into a different application style (i.e., a dense,
AJAX-powered single-screen application versus a wizard-style, question-and-
answer-oriented application).

2.4 Challenges and Limitations

The challenge of the Scientific Mashup problem is to support a broadly func-
tional class of web applications without incurring the cognitive load associated
with traditional programming. We are experimenting with an extremely simple
conceptual model: mashables for retrieving data, adaptors for interacting with
the user, and sequences of strings for data flow. As a result of this design choice,
we rely heavily on the functionality of the mashables.

By design, we do not permit additional operations between adaptors and
mashables, such as filtering, data cleaning, type conversion, or arithmetic. We
assume that all such work is done inside the mashable. We impose no restric-
tions on the expressiveness of the mashable internals. We anticipate that some
mashable components will execute complex scientific workflows to generate the
domain, or otherwise execute arbitrary programs. However, because we are ag-
nostic to the language or system used to author mashables, our work is comple-
mentary to research in programming languages, scientific workflows, and data
integration systems. We are interested in empowering the non-programmer to
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craft interactive scientific ensembles using basic building blocks. We are exploring
the question, “What are the limits to the applications can we provide assuming
the user is only willing to specify 1) the visualizations they are interested in, 2)
their arrangement on-screen, 3) a few parameter values in a root environment?”

Our reliance on a simplified relational model represents another limitation:
data sources that return XML must be flattened into relations before they can
be used with our system. We have found XML to be rather unpopular among
scientific programmers for simple tasks, and we want to keep the barrier to entry
for our mashable authors as low as possible.

3 Related Work

Workflow systems attempt to raise the level of abstraction for scientific pro-
grammers by adding language features: visual programming, provenance, limited
task parallelism, fault tolerance, type-checking, sophisticated execution models
[3,8,16,18]. In contrast, we adopt a top-down approach: begin with a static data
product ensemble, then endow it with interactivity and publish it online.

The VisTrails system has a suite of advanced features useful as mashup
support services. VisTrails exploits the graph structure of the workflow and
a database of existing workflows to provide a higher-level interface for workflow
composition. Users can create new workflows “by analogy” to existing workflows
and the system can help “autocomplete” a workflow by offering suggestions
based on the graph structure [14]. Both features rely on graph matching with an
existing corpus of workflows. VisTrails also adopts a spreadsheet metaphor for
displaying and browsing related visualizations. A series of workflow executions
can be compared side-by-side in the cells of a grid. Further, a series of related
images can be generated in one step using a parameter exploration — an itera-
tive execution of the same workflow across a range of parameter values. Finally,
the VisTrails system also allows an individual workflow to be compiled into a
simple web application [19]. These features all help reduce the programmer effort
required to create and re-purpose workflows. Our approach is complementary —
we explore the configuration space of multiple synchronized visualizations, while
remaining agnostic to how the visualizations are created.

Marini et al. describe a system to publish workflows to the web as interactive
applications [9] and corroborate our emphasis on domain-specific solutions [5],
but do not consider multiple synchronized workflows, nor runtime-configuration
for different audiences.

There exist many commerce- and web-oriented mashup development frame-
works freely available for public use [6,12,20]. From among the systems available
to us we chose to examine Yahoo Pipes and Microsoft’s Popfly in detail.

Yahoo Pipes is a web-based mashup solution. Pipes allows users to compose
existing data feeds into new feeds that can be made available on the web. The
Pipes system appears to be well suited to this task, but requires that a user be at
least passingly familiar with standard Internet feed formats and XML concepts.
Pipes does attempt to allow users to integrate less-structured information from
arbitrary web pages into its mashups; this integration appears to be limited to
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displaying the contents of a page (or portion thereof) alongside structured feed
information. In contrast, our requirements demand that users be able to draw
from a wide range of scientific data without being forced to understand the
particular storage format of that data.

Popfly is Microsoft’s offering for a mashup-development framework. Popfly
differentiates itself from other mashup solutions by offering a very rich user in-
terface. Of particular interest is the feature that allows a user to examine a
mashup component at different levels of abstraction. At the simplest level, a
mashup component is presented as a graphical control with inputs and out-
puts that can be connected via drag and drop operations, similarly to Yahoo
Pipes. At the next level of detail, a mashup component is presented as a choice
of operations that can be performed on the inputs — integer addition, string
concatenation, filtering, etc. At the lowest level of detail, a user is invited to
directly edit the Javascript code behind a mashup component. In this fashion,
different designers with varying levels of programming expertise can interact
with Popfly in the fashion that best suits their needs and abilities — all within
the same development interface. This ability to drill down to a preferred level
of programming-interface complexity is well-suited to a scientific mashup appli-
cation where a substantial number of users can be expected to have advanced
mathematical skills as well as a reasonably advanced programing skill set. How-
ever, data processing in Popfly is performed in client-side Javascript, which is
inefficient in the context of the large data sets and computationally expensive
operations inherent in a scientific mashup.

We observe that software vendors are increasingly aware of audience-adapt-
ibility. Microsoft Office products hide unused options from their menus in order
to avoid overwhelming novice users. Tax preparation applications (e.g. TurboTax
[17]) provide multiple application styles for the same core content. A question-
naire application style (called EasyStep in TurboTax) can be used in conjunction
with a form-oriented application style designed for experts. We are studying how
these techniques may be adopted for scientific mashups.

4 System Architecture

Our initial mashup system is comprised of five major components. The environ-
ment, the mashable, the domain, the adaptor, and the mashup engine.

1. Environment. An environment is a map of keys to values and is the input
to a mashable. All mashups are designed to accommodate an empty or de-
fault environment. Thus a valid product ensemble is guaranteed even in the
absence of user interaction.

2. Mashable. The mashable is the primary means of data-source abstraction.
A mashable takes an environment as input and produces a domain as output.
Mashables are reusable components created by programmers for end users
to work with during runtime configuration of a mashup.

3. Domain. A domain is a set of tuples returned by a mashable.
4. Adaptor. Adaptors render domains. All user-interface components are adap-

tors. Adaptors can be display-only or interactive. An interactive adaptor
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Fig. 5. Possible mashup graph configurations

allows a user to modify the environment passed to subsequent mashables in
the mashup graph. Like mashables, adaptors are created by programmers
for configuration within a mashup by end users. Different adaptors may be
associated with a single mashable, allowing audience-specific presentations
of data.

5. Mashup Engine. The mashup engine is the context within which the other
mashup components exist. Designers browse for mashables and adaptors that
have been defined previously and link them together at runtime within the
mashup engine. The mashup engine is responsible for automatically synchro-
nizing the mashup components when a user alters the state of an environment
via interaction with an adaptor.

It is possible to have multiple products share a single environment, as il-
lustrated in Figure 5 (left). Constructing a mashup in this fashion allows user
interaction with a single Adaptor to effect the state of all products that are
members of the mashup tree rooted at the shared environment. Products lo-
cated within a separate subtree of the mashup are not affected by this adaptor
interaction. A users interaction with a given product within a product ensemble
affects the state of the environment. A cloned instance of the environment is
passed down from product to product as in Figure 5 (right). In this way the
result of interaction with one product in the chain is passed down to subsequent
products in the product chain.

Listing 1.1 provides an example of the mechanisms used to wire a set of mash-
ables and adaptors together in order to create a functioning mashup. In this ex-
ample, the mashup wiring is shown explicitly. However, similar wiring might just
as easily take place at runtime as the result of a user’s interaction with the system.

In line 1, a new instance of a mashup is created. The name (CmopTest) of the
mashup serves to identify this particular mashup within a system that may host
many different mashup instances at the same time. In lines 3 and 4, a Mashable
reference to the CmopVesselMashable is obtained and a new SelectAdaptor is
created and named. The CmopVesselMashable is an implementation of Mashable
that abstracts vessel-specific data within the CMOP database. The SelectAdap-
tor is an adaptor implementation that renders its adapted domain as an HTML
select widget. In lines 5 and 6, we define a mapping to associate the attributes
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Listing 1.1. A mashup example linking two select widgets
1 Mashup m = new MashupImpl ( ‘‘CmopTest” ) ;

3 Mashable v e s s e l = CmopVesselMashable . g e t In s tance ( ) ;
4 Adaptor s e l e c t v e s s e l = new SelectAdaptor ( ‘‘ v e s s e l ” ) ;
5 Map<Str ing , Str ing> vesselmap = new HashMap<Str ing , Str ing >() ;
6 vesselmap . put ( SelectAdaptor .KEY, ‘‘ v e s s e l ” ) ;
7 m. addMashable ( v e s s e l ) ;
8 m. l inkAdaptor ( s e l e c t v e s s e l , v e s s e l , vesselmap ) ;

10 Mashable c r u i s e = CmopCruiseMashable . g e t In s tance ( ) ;
11 Adaptor s e l e c t c r u i s e = new SelectAdaptor ( ‘‘ c r u i s e ” ) ;
12 Map<Str ing , Str ing> cruisemap = new HashMap<Str ing , Str ing >() ;
13 cruisemap . put ( SelectAdaptor .KEY, ‘‘ c r u i s e ” ) ;
14 m. addMashable ( c r u i s e ) ;
15 m. l inkAdaptor ( s e l e c t c r u i s e , c r u i s e , cruisemap ) ;

17 m. l inkMashable ( c r u i s e , v e s s e l ) ;

required by the adaptor with attributes available within the domain produced
by the adapted mashable. In lines 7 and 8, the mashable instance is added to
the mashup and linked to the configured adaptor.

In lines 10-15, a new mashable and adaptor are linked together and added to
the mashup. In this case, the mashable is an abstraction of CMOP cruise data
and the adaptor is again an instance which renders as an html select widget.

Finally, in line 17, the two mashables are linked or “mashed” together within
the context of the mashup. In this case the cruiseMashable is the “masher” and
the vesselMashable is the “mashee”. As such, changes to the cruiseSelectAdaptor
made by the user will modify the environment provided to the vesselMashable.
This changed environment will cause a corresponding change to the domain
produced by the vesselMashable and ultimately to the data displayed to the
user by the vesselSelectAdaptor.

5 A Mashup Factory for an Ocean Observatory

In Section 4, we described an initial implementation of the complete mashup
model. In this section, we describe an earlier incarnation of these ideas called
the Product Factory. The Product Factory is currently deployed at the Center
for Coastal Margin Observation and Prediction, and is part of the infrastructure
for the upcoming Pacific FishTrax website sponsored by the project for Collab-
orative Research on Oregon Ocean Salmon (CROOS) [13]. The design goals of
the Product Factory are:

1. Replace static images with dynamic, user-configurable data products.
Method: Distill each product to a set of parameters, an SQL statement, and
a short plotting script. All other boilerplate code is provided by the factory.

2. Simplify the creation of web applications involving multiple data products.
Method: Expose each factory product as a RESTful web service, allowing
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data products, parameter values, and source data to be embedded in HTML
without additional server-side programming.

3. Provide public access to the underlying data, not just the visualization.
Method: Registering a product in the factory automatically establishes a
web service for data access in a variety of common formats.

To create a new product, a programmer writes a product specification in either
XML or Python. An example XML product specification appears in Listing 1.2.
The specification involves three sections: a set of parameters (lines 3-15), an
extractwith clause indicating how to extract data (lines 16-21), and a plotwith
clause indicating how to render the data (lines 22-28).

The Product Factory extracts data and parameter domains from a relational
database. Generalization of the Factory to allow access to arbitrary data sources
was an important motivation in designing the architecture of Section 4.

Each parameters has a type that determines its behavior. The base type
Parameter allows unconstrained user input, and is rendered as a simple text box.
A SelectParameter (lines 13-15) takes a comma-delimited list of strings and
forces the use to select one using an HTML select tag. A SQLSelectParameter
(e.g., lines 3-5) is similar to a SelectParameter, but the choices are drawn from a
database using an SQL statement. SQL-powered parameters may depend on the
values of earlier parameters. Syntactically, the SQL statement may include em-
bedded placeholders using Python string-formatting conventions. In the HTML
interface, we use asynchronous Javascript to dynamically refresh the values of
downstream parameters when upstream parameters change.

Other parameter types available include MultiSelect and SQLMultiSelect
versions that allow multiple option to be selected by the user, HiddenParameter
that computes a value for downstream processing but does not interact with
the user, and DynamicDefaultParameter that computes an initial value from
upstream parameters but allows arbitrary user input. Each SQL-driven param-
eters is similar to the product itself — data is extracted from the database and
displayed to the user. The observation that parameters are not fundamentally
different from products led to their unification in the current model (Section 2).

Like the SQL-powered parameters, the extractwith clause uses string-sub-
stitution placeholders to reference parameter values. The plotwith clause is sim-
ply Python code executed in an environment with all parameters and plotting
libraries pre-loaded as local variables. Most plotwith clauses are remarkably
short, using just a few MATLAB-style calls provided by the matplotlib 2D plot-
ting library [10]. Since many of our programmers are familiar with MATLAB,
matplotlib provides an attractive alternative for programming visualizations.

Each parameter type specifies how to compute a default value. For the base
Parameter type, the default value is given explicitly in the definition. Parameters
with explicit domains use the first value in the domain as the default value. If
a parameter’s domain is empty (e.g., the SQL query returns no records), then a
sentinel value akin to NULL is returned. A downstream parameter may or may
not be designed to tolerate NULL — if an exception is raised, the downstream
parameter is itself assigned NULL. This aggressive propagation of NULL values
is necessary to prevent exception messages and errant behavior for the end user
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Listing 1.2. A factory product specification in XML. The Product Factory is an early
implementation of a scientific mashup framework focused on reducing the code required
to publish an interactive data product.
1 <s p e c i f i c a t i o n>
2 <product name=‘‘ c a s t p r o f i l e ”>
3 <parameter name=‘‘ v e s s e l ” type=‘‘SQLSelectParameter ”>
4 SELECT ve s s e l FROM cr u i s e . v e s s e l
5 </parameter>
6 <parameter name=‘‘ c r u i s e ” type=‘‘SQLSelectParameter ”>
7 SELECT c r u i s e FROM cr u i s e . c r u i s e WHERE ve s s e l =’%( v e s s e l ) s ’
8 </parameter>
9 <parameter name=‘‘ cas t ” type=‘‘SQLSelectParameter ”>

10 SELECT d i s t i n c t cas t id , c a s t d e s c r i p t i o n FROM ctdca s t
11 WHERE ve s s e l = ’%( v e s s e l ) s ’ AND c r u i s e = ’%( c r u i s e ) s ’
12 </parameter>
13 <parameter name=” va r i ab l e ” type=”SelectParameter ”>
14 s a l i n i t y , conduct i v i ty , temperature , pr es sur e , tu r b i d i ty
15 </parameter>
16 <extractw i th>
17 SELECT time , −depth as depth , %(va r i ab l e ) s as va r i ab l eda ta
18 FROM cas tob s e r va t i on
19 WHERE ve s s e l = ’%( v e s s e l ) s ’
20 AND c r u i s e = ’%( c r u i s e ) s ’ AND cas t i d = ’%( cas t ) s ’
21 </extractw i th>
22 <plotwith>
23 t i t l e ( ”%s %s %s ’ % ( cast , v e s s e l , c r u i s e ) , s i z e=’ smal l ’ )
24 s c a t t e r ( var i ab l edata , depth , f a c e t ed=Fal s e )
25 x l abe l ( var i ab l e , s i z e=’ smal l ’ )
26 y l abe l ( ’ depth (m) ’ , s i z e=’ smal l ’ )
27 </plotwith>
28 </product>
29 </ s p e c i f i c a t i o n >

— in our experience, a product that returns an empty dataset is tolerable, but
error messages are not. However, masking exceptions complicates debugging, so
we provide a command line tool for testing products in a controlled environment.

The Product Factory simplifies the Wrap step of mashup authorship by chang-
ing the skillsets required to publish interactive data products on the web. Instead
of learning a host of languages and configuration tools, programmers can simply
write a series of related SQL statements and a short MATLAB-style script —
higher-level language skills that are generally easier to learn (and that CMOP
programmers happen to already possess!).

To register a specification with the Factory, the XML script is uploaded
through either a command-line tool or a web form. The script is first tested
in the empty environment (all products must produce meaningful results with
no user decisions), then loaded into the factory database. Once loaded, rendered
products, source data, parameter domains, and other information are all avail-
able through a RESTful web service interface. Factory calls are of the form

http://server.com?request=<r>&product=<prd>&<p1>=<v1>&...
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where r is one of getproduct, getdata, getdomain, getspec, prd is the name
of a product, pi is a parameter name and vi is a url-encoded value.

To construct a synchronized ensemble from individual products as in Figure 3,
a mashup designer need only include each relevant product in the HTML page
using the syntax <div class="factory" product="cast"/> and include the
factory Javascript library. Each product will be expanded into either an HTML
form or a simple image tag, depending on whether or not its parameters need
to be displayed. For example, in Figure 3, areas (1) and (2) are together an
HTML form rendered for the cast profile product (similar but not identical to
Listing 1.2). Any other products that share these parameters can “borrow” from
the castprofile product, thereby avoiding the need to have the user specify the
relevant cruise, vessel, and cast multiple times. This mechanism supports the
Synch step of mashup authorship — product “building blocks” can be brought
into the same scope, and the system will derive a wiring diagram for them based
on the dependency graph between parameters and products.

6 Conclusions and Future Work

The adoption of a mashup style of application development is potentially trans-
formative for scientific communication. Faced with exploding data volumes, enor-
mous data heterogeneity, and limited programming staff, development of new
data product ensembles is becoming the bottleneck to dissemination of results.
Our model unifies visualizations with interactive user controls, providing a sim-
ple underlying model that can express a wide variety of scientific applications.
The ability to adapt existing mashups to tailor them for new audiences pro-
vides another dimension of reuse. The initial deployment of the Product Factory
provides evidence that a successful mashup framework should not just raise the
level of abstraction for individual data products, but also provide tools for orga-
nizing constituent products into interactive data ensembles. With this approach,
scientists are empowered to reuse programmers’ work (via support for product
synchronization), and the end users are empowered to reuse a scientists’ work
(via interactive user controls).

Future work includes a formalization of the context model outlined in Sec-
tion 2. We hope to be able to quantify interpretability based on domain-specific
models of context. Equipping the mashup framework with semantics may allow a
broader and more useful consideration of context and interpretability. Endowing
individual mashable components with semantics will also allow more advanced
reasoning by the system. The current implementation relies too heavily on ad-
vanced programming skillsets. Mashup designers must at least write HTML to
connect mashable components together, but we plan a drag-and-drop interface
similar to Microsoft’s Popfly or Yahoo Pipes.
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Abstract. The capability of OLAP database software systems to han-
dle data complexity comes at a high price for analysts, presenting them a
combinatorially vast space of views of a relational database. We respond
to the need to deploy technologies sufficient to allow users to guide them-
selves to areas of local structure by casting the space of “views” of an
OLAP database as a combinatorial object of all projections and sub-
sets, and “view discovery” as an search process over that lattice. We
equip the view lattice with statistical information theoretical measures
sufficient to support a combinatorial optimization process. We outline
“hop-chaining” as a particular view discovery algorithm over this ob-
ject, wherein users are guided across a permutation of the dimensions
by searching for successive two-dimensional views, pushing seen dimen-
sions into an increasingly large background filter in a “spiraling” search
process. We illustrate this work in the context of data cubes recording
summary statistics for radiation portal monitors at US ports.

1 Introduction and Related Work

OnLine Analytical Processing (OLAP) [6,7] is a relational database technology
providing users with rapid access to summary, aggregated views of a single large
database, and is widely recognized for knowledge representation and discovery in
high-dimensional relational databases. OLAP technologies provide intuitive and
graphical access to the massively complex set of possible summary views avail-
able in large relational (SQL) structured data repositories [21]. But the ability of
OLAP database software systems, such as the industry-leading Hyperion1 and
ProClarity2 platforms, to handle data complexity comes at a high price for an-
alysts. The available portions and projections of the overall data space present
a bewilderingly wide-ranging, combinatorially vast, space of options. There is
an urgent need for knowledge discovery techniques that guide users’ knowledge

1 http://www.oracle.com/technology/products/bi/essbase/visual-explorer.

html
2 http://www.microsoft.com/bi/products/ProClarity/proclarity-overview.

aspx
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discovery tasks; to find relevant patterns, trends, and anomalies; and to do so
within the intuitive interfaces provided by “business intelligence” OLAP tools.

For example, consider a decision-maker responsible for analyzing a large re-
lational database of records of events of personal vehicles, cargo vehicles, and
others passing through radiation portal monitors (RPMs) at US ports of entry.
In our data cubes include dimensions for multiple time representations, spatial
hierarchies of collections of RPMs at different locations, and RPM attributes
such as vendor. In this context, a vast collection of different views, focusing on
different combinations of dimensions, and different subsets of records, are avail-
able to the user. How can the user assess the relative significance of different
views? Given, for example, an initial view focusing on RPM type and date, is
it more significant to focus on passenger or cargo RPMs, or a particular month
in the year? And given such a selection, is it more significant to next consider
a spatial dimension, or any of more than a dozen independent dimensions avail-
able?

Through the Generalized Data-Driven Analysis and Integration (GDDAI)
Project [11], our team has been developing both pure and hybrid OLAP data
analysis capabilities for a range of homeland security applications. The over-
all GDDAI goal is to provide a seamless integration of analysis capabilities,
allowing analysts to focus on understanding the data instead of the tools. We
describe GDDAI’s approach to knowledge discovery in OLAP data cubes us-
ing information-theoretical combinatorial optimization, and as applied in the
ProClarity platform on databases of surveillance data from radiation monitors
at US ports of entry. We aim at a formalism for user-assisted knowledge dis-
covery in OLAP databases around the fundamental concept of view chaining.
Users are provided with analytical feedback to guide themselves to areas of high
local structure within view space: that is, to significant collections of dimen-
sions and data items (columns and rows, respectively), in an OLAP-structured
database.

OLAP is fundamentally concerned with a collection of N variables X i and a
multi-dimensional data relation over their Cartesian product X :=×N

i=1 X i.
Thus formalisms for OLAP data analysis are naturally rooted in relational
database theory, and OLAP formalisms [1,10,28] extend relational calculi and
algebras, for example extending the SQL language to its multi-dimensional ana-
log MDX3. But OLAP shares mathematical connections with a range of multi-
variate analytical approaches operable on the space X, for example statisti-
cal databases [26]; the analysis of contingency tables [3]; hierarchical log-linear
modeling [18]; grand tour methods in multi-variate data visualization [2]; pro-
jection pursuit [19]; data tensor analysis [14]; and reconstructibility analysis
[13,20].

Our ultimate goal is to place OLAP knowledge discovery methods within a
mathematical context of combinatorial optimization in such a manner as to be
realizable within existing industry-standard database patforms. Specifically:

3 http://msdn.microsoft.com/en-us/library/ms145506.aspx
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– Given a foundational OLAP database engine platform (e.g. EssBase4, SSAS5);
– And an OLAP client with technology for graphical display and an intuitive

interface (e.g. ProClarity, Hyperion);
– Cast the space of views (sub-cubes) of an OLAP database as a combinato-

rial, lattice-theoretical [9] structure;
– Equipped with statistical measures reflecting the structural relations among

views (their dimensional scope, depth, etc.) in the context of the data ob-
served within them;

– To support both automated search to areas of high local structure;
– And user-guided exploration of views in the context of these measures.

While we believe that our emphasis on a combinatorial approach is distinct,
our work resonates with that of a number of others. Our “view chaining” (moving
from one projected subset of a data cube to another intersecting in dimension-
ality) is similar to the navigational processes described by others [23,24,25], and
anticipated in some of our prior work [12]. But approaches which seek out “drill-
down paths” [5] only “descend” the view lattice along one “axis” of views with
increasing dimensional extension, sequentially adding variables to the view at
each step. In contrast, our “hop-chaining” technique chains through a sequence
of two-dimensional views, affecting a permutation of the variables X i.

Our overall approach is consistent with an increasingly large body of similar
work drawing on information theoretical statistical measures in data cubes to
provide quantities for making navigational choices [20,22]. However, some other
researchers have used different statistical approaches, for example variance esti-
mation [25] or skewness measures [16]. Our primary departure from traditional
OLAP analysis is the extension to conditioning and conditional probability mea-
sures over views. This not only provides the basis for optimization and naviga-
tion, it also creates a strong connection to graphical or structural statistical
models [4,27], graphoid logics [17,27], as well as systems-theory based structural
model induction methodologies [13,15].

We begin by establishing concepts and notation for (non-hierarchical) OLAP
databases over data tensors, and then define the view lattice of projected
subsets over such structures. This brings us to a point where we can expli-
cate the fundamental (again non-hierarchical) OLAP operations of projection,
extension, filtering, and “flushing” (decreasing a filter). We introduce condi-
tional views and the complex combinatorial object which is the conditional
view space. This prepares us to introduce “hop-chaining” as a particular view
discovery algorithm over this combinatorial object, wherein users are guided
by conditional information measures across a permutation of the dimensions
by searching for successive two-dimensional views, pushing seen dimensions in
a “spiraling” search process into an increasingly large background filter. We
then consider how to move to the fully hierarchical case, before illustrating hop-
chaining on databases of surveillance data from radiation monitors at US ports
of entry.
4 http://www.oracle.com/appserver/business-intelligence/essbase.html
5 http://msdn.microsoft.com/en-us/library/ms175609(SQL.90).aspx
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2 OLAP Formalism

Although the mathematical tools required to analyze OLAP databases are rel-
atively simple, their notational formalisms are inevitably, and regretably, not
[1,10,28]. While our formalism is similar, it differs in a number of ways as well:

– We combine projections I on dimensions and restrictions J on records into
a lattice-theoretical object called a view DI,J .

– OLAP concerns databases organized around collections of variables which
can be distinguished as: dimensions, which have a hierarchical structure,
and whose Cartesian product forms the data cube’s schema; and measures,
which can be numerically aggregated within different slices of that schema.
For this work we consider cubes with a single integral measure, which in our
application is the count of a number of records in the underlying database.
While in principle any numerical measure could yield, through appropriate
normalization, frequency distributions for use in our view discovery tech-
nique, these count measures do so directly and naturally. In future work we
will consider the generalization to arbitrary numerical measures.

– Our view discovery method is currently only available on flat dimensions
which are not hierarchically-structured to support roll-up aggregation and
drill-down disaggregation operations. Future directions to extend to fully
hierarchical OLAP data cubes will be indicated in Sec. 5.3.

2.1 Chaining Operations in the View Lattice of Data Tensor Cubes

Let N = {1, 2, . . .}, NN := {1, 2, . . . , N}. For some N ∈ N, define a data cube
as an N -dimensional tensor D := 〈X,X , c〉 where:

– X := {X i}Ni=1 is a collection of N variables or columns with X i :=
{xki}Li

ki=1 ∈ X ;
– X :=×Xi∈X X i is a data space or data schema whose members are

N -dimensional vectors x = 〈xk1 , xk2 , . . . , xkN 〉 = 〈xki 〉Ni=1 ∈ X called slots;
– c : X→ {0, 1, . . .} is a count function.

Let M :=
∑

x∈X c(x) be the total number of records in the database. Then
D also has relative frequencies f on the cells, so that f : X → [0, 1], where
f(x) = c(x)

M , and thus
∑

x∈X f(x) = 1. An example of a data tensor with
simulated data for our RPM cube is shown in Table 1, for X = {X1, X2, X3} = {
RPM Manufacturer, Location, Month }, with RPM Mfr = { Ludlum, SAIC },
Location = { New York, Seattle, Miami }, and Month = { Jan, Feb, Mar, Apr
}, so that N = 3. The table shows the counts c(x), so that M = 74, and the
frequencies f(x).

At any time, we may look at a projection of D along a sub-cross-product
involving only certain dimensions with indices I ⊂ NN . Call I a projector, and
denote x ↓ I = 〈xki〉i∈I ∈ X ↓ I where X ↓ I :=×i∈I

X i, as a projected vector
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Table 1. An example data tensor. Blank entries repeat the elements above, and rows
with zero counts are suppressed.

RPM Mfr Location Month c(x) f(x)
Ludlum New York Jan 1 0.014

Mar 3 0.041
Apr 7 0.095

Seattle Jan 9 0.122
Apr 15 0.203

Miami Jan 2 0.027
Feb 8 0.108
Mar 4 0.054
Apr 1 0.014

RPM Mfr Location Month c(x) f(x)
SAIC New York Jan 1 0.014

Seattle Feb 4 0.054
Mar 3 0.041
Apr 3 0.041

Miami Jan 6 0.081
Feb 2 0.027
Mar 4 0.054
Apr 1 0.014

and data schema. We write x ↓ i for x ↓ {i}, and for projectors I ⊆ I ′ and
vectors x, y ∈ X, we use x ↓ I ⊆ y ↓ I ′ to mean ∀i ∈ I, x ↓ i = y ↓ i.

Count and frequency functions convey to the projected count and frequency
functions denoted c[I] : X ↓ I → N and f [I] : X ↓ I → [0, 1], so that

c[I](x ↓ I) =
∑

x′↓NN⊇x↓I

c(x′) (1)

f [I](x ↓ I) =
∑

x′↓NN⊇x↓I

f(x′), (2)

and
∑

x↓I∈X↓I f [I](x ↓ I) = 1. In words, we add the counts (resp. frequencies)
over all vectors in y ∈ X such that y ↓ I = x ↓ I. This is just the process of
building the I-marginal over f , seen as a joint distribution over the X i for i ∈ I.

Any set of record indices J ⊆ NM is called a filter. Then we can consider the
filtered count function cJ : X → {0, 1, . . .} and frequency function fJ : X →
[0, 1] whose values are reduced by the restriction in J ⊆ NM , now determining

M ′ :=
∑
x∈X

cJ (x) = |J | ≤M. (3)

We renormalize the frequencies fJ over the resulting M ′ to derive

fJ(x) =
cJ (x)
M ′ , (4)

so that still
∑

x∈X fJ(x) = 1.
Finally, when both a selector I and filter J are available, then we have cJ [I] :

X ↓ I → {0, 1, . . .}, fJ [I] : x ↓ I → [0, 1] defined analogously, where now∑
x↓I∈X↓I fJ [I](x ↓ I) = 1. So given a data cube D, denote DI,J as a view

of D, restricting our attention to just the J records projected onto just the I
dimensions X ↓ I, and determining counts cJ [I] and frequencies fJ [I].

In a lattice theoretical context [9], each projector I ⊆ NN can be cast as a
point in the Boolean lattice BN of dimension N called a projector lattice.
Similarly, each filter J ⊆ NM is a point in a Boolean lattice BM called a filter
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lattice. Thus each view DI,J maps to a unique node in the view lattice B :=
BN ×BM = 2N × 2M , the Cartesian product of the projector and filter lattices.

We then define chaining operations as transitions from an initial view DI,J

to another DI′,J or DI,J′ , corresponding to a move in the view lattice B:

Projection: Removal of a dimension so that I ′ = I � {i} for some i ∈ I. This
corresponds to moving a single step down in BN , and to marginalization in
statistical analyses. We have ∀x′ ↓ I ′ ∈ X ↓ I ′,

cJ [I ′] (x′ ↓ I ′) =
∑

x↓I⊇x′↓I′
cJ [I](x). (5)

Extension: Addition of a dimension so that I ′ = I ∪ {i} for some i /∈ I. This
corresponds to moving a single step up in BN . We’re now disaggregating or
distributing information about the I dimensions over the I ′ � I dimensions.
Notationally, we have the converse of (5), so that ∀x ↓ I ∈ X ↓ I,∑

x′↓I′⊇x↓I

cJ [I ′](x′) = cJ [I] (x ↓ I).

Filtering: Removal of records by strengthening the filter, so that J ′ ⊆ J . This
corresponds to moving potentially multiple steps down in BM .

Flushing: Addition of records by weakening (reversing, flushing) the filter, so
that J ′ ⊇ J . Corresponds to moving potentially multiple steps up in BM .

Repeated chaining operations thus map to trajectories in B. Consider the very
small example shown in Fig. 1 for N = M = 2 with dimensions X = {X, Y }
and two N -dimensional data vectors a, b ∈ X × Y , and denote e.g. X/ab =
{a ↓ {X}, b ↓ {X}}. The left side of Fig. 1 shows the separate projector and
selector lattices (bottom nodes ∅ not shown ), with extension as a transition
to a higher rank in the lattice and projection as a downward transition. Simi-
larly, filtering and flushing are the corresponding operations in the filter lattice.
The view lattice is shown on the right, along with a particular chain opera-
tion D{X,Y },{a} �→ D{X},{a}, which projects the subset of records {a} from the
two-dimensional view {X, Y } = X to the one-dimensional view {X} ⊆ X .

XY/ab

XY/a XY/b

Y/ab

Y/a Y/b

X/ab

X/a X/b

X =

Extend

Project

XY

X Y

Dimensions {X ,Y}

Flush

Filter

ab

a b

Vectors a,b in X x Y

Fig. 1. he lattice theoretical view of data views. (Left) The projector and filter lattices
BN ,BM (global lower bounds ∅ not shown). (Right) The view lattice B as their product.
The projection chain operation D{X,Y },{a} �→ D{X},{a} is shown as a bold link.
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2.2 Relational Expressions and Background Filtering

Note that usually M � N , so that there are far more records than dimen-
sions (in our example, M = 74 > 3 = N). In principle, filters J defining which
records to include in a view can be specified arbitrarily, for example through
any SQL or MDX where clause, or through OLAP operations like top n, in-
cluding the n records with the highest value of some feature. In practice, filters
are specified as relational expressions in terms of the dimensional values, as ex-
pressed in MDX where clauses. In our example, we might say where RPM Mfr
= "Ludlum" and ( Month <= "Feb" and Month >= "Jan"), using chronolog-
ical order on the Month variable to determine a filter J specifying just those
20 out of the total possible 74 records. For notational purposes, we will there-
fore sometimes use these relational expressions to indicate the corresponding
filters.

Note that each relational filter expression references a certain set of variables,
in this case RPM Mfr and Month, denoted as R ⊆ NN . Compared to our pro-
jector I, R naturally divides into two groups of variables:

Foreground: Those variables in Rf := R ∩ I which appear in both the filter
expression and are included in the current projection.

Background: Those variables in Rb := R � I which appear only in the filter
expression, but are not part of the current projection.

The portions of filter expressions involving foreground variables restrict the
rows and columns displayed in the OLAP tool. Filtering expressions can have
many sources, such as Show Only or Hide. It is common in full (hierarchi-
cal) OLAP to select a collection of siblings within a particular sub-branch of
a hierarchical dimension. For example for a spatial dimension, the user within
the ProClarity tool might select All -> USA -> California, or its children
California -> Cities, all siblings. But those portions of filter expressions in-
volving background variables do not change which rows or columns are displayed,
but only serve to reduce the values shown in cells. In ProClarity, these are shown
in the Background pane.

2.3 Example

Table 2 shows the results of four chaining operations from our original example
in Table 1, including a projection I = {1, 2, 3} �→ I ′ = {1, 2}, a filter using
relational expressions, and a filter using a non-relational expression. The bot-
tom right shows a hybrid result of applying both the projector I ′ = {1, 2}
and the relational filter expression where RPM Mfr = "Ludlum" and ( Month
<= "Feb" and Month >= "Jan") . Compare this to the top left, where there is
only a quantitative restriction for the same dimensionality because of the use of
a background filter. Here I = { RPM Mfr, Location }, R = { RPM Mfr, Month
}, Rf = { RPM Mfr }, Rb = { Month }, M ′ = 20.
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Table 2. Results from chaining operations DNN ,NM �→ DI′,J′ from the data cube in
Table 1. (Top Left) Projection: I ′ = {1, 2}, M ′ = M = 74. (Top Right) Filter: J ′ =
where RPM Mfr = "Ludlum" and ( Month <= "Feb" and Month >= "Jan"), M ′ =
20. (Bottom Left) Filter: J ′ determined from top 5 most frequent entries, M ′ = 45.
(Bottom Right) I ′ = {1, 2} and J ′ determinued by the relational expression where RPM

Mfr = "Ludlum" and ( Month <= "Feb" and Month >= "Jan"), M ′ = 20.

RPM Mfr Location c[I ′](x) f [I ′](x)

Ludlum New York 11 0.150
Seattle 24 0.325
Miami 15 0.203

SAIC New York 1 0.014
Seattle 10 0.136
Miami 13 0.176

RPM Mfr Location Month cJ′
(x) fJ′

(x)

Ludlum New York Jan 1 0.050
Seattle Jan 9 0.450
Miami Jan 2 0.100

Feb 8 0.400

RPM Mfr Location Month cJ′
(x) fJ′

(x)

Ludlum Seattle Apr 15 0.333
Jan 9 0.200

Miami Feb 8 0.178
New York Apr 7 0.156

SAIC New York Jan 6 0.133

RPM Mfr Location cJ′
[I ′](x) fJ′

[I ′](x)

Ludlum New York 1 0.050
Seattle 9 0.450
Miami 10 0.500

3 Conditional Views

In this section consider the filter J to be fixed, and supress the superscript on
f . We have seen that the frequencies f : X→ [0, 1] represent joint probabilities
f(x) = f(xk1 , xk2 , . . . , xkN ), so that from (2) and (5), f [I](x ↓ I) expresses
the I-way marginal over a joint probability distribution f . Now consider two
projectors I1, I2 ⊆ NN , so that we can define a conditional frequency f [I1|I2] :
X ↓ I1 ∪ I2 → [0, 1] where f [I1|I2] := f [I1∪I2]

f [I2]
. For individual vectors, we have

f [I1|I2](x) = f [I1|I2](x ↓ I1 ∪ I2) :=
f [I1 ∪ I2](x ↓ I1 ∪ I2)

f [I2](x ↓ I2)
.

f [I1|I2](x) is the probability of the vector x ↓ I1 ∪ I2 restricted to the I1 ∪ I2
dimensions given that we know we can only choose vectors whose restriction
to I2 is x ↓ I2. We note that f [I1|∅](x) = f [I1](x), f [∅|I2] ≡ 1, and since
f [I1|I2] = f [I1 � I2|I2], in general we can assume that I1 and I2 are disjoint.

We can now extend our concept of a view to a conditional view DI1|I2,J

as a view on DI1∪I2,J , which is further equipped with the conditional frequency
fJ [I1|I2]. Conditional views DI1|I2,J live in a different combinatorial structure
than the view lattice B. To describe I1|I2 and J in a conditional view, we need
three sets I1, I2 ∈ NN and J ∈ NM with I1 and I2 disjoint. So define A :=
3[N ] × 2M where 3[N ] is a graded poset [9] with the following structure:

– N + 1 levels numbered from the bottom 0, 1, . . .N .
– The ith level contains all partitions of each of the sets in

([N ]
i

)
, that is the

i-element subsets of NN , into two parts where
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1. The order of the parts is significant, so that [{1, 3}, {4}] and [{4}, {1, 3}]
of {1, 3, 4} are not equivalent.

2. The empty set is an allowed member of a partition, so [{1, 3, 4}, ∅] is in
the third level of 3[N ] for N ≥ 4.

– We write the two sets without set brackets and with a | separating them.
– The partial order is given by an extended subset relation: if I1 ⊆ I ′1 and

I2 ⊆ I ′2, then I1|I2 ≺ I ′1|I ′2, e.g. 1 2|3 ≺ 1 2 4|3.

An element in the poset 3[N ] corresponds to an I1|I2 by letting I1 (resp. I2)
be the elements to the left (resp. right) of the |. We call this poset 3[N ] because
it’s size is 3N and it really corresponds to partitioning NN into three disjoint
sets, the first being I1, the second being I2 and the third being NN

� (I1 ∪ I2).
The structure 3[2] is shown in Fig. 2.

1|2 2|1 1 2|∅∅|1 2

1|∅∅|1 2|∅∅|2

∅|∅

�������

�������

�����

�����

������

������
������

������
������

������

Fig. 2. The structure 3[2]

4 Information Measures on Conditional Views

For a view DI,J ∈ B which we identify with its frequency fJ [I], or a conditional
view DI1|I2;J ∈ A which we identify with its conditional frequency fJ [I1|I2], we
are interested in measuring how “interesting” or “unusual” it is, as measured
by departures from a null model. Such measures can be used for combinatorial
search over the view structures B,A to identify noteworthy features in the data.
The entropy of an unconditional view DI,J

H(fJ [I]) := −
∑

x∈X↓I

fJ [I](x) log(fJ [I](x)).

is a well-established measure of the information content of that view. A view has
maximal entropy when every slot has the same expected count. Given a condi-
tional view DI1|I2,J , we define the conditional entropy, H(fJ [I1|I2]) to be the
expected entropy of the conditional distribution fJ [I1|I2], which operationally
is related to the unconditional entropy as

H(fJ [I1|I2]) := H(fJ [I1 ∪ I2])−H(fJ [I2]).

Given two views DI,J ,DI,J′ of the same dimensionality I, but with different
filters J and J ′, the relative entropy (Kullback-Leibler divergence)
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D(fJ [I]‖fJ′
[I]) :=

∑
x∈X↓I

fJ [I](x) log
(

fJ [I](x)
fJ′ [I](x)

)

is a well-known measure of the similarity of fJ [I] to fJ′
[I]. D is zero if and

only if fJ [I] = fJ′
[I], but it is not a metric because it is not symmetric, i.e.,

D(fJ [I]‖fJ′
[I]) �= D(fJ′

[I]‖fJ [I]).
D is a special case of a larger class of α-divergence measures between dis-

tribution introduced by Csiszár [8]. Given two probability distributions P and
Q, write the density with respect to the dominating measure μ = P = Q as
p = dP/d(P + Q) and q = dQ/d(P + Q). For any α ∈ R, the α-divergence is

Dα(P ||Q) =
∫

αp(x) + (1 − α)q(x) − p(x)αq(x)1−α

α(1 − α)
μ(dx).

α-divergence is convex with respect to both p and q, is non-negative, and is
zero if and only p = q μ-almost everywhere. For α �= 0, 1, the α-divergence is
bounded. The limit when α→ 1 returns the relative entropy between P and Q.
There are other special cases that are of interest to us:

D2(P ||Q) =
1
2

∫
(p(x) − q(x))2

q(x)
μ(dx)

D−1(P ||Q) =
1
2

∫
(q(x) − p(x))2

p(x)
μ(dx)

D1/2(P ||Q) = 2
∫ (√

p(x)−
√

q(x)
)2

μ(dx).

In particular the Hellinger metric
√

D1/2 is symmetric in both p and q, and
satisfies the triangle inequality. We prefer the Hellinger distance over the relative
entropy because it is a bonified metric and remains bounded. In our case and
notation, we have the Hellinger distance as

G(fJ [I], fJ′
[I]) :=

√√√√ ∑
x∈X↓I

(√
fJ [I](x)−

√
fJ′ [I](x)

)2

.

5 Hop-Chaining View Discovery

Given our basic formalism on data views, conditional views, and information
measures on them, a variety of possible user-guided navigational tasks become
possible. For example, above we discussed Cariou et al. [5], who develop meth-
ods for discovering “drill-down paths” in data cubes. We can describe this as
creating a series of views with projectors I1 ⊇ I2 ⊇ I3 of increasingly specified
dimensional structure.

Our approach is motivated by the idea that most users will be challenged
by complex views of high dimensionality, while still needing to explore many
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possible data interactions. We are thus interested in restricting our users to
two-dimensional views only, producing a sequence of projectors I1, I2, I3 where
|Ik| = 2 and |Ik ∩ Ik+1| = 1, thus affecting a permutation of the
variables X i.

5.1 Preliminaries

We assume an arbitrary permutation of the i ∈ NN so that we can refer to the
dimensions X1, X2, . . . , XN in order. The choice of the initial variables X1, X2

is a free parameter to the method, acting as a kind of “seed”.
One thing that is critical to note is the following. Consider a view DI,J which

is then filtered to include only records for a particular member xi0
0 ∈ X i0 of a

particular dimension X i0 ∈ X ; in other words, let J ′ be determined by the rela-
tional expression where Xi0 = xi00 . Then in the new view D′

I,J′ , fJ′
[I] is positive

only on the fibers of the tensor X where X i0 = xi0
0 , and zero elsewhere. Thus

the variable X i0 is effectively removed from the dimensionality of D′, or rather,
it is removed from the support of D′.

Notationally, we can say D
I,Xi0=x

i0
0

= D
I�{i0},Xi0=x

i0
0

. Under the normal
convention that 0 · log(0) = 0, our information measures H and G above are
insensitive to the addition of zeros in the distribution. This allows us to compare
the view D

I,Xi0=x
i0
0

to any other view of dimensionality I � {i0}.
This is illustrated in Table 3 through our continuing example, now with the

filter where Location="Seattle". Although formally still an RPM Mfr × Lo-
cation × Month cube, in fact this view lives in the RPM Mfr × Month plane,
and so can be compared to the RPM Mfr × Month marginal.

Table 3. Our example data tensor from Table 1 under the filter where

Location="Seattle"; M ′ = 34

RPM Mfr Location Month c(x) f(x)
Ludlum Seattle Jan 9 0.265

Apr 15 0.441
SAIC Feb 4 0.118

Mar 3 0.088
Apr 3 0.088

Finally, some caution is necessary when the relative entropy D(fJ [I]‖fJ′
[I])

or Hellinger distance G(fJ [I], fJ′
[I]) is calculated from data, as their magni-

tudes between empirical distributions is strongly influenced by small sample
sizes. To counter spurious effects, we supplement each calculated entropy with
the probability that under the null distribution that the row has the same dis-
tribution as the marginal, of observing an empirical entropy larger or equal to
actual value. When that probability is large, say greater than 5%, then we con-
sider consider its value spurious and set it to zero before proceeding with the
algorithm.
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5.2 Method

We can now state the hop-chaining methodology.

1. Set the initial filter to J = NM . Set the initial projector I = {1, 2}, deter-
mining the initial view fJ [I] as just the initial X1 ×X2 grid.

2. For each row xk1 ∈ X1, we have the marginal distribution fX1=xk1 [I] of that
individual row, using the superscript to indicate the relational expression
filter. We also have the marginal fJ [I � {X1}] over all the rows for the
current filter J . In light of the discussion just above, we can calculate all the
Hellinger distances between each of the rows and this row marginal as

G(fX1=xk1 [I], fJ [I � {X1}]) = G(fX1=xk1 [I � {X1}], fJ [I � {X1}]),

and retain the maximum row value G1 := maxxk1∈X1 G(fX1=xk1 [I], fJ [I �

{X1}]). We can dually do so for columns against the column marginal:

G(fX2=xk2 [I], fJ [I � {X2}]) = G(fX2=xk2 [I � {X2}], fJ [I � {X2}]),

retaining the maximum value G2:=maxxk2∈X2 G(fX2=xk2 [I], fJ [I � {X2}]).
3. The user is prompted to select either a row x1

0 ∈ X1 or a column x2
0 ∈ X2.

Since G1 (resp. G2) represents the row (column) with the largest distance
from its marginal, perhaps selecting the global maximum max(G1, G2) is
most appropriate; or this can be selected automatically. Letting x′

0 be the
selected value from the selected variable (row or column) i′ ∈ I, then J ′ is
set to where Xi

′
= x′0, and this is placed in the background filter.

4. Let i′′ ∈ I be the variable not selected by the user, so that I = {i′, i′′}.
5. For each dimension i′′′ ∈ NN

� I, that is, for each dimension which is
neither in the background filter Rb = {i′} nor retained in the view through
the projector {i′′}, calculate the conditional entropy of the retained view
fJ′

[{i′′}] against that variable: H(fJ′
[{i′′}|{i′′′}]).

6. The user is prompted to select a new variable i′′′ ∈ NN
� I to add to the

projector {i′′}. Since argmin
i′′′∈NN

�I

H(fJ′
[{i′′}|{i′′′}]) represents the variable with

the most constraint against i′′, that may be the most appropriate selection,
or it can be selected automatically.

7. Let I ′ = {i′′, i′′′}. Note that I ′ is a sibling to I in BN , thus the name “hop-
chaining”.

8. Let I ′, J ′ be the new I, J and go to step 2.

Keeping in mind the arbitrary permutation of the X i, then the repeated result
of applying this method is a sequence of hop-chaining steps in the view lattice,
building up an increasing background filter:

1. I = {1, 2}, J = NM

2. I ′ = {2, 3}, J ′ = where X1 = x10
3. I ′′ = {3, 4}, J ′′ = where X1 = x10, X

2 = x20
4. I ′′′ = {4, 5}, J ′′′ = where X1 = x10, X

2 = x20, X
3 = x30
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5.3 Extension to Hierarchical Data Cubes

In Sec. 2.1 we introduced data cubes as flat data tensors, while in general in
OLAP the dimensions are hierarchically structured. While a full development
of a hierarchical approach to hop-chaining awaits future work, we can indi-
cate those directions here. First, we extend our definition of a data cube to
be D := 〈X,X ,Q, c〉, where now Q = {P i}Ni=1 is a collection of N partially-
ordered hierarchical [9] dimensions P i =

〈
P i,≤i

〉
with members pi ∈ P i.

Each partially-ordered set (poset) P i is isomorphic to a sub-poset of the Boolean
lattice Bi =

〈
2Xi

,⊆
〉

which is the power set of the values of the variable X i

ordered by set inclusion. While in principle each poset P i could be as large as
Bi, in practice, they are trees, with X i ∈ P i and ∀xi ∈ X i, {xi} ∈ P i.

We can identify the cube schema as P :=×N

i=1 P
i, so that each p ∈ P is

a cell. We then have the hierarchical count function ĉ : P → N, where ĉ(p) :=∑
x≤p c(x), and ≤:=×N

i=1 ≤
i, the product order of the hierarchies. There is

also the hierarchical frequency function f̂ : P → [0, 1], with f̂(p) := ĉ(p)
M . In a

real OLAP view, the entries actually correspond not to slots x ∈ X, but to cells
p ∈ P; and the rows and columns not to collections of data items Y i ⊆ X i, but
of members Qi ⊆ P i. If X1 = “Location”, and p1

0 = “California” ∈ P 1, then
classical drilldown might take a row like California from a view, restrict J with
the relational expression where Location = California, and then replace Q1

with all the children of p1
0, so that Q′1 = {p1 ≤1 p1

0}.
We are experimenting with view discovery and hop-chaining formalisms which

operate over these member collections Qi, and in general over their Cartesian
products×i∈I

Qi ⊆ P ↓ I. But in the current formulation, it is sufficient to
consider each dimension X i involved in a foreground view to be drilled-down to
the immediate children of the top of P i, that is, the children of All.

6 Implementation

We have implemented the hop-chaining methodology in a prototype form for ex-
perimentation and proof-of-principle. ProClarity 6.2 is used in conjunction with
SQL Server Analysis Services (SSAS) 2005 and the R statistical platform v. 2.76.
ProClarity provides a flexible and friendly GUI environment with extensive API
support which we use to gather current display contents and query context for
row, column and background filter selections. R is currently used in either batch
or interactive mode for statistical analysis and development. Microsoft Visual
Studio .Net 2005 is used to develop plug-ins to ProClarity to pass ProClarity
views to R for hop-chain calculations.

A first view of the data set used for demonstrating this method is shown
in Fig. 3, a screenshot from the ProClarity tool. The database is a collection of
1.9M records of events of RPM events. The 15 available dimensions are shown on
the left of the screen (e.g. “day of the month”, “RPM hierarchy”), tracking such
6 http://www.r-project.org
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Fig. 3. Initial 2-D view of the alarm summary data cube, showing count distribution
of RPM Role by months

things as the identities and characteristics of particular RPMs, time information
about events, and information about the hardware, firmware, and software used
at different RPMs.

7 Examples

Space limitations will allow showing only a single step for the hop-chaining
procedure against the alarm summary data cube.

Fig. 3 shows the two-dimensional projection of the X1 = “RPM Role” ×X2 =
“Month” dimensions within the 15-dimensional overall cube, drilled down to the
first level of the hierarchies (see Sec. 5.3). Its plot shows the distributions of

Fig. 4. Count distribution of months
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Fig. 5. Frequency distributions of RPM roles

Fig. 6. Frequency distributions of months

count c of alarms by RPM role (Busses Primary, Cargo Secondary, etc.) X1,
while Fig. 4 shows the distribution by Month X2.

The distributions for roles seem to vary at most by overall magnitude, rather
than shape, while the distributions for months appear almost identical. How-
ever, Fig. 5 and Fig. 6 show the same distributions, but now in terms of their
frequencies f relative to their corresponding marginals, allowing us to compare
the shapes of the distributions normalized by their absolute sizes. While the
months still seem identical, the RPM roles are clearly different, although it is
difficult to see which is most unusual with respect to the marginal (bold line).

The left side of Fig. 7 shows the Hellinger distances G(fXi=xki [I], fJ [I �

{X i}]) for i ∈ {1, 2} for each row or column against its marginal. The RPM
roles “ECCF” and “Mail” are clearly the most significant, which can be veri-
fied by examining the anomolously shaped plots in Fig. 5. The most significant
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Fig. 7. (Left) Hellinger distances of rows and columns against their marginals. (Right)
Relative entropy of months against each other significant dimension, given that RPM
Role = ECCF.

Fig. 8. Subsequent view on the X2 = Months ×X3 = Day of Month projector. Note
the new background filter where RPM Role = ECCF.

month is December, although this is hardly evident in Fig. 6. We select the
maximal row-wise Hellinger value G1 = .011 for ECCF, so that i′ = 1, x1

0 =
ECCF. X i′ = X1 = “RPM Role” is added to the backgound filter, X i′′ = X2

= Months is retained in the view, and we calculate H(fJ′
[{2}|{i′′′}]) for all

i′′′ ∈ {3, 4, . . . , 15}, which are shown on the right of Fig. 7 for all significant di-
mensions. On that basis X3 is selected as Day of Month with minimal H = 3.22.

The subsequent view for X2 = Months ×X3 = Day of Month is then shown
in Fig. 8. Note the strikingly divergent plot for April: it in fact does have the
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highest Hellinger distance at .07, an aspect which is completely invisible from
the overall initial view, e.g. in Fig. 5.

8 Discussion, Analysis, and Future Work

In this paper, we have provided the fundemantals necessary to express view
discovery in OLAP databases as a combinatorial search and optimization op-
eration in general, aside from the specific hop-chaining method. What remains
to be addressed is a precise formal expression of this optimization problem.
This is dependent on the mathematical properties of our information measures
H, D, and G over the lattices B,A. It is well known, for example, that H is a
monotonic function in B [9], in that ∀I1 ⊆ I2, H(fJ [I1]) ≥ H(fJ [I2]). There
should be ample literature (e.g. [27]) to fully explicate the behavior of these
functions on these structures, and guide development of future search algo-
rithms.

Also as mentioned above, we are restricting our attention to OLAP cubes
with a single “count” measure. Frequency distributions are available from other
quantitative measures, and exploring the behavior of these algorithms in those
contexts is of interest.

Information measures are used because of their mathematical properties in
identifying unusual distributions. It remains to be demonstrated that these mea-
sures have high utility for real analysts of these databases, and which mix of
statistical measures, whether including our precise hop-chaining algorithm or
not, is ideal for their needs.

The value of our implementation within commercial front-end database tools
provides the opportunity for this validation. Generally, software implementations
provide a tremendous value in performing this research, not only for this practical
validation by sponsors and users, but also for assisting with the methodological
development itself. As our software platform matures, we look forward to incor-
porating other algorithms for view discovery [5,16,20,23,24,25], for purposes of
comparison and completeness.
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Abstract. A large part of sensor, image, and statistics data in the Earth Sciences 
naturally come as data points aligned to regular grids of some dimension, in-
cluding 1-D time series, 2-D imagery, 3-D image time series and volumetric 
data, and 4-D spatio-temporal data. Frequently repositories have to host objects 
of multi-Terabyte size, in the future multi-Petabytes. Serving this information 
category, large multi-dimensional arrays, is a task of increasing importance 
among the Earth Sciences. Still, however, ad-hoc implementations with focused 
functionality prevail which lack the flexibility of SQL-enabled databases. 

The Web Coverage Processing Service (WCPS) geo raster model and lan-
guage allows navigation, extraction, and ad-hoc analysis on multi-dimensional 
geoscientific raster data which can be geo-referenced or not. The request lan-
guage has been designed to offer some key properties considered advantageous 
by the database community: it is formalized, declarative, data independent, op-
timizable, and safe in evaluation. WCPS has been adopted as an international 
standard by the Open GeoSpatial Consortium (OGC) in December 2008. The 
reference implementation is almost finished. Actually, the embedding into the 
modular framework of the OGC geo service standards has posed particular con-
straints which the design had to respect. We discuss conceptual model, query 
language, and the context using real-life use case scenarios. 

Keywords: geo services, raster databases, scientific databases, query lan-
guages, standardization. 

1   Introduction 

A large part of sensor, image, and statistics data in the earth sciences naturally come as 
data points aligned to regular grids of some dimension. For example, in-situ sensors 
deliver 1-D time series data. Remote sensing instruments on board of satellites produce 
2-D imagery, often with hundreds of bands. For many analysis and documentation tasks 
it is convenient to arrange such images into 3-D x/y/t image time series. Geophysical 
data often are 3-D by nature resulting in x/y/z datacubes; atmospheric, oceanographic, 
and cosmologic simulations result, e.g., in 4-D spatiotemporal x/y/z/t data sets.  

While 1-D time series usually impress more by their large number of objects aris-
ing than by their individual sizes, data volumes immediately grow very large; multi-
Gigabyte objects are considered small, multi-Terabyte sizes are common today, and 
multi-Petabyte objects are on the horizon. 
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Although servicing this information category, large multi-dimensional arrays, rep-
resent a typical database task current database technology does not do much to sup-
port it. Consequently, today ad-hoc implementations prevail which often are tuned 
towards specific, simple tasks, but do not offer the flexibility known from SQL-
enabled databases. 

This information category, large multi-dimensional arrays, today usually is served 
by ad-hoc implementations which often are tuned towards specific, simple tasks, but 
do not offer the flexibility known from SQL-enabled databases. One reason is that the 
standard relational model does not give adequate support. Normally images as such 
are more or less treated as ancillary data and abandoned as soon as relevant informa-
tion has been pre-extracted, such as in multimedia databases. If stored in the database 
then the only concept offered is BLOBs [12] which come with no advanced retrieval 
functionality. 

However, Earth Science researchers increasingly demand for out-of-the-box soft-
ware allowing to serve a variety of observation or simulation data to their own com-
munities, but also to other communities or even the general public. Such services need 
to have both expert level (like versatile search, retrieval, and analysis tools) and easy-
to-use generic interfaces (like GoogleMaps style visually oriented interactive data 
navigation). As the history of SQL shows, query languages can well serve a plurality 
of interface styles through one common underlying operational model. Hence, it 
seems adequate to pursue such a concept for versatile raster data support in the Earth 
Sciences as well. 

Background of the work reported here is the work on open, interoperable geo ser-
vice interfaces in the context of the Open GeoSpatial Consortium (OGC)1 where the 
author co-chairs the raster-relevant working groups on WCS (Web Coverage Service), 
WCPS (Web Coverage Processing Service), and Coverages (a Discussion Working 
Group which does not develop specifications, but serves as a topical discussion and 
exchange forum). 

“Coverage” is the standard term for spatio-temporally extended phenomena a in its 
broad sense, but in current practice narrowed down to raster data. On such coverages, 
the OGC Web Coverage Service (WCS) standard [24] defines a service interface to 
retrieve coverage data and metadata. For raster data retrieval, the GetCoverage re-
quest type supports spatio-temporal and band subetting, scaling, reprojection, and data 
format encoding for shipping results. WCS tentatively offers a limited functionality to 
ease uptake and use2. More than once requests were brought to the WCS Working 
Group to incorporate additional processing functionality. The group ultimately de-
cided that it is not beneficial to add isolated specific functionality when requested. 
One reason is that such functionality frequently lacks a uniformly accepted definition, 
but exists in a variety of more or less diverging incarnations without one agreed ca-
nonical representative. Another reason is that such a list of functions is open ended, 
and responding to focused requests in the end would lead to a large, unstructured set 
of unrelated functions.  
                                                           
1 www.opengeospatial.org, last seen on April 11, 2009. 
2 Actually it turns out that handling of different coordinate systems and their transformation, for 

example, imposes quite some challenges. 
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Therefore, the approach adopted in the end is to provide a high-level, interoperable 
processing language based on the existing WCS data model which allows clients to 
phrase their individual functionality as requests which are understood by any confor-
mant server. Building on the rich experience in designing and standardizing retrieval 
languages made by the database community it seemed natural to apply their tech-
niques for achieving properties like flexibility, declarativeness, optimizability, and 
safe evaluation. Additionally, concepts from language design – such as XQuery and 
object-oriented languages – and image processing have been incorporated. On the 
other hand, stream processing was expressly excluded, as the prevailing use cases for 
the moment being demand but evaluation of complete preexisting data sets, assumed 
static at the time of query execution as in traditional databases. A streaming extension 
might be added in future once sufficient need is conceived. 

The result of this activity is the OGC Web Coverage Processing (WCPS) Language 
Interface Standard [4] together with its WCS protocol embedding, the WCS Pro-
cessing Extension Interface Standard [5], developed by the author and his group and 
adopted as an official standard by OGC in December 2008. 

In the remainder of this paper, we first present the pre-existing conceptual model of 
coverages within OGC in Section 2. On this basis, we present of design rationales and 
relevant related work in Section 3. In Section 4, the query model is laid out, followed 
by thoughts on service embedding in Section 5. In Section 6, sample application sce-
narios are sketched. Section 7 addresses implementation issues, and Section 8 pre-
sents summary and outlook. 

2   Conceptual Model 

The conceptual model of WCPS relies on the WCS definition of coverages; this in 
turn is based on ISO 19123 [10] and OGC Abstract Specification Topic 6 [17], which, 
in fact, are mutually agreed and identical. Coverages are categorized there into dis-
crete and continuous types. Discrete coverages are subdivided further into Discrete 
Point Coverage, Discrete Grid Point Coverage, Discrete Curve Coverage, Discrete 
Surface Coverage, and Discrete Solid Coverage. The continuous coverage type has 
subclasses Thiessen Polygon, Hexagonal Grid, Segmented Curve, Continuous Quad-
rilateral Grid, and TIN (Triangular Irregular Network). Out of this comprehensive 
list, current standards address only coverages of type Discrete Grid Point, which in 
essence are raster data. The reason is that currently only these are understood well 
enough to allow for comprehensive and stable standardization. Further coverage types 
are already under consideration for service standardization, though. 

A WCS coverage object [24] consists of a raster array and a few metadata elements. 
The raster part essentially represents a function mapping d-dimensional points from some 
domain (which in our case is spatio-temporal) to some range (often known as “pixel” or 
“voxel” data type). Domains define the region in which the cells sit (which are regularly 
spaced in case of our raster-type coverages), each containing a range value. A domain of 
some dimensionality d has an (unordered!) set of d axes, identified by name. Four axis 
names are reserved and have the well-known special semantics: x, y, z, and t. In future, 
so-called abstract axes will be allowed in addition which can represent a domain  
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semantics beyond the predefined spatio-temporal axes. For example, in atmospheric and 
ocean modelling pressure often is used as an axis, and sometimes a second time axis.  

Domains are expressed in some Coordinate Reference System (CRS) which is de-
fined by a coordinate system and a datum. OGC uses the nomenclature of the Euro-
pean Petroleum Standards Group (EPSG) which defines several thousands CRSs, 
most of them in active use by the communities. Along each axis the extent of a cover-
age is defined by some closed interval, for each CRS. Overall, therefore, coverage 
domains form some axis-parallel hypercube in the respective coordinate system space. 
Often CRSs address only a subset of coordinate axes; for example, the widely used 
WGS-84 can express x/y and x/y/z coordinate spaces, but not time. For time values, 
ISO 8601:2000 is available as CRS. In this case, a suitable combination of CRSs must 
be used for addressing a particular coverage cell. Only so-called Image CRSs allow to 
address cells in integer coordinates, independent from their physical location refer-
ence. Each coverage knows about the CRSs in which its domain can be addressed; 
among them must be at least one Image CRS. 

This brief illustration of the geographic domain concept illustrates already that an 
appropriate conceptual modelling is all but trivial, and by no means consists just of a 
pure, integer-addressable cell array. 

Neither are range values trivial. WCPS allows a subset of the structures currently 
available with WCS. The type of a WCPS range value can be an atomic base type or a 
(currently non-nested) record of named range fields; the latter resemble the concept of 
“bands” or “channels” common in hyperspectral image processing. Base types avail-
able are the numeric types available in standard programming languages (char, short, 
int, long in signed and unsigned variants, plus float and double) and, additionally 
complex numbers of single and double precision. 

Values which bear a null semantics are listed in a – possibly empty – set of null 
values associated with each coverage. Further, for each range field a – possibly empty 
– set of those interpolation methods is listed which can be applied to this coverage 
range field during any operation that requires value interpolation, such as scaling and 
reprojection. Among the possible interpolation methods are nearest neighbor, linear, 
quadratic, and cubic. An associated property named interpolation null resistance 
specifies how null values are treated during interpolation. 

In brief, a WCS coverage consists of the following elements [24]: 

 A string-valued identifier which is unique on a given server; 
 A domain description, consisting of axes, admissible CRSs, and extent per axis; 
 A range type description, consisting of fields, their types, null values, interpola-

tion methods and null resistance; 
 A multi-dimensional array of values, one per domain coordinate cell; 
 Some further metadata which are of no concern for our discussion. 

3   Design Rationales 

WCPS is the outcome of several years of discussion with relevant players, potential 
users, and OGC standards implementers. Prior to developing the specification (and 
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sometimes in parallel, as new developments appeared) some design considerations 
were made based on a review of the state of the art. In this section we summarize 
design rationales and preexisting approaches which had impact on WCPS design. 

3.1   Requirements 

The currently envisaged use of WCPS can be summarized as navigation, extraction, 
and server-side analysis over large repositories of large, multi-dimensional coverages. 
Navigation of coverage data requires capabilities at least like WMS (meaning subset-
ting, scaling, overlaying, and styling), but on objects of different dimensionalities and 
often without an intrinsic visual nature (such as elevation or classification data). Ver-
satile portrayal and rendering capabilities, therefore, play an important role. Extrac-
tion and download involve tasks like retrieving satellite image bands, performing 
band combinations, or deriving vegetation index maps and classification; hence, they 
likewise require subsetting, summarization, and processing capabilities. Analysis 
mainly includes multi-dimensional spatiotemporal statistics. In summary, a range of 
imaging, signal processing, and statistical operations should be expressible; some of 
these aspects have been studied in [8]. 

Additionally, the language should not be too distant in its conceptual model from 
existing geo data processing tools (such as the ones listed in the next section) so that it 
is economically feasible for vendors to implement the standard as an additional layer 
on top of their existing products. On a side note, still such implementations obviously 
can differ widely in terms of performance, scalability, domain support, and other 
factors. 

Further, it should be possible for some deployed service to accept new, unantici-
pated request types without extra programming, in particular not on server side. The 
rationale behind is, while that both lay users and experts frequently come up with new 
desires, it is not feasible for a service provider to continuously invest into program-
ming of new service functionality. Ideally the service interface paradigm offers open-
ended expressiveness available without client-side or server-side programming. This 
calls for a language approach where users (or client developers) can flexibly combine 
existing building blocks into new functionality. 

From databases we learn that it is advantageous to craft such a language in a way that 
it is safe and declarative. Safe evaluation ensures that no Denial of Service (DoS) attack 
is possible on the level of a single request. In languages like SQL this is achieved by 
avoiding explicit loop and recursion constructs; what this means for the handling of 
arrays where everybody tends to think about iteration loops in the first place will have to 
be discussed also in the context of declarativeness. As is well known safe evaluation 
requires a trade-off against expressiveness; we consciously maintain that the processing 
language be safe in evaluation, retaining operations like convolutions, but losing, e.g., 
matrix inversion, genetic algorithms, and neural networks. 

Declarativeness not just eases request formulation, but also forms a prerequisite for 
optimization. As our experience with array databases tells that there is a wide range of 
effective optimization methods on coverage manipulation [20], optimizability of ex-
pressions is an important requirement.  
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Notably we do not demand minimality of the language; while the number of opera-
tions certainly should be kept as small as possible, we decided to rank usability higher. 

Coverage support no longer is constrained to 2-D imagery and 3-D image timeseries. 
Since some time now coverages are perceived as 1-D to 4-D entities in discussion, and 
"abstract", i.e., non-spatiotemporal axes have been brought up, such as atmospheric 
pressure. Hence, coverage expressions should allow to freely walk through the dimen-
sions, in any combination of spatial, temporal, and abstract axes. For example, 2-D 
coverages with x and z axes can well occur as slicing results from 3-D or 4-D coverages. 
On a side note, such considerations in the course of WCPS design actually to some 
extent have had impact on the WCS coverage model and, eventually, also have contrib-
uted to a generalization of OGC’s model of coordinate systems. 

Further, the language should be Semantic Web ready in that coverage access and 
manipulation is described in a completely machine-readable form, independent from 
human intervention when it comes to service discovery and orchestration. 

Finally, given that an international standard is aiming at a large and diverse com-
munity and stands to assure semantic interoperability between heterogeneous clients 
and servers, a formal specification of syntax and semantics seems indispensable. Still, 
the resulting specification document needs to be understandable, in particular to pro-
grammers not necessarily familiar with mathematical semantics definition. While the 
many attempts of combining both properties in a model have shown that this seems 
close to impossible, a suitable compromise should be aimed at. 

On a side note, ease of comprehension also rules out a pure XML encoding; lan-
guages like XQuery and XPath show how compact language style can be combined 
with XML. 

3.2   Candidates 

As databases traditionally do not support large rasters, earth scientists tend to build 
their own, ad-hoc systems. These usually come with bespoke, procedural interfaces 
and without clear conceptual models in a database sense. 

For the conceptual design of a coverage processing language suitable for use in a 
Web environment we have evaluated existing OGC standards, image processing, and 
image and array databases. 

OGC WPS. Web Processing Service (WPS) specification is an OGC standard which 
specifies a geo service interface for any sort of GIS functionality across a network 
[20]. A WPS may offer calculations as simple as subtracting one set of spatially refer-
enced numbers from another (e.g., determining the difference in influenza cases be-
tween two different seasons), or as complicated as a global climate change model. 
This model makes WPS especially suitable for "webifying" legacy applications. Es-
sentially, this boils down to a remote method invocation in the spirit of RPC, 
CORBA, and Java RMI, but additionally with explicit geospatial semantics in the 
XML schema. As such, it brings along all the concerns of, e.g., XML-RPC3, such as 
the severe security compromise. 

                                                           
3 www.xmlrpc.com, last seen on April 11, 2009. 
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Another grave argument is the low semantic level of WPS. To understand this 
better let us inspect an example. A server-side routine provides a function Buffer4 
which accepts an input polygon and returns a buffered feature. In the corresponding 
service description which is based on the standardized WPS XML Schema (see 
Figure 1), function name as well as input and output parameters are described. This 
represents the function signature, i.e., operation syntax; looking for the semantics 
specification we find XML elements Title and Abstract containing human-readable 
text. Hence, there is no way for any automated agent to use it without human inter-
ference at some point. 

This has a number of serious drawbacks: 

 WPS consists only of a low-level syntactic framework for procedural invocation 
without any coverage specific operations; In other words, the processing func-
tionality itself is not specified, hence any high-level services implemented on 
top of WCS per se are not standardized and interoperable\footnote{the WPS 
specification already mentions that it requires specific profiles to achieve fully-
automated interoperability.}; 

 XML offers only syntactic service interoperability, as opposed to the semantic 
interoperability of WCPS; adding any new functionality to a WPS installation 
requires new programming on both client and server side; such a service cannot 
be detected by an automatic agent, as the semantics is not machine understand-
able; for the same reason, automatic service chaining and orchestration cannot 
be achieved - for example, it is unclear to an automatic agent how to connect 
output parameters of one processing step with the input parameters of the next 
step due to the missing semantics information; 

 with a similar argument, server-interal optimization such as dynamic load bal-
ancing is difficult at least. 

 

Hence, for our purpose the low-level WPS model needs to be complemented by 
some high-level coverage processing model. 

Image Processing. We immediately rule out computer vision and image under-
standing, as these disciplines work on a different semantic level than WCPS is aim-
ing at. Further, answers generated in these domains normally are of probabilistic 
nature, whereas for WCPS the goal is to allow precise responses whenever possible. 
Many image processing languages have been proposed, such as MatLab5, Erdas 
Imagine6, and ENVI7. These to some extent imperative languages offer a wide range 
of proven functionality. However, they are not safe in evaluation and often also not 
declarative, thereby lacking optimization potential in a database sense. The underly-
ing systems usually do not have a satisfactory storage management suitable for 
Petabyte-size objects. 

                                                           
4 In GIS terminology, a buffer is an area of specified distance around some object, for example, 

a 100m strip left and right to some highway. 
5 www.mathworks.com, last seen on April 1122, 2009. 
6 gi.leica-geosystems.com/LGISub1x33x0.aspx, last seen on April 11, 2009. 
7 www.rsinc.com/envi, last seen on April 11, 2009. 
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Fig. 1. Excerpt from a WPS process specification 

Image Databases. The requirement for further coverage processing capabilities dis-
tinguishes array databases from multimedia databases. In multimedia databases im-
ages are interpreted using some hand-picked built-in algorithm to obtain feature vec-
tors; subsequently, search is performed on the feature vectors, not the images. The 
WCPS language, conversely, does not attempt to interpret the coverage data, but al-
ways operates on the cell values themselves. Hence, search results are not subject to a 
probability and are not depending on some random, hidden interpretation algorithm. 

Another distinguishing criterion, albeit on architectural level, is the potentially 
large amount of data which implementations of the standard need to process effi-
ciently. Image processing systems traditionally are constrained to image sizes less 
than main memory available; to some extent, "out of memory" algorithms have been 
designed which essentially perform partial access and swapping of parts.  

Array databases. A systematic approach to processing large multi-dimensional raster 
data volumes is addressed by the research field of array databases. Several conceptual 
frameworks, including partial or complete implementations, have been proposed, such 
as (chronologically) rasdaman [1,2,17], AQL [12], AML [14,16], and RAM [23]. 
Studying their query functionality offers good hints for the envisaged sensor, image, 
and statistics processing. However, it turns out that the notion of arrays is too low-
level for the purpose on hand, due to several shortcomings.  

First, in all array formalisms the axes are ordered and accessed by their position. 
This is not adequate for spatio-temporal models where axis ordering is no explicit 
feature, quite the opposite: row-major or column-major ordering of images is a physi-
cal property which ideally should not affect query formulation; actually, data format 
encodings internally tend to not uniformly agree on their internal linearization meth-
ods, which makes it necessary that the axis semantics is known at encoding time.  

Additionally, the spatio-temporal axes – let us them call x, y, z, and t – have a well-
defined axis semantics which has several implications on processing. For example, 
images normally are scaled in x and y simultaneously, and coordinate system trans-
formations apply on x and y axes. Addressing along the t axis, on the other hand, is 
conceptually independent from space coordinates and expressed in completely differ-
ent coordinate systems, such as ISO 8601 [8].  
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Industrial implementations. Marketed Web-capable geo raster servers include 
ESRI’s ArcSDE8 and Oracle’s GeoRaster cartridge9. Both are rather restricted in their 
data models and access capabilities. Oracle, for example, supports only 2-D raster 
images, only selected cell types, and no integration of retrieval capabilities into SQL 
select or where statements. ArcSDE does not offer any retrieval language at all. The 
only commercial array DBMS with full query support is rasdaman10. 

4   Request Language 

Based on the coverage model sketched above, a functional language on coverages has 
been developed. The specification style adopted for WCPS is semi-formal, in an at-
tempt to combine diverging requirements. From a technical perspective, only a formal 
specification allows to prove relevant properties like consistency and sufficient com-
pleteness; further, it usually aids implementors by being crisp and concise; the prose 
form often chosen for geo service specifications has well-known issues and, hence, 
was considered inadequate. On the other hand, consumers of standards often have 
neither background nor inclination to immerse into algebra, logics, and the like; a 
pure mathematical specification like, for example, the excellently crafted ISO stan-
dard LOTOS [11], would not be accepted by the target communities. In the end, the 
style chosen follows a clear, formally tractable structure, but gets informal when it 
comes to concepts whose formalization would take excessive formalism and is well-
known to the community anyway, such as image reprojection. 

Similar to the algebraic specification of Abstract Data Types, coverage functions 
are described via their effect observable through applying the other functions. To this 
end, first a set of 17 probing functions is established which determine each relevant 
property of a coverage object. For each operation, then, its semantics is defined 
through the changes that can be observed by applying the probing functions. 

For example, coverage probing function imageCrsDomain(C,a) delivers the extent 
(i.e, lower and upper bound) of coverage C on axis a. Another function, value(C,p), 
delivers the range value of the cell with address p in coverage C. 

In the sequel we will given an overview of the language and describe selected op-
erations in detail to give a flavour of the specification style.  

A WCPS request can address any number of coverages known to the server ad-
dressed. The result is a sequence of either coverages or scalar values. The general 
structure of a WCPS query is given as follows: 

for var1 in ( cov1,1, …, cov1,n1 ), 
    …, 

    varn in ( covn,1, …, covn,nm ) 

[ where booleanExpr( var1, …, varn ) ] 
return 
    processExpr( var1, …, varn ) 

                                                           
8 www.esri.com, last seen on April 11, 2009. 
9 www.oracle.com, last seen on April 11, 2009. 
10 www.rasdaman.com, last seen on April 11, 2009. 
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Literals covi,j denote the names of coverages available on the server addressed. 
Variable names var

i
 are bound to each coverage in turn, following a nested loop 

pattern with var
1
 governing the outermost loop and var

n
 the innermost one. Optional 

predicate booleanExpr, which may contain occurrences of all variables, acts as a 
filter: only if the predicate is fulfilled for a particular coverage combination then the 
subsequent return clause will be executed to contribute an element to the overall 
result list. 

For a coverage-valued result, the outermost function of a return clause must be an 
encode() function. It takes a coverage and encodes it in the format passed as second 
parameter, returning an ancoded data stream. For example, the following query deliv-
ers coverages A, B, and C encoded in TIFF: 

for $c in ( A, B, C ) 
return 
    encode( $c, “TIFF” ) 

Actually, there is one exception to having the encoding function outermost: Func-
tion store() can be applied to the encoded result, with the effect that the result is a 
URI reference to the result data stored in files on the server for subsequent download. 
This is actually the only side effect of the language. 

The first argument to the encoding function is an arbitrarily nested expression 
which generates a coverage. This can mainly be a coverage variable, a subsetting 
expression, an induce expression, a CRS transformation expression, a coverage con-
structor expression, or a condense expression. 

Subsetting allows to extract sub-coverages of the same dimensionality by using a 
trim operator or of lower dimensionality using the slice operator. Induced opera-
tions apply some operation simultaneously to all cells of a given coverage, whereby 
these operations are those given by the coverage range type and include the well-
known arithmetic, trigonometric, exponential functions, plus the cast operator known 
from programming languages. For example, the following query extracts a time slice 
from some data cube C having at least a time axis and delivers the log of each cell 
value: 

for $c in ( C ) 
return 
    encode( log( slice( $c , t( 0 ) ), “NetCDF” ) 

The trim example shall serve to illustrate the specification style. The corresponding 
excerpt is listed in the Appendix. 

A coverage constructor allows to generate a new coverage “from scratch” by defin-
ing its axes, extent per axis, and an expression for calculating a value for each cell. 
We will see an example in conjunction with the condense operator. 

The condenser is a generalization of the relational aggregation. It accepts a scalar 
expression and iterates over it while aggregating all values according to some com-
mutative and associative value type operation. The syntax is 
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condense op 

over     var1 axisType1 ( extent1 ), 
         …, 

         varn axisTypen ( extentn ), 
using    scalarExpr 

For each combination of (var1 ,… , varn) scalarExpr is evaluated, and the 
result aggregated via operation op until the final result is returned. Convenient short-
hand versions are defined for the frequent simple cases that no cell address airthmetic 
needs to be performed. For example, count(B) counts the true elements in some 
boolean coverage expression B, determines max(C) determines the maximum value 
of coverage expression C, and some(B) checkes whether there is at least one ele-
ment in boolean expression B. 

This allows us to formulate a practically motivated example of both coverage con-
structor and condenser. Let C be a coverage expression over cell type unsigned 
char. Then, the following expression derives a histogram of C: 
coverage histogram 
over     bucket x ( 0 : 255 ) 
values   count( C = bucket ) 

Coverage histogram of axis type x, is defined to range from 0 to 255, with variable 
bucket assuming each value in turn. Induced operation “=” compares C against the 
current value of bucket, and count() finds out how many equalities occur. 

This recursively defined language allows arbitrary nesting of coverage expressions. 
Additionally, type compatibility and extension are provided for convenience and 
efficiency by allowing to avoid frequent explicit cast operations. 

As it has been shown in [2], the coverage constructor and the condense operator 
can describe all other coverage expressions (except CRS transforms). Still, further 
operations are provided for convenience and because these turn out to be particularly 
suitable for optimization [20]. 

5   Service Embedding 

The syntax described above is deliberately kept independent from any protocol, hence 
it is also called “Abstract Syntax”. This allows to embed the language into any target 
environment. In the framework of OGC standardization, two such environments, 
WCS and WPS, are foreseen currently. 

The first concrete embedding is with the WCS suite. WCS currently defines three re-
quest types, GetCapabilities, DescribeCoverage, and GetCoverage. Following the com-
mon OGC service pattern, a GetCapabilities request allows a client to retrieve informa-
tion from a server on its capabilities and its data sets offered. The DescribeCoverage 
request type is specific to WCS; for a given coverage identifier it allows to retrieve detail 
information (i.e., metadata) about the coverage on hand. A GetCoverage request, finally, 
is used to extract a subset of some coverage served. The OGC WCS Processing Exten-
sion Interface Standard [5] adds a fourth request type, ProcessCoverages, which enables 
a client to submit a WCPS request and receive the processing results. A WCPS query can 
be sent by using either HTTP GET with key/value pair (KVP) notation or HTTP POST 
in conjunction with an XML encoding. The WCPS response is a (possibly empty) list of 
either coverages or scalars. Coverages are returned using the same response format as a 
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GetCoverage request, thereby minimizing complexity. Scalars are returned as newline 
separated strings; for the future an XML encoding is foreseen. 

As WCPS touches both WCS and WPS terrain the question has been debated re-
peatedly whether this functionality is better included in WCS or WPS. Indeed there 
may be applications which put more emphasis on the processing aspect, possibly on 
further data types, and hence are interested in WCPS, but not WCS. To support such 
use case scenarios a WPS embedding is under work. This WPS Profile, as it is called 
following WPS terminology, defines a WCPS service as a processing function with a 
query input parameter and a set-valued output parameter. 

6   Reference Implementation 

The WCPS Reference Implementation is developed at Jacobs University, based on the 
rasdaman array DBMS [17]. Figure 2 shows the overall system architecture. The 
WCPS server frontend receives queries in string or XML encoding as defined in [5], 
analyzes them for syntactic and semantic correctness based on the metadata stored in 
relational tables, and generates a corresponding query in the rasdaman query lan-
guage, rasql. The rasdaman server is the actual workhorse which prepares the query 
response based on the data stored in the relational database as well. Some (currently 
rather simplistic) clients are available for displaying 1-D time series results, 2-D im-
agery, and 3-D voxel cubes. 

Coverages are mapped to the rasdaman model as follows. The conceptual model of 
rasdaman [72] consists of unordered collections (following ODMG terminology [71])  
 

 

Fig. 2. WCPS Reference Implementation system architecture  

of (OID,A) pairs where OID is a system-generated object identifier and A is an array. 
By convention, for each coverage a separate (single-tuple) collection is created which 
bears the coverage’s name. 

For the additional metadata making up a coverage a relational schema is provided. 
The WCPS frontend uses these metadata for a semantic check and for generating the 
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corresponding rasql query. Due to the conceptual similarity of WCPS and rasql this 
mapping is relatively straightforward. For example, the histogram request shown 
previously, when embedded into a complete request with an assumed data format of 
CSV (comma-separated values), translates to this rasql query: 
select csv( marray bucket in [ 0 : 255 ] 
            values count_cells( (C) = bucket ) 
          ) 
from   C 

Aside from the different syntax, the WCPS frontend in this example resolves the 
named axes with coordinate reference system based addressing to positional axes with 
integer addressing.  

The rasdaman server executes such queries on raster objects stored in partitions 
called tiles [71]. In the optimization phase [20] the server attempts to apply techniques 
like algebraic rewriting, pre-aggregate exploitation, parallelization, and just-in-time 
compilation for CPU or GPU. Finally, the query is evaluated employing tile streaming 
[25], i.e., tile-by-tile evaluation, which in many cases allows materializing only one tile 
at a time in the server’s main memory. By construction of the mapping, each result of 
the set-oriented query contains exactly one result array. This result is encoded in the 
requested format and passed back to the WCPS frontend which ships it to the client. 

7   Application Scenarios 

A WCPS demonstration site is in progress under www.earthlook.org. It allows queries 
on 1-D to 4-D earth science data sets from the application scenarions sensor data 
analysis, remote sensing, oceanography, geophysics, and atmospheric simulation. 
Here we demonstrate WCPS in two hand-picked use cases: a 3-D image time series 
application and a 4-D life science scenario. 

 

Fig. 3. DFD-DLR demonstrator for 1-D to 3-D extraction from image time series data cubes 
(source: DFD-DLR) 
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7.1   Satellite Image Time Series Services 

In a precursor project conducted together with the German Aerospace Agency 
(DFD/DLR) a Web service on x/y/t image time series data cubes has been developed. 
Among the data sets provided is an AVHRR sea/land surface temperature map. Im-
ages have been composed into a seamless map of Europe and the Mediterranean, and 
then extended over time. The resulting image cube totals around 10,000 images. 

Figure 3 (center) shows the Web interface which allows spatial selection via an 
overview map and temporal selection by time range. The left image represents a 3-D 
cutout obtained through spatio-temporal subsetting. To the right there is a 2-D time 
slice (top), a 1-D temperature curve (middle), and a 1-D vegetation index curve (bot-
tom). Such derived data form a typical WCPS application scenario; the Normalized 
Difference Vegetation Index is computed from multi-spectral satellite images as 
(nearInfrared-red)/(nearInfrared+red). 

 

As WCPS was not available at that time this retrieval interface is based on the ras-
daman raster query language, whereby queries are generated from a Web interface 
using IDL on th Net. A temperature curve in the time interval between T0 and T1 
could be obtained through a WCPS expression like this one: 

for $t in ( TemperatureCube ) 
return 
    encode( 
        $t[ t( T0, T1 ) ], 
        CSV 
    ) 

7.2   Gene Research Data Services 

The last example demonstrates application of spatiotemporal raster services beyond 
the earth sciences. In the ESTEDI project11 one of the areas investigated was gene 
expression simulation. There the Mooshka database [19] was established containing 
gene activation maps of the drosophila melanogaster (fruit fly). Each such map, rep-
resenting activity of a particular gene in a particular fruit fly embryo at a particular 
point of development, consists of a 3-D voxel map of expression intensities. In geo 
service terminology, such voxel images are rectified but not georeferenced. Hence, 
they can be modeled as coverages having no geodetic coordinate system, but only 
their image coordinate reference system. 

Figure 3 shows the classical way of obtaining analysis data: 2-D slices obtained 
from staining embryos are combined into an RGB image. Choice of the three genes to 
be combined is arbitrary and driven by the comparisons to be made; the number of 
three is determined by the channels available in RGB. Spatial aggregations allow to 
obtain intensity diagrams. 

With a multi-dimensional raster service these steps from just one special case in 
the plurality of possible analysis variants. The following WCPS query assumes a 4-D 
image where the time axis represents the exemplar’s lifetime, always starting with 0. 
The query delivers average activity of the Hunchback gene over lifetime encoded in 
CSV (comma-separated values). It does so by generating a new coverage with only a 

                                                           
11 www.estedi.org, last seen on April 11, 2009. 
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time axis where each value in this timeline is determined by averaging over the 
hunchback component of the corresponding time slice. 
for $e in ( ThisEmbryo ) 
return 
    encode( 
        coverage averageActivity 
        over     pt t( imageCrsDomain($e,t) ) 
        values   avg( $e.hunchback[ t( pt ) ] ), 
        CSV 
    ) 

→→

 

Fig. 4. Conventional processing steps in gene expression analysis 

8   Conclusion 

The Web Coverage Processing Service (WCPS) geo raster model and language allows 
navigation, extraction, and ad-hoc analysis on multi-dimensional geoscientific raster 
data. The request language has been designed to offer some key properties considered 
advantageous by the database community: 

 It has a (semi-) formal semantics which combines concise syntax and semantics 
specification with legibility. 

 The language is declarative in that there is no explicit array iteration, thereby al-
lowing to process arrays in any cell iteration sequence, in particular based on 
partitioned (“tiled”) storage schemes. 

 This in turn opens up a wide space for optimizations of proven effectiveness. 
 Coverages are treated in a data independent way: not only are requests inde-

pendent from data encoding, but also dimensions are addressed by name and not 
by index, thereby avoiding an artificial dimension sorting. 

 WCPS queries are safe in evaluation – every requests terminates after a finite 
number of steps (proof omitted here, but straightforward). 

The interested reader may have noted that the syntax is close to that of XQuery. 
The idea behind this choice was that, while XQuery does not play any role in cover-
age/raster services, it might be an interesting research avenue to merge both languages 
with the goal of integrating semi-structured and raster data retrieval. The issues be-
hind appeared serious enough to not impede the timely roll-out of WCPS by such 
currently not relevant questions. 
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WCPS has been adopted as an international standard by the Open GeoSpatial Con-
sortium (OGC) in December 2008, and the reference implementation is almost fin-
ished. Next steps include finalization of the WCPS Reference Implementation and 
release of its source code. Further, an application spectrum as broad as possible will 
be addressed to evaluate WCPS usability and to gain feedback from the user commu-
nities. One line of current research addresses extension of the concepts from equidis-
tant grids to general meshes. 

In the end, hope is that WCPS will not only contribute a new quality of service on 
spatio-temporal raster data, but to foster cross-discpline data exchange and use. 
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Appendix: Sample WCPS Operator Specification 

The following is a verbatim sample taken from the WCPS standard [4] specifying 
spatial subsetting. “Changed?” indicates, for the reader’s convenience, which cover-
age constituent is actually changed by the operation on hand. 
 
Let  

C1 be a coverageExpr, 
n be an integer with 0≤n, 
a1,…,an be pairwise distinct dimensionNames with  ai ∈ dimensionName-
Set(C1) for 1≤i≤n, 
crs1,…,crsn be crsNames with  crsi ∈ crsList(C1) for 1≤i≤n, 
(lo1:hi1),…,(lon:hin) be dimensionIntervalExprs with loi≤hii for 1≤i≤n. 

Then, 

for any coverageExpr C2 
where C2 is one of 
 Cbracket  = C1 [ p1, …, pn ] 
  Cfunc  = trim ( C1, { p1, …, pn } ) 
with  
 pi is one of 
  pimg,i =  ai ( loi : hii ) 
 pcrs,i =  ai : crsi ( loi : hii ) 
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C2 is defined as follows: 

Coverage constituent Changed? 

 identifier(C2) = “” (empty string) X 

 for all p ∈ imageCrsDomain(C2): 
 value(C2, p ) =  value(C1,p) 

 

 imageCrs(C2) = imageCrs(C1)  

 dimensionList(C2) = dimensionList(C1)  

 for all a ∈ dimensionList(C2): 
 if a = ai for some i 
  then imageCrsDomain(C2 , a )  =  (loi,img : hii,img ) 
  else imageCrsDomain(C2 , a )  =  imageCrsDomain(C1,a)
where (loi,img : hii,img ) = (loi:hii) if no CRS is indicated, 
and the transform from crsi into the image CRS if crsi is 
indicated. 

X 

 for all a ∈ dimensionList(C2): 
 crsSet(C2, a) = crsSet(C1, a)  
  dimensionType(C2, a) = dimensionType(C1, a) 

 

 for all a ∈ dimensionList(C2), c ∈ crsSet(C2): 
 if a = ai for some i 
  then domain(C2 , a, c )  =  (loi,c : hii,c ) 
  else domain(C2 , a, c )  =  domain(C1 , a, c ) 
where (loi,c:hii,c) represent the dimension boundaries 
(loi:hii) transformed from the C2 image CRS into CRS c. 

X 

for all r ∈ rangeFieldNames(C2): 
 rangeFieldType( C2, r ) = rangeFieldType(C1, r) 

 

 nullSet(C2) = nullSet(C1)  

 for all r ∈ rangeFieldNames(C2 ): 
  interpolationDefault(C2, r) =  interpolationDefault(C1, r)

 

 for all r ∈ rangeFieldNames(C2 ): 
  interpolationSet(C2, r) =  interpolationSet(C1, r) 
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Abstract. A recent and emerging trend in scientific data dissemination involves
online databases that are hidden behind query forms, thus forming what is re-
ferred to as the deep web. In this paper, we propose SEEDEEP, a System for
Exploring and quErying scientific DEEP web data sources. SEEDEEP is able
to automatically mine deep web data source schemas, integrate heterogeneous
data sources, answer cross-source keyword queries, and incorporates features like
caching and fault-tolerance. Currently, SEEDEEP integrates 16 deep web data
sources in the biological domain. We demonstrate how an integrated model for
correlated deep web data sources is constructed, how a complex cross-source key-
word query is answered efficiently and correctly, and how important performance
issues are addressed.

1 Introduction

A recent and emerging trend in scientific data dissemination involves online databases
that are hidden behind query forms, thus forming what is referred to as the deep web [1].
Recently, hundreds of large, complex, and in many cases, related and/or overlapping,
deep web data sources have become available, especially in the scientific domain. The
number of such data sources is still increasing rapidly every year [2]. Thus, there is
an increasing need for an automatic system that is able to manage and integrate het-
erogenous scientific deep web data sources. We need to be able to facilitate exploration
and queries on these deep web data sources. The following motivating example further
illustrates the need of such a system.

Motivating Example: A biologist interested in SNP issues a query Q1={ERCC6,
SNPID,“ORTH BLAST”,HGNCID}, with the following intent: given a gene name
ERCC6, we want to find the SNPIDs, the BLAST results and the correspondingHGNCID
of gene ERCC6. To find the SNPIDs of ERCC6, we need to use gene name ERCC6 as
input to query on dbSNP data source to find SNPIDs. To find the BLAST information,
we need to take the following three steps: 1) use ERCC6 as input to query on Gene data
source to obtain the proteins of ERCC6 in human species and other orthologous species;
2) use Protein data source to find the sequences of the proteins obtained from step 1;
3) use the protein sequences from step 2 and the SNP information (amino acid position)
obtained from dbSNP as input to do an alignment using Entrez BLAST data source.
To find the HGNCID of ERCC6, we use ERCC6 as input to query on HGNC data source.
The plan of answering Q1 is shown in Figure 1.

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 74–82, 2009.
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Fig. 1. The Plan of Answering Query Q1

From this example, we can see that to answer such a query, the biologist must be
able to complete the following steps:

Step 1: To learn the complete input and output schemas of biological deep web data
sources so that she can manually identify appropriate data sources that could be used to
answer the query;

Step 2: To understand the dependence relation among data sources so that she can
manually figure out the order by which data sources should be accessed;

Step 3: To manually submit online queries to numerous query forms and keep track of
the obtained results;

Step 4: To manually merge and organize the results from numerous data sources to-
gether in a systematic way.

The above procedure for answering one query is tedious and error-prone. For a bi-
ologist who may issue a number of such queries every day, a system that can automate
this process will be highly desirable.

In this paper, we propose SEEDEEP, an automatic system for exploring and querying
scientific deep web data sources. Distinct from existing deep web mining systems in
the e-commerce domain [3,4,5,6], which mainly focus on schema matching, SEEDEEP
has the following features. First, SEEDEEP can mine complete schemas of deep web
data sources. Second, SEEDEEP is able to discover the dependence relation among
data sources. Third, SEEDEEP can generate multiple query plans for a cross-source
keyword query. Finally, SEEDEEP incorporates systems-oriented features like support
for data caching and fault-tolerance.

The rest of the paper is organized as follows. In Section 2, we show the system
infrastructure of SEEDEEP. We introduce the design of each component in SEEDEEP
in Section 3. We describe the implementation of SEEDEEP and show a case study on
SEEDEEP in Section 4 and conclude in Section 5.

2 System Infrastructure

In this section, we describe the system infrastructure of SEEDEEP which is shown in
Figure 2.
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Fig. 2. System Infrastructure of SEEDEEP

SEEDEEP is mainly composed of six modules which are Schema Mining Module,
Schema Matching Module, Query Planning Module, Query Reuse Module, Incremental
Plan Generation Module, and Plan Execution Module.

Schema Mining (SMi): SMi is used to automatically mine the complete schemas of
deep web data sources and build data source models to describe the data content hidden
behind the data sources. The main challenge of mining the complete schema of a deep
web data source is that given a particular input term, many data sources will only return
a partial set of output schema attributes, i.e., the ones that have non-NULL values for
the particular input. SMi utilizes a hybrid algorithm which combines a sampling model
and a mixture model to solve this problem.

Schema Matching (SMa): When answering a cross-source query, it is important for
SEEDEEP to understand the dependence relation among data sources, i.e., the output
results of one data source may be the input information of another data source. To
construct a data source dependence model, we need to consider the input-output schema
matching problem for different data sources. SMa solves this problem using a series of
data mining techniques which include automatic discovery of attribute instances and
finding matched schema attributes using clustering.

Query Planning (QP): The query planning module takes a cross-source keyword query
and system models as input, and generates a query plan as shown in Figure 1 to answer
the query. In SEEDEEP system, the system models (data source model and dependence
model) could be generated using the SMi and SMa modules or our system also allows
user provided data source model and dependence model.

Query Reuse (QR): The query reuse module takes a query-plan-driven caching strat-
egy to generates query plans based on previously cached query plans which are stored
in the Plan Base. Different from the widely used data-driven caching method based on
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query containment checking, our strategy could increase the possibility of data reuse
even when a new query doesn’t seem to be overlapping with a previous query.

Incremental Plan Generation (IPG): When a query plan is executed, the remote data
sources and communication links are subject to congestion and failures. This can cause
significant and unpredictable delays or even unavailability of sources. The incremental
plan generation module gracefully handles such issues using a data redundancy based
incremental query generating method to generate a partial query plan for the part in the
original query plan that became unusable.

Plan Execution (PE): The plan execution module achieves three types of parallelism,
which are task parallelism, thread parallelism and pipeline parallelism, to accelerate the
execution of a query plan.

As shown in Figure 2, SEEDEEP is partitioned into two parts, the exploring part
and the querying part. Given a set of deep web data sources, the exploring part, which
consists of SMi and SMa, explores the data sources to understand their usages and
relationships and build system models. User queries are handled by the querying part
of SEEDEEP. The querying part, which contains QP, QR, IPG and PE, finds the most
intelligent query plan for a user query based on the system models and executes the
plan in the most efficient way.

3 System Modules

In this section, we briefly describe the design of each of the six modules in SEEDEEP.

3.1 Schema Mining

The schema mining module aims to find the complete output schemas of deep web data
sources. Because most deep web data sources only return a partial set of output schema
attributes when given a particular input term, the existing label extraction technique
which assumes that all output attributes are appearing in the output pages [7] cannot be
applied. In our problem scenario, we proposed two schema mining approaches which
are sampling model approach and mixture model approach.

The sampling model approach is based on a distribution model of deep web data
source output attributes. We found that a modest sized sample of output pages could
discover output attributes with relatively high recall. Based on this idea, we proposed
a sampling based algorithm to discover output attributes based on a simple random
input samples. The size of the sample is estimated by a sample size estimator which
could bound the sampling error within a confidence interval. The mixture model ap-
proach is based on an observation that there is likely some redundancy across data
sources. Thus, attributes could be shared among different data sources. We model a
data source as a probabilistic data source model that generates output attributes with
certain probabilities. Since an attribute could be shared by multiple data sources, we
consider the probability of an attribute generated by a data source as being deter-
mined by a mixture model composed of the probabilistic data sources of similar data
sources.
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3.2 Schema Matching

The schema matching strategy used in SEEDEEP is an instance based method. We
focus on finding the input-output attribute matching so as to construct the data source
dependence model. The following two methods are proposed to find attribute instance:
1) We take advantage of the informative information provided on the query interfaces
of deep web data sources to find attribute instances; 2) Based on the data redundancy
across data sources, i.e., the same data can be obtained from multiple data sources [8],
we borrow attribute instances from semantically related attributes on the output pages
from related data sources. Taking the attribute instances, a clustering algorithm is used
to find the semantically matched groups as matched attributes.

3.3 Query Planning

Currently, our query planning module is able to handle with two types of cross-source
queries, which are 1) Entity-Attribute Query, where a user may submit an entity name
and one or more attributes, and would like to search based on attributes of interest
for the entity, and 2) Entity-Entity Relationship Query, where a user submits multiple
entity names from a domain, and wants to know possible relationships among these
names.

The query planning problem in SEEDEEP can be formulated as a NP-hard prob-
lem which is to find a minimal subgraph covering all query terms from the data source
dependence graph. Our problem is clearly distinct from the existing query planning
problem over web services [9] or relational databases [10,11,12] where a query plan
must be a tree. We proposed a heuristic bidirectional query planning algorithm to solve
our query planning problem. We have a set of starting nodes and a set of target nodes. A
query plan ultimately connects a subset of target nodes with a subset of starting nodes,
such that all query terms are covered. We perform backward exploration from the target
nodes to connect them with starting nodes, and meanwhile we also do forward explo-
ration from the starting nodes. The heuristic we used to find the minimal subgraph is that
the edges that will allow a shorter distance to connect nodes which cover query terms
are preferred. A domain ontology and a list of ranking heuristics are also developed to
support the query planning module.

3.4 Query Reuse

Our query reuse strategy is driven by the following observations. First, there is data
redundancy across deep web data sources. Second, deep web data source returns query
answers in an All-In-One fashion, i.e., values of all the attributes in the source’s output
schema are returned, irrespective of the specific attributes requested in the query. The
above specific features of deep web data sources motivate us to develop a novel query-
plan-driven caching method.

Given a new query NQ, QR module first finds a list of previous queries, denoted as
PQs = {PQ1, . . . , PQn}, which are similar to NQ based on a similarity metric. Sec-
ond, from each PQi, a Ψ selection algorithm selects a query sub-plan SubPi such that
among all valid sub-plans of PQi, SubPi maximally covers NQ and has the smallest
size. The query plan for NQ is generated using the list of SubPi based on a modified
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query planning algorithm. The modified planning algorithm gives priority to the sub-
plans selected by the Ψ algorithm and reduces to the original bidirectional algorithm
when there is no Ψ selected sub-plans can be reused.

3.5 Incremental Plan Generation

For a query Q, an original query plan P is generated. During the execution of plan P , a
data source D in P experiences unexpected delays or becomes unavailable. We want to
find a maximal inaccessible subplan rooted at data source D, denoted as MaxSubP .
Then, we want to take advantage of the data redundancy between data sources in
MaxSubP and other deep web data sources not in the original plan to incrementally
generate a new partial query plan to replace MaxSubP .

In our incremental plan generation algorithm, we considered four types of query plan
fixability, which are fully fixable, partial fixable, cascading fully fixable, and
cascading partial fixable. For each type of plan fixability, we give an algorithm to find the
maximal inaccessible subplan MaxSubP and generate a new query to replaceMaxSubP .

3.6 Plan Execution

Our plan execution module explores three types of parallelism as follows to acceler-
ate the execution of a query plan. 1) Task Parallelism. Data sources without inter-
dependence can be queried in parallel; 2) Thread Parallelism. For a particular data
source, multiple input instances can be submitted to the data source in parallel. This
is because most deep web data sources support multiple queries simultaneously; 3)
Pipeline Parallelism. The output of a data source can be processed by its child(ren) data
source(s), while the data source can process new input queries. The detail of the plan
execution module can be found in [13].

4 System Demonstration and Evaluation

In this section, we describe the current implementation of SEEDEEP and show a case
study of SEEDEEP.

4.1 System Implementation

Currently, SEEDEEP integrates 16 deep web data sources in the biological domain, which
includes dbSNP1, Entrez Gene1, Protein1, BLAST1, SNP5002, Seattle3,
SIFT4, BIND5, Human Protein6, HGNC7, Mouse SNP8, ALFRED9, JSNP10,

1 http://www.ncbi.nlm.nih.gov
2 http://snp500cancer.nci.nih.gov/home 1.cfm
3 http://pga.gs.washington.edu/
4 http://blocks.fhcrc.org/sift/SIFT.html
5 http://www.bind.ca
6 www.hprd.org
7 www.genenames.org
8 http://mousesnp.roche.com/
9 http://alfred.med.yale.edu/alfred/

10 http://snp.ims.u-tokyo.ac.jp/search.html#locus
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MGIGene11, MGISNP11, and KEGG12. The exploring part of the system (SMi and SMa)
mines data source schemas and finds attribute matchings. Then system models are con-
structed for the querying part of SEEDEEP. The system models capture the meta data
content of the above 16 data sources and their dependencies. In the querying part,
SEEDEEP provides an interface by which users can specify a cross-source keyword
query. SEEDEEP uses Apache Tomcat 6.x to support a web server. After a query plan
is executed, all results are returned in the form of HTML files to the user. We use Oracle
10 database to implement the plan base in the query reuse module.

4.2 Case Study

Exploring Part of SEEDEEP: For illustrating the performance of the schema min-
ing and matching module of SEEDEEP, we consider the data source Gene. We first
conduct a pilot study to show the characteristics of this data source. For Gene which
has a total number of 59 output attributes in its query schema, we randomly create
50 input cases, and analyze the corresponding 50 output pages. We count the number
of distinct output attributes. We found that none of the output pages covers the entire
output schema, the maximal coverage we obtained is about 80%, and on the average,
each output page only covers about 60% of the complete output schema. This pilot
study shows that mining query schema of scientific deep web data sources is challeng-
ing. The schema mining module yields very good performance on mining the query
schema of data sources. For Gene, using only 10 input samples, we obtained a schema
attribute recall about 95%. The schema matching module can also correctly identify all
dependence relationship between Gene and other data sources integrated. Overall, the
schema matching module achieves an average recall of 91% and precision of 96% for
all data sources.

Querying Part of SEEDEEP: We use the query Q1={ERCC6,SNPID,“ORTH
BLAST”,HGNCID}, which is mentioned in Section 1 in the case study. The input inter-
face of SEEDEEP and part of the output result page of query Q1 is shown in Figure 3.
The query plan generated for Q1 by the query planning module is shown in Figure 1.
The results are checked by a collaborating biologist and she found they are correct and
sufficient.

To show the effectiveness of the query reuse module, we consider a second query
Q2={MIMID 609413,SNPID,“SNP ssID”, “Protein ID”, “ORTH BLAST”} is issued
to SEEDEEP. The query reuse module correctly decides to reuse part of the query plan
of Q1 to answer Q2. The reuse strategy speedups the execution of Q2 by a factor of 4.
Compared with a pure data driven caching method which only can achieve a speedup
ratio of 1.5, our plan-driven-caching strategy is more effective.

During the execution of query plan for Q2, we consider data source dbSNP is un-
available. The incremental plan generation module effectively finds a new partial plan
and incrementally updates the query plan of Q2 by replacing data source dbSNP with
Seattle (dbSNP and Seattle have overlapping data about SNP). The new query

11 http://www.informatics.jax.org/javawi2/servlet
12 http://www.genome.jp/kegg/
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(a)

(b)

Fig. 3. System Input and Output Example: (a) System Input Interface;(b) Part of System Output
Results for Q1

plan saved about 20% of the execution time compared with discarding the original plan
and re-generating a new one from scratch.

5 Conclusion

In this paper, we have described SEEDEEP, a system for exploring and querying sci-
entific deep web data sources. SEEDEEP comprises two components, which are the
exploring and the querying components, with 6 individual modules. SEEDEEP is able
to automatically mine query schemas of deep web data sources and find the dependence
relation between these data sources. Based on the system models constructed from the
exploring part of SEEDEEP, the querying part can generate intelligent plans for cross-
source keyword queries. Finally, we also incorporate system-level features like caching
and fault tolerance.
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Abstract. Multidimensional databases play a relevant role in statisti-
cal and scientific applications, as well as in business intelligence systems.
Their users express complex OLAP queries, often returning huge volumes
of facts, sometimes providing little or no information. Thus, expressing
preferences could be highly valuable in this domain. The OLAP domain is
representative of an unexplored class of preference queries, characterized
by three peculiarities: preferences can be expressed on both numerical
and categorical domains; they can also be expressed on the aggregation
level of facts; the space on which preferences are expressed includes both
elemental and aggregated facts. In this paper we propose a preference
algebra for OLAP, that takes into account the three peculiarities above.

Keywords: OLAP, database preferences, multidimensional databases.

1 Introduction and Motivation

Personalizing e-services by allowing users to express preferences is becoming
more and more common. When querying, expressing preferences is a natural
way to avoid empty results on the one hand, information flooding on the other.

Though a lot of research has been carried out during the last few years on
database preferences (e.g., [1,2]), the problem of developing a theory of prefer-
ences for multidimensional databases has been mostly neglected so far. We argue
that expressing preferences could be valuable in this domain because:

– Preferences enable users to focus on the most interesting data. This is par-
ticularly beneficial in the OLAP context, since multidimensional databases
typically store a huge amount of data. Besides, OLAP queries have a com-
plex structure. An OLAP query may easily return huge volumes of data, or
it may return little or no information as well. The data ranking entailed by
preferences allows users to cope with both these problems.

– During an OLAP session, the user may not exactly know what she is looking
for. The reasons behind a specific phenomenon or trend may be hidden, and
finding those reasons by manually applying different combinations of OLAP
operators may be very frustrating. Preferences enable users to specify the
pattern she is searching for. Since preferences express soft constraints, the
most similar data will be returned when no data exactly match that pattern.
From this point of view, preference queries can be regarded as a basic OLAM
(OnLine Analytical Mining) technique [3].

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 83–91, 2009.
� Springer-Verlag Berlin Heidelberg 2009
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– Scientific data are often distributed across separate databases. In the busi-
ness domain, federated data warehouse architectures are seen as an effective
shortcut to integration. In these cases, schema heterogeneity may prevent
from expressing distributed queries. Conversely, a schema preference can
produce meaningful results even when a common schema is not defined.

It is well-known that aggregation plays an essential role in OLAP queries, since
it enables decision-makers to get valuable, summary information out of the huge
quantity of detailed data available in multidimensional databases. OLAP queries
do not only formulate selections and projections on attributes and measures,
they also specify on what hierarchy attributes data are to be aggregated (group-
by set). The aggregation level has a strong impact on the size of the result
returned to the user, and its inappropriate setting may end in either obtaining
very coarse, useless information or being flooded by tons of detailed data, which
is particularly critical when working with devices with small bandwidth and
limited visualization capabilities. For this reason we argue that, in the OLAP
domain, users may wish to express their preferences on group-by sets too, for
instance by stating that monthly data are preferred to yearly and daily data.

Fig. 1. Sample census facts and preference relationships between them

Example 1. IPUMS is a public database storing census microdata for social and
economic research [4]. An analyst may wish to understand the reasons behind a
decrease in the average income of US citizens. She suspects that this is a state-
scale phenomenon mainly due to a decrease in the income of professionals. So
she expresses a query with a preference on data of professionals, grouped by
state, with low income (i.e. lower than � 1000). To evaluate this preference, it is
necessary to compare data characterized by different group-by sets and different
values for attributes and measures. If the analyst is right, this query will return
only the facts, aggregated by states, where professionals have an average income
lower than � 1000. In Figure 1, instead, we assume that the analyst’s hypothesis
is false and three relevant situations are pointed out. Fact f1 shows that the
lowest monthly income of professionals at the state-scale is in California, and it
not that low. Fact f2 shows significantly low income for professionals in the city
of Boston. Fact f3 shows that, in Colorado, waiters have very low income. Fact
f4 is worse than the previous three facts because it yields higher income, is not
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aggregated by state, and is not related to professionals. Finally, f5 is worse than
f4 because it yields an even higher income.

From Example 1, it is apparent that the OLAP domain is representative of
an unexplored class of preference queries, characterized by three peculiarities:

– Preferences can be expressed on both attributes and measures, that re-
spectively have categorical and numerical domains. This makes the existing
approaches, that are mainly geared to handling either only categorical or
numerical preferences, ineffective.

– Preferences can also be formulated on the aggregation level of data, which
comes down to expressing preferences on schema rather than on instances.
To the best of our knowledge, no approach includes this feature.

– The space on which preferences are declared includes both elemental and
aggregated facts. In relational OLAP implementations, materializing all facts
on all possible group-by sets is highly undesirable.

In this paper we present an approach for dealing with OLAP preferences.
Specifically, we propose an algebra for expressing complex OLAP preferences
including a set of base preference constructors on attributes, measures and hi-
erarchies, composed by the Pareto operator. The most original of the domain-
dependent aspects of our algebra is the possibility of declaring preferences on
group-by sets, which is done by recognizing that preferences on the space of
hierarchy attributes induce preferences on the space of facts.

2 Background Definitions and Working Example

In this section we introduce a basic formal setting to manipulate multidimen-
sional data. To keep the formalism simpler, and without actually restricting
the validity of our approach, we will consider hierarchies without branches, i.e.,
consisting of chains of attributes.

Definition 1 (Multidimensional Schema). A multidimensional schema (or,
briefly, a schema) is a triple M = 〈A, H, M〉 where:

– A = {a1, . . . ap} is a finite set of attributes, each defined over a categorical
domain Dom(ak);

– H = {h1, . . . , hn} is a finite set of hierarchies, each characterized by (1) a
subset Attr(hi) ⊆ A of attributes (such that the Attr(hi)’s for i = 1, . . . , n
define a partition of A); (2) a roll-up total order �hi over Attr(hi); and (3)
a family of roll-up functions including a function RollUpak

aj
: Dom(ak) →

Dom(aj) for each pair of attributes ak and aj such that ak �hi aj;
– a finite set of measures M = {m1, . . . , ml}, each defined over a numerical

domain Dom(mi).

For each hierarchy hi, the top attribute of the order is denoted by DIMi, and
determines the finest aggregation level of the hierarchy. Conversely, the bottom
attribute is denoted by ALLi and determines the coarsest aggregation level.
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Definition 2 (Group-by Set). Given schemaM = 〈A, H, M〉, let Dom(H) =
Attr(h1) × . . . × Attr(hn); each G ∈ Dom(H) is called a group-by set of M.
Let G = 〈ak1 , . . . , akn〉 and Dom(G) = Dom(ak1) × . . . × Dom(akn); each
g ∈ Dom(G) is called a coordinate of G. We denote with G.hi = aki the attribute
of hi included in G.

Let �H denote the product order of the roll-up orders over the hierarchies in H .
Then, (Dom(H),�H) is a lattice, that we will call group-by lattice, whose top and
bottom elements are G	 = 〈DIM1, . . . , DIMn〉 and G⊥ = 〈ALL1, . . . , ALLn〉,
respectively.

Example 2. Our working schema is CENSUS, that includes hierarchies RES (for
“Residence”), OCC (for “Occupation”), and TIME, and measure AvgIncome. The
roll-up orders are as follows:

City �RES State �RES Country �RES AllCountries

Job �OCC MinorGroup �OCC MajorGroup �OCC AllGroups

Month �TIME Quarter �TIME Year �TIME AllYears

For instance, it is RollUpCity
State(’Miami’) = ’Florida’. Some examples of group-

by sets are G	 = 〈City, Job, Month〉, G1 = 〈Country, Job, Month〉, G2 = 〈State,
AllGroups, Quarter〉, and G⊥ = 〈AllCountries, AllGroups, AllYears〉. It is G	 �H

G1 �H G⊥, G	 �H G2 �H G⊥, while G1 and G2 are incomparable according
to �H . A coordinate of G1 is 〈’USA’, ’Dentist’, ’Oct-08’〉.

A schema is populated with facts. A fact is characterized by a group-by set G
that defines its aggregation level, by a coordinate of G, and by a value for each
measure. While the facts at the top group-by set of the lattice (primary facts) are
those storing elemental data, those at the other group-by sets store summarized
information.

Definition 3 (Fact). Given schema M = 〈A, H, M〉 and a group-by set G ∈
Dom(H), a fact at G is a triple f = 〈G, g, v〉, where g ∈ Dom(G) and v ∈
Dom(M) = Dom(m1) × . . .×Dom(ml). The space of all facts of M is FM =⋃

G∈Dom(H)({G} ×Dom(G) ×Dom(M)).

Example 3. An example of fact of CENSUS is f = 〈G1, 〈’USA’, ’Dentist’,
’Oct-08’〉, 4000〉.

Finally, an instance of schema M is a datacube and is defined as a set of facts
C ⊂ FM. Intuitively, C includes a set of primary facts at the top group-by set
of Dom(H), united with all the other facts determined by aggregating primary
facts at all the other group-by sets in Dom(H).

3 Preferences on Facts

Before we start to deal with preferences, we briefly recall that a strict partial
order (s.p.o.) on a given set S is an irreflexive and transitive (thus asymmetric)
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binary relation on the elements of S. A negatively transitive s.p.o. is also called
a weak order (w.o.). A w.o. on S partitions S into n (disjoint) levels such that
the levels are totally ordered and each level determines an SV-relation on the
w.o. itself.

In relational databases, a preference is commonly defined as a s.p.o. over the
set of possible tuples. Here, we define a preference as a s.p.o. on the space of all
facts at all group-by sets, which implies that a preference may involve two facts
defined at different group-by sets.

Definition 4 (Preference). Given schemaM, a preference P onM is a cou-
ple (<P ,∼=P ) where <P⊆ FM × FM is a s.p.o. and ∼=P⊆ FM × FM is an
SV-relation on <P .

The semantics of f1 <P f2 is that f2 is preferred to f1; the semantics of f1 ∼=P f2
is that f2 is equivalent (or substitutable) to f1 [5].

In our approach, complex preferences on the space of facts are inductively
engineered by applying a set of base preference constructors and an operator
for preference composition. In particular, a preference is defined by a preference
expression q ruled by the following grammar:

< expr >::= < baseConstr > | < expr > ⊗ < baseConstr >

< baseConstr >::=POS|NEG|BETWEEN|LOWEST|HIGHEST|
CONTAIN|NEAR|COARSEST|FINEST

where base preference constructors operate either on attributes, measures, or
hierarchies. Adopting the SV-semantics allows for closing the set of composition
operators on the set of preferences, thus obtaining an algebra [5].

In the next subsections we will introduce the set of base preference construc-
tors and the composition operator we provide. For simplicity, in this work base
preferences are defined over single attributes, measures and hierarchies; the ex-
tension to multiple attributes, measures and hierarchies is straightforward and
smoothly supported by our approach. Besides, for space reasons, the formaliza-
tion of some base constructors will be omitted.

3.1 Base Preferences on Attributes

While in the relational case each tuple is characterized by the same attributes,
the attributes that characterize a fact depend on its group-by set. For instance,
a fact reporting the average income for the California state does not explicitly
provide values for City and Country. On the other hand, hierarchies allow for
relating values of attributes belonging to the same hierarchy by means of roll-
up functions. In order to avoid introducing an undesired relationship between
preferences on attributes and preferences on hierarchies, in this work we use roll-
up functions to propagate preferences expressed on attributes along the whole
hierarchy, as explained in the following.

Given fact f and hierarchy h, let ā be the attribute of h included in the
group-by set of f . Then, let c̄ be the (categorical) value assumed by ā in the
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coordinate of f . Given any attribute a ∈ Attr(h), we denote with f.a ∈ 2Dom(a)

the value(s) assumed in f by a, defined as follows:

f.a =

{
{Rollupā

a(c̄)}, if ā �h a

{c ∈ Dom(a)|Rollupa
ā(c) = c̄}, otherwise

For instance, if ā = State and c̄ = ’California’ for fact f , it is f.City =
{’LosAngeles’, ’S. Francisco’, . . .} and f.Country = {’USA’}.

Let c ∈ Dom(a); the base preference constructors we provide for declaring
preferences on a are:

– POS(a, c). Facts whose coordinate on h maps to c are preferred to the others:

f1 <P f2 iff c �∈ f1.a ∧ c ∈ f2.a

f1 ∼=P f2 iff (c �∈ f1.a ∧ c �∈ f2.a) ∨ (c ∈ f1.a ∧ c ∈ f2.a)

– NEG(a, c). Facts whose coordinate on h does not map to c are preferred to
the others.

It is easy to verify that, for both POS and NEG constructors, <P is a w.o. and
∼=P is an SV-relation on <P ; thus, the result is a preference according to Def. 4.

Example 4. POS(Month,’Oct-08’) states that the monthly data of October 2008,
the daily data for all days of October 2008, and the yearly data for 2008 are
preferred to all the other facts.

3.2 Base Preferences on Measures

Let m ∈M be a measure. Let v, vlow, vhigh ∈ Dom(m) (vlow ≤ vhigh); we define

Δ(v, [vlow , vhigh]) =

⎧⎪⎨⎪⎩
0 if v ∈ [vlow, vhigh]
vlow − v if v < vlow

v − vhigh if v > vhigh

Also, given fact f , we denote with f.m ∈ Dom(m) the (numerical) value assumed
in f by m. Let v ∈ Dom(m); the base preference constructors for declaring
preferences on measure m are, like in [2]:

– BETWEEN(m, vlow, vhigh). Facts whose value on m is between vlow and vhigh

are preferred; the other facts are ranked according to their distance from the
interval:

f1 <P f2 iff Δ(f1.m, [vlow, vhigh]) > Δ(f2.m, [vlow, vhigh])
f1 ∼=P f2 iff Δ(f1.m, [vlow, vhigh]) = Δ(f2.m, [vlow, vhigh])

– LOWEST(m), HIGHEST(m). Facts whose value on m is as low (high) as
possible are preferred.

All three constructors return w.o. preferences.

Example 5. BETWEEN(AvgIncome, MININC, 1000) states that the facts (aggre-
gated at any group-by set) yielding average incomes lower than 1000 are preferred
over the others, that are ranked according to increasing incomes.
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3.3 Base Preferences on Hierarchies

As stated in the Introduction, one key feature of our approach is the possibility of
declaring preferences on the aggregation level of facts, i.e., on their group-by sets.
The basic idea is that of defining preferences on the space of hierarchy attributes,
to let them induce preferences on the space of facts through a function that maps
each fact into its group-by set. In particular, given fact f and hierarchy h, let
G(f) denote its group-by set and G(f).h denote the attribute of h in G(f).

Definition 5 (G-order and G-relation). Let <P ′ and ∼=P ′ be, respectively,
an order and an equivalence relation on the attributes of h, Attr(h). We call G-
order the order <P induced on FM by <P ′ as follows: for each f1, f2 ∈ FM, it
is f1 <P f2 iff G(f1).h <P ′ G(f2).h. We call G-relation the equivalence relation
∼=P induced on FM by ∼=P ′ as follows: for each f1, f2 ∈ FM, it is f1 ∼=P f2 iff
G(f1).h ∼=P ′ G(f2).h.

Theorem 1 shows that the properties of the relationships on hierarchy attributes
are preserved in the relationships induced on facts through G().

Theorem 1. Let <P ′ and ∼=P ′ be, respectively, an order and an equivalence
relation on Attr(h), and let <P and ∼=P be their G-order and G-relation, respec-
tively. Then, (<P ,∼=P ) is a preference iff (<P ′ ,∼=P ′) is a preference. Besides,
<P is a w.o. iff <P ′ is a w.o.

We now introduce the notion of distance between two attributes in a hierarchy
h, that is necessary for declaring NEAR preferences:

Definition 6 (Distance). Let a1, a2 ∈ Attr(h). The distance between a1 and
a2, Dist(a1, a2), is the difference between the levels of a1 and a2 within the roll-
up total order �h.

For instance, with reference to the CENSUS schema, it is Dist(Month, Year) = 2.
Given a, afine, acoarse ∈ Attr(h), afine �h acoarse, let

Δ(a, [afine, acoarse]) =

{
0, if afine �h a �h acoarse

min{Dist(a, afine), Dist(a, acoarse)}, otherwise

We are now ready to define the following base preference constructors on
hierarchies. Let h ∈ H and a, afine, acoarse ∈ Attr(h) (afine �h acoarse):

– CONTAIN(h, a). The facts whose group-by set includes a are preferred to the
others:

f1 <P f2 iff a �= G(f1).h ∧ a = G(f2).h
f1 ∼=P f2 iff (a �= G(f1).h ∧ a �= G(f2).h) ∨ (a = G(f1).h ∧ a = G(f2).h)

– NEAR(h, afine, acoarse). The facts whose group-by set along h is between
afine and acoarse are preferred; the other facts are ranked according to the
distance of their group-by set along h from the interval:

f1 <P f2 iff Δ(G(f1).h, [afine, acoarse]) > Δ(G(f2).h, [afine, acoarse])
f1 ∼=P f2 iff Δ(G(f1).h, [afine, acoarse]) = Δ(G(f2).h, [afine, acoarse])
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– COARSEST(h). Aggregated facts along h are preferred to detailed ones:

f1 <P f2 iff G(f1).h �h G(f2).h
f1 ∼=P f2 iff G(f1).h = G(f2).h

– FINEST(h). Detailed facts along h are preferred to aggregated ones.

All four constructors return w.o. preferences over Attr(h) and, for Theorem
1, w.o. preferences over FM. FINEST returns the roll-up order on h, �h.

Example 6. CONTAIN(RES,State) selects a set of preferred group-by sets (those
including State combined with any attribute of OCC and TIME). In other terms,
it states that the census data aggregated by residence state are preferred to the
others, regardless of what their aggregation is on the occupation and time hierar-
chies. NEAR(TIME,Quarter,Year) states that data aggregated by either quarter or
year are preferred to the others. Data aggregated by month and data completely
aggregated along the time hierarchy are substitutable. FINEST(TIME) ranks the
group-by sets (and their facts) according to the roll-up lattice of TIME.

3.4 Preference Composition

The most common operator for preference composition is the Pareto operator:

– P1 ⊗ P2 (Pareto composition). A fact is better than another if it is better
according to one preference and better or substitutable according to the
other (the composed preferences are considered equally important):

f1 <P1⊗P2 f2 iff (f1 <P1 f2 ∧ (f1 <P2 f2 ∨ f1 ∼=P2 f2))
∨(f1 <P2 f2 ∧ (f1 <P1 f2 ∨ f1 ∼=P1 f2))

f1 ∼=P1⊗P2 f2 iff f1 ∼=P1 f2 ∧ f1 ∼=P2 f2

As reported in [5], Pareto composition with SV-semantics preserves s.p.o.’s.
Thus, the result of applying this composition operator starting from the base
preference constructors defined in this section is still a preference according to
Def. 4. Note that Pareto composition is commutative and associative.

Example 7. The preference query introduced in Example 1 can be for-
mulated as BETWEEN(AvgIncome,MININC,1000) ⊗ CONTAIN(RES,State) ⊗
POS(MajorGroup,’Professional’).

4 Conclusions and Related Works

In this paper we have argued that preferences are a valuable technique for many
OLAP applications. On the other hand, ad-hoc base preference constructors are
needed to handle the required expressiveness. Thus, we have defined an algebra
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that allows preferences to be formulated, besides attributes and measures, also
on hierarchies, i.e., on the aggregation level of facts.

The literature on preference queries is huge, but only few works may be related
to queries involving preferences on schema and aggregated data. An attempt to
situate preferences in the context of multidimensional databases is [6], whose
focus is to enable efficient computation of Boolean predicates and preference
expressions on numerical domains. Preferences on categorical domains are not
supported, and there is no mention to the possibility of expressing preferences
on aggregation levels. Finally, in [7] preferences are expressed on a hierarchy of
concepts, but information is always retrieved at the finest level of detail and
preferences cannot be expressed on schema.

To close this section, we briefly discuss the effectiveness of our approach. We
start by observing that OLAP preferences play a major role in reducing the ef-
fort of decision-makers to find the most interesting information. This effort can
be quantitatively estimated by counting the number of OLAP queries necessary
to “manually” retrieve the facts that best match the user preferences. Running
an OLAP session entails formulating a sequence of queries, each specifying a
group-by set, a list of required measures and an optional set of predicates on
attributes and measures. To minimize her effort, a decision-maker should run
an OLAP session by first formulating queries that may return best-matching
facts. For instance, consider the preference in Example 7. To manually obtain
the same results, the decision-maker should first formulate all possible queries
including State (i.e., 16 queries) in the group-by set and select the facts related
to professionals and yielding an average income lower than � 1000. However, if no
facts exactly matching the preference are found, more queries will be required;
in the worst case, 256 queries must be formulated, which means retrieving the
whole datacube. In presence of complex preferences on measures (such as HIGH-
EST(AvgIncome)⊗ LOWEST(AvgMortgage)), the decision-maker would also have
to analyze the results to check for numerical domination since this cannot be
expressed by an OLAP query.
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Abstract. Scientific data centers comprised of high-powered computing equip-
ment and large capacity disk storage systems consume considerable amount of
energy. Dynamic power management techniques (DPM) are commonly used for
saving energy in disk systems. These involve powering down disks that exhibit
long idle periods and placing them in standby mode. A file request from a disk
in standby mode will incur both energy and performance penalties as it takes en-
ergy (and time) to spin up the disk before it can serve a file. For this reason, DPM
has to make decisions as to when to transition the disk into standby mode such
that the energy saved is greater than the energy needed to spin it up again and
the performance penalty is tolerable. The length of the idle period until the DPM
decides to power down a disk is called idleness threshold.

In this paper, we study both analytically and experimentally dynamic power
management techniques that save energy subject to performance constraints on
file access costs. Based on observed workloads of scientific applications and disk
characteristics, we provide a methodology for determining file assignment to
disks and computing idleness thresholds that result in significant improvements
to the energy saved by existing DPM solutions while meeting response time con-
straints. We validate our methods with simulations that use traces taken from
scientific applications.

Keywords: Disk storage, Power management, File allocation, Scientific work-
load, Performance guaranttee.

1 Introduction

The rapid growth in highly data-intensive scientific research has fueled an explosion
in computing facilities and demand for electricity to power them. Several analysts are
now predicting that energy costs will eventually outstrip the cost of hardware in data
centers [1]. As a result, reducing energy costs at data centers has become the focus of
multiple research efforts which are aimed at devising architectural strategies for en-
ergy efficient computing systems. Examples of projects that are currently underway in-
clude the GreenLight project at UC San Diego, DiskEnergy at Microsoft, GREEN-NET
Project in INRIA and the Green Grid Consortium.

There are multiple components that contribute to the power consumption in a data
center such as servers, storage, cooling, networks etc. However, recent papers estimate
that about 25 -35 percent of the energy consumption at data centers is attributed to disk
storage systems [2]. This percentage of disk storage power consumption will continue to
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increase, as faster and higher capacity disks are deployed with increasing energy costs
and also as data intensive applications demand reliable on-line access to data resources.

Reducing the energy consumption of the disk storage system has been addressed in
many recent research works. Research efforts are directed at several levels such as phys-
ical device level , systems level and dynamic power management (DPM) algorithms.
At the physical device level, disk manufacturers are developing new energy efficient
disks [3] and hybrid disks (i.e., disks with integrated flash memory caches). At the sys-
tem level, a number of integrated storage solutions such as MAID [4], PARAID [5],
PERGAMUM [6] and SEA [7] have emerged all of which are based on the general
principle of spinning down and spinning up disks. Disks configured either as RAID sets
or as independent disks, are configured with idle time-out periods, also called idleness
threshold, after which they are automatically spun down into a standby mode. A read or
write I/O request targeted to a standby disk causes the disk to spin-up in order to service
it. This of course comes at the expense of a longer response time to file access requests
as well as a penalty in terms of energy costs.

Dynamic power management (DPM) algorithms have been proposed to determine
online when the disk should be transitioned to a lower power dissipation state while
experiencing an idle period. Analytical solutions to this online problem have been eval-
uated in terms of their competitive ratio. This ratio is used to compare the energy cost
of an online DPM algorithm to the energy cost of an optimal offline solution which
knows the arrival sequence of disk access requests in advance. It is well known [8] that
for a two state system where the disk can be in either standby or in idle mode there is
a tight bound of 2 for the competitive ratio of any deterministic algorithm. This ratio is
achieved by setting the idleness threshold, Tτ, to β

Pτ
where β is the energy penalty (in

joules) for having to serve a request while the disk is in standby mode, (i.e., spinning
the disk down and then spinning it up in order to serve a request) and Pτ is the rate
of energy consumption of the disk (in watts) in the idle mode. We call this value the
competitive idleness threshold.

In this paper we focus mainly on read requests, we assume that write requests can
be handled efficiently by using any one of the energy-friendly approaches presented in
the literature. For example, in [6] it is recommended that files will be written into an
already spinning disk if sufficient space is found on it or write it into any other disk
(using best-fit or first-fit policy) where sufficient space can be found. The written file
may be re-allocated to a better location later during a reorganization process. Another
recently proposed strategy for energy saving for writes is called Write Off-Loading [9].
This technique allows write requests on spun-down disks to be temporarily redirected
reliably to persistent storage elsewhere in the data center.

1.1 Contributions of This Paper

In this paper, we quantify the effects of disk power management on response time based
on request workloads and disk characteristics. To the best of our knowledge, with the
exception of the work in [10], very little work has been done on modeling and analyzing
the effects of power management on the response time for file access requests using
realistic workloads and disk characteristics. In addition, the trade-off associated with
using more or less disks on power consumption and response times has not been studied.
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More specifically, our goal is to produce useful tools that can help in determining
when power saving policies should be used at all as well as optimal idleness thresholds
and bounds on the number of required disks needed in order to provide response time
guarantees. Our main contributions are:

– We develop an analytic model of file requests served by a disk equipped with power
saving mechanisms

– Based on this model, we develop a procedure called SmartIdle that computes sev-
eral important parameters such as request arrival rate ”break-even” point that de-
termines when power saving should be applied, how many disks must be used to
support response time constraints, and optimal idleness thresholds

– We validate this procedure by applying it to two real life scientific application traces
and show significant improvement over common existing DPM strategies that use
competitive idleness threshold value to power down the disk.

The remainder of the paper is organized as follows. More details about related rele-
vant work are provided in Section 2. In Section 3 our analytical model is described. In
Section 4 we present our procedure for determining system parameters for maximiz-
ing energy savings while meeting performance requirements. In Section 5 we present
our simulation model and results and in Section 6 an application of our model on two
scientific workloads is presented. Finally in Section 7 we present our conclusions and
directions for future work.

2 Related Work

Conserving energy in large scale computing has been recently explored in [11,12]. Co-
larelli and Grunwald [4] proposed MAID for near-line access to data in a massively
large disk storage environment. They show, using simulation studies, that a MAID sys-
tem is a viable alternative and capable of considerable energy savings over constantly
spinning disks. A related system was implemented and commercialized by COPAN sys-
tems [12, 13]. This system, which is intended for a general data center, is not focused
on scientific applications and is not adaptively reconfigurable based on workloads.

The theory of Dynamic Power Management of disks has drawn a lot of attention
recently from the theoretical computer science community (see [8] for an extensive
overview of this work). Most of this work considers a single disk only and attempts
to find an optimal idle waiting period (also called idleness threshold time) after which
a disk should be moved to a state which consumes less power. More specifically, the
problem discussed in these research works is based on the assumption that the disk can
be transitioned among n power consumption states where the ith state consumes less
power than the jth state for i < j. The disk can serve file requests only when it is in
the highest power state (the nth state) which is also called the active state. The system
must pay a penalty βi if a request arrives when the disk is in the ith state, the penalty
is proportional to the power needed to spin up from state i to the active state n. The
penalty is decreasing with the state number, i.e., β j < βi, f or j > i, and βn = 0.

The problem is that of devising online algorithms for selecting optimal threshold
times, based on idle periods between request arrivals, to transition the disk from one
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power state to another. The most common case transitions between two states namely,
idle state (full power) and standby or sleep state (zero power). The quality of these algo-
rithms is measured by their competitive ratio which compares their power consumption
to that of an optimal offline algorithm that can see the entire request sequence in advance
before selecting state transition times. As mentioned before, for a two state system there
is a tight bound of 2 for the competitive ratio of any deterministic algorithm.

There are also several results showing that with randomized online algorithms, the
best competitive ratio achievable improves to e/(e− 1) ≈ 1.58 [14]. Response time
penalty is not considered in these works. Another approach to DPM [15], attempts to
learn the request arrival sequence probability based on previous history and then gener-
ates a probability-based DPM strategy that minimizes the expected power dissipation.
It is known that power management schemes have an effect on the response time of the
system. In [16] an upper bound on the additional latency of the sys- tem introduced by
power management strategies is established.

More recently, it has been suggested that energy efficiency issues should become
a first-class performance goal for query processing in large data base management
systems. Several research papers deal with energy efficiency in DBMS using several
benchmarks. Examples include the JouleSort [17]and SPECPower benchmarks which
measure energy efficiency of entire systems that perform data management tasks.

In [18], the authors develop a power consumption model based on data from the TPC-
C benchmark. In [19], the authors provide a framework for trading off performance
and power consumption of storage systems based on a graduated, distribution-based
QoS model. This work deals with workload profiling partitioning and scheduling to re-
duce energy consumption. In [20] energy-efficiency optimizations within database sys-
tems are discussed. The experiments in [20] use a decision support workload (TPC-H)
which scans an entire table and applies a predicate to it. In [21] techniques for reducing
power consumption in DBMS are introduced. One such technique, called QED, uses
well known query aggregation methods to leverage common components of queries
in a workload to reduce accesses to the storage system. The technique involves some
performance penalties as it is done by delaying some queries in order to increase such
leveraging opportunities. Other energy conservation techniques proposed are addressed
in [6, 11, 5, 9, 22, 10].

3 Model

3.1 Definitions and Notations

In the section, we apply the M/G/1 queuing model, similar to the approach in [23,7,10],
to estimate the power cost and response time for a disk with a specific exponential
arrival rate of file access and idleness threshold. Table 1 displays the notations and
parameters used in the model. The values for the parameters of disk, e.g. Td , Tu, Pu,
and Pd , are given based on the specification in [3].

3.2 Power Cost

In this section E[Y ] denotes the expected value of the variableY . In the following section
we present an anlytical model for estimating the power costs for DPS and DNPS within
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Table 1. Notations and Disk Parameter values

Name Notation Default Value
DPS disk with power-saving mode
DNPS disk without power-saving mode
GPS Energy cost in one cycle by DPS (J)
TPS The length of one cycle for DPS (s)
PPS Power cost of DPS (W) EPS/TPS

PNPS Power cost of DNPS (W)
P PPS/PNPS

Tτ Idleness Threshold (s) 10 ∼ 500
Td Time to spin down a disk (s) 10
Tu Time to spin up a disk (s) 15
Pd Power to spin down a disk (W) 9.3
Pu Power to spin up a disk (W) 24
Pτ Power in idle mode (W) 9.3
Pa Power in active mode (W) 13.0
Psby Power in standby mode (W) 0.8
Gdu Energy to spin down and up a disk (J) Pd×Td + Pu×Tu

Ta Length of a busy period entered from an idle state (s)
fTa(x) Length of a busy period entered from an x-second warm-

up state, consisting of partial Td and the whole Tu (s)
λ arrival rate of file access (1/s) 0.1 ∼ 0.001
ρ traffic intensity for the disk λ×E[S]
E[S] Mean service time of a file (s) 7.56s
E[S2] 178.05s

one cycle of power mode transitions of a disk, where one cycle represents the time from
the end of a busy period to that of the next busy period. Since one cycle of DNPS must
consist of an idle period and a busy period, we can express the mean value of PNPS as

E[PNPS] =
Pτ×1/λ + PaTa

1/λ + Ta
.

However, for DPS there are three different patterns in one cycle, as shown in Figure 1
where t represents the time from the end of the last busy period to the arrival of the next
request. Recall that under an M/G/1 model, if the arrival rate is λ, the time between two
busy periods, t, is an exponential distribution with mean = 1/λ. Ta denotes the length of
a busy period entered from an idle state. We know that the mean of Ta under an M/G/1
model can be expressed as

E[Ta] = E[S]/(1−ρ);

where S denotes the service time and ρ is the traffic intensity. Also, fTa (X) represents
the length of a busy period entered from an x-second spinning-up state, consisting of
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Fig. 1. The three possible patterns in a cycle for DPS. The vertical axis, Vreq represents the total
volume, in bytes, of unserviced requests.

partial Td and the whole of Tu. Under the M/G/1 model with setup time, the mean of
fTa(X) can be written as

E[ fTa(x)] = (1 + λ× x)E[Ta];

where x is the setup time [2], i.e., equivalent to the spin-up time in this work.
Since each case has different occurrence probability in a period of one cycle, E[PPS]

can be expressed as

E[PPS] =
E[GPS]
E[TPS]

=
∑3

i=1 E[Gi
PS]P

i

∑3
i=1 E[T i

PS]Pi
;

where E[Gi
PS], E[T i

PS], and Pi are the mean energy cost, mean time period and probabil-
ity of a request arrival in Case i, respectively. The following three Cases occur depend-
ing on the arrival of a request. The details of power cost and response times calculations
are given in Appendix A.

Case 1, t < Tτ: This case indicates that a request arrives while the disk is idle but before
the idle period reaches the Idleness threshold value for it to begin spinning-down.

Case 2, Tτ ≤ t < Tτ + Td: Here an request arrives when the disk has been long enough
past its idleness threshold; it is in the process of spinning down but has not com-
pletely spun-down.

Case 3, (Tτ + Td)≤ t: In this case the request arrives after the disk has completely
spun-down.

The mean response times can similarly be estimated for disks operating in power sav-
ing mode DPS. We can calculate the mean sojourn time θ of a request, i.e., its response
time, by calculating the mean E[θ] for each case. The details of these calculations are
given in Appendix A.



98 E. Otoo, D. Rotem, and S.-C. Tsao

3.3 Numerical Results

In this section, we illustrate our methods using the disks and workload characteristics
in Tables 1 and 2. Similar figures can be obtained using the analytical model developed.
Figure 2 plots the relationship between E[PPS]/E[PNPS] and λ for Tτ = 0,10,53,and160.
When λ < 0.029, PPS/PNPS would be smaller than 1, i.e., the power-saving mechanism
is efficient since it is below the threshold of λ. Figure 3 plots the corresponding values
for response times including the case for Tτ = ∞. We note that Tτ = 53 is the competitive
idleness threshold in our case obtained by Gdu/(Pτ−Psby).

Fig. 2. Relationship between the ratio of
E[PPS]/E[PNPS] and arrival rate λ for Tτ =
0,10,53 and 160s

Fig. 3. Graphs of response time vs. arrival rate
λ, for Tτ = 0,10,53,160 and ∞ sec.

From Figure 2, we note that when λ > 0.029, the DPS disk have a normalized power
cost larger than 1. That is, when the arrival rate of files in a power-saving (DPS) disk is
larger than 0.029, then its power saving features should be turned off to avoid incurring
more power cost than a non-power-saving (NPS) disk.

4 Procedure for Selecting Parameters of Disk Storage
Configuration

4.1 Procedure

Figure 3 describes the relationship between the arrival rate of requests to one disk
and their corresponding expected response time. In Figure 4 the curves θPS(λ,0) and
θPS(λ,∞) represent the mean response times of disks hit with request arrivals at rate λ
for Tτ = 0 and Tτ = ∞ respectively. The entire space covered by Figure 4 is divided into
5 areas based on the following rules. Let θ′ denote the required constraint, by the user,
on the response time. We will use this figure to describe our procedure called SmartIdle
presented as Procedure 1. The procedure will determine the necessary number of active
disks and the idleness threshold for these disks. Let R denote the total arrival rate of
requests to the system, and suppose the minimum number of disks required to hold the
entire set of files is N. The procedure first computes the arrival rate for a single disk,
λ = R/N. Given a point X with coordinates 〈λ,θ′〉 which represents a combination of
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Fig. 4. Five areas of the procedure Fig. 5. An alternative plot of 4, when R = 2
per sec

request arrival rate and the required response time in Figure 4, we will show how to
calculate the actual number of active disks and the idleness threshold based on the area
that contains this point. First, if λ≥ 0.029, since power-saving mechanism is inefficient
according to Figure 2, the procedure will suggest spinning disks for the whole time, i.e.,
set i the idleness threshold to ∞. Thus, for any θ′ larger than θPS(λ,∞) and λ > 0.029
(i.e., Area 1), we know N disks are enough to meet such constraints because they can
offer θPS(λ,∞) of response time, which is smaller than θ′. Note that, in this case using
less than N disks, in order to save power is not feasible because N, is the minimum of
disks necessary for storing the entire data.

Second, if λ < 0.029 but θ′> θPS(λ,0) i.e., the point X falls in Area 2 of Figure 4. We
know that such a constraint can be satisfied even when the disk is spun down if there are
no requests pending for service. Thus, N disks are enough and their idleness threshold
will be set to 0 to save the most power. Using more than N disks is not useful because
the constraint on response time is always satisfied. In the case that θPS(λ,∞) < θ′ <
θPS(λ,0), (i.e. X lies in Area 3), it is necessary to carefully get an idleness threshold Tτ
that satisfies θPS(R/N,Tτ) = θ′.

Third, if the given θ′ < θPS(λ,∞), (i.e., Area 4), we have that the arrival rate is too
high for each disk to finish serving a file within θ′ even when the power-saving mecha-
nism is disabled to avoid the additional delay of spinning-up and spinning-down disks.
In this case, more than N disks are needed to obtain a λ = R/N to be sufficiently low to
satisfy θPS(λ,∞) = θ′. Finally, if the point X falls in Area 5, the given θ′ is not feasible
to be satisfied because it is smaller than the service time. The Procedure 1, describes
the process of estimating the required number of disks and expected response times for
configuring a system of disks given a usage workload and specific disks characteristics.

4.2 Illustration

The following gives an example on how to use the procedure. Assuming the arrival
rate of requests is fixed at 2 per sec, we can redraw Figure 4 to show the relationship
between N and the response time. This is now shown in Figure 5. Observe that Figure 5
can be considered a Y-Axis mirror image of Figure 4. For N = 50, if a response time
within 20 seconds is desired, then Area 1 of Figure 5 should be used. This implies that
the files should be stored on 50 disks which are kept constantly spinning. However, if an
average response time less than 10 seconds is desired, then X falls within Area 4. In this
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Procedure SmartIdle(R,N,θ′,λ, i)

Input:
R : The total arrival rate of files to the system.
N : The minimum number of disks to store the data.
θ′ : The constraint on the response time.
λ : Arrival rate of file requests to a disk.
i : The idleness threshold.

Output:
P : The expected mean power cost
θ : The expected mean response time

θPS(λ, i) defines a function for the mean response time of disk hit with
request arrival rate λ and an idleness threshold of i. ;
Set λ⇐ R/N; X ⇐ coordinates〈λ,θ′〉 ;
switch Area that X lies do

case Area 1
Pack files into N disks that are never spun-down;
Set P⇐ N ∗PNPS(a); θ⇐ θNPS(λ) alternatively θ⇐ θPS(λ,∞) ;
break ;

case Area 2
Pack files into N disks ;
Set i⇐ 0; P⇐ N ∗PPS(λ,0); θ⇐ θPS(λ,0) ;

case Area 3
Set idleness threshold i that satisfies θPS(R/N, i) = θ′ ;
Pack files into N disks ;
Set P⇐ N ∗PPS(λ, i); θ⇐ θPS(λ, i) ;

case Area 4
Left shift the point X until it intersects the curve ;
Pack files into M disks such that M satisfies θPS(R/N,∞) = θ′ ;
// These are disks that are never spun-down
Set P⇐M×PNPS(R/M); θ⇐ θNPS(R/M) ;

case Area 5
No solution can satisfy the specified constraints ;

case we compute N such that θPS(2/N,∞) = 10. The solution is given by N = 80. This
means that files should be distributed over 80 instead of 50 disks that are constantly
spinning.

Next, if N = 100 and the response time constraint is set at 15 sec, then the point falls
in Area 3. To get the possible idleness thresholds, we examine, from Figure 6 those
curves that cross the line of θ = 15 when N ≥ 100. Such a position is marked by the
symbol X , where the two curves θPS(2/N,53) and θPS(2/N,80) cross the line. So we
still use 100 disks to pack the files and set the idleness threshold at 53 seconds, i.e.,
the smaller of 53 and 80. This saves more power while meeting the 15-sec constraint.
However, if the response time constraint is 40-sec, the point falls in Area 2 In this case
we distribute files into the 100 disks again, but set the idleness threshold to zero. This
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Fig. 6. A enlarged area 3 for multiple curves of θPS(2/N,1)

means a disk is spun-down as soon as no requests are pending for service. This not only
saves power but also provides 25 seconds of average response time.

5 The Simulation

We developed a simulation model to examine the model proposed in Section 3 and
compared this with the SmartIdle procedure described in Section 4. The simulation
environment was developed and tested using SimPy [24], as illustrated in Figure 7. The
environment consists of a workload generator, a file dispatcher, and a group of hard
disks.

File 
Request 

Generator

D0

File 
Dispatcher

D1

DN-2

DN-1

File-to-Disk 
Mapping Table

Fig. 7. The configuration of disks in the simu-
lation

Standby
0.8W

Idle
9.3W

Active
Read/Write

13W
seek 12.6W

sp
ind

ow
n

10
s

9.3
W

spinup
15s

24W

Fig. 8. Power consumption of disks in differ-
ent modes

5.1 Hard Disk Characteristics

Table 2 shows the characteristics of hard disk used in the simulation. With the specifi-
cations taken from [3] and [25] we built our own hard disk simulation modules. A hard
disk is spun down and set into standby mode (see Figure 8) after it has been idle for
a fixed period which is called idleness threshold [26, 11]. We do not use the recently
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Table 2. Characteristics of the Hard Disk

Description Value Description Value
Disk model Seagate ST3500630AS Standby power 0.8 Watts
Standard interface SATA Active power 13 Watts
Rotational speed 7200 rpm Seek power 12.6 Watts
Avg. seek time 8.5 msecs Spin up power 24 Watts
Avg. rotation time 4.16 msecs Spin down power 9.3 Watts
Disk size 500GB Spin up time 15 secs
Disk load (Transfer rate) 72 MBytes/sec Spin down time 10 secs
Idle power 9.3 Watts

revised DiskSim simulator [27], that is commonly used in the literature for our simu-
lations because, it still provides only old and small disk models, e.g., 1998’s 8GBytes
disks, and the number of events needed to handle a file request is highly correlated
with file sizes making DiskSim too slow for a realistic data center simulation that in-
volves disks, each of the order of 500 GBytes and tens of thousands of files requiring
terabytes/petabytes of total data storage.

5.2 Workload Generator

The workload generator supports two different ways to produce file requests. First, the
generator can produce requests based on a log of file accesses to a storage system. We
extract the distribution of file file sizes and the arrival time of each request from the real
workload. Second, the generator can follow a Poisson process to produce requests at a
rate R to get files specified in a given list. The sizes of the files in the list are generated
based on a Zipf distribution whose probability distribution is given by

P(x) =
x−K

ζ(N,K)
; where ζ(N,K) =

N

∑
i=1

i−K . (1)

Also, the generator can control the frequency of requests to each file. To determine rea-
sonable parameters for the Zipf distribution that are close to the actual data accesses, we
logged the file requests to the NERSC’s High Performance Storage System (HPSS) for
30 days (between May 31 and June 29, 2008). There were 88,631 files accessed in the
115,832 read requests. The mean size of the files requested was 544 MB. This requires
7.56 sec to service a file if these files were to be accessed from a disk storage systems
with disk transmission rate of 72MBps. The minimum space required for storing all
the requested files is 95 disks. Next we classified the 88,631 files into 80 bins based
on their sizes, where the width of each bin is 128MB. We then compute the proportion
of the number of files in each bin compared with the total number of files. Figure 9(a)
plots these proportions for the 80 bins. Each point z〈X ,Y 〉 in Figure 9(a), represents
the proportion Y of files with sizes in the interval (X − 64,X + 64] in MBytes. As we
can see this distribution is closely related to the Zipf distribution because the proportion
decreases almost linearly in the log-log scale of the axes. Figure 9(b) shows the rela-
tionship between the sizes of files and their corresponding access frequencies. In this
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analysis of accesses to NERSC datasets, the access frequencies of files are independent
of the sizes. We can therefore assume that each file has the same access frequency f .

5.3 File Dispatcher and Mapping Table

Once a request is generated, the file dispatcher forwards it to the corresponding disk
based on the file-to-disk mapping table. Files are randomly mapped to a specific number
of disks. The number of disks and idleness thresholds are determined by the procedure
proposed in Section 4. For the purpose of comparing the power consumptions of the
DPM strategy, we also generated a mapping table that maps files randomly to all disks
and fix the idleness threshold at 0, 53, 160 secs or ∞, i.e., without enabling the power
saving features of the disk. The time to map a file to disk by the dispatcher is ignored
since it is negligible.
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Fig. 9. Analysis of workload from NERSC

6 Experimental Results

6.1 Evaluation of the Model

We first evaluate the correctness of our analytical model proposed in Section 3. Only
one disk is used in this scenario. The service time of requests has the same distribution
and parameters (see Table 2), as those assumed in the analysis. The simulation ends
when it has served 30000 requests. Figures 10 and 11 show the normalized power cost
of the disk and the response time of requests under different values of arrival rate and
idleness threshold respectively. By respectively comparing the two figures with Fig-
ures 2 and 3, we can validate our analysis for power cost and response time.

6.2 Constraints on Response Time

Next, we examine whether the procedure SmartIdle determines the suitable number
of active disks and idleness threshold to meet the response time constraints while still
saving power compared with our analytical model. Suppose we consider using 100
disks and set N = 40 and try to satisfy a response time constraint of 20 seconds. For
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comparison, we also plotted the response times and power saving ratio when the disk
idleness threshold is fixed at 53 seconds, which as mentioned before is the competitive
idleness threshold in our case.

Figures 12 and 13 show the power saving and response time plots for a response
time constraint of 20-sec. The SmartIdle procedure design satisfies the response time
constraint while saving 60% of power on average. The SmartIdle procedure results
in a much shorter response time than the specified constraint for arrival rates ranging
from 0.8 to 2.5 and yet saves more power than with fixed 53-sec idleness threshold. In
this interval of arrival rates the point 〈λ,θ′〉 always falls in Area 1 and the SmartIdle
procedure suggests that the disks be kept spinning at all times, instead of spinning
down after an idleness threshold. Spinning down a disk after a fixed idleness threshold
is inefficient since it not only results in a longer response time but also incurs more
power cost than simply spinning disk.

6.3 Using Trace Logs of Scientific Data Accesses

In this subsection we test whether the SmartIdle procedure can be used to derive the
configuration of disks that satisfy the constraint of response time when apply the re-
quest arrival rate extracted from a real workload. Suppose we consider the use of 200
disks with the minimum number required set as N = 96. The arrival rate of requests is
0.044683. Figure 14 shows the ratio of power savings obtained from using the analyti-
cal model, the SmartIdle procedure and fixed idleness threshold of 53 secs. The initial
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idleness threshold used varies from 8 to 35 seconds. Figure 15 shows the correspond-
ing response times of obtained in each design configuration. From Figure 15, we find
that disks configuration obtained from applying the SmartIdle not only meets the con-
straints, but also provides response time far less than the initial response time constraints
ranging from 8 to 25 sec. Further we see that from Figure 14 that we achieve more power
savings than that the expected savings achievable from the analytical model.

In addition to the NERSC workload, we also tested our SmartIdle procedure with
workloads from the BaBar project [28]. The BaBar project is a high energy physics
experiment with over 600 world-wide collaborators from 75 institutions in 10 coun-
tries. The data for this experiment is stored at the Stanford Linear Accelerator Collider
(SLAC) site. There are about 86,378 distinct files stored which will require at least 123
disks of 500GB to store them. The trace log of file requests for Oct 1, 2004 was used
in this study. It contained 93,172 read requests and involved 10,735 distinct files. The
average arrival rate (per second) of the requests is 1.07838, which is much higher than
that in the workload of NERSC. The mean size of files accessed by these requests is
1,235 MB, which requires about 16.5138 sec of mean service time, E[S], and 332.438
sec for E[S2] when the disk transmission rate is 72MBps and a single 32GB LRU cache
is deployed in front of all disks.
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Compared to the uniformly distributed accesses observed in the NERSC workload
(Figure 9(b)), the workload shows 48% of requests accessing files with size larger than
1.6GB. Further observation shows these requests target only 783 files that constitute
7.3% of the files involved in all requests.

Figure 16 shows the ratio of power savings incurred while Figure 17 shows the re-
sponse time of disks when their idleness threshold are configured by SmartIdle for
constraints varying from 20 to 45 seconds. From the two figures, we again find that
disk configuration derived from using SmartIdle not only meets the constraints of the
response times, but further gives a greater saving than expected by the analytical model.

7 Conclusion and Future Work

In this paper we developed an analytic model to analyze the interaction of file access
workload with a disk system that uses power saving mechanisms. The model allowed
us to devise a procedure that allows designers to accurately evaluate the trade-offs be-
tween energy consumption and response time. The procedure can be used to determine
whether the required response times are achievable by the current system and what are
the associated energy costs. The procedure also allows designers to tune the perfor-
mance of the system by adding or subtracting disks as well as determining idleness
thresholds. Using the procedure on simulated data as well as real life work logs showed
significant improvement in energy costs over commonly used DPM strategies.

Additional work also needs to be done to make dynamic decisions about migrating
files between disks if it is discovered that the arrival rates to disks deviate significantly
from the initial estimates used as an input to the SmartIdle procedure. We also plan
to investigate our techniques with more real life workloads that include various mixes
of read and write requests. In addition, we will also investigate the effects of various
caching strategies as we believe that cache size and cache replacement policies may
significantly affect the trade-off between power consumption and response time.
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Appendix A: Derivation of Results for Analytical Model

Expressions for computing the power costs and the mean response times are given below.

Case 1, t < Tτ :
P1 = Prob{t < Tτ}; E[G1

PS] = PτE[T1]+PaE[Ta]; and E[T 1
PS] = E[T1]+E[Ta];

where E[T1] is E[t] in Case 1 and can be written as E[T1] =
∫ Tτ

0 t p(t)dt/
∫ Tτ

0 p(t)dt where
p(t) is the probability density function (pdf) of t.

Case 2, Tτ < t < Tτ +Td:
P2 = Prob{Tτ < t < Tτ +Td}; E[E2

PS] = PτTτ +Gdu +PaE[T2]; and E[T 2
PS] = Tτ +Td +Tu +

E[T2];
where E[T2] is the busy period in Case 2 and can be written as

E[T2] =

∫ Tτ+Td
Tτ

E[ fTa (Td +Tu− (t−Tτ))]p(t)dt∫ Tτ+Td
Tτ

p(t)dt
.

Case 3, (Tτ +Td) < t:
P3=Prob{Tτ +Td < t}; E[E3

PS]=PτTτ+PdTd+PsbyE[T3]+PuTu +PaE[ fTa(Tu)]; and E[T 3
PS]=

Tτ +Td +E[T3]+Tu +E[ fTa(Tu)];
where T3 is standby time, E[Tsby], in Case 3 and can be written

E[T3]=

∫ ∞
Tτ+Td

(t−Tτ−Td)p(t)dt∫ ∞
Tτ+Td

p(t)dt
.

Mean Response Time

Similarly, by the above model for DPS, we can calculate the mean sojourn time θ of a request, i.e.
its response time, by averaging the E[θ] of each case as

E[θPS] =
3

∑
i=1

E[θi]Pi;

where Pi and E[θi] are the probability and the mean request sojourn time, respectively during the
cycle of case i. Besides, since a DNPS does not spin down, we can simply regard its Tτ as ∞ and
then get E[θNPS] = E[θ1]. Next, recall that the sojourn time in M/G/1 [2], is

E[θ] =
ρ

1−ρ
E[S2]
2E[S]

+E[S]; (2)

and in M/G/1 with setup time X , the mean sojourn time E[θx] is

E[θX ] =
ρ

1−ρ
E[S2]
2E[S]

+
λ−1

λ−1 +E[X ]
+

E[X ]
λ−1 +E[X ]

E[X2]
2E[X ]

+E[S]. (3)

Then, according to the above two equations, we get E[θ1], E[θ2] and E[θ3] as follows:

Case 1, t < Tτ:
Based on equation 2, we have E[θ1] = (ρ/(1−ρ))(E[S2]/2E[S])+E[S]

http://www.slac.stanford.edu/bfroot/
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Case 2, Tτ < t < Tτ +Td:
From Case 2 of Subsection 3.2, we have that the setup time X2, of Case 2 is X2 = T2 =
Tτ +Td +Tu− t. So we get

E[X2] =

∫ Tτ+Td
Tτ

(Ti +Td +Tu− t)p(t)dt∫ Ti+Td
Tτ

p(t)dt
. (4)

E[X2
2 ] =

∫ Tτ+Td
Tτ

(Tτ +Td +Tu− t)2 p(t)dt∫ Tτ+Td
Tτ

p(t)dt
. (5)

Then, we can express E[θ2] from 3 by substituting terms with 4 and 5.
Case 3, Tτ +Td < t:

Because the setup time in Case 3 is X3 = Tu, we have

E[θ3] =
ρ

(1−ρ)
E[S2]
2E[S]

+
λ−1

λ−1 +Tu
+

Tu

λ−1 +Tu

Tu

2
+E[S].
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Abstract. The multi-core trend in CPUs and general purpose graphics process-
ing units (GPUs) offers new opportunities for the database community. The in-
crease of cores at exponential rates is likely to affect virtually every server and
client in the coming decade, and presents database management systems with a
huge, compelling disruption that will radically change how processing is done.
This paper presents a new parallel indexing data structure for answering queries
that takes full advantage of the increasing thread-level parallelism emerging in
multi-core architectures. In our approach, our Data Parallel Bin-based Index Strat-
egy (DP-BIS) first bins the base data, and then partitions and stores the values in
each bin as a separate, bin-based data cluster. In answering a query, the proce-
dures for examining the bin numbers and the bin-based data clusters offer the
maximum possible level of concurrency; each record is evaluated by a single
thread and all threads are processed simultaneously in parallel.

We implement and demonstrate the effectiveness of DP-BIS on two multi-
core architectures: a multi-core CPU and a GPU. The concurrency afforded by
DP-BIS allows us to fully utilize the thread-level parallelism provided by each
architecture–for example, our GPU-based DP-BIS implementation simultane-
ously evaluates over 12,000 records with an equivalent number of concurrently
executing threads. In comparing DP-BIS’s performance across these architec-
tures, we show that the GPU-based DP-BIS implementation requires significantly
less computation time to answer a query than the CPU-based implementation. We
also demonstrate in our analysis that DP-BIS provides better overall performance
than the commonly utilized CPU and GPU-based projection index. Finally, due
to data encoding, we show that DP-BIS accesses significantly smaller amounts of
data than index strategies that operate solely on a column’s base data; this smaller
data footprint is critical for parallel processors that possess limited memory re-
sources (e.g. GPUs).

1 Introduction

Growth in dataset size significantly outpaces the growth of CPU speed and disk through-
put. As a result, the efficiency of existing query processing techniques is greatly

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 110–129, 2009.
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challenged [1, 2, 3]. The need for accelerated I/O and processing performance forces
many researchers to seek alternative techniques for query evaluation. One general trend
is to develop highly parallel methods for the emerging parallel processors, such as
multi-core processors, cell processor, and the general-purpose graphics processing units
(GPU) [4]. In this paper, we propose a new parallel indexing data structure that utilizes
a Data Parallel Bin-based Index Strategy (DP-BIS). We show that the available con-
currency in DP-BIS can be fully exploited on commodity multi-core CPU and GPU
architectures.

The majority of existing parallel database systems work focuses on making use of
multiple loosely coupled clusters, typified as shared-nothing systems [5, 6, 7, 8, 9, 10].
Recently, a new parallel computing trend has emerged. These type of parallel machines
consist of multiple tightly-coupled processing units, such as multi-core CPUs, cell pro-
cessors, and general purpose GPUs. The evolution of such machines in the coming
decade is to support a tremendous number of concurrent threads working from a shared
memory. For example, NVIDIA’s 8800 GTX GPU–the GPU used in this work–has
16 multiprocessors, each of which supports 768 concurrent execution threads. Com-
bined, these multiprocessors allow the GPU to manage over 12,000 concurrent execu-
tion threads. Fully utilizing such thread-level parallelism on a shared memory system
requires a different set of query processing algorithms than on shared-nothing systems.

A number of researchers have successfully demonstrated the employment of GPUs
for database operations [11, 12, 13, 14]. Among the database operations, one of the ba-
sic tasks is to select a number of records based on a set of user specified conditions,
e.g., “SELECT: records FROM: combustion simulation WHERE: pressure > 100.”
Many GPU-based works that process such queries do so with a projection of the base
data [15, 11]. Following the terminology in literature, we use the term projection index
to describe this method of sequentially and exhaustively scanning all base data records
contained in a column to answer a query [16]. On CPUs, there are a number of indexing
methods that can answer queries faster than the projection index [17, 18, 19], but most
of these indexing methods do not offer high enough levels of concurrency to take full
advantage of a GPU. DP-BIS fully utilizes the GPU’s parallelism when answering a se-
lection query; each thread on the GPU is used to independently access and evaluate an
individual record. This one-to-one mapping of threads-to-records lets DP-BIS process
large amounts of data with 12,000 concurrent parallel operations at any one time.

Though GPUs offer tremendous thread-level parallelism, their utility for database
tasks is limited by a small store of resident memory. For example, the largest amount of
memory available on NVIDIA’s Quadro FX GPU is currently 4.0 GB, which is much
too small to hold projections of all columns from a dataset of interest [1, 2, 3]. DP-BIS
presents one method for ameliorating the challenges imposed by limited GPU mem-
ory. The DP-BIS index uses a form of data encoding that is implemented through a
multi-resolution representation of the base data information. This encoding effectively
reduces the amount of data we must access and transfer when answering a query. As
a result of the encoding, we can query dataset sizes that would otherwise not fit into
the memory footprint of a GPU. Additionally, by transferring smaller amounts of data
when answering a query, we utilize data bus bandwidth more efficiently.
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In the DP-BIS approach, we bin the base data for each column. We augment each
column’s binned index by generating a corresponding Data Parallel Order-preserving
Bin-based Cluster (OrBiC). To resolve a query condition on a column, we first deter-
mine the boundaries of the query. Consider an example. For range conditions such as
“pressure > 100”, we determine the bin whose range captures the constraint “100”. In
this example, assume that the value “100” is contained in the value range captured by
bin17. We refer to bins that capture one of the query’s constraints as “boundary bins”.
In our example, records contained in bins less than the boundary bin (i.e. bin0→ bin16)
fail the query. Correspondingly, records contained in bins greater than the boundary bin
pass the query. Boundary bin records can’t be characterized by their bin number alone,
they must be evaluated by their base data value. We call the records in the boundary
bin the candidates and the process of examining the candidate values the candidate
check [20]. Our strategy for answering a selection query is very similar to that of a
bitmap indexing strategy [21, 22, 23]. A central difference is that bitmap-based strate-
gies indicate the record contents of each bin with a single bitmap vector. These bitmap
vectors can then be logically combined to help form the solution to a query. In contrast,
we directly access the bin number for any given record from an encoded data table.

The Data Parallel OrBiC structure we use during our candidate check procedure
provides an efficient way to extract and send boundary bin data from the CPU to the
GPU. Additionally, this structure facilitates a rapid, concurrent way for GPU threads
to access this data. Altogether, to answer a query, we access the bin numbers and the
base data values of the records in boundary bins. The total data contained in both these
data structures is much smaller than the column projections used by other strategies that
employ the GPU to answer a query. Additionally, the procedure for examining the bin
numbers and the process of performing the candidate checks offer the same high level
of concurrency as the GPU projection index.

In our work we assume that the base data will not (or seldom) be subjected to modi-
fication. This assumption too is made by other research database management systems
that operate on large data warehouses that contain read-only data: e.g. MonetDB [24],
and C-Store [25]. In addition to such database management systems, many scientific
applications also accumulate large amounts of data that is never modified or subjected
to transactions [26].

Finally, we specifically utilize and emphasize the GPU in our work because it provides
some of the highest amounts of thread-level parallelism available in existing multi-core
architectures. To this extent we view the GPU as a representative case of where multi-
core architectures are evolving with respect to thread-level parallelism and processing
performance. In summary, this paper makes the following three contributions.

– We introduce a data parallel bin-based indexing strategy (DP-BIS) for answering
selection queries on multi-core architectures. The concurrency provided by DP-BIS
fully utilizes the thread-level parallelism emerging in these architectures in order to
benefit from their increasing computational capabilities.

– We present the first strategy for answering selection queries on a GPU that uti-
lizes encoded data. Our encoding strategy facilitates significantly better utilization
of data bus bandwidth and memory resources than GPU-based strategies that rely
exclusively on base data.
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– We implement and demonstrate DP-BIS’s performance on two commodity multi-
core architectures: a multi-core CPU and a GPU. We show in performance tests
that both implementations of DP-BIS outperform the GPU and CPU-based projec-
tion index with respect to total query response times. We additionally show that
the GPU-based implementation of DP-BIS outperforms all index strategies with
respect to computation-based times.

2 Background and Related Work

2.1 Related Bitmap Index Work

The data stored in large data warehouses and the data generated from scientific applica-
tions typically consists of tens to hundreds of attributes. When answering queries that
evaluate such high-dimensional data, the performance of many indexing strategies di-
minishes due to the curse of dimensionality [27]. The bitmap index is immune to this
curse and is therefore known to be the most efficient strategy for answering ad hoc
queries over such data [28]. For this reason, major commercial database systems utilize
various bitmap indexing strategies (e.g. ORACLE, IBM DB2, and Sybase IQ).

Another trait of the bitmap index is that storage concerns for indices are ameliorated
through specialized compression strategies that both reduce the size of the data and that
facilitate the efficient execution of bitwise Boolean operations [29]. Antoshenkov et
al. [21, 22] present a compression strategy for bitmaps called the Byte-aligned Bitmap
Code (BBC) and show that it possess excellent overall performance characteristics with
respect to compression and query performance. Wu et al. [23] introduce a new com-
pression method for bitmaps called Word-Aligned Hybrid (WAH) and show that the
time to answer a range query using this bitmap compression strategy is optimal; the
worse case response time is proportional to the number of hits returned by the query.
Recent work by Wu et al. [30] extends the utility of the bitmap index. This work in-
troduces a new Order-preserving Bin-based Clustering structure (OrBiC), along with
a new hybrid-binning strategy for single valued bins that helps the bitmap index over-
come the curse of cardinality; a trait where both index sizes and query response time
increase in the bitmap index as the number of distinct values in an attribute increases.

Sinha and Winslet [31] successfully demonstrate parallelizable strategies for bin-
ning and encoding bitmap indexes, compressing bitmap vectors, and answering selec-
tion queries with compressed bitmap vectors. The content of their work focuses on
supporting bitmap use in a highly parallel environment of multiple loosely-coupled,
shared-nothing systems. In contrast, our work addresses the challenges of supporting
bin-based indexing on the newly emerging, tightly-coupled architectures that possess
tremendous thread-level parallelism; for example the graphics processor unit (GPU).

The basic attributes of the binned bitmap index (bin-based indexing, the use of simple
boolean operators to answer selection queries, etc.) can be implemented in a highly par-
allel environment. For this reason, our new Data Parallel Bin-based Indexing Strategy
(DP-BIS) follows the general structure of a binned bitmap index. Unfortunately, bitmap
compression strategies, even the parallelizable strategies of Sinha and Winslet [31], do
not support enough concurrency to take advantage of the thread-level parallelism of-
fered by tightly-coupled architectures like GPUs. Thus one of the first objectives in our
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work is to develop a compression strategy, based upon the binning techniques of the
binned bitmap index, that supports high levels of concurrency and reduces the amount
of data required to answer a query.

2.2 Related GPU-Database Work

GPUs have been used to help support and accelerate a number of database functions [11,
32, 33, 12, 13, 14], as well as numerous general purpose tasks [34, 35]. Sun et al. [15]
present a method for utilizing graphics hardware to facilitate spatial selections and in-
tersections. In their work, they utilize the GPU’s hardware-accelerated color blending
facilities to test for the intersection between two polygons in screen space.

Working within the constraints of the graphics API for fragment shaders, Govin-
daraju et al. [11] present a collection of powerful algorithms on commodity graphics
processors for performing the fast computation of several common database operations:
conjunctive selections, aggregations, and semi-linear queries. This work also demon-
strates the use of the projection index to answer a selection query. Additionally, Govin-
daraju et al. [12] present a novel GPU-based sorting algorithm to sort billion-record
wide databases. They demonstrate that their “GPUTeraSort” outperforms the Indy Pen-
nySort1 record, achieving the best reported price-for-performance on large databases.

More recent GPU-database work utilizes powerful, new general purpose GPU hard-
ware that is supported by new data parallel programming languages (see Section 3).
These hardware and software advances allow for more complex database primitives to
be implemented on the GPU. Fang et al. [13] implement the CSS-Tree in the software
GPUQP. This work characterizes how to utilize the GPU for query co-processing, un-
fortunately there is no performance data published about the implementation.

Lieberman et al. [36] implement an efficient similarity join operation in CUDA.
Their experimental results demonstrate that their implementation is suitable for similar-
ity joins in high-dimensional datasets. Additionally, their method performs well when
compared against two existing similarity join methods.

He et al. [34] improve the data access locality of multi-pass, GPU-based gather and
scatter operations. They develop a performance model to optimize and evaluate these
two operations in the context of sorting, hashing, and sparse matrix-vector multiplica-
tion tasks. Their optimizations yield a 2-4X improvement on GPU bandwidth utilization
and 30–50% improvement on performance times. Additionally, their optimized GPU-
based implementations are 2-7X faster than optimized CPU counterparts. He et al. [14]
present a novel design and implementation of relational join algorithms: non-indexed
and indexed nested loops, sort-merge, and hash joins. This work utilizes their band-
width optimizations [34], and extends the work of Fang et al. [13]. They support their
algorithms with new data-parallel primitives for performing map, prefix-scan and split
tasks. Their work achieves marked performance improvements over CPU-based coun-
terparts; GPU-based join algorithms are 2-7X faster than CPU-based approaches.

GPU-based strategies that address how to answer a selection query have yet to ad-
dress the significant limitations imposed by the GPU’s small memory, and those im-
posed by the data buses that transfer data to the GPU. To the best of our knowledge,
all relevant literature utilizes algorithms that operate on a column’s base data (i.e. non-
compressed data). Utilizing base data severely restricts the amount of data the GPU
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can process. Further, streaming large amounts of base data to the GPU can impede the
processing performance of many GPU-based applications. More specifically, GPU pro-
cessing performance can rapidly become bottlenecked by data transfer rates if these
transfer rates are not fast enough to keep the GPU supplied with new data. This bot-
tleneck event occurs on GPUs whenever the arithmetic intensity of a task is low; the
process of answering a simple range query falls into this classification.

In the following sections, we introduce some basic GPU fundamentals, as well as the
languages that support general purpose GPU programming. We then introduce our Data
Parallel Bin-based Indexing Strategy (DP-BIS) and show how it directly addresses the
challenges of limited GPU-memory and performance-limiting bus speeds with a fast,
bin-based encoding technique. This work is the first GPU-based work to present such
an approach for answering queries. We also show how our binning strategy enables DP-
BIS to support a high level of concurrency. This concurrency facilitates a full utilization
of the parallel processing capabilities emerging in multi-core architectures.

3 GPUs and Data Parallel Programming Languages

Recent GPU-database works utilize powerful new data parallel programming languages
like NVIDIA’s CUDA [37], and OpenCL. These new programming languages eliminate
the long standing tie of general-purpose GPU work with restrictive graphics-based APIs
(i.e. fragment/shader programs). Further, the GPUs supporting these languages also
facilitate random read and write operations in GPU memory—scatter I/O operations
are essential for GPUs to operate as a general-purpose computational machine.

The functional paradigm of these programming languages views the GPU as a co-
processor to the CPU. In this model, the programmer writes two separate kernels for a
general purpose GPU (GPGPU) application: code for the GPU kernel and the code for
the CPU kernel. Here the CPU kernel must proceed through three general stages.

1. Send a request to the GPU to allocate necessary input and output data space in
GPU memory. The CPU then sends the input data (loaded from CPU memory or
hard disk) to the GPU.

2. Call the GPU kernel. When the CPU kernel calls a GPU kernel, the CPU’s kernel
suspends and control transfers to the GPU. After processing its kernel, the GPU
kernel terminates and control is transferred back to the CPU.

3. Retrieve the output data from the GPU’s memory.

From a high level, the GPU kernel serves as a sequence of instructions that describes
the logic that will direct each GPU thread to perform a specific set of operations on a
unique data element. The kernel thus enables the GPU direct the concurrent and simul-
taneous execution of all GPU threads in a SIMT (single-instruction, multiple-thread)
workflow. The GPU executes its kernel (step two above) by first creating hundreds to
thousands of threads—the number of threads is user specified and application depen-
dent. During execution, small groups of threads are bundled together and dynamically
dispatched to one of the GPU’s numerous SIMD multiprocessors. These thread bundles
are then delegated by the multiprocessor to one of its individual processors for evalu-
ation. At any given clock cycle, each processor will execute the same kernel-specified
instruction on a thread bundle, but each thread will operate on different data.
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With respect to memory resources, each GPU multiprocessor contains a set of dedi-
cated registers, a store of read-only constant and texture cache, and a small amount of
shared memory. These memory types are shared between the individual processors of
a multiprocessor. In addition to these memory types, threads evaluated by a processor
may also access the GPU’s larger, and comparatively slower, global memory.

There are two important distinctions to make between GPU threads and CPU threads.
First, there is no cost to create and destroy threads on the GPU. Additionally, GPU mul-
tiprocessors perform context switches between thread bundles (analogous to process
switching between processes on a CPU) with zero latency. Both of these factors enable
the GPU to provide its thread-level parallelism with very low overhead.

4 A Data Parallel Bin-Based Indexing Strategy (DP-BIS)

4.1 Overview

To effectively utilize a GPU, an indexing data structure must provide high levels of con-
currency to fully benefit from the GPU’s large number of concurrent execution threads,
and make effective use of the GPU’s relatively small memory. In this section we explain
our new DP-BIS method and show how it successfully addresses these requirements by
integrating two key strategies: data binning (Section 4.2) and the use of Data Parallel
Order-preserving Bin-based Clusters (OrBiC) (Section 4.3).

When answering a query, the binning strategy we utilize significantly reduces the
amount of data we must access, transfer, and store on the GPU. The Data Parallel OrBiC
structure we employ ensures that candidate checks only access the base data of the
boundary bins. The concurrency offered by both of these data structures facilitates full
utilization of the GPU’s thread-level parallelism. In this approach, DP-BIS builds one
index for each column in a database, where each index consists of an encoded data table
(i.e. the bin numbers), and a Data Parallel OrBiC structure. When answering a simple
range query with DP-BIS, we access the encoded data table, and the base data of two
bins (the boundary bins) from our data parallel OrBiC structure.

4.2 Base Data Encoding

The index construction process begins by binning all of the base data records contained
in a single column. To minimize data skew in our binning strategy, we select the bin
boundaries so that each bin contains approximately the same number of records. In
cases where the frequency of a single value exceeds the allotted record size for a given
bin, a single-valued bin is used to contain all records corresponding to this one value.
This technique to address data skew is consistent with other binning strategies [30].
We then encode the base data by representing each base data record with its associated
bin number. Figure 1 (Step 1) in Section 4.3 shows an example of this encoding. In
later discussions, we refer to the bin numbers as low-resolution data and the column’s
base data as full-resolution data. We always utilize 256 bins in our encoding procedure.
As we now show, the amount of data generated by using this number of bins facili-
tates near-optimal usage of bus bandwidth and GPU memory space when answering a
query.



Data Parallel Bin-Based Indexing for Answering Queries on Multi-core Architectures 117

Table 1. This table presents the total benefit for DP-BIS to utilize a specific number of bins in its
encoding strategy. All values in column two, three, and four are given in terms of a percentage
of the total full-resolution data (assuming 32-bits are utilized to represent each full-resolution
record). Note the Boundary Bin Size reflects the cost for two boundary bins. From this table we
see that the use of 256 bins reduces the amount of data we must transfer and store by over 74%.

Number of Bins Low-Resolution Size(%) Boundary Bin Size(%) Total Data Size(%)
232 = 4294967296 100.0 0.0 100.0

216 = 65536 50.0 100.0× 2
65536 = 0.003 50.0 + 0.003 = 50.0

28=256 25.0 100.0× 2
256 = 0.78 25.0 + 0.78 = 25.8

Assume that all full-resolution data is based on 32-bit values, and that there are N
records in a given database column. If we use x bits to represent each bin, we can then

create 2x bins where each bin will contain, on average, N
2x records. The total size of

the low-resolution data will then be x×N bits. The candidate data for each boundary

bin, assuming each row-id can be stored in 32-bits, will consist of 32×N
2x bits for row-

identifiers, and 32×N
2x bits for data values. The total number of bits (written as B below)

we utilize to answer a simple range query is therefore:

B = x×N︸ ︷︷ ︸
Low−Resolution Bits

+ (4× 32×N
2x )︸ ︷︷ ︸

Candidate Check Bits f or Boundary Bins

(1)

Note that the candidate check bit cost for boundary bin data is based on two boundary
bins; this data size represents the more typical, and expensive, workload for answering
a simple range query. Taking the derivative of B with respect to x, we get:

dB
dx = N− (128×N× ln2

2x ) (2)

By setting this derivative to 0 and solving for x, we compute the optimal number of bits
to use for our strategy:

Bmin = 7 + log2 (ln(2))≈ 6.4712(bits) (3)

In our encoding strategy, bins can be represented with either 32-bits, 16-bits, or 8-bits;
these are the most easy and efficient data sizes for GPUs and CPUs to evaluate. Use of
alternate data sizes, like the “optimal” 6-bit data type we have derived in Equation 3,
are not convenient for GPU-processing. The closest integer type that is conveniently
supported on the GPU is the 8-bit integer. Therefore we use 8-bit integers to represent
bin numbers and we utilize 256 bins in our encoding strategy.

Table 1 illustrates the benefit of using 256 bins from a less formal standpoint. This
table shows realized data transfer costs for answering a simple range query based on
data types efficient for CPU and GPU computation. The last row validates Equation 3;
8-bit bins provide the best encoded-based compression by reducing the amount of data
that must be accessed, transferred, and stored on the GPU by over 74% .
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Fig. 1. This figure shows the two-step DP-BIS index construction process. The first step encodes
a column’s full-resolution base data (Section 4.2). The second step (Section 4.3) utilizes this same
full-resolution information to generate a modified (i.e. Data Parallel) OrBiC Structure.

4.3 Extending OrBiC to Support Data Parallelism

Wu et al. [30] introduce an Order-preserving Bin-based Clustering (OrBiC) structure;
this structure facilitates highly efficient candidate checks for bitmap-based query evalu-
ation strategies. Unfortunately, the OrBiC structure does not offer enough concurrency
to take advantage of the GPU’s parallelism. In this section, we present the constructs of
the original OrBiC data structure, and then address how we extend this index to provide
greater levels of concurrency.

In the approach presented by Wu et al., the full-resolution data is first sorted accord-
ing to the low-resolution bin numbers. This reordered full-resolution table is shown as
the “OrBiC Base Data” table in Figure 1. In forming this table, each bin’s start and end
positions are stored in an offset table. This offset table facilitates contiguous access to
all full-resolution data corresponding to a given bin.

We extend the work of Wu et al. by building an OrBiC-directed table; this is the
“OrBiC-directed Row-ID” table in Figure 1. This table holds row-identifier information
for the full-resolution data records. The appended “directed” statement refers to the fact
that the ordering of this table is directed by the ordering of the OrBiC Base Data table.
With consistent ordering between these tables, start and end locations for a given bin in
the offset table provide contiguous access to both the full-resolution data contained in
this bin and the correct row-identifier information for each of the bin’s records.

The OrBiC-directed row-identifier table facilitates data parallelism by addressing a
fundamental difference between our data parallel bin-based strategy and the bitmap
work of Wu et al. [30]. Specifically, Wu et al. create a single bitmap vector for each bin
in the OrBiC Base Data table. As the bitmap vector associated with a given bin stores
the bin’s row-identifier information implicitly, their procedure does not need to keep
track of the row-identifiers. In our case such a strategy is not inherently parallelizable.
We thus employ an explicit representation of the row-identifier information by storing
them in the OrBiC-directed Row-ID table. Using this table, threads can simultaneously
and in parallel perform candidate checks on all records in a given boundary bin.
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Algorithm 1
GPU Kernel for Low-Resolution Data
Require: Integer lowBinNumber, Integer highBin-

Number, Integer [] lowResolution

1: position← ThreadID
2: binNum← lowReslution[position]
3: if (binNum>lowBinNumber) then
4: if (binNum<highBinNumber) then
5: Sol[position]← TRUE
6: end if
7: end if
8: if (binNum<lowBinNumber) then
9: Sol[position]← FALSE

10: end if
11: if (binNum>highBinNumber) then
12: Sol[position]← FALSE

13: end if

Algorithm 2
GPU Kernel for Candidate Checks
Require: Float lowReal, Float highReal, Float [] full-

Resolution, Integer [] rowID

1: position← ThreadID
2: recordVal← f ullReslution[position]
3: record RowID← rowID[position]
4: if (recordVal>lowReal) then
5: if (recordVal < highReal) then
6: Sol[record RowID]← TRUE
7: end if
8: end if
9: if (recordVal< lowReal) then

10: Sol[record RowID]← FALSE
11: end if
12: if (recordVal>highReal) then
13: Sol[record RowID]← FALSE

14: end if

4.4 DP-BIS: Answering a Query

In this work, we focus on using DP-BIS to solve simple and compound range queries.
Range queries in general are a common database query expressed as a boolean combi-
nation of two simple predicates: (100.0≤X) AND (X ≤ 250), or alternatively (100.0≤
X≤ 250). Compound range queries logically combine two or more simple range queries
using operators such as AND, and OR: (X ≤ 250) AND ( Y ≤ 0.113).

Strategies that answer range queries efficiently and rapidly are a crucial underpin-
ning for many scientific applications. For example, query-driven visualization (QDV)
integrates database technologies and visualization strategies to address the continually
increasing size and complexity of scientific data [38, 39, 40]. In QDV, large data is
intelligently pared down by user-specified selection queries, allowing smaller, more
meaningful subsets of data to be efficiently analyzed and visualized.

Simple Range Queries. The DP-BIS process for answering a simple range query con-
sists of three stages: load necessary input data onto the GPU, execute the GPU kernel,
and download the output data (i.e. the query’s solution) from the GPU to the CPU. The
input for this process consists of a single low-resolution database column, all necessary
full-resolution record and row-identifier data, and two real values that will be used to
constrain the column. The process returns a boolean bit-vector—a boolean column with
one entry per data record that indicates which records have passed the query.

Given a query, the CPU kernel first accesses the appropriate low-resolution data col-
umn from disk. Next, space is allocated in GPU memory to hold both this data as well
the query’s solution. After allocating memory, and sending the low-resolution data to
the GPU, the CPU kernel proceeds by identifying the boundary bins of the query. The
query’s boundary bins are the bins whose ranges contain the query’s real-valued con-
straints. The CPU kernel uses these bin numbers as an index into the OrBiC offset table.
Values in the offset table provide the start and end locations in the OrBiC Base Data,
and Row-ID tables for the candidate record’s full-resolution data and corresponding
row-identifiers. After the candidate data is sent to the GPU, the CPU kernel then calls
the necessary GPU kernels.
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Table 2. This table shows the required changes to make to Algorithms 1 and 2 to form the logic-
based kernels DP-BIS uses to answer a compound range queries

Logic-Based Algorithm 1 line 1.4, and Algorithm 1 line 1.7, and
Kernel Algorithm 2 line 2.5 change to: Algorithm 2 line 2.8 change to:
AND “Sol[x]← Sol[x]” “Sol[x]← FALSE”
OR “Sol[x]← TRUE” “Sol[x]← Sol[x]”

The first GPU kernel, shown in Algorithm 1, processes the column’s low-resolution
data. In setting up this kernel, the CPU instructs the GPU to create one thread for each
record in the column. The CPU then calls the GPU kernel, passing it the boundary bin
numbers; these boundary bin numbers enable threads to answer an initial low-resolution
query. At launch time, each thread first determines its unique thread identifier1. Threads
use their identifier to index into the lowResolution data array (line 2); this array is the
low-resolution data column loaded earlier by the CPU. The thread characterizes its
record as passing or failing depending on whether the record’s bin number lies interior,
or exterior to the boundary bins (lines 3, 4, 8, and 9). The answer to each thread’s
query is written to the query’s solution space in GPU memory. This space, previously
allocated by the CPU kernel, is shown in Algorithm 1 as Sol[].

The next GPU kernel, shown in Algorithm 2, performs a candidate check on all
records contained in a given boundary bin. In our approach we launch the candidate
check kernel twice: once for the lower boundary and once for the higher boundary bins.

The candidate check kernel is similar to the previous GPU kernel. Thread identifiers
enable each thread to index into the Full-Resolution and rowID arrays of their respective
boundary bin; these arrays are the OrBiC tables previously loaded onto the GPU. These
arrays enable the kernel’s threads to access the full-resolution data and corresponding
row-identifier information for all records that lie in the boundary bin. Threads charac-
terize each record as passing or failing based on comparisons made with the accessed
full resolution data (lines 4, 5, 9, and 12 in Algorithm 2). The results of these logical
comparisons are written to Sol[], not using the thread’s identifier as an index, but the
accessed row identifier (obtained from rowID) corresponding to the evaluated record.

Compound Range Queries. From a high level, we answer a compound range query
by logically combining the solutions obtained from a sequence of simple range queries.
To perform this task efficiently, we direct each simple query’s kernel to utilize the same
solution space in GPU memory. The compound range query’s solution is produced once
each simple query has been answered. In more complicated cases, e.g. “(X1 AND X2)
OR (X3 AND X4)”, the solution to each basic compound query can be written to a
unique bit in the GPU’s solution space; the bits can then be combined in each GPU
kernel as needed (through bit-shifts) to form the solution to the query.

From a lower level, DP-BIS answers the first simple range with the kernels outlined
in Algorithms 1 and 2. These kernels perform unconditional writes to the compound
range query’s solution space. More specifically, all threads “initialize” this solution

1 Each GPU thread has a unique ID that aids in coordinating highly parallel tasks. These unique
IDs form a series of continuous integers, 0→maxThread, where maxThread is the total thread
count set for the GPU kernel.
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space with the first simple range query’s solution. All subsequent simple range queries,
however, utilize logic-based (AND, OR, etc.) derivatives of these kernels. These logic-
based kernels only differ from the kernels outlined in Algorithms 1 and 2 in the fi-
nal write operation each thread performs (lines 5, 9, and 12, and lines 6, 10, and
13 respectively). These changes, shown in table 2, ensure that each thread, logically
combines the current simple range query’s solution with the existing compound range
query’s solution. Section 6.2 demonstrates the implementation and performance of this
approach.

5 Datasets, Index Strategies, and Test Setup

In this section we describe the datasets and index strategies we use in our performance
analysis. We discuss testing parameters at the end of this section.

All tests were run on a desktop machine running the Windows XP operating system
with SP2. All GPU kernels were run utilizing NVIDIA’s CUDA software: drivers ver-
sion 1.6.2, SDK version 1.1 and toolkit version 1.1. Our hardware setup consists of an
Intel QX6700 quad-core multiprocessor, 4 GB of main memory, and a SATA storage
system that provides 70 MB/s sustained data transfer rates. The GPU co-processor we
use is NVIDIA’s 8800GTX. This GPU provides 768 MB of memory and can manage
over 12,000 concurrent execution threads.

5.1 Datasets

We use two datasets in our analysis. The first dataset is produced by a scientific simula-
tion modeling the combustion of hydrogen gas in a fuel burner. This dataset consists of
seven columns where each subsequent column increases in row size: 50 million rows for
column one, 100 million rows for column two,. . . , 350 million rows for column seven.
We use this dataset in Section 6.1 to measure and compare the effect that increasing
column size has on processing and I/O performance.

The second dataset we use is synthetically produced. This dataset consists of 7
columns each with 50 million rows. Each column consists of a series of randomly se-
lected, randomly distributed values from a range of floating point values [-32767.0,
32767.0]. In Section 6.2 we answer a series of compound range queries over this data.
This experiment measures and compares the processing and I/O costs of finding the
union or intersection between an increasing number of columns.

In both datasets, the records consist of 32-bit floating point data. The time to build
the DP-BIS index for each column in our datasets is shown in Table 3; note the cost in
time to build the indices scales well with the increasing size of the base data. In this
table, the size for the DP-BIS index includes the size for the encoded data table, as well
as the size for the OrBiC base and row identifier data tables.

5.2 Index Strategies

In our tests, we evaluate the I/O and processing performance of two indexing strategies:
DP-BIS and the projection index. We independently evaluate the concurrency each in-
dex affords by implementing and testing the performance of a CPU-based and a GPU-
based version of the index.
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Table 3. This table shows the index sizes and DP-BIS index build times for each column used in
our tests. The size for the DP-BIS index includes the size for the encoded data table, as well as
the size for the OrBiC base and row identifier data tables. All times represent an average build
time calculated from ten test builds.

Column Size (-in millions of rows-)
50 100 145 200 250 300 350

Base Data Size (-in MB-) 200 400 580 800 1000 1200 1400
DP-BIS Index Size (-in MB-) 450 900 1305 1800 2250 2700 3150

Index Build Time (-in minutes-) 1.22 2.65 4.12 5.82 7.49 9.37 11.36

The CPU-based DP-BIS index is implemented on a multi-core CPU that contains
four CPU cores. In this implementation, the work of answering the query is divided
separately and equally over each CPU core through the use of Pthreads [41]; here each
CPU core is assigned an individual thread and a portion of the DP-BIS low-resolution
and full-resolution data to evaluate.

The GPU-based DP-BIS index is implemented on a GPU using the constructs of the
data parallel programming language CUDA. This implementation is directly based on
the method presented in Section 4.4.

The CPU projection index begins by reading each full-resolution column into CPU
memory space. The query is answered by simply performing comparisons on the ar-
ray(s) without any additional data structure. We use this strategy in our tests because it
provides a good baseline for assessing performance.

The GPU projection index is similar to the CPU projection index, with the exception
that the full-resolution columns are read into GPU memory space. Additionally, all
indexed values in a given column are simultaneously evaluated in parallel by the query.
This indexing strategy supports the same level of concurrency offered by DP-BIS (i.e.
each thread evaluates a single record), but does not provide the benefits of encoding.
On the other hand, this index approach does not require performing candidate checks;
a procedure that requires additional computation and read requests to GPU memory.

5.3 Test Setup

To ensure that all queries reflect cold-start, cold-cache behavior, we force all read op-
erations to bypass the OS cache to prevent Windows-based data caching. Therefore, all
performance times, unless otherwise stated, are based on the complete time to answer
the query. This time measurement, which we refer to as the query’s “total performance
time”, includes:

1. Disk access and data transfer times (including the cost for allocating necessary
memory on the CPU and GPU),

2. time to upload data to the GPU (not applicable for the CPU-based index),
3. the time to answer a query on the uploaded data, and
4. the time to download the solution from the GPU to the CPU (again, not applicable

for the CPU-based index).

In our performance analysis, we divide this total performance time into two sepa-
rate time metrics, based on work-related tasks. The first time we refer to as the “I/O
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Table 4. This table shows how the total performance time for each index strategy is composed
based on I/O-related workloads, and compute-based workloads. Each value in this table rep-
resents the mean percentage of time observed for a given index strategy, based upon all tests
performed in Figure 2.

Indexing Method Mean Time Spent Transferring Data Mean Time Spent Answering the Query
-as a percentage of the total time- -as a percentage of the total time-

CPU-Projection 96.70 ± 0.19 3.30 ± 0.19
GPU-Projection 99.48 ± 0.26 0.52 ± 0.26
DP-BIS (GPU) 98.13 ± 1.03 1.87 ± 1.03
DP-BIS (CPU) 93.33 ± 0.7 6.67 ± 0.7

performance time”. This time includes the time to perform all data transfers and mem-
ory allocation: numbers 1, 2, and 4 from the list above. The second time, which we refer
to as “processing performance time”, includes the time to perform all computation-
related work (number 3 from the list above). In our experiments realized total, I/O, and
processing performance times are recorded individually, and simultaneously. Finally,
unless specified, each reported performance value represents the mean value calculated
from 25 separate test runs.

6 Query Performance

Typically, when answering a simple or compound range query over a large amount of
data, far more time is spent accessing and transferring data than computing the query’s
solution. The performance of such I/O-intensive tasks are commonly limited by data
transfer speeds. This I/O-based performance bottleneck is an especially significant chal-
lenge for multi-core architectures, like GPUs, where processing rates can far exceed
bandwidth speeds [37].

We demonstrate in this section how the strategy behind DP-BIS presents one way to
ameliorate this I/O-based performance bottleneck. By operating primarily on encoded
data, the DP-BIS index significantly reduces the effects of this bottleneck, and uses CPU
and GPU memory resources more efficiently. Additionally, the level of concurrency
afforded by DP-BIS facilitates a full utilization of the thread-level parallelism provided
by both multi-core CPU and GPU architectures. In this section we demonstrate the
benefits of this concurrency by directly comparing processing performance times for
CPU and GPU-based DP-BIS implementations. From this comparison, we show that
the GPU-based implementation accelerates processing performance by a factor of 8X
over the CPU-based implementation.

6.1 Answering a Simple Range Query

In our first performance evaluation, each index strategy answers a series of seven sim-
ple range queries, where each query operates on one of our scientific dataset’s seven
columns. In this dataset, the size of each subsequent column increases: 50 million rows,
100 million rows,..., 350 million rows.

In these experiments, we expect both CPU and GPU-based DP-BIS index to answer
a simple range query using approximately 75% less time than either the CPU or GPU
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Fig. 2. Here, (a) shows the total performance times for our three indexing strategies. In contrast (b)
shows, based on the data from the same test series, only the processing performance time for each
index. Side by side, these figures show how performance is effected by I/O plus computational
workloads versus pure computational work.

projection index strategies. We base this expectation on the fact that DP-BIS primarily
utilizes 8-bit low-resolution data, whereas the projection index strategies utilize 32-bit
full-resolution data. We additionally expect that the GPU-based DP-BIS index will be
very competitive, with respect to computational performance, with the GPU projection
index. This expectation is based on the fact that both strategies support the same level
of concurrency: a one-to-one mapping of threads-to-records.

Analysis. Figure 2(a) shows the realized total performance time of each index strategy.
These performance times show that both DP-BIS implementations answer queries ap-
proximately 3X faster than both the GPU and CPU projection index. Table 4 shows how
these total performance times are composed based on I/O and processing performance.
Note values in Table 4 represent the average I/O and processing performance times real-
ized for each index strategy based on the performance observed for all columns. Table 4
confirms the majority of time spent answering a simple range query is used to transfer
data; each index uses over 93% of their total performance time for I/O-related tasks.

Note the GPU projection index and GPU-based DP-BIS index support the same level
of concurrency when answering a simple range query. When performing this task we
know both indexing strategies spend the vast majority of their time transferring data. We
conclude that the disparity in total performance time experienced by the GPU projection
index is directly attributable to an I/O-based performance bottleneck. This experiment
illustrates the benefit of the encoding-based compression utilized by DP-BIS to accel-
erate the process of transferring data, and therefore the task of answering a selection
query.

Aside from the performance benefits offered by DP-BIS, Figure 2(a) also highlights
the benefits DP-BIS provides for GPU memory space. The GPU projection index ex-
hausts all memory resources after columns have reached a size of 150 million rows.
In comparison, DP-BIS is able to continue answering queries on columns until they
reach in excess of 350 million rows. The data encoding DP-BIS utilizes thus provides
over 233% better utilization of GPU memory resources when compared to the GPU
projection index.
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Figure 2(b) shows the processing performance times from our experiment; note that
the scale of the y-axis is log10. Label 2 in Figure 2(b) highlights a sharp loss in per-
formance for both the GPU-based projection index (between 50-100 million records)
and DP-BIS (between 100-145 million records). This performance loss is due to a GPU
implementation detail associated with how the query’s solution is written for columns
containing in-excess of 95 million (for the projection index) or 145 million (for DP-
BIS) rows. Specifically, for columns whose row numbers exceed these values, the GPU
projection index and DP-BIS can no longer store the query’s solution with a 32-bit vari-
able type (due to limited memory resources); instead an 8-bit variable type is utilized to
conserve space. Writing 8-bit data to the GPU’s global memory incurs significant per-
formance penalties for both indexing strategies (as Label 2 highlights). Note however
that based on the data in Table 4, this processing performance loss minimally impacts
the total performance time for either of these two indexing strategies.

Figure 2(b) shows that before this performance loss, the GPU-based DP-BIS index
answers queries up to 13X faster than the CPU projection index, 8X faster than the
CPU-based DP-BIS index, and (for columns containing more than 95 million records)
3.4X faster than the GPU projection index. After this loss in performance, the GPU-
based DP-BIS index outperforms the CPU-based projection and DP-BIS index by 4.9X
and 3X respectively.

The concurrency afforded by DP-BIS is evident in comparing the processing per-
formance times for the CPU-based and GPU-based implementations. The GPU-based
DP-BIS index answers the query up to 8X faster than the CPU-based implementation.
This acceleration in processing performance is a direct consequence of the GPU’s in-
creased thread-level parallelism over the multi-core CPU. Accelerated processing per-
formance times are critical for many scientific applications, e.g. query-driven visualiza-
tion (QDV) [38,39,40], where data can be presumed to be read once, cached by the OS,
and queried repeatedly during analysis stages. In these applications, user workloads are
driven more by processing performance times, which make up a larger percentage of
the analysis workload, then by disk access times. For these applications, GPU-based
implementations of DP-BIS provide significant performance benefits.

6.2 Answering a Compound Range Query

In this second performance evaluation, we use both indexing strategies to answer seven
separate compound range queries. The columns our queries evaluate are taken from
our synthetic dataset, where each column contains 50 million rows. In this series of
tests, each subsequent query will constrain an additional column; in the final test, each
index strategy will answer a query constraining seven columns. In this experiment, we
perform this series of tests twice: once where we find the intersection, and once where
we find the union of all columns queried. We refer to these logic-based series of tests as
conjunction (X1

∧
X2
∧

...
∧

X7), and disjunction (Y1
∨

Y2
∨

...
∨

Yn) tests.
We expect to see some level of disparity in processing performance times between

the conjunction and disjunction tests. This expectation is based on the fact that, in our
kernels, identifying the intersection between two records requires slightly more com-
putational overhead than identifying their union. We additionally note on these tests
that the GPU-based DP-BIS implementation will not require a variable change for the
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Fig. 3. Here, (a) shows the total performance times for our three indexing strategies when they
perform a series of conjunction and disjunction tests. In contrast (b) shows, based on the data
from the same test series, only the processing performance time for each index.

GPU’s solution space. More specifically, 50 million rows is a comparatively small so-
lution space and therefore DP-BIS will be able to utilize the more efficient 32-bit data
type throughout the entire experiment. As a result, we expect DP-BIS will maintain
its performance trend and not suffer the performance drop highlighted by Label 2 in
Figure 2(b) from the previous experiment.

Analysis. Figure 3(a) shows the total performance times of all index strategies for both
the conjunction and disjunction tests. In both experiments, the DP-BIS implementations
answer compound range queries some 3–3.7X faster than the projection strategies. Note
that Figure 3(a) shows no disparity between the conjunction and disjunction tests; such
performance disparities are processing based and are more easily revealed in the pro-
cessing performance times, shown in Figure 3(b).

Figure 3(b) highlights several important trends. First, as expected, the conjunction
tests require more time to answer than the disjunction tests: 5–7% more time for the
CPU projection index, and 20–27% more time for the CPU and GPU-based DP-BIS in-
dex. This performance trend is not readily seen in the GPU projection index; the lack of
data points, due to exhausted memory resources (Label 1), obscures this performance
disparity. Label 2 in Figure 3(b) highlights the loss of performance experienced by
the GPU projection index due to the variable type change made in the GPU’s solution
space (see Section 6.1). In comparison, DP-BIS does not require such a change to the
solution pace. Unlike the experiments performed in Section 6.1 (see Figure 2(b)), the
smaller solution space employed by these tests (50 versus 350 million rows) enables
DP-BIS to consistently use the more efficient 32-bit variable type. Finally, the process-
ing performance benefits for a GPU-based implementation of DP-BIS are clearly seen
in Figure 3(b); the GPU-based implementation of DP-BIS is 8X faster then the CPU-
based implementation.

7 Conclusions

In the next decade, the evolution and predominance of multi-core architectures will
significantly challenge and change the way data processing is done in the database
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community. As CPUs rapidly continue to become more like parallel machines, new
strategies must be developed that can fully utilize the increasing thread-level paral-
lelism, and thus the processing capabilities, of these architectures.

In presenting DP-BIS, we provide a parallel indexing data structure that will scale
effectively with the future increase of processor cores on multi-core architectures. We
also provide a parallelizable encoding-based compression strategy that enables DP-BIS
to significantly reduce the I/O overhead associated with answering a range query.

We are currently developing a nested binning strategy (i.e., binning the records
contained in bins) that will enable DP-BIS to provide even further processing and I/O
performance benefits. Related to this work, we are additionally optimizing DP-BIS per-
formance with the development of a two-level cache: one cache for the GPU and one for
the CPU. This two-level cache will increase DP-BIS I/O performance by caching more
frequently used boundary bin data in the GPU cache, and less frequently used bound-
ary bin data in a larger CPU cache. Finally, we are integrating DP-BIS with several
scientific data formats (netCDF, and HDF) to generate a new query API. This API will
enable users to efficiently generate complex selections on netCDF and HDF datasets.
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Abstract. Consider a scientific range query, such as find all places in
Africa where yesterday the temperature was over 35 degrees and it rained.
In theory, one can answer such queries by returning all geographic points
that satisfy the query condition. However, in practice, users do not find
this low-level answer very useful; instead they require the points to be
consolidated into regions, i.e., sets of points that all satisfy the query
conditions and are adjacent in the underlying mesh. In this paper, we
show that when a high-quality index is used to find the points and a good
traditional connected component labeling algorithm is used to build the
regions, the cost of consolidating the points into regions dominates range
query response time. We then show how to find query result points and
consolidate them into regions in expected time that is sublinear in the
number of result points. This seemingly miraculous speedup comes from
a point lookup phase that uses bitmap indexes and produces a com-
pressed bitmap as the intermediate query result, followed by a region
consolidation phase that operates directly on the intermediate query re-
sult bitmap and exploits the spatial properties of the underlying mesh
to greatly reduce the cost of consolidating the result points into regions.
Our experiments with real-world scientific data demonstrate that in prac-
tice, our approach to region consolidation is over 10 times faster than a
traditional connected component algorithm.

1 Introduction

Most scientific data have a spatial and/or temporal aspect. Observational data
are recorded at specific locations and times, while simulations record evolution
of scientific phenomena over time and space. Whether produced by observation
or simulation, scientific data are normally discretized into points (fine-grained
individual objects). In simulations, each data point is a discrete point in space
for which variables (attribute values) are calculated. The intrinsic structure of
an instrument determines the finest-grained observation it can take, leading to
discretization of observational data too.

The points at which readings are taken or simulated do not exist in isola-
tion; rather, they are connected to one another in a mesh. The connectivit of
a mesh can be provided implicitly, as in images and video (where every pixel
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(b) A 39 point semi-structured mesh
with two regions of interest

Fig. 1. Example meshes

is connected to its immediate neighbors in 2- or 3-space and time) or in struc-
tured meshes (where an observation is present for every combination of X, Y,
Z, and/or temporal coordinates (as in Figure 1(a))). Alternatively, connectivity
can be given explicitly, as is done for semi-structured and unstructured meshes.

Given a range query, i.e., a set of range restrictions on observed or simulated
values, a region of interest is a maximal set of connected points, each of which
satisfies a set of user-specified constraints on its attributes and on the simulated
or real time of the observation. Regions of interest are important in scientific
query processing because they provide query answers at a higher level of ab-
straction than is possible with points alone. For example, a telescope records
images of the sky in terms of pixels. An astronomer using a telescope to study
astronomical objects might start by searching for points in an image that have at
least a certain level of brightness. These points by themselves are not of interest
to scientists, but when grouped together to form stars, galaxies, and quasars,
they assume paramount importance.

Current scientific practice is to find regions of interest in two phases [1,2].
In the constraint application phase, we find all points that satisfy the given
constraints (e.g., temperature ∈ [1000, 5000] and pressure > 200). The time
required for this phase can vary greatly, depending on whether indexes are avail-
able to help narrow the search and if available, how effective those indexes are
for multidimensional queries. In the region growing phase, the selected points
are coalesced into connected regions. The region growing phase is usually per-
formed with a connected component labeling algorithm in O(N) time, where N
is the number of points satisfying the query. Our experiments will show that the
typical connected component labeling algorithm dominates the query response
time.

An example will provide insight into the more efficient techniques for region
growing that we propose in this paper. Figure 1(a) shows two regions of interest
in a 49 point structured mesh. For example, this query may represent the places
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in Africa where the temperature was over 35 yesterday and it rained. Consider
this mesh as a sequence of horizontal lines called mesh lines, numbered from 0 to
6. Along a single mesh line, no two non-consecutive points are directly connected.
Moreover, inter-line connections are also ordered. That is, if the kth point on line
l is directly connected to the kth point on line l + 1, then the k + 1th point on
line l is connected to the k+1th point on line l+1. In addition, the points on line
l are connected to points only on lines l− 1 and l + 1. Other kinds of structured
meshes have similar intrinsic orderings or other properties that we show how to
exploit in this paper, to speed up the consolidation of points into regions.

The first step in the efficient lookup of points of interest is the creation of
appropriate indexes. We use bitmap indexes because they are very efficient for
high-dimensional scientific queries [3], and also because they can efficiently form
query lines, a concept explained later. Before we can construct a bitmap index,
we must settle on an order for enumerating all the points in the data set. Putting
it another way, we must linearize the mesh into a sequence of mesh lines. In the
2D example in Figure 1(a), we choose to linearize the mesh in row-major order,
so that neighboring points in a horizontal line become consecutive points in
the enumeration order. Other linearization approaches such as column-major
ordering, Z-ordering, or general space-filling curves could also be used. Once a
mesh is linearized, we build and compress an ordinary bitmap index for each of
its attributes, for use in query processing.

As explained in Section 2, we use bitmap indexes to quickly look up the mesh
points that satisfy a particular query. The output from this constraint application
phase is a single compressed bit vector that represents a set of query lines, each
of which is a maximal set of directly connected points residing on a single mesh
line, such that each point satisfies the query conditions. For example, Figure
1(a) shows query lines labeled L1 through L4. In the region growing phase, we
use a novel labeling algorithm to efficiently find connected components, such as
the regions labeled 1 and 2 in Figure 1(a). To merge the lines in Figure 1(a)
into regions, we start with mesh line 0 and look for a query line residing on that
mesh line, then move on to mesh line 1 and so on. In this example, the first
mesh line that contains a query line is mesh line 2, which contains query line
L1. Then we look along mesh line 3 for query lines neighboring L1. To do this,
we examine all the query lines residing on mesh line 3 in sorted order to find
the first query line that overlaps with L1, which happens to be L2 in this case.
Then we unite L1 and L2 into a single region using a union-find data structure
with path compression. As there are no other query lines residing on mesh lines
3 and 4, we move to mesh line 5 and find query line L3. We then move to mesh
line 6 and find query line L4. Since L4 is connected to query line L3, we unite
the query lines L3 and L4 into a single region. Regions 1 and 2 are the final
result of this algorithm.

In summary, the contribution of this paper is to show how to use compressed
bitmap indexes and spatial properties of scientific meshes to find regions of
interest efficiently. The major steps involved in this process are:
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– Constraint Application Phase: Use bitmap indexes to find all points satisfy-
ing the query constraints, and encode them in a compressed bit vector.

– Region Growing Phase:
• Find query lines. Convert the result bit vector from the constraint ap-

plication phase into a set of query lines.
• Consolidate Lines. Use our enhanced connected-component labeling al-

gorithm to grow query lines into regions of interest, while exploiting mesh
properties to speed up the process.

In the remainder of this paper, we present related work in Section 2, including
an overview of the important properties of bitmap indexes. In Section 3, we show
how to convert intermediate query results into query lines. In Section 4, we ex-
plain how to use mesh ordering properties to speed up the region growing phase.
We prove that our approach runs in expected time less than O(N), where N is
the number of data points satisfying the user-supplied query constraints. In Sec-
tion 5, we provide methods for generating interesting orders out of unstructured
meshes. In Section 6, we evaluate the performance of our query approach on two
large real-world data sets. The first is a semi-structured mesh from a plasma
simulation, and the second is an unstructured mesh from a fluid simulation. Our
experiments show a 10 fold improvement in retrieval performance, compared to
traditional methods. Section 7 concludes the paper.

2 Bitmap Indexes

Scientific data are typically stored as a set of arrays, with one array for each
scientific variable (attribute). Each point in the array corresponds either to a
real world observation point or a simulation point. The same index (i.e., array
offset, or coordinates) in arrays for different attributes corresponds to the same
real-world or simulated point. As mentioned earlier, bitmap indexes rely on bit
vectors, which require a linear ordering of the objects they index. Popular linear
orderings for common types of meshes and images are listed in Table 1. Hence-
forth, we refer to the linearized mesh as the mesh vector; the mesh vector defines
the object ordering used in each bit vector in the bitmap index. Figure 2 shows
one possible linearization of the mesh shown in Figure 1(a).

Bitmap indexes have gained popularity for use in append- and read-only en-
vironments, including data warehousing and scientific databases [4,5,3,6,7,8,9].
A bitmap index consists of a sequence of bit vectors, one for each value in the
attribute domain. Each bit vector has one bit for each object in the data set.
The ith bit of the kth bit vector is set to 1 if object or point i has value k for that
attribute, and is set to 0 otherwise. The resulting bit vectors are usually quite
sparse, and so can be compressed quite effectively using variations of run-length
encoding. Figure 2 shows the uncompressed and compressed bitmap indexes cor-
responding to Figure 1(a), using word-aligned hybrid (WAH) compression [10]
with 8-bit words (discussed later).

It is easy to see how to use an uncompressed bitmap index to answer range
queries. For example, to find all objects whose value for attribute A lies in the
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range [6, 8], we retrieve the 6th, 7th, and 8th bit vectors and perform a bitwise
OR operation on them. The resulting bit vector has a 1 in the ith position if
object i is in the query answer. To find all objects whose value for A lies in the
range [6, 8] and whose value for attribute B is in [100, 500], we use bitwise OR
to find the bit vectors for the objects satisfying each of the range restrictions,
and then do a bitwise AND of those two vectors.

Previous work has addressed many aspects of bitmap indexing, from its orig-
inal invention [5] through investigations of the best data organization and com-
pression approaches and algorithms for operating upon the bit vectors (e.g.,
[3,4,10,11]), best approaches for binning and encoding data (e.g., [12,13]), and
ways to reduce lookup time by introducing hierarchy into the bitmap index [14].
In this section, we will focus on the computational and compression aspects of
bitmap indexes that are most important for forming regions of interest. In gen-
eral, however, our method of forming regions of interest is appropriate for use
with any form of compressed bitmap index.

We adopt WAH compression because previous work has shown that it out-
performs other compression schemes for bitmap indexes and is more amenable
to analytical analysis [10]. WAH compression combines run-length encoding and
uncompressed bitmaps. A WAH compressed bitmap contains two kinds of words:
literal and fill words. The word size should be chosen to give good in-memory
performance on today’s platforms, e.g., 32 bits. In this case, the uncompressed
bitmap is divided into 31-bit segments. The most significant bit of each WAH-
compressed word is used to differentiate between literal and fill words. After its
leading 0, a literal word contains one segment of the uncompressed bit vector
verbatim; after its leading 1, a fill word represents a sequence of contiguous seg-
ments in the uncompressed bitmap comprised entirely of 0s or entirely of 1s. The
body of a fill word tells us the number of contiguous segments that are all 0s or
all 1s, as well as their value (0 or 1). WAH compressed bitmaps can be ANDed
and ORed together very efficiently without significantly decompressing them; in
our implementation, we follow the fourth approach described in Section 5 of [3]
for ORing bit vectors. This approach does not try to recompress any words that
are decompressed when creating the intermediate result bit vector. For range
queries, this approach is linear in the total size of the bitmap vectors involved,
and the resulting bit vector is also a WAH compressed bitmap.

WAH-compressed bitmap OR and NOT operations have expected running
times that are sublinear in the number of query result points. This result is im-
portant for understanding why our point retrieval and region growing approach
is sublinear in the number of query result points, so we will go over it in detail
below. We consider only single attribute queries in this analysis, so we do not
consider AND operations; however, the experimental results presented in Section
6 show that in practice, multi-attribute queries are also sublinear in the number
of points retrieved and consolidated into regions.

Let us call a fill word followed by a group of literal bits a run, and call the
literal bits the tail. A run takes at most two words to represent: one fill word
and one literal word, assuming that the data set has fewer than 31× 232 objects
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Fig. 2. One possible linearization of the structured mesh in Figure 1(a). The corre-
sponding uncompressed and compressed bit vectors are shown below the mesh.

Table 1. Possible linearizations of different kinds of meshes

Images A simple raster ordering
Structured Meshes Row-major or column-major; z-order; other space-filling curves.
Semi-structured
Meshes

The data is typically stored in a canonical order.

Unstructured Meshes linearization in the order of the node ID assigned to each node.

in case of a 32 bit word; otherwise we can split the data set into multiple parts
each having fewer than 31 × 232 objects. The only run that might not have a
tail is the last run of a bitmap. Typically, the last few bits occupy only part of a
literal word, though a whole word has to be used to store them. All together, the
number of words in a WAH compressed bitmap is at most twice the number of
runs. All runs except the last must contain at least one 1, else the run would not
have a literal word in it. Hence each WAH-compressed bit vector has at most
n+1 runs, where n is the number of bits that are 1 in the bit vector, and has at
most 2n + 2 words. Thus a set of B bit vectors over N objects has a maximum
size of 2N + 2B. To respond to a range query over a range of B bit vectors with
V points in the result, a maximum of of 2V + 2B bit vectors needs to be read
in memory. This analysis was first shown in [3]. In general, V � B, so the run
time complexity of a range query using only ORs is O(V ) in the worst case.

For the negation operation, we need to change a 0 fill word to a 1 fill, and
vice versa. For a literal word, we change each 0 bit to a 1 bit, and vice versa.
The run time complexity of this negation operation is O(V ) at worst. When the
range R of the query is less than |C|

2 , where |C| is the cardinality of the domain,
we apply the OR operators in the specified range. Otherwise, we apply the OR
operator over the bit vectors in the complement of the specified range, and then
negate the result bit vector. This reduces the overall number of bit vectors that
need to be ORed to produce the result.
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Let us analyze the data that leads to the worst case behavior. An occurrence
of exactly one 1 in each run means that for every 31x + 30 (where x ≥ 1 ) zeros
there is exactly one 1. This means that for each 1 there should be at least 61
zeros. Thus the cardinality of the attribute has to be at least N

61 . Moreover, if
we divide the mesh vector into segments of 31 points, then each value occurs
at most once in two consecutive segments. Many attributes in scientific data,
such as temperature and pressure, tend to be continuous in space. This means
that points with similar values for the attribute tend to be clustered together
in space. This continuity leads to non-trivial sized interesting regions, and is
reflected as larger numbers of 1s in each run.

In the following two sections, we show how to convert intermediate result bit
vectors into query lines and then grow them into regions, still in sublinear time.

3 From Bitmaps to Query Lines

Mesh lines are properties of a mesh and thus are static across multiple queries.
A query line, on the other hand, is specific to a particular query. By definition,
a query line has the following two properties:

– A query line consists of points that satisfy the query constraints, are con-
secutive in the mesh vector, and hence correspond to consecutive 1s in the
result bit vector.

– No query line spans multiple mesh lines.

Given the set of mesh lines and the query result expressed as a WAH com-
pressed bit vector, we can extract the query lines in a two step process that takes
O(S) time, where S is the number of query lines. The two steps are:

1. Convert the compressed bit vector into a sorted sequence of line segments,
where each line segment is a maximal sequence of consecutive 1s in the
corresponding uncompressed bit vector. The corresponding algorithm, Cre-
ateLineSegments, is shown in Figure 3(a).

2. Split the line segments into query lines, based on the mesh lines. The corre-
sponding algorithm, GetQueryLines, is shown in Figure 3(b).

For clarity, CreateLineSegments uses the supporting method FindNex-
tOne(BV, position). This method returns the position of the next 1 in the
uncompressed bit vector after the position passed to it. Each line segment is
represented in LineSegs by its start and end point. The start point of the first
line segment is the position of the first 1 in the uncompressed bit vector. Cre-
ateLineSegments sets the end of the line segment appropriately, depending on
whether the current word is part of a fill word or a literal word. CreateLine-
Segments then iteratively finds the position of the next 1 in the uncompressed
bit vector, until there are no more 1s. For each position, CreateLineSegments
checks if it is the same as the end of the previous line segment. If so, it extends the
previous line segment by the required number of points (depending on whether
the 1 is part of a fill or a literal word). This ensures that line segments that span
multiple words are correctly recorded.
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(a) Converting a bit vector into line
segments
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(b) Splitting the line segments into
query lines

Fig. 3. Algorithm to generate query lines from result bit vectors

Theorem 1. CreateLineSegments runs in O(S) time, where S is the num-
ber of line segments returned.

Proof: First we show that CreateLineSegments extracts each individual line
segment in constant time. A single line segment corresponds to a consecutive
sequence of 1s in the equivalent uncompressed bit vector. Thus it can only be
represented in a compressed bit vector as one of a handful of possible patterns
of words. Table 2 shows these patterns with examples (using 8 bit words for
simplicity). The table does not include the degenerate versions of these patterns
created by chopping off first and/or last word of a pattern; these degenerate
patterns can occur only at the very beginning or end of a bit vector. For example,
a very short bit vector might consist only of a literal, which is a degenerate
version of pattern 4.
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Table 2. Sequences of words that can form a single query line

Pattern Sequence Example
1. 0 fill - 1 fill - 0 fill 10000011 - 11000101 - 10000101
2. literal - 1 fill - literal 00111111 - 11000011 - 01111110
3. 0 fill - literal - literal - 0 fill 10000101 - 00111111 - 01111111 - 10000011
4. 0 fill - literal - 0 fill 10000101 - 00111100 - 10000011

We show here that CreateLineSegments extracts the line segment corre-
sponding to each of the four patterns in constant time.

1. The line segment in sequence 1 is extracted in constant time by decoding
the 1 fill.

2. The line segment in sequence 2 is spread over three different words, two
literals with a 1 fill in the middle. If either of the literals had n− 1 bits set
to 1 (where n is the number of bits in a word), then it would have been
compressed into the fill word. CreateLineSegments converts the fill word
into a segment in constant time and extends the line in both directions,
using the 1s in the literal words. Since the total number of 1s in the two
literals is at most 2n−4, CreateLineSegments extracts this line segment
in constant time.

3. The line segment in sequence 3 is spread over two words. The maximum
number of 1s in these two words is 2n − 3, as 2n − 2 consecutive 1s would
have been compressed into a fill word. Thus the line segment is extracted
from this pattern in constant time.

4. The line segment in sequence 4 can have at most n− 1 1s and hence can be
extracted in constant time.

The next line segment in a WAH-compressed bit vector can either begin in
the same word where the previous line segment ends, in the next word, or be
separated from the previous line segment by a single 0 fill. In all three cases
CreateLineSegments will take constant time to find the start of the next line
segment.

We have shown that CreateLineSegments extracts each line segment in
constant time and finds the beginning of the next line segment in constant time.
Hence the total time to retrieve S line segments using GetLineSegments is
O(S). �

Once GetLineSegments has found all the line segments, GetQueryLines
splits them into query lines. GetQueryLines takes a sorted sequence of line
segments and mesh lines as input and returns a set of query lines as output.
GetQueryLines iterates over the query lines and mesh lines, splitting any line
segment that spans multiple mesh lines. The query lines and the mesh lines are
sorted in the same order, so that GetQueryLines can take advantage of any
special mesh line orderings, as described in Section 5. The worst-case complexity
of GetQueryLines is O(L + M), where L is the number of line segments and
M is the number of mesh lines. The number of mesh lines is independent of the
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number of points in the query result and as such from the point of view of the
query run time of GetQueryLines is O(L).

Since both GetLineSegments and GetQueryLines are O(L), the entire
process for converting the bit vector to query lines is O(L). Since L ≤ S, where
S is the number of query lines, we conclude that the algorithm to convert com-
pressed bit vector query result to query lines is O(S).

4 Region Growing Phase

To use a connected component labeling algorithm to consolidate query lines into
regions, we need to express the mesh connectivity information in a representation
that efficiently supports graph operations to find the neighbors of a vertex. We
use an adjacency list representation of the mesh graph, because that lets us find
the neighbors of a vertex in constant time. For unstructured tetrahedral meshes,
we must materialize the entire adjacency list before querying begins, while for
structured meshes the neighbors can be found (computed) quickly on the fly.
Materialization of the adjacency list takes time O(E), where E is the number of
connections in the mesh. The adjacency list is materialized once per mesh and is
used for all queries, so we do not include its computation time in query response
time.

4.1 Union-Find

We make extensive use of a union-find data structure in our region growing phase
[15]. The union-find data structure represents a set of disjoint sets, with each set
identified by a representative element. The union operation takes two elements
and computes the union of the two sets that they belong to. The find operation
takes an element e as input and returns the representative element of the set
that e belongs to. The data structure is initialized with each element contained
in a separate set.

Conceptually, we represent the union-find data structure as a forest with each
tree representing one disjoint set, and the root of the tree being the representative
element (label) for the set. To take the union of two sets, we point the root of
one tree to the other. For the find operation, we return the root of the tree that
contains the element being searched for. We implement the tree using an array
as our storage data structure, as shown in Figure 4(a). The smaller of the two
roots is always made the root of the new united set, ensuring that label[i] ≤
i. This constraint means that the Find algorithm moves in one direction in
the array, improving cache performance. Also, by altering the label of all the
points in the forest, the Label method performs path compression. With path
compression, the amortized cost of N Unions is O(N) [16]. We use an array-
based implementation because pointer chasing gives poor cache behavior with
modern processors.

Figure 4(a) contains an example set of disjoint sets. The set is represented as a
forest on the top and its array representation is shown at the bottom. Figure 4(b)
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(a) The Union-Find array

Array Index 0 1 2 3 4 5
Initialization 0 1 2 3 4 5

Adding edge 1-2 0 1 1 3 4 5
Adding edge 3-4 0 1 1 3 3 5
Adding edge 4-5 0 1 1 3 3 3

(b) Operations on the Union-Find
array

Fig. 4. Example Union-Find operations

shows the state of the array during the labeling process, from initialization to
the final state. The first row shows the initialized state, while each subsequent
row shows the state of the array after the addition of one edge.

4.2 Region Growing

The input to the region growing algorithm is a graph representation G of the
mesh, plus the set L of query lines extracted from the result bit vector. The
output of the region growing phase is a partitioning of the query lines, i.e.,
a set of disjoint sets CLi. Each set CLi consists of the query lines that are
connected in the underlying mesh and have label i. To compute the CLi sets,
we use a special connected component labeling algorithm that is an extension
of the basic connected component labeling algorithm shown in Figure 5(a). The
first extension, Points, is a restatement of the basic algorithm for our data
structures. The second extension, Lines, exploits the query lines and mesh lines
to improve performance.

Figure 5(b) shows the Points algorithm, which uses the set Q of query re-
sult points as the nodes for the union-find array. Since Points does not take
advantage of the query lines embedded in the result of a bitmap index lookup,
we treat it as the baseline algorithm in our experiments. Points runs in time
O(E), where E is the number of edges in the forest formed by the query result
points.

ConnectedComponentLabeling(G)
for each vertex v ∈ V [G]

MakeSet(v)
for each edge(u, v) ∈ E[G]

if Find(u) �= Find(v)
Union(u, v)

(a) The basic connected component la-
beling algorithm

Points(G, Q)
for each point p ∈ Q

for each neighbor n of p in G
if u.Find(p) �= u.Find(v)

u.Union(u, v)

(b) The modified connected compo-
nent labeling algorithm

Fig. 5. Connected component labeling algorithms
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Lines(G, L, M)
for each line l ∈ L

for each point p ∈ l
m ← mesh line that p belongs to
for each neighbor n of p that is < m.start

if (n is not in the mesh line of p)
if u.Find(QL[n]) �= u.Find(QL[p])

u.Union(QL[n], QL[p])

Fig. 6. The Lines algorithm

Figure 6 shows the Lines algorithm, which takes advantage of query lines and
mesh lines to improve performance. The input to Lines is the mesh graph G, the
query lines L, and the mesh lines M . The union-find data structure is initialized
with the query lines rather than the query points. This considerably reduces
the size of the data structure and hence improves performance. For each point
p in the current line, Lines examines each of its mesh neighbors that precede
the mesh line that p belongs to. Lines does not consider every neighbor of p,
because no two query lines in the same mesh line can be directly connected. The
linearization of the mesh graph allows Lines to find all query lines that belong to
the same region by just checking p’s neighbors in lines that precede p’s line. This
shortcut improves performance. Lines uses a hash table QL to find the query
line that a point belongs to. Lines is still O(E) in the worst case, where E is
the number of edges in the forest formed by the query result points. However, as
the number of points in the result grows, the length of the query lines tends to
grow also, reducing the number of union operations and significantly improving
performance.

5 Interesting Mesh Orderings

To speed up the region growing phase, Lines takes advantage of the special
ordering properties of a structured mesh. Such orderings produce long mesh lines
and ensure that connectivity between points in neighboring mesh lines is ordered,
so that it is not necessary to look at all points in the query lines to decide whether
two query lines belong to the same region. For semi-structured meshes, we have
identified “canonical” mesh lines having these two properties. We have not been
able to identify mesh lines with the second property for arbitrary unstructured
meshes. However, we believe that such orderings do exist even in unstructured
meshes, as unstructured meshes also model geometrical shapes. The properties
of such shapes could lead to the creation of mesh orderings that possess both of
the above properties.

We do know how to reorder the points of an unstructured mesh so that the
mesh produces longer mesh lines than with its native ordering (i.e., ordered
by node number). To create long mesh lines, we treat the mesh as a graph.
Consider the length of the shortest path between two vertices in the graph. The
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Global Variables adjList[N][]
adjListSizes[N]
reOrder[N] ← -1
counter ← 0

DFS(point, line)
for j ← 0 to adjListSizes[point]

if (reOrder[adjList[point][j]] = -1)
if (line ∩ adjList[adjList[point][j]] = φ)

break;
if (j �= adjListSizes[point])

reOrder[adjList[point][j]] ← counter
counter ← counter + 1
line.push(adjList[point][j])
DFS(adjList[point][j], line)

ReorderMesh()
stack line
for i ← 0 to N

if (reOrder[i] = -1)
line.push(i)
DFS(i, line)
line.empty()

Fig. 7. Reordering the mesh using a modified DFS algorithm

maximum such length, i.e., the length of the longest shortest path, is the graph’s
diameter. The largest acyclic set of connected points lies on the diameter of the
graph. Iteratively finding the diameter of the graph, removing the nodes on the
diameter and finding the diameter of the remaining graph creates long mesh
lines. Graph diameter computation algorithms are O(V (E + V )), so iteratively
computing diameters of graphs is O(V 2(E+V )), which is too expensive for large
meshes, even as a preprocessing step.

As shown in Figure 7, ReorderMesh approximates CreateLongMesh-
Lines using a modified depth first search (DFS). ReorderMesh starts by pick-
ing an arbitrary point and performing a DFS from that point, changes the IDs
of the points it visits to reflect the order in which they are visited. If Reor-
derMesh is about to visit a point that it has already visited, then it chooses a
point it has not visited and starts another DFS. This repeats until Reorder-
Mesh has visited each point in the mesh. ReorderMesh visits each edge at
most once. For an unstructured mesh with 763,395 points used by the Center
for Simulation of Advanced Rockets at UIUC, the native ordering of the mesh
produced 505,273 mesh lines, with the longest having 3 points. With such short
mesh lines, Lines offers little performance improvement over Points. After a
run of ReorderMesh, the mesh had only 85,704 mesh lines (including many
singletons). As shown later, this reordering alone makes Lines up to 10 times
faster than Points.
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6 Experiments

We ran our experiments on a dual core 2.4 GHz machine with 1 GB memory
and two 500 GB disks, each with a manufacturer’s claimed bandwidth of 100
MB/s maximum. Our mesh came from a 64 processor rocket fluid simulation
at the Center for Simulation of Advanced Rockets at UIUC. The data consists
of 6 different nodal variables, X, Y, Z, Vel-X, Vel-Y, Vel-Z. The data has 46
different timesteps, with 763,394 points per timestep. The mesh is an unstruc-
tured tetrahedral mesh. We constructed a bitmap index on the Z coordinate for
one timestep, stored the mesh explicitly as an adjacency list, and materialized
the mesh lines using ReorderMesh. We also experimented with a mesh from a
plasma physics code, producing similar results that are omitted here due to space
constraints. For these experiments we have used single level WAH compressed
bitmaps. WAH compressed bitmap indexes have been shown to perform well for
high cardinality data in [10] and hence are ideal for scientific data indexing. We
do not compare our results with other indexes like R-Trees. This is because they
cannot return query lines. Given that region aggregation dominates the query
processing time, anything that does not return query lines would be inefficient.

Single Variable Queries. These experiments evaluate the difference in time
for querying an unstructured mesh using Points and Lines. We ran a series
of range queries on the Z coordinate. The ranges all start at −1.6, and end at
points between −1.4 and 1.6, in range increments of 0.1. The results from the
queries are summarized in Figure 8. The algorithms used for region growing
were Points (baseline) and Lines. Figure 8(a) shows the time for bitmap index
lookup (identical for Points and Lines), and the time for line segment extrac-
tion, query line extraction, and grouping into regions using Points or Lines.
Lines far outperforms Points, because the degree of each point in an unstruc-
tured mesh is much higher than in a structured or semi-structured mesh, and
hence Lines’s reduction of the number of points to be examined improves the
computation time considerably. As the number of query result points approaches
the number of points in the mesh, the length of the query lines increases consid-
erably. The choice of region growing algorithm has the greatest impact at this
point, for two reasons:

– The union-find data structure is much smaller if it is initialized with query
lines rather than query points.

– The number of neighbors outside the query line decreases considerably.

We conclude that although unstructured meshes lack an ordering of the con-
nectivity between mesh lines, we can still get significant performance benefits
from the use of query and mesh lines.

The other important component in query response time, the time spent on
bitmap index lookup, is quite small. In Figure 8(b), the Lines algorithm and
bitmap index lookups are sublinear in the number of query result points (more
clearly when the number of points are smaller). Points is clearly superlinear.
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(a) Total query response time.
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(b) Query response time per result point.

Fig. 8. Response time for range queries over the Z coordinate, with rocket simulation
data
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Fig. 9. Bitmap index bytes read into memory

Figure 9 shows a very interesting aspect of bitmap indexes. While the size
of the index’s bit vectors falling within the query range grows linearly with the
width of the query range, we do not read all those vectors for ranges wider than
half of the underlying domain. Beyond this point, the bitmap index lookup code
reads the bit vectors required to answer the negation of the query, and negates
the result. Hence even for very large ranges, the index lookups are inexpensive.

Figure 10 shows the performance of region retrieval algorithms for the X and
Y coordinates individually. We have combined them into a single graph to show
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Fig. 10. Response time for range queries over the X and Y coordinates, with rocket
simulation data
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(a) Time spent over the entire query.
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(b) Time spent per query point.

Fig. 11. Response time for range queries over X, Y, and Z attributes, for rocket sim-
ulation data

that factor on which query time depends is the number of query result points and
nothing else. As before, the green, brown, and blue lines show the time taken for
the region growing phase using Points, Lines, and the bitmap index lookup,
respectively. Again, Lines is much faster than Points. If we look closely we can
discern two distinct curves in the Points results. This is because of the presence
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of values from both the X and the Y coordinate query results. Such behavior is
also present in the Lines algorithm and the index lookup, but is masked due to
the scale of the graph.

Multiple Variable Queries. This set of experiments evaluates the perfor-
mance of queries over multiple attributes. As the number of attributes increases,
the bitmap index lookup time will also increase. We investigate the question of
whether it will become the dominant factor in query performance, making the
improvement in performance of the labeling algorithm superfluous.

We keep the ranges in the Z coordinates the same as in the previous exper-
iments, and add the ranges [0, 1.2], and [-.4, .4] for the X and Y coordinates,
respectively, for each query. As shown in Figure 11, when the number of points
returned by the query is low, the bitmap index lookup time dominates the query
response time. As the number of points increases, Points quickly becomes the
major cost, while the cost of Lines increases much more slowly. Figure 11 shows
the rate of growth of the query response time as a function of the number of
points. Figure 11 shows that both the index lookup and Lines are sublinear in
the number of result points, while Points is superlinear.

7 Conclusion

Previous work has shown that bitmap indexes are very effective for range queries
over scientific data. In this paper, we have shown that bitmap indexes have an
additional advantage: they help us to consolidate query result points into query
result regions very quickly. For even larger performance gains, we can exploit our
understanding of the connectivity properties of the underlying mesh, whether it
is structured, semi-structured, or unstructured. We have shown both analytically
and experimentally that when used together, these two techniques allow us to
find query result points and consolidate them into regions in expected time
that is sublinear in the number of query result points. Our new approach to
region consolidation is over ten times faster than using a traditional connected
component labeling algorithm for region consolidation, which is typically the
dominant factor in query response time.

We have extended the techniques presented in this paper to work with semi-
structured meshes (see http://dais.cs.uiuc.edu/r̃sinha/thesis skt), by exploiting
the mesh line ordering constraints found in semi-structured meshes to improve
region consolidation performance significantly.
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Abstract. We introduce AdaptPD, an automated physical design tool
that improves database performance by continuously monitoring changes
in the workload and adapting the physical design to suit the incoming
workload. Current physical design tools are offline and require specifi-
cation of a representative workload. AdaptPD is “always on” and in-
corporates online algorithms which profile the incoming workload to
calculate the relative benefit of transitioning to an alternative design.
Efficient query and transition cost estimation modules allow AdaptPD
to quickly decide between various design configurations. We evaluate
AdaptPD with the SkyServer Astronomy database using queries sub-
mitted by SkyServer’s users. Experiments show that AdaptPD adapts to
changes in the workload, improves query performance substantially over
offline tools, and introduces minor computational overhead.

1 Introduction

Automated physical design tools are vital for large-scale databases to ensure op-
timal performance. Major database vendors such as Microsoft, IBM, and Oracle
now include tuning and design advisers as part of their commercial offerings.
The goal is to reduce a DBMS’ total cost of ownership by automating physi-
cal design tuning and providing DBAs with useful recommendations about the
physical design of their databases. However, current tools [1,2,3,1] provide limited
automation; they take an offline approach to physical design and leave several
significant decisions during the tuning process to DBAs. Specifically, DBAs need
to explicitly specify representative workloads for the tuning tool. DBAs are also
required to know when a tuning session is needed and guesstimate the relative
benefit of implementing the recommendations.

Complete automation is a critical requirement of libraries which will soon
become data centers for curation of large scientific data. A notable example is
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the Sloan Digital Sky Survey (SDSS) [4] project whose data will soon be curated.
The project receives a diverse workload, which exceeds a million queries every
month. As such, finding a representative workload is challenging because query
access patterns exhibit considerable evolution within a week [5].

The straightforward approach of running an offline tool after each query or
invoking it periodically for continuous evaluation of physical design achieves most
of the automation objectives. However, this approach requires further tuning by
a DBA to ensure that the tool does not react too quickly or slowly and result
in poor design choices. Recent research [6,7,8] on the online physical design
problem focuses on index design. Bruno and Chaudhari [8] infer costs and plan
properties during the query optimization phase to efficiently decide between
various index configurations in an online fashion. In this paper, we focus on
vertical partitioning, which is complementary to index selection. In SDSS and
other scientific databases, vertical partitioning is often used because it does not
replicate data, thereby reducing space requirements [1].

Contributions. To provide complete automation, we model the physical design
problem in AdaptPD as an online problem and develop algorithms that minimize
the combined cost of query execution and the cost of transitioning between con-
figurations. We also develop efficient and accurate cost estimation modules that
reduce the overhead of AdaptPD. AdaptPD is evaluated within the Astronomy
database of SDSS. Experiments indicate up to two fold improvement in query
response time when compared with offline tuning techniques.

We develop online algorithms that search the space of physical design alter-
natives without making assumptions about the workload. Analysis shows that
the algorithm provides a minimum level of guarantee of adapting to workload
changes. Current tools provide such guarantees only for two configurations.

Our algorithms assume a general transition model in which transition costs be-
tween configurations are asymmetric and positive. This is in contrast to current
works for index design, which assume a constant cost of creating a physical de-
sign structure and zero cost of deleting them [8]. We validate our model through
experiments and show that transition costs are asymmetrical and the asymmetry
is bounded by a constant factor.

We develop a novel “cache-and-reuse” technique for query cost estimation.
The technique caches distinct query plans that do not change across several con-
figurations and reuses the plans for estimating query costs. By reusing cached
plans, the technique minimizes computationally-intensive optimizer invocations
by as much as 90%. Current tools, both offline and online, employ no such meth-
ods for query estimation and are therefore much slower to run. We also develop
the first-known technique, based on bulk-inserts, for estimating the cost of tran-
sitioning from one configuration to another. In current online tools, transition
costs are either fixed or assigned arbitrarily.

Our online vertical partitioning techniques have applicability beyond the au-
tomation of curated relational databases. For example, our algorithm for the re-
grouping of columns can also provide automation for column-store databases [9].
In particular, the algorithm is independent of whether the database is
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implemented as a row-store or a column-store. The techniques also have ap-
plicability in schema design of proxy database caches. We recently showed that
inefficiencies in the physical design of cached objects offsets some of the benefits
of deploying a cache and automated physical design can recoup that loss [10].

2 Related Work

Automated physical design tools use cost estimates from the optimizer or ana-
lytical I/O cost-based models to evaluate attribute groupings [1,2,3] for a given
query workload. These solutions are offline, i.e., they assume a priori knowl-
edge of the entire workload stream and therefore provide a single, static physical
design for the entire workload.

Current research [7,8] emphasizes the need for automated design tools that
are always-on and, as new queries arrive, continuously adapt the physical design
to changes in the workload [11]. Quiet [6] describes an incremental adaptive al-
gorithm for index selection which is not fully integrated with the optimizer. In
Colt [7], Schnaitter et al. present a similar algorithm which relies heavily on the
optimizer for cost estimation. Both approaches do not take into account transi-
tion costs. Bruno et al. present a formal approach to online index selection [8]
that takes into account transition costs. Their algorithms are limited to choos-
ing among configurations in which the only difference is the set of indices being
used. Our core algorithm is general purpose in that physical design decisions
are not limited to index selection. In this paper, the system is developed for
configurations that are vertical partitions. We also assume that transition costs
are asymmetric which is not the case in [8].

Our formulation is similar to that of task systems introduced by Borodin et
al. [12]. Task systems have been researched extensively, particularly when the
transition costs form a metric [12]. Our costs are not symmetric and do not
form a metric. This asymmetry in transition costs exists because the sequence
of operations (i.e. insertion or deletion of tables or columns) required for making
physical design changes in a database exhibit different costs. The Work-Function
algorithm [13] is an online algorithm for such asymmetrical task systems, but it
is impractical with respect to the efficiency goals of AdaptPD. The algorithm
solves a dynamic program with each query that takes θ(N2) time, even in the
best case, in which N is the number of configurations. In AdaptPD we present
a simpler algorithm that takes O(N) time at each step in the worst case.

Read-optimized column-stores have been used for commercial workloads with
considerable success [9,14]. They perform better than row-stores by storing com-
pressed columns contiguously on disk. Column-stores, however, pose several
hurdles for SDDS implementation. The implementation is well-optimized for
commercial row-store databases on existing workloads and a complete migra-
tion to column-store is prohibitively expensive. Moreover, it consists of mostly
floating point data that are not compressible using the RLE and bitmap com-
pression schemes used by column-stores, thereby eliminating a crucial advantage
of column-store. Our solution is an intermediate step at the storage-layer that
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performs workload-based regrouping of columns on a row-store and avoids in-
creased tuple reconstruction cost associated with a column-store.

Our query cost estimation module is similar to other configuration paramet-
ric query optimization techniques, such as INUM [15], and C-PQO [16]. These
techniques exploit the fact that the plan of a query across several configurations
is an invariant and can be reused to reduce optimizer calls. These techniques
reuse the plans when configurations are limited to sets of indices on tables. We
extend plan reuse to configurations that correspond to vertical partitions.

3 The AdaptPD Tool

The AdaptPD tool automates several tasks of a DBA. The DBA often per-
forms the following tasks to maintain a workload-responsive physical design: a)
Identifies when workload characteristics have changed significantly such that the
current physical design is no longer optimal. b) Chooses a new physical design
such that excessive costs are not incurred in moving from the current physical
design, relative to the benefit. The AdaptPD tool performs these tasks in an
integrated fashion by continuously monitoring the workload at the granularity
of a query; DBAs often monitor at the granularity of thousands of queries. It
uses cost-benefit analysis to decide if the current physical design is no longer ef-
ficient and a change is required. The tool consists of three components : the core
algorithm behind adaptive physical design (Section 4), a cost estimator (Section
5), and a configuration manager (Section 6).

The core algorithm solves an online problem in which the objective is to adap-
tively transition between different database configurations in order to minimize
the total costs in processing a given query sequence. Given a data model, let
D = {o1, . . . , on} be the set of all possible physical design structures that can
be constructed, which includes vertical partitions of tables, materialized views,
and indices1. A database instance is a combination of physical design struc-
tures subject to a storage size constraint T and is termed as a configuration.
Let S = {S1, . . . , SN} be the set of all possible configurations on D. The cost of
processing a query q in a configuration Si is denoted q(Si) (if q cannot be pro-
cessed in Si we set q(Si) =∞). Often it is necessary to change configurations to
reduce query processing costs. The cost for transitioning between any two given
configurations is given by the function d : S × S → !+. d is any function that
satisfies the following properties:

1. d(Si, Sj) ≥ 0, ∀i �= j, Si, Sj ∈ S (positivity);
2. d(Si, Si) = 0, ∀i ∈ S (reflexivity); and
3. d(Si, Sj) + d(Sj , Sk) ≥ d(Si, Sk), ∀Si, Sj , Sk ∈ S (triangle inequality)

In particular, d does not satisfy the symmetry property, i.e.,∃Si, Sj∈ Sd(Si, Sj)�=
d(Sj , Si). Asymmetry exists because the sequence of operations (i.e. insertion or
deletion) required for making physical design changes exhibit different costs.

1 In [11], physical design structures are referred to as access paths.
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Given σ = q1, . . . , qn, a finite sequence of queries, the objective in AdaptPD
is to obtain a sequence of configurations S = (S0, S1, ..., Sn), Si ∈ S such that
the total cost of σ under S is minimized. The total cost is defined as

cost(σ, S) =
n∑

i=1

qi(Si) +
n−1∑
i=0

d(Si, Si+1), (1)

in which the first term is the sum of costs of each query in σ under the cor-
responding configuration and the second term is the total cost to transition
between configurations in S. Note, if Si+1 = Si there is no real change in the
configuration schedule. An offline optimal algorithm OPT knows the entire σ and
obtains a configuration schedule S with the minimum cost. An online algorithm
ALG for AdaptPD determines S = (S0, ..., Sn) without seeing the complete
workload σ = (q1, ..., qn). Thus, ALG determines each configuration, Si, based
on the workload (q1, ..., qi) seen so far.

In this paper we focus on configurations that arise from different vertical
partitions in the data model [1]. Let R = {R1, . . . , Rk} be the given set of
relations in the data model. Each configuration S ∈ S now consists of a set
of fragments F = {F1, . . . , FN} that satisfies the following two conditions: (1)
every fragment Fi consists of an identifier column and a subset of attributes of
a relation Rj ∈ R; and (2) each attribute of every relation Rj is contained in
exactly one fragment Fi ∈ F , except for the primary key.

4 Algorithms in AdaptPD

In this section we describe two online algorithms for the AdaptPD tool: OnlinePD
and HeuPD. OnlinePD provides a minimum level of performance guarantee
and makes no assumptions about the incoming workload. HeuPD is greedy and
adapts quickly to changes in the incoming workload.

4.1 OnlinePD

We present OnlinePD, which achieves a minimum level of performance for any
workload. In particular, we show its cost is always at most 8(N − 1)ρ times that
of the optimal algorithm, where N is the total number of configurations in the
set S and ρ is the asymmetry constant of S. Further, to achieve this performance,
OnlinePD does not need to be trained with a representative workload. OnlinePD
is an amalgamation of algorithms for two online sub-problems: (1) the on-line
ski rental problem and (2) the online physical design problem in which the cost
function d(·) is symmetrical. We first describe the sub-problems.

Related Problems. Online ski rental is a classical rent-or-buy problem. A
skier, who does not own skis, needs to decide before every skiing trip that she
makes whether she should rent skis for the trip or buy them. If she decides to
buy skis, she will not have to rent for this or any future trips. Unfortunately, she
does not know how many ski trips she will make in future, if any. This lack of
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Fig. 1. Example of conversion from asymmetric transition costs to symmetric costs

knowledge about the future is a defining characteristic of on-line problems [17].
A well known on-line algorithm for this problem is rent skis as long as the total
paid in rental costs does not match or exceed the purchase cost. Irrespective of
the number of future trips, the cost incurred by this online algorithm is at most
twice that of the optimal offline algorithm.

If there were only two configurations and the cost function d(·) satisfies sym-
metry, the OnlinePD problem will be nearly identical to online ski rental. Staying
in the current configuration corresponds to renting skis and transitioning to an-
other configuration corresponds to buying skis. Since the algorithm can start
in any state, this leads to an algorithm that cost no more than four times the
optimal.

In larger number of configurations, the key issue in establishing a correspon-
dence with the online ski rental problem is in deciding which configuration to
compare with the current one. When the costs are symmetrical, Borodin et. al
[12] use components instead of configurations to perform an online ski rental. In
particular, their algorithm recursively traverses one component until the query
execution cost incurred in that component is approximately that of moving to
the other component. A decision is then made to move to the other component
(traversing it recursively) before returning to the first component and so on. To
identify the components, they consider a complete, undirected graph G(V, E) on
S in which V represents the set of all configurations, E represents the transitions,
and the edge weights are the transition costs. By fixing a minimum spanning
tree (MST) on G, components are recursively determined by pick the maximum
weight edge in the MST and removing it. This partitions all the configurations
into two smaller components and the MST into two smaller trees.

This algorithm is shown to be 8(N−1)-competitive [12]. ALG is α-competitive
if there exists a constant b such that for every finite query sequence σ,

cost(ALG on σ) ≤ α ∗ cost(OPT on σ) + b. (2)

OPT is the offline optimal that has complete knowledge of σ. OnlinePD extends
the above algorithm to solve the problem in which costs are asymmetrical. It
does so by transforming its complete, directed graph on S and d(·) into a com-
plete, undirected graph and applying any algorithm for online physical design in
which costs are symmetrical. We describe the transformation and use Borodin’s
algorithm to show that it increases cost at most 8(N − 1)ρ times of OPT.
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Transformation in OnlinePD. When there are only two configurations, a
simple transformation in which graph edges are replaced by the sum of transi-
tion costs gives a 3-competitive algorithm [10]. However, adding transition costs
provides poor bounds for an N node graph. To achieve better competitive per-
formance, we transform the directed graph into a undirected graph as follows:

Let G′ be the directed graph. In G′, replace every pair of directed edges (u, v)
and (v, u) with an undirected edge (u, v) and a corresponding transition cost
equal to

√
d(u, v).d(v, u) irrespective of the direction. This transforms G′ into H .

H has the following two properties because of the transformation: a) If p is a path
in H and p′ is the corresponding path in G′ (in any one direction), then cost(p)√

ρ ≤
cost(p′) ≤ √ρcost(p). The inequality allows us to bound the error introduced by
using H instead of G′. b) H violates the triangle inequality constraint. This is
shown by a simple three-node example in Figure 1(a). In this example, a three
node directed, fully connected graph with ρ = 10 is transformed to an undirected
graph in Figure 1(b). The resulting triangle does not obey triangle inequality.
OnlinePD exploits the fact that Borodin’s algorithm constructs an MST, which
makes it resilient to the triangle inequality violation.

Algorithm 1 details OnlinePD in which Algorithm 2 is a subroutine. To con-
struct the traversal before processing queries, the MST is built on a graph in
which edge weights are rounded to the next highest power of two. Let the maxi-
mum rounded weight in the MST, denoted by F in the Algorithm 1, be 2M . We
establish the proof using F .

Input: Directed Graph: G(V, Eo) with weights d(·), Query Sequence: σ
Output: Vertex Sequence to process σ: u0, u1, . . .
Transform G to undirected graph H(V,E) s.t. ∀(u, v) ∈ E weight
dH(u, v) ←

√
d(u, v) · d(v, u);

Let B(V, E) be the graph H modified s.t. ∀(u, v) ∈ E weight
dB(u, v) ← dH(u, v) rounded to next highest power of 2;
Let F be a minimum spanning tree on B;
T ← traversal(F ); u ← S0;
while there is a query q to process do

c ← q(u);
Let v be the node after u in T ;
while c ≥ dB(u, v) do

c ← c − dB(u, v); u ← v;
v ← the node after v in T ;

end
Process q in u;

end Algorithm 1: OnlinePD(G)

Lemma 1. Any edge in T of rounded weight 2m is traversed exactly 2M−m

times in each direction.

Proof. We prove by induction on the number of edges in F . For the base case,
there are no edges in F , and the lemma is trivially true. For the inductive case,
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Input: Tree: F (V, E)
Output: Traversal for F : T
if E = {} then

T ← {};
else if E = {(u, v)} then

Return T : Start at u, traverse to v, traverse back to u;
else

Let (u, v) be a maximum weight edge in E, with weight 2M ;
On removing (u, v) let the resulting trees be F1(V1, E1) and F2(V2, E2),
where u ∈ V1, and v ∈ V2;
Let maximum weight edges in E1 and E2 have weights 2M1 and 2M2

respectively; T1 ← traversal(F1);
T2 ← traversal(F2);
Return T : Start at u, follow T1 2M−M1 times, traverse (u, v), follow T2

2M−M2 times;
end Algorithm 2: traversal(F )

let (u, v) be the maximum weight edge in F used in traversal(·), and similarly
let F1 and F2 be the trees obtained by removing (u, v). Now the edge (u, v)
is traversed exactly once in each direction as required by the lemma. By the
inductive hypothesis, each edge of F1 of rounded weight 2m is traversed exactly
2M1−m times in each direction in the traversal T1, in which M1 is the maximum
rounded weight in F1. Since T includes exactly 2M−M1 traversals of T1, it follows
that each such edge is traversed 2M−m times in each direction in T . The same
reasoning applies to edges in F2.

Theorem 1 Algorithm OnlinePD is 4(N − 1)(ρ +
√

ρ)-competitive for the
OnlinePD problem with N configurations and asymmetry constant ρ.

Proof. During each traversal of F , the following two statements are true: (i)
the cost of OnlinePD is at most 2(N − 1)2M (1 +

√
ρ), and (ii) the cost of the

offline optimal is at least 2M−1/
√

ρ. The theorem will then follow as the cost
of OnlinePD during any single traversal is constant with respect to the length
of σ. We prove (i) following Lemma 1 and (ii) from induction. (See proof in
Appendix).

The bound of 8(N − 1)ρ in OnlinePDis only a worst case bound. In our exper-
iments, OnlinePD performs much better than best known offline algorithms for
this problem and tracks closely with the workload adaptive algorithm HeuPD.

4.2 HeuPD

HeuPD chooses between neighboring configurations greedily. The current config-
uration in HeuPD ranks its neighboring configurations based on the estimated
query execution costs in the neighboring configurations. HeuPD keeps track of
the cumulative penalty of remaining in the current configuration relative to ev-
ery other neighboring configuration for each incoming query. A transition is
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made once HeuPD observes that the benefit of a new configuration exceeds a
threshold. The threshold is defined as the sum of the costs of the most recent
transition and next transition. HeuPD is described in detail in [10] and presented
here as an alternative algorithm in AdaptPD. AdaptPD combines HeuPD with
cost-estimation procedures described in this paper.

Let x ∈ S be the current configuration and y ∈ S be the neighboring config-
uration in which y �= x. Define δy

max(k) as the maximum cumulative penalty of
remaining in x rather than transitioning to y at query qk (the penalty of remain-
ing in x for qk is qk(x)−qk(y)). In HeuPD, this transition threshold is a function
of the configuration immediately prior to x and the alternative configuration
being considered. Let z be the configuration immediately prior to x in which
the threshold required for transitioning to y is d(z, x) + d(x, y). The decision to
transition is greedy; that is, HeuPD transitions to the first configuration y that
satisfies δy

max(k) > d(z, x) + d(x, y).

5 Cost Estimation in AdaptPD

OnlinePD and HeuPD require O(NlogN) time and space for pre-processing and
O(N) processing time per query. In this section we describe techniques to reduce
N . Physical design tools also incur significant overhead in query cost estimation.
Transition costs are often assigned arbitrarily, providing no correlation between
the costs and actual time required to make transitions. Thus, we describe tech-
niques for accurate and efficient cost estimation for vertical partitioning.

5.1 Transition Cost Estimation

We present an analytical transition model that estimates the cost of transitions
between configurations. In an actual transition, data is first copied out of a
database and then copied into new tables according to the specification of the
new configuration. Gray and Heber [18] recently experimented with several data
loading operations in which they observed that SQL bulk commands such as
BULK INSERT command in SQL Server work much like standard bulk copy (bcp)
tools but are far more efficient than bcp as it runs inside the database. We base
our analytical model on performance results obtained from using BULK INSERT
on a 300 column table.

We observe two artifacts of the BULK INSERT operation. First, copying data
into the database is far more expensive than copying data out of the database.
Second, cost of importing the data scales linearly with the amount of data being
copied into the database. The first artifact is because data is normally copied out
in native format but is loaded into the database with type conversions and key
constraints. The linear scaling is true because BULK INSERT operations mostly
incur sequential IO. We model the cost of importing a partition P :

BCP (P ) = cRP WP + kRP (3)

in which RP is the number of rows, WP is the sum of column widths, c is
the per byte cost of copying data into the database, and k is the per row cost
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of constructing the primary key index. Thus, the estimated cost is the sum of
importing data and the cost of creating a primary key index. Index creation
cost is linear due to a constant overhead with each new insert. Constants c
and k are system dependent and can be easily determined using regression on
few “sample” BULK INSERT operations. In this model, we assume no cost for
transaction logging, which is disabled for fast copy.

The transition cost model uses Equation 3 to model the cost of moving from
a configuration Si to another configuration Sj . Let configuration Si consists of
partitions {T1i,...,Tmi}, Sj consists of partitions {T1j,...,Tnj} and Δij be the
partition set difference {T1j,...,Tnj} - {T1i,...,Tmi}, The transition cost is:

d(Si, Sj) =
∑

t∈Δij

BCP (t) (4)

5.2 Query Cost Estimation

We present an efficient and yet accurate technique for estimating query costs
across several configurations. The technique is based on the idea that cached
query plans can be reused for query cost estimation. The traditional approach
of asking the optimizer for the cost of each query on each configuration is well-
known to be very expensive [15]. By caching and reusing query plans, the tech-
nique avoids invoking the optimizer for cost estimation and achieves an order of
magnitude improvement in efficiency. To maintain high accuracy, the technique
relies on recent observations that the plan of a query across several configu-
rations is an invariant. By correctly determining the right plan to reuse and
estimating its cost, the technique achieves the complementary goals of accuracy
and efficiency. We describe conditions under which plans remain invariant across
configurations and therefore can be cached for reuse. We then describe methods
to cache the plans efficiently and methods to estimate costs on cached plans.

Plan Invariance. We illustrate with an example when the plan remains invari-
ant across configurations and when it does not. Figure 2 shows three different
configurations S1, S2, S3 on two tables T1(a,b,c,d) and T2(e,f,g,h) with pri-
mary and join keys as a and e, respectively. Consider a query q that has predicate
clauses on c and d and a join clause on a and e: select T1.b, T2.f from T1,
T2 where T1.a = T2.e and T1.c > 10 and T1.d = 0. Let the query be op-
timized in S1 with the shown join methods and join orders. The same plan is
optimal in S2 and can be reused. This is because S2’s partitions with respect to
columns c and d are identical to S1’s partitions. In S3, however, the plan cannot
be used as columns c and d are now merged into a single partition. This is also
reflected by the optimizer’s choice which actually comes with a different plan
involving different join methods and join orders.

Plan invariance can be guaranteed if the optimizer chooses to construct the
same plan across different configurations.

Theorem 1. The optimizer constructs the same query plan across two configu-
rations S1 and S2, if the following three conditions are met:
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Fig. 2. Plan reuse across configurations. (Estimated costs are for illustration only).

1. Configurations have the same number of partitions with respect to all columns
mentioned in the query.

2. The division of the predicate columns in S1 and S2 is exactly the same.
3. If δ(S1) and δ(S2) define the page size distributions of S1 and S2 respectively,

then dist(δ(S1), δ(S2)) < ε. Where dist function determines the distance
between two page distributions, and ε is a DBMS dependent constant.

Condition 1 guarantees the same number of joins in the plan for any two configu-
rations. For instance, if S2 partitions T1 into three partitions, then the optimizer
joins twice instead of once to reconstruct the rows of the original table. Since
the resulting plan is different from S1, plan reuse cannot be guaranteed. If the
query does not select on b, then the same plan can still be reused.

Condition 2 guarantees similar cardinality of the intermediate join results so
that the optimizer selects the same join order and method to find the optimal
plan. Condition 2 is illustrated in Figure 2 in which keeping c and d in different
partitions leads to a merge joins in S1 and S2. A hash join is preferred in S3
when c and d are grouped together.

Condition 3 avoids comparing drastically different configurations in terms of
page distribution. The dist function can be a standard distribution distance,
such as KL-divergence [19], and ε can be determined by experimenting over
large number of plans. That is if a large table, with say 100 columns, has two
configurations and if in the first configuration partitions are of uniform sizes,
(i.e. two partitions with each partition containing 50 columns) and in the second
configuration partitions are highly skewed (i.e. one partition has one column and
the second has all the remaining columns), then the optimizer does not construct
the same plan. In particular, the optimizer prefers to join equi-sized partition
tables earlier and delays joining skewed tables as long as possible. Hence reusing
the plan of one configuration for the other provides inaccurate results.

If above three conditions are satisfied, we prove by contradiction that the
optimizer generates the same plan for any given two configurations. Suppose the
join method and join order for Si is J1 and for Sj is J2. By our assumption, J1
and J2 are different. Without loss of generality, let J1 costs less than J2 if we
ignore the costs of scanning partitions. Since the configurations Si and Sj have
the same orders (primary key orders for all partitions), select the same number
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of rows from the partitions, and the page size of the filtered rows are similar,
J1 can still be used for Sj . Since using J1 reduces the total cost for running the
query on Sj , it implies that J2 is not the optimal plan, which contradicts our
assumption that J2 is part of the optimal plan.

The Plan Cache. We cache the query plan tree with its corresponding join
methods, join-orders, and partition scans. The stripped plan tree is uniquely
identified by <query id, partition list, page distribution>. The first part of the
string identifies the query for which the plan is cached, the second part specifies
the list of partitions in which columns in the predicate clause of the query occur,
and the third part specifies the page distribution of each partition.

Hash

Merge

T1(c) T1(d)

T2

Hash

Merge

T11 T12

T2

(a,c) (a,b,d)
65*

20*

40*

45*

80*

Cached plan structure
Plan for a matching 

configuration

Fig. 3. The plan for S1 cached with the key [query − id, T1((c), (d)), T1(128, 64)] on
the left. On the right is the estimated plan for the new configuration S2.

Cost Estimation. Cost estimation involves accurate estimation of partition
scan costs and join costs. Thus given a new configuration, we first retrieve its
corresponding plan from the cache using the key and then estimate the costs of
partition scans and join methods. Partition scan costs are estimated by comput-
ing the average cost of scanning the partition in the cached plan and multiplying
it with actual size of partition in the new configuration. Thus if c is the I/O cost
of the scanning operation in the cached plan, and s0 is the size of the vertical
partition in the cached plan, the cost of partition scan in the new configuration
is estimated as f = c× s

s0
. In this s is the size of the new partition. To estimate

the cost for joining partitions using the join methods from the cache, we adopt
the System-R’s cost model, developed by Selinger et al. [20]. The System-R cost
model gives us an upper bound on the actual join costs, and according to our
experiments predicts the plan cost with 98.7% accuracy on average.

6 Experiments

We implement our online partitioning algorithms and cost estimation techniques
in the SDSS [4] Astronomy database. We describe the experimental setup before
presenting our main results. This includes analysis of workload evolution over
time, performance of various online and offline algorithms, and accuracy of cost
estimation.
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Fig. 4. Affinity matrix (co-access frequency) for ten select attributes from the
PhotoObjAll table

6.1 Experimental Setup

Workload Characteristics. We use a month-long trace from SDSS consist-
ing of 1.4 million read-only queries. The queries consist of both simple queries
on single tables and complex queries joining multiple tables. Also, queries are
template-based [5] and can be summarized compactly using templates. How-
ever, considerable evolution occurs in the workload in that new templates are
introduced continually and prior templates may disappear entirely.

Figure 4 captures workload evolution for the first three weeks of the trace. It
shows the affinity matrix for ten attributes from a single table in which each grid
entry corresponds to the frequency with which a pair of attributes are accessed
together (ordering of attributes are the same along the row and column). The
basic premise is that columns that occur together and have similar frequencies
should be grouped together in the same relation [21]. The results show that
column groupings change on a weekly basis. An online physical design tool which
continuously monitors the workload can evaluate whether transitioning to a new
configuration will lead to a improvement in overall cost.

Comparison Methods. We contrast the performance of OnlinePD with sev-
eral online and offline algorithms. OnlinePD has polynomial-time complexity
and finds the minimal spanning tree using the Prim’s algorithm. While it makes
no assumptions about the workload, this generality comes at a cost. Namely,
given domain specific knowledge about the workload, highly tuned workload
adaptive algorithms can be designed. To measure the cost of generality, we com-
pare OnlinePD with HeuPD (Section 4.2). We also compare against AutoPart,
an existing, offline vertical partitioning algorithm. AutoPart is presented with
the entire workload as input during initialization. This incurs an initial over-
head to produce a physical design layout for the workload, but it can service the
workload with no further tuning. AutoPartPD is another physical design strategy
that employs the offline AutoPart algorithm. Unlike AutoPart, it is adaptive by
running AutoPart daily (incurs one transition at the beginning of each day) and
it is prescient in that the workload for each day is provided as input a priori.
Finally, NoPart serves as the base case in which no vertical partitioning is used.

Costs. The transition costs are estimated using the analytical model each time
a new template is introduced. The estimates show that the asymmetry constant
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(Section 4) ρ is bounded and its maximum value is approximately 3.25. The
model itself estimates the transition costs with 87% accuracy in which transition
costs are considered accurate if they are within 10% of the actual costs. Query
cost estimation is done using the cache and reuse technique, which provides 94%
accuracy in our experiments.

Database. For I/O experiments, we execute queries against a five percent
sample (roughly 100GB in size) of the DR4 database. Although sampling the
database is less than ideal, it is necessary to finish I/O experiments in a rea-
sonable time for real workloads. Given the time constraints, we compromised
database size in order to accommodate a larger workload, which captures work-
load evolution over a longer period. To sample the database, we first sample the
fact table consisting of all celestial objects (PhotoObjAll) and then sample the
remaining tables through foreign key constraints.

The data is stored in Microsoft’s SQL Server 2000 on a 3GHz Pentium IV
workstation with 2GB of main memory and two SATA disks (a separate disk is
assigned for logging to ensure sequential I/O). Microsoft SQL Server does not
allow for queries that join on more than 255 physical tables. This is required
in extreme cases in which the algorithm partitions each column in a logical
relation into separate tables. Hammer and Namir [22] show that between the two
configurations with each column stored separately or all columns stored together,
the preferred configuration is always the latter. In practice, this configuration
does not arise because the cost of joining across 255 tables is so prohibitive that
our algorithm never selects this configuration. To reduce the configuration space,
we do not partition tables that are less than 5% of the database size. This leads
to a large reduction in the number of configurations with negligible impact on
performance. The total number of configurations is around 5000.

Performance Criteria. We measure the cost of algorithms in terms of average
query response time. This is the measure from the time a query is submitted
until the results are returned. If a transition to a new configuration is necessary,
the algorithm undergoes a transition before executing the query. This increases
the response time of the current query but amortizes the benefit over future
queries. Our results reflect average response time over the entire workload.

6.2 Results

We compute the query performance by measuring its response time on the proxy
cache using the sampled database. Figure 5(a) provides the division of response
time for query execution, cost estimation using the optimizer, and transitions
between configurations. (The total response time is averaged over all queries).
OnlinePD improves on the performance of NoPart by a factor of 1.5 with an av-
erage query execution time of 991 ms. Not surprisingly, HeuPD, which is tuned
specifically for SDSS workloads, further improves performance by 40% and ex-
hibits two times speedup over NoPart. This improvement is low considering that
OnlinePD is general and makes no assumptions regarding workload access pat-
terns. NoPart suffers due to higher scan costs associated with reading extraneous
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(a) SDSS Workload (b) Adversarial Workload

Fig. 5. Distribution of response time overhead

columns from disk. Likewise, AutoPart suffers by treating the entire workload
as an unordered set of queries and providing a single, static configuration during
initialization. Even AutoPartPD did not improve response time beyond the of-
fline solution because the benefits of periodic physical design tuning is offset by
high, daily transition costs. Thus, adapting offline solutions such as AutoPart
to evolving workloads is challenging because they do not continuously monitor
for workload changes nor account for transition cost in tuning decisions.

Another interesting feature of the results is that OnlinePD incurs much lower
transition costs than HeuPD. This artifact is due to the conservative nature of
OnlinePD. It evaluates only two alternatives at a time and transitions only if
it expects significant performance advantages. On the other hand, HeuPD re-
sponds quicker to workload changes by evaluating all candidate configurations
simultaneously and choosing a configuration that benefits the most recent se-
quence of queries. This optimism of HeuPD is tolerable in this workload but can
account for significant transition costs in workloads that change more rapidly
relative to SDSS. To appreciate the generality of OnlinePD over a heuristic so-
lution, we evaluated a synthetic SDSS workload that is adversarial with respect
to HeuPD in Figure 5(b). In particular, the workload is volatile and exhibits no
stable state in the access pattern, which causes HeuPD to make frequent, non-
beneficial transitions. As a result, Figure 5(b) shows that OnlinePD exhibits a
lower query execution time and a factor of 1.4 improvement over HeuPD.

Figure 5(a) also shows the average response time of performing cost esti-
mation (time spent querying the optimizer). For AutoPart, this is a one-time
cost incurred during initialization. In contrast, cost estimation is an incremen-
tal overhead in OnlinePD and HeuPD. HeuPD incurs a ten folds overhead in
cost estimation over OnlinePD (43 ms versus 4 ms). This is because HeuPD in-
curs 93 calls to the optimizer per query. Thus, HeuPD benefits immensely from
QCE due to the large number of configurations that it evaluates for each query.
Reusing cached query plans allow HeuPD to reduce cost estimation overhead
by ten folds and avoid 91% of calls to the optimizer. Without QCE, the total
average response time of HeuPD is 1150 ms, which would lag the response time
of OnlinePD by 4 ms. As such, HeuPD scales poorly as the number of alternative
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Fig. 6. Average daily response time overhead normalized to NoPart

configurations increases. This make OnlinePD attractive for proxy caches which
receive a continuous stream of queries and decisions have to be made rapidly.

Finally, we refer to the average transition cost (cost of changing between
configurations) from Figure 5(a). AutoPart only incurs a single transition dur-
ing initialization while NoPart incurs no transition cost. AutoPartPD incurs the
highest overhead, requiring a complete reorganization of the database on a daily
basis. HeuPD makes 768 minor configuration changes compared with 92 for
OnlinePD which leads to a three times per query overhead in transition cost
(113 ms compared with 43 ms). Thus, while OnlinePD is slower than HeuPD
at detecting and adapting to changes in the workload, it benefits with fewer
transitions that disrupt the execution of incoming queries.

Figure 6 charts the average daily response time (both query execution and
transition cost) for various algorithms normalized to NoPart. There is signifi-
cant fluctuations in average response times resulting from workload changes over
time. While all algorithms improve on NoPart, AutoPart tracks most closely with
NoPart since neither implements changes to the physical design after initializa-
tion. OnlinePD and HeuPD further improves response time, but exhibits several
performance spikes (most notably on days one, six, and thirteen) that perform
no better than NoPart. These indicate significant workload changes that cause
more transitions to occur that delay completion of certain queries. The tran-
sition overhead is greatest for OnlinePD and HeuPD on day one and remains
more stable afterward because at initialization, all tables are unpartitioned.

Figure 7 shows the cumulative distribution function (CDF) of the error in cost
estimation using QCE instead of the optimizer. This error is determined by:

abs

(
1−

(
QCE est. query cost

Optimizer est. query cost

))
(5)

Consider the dashed-line in the plot, which corresponds to the errors in cost
estimation for all queries. Although the average cost estimation error is only
1.3%, the plot shows that the maximum error in cost estimation is about 46%,
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Fig. 7. Error in cost estimation for QCE. Dashed line represents all queries and solid
line represents queries with higher than 5 unit cost.

with about 14% of the estimations with more than 10% error. Inspecting high
error estimations reveals that the errors occur in queries with estimated costs
below 5 optimizer cost units. We plot the CDF for errors after removing those
light queries. The solid line in Figure 7 shows the cost estimation error for these
filtered set of queries. The maximum error for the filtered queries is about 11%,
and about 94% of the estimations have less than 5% error.

The inaccuracies in the light queries comes from the approximations discussed
in Section 5.2. Since the contribution of light queries to workload cost is insignif-
icant compared to the heavy queries (4% of our workload), the inaccuracy in es-
timating their costs does not affect the configurations selected by our algorithm.

7 Summary and Future Work

In this paper, we have presented AdaptPD, a workload adaptive physical design
tool that automates some of the DBA tasks such as estimating when to tune
the current physical design and finding representative workloads to feed the
physical design tool. The tool quantitatively compares the current configuration
with other possible configurations, giving the DBA a good justification of the
usefulness of the recommended design. Automation of such tasks reduces the
cost of ownership of large database systems such as the SDSS in which physical
design tuning is routinely performed by DBAs. Since these tools gradually change
ownership from DBAs to curators, it is essential to minimize the overhead of
administration and yet ensure good performance.

We have developed novel online techniques that adapt to drastic changes in
the workload without sacrificing the generality of the solution. The techniques
are supported by efficient cost estimation modules that make them practical for
continuous evaluation. Experimental results for the online algorithm show signif-
icant performance improvement over existing offline methods and tracks closely
with heuristic solution tuned specifically for SDSS workloads. These tuning tools
are not specific to vertical partitions and can be extended to index design, which
is our primary focus going forward.
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Appendix: Competitiveness of OnlinePD

We prove that OnlinePD algorithm is O(4ρ(N − 1)) competitive. Reusing the
notations from Section 4, in Algorithm 1 we construct the graph B by rounding
up the cost of edges on the undirected transition graph to a power of two.
We build an MST on B and call it F . We then build a traversal on F using
Algorithm 2 and denote that traversal as T . Let the maximum rounded weight
in the tree F be 2M . The following proof is inspired by the proof in [12]

Lemma 2. If the maximum edge weight in T is 2M , any edge in T of rounded
weight 2m is traversed exactly 2M−m times in each direction.

Proof. We prove by induction on the number of edges in F . For the base case,
there are no edges in F , and the lemma is trivially true. For the inductive case, let
(u, v) be the maximum weight edge in F used in the traversal(·), and similarly
let F1 and F2 be the trees obtained by removing (u, v). Now the edge (u, v)
is traversed exactly once in each direction as required by the lemma. By the
inductive hypothesis, each edge of F1 of rounded weight 2m is traversed exactly
2M1−m times in each direction in the traversal T1, in which M1 is the maximum
rounded weight in F1. Since T includes exactly 2M−M1 traversals of T1, it follows
that each such edge is traversed 2M−m times in each direction in T . Exactly the
same reasoning applies for edges in F2.

Theorem 2 Algorithm OPDA is 4(N−1)(ρ+
√

ρ)-competitive for the OnlinePD
problem with N configurations and asymmetry constant ρ.

Proof. We shall prove that during each traversal of F : (i) the cost of OPDA is
at most 2(N − 1)2M (1 +

√
ρ), and (ii) the cost of the offline optimal is at least

2M−1/
√

ρ. The theorem will then follow as the cost of OPDA during any single
traversal is constant with respect to the length of σ.

To prove (i), recall from Lemma 2 that any edge in T of rounded weight 2m

is traversed exactly 2M−m times. Thus the total rounded weight traversed for
an edge is 2 · 2M−m · 2m = 2 · 2M . By construction of the algorithm the total
processing cost incurred during T at a node just before a traversal of this edge
is 2 · 2M . The total transition cost incurred during T in a traversal of this edge
is at most 2 · 2M√ρ, since the cost d(·) can be at most

√
ρ times larger than the

corresponding dB(·). This proves (i) as there are exactly N − 1 such edges.
We prove (ii) by induction on the number of edges in F . Suppose F has at least

one edge, and (u, v), F1, and F2 are as defined in traversal(·). If during a cycle of
T , OPT moves from a vertex in F1 to a vertex in F2, then since F is a minimum
spanning tree, there is no path connecting F1 to F2 with a total weight smaller than
dB(u, v)/(2

√
ρ) = 2M−1/

√
ρ. Otherwise during the cycle of T , OPT only stays in

one of F1 or F2; w.l.o.g. assume F1. If F1 consists of just one node u, and OPT
stays there throughout the cycle of T , then by definition of the algorithm, OPT
incurs a cost of at least dB(u, v) = 2M ≥ 2M−1/

√
ρ. If F1 consists of more than one

node, then by the induction hypothesis, OPT incurs a cost of at least 2M1−1/
√

ρ
per cycle of T1. Since during one cycle of T there are 2M−M1 cycles of T1, OPT
incurs a cost of at least 2M−1/

√
ρ. This completes the proof.
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Abstract. High-dimensional indexing has been very popularly used for
performing similarity search over various data types such as multimedia
(audio/image/video) databases, document collections, time-series data,
sensor data and scientific databases. Because of the curse of dimension-
ality, it is already known that well-known data structures like kd-tree,
R-tree, and M-tree suffer in their performance over high-dimensional
data space which is inferior to a brute-force approach linear scan. In
this paper, we focus on an approximate nearest neighbor search for two
different types of queries: r-Range search and k-NN search. Adapting
a novel concept of a ring structure, we define a new index structure
MLR-Index (Multi-Layer Ring-based Index) in a metric space and
propose time and space efficient algorithms with high accuracy. Eval-
uations through comprehensive experiments comparing with the best-
known high-dimensional indexing method LSH show that our approach
is faster for a similar accuracy, and shows higher accuracy for a similar
response time than LSH.

1 Introduction

A similarity search finds a small set of objects near a given query. Here, similarity
between objects is often measured by their features, which are points in a high-
dimensional vector space. Efficient similarity searches have become more and
more important in various domains such as multimedia (audio/image/video),
web documents, time-series, sensor and scientific areas because of the rapid
mounting of these datasets and the increasing desires of modern users for fast
and scalable systems.
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scalable [1]. Fortunately, in many cases, it is not necessary to insist on exact
answers [2], and recent research has focused on this direction: searching approx-
imate nearest neighbors (or ANN ) [3,4,5,6]. But even for this relaxed problem,
ANN, there exist fundamental challenges to achieve time and space efficiency
with high accuracy performance.

An interesting approach VQ-Index [3] achieved an efficient compression by
using a vector quantization technique which resulted in a smaller search space.
Quantization was conducted by partitioning the space into regions and assigning
a representative to each region so that data points were mapped to the represen-
tative of the region they fall into. One problem is that it is still had to perform
a linear scan over the representatives repeatedly to retrieve similar representa-
tives and then again over the candidates from the region of the resulted similar
representatives, which made the searching procedure inefficient.

The best-known solution LSH [4,6] for ANN problem shows fast response
time for a given query, but it needs to use multiple (sometimes over hundreds
of) hash tables to achieve high accuracy, while a linear scan takes linear time but
does not require any additional memory usage. Our object is to find a solution
which shows a similar or better time efficiency to LSH using less memory.

In this paper, based on the vector quantization idea, but instead of conduct-
ing a linear scan over the representatives of the regions, we utilize a novel index
structure MLR-Index (Multi-Layer Ring-based Index) which adapts a ring
structure first introduced in a distributed network context [7]. Each representa-
tive (named search node) keeps track of O(log N) peers and organizes them into
a set of concentric rings centered on itself with exponentially increasing radii.
This multi-layer ring structure provides not only the immediate vicinity informa-
tion but also outer pointers to remote regions. Instead of linear performance of
simple vector quantization, it can find the nearest search node in O(log N) steps.
Here, N is the number of search nodes not the number of all data objects. In
our experiments, MLR-Index based similarity search algorithms showed several
times faster response time than LSH for similar accuracy performance.

The followings are the contributions of this paper.

– We design a novel index structure MLR-Index that fits in a high-dimensional
space with quantized vectors.

– We propose approximate algorithms which are time and space efficient with
high accuracy for two different nearest neighbor search problems. We also
propose even faster methods by using an additional data structure with
similar accuracy.

– We develop scalable hierarchical search algorithms to maximize performances
for dense regions which are clustered in multi-levels.

– We perform extensive experiments on real datasets comparing with the state-
of-the-art high-dimensional indexing algorithm LSH [4,6] which show the
superior performance of MLR-Index.

The remainder of the paper is structured as follows. Section 2 describes related
works on high-dimensional similarity search. Section 3 defines terms and prob-
lems of this paper, and introduces concepts of the search node and its multi-layer
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ring structure. Based on these concepts, an efficient method for finding nearest
search node is described in Sect.4. Section 5 proposes the basic similarity search
algorithms. Section 6 describes more efficient algorithms using m-NS structure.
In Sect.7, a hierarchical search method for a dense region is proposed to utilize
a multi-level clustered dataset. Experimental analyses are described in Sect.8.
We conclude our work in Sect.9.

2 Related Works

Previously, two different types of data structures were proposed for efficiently
indexing massive data objects in a vector space. Space partitioning idea was
adapted for grid file [8], K-D-B-tree [9] and quadtree [10] that divided the data
space along predetermined lines. Data-partitioning index trees such as R-tree
[11], R+-tree [12], R*-tree [13], X-tree [14], SR-tree [15], M-tree [16], TV-tree
[17] and hB-tree [18] divided the data space based on the distribution of data
objects. These indexing methods worked well for a low-dimensional space, but
most of them showed worse performance in higher-dimensional datasets [1,2,19].

VA-file [1] was the first indexing scheme that claimed to show better perfor-
mance than brute-force linear scan in a high-dimensional similarity search. It
tried to use compression techniques to improve the query performance. Since it
quantized each dimension separately, the resulting regions became rectangular
hyperboxes, which resulted in only a suboptimal partition of the data space.
VQ-Index [3] tried to fix this problem by maintaining complex polytopes which
represented data more accurately.

Recently, LSH [4,6] has become one of the best-known algorithms for a high-
dimensional similarity search. It used a family of locality sensitive hash functions
that hashed nearby objects into the same bucket with a high probability. For a
given query, the bucket where it was hashed became the candidate set of similar
objects. To achieve high search accuracy, LSH needed to use multiple (sometimes
hundreds of) hash tables to generate a good candidate set.

3 Preliminary

In this section, we define two types of nearest neighbor search problems in a
formal way, and introduce novel concepts of a search node and its ring structure
that is used to find the nearest search node.

3.1 Problem Settings

We first define several terms that are commonly used in this paper. Euclidean
distance is used as a metric in the dataset, but any other metric can be used for
the following definitions.

Definition 1. Define V to be a high-dimensional vector space Rd where d ≥ 20
and D to be a finite set of data points where D ⊂ V. Define dist(p, q) to be the
Euclidean distance between two points p and q in V. Define Bp(r) to be a ball
with radius r centered at p in V.
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We assume the input data is already well-formatted as a high-dimensional vector
space. (Developing better ways to extract features from a dataset is out of the
scope of this paper.) By doing this, we are able to apply our algorithms to any
kind of high-dimensional dataset such as scientific data and multimedia data
which can be expressed as a high-dimensional vector space D defined in Def 1.
Note that a query q is a point in V , and a data point is a point in D. That is, it
is possible that a query q might be a point which is not a data point.

Now we state our two main problems in this paper. These two problems look
similar, but we need to develop different solutions for each problem because of the
efficiency issue caused by the large size of the data set. Traditionally, the solution
of the r-range search problem has been used to solve k-nearest neighbor (or k-
NN) problem, which used bigger r values repeatedly until at least k candidates
are obtained and then sorted them to find the k nearest neighbors.

Problem 1. (r-Range Search) Given a radius r and a query q, find all data
points of D that reside in Bq(r).

Problem 2. (k-NN Search) Given a constant k and a query q, find k nearest
data points of q in D.

3.2 Search Node

In V, we choose N points, called search nodes, that facilitates an efficient nearest
neighbor search. Making all data points in D search nodes will cause a memory
issue since each search node entails additional structures explained in Section
3.3. In this paper, we partition the data set D into N clusters and define search
nodes as their centers. The radius of a cluster will be used to prune the search
space of the nearest neighbors.

Definition 2. Let C be a cluster of data points in D and p be its center. We say
p is a search node. Denote C(p) to be C and S to be a set of all search nodes.
Define radius(C(p)) as the maximum distance between the center p of the cluster
C(p) and the data points in C(p). That is, radius(C(p)) = max({dist(p, q)|q ∈
C(p)}). Define size(C(p)) as the number of data points in a cluster C(p).

There is a trade-off between the size of the cluster and the performance. Small
sized clusters imply a small number of candidates that need to be checked or
sorted which leads to faster response time. To make clusters small, we usually
need a big number of clusters which requires more computations to conduct
clustering algorithms. This burden appears only once as a preprocessing step,
so we prefer small sized clusters for better performance. To achieve extreme
performance, we apply multi-level clustering for big sized dense clusters since
we might have dense clusters even for a large number of clusters. We utilize this
hierarchical structure in Section 7 to achieve better performance.

To find the nearest neighbors of a query point, we conduct a search on S
first, and then refine the search to the data points. A search node retains a ring
structure for this procedure, and sometimes we use additional data structure, a
list of the m nearest search nodes, for a faster search.
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Fig. 1. Multi-layered ring structure with exponentially increasing radii

Definition 3. For a search node p, we define m-NS(p) as a list of m nearest
search nodes of p.

3.3 MLR-Index

We adapt the concept of multi-layered ring structure from [7] to efficiently find
the nearest search node (or its cluster) of a given query q. Each search node keeps
track of a small, fixed number of other search nodes in V and organizes the list
of peers into concentric, non-overlapping rings. This ring structure favors nearby
neighbors by providing information on search nodes in the immediate vicinity.
Moreover, its exponentially increasing ring radii enable a sufficient number of
out-pointers to far away regions to facilitate rapid search.

Definition 4. For a search node p, the i-th ring has inner radius ri = αsi−1

and outer radius Ri = αsi for 0 < i < i∗ where i∗ is a user defined parameter.
For the innermost ring with i = 0, we define r0 = 0 and R0 = α. All rings with
i ≥ i∗ are collapsed into a single outermost ring with ri∗ = αsi∗ and Ri∗ =∞.

Each ring defined above keeps track of at most M search nodes in it. If there are
more than M search nodes, then the subset of M search nodes that forms the
polytope with the largest hypervolume are selected. Nodes that are geographi-
cally diverse instead of clustered together enable a node to forward a query to a
larger region.

The number of search nodes per ring, M , represents the trade-off between
performance and overhead. A large M increases the accuracy and the search
speed by providing better query routing, but entails more memory at the same
time. In [7], it is proved that by the use of a multi-layer ring with M = O(log(N)),
we can find the nearest search node in O(log(N)) steps where N is the number
of search nodes in V. Note that N is much smaller than the total number of data
points in D.
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Algorithm FNSN
input: A query point q
output: Nearest search node p of q
begin
1. randomly choose any search node p

2. d ← dist(p, q), d̃ ← ∞
3. while d < d̃

4. d̃ ← d
5. d ← the minimum distance between the search nodes in Ring(p) and q

6. if d < d̃
7. p ← the search node with the minimum distance d
8. output p
end

Fig. 2. Finding Nearest Search Node

Finally, we define MLR-Index which are composed of all structures mentioned
above.

Definition 5. We define MLR-Index to be a set of all search nodes together
with their ring structures and radius values. For a search node p, we denote
MLR-Index(p) to be p’s ring structure together with radius(C(p)). Optionally,
we add m-NS structure of each search node into MLR-Index to improve time
efficiency.

The total memory usage of MLR-Index is N×((i∗+1)×M +m) = O(Nlog(N))
for M = O(log(N)). Since N $ |D|, we can claim the space efficiency of MLR-
Index.

4 Finding Nearest Search Node

To answer a range query or k-NN search, we begin with finding the nearest
search node p of a query point q. The FNSN algorithm described in Fig.2 shows
the procedure of finding the nearest search node. First, we randomly choose a
search node p and measure the distance between p and q. Then, we compute the
minimum distance between q and the search nodes in MLR-Index of p. If we find
a closer search node, then find the minimum distance between its index structure
and q. This procedure is repeated until we cannot find any closer search node.

We extend the FNSN algorithm with an additional input parameter A which
retrieves the nearest search node except the nodes in A. In this way, we can find
the second nearest search node p̃ of q by applying FNSN algorithm twice: p ←
FNSN(q) and p̃ ← FNSN(q, {p}). Similarly, repeating the procedure described
above m times, we can find m-th nearest search node of q.

A theoretical bound that guarantees logarithmic performance of this proce-
dure is shown in [7]. For N search nodes, the running time of FNSN becomes
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O(log(N)) if each ring retains M = O(log(N)) search nodes, and sometimes can
assure to find even the exact nearest search node if several conditions are satis-
fied. In the experiments, we show that a small M is sufficient for a fast response
with high accuracy.

5 Basic Similarity Search

In this section, we propose two methods BRS1 and BKS1 for similarity search
mainly using MLR-Index and the FNSN algorithm. The main idea is to exe-
cute FNSN on MLR-Index repeatedly until there exists no more cluster that
intersects with the candidate solution set. Due to the logarithmic performance
of FNSN, these basic algorithms work efficiently for a small number of itera-
tions. Maximizing the candidate set (in a reasonable way for fast response time)
ensures high accuracy performance, but later in Sect.6 we will discuss using
an additional data structure that facilitates higher time efficiency by reducing
the size of the candidate set. The details of BRS1 and BKS1 are shown in the
following subsections.

5.1 r-Range Search

The BRS1 algorithm described in Fig.3 is the basic algorithm for the r-range
search problem that uses MLR-Index. It sequentially finds next nearest search
nodes until there is no more search node whose cluster intersects with Bq(r) for a
given query q and a query range r. The union of the clusters which intersect with
r-range search area Bq(r) becomes a set C̃ whose data points form a candidate
set of the range search query. Since each cluster has a small number of data
points as mentioned in Sect.3.2, the candidate set is also in a small size which
enables efficient computation.

Algorithm BRS1
input: A query point q and a range parameter r
output: Data points within Bq(r)
begin
1. p ← FNSN(q)
2. while dist(p, q) − radius(C(p)) ≤ r

3. C̃ ← C̃ ∪ C(p)
4. S ← S ∪ {p}
5. p ← FNSN(q, S)
6. output points in C̃ which lies within Bq(r)
end

Fig. 3. Basic r-Range Search Using Next Nearest Search Node
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The following theorem shows the theoretical legitimacy of this approach.

Theorem 1. Let q be a query and pi be the i-th nearest search node of q. Let
R be the maximum radius of all clusters. Suppose j is the smallest number such
that dist(q, pj) becomes bigger than R + r. Then, there exists no i that is bigger
than j such that any data point in C(pi) lies within Bq(r).

Proof. Proof by contradiction. Suppose that i > j and there exists a data point
a in C(pi) ∩Bq(r). Then, r ≥ dist(q, a) ≥ dist(q, pi) −R ≥ dist(q, pj)−R > r.
This results in a contradiction. Hence, proved.

In the experiments, we found that it was enough to use radius(C(p)) instead of
the maximum radius R of all clusters. Since usually a small number of search
nodes near the query point is sufficient for high accuracy, we might conduct
FNSN for a fixed number of iterations for a reasonable accuracy with faster
response time. Note that, we iteratively find the next nearest search nodes, not
retaining them into the memory in advance.

5.2 k-NN Search

The BKS1 algorithm described in Fig.4 is the basic algorithm for the k-NN search
problem that uses MLR-Index structure. As we did for range search, this method

Algorithm BKS1
input: A query point q and k
output: k-NN data points of q
begin
1. p ← FNSN(q)
2. if |C(p)| ≥ k

3. d ← dist(q,kth nearest point of q in C(p))
4. C̃ ← apply BRS1 with r = d
5. else
6. A ← C(p)
7. S ← S ∪ {p}
8. while |A| < k
9. p̃ ← FNSN(q, S)
10. S ← S ∪ {p̃}
11. A ← C(p̃)
12. d ← dist(q,kth nearest point of q in A)
13. C̃ ← apply BRS1 with r = d

14. output k-NN points of q within C̃
end

Fig. 4. Basic k-NN Search Using Next Nearest Search Node
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also executes the FNSN algorithm repeatedly to find nearest search nodes of a
query q. First, we find the nearest search node p by applying FNSN. If C(p) con-
tains at least k points, then find the kth nearest point of q within C(p) and draw
a ball Bq(r) considering its distance as a radius r. Then apply the BRS1 method
with the resulted radius r and find the k nearest data points among them.

If C(p) contains less than k points, then execute the FNSN algorithm until
the union A of the clusters of the next nearest search nodes of q contains at least
k points. Then find the kth nearest point of q within A and draw a ball Bq(r)
considering its distance as a radius r. Then apply the BRS1 method with the
resulted radius r and find the k nearest data points among them.

The following theorem shows the theoretical legitimacy of this approach.

Theorem 2. Let q be a query and pi be the i-th nearest search node of q. Let
R be the maximum radius of all clusters. Let j be the smallest number such that
|
⋃
i≤j

C(pi)| contains at least k data points. Let o be the kth nearest data point of

q in |
⋃
i≤j

C(pi)| and d be the distance between o and q. Suppose that m is the

smallest number such that dist(q, pm) becomes bigger than R + d. Then, there
exists no i which is bigger than m such that C(pi) contains any of the k nearest
data points of q.

Proof. Proof by contradiction. Suppose i > m and that there exists a data point
ô in C(pi) which is one of k-NN of q. Then, dist(q, ô) ≥ dist(q, pm)−R > d. But
Bq(d) already contains at least k data points. This results in a contradiction.
Hence, proved.

In BKS1, we do not have to retain additional structures like m-NS that require
morememory usage. The running time ofFNSN is O(log(N)) and it becomes more
efficient to find nearest search nodes in a series, since they are not far away from
each other. Usually, we need to find only a few next nearest search nodes to achieve
high accuracy.Note that, similar to BRS1, we found that radius(C(p)) was enough
to use instead of the maximum radius R of all clusters in the experiments.

6 m-NS Based Similarity Search

In this section, we propose two methods BRS2 and BKS2 for similarity search
which uses additional structure m-NS (m-Nearest Search Nodes) for MLR-
Index. The main idea is to expand the search space by utilizing m-NS instead
of repeatedly executing FNSN on MLR-Index to achieve faster response time.
Even though FNSN shows logarithmic performance, a large number of FNSN
iterations must be a bottleneck of the performance of BRS1 and BKS1. The
details of BRS2 and BKS2 are shown in the following subsections.

6.1 r-Range Search

Based on the heuristic that nearest search nodes of a query point q and those
of q’s nearest search node p are quite common, we add m-NS list of each search
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Algorithm BRS2
input: A query point q and a range parameter r
output: Data points within Bq(r)
begin
1. p ← FNSN(q)
2. for p̃ ∈ m-NS
3. if dist(p̃, q) − radius(C(p̃)) < r

4. C̃ ← C̃ ∪ C(p̃)
5. output points in C̃ which lies within Bq(r)
end

Fig. 5. Basic r-Range Search Using m-NS

node together into MLR-Index for a faster search with similar quality of results.
The details of this method is described in Fig 5. We first use FNSN algorithm
to find the nearest search node p of a given query q. Then, we find the search
nodes among m-NS whose clusters intersect with Bq(r). By doing so, we get
a set C̃ of union of those clusters, whose data points form a candidate set of
the range query. Finally, the desired points are found within C̃. In this way,
we can reduce the search space from the whole dataset to a small number of
clusters. This algorithm BRS2 uses an additional precomputed data structure
m-NS for each node to get a faster response with similar accuracy performance
to BRS1.

6.2 k-NN Search

As we did for a range search problem, we can also achieve faster response time
than BKS1 by use of an additional data structure m-NS of each search node.
The main procedures of this algorithm BKS2 are described in Fig 6. At first, we
execute the FNSN algorithm to find the nearest search node p from a query point
q. If C(p) contains at least k points, then find the kth nearest point of q within
C(p) and draw a ball Bq(r) considering its distance as a radius r. Include the
clusters of m-NS(p) search nodes which intersect with Bq(r) into the candidate
set C̃.

If C(p) contains less than k points but the union of clusters A of m̃-NS(p)
contains at least k points (m̃ ≤ m), then find the kth nearest point of q within A
and draw a ball Bq(r) considering its distance as a radius r. Include the clusters
of m-NS(p) search nodes which intersect with Bq(r) into the candidate set C̃.

Sometimes, we might have a case where even the union of the clusters of m-
NS(p) contains less than k points. In this case, since we cannot find k-NN using
the clusters of m-NS, we use the FNSN algorithm to find more clusters near the
query point q. Only in this case, we cannot utilize a precomputed m-NS list of
nearest search nodes. But since this case rarely happens, we still can use this
algorithm for the purpose of higher efficiency.
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Algorithm BKS2
input: A query point q and k
output: k-NN data points of q
begin
1. p ← FNSN(q)
2. if |C(p)| ≥ k

3. C̃ ← k-NN of q within C(p)
4. d ← dist(q,kth nearest point of q in C(p))
5. for p̃ ∈ m-NS(p)
6. if dist(p̃, q) − radius(C(p̃)) < d

7. C̃ ← C̃ ∪ C(p̃)
8. else if |clusters of m-NS(p)| < k
9. apply FNSN repeatedly until we get m̃ such that |clusters of m̃-NS(p)| ≥ k

10. C̃ ← union of clusters of m̃-NS(p)
11. else
12. find smallest m̃ such that |clusters of m̃-NS(p)| ≥ k
13. A ← union of clusters of m̃-NS(p)
14. C̃ ← k-NN of q within A
15. d ← dist(q,kth nearest point of q in A)
16. for p̃ ∈ m-NS(p) − m̃-NS(p)
17. if dist(p̃, q) − radius(C(p̃)) < d

18. C̃ ← C̃ ∪ C(p̃)
19. output k-NN points of q within C̃
end

Fig. 6. Basic k-NN Search Using m-NS

7 Hierarchical Similarity Search

As previously mentioned, we do the partitioning on the dataset as the vector
quantization for efficient data compression. If a cluster is dense, then we may
partition it again into smaller clusters to enable more efficient search. In this
section, we provide algorithms that utilize this kind of hierarchical property.
Note that we extend the FNSN algorithm to work in a restricted domain to
enable searching the nearest node within a partition.

7.1 r-Range Search

To answer a hierarchical range query, we apply the basic range query algorithms
levelwise. We first find high level clusters that intersect with a query range
Bq(r), and for the resulted clusters we perform basic range query algorithms
again to retrieve data points within radius r of a query point q. In this way, we
can perform the search efficiently even though the first level of clusters contain
many data points. That is, instead of performing a brute-force linear scan on a
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Algorithm HRS
input: A query point q and a range parameter r
output: Data points within Bq(r)
begin
1. find high level clusters that intersects with Bq(r) using BRS
2. for each high level cluster C found above
3. apply BRS on C
4. output data points within Bq(r)
end

Fig. 7. Hierarchical r-Range Search

Algorithm HKS
input: A query point q and k
output: k-NN data points of q
begin
1. p ← FNSN(q)
2. apply BKS within C(p)
3. d ← dist(q,kth nearest point of q in C(p))
4. apply HRS with parameter d
5. output k-NN points of q
end

Fig. 8. Hierarchical k-NN Search

large number of data points of a first level cluster, we do a logarithmic search on
its smaller partitions and perform a linear scan on a reduced set of candidates
which minimizes the computational cost.

7.2 k-NN Search

To search the k nearest neighbors of a given query q in a hierarchical structure,
we make use of all algorithms we developed so far. We first find the nearest
search node p at the first level. Then we apply BKS within the first-level cluster
C(p) and get the k nearest points of q from it. We calculate the k-th minimum
distance d from q to points in C(p), and based on d we apply our hierarchical
range search algorithm HRS to the entire space except C(p). Finally, we combine
the results and output the k nearest data points of q by sorting them in ascending
order based on the distance between q and them.

Note that we can apply any version of the BRS algorithms in the hierarchical
search algorithms HRS and HKS.
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8 Experiments

This section presents extensive experimental evaluations on our proposed algo-
rithms. Experiments were conducted on a computer with the following config-
uration: CPU Intel Pentium 4 2.26GHz, Memory 2GB and OS Redhat Linux
2.6.18 Kernel. Two standard high-dimensional datasets, Corel [20] and CovType
[21], were used for the experiments from UCI repository of machine learning
databases. The Corel dataset contains image features extracted from a Corel
image collection. The four sets of features are based on the color histogram,
color histogram layout, color moments, and co-occurence. CovType was origi-
nally proposed to predict forest cover type from cartographic variables which
were derived from US Geological Survey (USGS) and US Forest Service (USFS)
data. Table 1 summarizes the features of two datasets.

Table 1. Statistics for datasets used in experiments

Dataset Size Dimensions Application

Corel 66,616 89 Content based image retrieval
ConType 581,012 54 Finding similar forest cover type

To evaluate time performance, we measured the average execution time per
query. To evaluate retrieval quality, we used the recall measure. Linear scan was
used for the exact solutions of recall measure. We did not show precision and
error rate results in this paper because they showed similar tendencies with recall.
We used linear scan and the most recent version of LSH [6] for the comparisons
with our proposed algorithms. LSH has a parameter to control the speed and
the quality, and we set it as 0.5 in our experiments as higher query speed results
in lower retrieval quality.

8.1 r-Range Search

Fig.9 shows the average query time of r-range search on two different datasets
Corel and CovType. Our algorithms show discriminant performance over linear
scan and LSH. Note that the vertical axes in Fig.9 are in logarithmic scales.

The following experiments used Corel dataset with size = 66616, r = 3,
m = 3, i∗ = 5, M = 20, and N = 2000 by default.

Fig.10 shows the average query times and the corresponding recall values for
various r values. For a small query range r, most of the algorithms show similar
performances, but once r becomes bigger, our proposed algorithms show better
performances than linear scan and LSH. It is noticeable that LSH showed slower
query time and lower recall than our algorithms for each r value.

Fig.11(a) and Fig.11(b) show the average query times and the corresponding
recall values for various M values. Here, M is the number of search nodes per
ring. If the ring retains more search nodes, it must show faster and more accurate
results, which turned out to be true.
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Fig. 10. Range search for various r values

Fig.11(c) and Fig.11(d) show the average query times and the corresponding
recall values for various N values. Here, N is the number of clusters, or total
number of search nodes in a dataset. As the number of clusters becomes bigger,
the size of each cluster becomes smaller which leads to higher accuracy but a
slower response time because it needs to search more clusters.

For faster response time, we developed m-NS structure which is used in BRS2
and HRS2. Fig.11(e) and Fig.11(f) show that m-NS structure improves not only
the response time but also the accuracy of the algorithms. Retaining 2-NS showed
higher than 96% of accuracy for both methods.

To achieve higher performance, we can increase our two parameters M and
m, but it also causes a bigger amount of memory usage.
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8.2 k-NN Search

The k-NN search experiments were done by randomly choosing 100 samples from
each dataset. Because of the page limit, we only analyze several results over
different k values in this section, since k-NN search showed similar tendencies
with r-range search for various settings of our system parameters.
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Fig. 12. k-NN search for various k values

Fig.12 shows the average query times and the corresponding recall values for
various k values. For a small number of k ≤ 50, our proposed algorithms show
comparable performances to LSH, but once k becomes bigger, our algorithms
maintain high accuracy in a stable way while LSH dramatically drops down its
accuracy.

Overall, we observe the following results for both r-range search and k-NN
search algorithms:

– Using the additional m-NS structure is faster than only using the ring struc-
ture as MLR-Index to achieve similar retrieval quality, because directly using
m-NS avoids additional time cost of performing FNSN searches repeatedly.

– Hierarchical search algorithms are faster than non-hierarchical algorithms to
achieve similar retrieval quality. The reason is that the hierarchical search
algorithms enable faster search on dense clusters.

– Our proposed algorithms are significantly faster than linear scan, and also
much faster than best-known method LSH, even achieving higher accuracy
at the same time. For LSH, setting different parameter values might make
them faster, but it will cause lower accuracy. Since our algorithms achieve
better performance both on speed and quality compared with the current
setting of parameters, the experimental results are sufficient to prove the
advantage of our algorithms.
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9 Conclusions

In this paper, we proposed a novel index structure MLR-Index (Multi-Layer
Ring-based Index) for high-dimensional indexing problems. Since the vector
quantization technique and the ring structure of MLR-Index made the search
space smaller, we developed an algorithm FNSN to find the nearest search
node efficiently. By use of MLR-Index and FNSN, we designed several high-
performance solutions for the approximate nearest neighbor search problems
including the r-range search problem and the k-NN search problem. We could de-
sign even faster search algorithms with similar high accuracy by adding an addi-
tional structure m-NS (m-Nearest Search Nodes) into MLR-Index and utilizing
levelwise clusters for dense partitions. Extensive experimental results comparing
with linear scan and the best-known method LSH showed that our approach
was effective and efficient with higher accuracy and faster response time.
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19. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001)

20. Ortega-Binderberger, M., Porkaew, K., Mehrotra, S.: Corel Image Features Data
Set (1999), http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features

21. Blackard, J.A., Dean, D.J., Anderson, C.W.: Covertype Data Set (1998),
http://archive.ics.uci.edu/ml/datasets/Covertype

http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://archive.ics.uci.edu/ml/datasets/Covertype


B-Fabric: An Open Source Life Sciences Data
Management System

Can Türker, Fuat Akal, Dieter Joho, and Ralph Schlapbach

Functional Genomics Center Zurich, Winterthurerstr 190, 8057 Zurich, Switzerland
{turker,joho,schlapbach}@fgcz.ethz.ch, akal@acm.org

Abstract. The advances in information technology boosted life sciences
research towards systems biology which aims at studying complex inter-
actions in biological systems in an integrative way. Steadily improving
high-throughput instruments (genome sequencers, mass spectrometers
etc.) and analysis software produce large amounts of experimental data.
In this paper, we report on experiences with developing and running a
life sciences data management system in a productive environment.

1 Introduction to B-Fabric

As the complexity of the analytical systems in integrated functional genomics or
systems biology research has reached a level where specific, isolated application-
oriented data management and analysis have become apparently inefficient, a
system for integrated management of experimental data and scientific annota-
tions is needed. With B-Fabric [7] we have developed such a data management
system at the Functional Genomics Center Zurich (FGCZ). B-Fabric is running
in daily business for over two years. In its current configuration, it allows to store
and annotate all data produced at FGCZ. For a detailed description of B-Fabric,
we refer to [1]. Figure 1 sketches the architecture of B-Fabric. It is composed of
distributed, loosely-coupled components based on open source technologies. The
B-Fabric repository stores experimental (raw and processed) data. The B-Fabric

Fig. 1. B-Fabric: System Architecture
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Web Development Framework Apache Cocoon
Database Server PostgreSQL
Object-Relational Mapping Apache OJB
Fulltext Indexing/Search Apache Lucene
Asynchronous Communication ActiveMQ
Workflow Engine OSWorkflow
File Transfer OpenSSH
Logging Apache log4j

Users 1207
Institutes 182
Organizations 39
Projects 657
Samples 2084
Extracts 2269
Data Resources 11678
Workunits 811

Fig. 2. B-Fabric: Technologies (left) and Data Figures April 2009 (right)

database manages all scientific annotations (e.g. about biological samples) and
administrative data (e.g. about users and projects). All relevant data is findable
via fulltext search. A frontend acts as Web portal providing users with controlled
access to the data. Workhorses execute specific tasks (e.g. data copying, index-
ing, searching) in a distributed way. Frontends and workhorses communicate via
asynchronous messaging. Availability and scalability is achieved by instantiating
several frontends and workhorses. The concept of registered applications allows
an ad-hoc coupling of arbitrary applications with B-Fabric. Using registration
profiles, the frontends are dynamically extended with appropriate buttons to
invoke and feed the applications with B-Fabric data. These applications may be
external ones, autonomously running beyond the control of B-Fabric. Applica-
tions can also be invoked within workflows to model scientific pipelines.

B-Fabric interacts with several external components. User PCs are standard
computers running a Web browser to enable access to B-Fabric through fron-
tends. Typically, a scientist searches and downloads B-Fabric data for analysis
reasons. Various data analysis/visualization tools are deployed on these PCs to
accomplish those purposes. Scientific data marts correspond to external sys-
tems that provide scientific functionality. Currently, Rosetta Resolver [5] and
Mascot Integra [3] are used as marts for the detailed management and analysis
of transcriptomics and proteomics experiments, respectively. For some instru-
ments, these data marts are not suitable. In such cases, B-Fabric implements a
custom data mart to handle this data. External data stores represent scientific
data available on external systems. At any time, any external data store can be
attached to and made accessible via B-Fabric. Users do not need to care about
where and how the data is placed. B-Fabric functions as data fabric, capturing
and providing the data transparently. Instrument PCs refer to computers that
are attached to an instrument that generates and holds scientific data to be im-
ported into B-Fabric. To support computationally and data-intensive analysis,
B-Fabric can also execute applications on a computing cluster/grid.

Figure 2 lists the key technologies glued together in B-Fabric and shows some
numbers of the current deployment at FGCZ. Interestingly, 94% of the data re-
sources (∼1.7TB) are stored in external data stores; the remaining data resources
(∼2.6GB) are physically imported into the B-Fabric repository. Our users are
researchers (usually PhD students interested in running experiments), lab heads
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(usually professors interested in the experiment results), and FGCZ employees
(instrument experts supporting and carrying out the experiments). The latter
have special rights, e.g., they are allowed to register applications.

2 Experiences with B-Fabric

Application Integration and Loose Coupling. Most expert facilities like
the FGCZ have applications and workflows for data processing that are now run-
ning stable for years. We experienced that moving such functionality into a cen-
tral system is often a complicated task. First, the original functionality is usually
provided by proprietary tools whose internal processing is not known. Second,
the scientists and developers that created and installed the application often
are no longer available. Third, replacing existing code eats up resources without
providing new benefits for the users. These were the reasons why we started im-
plementing connectors to different external applications. However, writing such
a connector for every application that had to be connected to B-Fabric was quite
laborious. Needs and requests for new applications popped up faster than the
implementation could progress. This was the reason why we introduced the ap-
plication registration concept. First, a connector is written for a certain type of
external application, e.g. for running R scripts on an Rserve system [6]. Then,
a minimal interface is defined to describe how the external application gets its
input. Finally, the scientist writes the external application in any language. The
advantage of this approach is that an upgrade or even a replacement of com-
ponents of an external application is possible without touching the B-Fabric
system. Defining the interface towards the external application was quite tricky.
Allowing too much flexibility may result in errors since the user usually is not
aware of the restrictions of the corresponding external application. Additionally,
the heterogenous data that is stored in B-Fabric provides a lot of traps. Figure
3 exemplifies the application integration in B-Fabric. The arrows depict the se-
quential flow of interaction between a scientist and B-Fabric. The first scenario
is an example where the user has high computing needs. Scientist 1 asks B-
Fabric to invoke a previously registered application, called SGEExecutable in
order to execute his job in the Grid. To meet this demand in our case, B-Fabric
accesses the Sun Grid Engine running on a compute cluster outside of B-Fabric.
The job is executed by the cluster and the results are sent back to B-Fabric.

Physical and Logical Data Import. To annotate experimental data, the sys-
tem must first be aware of the corresponding files. Originally, B-Fabric was de-
signed to move all (relevant) experimental data into its internal repository. Very
early in the productive phase of B-Fabric, we could approve that a physical import
is indispensable for a number of application scenarios, e.g., when the data cannot
be maintained persistently at the instrument PC or external data store. However,
we also experienced that a physical import into a fully encapsulated data reposi-
tory has a simple but serious drawback, which was underestimated in the design
phase. The use and postprocessing of the data with typical (commercial and pro-
totype) analysis and visualization tools usually require direct access to the data
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Fig. 3. Application and Data Integration

files. Consequently, the physically imported files must be downloaded to the cor-
responding places in the file system to run the different tools. Due to the size of
the files and length of the scientific pipelines, such a file download moves the scien-
tist into an undesired pending state for a while. We learnt our lesson that the files
have to be accessible directly by the scientists and tools. Therefore, we adapted
B-Fabric to also support a logical import (linking) of data from the instrument
PCs. Pre-configured data providers take care of the original location of the ex-
perimental data on the instrument PC. These data providers transparently sup-
port many protocols like ssh, smb, jdbc etc. and hence provide simple and unified
data handling. This allows a user to import his data without having any further
knowledge about the infrastructure. Figure 3 illustrates both physical and logical
data import. Scientist2 physically imports his data generated by the Affymetrix
GeneChip instrument. This is done by invoking a previously registered applica-
tion, called AffymetrixImport. This application accesses the instrument and copies
the files into the B-Fabric repository, where it will be under total control of B-
Fabric. Note that when coupling an instrument to B-Fabric a corresponding im-
port application has to be registered, too. Scientist 3 on the other hand logically
imports data files from an external data store. For that, the scientist runs the Log-
icalImport application which creates links in B-Fabric to the file at the external
data store. Ensuring the consistency, in this case, is a responsibility of the external
data store. Since B-Fabric provides a transparent access to the data, scientists are
not effected from whether the data is located in the B-Fabric repository or some-
where else. This is achieved by handling files and other data resources through
URIs. Each resource knows where its data is located (host and path) and how this
data can be accessed (protocol). The fact that 94% of the current data resources
maintained in B-Fabric were logically imported shows the importance of this way
of managing experimental data.

External Responsibility. Although B-Fabric knows the scientific annotations
best, it may not be able to interpret and process the experimental data correctly
if the instruments produce data in proprietary formats, which is often the case in
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our experience. This problem is solved in B-Fabric by moving the responsibility
of the data processing to the external applications. B-Fabric provides the appli-
cation input via a small interface. The external application is then able to fetch
the information from B-Fabric to process the experimental data correctly. B-
Fabric then just waits for the result. This approach requires that B-Fabric trusts
the external application to provide the result in a correct way. The external
applications need to take additional effort to process the data. Our experiences
show that examples and documentation on the development of connectors are
vital to support stable and generally accepted applications. However, if a cer-
tain level of commitment is achieved, additional functionality can be provided
quickly and without changing the B-Fabric interface.

Data Modeling and Vocabulary. Many data integration projects failed sim-
ply due to the ambitious goal to provide an integrated data scheme that can
capture all potentially created data in the application domain at a detailed
level of granularity. Already at the beginning of the B-Fabric project, it became
clear that in a very dynamic research environment as the FGCZ it is practi-
cally impossible to agree on a scheme. Sticking one-to-one with standards such
as MIAME [4] or GO [2] was however not a solution. First, there are many
researchers arguing that they are doing research on issues that have not been
defined yet. Second, depending on the concrete area of the scientists they use
different notions and granularities to describe their experimental data. Third,
these standards are so huge in size that for most scientist they are impractical
for daily use. Therefore, it is vital to have a simple but exact vocabulary. It is
a balancing act to use terms that are as precise as needed, but not too specific
to end up in an overwhelming set of terms. B-Fabric hence concentrates on a
very small data scheme describing only the metadata of central entities such as
samples and extracts. After many discussions with our researchers at FGCZ we
came to the conclusion that only a small set of commonly agreeable attributes
should be fixed for such entities and that the vocabulary defined by the different
standards should be initially restricted to that part which is potentially needed
for the research technologies supported at FGCZ. To be open to new research
directions, B-Fabric allows to dynamically extend the vocabularies at run-time.
As soon as a new entry is provided by a user, a reviewing process is started.
Depending on the project membership of that user, the coach of that project, in
our case an FGCZ employee, is triggered to release or reject the new entry.

Data Export. Regardless of the systems functionality, our experience shows
that there are always users with needs that go further than the system can
support. The best solution to address this issue is to provide an easy access to the
data. Scientists should be able to export data and do their calculations on their
own. B-Fabric provides several methods for data export. For instance, search
results can be exported. Another example is the download of data resources,
i.e., files. Due to the large size of the interconnected data, B-Fabric compresses
the data and provides a download link for the user. The download of predefined
reports is another example. For specific needs and applications, B-Fabric allows
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reports that collect and prepare data for later use. If it turns out that scientists
use a certain type of export very often to perform a specific task, this task
becomes a candidate for a B-Fabric internal functionality.

Data Access Control and Publishing. Life sciences researchers usually de-
mand for strict data access control while complaining about restrictions in the
usage of the data for collaboration purposes. At FGCZ data access is therefore
controlled at project level, i.e., project state and membership define access to all
the data within a project. While the project has not reached the publish state,
the data is visible to the corresponding project members only. This approach
works well as soon as the projects are small and have clear and exact goals. Dis-
advantages of this approach become visible in case of huge projects that run for
many years, especially when the scientists involved in the same project should
not be able to access each others results, for instance, because they are com-
ing from different facilities. A proven simple but effective solution is to divide
such projects into several smaller projects according to their goals and members.
In this way, the scientific data can be published as soon as the corresponding
research result have been accepted for publication somewhere.

3 Outlook

B-Fabric was designed according to the specific needs of the Functional Genomics
Center Zurich, for instance, w.r.t. data access policies. To attract the interest of
other research groups/centers to use B-Fabric, future releases will generalize it in
several directions. First, a more flexible permission management will be imple-
mented. The owner of the data will be allowed to grant and revoke access rights
on different data granules even if the corresponding project is not published yet.
Second, the data networks will be graphically visualized such that the links and
correlations among the scientific data become reproducible.
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Abstract. As the size of scientific and commercial datasets grows, it
becomes imperative that an expressive metadata framework to be de-
veloped to facilitate access to the semantics of the data. However, the
drive to enhance expressiveness and maximize performance often turns
out to be contradictory. Hence, the design of metadata framework needs
to take into consideration many factors in order to achieve balance be-
tween expressive power and performance. In this paper, we discuss the
metadata framework developed for PetaShare and explain the design and
implementation decisions we made in the process.

Keywords: Metadata, Data Intensive Computing, Ontology, Protege,
iRODS, PetaShare.

1 Introduction

As the size and complexity of the scientific and commercial datasets continue
to grow, new data-centric scientific computing infrastructure needs to be built
to satisfy the requirement. Among all the challenges involved in building such
computing infrastructure, the need to reconcile the often conflicting requirement
for expressive power and sufficient performance is quite challenging.

On the one hand, traditional metadata services have limitations in such ap-
plication scenarios. Data from different disciplines is difficult to integrate due to
lack of expressive metadata framework.

On the other hand, semantically rich representation scheme such as ontology-
based semantic metadata provides rich expressiveness while maintaining decid-
ability, but it is not designed for large scale scientific computing. As a result,
much of the semantic web [7] technologies developed so far do not provide suffi-
cient performances.

In this paper, we present the metadata system we developed for the PetaShare
project. Our system seeks to take advantage of both semantically rich ontol-
ogy representation of metadata and natively supported metadata represented in
triples to provide access for users with different requirements.
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We also discuss the choices we made and lessons we learned in the design and
implementation process.

2 PetaShare

PetaShare [5] is a state-wide distributed data storage and sharing cyberinfras-
tructure effort in Louisiana. It aims to enable collaborative data-intensive re-
search in different application areas such as coastal and environmental modeling,
geospatial analysis, bioinformatics, medical imaging, fluid dynamics, petroleum
engineering, numerical relativity, and high energy physics. PetaShare manages
the low-level distributed data handling issues, such as data migration, replica-
tion, data coherence, and metadata management, so that the domain scientists
can focus on their own research and the content of the data rather than how to
manage it.

Currently, there are six PetaShare sites online across Louisiana: Louisiana
State University, University of New Orleans, University of Louisiana at Lafayette,
Tulane University, Louisiana State University-Health Sciencies Center at New
Orleans, and Louisiana State University-Shreveport. They are connected to each
other via 40Gb/s optical network, called LONI (Louisiana Optical Network Ini-
tiative). In total, PetaShare manages more than 250TB of disk storage and
400TB of tape storage across these sites.

At each PetaShare site, there is an iRODS [2] server deployed, which man-
ages the data on that specific site. A Unix-like interface is available to access
iRODS storage with commands like “ils”, “icd”, “ichmod” providing functional-
ities similar to their respective Unix counterparts, “itrim” for trimming number
of replicas in iRODS, “irule” for submitting user defined rules and “imeta” for
adding, removing, querying user defined metadata. Currently, each iRODS server
communicates with a central iCAT [3] server that provides a unified name space
across all the PetaShare sites. This centralized system will soon be replaced by a
fully distributed and replicated server system. Clients, either human users or pro-
grams, can access the PetaShare servers via three different interfaces: petashell,
petafs, and pcommands. These interfaces allow the injection of semantic meta-
data information (i.e. any keywords regarding the content of the file) to the
ontology whenever a new file is uploaded to any of the PetaShare sites. The
physical metadata information (i.e. file size and location information) is inserted
to iCAT using the iRODS API.

As part of the PetaShare project, we intend to develop a semantically-enabled
metadata management and query system called petasearch. With petasearch, we
intend to design an extendable metadata framework that gives a unified view over
multidisciplinary datasets. We also plan to provide fast and efficient metadata
query services for physically and conceptually distributed datasets of peta-scale.
Protege [1] and iRODS-based metadata management and query system we are
going to discuss in this paper are intended to serve as testbed for petasearch.
Specifically, we seek to focus on performance issues we encountered during the
design and testing of these two systems.
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3 PetaShare Metadata System

We have implemented two metadata management and query systems in
PetaShare, one is based on Protege [1] and and the other one based on iRODS.

As the current de facto standard of ontology design, Protege provides a com-
plete set of tools in support of the design and implementation of ontology-based
systems. But the complex nature of the ontologies and the implementation of
Protege turn out to be inadequate to provide sufficient performance.

iRODS, on the other hand, is a integral part of PetaShare and it provides
its own native metadata system, but the triple-based metadata representation is
not powerful enough to satisfy the need for cross-domain metadata management.

Both systems provide some unique advantages the other system currently does
not support. At the same time, both systems turned out to be inadequate on
other fronts. There are two different approaches we considered to bridge these
differences:

1. Take advantage of iRODS’s built-in metadata support and try to integrate
our semantically rich metadata into iRODS’s metadata system. Advantages
of this approach include potentially better query performance because of
fewer layers a query has to go through. This approach also comes with dis-
advantages, namely, the added requirement to figure out a way to encode
semantic metadata into iRODS’s metadata system which, so far, only sup-
ports simple queries over triples.

2. Build middleware between current mostly Java-based Semantic Web infras-
tructure such as Protege where metadata will be modeled and stored and
traditionally C-based iRODS where actual data archives are managed. Ad-
vantages of this approach includes more established support for ontology
insertion, modification, merging and query which our system can readily tap
into. Disadvantages may involve developing a whole set of tools required to
bridge the inherent differences, also our preliminary testing of the browser
based ontology system indicated less than satisfactory performance.

To better understand the advantages and deficiencies of the two approaches,
we decided to implement two different metadata systems based on the two dif-
ferent approaches respectively. Our hope is at the current stage, the two systems
can complement each other. Eventually, our development goal is to overcome
the shortcomings of both systems and hopefully merge the two systems into a
unified petasearch metadata system.

3.1 Protege-Based Metadata System Framework

The reason we chose to implement the upper layer of our metadata system based
on Protege-API and the Protege-based database back-end is to take advantage
of the semantic expressive power of the ontologies. As the de facto standard for
ontology design, Protege supports almost all the W3C standards and provides
support for the whole range of ontology related functionalities, from graphic on-
tology design interface to built-in reasoner all the way to ontology serialization
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into relational database, which makes Protege and the Protege-related technolo-
gies good candidates for implementing a semantic enabled metadata system.

As shown in Figure 1, two different interfaces are available in our system.
They are browser-based and commandline-based respectively. The purpose of
browser-based metadata interface to PetaShare is to provide an easy-to-use,
easy-to-understand method of access so that scientists can query and obtain
small numbers of experimental files, while commandline-based interface can be
combined with scripts and other programming tools so that more flexible, more
powerful access to bulk files is also available in our system.

The core of the system consists of Protege Query Parser and Semantic Meta-
data Store. Protege Query Parser is implemented to parse queries entered by
users into Sparql [6] queries understandable to the Protege query engine. In Se-
mantic Metadata Store, metadata definitions in the forms of ontological classes
and ontological instances are stored. Protege itself provides two ways of storing
ontologies: file-based and relational database-based. The first approach essen-
tially stores ontological classes and instance definitions to text files, although
it is easier to implement and access file-based ontology, our experiment showed
that file-based ontology can not scale to satisfy the data intensive requirements

Fig. 1. PetaShare Metadata Framework for Protege
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of PetaShare: attempts to insert metadata instances in excess of ten thousand
resulted in insufficient memory error. Even though increase of physical memory
size can partially alleviate this problem, the fact that the Java Virtual Machine
places limit on the amount of physical memory it can handle means text-based
ontology can not scale as much as we want. Another problem is it often takes
more than a dozen hours to load text-based ontology with more than ten thou-
sand instances into memory. The causes of the failure to scale include:

1. The amount of memory required exceeds the maximum memory size the
Java Virtual Machine is capable of handling.

2. System is saddled with too high a performance overhead as a result of large
numbers of file accesses.

To overcome the above mentioned problems, we decided to take advantage of
the second approach and store our ontology in regular relational databases. In
our system, we chose MySQL as the back end database in which all metadata
are stored in ontological form. We tested insertion of 1 million instances on a
workstation with 4 GB memory. Each insertion consisted of creating 15 prop-
erties for a particular file in the archive. Our experiment showed that 1 million
instances could be inserted in 6898 minutes 59 seconds, approximately 5 days.
The relatively slow speed of the insertion owes partially to the overheads as-
sociated with representing complex modeling scheme such as ontology through
tables in relational database. More experiments are needed to assess the upward
limit of relational database-based ontology store.

Another part of our system is called Metadata-insertion interface. It is a
Java-based commandline program that can be utilized, with the help of script
languages such as perl, to automatically insert metadata about newly created
experiment files.

For example, in large science experiments, when an experiment file is created,
metadata-insertion interface can be triggered to automatically add appropriate
metadata information, such as name, keyword, time of creation, file type, etc,
into Semantic Metadata Store. The system administrator can also choose to do
bulk-insertion. As of now, we have successfully inserted metadata about more
than 1 million files.

Our Protege-based metadata system implementation offers support for
ontology-based metadata query, ontology-based automatic metadata insertion,
as well as ontology-based file access through both browser and command-line
interfaces.

One typical use scenario is as follows: a meteorologist needs some monitor-
ing data on Hurricane Katrina’s path of movement. He also would like to see
a visualization of the monitoring data. In real life, raw monitoring and visu-
alized data could belong to different projects, and different projects may have
different vocabulary for describing data. The use of the ontologies in the Protege-
based system can bridge the semantic differences that may exist among different
science projects. We assume here that raw and visualized data belong to differ-
ent projects. In this use scenario, on PetaShare, the meteorologist could simply
open his web browser or the specific PetaShare commandline interface. Here we
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assume he types “Katrina” into the search box of his web browser and presses
the search button. The straight arrow in Figure 1 shows the data flow of his
query. PetaShare will then search its metadata store and return a list of files
from both projects it thinks are related to Hurricane Katrina, as indicated in
Figure 1 by dotted arrows. Then the meteorologist can simply click whatever file
he wants to obtain, the metadata system will send out request to other parts of
PetaShare to fetch the file back into the machine of the meteorologist.

The biggest advantage for the Protege-based system is the establishment of
a unified view of scientific data across different science projects or even differ-
ent science disciplines. A unified data view can enable scientists to access data
from multiple projects from multiple disciplines, regardless of the differences in
vocabulary. Such data view is critical in modern, increasingly cross-disciplinary
science.

The shortcomings of the Protege-based metadata system are clearly illustrated
in Figure 1. Basically, in exchange for the expressive power of the ontologies, we
have to build another metadata system independent of the iCAT [3] metadata
system used by iRODS. Doubtlessly, the extra set of metadata and everything
related to its management add overhead to overall performance of PetaShare.
Also almost the entire set of technologies we employed to implement the sys-
tem is Java-based, which introduces more overhead to performance and more
complications to achieve maximum scalability.

3.2 iRODS-Based Metadata System Framework

Unlike ontology-based system, the iRODS-based Metadata System does not sup-
port a richly representative scheme, namely ontology, like Protege does. On the
other hand, iRODS and its corresponding iCAT metadata system serve as the
backbone of PetaShare. As a result, metadata system based on iRODS and iCAT
is naturally integrated into PetaShare seamlessly. Also, unlike ontology technol-
ogy which is Java-based and was originally designed for Semantic Web with little
prior consideration for performance, iRODS and its corresponding metadata sys-
tem iCAT were designed with the requirements of data-intensive computing in
mind. Better performance can be achieved as a result.

As Figure 2 shows, the framework of the iRODS-based metadata system is
far simpler. Only one extra layer of system is added to the existing iRODS-
based PetaShare storage. The PetaShare clients have been developed to parse
and remote-execute various iRODS commands. One such command is “imeta”,
which is used for inserting and accessing metadata stored in iCAT.

Command “imeta” can be used to insert metadata about iRODS files, col-
lections, resources and users in the form of Attribute-Value-Unit triples (AVUs)
Because iCAT also employs relational database as back end storage and the fact
that iCAT deals with metadata far less expressive than ontology does, we expect
it to be able to be at least as scalable as the Protege-based system. Our experi-
ment indicates that iCAT can easily handle file metadata in the order of millions
of files. In current implementation, command “imeta” can only insert meta-
data one AVU at a time. To expand its functionalities, we implemented another
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Fig. 2. PetaShare Metadata Framework for iRODS

version of command “imeta” that supports bulk-insertion function similar to the
one provided by Metadata-insertion interface in the Protege-based system.

In the iRODS-based metadata system, a typical query operation would be
users typing in what they want to query as parameters of command “imeta”.
“imeta” will do the query and return a list of files. Users then can use other
iRODS commands supported by the PetaShare clients to access the files needed
to be accessed.

There are several functionalities missing in command “imeta”. For example,
although Attribute-Value-Unit triples are easy to handle and understand, their
expressive power is far from being able to adequately meet the requirement of
an extendable semantic metadata system we envision for PetaShare. On the
other hand, at the lowest level of representation, an ontology also consists of
triples. We think it is possible to implement certain middleware so that upper
level ontology-based metadata can be stored in lower level iCAT store. We are
also interested in adding over the long term, the kind of querying and reasoning
capabilities supported by the Protege-based system.

4 Issues and Observations in Performance Evaluation
Experiments

In this section, we will present our investigation into some of the performance and
scalability issues we encountered during the design and implementation process.
Both systems have been deployed on PetaShare, with controlled access granted
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to four PetaShare science projects. The iRODS-based metadata system is used
internally by the PetaShare system itself, and the Protege-based system is de-
ployed as a web-based search engine that allows scientists to search the metadata
store and access files stored in PetaShare.The scalability and performance of the
our deployed systems is not entirely satisfactory, as a result, we conducted an
series of experiments to test it.

We first tested the bulk insertion program we developed for the Protege-
based system and modified “imeta” command for the iRODS-based system as
users often need to first “build up” their presence on PetaShare, which makes
performance and scalability of the bulk insertion program a important issue.

In the case of the Protege-based system, the Java implementation of Protege
and the complexity of the ontologies exact a heavy toll on performance of the
Protege-based insertion. During our experiment, we attempted to test the limit of
the scalability of the Protege-based system. The conflict of a Java-based system
and the memory requirement for data intensive applications was laid bare: The
Java Virtual Machine can only use at most 2 GB of memory in Unix like system,
which is hardly enough for a ontology containing metadata for millions of files.
We experimented with inserting metadata for 1 million files in the Protege-based
system. The experiment ran 19 hours 12 minutes and 46 seconds. It succeeded in
inserting metadata for 684632 files, then the process crashed when another Java-
based program was launched. Another attempt ended with metadata for 734845
files inserted in 24 hours 43 minutes and 53 seconds. The process crashed again
presumably because of memory hog. It has also been observed that as the size of
metadata grew, the execution of the insertion programs became extremely slow
and unresponsive. Eventually, we succeeded in inserting one million instances
after several failed attempts, the insertion took close to 5 days to finish because of
various bottlenecks discussed above. Further investigation is needed to determine
the exact cause of the performance differences we witnessed and how big the
ontology can be scaled to.

It is clear that as the size of the ontologies grows, the Protege-based system
would encounter scalability problem. In the future implementation, we plan to
physically distribute the ontology to expand its scalability.

Scalability test on the iRODS-based system, however, did not go as smoothly
as we hoped either. Similarly to what we did on the Protege-based system, we
attempted to insert metadata for 1 million files to the iRODS-based system. We
observed that there was not discernible slow-down of the insertion speed as the
size of metadata inserted grew, but error occurred after 2 hours 2 minutes and
35 seconds and metadata for 109428 files inserted. The error forced the insertion
operation to stop and restart. Restarted insertion operation continued metadata
inserting without a glitch until 1 hour 57 minutes and 50 seconds later and an-
other approximately 100000 files inserted when another similar error occurred.
Our observation was the iRODS-based system had no problem handling meta-
data for tens of thousands of files, but the insertion needs to be done in batches
with approximately 100000 files as one batch. Precisely what caused the limita-
tion on the size of the metadata insertion operation that can finish in one single
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run is not clear yet. We will tryto answer this question with more experiments
in our follow-up work.

Beside scalability, we also tested performance on querying metadata store on
the two systems. Our experiments showed that query time on the iRODS-based
system is positively correlated to the size of result set. As the size of the result
set grew, significantly more time was needed for the query to finish.

In the case of the Protege-based system, however, performance varied lit-
tle as the query result size changed. Another observations of ours was that in
the Protege-based system, queries that would return tens of thousands of files
crashed the system. When no crash occurred, the performance was extremely
bad, which indicated that the size of available memory that can be utilized by
the Java Virtual Machine is also a contributing factor to query performance of
the Protege-based system.

5 Conclusion

In this paper, we have introduced two preliminary experimental metadata man-
agement systems developed for the PetaShare project. For each system, we have
presented the design and underlying technologies, and discussed potential ben-
efits and pitfalls they might bring to the capabilities and performance of the
overall metadata system. We have also discussed performance and scalability
issues we encountered in the development process.
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Abstract. With an increasingly large amount of sequences properly aligned, 
comparative sequence analysis can accurately identify not only common struc-
tures formed by standard base pairing but also new types of structural elements 
and constraints. However, traditional methods are too computationally expen-
sive to perform well on large scale alignment and less effective with the  
sequences from diversified phylogenetic classifications. We propose a new ap-
proach that utilizes coevolutional rates among pairs of nucleotide positions  
using phylogenetic and evolutionary relationships of the organisms of aligned 
sequences. With a novel data schema to manage relevant information within a 
relational database, our method, implemented with a Microsoft SQL Server 
2005, showed 90% sensitivity in identifying base pair interactions among 16S 
ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% 
better sensitivity than a previous study.  The results also indicated covariation 
signals for a few sets of cross-strand base stacking pairs in secondary structure 
helices, and other subtle constraints in the RNA structure.  

Keywords: Biological database, Bioinformatics, Sequence Analysis, RNA. 

1   Introduction 

Comparative sequence analysis has been successfully utilized to identify RNA  
structures that are common to different families of properly aligned RNA sequences. 
Here we present enhance the capabilities of relational database management for com-
parative sequence analysis through extended data schema and integrative analysis 
routines. The novel data schema establishes the foundation that analyzes multiple 
dimensions of RNA sequence, sequence alignment, different aspects of 2D and 3D 
RNA structure information and phylogenetic/evolution information. The integrative 
analysis routines are unique, scale to large volumes of data, and provide better  
accuracy and performance. With these database enhancements, we details the  
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computational approach to score the number of mutual or concurrent changes at two 
positions in a base pair during the evolution of Bacterial 16S rRNA molecules. 

Since early studies on covariation analysis [1-4] analyzed the nucleotide and base 
pair frequencies, it has been appreciated that measuring the number of evolutionary 
events increases the accuracy and sensitivity of covariation analysis. Examples in-
clude prediction of a pseudoknot helix in the 16S rRNA [4] and determining divergent 
and convergent evolution of the tetraloop [5]. More commonly, evolutionary events 
were found anecdotally, suggesting that many more can be identified from a more 
computationally intensive search for evolutionary events.  

This particular problem requires the traversal of the phylogenetic tree hierarchy, 
potentially within only selected phylogenetic branches, joined with the existing multi-
ple sequence alignment at large scale to identify sequence changes at paired positions. 
Over the years, the number of RNA sequences dramatically increased [6]. The num-
ber of sequences in ribosomal RNA alignments have grown from under 12, 000 se-
quences 5 years ago to nearly 200, 000 sequences today and the growth is accelerat-
ing[7]. The traditional flat file storage format for multiple sequence alignment [8] and 
the phylogenetic information from heterogonous data provenance not only requires 
custom data accessing methods but also pushes the limits of memory scale and af-
fordability for available commodity hardware .  

Our approach enhances the capabilities of a relational database management sys-
tem (RDBMS), in this case Microsoft SQL Server 2005 [9] to provide a scalable solu-
tion for a class of problems in bioinformatics through data schema and integrated 
analysis routines. The value of integrating biological sequence analysis into relational 
databases has been highlighted by commercial offerings from Oracle [10] and IBM 
(DB2) [11]. A number of research projects have made broad fundamental attacks on 
this problem. Patel et al. have proposed a system extending existing relational data-
base systems to support queries for the retrieval of sequences based on motifs [12]. 
Miranker et al. intended to support built-in database support for homology search [13-
15]. Periscope/SQ system extends SQL to include data types to represent and manipu-
late local-alignments and together with operators that support both weighted matching 
of subsequences and, regular expression matching [16].  

A key contribution of our work is a data schema that unifies various types and di-
mensions of RNA information within a single relational database system. Data from 
various sources, including sequences and their annotations, sequence alignments, 
different types of higher-order structure associated with each position for each se-
quence and taxonomy for each of the rRNA sequences are maintained in our RNA 
Comparative Analysis Database (rCAD)[17].  The data schema of developed in rCAD 
closely ties together phylogenetic, sequence and structural information into a form 
that is readily analyzable using relatively simple SQL expressions -- dramatically 
simplifying a wide family of tasks that used to require complex custom programming 
against 'closed' data structures. Analysis of these multiple dimensions of data in rCAD 
is performed within this SQL-server system as stored procedures written in the C# 
language and T-SQL. With this integrated data storage and analysis system, signifi-
cant reductions in the runtime were achieved by only analyzing those pairs of posi-
tions that might possibly have a significant concurrent change or covariation. Our 
approach is evaluated for both performance and accuracy of the result and compared 
with a previous study[18]. 
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2   Background and Related Work of Evolutionary Covariation 
Analysis  

2.1   Background for Covariation Analysis on Aligned Sequences  

Covariation analysis, a specific form of comparative analysis, identifies positions with 
similar patterns of variation indicating that these sets of positions in a sequence 
evolve (ie. mutate) at similar times during their evolution, as determined from their 
phylogenetic relationships. Thus the positional variation is revealing a dependency in 
the patterns of variation for certain sets of positions in a multiple sequence alignment. 
And when this dependency is strong we have interpreted that the two positions that 
covary are base paired with one another. The accuracy of this method was rigorously 
tested and substantiated from a comparison of the covariation structure model and the 
high-resolution crystal structures for several different RNA molecules[19].   

While the high accuracy of the predicted structure with covariation analysis and the 
elucidation of tertiary or tertiary-like base-base interactions substantiated the utility of 
the covariation analysis, previous analyses [2] has also revealed that this form for 
comparative analysis on a set of aligned sequences can reveal lower degrees of de-
pendency between the patterns of variation for sets of positions that either indicate a 
base pair, a base triple, or a more complex structural unit that involves more than two 
positions, for example,  hairpin loops with four nucleotides, tetraloops[5]. 

2.2   Related Work  

Although the concept and importance of an evolutionary event has been stated in 
numerous publications [4, 20-28], there are few sophisticated computational methods 
that can systematically identify them[18, 29]. Both of these methods are recent. 
Yeang et. al. derive a probabilistic graphical model to detect the coevolution from a 
given multiple sequence alignment[18]. This approach extends the continuous-time 
Markov model for substitution at single position to that for substitutions at paired 
positions. In addition to the computationally expensive model-based computation 
steps, this approach requires the computation of evolutionary distance among se-
quences in preprocessing steps using an external program with a computational cost 
of O(n3)[30, 31]. Therefore, this approach doesn’t scale over large multiple sequence 
alignment and has limited applicability. The experiments reported in [18] are limited 
to only 146 16S ribosomal RNA sequences sampled from different phylogenetic 
branches within the Bacteria domain. Dutheil et al. used a Markov model approach to 
map substitution of a set of aligned sequences to the underlying phylogentic tree. The 
approach applied to a bacterial rRNA sequences from 79 species[29]. 

In contrast to these model-based approaches, our method utilizes known phyloge-
netic relationships and identifies the minimal number of mutual changes for two  
positions during the evolution of the RNA under study. The major computational 
objective is to identify the pair of positions with similar patterns of variation and to 
increase the score for those covariations that have occurred more frequently during 
the evolution of the RNA sequences. Our method functions on any given multiple 
sequence alignment and existing phylogenetic classifications without additional pre-
processing. With a novel data schema for storing multiple sequence alignments and 
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phylogenetic tree reconstructions in rCAD, our approach exploits the efficiency of the 
database system and the effectiveness of C# running within the query engine to per-
form recursive computations on tree structures, thus enabling analysis of more than 
4200 Bacterial 16S ribosomal RNA sequences that are distributed across the entire 
Bacterial phylogenetic domain (approximately 2337 different phylogenetic branches). 
To the best of our knowledge, this is the largest number of sequences analyzed with a 
phylogenetic-based covariation method.  

3   Methods and Implementations 

Central to our approach is a novel data schema for managing multiple dimensions of 
data using a relational database system and a coarse filter to facilitate the online com-
putations. Due to the size of input data, two main challenges are the accessibility of 
the data and computational feasibility. Effectively accessing a large amount of various 
types of data is not a trivial step. In this case, each position of a multiple sequence 
alignment must be easily accessed by either row or column and any branch of the 
phylogenetic tree must be able to be hierarchically accessible. For computational 
efficiency and ease of development, our approach integrates the data analysis process 
directly into the database management system.  

Our computational approach includes several steps as illustrated in Figure 1. For 
a given multiple sequence alignment, a candidate set of pairs of positions (columns) is 
first selected from all possible pairs. Since it is computationally expensive to compute 
mutual information for every possible pair over a large alignment, we developed a 
coarse filter based on our empirical observations. The coarse filter effectively reduces 
the workload for computing mutual information. Filtered pairs are then evaluated for 
mutual information content, and candidate pairings are identified from the mutual 
information scores. Pairs are then predicted by gathering the number of mutation 
events in each candidate pairs’ positions based on the phylogenetic tree. Pairs with 
potential interactions are then predicated based on the percentage of covariant events 
of total observed events and the number of total events observed.  

Coarse filter based on relative entropy

Compute mutual information among filtered pairs

Identify candidate co-variation pairs based on the mutual information scores 

Join results with phylogenetic tree for additional indication of co-mutations. 
 

Fig. 1. Overview of evolutionary event analysis 
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Any set of sequences can be selected from the existing alignment table based on 
various criteria with no need to repopulate the database or tables. Additionally, inter-
mediate computing results are stored within the database as tables. Those tables can 
be used to trace back/repeat an analysis or for repurposing previous computations 
beyond the initial experimental design. For example, computations on a subset of 
sequences from a specific taxonomy group maybe derived from results of previous 
runs with larger scope  

3.1   Data Schema and Database Design  

The design of rCAD is fundamentally based on the idea that no data in the tables need 
ever be re-stated or re-organized. All access to the alignment data is typically driven 
by a sub-query that selects the sequence IDs of interest and places those values in a 
table variable or temp table as part of the analysis.  Analysis queries then join these 
IDs to the sequence data itself present in the SEQUENCE table.  Selection of se-
quences for display, analysis or export is typically specified using the sequences' 
location in the taxonomy hierarchy, combined with the ID of the type of molecule and 
alignment of interest.  Other properties present in the Sequence Main table or related 
attributes can also be used for selection.  The data structures are designed to hold not 
only a single alignment, but an entire library of aligned sequences spanning many 
RNA molecules of many types from many species. Figure 2 shows only tables used to 
store Sequence metadata, taxonomy data and alignment data that are essential for 
event counting studies.  

 
Fig. 2. Database tables related with event counting 
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Sequence Metadata. Information about available RNA sequences is centered on the 
“SequenceMain” table, which links each sequence to its Genbank accession numbers, 
cell location (e.g. mitochondria, chloroplast or nucleus), NCBI Taxonomy assign-
ment, raw (unaligned) sequence, and other source annotations. Each sequence is 
uniquely identified by a locally-assigned integer SeqID.   

Taxonomy Data. While the NCBI taxonomy assignment of each sequence is present 
in “SequenceMain” via a locally maintained integer TaxID, we need two tables “Tax-
onomyNames” and “AlternateNames” to associate each TaxID with the scientific and 
alternative names of the taxa. However, these two tables alone cannot provide any 
evolutionary relations among taxons. The “Taxonomy” table retains the basic parent-
child relationships defining the phylogenetic tree.  When joined with the “Sequence-
Main” table, SQL’s ability for handling recursive queries makes it straightforward to 
perform selections of sequences that lie only on specific branches of the phylogeny 
tree. We also materialize a derived table, “TaxonomyNamesOrdered”, that contains, 
for each taxon, a full description of its ancestral lineage.  

Sequence Alignment. The bulk of the database records are contained in the tables repre-
senting the sequence alignments.  Each alignment, identified by an integer AlnID, can 
be thought of conceptually as a 2-dimensional grid, with columns representing structur-
ally aligned positions among sequences, and rows representing the distinct sequences 
from different species and cell locations.  Each family of molecules, such as 16S rRNA, 
23S rRNA, or tRNAs correspond to one or possibly more alignments. Our main design 
concern is to (1) avoid storing data for alignment gaps and (2) minimize the impact of 
inserting a sequence that introduces new columns within an existing alignment.   

The table “Sequence” contains data only for positions in each sequence that are 
populated with a nucleotide.  Each entry is keyed by SeqID identifying the sequence, 
AlnID identifying the alignment. The field Base specifies the nucleotide present at 
that position of the sequence. The field NucleotideNumber is populated with the abso-
lute position of that location within the sequence. The field ColumnNumber is a 
unique integer key assigned to every column of an alignment. With this schema, the 
ColumnNumber associated with an entry in “Sequence” never changes even when 
additional columns are inserted into the alignment. The table “AlignmentColumn” 
associates a ColumnNumber and its actual position in an alignment, which is noted as 
field ColumnOrdinal.  Thus, if adding a new sequence requires inserting new columns 
into an alignment, only the values of ColumnOrdinal for a small number of entries in 
“AlignmentColumn” need to be updated to reflect the new ordering of columns. No 
data in the potentially huge and heavily indexed “Sequence” table need be changed. 
Gaps in the alignment are easily identified by the absence of data in the “Sequence” 
table. The table “AlnSequence” defines the first and last column number within an 
alignment for which sequence data exists for a given sequence.  

Table indexes are created to facilitate data access. The queries that perform the Rela-
tive Entropy calculations and Mutual Information scoring of all candidate column pairs 
rely on the Clustered Index (alignment ID, Sequence ID, Column ID) to execute a high-
performance sequential read covering exactly the range of sequence data of interest.  
Queries that perform the event counting of candidate column pairs use a covering sec-
ondary index (alignment ID, Column ID, Sequence ID) to quickly extract only the data 
from column pairs of interest within a specific alignment, avoiding unnecessary reads.  
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3.2   An Entropy Based Coarse Filter  

The mutual information score is a measure of the reduction of randomness of one 
position given the knowledge of the other position. A high mutual information score 
indicates a strong correlation between two positions. The Mutual information score 
and its variations have been used in several studies [29, 32, 33]. Given a multiple 
sequence alignment, let x and y denote the two positions of interest, then mutual in-
formation (MIXY) between column x and column y is calculated as  

 
 

 
where p(x, y) is the joint probability function of x and y, and p(x) and p(y) is the mar-
ginal probability for position x and y.  

With a multiple sequence alignment of m columns and n sequences, the time com-
plexity for computing mutual information of each pair of columns is O(n). The total 
possible column pairs to be considered is in the order of O(m2). Hence the total com-
putational cost to computing mutual information among every possible pair is in the 
order of O(m2n).  The multiple sequence alignment for 16S bacteria RNA sequence 
used here consists of 4,000 sequences and 3,237 columns.  To speed up this computa-
tion, we developed a fast coarse filtering method based on empirical observations. 
Note that the compositional distribution between covariance columns always shows 
minimal difference. The compositional distribution difference between two positions 
x and y can be measured as  

 

 
Our approach uses modified relative entropy as a coarse filter. Only pairs with rela-

tive entropy score less than a predefined threshold are selected for mutual information 
computation. For each pair of positions, the computation of relative entropy is linear 
to the number of sequences. As shown in the result section, the relative entropy filter 
can significantly reduce the search space for mutual information computation and 
speed up the total running time. However, the probability distribution is easily skewed 
if the sample size is relative small. This is also the case that we observed here. A 
number of columns in the alignment contain a large portion of gap symbols rather 
than nucleotide bases. If there are very few bases in a column, the estimated results 
become unreliable. Therefore, we also prune out columns in which the number of 
bases are less than a predefined threshold.  

With the filtered set of candidate column pairs, we then perform a mutual informa-
tion calculation to compute the MIXY score. Candidate base pairs are identified by 
considering all column pairings (x,y) where the MIXY score for (x,y) is among the 
top N MIXY scores for all pairs (x,k), and the MIXY score for (x,y) is also among the 
top N MIXY scores for all pairs (k,y). This process is known as finding the Mutual N-
Best MIXY scores, and can be executed as a single SQL query over the set of all 
scores for candidate pairs. N is typically set as 100~200 to identify a broad range of 
candidates for phylogenetic event counting analysis.   

Sequences used in the input multiple sequence alignments are grouped according 
to their taxonomy classification. For each candidate pair, we accumulate the number 

)()(

),(
ln),();(

21

12

,
12

ji

ji
j

ji
i ypxp

yxp
yxpyxMI ∑=

∑=
i i

i
i vyp

vxp
vxpvyvxH

)(

)(
log)()||( 2



 Covariant Evolutionary Event Analysis for Base Interaction Prediction 207 

of evolutionary events within each taxonomy group. There are two types of evolu-
tionary events. 
 

Definition 1 Evolutionary event Given a pair of positions of a set of aligned se-
quences and their ancestral sequence, an evolutionary event is observed when there is 
at least one mutation from its ancestral sequence for each sequence.  
 

Definition 2 Covariant evolutionary event Given a pair of positions of a sequence, a 
covariant evolutionary event is observed when both positions contain mutations from 
its ancestral sequence for every sequence.  

In practice, there are usually no actual ancestral sequences at every internal node of 
a phylogeny tree. Therefore, given an arbitrary set of sequences, we define an equality 
set for each position as candidates for ancestral sequences.  
 

Definition 3 Equality set Given a multiple sequence alignment, an equality set is 
defined as the set of base(s) with the maximum number of occurrences at those col-
umn(s) in the multiple sequence alignment.  

 

 

Fig. 3. Pseudo code of evolutionary event counting algorithm 

Figure 3 shows pseudo code of the event counting algorithm. We use a variation of 
Fitch’s maximum parsimony approach adapted for non-binary trees since any node in 
the phylogeny tree can contain an arbitrary number of sequences. We first determine 
the type of pair represented by a parent node, as the equality set, which may be a 
mixture of pair types (Lines 2-5). Based on the equality set of a node, we then  
compute the number of events and covariations exhibited by children at that node 

1. Start with root 
2. If a node is a leaf 
3.  Compute the equality set for the node as the set of pair 

types having the maximum count among the child sequences 
at this node 

4. else 
5.  Compute the equality set for the node as the set of pair 

types having the maximum of (count of pairs of this 
type among child sequences at this node + count of 
pairs of this type among child equality sets).   

6. For each member of equality set as candidate parent 
7.     For each child sequence.   
8.         If the child is different from the candidate parent,  
9.     Count an evolutionary event.   
10         If the child covaries with the candidate parent,  
11              Count a covariation event. 
12     For each child equality set.   
13       If every member of the set differs from the parent,  
14               Count an evolutionary event.   
15       If every member covaries with the candidate parent 
16               Count a covariation event. 
17 EventCount := minimum event count among the tested parents.   
18 CovaryCount := minimum test covariation count among the 

parents. 
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(Lines 7-11). We only count a pair type once per occurrence in a child equality set 
and do not count the number of underlying descendant pairs of that that type (Lines 
12-16). The event count resulting from choosing any member of the equality set as the 
parent will be the same as the count from any other parent. However, since covariant 
counts will differ based on parent selections; we only considered the minimum count 
in this case (Lines 17,18).  

The algorithm is implemented as a C# stored procedure that bridges the 'impedance 
mismatch' between the types of queries that the relational model natively supports, 
and computations desired on more complex data structures such as graphs and trees. 
The Event Counting procedure initially takes the parent-child relationships expressed 
in the Taxonomy table and populates a high-performance recursive set of .Net 
Treenode data structures at query execution time -- which is then used to easily com-
pute the event counts. This is an important illustration of how we can extend the ex-
pressiveness of SQL Queries to embody a rich computation close to the data.   

4   Performance and Experiments Results 

The size of alignment considered here is significantly larger than other related works 
and poses a major computational challenge. The alignment data used in this paper are 
publicly available at the CRW website[34]. The alignment is generated and curated by 
human experts over the past 20 years. New sequences have been periodically added 
into this alignment through a progressive alignment approach. The Bacteria 16S 
rRNA alignment consists of 4200 sequences, 3237 columns, and 6,103,090 bases. The 
phylogeny tree is downloaded from NCBI and stored into relational tables as de-
scribed in the section 2. The phylogeny tree data is also updated periodically. At the 
time of this experiment, the sequences were from 2337 different classification groups. 

4.1   Database Performance Evaluations 

Figure 4 shows an overview of the execution time of the entire computational process. 
The entire computing process took over 28 hours. The evolutionary event counting 
step accounts for 98.9% computing time. The covariation computation  and filtering 
steps account for 77.90% and 19.77% of the rest of the computations. Based on the 
computational complexity, the entire computation consists of two parts. The first part 
is to create a list of candidate pairs based on an existing multiple sequence alignment. 
The second part is to calculate the evolutionary events for the candidate pairs. The 
computational complexity of the first part depends on the number of sequences and 
the length of the aligned sequences. The computational complexity of the second part 
depends on the size of the candidate pairs and number of taxons in the taxonomy tree. 
In practice, the second part of the computation accounts for 99% of the computations.  

Our approach enables a flexible way to select multiple sequence alignments from exist-
ing data. Using the SQL selection query, an arbitrary 'window' view of an alignment can 
be created from a subset of alignments or a range of columns. The selection query can be 
further combined with information stored in the other tables to construct a customized data 
set such as one based on composition statistics or phylogenetic information. With these 
features, we created a series of subsets of alignments to study the database performance.  
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Fig. 4. Execution time breaks down 
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Fig. 5. Evolutionary counting performances vs. size of candidate pairs (left) and number of 
Taxons (right) considered in computations 

Figure 5 (left) shows the evolutionary counting part of its performance with re-
gard to the number of candidate pairs. In this test, we selected a subset of se-
quences which are covered by a taxonomy tree with 496 taxons. We then only 
select a fixed number of pairs from the set of candidate pairs. The CPU time is 
reported through a feature of the MS SQL server. Figure 5 (right) shows the evo-
lutionary counting performance with regard to the number of taxons considered. 
For each testing subset of sequences, the number of taxons required various from 
496 to 1450. The number of candidate pairs used in the computations is limited at 
4000 for each test set.  
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4.2   Effectiveness of Coarse Filtering Methods.  

To speed up covariation computation, we implemented a coarse filter to select pair 
candidates. In the coarse filtering step, each column in a multiple sequence alignment 
is inspected with two criteria: the number of bases contained within each column and 
the relative entropy of that column.  
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Fig. 6. Number of possible pairs at each position grouped by the minimum number of bases 

A multiple sequence alignment can be viewed as a matrix with a fixed number of 
columns. Each sequence, as a row in this matrix, is filled with gaps in order to proper 
ly align conserved bases. As more diversified sequences across the phylogeny tree are 
aligned, the number of gaps is expected to increase. From a practical consideration, a 
position with a large number of gaps, i.e. a small number of bases, is a unlikely to be 
found in a covariant pair. 

Figure 6 shows the number of possible pairs grouped by the minimum number 
of bases contained in each position for each five hundred interval. For example, 
the group labeled as 2500 shows that there are 79,255 possible pairs in which the 
minimum number of bases of the two positions is between 2000 and 2500. Note 
that the column for the first 500-group is truncated for presentation. There are 
3,924,099 pairs which contain positions with less than 500 non-gap bases, and 
this accounts for about 75% of the total 5,182,590 possible pairs. For each pair in 
the first 500-group, each pair contains at least one column filled with more than 
an 88% gap. From practical experience, we pruned those pairs for further  
consideration.  

The second score used in coarse filtering is the relative entropy score described in 
the previous section. For each column, the relative entropy is computed. Pairs with a 
maximum relative entropy value higher than a given threshold are pruned. 
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Fig. 7. Relative entropy score vs. mutual information score 

Table 1. The number of pairs selected by the filters for Bacteria 16S rRNA dataset 

Total possible pairs 5,234,230 
Pairs selected with more than 500 minimum number of base occurrences 1,258,491 
Pairs selected based on combined base occurrences and relative entropy 
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Fig. 8. Comparison of running time for filtered method and complete method 

Figure 7 plots 51,820 pairs from all possible pairwise comparisons for the Bacteria 
16S rRNA alignment. The mutual information for each selected pair is higher than 
0.1. The plot shows a good correspondence between maximum relative entropy score 
and mutual information scores with only a handful of outliers. From practical experi-
ence, we determined a threshold of 0.5 for relative entropy score computations (Table 
1). Figure 8 shows the comparison of total running time for covariant analysis with 
and without coarse filters. 

Relative Entropy
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4.3   Performance Comparison with CO Model  

Since our approach is fully integrated within the relational database system and the 
scale of data considered here, a precise performance comparison with related work 
which is implemented in functional programming language is not straightforward. 
Yeang et al. implemented the model computation in C and reported over 5 hours of 
running time for 146 sequences[18]. However, this running time does not include the 
computation of evolutionary distance among sequences using DNAPARS in the 
PHYLIP package[35]. In our test using the same code and data set provided by the 
authors, the same computation takes 6 hours and 1 minute to run in command prompt 
using our sql server machine. However, for the 4200 16S rRNA sequences used in our 
study, both preprocessing and model computation are failed to finish within the 10 
days time frame. Since our approach was finished within 28-hour time frames, we 
conclude our method is more efficient than related work due to the fact the other 
method failed at running on the scale of our dataset. 

4.4   Experimental Results Evaluations  

From the annotations maintained at CRW, we expect to find 357 secondary base pair-
ing interactions and 17 tertiary pairing interactions in our predicated data set. In our 
approach, a pair of positions is considered as coevolved if there are more than 50% of 
co-evolutionary events among all accumulated evolutionary events. Figure 9 shows 
the percentage of annotated base pairs when using the percentage of covariation 
events. The figure shows very high selectivity. For example, there are 244 out of 271 
(or 90%) of pairs with more than 50% of covariation events are known base pairs. 
Therefore, our approach can achieve 90% accuracy in identifying known interacting 
pairs. By comparison, Yeang et al. reported the 57% sensitivity of using a proposed 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Percentage of Covariantion Events

P
er

ce
n

ta
g
e 

o
f 

kn
o

w
n
 b

as
e 

p
ai

rs

 

Fig. 9. Accuracy of using percentage of covariation events for indentify nucleotide interaction 
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CO model to identify 251 secondary interactions with 150 false positives and much 
lower sensitivities with other models including the Watson–Crick co-evolution model 
and using mutual information.  

In addition to the results that are consistent to pairs with known base pairing inter-
actions, our results also indicate candidate pairs that have lower constraints (or non-
independence) on the evolution of RNA sequences. While the vast majority of the 
covariations have been interpreted correctly as a base pair interaction between the two 
positions with similar patterns of variation[19], exemplar interactions between  
non-base paired nucleotides have been identified in the literature such as base triple 
tertiary interactions in helix and tetraloops [5, 36]. In those situations, a number of 
nucleotides within the same helix or loop also show a tendency of coevolution over 
time but are not base paired with one another. Instead of forming hydrogen bonding, 
the bases of these nucleotides are partially stacked onto one another or same strand or 
cross strand. However, those interacting nucleotide sites are often filtered out by tra-
ditional covariation analysis due to a lack of contrast from the background. 

5   Conclusions and Discussions 

While the significant increase in the number of nucleic acid sequences creates the 
opportunity to decipher very subtle patterns in biology, this overwhelming amount of 
information is creating new challenges in the management and analysis with computa-
tional methods. Our approach enhances the capability of a modern relational database 
management system for comparative sequence analysis in bioinformatics through 
extended data schema and integrated analysis routines. Consequently, the features of 
RDBMS also improve the solutions of a set of analysis tasks. For example with dy-
namic memory resources management, alignment sizes are no longer limited by the 
amount of memory on a server. And analysis routines no longer need to incur the 
runtime overhead of loading entire alignments into RAM before calculations can 
begin. As a result alignments can now be analyzed in the order of thousands of col-
umns and sequences to support comparative analysis.   

The extended data schema presented here is not designed specifically for the co-
variant evolutionary event analysis. It is designed to facilitate a class of sequence 
analysis tasks based on multiple sequence alignment such as computing template 
multiple sequence alignments, and performing conventional covariation analysis. It is 
the data schema like this that enables us to conduct innovative analysis on tasks such 
as covariant evolutionary event counting presented in this paper. Several other inno-
vative analysis methods enabled by this data schema are being developed by our re-
search group, including statistical analysis on sequence compositions and structures. 
However, we won't be able to present all of those related research tasks in complete 
detail in this paper. 

Furthermore, integrating analysis within the relational database environment has 
enabled simpler, faster, more flexible and scalable analytics than were possible be-
fore. Now concise SQL queries can substitute for pages of custom C++ or script pro-
gramming. To store analytical results in relational tables simplifies the process of 
forming an analysis pipeline. New analysis opportunities also emerge when results 
from different query, parameters can be joined together or with updated data. We 
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expect the database management system to play a key role in automating comparative 
sequence analysis. 

While the computational improvements noted above make it possible to analyze 
significantly larger datasets and integrate different dimensions of information, our 
analysis reveals that this newer comparative analysis system has increased sensitivity 
and accuracy. Our preliminary results are identifying base pairs with higher accuracy, 
and with higher sensitivity we are finding that a larger set of nucleotides are coordi-
nated in their evolution. Based on our previous analysis of base triples and tetraloop 
hairpin loops[5, 36], these larger sets of coordinated base changes are forming more 
complex and dynamic structures. This approach also has the potential to identify dif-
ferent base pairs and other structural constraints in the same region of the RNAs in 
organisms on different branches of the phylogenetic tree. Previously, a few examples 
of this from have been identified through anecdotal visual analysis of RNA sequence 
alignments. For example positions 1357:1365 in the Escherchia coli 16S rRNA co-
vary between A:G and G:A in bacteria, and G:C and A:U pairings in Archaea and 
Eucarya [37, 38]. In conclusion, with significant increases in the number of available 
RNA sequences and these new computational methods, we are confident in our ability 
to increase the accuracy of base pair prediction and identify new structural elements.  

Central to both biological analysis and computational algorithm development is the 
issue of how various types of information can be used most effectively. The increas-
ing complexity of analyzing biological data is not only caused by the exponential 
growth of raw data but also due to the demand of analyzing diverse types of informa-
tion for a particular problem. For in silico explorations, this usually means manually 
marshalling large volumes of related information and developing a new application 
program for each problem or even problem instance (or at least the ad hoc scripting 
and custom parameterization and integration of existing tools). The size of the data 
also makes everything, from retrieving relevant information to analyzing large result 
sets, no longer trivial tasks. Thus biologists will benefit from an integrated data man-
agement and analysis environment that can simplify the process of biological discov-
ery. As the growth of biological data is outpacing that of computer power, disk-based 
solutions are inevitable (i.e. the Moore’s law doubling constant for biological data is 
smaller than the constant for computer chips) [6, 39]. With mature disk-based data 
access machineries and a well designed data schema, a relational database manage-
ment system (DBMS) can be an effective tool for bioinformatics. 
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A scientific workflow is the description of a process for accomplishing a scien-
tific objective, usually expressed in terms of tasks and their dependencies [5].
While workflows have a long history in the database community as well as in
business process modeling (where they are also known as business workflows),
and despite some early works on scientific workflows [3,10], the area has only
recently begun to fully flourish (e.g., see [1,2,9,7,4,11]). Similar to scientific data
management which has different characteristics from traditional business data
management [8], scientific workflows exhibit new challenges and opportunities
that distinguish them from business workflows. We present an overview of these
challenges and opportunities, covering a number of issues such as different mod-
els of computation, scalable data and process management, and data provenance
and lineage handling in scientific workflows.
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Abstract. Technological success has ushered in massive amounts of
data for scientific analysis. To enable effective utilization of these data
sets for all classes of users, supporting intuitive data access and manipu-
lation interfaces is crucial. This paper describes an autonomous scientific
workflow system that enables high-level, natural language based, queries
over low-level data sets. Our technique involves a combination of nat-
ural language processing, metadata indexing, and a semantically-aware
workflow composition engine which dynamically constructs workflows for
answering queries based on service and data availability. A specific con-
tribution of this work is a metadata registration scheme that allows for
a unified index of heterogeneous metadata formats and service anno-
tations. Our approach thus avoids a standardized format for storing all
data sets or the implementation of a federated, mediator-based, querying
framework. We have evaluated our system using a case study from the
geospatial domain to show functional results. Our evaluation supports
the potential benefits which our approach can offer to scientific workflow
systems and other domain-specific, data intensive applications.

1 Introduction

From novel simulations to on-site sensors, advancements in scientific technology
have sparked a rapid growth in the deployment of data sources. Vast numbers
of low-level data sets, as a result, are persistently stored on distributed disks
for access, analysis, and transformation by various classes of users. Managing
these low-level data sets on distributed file systems for intuitive user access re-
quires significant consideration towards novel designs in indexing, querying, and
integration. At the same time, processes and tools from which the user accesses
and manipulates these data sets need to be high-level, if not transparent and
automatic. As a result, efforts towards realizing process interoperability and
standardized invocation have resulted in the emergence of service-oriented ar-
chitectures. However, user queries often require a composition of services in able
to derive results. And while scientific workflow management systems [1,10,19,22]
have made tremendous strides toward scheduling and execution of dependent
services, workflows are still largely composed by the user. For scientists and ex-
perts, this approach is often sufficient. But in a time when users are becoming
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more query- and goal-oriented, solutions which leverage effective use of domain
information would require significantly less effort.

In this paper we describe a scientific workflow system which enables high-level
queries over low-level data sets. Our system, empowered by a nuanced semantics
framework, constructs and executes workflow plans automatically for the user.
The approach is motivated by the following observations:

– The aforementioned trend towards service-oriented solutions in scientific
computing. The data grid community, for instance, has benefitted greatly
from borrowing web service standards for interoperability through the Open
Grid Service Architecture (OGSA) initiative [13].

– The trend towards the specification of metadata standards in various scien-
tific domains. These standards allow for clarity in both user and machine
interpretability of otherwise cryptic data sets. However, in many sciences,
metadata formats are often heterogeneous, and a unified method to index
similar information is lacking, specifically for the purposes of workflow com-
position.

In our system, data sets are required to be registered into an index of metadata
information, e.g., time, creator, data quality, etc. A simple domain ontology is
superimposed across the available data sets and services for enabling workflow
planning. Although traditional database and data integration methods (such
as the use of federated databases [24] or mediator-based systems [14,25]) can be
applied, our approach does not require a standardized format for storing data sets
or the implementation of a complex mediator-based querying framework. Our
system combines workflow composition with machine-interpretable metadata, a
domain ontology, and a natural language interface to offer simple and intuitive
ways for querying a variety of data sets stored in their original low-level formats.

Our experimental evaluation is driven through a case study in the geospa-
tial domain. In computing environments with small numbers of data sets, we
show that the benefits of our index-enabled workflow planner is unequivocally
apparent. Moreover, the scalability of these benefits are easily observable for
larger numbers of indices and data sets. Overall, we show that workflows can be
composed efficiently using data sets described in disparate metadata formats.

The remainder of this paper is organized as follows: An overview of our sys-
tem is presented in Section 2. Specifications of majors components in our system
are discussed in Section 3. Section 3.1 describes the query decomposition pro-
cess, followed by metadata registration in Section 3.2. The workflow planning
algorithm is presented in Section 3.3. Section 4 explains the results of our per-
formance evaluation on a case study in the geospatial domain. We compare our
work with related efforts in Section 5, and finally conclude in Section 6.

2 System Overview

The system architecture, shown in Figure 1, consists of four independent layers.
The design and implementation of each layer can be superseded without affecting
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the others as long as it subscribes to some system-specified protocols. From
a high-level perspective, our system can be viewed as a workflow broker: as
users submit queries to the system, the broker plans and executes the workflows
involved in deriving the desired virtual data while hiding complexities such as
workflow composition and domain knowledge from the user.

The user specifies queries through the broker’s Query Decomposition Layer.
This layer decomposes a natural language-based query into keywords and gram-
matical dependencies using a natural language parser. The parsed set of key-
words is then mapped to concepts within the domain ontology specified in the
next layer. The Semantics Layer maintains an active list of available services,
data sets, and their metadata. While the Web Service Description Language
(WSDL) [6] is the international standard for web service description, scientific
data sets often lack a singular metadata format. For instance, in the geospatial
domain alone, CSDGM (Content Standard for Digital Geospatial Metadata) [12]
is adopted in the United States. Elsewhere, Europe and Australia have proposed
similar metadata standards. More important, XML essentially opens the possi-
bility for any user to define any descriptive data annotation, at any time. But
while their formats differ in specification, the information captured is similar:
dates of relevance, spatial region, data quality, etc. In the next section, we discuss
ways our system deals with heterogeneous metadata.

Although metadata is imperative for providing descriptions for data sets and
services, a higher level descriptor is also needed to define the relationships be-
tween the available data and services to concepts within some scientific domain.
These relationships help facilitate planning algorithms for workflow composition.
For example, there is a need for the system to understand how “water levels”
are derived using some existing data sets, services, or combinations of both. We
specify this description through a simple ontology, a directed graph with the
following requirements:

– The ontology consists of three disjoint sets (classes) C, S, and D representing
the set of domain concepts, the set of available services known to the system,
and the known domain-specific data types, respectively.

– Two types of directed edges (relations) exist: concepts may be derivedFrom
data or service nodes and a service inputsFrom concepts.



Enabling Ad Hoc Queries over Low-Level Scientific Data Sets 221

derivedFrom

derivedFrom
derivedFrom

inputsFrom

derivedFrom

Domain Concepts (C)

Services
(S)

Data
(D)

Fig. 2. Ontological Structure for Domain Description

This ontological definition, shown in Figure 2, simplifies the effort to indi-
cate which services and data types are responsible for deriving specific domain
concepts.

Next, the Planning Layer assumes that the ontology and metadata index
are in place and defined. The planning algorithm, discussed in detail in the
following section, relies heavily on the Semantics Layer. In essence, the planner
enumerates workflows to answer any particular query through traversals of the
domain ontology. The existence of needed services and data sets is identified by
the metadata index. This layer sends a set of workflows all capable of answering
the user query to the Execution Layer for processing, and the resulting virtual
data is finally returned back to the user.

In this paper we focus mainly on the Query Decomposition and Semantics
Layers. While the workflow enumeration algorithm in the Planning Layer is
also described, details on the algorithm’s cost-based pruning mechanism, QoS
adaptation, and robustness over distributed environments are discussed in our
other publications [8,7].

3 Technical Details

This section focuses on the descriptions of the major components involved in
supporting queries, semantics, and planning. We lead into the discussion of the
technical specifications of each system component through a simple working
example query.

‘‘return water level from station=32125 on 10/31/2008’’

3.1 Query Decomposition

The first objective of our system is to process user queries in the form of natu-
ral language. The job of the Query Decomposition Layer is to extract relevant
elements from the user query. These elements, including the user’s desiderata
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and other query attributes, are mapped to domain concepts specified in the Se-
mantics Layer’s ontology. Thus, these two layers in the system architecture are
tightly linked. Shown in Figure 3, the decomposition process is two-phased.

In the Mapping Phase, StanfordNLP [17] is initially employed to output a list
of terms and a parse tree from the query. The list of extracted query terms is
then filtered through a stop list to remove insignificant terms. This filtered set is
further reduced using a synonym matcher provided through WordNet libraries
[11]. The resulting term set is finally mapped to individual domain concepts from
the ontology. These terms, however, can also take on meaning by their patterns.
In our example, “10/31/2008” should be mapped to the domain concept, date. A
pattern-to-concept matcher, for this reason, was also implemented using regular
expressions. But since only certain patterns can be anticipated, some querying
guidelines must be set. For instance, dates must be specified in the mm/dd/yyyy
format, time as hh:mm:ss, coordinates as (lat, long), etc. Additionally, values
can also be given directly to concepts using a concept=value string, as seen for
assigning 32125 to station in our query.

Upon receiving the set of relevant concepts from the previous phase, the Sub-
stantiation Phase involves identifying the user’s desired concept as well as as-
signing the given values to concepts. First, from the given parse tree, concepts
are merged with their descriptors. In our example, since “water” describes the
term “level”, their respective domain concepts are merged. The pattern matcher
from the previous phase can be reused to substantiate given values to concepts,
resulting in the relations (date derivedFrom 10/31/2008) and (station derived-
From 32125). These query parameter substantiations is stored as a hashset,
Q[. . .] = Q[date]→ {10/31/2008} and Q[station]→ {32125}. This set of query
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parameters is essential for identifying accurate data sets in the workflow plan-
ning phase. Query parameters and the target concept, are sent as input to the
workflow planning algorithm in the Planning Layer of the system.

We take prudence in discussing our query parser as not to overstate its func-
tionalities. Our parser undoubtedly lacks a wealth of established natural lan-
guage query processing features (see Section 5), for it was implemented ad hoc
for interfacing with our specific domain ontology. We argue that, while related
research in this area can certainly be leveraged, the parser itself is ancillary to
meeting the system’s overall goals of automatic workflow planning and beyond
the current scope of this work. Nonetheless, incorrectly parsed queries should be
dealt with. Currently, with the benefit of the ontology, the system can deduce
the immediate data that users must provide as long as the target concept is
determined. The user can then enter the required data into a form for querying.

3.2 Metadata Registration

Because workflow planning is a necessary overhead, the existence of data sets
(and services) must be identified quickly. Our goal, then, is to provide fast data
identification. On one hand, we have the challenge of supplying useful domain
knowledge to the workflow planner, and on the other, we have a plethora of
pre-existing database/metadata management technologies that can be leveraged.
The result is to utilize an underlying database to store and index domain-specific
elements and, with the advantage of fast indices, the overhead of data identifi-
cation for workflow planning can be optimized. For each data set, its indexed
domain concepts can be drawn from an accompanying metadata file. However,
metadata formats for describing scientific data sets can vary. There exists, for in-
stance, multiple annotation formats from just within the geospatial community.
But while their structures differ, the descriptors are similar, storing essential in-
formation (data quality, dates, spatial coverage, and so on) pertaining to specific
data sets.

Domain experts initialize the system with the following1: (i) Υ = {υ1, . . . , υn},
a set of XML Schema or Data Type Definitions (DTD) which defines the sup-
ported metadata formats used for validation. (ii) Cidx, a set of domain concepts
that the system should index, and (iii) xpath(υ, c) : (υ ∈ Υ ∧ c ∈ Cidx), For
each indexed concept and schema, an XPath query [5] that is used to access the
indexed value for concept c from a given the metadata document corresponding
to schema υ. Once in place, domain users should be able to upload and not
only share new data sets, but to also make it available for answering high-level
queries. To register new data sets with the system, users can invoke the Data
Registration algorithm. This procedure, shown in Algorithm 1, takes three in-
puts: a data file d, its metadata file metad, and an optional keyword array, K[. . .]
that describes d, and an optional schema for validating metad, υd. With the ben-
efit of the term-to-concept mapper described in Section 3.1, the domain concept
to which this data set derives can be computed. Optionally, but not shown, the

1 Our implementation assumes that metadata is defined in XML.
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Algorithm 1. registerData(d, metad[, K, υd])
1: /* identify and validate metadata */
2: if υd ∈ Υ ∧ υd.validate(metad) = true then
3: δ ← υd /* input schema checks out */
4: else
5: for all υ ∈ Υ do
6: if υ.validate(metad) = true then
7: δ ← υ /* δ holds the corresponding schema */
8: end if
9: end for

10: end if
11: cK ← ConceptMapper.map(K) /* solve for concept derived by d */
12: dK ← cK · “type”
13: if � dK ∈ Ontology.D then
14: Ontology.D ← Ontology.D ∪ {dK}
15: Ontology.Edges ← Ontology.Edges ∪ {(cK , derivedFrom,dK)}
16: end if
17: /* build database record */
18: R ← (datatype = dK)
19: for all c ∈ Cidx do
20: v ← metad.extract(xpath(δ, c))
21: R ← record ∪ (c = v) /* concatenate record */
22: end for
23: DB.insert(R, d)

user could select concepts directly from the ontology to describe d’s type instead
of providing K[. . .]. To avoid confusion of schema validity and versioning, we
emphasize here that the set of valid schemas, Υ , should only be managed by do-
main experts or administrators. That is, although users may potentially discover
new metadata schemas, our system cannot allow them to update Υ directly.

Algorithm 1 starts by identifying the type of metadata, δ, prescribed by the
user via validating metad against the set of schemas, or directly against the user
provided schema, υd (Lines 2-10). Next, the domain concept that is represented
by K[. . .] is solved for on Line 11. On Line 12, dK is assigned the name rep-
resenting the type of data in the ontology, where cK is the matched concept
and · denotes string concatenation. If necessary, dK is added into the ontology’s
data type class, D, and an edge from cK to dK is also established (Lines 13-16).
Finally, on Lines 18-23, a record is constructed for eventual insertion into the
underlying database. The constructed record, R, is inserted into the database
with a pointer to the data set, d. This process is illustrated in Figure 4(a).

Service registration, depicted in Figure 4(b), is not unlike data registration.
First, the service description file (in WSDL [6]) is input. Each declared opera-
tion must input domain concepts describing its parameters and output. Again,
the user may input keywords defining the concept or map the concepts directly.
From concept mapping, the ontology is updated with the respective derivedFrom
and inputsFrom edges. Additionally, preconditions and prediction models for
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execution time and output size can also be input in this stage. Preconditions,
useful for workflow planning, and prediction models, required for QoS adapta-
tion, are both indexed per service operation.

3.3 Workflow Planning

Often in practice, scientific tasks are composed of disparate processes chained
together to produce some desired values. Although workflows are rooted in busi-
ness processes, their structures lend well to the realization of complex scientific
computing [10,22,1,19]. Workflows can be expressed as directed acyclic graphs
where the vertices denote processes/services and data sets and directed edges
represent the flow of data. In our framework, we define workflow as follows.
Given some arbitrary dataset D and a set of services S a workflow:

w =

⎧⎪⎨⎪⎩
ε

d

(s, Ps)

such that terminals ε and d ∈ D denote a null workflow and a data instance
respectively. Nonterminal (s, Ps) ∈ S is a tuple where s denotes a service op-
eration with an ordered parameter list Ps = (p1, . . . , pk) and each pi is itself a
workflow. In other words, a workflow is a tuple which either contains a single
data instance or a service whose parameters are, recursively, (sub)workflows.

Workflow Enumeration Algorithm. Given some query q, the goal of work-
flow planning algorithm is to enumerate a list of workflows Wq = (w1, . . . , wn)
capable of answering q from the available services and data sets. The execution
of each wi ∈ Wq is carried out, if needed, by an order determined by cost or
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QoS parameters. Thus, upon workflow execution failure, the system can persis-
tently attempt alternative, albeit potentially less optimal (with respect to QoS
parameters), workflows. Mechanisms for assigning cost to workflows against QoS
constraints, however, are out of the scope for this paper.

Domain concept derivation is the goal behind constructing each workflow.
Thus, our algorithm, WFEnum, relies heavily on the metadata and semantics
provided in the Semantics Layer. Recall from Section 3.1 that the Query De-
composition component outputs the query’s target concept, t, and a hashed
set of query parameters, Q[. . .] (such that Q[concept] → {val1, val2, . . .}). The
WFEnum algorithm takes both t and Q[. . .] as input, and outputs a list W of
distinct workflows that are capable of returning the desiderata for the target
concept.

WFEnum, shown in Algorithm 2, begins by retrieving all d ∈ D (types of
data registered in the ontology) from which the target concept, t, can be derived.
On Line 2, a statically accessible array, W ′[. . .], is used for storing overlapping
workflows to save redundant recursive calls in the later half of the algorithm. The
workflows are memoized on a hash value of their target concept and parameter
list. On Line 5, a set of indexed concepts, Cidx, is identified for each data type,
and checked against the parsed user specified values in the query. To perform
this check, if the set difference between the registered concepts, Cidx, and the
query parameters, Q[. . .], is nonempty, then the user clearly did not provide
enough information to plan the workflow unambiguously. On Lines 7-11, if all
index registered concepts are substantiated by elements within Q[. . .], a database
query is designed to retrieve the relevant data sets. For each indexed concept
c, its (concept=value) pair, (c = Q[c]) is concatenated (AND’d) to the query’s
conditional clause. On Lines 12-15, the constructed query is executed and each
returned file record, f , is an independent file-based workflow deriving t.

The latter half of the algorithm deals with concept derivation via service
calls. From the ontology, a set of relevant service operations, Λsrvc is retrieved
for deriving t. For each operation, op, there may exist multiple ways to plan
for its execution because each of its parameters, p , is a subproblem. Therefore,
workflows pertaining to each parameter p must first be solved with its own target
concept, p.target and own subset of relevant query parameters Qp[. . .]. While
p.target is easy to identify from following the inputsFrom links belonging to op
in the ontology, the forwarding of Qp[. . .] requires a bit more effort. Looking
past Lines 25-31 for now, this query parameter forwarding process is discussed
in detail in Section 3.3.

Once the Qp[. . .] is forwarded appropriately, the recursive call can be made
for each parameter, or, if the call is superfluous, the set of workflows can be
retrieved directly (Line 32-36). In either case the results are stored in Wp, and
the combination of these parameter workflows in Wp is established through a
cartesian product of its derived parameters (Line 37). For instance, consider a
service workflow with two parameters of concepts a and b: (op, (a, b)). Assume
that target concepts a is derived using workflows Wa = (wa

1 , wa
2 ) and b can

only be derived with a single workflow Wb = (wb
1). The distinct parameter
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Algorithm 2. WFEnum(t, Q[. . . ])
1: W ← ()
2: global W ′[. . .] /* static table for memoization */
3: Λdata ← Ontology.derivedFrom(D, t)
4: for all d ∈ Λdata do
5: Cidx ← d.getIndexConcepts()
6: /* user-given values enough to substantiate indexed concepts */
7: if (Q.concepts() − Cidx) = {} then
8: cond ← (datatype = d)
9: for all c ∈ Cidx do

10: cond ← cond ∧ (c = Q[c]) /* concatenate new condition */
11: end for
12: F ← σ<cond>(datasets) /* select files satisfying cond */
13: for all f ∈ F do
14: W ← (W, (f))
15: end for
16: end if
17: end for
18:
19: Λsrvc ← Ontology.derivedFrom(S, t)
20: for all op ∈ Λsrvc do
21: Πop ← op.getPreconditions();
22: Pop ← op.getParameters()
23: Wop ← ()
24: for all p ∈ Pop do
25: /* forward query parameters s.t. preconditions are not violated */
26: Qp[. . .] ← Q[. . .]
27: for all (concept, value) ∈ Qp[. . .] do
28: if (concept, value).violates(Πop) then
29: Qp[. . .] ← Qp[. . .] − (concept, value)
30: end if
31: end for
32: if ∃W ′[h(p.target,Qp)] then
33: Wp ← W ′[h(p.target,Qp)] /* recursive call is redundant */
34: else
35: Wp ← WFEnum(p.target, Qp[. . . ]) /* recursively invoke for p */
36: end if
37: Wop ← Wop × Wp /* cartesian product */
38: end for
39: /* couple parameter list with service operation and concatenate to W */
40: for all pm ∈ Wop do
41: W ← (W, (op, pm))
42: end for
43: end for
44: W ′[h(t, Qp)] ← W /* memoize */
45: return W
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list plans are thus obtained as Wop = Wa × Wb = ((wa
1 , wb

1), (w
a
2 , wb

1)). Each
element from Wop is a unique parameter list. These lists are coupled with the
service operation, op, memoized in W ′ for avoiding redundant recursive calls in
the future, and returned in W (Lines 39-45). In our example, the final list of
workflows is obtained as W = ((op, (wa

1 , wb
1)), (op, (wa

2 , wb
1))).

The returned list, W , contain planned workflows capable of answering an orig-
inal query. Ideally, W should be a queue with the “best” workflows given priority.
Mechanisms identifying the “best” workflows to execute, however, depends on
the user’s preferences. Our previous effort have led to QoS-based cost scoring
techniques leveraging on bi-criteria optimization: workflow execution time and
result accuracy. Although not shown in this paper, the gist of this effort is to
train execution time models and also allow domain experts to input error propa-
gation models per service operation. Our planner, when constructing workflows,
invoke the prediction models based on user criteria. Workflows not meeting ei-
ther constraint are pruned on the a priori principle during the enumeration
phase. In the special case of when W is empty, however, a re-examination of
pruned workflows is conducted to dynamically adapt to meet these constraints
through data reduction techniques. This QoS adaptation scheme is detailed in
other publications [8,7].

Forwarding of Query Parameters. It was previously noted that planning
a service operation is dependent on the initially planning of the operation’s
parameters. This means that WFEnum must be recursively invoked to plan
(sub)workflows for each parameter. Whereas the (sub)target concept is clear to
the system from inputsFrom relations specified in the ontology, the original query
parameters must be forwarded correctly. For instance, consider some service-
based workflow, (op, (L1, L2)) that expects as input two time-sensitive data files:
L1 and L2. Let’s then consider that op makes the following two assumptions: (i)
L1 is obtained at an earlier time/date than L2 and (ii) L1 and L2 both represent
the same spatial region. Now assume that the user query provides two dates,
10/2/2007 and 12/3/2004 and a location (x, y), that is,

Q[. . . ] =

{
location→ {(x, y)}
date→ {10/2/2007, 12/3/2004}

To facilitate this distribution, the system allows a set of preconditions, Πop,
to be specified per service operation. All conditions from within Πop must be
met before allowing the planning/execution of op to be valid, or the plan being
constructed is otherwise abandoned. In our case, the following preconditions are
necessary to capture the above constraints:

Πop =

{
L1.date % L2.date

L1.location = L2.location

In Lines 25-31, our algorithm forwards the values accordingly down their respec-
tive parameter paths guided by the preconditions, and thus implicitly satisfying
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them. The query parameter sets thus should be distributed differently for the
recursively planning of L1 and L2 as follows:

QL1 [. . .] =

{
location→ {(x, y)}
date→ {12/3/2004}

QL2[. . .] =

{
location→ {(x, y)}
date→ {10/2/2007}

The recursive planning for each (sub)workflow is respectively supplied with
the reduced set of query parameters to identify only those files adhering to
preconditions.

4 System Evaluation

The experiments that we conducted are geared towards exposing two particular
aspects of our system: (i) we run a case study from the geospatial domain to
display its functionality, including metadata registration, query decomposition,
and workflow planning. (ii) We show scalability and performance results of our
query enumeration algorithm, particularly focusing on data identification.

Experimental Case Study. To present our system from a functional stand-
point, we employ an oft-used workflow example from the geospatial domain:
shoreline extraction. This application requires a Coastal Terrain Model (CTM)
file and water level information at the targeted area and time. CTMs are essen-
tially matrices (from a topographic perspective) where each point represents a
discretized land elevation or bathymetry (underwater depth) value in the cap-
tured coastal region. To derive the shoreline, and intersection between the ef-
fective CTM and a respective water level is computed. Since both CTM and
water level data sets are spatiotemporal, our system must not only identify the
data sets efficiently, but plan service calls and their dependencies accurately and
automatically.

For this example, the system’s data index is configured to include only date
and location concepts. In practice however, it would be useful to index additional
elements such as resolution/quality, creator, map projection, and others. Next,
we provided the system with two metadata schemas, the U.S.-based CSDGM [12]
and the Australia and New Zealand standard, ANZMETA [3], which are both
publicly available. Finally, XPaths formed from the schemas to index concepts
date and location for both schemas are defined.

Next, CTM files, each coupled with corresponding metadata and keywords
K = {“CTM”, “coastal terrain model”, “coastal model”}, are inserted into the
system’s registry using the data registration procedure provided in Algorithm 1.
In the indexing phase, since we are only interested in the spatiotemporal aspects
of the data sets, a single modified Bx-Tree [16] is employed as the underlying
database index for capturing both date and location.2 For the ontology phase,
2 Jensen et al.’s Bx-Tree [16], originally designed for moving objects, is a B+Tree

whose keys are the approximate linearizations of time and space of the object via
space-filling curves.
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Fig. 5. The Shoreline’s Involved Ontology and the Derived Workflow

since a CTM concept is not yet captured in the domain ontology, the keyword-
to-concept mapper will ask the user to either (a) display a list of concepts, or
(b) create a new domain concept mapped from keywords K. If option (a) is
taken, then the user chooses the relevant concept and the incoming data set
is registered into the ontology, and K is included the mapper’s dictionary for
future matches. Subsequent CTM file registrations, when given keywords from
K, will register automatically under the concept CTM. On the service side, two
operations are required for registration, shown below as (op, (cp1, cp2, . . . , cpk)),
where op denotes the service operation name and cpi denotes the domain concept
of parameter i:

1. (getWaterLevel, (date, location)): retrieves the average water level reading
on the given date from a coastal gauging station closest to the given location.

2. (extractShoreline, (CTM, water level)): intersects the given CTM with the
water level and computes the shoreline.

For sake of simplicity, neither operation requires preconditions and cost predic-
tion models. After metadata registration, the resulting ontology is shown in Fig-
ure 5(a), unrolled for clarity. Albeit that there are a multitude of more nodes in
a practical system, it is easy to see how the WFEnum algorithm would plan for
shoreline workflows. By traversing from the targeted concept, shoreline, and visit-
ing all reachable nodes, the workflow structure is a reduction of shoreline’s reacha-
bility subgraph with a reversal of the edges and a removal of intermediate concept
nodes. The abstract workflow shown in Figure 5(b) is the general structure of all
plannable workflows. In this particular example, WFEnum will enumerate more
than one workflow candidate only if multiple CTM files (perhaps of disparate res-
olutions) are registered in the index at the queried location and time.

Performance Evaluation. Our system is distributed by nature, and therefore,
our testbed is structured as follows. The workflow planner, including metadata
indices and the query parser, is deployed onto a Linux machine running a Pentium
4 3.00Ghz Dual Core with 1GB of RAM. The geospatial processes are deployed as
web services on a separate server located across the Ohio State University campus
at the Department of Civil and Environmental Engineering and Geodetic Science.
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Fig. 6. Workflow Planning Times with Increasing Data Sets and Concept Indices

CTM data sets, while indexed on the workflow planner node, are actually housed
on a file server across state, at the Kent State University campus.

In the first experiment, we are interested in the runtime of WFEnum with and
without the benefit of metadata registration when scaled to increasing amounts
of data files and concepts needing indexed (thus resulting in both larger in-
dex structures and a larger number of indices). Shown in Figure 6 (top), the
linear search version consumes significant amounts of time, whereas its coun-
terpart (bottom) consumes mere milliseconds for composing the same workflow
plan. Also, because dealing with multiple concept indices is a linear function,
its integration into linear search produces drastic slowdowns. And although the
slowdown can also be observed for the indexed runtime, they are of negligible
amounts.

Once the shoreline extraction workflow has finished planning, its execution
is then carried out by our system. As seen in Figure 7, the workflow’s execu-
tion time is heavily dependent on the CTM file size. If we juxtaposed Figure 6
with Figure 7, the importance of minimizing planning time becomes clear. Espe-
cially for smaller CTM files, the cases when planning times dominate execution
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times should be avoided, and metadata indexing decreases the likelihood for this
potential.

5 Related Efforts

The need for metadata and semantics has long been addressed by such initia-
tives as the plethora of XML-based technologies, including Resource Description
Framework (RDF) and its complement, the Web Ontology Language (OWL)
[20,9]. These standards have opened up support to allow anyone to specify hu-
man and machine interpretable descriptions for any type of data. In our system,
we indeed employ RDF+OWL to formalize a general ontology which describes
the relationships between concepts and resources (data sets and services). This
resource description is imperative to our system, as it semantically drives the
workflow planner.

Parsing correctness, disambiguation, and schema mapping are well-known
problems in natural language querying. Stanford’s Natural Language Parser [17]
and dictionary API’s provided by WordNet [11] are often employed in systems
providing natural language support, including our own. In the direction of query-
ing structured information, ample research has been developed for addressing the
issues with translating natural language translation to structured queries [2,18].
We concede that our parser is lacking such relevant technologies for handling
the age-old challenges of disambiguation, mapping, etc. Undertaking the imple-
mentation of these features is currently beyond the scope of this work.

Research in high performance scientific data management has produced such
systems as the Scientific Data Manager (SDM), which employs the Meta-data
Management System (MDMS) [21]. SDM provides a programming model and ab-
stracts low-level parallel I/O operations for complex scientific processing. While
MDMS uses a database for metadata storage, the metadata itself is specific to
the scientific process at hand, containing information on execution (e.g., access
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patterns, problem size, data types, file offsets, etc). This metadata is used by
SDM to optimize the runtime of these parallel processes. Another system, San
Diego Supercomputing Center’s Storage Resource Broker (SRB) [4], seeks to
store massive volumes of data sets split across clusters or nodes within heteroge-
nous environments. SRB allows parallel and transparent data access by offering
a simplified API to users which hides complexities such as merging data sets,
allowing restricted access, etc. Compared to our system, there is a fundamental
difference in functionality. Ours provides a way to store heterogeneous meta-
data specific to scientific domains inside a database, and that the metadata are
invoked not for process optimization, but for data identification purposes for
automatic workflow planning.

Ways to handle the heterogeneity of metadata have prompted many works on
metadata cataloguing and management. Particularly, in the volatile grid com-
puting environment, data sources are abundant and metadata sources are ever-
changing. Metadata Catalog Service (MCS) [26] and Artemis [28] are collab-
orative components used to access and query repositories based on metadata
attributes. MCS is a self-sufficient catalog which stores information on data
sets. Its counterpart Artemis, on the other hand, can be used to integrate many
versions of MCS for answering interactive queries. Their interface takes users
through a list of questions guided by a domain ontology to formulate a query.
The planned query is then sent to the Artemis mediator to search for relevant
items in the MCS instances. While the MCS and Artemis is somewhat tanta-
mount to our metadata registration and automatic query formulation processes,
our systems differ in the following ways. (i) Ours not only facilitates accurate
data identification based on metadata querying, but also combining these data
items with similarly registered services to compose workflows. (ii) Although both
systems allow higher level querying frameworks, our approach is enabled through
natural language and keyword mapping of domain ontology concepts.

Workflow management systems have also gained momentum in the wake of
managing complex, user-driven, scientific computations in the form of service
composition. By itself, service composition have become prevalent enough to
warrant such industrial standards as the WSBPEL (Web Service Business Pro-
cess Execution Language) [30] to describe the orchestration of service execu-
tion. Implementations of WSBPEL engines have already sprawled into realms of
proprietary and open-source communities, an auspicious indication of the high
optimism for the movement toward service-oriented workflow solutions. In fact,
many efforts towards scientific workflow composition have already been devel-
oped. Notable systems such as Askalon [29], Taverna [22], and Kepler [1] have
evolved into grid- and service-oriented systems. These systems typically allow
domain experts to define static workflows through a user-friendly interface, and
map the component processes to known services. Pegasus [10,15] allows users to
compose workflows potentially with thousands of nodes using abstract workflow
templates. But while these systems alleviate users’ efforts for composition, our
system proposes automatic workflow planning based on available metadata to
elude user-based composition altogether.
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In the direction of automatic workflow composition, Traverso et al. discussed
the importance of exploiting semantic and ontological information for automat-
ing service composition [27]. Their approach generates automata-based “plans,”
which can then be translated into WSBPEL processes. The goals and require-
ments for these plans, however, must be expressed in a formal language, which
may be cryptic for the average user. Other automatic planning-based systems,
such as Sword [23] and SHOP2 [31], also require similar complexity in expressing
workflows. While the overall objectives of these systems are tantamount to those
of our own, our directions are quite different. In an age when scientific data sets
are ubiquitous and when machine- and human-interpretable descriptions are im-
perative, we are invariably deluged with high-volumes of heterogeneous data sets
and metadata. To the best of our knowledge, the registration and exploitation
of domain-specific metadata to automatically compose workflows for answering
natural language queries is a novel approach in this area.

6 Conclusion and Future Work

In this paper we have presented a system which supports simplified querying
over low-level scientific datasets. This process is enabled through a combination
of effective indexing over metadata information, a system and domain specific
ontology, and a workflow planning algorithm capable of alleviating all tiers of
users of the difficulties one may experience through dealing with the complexities
of scientific data. Our system presents a new direction for users, from novice
to expert, to share data sets and services. The metadata, which comes coupled
with scientific data sets, is indexed by our system and exploited to automatically
compose workflows in answering high level queries without the need for common
users to understand complex domain semantics.

As evidenced by our experiments, a case can be made for supporting metadata
registration and indexing in an automatic workflow management system. In our
case study alone, comparing the overhead of workflow planning between linear
search and index-based data identification methods, speedups are easily observed
even for small numbers of data sets. Further, on the medium scale of searching
through 1× 106 data sets, it clearly becomes counterproductive to rely on linear
metadata search methods, as it potentially takes longer to plan workflows than
to execute them. As evidenced, this scalability issue is easily mitigated with an
indexed approach, whose planning time remains negligible for the evaluated sizes
of data sets.

Although our system claims to support natural language queries, it is, admit-
tedly, far from complete. For instance, mapping sophisticated query elements to
supporting range queries and joins is lacking. While this limits querying support
significantly, we believe that these details can be realized with more effort spent
on providing better models in the relationship between parse trees and the query
plan. Nonetheless, in a more holistic sense, these nuances are diminutive against
the general role of the system.
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Abstract. Existing approaches for representing the provenance of scientific
workflow runs largely ignore computation models that work over structured data,
including XML. Unlike models based on transformation semantics, these com-
putation models often employ update semantics, in which only a portion of an in-
coming XML stream is modified by each workflow step. Applying conventional
provenance approaches to such models results in provenance information that is
either too coarse (e.g., stating that one version of an XML document depends en-
tirely on a prior version) or potentially incorrect (e.g., stating that each element of
an XML document depends on every element in a prior version). We describe a
generic provenance model that naturally represents workflow runs involving pro-
cesses that work over nested data collections and that employ update semantics.
Moreover, we extend current query approaches to support our model, enabling
queries to be posed not only over data lineage relationships, but also over ver-
sions of nested data structures produced during a workflow run. We show how
hybrid queries can be expressed against our model using high-level query con-
structs and implemented efficiently over relational provenance storage schemes.

1 Introduction

Scientific workflow systems (e.g., [15,7,19]) are increasingly used by scientists to de-
sign and execute data analysis pipelines and to perform other tool integration tasks.
Workflows in these systems often are represented as directed graphs where nodes de-
note computation steps (e.g., for data acquisition, integration, analysis, or visualization)
and edges represent the required dataflow between steps. Systems execute workflow
graphs according to various models of computation [15], which generally specify how
workflow steps should be scheduled and how data should be passed (and managed)
between steps. In addition to automating data analyses, scientific workflow systems
can capture the detailed provenance of data produced during workflow runs, often by
recording the processing steps used to derive data products and the data provided to and
generated by each step. Provenance recording capabilities represent a key advantage
of scientific workflow technology over more traditional scripting approaches, enabling
scientists to more easily understand, reproduce, and verify scientific results [9,4]. How-
ever, effectively representing provenance information is complicated by a number of

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 237–254, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. A straightforward Kepler implementation of the first provenance challenge fMRI work-
flow. Given 3D brain scans (anatomy images) it: (1) compares each image to a reference image to
determine “warping” parameters for alignment with the reference; (2) transforms the images ac-
cording to the parameters; (3) averages the transformed images into an atlas image; (4) produces
three different 2D slices of the altas; and (5) converts each 2D slice into a graphical image.

technical challenges as workflows, the models of computation used to enact them, and
the structures of the data flowing through them, each become more complex.

Design Challenges. Consider the Kepler workflow definition shown in Fig. 1, which
is a straightforward implementation of the fMRI image processing pipeline of the first
provenance challenge [18] (i.e., directly following the implementation suggested in the
challenge). This workflow design hardwires the number of input images (four; see Stages
1–3) and the number of output slices (three; see Stages 4–5). Consequently, performing
the same computation on a different number of input images or with additional output
slices will require significant modifications to the workflow definition. Simply supply-
ing a different input data set or changing parameter values applied to the workflow is
not sufficient. Instead new components (actors) and additional wires must be introduced
throughout the workflow. The limitation of this design approach is even more obvious
in workflows where the number of data items produced during a workflow run is not
predetermined. For example, many standard bioinformatics analyses include workflow
steps that produce collections of output data with indefinite cardinality (e.g., BLAST and
maximum parsimony tree inference algorithms [5], among others). Chaining such steps
together generally requires data to be grouped into nested collections, and workflow sys-
tems often address this need by enabling workflow authors to model data using XML-like
data structures. Further, by natively supporting operations over such nested data collec-
tions (e.g., [11,20,19,5]), these systems can also yield more generic and reusable work-
flow designs [16].

Design via Nested Data Collections. Fig. 2 illustrates the advantages of employing
XML-like data structures in workflows. Shown is a workflow definition with the same
intent as that in Fig. 1, but implemented using the Collection-oriented modeling and



Exploring Scientific Workflow Provenance Using Hybrid Queries 239

Fig. 2. A COMAD design of the fMRI workflow in Kepler, where: (1) CollectionReader is con-
figured with an input XML structure that specifies the input images used; (2) AlignWarp, Reslice-
Warp, SoftMean, Slicer, and Convert are similar to those of Fig. 1 but work over portions of the
XML data stream; and (3) ReplicateCollection is configured to create n copies of the resulting
SoftMean images, where each copy induces a separate Slicer invocation. COMAD extends Kepler
with explicit support for managing data collections, making COMAD actors “collection aware.”

design (i.e., COMAD) paradigm [16] developed in Kepler.1 Workflows in COMAD are
executed over XML data streams in which actors employ update semantics by making
modifications to (i.e., updating) portions of the overall XML structure and passing the
updated structure to downstream actors. Specifically, actors in COMAD receive frag-
ments of an incoming XML token stream based on their declared read-scope param-
eters (given as XPath expressions in Fig. 2), insert and remove fragments within their
matching scopes, and pass the modified stream on to subsequent actors. Actors are exe-
cuted (or invoked) over each corresponding read scope match within an incoming token
stream. For instance, the COMAD implementation of the Align Warp actor (Stage 1)
is invoked once over each Anatomy Image collection within the workflow input, as
shown in Fig. 3a for the first invocation of Align Warp. The workflow of Fig. 2 differs
from Fig. 1 in that it can be executed over multiple collections of anatomy images of
varying cardinality without requiring modifications to the workflow graph. To have the
workflow average five anatomy images, rather than four, the user only needs to add
the additional image to the input data set. The COMAD version of the workflow also
contains noticeably fewer overall actor occurrences and connections. Other advantages
include support for parallel actor execution (where actors are executed concurrently
over distinct portions of the overall XML structure) and the ability to easily add and
remove actors within a pipeline while minimizing the changes that must be made to the
workflow graph [16].

Provenance Challenges. While COMAD provides benefits for workflow design and
execution, it requires a richer model of provenance than used by systems in which ac-
tors correspond to data transformers (as in Fig. 1), i.e., where actors (i) treat data as
opaque objects (or tokens), (ii) produce a set of new output tokens from each set of
input tokens they receive, and (iii) assume all input tokens are used to derive all out-
put tokens within a single actor invocation. Provenance management systems tailored
to workflows consisting entirely of data transformers (e.g., [2,21,17]) generally store
the input and output tokens of each actor invocation, and later use this information to
infer (causal) dependencies between data tokens and workflow steps. When applied to

1 Kepler supports multiple computation models ( directors) including standard dataflow models
such as Synchronous DataFlow (SDF) and Process Networks (PN) [15].
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Fig. 3. An actor invocation employing update semantics: (a) example nested data structures s1

and s2 input to and output by the first invocation of the AlignWarp actor during a run of Fig. 2;
and (b) the fine-grain data dependencies of nodes in s2 on nodes in s1 introduced by the invocation

computation models such as COMAD, however, this standard approach to recording
and reporting provenance relationships can infer incomplete and even incorrect data
and invocation dependencies [3]. For example, Fig. 3b shows the actual data dependen-
cies introduced by the first invocation of the AlignWarp actor; specifically, the object
representing the warping parameters (node 11) was derived from each of the image and
header objects contained in the AnatomyImage collection matching the read scope of
the invocation (node 2). However, if these input and output structures were represented
as atomic data objects (s1 and s2), the standard model would infer only a single depen-
dency between the output version (s2) and the input version (s1). Alternatively, if as
in COMAD, XML structures are represented as XML token streams, then the standard
model would incorrectly infer dependencies between every output and input node.

Contributions. We define a model of provenance (based on our prior work [3]) that ex-
tends the standard model [17,9] with support for scientific workflows that process XML
data and employ update semantics. We also present approaches for querying provenance
information based on this model. The model provides a conceptual representation of
workflow provenance that is used for expressing provenance queries and for interpret-
ing query results. A goal of our approach is to address shortcomings of current ap-
proaches for querying provenance information. Specifically, most existing approaches
directly expose to users the physical representation of provenance information (e.g., us-
ing relational, XML, or RDF schemas) in which users must express provenance queries
using associated query languages (e.g., SQL, XQuery, or SPARQL). These approaches
are often invconvenient and difficult for users needing to express complex provenance
queries, and also limit opportunities for storage and query optimization, since optimiza-
tion often results in modifications to the underlying provenance representation. As an
alternative, we present a Query Language for Provenance (QLP; pronounced “clip”)
that is designed to be independent of any particular physical representation, and that
includes constructs tailored specifically for querying scientific workflow provenance.
QLP constructs also allow queries to be expressed over both lineage information and
different versions of nested data structures produced by workflow runs. We show that
QLP can express common provenance queries and that these queries can be answered
efficiently based on translations to standard relational database techniques.
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Outline. Section 2 describes our provenance model for representing COMAD-style
workflow runs that supports nested data and update semantics. Section 3 describes
shortcomings of current approaches for querying provenance information, presents the
QLP query constructs, and shows that these constructs are expressive enough to formu-
late common provenance queries. We also briefly describe our implementation of QLP
and demonstrate the feasibility of our approach in Section 3. Section 4 discusses related
work, and Section 5 summarizes our contributions.

2 Models of Provenance

Despite efforts to better understand and even standardize provenance models, e.g., in the
Open Provenance Model (OPM) initiative [18], a universally accepted model has yet to
emerge. This is due in part to the differences in the underlying models of computation
employed by workflow systems. In the following, we develop a number of models of
provenance, starting with a basic model capturing the conventional view of scientific
workflows as simple task dependency graphs over atomic data and atomic (single in-
vocation) processes, similar to the OPM model (as well as others, e.g., [7]). Next, we
extend this basic model to handle computations where a workflow step (i.e., task or pro-
cess) consists of multiple invocations (or firings [14]) over a stream of incoming tokens.
The resulting model is a variant of process networks [13] that is well-suited for stream
processing, and comes with “built-in” pipeline parallelism. A second, and for our pur-
poses crucial extension of the basic provenance model, allows us to handle complex
data, i.e., nested data collections, represented in XML. We discuss two variants of this
XML-based provenance model, with copy and update semantics, respectively. Finally,
our last extension yields a unified provenance model, incorporating the above features
and adding fine-grained dependencies such as in Fig. 3b.

Basic Model. The conventional (or basic) model of provenance consists of a trace
structure (or simply a trace) T = (V, E) forming an acyclic flow graph, where each node
in V = S ∪ I represents either an (atomic) data structure s ∈ S or a process invocation
i ∈ I. Edges E = Ein ∪ Eout are in-edges Ein ⊆ S × I or out-edges Eout ⊆ I × S ,
representing the flow of data during a workflow run. A trace T in this model links
atomic data tokens to atomic processes (i.e., having a single process invocation). Data
structures are consumed (destroyed) by an invocation via in-edges. Similarly, process
invocations create new output structures via out-edges. Thus, in this model, processes
are viewed as data transformers. To avoid write conflicts among multiple invocations,
we require that E−1

out : S → I be a function, associating with each output structure
s ∈ S the unique invocation is ∈ I that created it. A flow graph gives rise to two natural
views, a data dependency graph Gd = (S , Eddep) and an invocation dependency graph
Gi = (I, Eidep), defined by:

Eddep(s2, s1)←− Ein(s1, i), Eout(i, s2)

Eidep(i2, i1)←− Eout(i1, s), Ein(s, i2)

Fig. 4a depicts a scientific workflow definition (gray boxes) and Fig. 4b shows a cor-
responding flow graph in the conventional model. The inferred data and invocation
dependency views are shown in Fig. 4c and Fig. 4d, respectively.
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Fig. 4. Conventional model: (a) workflow definition with steps A, . . . , D; (b) example flow graph
E = Ein ∪Eout with process invocations a,. . . , d and atomic data s1, . . . , s5; (c) data dependencies
Eddep and (d) invocation dependencies Eidep inferred from the flow graph E of (b)

Open Provenance Model. Our basic model closely ressembles the Open Provenance
Model (OPM) [18]. In OPM, an atomic data structure s ∈ S is called an artifact, an

invocation i ∈ I is called a process, an in-edge s→ i corresponds to a used edge s
used
� i,

and an out-edge i→ s corresponds to a wasGeneratedBy edge i
genBy
� s. Similarly, the

above dependency views Eddep and Eidep simply have different names in OPM: For
Eddep(s2, s1) we say in OPM that the artifact s2 was derived from the artifact s1; and for
Eidep(i2, i1) we say that the process i2 was triggered by the process i1.

Multi-Invocation Model. The basic model views processes as atomic, i.e., for each task
A, B, . . . in the workflow definition, there is a single invocation a, b, . . . in the flow graph
(see Fig. 4b). Other models of computation, notably process networks [13] and related
dataflow variants with firing [14] give rise to finer-grained process models for incremen-
tal computations over data streams. Fig. 5a shows the execution of process A modeled
as two independent invocations, a:1 and a:2, which may be executed concurrently over
the input stream s1, s2, . . . (similarly for B and b:1, b:2). Here, the second invocation
a:2 of A does not “see” (is independent of) the earlier input s1 used by a:1. This is the
case, e.g., if A is stateless, i.e., has no memory between invocations. Fig. 5b is a variant
of Fig. 5a in which A is stateful, and thus preserves information between invocations
a:i, resulting in additional dependencies. More formally, in the multi-invocation model,
a trace T = (V, E, α) includes a function α : I → A returning for each invocation i ∈ I
the actor α(i) ∈ A that created i. Conversely, for any actor A, α−1(A) = {i ∈ I | α(i) = A}
is the set of invocations created by A during a workflow run.

The underlying model of computation (MoC) of a workflow language determines
the kinds of traces that can be generated at execution time. One can understand (and
formalize) a MoC as a mapping that associates with a workflow definition W and input
s, a set of possible traces T (s). The basic model, e.g., with its atomic data tokens and
atomic processes can create flow graphs as in Fig. 4b, but not those in Fig. 5, which can
support pipeline parallel execution.

Nested Model (Copy Semantics). So far we have considered data structures as atomic
tokens s ∈ S , i.e., without further access to any internal structure (e.g., s might de-
note a string, file, or Java object). This model is often too coarse and thus inadequate
when dealing with workflows over nested data such as XML. Thus, we refine the multi-
invocation model by “drilling down” to the level of data items within structures. In
the nested model with copy semantics, a trace T = (V, E, α, τ) includes a function
τ : S → X, which maps structures s ∈ S to XML trees τ(s) ∈ X such that the
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Fig. 5. The process network (PN) model supporting data streaming and pipelined execution: (a)
step A of the workflow definition (top) is modeled as two independent invocations (a:1, a:2)
within the flow graph (bottom), possibly executed concurrently over input stream s1, s2, . . .; (b)
a variant of (a) where A is stateful, preserving information between invocations a:i, resulting in
additional dependencies (i.e., in edges)

domain X of XML trees is defined as usual. In particular, we assume an underlying
space of nodes N from which X is built. As above, we require E−1

out to be a function,
i.e., for any x ∈ X produced, there is a single invocation ix that produced it. This avoids
write conflicts: no two invocations i1 and i2 can write to the same tree x (like above for
s). We can think of actors consuming (and destroying) their input and creating “fresh”
XML trees for each invocation. Thus, if some data within x must be preserved (e.g., for
“pass through”-style processing), a fresh copy x′ of x must be created in this model.

Nested Model (Update Semantics). Consuming XML objects and recreating parts of
them (through fresh copies) can be both inconvenient and inefficient with respect to
workflow execution and provenance storage. Under the update semantics we assume
that different versions of trees τ(s) ∈ X share nodes from N (Fig. 6a).2 In particular,
invocations are modeled as sets of updates that produce new versions of their input.
Viewing invocations as updates can increase the concurrency of workflow execution for
independent invocations. For invocations a:i and a:j of A and inputs s ∈ S , if

Δa:i(Δa:j(s)) = Δa: j(Δa:i(s)),

then we say that A has independent invocations. In Fig. 6a, A has independent invoca-
tions a:1 and a:2, i.e., applying Δa:1 and Δa:2 either in series or in parallel results in
s2. There are different ways to achieve this independence. In COMAD, e.g., one can
(i) employ non-overlapping scope expressions, and (ii) require further that actors are
stateless across multiple invocations of the same actor.

As shown in Fig. 6b, we relax the earlier constraint that E−1
out be a function. Thus,

in the nested model with update semantics, a trace T = (V, E, α, τ, γ) includes two
functions denoted by γ, namely, γ+ : N → I returns the unique invocation that created
a node, and γ− : N → 2I returns the possibly empty set of invocations that deleted
a node.3 This approach avoids write conflicts at the node level, while still allowing
parallel updates to the same tree, e.g., as shown in Fig. 6b. Here we restrict the types of
updates that can be performed by invocations to insertions and deletions of nodes, i.e.,
similar to COMAD, abitrary structural modifications are not considered.

2 we can view s as the version-id of τ(s).
3 Note that for workflows containing branches, multiple invocations can delete the same node.
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Fig. 6. The unified model, which supports COMAD and similar models of computation: (a) the
complex (i.e., XML) data structure s1 is updated by invocations giving s2 = Δa:2(Δa:1(s1)), and
for stateless A, s2 = Δa:1(Δa:2(s1)); and (b) the labeled dependency (i.e., lineage) edges represent-
ing the correct data dependencies for the nested data structures of (d)

Unified Model (Fine-Grained Data Dependencies). Finally, we combine the above
models into a unified trace structure supporting both multiple invocations and nested
XML with update semantics. Specifically, we extend the previous model with fine-
grained dependencies for relating nodes according to dependency relationships (as op-
posed to relating coarse-grained structures as in a flow graph). If a node n is a fine-
grained dependency of a node n′, then we say that n was directly used in the creation
(or derivation) of n′. We represent fine-grained dependencies using lineage relations,

which includes the invocation i that created n′, denoted n
i
� n′ in Fig. 6b. Note that if n′

depends on a collection node n within the structure s, then n′ is also assumed to depend
on the descendents of n with respect to s; and we typically show only the “highest”
dependencies of a node, as in Fig. 6b.

A trace in the unified model is of the form T = (V, E, L, α, τ, γ) where fine-grained
dependencies are captured by the ternary lineage relation L ⊆ N × I × N. Thus, the
unified model consists of three dimensions: (i) flow relations among input and out-
put structures (defined by the flow graph), (ii) parent-child relations among nodes of
structures, and (iii) lineage relations defining fine-grained data dependencies. In the
following section we consider approaches for querying each dimension separately as
well as hybrid approaches combining multiple dimensions in a single query.

3 Querying Provenance

Our goal is to provide generic support for querying provenance information to enable a
wide range of users and applications. Common types of provenance queries we want to
support include standard lineage queries [18,6] for determining the data and invocations
used to derive other data; queries that allow users to ensure that specific data and invo-
cation dependencies were satisfied within a run; queries for determining the inputs and
outputs of invocations (e.g., based on the actors used and their parameters); and queries
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for determining the structure of data produced by a workflow run. Further, to address
shortcomings of current approaches that either do not provide explicit query support or
else use query languages not naturally suited for querying provenance, we also seek an
approach that satisfies the following desiderata.

(1) Physical Data Independence. Many existing approaches for querying provenance
information [18] are closely tied to physical data representations, e.g., relational, XML,
or RDF schemas, where users express provenance queries using corresponding ma-
nipulation languages, i.e., SQL, XQuery, or SPARQL, respectively. Most provenance
queries also require computing transitive closures [8,10], and thus expressing prove-
nance queries requires users to have considerable expertise in the underlying schemas
and query languages. Some systems also support multiple storage technologies (e.g.,
[2]) in which specific provenance representations are selected by workflow designers.
Thus, to query a given workflow run, users must know which representation was used
to store the run and be proficient in the associated query language. Instead, a generic
approach for querying provenance information should allow multiple representations to
be used with the same fundamental query language, and should thus be independent of
the underlying physical data model.

(2) Workflow System Independence. Many different workflow systems record prove-
nance information. Users should be able to express queries without having to know
which workflow system was used to produce provenance information, and without hav-
ing to use a different language for each system. OPM [17], e.g., is independent of any
particular workflow system, whereas the Kepler provenance recorder in [2] requires
users to understand the details of Kepler workflow computation models to construct
basic lineage information.

(3) Workflow Definition Independence. It is often possible to make use of provenance
information gathered during a workflow run without accessing or understanding the
workflow definition. A generic query approach should allow users to query provenance
information without having prior knowledge of the workflow definition, or the types of
data input and output by the workflow run. Similarly, a generic query approach should
make it possible for users to discover the actors that were invoked during a workflow
run, and the types of data used. However, when data types and workflow definitions are
known, users should be able to query provenance conveniently via this information.

(4) Provenance Relationship Preserving. It is often convenient to visualize prove-
nance information using data and invocation dependency graphs [5,18,8], and these
graphs are often constructed from the result of a provenance query. In many prove-
nance approaches (including those based on path expressions [12]), typical queries re-
turn only sets of nodes or invocations, requiring additional queries to reconstruct the
corresponding lineage graphs. Thus, a general approach for querying provenance infor-
mation should make it simple for users and applications to construct such graphs by
returning paths over lineage information.

(5) Incremental Queries. A consequence of preserving provenance relationships
within query results is that these results can be further queried. This can allow users
to decompose complicated queries into smaller subqueries, and also incrementally
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refine query results. Thus, a generic query language should be closed, i.e., similar to
relational algebra, where the result of a provenance query should be queryable using
the same language.

(6) Optimization Transparency. Because the amount of provenance information pro-
duced by a workflow run can be large (e.g., due to the number of workflow steps, and
input and output data sets), systems that manage provenance information must pro-
vide efficient storage and query approaches [9,8,10,3]. Thus, a generic query approach
should be amenable to query optimization techniques, and these optimizations should
be independent of the query language itself (i.e., users should not have to modify queries
for efficiency).

The first two desiderata are addressed directly through our unified provenance model,
which does not depend on any particular workflow system and can be implemented
using different underlying provenance storage representations. The rest of this section
describes techniques for querying our model, with the goal of address the remaining
issues. We first describe how QLP can be used to query the different dimensions of our
unified provenance model, and discuss how these dimensions can be combined through
hybrid queries that mix lineage information with information about the structure of data
and the versions of these structures produced by a workflow run. We also give examples
of common provenance queries that can be expressed in QLP and discuss our current
implementation.

3.1 Provenance Queries Using QLP

Fig. 7a shows a portion of the trace for a typical run of the workflow of Fig. 2, which
we use below in describing the different types of provenance queries supported in QLP.

Queries over Nested Data. Because data structures in our provenance model represent
XML trees, these structures can be queried using standard XML languages. In QLP, we
adopt XPath as our query language for accessing nested data. For each trace, we also
define a simple view that merges the different versions of structures within the trace into
a combined data structure. As an example, Fig. 7b shows the combined data structure
s for the trace of Fig. 7 that consists of the structures s1 to s6. Queries over combined
structures provide general access to all the nodes used and produced by a run, e.g., to
return nodes of a specific type or with specific metadata annotations. The following
XPath expressions are valid QLP queries, which are posed against the combined data
structure.

//Image (1)
//AtlasGraphic[modality=“speech”]/@* (2)

These queries return (1) the nodes of type Image that were input to or produced by
the workflow run, and (2) the metadata annotations (represented as XML attributes) for
nodes of type AtlasGraphic with the value “speech” assigned to the (metadata) attribute
“modality” [18]. Given a trace T = (V, E, L, α, τ, γ), the combined structure s represents
the tree τ(s) = τ(s1) ∪ · · · ∪ τ(sn) for each si ∈ V .4 XPath queries expressed over
combined structures s return ordered subsets of nodes within the tree τ(s). We note that

4 Because invocations can only insert and delete nodes, merging two trees is straightforward.
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(c).  Fine-grained dependencies of data nodes
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Fig. 7. Example trace of a typical run of the workflow in Fig. 2: (a) versions and dependencies
created by the first invocation of each actor corresponding to stages 1 through 5; (b) the corre-
sponding combined structure; and (c) the corresponding fine-grained dependency graph

the combined structure of a trace is distinct from the final versions of structures, and
instead, contain all data input to and produced by a run (including deleted nodes).

Queries over Flow Relations (Versions). In addition to queries expressed over the
combined data structure of a trace, QLP also provides constructs for accessing specific
versions of structures produced by a workflow run. As mentioned in Section 2, a node in
N may occur within multiple versions. We denote an occurrence of a node n ∈ N within
a structure s as n@s. The expression n@s positions node n at structure s (i.e., n is
positioned at s), whereas the expression n leaves the node unpositioned. The following
QLP queries use the @in and @out constructs (see Table 1) to access the different
versions of structures within a trace (according to the flow relations).

@in (3)
@out (4)
@out slicer:1 (5)
18 @out slicer:1 (6)

These queries return (3) the input structure s1 of the run, (4) the output structure s6 of
the run, (5) the version of the output structure s5 produced by the first invocation of
the Slicer actor, and (6) the version of node 18 in the structure s5 produced by the first
invocation of Slicer.

Unlike querying combined structures, the @in and @out operators return sets of
positioned nodes. For example, the set of nodes returned by query (3) when applied to
the example in Fig. 7a would include 1@s1, i.e., node 1 positioned at s1 (in addition to
all of the descendents of node 1 in s1). The @in and @out operators return the nodes
of structures input to and output by the run when no invocations are given, and when
invocations are given, the input and output structures of the invocation, respectively.
An (unpositioned) node may also be supplied as an argument to these operators, in
which case the set of nodes returned contains only a positioned version of the node
(i.e., the node without its descendents), or the empty set if no such node exists in the
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Table 1. Example QLP constructs and short-hand notations

Construct Primitive Shorthand Result

N @in I The version of N input to invocation I (if I not given, at run input)
N @out I The version of N output by invocation I (if I not given, at run output)
N1 derived N2 N1..N2 Lineage edges forming transitive paths from N1 to N2

N1 1 derived N2 N1.N2 Lineage edges forming one-step paths from N1 to N2

N1 through I derived N2 N1..#I..N2 Lineage edges forming transitive paths from N1 to N2 through invocation I
N1 through I 1 derived N2 N1.#I.N2 Lineage edges forming one-step paths from N1 to N2 through invocation I
type N The type (tag name) of a node N
actors L Actors of invocations in lineage edges L
invocations L ∪ A Invocations of lineage edges L or of an actor A
nodes L Nodes of lineage edges L
input L Source nodes of lineage edges L
output L Sink nodes of lineage edges L

corresponding structures. For example, query (6) applied to the run graph of Fig. 7a
returns the positioned node 18@s5.

Queries over Lineage (Fine-Grained Dependencies). The majority of provenance
queries are expressed over lineage relations (e.g., see [18,6]). Fig. 7c is an example of
a portion of the lineage relations for the trace of Fig. 7a, showing only the fine-grained
dependencies of data nodes (i.e., collection nodes are not shown). The QLP operators
for querying lineage (see Table 1) act as filters over lineage relations L ⊆ N × I × N,
returning subsets of L. Thus, in addition to query results maintaining lineage relations,
these results can be further queried via QLP lineage operators. For example, consider
the following simple QLP lineage queries.

* derived 19 (7)
6 derived * (8)
* through slicer:1 derived * (9)

These queries return (7) lineage relations denoting the set of paths starting at any node
and ending at node 19, (8) lineage relations denoting the set of paths starting at node
6 and ending at any node, and (9) lineage relations denoting the set of paths with any
start and end node, but that go through the first invocation of the Slicer actor.

Given a set of lineage relations L, let paths(L) be the set of paths implied by L, where
a lineage path takes the form

n1.i1.n2 . . . i j . . . nk−1.ik−1.nk (k ≥ 2)

For any set P of such paths, let edges(P) be the set of lineage relations for P, such that
L = edges(paths(L)). Given lineage relations L, the query ‘n1 derived nk’ returns the
subset of L consisting of paths of any length starting at n1 and ending at nk. Similarly,
the query ‘n1 through i j derived nk’ returns the subset of L consisting of paths of any
length starting at n1 and ending at nk that also pass through invocation i j. If 1 derived
(i.e., one-step or immediately derived) is used in place of derived, then only paths of
the form n1.i j.nk are returned. That is, in 1 derived each selected path is defined by a
single lineage relation. These operators can be combined to form more complex lineage
paths. In this case, each individual expression specifies a segment of a larger lineage
path. For instance, a query such as ‘n1 derived n j derived nk’ selects lineage relations
that form paths from n1 to n j and from n j to nk.
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Lineage queries may also be expressed using a shorthand notation (see Table 1).
Similar to the use of ‘/’ and ‘//’ in XPath expressions for navigating parent-child rela-
tionships of nodes, we use ‘.’ to navigate immediate (i.e., one-step) lineage paths and ‘..’
to navigate transitive lineage paths (i.e., paths consisting of one or more steps). When
using the shorthand notation, we distinguish actor invocations from structural nodes by
prefixing invocations with ‘#’. For example, queries (7-9) can be expressed as ‘*..19’,
‘6..*’, and ‘*..#slicer:1..*’ (or simply ‘#slicer:1’) using the QLP shorthand notation.

Hybrid Queries over Multiple Dimensions. Lineage queries can be combined with
queries over data structures. We call these “hybrid” queries since they allow both struc-
tural and lineage information to be accessed simultaneously. The following are simple
examples of QLP hybrid queries.

* derived //AtlasImage//* (10)
//ReslicedImage//* through softmean:1 derived //AtlasImage (11)
//Image through Slicer[x=“0.5”] derived //AtlasImage (12)
(//* @in slicer:1) derived //AtlasImage (13)

These queries return lineage relations denoting (10) paths ending at descendents of
AtlasImage nodes, (11) paths starting at ReslicedImage descendent nodes and ending at
AtlasImage nodes that pass through the first invocation of SoftMean, (12) paths starting
at Image nodes and ending at AtlasImage nodes that pass through invocations of Slicer
with parameter “x” set to the value 0.5 (i.e., resulting in “Atlas X Images”), and (13)
paths starting at (positioned) input nodes of the first invocation of Slicer and ending
at AtlasImage nodes. By returning all lineage relations, the result of these queries can
be easily visualized as lineage graphs and can be treated as views that can be further
queried using similar expressions.

Hybrid queries can be (naively) evaluated by (i) obtaining the structures resulting
from @in and @out version operators, (ii) applying XPath expressions to these struc-
tures, and (iii) applying lineage queries to the resulting nodes. For example, when
applied to Fig. 7, query (10) is first evaluated by executing the XPath query ‘//AtlasIm-
age//*’ over the combined structure s, returning nodes 16–19. For each node, a separate
lineage query is evaluated, i.e., ‘* derived 16’, ‘* derived 17’, ‘* derived 18’, and ‘*
derived 19’, such that the answer to query (10) is the unique set of resulting lineage
relations.

Hybrid queries may also combine lineage operators, e.g., consider the following
query that returns the lineage relations denoting paths through SoftMean, Slicer, and
Convert invocations, and ending at nodes of type AtlasGraphic.

* through Softmean derived * through Slicer derived * through Convert (14)
derived //AtlasGraphic

For queries that specify complex lineage paths, it is often more convenient to use the
shorthand notation, e.g., query (14) can be equivalently written as

#Softmean .. #Slicer .. #Convert .. //AtlasGraphic (short-hand version of 14)

QLP also supports additional operations that can be applied to sets of lineage relations,
which are summarized in Table 1 and used in the following examples.

invocations(AlignWarp[m=“12”, dateOfExecution=“Monday”]) (15)
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output(//Header[max=”4096”] derived //AtlasGraphic) (16)
output(#AlignWarp[m=“12”] .. #Softmean) (17)
input(//Image derived //AtlasGraphic @out) (18)
actors(//Image derived //AtlasGraphic @out) (19)
(//Image @in) − input(//Image @in derived //AtlasGraphic @out) (20)

Query (15) returns the set of invocations of AlignWarp that used the values 12 and
“Monday” for the “m” and “dateOfExecution” parameters, respectively. Query (16)
returns the output nodes for lineage paths starting at Header nodes having the value
“4096” for the global maximum metadata field “max” and ending at AtlasGraphic
nodes. Specifically, the output operation (similarly, input) returns the nodes within
lineage relations that do not have outgoing (incoming) lineage edges. Query (17) re-
turns the output nodes produced by invocations of SoftMean that were derived from
AlignWarp invocations using the value 12 for parameter “m”. This query combines
multiple lineage operators and is expressed using the QLP shorthand notation. Query
(18) returns the input nodes of paths starting from Image nodes and ending at Atlas-
Graphic nodes that were part of the output of the run. Query (19) is similar to (18) but
returns the actors of invocations used in the corresponding lineage paths. Query (20)
finds the Image nodes input to the workflow run that were not used to derive any output
Image nodes. This is achieved by first finding all Image nodes input to the workflow
run, and then subtracting from this set the input Image nodes used to derive an output
AtlasGraphic node. Although not shown here, the type operator of Table 1 can be used
to return the tag names of XML nodes.

QLP also provides support for constraining the structure of lineage paths using regu-
lar expressions. For instance, the query ‘n1 through (i1 | i2) derived n2’ selects lineage
relations denoting paths from n1 to n2 that pass through either i1 or i2. These queries can
be used by workflow developers, e.g., to ensure that complex workflows (e.g., involving
multiple branches) executed correctly.

3.2 Implementation and Evaluation of QLP Query Support

Our current implementation of QLP supports queries expressed using the shorthand
notation described in Table 1, and answers these queries using the relational storage
strategies described in [3]. In particular, we have implemented a Java application that
takes as input a QLP query, transforms the query into an equivalent SQL query, and
executes the SQL query over the underlying database. Using our implementation, we
were able to express and answer the queries of the first provenance challenge [18] as
well as queries similar to those in [6]. A number of variants of these queries are also
given in (1–20) above. The QLP versions of these queries are significantly more concise
than those typically expressed against underlying storage structures [18], and in general,
are easier to formulate and comprehend.

The storage strategies described in [3] apply reduduction techniques for efficiently
storing both immediate and transitive provenance dependencies. In particular, a naive
approach for storing nodes N and their dependencies D is as tuples P(N,D) in which
nodes involved in shared dependencies will be stored multiple times. For example, if
nodes n4, n5, and n6 each depend on nodes n1, n2, and n3, nine tuples must be stored
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P(n4, n1), P(n4, n2), P(n4, n3), P(n5, n1), ..., P(n6, n3), where each node is stored multi-
ple times in P. Instead, the approach in [3] introduces additional levels of indirection
through “pointers” (similar to vertical partitioning) for storing reduced sets of depen-
dencies. Thus, we divide P(N,D) into two relations P1(N, X) and P2(X,D) where X
denotes a pointer to the set of dependencies D of N. For instance, using this approach
we store only six tuples P1(n4,&x), P1(n5,&x), P1(n6,&x), P2(&x, n1), P2(&x, n2), and
P2(&x, n3) for the above example. Additional levels of indirection are also used to fur-
ther reduce redundancies within dependency sets based on their common subsets, and
similar techniques are used to reduce transitive dependency sets by applying reduction
techniques directly to pointers (as described in [3]).

As an initial evaluation of the feasibility and scalability of our approach for executing
QLP queries, we describe below the results of executing lineage queries over synthetic
traces of increasing numbers of nodes and lineage relations. We compare our reduced-
transitive approach (R), which transforms QLP queries to SQL queries over our under-
lying relational schema storing immediate and transitive lineage relations in reduced
form, to a naive approach (N) in which only immediate dependencies are stored, and
corresponding QLP lineage queries are transformed to recursive stored procedures.

Our experiments were performed using a 2.4GHz Intel Core 2 duo PC with 2 GB
RAM and 120 GB of disk space. Each approach used MySQL to store provenance
information. We compare query response time and storage size using synthetic traces
ranging from 100 to 3000 nodes, 103 to 104 immediate dependencies, 104 to 106 tran-
sitive dependencies, and lineage paths of length 25 to 150, respectively. The synthetic
traces were taken from [3], and represent typical lineage patterns generated by real-
world workflows implementing phylogenetic and image-processing pipelines [3,5,18].

We consider the following basic lineage queries for evaluating query response time.
In general, queries over lineage relations are considerably more expensive [10,3] than
queries over only combined structures (i.e., XPath queries), or queries that select only
versions of structures within a trace (e.g., using the @in and @out QLP operators).

* .. n (Q1)
n .. * (Q2)
exists n1 .. n2 (Q3)
n1 .. n2 (Q4)
n1 .. n2 .. n3 (Q5)

These queries return (Q1) lineage relations denoting paths that lead to a node n (e.g.,
to return the full lineage of n); (Q2) lineage relations denoting paths that start from a
node n (i.e., the “progeny” of n [6]); (Q3) true if there is a lineage path from node n1 to
node n2 (where ‘exists’ denotes a boolean query); (Q4) lineage relations denoting paths
starting at node n1 and ending at node n2; and (Q5) lineage relations denoting paths
starting at node n1 and ending at node n3 that pass through node n2.

The left side of Fig. 8 shows that the query response time for the reduced-transitive
implementation grows linearly with increasing trace size, and is significantly faster than
the naive approach (shown in dotted lines). The more expensive query response time
of the naive approach is due to the use of recursive stored procedures to select tran-
sitive dependency relationships. Moreover, the increased query response time for the
reduced-transitive approach, when compared to the naive approach, is not simply based
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Fig. 8. Query response time (left) and storage size (right) for the reduced-transitive and naive
approaches. In the reduced-transitive approach, because of the nature of the reduction strategies
and the QLP-to-SQL translation, query Q1 takes (slightly) less time than query Q2, and similarly,
query Q2 takes the same amount of time as query Q3 for the example traces.

on increases in storage size. In particular, the right side of Fig. 8 shows that when com-
pared to the naive approach, storage size is also significantly smaller using our reduction
strategies. Thus, we can improve query response time by materializing transitive lineage
relations, while at the same time reducing the provenance storage size using reduction
techniques. Fig. 8 also demonstrates that the standard approach of using recursive stored
procedures to answer lineage queries does not scale linearly with trace size.

These results highlight the advantages of decoupling provenance query languages
from underlying storage schemes. In particular, the same QLP queries can be answered
using different storage strategies, in this case using the naive and reduced-transitive
approaches, to transparently improve query response time and provenance storage size.

4 Related Work

Conventional models of provenance [17,8,2,9] are largely based on the assumption that
data structures and processes are atomic. These assumptions do not hold, however,
for many computation models employed within current scientific workflow systems
[16,15]. Our approach extends the conventional model by supporting workflows com-
posed of actors that can have multiple invocations (e.g., as in process networks [15])
and that employ update semantics over complex data structures (in particular, XML).
This paper extends our prior work [3] on efficiently storing provenance information by
defining a logical representation of the model and corresponding query approaches (i.e.,
QLP).

Few query languages have been specifically developed for querying provenance in-
formation. Instead, most approaches (e.g., see [18,22]) define their provenance mod-
els in terms of physical schemas represented within general-purpose data management
frameworks (e.g., for storing relational, XML, or RDF data), and provenance queries
are expressed using the corersponding query languages of the framework (e.g., SQL,
XQuery, or SPARQL). This approach often leads to complex query expressions, even
for answering basic provenance questions. For instance, to query over lineage infor-
mation stored within a relational database, users must typically specify join operations
over multiple tables and compute transitive closures [9,8,10,3]. Our approach differs by
separating the logical provenance model from its physical representation and providing
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provenance-specific query constructs. Thus, users express queries against the logical
model using more natural constructs, which are automatically translated to equivalent
queries expressed against the underlying physical representation.

Similar to our approach, the VisTrails provenance query language (vtPQL) [21] de-
fines provenance-specific query constructs. However, vtPQL only supports the standard
provenance model, provides a limited set of constructs for acessing provenance rela-
tions, and does not support queries over data structures. For example, vtPQL defines
upstream(x) to return all modules (i.e., actors) that procede x in the workflow defi-
nition. The upstream operator is the primary construct for answering lineage queries
related to invocations, where a query “upstream(x) − upstream(y)” is used to find de-
pendencies between two invocations of modules x and y within a run. However, vtPQL
assumes only a single lineage path between two such modules, and thus would return
incorrect results in the case of multiple lineage paths. Further, queries related to ex-
clusive data lineage (e.g., n1 .. n2, n1 .. n2 .. n3, n1 .. #a .. n2) are not supported in
vtPQL.

In [12], Lorel [1] is used to represent and query provenance information. Similar
to our approach, [12] employs generalized path expressions for querying lineage in-
formation. While both vtPQL and our approach provide a closed language over lineage
edges, e.g., to support the visual representation of provenance lineage graphs, languages
based on path expressions (Lorel, XPath, OQL, etc.) primarily return sets of identifiers
(e.g., representing nodes and invocations) that require additional queries for construct-
ing lineage graphs. Further, approaches such as [12] are still closely tied to physical
representations of provenance.

5 Conclusion

We have described a logical model of provenance for representing scientific workflow
runs based on computation models that work over XML structures. Our approach natu-
rally extends the conventional provenance model by adding support for nested data and
for accurately capturing detailed lineage information of processes employing update
semantics. We also described a general approach for querying provenance using our
Query Language for Provenance (QLP), which provides specialized constructs for ex-
pressing both structural (i.e., parent-child) and lineage (i.e., data dependency) “hybrid”
queries. We have also shown how these constructs can be used to express a wide range
of provenance queries (including those of [18]) and that answering QLP queries using
relational technology can be feasible when both immediate and transitive dependency
edges are stored according to [3]. As future work we plan to extend our current imple-
mentation of QLP with additional optimization techniques, with the goal of providing
a generic and efficient approach for addressing challenges in managing the provenance
of scientific workflow runs.
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Abstract. Data integration has gained a great attention in current scientific ap-
plications due to the increasingly high volume of heterogeneous data and prolif-
eration of diverse data generating devices such as sensors. Recently evolved 
workflow systems contributed a lot towards scientific data integration by ex-
ploiting ontologies. Even though they offer good means for modeling computa-
tional workflows, they were proved not to be sufficiently strong in addressing 
data related issues in a transparent and structured manner. The DaltOn system 
improves the productivity of scientists by providing a framework which copes 
with these issues in a transparent and well structured manner. In this paper we 
will elaborate its application in a real world scenario taken from meteorological 
research where data are retrieved from a sensor network and are integrated into 
a central scientific database. 

1   Introduction 

The use of sensor networks has recently evolved in many scientific fields like envi-
ronmental and ecological sciences. These sensors generate streams of raw data at 
temporal and spatial granularities. Before being used in any analytical experiment, 
these data are required to undergo several processing steps of integration and trans-
formation since data, stemming from different sensors, are highly heterogeneous in 
terms of format, syntax, structure and semantics. Besides these data heterogeneity 
issues, proper transportation of data between sources and sinks, data validation, data 
filtering and imposing data constraints are also main challenges. In order to tackle 
them, workflow technology played a vital role in scientific domains. In recent years, 
scientific workflow systems (e.g. Kepler [7], Taverna [3]) appeared. These systems 
offer good means to model and execute computational scientific workflows, but they 
are lacking in addressing data management issues in transparent manner.  

A single scientific workflow is split into two categories of work steps. First, those 
which are application specific for instance applying an ‘R’ algorithm. Second, the 
work steps which are related to data operations such as data validation, filtering, inte-
gration and transformation. A framework that implements this approach is DaltOn 
(Data Logistics with Ontologies). DaltOn is meant to be used inside scientific work-
flow systems for handling data transfer and transformations transparently such that 
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the scientific users can solely concentrate on the scientific analysis while a data ex-
perts concentrate on the integration task by means of DaltOn. The method which 
combines DaltOn with the Perspective Oriented Process Modeling approach is de-
scribed in [5], its architecture and semantic integration algorithms in [6]. We now 
want to present a comprehensive application of the DaltOn integration framework in 
meteorological research. 

2   Motivating Scenario 

Meteorological studies try to increase the understanding of the atmosphere by merg-
ing information delivered by diverse sensors. For example to figure out the role of fog 
deposition in biogeochemical cycles scientists need to observe the fog using a Present 
Weather Detector (PWD) in combination with a Ultrasonic Anemometer (UA) for 
measuring the wind and a chemical analysis of condensed fog water [11]. 

The Data Group of the Bayreuth Center of Ecology and Environmental Research 
(BayCEER) supports meteorologists with a data acquisition infrastructure composed 
of a sensor network consisting of nearly 150 sensors, some import procedures (e.g. 
interpolation of data for cleansing operations) and a database backend. The system 
was built up in 1980 and has been continuously improved since then. Fig. 1 shows a 
portion of the workflow enacted before applying the DaltOn integration framework. 
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Fig. 1. Workflow (without DaltOn) showing the data flow from sensors to databases 

In a first step, data are pushed by sensors in the PWD or UA formats over a serial 
communication line into a file on a PC. The format of these files is vendor specific. 
Fig. 2 shows a sample output file for a PWD sensor as a CSV formatted file. A unique 
feature of this device is its capability to estimate the weather type like fog, snow or 
rain according to NWS [9] and WMO [10] code as shown by columns 7 to 10 in  
Fig. 2. A system job then uploads the file to a central server. In the following step all 
files are archived on a backup file server for later reference. After that, each file is 
selected and converted from its proprietary format into an XML representation which 
is used by the database import step. Conversions are performed by custom procedures 
implemented in Perl and Java.  
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Hardware Status
Visibility Ten Minutes Average

WMO Instant Present Wheather Code
WMO One Hour Present Wheather Code

Timestamp Device Code Cumulative Water Sum
29.02.2008 12:40:00; PW 1; 0; 0; 130; 171; R ; 61; 81; 81; 0.16; 86.67; 287

Cumulative Snow Sum
Water Intensity

WMO 15 Minute Present Wheather Code
NWS Present Wheather Code

Visibility One Minute Average
Visibility Alarm  

Fig. 2. Example contents of a PWD file 

The sensor data is combined with older data in the database to form a time series; 
since the sensors have no knowledge about these time series and how it is constructed, 
additional mappings are required for the integration system. The database import step 
then terminates the sample workflow. 

2.1   Identified Issues in the Current Implementation 

We now explain some of the main issues that we identified in the current implementa-
tion of the scenario introduced above. One issue is the ‘incomplete transport of infor-
mation’ from sensors to the data store. This is caused by the custom transformation 
programs which rely on configuration files and that do not check whether certain 
assumptions made about data are true or not. For instance it is possible that the posi-
tion of values in the CSV document differ due to a reconfiguration of a sensor. Then 
this can yield wrong values in a time series. Another issue is the ‘lack of data valida-
tion and filtering’. Typical problems are truncated files caused by interrupted transfers 
which are rather often occurring due to a high number of electrical power outages on 
the sites. In some cases, sensor devices also produce out of benchmark values due to 
hardware problems. Then these values must be filtered out. The current implementa-
tion requires a manual intervention for detecting and deleting the corrupted files and 
invalid values. Another issue is the ‘management of diverse data formats’ for the 
configuration files; scientists must carefully deal with them in order to identify the 
right column number and to edit the configuration files properly. During the life-span 
of the installation it is very likely that a device is replaced by a newer one or an exist-
ing device needs an alteration of its configuration. To handle these kinds of events 
meta-information about the device must be updated, new converter must be developed 
and configuration files must be extended. Right now all these tasks are performed 
manually by several employees. 

3   The DaltOn Integration Framework 

DaltOn is a framework that efficiently deals with data management issues such as 
heterogeneity of formats and syntactic as well as semantic incompatibilities. For 
modeling scientific workflows we use POPM approach [4] since its separation of 
concerns in different perspectives (Functional, Behavioral, Data and Data Flow, Or-
ganizational and Operational) greatly fosters our approach. The purpose of the data 
and data flow perspective is to describe where data is produced in a process, where it 
is consumed, and what schema and ontologies it references. The data perspective is 
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converted into single Data Logistics Workflows (DaLo-WFs) during the enactment of 
a POPM process. A DaLo-WF is again a normal workflow but that solely describes 
the transportation and transformation of data from a source to a corresponding sink in 
terms of operations provided by DaltOn. A data source and a sink are defined by the 
applications that produce and consume a certain data item. 

In order to perform such an integration task successfully, DaltOn requires some 
prerequisite steps to be performed by the user during set-up of the task. These are: 
• Semantic description of data sources: Each data source (and sink respectively) 

involved in an integration task is described semantically by a so-called local ontol-
ogy. The local ontology is constructed out of a vocabulary which is global with re-
spect to the application domain, the specific application or one specific DaLo-WF 
and is referred to as global or reference ontology. DaltOn adopts Description Lo-
gics (DL, [1]) for representing all ontologies. 

• Construction of global or reference ontology/ies - DaltOn exploits multiple ontolo-
gies. As described above the local ontologies are used for describing data sources 
semantically and are thus only valid for one specific source. Nevertheless the two 
local ontologies (one for the data source and one for the data sink) involved in a 
DaLo-WF must share one vocabulary. This vocabulary is collected and specified in 
the global or reference ontology. Much effort has been put into the construction of 
such global ontologies for complete application domains ([2], [8]). Nevertheless 
cases can occur in which data is to be transferred in between steps of interdiscipli-
nary nature. Then a reference ontology can be constructed that connects the two 
domains for one specific case. However this reference ontology is only valid for 
that specific DaLo-WF. The concept of the global or reference ontologies makes 
local ontologies comparable and allows for finding and performing matches in be-
tween concepts of the local ontologies.  

3.1   Architecture of DaltOn 

DaltOn consists of various logical components [6] as shown in Fig. 3. These logical 
components are further categorized by three conceptual abstractions namely Data 
Provision, Data Operation and Data Integration. 
Data Provision offers the functionality of physical data exchange between data 
sources – in the context of a process, between a data producing step (source) and a 
data consuming step (sink). The components under the aegis of this abstraction are: 
• Data Transportation: manages the data movement between data sources and Dal-

tOn, e.g. FTP transfers. It has no knowledge about the data itself (syntax, structure, 
semantic) nor does it know what portion of data are to be extracted in case of large 
data volumes, nor does it know how to insert data into a specific sink of a transpor-
tation task. 

• Data Extraction / Selection: This component constitutes the library of functions 
which are useful for extraction/insertion and selection of data. 

Data Operation aims at introducing two functionalities into the system. Besides tak-
ing care of assorted data formats, it also offers the mechanism to implement custom 
functions, e.g. arithmetic calculations, on data values. The components contained in 
this abstraction are:  
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• Format Conversion: A library of functions that converts source specific formats 
into an XML representation and from there back to the specific sink format.  

• Data Preparation: This component plays a special role within DaltOn since it is 
the only one that actually manipulates data values. Its function library comprises 
for instance methods for applying interpolations, performing arbitrary arithmetic 
calculations, or applying aggregation functions on a dataset. 

Data Integration is the most important abstraction of DaltOn, aiming at integrating 
data semantically as well as structurally. It also consists of two components: 
• Semantic Integration: This component implements the functions that are purely 

related to the detection and resolution of semantic conflicts. It also provides a solu-
tion for a terminological transformation; for instance in our use case sensors are 
identified by a single field called devicecode in the extracted dataset but in the da-
tabase by two fields called devicename and deviceID.  

• Structural Integration: This component provides the capability of integrating data-
sets based on their structures. It assumes that there is no semantic conflict between 
source and sink datasets, but datasets are incompatible in terms of their structures. 
For instance it may include the functions for merging, splitting, and concatenating 
datasets / data records. 

RDF based Repository

Wrapper
Source

Wrapper
Sink

Heterogeneous Data Sources

Data Item

Data Provision
Data

Transportation
Data Extraction /

Selection

Data Operation Format Conversion Data Preparation

Data Integration
Semantic based
Integration

Structure based
Integration

 

Fig. 3. Conceptual abstractions of DaltOn 

4   Data Integration with DaltOn 

Before detailed discussion on how DaltOn performs data integration, we would like to 
demonstrate how our system facilitates a normal domain user on an abstract level. 
The workflow presented in Fig. 1 shows the overall use case scenario modeled in a 
conventional way without DatltOn. The tasks of the process shown in the model can 
be separated into two categories. One, Application Specific Tasks: Tasks which are 
used to perform application related operations, e.g. scientific analysis. Work steps 
such as Push Data, Archive File and Store Data in Fig. 1 may belong to this category. 
We call the workflow containing work steps of this category the Application  
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Workflow (AWF). Second, Data Specific Tasks: Tasks which are purely related to 
data operations and normally of no interest for a domain user. For instance work steps 
PWDToXML and UAToXML of Fig. 1 belong to this category. The workflow contain-
ing this type of work steps is called Data Logistic Workflow (DaLo-WF). AWFs are 
specified by domain users (for instance scientists) on a very abstract level whereas a 
DaLo-WF between every two work steps of an AWF is automatically generated by 
DaltOn system. Thus with DaltOn the data specific tasks do not need to be modeled 
explicitly; instead all these tasks are performed by DaltOn implicitly based on the data 
flow specified within the process. Fig. 4 depicts the AWF of workflow shown in  
Fig. 1. The AWF – which is visible to the domain user – is much easier to compre-
hend since it hides those steps which are purely related to data integration. 

In order to discuss the data integration operations performed by DaltOn, we zoom 
into one portion of the process and focus on two work steps namely Select File and 
Store Data. The step Select File selects an arbitrary file with sensor data which can be 
given in the PWD or UA format (here we assume a PWD dataset). This file is then 
transmitted to the step Store Data which is responsible for populating data into the 
database of the institution. Whenever data exchange between two work steps of AWF 
is desirable, DaltOn can generate and parameterize a DaLo-WF automatically. This 
generation and parameterization is driven by the configuration data provided by a data 
expert at the time of modeling input and output ports of involved work steps in the 
AWF. A discussion on how a DaLo-WF is derived is out of the scope of this paper. 
Fig. 5 presents the generated DaLo-WF between Select File and Store Data work 
steps. 
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Fig. 4. Workflow (with DaltOn) showing the data flow from sensors to databases 

A detailed description of each work step of the DaLo-WF depicted in Fig. 5 is 
given in the following: 
• Data Extraction: In this step datasets are retrieved from the source. DaltOn com-

ponent ‘DES’ is exploited to perform this task and is provided with some configu-
ration data as parameters. ‘Extraction Criteria’ identifies the actual dataset to be se-
lected, for instance a file name ‘pwd_1615.pwd’ in the example scenario. ‘Source 
Credential’ is the login information for the data source. ‘Source Ref’ indicates the 
location of the data source. In order to actually retrieve the data this component de-
termines which wrapper is responsible for the data source. Fig. 6a shows extract of 
‘PWD’ data after the retrieving from file server. 

• Data Transportation: In this step DT component is utilized that physically moves 
the extracted datasets to the data staging area of DaltOn for further processing. It 
requires some basic configuration data in order to complete the task successfully. 
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‘Source and Sink Ref’ identifies the location and type of both source and sink such 
that a proper implementation for the data transport can be chosen. In our example 
scenario this is an FTP transfer. 

• Format Conversion: In this step transported dataset is converted into XML format. 
In order to perform these types of conversions, this component also requires a 
schema for the involved dataset (Fig. 6b). Fig. 6c then shows the converted dataset.  

• Data Operation: This step performs specific operations on the incoming dataset, 
for instance some arithmetic calculations. In our case we utilize this step for data 
filtering since the values of attribute ‘VisibilityOneMinuteAverage’ in PWD data-
set that are greater than ‘2000’ are normally assumed to be invalid. An imple-
mented function pFilter(P,R) is invoked with parameter values P=”Visibilty” and 
R=”<=2000”. 

Configuration Data:
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Source Schema.

Start Data Extraction

DES

pwd_1615.pwd

Wrapper
W4FS

Configuration Data:
Extraction Criteria
Source Credentials
Source Ref.

Data Transportation
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Configuration Data:
Source Credentials
Source and Sink Ref.

Format Conversion
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pwdToxml

Semantic Integration
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Data Operation
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FTP PFilter  

Fig. 5. Generated DaLo-WF for data integration in between Select File and Store File 

• Semantic Integration: The key purpose of this step is to transform a dataset under 
one schema into a valid dataset under another schema. In order to detect and  
resolve semantic conflicts the SI component requires source and sink schemas, re-
spective local ontologies, mappings specifying relationship between local ontolo-
gies and data schemas, and a reference ontology. Fig. 6d,e  shows the schema of 
the target database and integrated dataset (i.e. the dataset generated by the SI com-
ponent) respectively. 

• Data Transportation: This step is analogous to previous one in which dataset was 
transported to DaltOn, but at this time datasets are transported from DaltOn to tar-
get data source (sink) by invoking relevant component and using specific underly-
ing implemented method. In our example scenario dataset ‘pwd_1615’’.xml’ is 
shipped to the location where institution database resides. 

Finally we want to show how DaltOn solves the issues mentioned in Section 0. The 
first issue was “Incomplete Information Transportation” which is caused by data con-
version and transformation steps since data is transformed via configuration files. 
Within DaltOn, data are given conformant to a respective ontology. Thus during each 
action performed by DaltOn, checks can be applied that ensure the completeness of 
data. Besides SI would throw an error if the data would not be complete at the time 
the semantic integration is to be performed. The second issue was the missing valida-
tion and filtering of data. DaltOn is able to handle data validation and filtering with 
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the help of the DP service. For instance we demonstrated that a specific data item (in 
the example this was “visibilityOneMinuteAverage”) could be filtered out in case its 
value exceeds a certain range. The condition responsible for the filtering is a configu-
ration item and must not be programmed separately. Another issue discussed in previ-
ous section was to manage data formats. Handling of difference formats through a 
single component (e.g FC) eases the format management overhead in a situation 
where data are being generated by many heterogeneous sources. The last issue men-
tioned in the previous section was the addition of new sensors which deliver their data 
in a slightly different format and ontology. With DaltOn adding new sensors now 
means to add new semantic descriptions and – if required – a new wrapper for the 
sensor. 

root records = (record)
elem record = (timeStamp, deviceCode, hardwareError, 

visibilityAlarm, visibility, NWSCode, 
PWCInstance, waterIntensity, …..)

elem timeStamp = xsd: string
elem deviceCode = xsd: int
elem hardwareError =xsd:int
elem visibilityAlarm = xsd:int
elem visibility = xsd:double
……..

root measurements = (measurement)
elem measurement = (timestamp, location, device, data)
elem location = (locationID, locationName)
elem device = (deviceID, deviceName) 
elem data= (compartmentID, charactersiticID, value, status, 

unitID)
elem timeStamp= xsd:string
elem locationID = xsd: int
elem locationName = xsd: string
elem deviceID = xsd: int
elem deviceName = xsd: string
…..

<records >
<record>
<timeStamp>01.03.2008 00:30:08</timeStamp>
<deviceCode>PW 1</deviceCode>
<hardwareError>1</hardwareError>
<visibilityAlarm>0</visibilityAlarm>
<visibility>902</visibility>
<NWSCode>R</NWSCode>
<PWCInstant>61</PWCInstant>
<PWCAt15Minutes>61</PWCAt15Minutes>
<PWCAtOneHour>62</PWCAtOneHour>
<waterIntensity>1.10</waterIntensity>
<cumulativeWater>89.77</cumulativeWater>
<cumulativeSnow>287</cumulativeSnow>

</record>
………..

</records>

<measurements>
<measurement>
<timeStamp>01.03.2008 00:30:08</timeStamp>
<location>

<locationID>6</locationID>
<locationName>Main Tower</locationName>

</location>
<device>

<deviceID>116363</deviceID>
<deviceName>Vaisala PWD11</deviceName>

</device>

<data>
<compartmentID>5</compartmentID>
<characteristicID>13</characteristicID>
<value>902</value>
<status>1</status>
<unitID>3</unitID>

</data>
<data>
…………………

b) Schema of PWD data d) EcoDB Schema

c) PWD data in XML 
e) Transformed dataset

01.03.2008 00:30:08;PW 1;0;0;902;626;R-;61;61;62;1.10;89.77;287
29.02.2008 04:40:08;PW 1;0;0;2000;2000;C;0;0;0;0.00;86.40;287
29.02.2008 21:20:04;PW 1;0;0;2000;2000;R-;61;81;81;0.24;87.20;287

a) PWD Dataset

 

Fig. 6. Excerpt of instance data and schemas for both sides along with actual PWD dataset 

5   Conclusion 

In this paper we have shown and discussed a use case for the application of the Dal-
tOn data integration framework. We identified main issues of the approach which is 
currently applied and that are mainly based on the fact that nearly all portions of the 
current data integration solution are implemented by hand. With the DaltOn frame-
work for data integration the hand-written code could be replaced and solutions for 
the mentioned issues can be broken down mostly to the provision of updated semantic 
information of the data sources and sinks of an integration scenario. Furthermore 
DaltOn does not force its users to use one specific format or one ontology only. In-
stead it allows for using those formats and ontologies which are best fitted for the 
specific application case. Last but not least we have shown that data integration  
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performed with DaltOn is a systematic task. With DaltOn and POPM the scientific 
workflow design can be separated into two parts; the research oriented task, can be 
performed by scientists themselves whereas the specification of the data integration, 
can be performed by a data expert. 
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Abstract. Over the last years, scientists have been using scientific workflows to 
build computer simulations to support the development of new theories. Due to 
the increasing use of scientific workflows in production environments, the 
composition of workflows and their executions can no longer be performed in 
an ad-hoc manner. Although current scientific workflow management systems 
support the execution of workflows, they present limitations regarding the com-
position of workflows when it comes to using different levels of abstractions. 
This paper introduces the concept of experiment line which is a systematic ap-
proach for the composition of scientific workflows that represents an in-silico 
experiment. An experiment line is inspired on the software engineering reuse 
discipline and allows the composition of scientific workflows at different levels 
of abstractions, which characterizes both the in-silico experiment and different 
workflow variations that are related to the experiment.  

Keywords: scientific experiment, experiment line, software reuse, scientific 
workflows, product line. 

1   Introduction 

The evolution of computer science in the last decade enabled the exploration of new 
types of scientific experiments based on computer simulations, which are commonly 
known as in-silico experiments. With the performance improvements of computers, it 
was possible to increase the complexity of the models used in scientific experiments. 
Researchers perform many activities during these experiments, and some of them are 
related to the chaining of a sequence of programs. Each program execution may pro-
duce a collection of data with a certain semantic and syntax. This data collection can 
be used as input to the next program to be executed. 

The chaining of these programs is not a trivial task, and in many cases, it becomes 
a barrier to build more sophisticated analyses or models. The term scientific workflow 
is used to describe workflows [1] in any science area such as biology, physics, chem-
istry, ecology, geology, and astronomy. These areas share common characteristics 
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like manipulation of large volumes of data and high performance computational  
demands [2].  

Scientific Workflow Management Systems (WfMS) are software packages that 
provide an infra-structure to setup, execute, and monitor scientific workflows. These 
WfMS are responsible for coordinating the invocation of programs, either locally or 
in remote environments, which is commonly known as orchestration. Several WfMS 
have been developed [2], each one presenting specific characteristics such as strate-
gies for parallel and distributed processing, different primitives for data access (e.g., 
XML and Database Management Systems), and different scientific and statistical 
packages.  

It is important to note that WfMS are tools to support the scientists in achieving 
their goals via scientific workflows. Nevertheless, a scientific experiment is character-
ized by the composition and execution of several variations of workflows. These 
variations include changing input data, parameters, programs, or even a combination 
of all of these. WfMS are focused in supporting the execution of a workflow in an 
isolated way, disregarding the relationship between executions of their variations.  

WfMS like Taverna [3], Kepler [4], and VisTrails [5], offer rich graphic interfaces 
where previously registered components can be dragged and dropped to a workflow 
editing area. This results directly in the setup of a concrete workflow. However, there 
is no support to the previous steps of the workflow composition process. Indeed, the 
composition of a workflow includes the conception of activities, the selection of ade-
quate programs or components to enact these activities, and also the setup of the ac-
tivities flow. In current WfMS, the action of discovering an activity is limited, since 
not all components are necessarily registered in the WfMS. Also, the knowledge of 
which activities can be linked to each other is still tacit. It is necessary to run a large 
number of examples to gain some experience in the setup of the activity flow.  

An alternative, often used by scientists, is to try to reuse a previously defined 
workflow. However, supporting reuse in WfMS is also limited to a concrete level. 
Some initiatives have begun to support the setup step of an activity flow of the work-
flow composition process, such as in VisTrails [5,6] and myExperiment [7]. Based on 
previously developed workflows, VisTrails suggests a list of related activities to the 
workflow being setup, but the suggestions are limited to previously executed work-
flows. The myExperiment [7] initiative provides an interesting site with a repository 
of previously defined workflows. Most of these workflows are defined under the 
Taverna workflow definition language and belong to the bioinformatics domain. This 
workflow repository is very useful when the scientist needs perfect matches. How-
ever, adapting this workflow or using a different language for composition is far from 
trivial.  

Currently, projects in bioinformatics and oil and gas domains force scientists to re-
define, almost from scratch, scientific workflows previously developed by other sci-
entists, incurring in the same composition trial and error. This occurs due to the ab-
sence of a systematic approach and support for the workflow composition. 

Meanwhile, in the last four decades, software engineering has been studying sys-
tematic ways to support the conception and usage of software. Particularly, software 
reuse have been applied with success in many organizations, leading to a decrease in 
rework, and consequently, leading to an increase in productivity and quality [8]. Re-
cently, Roure et al. [9] and Goderis et al. [10] observed the increase of interest in the 
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workflow reuse subject. Although the concern has increased, leading to a wide use of 
the expression “workflow reuse”, it was not possible to observe any related work that 
analyzes scientific workflow composition with the perspective of software reuse. 

This paper introduces the concept of experiment line, which is a strategy to sup-
port the composition of scientific workflows at different levels of abstractions. It 
represents both the in-silico experiment and also different workflow variations that 
are related to the experiment. An experiment line is inspired by software product 
lines [11], which is a technique from the software reuse discipline. This work is part 
of a Brazilian project for supporting large scale management of scientific experi-
ments  [12]. 

This paper is organized into four sections besides this introduction. Section 2 pre-
sents an overview of experiment life cycle and the current limitations of WfMS in 
supporting the composition of experiments. Section 3 discusses the limitations of 
WfMS in supporting workflows at different levels of abstraction. Section 4 introduces 
the concept of experiment line. Section 5 concludes the paper.  

2   Supporting the Life Cycle of Scientific Experiments  

A scientific experiment is one of the ways used by the scientific method to support the 
formulation of new theories. A scientific workflow is the part of a scientific experi-
ment responsible for orchestrating a sequence of processes that manipulate data in 
order to build a simulation. The life cycle of a scientific experiment starts with a 
workflow composition, then its execution and further analysis of the results of this 
execution. The workflow composition process is complex and several trials of work-
flow variations need to be performed to obtain the desired result of the whole  
experiment.  

Scientific experiments, independent of the application domain, need to follow 
some requirements, such as: 

• Experiments need to be reexecuted and disseminated, allowing other sci-
entists to conduct similar experiments to confirm (or refute) the obtained 
experiment results. Also, these results need to be documented and can be 
used as a baseline for other experiments; 

• Experiments must follow a protocol or a methodology. They can be 
started from scratch or from previously obtained results; 

• Experiments need to be executed under controlled conditions. Typically, 
an experiment is an ordered composition of complex steps. These steps 
need to be documented and controlled during the experiment, allowing 
other re-executions, if needed; 

According to Oinn et al. [13], the life cycle of a scientific experiment has five 
stages expressed in Fig. 1. We clustered these stages into three general workflow 
phases, which are composition, execution, and analysis. The composition encom-
passes the conception of an activity, the selection of an adequate program or compo-
nent to enact the activity, and also the setup of an activity flow for each workflow 
trial. The execution phase focuses on the execution of workflows, including data and 
program distribution and monitoring. The analysis phase focuses on the evaluation of  
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Fig. 1. The experiment life cycle adapted from [13] and grouped into three phases in [12]  

experimental results obtained from the execution of workflows, which includes activi-
ties such as data visualization, queries, and provenance [14]. 

In the composition phase, which is the scope of this work, an experiment can start 
from previously designed experiments (Discovering & reusing experiments and ac-
tivities) or from scratch (Conception and Customization) using a documented proto-
col. Whether the experiment is started from scratch or from previously designed ex-
periments, workflow definitions are built or adapted, respectively.  

3   Limitations of WfMS in Supporting Workflows in Different 
Levels of Abstractions  

There are several abstraction levels in which a workflow can be defined. Frequently, 
workflows are considered in only two levels [15], either as abstract or concrete. Ab-
stract workflows are specified without defining the resources to be used during execu-
tion, leading to flexibility, since it would not be necessary to go into implementation 
detail. This usually means that workflows are defined as the chaining of conceptual 
activities. Activities in an abstract workflow are called abstract activities. Concrete 
workflows specify technological characteristics and define computational resources 
required to execute the activities. This usually means that the concrete workflows are 
defined as the chaining of programs. Thus, a concrete workflow is a specific instantia-
tion of an abstract workflow for a particular problem and includes the definition of 
programs and input data [2]. Activities in a concrete workflow are called concrete 
activities.  

In order to facilitate workflow composition, WfMS need to support different levels 
of abstraction. However, most current WfMS, such as Taverna [3], only support 
workflows at concrete level. This kind of support is far from solving the composition 
problem. To clarify this characteristic, Fig. 2.a shows a bioinformatics workflow 
according to the Taverna notation [16]. Although this paper presents several work-
flows using the Taverna notation, the discussion presented here transcends a particu-
lar WfMS implementation. In Taverna, processes are represented by light gray and 
dark gray rectangles. Input data are represented by a small upside triangle. Output 
data are represented by a small downside triangle. To bring a uniform vocabulary 
among all scientific workflows, Taverna processes will be called activities. These 
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activities are directly linked to each other, and also represent relationship dependence. 
At concrete level, workflow activities are specific packages or programs of an appli-
cation domain (light gray activities, for example, runKalign) or special adaptor activi-
ties (dark gray rectangles, for example, Unpack_alignment), used to manipulate an 
income data and transform it into a correct format in order to feed other activities. In 
this way, activities have input ports and output ports that are used to interconnect 
them. 

 

(a) 
 

(b) 

Fig. 2. A concrete workflow for sequence analysis with KAlign program (a) and an abstract 
workflow for the same problem, conceived using the GExpline tool (b).  

Fig. 2.b presents the same workflow at abstract level. It is simpler to understand a 
workflow at abstract level when compared to an equivalent concrete level, with all 
those auxiliary activities. It is clearer at abstract level that it is possible to execute a 
sequence alignment from a sequence of proteins. An abstract activity establishes that 
something needs to be done, but does not say how it should be done. Making an anal-
ogy with software development [17], an abstract workflow corresponds to software 
analysis and a concrete workflow corresponds to software design. 

Additionally, an abstract activity can be implemented by more than one activity at 
concrete level. This is also the case of the alignSequence activity of Fig. 2.b, which at 
concrete level is implemented by a sequence of three input adaptors (Input_data, 
Job_params, and Contents_list) necessary to prepare a web service invocation to the 
runKAlign web service, and the two output adaptors (Get_alignment and Un-
pack_alignment) of the Taverna workflow of Fig. 2.a.  

During the scientific experiment, two interesting situations can occur. In the first 
situation, a scientist may need to run the experiment repeatedly, changing some input 
data and analyzing the behavior of the model according to the change. In this case, the 
scientific workflow just need to be executed again with parameter changes [7] using a 
WfMS. In the second situation, the scientist may not be satisfied with the obtained 
results and may want to explore different programs to execute his scientific experi-
ment. This may lead to change the workflow to explore different alternatives and 
different programs to achieve the experimental result. WfMS does not present  
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primitives to help the exploration of variations that express scientific experiment life 
cycle. This type of change is normally done by making copies of a workflow followed 
by specific editing. This approach has limitations regarding scalability and mainte-
nance [18], since it loses semantic. For example, if WfMS had support for abstract 
workflows, the scientist would have known that from the alignSequence abstract ac-
tivity of Fig. 2.b there are many different programs that can execute sequence align-
ment (clustalw, kalign, mafft, muscle, and tcoffee), and he would just need to select 
the desired program. Unfortunately, existing WfMS consider any change as a new 
workflow. Even when there is a clear knowledge of the existence of different  
programs to run the same activity, there is no formal relationship between them. 
Moreover, if the scientific experiment needs to expand the analysis scope, it would be 
necessary to change all scientific workflows related to the experiment, despite the fact 
that they belong to the same abstract workflow.  

4   Experiment Line  

Experiment line is an approach to represent an in-silico experiment. An experiment 
line can be characterized by abstract workflows that are capable to be derived into 
multiple workflows at concrete level. An experiment line is inspired by software 
product lines [11]. Software product lines are software engineering methods, tools, 
and techniques for creating a collection of similar software systems from a shared set 
of software assets using common means of production [11].  

Software product lines were created for software development. The success of a 
product line is related to the way reusable assets are planned. In order to adapt the 
concepts of product lines to scientific workflows, the first step is to consider an activ-
ity as a component. A component is a composition unity that contractually specifies 
interfaces and explicitly presents its dependencies. In software engineering, there are 
some works that compare activities in a process with components [19]. This analogy 
also makes sense when it comes to workflows. Moreover, this component behavior is 
an important concept to allow the definition of an abstract workflow and its mapping 
to a list of concrete workflows related to it.  

An experiment line is the chaining of activities in an abstract workflow where each 
activity behaves like a component. Each abstract activity can be implemented by a list 
of compatible sequences of concrete activities. Also, a sequence of abstract activities 
can be grouped together to form another abstract activity.  When an abstract activity 
has more than one sequence of abstract activities to establish its behavior, it is called 
variant activity. Actually, this means that an abstract activity is a variant activity if it 
has more than one program to implement its conceptual component behavior. Also, 
when an abstract activity can be suppressed from a derived workflow related to the 
experiment line, it is defined as an optional activity. A mandatory activity is an ab-
stract activity that must be used in all derived workflows. 

Also, the relationship among abstract activities establishes interdependency.  
Abstract activities are linked together by means of input and output ports, just like 
concrete activities are linked in a concrete workflow. The way in which the abstract 
activities are connected, such as using different ports, may affect the behavior of the 
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abstract activity. So, if a relationship between two abstract activities in an experiment 
line can be connected by more than one way, it is called a variant relationship. Also, if 
a relationship between two activities can be suppressed from an abstract workflow, it 
is called an optional relationship at the corresponding experiment line.  

The process from which a concrete workflow is obtained from the experiment line 
is called derivation. A concrete workflow is derived from the experiment line by: 

• Choosing one of the abstract activities from each variant activities; 
• Choosing if each optional activity is going to be included in the derived 

workflow; 
• Choosing the way in which each variant relationships can link two ab-

stract activities; 
• Choosing if each optional relationship is going to be included in the de-

rived workflow. 
Fig. 3 presents an example of an experiment line, with some concrete workflows 

derived from it. In the example, A, B, and E are mandatory abstract activities, and 
their sequence of concrete activities are presented in all derived workflows repre-
sented by (a, b, e). In this example, D is an optional activity. It is presented in the 
derived workflow 1, represented by the sequence of concrete activities (d1-d2), but it 
is not presented in the derived workflow 2. Also, in this example, C is a mandatory 
variant activity. It has three possible abstract activities to be used during the deriva-
tion process (C1, C2, C3), which in turn are implemented by their respective concrete 
activities (c1, c2, and c3). Since C is also mandatory, all derived workflows must have 
one of the possible sequences of concrete activities.  

 

Mandatory activity

Optional activity

Variant activity

Relationship

Optional relationship

Variant relationship

Derived workflow 2
a

b c1

e

Optional and variant activity

Experiment line

A

B

ED

C1 → c1,
C2 → c2,
C3 →c3

o1-i1
o2-i2

C

Derived workflow 1

a

b c2

ed1 d2

 

Fig. 3. Experiment line and some derived workflows 

In addition, in Fig. 3 there is an optional relationship, from activity B to activity E. 
This means that the workflow may optionally have a connection between (b) and (e). 
Also, in the example, the relationship between C and E can be structured in more than 
one way (i.e., o1-i1 or o2-i2). Depending on the ports chosen to link these two activi-
ties, the behavior of the derived workflow can vary. 
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During or after the derivation process, it is necessary to check if the derived work-
flow is valid. So, it is necessary to make a formal verification of the derived workflow 
to guarantee its integrity, which means that the derived workflow needs to start from 
an initial state and reach a final state. Moreover, the selected activities must be com-
patible. This process is defined as verification of workflow derivation. 

5   Conclusions  

Scientific workflows represent a first step to the management of scientific experi-
ments. Although much evolution occurred in WfMS, there are still a large number of 
open problems related to the support of the experiment life cycle. Particularly, the 
workflow composition in current WfMS is limited to the setup of the activity flow of 
concrete workflows, which is usually associated with a trial in an experiment. By 
using concepts from software engineering, it is possible to empower the composition 
of scientific workflows for WfMS, which allows the characterization of the scientific 
experiment using both an abstract workflow and all the alternatives concrete work-
flows that are related to it.  

This work introduced the concept of experiment line as a software engineering ap-
proach to help the composition and management of scientific experiments. It supports 
the definition of an experiment line, which includes an abstract workflow, as well as 
the derivation of concrete workflows that can be obtained from it. In this approach it 
is possible to allow scientists to compose a workflow using guided information ob-
tained by the scientific experiment represented in an experiment line. It also improves 
maintenance efforts, since scientists just need to work on the experiment line and let 
these changes be propagated to the corresponding abstract and concrete workflows 
during the derivation process. 

As a proof of concept, a tool named GExpline is being developed to manage the 
experiment line. GExpline allows the composition of scientific workflows to be fur-
ther executed by Kepler [4] and Taverna [16] WfMS. Support to the VisTrails [5] 
WfMS is under development.  

The authors are currently designing an experiment line in the oil and gas domain to 
build scientific workflows for experiments regarding risers fatigue control in offshore 
platforms. A semantic representation such as experiment line is mandatory in this 
scenario, since there is a large number of variable and optional activities that can be 
chosen by engineers to intensively run their scientific experiments.  
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Abstract. Workflow Management Systems (WFMS), such as Kepler, are prov-
ing to be an important tool in scientific problem solving. They can automate 
and manage complex processes and huge amounts of data produced by petas-
cale simulations. Typically, the produced data need to be properly visualized 
and analyzed by scientists in order to achieve the desired scientific goals. Both 
run-time and post analysis may benefit from, even require, additional meta-data 
– provenance information. One of the challenges in this context is the tracking 
of the data files that can be produced in very large numbers during stages of the 
workflow, such as visualizations. The Kepler provenance framework collects all 
or part of the raw information flowing through the workflow graph. This infor-
mation then needs to be further parsed to extract meta-data of interest. This can 
be done through add-on tools and algorithms. We show how to automate track-
ing specific information such as data files locations. 

Keywords: Data Tracking, Data Provenance, Scientific Data Management,  
Scientific Workflows. 

1   Introduction 

Managing complexity and volume of data has been identified as one of the most im-
portant emerging needs by the scientific community. A very significant component is 
efficient generation and handling of the meta-data. 

The Scientific Process Automation group (SPA) [1] of the DOE Scientific Data 
Management Center (SDM) [1] is researching, developing and deploying data manage-
ment tools. Kepler workflow management system [2] is one such open-source tool 
based on the PTOLEMY II [3] framework. In a Kepler workflow, a process is called an 
actor. Actors are interconnected by communication channels through which the data 
flow in the form of tokens. Execution of the whole workflow is controlled by one of a 
number of special schedulers called Directors. SDM has also developed a provenance 
collection framework for Kepler [4], along with visual interfaces to display and analyze 
the results – the dashboard [5]. The Kepler provenance recording mechanism “listens” 
to the token flows to collect meta-data. A challenge is what and how much to collect. 
One the one hand provenance data needs to be sufficiently fine grained to be useful, and 
on the other hand collecting too much information is an overhead that we want to avoid. 

While tracking input and output files is a relatively routine activity during compu-
tations, it may become a challenge when the volume of data being generated is large, 
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and there is a need to analyze that data quickly, When there is a large volume of meta-
data this information may be buried and hard to get to. Thus efficient mechanisms that 
that take advantage of the provenance data to provide file tracking capabilities, with 
minimum overhead to the end user, are of interest. 

In section 2 of this paper we describe the provenance framework and the prove-
nance viewing mechanism we use with Kepler. In section 3 we discuss ad-on algo-
rithms for tracking data files. In section 4 we briefly discuss related work, and section 
5 concludes the paper. 

2   Provenance 

Data provenance refers to the data about the origin and the history of the data, and its 
transformations and derivatives. This information can be used to track evolution of 
the data, and gain insights into the analyses performed on the data. Provenance of the 
processes, on the other hand, enables scientist to obtain precise information about 
how, where and when different processes and operations were applied to the data, 
where and when failures or warning occurred, where the data was stored, etc.  

2.1   Provenance Framework 

The Kepler provenance framework developed by the SPA team [6] is illustrated in 
Figure 1. At the core is the provenance database with its APIs. The generality of the 
design allows insertion of another database (or another storage option) of choice. API 
has three key components: (1) Kepler, its actors, and external scripts use a Recording 
API to collect and save provenance information; (2) a Query API provides different 
query capabilities for accessing the data; and (3) a Management API for Provenance 
Store maintenance. Currently, the recording API is actually part of Kepler. We are in 
the process of writing a separate, detachable, API affiliated with the storage solution. 

 

Fig. 1. Provenance Framework 
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The database stores all provenance information. The database must be self-
contained, but it can be distributed. Simple items like annotations, user identifiers, 
timestamps, etc., are stored in closely corresponding SQL data types, such as numeric 
or varchar. More complex items are stored as BLOBs. For example, the most general 
type of a Kepler token (item passed between actors) can be a Java Object. In this case, 
if the user wishes to save all tokens produced by the actors in his workflow, he/she 
would need to provide serialization routines to store and retrieve the relevant Java 
Objects. An alternative is to use database stored pointers to reference the provenance 
information outside the database, such as Java Objects or workflow configuration 
files, pictures, movies or application source code. However, this solution may require 
a mechanism to reference data across machine boundaries. Self-containment guaran-
tees that modifications to provenance information are done only using the Provenance 
Store Recording API. 

The Kepler workflow management system implements a Provenance Recorder [4, 
7]. It is a set of listeners, or hooks – that saves token-based provenance from all (in-
ternal) workflow components into the Provenance Store. Depending on the granular-
ity, that data may be recorded for all actors in the workflow, or for some subset, e.g., 
only top-level composites. The recording API additionally supports components ex-
ternal to Kepler. These components are usually Python or shell scripts called by actors 
running in a workflow. Furthermore, these scripts may execute on a machine other 
than the one running Kepler. An example is the performance parameters that may 
come from software instrumentation and performance tools. In this paper we are par-
ticularly interested in the information stored about actor firings and tokens, which will 
be the basis of the analysis routine mentioned later.  

The Query API provides a read-only mechanism to retrieve provenance informa-
tion from the database. It provides a range of capabilities from notifying applications 
as provenance is recorded (e.g., a web based dashboard) to querying details about past 
executions. In addition to providing current workflow status, applications can query 
the Provenance Store about past executions. The Query API contains an SQL inter-
face to support these types of queries; it can retrieve data from the database given 
appropriate authorization. Finally it also provides a callback mechanism for applica-
tions wishing to receive real-time provenance updates. 

The management interface provides user administration and maintenance opera-
tions. User administration includes, adding and deleting users, modifying user pass-
words, modifying user access rights, and specifying the set of accessible workflows.  

Security of the system has always been of importance.  For example, in the current 
context of its use, the challenge is automated communication and exchange of data 
with other government labs. We are in the process of implementing a certificate-based 
security envelope that will allow inter-laboratory exchanges. Furthermore, we are 
increasingly concerned about the sharing of the provenance data. We realize that 
workflow meta-data and provenance information may have as much value as the raw 
information. Typically, sensitive information produced by a computational processes 
or experiments is well guarded. However, this may not necessarily be true when it 
comes to provenance information. The issue is how to appropriately share confiden-
tial provenance information. We developed a model for sharing provenance informa-
tion when the confidentiality level is dynamically decided by the user [8]. 



276 P. Mouallem et al. 

Also needed is an intuitive user-friendly interface so that the scientists can monitor, 
query, and access provenance data and analyses [5, 9], Dashboards, as their name 
implies, are data and information display devices or interfaces that typically present 
condensed information about the status of workflow processes, data, environment, 
and so on. The current version of the dashboard has 2 major functionalities: Machine 
Monitoring and Simulation Monitoring. The former tracks jobs, resources being used, 
and so on. The latter provides an analysis tool to view and analyze the data being 
computed. In this case, the views consist of two dimensional plots. Each of the pic-
tures is associated with a file, and path to that information is collected by the prove-
nance component of the system.  

3   Tracking Data Files 

The amount of data collected by Kepler provenance recorder can be very large, and of 
course it grows with the size and complexity of the workflow. Usually the  
information of interest is only a small fraction of what is being collected. Having the 
scientists search through that data is time consuming, and the task of mining the 
provenance data needs to be automated. For example, if a scientist wishes to further 
investigate or analyze an image that’s being displayed on the dashboard, he/she may 
need to first locate the file that contains the data behind that image. This is not an evi-
dent task since a single run can have hundreds of images associated with it. Further-
more, the relationship between images and the data files may not be one-to-one. This 
means that one data file may contain the data for several images. Consequently the 
scientist needs to both locate the data files on the disk, and to examine the contents of 
the data files before it can be determined which one contains the data of interest. That 
can generate a lot of overhead, especially for complex workflows which have multiple 
codes integrated in it, such as those discussed in [10, 11]. 

To illustrate development of provenance meta-data analysis algorithms, and their 
insertion in to our Kepler-based provenance framework, we use image data file track-
ing and archiving as an example.  

3.1   Tracking Files That Exist on Disk 

A solution that was developed early involved tracking of the tokens consumed by the 
actors that are responsible for generation of the images. This works, however it is not 
easily ported from one workflow to another since the names of the actors differ 
among workflows. For example, for one workflow we could be monitoring actor X 
because we know that it produces the images that we’re tracking. Applying that solu-
tion to a different workflow might not work because the actor generating those images 
might have a different name, or other identifying characteristics, etc... It is not un-
usual to have more than one actor generating images. So an actor independent solu-
tion is needed.   

That more generic solution does not rely on the actor names, instead, it only checks 
the tokens generated and consumed, and creates a reverse graph of the token flow, 
starting with the image name and ending with the data file(s). To better understand 
this solution, let us consider the simple example in figure 2. It shows a portion of a  
 



 Tracking Files in the Kepler Provenance Framework 277 

 

Fig. 2. Actors that generate image file 

Plasma Edge Simulation workflow [10]. The “ConvertBP” actor takes as input a BP1 
file and generates an HDF5 file, and the “H5Graph” uses the HDF5 file to generate an 
image (in png format).  

Using algorithm 1 (written in PHP), a graph backtracking algorithm similar to the 
ones found in [12],, we can retrieve the data files that were used to generate the given 
image. The algorithm would be used by the dashboard code, or could be part of a 
script that queries the database through the display API. 

 

program RetreiveDataFiles(ImageFileName): 
  tokenId = getTokenContaining(ImageFileName); 
  fireId = getFireId(tokenId); 
  inputTokens[] = getConsumedtokens(fireId); 
  foreach token in inputTokens[] do 
    if token.contains(requestedDataFile) then 
      return Token; 
    elseif token.contains(intermediateDataFile) then 
      RetreiveDataFiles(intermediateDataFile): 
    end 
end 

Fig. 3. Algorithm 1 

Once the data files paths are retrieved, we should be able to draw a graph as in fig-
ure 4 that represents the data transformation and image generation. The graph can be 
described as a reverse token flow. 

 

Fig. 4. Token Trace of image Files 

This method has proven to be effective with a multitude of workflows that follow 
the same structure as the one mentioned above.  It has been extended to provide sev-
eral alternatives to the query mentioned in the example above. Those alternatives  

                                                           
1 BP is a special data format developed for the workflow to speed up I/O operations [10]. 
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include retrieving the data files that generated a movie (a collection of images that 
represent different timesteps), retrieving all data files for all images at a particular 
timestep, or retrieving all the data files for all timesteps.  

One issue that we did notice is performance.  Based on the size of the workflow, 
the database query would sometimes take as much as a minute to execute (in our case 
we are using MySQL database). Now, since that information for a particular work-
flow run would not change (once the run has finished executing), and since the scien-
tist will probably be querying for the same data more than just once, we decided that 
it would be efficient to store the query results in a separate table that simply links im-
ages to data files, variables and timesteps. Algorithm 2 illustrates the new approach. 

 

program RetreiveDataFiles2(ImageFileName): 
  dataFile = queryResultsTable(ImageFileName); 
  if dataFile.found() then 
    return dataFile;  
  else  
      return RetreiveDataFiles(ImageFileName); 
  end 
end 

Fig. 5. Algorithm 2 

Algorithm 2 is much simpler and requires a fraction of the time needed by Algo-
rithm 1 to execute. The SQL query in Algorithm 1 contains several joins and several 
regular expressions evaluations. The query in Algorithm 2 is a simple select state-
ment. This solution is cast as a dashboard analysis tool that takes advantage of the 
data collected by the Kepler provenance framework.  It is currently used in  
production. 

3.2   Tracking Archived Data Files 

In this subsection we discuss an analysis, based on the same token tracing and analy-
sis principles, that solves more a complicated problem - archiving. 

Typically, data files generated during a simulation are stored for only a certain pe-
riod of time on active disk space allocated for that experiment. Then they are deleted. 
Therefore scientists need an automated way to track archived files and to determine 
which of the actual archive files contains the data file of interest. Not surprisingly, 
one tool that the scientists requested in our context was the ability to track backup 
files that contain the data files mentioned earlier. The workflow archives all the data 
files generated during a run into TAR files, and then it backups up those TAR files 
onto a long-term tape-based storage system (HPSS) [13]. 

Achieving this needed a more complex algorithm. The main reason is that instead 
of tracing backwards, we need to trace forward through the branching trees, and. the 
token trace is not linear when tracing forward through the branching trees.  

Now, since we want our analysis module to be actor independent, the first task is to 
trace the tokens over all possible paths and identify the one(s) of interest. This differs from 
backtracking because it occurs in our case along a linear path.  We use a Breadth First 
Search [12] to trace the tokens along all possible paths. Our algorithm checks the output of 
the actors that have consumed the specific token of interest to see if it had generated a  
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Table 1. Token Consumption/Generation example for “Archiver” Actor 

FireId Token Consumed Token Generated 
1 file1.h5 --- 
2 file2.h5 --- 
3 file3.h5 --- 
4 file4.h5 file1-4.tar 
5 file5.h5 --- 

 

Fig. 6. Tracking TAR files 

TAR file, or some other type of file. If this actor is found, then we focus on that actor, 
otherwise we continue recursively until the appropriate actor is found. Once we determine 
which actor is generating the TAR files, we repeat the same process described in algo-
rithm 1 in order to determine which TAR file contains the data file that we need. 

One problem that we faced while implementing this module is that the “Archiver” actor 
consumes several tokens before producing one. In other words, the data file in question 
can be consumed without having a TAR file generated for that same FireId (i.e., the id that 
indentifies the start of the process). Instead, the TAR file would be generated once a suffi-
cient number of data files are consumed. Table 1 illustrates the problem. 

For example, if we are looking for the TAR file that contains “file2.h5” and we 
lookup the FireId, we will not be able to find a result since no tokens were generated 
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for that particular FireId. To solve that problem, during our search for actors that  
generates TAR files, if we detect one that did not generate any tokens, we search in-
crementally for all subsequent FireIds that involve that actor until we detect a token 
being generated. If that token did not turn out to contain a TAR file or no tokens were 
detected, that means the actor in question is not the one that we’re looking for. If it 
did turn out to contain a TAR file, that would be the TAR file that we are looking for, 
and it is returned to the end user. This is summarized in figure 6. 

4   Related Work 

A number of provenance models have been proposed in the literature [14, 15, 16, 17, 
18, 19]. These models differ in many ways, but the main difference among them is 
often in the way they use structures and storage strategies. They all share an essential 
type of information: process and data dependencies. 

For example, reference [14] describes a provenance system for data driven work-
flow called “Karma2.” This system uses web services to store and retrieve provenance 
data from a relational database. However, it does not offer analysis tools for the col-
lected data. Instead, it offers an API through which to collect that data. In references 
[15] authors use the same technique to collect and retrieve data, except that it differ-
entiates between what they calls “process documentation”, which is similar a record 
of what occurred, and “item provenance” which describes the provenance of a data 
item. Reference [17] describes a provenance scheme that tracks the provenance dur-
ing workflow creation and execution. It uses OWL [20] to represent that provenance 
information. Reference [18] describes a workflow management system (Vistrails) 
with built-in provenance tracking. It stores the workflow evolution provenance infor-
mation as an XML tree. In [19] authors address the performance issues in storing 
provenance data, and propose an alternative approach for storing that data. This work 
relies on transforming workflows into directed acyclic graphs and storing the data 
lineage using a tree structure. 

On the practical side, a number of teams participating in the provenance challenge 
[21] provided a series of functions to analyze provenance data. One team, RWS [4, 
22, 23] described methods to track the lineage. One of their methods “tokenLine-
ageofValue” provides a list of all tokens that contain a particular value. This  
algorithm does not establish the token trace that is required to retrieve the data files 
discussed here, but it is the first step in our analytics. 

5   Conclusion and Future Work 

Provenance based analysis is proving to be a valuable tool and is receiving good 
feedback from the scientists. In this paper we described some of the Kepler prove-
nance based analysis algorithms currently used in production at ORNL. Specifically 
tools for tracking and finding files. One algorithm tracks the data files describing im-
ages and movies that are being displayed on the dashboard, and the other algorithms 
tracks the TAR archives that contain those data files in the case those file are no 
longer available on disk. 
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However, while solution presented works very well in the case of the workflows 
we have examines so far, it probably is not general enough. That will be addressed in 
the future. One of the limitations is that the current solution assumes that only one 
actor is responsible for generating TAR files. This situation is valid for all of our 
workflows right now, but might not be true in the future, thus it needs to be addressed.  

Although we only discussed tracking of data files, this work opens the door for 
dealing with much more complex issues. For example, error detection and fault toler-
ance through backtracking. The provenance data collected about current and old runs 
has potential to detect errors automatically. We are currently exploring that idea. 
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Abstract. One of the most popular ways to access public biological
data is using portals, like Entrez (NCBI) which allows users to navigate
through the data of 34 major biological sources following cross-references.
In this process, data entries are inspected one after the other and cross-
references to additional data available in other sources may be followed.
This navigational process may be time-consuming and may not be easily
reproduced from one entry to another. Most importantly, only a few
sources are initially queried, biologists do not exploit all the richness of
the data provided by Entrez, and in particular they may not explore
alternative source paths that provide complementary information.

In this paper, we introduce BioBrowsing, a tool providing scientists
with access to the data obtained when all the combinations between
NCBI sources have been followed. Querying is done on-the-fly (no ware-
housing). As new sources and links between sources appear in Entrez,
BioBrowsing has a module able to update automatically the schema used
by its query engine. Finally, BioBrowsing makes it possible for users to
define profiles as a way of focusing the results on users specific interests.

Availability: http://bioguide-project.net/biobrowsing

1 Motivation

Faced with the deluge of raw data produced by high-throughput technologies and
stored in some major public genomic sources (or data banks), scientists (either
individually or as consortia) frequently organize and (re-)interpret these data
to create curated data sources. These sources contain entries, that is, annotated
files drawn from scientific publications and commented on by curators. As a con-
sequence, these entries reflect the opinion of their curators and contain highly
complementary and possibly divergent data, since scientific experts may dis-
agree. Moreover, the annotated files frequently reference entries in external data
sources using hypertext links, called cross-references, making it possible to find
additional information from one entry in a given source to another. Biological
data thus form an intricate network of valuable data linked by cross-references.
As a result, the number and size of sources providing specialized biological in-
formation have increased exponentially over the past ten years; more than one
thousand public data sources are currently counted [1].

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 283–291, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



284 S. Cohen-Boulakia and K. Masini

One of the most popular ways to access public biological data [1] is using por-
tals like Entrez1, Expasy2, or SRS [2] which give users the ability to pose keyword-
based queries and navigate using cross-references through the data obtained. En-
trez, developed by the NCBI (National Center for Biotechnology Information), is
probably the most widely used portal, giving access to 34 major biological public
sources including RefSeq, PubMed, and OMIM to cite only a few of them.

More importantly, NCBI sources and links between NCBI sources are changing
over time. First, new sources may be added to the set of sources available through
Entrez, such as the OMIA database added in January 2006. Second, several
(independent) sources may be created as a subpart of a major source, such as the
Books and Journal sources which are fragments of PubMed. Third, sources may
be modified or their names changed such as LocusLink renamed as EntrezGene in
March 2005. As a consequence of all these changes, links between NCBI sources
are created and deleted.

To illustrate the navigational process followed when Entrez is queried, let us
consider the following example based on real use cases we have identified through
collaborations with biologists and physicians3. Tom, a physician, is interested in
knowing the genes involved in the Narcolepsy disease. Tom is used to querying
OMIM, the Online Mendelian Inheritance in Man, which contains information
on genetic phenotypes through entries very carefully annotated by experts. Tom
uses Entrez and types Narcolepsy as the keyword to be searched. As a result, 19
OMIM entries are found by Entrez. Tom inspects these entries and may follow
cross-references from them to the database named Gene in Entrez. If this process
is done for the 19 OMIM results, 22 distinct genes are found in Entrez Gene.
It worth noticing that this step involves not only clicking 19 times on links but
also removing duplicates among the set of genes found. At this point, it could be
considered that all information about the genes possibly involved in Narcolepsy
have been obtained.

However, Tom has missed crucial information. Two other paths between sources
would have given him additional information. Indeed, if Tom had considered fol-
lowing the pathOMIM → (Entrez)Protein→ (Entrez)Gene (that is, following
cross-references fromOMIM entries toEntrezProtein entries and then fromEntrez
Protein entries to Entrez Gene entries) or OMIM → PubMed→ (Entrez)Gene,
he would have known that a Nature Genetic paper (published in late 2008) has
shown that the portion between genes CPT1B and CHKB was susceptible to be
associated with Narcolepsy. This information existed in Entrez but the user would
have had to consider intricate paths between sources to get it.

There is thus a crucial need to help scientists exploit all the information
available, and in particular explore alternative source paths that may provide
complementary information.

In this paper, we introduce BioBrowsing, a tool providing scientists with access
to the data obtained when all the combinations between sources from NCBI have

1 www.ncbi.nlm.nih.gov/Entrez
2 www.expasy.ch
3 More information is available at http://bioguide-project.net
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been followed. BioBrowsing poses on-the-fly queries to Entrez (no warehousing)
and may be used freely online. As new sources and links between sources appear
in Entrez, BioBrowsing has an update module, able to maintain automatically the
schema used by its query engine. Finally, BioBrowsing makes it possible for users
to define profiles as a way of focusing the results on users specific interests.

2 BioBrowsing Architecture

2.1 Overview

The BioBrowsing architecture is represented in Figure 1. BioBrowsing relies
on two graphs: (i) the graph of sources representing the network of sources,
composed of sources (e.g., OMIM) and cross-references between them, and (ii) a
logical layer, the graph of entities, representing the biological entities (e.g., Gene,
Disease) and their relationships. These two graphs form the query support.

Queries are expressed by selecting entities of interest and possibly specifying
the sources the user wants to be queried.

In the rest of this section, we describe how BioBrowsing generates the query
support and then how it is used to answer a user query.

Fig. 1. BioBrowsing Architecture

As for the implementation, graphs of sources and entities are expressed within
XML files. The BioGuide module has been previously implemented in JAVA [3]
while BBUpdate, BBProfile and BBWrapBG modules have been recently devel-
oped in Perl. These 3 modules make use of specific functions called eUtilities,
provided by the NCBI to access their data. Embedded Perl into JAVA has thus
also been used to allow the modules to communicate together.

2.2 BBUpdate and BBProfile: Generating the Query Support

Generating the graph of sources. The BBUpdate module of BioBrowsing takes
as input information extracted from Entrez NCBI to create automatically the
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graph of sources. In the graph of sources each NCBI source is a node (Si) and
there is a link from node S1 to node S2 iff there exists cross-references from
entries of S1 to entries of S2.

Generating the graph of entities. Given the description of the sources provided
by the NCBI (a paragraph in natural language), the set of biological entities
(Gene, Protein, etc.) available in each source is determined. This step currently
involves the participation of the BioBrowsing administrator but could be semi-
automatically performed using text mining techniques (e.g., [4]). For example,
OMIM contains information on the Disease entity while (Entrez)Gene on Gene.
This information is called the contains information in our approach. Note that
the set of entities to be considered is chosen by the BioBrowsing administrator
but can be changed.

From the graph of sources and the contains information, BBUpdate generates
automatically the graph of entities and the mapping between the two graphs:
Nodes of the graph of entities are biological entities (Ei) and there is an edge
between E1 and E2 iff (i) E1 is contained in source S1, (ii) E2 is contained in
source S2, and (iii) there is a link between S1 and S2 in the graph of sources.

Considering Profiles. Based on feedback we got from our biologists collaborators,
it clearly appears that each user may not be interested in the diversity of data
available in NCBI sources. BioBrowsing thus provides profiles ; given a set of
biological entities of interest to be chosen by the user among all the available
entities, a sub-graph of the graph of entities is generated as well as a sub-graph
of the graph of sources focused on the sources able to provide information on
the chosen entities.

Three profiles have currently been predefined: Medical, Annotation and Com-
plete. In our example, Tom may use the Medical profile. It is worth noticing that
designing a new profile is a matter of minutes and is only based on basic infor-
mation provided by the user about biological entities of interest to him, there is
no need to know anything about the sources.

Average values for graph features are captured in Table 1, depending on the
profiles. TotNBE indicates the total number of entities in the graph of enti-
ties; TotNBS indicates the total number of sources in the graph of sources;
TotLE (respectively, TotLS) gives the total number of links in the graph of
entities (respectively, sources); MinL(Ns/e)−MaxL(Ns/e) indicates the min-
imum and maximum number of links between sources providing a given entity
while Mean(Ns/e) gives the average value of this number.

Note that even when a few entities are considered (e.g., in the medial profile),
the graph of sources may be huge (384 links between sources) and sub-graphs
focused on some entities may be very important (46 links between sources pro-
viding the Gene entity).

2.3 BioGuide and BBWrapBG: Querying with BioBrowsing

Expressing a query. The BioBrowsing query engine is BioGuide, a path-based
approach described in [3]. BioGuide provides a generic framework which has
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Table 1. Graph Features

Profile TotNBE TotNBS TotLE TotLS MinL − MaxL(Ns/e) Mean(Ns/e)
Complete 10 34 89 838 2 - 46 9
Medical 5 23 25 384 2 - 46 15

Annotation 6 26 35 485 2 - 46 13

Fig. 2. BioBrowsing querying process: (top-left) querying interface with the graph of
entities and part of the graph of sources in which only sources providing genes are
represented; (bottom-left) List of paths between sources generated; (right) answers
obtained by clicking on on the link [View in Entrez] next to path (2)

been directly used by BioBrowsing (no changes were necessary in the source
code of BioGuide). BioGuide takes as input the two graphs and the user query
composed of (i) selected entities in the graph of entities with associated keywords,
and (ii) (possibly) sources selected in the graph of sources when the user wants to
specify some sources which have to be queried. As an example, the query of Tom
is expressed by selecting entities Disease and Gene and specifying Narcolepsy
as keyword. Tom might restrict the search on sources providing Genes from the
(Entrez)Gene source (see Figure 2, top-left).

Advanced features. Additionally to the two graphs, BioGuide is able to take into
account the preferences the user has on the sources (e.g., users can express that
some sources are more reliable than others). BioGuide also offers the possibility
of expressing filters on the sources to be queried and on the way they are queried
(querying strategy). Examples of filters include specifying that only paths having
a maximal length (to be specified) should be followed. Examples of strategies
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include specifying that sources should be considered in a given order or that
additional entities can be considered. In Tom’s query, an order has been defined,
from sources providing information on Disease to sources providing genes (as a
result selected entities are numbered in Figure 2), and additional entities have
been considered (e.g., Protein or Biblio). Preference values, filters and strategies
can be parameterized by advanced users. Default values have been set using
feedback from current users. Complete information on the querying process can
be found on [3,5] and will be further discussed in the Related Work section.

Getting results with BBWrapBG: from BioGuide paths to data entries. As an
intermediate result, a list of paths between sources that could be queried (as
alternative ways to get information) is generated by BioGuide. These paths
specify for each source which entity it provides. Figure 2 (bottom-left) gives the
list of paths obtained by Tom’s query, including the following two paths:

(1) OMIM Disease→ gene Gene and
(3) OMIM Disease→ protein Protein→ gene Gene.

The set of paths has been ranked by BioGuide according to the reliability of
the sources involved in each path (as introduced above). It allows the user to
inspect paths by considering first paths of most interest to him.

When the user selects one of these paths, the BBWrapBG module is run to
translate the path into a set of calls to services understood by the Entrez engine
to finally provide a set of data entries from Entrez (Figure 2, right-hand side).
This translation is not straightforward and involves several intricate calls to
Entrez eUtilities.

3 Related Work

A plethora of approaches has been proposed in the last twenty years to integrate
biological data using various techniques and architectures. According to a recent
SIGMOD tutorial [6], current challenges in integrating biological data include
providing a usable system with (among others) (i) a presentation data model to
be queried, (ii) a mapping between this layer and the (volatile) schema of the
sources to be maintained, and (iii) data results provided to the user in a familiar
environment.

Path-based systems [5] have been introduced as loose integration systems
which rely on two layers. First, they consider a physical layer, the graph of
sources, formed by the sources and their cross-references. Second, they consider
a logical layer, the graph of entities, composed of the biological entities and rela-
tionships between them. Path-based systems provide alternative paths between
sources as alternative ways to get answers and rank paths according to user’s
preferences. Their aim is to guide the browsing process. The graph of entities
in these systems can be seen as the presentation data model [6], it is thus more
than just a user-friendly visual interface since it allows the user to pose queries
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in terms of biological entities instead of having to understand the structures of
the sources.

In [5], several path-based systems have been compared including BioMediator
[7], BioNavigation [8], DSS [9], and BioGuide [3] (with BioGuideSRS [10]). Sys-
tems differ in the structure of their graphs (e.g., multi-labelled edges), the kind
of preferences they consider (e.g., reliability, completeness of the sources), the
kind of filter preferences they use, their underlying query language, the querying
strategies they allow to follow, and the techniques they use to go from paths to
data instances (on-the-fly techniques or data warehousing).

However, the systems previously mentioned have considered the two graphs
manually designed by their administrator while BioBrowsing is able to generate
and maintain semi-automatically a logical layer on top of the 34 current Entrez
sources togetherwith themappingbetween this layer and the schema of the sources.
As for the techniques used to obtain data instances, BioMediator queries a
datawarehouse of semi-private data, DSS is used on top of the HKIS-Amadea (pri-
vate) platform, BioNavigation queries a warehouse containing part of the Entrez
data while BioGuideSRS poses on-the-fly queries to the SRS platform. BioBrows-
ing is using the same query engine as BioGuideSRS but uses new modules able to
translate its paths into queries to Entrez. BioBrowsing provides results through the
Entrez interface obtained following a complete on-the-fly process.

4 Conclusion

The challenges addressed by the BioBrowsing system that we have introduced
in this paper are the following:

– Automatically design a network of 34 real, widely used, biological sources
– Semi-automatically generate a logical layer on top of this huge network of

sources
– Consider alternative paths in the maze of sources to get complementary

information
– Efficiently get access to biological entries from Entrez without considering

any warehousing approach.

Our demonstration will highlight the following features:

Generating graphs and defining profiles. We will show how BioBrowsing allows to
follow both bottom-up and top-down approaches to generate and design graphs.
First (Bottom-up), we will show how the two graphs and new profiles can be
generated semi-automatically from information on the sources and their links
given by the NCBI together with the contains information. Second (Top-down),
we will show that the graph of entities may conversely be designed a priori, and
then the mapping between the two graphs been generated. In this part of the
demonstration we will consider several alternative sets of entities to demonstrate
the flexibility of our approach.
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Querying. We will consider several biomedical queries to emphasize how (i)
providing alternative ways of obtaining results gives access to new informa-
tion, (ii) knowing that several paths between sources return the same data
may augment the confidence the user has in the obtained result, (iii) taking
into account preferences in sources allows the user to choose between conflicting
information.

As for future work, BioGuideSRS has been very recently used as a testbed
to learn preferences users have on sources, based on feedbacks users gave on the
data provided by BioGuide paths [11]. BioBrowsing will provide a wider testbed
for this kind of work since it will consider much more sources and links. Ongo-
ing work on BioBrowsing also include computing and analyzing the differences
between the sets of data obtained by the various paths, following approaches in
the spirit of [12]. Our aim in this work is to support the steps which go beyond
the browsing phase in the integration process.
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Abstract. To analyze and understand the growing wealth of scientific data, com-
plex workflows need to be assembled, often requiring the combination of loosely-
coupled resources, specialized libraries, distributed computing infrastructure, and
Web services. However, constructing these workflows is a non-trivial task, espe-
cially for users who do not have programming expertise. This problem is com-
pounded for exploratory tasks, where the workflows need to be iteratively refined.
In this paper, we introduce workflow medleys, a new approach for manipulating
collections of workflows. We propose a workflow manipulation language that
includes operations that are common in exploratory tasks and present a visual
interface designed for this language. We briefly discuss how medleys have been
applied in two (real) applications.

1 Introduction

The trend towards service-oriented architectures has expanded to a number of domains.
Recently, a new class of tools have emerged that help users to leverage and integrate
services in a collaborative fashion. Yahoo! Pipes [1] is an example of mashup builder
that provides a graphical user interface for assembling pipelines that combine RSS feeds
and Web services. Scientific workflow systems, such as Taverna [2] and VisTrails [3],
provide a more comprehensive framework which, in addition to services, also supports
the integration of general tools and libraries.

The ability to construct complex applications, be they scientific workflows or Web
mashups, by weaving services together is very appealing and has many benefits. Al-
though workflow systems are natural candidates as solutions to this problem, there
are two important challenges that need to be addressed: usability and support for ex-
ploratory tasks. While there has been substantial work on workflow and application
integration systems [4], such systems have primarily been designed for power users in
enterprise settings. Scientists who use scientific workflow systems do not necessarily
have programming expertise. Thus, it is not reasonable to assume that they can write
complex control-flow specifications (e.g., using languages such as BPEL [5]), even if a
visual programming interface is available.

In addition, workflow systems have been traditionally used to automate (complex)
processes, which often require a laborious, time-consuming design cycle. In a number
of new applications, however, workflows are assembled for exploratory, and sometimes
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one-of-a-kind tasks. Instead of designing a single workflow that will be run thousands
of times, a user (or set of users) manipulates ensembles of workflows that are iteratively
refined as she formulates and test hypotheses [6]. Such tasks may require, for example,
experimenting with different combinations of parameter values, data sets, or algorithms.
Consider the following example of an exploratory task.

Example 1 (Select best learning classifier) . To build an effective learning classifier,
a user must often tediously build and compare alternative learning techniques as well as
experiment with different configurations for each technique. For text classification, sup-
port vector machines (SVMs) can be extremely effective [7], but their accuracy depends
on a variety of model parameters including the kernel function f , the scaling factor γ,
and the penalty parameter of the error term C. Different kernel types (linear, polyno-
mial, radial basis function (RBF), and sigmoid) need to be investigated and parameters
tuned for each. Thus, selecting the best classifier requires constructing several classi-
fiers, testing them all, and comparing their error rates. Figure 1(c) shows the accuracy
rates of three distinct SVM classifiers using C values 0.25, 1, 2, 4 over the test data.

Suppose a workflow designer constructs three workflows, one for each kernel type.
Figure 1(a) shows the structure of one of these workflows. This workflow constructs a
classifier using training data retrieved from the Web and computes its error rate. Using
a similar process, it also derives the error rate for the classifier on the test data. The
error rates from the two runs are then sent to a Matplotlib [8] module which generates
the plots that are subsequently displayed on the screen. Using a visual programming
interface (such as the ones provided by workflow systems [2,9]), to compare the differ-
ent configurations for C values 0.25, 1, 2, 4, the user has to modify, run and save the
results of each workflow. This scenario requires 12 modifications and 12 saved files.
Furthermore, if new test (or training) data is made available, the whole process needs
to be repeated.

Workflow Medleys. In this paper, we propose a new approach to support exploratory
tasks that involve ensembles of workflows, or workflow medleys. This approach relies
on simplified views of workflows that are more intuitive for users, along with operators
for manipulating the workflows as a set.

For the scenario above, we desire to create a simplified interface for the given work-
flows. Note that even small workflows, like the one shown in Figure 1(a) can have many
different modules, connections, and parameters, but for most tasks, only a small subset
needs to be manipulated. As illustrated in Figure 1(b), simpler views of these work-
flows might hide all but this subset of entities. In our example, these might include the
names of the input files (dev file and train file) and the C parameter (cost).
Then, to compare the different classifier configurations, as Figure 1(c) illustrates, we
can synchronize the appropriate parameters across workflows, and then set all of these
parameters to the appropriate values. Note that setting the value of a single parameter,
e.g., cost, updates all parameters that are synchronized with it. This provides a means
to efficiently compute and compare the 12 different methods. Also, if new test data is
made available, all plots can be re-generated by updating a the dev file parameter
only once.
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Fig. 1. Example of creating a medley for Example 1. (a) The developer marks configurable pieces
of the workflow to create a template. (b) A workflow view is created based on the workflow
template. (c) A medley of SVM Classifiers. The connections mean that synchronization is taking
place.

Note that the same mechanism used to explore parameter spaces can be used to up-
date the workflow definitions in bulk. For example, by synchronizing the subworkflow
(variable publishing in the medley shown in Figure 1(c)) which consists of the
modules responsible for displaying the results, a single update operation can be used
to replace this subworkflow with a different set of modules. For example, instead of
displaying the results on the screen, the new version may generate an HTML page with
the images embedded.

Outline and Contributions. We propose a new approach that streamlines exploratory
tasks that require the composition of multiple workflows. This approach is general and
can be combined with existing workflow and workflow-based systems, such as Ya-
hoo! Pipes, Taverna and Kepler. In addition, it can be naturally mapped into an intuitive
interface that is suitable for users that are not expert programmers. We introduce the
medley model in Section 2. This model consists of a set of concepts and operations for
manipulating workflows and captures operations that are common in exploratory tasks.
In Section 3 we discuss our first prototype of a user interface for the medley model.
We describe how it is implemented and used. We have explored the use of medleys in
two real applications: chemical informatics and a comparative analysis of isosurface ex-
traction algorithms. We describe our experiences in Section 4. In Section 5, we review
related work and we conclude in Section 6.

2 Manipulating Workflow Specifications

In this section, we show how manipulation of a workflow collection can be simplified by
developing the concepts of workflow templates, workflow views, and medleys. We begin
by reviewing the definition of a workflow along with basic workflow operations, and
then introduce the workflow template as a way for designers to designate configurable
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pieces of a workflows. A workflow view is the projection of a workflow according to a
workflow template, and a medley is a collection of workflow views along with a set of
links between them that synchronize or compose the views. Throughout this section, we
assume a dataflow model for workflows [10]. Note that all of the operations and concepts
we introduce are independent of the underlying workflow management system.

2.1 Workflows

Definition 1. A workflow w(M, C) is a set of modules, M , along with a set of con-
nections, C, linking the modules. Each module m ∈ M is associated with a tuple
(Im, Om, Pm), where Im corresponds to a set of input ports, Om corresponds to a set
of output ports, and Pm is a list of parameters. Each parameter p ∈ Pm is associated
with a value v. A connection (o, i) links an output port o from a module m1 to an input
port i of another module m2. o ∈ Om1 is the source port and i ∈ Im2 is the target
port. m1 and m2 can only be connected through ports o and i if the types of the ports
are compatible. Sources are modules where no target port is connected, and sinks are
modules whose no source port is connected. Parameters can also have a type, and the
value of a parameter must be an instance of that type.

Definition 2. Given a workflow w(M, C), a subworkflow ws(M ′, C′) is a workflow
where M ′ ⊂M and C′ ⊂ C such that c ∈ C′ if and only if c connects m1 to m2 where
m1, m2 ∈M ′.

While there are a variety of workflow operations we could discuss, we will highlight
two: enactment, executing a workflow, and substitution, changing workflow compo-
nents. These operations can be used both when designing a workflow and when inter-
acting with a completed workflow.

Enactment. A workflow enactment is the execution of a workflow in the order de-
termined by the network of modules and connections. We recursively update modules
starting with the sinks until all modules are “up-to-date”. Because each module depends
on all of its inputs, these data requests propagate all the way to the sources (which ref-
erence the initial data), who update their outputs, allowing modules connected to their
output ports to then execute. Execution continues until each sink has been executed.

Substitution. Substitution allows workflow components (e.g., parameter values and
modules) to be replaced. More formally, given a workflow w(M, C), the operation
substituteParameterw(m, p, v) assigns value v to a parameter p of a module m in work-
flow w, provided that the types of v and p are compatible. Given a second workflow
ws(M ′, C′), the operation substituteWorkfloww(M∗, ws) replaces the subworkflow in-
duced by the modules in M∗ ⊂ M with the workflow ws. In order to accomplish this,
we must create the connections that link ws back into the workflow w. Each connection
that links the modules in M∗ to those in M −M∗ is remapped to a connection linking
M ′ to those in M −M∗ by matching the types of the ports in the original connections
to match those in the new connections.
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2.2 Simplifying Workflows

As outlined earlier, workflow systems allow users to create and execute workflows. A
limitation of these systems is the difficulty involved in modifying an existing workflow
by users other than the original workflow developer. Our goal is to simplify these mod-
ifications and allow users to interact with ensembles of workflows in a more intuitive
manner. Our approach is to allow the designer to designate configurable pieces of the
workflow through workflow templates. Such designations help users determine proper
inputs as well as experiment with different workflow variations. From such templates,
we can create workflow views that abstract much of the complexity of workflows. Users
can then combine workflow views in medleys using synchronization and composition
operations.

Workflow Templates. We introduce a workflow template as a workflow that allows de-
signers to define reconfigurable pieces of the workflow in a hierarchical way. Users can
select and label parameters or subworkflows using a nomenclature that is meaningful
for a given application or task. Figure 1(a) shows a workflow template generated for the
classification workflow described in Example 1.

Note that the designer selected a subset of parameters as well as the plotting sub-
workflow that should be exposed. The root of the template hierarchy represents the
workflow, and its children and descendants correspond to configurable parameters and
subworkflows. We refer to each element in the the template hierarchy as a workflow
template node. Nodes that correspond to subworkflows are represented as rectangles
and parameters as ellipses. Note that labels are unique in a given hierarchy level. By
representing the template as a hierarchy, our approach is able to handle arbitrary nest-
ing of workflows.

Workflow template nodes provide the same operations of a workflow as well as other
specific operations for labeling and removing labels, for creating, adding and removing
child nodes, creating and removing connections between template nodes and between
template nodes and modules, and for materializing a workflow.

Workflow Views. In a workflow template, important and configurable elements (i.e.,
modules, parameters, and subworkflows) are selected, and a workflow view effectively
hides all unselected elements. More formally, a workflow view wv is a projection of a
workflow w where only a subset of the workflow elements are exposed for direct inter-
action. We refer to the exposed elements as variables. Any workflow element not ex-
posed by a workflow view cannot be directly changed in the view. However, a workflow
view maintains a reference to the original workflow, and thus views can be enacted by
enacting the underlying workflow. Notice that a workflow view can be generated from
a workflow template. In fact, the parameters and configurable subworkflows are also
represented as a hierarchy that mirrors the one for the template hierarchy. Figure 1(b)
shows a view (RBF Classifier) derived from the template in Figure 1(a).

Medleys. For exploratory tasks, a user often needs to create and manipulate a set of
workflows, as shown in our machine learning example. To support this, we introduce a
medley M as a collection of (related) workflow views along with a set of relationships
between the views. These relationships are defined by operations linking the views,
including synchronization and composition.
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When two views are synchronized, one or more variables from each view are linked.
A variable x in a workflow view wv ∈ M can be synchronized with any variable x′

in another view w′
v ∈ M if x and x′ have the same type. Then, for any pair of linked

variables, binding either to a value v ensures that each variable is set to v.
The ability to synchronize variables is useful for tasks like comparative visualization

since we can ensure that parameters across different workflows whose values should
be the same will indeed be the same. Consider again the machine learning example,
and suppose we have a medley with views for the workflows that use the different
classifiers. By synchronizing their input files and cost values, a user could quickly set
these parameters once and their values would be automatically propagated to the three
workflows. Furthermore, synchronization enables a user to efficiently explore different
configurations. Instead of setting values for each workflow individually—which can be
both time consuming and error prone, the value for a parameter is set only once and is
automatically propagated to all synchronized variables in multiple views.

Two views are composed by connecting an output port in one view to the input port
of the other. In our example, composition could be used to pass the HTML file generated
by the two classifier views to a view that sends files to a web server via FTP. In addition,
a medley can combine composition and synchronization to easily construct a variety of
analyses and explorations.

Note that we could consider synchronization or composition on workflows instead
of workflow views, but this could be much more complicated for the user. Because
workflow views reduce the number of components that are exposed, they make it much
easier to identify how workflows can be integrated and synchronized.

3 Creating and Interacting with Medleys

While workflow templates, workflow views, and medleys allow users to simplify and
integrate workflows, constructing these concepts needs to be straightforward. For this
reason, we have implemented these operations using an intuitive user interface. In this
section, we describe our initial implementation of such an interface.

Creating Workflow Templates and Views. Developers use the Workflow Template
Editor to create a workflow template, by selecting and labeling parameters and sub-
workflows, as shown in Figure 1(a). Given a workflow template, displaying the corre-
sponding workflow view requires a simplified interface. In our implementation, we use
a table-based layout where each variable name and editable value are displayed (see
Figure 1(c)).

Once a template is created, one of the operations supported by the Template Editor
is view creation. While configuring a view, users can set the visibility of the parameters
and configurable subworkflows, as well as select suggestions from the list stored in the
template. These suggestions will guide the end users to pick meaningful values for the
parameters when they are not familiar with the workflows. Note that both templates and
views can be stored in a repository where they can be accessed later.

Creating and Manipulating Medleys. To combine workflow views in a medley, the
developer uses the Medley Editor. The views stored in the Workflow View Repository
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are displayed on a panel and they can be dragged and dropped on a canvas. Once on the
canvas, the medley operations (i.e., synchronization and composition) can be applied to
the views. A screenshot of part of the Medley Editor is shown in Figure 1(c).

Each variable in a view has an associated handle (see the circles on the left and right
of each variable name in the workflow view in Figure 1(b)). By connecting the handles
for two variables in two distinct views, their values are synchronized. To simplify the
task of identifying variables to be synchronized, when the developer starts to create a
connection all the variables that are compatible with that variable are highlighted.

Demonstration Overview. In this demonstration, we will use this interface to create
and manipulate medleys for exploratory tasks in scientific visualization scenarios. In
particular, we will demonstrate how to create workflow views and how to synchronize
their variables in a medley.

4 Case studies

We tested how medleys can be used in exploratory tasks in two different applications.

Integrating Chemical Informatics Web Services. The first application consisted of
integrating chemical informatics web services to locate information about a specific
compound and graphically visualize it. To perform this task, a user must invoke several
services provided by Chembiogrid [11]. The first workflow fetches the SMILES 1 code
of a molecule id. The second and third workflows fetch the 2D image and the 3D model
representing the SMILES code, respectively. As the user is not able to render the 3D
model in the format returned by the web service, another web service, sdfToPdb, is used
to convert the data to pdb format. Finally, a fourth workflow is used to render and dis-
play the molecule using a ball-and-stick model. Completing this task using a workflow
system that supports Web services, such as for example, Taverna, a user needs to as-
semble a workflow that combines these four workflows, carefully connecting outputs to
inputs. In contrast, by creating a medley with workflow views created for the four work-
flows described above, the user can synchronize and compose the workflows without
having to directly modify the structure of workflows.

Comparative Analysis of Isosurface Extraction Algorithms. One of our collabo-
rators needed to perform a comparative analysis of several algorithms for extracting
isosurfaces [12], involving the visualization of the meshes produced by the different
algorithms and the histograms that accumulate quality information on each mesh. Al-
though a workflow system would help him structure his experiment (e.g., by creating a
workflow for each algorithm that both renders the mesh and displays the histogram), it
would require him to modify the parameters on each workflow one by one, and repeat
this tedious process over and over until a good visualization is found. We created a med-
ley containing workflow views for each algorithm our collaborator wanted to evaluate.
He performed the comparative analysis using this medley, by changing parameters and

1 SMILES stands for Simplified Molecular Input Line Entry Specification and it is a linear
notation that uses alphanumeric characters to encode molecular structure.
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datasets and without having to manipulate the workflows directly. Although the use of a
workflow system would help on structuring the experiments, it would still require users
to modify the parameters on each workflow one by one, and repeat this tedious process
over and over until a good result is found.

5 Related Work

Workflows and workflow-based systems have emerged as an alternative to ad-hoc ap-
proaches to data exploration commonly used in the scientific community
[9,2,13,3,14,15,16]. Workflow systems provide languages with well-defined semantics
to specify computational processes which integrate existing applications according to a
set of rules [4,17,18,19]. Not only do they support the automation of repetitive tasks, but
they can also capture complex analysis processes at various levels of detail and system-
atically capture provenance information for the derived data products [20]. Workflow
systems, however, have been primarily designed for expert programmers and to auto-
mate repetitive processes. Our goal with the medley approach is to provide casual users
with intuitive interfaces to combine services on-the-fly and perform exploratory tasks
through workflows.

Social Web sites and web-based communities (e.g., Flickr [21], Facebook [22], Ya-
hoo! Pipes [1]), which facilitate collaboration and sharing between users, are becoming
increasingly popular. An important benefit of these sites is that they enable users to
leverage the wisdom of the crowds. In the (very) recent past, a new class of Web site
has emerged that enables users to upload and collectively analyze many types of data
(see e.g., [23,24]). These are part of a broad phenomenon that has been called “social
data analysis” [25]. Many Eyes [23] (developed at IBM research) is a site for sharing
and commenting on visualizations. Users can upload any data set and visualize the data
using a wide range of tools provided by Many Eyes (e.g., line graphs, stack graphs,
bar charts, block histograms, treemaps). This trend is expanding to the scientific do-
main where there is an increasing number of collaboratories. An example of a social
Web community in this domain is the new myExperiment site [26]. Their goal is to
enable “scientists to share, re-use and re-purpose their workflows and reduce time-to-
experiment, share expertise and avoid reinvention”. The medley infrastructure can be
integrated with these sites to provide a flexible mechanism for users to combine multiple
workflows and services from a large, shared pool. In such a scenario, medleys can also
serve as an unobtrusive mechanism for capturing semantics and domain-specific knowl-
edge. For example, when a user synchronizes components from different services, this
indicates that these components are related (and compatible). Such knowledge can be
re-used to help other users compose new applications.

Biton et al. [27] proposed the creation of views over workflows. Their views are
similar to our notion of workflow view. Their objective, however differs from ours in
that their goal is to deal with the overload of provenance derived from the workflow
runs, by controlling the granularity at which provenance is collected (or published)
through these views.
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6 Conclusion

Workflow medleys represent a new approach for manipulating ensembles of workflows.
Our framework combines a set of operations that are common in exploratory tasks
with an intuitive visual interface. We have studied our approach by examining ways it
could be applied to different application areas, and have seen that medleys help simplify
workflow-based exploratory tasks. We plan to conduct user studies to further evaluate
our approach with respect to usability and effectiveness.

Acknowledgments. This work is partially supported by the NSF (under grants IIS-
0513692, CCF-0401498, EIA-0323604, CNS-0514485, IIS-0534628, CNS-0528201,
OISE-0405402), the DOE, and an IBM Faculty Award. E. Santos is partially supported
by a CAPES/Fulbright fellowship.

References

1. Yahoo! Pipes, http://pipes.yahoo.com
2. The Taverna Project, http://taverna.sourceforge.net
3. The VisTrails Project, http://www.vistrails.org
4. Aalst, W., Hee, K.: Workflow Management: Models, Methods, and Systems. MIT Press,

Cambridge (2002)
5. Business process execution language for web services version 1.1 (February 2008),

http://www.ibm.com/developerworks/library/specification/
ws-bpel

6. Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E., Vo, H.T.: Managing
rapidly-evolving scientific workflows. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS,
vol. 4145, pp. 10–18. Springer, Heidelberg (2006)

7. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)
8. The matplotlib library, http://matplotlib.sourceforge.net
9. The Kepler Project, http://kepler-project.org

10. Lee, E.A., Parks, T.M.: Dataflow Process Networks. Proceedings of the IEEE 83(5), 773–801
(1995)

11. The Chembiogrid web site, http://www.chembiogrid.org
12. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit An Object-Oriented Ap-

proach To 3D Graphics. Kitware (2003)
13. Parker, S.G., Johnson, C.R.: SCIRun: a scientific programming environment for computa-

tional steering. In: Supercomputing (1995)
14. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,

Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a Framework for Map-
ping Complex Scientific Workflows onto Distributed Systems. Scientific Programming Jour-
nal 13(3), 219–237 (2005)

15. Microsoft Workflow Foundation,
http://msdn2.microsoft.com/en-us/netframework/aa663322.aspx

16. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing,
querying and automating data derivation. In: Statistical and Scientific Database Management
(SSDBM), pp. 37–46 (2002)

17. Lawrence, P. (ed.): Workflow Handbook. Workflow Management Coalition. John Wiley and
Sons, Chichester (1997)

http://pipes.yahoo.com
http://taverna.sourceforge.net
http://www.vistrails.org
http://www.ibm.com/developerworks/library/specification/ws-bpel
http://www.ibm.com/developerworks/library/specification/ws-bpel
http://matplotlib.sourceforge.net
http://kepler-project.org
http://www.chembiogrid.org
http://msdn2.microsoft.com/en-us/netframework/aa663322.aspx


Using Workflow Medleys to Streamline Exploratory Tasks 301

18. van der Aalst, W.: Business process management: A personal view. Business Process Man-
agement Journal 10(2), 135–139 (2004)

19. Mohan, C., Alonso, G., Günthör, R., Kamath, M.: Exotica: A research perspective of work-
flow management systems. IEEE Data Engineering Bulletin 18(1), 19–26 (1995)

20. Deelman, E., Gil, Y.: NSF Workshop on Challenges of Scientific Workflows. Technical re-
port, NSF (2006), http://vtcpc.isi.edu/wiki/index.php/Main_Page

21. Flickr, http://www.flickr.com
22. Facebook, http://www.facebook.com
23. Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: Many eyes: A site for visu-

alization at internet scale. IEEE Transactions on Visualization and Computer Graphics 13(6),
1121–1128 (2007)

24. Swivel, http://www.swivel.com
25. Social data analysis workshop (2008) , http://researchweb.watson.ibm.com/

visual/social_data_analysis_workshop
26. Myexperiment, http://www.myexperiment.org
27. Biton, O., Cohen-Boulakia, S., Davidson, S.B.: Zoom*userviews: querying relevant prove-

nance in workflow systems. In: VLDB 2007: Proceedings of the 33rd international confer-
ence on Very large data bases, VLDB Endowment, pp. 1366–1369 (2007)

http://vtcpc.isi.edu/wiki/index.php/Main_Page
http://www.flickr.com
http://www.facebook.com
http://www.swivel.com
http://researchweb.watson.ibm.com/visual/social_data_analysis_workshop
http://researchweb.watson.ibm.com/visual/social_data_analysis_workshop
http://www.myexperiment.org


M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 302–319, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Experiences on Processing Spatial Data with MapReduce* 

Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe 

Florida International University 
School of Computing and Information Sciences 

11200 SW 8th St, Miami, FL 33199 
{acary001,sunz,vagelis,rishen}@cis.fiu.edu 

Abstract. The amount of information in spatial databases is growing as more 
data is made available. Spatial databases mainly store two types of data: raster 
data (satellite/aerial digital images), and vector data (points, lines, polygons). 
The complexity and nature of spatial databases makes them ideal for applying 
parallel processing. MapReduce is an emerging massively parallel computing 
model, proposed by Google. In this work, we present our experiences in apply-
ing the MapReduce model to solve two important spatial problems: (a)  
bulk-construction of R-Trees and (b) aerial image quality computation, which 
involve vector and raster data, respectively. We present our results on the scal-
ability of MapReduce, and the effect of parallelism on the quality of the results. 
Our algorithms were executed on a Google&IBM cluster, which became avail-
able to us through an NSF-supported program. The cluster supports the Hadoop 
framework – an open source implementation of MapReduce. Our results con-
firm the excellent scalability of the MapReduce framework in processing paral-
lelizable problems. 

1   Introduction 

Geographic Information Systems (GIS) deal with complex and large amounts of spa-
tial data of mainly two categories: raster data (satellite/aerial digital images), and 
vector data (points, lines, polygons). This type of data is periodically generated via 
specialized sensors, satellites or aircraft-mounted cameras (sampling geographical 
regions into digital images), or GPS devices (generating geo-location information). 
GIS systems have to efficiently manage repositories of spatial data for various pur-
poses, such as spatial searches, and imagery processing. Due to the large size of spa-
tial repositories and the complexity of the applications to process them, traditional 
sequential computing models may take excessive time to complete. Emerging parallel 
computing models, such as MapReduce, provide a potential for scaling data process-
ing in spatial applications. 

The goal of this paper is to present to the research community our experiences 
from using the MapReduce model to tackle two typical and representative spatial data 
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processing problems. The first problem involves vector spatial data and the second 
involves raster data. 

The first problem is the bulk-construction of R-Trees [1], a popular indexing 
mechanism for spatial search query processing. We show how previous ideas, like the 
ordering of multi-dimensional objects via space-filling curves, can be used to create a 
MapReduce algorithm for this problem. We also discuss how our solution is different 
from previous approaches on parallelizing the construction of an R-Tree. 

The second problem processes aerial digital imagery, and computes and stores  
image quality characteristics as metadata. Original images may contain inaccurate, 
distorted, or incomplete data introduced at some phase of imagery generation; for 
example, a portion of an image may be completely blank. Pre-computed metadata is 
important in dynamic imagery consistency checking, and allows the appropriate mo-
saicing with better sources to improve the imagery display. This problem is naturally 
parallelizable since each tile can be potentially processed independently. In practice, 
the amount of data processed by each cluster processor depends on the file system 
characteristics like the minimum processing unit. 

Both problems were solved and evaluated on a Google&IBM cluster supplied by 
the NSF Cluster Exploratory (CluE) program [2][3]. We present our experiences on 
using such a cluster in practice and deploying MapReduce jobs. 

The key contribution of this work is as follow: 
• We present techniques for bulk building R-trees using the MapReduce 

framework. 
• We present how MapReduce can be applied to massively parallel processing 

of raster data. 
• We experimentally evaluated our algorithms in terms of execution time, 

scalability and quality of the output. We provide various metrics to measure 
the quality of the resulting R-Tree. 

This paper is organized as follows. Section 2 describes the steps in deploying 
MapReduce applications on the Google&IBM’s cluster, as well as some physical 
configurations. Sections 3 and 4 present the detailed MapReduce algorithms for our 
two target problems. Section 5 presents experimental results of our algorithm imple-
mentations for different settings. Section 6 discusses related works. Last, Section 7 
concludes our work. 

2   Using MapReduce in Practice 

The cluster used in this paper is provided by the Google and IBM Academic Cluster 
Computing Initiative [2][3]. The cluster contains around 480 computers (nodes) run-
ning open source software including the Linux operating system, XEN hypervisor and 
Apache's Hadoop [4], which is an open source implementation of the MapReduce 
programming model. Each node has half terabytes storage capacity summing up to 
about 240 Terabytes in total. Access to the cluster is provided through the Internet by 
a SOCKS proxy server. SOCKS is an Internet protocol that secures client-server 
communications over a non-secure network. 

There are three main steps in interacting with the cluster, as shown in Figure 1. (1) 
Input data is uploaded into the cluster. The user uses file system shell scripts provided  
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Fig. 1. Google, IBM Academic Cluster Overview 

by the Hadoop Distributed File System (HDFS), which is an integral part of the 
Apache Hadoop project; HDFS is a clone project of Google’s files system GFS [5]. 
(2) A user develops a Hadoop application and submits it to the cluster via Hadoop 
command. Hadoop applications are usually developed in Java, but other languages are 
supported, like C++ and Python. (3) After application execution is completed, the 
output is downloaded to the user’s local site with Hadoop file system shell scripts. 

MapReduce programming model requires expressing the solutions with two func-
tions: map and reduce. A map function takes a key/value pair, executes some compu-
tation, and emits a set of intermediate key/value pairs as output. A reduce function 
merges all intermediate values associated with the same intermediate key, executes 
some computation on them, and emits the final output. More complex interactions can 
be achieved by pipelining several MapReduce compounds in a workflow fashion. A 
data set is stored as a set of files in HDFS, which are in turn stored as a sequence of 
blocks (typically of 64MB in size) that are replicated on multiple nodes to provide 
fault-tolerance. An interested reader may refer to MapReduce Google’s work [6] and 
open source Hadoop documentation [4] for a detailed description of MapReduce and 
Hadoop concepts. 

3   Building R-Tree with MapReduce 

This section discusses a MapReduce-based algorithm for building an R-Tree index 
structure [1] on a spatial data set in parallel fashion. Let us start our description by 
defining the problem. Let D be a spatial data set composed of objects oi, i=1, .., |D|. 
Each object o has two attributes <o.id, o.P>, where o.id is the object’s unique identi-
fier and o.P is the object’s location in some spatial domain; other attributes are possi-
ble, but we concentrate on these only for our R-Tree construction purpose. The R-
Tree minimum bounding rectangles (MBRs) are created based on the objects’ spatial 
attribute o.P. Identifiers o.id are used as references to objects stored in the R-Tree 
leaves. 
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Fig. 2. Phases involved in building an R-Tree index for a data set D in MapReduce 

The proposed method consists of three phases executed in sequence, as can be seen 
in Figure 2. First, the spatial objects are partitioned into groups. Then, each group is 
processed to create a small R-Tree. Finally, the small R-Trees are merged into the 
final R-Tree. The first two phases are executed in MapReduce, while the last phase 
does not require high computational power, thus it is executed sequentially outside of 
the cluster. 

The three main phases of the algorithm are: 
 

1 Computation of partitioning function f. The inputs for this phase are the data set D 
and a positive number R, which represents the number of partitions. The purpose of 
f is to assign any object of D into one of the R possible partitions. The function is 
computed in such a way that applying f on D yields R (ideally) equally-sized parti-
tions. In practice, minimal variance in sizes is acceptable. At the same time, f at-
tempts to put objects that are close in the spatial domain in the same partition. The 
output of this phase is a function f which takes as input an object location o.P and 
outputs a partition number. Note that no actual partitioning or data moving happens 
at this point. The next phase utilizes f for such purpose. More details of this step 
are presented in Section 3.1. 
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2 R-Tree construction. During this phase, the function f calculated in the first phase 
is used by Mappers to divide D into R partitions. Then, R Reducers build R  
independent “small” R-Tree indices simultaneously on their input partitions. The 
output of this phase is a set of R independent R-Trees. Details of this step are pre-
sented in Section 3.2. 

 

3 R-Tree consolidation. This phase combines the R individual R-Trees, built in the 
second phase, under a single root node to form the final R-Tree index of D. This 
phase can be as simple as making the R R-Trees children of a single root node, or it 
may require adding a few extra levels (at most one in practice) if R exceeds the  
capacity of a single node. Since this phase is not computationally intensive for R 
under a few hundreds or thousands, it is executed by a single process outside the 
cluster. The logic to run this phase is fairly simple, so no further elaboration will be 
done on this step. 

3.1   Partitioning Function 

The purpose of the partitioning function f is to provide a means for assigning objects 
of D to a pre-defined number of R partitions. We use the idea of mapping multi-
dimensional spaces into an ordered sequence of single-dimensional values via space-
filling curves for this purpose. This idea has been studied in the literature as a way to 
numbering objects in multi-dimensional spaces [7, 8]. In our present problem, we map 
objects’ location attribute o.P into such curves. We use the Z-order curve [9] in our 
experiments in Section 5.1. The partition number of an object o is determined by 
f(o.P), which evaluates to a value from the set {1, 2, .., R}. By using a space-filling 
curve, the partitioning function f achieves two goals: 

• Generate R (almost) uniformly-sized partitions, and 
• Preserve spatial locality. If two distinct objects o1 and o2 are close to each other 

in the spatial domain, then they are likely to be assigned to the same partition, 
i.e. f(o1.P) = f(o2.P). 

Next, we propose a MapReduce algorithm to define f. 

MapReduce Algorithm 
The general idea is inspired by the TeraSort Hadoop application [10], which partitions 
an input data set via data sampling. Given a data set D and target number of partitions 
R, the MapReduce algorithm runs M Mappers that collectively take L sample objects 

from D (that is, each Mapper samples   objects) and emit their single-dimensional 
values S={U(oi.P), i=1, .., L} given a space filling curve U. Then, a single Reducer 
sorts S, and determines a list S´ of R-1 splitting points that split the ordered sequence 
of samples into R equal-sized partitions. Then, in general, an object o belongs to parti-
tion j if S´[j-1] < U(o.P) ≤ S´[j]. Thus, f utilizes the splitting points in S´ to assign 
objects to partitions. 

The specific MapReduce key/value input pairs as well as outputs are presented in 
Table 1. Mappers read in total L samples at random offsets of their input D, and com-
pute their single dimensional value with the space-filling curve U. The intermmediate 
key equals to C which is a constant, whose value is irrelevant, that helps in sending 
Mappers’ outputs to a single Reducer. The Reducer receives the L single-dimensional 
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values generated by Mappers, and sorts them into an auxiliary list u1, ..,uL, from 

which R-1 elements are taken starting at the -th element and subsequently at fixed-

length offsets  to form a list S´ of splitting points. 

Table 1. Map and Reduce inputs/outputs in computing partitioning function f 

Function Input: (Key, Value) Output: (Key, Value) 
Map (o.id, o.P) (C, U(o.P)) 

Reduce (C, list(ui, i=1, .., L)) S´ 

 
An important observation in the sampling process is that Mappers read input data 

from the distributed storage at block-sized amounts, which is a Hadoop distributed 
file system parameter specifically tuned for load balancing large files across storage 
nodes. Thus, all Mappers, except perhaps for the last one, will read the same amount 
of data, equal to the file system’s block size. 

The rationale of the splitting points in S´ is that they provide good enough bounda-
ries to sub-divide D into R partitions since they come from randomly sampled objects. 
Experiments in section 5.1 show very low standard deviation (under 1%) on the num-
ber of objects per partition. Formally, the function f is defined as follows: 

. 1, . ´ 1, ´ 1 . ´ , 2, … , 1, .   ´ 1
 

(1) 

This computation is characterized by running multiple Mappers (samplig data) and 
one Reducer (sorting samples), which may become a limiting factor in scalability. If 
the size of S becomes sufficiently large, then the TeraSort [10] approach can be used 
to sort its items in parallel, which makes the algorithm more scalable. 

3.2   R-Tree Construction 

In this phase, R individual R-Tree indices are built concurrently. Mappers partition 
the input data set D into R groups using the partitioning function f. Then, every parti-
tion is passed to a different Reducer, which independently builds an R-Tree on its 
input. Next, every Reducer outputs a root node of their constructed R-Trees, so R sub-
trees are written to the file system at the end of this phase. 

Input and output key/value pairs are shown in Table 2. Mappers read their input 
data in its entirety and compute objects assigned partitions via f(o.P). Then, every 
Reducer receives a number of input objects A for which an R-Tree is built and its root 
emitted as output. Since f balances partitions, it is expected that all Reducers will 

receive a similar number of objects (  ~ | |
), thus executing similar amount of work in 

constructing their R-Trees. However, good balancing depends on the underlying 
space-filling curve U used by f, and the number of sampled objects L. More samples 
help in tuning the splitting points, but incur in larger sorting time of L elements. 
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Table 2. MapReduce functions in constructing R-Trees 

Function Input: (Key, Value) Output: (Key, Value) 
Map (o.id, o.P) (f(o.P), o) 

Reduce (f(o.P), list(oi, i=1, .., A)) tree.root 

 
Another concern is the quality of the produced R-Trees in relation to the parameter 

R. In Section 5.1, we provide some initial insight into this direction by measuring R-
Tree parameters such as area and overlap in a simplified way, and plotting their MBRs 
for visual analysis. 

4   Tile Quality Computation Using MapReduce 

This section discusses a MapReduce algorithm to compute the quality information of 
aerial/satellite imagery. Such information is useful for fast identification of defective 
image portions, e.g. blank regions inside a tile or a group of tiles, and subsequent 
dynamic image patching using better imagery available at rendering time. For a given 
tile, we define a pixel as “bad” if all the values of its samples are below or above 
some predefined value. 

 

Fig. 3. Tile quality computation algorithm overview 

Image tiles are stored in customized DOQQ files [11], augmented with a descrip-
tive header. Let d be a DOQQ file and t be a tile inside d, d.name is d’s file name and 
t.q is the quality information of tile t. More details of our data set are presented in 
Section 5.2. Figure 3 depicts the execution overview of our MapReduce algorithm. 
The algorithm runs on a tile by tile basis within the boundaries of a given DOQQ file, 
computing a bitmap per tile where a tile pixel is associated to a bit that is set to 1 if 
the pixel is deemed “bad”, and 0 otherwise. 

MapReduce Algorithm 
Each DOQQ file is first partitioned into several splits, each of which is then processed 
by a separate Mapper. Splits are carefully generated by parsing tiles out of the input 
file until the size of all the tiles is close (little smaller) to the block size of the underly-
ing distributed file system or end of file is reached. In doing so, tile boundaries are 
preserved between different splits. Then, each Mapper will have to read at most two 
blocks of a file. This helps reduce data transfer time between nodes because different 
blocks of a file are usually stored on separate nodes. Tiles (values) inside one split are 
identified by d.name and t.id (keys) and combined as key/value input for Mappers. 
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Table 3. Input and output of map and reduce functions 

Function Input: (Key, Value) Output: (Key, Value) 
Map (d.name+t.id, t) (d.name, t.q) 

Reduce (d.name, list( .q)) Quality-bitmap of d 

 
The input and output key/value pairs for Mappers and Reducers are described in 

Table 3. The Mapper decompresses the JPEG tile t, iterates through each pixel of t to 
obtain quality information t.q (a bitmap, one bit per pixel) and compresses it using 
Run-length encoding (RLE) algorithm. After that, it emits the intermediate key/value 
pair with d.name as the key and t.q as the value. The Reducer merges all the t.q bit-
maps that belongs to a file d and writes them to an output file, containing image qual-
ity for d, as shown in Figure 3. 

5   Experiments 

This section presents and discusses the experimental results we obtained by running 
the algorithms described in Sections 3 and 4 as Hadoop applications on the 
Google&IBM cluster presented in Section 2. All the data sets used in this section are 
real spatial data sets supplied by the High Performance Database Research Center at 
Florida International University [12]. At the time of experimentation, there were jobs 
running in the cluster from other researchers that share this resource, thus some fluc-
tuation in the results is expected. 

5.1   R-Tree Construction 

Data sets and Setup 
Experiments are executed on two real spatial data sets. Data set descriptions are 
shown in Table 4. The points in the data sets are angular coordinates in (latitude, 
longitude) format. In the following experiments, we use the Z-order space-filling 
curve [9] as U function to map the two-dimensional points into a single dimension. 
We used 3% of each data set as sampling size L (see first phase of the algorithm in 
Section 3). Data sets are in tabular structured format (CSV), where each line repre-
sents an object. We used Hadoop supplied functions to read objects (text lines) from 
the data sets. During the second phase, Reducers build their individual R-Trees in-
memory (to avoid high disk latencies in maintaining the tree along object insertions), 
then the trees are peristed on Hadoop distributed file system. 

Time Performance 
This experiment consists of building R-Tree indices on the Google&IBM cluster 
changing the parameter R in phase-2, that is, the number of concurrently-built R-
Trees, from 2 up to 64. As R varies, job completion times are measured for Mappers 
and Reducers as well as quality statistics on the resulting R-Trees. As a reference, we 
also ran a single-process R-Tree construction on a dedicated local machine with Intel 
Xeon E7340 2.4GHz processor and 8GB of RAM running Windows OS; we could 
not run the single process in the cluster since we do not have login access to  
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Table 4. Spatial data sets used in experiments 

Data 
set 

Objects 
(millions) 

Data size 
(GB) 

Description 

FLD 11.4 5 Points of properties in the state of Florida. 

YPD 37 5.3 
Yellow pages directory of points of businesses mostly 
in the United States but also in other countries. 

Table 5. MapReduce job completion times (in minutes) for the Phase 1 (MR1), and various 
Reducers (R) in Phase 2 (MR2) of building an R-Tree. Also, completion times for single-
process (SP) constructions ran on a local machine are shown. 

    
MR1: Partitioning 

Function 
MR2: R-Tree 
Construction   

Data 
set R Map Reduce Map Reduce 

Total 
MR1+MR2 

FLD 2 0.35 0.28 0.40 24.12 25.15 
  4 0.28 0.23 0.40 11.07 11.98 
  8 0.47 0.22 1.73 5.62 8.03 
  16 0.30 0.22 0.40 3.05 3.97 
  32 0.48 0.23 0.40 1.95 3.07 
  64 0.28 0.33 0.45 1.60 2.67 
 SP - - - - 27.34 

YPD 4 0.47 0.38 0.47 52.57 53.88 
  8 0.22 0.45 0.72 25.42 26.80 
  16 0.40 0.43 0.38 8.93 10.15 
  32 0.40 0.43 0.42 4.65 5.90 
  64 0.40 0.42 0.88 2.55 4.25 
  SP - - - - 63.98 

 
individual nodes. Thus, cluster and single process times are not comparable due to 
dissimilar hardware. 

Table 5 shows MapReduce job completion times for R-Tree construction phases 1 
and 2 on both spatial data sets as well as for a single-process build (SP); for YPD we 
start at R=4 due to memory limitations in cluster nodes for building in-memory trees 
with less number of Reducers. We do not include phase-3 processing times since it is 
of little significance compared to the other phases. Phase-1 (partitioning function 
computation) takes very little time, which is expected since sorting L=3% of objects 
from a data set can be quickly done in memory by the single reducer in this phase; for 
our largest data set YPD, about 1 million elements are sampled. Our Z-order values 
are 8-byte sized elements, so around 8MB of RAM is needed to execute the sort, 
which is much less than the memory of each cluster node. Likewise, Mappers in 
phase-2 read data sequentially and execute inexpensive Z-order value computations 
on their inputs. 
 

 
 



 Experiences on Processing Spatial Data with MapReduce 311 

(a) FLD data set    (b) YPD data set 
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Fig. 4. MapReduce job completion times for various number of reducers in phase-2 (MR2) 

The most computationally intensive part is performed by Reducers in phase-2, 
where the actual R-Tree constrution occurs. The fewer the number of Reducers, the 
longer the R-Tree construction takes, since each task receives larger number of objects. 
Figure 4 shows job completion times as stacked bars of the map and reduce execution 
times. In this figure, almost linear scalability is observed as more parallelism is 
induced by increasing R in phase-2. As expected, the improvement rate is high for few 
Reducers but drops as the number of Reducers increases since partitioning overheads 
in phase-1 (MR1) start becoming significant compared to R-Tree build time in phase-2 
(MR2). In fact, for larger values of R, the dominating time component is given by MR1 
which, as can be seen in Table 5, is almost constant for a given data set. Thus, much 
less improvements are expected as R is increased beyond 64. 

Although we cannot compare our MapReduce and single process (SP) times due to 
mismatch in hardware, the MapReduce parallelization certainly yields performance 
benefits for large-scale data sets. For example, it takes more than an hour to 
sequentially build the YPD R-Tree, while in parallel the task can be achieved in less 
than 5 minutes with 64 Reducers. However, the resulting R-Trees are different due to 
differences in object insertion sequences. Later in this section we measure and discuss 
R-Tree quality parameters for both cases. 

Figure 5 presents percentages of performance gains in job completion times in 
relation to subsequent increases in the number of Reducers in the second phase of the 
algorithm. For example, in the YPD dataset, going from 4 to 8 Reducers we observe 
50% decrease in job completion time, which represents linear scalability. On the other 
hand, going from 8 to 16 Reducers shows super-linear gains (62%). We pressume this 
may be due to heterogeneous nodes in the cluster (eventually the job with R=16 was 
executed on faster nodes), or it may be the cluster resources were idler during that 
period. As discussed, as we increase the number of Reducers, performance gains are 
less significant because the execution time for the first phase, which has a sequential 
component (Reduce), stays almost constant. 
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(a) FLD data set    (b) YPD data set 
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Fig. 5. MapReduce job percentage of performance gains as the number of reducers is increased 

Quality of Generated R-Trees 
We use equations (2) and (3) below to compute the area and overlap metrics 
respectively for a given consolidated R-Tree with root T: 
 

 .
 

(2) 

 .  .  
 

(3) 

where n is the number of children (small R-Trees generated by Reducers) of T, and Ti 
is the i-th child node of T. Note that other metrics of R-Tree quality could be 
considered as well, e.g., consider all the nodes of the R-Tree instead of just the top 
level.  Minimal area and overlap are known to improve search performance [13] since 
they increase path pruning abilities of R-Tree navigation algorithms. 

Table 6 shows quality metrics on the consolidated R-Trees built for various 
number of Reducers and single process (SP); for reference, the U.S. Census Bureau 
reports Florida state land area roughly as 54,000 square miles as of 2000 [14]. As 
expected, we see the total MBR area and the overlap increase as the parallelism (R) 
increases because the construction of each small R-Tree is unaware of the rest of 
the data set, lowering the chance of co-locating neighbor objects within the same R-
tree. This means that we degrade the R-Tree quality without gaining in execution 
time. The latter can adversely effect performance of search algorithms, such as 
nearest neighbor type of queries, due to extra I/Os incurred in traversing multiple 
sub-trees. 
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Table 6. Statistics on consolidated R-Trees built by various number of Reducers (R), and single 
process (SP) construction 

  Objects per Reducer Consolidated R-Tree 

Data 
set R Average Stdev Nodes Height Area (sq.mi) Overlap (sq.mi) 

FLD 2 5,690,419 12,183 172,776 4 132,333.9 304.4 
  4 2,845,210 6,347 172,624 4 106,230.4 4,307.9 
  8 1,422,605 2,235 173,141 4 103,885.8 17,261.9 
  16 711,379 2,533 162,518 4 96,443.1 21,586.3 
  32 355,651 2,379 173,273 3 140,028.7 80,389.1 
  64 177,826 1,816 173,445 3 152,664.2 96,857.7 
 SP 11,382,185 0 172,681 4 746,145.0 1,344,836.8 

YPD 4 9,257,188 22,137 568,854 4 26,510,946.3 21,574,857.8 
  8 4,628,594 9,413 568,716 4 23,160,080.0 20,480,729.6 
  16 2,314,297 7,634 568,232 4 67,260,270.0 54,582,299.8 
  32 1,157,149 6,043 567,550 4 68,626,854.9 54,008,538.5 
  64 578,574 2,982 566,199 4 69,791,363.8 55,064,139.4 
 SP 37,034,126 0 587,353 5 164,966,688.5 658,583,322.6 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Fig. 6. MBR plotting for FLD data set on an R-Tree built by a single process 

 
For a sequential construction (SP), we observe these metrics are much worse, 

especially the overlap factor, since objects are not spatially shuffled but rather 
inserted in the data set original sequence. Thus, higher performance penalties are 
expected in SP constructed R-Trees. On the other hand, the tree height slightly 
decreases for FLD for R beyond 32 because more small trees means that each one of 
them may be shorter, while for YPD the height increases by one level for the SP case. 
In general, small variations in tree height is less significant from a performance 
standpoint. 
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Fig. 7. MBR plotting for FLD data set for R-Tree built by MapReduce with R=4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. MBR plotting for FLD data set for R-Tree built by MapReduce with R=8 

To visually study the effect of increasing R over the MBR distribution, we have 
plotted the MBRs of the resulting R-Trees for the case of 4 and 8 Reducers in Figures 
7  and 8 respectively for the Florida state data set (FLD). Also the same type of graph 
is shown in Figure 6 for the SP R-Tree. In neither case is the root MBR plotted since 
it is common for all trees. 
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A few observations can be made from the MBR plottings. First, the partitioning 
mechanism employed in our algorithms seems to be effective in preserving spatial 
locality. This results in individual Reducers indexing highly localized objects; their 
boundaries, however, result in multiple overlappings, which are inevitable. Second, as 
the number of Reducers is increased from 4 to 8, the plotting shape resembles more 
the actual shape of the Florida state; that is, R=8 reduces wasted areas (where no ac-
tual objects are located) as the Area statistic confirms in Table 6. In fact, Table 6 
shows steady decrease in area from 2 to 16 Reducers; after that the area keeps on 
increasing. Third, when the R-Tree is built on the original sequence of objects (no 
object shuffling) in SP mode, large wasted areas are generated as can be observed in 
Figure 6. From a performance optimization perspective, MapReduce generated R-
Trees seem to be better tuned than their single-process counterpart. Therefore, we see 
promising performance improvements in MapReduce generated R-Trees, which de-
serve closer verification. 

5.2   Tile Quality 

Data set and Setup 
The data set used in the experiments is a 3-inch resolution aerial imagery of Miami 
Dade County of Florida. The size of the data set is about 52GB after compression. 
Imagery data is stored as compressed DOQQ file format. There are 482 compressed 
DOQQ files, each of which contains 4096 tiles. Each tile is 400 by 400 pixels and has 
3 bytes for each pixel as the Red, Green and Blue channel. The size for each tile is 
480,000 bytes uncompressed and compressed tile is about 50 KB each. 

Experiments 
Two experiments are carried out for this data set. The first experiment uses a subset of 
the data set that is a re-sampled version of the original one. It is about 20GB and has 
482 files with 1024 tiles each. The size of the files ranges from several megabytes to 
around 80 megabytes, and the number of Reducers is varied from 4 to 512. The sec-
ond experiment uses different sized subsets of the original data set. The size of the 
files ranges from 2GB to 16GB, and the number of Reducers is fixed at 256. 

In the first experiment, the number of Mappers is also fixed, determined by the 
data set size. Thus, the execution time of the map phase is similar through different 
runs, as can be seen in Figure 9 (a). The execution time slightly fluctuates because 
there were other concurrent jobs running in the cluster at the same time. As the num-
ber of Reducers increases, the execution time of the reduce phase largely decreases 
for smaller number of reducers, and less improvements are obtained for larger number 
of reducers. This is because the same amount of work is now shared by more Reduc-
ers. When the number of Reducers is larger than 64, the execution time of the reduce 
phase stabilizes to around 2.5 minutes. This could be explained by the launching time 
of Reducers dominating the whole time at this point. With 64 Reducers, each of them 
will be writing around 482/64 ≈ 8 files. The time taken to write 8, 4 (128 Reducers) or 
even less files is negligible compared with the launching time of that many Reducers. 

In the second experiment, Figure 9 (b), as the size of the data set increases with 
constant number of reducers (256), the execution time of the map phase hardly 
changes, which is consistent with the data parallelization provided by the MapReduce  
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(a) Fixed data size, variable Reducers        (b) Variable data size, fixed Reducers  
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Fig. 9. MapReduce job completion time for tile quality computation 

model, that is, more Mappers are engaged in processing the data. The execution time 
of the reduce phase increases because there are now more files to be written with the 
same number of Reducers. 

6   Related Work 

Space-filling Curves 
The idea of using space-filling curves to map multi-dimensional spaces into a single 
dimension has been studied for the case of spatial databases [15, 8]; popular space-
filling curves, such as Peano and Hilbert, have been studied in great level of detail. 
We used the Z-order curve in our experiments. This curve showed high spatial local-
ity preservation for our experimented real data sets. Other curves can certainly be 
evaluated, which goes beyond our focus on the parallelization of two concrete spatial 
problems with MapReduce. 

Parallel R-Tree Constructions 
Previous works on R-Tree parallel construction have faced several intrinsic  
distributed computing problems such as data load balancing, process scheduling, fault 
tolerance, etc., for which they elaborated special-purpose algorithms. Schnitzer and 
Leutenegger [16] propose a Master-Client R-Tree, where the data set is first parti-
tioned using Hilbert packing sort algorithm, then the partitions are declustered into a 
number of processors (via an specialized declustering algorithm), where individual 
trees are built. At the end, a master process combines the individual trees into the final 
R-Tree. Another work by Papadopoulos and Manolopoulos [17] proposed a method-
ology for sampling-based space partitionining, load balancing, and partition assign-
ment into a set of processors in parallely building R-Trees. They also discuss some 
alternatives when the global (consolidated) index has imperfections such as different 
heights across individual R-Trees. 
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In MapReduce, these parallel computing concerns are abstracted out from the ap-
plication logic, and managed transparently as part of the MapReduce framework. 
Further, all nodes in the cluster access a common distributed file system, with auto-
matic fault-tolerance and load balancing support, where data locality is employed as 
base criterion to assign Mappers and Reducers (preferably) to nodes already contain-
ing the input data. In contrast, traditional parallel processing works assume every 
node has its own storage, in a shared-nothing type of architecture, where data transfer 
among nodes becomes an important optimization goal. 

MapReduce on Spatial Data 
MapReduce framework was used to solve another spatial data problem by Google 
[18], where they study the problem of road alignment by combining satellite and 
vector data. This work concentrates on the complexities of the problem, which are 
more challenging than the MapReduce algorithms. 

Schlosser et al. [19] worked on building octrees in Hadoop for later use in earth-
quake simulations at large-scale. Their approach builds a tree in a bottom up fashion. 
The map function in the first iteration generates leaf nodes, then the reduce function 
coalesces homogeneous leaf nodes into a subtree. Subsequent iterations have identity 
functions in mappers, and successively use reduce functions to construct the final tree. 

Relationship to MPI 
Message Passing Interface (MPI) [20] is a specification of a language-independent 
communication model targeted at writing parallel programs, and it is widely used in a 
variety of computer cluster platforms. MPI libraries provide primitives and 
functionality for communication control among a set of processes. Typically, 
developers need to add explicit calls to synchronize processes and move data around. 
The key differences between MPI and MapReduce is that MapReduce exploits its 
simplified model to automatically parallelize tasks (Mappers and Reducers), hiding 
from programmers the need to worry about process communication, fault-tolerance, 
and scalability, which are transparently managed by key components, such as cluster 
management system and distributed file system, that the MapReduce framework is 
built-upon [6]. For example, for the R-Tree case study, the Java implementation of the 
Map and Reduce functions of the first phase, and Map of the second phase have each 
less than 40 lines of code. The Reduce function in the second phase has about 70 lines 
of code since it includes extra code for persisting the tree on the distributed file 
system and collecting build statistics. These numbers do not include application-
specific routines, which are needed regardless of the parallel model. 

In MapReduce, the underlying assumption is that the solution can be expressed in 
terms of the Map and Reduce functions working on key/value pairs. In some cases 
this may not be natural, such as relational joins or multi-stage processes, and can lead 
to inefficiencies. Then, MPI-like parallel implementations have more opportunities to 
address application-specific optimizations, due to its finer process control. However, 
high-level languages have been proposed to address this problem in MapReduce 
architectures by providing efficient primitives for massive data analysis combining 
SQL-like declarative style and MapReduce procedural programming [21][22]. 
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7   Conclusions 

In this paper, we used the MapReduce programming model to solve two important 
spatial problems on a Google&IBM cluster: (a) bulk-construction of R-Trees and (b) 
aerial image quality computation, which involve vector and raster data, respectively. 
The experimental results we obtained indicate that the appropriate application of 
MapReduce could dramatically improve task completion times. Our experiments 
show close to linear scalability. However, performance is not the only concern for R-
Tree construction, which is sensitive to the ordering of objects in its input, but also the 
quality of the result. MapReduce generated R-Trees have improved quality in terms of 
MBR area and overlap measurements compared to the single-process construction 
counterpart. No such quality problem arises in the aerial image quality computation. 
Our experience in this work shows MapReduce has the potential to be applicable to 
more complex spatial problems. 
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Abstract. Scientific experiments produce large volumes of data represented as 
complex objects that describe independent events such as particle collisions. 
Scientific analyses can be expressed as queries selecting objects that satisfy 
complex local conditions over properties of each object. The conditions include 
joins, aggregate functions, and numerical computations. Traditional query proc-
essing where data is loaded into a database does not perform well, since it takes 
time and space to load and index data. Therefore, we developed SQISLE to ef-
ficiently process in one pass large queries selecting complex objects from 
sources. Our contributions include runtime query optimization strategies, which 
during query execution collect runtime query statistics, reoptimize the query us-
ing collected statistics, and dynamically switch optimization strategies. Fur-
thermore, performance is improved by query rewrites, temporary view materi-
alizations, and compile time evaluation of query fragments. We demonstrate 
that queries in SQISLE perform close to hard-coded C++ implementations of 
the same analyses. 

1   Introduction 

Large volumes of data produced and shared within scientific communities are ana-
lyzed by many researchers to test scientific hypotheses. For example, in High Energy 
Physics (HEP) a lot of data is generated by simulation software from the Large Had-
ron Collider (LHC) experiment ATLAS [4]. The data is stored in files and describes 
effects from collisions of particles. 

This paper investigates the use of query processing techniques to implement such 
scientific applications. Data is represented as complex objects describing measure-
ments of independent real-world events. The analyses are selections of events apply-
ing conjunctions of complex numerical filters on each complex object.  

In ATLAS, a collision event generates measurements of new particles summarized 
as a complex object. Generated objects are stored in files, which are read by the data 
management library ROOT [7]. Since every collision is performed independently 
from others, each complex object describing an event is analyzed separately and there 
are no joins between data from different events. Therefore each ROOT file can be 
processed in one pass per query as a stream of objects describing collision events. 
Physicists test their hypotheses on these data by selecting interesting events. An ex-
ample of a scientifically interesting event is a collision event which is likely to  
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produce Higgs bosons [5,11]. A collision event is interesting if it satisfies some condi-
tions, called cuts, specified over the object describing the event. The cuts are complex 
conditions over properties of each object involving joins, aggregate functions, and 
numerical computations.  

Currently physicists test their hypotheses using regular programming languages, 
e.g., C++. The analysis programs retrieve descriptions of events from files through 
specific data management libraries, e.g. ROOT. However, it takes lots of efforts for 
physicists to code their analyses as C++ programs. Furthermore, good knowledge of 
programming methodologies is necessary for writing extensible and understandable 
programs for complex analyses. 

We present a database approach to test scientific hypotheses as declarative con-
junctive queries. We found that while such queries can be handled using traditional 
query processing techniques, performance is very poor due to slow data load and 
index times, space overhead of indexed data, and poor cost estimates for large queries 
with many aggregates and user-defined numerical functions.  On the other hand, such 
queries can be processed very quickly using hand-coded C++ programs, but each 
program typically takes a scientist weeks to create.  To improve performance while 
retaining ease of query specification, we created SQISLE (Scientific Queries over 
Independent Streamed Large Events), a query processing system that takes advantage 
of the special data and query characteristics of our target domain (high-energy phys-
ics) while also meeting its unique challenges.  SQISLE employs a one-pass streaming 
approach to process queries where data stays in their sources, e.g. ROOT files, and is 
streamed through the system. SQISLE provides facilities for complex queries over 
streams of objects with complex structure, as required for our kind of scientific appli-
cations. The system reads complex objects from sources, e.g. description of collision 
events from ROOT files, through a wrapper interface and processes the objects one-
by-one as they are streamed. The objects are thus analyzed in one pass by reading 
data sequentially without populating a database. This streaming approach requires 
limited memory and is shown to be efficient compared to the traditional loading ap-
proach where data is loaded into a database and indexed before being queried. 

Instead of relying on static query optimization, SQISLE collects query statistics at 
runtime, uses them to reoptimize the query, and dynamically switches optimization 
strategies. SQISLE's performance is further improved by query rewrites, temporary 
view materializations, and compile time evaluation of query fragments. We show that 
queries in SQISLE perform close to or better than equivalent C++ implementations 
hand-coded by scientists. 
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Fig. 1. Architecture of SQISLE with data flow 
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SQISLE extends Amos II [24]. The architecture of SQISLE is illustrated by Fig. 1, 
where the arrows show the data flow during query execution. A scientist specifies an 
analysis as a query over a stream of complex objects from data sources processed by 
SQISLE through a wrapper interface. The scientists write their analysis queries in 
terms of a high level application schema (App. schema) that defines the structure of 
the streamed complex objects. The source database (Source DB) contains meta-data 
about stream sources. It is accessed in queries to locate sources containing data for the 
analyses and their meta-data. The wrapper interface is defined in terms of an applica-
tion data management library (App. Library), e.g., ROOT. 

To obtain efficient execution plans for complex queries over streams of complex 
objects, SQISLE uses runtime query optimization strategies implemented by a profile-
controller operator. It encapsulates in each query the fragment that tests complex 
conditions (hypotheses) over properties of the streamed complex objects. During 
runtime it controls collecting statistics for the fragment, reoptimizes the fragment 
based on collected statistics, and dynamically switches optimization strategies. The 
cost-based query optimization utilizes a cost model for aggregate functions over 
nested subqueries from [9]. To alleviate estimation errors in large queries the frag-
ments are decomposed into conjunctions of subqueries over which runtime statistics 
are measured [9]. 

Data from controlled scientific experiments produced with the same experimental 
run conditions usually have similar statistical properties. Therefore, we assume that 
stream data statistics are similar. For example, in the ATLAS application properties of 
events have the same distribution for events generated in the same experiment. Once a 
fragment is reoptimized based on sufficient sampled data from the beginning of the 
queried stream, the query execution is immediately continued using the reoptimized 
query execution plan for the rest of the stream without profiling overhead. 

The query processing is further improved by query rewrites, use of materialized 
views, and compile time evaluation. Query rewrite rules reduce the number of predi-
cates in queries. Views are materialized once per read complex object and the materi-
alized results are accessed while processing the same object and then discarded. 
Compile time evaluation [15,23] executes some predicates of a query at compile time 
before query execution and replaces predicates with execution results. 

By evaluating the performance of SQISLE for ATLAS queries over ROOT files 
with different selectivities, we show that the SQISLE query processing techniques 
improve performance of queries substantially. The query performance is compared 
with the performance of a manually coded C++ program provided by the physicists 
doing the same analysis. The SQISLE implementation is shown to have performance 
close to or better than the hard-coded C++ implementation. Ideally a C++ program 
should perform better than declarative programs interpreted by a DBMS, but in prac-
tice writing an efficient C++ programs requires substantial effort, which has to be 
repeated for new queries or for data from new experiments. Using a declarative query 
language for testing scientific hypotheses is thus much more efficient for research 
productivity than expressing the tests as more complex C++ programs.  

In summary, the contributions are: 

• One-pass query processing algorithms are shown to provide efficient implementa-
tions of declarative queries testing our kind of scientific hypotheses. 
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• Runtime query optimization of streaming queries by the profile-controller operator 
allows measuring real query behavior and dynamically switching execution strate-
gies. The runtime strategies are shown superior to a static cost-based approach. 

• With the proposed runtime optimization strategies, the streaming approach is 
shown to be more efficient than the loading approach for the targeted kind of que-
ries with performance close to a hard-coded C++ program. 
The rest of the paper is organized as follows. Section 2 presents how an ATLAS 

analysis is specified as a query. The SQISLE query processing techniques are pre-
sented in Section 3. The query performance is evaluated in Section 4. Section 5 pre-
sents related work. The paper is concluded in Section 6. 

2   The ATLAS Application Queries 

To evaluate the query processing techniques implemented in SQISLE an ATLAS 
application is defined as SQISLE queries. For example, the hypothesis from [5], 
which searches for events producing Higgs bosons, is specified as this query: 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

select e 
from Event e, EventFile f 
where  name(experiment(f)) = “bkg2” and
 fileid(f) < 15 and 
 e in events(filename(f)) and  
 hadrtopcut(e) and jetvetocut(e) and
 misseecuts(e) and zvetocut(e) and
 threeleptoncut(e) and leptoncuts(e); 

(1) 

The query selects objects of type Event satisfying six cuts constituting the hypothe-
sis from [5] called the Six Cuts Analysis. On lines 3-5 the query specifies the sources 
to query by selecting the files produced by the experiment named bkg2. The source 
database is searched in lines 3-4, while the function events calls a ROOT wrapper 
interface function to read objects from the selected ROOT files. The rest of the query 
specifies the Six Cuts Analysis. 

Wrapper interface functions read data from sources as complex stream objects rep-
resented by a data type named Sobject. The stream objects are defined as user-defined 
types, and are deallocated automatically and efficiently by an incremental garbage 
collector when they are not referenced any more. 

Each cut is a view defined as a Boolean function that returns true if the cut is ful-
filled. The views are defined as declarative queries over properties of each event ob-
ject e involving joins, aggregate functions, and complex numerical computations 
defined in terms of a high-level application schema. The type hierarchy of the appli-
cation schema for the ATLAS application is presented in Fig. 2. 

A wrapper interface function reads events and instantiates them as stream objects 
of type Event, a subtype of type Sobject. Each complex event object describes  
measurements from one collision. Objects of type Particle represent various kinds of 
particles produced by the collision, which are derived from the event object by trans-
formation views. The transformation views are defined as declarative functions map-
ping stream objects returned by a wrapper interface function into a set of derived 
stream objects representing objects in terms of the application schema. 



324 R. Fomkin and T. Risch 

For example, the Three Lepton Cut, one of the simplest among the six cuts being 
part of the Six Cuts Analysis, requires that an event has exactly three isolated leptons 
with |Eta|<2.4 and Pt>7, where at least one lepton has Pt>20. The Three Lepton Cut is 
defined in SQISLE as this Boolean function: 

create function threeLeptonCut (Event e) -> Boolean as 
select  TRUE 
where  count(isolatedLeptons(e)) = 3 
 and some( select r 
      from Real r 
      where  r = Pt(isolatedLeptons(e)) 
         and r > 20.0); 

The function isolatedLeptons is defined as: 

create function isolatedLeptons(Event e) ->  
                                Bag of Lepton as 
select l 
from Lepton l 
where  l in leptons(e) 
 and pt(l) > 7.0 
 and abs(eta(l)) < 2.4; 

The functions Pt and Eta are defined in terms of numerical operators calculating 

22 yxPt +=  and 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−++

+++
⋅=

zzyx

zzyx
Eta

222

222

ln5.0 , respectively, over momentum 

(x,y,z) of a particle. The function leptons is a transformation view defined as a query that 
returns all leptons detected by event e. It is defined as the union of the transformation 
views electrons and muons, which generate objects of types Electron and Muon, respec-
tively. There is a detailed description of the used cuts and view definitions in [8]. 

Given that the cuts are defined as Boolean functions, a user query always contains 
the following kinds of query fragments: 
• A source access query fragment, e.g. lines 3-5 in query (1), specifies sources to 

access and calls a stream function that emits a stream of complex objects. 
• A processing query fragment, e.g. lines 6-8 in query (1), specifies the scientific 

analyses (tested hypotheses) as queries over views of complex objects, e.g. specify-
ing cuts over events. The views are defined in terms of transformation views. 

ParticleEvent

Lepton

JetElectronMuon

Sobject

 

Fig. 2. Type hierarchy of an application schema for the ATLAS application 
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3   Query Processing in SQISLE 

In [9] we implemented the above queries using the traditional loading approach where 
the data streams were first loaded into the DBMS and indexed before the queries were 
given. The loading and indexing is very time consuming. In our example, it takes 
about 15 seconds to load one ROOT file containing 25000 events, while the analysis 
alone of the 25000 events takes just 1.5 seconds, i.e. a total processing time of 16.5 
seconds. Furthermore, the loading approach requires sufficient memory to store all 
complex objects indexed. 

To avoid the high loading and indexing costs, in SQISLE, instead of preloading the 
data into a DBMS, the data stays in their sources, e.g. ROOT files, and are processed 
in one pass. The system reads the complex objects from the sources through a wrap-
per interface where each independent complex object is analyzed one-by-one as they 
are streamed.  

Fig. 3 illustrates the query processing steps in SQISLE. The query pre-processor 
expands views and applies rewrite rules on the query. The cost-based query optimizer 
produces an execution plan, which is interpreted by the execution engine. The execu-
tion plan contains operators that call a wrapper interface implemented in terms of an 
application data management library (App. Library, e.g. ROOT) to access the data 
sources. To improve query processing, runtime query optimization collects data sta-
tistics for the query optimizer, which is stored in the statistics database (Stat. DB). 
The execution engine calls the optimizer to reoptimize the query at runtime using the 
collected statistics. 

A general structure of an execution plan for a typical query like query (1) is pre-
sented in Fig. 4. With runtime query optimization the query pre-processor first splits 
the query into a source access query fragment and a processing query fragment. The 
figure illustrates the two corresponding subplans: the source access plan and the 
processing plan. The source access plan first calls wrapper argument operators that 
access the source database (Source DB) and the application schema meta-data (App. 
schema) to select sources and bind parameters a1, a2, … for a wrapper interface op-
erator. The wrapper interface operator accesses each selected data source, e.g. a 
ROOT file, and generates a stream of complex objects, each bound to a stream object 
variable, o. The processing plan implements selections of o based on analysis opera-
tors and aggregated subqueries over properties of o. The aggregated subqueries  
apply aggregate functions on nested subqueries. The nested subqueries first call  

 

Fig. 3. Query processing steps in SQISLE 
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transformation views to derive stream objects in terms of the application schema and 
then analyze properties of the derived objects. The source access plan and the proc-
essing plan are joined only on stream object variable o.  

For query (1) the number of operators in the source access plan is 10. It produces a 
stream of objects representing events, which are analyzed by the processing plan. The 
processing plan contains 22 operators and 8 of them are calls to aggregated subque-
ries. The number of operators in the aggregated subquery plans is between 9 and 59, 
including transformation operators and analysis operators implementing the selec-
tions. Some aggregated subqueries contain calls to further aggregated subqueries. 

There are many possible operator orders for a processing plan. Thus query optimi-
zation is difficult, and the query plans obtained with naïve static cost-based query 
processing strategies are slow. Therefore SQISLE implements runtime query optimi-
zation to collect data statistics from streams at runtime in order to adapt the query 
plan using collected statistics. Runtime query optimization is managed by a special 
operator, the profile-controller. During query execution it monitors whether sufficient 
statistics have been collected so far while processing the stream. If so, it dynamically 
reoptimizes the query and switches to non-profiled execution by disabling collecting 
and monitoring statistics. 

The runtime query optimization is investigated with three strategies: 
1. Attribute statistics profiling maintains detailed statistics on the sizes of vectors 

stored in each stream object attribute as the objects are read. Once the sample size 
is large enough the query is reoptimized using the collected statistics. 
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Fig. 4. General structure of a query plan 
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2. Group statistics profiling first decomposes the queries into fragments, called 
groups, which are joined only on the stream object variable, and then maintains 
runtime statistics of executing each group. When sufficient statistics is collected 
the query is reoptimized. 

3. Two-phase statistics profiling combines the two strategies above by in a first phase 
collecting detailed statistics of attribute vector sizes of stream objects to optimize 
the group definitions, and in a second phase switching to group statistics profiling 
for ordering the groups. 
All three strategies assume that data statistics over the stream is stable so that the 

statistics collected in the beginning of the stream is expected to be close to the statis-
tics for the entire data stream. This is the case in scientific applications such as the 
ATLAS experiment, since all collision events in a stream are generated with the same 
experimental run conditions. The strategies perform statistics sampling at runtime 
until the statistics are stabilized. Cost-based query optimization utilizes a cost model 
for aggregate functions over nested subqueries [9]. This aggregate cost model esti-
mates costs and selectivities for aggregate functions from costs and selectivities of 
their nested subqueries. 

3.1   The Profile-Controller Operator for Runtime Query Optimization 

The query pre-processor modifies the view expanded query to add the profile-
controller operator and encapsulate the processing query fragment with the operator. 
The processing query fragment needs to be optimized carefully, since it is defined as a 
large condition over a complex stream object. The optimization at runtime of the 
encapsulated complex condition is controlled by the profile-controller operator. 

The profile-controller performs the following operations for each stream object o: 
1. It executes the processing plan parameterized by o. 
2. It checks if profiling is enabled. If so it calls a subroutine, the switch condition 

monitor, which supervises collection of data statistics. The switch condition moni-
tor returns true if sufficient statistics is collected. To enable different kinds of pro-
filing the switch condition monitor can be different for different strategies and can 
also be dynamically changed during query execution. 

3. If item two is satisfied it calls another subroutine, the switch procedure, which 
reoptimizes the processing query fragment and either switches to another runtime 
query optimization strategy or disables profiling. The switch procedure is also dy-
namically replaceable. 

4. The result of the processing query fragment in item one is always emitted as result 
of the profile-controller operator. 

3.2   Attribute Statistics Profiling 

When attribute statistics profiling is enabled, detailed statistics on stream object at-
tribute vector sizes are collected when each new stream object o is emitted by the 
wrapper interface operator. The means and variances of the attribute vector sizes of o 
are maintained in an internal table. 

The switch condition monitor maintains statistics to check for every tenth read 
stream object o whether an estimated mean attribute vector size x  is close enough to 
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the actual mean attribute vector size with probability 1-α. The following attribute 
switch condition is checked: 

xSz E ⋅≤⋅ δα 2/  (2) 

The closeness is defined by δ. α and δ are provided as tuning parameters. The esti-

mate of the mean x  is calculated by ∑
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If the attribute switch condition is satisfied for every attribute, the switch procedure 
is called. It reoptimizes the processing query fragment and disables profiling. After 
this, when the wrapper interface operator constructs a new stream object, it does not 
collect statistics any more. The profile-controller executes only the processing plan 
and does not call the switch condition monitor or the switch procedure. 

When the query is started there no statistics collected and the query is initially op-
timized using default statistics where the attribute vector sizes of stream objects, e.g. 
the number of particles per event, is approximated by a constant (set to nine). 

3.3   Group Statistics Profiling 

With group statistics profiling, first a stream fragmenting algorithm is applied to the 
query. The algorithm decomposes the processing query fragment into smaller query 
fragments called groups [9]. The groups have only the stream variable o in common 
and thus the groups are equi-joined only on o. The complex object o is selected by the 
query if it satisfies the inner join of all groups. 

After optimization, each group is implemented by a separate group subplan, which 
is encapsulated by a group monitor operator. The group monitor operator takes a 
group subplan and a stream object as arguments and returns the result of applying the 
subplan on the stream object. If profiling is enabled, it measures execution time and 
selectivity of the monitored subplan. 

The switch condition monitor calls the query optimizer at runtime for every read 
stream object o to greedily order the executions of the monitored subplans based on 
available statistics on the groups. An internal table keeps track of the groups and their 
statistics. The switch condition is true if the order of the groups in the new processing 
plan is the same for a number of read stream objects in a row, called the stable reop-
timization interval (SI), which is provided as a tuning parameter. 

The contents of the groups and the initial join order of the groups are optimized us-
ing the default statistics before starting to execute the query. 

The profile-controller operator encapsulates the entire processing plan containing 
all the joined groups. It invokes the dynamically optimized query processing plan at 
runtime. If some join fails, the entire processing plan fails. Thus, to answer the query 
the processing plan must execute only those first group subplans up to the first sub-
plan that fails. No group subplans joined after the failed one need to be executed to 
answer the query. However, statistics still should be collected for all groups, even 
those that need not be executed. Thus, if profiling is enabled, the switch condition 
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monitor executes also those remaining groups that were not executed to answer the 
query. In this way statistics is first collected for all groups by the switch condition 
monitor. The groups are then greedily reordered based on the measured estimates of 
the group costs and selectivities. To minimize overhead the processing plan is reopti-
mized once for every read complex stream object rather than for every query plan 
operator; there is no dynamic reordering per operator as with Eddies [3]. 

3.4   Two-Phase Statistics Profiling 

As with group statistics profiling, with two-phase statistics profiling queries are first 
fragmented into groups before executing them. To collect runtime statistics for opti-
mizing of group subqueries, attribute statistics profiling is enabled initially when 
query execution is started. When the attribute switch condition (2) is satisfied, the 
entire query is reoptimized, including the groups, and attribute statistics profiling is 
disabled. Then the switch condition monitor and switch procedure are changed to 
perform group statistics profiling to produce a further optimized group join order. 

The main advantage with the two-phase statistics profiling is that it enables optimi-
zation of group subqueries based on collected attribute statistics. With group statistics 
profiling alone, where the attribute values are not monitored, the groups themselves 
must be optimized based on heuristic default statistics. 

3.5   Query Rewrite Strategies 

The performance is measured comparing runtime query optimization with a manually 
coded C++ program. It will be shown that optimized query plans of selective queries 
may perform better than a C++ implementation, while non-selective queries are still 
around 28 times slower. 

In order to improve the performance of non-selective queries, their performance 
bottlenecks were analyzed. It was found that most of the time is spent on computing 
the transformation views many times for the same stream object. To remove this bot-
tleneck, the use of rewrite rules to speed up the queries is investigated. One kind of 
rewrite is based on observing that the derivation of particle objects from event objects 
can be regarded as a two-dimensional matrix transposition. Different variants of op-
erators for the transposition were implemented and evaluated.  The chosen matrix 
transpose operator generates new particle stream objects as the result of the transposi-
tion and temporarily caches them as an attribute on the currently processed event 
object. This strategy is called transformation view materialization. It improves per-
formance of non-selective queries about 1.5 – 2.5 times compared with only runtime 
query optimization. 

Queries are further simplified in SQISLE by removing unnecessary vector con-
structions in queries and view definitions. Some vectors are first constructed out of 
variables and then only specific element values are accessed explicitly; the construc-
tions of such vectors are removed and the original variables are instead accessed di-
rectly without vector construction and access overheads. These vector rewrites im-
prove performance of non-selective queries with factor 1.5 – 2. 

In addition computational view materialization improve query performance by 
temporarily saving on each processed complex object the results of numerical  
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calculations computing properties of derived stream objects used in analysis queries, 
e.g. in cut definitions. This pays off when a query does the same complex numerical 
calculations several times per complex object. Materialization of computational views 
improves non-selective queries with at least another 32%. 

Finally, the performance of queries is further improved by compile time evaluation 
[15,23], which is a general technique to evaluate predicates at query compilation time 
and replace them with computed values. Compile time evaluation is used to remove 
accesses to application schema meta-data, which simplifies the queries. Compile time 
evaluation improves performance of non-selective queries an additional 20% 

All together the above query rewrite techniques improve performance of non-
selective queries around 5 times. The execution is still about 4 times slower than C++. 
However, the execution plan is currently interpreted in SQISLE and further perform-
ance improvements can be made by making an execution plan compiler. This is ex-
pected to make the plan as fast as C++ also for non-selective queries. 

4   Performance Evaluation 

Performance experiments are made for scientific analyses expressed as queries in 
SQISLE for the ATLAS application. The experiments are run on a computer having 
2.8 GHz Intel P4 CPU with 2GB RAM and Linux OS. 

The performance is evaluated with different query processing strategies for two 
different kinds of queries implementing Six Cuts Analysis [5] and Four Cuts Analysis 
[11]. The performance of the C++ implementation is measured only for Six Cuts 
Analysis, since this implementation was the only one provided by the physicists. 

Data from two different ATLAS experiments stored in ROOT files were used. The 
experiment bkg2 simulates background events, which unlikely produce the Higgs 
bosons, so the analysis queries are very selective (Six Cuts Analysis has selectivity 
0.018% and Four Cuts Analysis has selectivity 0.19%). The experiment signal simu-
lates events that are likely to produce Higgs bosons, and both kinds of queries over 
these data are non-selective (Six Cuts Analysis selects 16% events and Four Cuts 
Analysis selects 58% events). 

Event descriptions from the bkg2 experiment are stored in 41 ROOT files, where 
each file contains 25000 event objects, i.e. a 1025000 event objects in total. Event 
descriptions from the signal experiment are stored in a single file with 8623 event 
objects. The sizes of the event streams are scaled by reading subsets of the files. 

Two different kinds of queries are measured for the two different experiments.  Six 
Cuts Analysis uses the views bkgsixcuts and signalsixcuts for experiment bkg2 and 
experiment signal, respectively. Four Cuts Analysis uses the views bkgfourcuts and 
signalfourcuts, which are less complex than bkgsixcuts and signalsixcuts. A view 
parameter is used to specify the number of events to read and analyze, i.e. the stream 
size. The details can be found in [8]. 

Two kinds of measurements are made: the total query processing time and the final 
plan execution time. The total query processing time is the total time for optimization, 
profiling, and execution of a query. The final plan execution time is the time to exe-
cute the optimized plan. 
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4.1   Evaluated Strategies 

The following strategies are evaluated: 
− Naïve query processing (NaiveQP). As a reference point, this strategy demon-

strates performance of naive query processing without cost-based optimization. 
The cuts are executed in the same order as they are specified in the queries. 

− Static query processing with the aggregate cost model (StatQP). This reference 
strategy demonstrates the impact of regular static cost-based optimization based 
on the aggregate cost model. The aggregate cost model is enabled, but no run-
time query optimization strategies. No data statistics is available when the query 
is optimized and default statistics are used. Since queries are very large, they are 
optimized using randomized optimization [14,27,22], which is able to find a 
good plan in terms of estimated costs. The strategy is compared with NaiveQP to 
demonstrate impact of the static cost-based query optimization using default  
statistics. 

− Attribute statistics profiling (AttrSP). The query is initially optimized with the 
aggregate cost model and default statistics. During execution of the query the  
statistics on sizes of the attribute vectors is collected and query reoptimization is 
performed using collected statistics. The initial optimization uses a fast greedy op-
timization method [16,18] and default statistics. The query reoptimization uses 
slow randomized optimization, which produces much better plan in terms of esti-
mated cost than the greedy optimization. 

− Group statistics profiling (GroupSP). After query fragmentation into groups, the 
created groups and their order are initially re-optimized per event by greedy opti-
mization using default statistics until a stable plan is obtained. Fast greedy optimi-
zation is also used to reoptimize the group order since dynamic programming [26] 
produced the same execution plans. 

− Two-phase statistics profiling (2PhaseSP). Greedy optimization is used first to 
produce optimized group subplans after performing attribute statistics profiling. In 
a second phase GroupSP is applied to optimize the order of the group subplans. 

− Full query processing (FullQP). This strategy implements query rewrites com-
bined with the best of the above optimization strategies. 

As reference FullQP is compared with the following C++ implementations of the 
same analysis: 
− Unoptimized C++ implementation (NaiveCPP). This strategy demonstrates the 

performance of a manual C++ implementation of Six Cuts Analysis executed in the 
same order as in query bkgsixcuts. This strategy is compared with FullQP. 

− Optimized C++ implementation (OptCPP). This strategy demonstrates the per-
formance of Six Cuts Analysis implemented in a C++ program where the order of 
the cuts had been optimized by a researcher manually. This strategy is compared 
with FullQP. 

All evaluated strategies are summarized in Table 1. 
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Table 1. Evaluated query processing techniques 

Strategy Aggregate cost 
model 

Attribute statistics 
profiling 

Group statistics 
profiling 

Rewrites 

NaiveQP – – – – 
StatQP + – – – 
AttrSP + + – – 
GroupSP + – + – 
2PhaseSP + + + – 
FullQP + + + + 
NaiveCPP C++ implementation with suboptimal order of cuts 
OptCPP C++ implementation with the cuts ordered manually by a scientist 

4.2   Experimental Results 

The performance of different optimization approaches without query rewrites is in-
vestigated first. Then the additional impact of the query rewrites is investigated. Fi-
nally, the best strategy is compared with hardcoded C++ implementations. The sizes 
of input streams in the evaluations are scaled over six points per experiment as shown 
in Figures 5 and 6. 

Fig. 5(a) presents performance of the query plans measured by the different opti-
mization approaches for the selective complex query bkgsixcuts (0.018% events  
selected). 

The query plan of the unoptimized processing strategy (NaiveQP) performs sub-
stantially worse than the other strategies. Static query optimization with the aggregate 
cost model (StatQP) gives a query plan that performs four times better than the query 
plan from NaiveQP. This demonstrates the importance of the aggregate cost model to 
differentiate between different aggregated subqueries. 

The query plan obtained with attribute statistics profiling (AttrSP) performs twice 
better than the statically optimized plan (StatQP). This shows that runtime query 
optimization is better than static optimization. 

The query plans from the group statistics profiling (GroupSP) and two-phase sta-
tistics profiling strategies (2PhaseSP) perform best and substantially better than the 
strategies without grouping. They outperform naïve query processing (NaiveQP) with 
a factor 450 and attribute statistics profiling without grouping (AttrSP) with a factor 
50. This demonstrates that the grouped strategies GroupSP and 2PhaseSP alleviate 
the problem of errors in the cost estimates [12] by measuring real execution time and 
selectivity for each group. The difference between GroupSP and 2PhaseSP is insig-
nificant (Fig. 5(b)). The total query processing times for the strategies (Table 2) dem-
onstrate that 2PhaseSP performs better than GroupSP. Thus 2PhaseSP is chosen to 
optimize rewritten queries in FullQP. Fig. 5(b) demonstrates that the strategy with 
rewrites (FullQP) performs 17% better than the optimization strategies without re-
writes (GroupSP and 2PhaseSP) for the selective query bkgsixcuts. The query per-
formance for the other selective query bkgfourcuts is similar to query bkgsixcuts, but 
with lower overheads, since the query is simpler. 

Fig. 5(c) demonstrates that for the selective query the best query processing strat-
egy (FullQP) performs 20% better than unoptimized C++ (NaiveCPP). However, the 
C++ implementation where the order of cuts is optimized manually by the physicist, 
OptCPP, performs 34% better than the query plan from FullQP. Further performance 
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improvements in SQISLE can be made by making an execution plan compiler, which 
is likely to make the plan faster than C++ for selective queries. 

In conclusion, query optimization, in particular runtime query optimization, im-
proves performance substantially for selective queries. For selective queries the im-
pact of query rewrites is relatively insignificant compared to query optimization. 

The loading approach in [9] took 15 seconds to load 25000 events. By contrast, the 
total processing in SQISLE with FullQP of the same number of events is 1.6s, which 
clearly shows the advantage with the streaming approach for our kind of applications. 

In Table 2 the optimization strategies are compared by their optimization  
overheads obtained by subtracting the final plan execution time from the total query 
processing time. These overheads are independent of the stream size so the impact is 
negligible in practice for large streams. Table 2 contains performance measurements 
only for 25000 events, i.e. one file. 

The optimization overhead of the ungrouped strategy StatQP is only the time to 
perform randomized optimization (29 seconds). The overhead of AttrSP (26 seconds) 
is dominated by the randomized optimization (80%). The remaining time is spent on 
collecting and monitoring statistics. The overheads of the grouped strategies (6.0 
seconds for GroupSP and 4.5 seconds for 2PhaseSP) are dominated (75%) by per-
forming group profiling. To obtain the final execution plan GroupSP profiles only the 
first 40 events of the stream. The overhead of profiling all groups for a single event 
(0.15s) is substantial. The reason is that statistics are collected for all groups, includ-
ing the very complex and expensive ones to get a good cost model. Therefore, it is 
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Fig. 5. Performance of different strategies for selective complex query bkgsixcuts: (a) and (b) 
show performance of different query strategies in SQISLE, while (c) compares performance of 
the best strategy (FullQP) with the C++ implementations 
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necessary to disable profiling once stream statistics are stabilized. Notice that over-
heads in both the ungrouped strategies are around four times higher than overheads of 
the grouped strategies, because the grouped strategies use the greedy optimization, 
which performs well, while for ungrouped strategies the greedy optimization did not 
produce good plans. Therefore the slow randomized optimization is used for un-
grouped strategies. 

Fig. 6(a) presents performance of the query processing strategies for the non-
selective query signalsixcuts (16% events selected). The impact of the different query 
optimization strategies is less significant here. The best strategies (GroupSP and 
2PhaseSP) are just four times faster than the slowest (NaiveQP). Using the aggregate 
cost model (StatQP) gives a query plan that performs 28% better than NaiveQP. Us-
ing the attribute statistics profiling (AttrSP) gives a query plan that performs twice 
better than the query plan obtained without collecting statistics (StatQP). GroupSP 
and 2PhaseSP are 35% faster than the AttrSP. The difference between GroupSP and 
2PhaseSP is again insignificant. We notice that query optimization has less impact on 
non-selective queries. In this case, the rewrites (FullQP) improve performance of the 
query by factor five compared to 2PhaseSP. The other non-selective query signal-
fourcuts (58% events selected) performs similar to signalsixcuts. 

Fig. 6(b) compares performance of the best query processing strategy (FullQP) 
with performance of the C++ implementations (NaiveCPP and OptCPP) for the non-
selective query signalsixcuts. FullQP performs four times worse than both C++ im-
plementations. The reason is that since the query is non-selective most operators are 
executed. Here, the cost of interpreting an operator in SQISLE is higher than the cost 
of executing machine instructions in C++, and we are comparing interpreted SQISLE 
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Fig. 6. Performance of different strategies for non-selective query signalsixcuts: (a)  SQILSE 
strategies, (b) performance of the best strategy (FullQP) and the C++ implementations. 

Table 2. Overhead times in seconds for query bkgsixcuts over events from one file 

Strategy Total query  
processing time 

Final plan execution 
time 

Optimization  
overhead 

StatQP 253 224 29 
AttrSP 136 110 26 
GroupSP 9.4 1.9 7.5 
2PhaseSP 7.9 1.9 6.0 
FullQP 6.1 1.6 4.5 
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with compiled C++. Implementing a compiler for query plans will reduce the interpre-
tation overhead significantly. 

In conclusion, query optimization, in particular runtime query optimization, im-
proves performance significantly for all kinds of queries. For selective queries the 
improvements are dramatic. The impact of query rewrites is insignificant compared to 
query optimization of selective queries. For non-selective queries the combination of 
query optimization and query rewrite techniques significantly improves performance. 

The evaluation demonstrates that query optimization techniques implemented in 
SQISLE can achieve performance for large and complex scientific queries close to a 
manually optimized C++ program. 

5   Related Work 

A visual query language for specifying HEP analyses is provided by the system 
PHEASANT [25]. HEP analyses are there defined in queries, which are translated 
into a general purpose programming language without any query optimization or 
simplification. By contrast, our system rewrites and optimizes queries, which is 
shown to give significant improvement in performance, approaching or surpassing 
that of hard-coded C++ programs. 

Most developed DSMSs (e.g., Aurora [2], STREAM [1], TelegraphCQ [17], and 
XStream [10]) focus on infinite streams of rather simple objects and efficient process-
ing of time-series operations over the streams, including stream aggregates and joins. 
The DSMSs are data driven and the continuous queries are rather simple. In contrast, 
in SQISLE the elements of the streams are complex objects (each object can be seen 
as a small database) and complex queries are applied on each streamed object inde-
pendently from other objects. Thus the queries in SQISLE do not contain time-series 
operations and no join between streams is performed. Furthermore, SQISLE is de-
mand driven, since it controls the stream flow. 

In DBMSs, and in particular in DSMSs, precise statistics on data are not always 
available. Therefore, adaptive query processing (AQP) techniques are developed to 
improve query processing at query execution time by utilizing runtime feedback. 
AQP systems (e.g. [1,2,3,6,13,17,19,20]) continuously adapt the execution plan of a 
query to reflect significant changes in data statistics. By contrast SQISLE profiles a 
stream until statistical properties of the streamed objects are stabilized, and then reop-
timizes the query using the stable statistics. This works well for our scientific applica-
tions where large numbers of complex objects having similar statistical properties 
(run conditions) are processed. After the statistics are stabilized, the rest of a stream is 
efficiently processed without profiling overhead. 

Usually DSMSs (e.g. Aurora [2], STREAM [1], and TelegraphCQ [17]) schedule 
operators continuously per tuple and change the execution plan if significant flow 
changes are detected. Such monitoring for each simple data element adds significant 
overhead for large queries over complex objects. For Eddies [3] this overhead is even 
more significant, since optimization is performed whenever a tuple is scheduled for a 
next operator. To avoid the high cost of monitoring individual data elements, in 
SQISLE the profile-controller operator monitors the execution of an entire plan once 
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per complex input stream object until sufficient statistics are collected about the ob-
jects, after which the plan is dynamically replaced with a final plan. 

Some systems [6,13,19] generate several query execution plans and adaptively 
switch between them during query execution. Generating many execution plans dur-
ing initial optimization is not feasible for large and complex queries. By contrast 
SQISLE generates only one initial query execution plan which is reoptimized at run-
time using collected statistics to obtain a more efficient final execution plan. 

The demand driven DBMS in [20] reoptimizes the entire query at runtime and then 
restarts the query based on already computed materialized intermediate results. 
SQISLE is also demand driven but need not restart the entire query since it reopti-
mizes only the processing query fragment that is applied on each subsequent streamed 
complex object produced by the static source access plan. 

Query rewrites before cost-based query optimization has been demonstrated to im-
prove performance for different kinds of applications in, e.g., engineering [28], image 
processing [21], and business processing [30]. SQISLE implements several rewrite 
rules and shows that they are particularly important for non-selective queries. 

An example of implementing a complex scientific application in a DBMS with the 
loading approach is the Sloan Digital Sky Survey (SDSS) project [29]. In the project 
huge amounts of astronomical data from the SDSS telescope are loaded into a cluster 
of SQL Server databases and indexed. In our application efficient query specific in-
dexes are required for calculating query dependent aggregated properties, e.g. based 
on number of isolated leptons, and static query independent indexing is not sufficient. 
Furthermore, the performance of first loading the data into a database and then proc-
essing them as queries is shown to be around ten times slower than processing the 
same data in one pass by SQISLE.  

6   Summary and Future Work 

The implementation was presented of a data stream management system SQISLE 
targeted to scientific applications where data are independent objects with complex 
structures selected by complex queries. SQISLE reads complex objects from files 
through a streamed wrapper interface and processes them in one pass efficiently by 
utilizing novel query processing techniques. Runtime query optimization methods 
collect stream statistics and reoptimize queries during execution. During query execu-
tion a profile-controller operator monitors collected statistics, reoptimizes the  
processing query fragment, and switches to another strategy, e.g. into non-profiled 
execution. Since the complex objects contain measurements produced in controlled 
experiments, we assume that statistical properties of complex objects, such as average 
number of different kinds of particles per event, produced in the same experiment are 
the same. Therefore profiling is performed only at the beginning of the one-pass data 
processing and then disabled to reduce profiling overhead. 

To verify the approach, a scientific application from the ATLAS experiment [5,11] 
was implemented in SQISLE. The implementation demonstrated that performance of 
application analysis queries in SQISLE is close to a hard-coded and manually opti-
mized C++ implementation of the same analysis, which requires a significant effort to 
develop. 
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In summary, the following techniques in SQISLE provide efficient processing of 
queries over streams of complex objects: 

• The profile-controller operator enables more efficient execution plans for streamed 
queries than static cost-based query optimization, by choosing different query op-
timization strategies at runtime and then disabling the profiling. 

• The query optimization techniques are shown to significantly improve performance 
of all kinds of queries. 

• The query rewrite techniques are shown to improve performance significantly for 
non-selective queries, while being less effective for selective queries. 

SQISLE currently interprets the generated query execution plans. By compiling the 
executions plans into C or machine code, the performance will be significantly better 
than the current implementation. Further improvements can be achieved by eliminat-
ing copying data from structures used in the ROOT files and structures used in 
SQISLE. It can be done either by storing collision event data in the ROOT files using 
data format used by SQISLE or by rewriting data management in SQISLE to operate 
on data having the same structure as in the ROOT files. Since the performance of 
SQISLE is already close to C++, these changes are likely to make SQISLE perform at 
least as well as a C++ program manually written by a physicist. 
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Abstract. We present a sensor network query processing architecture
that covers all the query optimization phases that are required to map a
declarative query to executable code. The architecture is founded on the
view that a sensor network truly is a distributed computing infrastruc-
ture, albeit a very constrained one. As such, we address the problem of
how to develop a comprehensive optimizer for an expressive declarative
continuous query language over acquisitional streams as one of finding
extensions to classical distributed query processing techniques that con-
tend with the peculiarities of sensor networks as an environment for
distributed computing.

1 Introduction

This paper addresses the problem of optimizing the evaluation of declarative
queries over sensor networks (SNs) [1]. Throughout, by sensor networks we mean
ad-hoc, wireless networks whose nodes are energy-constrained sensors endowed
with general-purpose computing capability. We believe there is broad, contin-
ued interest [2,3,4] in exploring whether techniques developed in the context of
classical database environments, such as query optimization, are also applicable
and beneficial in non-classical ones, of which SNs are a comparatively recent
example. Viewed as a distributed computing infrastructure, SNs are constrained
to an unprecedented extent, and it is from such constraints that the challenges
we have addressed arise. Addressing these challenges is important because of
the prevailing expectations for the wide applicability of SNs [5]. These expecta-
tions imply that, as an infrastructural platform, SNs are bound to become more
heterogeneous over time than previous work has assumed. Moreover, integrating
SN data with data stemming from other networks (sensor-based or not) will be
easier if the query processing technology used is less tied to specific execution
environments.

We explore the hypothesis that the classical two-phase optimization approach
[6] from distributed query processing (DQP) can be adapted to be effective and
efficient over SNs, as initially proposed in [7]. Two-phase optimization is well
established in the case of robust networks (e.g., the Internet, or the interconnect
of a parallel machine), and involves the decomposition of query optimization
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into a Single-Site phase, and a subsequent Multi-Site phase, each of which is
further decomposed into finer-grained decision-making steps. We aim to reuse
well established optimization components where possible, and to identify steps
that are necessarily different in SNs. We demonstrate that extending a classical
DQP optimization architecture allows an expressive query language to be sup-
ported over resource-constrained networks, and that the resulting optimization
steps yield good performance, as demonstrated through empirical evaluation.

Related Work. There have been many proposals in the so-called SN-as-
database approach (including [2,8,3,4]). Surprisingly, none have fully described
an approach to query optimization founded on a classical DQP architecture.
Cougar papers [8] propose this idea but no publication describes its realization.
SNQL [9] follows the idea through but no precise description (as provided by
our algorithms) of the decision-making process has been published. Indeed, few
publications provide systematic descriptions of complete query optimization ar-
chitectures for SN query processors: the most comprehensive description found
was for TinyDB [3], in which optimization is limited to operator reordering and
the use of cost models to determine an appropriate acquisition rate given a user-
specified lifetime. Arguably as a result of this, SN-as-database proposals have
tended to limit the expressiveness of the query language. For example, TinyDB
focuses on aggregation and provides limited support for joins. In many cases, as-
sumptions are made that constrain the generality of the approach (e.g., Presto [2]
focuses on storage-rich networks).

There has also been a tendency to address the optimization problem in a
piecewise manner. For example, the use of probabilistic techniques to address
the trade-off between acquiring data often and the cost of doing so is proposed
in BBQ [10]; the trade-off between energy consumption and time-to-delivery
is studied in WaveScheduling [11]; efficient and robust aggregation is the fo-
cus of several publications [12,13,14]; Bonfils [15] proposes a cost-based ap-
proach to adaptively placing a join which operates over distributed streams;
Zadorozhny [16] uses an algebraic approach to generate schedules for the
transmission of data in order to maximize the number of concurrent commu-
nications. However, these individual results are rarely presented as part of a
fully-characterized optimization and evaluation infrastructure, giving rise to a
situation in which research at the architecture level seems less well developed
than that of techniques that might ultimately be applied within such query
processing architectures.

This paper aims to provide a comprehensive, top-to-bottom approach to the
optimization problem for expressive declarative continuous queries over poten-
tially heterogeneous SNs. In comparison with past proposals, ours is broader,
in that there are fewer compromises with respect to generality and expressive-
ness, and more holistic, in that it provides a top-to-bottom decomposition of
the decision-making steps required to optimize a declarative query into a query
execution plan (QEP).
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Approach and Main Results. A key aspect of our approach is that it supports
the optimization and evaluation of SNEEql (for Sensor NEtwork Engine query lan-
guage), a comprehensive stream query language, inspired by classical stream lan-
guages such as CQL [17]. Thus, we do not start from the assumption that a query
language for use with resource-constrained devices must, as a consequence, pro-
vide limited functionality. We then take a classical DQP optimizer architecture as
a starting point, and adapt it to consider how the optimization and evaluation of
queries for SNEEql differs if, rather than targeting classical distributed computa-
tional resources, we target SNs. We identify what assumptions in classical DQP
are violated in the SN case, and propagate the consequences of such violations into
the design and engineering of a DQP architecture for SN data management. The
differences we consider here that have led to adaptations and extensions, are: (i)
the acquisitional nature of the query processing task : data is neither lying ready
in stores nor is it pushed (as in classical streams), but requested; (ii) the energy-
constrained nature of the sensors : preserving energy becomes a crucial require-
ment because it is a major determinant of network longevity, and requires the ex-
ecuting code to shun energy-hungry tasks; (iii) the fundamentally different nature
of the communication links : wireless links are not robust, and often cannot span
the desired distances, so the data flow topology (e.g., as embodied in a query op-
erator tree) needs to be overlaid onto some query-specific network topology (e.g.,
a routing tree of radio-level links) for data to flow from sensors to clients, and the
two trees are not isomorphic (e.g., some network nodes act as pure relay nodes);
and (iv) the need to run sensor nodes according to data-dependent duty cycles : each
element in the computational fabric must act in accordance with an agenda that
co-ordinates its activity with that of other elements on which it is dependent or
that depend on it, thereby enabling energy management (e.g., by sending devices
to energy-saving states until the next activity). We note that these points also dis-
tinguish our approach from infrastructures for stream query processing (e.g., [17]),
which do not operate in resource constrained environments.

Summary of Contributions. The body of the paper describes: (1) a user-level
syntax (Section 2) and algebra (Section 3.1) for SNEEql, an expressive language
for querying over acquisitional sensor streams; (2) an architecture for the opti-
mization of SNEEql, building on well-established DQP components where possi-
ble, but making enhancements or refinements where necessary to accommodate
the SN context (Section 3); (3) algorithms that instantiate the components,
thereby supporting integrated query planning that includes routing, placement
and timing (Section 3.2); and (4) an evaluation of the resulting infrastructure,
demonstrating the impact of design and optimization decisions on query per-
formance, and the increased empowering to the user (Section 4) who is able to
trade-off different Qualities-of-Service (Qos) according to application needs.

2 Query Language

SNEEql [18] is a declarative query language for SNs inspired by expressive clas-
sical stream query languages such as CQL [17]. A rich language is used even
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Schema: outflow (id, time, temp, turbidity, pressure) sources: {0, 2, 4}
inflow (id, time, temp, pressure, ph) sources: {4, 5, 7}

Q1: SELECT RSTREAM id, pressure Q2: SELECT RSTREAM AVG(pressure)
FROM inflow[NOW] FROM inflow[NOW]
WHERE pressure > 500;

Q3: SELECT RSTREAM o.id, i.id, o.time, o.pressure, i.pressure
FROM outflow[NOW] o, inflow[FROM NOW - 1 TO NOW - 1 MINUTES] i
WHERE o.pressure < i.pressure AND i.pressure > 500

QoS: {ACQUISITION RATE = 3s ; DELIVERY TIME = 5s}

Fig. 1. Schema Metadata, Example queries in SNEEql and QoS Expectations

though our target delivery platform consists of limited devices because: (i) the
results of queries written using inexpressive query languages may require of-
fline post-processing over data that has to be delivered using costly wireless
communication; and (ii) sensor applications require comprehensive facilities for
correlating data sensed in different locations at different times (e.g., [19,20]).

An example schema and queries are given in Fig. 1 motivated by the appli-
cation scenario (but not actually occurring) in PipeNet, “a system based on
wireless SNs [that] aims to detect, localize and quantify bursts and leaks and
other anomalies in water transmission pipelines” [20]. The logical extents in the
schema (i.e., inflow and outflow) comprise a (possibly overlapping) subset of the
acquisitional streams generated by the source nodes, as specified in Fig. 1. The
topology of the network is depicted in Fig. 2. Q1 requests the tuples from inflow

whose pressure attribute is above a certain threshold; Q2 requests the average
value of the pressure readings in the inflow logical extent; and Q3 obtains in-
stances in which the outflow pressure is less than the inflow pressure a minute
before (as long as the latter was above a certain threshold). All acquire data
and return results every 3 seconds, as stated in the QoS parameters. Q3 returns
the id corresponding to the inflow and outflow source nodes, to assist the user
with locating a potential leak. The examples illustrate how SNEEql can express
select-project (Q1), aggregation (Q2) and join (Q3) queries. Q3 is noteworthy
as it correlates data from different locations at different times, and cannot be
expressed with previous SN query languages.

In SNEEql, the only structured type is tuple. The primitive collection types
in SNEEql are: relation, an instance of which is a bag of tuples with definite
cardinality; window, an instance of which is a relation whose content may im-
plicitly vary between evaluation episodes; and stream, an instance of which is
a bag of tuples with indefinite cardinality whose content may implicitly vary
throughout query evaluation. As in CQL, operations construct windows out of
streams and vice-versa. In all the queries, windows are used to convert from
streams to relations, relational operators act on those relations, and stream op-
erators add the resulting tuples into the output stream. Window definitions are
of the form WindowDimension [SLIDE] [Units], where the WindowDimension is
of the form NOW or FROM Start TO End, where the former contains all the tu-
ples with the current time stamp, and the latter contains all the tuples that
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fall within the given range. The Start and End of a range are of the form NOW
or NOW –Literal, where the Literal represents some number of Units, which is
either ROWS or a time unit (HOURS, MINUTES or SECONDS). The optional SLIDE
indicates the gap in Units between the Start of successive windows; this defaults
to the acquisition rate specified. The results of relational operators are added
to the result stream using the relation-to-stream operators from CQL, namely
ISTREAM, DSTREAM and RSTREAM, denoting inserted-only, deleted-only and all-tuples,
respectively.

In a stream query language, where conceptually data is being consumed, and
thus potentially produced, on an ongoing basis, the question exists as to when
a query should be evaluated. In SNEEql, an evaluation episode is determined by
the acquisition of data, i.e., setting an acquisition rate sets the rate at which
evaluation episodes occur. Thus, whenever new data is acquired, it is possible
that new results can be derived. In the implementation, however, partial query
results may be cached within the network with a view to minimizing network
traffic, and different parts of a query may be evaluated at different times, re-
flecting related, but distinct, QoS expectations, viz., the acquisition rate and
the delivery time, as shown in Fig. 1. Noteworthy features of SNEEql illustrated
in Fig. 1 include: (i) extending CQL stream-to-window capabilities to allow for
windows whose endpoint is earlier than now or than the last tuple seen, as hap-
pens in Q3 with the window on inflow, which emits tuples that were acquired
one minute ago; (ii) allowing sensing capabilities to be logically abstracted in
a schema (like Cougar [8], but unlike TinyDB, which assumes that all sensed
data comes from a single extent denoted by the keyword SENSORS); (iii) allowing
the logical streams to stem from more than one set of sensor nodes, and possi-
bly intersecting ones (as is the case in Fig. 1); (iv) expressing joins, where the
tuples come from different locations in the SN, as a single query and without
using materialization points (as would be required in TinyDB); and (v) allow-
ing QoS expectations to be set for the optimizer, such as acquisition rate and
delivery time. A detailed description of the SNEEql language, including a formal
semantics, is given in [18].
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3 Query Compiler/Optimizer

Recall that our goal is to explore the hypothesis that extensions to a classical
DQP optimization architecture can provide effective and efficient query process-
ing over SNs. The SNEEql compilation/optimization stack is illustrated in Fig. 3,
and comprises three phases. The first two are similar to those familiar from
the two phase-optimization approach, namely Single-Site (comprising Steps 1-
3, in gray boxes) and Multi-Site (comprising steps 4-7, in white, solid boxes).
The Code Generation phase grounds the execution on the concrete software and
hardware platforms available in the network/computing fabric and is performed
in a single step, Step 8 (in a white, dashed box), which generates executable
code for each site based on the distributed QEP, routing tree and agenda. The
optimizer consists of 15K lines of Java.

Classical kinds of metadata (e.g., schematic information, statistics, etc.) are
used by the SNEEql optimizer, but we focus here on the requirement for a more
detailed description of the network fabric. Thus, Fig. 2 depicts an example net-
work for the case study in Fig. 1 in terms of a weighted connectivity graph and
the sensing modalities available in each site. Dotted edges denote that single-hop
communication is possible. Weights normally model energy, but more complex
weights could be used. Here, we assume links to have unit costs, but this need
not be so. Note that all sites may contribute computing (e.g., processing inter-
mediate results) or communication (e.g., relaying data) capabilities. Metadata
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is assumed to be populated by a network management layer, such as Moteworks
(http://www.xbow.com), which also provides services such as network forma-
tion, self-healing, code dissemination etc. Note, however, we have not actually
used Moteworks since it does not support simulation, and we have opted to
simulate in order to efficiently carry out systematic experimentation.

Throughout the steps in the query stack, size-, memory-, energy- and time-
cost models are used by the optimizer to reach motivated decisions. These cannot
be described in detail due to space limitations. The cost models are very close
in style and level of detail to those in [21], but have been extended and adapted
for the SN context.

3.1 Phase 1: Single-Site Optimization

Single-site optimization is decomposed into components that are familiar from
classical, centralized query optimizers. We make no specific claims regarding the
novelty of these steps, since the techniques used to implement them are well-esta-
blished. In essence: Step 1 checks the validity of the query with respect to syntax
and the use of types, and builds an abstract syntax tree to represent the query;
Step 2 translates the abstract syntax tree into a logical algebra, the operators
of which are reordered to reduce the size of intermediate results; and Step 3
translates the logical algebra into a physical algebra, which, e.g., makes explicit
the algorithms used to implement the operators. Fig. 6 depicts the outcome of
Steps 1 to 3 for Q3 from Fig. 1, expressed using SNEEql physical-algebraic form
(PAF) that is the principal input to multi-site optimization.

Table 1 describes the PAF operators, grouped by their respective input-to-
output collection types. A signature has the form OPERATOR NAME[Parame-

ters](InputArgumentTypes):OutputArgumentTypes, where the argument types are de-
noted R, S and W , for relation, stream and window respectively, and a vertical
bar indicates a choice of one of the types given. ACQUIRE and DELIVER denote
data sources and sinks, respectively. The window on inflow is represented in
the algebra in milliseconds as TIME WINDOW[t-60000,t-60000,30000], and is rela-
tive to t, which is bound in turn to the time in which each evaluation episode of
the query starts. Note that the ACQUIRE and DELIVER are both location sensi-
tive, i.e., there is no leeway as to which node(s) in the SN they may execute on.
Furthermore, NL JOIN is attribute sensitive, i.e., in order to carry out partitioned-
parallelism the optimizer needs to consider how the input(s) are partitioned in
order to preserve operator semantics.

3.2 Phase 2: Multi-site Optimization

For distributed execution, the physical-algebraic form (PAF) is broken up into
QEP fragments for evaluation on specific nodes in the network. In a SN, consid-
eration must also be given to routing (the means by which data travels between
nodes within the network) and duty cycling (when nodes transition from being
switched on and engaged in specific tasks, and being asleep, or in power-saving
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Table 1. SNEEql Physical Algebra

Stream-to-Stream Operators
ACQUIRE[AcquisitionInterval,
PredExpr, AttrList](S) : S

Take sensor readings every AcquisitionInterval for
sources in S and apply SELECT[PredExpr] and
PROJECT[AttrList]. LocSen.

DELIVER[ ](S) : S Deliver the query results. LocSen.

Stream-to-Window Operators
TIME WINDOW[startTime,
endTime, Slide](S) : W

Define a time-based window on S from startTime to end-
Time inclusive and re-evaluate every slide time units.

ROW WINDOW[startRow,
endRow, Slide](S) : W

Define a tuple-based window on S from startRow
to endRow inclusive and re-evaluate every slide rows.
AttrSen.

Window-to-Stream Operators
RSTREAM[ ](W ) : S Emit all the tuples in W .
ISTREAM[ ](W ) : S Emit the newly-inserted tuples in W since the previous

window evaluation.
DSTREAM[ ](W ) : S Emit the newly-deleted tuples in W since the previous

window evaluation.
Window-to-Window or Relation-to-Relation Operators

NL JOIN[ProjectList, Pred-
Expr](R|W ,R|W ) : R|W

Join tuples on PredExpr condition using nested-loop al-
gorithm. AttrSen.

AGGR INIT[AggrFunction, At-
trList](R|W ) : R|W

Initialize incremental aggregation for attributes in At-
trList for type of aggregation specified by AggrFunction.
AttrSen.

AGGR MERGE[AggrFunction,
AttrList](R|W ) : R|W

Merge partial-result tuples of incremental aggregation for
attributes in AttrList for type of aggregation specified by
AggrFunction. AttrSen.

AGGR EVAL[AggrFunction,
AttrList](R|W ) : R|W

Evaluate final result of incremental aggregation for at-
tributes in AttrList for type of aggregation specified by
AggrFunction. AttrSen.

Any-to-Same-as-input-type Operators
SELECT[PredExpr](R|S|W ):
R|S|W

Eliminate tuples which do not meet PredExpr predicate.

PROJECT[AttrList] (R|S|W ):
R|S|W

Generate tuple with AttrList attributes.

modes). Therefore, for Steps 4-7, we consider the case of robust networks and
the contrasting case of SNs.

For execution over multiple nodes in robust networks, the second phase is
comparatively simple: one step partitions the PAF into fragments and another
step allocates them to suitably resourced sites, as in, e.g., [22]. One approach to
achieving this is to map the physical-algebraic form of a query to a distributed
one in which EXCHANGE operators [23] define boundaries between fragments. An
EXCHANGE operator encapsulates all of control flow, data distribution and inter-
process communication and is implemented in two parts, referred to as producer

and consumer. The former is the root operator of the upstream fragment, and the
latter, a leaf operator of the downstream one. This approach has been successful
in DQP engines for the Grid that we developed in previous work [24,25].
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However, for the same general approach to be effective and efficient in a SN,
a response is needed to the fact that assumptions that are natural in the robust-
network setting cease to hold in the new setting and give rise to a different set
of challenges, the most important among which are the following: C1: location
and time are both concrete: acquisitional query processing is grounded on the
physical world, so sources are located and timed in concrete space and time, and
the optimizer may need to respond to the underlying geometry and to synchro-
nization issues; C2: resources are severely bounded : sensor nodes can be depleted
of energy, which may, in turn, render the network useless; C3: communication
events are overly expensive: they have energy unit costs that are typically an
order of magnitude larger than the comparable cost for computing and sensing
events; and C4: there is a high cost in keeping nodes active for long periods:
because of the need to conserve energy, sensor node components must run tight
duty cycles (e.g., going to sleep as soon they become idle).

Our response to this different set of circumstances is reflected in Steps 4-7 in
Fig. 3, where rather than a simple partition-then-allocate approach (in which a
QEP is first partitioned into fragments, and these fragments are then allocated to
specific nodes on the network), we: (a) introduce Step 4, in which the optimizer
determines a routing tree for communication links that the data flows in the
operator tree can then rely on, with the aim of addressing the issue that paths
used by data flows in a query plan can greatly impact energy consumption (a
consequence of C3); (b) preserve the query plan partitioning step, albeit with
different decision criteria, which reflect issues raised by C1; (c) preserve the
scheduling step (which we rename to where-scheduling, to distinguish it from
Step 7), in which the decision is taken as to where to place fragment instances
in concretely-located sites (e.g., some costs may depend on the geometry of the
SN, a consequence of C1); and (d) introduce when-scheduling, the decision as to
when, in concrete time, a fragment instance placed at a site is to be evaluated
(and queries being continuous, there are typically many such episodes) to address
C1 and C4. C2 is taken into account in changes throughout the multi-site phase.

For each of the following subsections that describe Steps 4 to 7, we indicate
how the proposed technique relates to DQP and to TinyDB, the former because
we have used established DQP architectures as our starting point, and the latter
because it is the most fully characterized proposal for a SN query processing
system. The following notation is used throughout the remainder of this section.
Given a query Q , let PQ denote the graph-representation of the query in physical-
algebraic form. Throughout, we assume that: (1) operators (and fragments) are
described by properties whose values can be obtained by traditional accessor
functions written in dot notation (e.g., PQ .Sources returns the set of sources in
PQ ); and (2) the data structures we use (e.g., sets, graphs, tuples) have functions
with intuitive semantics defined on them, written in applicative notation (e.g.,
for a set S , ChooseOne(S ) returns any s ∈ S ; for a graph G , EdgesIn(G) returns
the edges in G); Insert((v1 ,v2 ),G) inserts the edge (v1 ,v2 ) in G.
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Routing. Step 4 in Fig. 3 decides which sites to use for routing the tuples
involved in evaluating PQ . The aim is to generate a routing tree for PQ which
is economical with respect to the total energy cost required to transmit tuples.
Let G = (V , E , d) be the weighted connectivity graph for the target SN (e.g.,
the one in Fig. 2). Let PQ .Sources ⊆ G.V and PQ .Destination ∈ G.V denote,
respectively, the set of sites that are data sources, and the destination site, in
PQ . The aim is, for each source site, to reduce the total cost to the destination.
We observe that this is an instance of the Steiner tree problem, in which, given
a graph, a tree of minimal cost is derived which connects a required set of nodes
(the Steiner nodes) using any additional nodes which are necessary [1]. Thus,
the SNEEql-optimal routing tree RQ for Q is the Steiner tree for G with Steiner
nodes PQ .Sources ∪ {PQ .Destination}. The problem of computing a Steiner tree
is NP-complete, so the heuristic algorithm given in [1] (and reputed to perform
well in practice) is used to compute an approximation. The resulting routing
tree for Q3 over the network given in Fig. 2 is depicted in Fig. 7.

Relationship to DQP: The routing step has been introduced in the SN context
due to the implications of the high cost of wireless communications, viz., that the
paths used to route data between fragments in a query plan have a significant
bearing on its cost. Traditionally, in DQP, the paths for communication are solely
the concern of the network layer. In a sense, for SNEEql, this is also a preparatory
step to assist where-scheduling step, in that the routing tree imposes constraints
on the data flows, and thus on where operations can be placed.

Relationship to Related Work: In TinyDB, routing tree formation is under-
taken by a distributed, parent-selection protocol at runtime. Our approach aims,
given the sites where location-sensitive operators need to be placed, to reduce
the distance traveled by tuples. TinyDB does not directly consider the locations
of data sources while forming its routing tree, whereas the approach taken here
makes finer-grained decisions about which depletable resources (e.g., energy) to
make use of in a query. This is useful, e.g., if energy stocks are consumed at
different rates at different nodes.

Partitioning. Step 5 in Fig. 3 defines the fragmented form FQ of PQ by break-
ing up selected edges (child , op) ∈ PQ into a path [(child , ep), (ec , op)] where
ep and ec denote, respectively, the producer and consumer parts of an EXCHANGE

operator. The edge selection criteria are semantic, in the case of location- or
attribute-sensitive operators in which correctness criteria constrain placement,
and pragmatic in the case of an operator whose output size is larger than that
of its child(ren) in which case placement seeks to reduce overall network traf-
fic. Let Size estimate the size of the output of an operator or fragment, or the
total output size of a collection of operator or fragment siblings. The algorithm
that computes FQ is shown in Fig. 4. Fig. 8 depicts the distributed-algebraic
form (the output of where-scheduling) given the routing tree in Fig. 7 for the
physical-algebraic form in Fig. 6. The EXCHANGE operators that define the four
fragments shown in Fig. 8 are placed by this step. The fragment identifier Fn

denotes the fragment number. The assigned set of sites for each fragment (be-
low the fragment identifier) are determined subsequently in where-scheduling.
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Fragment-Definition(PQ , Size)
1 FQ ← PQ

2 while � post-order traversing FQ ,
� let op denote the current operator

3 do for each child ∈ op.Children
4 do if Size(op) > Size(op.Children) or op.LocationSensitive = yes
5 or op.AttributeSensitive = yes
6 then Delete((child , op), PQ) ; Insert((child , ep), PQ)
7 Insert((ep , ec), PQ) ; Insert((ec , op), PQ)
8 return FQ

Fig. 4. The partitioning algorithm

EXCHANGE has been inserted between each ACQUIRE and the JOIN, because the
predicate of the latter involves tuples from different sites, and therefore data
redistribution is required. Note also that an EXCHANGE has been inserted below
the DELIVER, because the latter is (as is ACQUIRE) location sensitive, i.e., there
is no leeway as to where it may be placed.

Relationship to DQP: This step differs slightly from its counterpart in DQP.
EXCHANGE operators are inserted more liberally at edges where a reduction in
data flow will occur, so that radio transmissions take place along such edges
whenever possible.

Relationship to Related Work: Unlike SNEEql/DQP, TinyDB does not par-
tition its query plans into fragments. The entire query plan is shipped to sites
which are required to participate in it, even if they are just relaying data.

Where-Scheduling. Step 6 in Fig. 3 decides which QEP fragments are to run
on which routing tree nodes. This results in the distributed-algebraic form of
the query. Creation and placement of fragment instances is mostly determined
by semantic constraints that arise from location sensitivity (in the case of AC-

QUIRE and DELIVER operators) and attribute sensitivity (in the case JOIN and
aggregation operators, where tuples in the same logical extent may be traveling
through different sites in the routing tree). Provided that location and attribute
sensitivity are respected, the approach aims to assign fragment instances to sites,
where a reduction in result size is predicted (so as to be economical with respect
to the radio traffic generated).

Let G , PQ and FQ be as above. Let RQ = Routing(PQ , G) be the routing
tree computed for Q . The where-scheduling algorithm computes DQ , i.e., the
graph-representation of the query in distributed-algebraic form, by deciding on
the creation and assignment of fragment instances in FQ to sites in the routing
tree RQ . If the size of the output of a fragment is smaller than that of its
child(ren) then it is assigned to the deepest possible site(s) (i.e., the one with
the longest path to the root) in RQ , otherwise it is assigned to the shallowest
site for which there is available memory, ideally the root. The aim is to reduce
radio traffic (by postponing the need to transmit the result with increased size).
Semantic criteria dictate that if a fragment contains a location-sensitive operator,
then instances of it are created and assigned to each corresponding site (i.e., one
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that acts as source or destination in FQ ). Semantic criteria also dictate that
if a fragment contains an attribute-sensitive operator, then an instance of it is
created and assigned to what we refer to as a confluence site for the operator.

To grasp the notion of a confluence site in this context, note that the extent
of one logical flow (i.e., the output of a logical operator) may comprise tuples
that, in the routing tree, travel along different routes (because, ultimately, there
may be more than one sensor feeding tuples into the same logical extent). In
response to this, instances of the same fragment are created in different sites, in
which case EXCHANGE operators take on the responsibility for data distribution
among fragment instances (concomitantly with their responsibility for mediat-
ing communication events). It follows that a fragment instance containing an
attribute-sensitive operator is said to be effectively-placed only at sites in which
the logical extent of its operand(s) has been reconstituted by confluence. Such
sites are referred to as confluence sites. For a JOIN, a confluence site is a site
through which all tuples from both its operands travel. In the case of aggregation
operators, which are broken up into three physical operators (viz., AGGR INIT,
AGGR MERGE, AGGR EVAL), the notion of a confluence site does not apply to an
AGGR INIT. For a binary AGGR MERGE (such as for an AVG, where AGGR MERGE

updates a (SUM, COUNT) pair), a confluence site is a site that tuples from both
its operands travel through. Finally, for an AGGR EVAL, a confluence site is a
site through which tuples from all corresponding AGGR MERGE operators travel.
The most efficient confluence site to which to assign a fragment instance is con-
sidered to be the deepest, as it is the earliest to be reached in the path to the
destination and hence the most likely to reduce downstream traffic.

Let PQ and RQ be as above. Let s Δ op be true iff s is the deepest confluence
site for op. The algorithm that computes DQ is shown in Fig. 5. The resulting
DQ for the example query is shown in Fig. 8. It can be observed that instances
of F2 and F3 have been created at multiple sites, as these fragments contain
location-sensitive ACQUIRE operators, whose placement is dictated by the schema
definition in Fig. 1. Also, a single instance of attribute-sensitive F1 has been
created and assigned to site 7, the deepest confluence site where tuples from
both F2 and F3 are available (as it is a non-location-sensitive fragment and has
been placed according to its expected output size, to reduce communication).
Note also the absence of site 3 in Fig. 8 wrt. Fig. 7. This is because site 3 is only
a relay node in the routing tree.

Relationship to DQP: Compared to DQP, here the allocation of fragments
is constrained by the routing tree, and operator confluence constraints, which
enables the optimizer to make well-informed decisions (based on network topol-
ogy) about where to carry out work. In classical DQP, the optimizer does not
have to consider the network topology, as this is abstracted away by the network
protocols. As such, the corresponding focus of where-scheduling in DQP tends
to be on finding sites with adequate resources (e.g., memory and bandwidth)
available to provide the best response time (e.g., Mariposa [22]).

Relationship to Related Work: Our approach differs from that of TinyDB,
since its QEP is never fragmented. In TinyDB, a node in the routing tree either
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Fragment-Instance-Assignment(FQ , RQ , Size)
1 DQ ← FQ

2 while � post-order traversing DQ

� let f denote the current fragment
3 do if op ∈ f and op.LocationSensitive = yes
4 then for each s ∈ op.Sites
5 do Assign(f .New, s, DQ)
6 elseif op ∈ f and op.AttributeSensitive = yes
7 andSize(f ) < Size(f .Children)
8 then while � post-order traversing RQ ,

� let s denote the current site
9 do if s Δ op

10 then Assign(f .New, s , DQ )
11 elseif Size(f ) < Size(f .Children)
12 then for each c ∈ f .Children
13 do for each s ∈ c.Sites
14 do Assign(f .New, s , DQ )
15 else Assign(f .New, RQ .Root, DQ)
16 return DQ

Fig. 5. The where-scheduling algorithm
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Fig. 6. Q3 Physical-Algebraic Form
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Fig. 7. Q3 Routing Tree

(i) evaluates the QEP, if the site has data sources applicable to the query, or
(ii) restricts itself to relaying results to its parent from any child nodes that
are evaluating the QEP. Our approach allows different, more specific workloads
to be placed in different nodes. For example, unlike TinyDB, it is possible to
compare results from different sites in a single query, as in Fig. 8. Furthermore,
it is also possible to schedule different parts of the QEP to different sites on
the basis of the resources (memory, energy or processing time) available at each
site. The SNEEql optimizer, therefore, responds to resource heterogeneity in the
fabric. TinyDB responds to excessive workload by shedding tuples, replicating
the strategy of stream processors (e.g., STREAM [17]). However, in SNs, since
there is a high cost associated with transmitting tuples, load shedding is an
undesirable option. As the query processor has control over data acquisition, it
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4313 F0
4344

Fig. 9. Q3 Agenda

seems more appropriate to tailor the optimization process so as to select plans
that do not generate excess tuples in the first place.

When-Scheduling. Step 7 in Fig. 3 stipulates execution times for each frag-
ment. Doing so efficiently is seldom a specific optimization goal in classical DQP.
However, in SNs, the need to co-ordinate transmission and reception and to abide
by severe energy constraints make it important to favor duty cycles in which the
hardware spends most of its time in energy-saving states. The approach adopted
by the SNEEql compiler/optimizer to decide on the timed execution of each frag-
ment instance at each site is to build an agenda that, insofar as permitted by the
memory available at the site, and given the acquisition rate α and the delivery
time δ set for the query, buffers as many results as possible before transmitting.
The aim is to be economical with respect to both the time in which a site needs
to be active and the amount of radio traffic that is generated.

The agenda is built by an iterative process of adjustment. Given the memory
available at, and the memory requirements of the fragment instances assigned to,
each site, a candidate buffering factor β is computed for each site. This candidate
β is used, along with the acquisition rate α, to compute a candidate agenda. If
the candidate agenda makespan (i.e., the time that the execution of the last
task is due to be completed) exceeds the smallest of the delivery time δ and
the product of α and β, the buffering factor is adjusted downwards and a new
candidate agenda is computed. The process stops when the makespan meets the
above criteria. Let Memory, and Time, be, respectively, a model to estimate the
memory required by, and the execution time of, an operator or fragment. The
algorithm that computes the agenda is shown in Fig. 10 and 11.

The agenda can be conceptualized as a matrix, in which the rows, identified
by a relative time point, denote concurrent tasks in the sites which identify the
columns. For Fig. 8, the computed agenda is shown in Fig. 9, where α = 3000ms,
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When-Scheduling(DQ, RQ , α, δ, Memory, Time)
1 while � pre-order traversing RQ ,

� let s denote the current site
2 do reqMeme ← reqMemf ← 0
3 for each f ∈ s.AssignedFragments
4 do x ← Memory(f .EXCHANGE)
5 reqMemf ← + Memory(f ) - x
6 reqMeme ← + x

7 β∗[s] ← � s.AvailableMemory−reqMemf

reqMeme
�

8 β ← min(β∗)
9 while agenda .Makespan > min(α ∗ β, δ)

10 do agenda ← Build-Agenda(DQ, RQ , α, β, Time)
11 decr(β)
12 return agenda

Fig. 10. Computing a SNEEql Execution Schedule

β = 2 and δ = 5000ms. Thus, a non-empty cell (t, s) with value a, denotes that
task a starts at time t in site s. In an agenda, there is a column for each site and
a row for each time when some task is started. Thus, if cell (t, s) = a, then at
time t in site s, task a is started. A task is either the evaluation of a fragment
(which subsumes sensing), denoted by Fn in Fig. 9, where n is the fragment
number, or a communication event, denoted by tx n or rx n, i.e., respectively,
tuple transmission to, or tuple reception from, site n. Note that leaf fragments
F2 and F3 are annotated with a subscript, as they are evaluated β times in each
agenda evaluation. Blank cells denote the lack of a task to be performed at that
time for the site, in which case, an OS-level power management component is
delegated the task of deciding whether to enter a energy-saving state.

In SNEEql (unlike TinyDB), tuples from more than one evaluation time can
be transmitted in a single communication burst, thus enabling the radio to be
switched on for less time, and also saving the energy required to power it up
and down. This requires tuples between between evaluations to be buffered, and
results in an increase in the time-to-delivery. Therefore, the buffering factor is
constrained by both the available memory and by user expectations as to the
delivery time. Note that, query evaluation being continuous, the agenda repeats.
The period with which it does so is p = αβ, i.e., p = 3000 ∗ 2 = 6000 for the
example query. Thus, the acquisition rate α dictates when an ACQUIRE executes;
α and the buffering factor β dictate when a DELIVER executes. In this example,
note that the agenda makespan is 4344ms. This is calculated by summing the
duration of tasks in the agenda (taking into account whether each task has been
scheduled sequentially, or concomitantly, in relation to other tasks). Therefore,
the delivery time specified in Fig. 1 is met by the example agenda.

Relationship to DQP: The time-sensitive nature of data acquisition in SNs,
the delivery time requirements which may be expressed by the user, the need for
wireless communications to be co-ordinated and for sensor nodes to duty-cycle,
all make the timing of tasks an important concern in the case of SNs. In DQP
this is not an issue, as these decisions are delegated to the OS/network layers.
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Build-Agenda(DQ, RQ , α, β, Time)
� schedule leaf fragments first

1 for i ← 1 to β
2 do for each s ∈ RQ .Sites
3 do nextSlot [s ] ← α ∗ (i − 1)
4 while � post-order traversing DQ

� let f denote the current fragment
5 do if f .IsLeaf = yes
6 then s.f .ActAt ← [ ]
7 for each s ∈ f .Sites
8 do s.f .ActAt.Append nextSlot [s]
9 nextSlot [s ] ← + Time(s .f )

� schedule non-leaf fragments next
10 while � post-order traversing RQ ,

� let s denote the current site
11 do while � post-order traversing DQ

� let f denote the current fragment
12 do if f ∈ s.AssignedFragments
13 then f .ActAt ← nextSlot [s ]
14 nextSlot [s ] ← + Time(f )*β

� schedule comms between fragments
15 s.TX.ActAt ← max(nextSlot [s],nextSlot [s .Parent])
16 s.Parent.RX(s).ActAt ← s.TX.ActAt
17 nextSlot [s ] ← + Time(s .TX)
18 nextSlot [s .Parent]) ← + s.Parent.RX
19 return agenda

Fig. 11. The agenda construction algorithm

Relationship to Related Work: In TinyDB, cost models are used to determine
an acquisition rate to meet a user-specified lifetime. The schedule of work for each
site is then determined by its level in the routing tree and the acquisition rate, and
tuples are transmitted downstream following every acquisition without any buffer-
ing. In contrast, our approach allows the optimizer to determine an appropriate
level of buffering, given the delivery time constraints specified by the user, which
results in significant energy savings as described in Section 4 without having to
compromise the acquisition interval. Note that this differs from the orthogonal
approach proposed in TiNA [26], which achieves energy savings by not sending
a tuple if an attribute is within a given threshold with respect to the previous
tuple. It would not be difficult to incorporate such a technique into the SNEEql

optimizer for greater energy savings. Zadorozhny [16] addresses a subset of the
when-scheduling problem; an algebraic approach to generating schedules with as
many non-interfering, concurrent communications as possible, is proposed. It is
functionally similar to the proposed Build-Agenda algorithm, although it only
considers the scheduling of communications, and not computations as we do.

3.3 Phase 3: Code Generation

Step 8 in Fig. 3 generates executable code for each site based on the distributed
QEP, routing tree and agenda. The current implementation of SNEEql generates
nesC [27] code for execution in TinyOS [28], a component-based, event-driven
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Fig. 12. Generated Code for Site 7 in Fig. 9

runtime environment designed for wireless SNs. nesC is a C-based language for
writing programs over a library of TinyOS components (themselves written in
nesC). Physical operators, such as those described in this and the previous sec-
tion, are implemented as nesC template components. The code generator uses
these component templates to translate the task-performing obligations in a site
into nesC code that embodies the computing and communication activity de-
picted in abstract form by diagrams like the one in Fig. 12. The figure describes
the activity in site 7, where the join (as well as sensing) is performed. In the
figure, arrows denote component interaction, the black-circle end denoting the
initiator of the interaction. The following kinds of components are represented
in the figure: (i) square-cornered boxes denote software abstractions of hardware
components, such as the sensor board and the radio; (ii) dashed, round-cornered
boxes denote components that carry out agenda tasks in response to a clock
event, such as a communication event or the evaluation of a QEP fragment;
(iii) ovals denote operators which comprise fragments; note the the correspon-
dence with Fig. 8 (recall that an EXCHANGE operator is typically implemented
in two parts, referred to as producer and consumer, with the former communi-
cating with the upstream fragment, and the latter, the downstream one); and
(iv) shaded, round-cornered boxes denote (passive) buffers onto which tuples are
written/pushed and from which tuples are read/pulled by other components.

Fig. 12 corresponds to the site 7 column in the agenda in Fig. 9 as follows.
Firstly, the acquisitional fragment F2 executes twice and places the sensed tuples
in the F2 output tray. Subsequently, tuples are received from sites 6 and 3, and
are placed in the F2 output tray and F3 output tray accordingly. Inside fragment
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F1, an exchange consumer gets tuples from F2 and another one gets tuples from
F3 for the NL JOIN. The results are fetched by a producer that writes them to the
F1 output tray. Finally, tx9 transmits the tuples to site 9.

4 Experimental Evaluation

The goal of this section is to present experimental evidence we have collected in
support of our overall research hypothesis, viz., that the extensions (described
in Section 3) to DQP techniques that are proven in the case of robust networks
lead to effective and efficient DQP over SNs. The experiments are analytical,
i.e., aimed at collecting evidence as to the performance of the code produced by
the SNEEql compiler/optimizer.

Experimental Design. Our experimental design centered around the aim of
collecting evidence about the performance of our approach for a range of query
constructs and across a range of QoS expectations. The QoS expectations we
used were acquisition interval and delivery time. The evidence takes the form of
measurements of the following performance indicators: network longevity, aver-
age delivery time, and total energy consumption. The queries used are generated
from those in Fig. 1 (denoted Q1, Q2 and Q3 in the graphs) as follows: (1) in
experiments where the acquisition rate is varied, the acquisition rate actually
used in the query expression is not, of course, the one in Fig. 1, but should
instead be read off the x-axis; and (2) varying the acquisition rate also requires
that the startTime parameter in the TIME WINDOW over the inflow extent of
Q3 is adjusted accordingly at each point in the x-axis, so that the scope and
the acquisition rate are consistent with one another at every such point. In the
experiments, we assume the selectivity of every predicate to be 1, i.e., every
predicated evaluates to true for every tuple. This is so because it is the worst-
case scenario in terms of the dependent variables we are measuring, viz., energy
consumption and network longevity, as it causes the maximum amount of data
to flow through the QEP (and hence through the routing tree formed for it over
the underlying network).

Experimental Set-Up. The Experiments were run using Avrora [29], which
simulates the behavior of SN programs at the machine code level with cycle-
accuracy, and provides energy consumption data for each hardware component.
The simulator ran executables compiled from TinyOS 1.1.15. All results are for
600 simulated seconds. A 10-node SN (depicted in Fig. 2 and the schema in
Fig. 1) and 30-node SN are simulated in the experiments. The 30-node SN, not
shown in this paper due to space limitations, has the same proportion of sources
as the 10-node SN. The sensor nodes we have simulated were [Type = Mica2,
CPU = 8-bit 7.3728MHz AVR, RAM = 4K, PM = 128K, Radio = CC1000,
Energy Stock = 31320 J (2 Lithium AA batteries)].

Experiment 1: Impact of acquisition interval on total energy consumption.
SNs often monitor remote or inaccessible areas (e.g., [19]), and a significant
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part of the total cost of ownership of a SN deployment is influenced by the
energy stock required to keep it running. Results are reported in Fig. 13. The
following can be observed: (i) As the acquisition rate α is increased, the total
energy consumption decreases, as the query plan is acquiring, processing and
transmitting less data overall, and sleeping for a longer proportion of the query
evaluation process. (ii) A point is reached when increasing the acquisition rate
leads to a marginally lower energy saving, due to the constant overhead incurred
by having most of the components in a low-power state. The overhead is constant
for the default Mica2 sensor board which is simulated, as it does not have a low
power state, and is therefore always on. (iii) The radio energy consumption
shrinks disproportionately compared to the CPU, because in relative terms, the
energy saving when in a low power state is much greater for the radio than
it is for the CPU. (iv) Q2 has the lowest energy consumption because in the
aggregation, the tuples from the source sites are reduced to a single tuple; in
contrast, Q3 joins tuples from the inflow and outflow extents which comprise
all tuples in each acquisition, and therefore consumes the most energy.

Experiment 2: Impact of acquisition interval on network longevity. The lifetime
of a SN deployment is a vital metric as it indicates how often the SN energy
stock will need to be replenished. Note that, here, network longevity is assumed
to be the time it takes for the first node in the routing tree to fail, so this is, in
a sense, a shortest-time-to-failure metric. Fig. 14 reports the results obtained.
It can be observed that as acquisition interval increases, energy savings accrue,
and hence network longevity increases, albeit with diminished returns, for the
same reasons as in Experiment 1.

Experiment 3: Impact of delivery time on network longevity. For some appli-
cations, network longevity is of paramount importance and a delay in receiving
the data may be tolerated (e.g., [19]), whereas in other applications it may be
more important to receive the data quickly with less regard to preserving en-
ergy (e.g., [20]). Results which report the relationship between delivery time and
longevity are shown in Fig. 15. It can be observed that: (i) The optimizer reacts
to an increase in tolerable delivery time δ by increasing β, which in turn leads to
an increase in network longevity – in other words, the optimizer empowers users,
by enabling them to trade-off delivery time for greater network longevity; and (ii)
Inflection points occur when increasing the buffering factor does not reduce en-
ergy consumption. This is because the when-scheduling algorithm assumes that
increasing the buffering factor is always beneficial; this is however not always the
case. A higher buffering factor may lead to a number of tuples being transmitted
at a time that cannot be packed efficiently into a message, leading to padding
in the message payload. As an example, consider the case where a single source
node is being queried, β = 4, the number of tuples/message = 3. Packets will
be formed of 3 tuples and then 1 tuple, which is inefficient. As a result, more
messages need to be sent overall, leading to a higher energy consumption, and
hence, a decreased network lifetime. This demonstrates that in order to ascer-
tain an optimal buffering factor, minimizing the padding of messages is also an
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Fig. 13. Energy consumption vs. α (in seconds)
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Fig. 14. Network Longevity vs. α
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Fig. 15. Network Longevity vs. δ

important consideration. However, we note that maximizing the buffering does
lead to an overall improvement in network longevity.

To summarize, we can now ascertain that (i) the SNEEql optimizer exhibits
desirable behaviors for a broad range of different scenarios; (ii) SNEEql allows
different qualities of service (e.g., delivery time and lifetime) to be traded-off.
This demonstrates that SNEEql delivers quantifiable benefits vis-à-vis the seminal
contribution in the SN query processing area.

5 Conclusions

In this paper we have described SNEEql, a SN query optimizer based on the
two-phase optimization architecture prevalent in DQP. In light of the differences



Comprehensive Optimization of Declarative Sensor Network Queries 359

between SNs and robust networks, we have highlighted the additional decision-
making steps which are required, and the different criteria that need to be applied
to inform decisions. We have demonstrated that, unlike TinyDB which performs
very limited optimization, the staged decision-making approach in SNEEql offers
benefits, including (1) the ability to schedule different workloads to different sites
in the network, potentially enabling more economical use of resources such as
memory, and to exploit heterogeneity in the SN, and (2) the ability to empower
the user to trade-off conflicting qualities of service such as network longevity
and delivery time. The effectiveness of the SNEEql approach of extending a DQP
optimizer has been demonstrated through an empirical evaluation, in which the
performance of query execution is observed to be well behaved under a range
of circumstances. It can therefore be concluded that much can be learned from
DQP optimizer architectures in the design of SN optimizer architectures.
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Abstract. Querying XML data is based on the specification of structural patterns
which in practice are formulated using XPath. Usually, these structural patterns
are in the form of trees (Tree-Pattern Queries – TPQs). Requirements for flexi-
ble querying of XML data including XML data from scientific applications have
motivated recently the introduction of query languages that are more general and
flexible than TPQs. These query languages correspond to a fragment of XPath
larger than TPQs for which efficient non-main-memory evaluation algorithms are
not known.

In this paper, we consider a query language, called Partial Tree-Pattern Query
(PTPQ) language, which generalizes and strictly contains TPQs. PTPQs repre-
sent a broad fragment of XPath which is very useful in practice. We show how
PTPQs can be represented as directed acyclic graphs augmented with “same-
path” constraints. We develop an original polynomial time holistic algorithm for
PTPQs under the inverted list evaluation model. To the best of our knowledge,
this is the first algorithm to support the evaluation of such a broad structural frag-
ment of XPath. We provide a theoretical analysis of our algorithm and identify
cases where it is asymptotically optimal. In order to assess its performance, we
design two other techniques that evaluate PTPQs by exploiting the state-of-the-
art existing algorithms for smaller classes of queries. An extensive experimental
evaluation shows that our holistic algorithm outperforms the other ones.

1 Introduction

XML data are often encountered in e-science (astronomy, biology, earth science, etc.),
natural language processing, digital entertainment, social network analysis, and more.
Querying XML data is based on the specification of structural patterns. In practice,
these structural patterns are specified using XPath [1], a language that lies at the core
of the standard XML query language XQuery [1]. Usually, the structural patterns are in
the form of trees (Tree-Pattern Queries – TPQs). A restrictive characteristic of TPQs is
that they impose a total order for the nodes in every path of the query pattern. However,
recent applications of XML require querying of data whose structure is complex [2] or
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is not fully known to the user [3,4,5,6], or integrating XML data sources with differ-
ent structures [7,3,4]. In order to satisfy these requirements, different approaches are
adopted that range from using unstructured keyword queries [7] to extending XQuery
with keyword search capabilities [8,3]. TPQs are not expressive enough to specify these
new types of queries. Larger subclasses of XPath are required for which, up to now, ef-
ficient non-main-memory evaluation algorithms are not known.

In this paper, we consider a query language for XML, called Partial Tree-Pattern
Query (PTPQ) language. PTPQs generalize and strictly contain TPQs. They are flexible
enough to allow a large range of queries from keyword-style queries with no structure,
to keyword queries with arbitrary structural constraints, to fully specified TPQs. PTPQs
are not restricted by a total order for the nodes in a path of the query pattern since they
can constrain a number of (possibly unrelated) nodes to lie on the same path (same-path
constraint). These nodes together form a partial path. PTPQs can express XPath queries
with the reverse axes parent and ancestor, in addition to forward child and descendant
axes and branching predicates. They can also express the node identity equality (is-
same-node) operator of XPath by employing node sharing expressions. Overall, PTPQs
represent a broad fragment of XPath which is very useful in practice.

A broad fragment of XPath such as PTPQs can be useful only if it is complemented
with efficient evaluation techniques. A growing number of XML applications, in partic-
ular data-centric applications, handle documents too large to be processed in memory.
This is usually the case with scientific applications.

A recent approach for the non-main-memory evaluation of queries on XML data
assumes that the data is preprocessed and the position of every node in the XML doc-
ument tree is encoded [9,10,11]. Further, an inverted list is built on every node label.
In order to evaluate a query, the nodes of the relevant inverted lists are read in the pre-
order of their appearance in the XML tree. We refer to this evaluation model as inverted
lists model. Algorithms in this model [9,10,11] are based on stacks that allow encoding
an exponential number of pattern matches in a polynomial space. The advantage of the
inverted lists evaluation is that it can process large XML documents without preloading
them in the memory (non-main-memory evaluation). Unfortunately, existing non-main-
memory evaluation algorithms focus almost exclusively on TPQs.

Problem addressed. In this paper we undertake the task of designing an efficient evalu-
ation algorithm for PTPQs in the inverted lists model. This task is complex: as we show
later, due to their expressive power, PTPQs can only be represented as directed acyclic
graphs (dags) annotated with same-path constraints. Matching these query patterns to
XML trees requires the appropriate handling of both the structural constraints of the
dag, and the same-path constraints. These two types of constraints can be conflicting:
a matching that satisfies the structural constraints of the dag may violate the same-path
constraints, and vice versa.

One might wonder whether existing techniques can be used for efficiently evaluat-
ing PTPQs. In fact, as we show later in the paper, a PTPQ is equivalent to a set of
TPQs for which efficient algorithms exist. Unfortunately, this transformation leads to
a number of TPQs which, in the worst case, is exponential on the size of the PTPQ.
Our experimental results show that another technique that decomposes the PTPQ dag
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into simpler query patterns, which can be evaluated efficiently, also fails to produce
satisfactory performance.

Contribution. The main contributions of the paper are:
• We use a formalism to represent PTPQs as directed acyclic graphs (dags) annotated

with same-path constraints (Section 3.2). We show that PTPQs can express a broad
fragment of XPath which comprises reverse axes and the node identity equality (is-
same-node) operator in addition to forward axes and predicates (Section 3.3).
• We develop an efficient holistic evaluation algorithm for PTPQs called Partial-

TreeStack (Section 5.1). PartialT reeStack takes into account the dag form of
PTPQs and avoids redundant processing of subdags having multiple “parents”. It
wisely avoids checking whether node matches satisfy the dag structural constraints
when it can derive that they violate a same-path constraint. PartialT reeStack finds
solutions for the partial paths of the query and merge-joins them to produce the
query answer. When no parent-child relationships are present in the query dag, it
is guaranteed that every partial path solution produced will participate in the final
answer. Therefore, PartialT reeStack does not produce intermediate results.
• We provide a theoretical analysis of PartialT reeStack to show its polynomial time

and space complexity. We further show that under the reasonable assumption that the
size of queries is not significant compared to the size of data, PartialT reeStack
is asymptotically optimal for PTPQs without parent-child structural relationships
(Section 5.3)
• In order to assess the performance of PartialT reeStack, we design, for compar-

ison, two approaches that exploit existing state-of-the-art techniques for more re-
stricted classes of queries (Section 6.1): algorithm TPQGen, generates a set of
TPQs equivalent to the given PTPQ, and computes the answer of the PTPQ by taking
the union of their solutions. Algorithm PartialPathJoin decomposes the PTPQ
into partial-path queries and computes the answer of the PTPQ by merge-joining
their solutions.
• We implemented all three algorithms and conducted detailed experiments to compare

their performance. The experimental results show that PartialT reeStack outper-
forms the other two algorithms (Section 6.2).
• To the best of our knowledge, PartialT reeStack is the first algorithm in the in-

verted lists model that supports such a broad fragment of XPath.

2 Related Work

In this paper, we assume that queries are evaluated in the inverted lists evaluation model.
This evaluation model uses inverted lists built over the input data to avoid: (1) preload-
ing XML documents in memory, and (2) processing large portions of the XML docu-
ments that are not relevant to the query evaluation. Because of these advantages, many
query evaluation algorithms for XML have been developed in this model. These al-
gorithms broadly fall in two categories: the structural join approach [9,12], and the
holistic twig join approach [10,13,14,15,16,14]. All these algorithms, however, focus
almost exclusively on TPQs.
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The structural join approach first decomposes a TPQ into a set of binary descendant
or child relationships. Then, it evaluates the relationships using binary merge join. This
approach might not be efficient because it generates a large number of intermediate
solutions (that is, solutions for the binary relationships that do not make it to the answer
of the TPQ). Algorithms for structural join order optimization were introduced in [12].

The holistic twig join approach (e.g. TwigStack [10]) represents the state of the art
for evaluating TPQs. This approach evalutes TPQs by joining multiple input lists at a
time to avoid producing large intermediate solutions. Algorithm TwigStack is shown
optimal for TPQs without child relationships.

Several papers focused on extending TwigStack. For example, in [13], algorithm
TwigStackList evaluates efficiently TPQs in the presence of child relationships. Algo-
rithm iTwigJoin extended TwigStack by utilizing structural indexes built on the input
lists [14]. Evaluation methods of TPQs with OR predicates were developed in [15].

All the above algorithms are developed for TPQs and cannot be used nor extended so
that they evaluate PTPQs. The reason is that PTPQs are not mere tree patterns but dags
augmented with same-path constraints. Chen et al. [16] proposed twig join algorithms
that handle dag queries over graph structured data. Note that, the semantics of the dag
queries dealt with in [16] is different than the semantics of PTPQ dag queries studied
in this paper since their dag queries are matched against XML graphs and not trees.

Considerable work has also been done on the processing of XPath queries when the
XML data is not encoded and indexed (main-memory evaluation or streaming evalua-
tion). For example, [17] suggested polynomial main-memory algorithms for answering
full XPath queries. The streaming evaluation, though a single choice for a number of
applications, cannot be compared in terms of performance to the inverted lists evalua-
tion we adopt here. The reason is that in the streaming evaluation, no indexes or inverted
lists can be exploited and the whole XML document has to be sequentially scanned.

PTPQs were initially introduced in [4]. Their containment problem was studied in
[18] and PTPQ semantic issues were addressed in [5]. Relevant to our work are also
the evaluation algorithms for partial path queries [19,20]. Partial path queries are not a
subclass of TPQs but they form a subclass of PTPQs.

3 Data Model and Partial Tree Pattern Query Language

3.1 Data Model

XML data is commonly modeled by a tree structure. Tree nodes are labeled and repre-
sent elements, attributes, or values. Let L be the set of node labels. Tree edges represent
element-subelement, element-attribute, and element-value relationships. Without loss
of generality, we assume that only the root node of every XML tree is labeled by r ∈ L.
We denote XML tree labels by lower case letters. To distinguish between nodes with
the same label, every node in the XML tree has an identifier shown as a subscript of
the node label. For XML trees, we adopt the positional representation widely used for
XML query processing [9,10,11]. The positional representation associates with every
node a triplet (start,end,level) of values. The start and end values of a node are integers
which can be determined through a depth-first traversal of the XML tree, by sequentially
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assigning numbers to the first and the last visit of the node. The level value represents
the level of the node in the XML tree.

The positional representation allows efficiently checking structural relationships be-
tween two nodes in the XML tree. For instance, given two nodes n1 and n2, n1 is an
ancestor of n2 iff n1.start < n2.start, and n2.end < n1.end. Node n1 is the parent
of n2 iff n1.start < n2.start, n2.end < n1.end, and n1.level = n2.level− 1.

In this paper, we often need to check whether a number of nodes in an XML tree
lie on the same path. This check can be performed efficiently using the following
proposition.

Proposition 1. Given a set of nodes n1, . . . , nk in an XML tree T , let maxStart and
minEnd denote respectively the maximum start and the minimum end values in the
positional representations of n1, . . . , nk. Nodes n1, . . . , nk lie on the same path in T iff
maxStart≤ minEnd.

3.2 Query Language

Syntax. A partial tree-pattern query (PTPQ) specifies a pattern which partially deter-
mines a tree. PTPQs comprise nodes and child and descendant relationships between
nodes. The nodes are grouped into disjoint sets called partial paths. PTPQs are em-
bedded to XML trees. The nodes of a partial path are embedded to nodes on the same
XML tree path. However, unlike paths in TPQs the child and descendant relationships
in partial paths do not necessarily form a total order. This is the reason for qualifying
these paths as partial. PTPQs also comprise node sharing expressions. A node sharing
expression indicates that two nodes from different partial paths are to be embedded to
the same XML tree node. That is, the image of these two nodes is the same – shared –
node in the XML tree. The formal definition of a PTPQ follows.

Definition 1 (PTPQ). LetN be an infinite set of labeled nodes. Nodes inN are labeled
by a label in L. Let X and Y denote distinct nodes in N . A partial tree-pattern query is
a pair (S, N) where:

S is a list of n named sets p1, . . . , pn called partial paths (PPs). Each PP pi is a
finite set of expressions of the form X/Y (child relationship) or X//Y (descen-
dant relationship). We write X [pi]/Y [pi] (resp. X [pi]//Y [pi]) to indicate that
X [pi]/Y [pi] (resp. X [pi]//Y [pi]) is a relationship in PP pi. Child and descen-
dant relationships are collectively called structural relationships.

N is a set of node sharing expressions X [pi] ≈ Y [pj ], where pi and pj are distinct
PPs, and X and Y are nodes in PPs pi and pj respectively such that both of them
are labeled by the same label in L.

Figure 1(a) shows a PTPQ Q1 and Figure 1(b) shows the visual representation of Q1.
We use this representation later on in Section 6 to design a comparison algorithm for
evaluating PTPQs. Unless otherwise indicated, in the following, “query” refers to a
PTPQ. Note that the labels of the query nodes are denoted by capital letters to distin-
guish them from the labels of the XML tree nodes. In this sense, label l in an XML tree
and label L in a query represent the same label.
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(a) PTPQ Q1 (b) Visual representation of Q1 (c) Query graph of Q1 (d) The two TPQs of Q1

Fig. 1. A PTPQ and its three representations that are used by different algorithms in the paper

Semantics. The answer of a PTPQ on an XML tree is a set of tuples of nodes from the
XML tree that satisfy the structural relationships and the same path constraints of the
PTPQ. Formally:

Definition 2 (Query Embedding). An embedding of a query Q into an XML tree T
is a mapping M from the nodes of Q to nodes of T such that: (a) a node A[pj ] in
Q is mapped by M to a node of T labeled by a; (b) the nodes of Q in the same PP
are mapped by M to nodes that lie on the same path in T ;
(c) ∀X [pi]/Y [pi] (resp. X [pi]//Y [pi]) in Q, M(Y [pi]) is a child (resp. descendant) of
M(X [pi]) in T ; (d) ∀ X [pi] ≈ Y [pj ] in Q, M(X [pi]) and M(Y [pj ]) coincide in T .

We call image of Q under an embedding M a tuple that contains one field per node in
Q, and the value of the field is the image of the node under M . Such a tuple is also
called solution of Q on T . The answer of Q on T is the set of solutions of Q under all
possible embeddings of Q to T .

Graph representation for PTPQs. For our evaluation algorithm, we represent queries
as node labeled annotated directed graphs: a query Q is represented by a graph QG.
Every node X in Q corresponds to a node XG in QG, and vice versa. Node XG is
labeled by the label of X . Two nodes in Q participating in a node sharing expression
correspond to the same node in QG. Otherwise, they correspond to distinct nodes in
QG. For every structural relationship X//Y (resp. X/Y ) in Q there is a single (resp.
double) edge in QG. In addition, each node in QG is annotated by the set of PPs of
the nodes in Q it corresponds to. Note that these annotations allow us to express same-
path constraints. That is, all the nodes annotated by the same partial path have to be
embedded to nodes in an XML tree that lie on the same path.

Figure 1(c) shows the query graph of query Q1 of Figure 1(a). Note that a node in the
graph inherits all the annotating PPs of its descendant nodes. Because of this inheritance
property of partial path annotations we can omit in the figures the annotation of internal
nodes in queries when no ambiguity arises. For example, in the graph of Figure 1(c),
node A is annotated by the PPs p1, p2, and p3 inherited from its descendant nodes D,
E, and F .

Clearly, a query that has a cycle is unsatisfiable (i.e., its answer is empty on any XML
tree). Therefore, in the following, we assume a query is a dag and we identify a query
with its dag representation.
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3.3 Generality of Partial Tree Pattern Query Language

Clearly, the class of PTPQs cannot be expressed by TPQs. For instance, PTPQs can con-
strain a number of nodes in a query pattern to belong to the same path even if there is no
precedence relationship between these nodes in the PTPQ. Such a query cannot be ex-
pressed by a TPQ. TPQs correspond to the fragment XP{[],/,//} of XPath that involves
predicates([]), and child (/) and descendant (//) axes. In fact, it is not difficult to see that
PTPQs cannot be expressed either by the larger fragment XP{[],/,//,\,\\} of XPath that
involves, in addition, the reverse axes parent (\) and ancestor (\\). On the other hand,
PTPQs represent a very broad fragment XP{[],/,//,\,\\,≈} of XPath that corresponds to
XP{[],/,//,\,\\} augmented with the is operation (≈) of XPath2 [1]. The is operator is
a node identity equality operator. The conversion of an expression in XP{[],/,//,\,\\,≈}

to an equivalent PTPQ is straightforward. There is no previous inverted lists evaluation
algorithm that directly supports such a broad fragment of XPath.

Note that as the next proposition shows, a PTPQ is equivalent to a set of TPQs.

Proposition 2. Given a PTPQ Q there is a set of TPQs Q1, . . . , Qn in XP{[],/,//} such
that for every XML tree T , the answer of Q on T is the union of the answers of the Qis
on T .

As an example, Figure 1(d) shows the two TPQs for query Q1 of Figure 1(a), which
together are equivalent to Q1. Based on the previous proposition, one can consider
evaluating PTPQs using existing algorithms for TPQs. In Section 6.1, we present such
an algorithm. However, the number of TPQs that need to be evaluated can grow to be
large (in the worst case, it can be exponential on the number of nodes of the PTPQ).
Therefore, the performance of such an algorithm is not expected to be satisfactory. In
Section 5, we present our novel holistic algorithm, PartialTreeStack, that efficiently
evaluates PTPQs in the inverted lists evaluation model.

4 Data Structures and Functions for PTPQ Evaluation

We present in this section the data structures and operations we use for PTPQ evaluation
in the inverted lists model.

Query functions. Let Q be a query, X be a node in Q, and pi be a partial path in Q.
Node X is called sink node of pi, if pi annotates X but no any descendant nodes of X
in Q. We make use of the following functions in the evaluation algorithm.

Function sinkNodes(pi) returns the set of sink nodes of pi. Function partialPaths(X)
returns the set of partial paths that annotate X in Q and PPsSink(X) returns the set of
partial paths where X is a sink node. Boolean function isSink(X) returns true iff X
is a sink node in Q (i.e., it does not have outgoing edges in Q). Function parents(X)
returns the set of parent nodes of X in Q. Function children(X) returns the set of child
nodes of X in Q.

Operations on inverted lists. With every query node X in Q, we associate an inverted
list TX of the positional representation of the nodes labeled by x in the XML tree. The
nodes in TX are ordered by the their start field (see Section 3). To access sequentially
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the nodes in TX , we maintain a cursor. We use CX to denote the node currently pointed
by the cursor in TX and call it the current match of X . Operation advance(X) moves
the cursor to the next node in TX . Function eos(X) returns true if the cursor has reached
the end of TX .

Stacks. With every query node X in Q, we associate a stack SX . An entry e in stack
SX corresponds to a node in TX and has the following two fields:
1. A field consisting of the triplet (start, end, level) which is the positional represen-

tation of the corresponding node in TX .
2. A field ptrs which is an array of pointers indexed by parents(X). Given P ∈

parents(X), ptrs[P ] points to the highest among the entries in stack SP that corre-
spond to ancestors of e in the XML tree.

Stack operations. We use the following stack operations: push(SX ,entry) which
pushes entry on the stack SX , top(SX) which returns the top entry of stack SX , and
bottom(SX) which returns the bottom entry of stack SX . Boolean function empty(SX)
returns true iff SX is empty.

Initially, all stacks are empty, and for every query node X , its cursor points to the
first node in TX . At any point during the execution of the algorithm, the entries that
stack SX can contain correspond to nodes in TX before the current match CX . The
entries in a stack below an entry e are ancestors of e in the XML tree. Stack entries
form partial solutions of the query that can be extended to become the solutions as the
algorithm goes on.

Matching query subdags. Recall that CX denotes the current match of the query node
X . Below, we define a concept which is important for understanding the query evalua-
tion algorithm.

Definition 3 (Current Binding). Given a query Q, let X be a node in Q and QX be the
subdag (subquery) of Q rooted at X . The current binding of Q is the tuple β of current
matches of the nodes in Q. Node X is said to have a solution in β, if the matches of the
nodes of QX in β form a solution for QX .

If node X has a solution in β, then the following two properties hold: (1) CX is the
ancestor of all the other current matches of the nodes in QX , and (2) current matches
of the query nodes in QX in the same partial path lie on the same path in the XML tree.

When all the structural relationships in Q are regarded as descendant relationships,
we can show the following proposition.

Proposition 3. Let X be a node in a query Q where all the structural relationships are
regarded as descendant relationships, {Y1, . . . , Yk} be the set of child nodes of X in
Q, and {p1, . . . , pn} be the set of partial paths annotating X in Q. Let also β denote
the current binding of Q. Node X has a solution in β if and only if the following three
conditions are met:
1. All Yis have a solution in β.
2. CX is a common ancestor of all CYi s in the XML tree.
3. For each partial path pj , the current matches of all the sink nodes of pj that are

descendants of X lie on the same path in the XML tree.
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The proof follows directly from Definition 3. Clearly, if X is a sink node, it satisfies the
conditions of Proposition 3, and therefore, it has a solution in β.

As an example for Proposition 3, consider evaluating query Q3 of Figure 4(b) on the
XML tree of Figure 4(a). Suppose the cursors of R, A, B, D, C, E, G, and F are at r,
a1, b1, d1, c1, e1, g1, and f1, respectively. By Proposition 3, node D has a solution in
the the current binding β of Q3, since (1) child nodes E and F both have a solution in
β; (2) b1 is a common ancestor of e1 and f1; and (3) E and F are the only descendant
sink nodes of D in partial paths p1 and p2, respectively. However, node B does not have
a solution in β because the condition 3 of Proposition 3 is violated: g1 and f1, which
respectively are the current matches of the descendant sink nodes G and F in partial
path p2, are not on the same path in the XML tree.

5 PTPQ Evaluation Algorithm

The flexibility of the PTPQ language in specifying queries and its increased expressive
power makes the design of an evaluation algorithm challenging. Two outstanding rea-
sons of additional difficulty are: (1) a query is a dag (which in the general case is not
merely a tree) augmented with constraints, and (2) the same-path constraints should be
enforced for all the nodes in a partial path in addition to enforcing structural relation-
ships. In this section, we present our holistic evaluation algorithm PartialT reeStack,
which efficiently resolves these issues. The presentation of the algorithm is followed by
an analysis of its correctness and complexity.

5.1 Algorithm PartialTreeStack

Algorithm PartialT reeStack operates in two phases. In the first phase, it iteratively
calls a function called getNext to identify the next query node to be processed. So-
lutions to individual partial paths of the query are also computed in this phase. In the
second phase, the partial path solutions are merge-joined to compute the answer of the
query.

Function getNext. Function getNext is shown in Listing 1. It is called on a query
node and returns a query node (or null). Starting with the root R of the query dag Q,
function getNext traverses the dag in left-right and depth-first search mode. For every
node under consideration, getNext recursively calls itself on each child of that node.
This way, getNext first reaches the left-most sink node of Q. Starting from that sink
node, it tries to find a query node X with the following three properties:
1. X has a solution in the current binding β of Q but none of X’s parents has a solution

in β.
2. Let P be a parent of X in the invocation path of getNext. The current match of

X , i.e., CX , has the smallest start value among the current matches of all the child
nodes of P that have a solution in β.

3. For each partial path pi annotating X , CX has the smallest start value among the
current matches of all the nodes annotated by pi that have a solution in β.
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Listing 1. Function getNext(X)

1 if (isSink(X) ∨ knownSoln[X] ) then
2 return X
3 for (Yi ∈ children(X)) do
4 invPath[Yi] ← invPath[X] + ‘Yi’
5 Y ← getNext(Yi)
6 if (Y �= Yi ∧ Y �= X ) then
7 return Y
8 Ymin ← minargYi

{CYi
.start}, Ymax ←

maxargYi
{CYi

.start}, where Yi ∈ children(X)
∧ knownSoln[Yi]

9 while (CX .end < CYmax .start) do
10 advance(X)
11 if (CX .start < CYmin

.start) then
12 updateSPStatus(X)
13 if (∀pi ∈ partialPaths(X): SP [pi]) then
14 knownSoln[X] ← true
15 return X
16 else
17 return null

18 if (bottom(SX ) is an ancestor of CYmin
) then

19 if (∃P ∈ parents(Ymin): CP is an ancestor of
CYmin

) then
20 return the lowest ancestor of P among the

nodes in invPath[X]
21 if (∃ sink node Z ∈ Q: partialPaths(Z)⊆

partialPaths(Ymin)∧ CZ .start <
CYmin

.start) then
22 return the lowest ancestor of Z among the

nodes in invPath[X]
23 if (∀pi ∈ partialPaths(Ymin): SPYmin

[X, pi] �=
null) then

24 return Ymin

25 updateSPStatus(X)
26 if (∀pi ∈ partialPaths(X): SP [pi] )) then
27 return Ymin

28 else
29 return null

Node X is the node returned by getNext(R) to the main algorithm for processing.
The first property guarantees that: (1) CX is in a solution of QX , and (2) a query node
match in a solution of Q is always returned before other query node matches in the
same solution that are descendants of it in the XML tree. The third property guarantees
that matches of query nodes annotated by the same partial path are returned in the order
of their start value (i.e., according to the pre-order traversal of the XML tree).

During the traversal of the dag, function getNext discards node matches that are
guaranteed not to be part of any solution of the query by advancing the corresponding
cursors. This happens when a structural constraint of the dag or a same-path constraint
is violated.

Fig. 2. Traversal of a query
dag by getNext

Dealing with the query dag. Since Q is a dag, some nodes
of Q along with their subdags could be visited multiple
times by getNext during its traversal of Q. This happens
when a node has multiple parents in Q. Figure 2 shows a
scenario of the traversal of a query dag by getNext, where
node X has parents P1, . . . , Pk. Function getNext will
be called on X from each one of the k parents of X . To
prevent redundant computations, a boolean array, called
knownSoln, is used. Array knownSoln is indexed by
the nodes of Q. Given a node X of Q, if knownSoln[X ]
is true, getNext has already processed the subdag QX

rooted at X , and X has a solution in the current binding β of Q. In this case, subse-
quent calls of getNext on X from other parents of X are not processed on the subdag
QX since they are known to return X itself.

The traversal of the query nodes is not necessarily in accordance with the pre-order
traversal of the query node matches in the XML tree. It is likely that the current match
of a node X already visited by getNext has larger start value than that of a node that
has not been visited yet. If this latter node is an ancestor of X and has a match that
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Listing 2. Procedure updateSPStatus(X)

1 for (pi ∈ partialPaths(X)) do
2 let nodes denote the set of sink nodes of pi that are

descendants of X in Q
3 let node denote the node in nodes whose current

match has the smallest end value
4 matches1 ←{CY |Y ∈ nodes}
5 SP [pi] ← false
6 if (onSamePath(matches1)) then
7 SP [pi] ← true
8 else
9 if (∃Y ∈ nodes : ¬ empty(SY )) then

10 matches2 ← {empty(SY )?CY :
top(SY )|Y ∈ nodes}

11 if (onSamePath(matches2)) then
12 SP [pi] ← true
13 if (¬SP [pi]) then
14 advanceUntilSP(nodes)

15 if (noMoreSolns) then
16 return
17 for (every child node Y of X annotated by pi) do
18 SPY [X, pi] ← SP [pi]? Cnode : null

Function onSamePath(matches)
1 minEnd ← minm∈matches{m.end}
2 maxStart ← maxm∈matches{m.start}
3 return (maxStart ≤ minEnd)

Procedure advanceUntilSP(nodes)
1 repeat
2 minENode ← minargY ∈nodes{CY .end}
3 advance(minENode)
4 if (eos(minENode)) then
5 noMoreSolns ← true
6 matches ← {CY |Y ∈ nodes}
7 until (noMoreSolns ∨ onSamePath(matches))

participates in a solution of Q, this match should be returned by getNext before the
match of X in the same solution is returned. In order to enforce this returning order,
we let getNext “jump” to and continue its traversal from an ancestor of X before X is
returned (lines 19-20 in getNext). The target ancestor node of X is chosen as shown
in the example below: consider again the dag of Figure 2. The path from the root R to
X in bold denotes the invocation path of getNext from R to X . The invocation path
is recorded in an array invPath associated with each query node (line 4). Assume P1
is the node under consideration by getNext, and P1 has no solution in β. Assume also
that P2 has not yet been returned by getNext but has a solution in β. Function getNext
on P1 will return the lowest ancestor of P2 among the nodes of invPath[P1] (which is
node W ). This enforces getNext to go upwards along the invocation path of P1 until it
reaches W . From there, getNext continues its traversal on the next child V of W .

The same technique is also used when there is an unvisited node Z annotated by a
partial path that also annotates X , but the current match CZ of Z has a smaller start
value than CX . The existence of such a node is detected using the sink nodes of Q
(lines 21-22). This technique ensures that the matches of nodes in a same partial path
are returned by getNext in the order of their start value.

Dealing with the same-path constraint. Let X denote the node currently under consid-
eration by getNext. After getNext finishes its traversal of the subdag QX and comes
back to X , it invokes procedure updateSPStatus (lines 12 and 25). Procedure update-
SPStatus (shown in Listing 2) checks the satisfaction of the same-path constraints for
the subdag QX , and updates the data structures SP and SPY (described below) accord-
ingly to reflect the result of the check.

Data structure SP is a boolean array indexed by the set of partial paths annotating
X in the query Q. For each partial path pi, SP [pi] indicates whether the same-path
constraint for pi in QX is satisfied by the matches of nodes in QX (i.e., whether the
matches of the nodes that are below X and are annotated by pi in Q lie on the same
path in the XML tree). Let nodes denote the sink nodes of pi in QX (line 2 in update-
SPStatus). In order to check the same-path constraint for pi, it is sufficient to check
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whether the matches of sink nodes in nodes lie on the same path in the XML tree. Note
that the match of a sink node can be its current match or the one that has already been
returned by getNext and is now in its stack.

Procedure updateSPStatus uses function onSamePath to check if the matches
of a set of query nodes lie on the same path in the XML tree (lines 6 and 11). This
check is based on Proposition 1. If the same-path constraint is not satisfied, proce-
dure advanceUntilSP is invoked to advance the cursors of the nodes in nodes until
the current matches of the nodes lie on the same path in the XML tree or one of the
cursors reaches the end of its list. In the latter case, it is guaranteed that there are no
new solutions for Q. Hence, a boolean flag noMoreSolns is set to false in order for
PartialT reeStack to end the evaluation (line 5 in advanceUntilSP ). During each
iteration in advanceUntilSP , the node in nodes whose current match has the smallest
end value is chosen and its cursor is advanced (lines 2-3). This way of advancing the
cursors guarantees that all the matches of the nodes in nodes that satisfy the same-path
constraint will be eventually detected.

(a) Query Q2 (b) XML tree and positions of cursors of Q2

Fig. 3. A sequence of cursor movements result-
ing in the current matches of sink nodes A, B
and C of Q2 to lie on the same path

Figure 3 shows an example of cursor
movement during evaluation that results
in the current matches of the sink nodes
of a query to lie on the same path.

Every non-root query node Y in Q is
associated with a two-dimensional array
SPY . The first dimension of SPY is in-
dexed by the parents of Y in Q, while
the second one is indexed by the partial
paths annotating Y in Q. For every parent
X of Y and partial path pi, if the same-
path constraint for pi in QX is satisfied,
SPY [X, pi] stores the current match of node (line 18 in updateSPStatus). node de-
notes the sink node of pi in the subdag QX whose current match has the smallest end
value (line 3). Otherwise, SPY [X, pi] is set to null (line 18). Note that node is not nec-
essarily a node in QY but can be a node in the subdag rooted at a sibling of Y under the
common parent X . Array SPY is updated by procedure updateSPStatus when the
parent X of Y is under consideration by getNext, and Y has a solution in the current
binding of Q.

Array SPY records the execution states that are needed to prevent redundant com-
putations of getNext. For a selected node Y , the non-null values of SPY indicate that
node Y has a solution in the current binding of Q and should be returned by getNext
(lines 23-24 in getNext). In this case, no call to procedure updateSPStatus is needed.

Main Algorithm. The main part of PartialT reeStack repeatedly calls getNext(R)
to identify the next candidate node for processing. For a selected node X , Partial-
TreeStack removes from some stacks entries that are not ancestors of CX in the XML
tree. The cleaned stacks are: (1) the stack of X , (2) the parent stacks of X , and (3)
the stacks of sink nodes of every partial path of which X is a sink node. Subsequently,
PartialT reeStack checks if for every parent P of X , the top entry of stack SP and
CX satisfy the structural relationship between P and X in the query. If this is the case,
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we say that CX has ancestor extensions. Then, PartialT reeStack creates a new entry
for CX and pushes it on SX .

If X is a sink node of a partial path pi and the stacks of all the sink nodes of pi are
non-empty, it is guaranteed that the stacks contain at least one solution of pi. Subse-
quently, a procedure is invoked to iteratively output all the solutions of pi that involve
CX . Such a procedure can be found in [20].

Finally, all the previously generated partial path solutions are merge-joined to pro-
duce the answer of the query. In the interest of space, the details of the main part are
omitted.

5.2 An Example

We evaluate query Q3 of Figure 4(b) on the XML tree of Figure 4(a) using Algorithm
PartialT reeStack. The answer is shown in Figure 4(c). In Figure 5 we show different
snapshots of the query stacks during the execution of the algorithm. Initially, the cursors
of R, A, B, D, C, E, G, and F are at r, a1, b1, d1, c1, e1, g1, and f1, respectively. Before
the first call of getNext(R) returns r, g1 is discarded by advanceUntilSP because g1
and f1 are not on the same path.

(a) (b) (c)

Fig. 4. (a) An XML tree T , (b) Query Q3, (c) the answer
of Q3 on T

Right after the eighth call re-
turns e1, the stacks contain so-
lutions for the partial path p1,
and are produced by output-
PPSolutions (Figure 5(a)). At
this time, the cursors of R, A, B,
D, C, E, G, and F are at∞,∞,
b2, d2, c2, e2, g2, and f2 respec-
tively. In the next call, getNext
first goes up from D to R, then
continues on B because b2 is the
ancestor of d2. This call finally returns g2 since g2.start < d2.start. Subsequently, the
solutions for the partial path p2 are produced (Figure 5(b)). The eleventh call returns g3
instead of d2 because g3.start < d2.start. After f2 and c2 are returned, the solutions
for p2 and p1 are generated respectively in that order (Figure 5(c)). Finally, these partial
path solutions are merge-joined to form the answer of Q3 (Figure 4(c)).

Fig. 5. Three snapshots of the execution of PartialT reeStack on query Q3 and the XML tree
T of Figure 4 (the numbers labeling the pointers denote the call to getNext(R) as a result of
which these pointers were created)
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5.3 Analysis of PartialTreeStack

Correctness. Assuming that all the structural relationships in a PTPQ Q are regarded
as descendant, whenever a node X is returned by getNext(R), it is guaranteed that
the current match CX of X participates in a solution of subdag QX . These solutions
of QX constitute of a superset of its solutions appearing in the answer of Q. Moreover,
getNext(R) always returns a match before other descendant matches of it in a solution
of Q. In the main part of PartialT reeStack, CX is pushed on SX iff CX has ancestor
extensions. Whenever CX is popped out of its stack, all the solutions involving CX have
been produced. Based on these observations, we can show the following proposition.

Proposition 4. Given a PTPQ Q and an XML tree T , algorithm PartialT reeStack
correctly computes the answer of Q on T .

Complexity. Given a PTPQ Q and an XML tree T , let |Q| denote the size of the query
dag, N denote the number of query nodes of Q, P denote the number of partial paths
of Q, IN denote the total size of the input lists, and OUT denote the size of the answer
of Q on T . The ancestor dag of a node X in Q is the subdag of Q consisting of X
and its ancestor nodes. In [21], the recursion depth of X of Q in T is defined as the
maximum number of nodes in a path of T that are images of X under an embedding of
the ancestor dag of X to T . We define the recursion depth of Q in T , denoted by D, as
the maximum of the recursion depths of the query nodes of Q in T .

Theorem 1. The space usage of Algorithm PartialT reeStack is O(|Q| ×D).

The proof follows from the fact that: (1) the number of entries in each stack at any
time is bounded by D, and (2) for each stack entry, the size of ptrs is bounded by the
out-degree of the corresponding query node.

When Q has no child structural relationships, Algorithm PartialT reeStack ensures
that each solution produced for a partial path is guaranteed to participate in the answer
of Q. Therefore, no intermediate solutions are produced. Consequently, the CPU time
of PartialT reeStack is independent of the size of solutions of any partial path in a
descendant-only PTPQ query.

The CPU time of PartialT reeStack consists of two parts: one for processing input
lists, and another for producing the query answer. Since each node in an input list is
accessed only once, the CPU time for processing the input is calculated by bounding
the time interval between two consecutive cursor movements. The time interval is dom-
inated by updating array SPX for every node X and is O(|Q| × P ). The CPU time on
generating partial path solutions and merge-joining them to produce the query answer
is O((IN + OUT )×N).

Theorem 2. Given a PTPQ Q without child structural relationships and an XML tree
T , the CPU time of algorithm PartialT reeStack is O(IN × |Q| × P + OUT ×N).

Clearly, if the size of the query is insignificant compared to the size of data, Partial-
TreeStack is asymptotically optimal for queries without child structural
relationships.
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6 Experimental Evaluation

We ran a comprehensive set of experiments to assess the performance of PartialTree-
Stack. In this section, we report on its experimental evaluation.

6.1 Comparison Algorithms

As mentioned ealier, no previous algorithms exist in the inverted list model for the class
of PTPQs. In order to assess the performance of PartialTreeStack, we designed, for
comparison, two approaches that exploit existing techniques for more restricted classes
of queries. The first approach, called TPQGen, is based on Proposition 2. Given a
PTPQ Q, TPQGen: (1) generates a set of TPQs which is equivalent to Q, (2) uses the
state-of-the-art algorithm [10] to evaluate them, and (3) unions the results to produce
the answer of Q.

The second approach, called PartialPathJoin, is based on decomposing the given
PTPQ into a set of queries corresponding to the partial paths of the PTPQ (partial
path queries). For instance, for the PTPQ Q1 of Figure 1(a), the partial path queries
corresponding to the partial paths p1, p2, and p3 of Figure 1(b) are produced. Given
a PTPQ Q, PartialPathJoin: (1) uses the state-of-the-art algorithm [20] to evaluate
the corresponding partial path queries, and (2) merge-joins the results on the common
nodes (nodes participating in the node sharing expressions) to produce the answer of
the PTPQ.

6.2 Experimental Results

Setup. We ran our experiments on both real and synthetic datasets. As a real dataset,
we used the Treebank XML document 1. This dataset consists of around 2.5 million
nodes and its maximum depth is 36. It includes deep recursive structures. The syn-
thetic dataset is a set of random XML trees generated by IBM’s XML Generator 2.
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Fig. 6. Queries used in the experiments

This dataset consists of 1.5 mil-
lion nodes and its maximum
depth is 16. For each measure-
ment on the synthetic dataset, 10
different XML trees were used.
Each value displayed in the plots
is averaged over these 10 mea-
surements.

On each of the two datasets,
we tested the 4 PTPQs shown
in Figure 6. Our query set com-
prises a full spectrum of PTPQs,
from a simple TPQ to complex dags. The query labels are appropriately selected for the
Treebank dataset, so that they can all produce results. Thus, node labels R, A, B, C,

1 www.cis.upenn.edu/∼treebank
2 www.alphaworks.ibm.com/tech/xmlgenerator
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Fig. 7. Evaluation of PTPQs on the two datasets

D, E, F and G correspond to FILE, EMPTY , S, V P , SBAR, PP , NP and PRP ,
respectively, on Treebank.

We implemented all algorithms in C++, and ran our experiments on a dedicated
Linux PC (Core 2 Duo 3GHz) with 2GB of RAM.

Query execution time. We compare the execution time of TPQGen, PartialPathJoin
and PartialTreeStack for evaluating the queries in Figure 6 over the two datasets. Fig-
ures 7(a) and 7(b) present the evaluation results. As we can see, PartialTreeStack has
the best time performance, and in most cases it outperforms either TPQGen or Partial-
PathJoin by a factor almost 2. Its performance is stable, and does not degrade on more
complex queries and on data with highly recursive structures.

The execution time of TPQGen is high for queries with a large number of TPQs,
for example, EQ2. Query EQ2 is equivalent to 10 TPQs. TPQGen shows the worst
performance when evaluating EQ2 on both datasets (Figure 7(a) and 7(b)).

PartialPathJoin finds solutions for each partial path of the query independently. It
is likely that some of the partial path solutions do not participate in the final query
answer (intermediate solutions). The existence of intermediate solutions affects nega-
tively the performance of PartialPathJoin. For example, when evaluating EQ4 on the
synthetic data, PartialPathJoin shows the worst performance (Figure 7(b)), due to the
large amount of intermediate solutions generated.

Execution time varying the input size. We compare the execution time of the three al-
gorithms as the size of the input dataset increases. Figure 8(a) reports on the execution
time of the algorithms increasing the size of synthetic dataset for query EQ3. Parti-
alTreeStack consistenly has the best performance. Figure 8(b) presents the number of
solutions of EQ3 increasing the size of the dataset. As we can see, an increase in the
input size results in an increase in the output size (number of solutions). When the input
and the output size go up, the execution time of the algorithms increases. This confirms
the complexity results that show dependency of the execution time on the input and out-
put size. However, the increase in the execution time of TPQGen and PartialPathJoin is
sharper than that of PartialTreeStack. The reason is that PartialPathJoin is also affected
by the increase in the number of the intermediate solutions, while the performance of
TPQGen is affected by the evaluation of 6 TPQs equivalent to EQ3.
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Fig. 9. Evaluation of EQ3 on synthetic data with increasing depth

Execution time varying the input depth. We also compare the execution time of the
three algorithms as the depth of the input dataset increases. Figure 9(a) reports on the
execution time of the algorithms increasing the input depth of synthetic dataset (its
size is fixed to 1.5 million nodes) for query EQ3. In all the cases, PartialTreeStack
outperforms the other two algorithms. Figure 9(b) presents the number of solutions of
EQ3 increasing the input depth. As we can see, with the input depth increasing from
12 to 18, the output size increases from 0.4M to 46M . When the output size goes
up, the execution time of the algorithms increases. This again confirms our previous
theoretical complexity results. We also observe that as the input depth increases, the
execution time of PartialTreeStack increases very slowly. In contrast, the increase of
the execution time of PartialPathJoin is sharper than that of the other two algorithms.
The reason is that, for PartialPathJoin, an increase in the output size is accompanied
by an increase in the number of intermediate solutions produced during evaluation.
TPQGen does not increase sharper than PartialPathJoin. However, the execution time
of TPQGen is strongly affected by the number of TPQs equivalent to the PTPQ, which
in the worst case is exponential in the size of the PTPQ.

We also ran experiments to examine the impact of child relationships on the behavior
of the algorithms. The results confirm that the presence of child relationships negatively
affects the performance of PartialTreeStack, which nevertheless outperforms the other
two algorithms in all the test cases. We omit these results here in the interest of space.
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7 Conclusion

The motivation of this paper was the gap in the efficient evalution of broad fragments of
XPath that go beyond TPQs. We considered PTPQs, a query language that generalizes
and strictly contains TPQs. PTPQs can express a broad fragment of XPath. Because
of their expressive power and flexibility, they are useful for querying XML documents
whose structure is complex or not fully known to the user, and for integrating XML data
sources with different structures.

We designed PartialT reeStack, an efficient stack-based holistic algorithm for PT-
PQs under the inverted lists evaluation model. To the best of our knowledge, no previ-
ous algorithms exist in the inverted list mode that can efficiently evaluate such a broad
fragment of XPath. Under the reasonable assumption that the size of queries is not
significant compared to the size of data, PartialT reeStack is asymptotically optimal
for PTPQs without child structural relationships. Our experimental results show that
PartialT reeStack can be used in practice on a wide range of queries and on large
datasets with deep recursion. They also show that PartialT reeStack largely outper-
forms other approaches that exploit existing techniques for more restricted classes of
queries.

We are currently working on developing algorithms for the efficient computation of
PTPQs using materialized views in the inverted lists evaluation model.
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Mode Aware Stream Query Processing
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Abstract. Many scientific applications including environmental mon-
itoring, outpatient health care research, and wild life tracking require
real-time stream processing. While state-of-the-art techniques for pro-
cessing window-constrained stream queries tend to employ the delta re-
sult strategy (to react to each and every change of the stream sensor
measurements), some scientific applications only require to produce re-
sults periodically - making the complete result strategy a better choice.
In this work, we analyze the trade-offs between the delta and the com-
plete result query evaluation strategies. We then design a solution for
hopping window query processing based on the above analysis. In par-
ticular, we propose query operators equipped with the ability to accept
either delta or complete results as input and to produce either as out-
put. Unlike prior works, these flexible operators can then be integrated
within one mode aware query plan - taking advantage of both processing
methodologies. Third, we design a mode assignment algorithm to opti-
mally assign the input and output modes for each operator in the mode
aware query plan. Lastly, mode assignment is integrated with a cost-
based plan optimizer. The proposed techniques have been implemented
within the WPI stream query engine, called CAPE. Our experimental
results demonstrate that our solution routinely outperforms the state-
of-the-art single-mode solutions for various arrival rate and query plan
shapes.

1 Introduction

A diversity of modern scientific applications ranging from environmental mon-
itoring, outpatient health care research and wild life tracking require stream
processing capabilities. To process unbounded data in real time, stream process-
ing employs window predicates that restrict the number of tuples that must be
processed for each stream at a time. One can move the windows over the in-
put streams with the arrival of each new input tuple or periodically [1] [2], for
example, every 5 minutes or every 100 tuples. We refer to the queries with the
former kind of window movement as sliding window queries and with the later
as hopping window queries.

In this paper, we focus on hopping windows for several reasons (with sliding
being a special case with the smallest hop possible). First, the ability to display
or notify the end user is physically limited by the hardware. It is unnecessary
to update the results any faster than output hardware capabilities permit [3].
Second, even if the perfect device to display or notify the user at any speed
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was available, a user may not be able to respond at that rate. Third, even
assuming the users were able to react to information at the speed of modern
computers, the changes caused by one single tuple are very small, sometimes not
noticeable by the human eye. For these reasons, the user may only choose to be
notified periodically. Thus, hopping window queries can be commonly observed
in many applications [1] [4] [2]. However, previous works typically neglect to deal
with hopping window queries [5] [6] [7]. They implicitly process hopping window
queries just like sliding window queries [1], hence ignoring the opportunity of
designing processing techniques customized for hopping window queries.

In order to address the above problem, we analyzed the delta result approach
(DRA) and the complete result approach (CRA). A complete result is a set of
tuples that represents the query answer of the current window. A delta result is
a set of tuples that represents the difference between the query answer of two
consecutive windows. An operator that produces complete result is said to have
a complete output mode (CO). If the input of the operator is a complete result,
the operator is said to have a complete input mode (CI). If all the operators in a
query have both complete input and output mode, the query is processing under
CRA. Similarly, we can define delta result, delta input (DI), output (DO) mode
and DRA.

In the case windows move forward one unit at a time (the sliding case), the
update of the output is triggered by the arrival of each new tuple. Thus a large
portion of the current window will be similar to the previous one. The same
holds true for the result produced for the current window as well. Thus only
a small amount of tuples indicating changes needs to be sent out to the next
operator. However, in the case that windows move forward a large step at a time
(the hopping case), most tuples that belonged to the previous window would no
longer be valid for the current one. As a consequence, lots of new tuples would
be produced when DRA is employed.

The question now arises if we can devise a more suitable processing strategy
than maintaining the operators’ states and the query output one tuple at a time.
Let’s consider the complete result method. Each operator receives the complete
set of tuples belonging to the current windows from its upstream operators in
the query plan. Thus it can produce the complete set of tuples as query result
for the complete window for its downstream operators. In this scenario, neither
state nor query result maintenance is needed. The possible concern now would
be that tuples belonging to the overlapping part of two consecutive windows are
being processing repeatedly.

From the above comparison, we can see that neither method guarantees to
achieve the most efficient processing across different scenarios. Thus, we propose
the notion of a mode-aware query plan that utilizes both the complete result
and the delta result as intermediate representation between operators in differ-
ent branches of the query plan. In our mode-aware query plan, each operator
can work in either of the four possible input and output mode combinations
independently of its predecessor or successor operators. The decision of which
mode combination to assign to an operator depends on factors such as the size of
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the hop, the size of the window, the distribution of the data and the cost of the
query operators within the plan. We develop an algorithm, called mode assign-
ment, to assign the optimal mode configuration to each operator in a given plan
driven by a cost model. We also design a query plan optimizer that considers
mode assignment as part of cost-based optimization.

Contributions of this paper include:

– We study the trade-off between using the DRA and CRA in hopping win-
dow query processing. We then propose to seamlessly incorporate these two
approaches into a single query plan to reduce system processing costs.

– We design the set of core stream relational query operators to equip them
with dual input and output mode processing capabilities.

– Our mode assignment algorithm configures each operator within a given
query plan to run in the best input and output mode combination to produce
the optimal mode assignment. Our mode assignment algorithm is proven to
be optimal yet efficient. Time complexity is only O(n), where n is the number
of operators in the query plan.

– We extend conventional cost-based query optimization to consider the opera-
tor mode assignment problem together with operator positioning to produce
an optimal mode-aware query plan.

– In our experimental study, our mode-aware query plans significantly out-
perform the single-mode plans generated by the state-of-the-art data stream
processing solutions.

In the remainder of this paper, Section 2 describes the preliminary material.
Section 3 compares the pros and cons of DRA and CRA. Section 4 describes the
physical design of mode aware operators and presents the cost model. Section
5 discusses mode assignment, query plan optimization and rewriting heuristics.
Section 6 shows experimental results. Section 7 consists of related work, while
Section 8 concludes the paper.

2 PRELIMINARIES

2.1 Hopping Window Query Semantics

Window And Hop. In this paper, we use a CQL-like [1] syntax to specify
queries. In particular, we use the RANGE clause to express the size of the
window and the SLIDE clause to express the distance between two windows.

SELECT Istream (*)
FROM PosSpeedStr [RANGE 2 minutes SLIDE 1 minute]

In a hopping-window query above with SLIDE h over n input data streams,
S1 to Sn, assume we start processing at time T = 0, then the windows will move
forward at time T = 0+h, 0+2h, etc. Each input stream Sj is assigned a window
of size wj . At time instance T when the windows over the streams move forward
by an interval of h time units, the answer to the sliding-window query is equal
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Fig. 1. Window size and Hop Size

to the answer of the conventional relational query whose inputs are the elements
in the current window for each input stream. Figure 1 shows the relationship
between windows and hops. We can see that the boundaries of each window are
exactly h time units from the previous windows respectively for each stream. In
our discussion, we henceforth focus on the most commonly used window type,
namely time-based windows [7] [4] [8] [9], though count-based windows could be
processed in a similar manner.

Handling Timestamps For Tuples. Tuples from the input streams, S1 to
Sn, are timestamped upon their arrival at our system. A tuple t is assigned two
timestamps, t’s arrival time t.ts and t’s expected expiration time, t.Ets. For a
base tuple t belonging to an input stream Si, t.Ets = t.ts+wi is assigned to the
tuple upon its arrival into the system. Thus at time T, the current window for
stream Si contains the tuples that have arrived in between times T −wi and T .
Tuples arriving between times (T − wi) − h and T − h belong to the previous
window. Operators in the query plan handle the timestamps of the input and
output tuples based on the operator’s semantics [7]. However, while all tuples
logically expire latest at T = Ets, they may expire before Ets. We refer to such
expiration as premature expiration. An example of an operator that causes such
premature expiration is the difference operator.

2.2 Operator Classification

Continuous query operators can be divided into the following categories [5]:

– Monotonic operators produce an append-only output stream and there-
fore do not incur deletions from their answer set.

– Weakest non-monotonic (WKS) operators do not reorder incoming
tuples during processing. Rather tuples expire in the same order in which
they are generated by the operator (FIFO). Tuples are either dropped or
appended to the output stream immediately.

– Weak non-monotonic (WK) operators may reorder incoming tuples
during processing. Tuples may not expire result tuples in a FIFO order, but
their expiration time can be determined by their Ets.

– Strict non-monotonic (STR) operator may expire tuples at unpre-
dictable times, i.e., the expiration time of tuples produced by STR operators
is not guaranteed to be determined solely by their Ets. Instead a special sig-
nal is needed to indicate expiration.



384 M. Wei and E. Rundensteiner

Most interesting operators in continuous query processing are at least WKS
because windows have to applied in order to process infinite stream in finite
memory. Thus, we will not discuss monotonic operator in this paper. The above
classification initially introduced for sliding window queries in [5] also holds true
for hopping window queries because the movement of the window itself does not
reorder input tuples if DRA is employed.

However, the above classification is no longer applicable as is when CRA
is utilized. Recall that CRA sends out the complete result for each window.
Thus every tuple expires after the current window. Tuples belonging to the next
window will be reproduced. Although Ets will determine how many windows
a tuple belongs to, it does not determine when the tuple expires. Thus, when
CRA is utilized, every operator falls into the same category. We call this new
category less strict non-monotonic (LSTR). LSTR operator expires tuples
at a predictable time, but the expiration time of tuples cannot determined solely
by their Ets.

3 Comparison of DRA Versus CRA Query Processing

Delta Result Approach (DRA). DRA can transmit only positive tuples
through the query plan if the expiration times of all tuples can be determined
via their Ets. The operator learns about the current time T by reading the
newest positive tuple’s timestamp ts. Then tuples with Ets smaller than T will
be removed by the operator from its states. Such removal can be done locally
within each operator.

However, some issues have to be considered for this approach. First, in order
to quickly determine which tuples to expire, tuples in the operator states must
be ordered by their expiration timestamps. However, a data structure supporting
efficient expiration may not support operator semantics well. For example, while
a hash table is a very efficient data structure for join operator states; there is
no convenient way to order the tuples by their expiration timestamp. Also, a
potentially unpredictable delay may arise due to no positive tuple reaching the
root operator of the query plan if the lower level operators happen to be highly
selective. Lastly, if the query plan contains a difference operator and other STR
operators [5][7], premature expirations generated by these operators must be
explicitly. In the remainder, we will refer to it as explicit deletion signal (EDS).

The above problems can be addressed if we use negative tuples[7] to signal both
window semantics (via Ets) and operator semantics (EDS) expirations explicitly.
In other words, negative tuples are responsible for undoing the effect of previously
processed positive tuples. Negative tuples propagate through the query plan and
are processed by operators in a similar way like positive tuples. However instead
of causing insertions into operator states, they cause stateful operators to remove
the corresponding positive tuples from their state. The downside is that twice as
many tuples must be processed by the query plan because every tuple eventually
expires and generates a corresponding negative tuple. In the case of high-volume
streams, doubling the workload may adversely affect performance.
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Complete Result Approach (CRA). While using CRA, operators do not
need to store any tuples from previous windows. Therefore no state maintenance
is needed either. Each operator directly uses the complete result input to com-
pute its own complete result as output. CRA does not suffer from any of the
above problems identified for DRA. However, when many tuples contained in
two subsequent windows overlap, then CRA would not be utilizing the compu-
tation of the previously already computed result. In a situation where the result
is more expensive to compute than to maintain, CRA may not be a suitable
strategy.

From the above discussion, we can see that DRA captures the changes between
two windows while CRA presents the complete picture. By default, the CQL
syntax assumes the user wants the window to slide by the smallest time unit
the system can offer. In such special case it is naturally efficient to indicate the
changes between two consecutive windows compared to presenting the complete
result of the current window. On the other hand, in the extreme cases when two
windows do not overlap at all, all tuples from the previous windows will have
to be removed from the states. In this case, maintaining the states on a per
tuple-base as done by DRA is not desirable. In that cases, CRA can take full
advantage of maintenance free processing while its deficiencies are not applicable
here because little or no repeated computation is performed.

4 Mode Aware Physical Design

4.1 Conversion Operator

We design general purpose conversion operators that convert a delta result into
a complete result and vice versa. Such conversion operator can be stand alone
or integrate into the operator.

Switch from Delta to Complete. Let us first assume that the input of the
conversion operator is WKS, which means every tuple expires in the order of its
arrival. Then we design a linked list data structure that appends newly arriving
tuples at one end and expires old tuples at the other end. Thus at the end of
each hop, the conversion operator simply outputs its whole state. The cost for
such conversion is a a small constant multiplied by the size of the input.

If the input of the conversion operator is WK, we will partition tuples by
their Ets. Assume the current time is T . Then tuples with T <= Ets < T + h
belong to the first bucket. Tuples with T + h <= Ets < T + 2h belong to the
second bucket, and so on. Thus at the end of each hop, after outputting its
current buckets, the conversion operator can simply discard the oldest bucket.
Alternatively, if negative tuples are used to assist the expiration, we build a
hashtable indexed on the key of the tuples. Thus, for every expiration, a quick
hash look up is sufficient. In either case, the cost is linear in the size of the
input. If the input of the conversion operator is STR, negative tuples are a
must. Similar to WK, a hashtable can do the job efficiently. Thus the cost is the
same as WK.
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Switch from Complete to Delta. In order to support conversion from
complete result to delta result, we have to be able to efficiently determine the
difference between two sets of tuples. Hence, we will put the previous and the
current result into two hashtables respectively. Conversion from complete to
delta can be done in linear time in the size of the current complete result.

4.2 Operator Physical Design

In this subsection, we present the design of our mode aware query operators.
Window Select, Window Project, Window union. The select, project

and union operators process tuples on the fly. There is no need for them to store
any tuples as operator states. Thus they have no states to maintain and the
choice of input and output mode makes no difference. They process tuples just
like their sliding window counterparts.

Window Join. Nested loop or hash join can be used as join method for the
natural join operator[9]. However, nested loop is most suitable for small window.
Thus, we will not discuss the implementation of nested loop here. Instead, we
use two hashtables as operator states to hold tuples from streams S and R
respectively with the join attribute as the key to allow quick look-up for matched
tuples. In the DIDO case, processing a tuple is done in the same way for both
inputs. Insert, probe and purge have to be done on both sides thus join needs
to access previous input tuples which still fall into the current window while
processing the newly incoming tuples. Both positive and negative tuples will
trigger output if matched tuples are found. However, output tuples triggered by
negative tuples are negative. In the DICO case, instead of delta output, complete
output needs to be generated. To achieve this semantics, as tuples arrive, the
join operator keeps and maintains its previous output by purging out expired
tuples, if any. All the new tuples are processed in the same way as in DIDO.
Such maintenance is the only extra work compared to the DIDO case. In the
CICO case, we know that the current output contains everything we need to
know for the current window. Thus the operator can simply insert these tuples
into the state, then probes and concatenates matching tuples. After that, the
operator does not have to keep input tuples anymore. In the CIDO case, the
operator needs extra work to convert complete input into delta output. To do
that, previous outputted tuples are needed to be stored inside the operator.
Current output will have to be compared with the previous output.

Window Difference. We use hashtables to hold tuples for the difference op-
erator. A key of the hashtable correspond to the concatenation of all the attributes
in the input tuples. In the DIDO case, as new tuples arrive, the difference operator
has to maintain its states up-to-date by inserting positive tuples into the output
and purging out expired and invalid tuples. For every new tuple, the difference
operator determines whether to generate an output. In the DICO case, the differ-
ence produces its delta output first. In order to produce complete result, negative
tuples in the delta result are used to remove invalid tuples from the previous com-
plete result and positive tuples are added to the previous complete result. In the
CICO case, the difference operator does not keep its previous input, as the input is
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complete. Input tuples will all be inserted into the states of the operator and per-
form the difference at once. In the CIDO cases, besides the states, the previous
output is also needed for the conversion from complete to delta.

4.3 Cost Model for Operators

Each candidate plan is associated with a per-window cost. The cost includes
inserting new tuples into the state, processing them, expiring old tuples and
processing negative tuples if any. Such cost largely depends on operator’s imple-
mentation. For each operator we define the following symbols in Table 1.

Table 1. Cost model symbols

λ1 Left input rate
λ2 Right input rate (if the operator is unary, then λ2 = 0)
λo Output rate
Di number of tuples in delta input. Di = λi ∗ h
Ci number of tuples in complete input. Ci = λi ∗ wi

si size of the input si = Di, Ci

so size of the output
σ Selectivity
chash Hash constant
wi window size
|Wi| state size |Wi| = λi ∗ wi

h Slide distance

Selection, projection and union process each tuple in constant time, therefore
their cost is

∑
i λi. Their output rate is σi

∑
i λi. Union and projection has a se-

lectivity of σi = 1. Hashtables are utilized as join states for all mode combina-
tions. Thus in both DIDO and CICO cases the join cost for insert and lookup
is
∑

i si. In the DIDO case, the cost for concatenation of the matched tuples is
|W1|∗D2∗σ+|W2|∗D1∗σ. |W1|∗D2+|W2|∗D1 is cost for cross purge if we maintain
states eagerly. In the CICO case, the cost for concatenation is s1 ∗ s2 ∗ σ. There is
no state maintenace cost for the CICO case. In either case λo is equal to the num-
ber of tuples concatenated divided by min(w1, w2). For the difference operator,
hashtables are used as operator states. The cost of difference is at least chash

∑
i si.

In the DIDO case, the eager state maintenance cost is |W1| ∗D2 + |W2| ∗D1. In
both cases λo = (s1 ∗ σ)/w1. The cost for conversion from complete to delta and
vice versa is the same as the corresponding conversion operator.

5 Mode-Aware Query Optimization

As mentioned earlier, the representation of intermediate results alone can greatly
affect the execution cost of a plan. In this section, we discuss how to apply DRA
and CRA in a integrated fashion within single mode aware query plan. Then we
present several query plan optimization techniques for mode aware query plans.
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5.1 Mode Assignment

A query plan p is an ordered-tree structure composed of a collection of operators
denoted as OP . We now design a mode assignment algorithm that assigns a mode
combination to each operator op in p.

Mode constraint of operator op is represented by the tuple < I, O > where:

– I is a set of the modes of input streams.
– O is a set of the modes of the output requirement.

δ is a mapping function that δ(op) : op → M . M is a possible input and
output mode combination. The domain of M is DIDO, DICO, CICO, CIDO.
The domain of I is DI, CI . The domain of O is DO, CO. . If there is no constraint
on op, op.I and op.O each contains all the element in its domain. The root of
a plan is an operator that communicates with the application such as a display
device, a log file, even another query plan. Thus the O of root op must conform
to the constraints of the application. A query plan can have one or many leaf
operators. These operators receive inputs for the plan from source streams. I
of the leaf operator corresponds to the mode of the incoming streams. Other
operators in the query plan have no preset mode constraints. After associate
with δ, the operator is assigned a mode combination. Thus we also refer to δ(op)
as an assignment of a operator. Once assigned, op.I and op.O remain fixed. If we
associate each op in p with a δ, we attain an assignment A(p) for query plan p.
By default, we assume both input streams and output stream are in delta mode,
thus all operators in a query plan initially have DIDO assigned as their mode
combination.

We can also apply the assignment A(p) to the subplan of p, psub. A(psub) is a
subset of A(p) that consists of mapping δ for operators in the subplan psub. An
assignment A(p) is said to be compatible with another assignment A′(p) if and
only if O of δ for the root and I of δ for each leaf operator of p is the same as
A(p). In other words, externally, two assignments must have the same input and
output mode. For each given plan P , we can obtain a set of assignments A =
{A(p), A′(p),etc.}. For each assignment A(p), we can apply our cost model to
obtain a cost C(A(p)). Such cost is the cost of executing the plan p under the
assignment A(p). The mode assignment in A with minimum cost that conforms
to the input mode and output mode requirements of the plan as a whole is called
optimal mode assignment.

Theorem 1 (Theorem of Mode Assignment Optimality). If a given plan
p has an optimal assignment A(p), then for any sub-plan psub of p, A(psub) is
also optimal.

Proof (Proof of Mode Assignment Optimality). For the sake of contradiction,
suppose plan p has an optimal assignment A(p). But for a sub-plan psub, the
assignment A(psub) is not optimal. Then for psub, choosing another compatible
mode assignment A′(psub) can achieve a plan with lower cost while still sat-
isfying the input and output requirements for psub. C(A(psub)) is larger than
C(A′(psub)). If this is the case, we can substitute the assignment for plan psub
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with the new assigned A′ by replacing δ(op) with δ′(op) to obtain a better as-
signment A′′(p). But this contradicts the assumption that the assignment A(p)
for plan p is optimal. Thus, the assignment A(psub) must be optimal. �

If the query plan has neither input nor output requirements, a naive approach
enumerating all possible combinations for each operator will take exponential
time. Clearly brute force is not practical. Thus, we design a plan assignment
algorithm that is guaranteed to produce optimal assignment for a given plan in
O(n), where n is the number of operators in the given query plan. The pseudo
code is shown in Algorithm 1. The mode assignment algorithm traverses the
tree in postorder. It starts at the root of the plan and recursively determines the
mode for its children. In the algorithm, assignMode() attach two assignments to
the current: one with the least cost where O = CO , and the other with the least
cost where O = DO. Mode assign algorithm assigns mode directly if op is a leaf
operator. Otherwise it will recursively get the mode of the left and right child of
the current node. If two assignments for the same subplan are compatible, our
algorithm always picks the one with the lower cost. By ensuring each subplan has
an optimal assignment, as our algorithm traverses the tree once and an optimal
assignment is found in O(n) time.

Algorithm 1. assignMode (queryplan represented by root node)
1: if op is a leaf node then

2: assignMode(op)

3: else
4: for all opi ⊂ op.children do

5: assognMode(opi )

6: end for
7: assignMode(op)

8: end if

5.2 Optimal Mode Aware Plan Generation

Mode assignment alone can greatly improve the performance of a given plan.
However, it cannot guarantee a truly optimal plan. Thus, we now incorporate
the mode assignment into our cost-based plan search. In particular we employ a
dynamic programming-based solution due to its popularity for query optimiza-
tion [10] [11][12][13]. Other plan search algorithm could be equally employed. We
briefly describe our algorithm while readers interested in dynamic programming
can look at [10] [11][12] [13].

Our searchJoinOrder algorithm is shown in Algorithm 2. It considers all possi-
ble orderings to join the streams at the same time with mode assignment. First,
it considers all two-way join plans using the streams as building blocks and calls
the joinPlans() function to build a join plan p from these building blocks. Then
it applies assignMode(p) to obtain the cost of producing complete result and
delta result of p respectively. From the two-way join plans and the streams, our
searchJoinOrder algorithm then produces two three-way join plans with mini-
mal costs of producing complete result and delta result. After that, it generates
four-way join plans by considering all combinations of two two-way join plans
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Algorithm 2. searchJoinOrder(Join Graph)
1: for i = 2 to n do
2: for all S ⊂ R1, ..., Rn such that |S| = i do

3: optPlan(S)= �
4: for all O ⊂ S do

5: optPlan(S)=getMode( optPlan(S) )∪ getMode(joinPlans (optPlan(O), optPlan(S\O)))

6: prunePlans(optPlan(S))

7: end for
8: end for
9: end for
10: prunePlans(R1 , ..., Rn)

Algorithm 3. placeDifferenceOperator(extended Join Graph)
1: Plans= �
2: if RootGraph has difference source then

3: for i = 0 to n − 1 do

4: if Si is a difference source then

5: for i = 0 to n − 2 do

6: for all S ⊂ S0...Si−1, Si+1...Sn−1 such that |S| = i do

7: Remove S from RootGraph, ADD S to LeftChild and RightChild of Si

8: placeDifferenceOperator(Si .LeftChild)

9: placeDifferenceOperator(Si .RightChild)

10: Plans.AddPlan (searchJoinOrder(RootGraph))

11: Restore S
12: end for
13: end for
14: end if
15: end for
16: else
17: Plans.AddPlan(searchJoinOrder(RootGraph))

18: end if
19: PickOptimalPlan(Plans)

and all combinations of a three-way join plan with a source stream and so on.
The prunePlans() function discards unneeded plans. Pruning is possible because
A � B and B � A produce semantically identical results. Thus we only store
a plan with its assignment that produces DO with minimal cost and one that
produces CO with minimal cost. They are retained in optPlan (A, B).

We further enhance our algorithm to consider difference operators as shown
in Algorithm 3. Besides join ordering and mode assignment, placeDifferenceOp-
erator algorithm considers all possible positions of the difference operators in
query plan. The input of the algorithm is a plan with difference operators all
the way pushed to the lowest possible level. The parent of a difference operator
is an extended join graph. An extended join graph is a join graph where an
internal node may be the source stream of a difference operator. The children of
a difference operator are also extended join graphs. As the algorithm traverses
the search space, it applies the rewrite: S � (A − B) = (S � A) − (S � B). S
is a set of streams belonging to the parent of the difference operator. A and B
are streams belonging to the left child and right child of the difference operator
respectively. Our algorithm considers all possible cases to add S to A and B. It
first considers cases where |S| = 1. At these cases, we remove one stream from
the parent of the difference operator and add it to the left and right child. Then
apply Algorithm 2 to the modified children and parent of the difference operator.
After trying all possible cases with |S| = 1, we start with the original parent and
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children of the difference operator and try all possible cases with |S| = 2 and so
on until S contains every stream in the parent of the difference operator.

5.3 Heuristic Optimization

Optimal plan generation is not always practical due to the time constraint on
stream optimization. In that case, we would consider a two step process, namely
first heuristically optimize the plan shape then followed by our optimal mode
assignment algorithm to improve the performance of query optimization. In this
work, we first employ the following heuristic based on the difference pushdown
rule. However, other heuristics could be chosen. The rule is that we always push
the difference operator to the lowest level in a given query plan. Then we consider
to elevate each difference operator one stream at a time, We will stop if all
possible next elevations do not reduce the processing costs. In the case that the
hop/window ratio is large this is likely to give us an optimal plan if incorporated
with mode assignment. Other factors will also affect the effectiveness of this rule.
For example, if the selectivity of the difference operator is low, the difference
operator may greatly reduce the number of tuples that propagate through the
query plan. If we consider all hop/window ratios and operator selectivities to be
equally likely, pushing the difference operator down is an effective heuristic.

6 Experimental Evaluation

We have implemented the mode-aware query processing strategies for hopping
queries within the WPI stream processing engine CAPE. Experiments were per-
formed on two Linux machines. Each machine has 4 CPUs with 1000 MHz each
and 4 GB of memory. We use one of the machines as stream generator and the
other one as the processing engine. Our experiments are designed to:

– Validate the cost models by comparing the execution times estimated by
our proposed cost model for various hopping window queries and the actual
execution times produced by the prototype system;

– Examine the relative performance trends of the four different input and
output combinations for different types of operator.

– Compare the performance gains achievable by assigning modes to a given
query plan;

– Demonstrate the effectiveness of the difference push down heuristic under
various parameter values, like selectivity, hop-window ratio, etc.

– Demonstrate the effectiveness of our solution of combining heuristic rule and
mode assignment together compared to using either one of them in isolation.

We employ the CAPE data generator to generate synthetic stream data. In-
puts to the data generator are the number of tuples, the number of attributes
in the stream schema, the number of distinct values of each attribute in the
schema, the stream rate (number of tuples per second) and its distribution. In
our experiment, we use two distributions to verify our techniques work across
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Fig. 2. Plan
Shape for Query
3 and 4
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Operator Push
Down

Fig. 5. Plan
Shape for Query
5

different circumstances. One is Poisson distribution which is commonly use to
model random events arriving at a system [7]. We also used pareto distribution
to model a more busty arrival of data tuples. Each tuple is assigned a timestamp,
whose value is determined based on the stream rate and its distribution. Mean
interval between two tuples is 10 millisecond unless noted otherwise. For pareto
distribution, we have kxmin

k−1 = 10, where xmin = 5. Values of each attribute are
assigned randomly using a uniform distribution.

6.1 Query 1: Single Join Operator Plan

We test 10 variations of Query 1 by varying the hop/window ratio from 10% to
100% by 10% each time for all 4 combinations of DIDO, DICO, CICO, and CIDO.
The y axis indicates time to complete each window. The x axis is the hop/window
ratio. The Figure 6 clearly shows that when ratio is small, the delta input is pre-
ferred by the Join operator. DIDO is the least expensive mode for this case be-
cause it does not conduct any redundant computation. DICO trails a little behind
because of its overhead to convert incremental output into the complete output.
CICO is the third candidate in performance because it has to compute lots of re-
dundant tuples. CIDO is the most expensive strategy because not only does it
have to compute redundant tuples, but also has to convert them into the delta re-
sult. On the other hand, we can see that when the ratio become larger and larger,
CICO continuously gains ground and eventually surpasses DIDO. Because more
and more tuples expire between two consecutive windows, thus the state mainte-
nance cost goes up for delta inputs. Both the experimental run and the cost model
show these trends. We conclude that when consecutive windows do not overlap at
all, using CICO is 32% better than DIDO for a single join operator.

6.2 Query 2: Single Difference Operator Plan

We again test 10 variations of Query 2 by varying the hop/window ratio from
10% to 100% for all 4 combinations of DIDO, DICO, CICO, and CIDO. The y
axis is the time to complete each window, while the x axis is the hop/window
ratio. Figure 8 shows that although the delta input is still preferred by the
Difference operator when the ratio is small, the gap between processing the
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Fig. 9. Cost Model Single Diff Plan

delta input and the complete input is smaller than for the join counterpart. The
trends are similar to the join operator, again confirmed by both the experimental
run and the cost model estimations. When the windows do not overlap at all,
using CICO can save up to 40% compared to DIDO in our setup.

6.3 Query 3: Assigned Plan Versus CICO Plan

In this experiment, we will demonstrate how running in a suitable mode can re-
duce cost of query processing, in particular, CRA to DRA when the hop/window
ratio is small. The plan shape is shown in Fig 2. The y axis indicates time used
to complete each window. In this experiment, we tested two variations of Query
3. One is generic mode approach which uses CICO throughout the query plan.
The other one is an assigned plan which internally uses DRA, while the input
and output remain complete mode. Such assignment is obtained by running the
mode assignment algorithm when the internal hop/window ratio equals 20%.
The time to determine the mode is negatable. For each variation, we increase
the hop/window ratio of the internal operators 20% at a time. The hop size is
fixed at 5000 ms. We compare the actual running time of the CICO plan and
the mode aware plan. In Figure 10, we can see that when the ratio is small,
switching to delta internally is a good choice. But this assignment will not work
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Fig. 11. Query 4: Mode Aware Plan

for when the ratio is large. Our mode assignment algorithm will know CICO is
the best choice and will not chose the assigned plan which uses DRA internally.

6.4 Query 4: Assigned Plan Versus DIDO Plan

In this experiment, we will demonstrate the benefit of switching from DRA to
CRA internally. The plan shape is shown in Fig 2. The y axis indicates time to
complete each window. In this experiment, we test two variations of Query 4. One
is generic mode plan which uses DIDO throughout the query plan. The other one
is an mode aware plan which internally uses CRA. Such assignment is obtained
by running the mode assignment algorithm when the internal hop/window ratio
equals 100%. For each variation, we increase the hop/window ratio of the internal
operators in this experiment 20% at a time. The hop size is fixed at 5000 ms. We
compare the actual running time of DIDO plan and the assigned plan. In Fig 11,
we can see that as the ratio increases, the processing time of our mode aware
plan decreases. When the ratio is at 100%, switching to complete internally is a
good choice. When the ratio is small, our mode assignment algorithm will know
DIDO is the best choice and will not chose the assigned plan which use CRA
internally.

6.5 Heuristic Rule Evaluation

In this experiment, we randomly generate plan shapes with less than 8 operators.
Then we randomly assign different selectivities to each operator. We use this as
our input to both the heuristic optimizer and the cost-based query optimizer.
Over 98% of the time, the plan returned by our heuristic was as good as the
plan returned by the optimizer.

Figure 12 depicts a more detailed statistic of the difference operator push down
plan compared to difference pull up plan. The plan shapes are shown in Fig 3
and Fig 4. In general, if each case has a equal possibility to arise, our heuristic
rule works very well. However, if the query plan has a small hop/window ratio,
and the size of the plan is large, pushing the difference down may not produce
an optimal plan. That is because negative tuples generated by the difference
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operator may affect a large number of operators in the query plan, potentially
doubling the workload for those operators.

6.6 Putting It All Together

In this experiment, we compare the performance of three different plans for
Query 5.

– The user default plan (DIDO)
– The plan with pushdown heuristic (DIDO with Pushdown)
– The mode assignment plan with heuristic (Mode Aware Plan with Push-

down)

The user default plan is a plan show in Fig 5 with delta input and delta output.
The plan with push down heuristic is obtained by applying our heuristic opti-
mizer on the default plan to push the difference operator down. The mode aware
plan with push down heuristic is the plan obtained by running the mode as-
signment algorithm on the plan generated by the heuristic optimizer. In Fig 13,
we can see that the user default plan has the worst performance. It has not
taking advantage of the opportunity of the difference operator pushdown can
reduce the amount of work the upstream join operator has to perform. The plan
with pushdown heuristic has pushed the difference operator down, however, it
is not as efficient as the mode aware plan with pushdown because the mode
aware plan using the complete result between operators internally. In this sce-
nario the upstream join operator does not have to maintain its states. By using
the CRA, the stream engine can also avoid the overhead of processing negative
tuples generated by the difference operator.

7 Related Work

Most stream query processing research over the past few years has focused on
sliding window queries only. Cost models and optimization techniques have been
developed [14][3]. However, they may not work well for hopping window queries
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because they all focus on minimizing the cost for processing individual tuple
upon their arrival.

[6] presented several execution strategies for sliding window query process-
ing with support for negative tuples. Their method supporting negative tuples
focuses on tuples that expire maturely (fall out of window). It does not work
well when larger amount of tuples expire prematurely. [7] further investigates in-
cremental evaluation techniques over sliding windows with the aim to minimize
overhead for handling negative tuples in the system. However, these techniques
again are employed to capture the case when tuples expire maturely. Our work
considers both the mature and premature expiration. We present a mode aware
approach that combines DRA and CRA within one integrated query plan to
attain minimize system overhead.

[15] presents a join reordering technique that works for not only natural joins
but also antijoin. Their work is based on traditional relational databases thus
does not consider the streaming environment nor the effect of negative tuples. [2]
study the hopping window semantics and memory sharing of aggregate queries.
Their techniques focus only on memory sharing of aggregate queries and cannot
easily be transferred to queries with other operators. Lastly, our work is related
to [5]. [5] has presented a classification of update patterns of continuous queries
and applied it to solve two problems: 1) defining precise semantics of continuous
queries with their update patterns, and 2) efficient query execution over sliding
windows utilizing their update patterns. However their classification only appli-
cable when using DRA. Due to varying ratio between hop size and window size,
their processing method, data structure and heuristic rules do not work well.

8 Conclusion

In this paper, we addressed the problem of processing continuously hopping
window queries. We designed mode aware operators which can work in any
mode combination. We then proposed a cost-based mode assignment algorithm.
It assigns a mode combination to each operator within a given query plan and
guarantees optimality. We further enhance plan search optimizer with mode
assignment algorithm and difference operator positioning. We develop analytical
cost models for the above techniques and validate them through experiments.
We also empirically studied the efficiencies of our difference operator push down
heuristic and compared the case of different assignment and plan shapes with
respect to stream statistics.
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Abstract. Several applications in areas such as biochemistry, GIS, in-
volve storing and querying large volumes of sequential data stored as
path collections. There is a number of interesting queries that can be
posed on such data. This work focuses on reachability queries: given a
path collection and two nodes vs, vt, determine whether a path from vs

to vt exists and identify it. To answer these queries, the path-first search
paradigm, which treats paths as first-class citizens, is proposed. To im-
prove the performance of our techniques, two indexing structures that
capture the reachability information of paths are introduced. Further,
methods for updating a path collection and its indices are discussed. Fi-
nally, an extensive experimental evaluation verifies the advantages of our
approach.

Keywords: path collections, reachability queries.

1 Introduction

Several applications in various areas involve storing and querying large volumes
of sequential data. For instance, the metabolic networks in biochemistry appli-
cations deal with large collections of pathways, i.e., series of chemical reactions
occurring within a cell [1]. Another example comes from Geographic Information
Systems (GIS) and geodata services, where the recent advances in infrastructure,
and the proliferation of earth observation applications (e.g., GPS technology),
have resulted in the abundance geodata. Path collections are typical in web
sites such as ShareMyRoutes.com, which archive popular touristic routes, i.e.,
sequences of waypoints or points of interest (POIs), uploaded by users.
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These datasets share a common structure. They involve items that connect
with each other to form sequences. In the sequel, we refer to items as nodes
and to sequences as paths. There is a number of interesting queries that can be
posed on path collections. The focus of this work is on reachability queries: given
a path collection and two nodes vs, vt, determine whether a path from vs to vt

exists and identify it. Note that this path need not be present in the collection,
but constructed by combining parts of stored paths. We present two distinct ap-
plication scenarios. Consider a collection of metabolic pathways. In this context,
reachability queries answer whether there exists a cause-effect relationship be-
tween two chemical reactions in some pathway, and their intermediates (i.e., the
reactants). Furthermore, consider an archive of popular touristic routes. Reach-
ability queries answer whether there exists a meaningful/recommended route
between two touristic attractions.

A path collection can be trivially mapped to a graph, where its nodes are those
contained in the paths. Hence, reachability queries can be evaluated by standard
techniques that fall in three categories: (i) search algorithms, e.g., depth-first
search, (ii) methods based on the pre-computation of the graph’s transitive clo-
sure (TC), or (iii) approaches that pre-process the graph to construct a reacha-
bility encoding scheme. These techniques share their strengths and weaknesses.
Exploiting a search algorithm has minimum space requirements but in the worst
case we need to examine all the edges of the graph to answer a query. Consid-
ering the TC of the graph uncompressed is very efficient as far as querying is
concerned, but the complexity of the construction time and the space require-
ments make this solution infeasible in practice. Works like 2-hop labels [2] that
compress the TC of the graph, or labelling schemes [3,4,5] have been proposed
to encode the reachability information of the graph. These schemes determine
whether there exists a path between two nodes and some of the schemes can also
identify that path.

It is important to note that techniques of the last two categories require pre-
processing and are only efficient for datasets that do not frequently change. In
our setting, however, there are frequent path insertions in the collection dramat-
ically modifying the associated graph and rendering the pre-processed data use-
less. Based on this observation, we introduce the path-first search (pfs) paradigm
for evaluating reachability queries on path collections. Briefly the main idea is
to examine entire paths at once rather than single nodes. We present an in-
dex structure, termed P-Index, that provides efficient access to the paths and
devise the pfsP algorithm, which utilizes it. Then, we present H-graph, a novel
graph-representation of a path collection that captures information about shared
nodes among paths, construct an appropriate index, H-Index, and introduce the
pfsH algorithm. Furthermore, we present methods for updating the index struc-
tures when new paths arrive. Finally we present an extensive experimental study
verifying the advantages offered by our methods.

Outline. Section 2 reviews the literature on evaluating reachability queries on
graphs. Section 3 formally defines the problem of evaluating reachability over
path collections. Section 4 introduces the pfs and pfsP algorithms, and P-Index.
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Section 5 introduces the graph-based model of H-graph, defines H-Index and
presents the pfsH algorithm. Section 6 discusses index maintenance. Section 7
presents the experimental study and Section 8 concludes the paper.

2 Related Work

The simplest way to evaluate reachability queries is to traverse the graph at query
time exploiting a search algorithm, e.g., depth-first search (dfs). This approach
has minimum space requirements — we store only the adjacency lists of the
graph. On the other hand, to answer a query, we need to search all the edges
in the worst case. In our work, we propose a search method, in the spirit of dfs,
that operates on the paths of a collection instead of the edges of a graph.

Another option is to pre-compute and store the transitive closure (TC) of the
graph. Then, we can explore the encoding scheme in [6] to assign to each node v
a set of triples 〈destination, via, label〉. Entry “via” denotes the first hop in the
path from v to the destination node. At query time, we determine the existence
of a path between two nodes by a single lookup on the encoding scheme and
identify it performing a number of lookups. The problem with this approach lies
in computing the TC of the graph. Efficient algorithms for computing the TC in
relational databases have been proposed, e.g., [7]. Even so, the computation time
of O(|V |3) and the space requirements of O(|V |2) prevent us from applying this
solution especially for large graphs. In our work, we do not pre-process the path
collections to compute all the possible transitions between the nodes. We exploit
a graph-representation of the path collections to capture the possible transitions
between the paths according to their common nodes.

To reduce the storage cost of the TC, Cohen et al. [2] propose 2-hop labels.
They identify a subset of the nodes that best capture the reachability information
of a graph. Thus, for each node v, they construct a list with part of the nodes
that can reach v (Lin[v]) and another one with part of the nodes reachable
from v (Lout[v]). This scheme requires O(|V | ·

√
|E|) space and can determine

the existence of a path between two nodes vs, vt by checking whether Lout[vs]
and Lin[vt] have a common node, the so called center vcenter. To identify the
path from vs to vt, we need to repeat the procedure for the paths from vs

to vcenter and from vcenter to vt. The problem with this approach lies in the
construction cost. Computing the optimal 2-hop cover is NP-hard and requires
the computation of the TC. Therefore after the introduction of 2-hop labels,
a number of works proposed methods to avoid the computation of TC and to
reduce the construction time, e.g., [8] and [9]. In our work, for each node v, we
exploit the common nodes of the paths containing v with the other paths of the
collection to capture the connectivity information of v.

In the context of labelling schemes for graphs, [3] proposes an interval labelling
scheme. Considering both the spanning tree of the graph, and the remaining
edges, they assign to each node v a sequence of intervals L[v]. In [5], Wang et al.
introduce Dual-Labeling for sparse graphs. In [10], Trißl et al. introduce GRIPP
scheme for large graphs. Finally, the idea in [4] is instead of constructing the
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spanning tree of the graph, to partition the graph into a set of paths P and then
create the so called path-tree cover G[T ]. The path-tree cover is a graph formed
by the paths of P (as nodes) and the edges of the initial graph that are not
included in any path. In our work we do not assign labels to the nodes of the
collection for encoding their connectivity information. We index the paths that
contain each node. The graph-based representation of a collection we present,
called H-graph, resembles the one proposed in [4]. However, in [4] each node is
contained in exactly one path, whereas in our work a node can be included in
several paths of the collection. In addition, the edges of H-graph are formed by
the common nodes between the paths.

3 Problem Definition

In this section, we formally define the problem of evaluating reachability queries
over a path collection. We introduce the basic aspects of the problem and our
notation for the rest of the paper. We begin by defining the notion of a path
collection over a set of nodes.

Definition 1 (Path). Let V be a set of nodes. A path p(v1, . . . , vk) over V is
a sequence of distinct nodes (v1, . . . , vk) ∈ V . By nodes(p) we denote the set of
nodes in p. The length of a path p, denoted by lp, is the number of contained
nodes, i.e., lp = |nodes(p)|.

Definition 2 (Path collection). Let V be a set of nodes. A path collection
over V , denoted by P, is a set of paths {p1, . . . , pm} over V . By nodes(P) we
denote the set of nodes in P.

Example 1. Figure 1(a) illustrates an example of a path collection P = {p1, p2,
p3, p4, p5} over V = {A, ..., Z}.

p1 (A, B, C, D, J)
p2 (A, F, D, N, B, T )
p3 (N, L, M)
p4 (D, N, B, F, K)
p5 (A, F, K)

(a) (b)

Fig. 1. (a) A path collection P, (b) the underlying graph GP of P

Next, we define the family of reachability queries over a path collection.

Definition 3 (Reachability queries). Let P be a path collection, and vs, vt be
two nodes in nodes(P). The family of reachability queries deals with the following
problems:

– Determine whether there exists a path from vs to vt. This query is denoted
by reach(vs, vt).
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– Identify a path from vs to vt. This query is denoted by path(vs, vt).

In this paper, we deal with the problem of evaluating reachability queries over
path collections. To evaluate reachability queries we exploit only the transitions
between the nodes contained in the paths of the collection. The collections can
be frequently updated with new paths that may involve a number of new nodes.
Therefore, we also have to efficiently deal with massive updates.

Given a path collection P, one can construct a graph that contains all the
reachability information present in P.

Definition 4 (Underlying graph). Let P be a path collection. The underlying
graph of P, denoted by GP(V, E) or simply GP, is a directed graph that contains
all the nodes, V = nodes(P), and all the direct transitions of P, E = { (u, v) :
(. . . , u, v, . . .) ∈ P}.

It is easy to verify that a path collection P over set V and the underlying graph
GP(V, E) are equivalent with respect to reachability queries. For example, one
can answer path(F, C) over the path collection in Figure 1(a) exploiting GP

graph in Figure 1(b). Therefore, a simple solution to the problem is a search
algorithm that exploits the adjacency lists of the graph, with the additional
benefits that it imposes minimum construction cost and deals easily with massive
updates. In the rest of this work, we consider paths to be first class citizens and
propose alternative search-based methods for the task at hand.

4 Evaluating Reachability Queries over Path Collections

Section 4.1 introduces the path-first search algorithm, termed pfs, for evaluating
reachability queries over path collections and Section 4.2 discusses optimizations
based on the P-Index structure.

4.1 The Path-First Search Algorithm

The basic idea of the pfs, illustrated in Figure 2, is to examine entire paths at
once rather than single nodes. The algorithm takes the collection P, the source
vs and target node vt as inputs and returns a path connecting them, if one exists,
or null, otherwise. The algorithm employs the following data structures: (i) the
search stack Q, (ii) the history set H, which contains all nodes that have been
pushed in Q, and (iii) the ancestor set A, which stores the direct ancestor of
each node in Q. H is used to avoid cycles and A to extract answer paths. Note
that pfs visits each node once and, thus, there is a single entry per node in A.

The pfs algorithm proceeds similarly to depth-first search as follows. Initially,
the stack Q and H contain source node vs (Lines 1–2). Further, the entry 〈vs, ∅〉
is inserted in A (Line 3) denoting that vs is the source node. The algorithm
proceeds examining the contents of the stack (Lines 4–16). The current top node
vn is popped from Q (Line 5) and checked against target vt. If they are equal the
search terminates and the path is extracted by the ConstructPath method (Line
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Algorithm pfs
Input: nodes vs and vt of a path collection P
Output: a path from vs to vt

Parameters:
stack Q: // the search stack
set H: // contains all nodes pushed in Q
set A: // contains the direct ancestor of each node in H
Method:

1. push(vs, Q);
2. insert vs in H
3. insert 〈vs, ∅〉 in A;
4. while Q is not empty do
5. let vn = pop(Q);
6. if vn is equal to vt then return ConstructPath(vs, vn,A);
7. for each path p ∈ P containing vn do
8. let vp be the node after vn in p;
9. while vp /∈ H do // access each node vp after vn in p until the first vp contained in H

10. push(vp,Q);
11. insert vp in H;
12. insert 〈vp, v−

p 〉 in A, where v−
p is the direct ancestor of vp in p;

13. let vp be the next node in p;
14. end while
15. end for
16. end while
17. return null;

Fig. 2. Algorithm pfs

6). Specifically, starting from vt, ConstructPath uses the ancestor information of
A to backtrack to source vs.

If the target is not found, pfs considers all paths that contain vn and examines
their contents (Lines 7–15). Fix such a path p and let vp denote the node that
follows current top node vn in p (Line 8). Next, a while loop begins checking if
vp has never been pushed in Q (i.e., vp /∈ H). If the check succeeds, vp is pushed
in Q and inserted in H (Lines 10–11). In addition, the entry 〈vp, v

−
p 〉, where

v−p is the direct ancestor of vp in path p, is inserted in A (Line 12). Last, vp is
updated to the next node in p (Line 13) and the while loop continues checking
the new vp. The condition on Line 9 ensures that only nodes that have not been
previously enqueued are inserted in Q; hence, pfs avoids cycles.

Example 2. We illustrate the pfs algorithm for the query path(F, C) on the path
collection of Figure 1(a). Initially, we have (Lines 1–3):

Q = {F}, H = {F} and A = {〈F, ∅〉}.

At the first iteration of the outer while loop, the algorithm pops F from Q
and identifies paths p2, p4 and p5 that contain F .

– When processing p2(A, F, D, N, B, T ), the algorithm adds to Q andH, nodes
D, N , B and T , and to A pairs 〈D, F 〉, 〈N, D〉, 〈B, N〉 and 〈T, B〉.

– When processing p4(D, N, B, F, K), the algorithm adds to Q and H, node
K, and to A pair 〈K, F 〉.

– When processing p5(A, F, K), the algorithm does not add anything to Q, H
and A since there are no new nodes after the current node F (K has been
enqueued).
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After the first iteration, we have:

Q = {D, N, B, T, K},
H = {F, D, N, B, T, K} and

A = {〈F, ∅〉, 〈D, F 〉, 〈N, D〉, 〈B, N〉, 〈T, B〉, 〈K, F 〉}.

The algorithm proceeds in a similar manner. After the fourth iteration, we have:

Q = {D, N, C},
H = {F, D, N, B, T, K, C} and

A = {〈F, ∅〉, 〈D, F 〉, 〈N, D〉, 〈B, N〉, 〈T, B〉, 〈K, F 〉 〈C, B〉}.

At the fifth iteration, pfs pops C (the target) from stack Q and terminates
the search. ConstructPath returns answer path (F, D, N, B, C) by scanning A.

Algorithm pfs terminates the search when the target node is popped out of stack
Q. An alternative approach is to check whether both current search node and
the target node are contained in a path of the collection and terminate search
without visiting any other node. In the next section, we discuss this improvement
and present an extension to pfs called pfsP.

4.2 P-Index: Indexing Path Collections

In this section, we describe the path collection index P-Index, an inverted index
on the path collection. We can take advantage of P-Index in two ways: (i) for
accessing all paths that contain current search node (Line 7 in Figure 2), and
(ii) for enforcing a quick termination condition.

Definition 5 (P-Index). The path collection index of P, denoted as P-Index
(P), consists of paths lists for all nodes in P. The list paths[vi] for node vi

contains entries 〈pj:oij〉, where oij indicates the position of vi in pj, for all paths
pj that include vi. The entries are stored sorted by their path identifier pj.

Example 3. Table 1 illustrates the path collection index P-Index(P) for the
collection P presented in Figure 1(a).

Table 1. P-Index for the path collection P in Figure 1(a)

node paths list

A 〈p1:1〉, 〈p2:1〉, 〈p5:1〉
B 〈p1:2〉, 〈p2:5〉, 〈p4:3〉
C 〈p1:3〉
D 〈p1:4〉, 〈p2:3〉, 〈p4:1〉
F 〈p2:2〉, 〈p4:4〉, 〈p5:2〉
J 〈p1:5〉
K 〈p4:5〉, 〈p5:3〉
L 〈p3:2〉
M 〈p3:3〉
N 〈p2:4〉, 〈p3:1〉, 〈p4:2〉
T 〈p2:6〉
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We introduce pfsP as an extension to pfs algorithm that exploits P-Index. Al-
gorithm pfsP identifies all paths that contain a node vn by performing a linear
scan of list paths[vn].

Furthermore, pfsP exploits P-Index to define a fast termination condition.
Assume that node vn has just been popped out (Line 5). The search can be
terminated if there exists a path pc in the collection that contains both vn

and target vt, such that, vt comes after vn. Specifically, pfsP looks for entries
〈pc :onc〉, 〈pc :otc〉 in lists paths[vn], paths[vt] respectively, such that onc < otc.
The procedure is similar to a merge-join that finishes as soon as such a path is
found or one of the lists is traversed to the end.

The pfsP is similar to pfs with the exception that it performs the described
check. The improved termination condition can be included in Figure 2 by chang-
ing Line 6 to:
6. if there is a path pc ∈ P containing vn before vt then

return ConstructPathP(vs, vn, vt,A, pc);

To construct path(vs, vn), ConstructPathP method first calls ConstructPath
(vs, vn,A). Then, it concatenates path(vs, vn) with the part of pc from vn up to vt.
During concatenation the method ensures that each node is contained only once
in the answer path. For example, consider path(A, T ). After joining paths[D] =
{〈p1:4〉, 〈p2:3〉, 〈p4:1〉} and paths[T ] = {〈p2:6〉} lists we identify common path p2.
The ConstructPathP method first constructs path(A, D) = (A, B, C, D) using set
A and then concatenates it with the part of p1(A, F, D, N, B, T ) from D up to
T . Since node B is contained in path(A, D) the answer path is (A, B, T ).

Example 4. We illustrate the pfsP algorithm for the query path(F, C) on the
path collection P of Example 2 exploiting the join procedure of the paths lists.
We use P-Index(P) presented in Table 1.

The first three iterations are identical to the first three iterations of the pfs
algorithm presented in Example 2. Summarizing, after these iterations the stack
and the sets of pfsP are as follows.

Q = {D, N, B},
H = {F, D, N, B, T, K} and

A = {〈F, ∅〉, 〈D, F 〉, 〈N, D〉, 〈B, N〉, 〈T, B〉, 〈K, F 〉}.
At the fourth iteration of the outer while loop, pfsP pops B. To execute Line

6, we join the paths list of current search node B, paths[B] = {〈p1:2〉, 〈p2: 5〉, 〈p4:
3〉} with the paths list for target C, paths[C] = {〈p1 :3〉}. The join procedure
identifies entries 〈p1:2〉, 〈p1:3〉 for common path pc = p1. Since in p1, B is before
C, the search terminates successfully. The answer path (F, D, N, B, C) is the
concatenation of (F, D, N, B) (which corresponds to the path from source F to
current node B and is constructed using set A) and (B, C) (which corresponds
to the part of p1 that connect B to target C).

5 Capturing Reachability Information Using H-graphs

Section 5.1 introduces the H-graph and its associated structure H-Index. Sec-
tion 5.2 discusses the extension of pfs using the H-Index.
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5.1 The H-graph and Its H-Index

The H-graph provides additional reachability information by identifying shared
nodes and, thus, possible transitions, among paths.

Definition 6 (H-graph). Let P={p1, ..., pn} be a path collection. The H-graph
of P, denoted by H-graph(P), is a labelled directed graph (V, E) such that V
consists of all paths in P and a labelled edge (pi, pj , v) ∈ E if paths pi, pj have
a common node v ∈ nodes(P), termed link, which is neither the first node of pi

nor the last of pj.

Given a path collection P and P-Index(P), H-graph(P) is constructed as fol-
lows. For each node vk ∈ nodes(P) and each pair of entries 〈pi:oki〉, 〈pj :okj〉 ∈
paths[vk], we construct a directed edge from pi to pj in H-graph(P) and label
it with link vk. Intuitively, edge (pi, pj, v) denotes that all nodes in pi before
link vk can reach the nodes after vk in pj . If the link lies in the beginning of pi

or at the end of pj , there is no useful reachability information since no node is
contained before vk in pi or after vk in pj, and hence the edge is omitted from
H-graph.

Example 5. Figure 3(a) illustrates H-graph(P) for the path collection P of Fig-
ure 1(a). To increase readability, multiple edges between the same pair of paths
are collapsed into a single edge with multiple labels. For example, the single
edge from p4 to p2 labelled with N, B, F links corresponds to edges (p4, p2, N),
(p4, p2, B) and (p4, p2, F ). Note that edge (p4, p1, D) is not included since D is
the first node in p4.

(a)

path edges list

p1 〈p2, B:2:5〉, 〈p2, D:4:3〉, 〈p4, B:2:3〉, 〈p4, D:4:1〉
p2 〈p1, D:3:4〉, 〈p1, B:5:2〉, 〈p3, N:4:1〉, 〈p4, F:2:4〉, 〈p4, D:3:1〉,

〈p4, N:4:2〉, 〈p4, B:5:3〉, 〈p5, F:2:2〉
p3
p4 〈p1, B:3:2〉, 〈p2, N:2:4〉, 〈p2, B:3:5〉, 〈p2, F:4:2〉, 〈p3, N:2:1〉,

〈p5, F:4:2〉
p5 〈p2, F:2:2〉, 〈p4, F:2:4〉

(b)

Fig. 3. (a) H-graph (P) of the path collection P in Figure 1(a), (b) H-Index for
H-graph (P)

The H-graph of a path collection P is stored in a modified adjacency list
representation denoted as H-Index.

Definition 7 (H-Index). The H-graph index of P, denoted as H-Index(P),
consists of edges lists for all paths in P. The list edges[pi] for path pi has
entries of the form 〈pj , vk :oki :okj〉, for each (pi, pj , vk) edge of H-graph(P),
where oki (okj) denotes the position of the link vk in path pi (pj). Entries are
sorted primarily by the path pj of the outgoing edge, and secondarily by oki.
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Example 6. Figure 3(b) illustrates theH-Index(P) of theH-graph(P) presented
in Figure 3(a).

5.2 The pfsH Algorithm

The H-graph captures intersections among paths, and hence contains additional
information about nodes’ reachability compared to that included in the paths
alone. To illustrate this, consider node F of path p2 and node C of path p1 of the
collection in Figure 1(a). The information inH-Index suffices to show that a path
from F to C exists. In particular, the entry 〈p1, B:5:2〉 of edges[p2] in H-Index
denotes that there is way from p2 to p1 via B. Further, from P-Index one derives
that B is after F in p2 and before C in p1. Hence a path (F, D, N, B, C) can be
constructed by combining paths p2 and p1.

The above observation is the main idea of pfsH algorithm. Consider the query
path(vs, vt) and assume that current search node is vn. For each path pi that
contains vn, the algorithm checks whether an edge (pi, pj , vk) inH-graph satisfies
three conditions: (i) pj contains the target node vt, (ii) link vk is after current
search node vn in pi, and (iii) vk is before vt in pj . If these hold, a path from vn

to target vt, via vk exists, and thus a path from source vs to vt can be found.
Algorithm pfsH is similar to pfs with the exception that it introduces two ter-

mination conditions. First, before initializing stack Q and sets H, A in Figure 2
(Lines 1-3), the algorithm checks whether there exists a path pc in the collection
containing source vs before target vt. To perform this check pfsH exploits the
join procedure of paths[vs] and paths[vt] lists introduced for pfsP in Section 4.2.
If a path pc is identified the search terminates and the ConstructPathP method
returns the part of pc from vs to vt as the answer path.

Otherwise, as soon as a new path pi containing current search node vn in
position oni is examined (after Line 7 in Figure 2), pfsH checks whether there
exists an edge (pi, pj, vk) in H-graph satisfying the aforementioned three condi-
tions. The algorithm scans lists edges[pi] and paths[vt] from H-Index(P) and
P-Index(P), respectively, similar to a merge-join as both are sorted on the path
identifier. The scan terminates when 〈pj , vk :oki :okj〉 in edges[pi] and 〈pj :otj〉
in paths[vt] match, i.e., correspond to the same path pj (condition (i)), and
additionally oki > oni (condition (ii)) and okj < otj (condition (iii)).

When a qualifying entry 〈pj , vk : oki : okj〉 in edges[pi] is found, pfsH first
constructs path(vs, vn), calling ConstructPath(vs, vn,A), and then concatenates
it with the part of pi from vn to vk and the part of pj from vk to vt.

For a more detailed presentation of pfsH algorithm see [11].

Example 7. We illustrate the pfsH algorithm for the query path(F, C) on the
path collection of P of Example 2. Algorithm pfsH exploits H-Index(P) pre-
sented in Figure 3(b) and P-Index(P) of Table 1.

First, we check whether exists a path in P containing source F before target
C. The join between paths[F ] = {〈p2:2〉, 〈p4:4〉, 〈p5:2〉} and paths[C] = {〈p1:3〉}
lists results in no common path. Thus, we need to further search the collection.

At the first iteration of the outer while loop, pfsH pops F . Node F is contained
in paths p2(A, F, D, N, B, T ), p4(D, N, B, F, K) and p5(A, F, K). Then, we check
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the termination condition for paths p2, p4 and p5 and perform a join of the
corresponding edges list with paths[C] = {〈p1 : 3〉}. The join of edges[p2] =
{〈p1, D:3:4〉, 〈p1, B:5:2〉, 〈p3, N :4:1〉, 〈p4, F :2:5〉, 〈p4, D:3:1〉, 〈p4, N :4:2〉, 〈p4, B:5:
3〉, 〈p5, F :2:2〉} with paths[C] = {〈p1:3〉} results in common path p1 (condition
(i)) with the link B of (p2, p1, B) edge contained after F in p2 (condition (ii))
and before C in p1 (condition (iii)). Thus, the answer path is (F, D, N, B, C).

6 Updating Path Collections

Updating a path collection involves adding new paths. To include a new path
pj in a collection, we need (a) to insert the entry 〈pj :oij〉 in paths[vi] for each
node vi contained in pj (update P-Index), and (b) to update edges[pj] and the
edges lists of the paths containing each node in pj (update H-Index).

In practice, path collections are usually very large to fit in main memory.
Therefore, both P-Index and H-Index of a collection are stored as inverted files
on secondary storage and maintained mainly by batch, offline updates. In other
words, we usually update the collection with a set of new paths. A requirement
for the inverted files to work efficiently is to store the inverted lists, like paths and
edges lists, in a contiguous way on secondary storage. Due to this requirement the
näıve solution to deal with each new path separately is not efficient for updating
the collection. A common approach to this problem is to built a P-Index and an
H-Index considering the new paths as inverted indices in main memory and to
exploit them for evaluating the queries in parallel with the disk-based P-Index
and H-Index of the collection.

Each time a set of new paths arrives, we update only the memory-based
indices with minimum cost. Then, to update the disk-based indices, there are
three possible strategies ([12]): (a) rebuilding them from scratch using both the
old and the new paths, (b) merging them with the memory resident ones and
(c) lazily updating the paths and the edges lists when they are retrieved from

Procedure updateMP
Inputs: memory-based P-Index(P) MP , set of new paths U
Output: updated memory-based P-Index(P) MP
Method:

1. for each new path pj in U do
2. for each node vk in p do
3. append 〈pj:okj〉 entry at the end of paths[vk] in MP ;
4. end for
5. end for

Procedure mergeP
Inputs: updated memory-based P-Index(P) MP , disk-based P-Index(P) DP
Output: updated disk-based P-Index(P) DP
Method:

1. for each node v in MP do
2. append contents of paths[v] of MP at the end of paths[v] of DP ;
3. write new paths[v] on DP ;
4. end for

Fig. 4. Procedures for updating P-Index
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disk during query evaluation. In our work, we adopt the second strategy for
updating the disk-based indices.

Figures 4 and 5 illustrate the procedures for updating the memory-based in-
dices with the new paths (Procedures updateMP and updateMH) and the merging
procedures of the disk-based indices with the memory-based ones (Procedures
mergeP and mergeH). Procedures updateMP and updateMH work similarly with
the procedures for creating disk-based P-Index and H-Index respectively, from
scratch. Especially for updateMH, we also need to create entries considering both
the new paths and the existing paths of the collection (Lines 6-9). Finally, Pro-
cedures mergeP and mergeH merge disk-based paths and edges lists respectively
with the memory resident ones, and then write the new lists on disk.

Procedure updateMH
Inputs: updated memory-based P-Index(P) MP , disk-based P-Index(P) DP , memory-based
H-Index(P) MH
Output: updated memory-based H-Index(P) MH
Method:

1. for each node vk in MP do
2. for each pair of entries 〈pi:oki〉, 〈pj:okj〉 in paths[vk] of MP do
3. if oki > 1 and okj < lpj

then insert 〈pj , vk:oki:okj〉 in edges[pi ] of MH;

4. if okj > 1 and oki < lpi
then insert 〈pi, vk:okj:oki〉 in edges[pj ] of MH;

5. end for
6. for each pair of entries 〈pi:oki〉, 〈pj: okj〉 where pi ∈ paths[vk] of MP and pj ∈ paths[vk] of

DP do
7. if oki > 1 and okj < lpj

then insert 〈pj , vk:oki:okj〉 in edges[pi ] of MH;

8. if okj > 1 and oki < lpi
then insert 〈pi, vk:okj:oki〉 in edges[pj ] of MH;

9. end for
10. end for

Procedure mergeH
Inputs: updated memory-based H-Index(P) MH, disk-based H-Index(P) DH
Output: updated disk-based H-Index(P) DH
Method:

1. for each path p in MH do
2. merge edges[p] of DH with edges[p] of MH;
3. write new edges[p] on DH;
4. end for

Fig. 5. Procedures for updating H-Index

7 Experiments

We present an experimental evaluation of our methods demonstrating their effi-
ciency. We compare the pfsP and pfsH algorithms against conventional depth-first
search which operates on the underlying graph GP, indexed by adjacency lists.
All indices, i.e., P-Index and H-Index for the collections, and the adjacency
lists for GP, are implemented as inverted files using the Berkeley DB storage
engine. All algorithms are implemented in C++ and compiled with gcc. The
experimental evaluation was performed on a 3 Ghz Intel Core 2 Duo CPU.

For updating the adjacency lists of GP graph, we adopt an approach similar to
the one for P-Index and H-Index. In addition, we choose not to check whether
the new paths contain a transition between two nodes more than once or if a
transition is already included as an edge in GP graph. Instead, duplicates are
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removed while merging the disk-based adjacency lists with the memory-based
ones. This approach allows for fast updates on the adjacency lists and GP graph,
at the expense of increased main memory utilization.

We generate synthetic path collections to test the methods. We identify five
experimental parameters: (a) |P|: the number of paths in the collection, (b) lavr:
the average path length, (c) |V |: the number of distinct nodes in the paths, (d)
zipf : the order of Zipfian distribution of node frequency, and (e) U : the up-
date factor. The path collections contain 50000 up to 500000 paths. The average
length of each path varies between 5 to 30 nodes. Path collections include 10000
up to 500000 distinct nodes. Note that varying the number of nodes in the collec-
tion also affects the number of link (common) nodes and the possible transitions
between the paths. Node frequency is a moderately skewed Zipfian distribution
of order zipf that varies from 0 up to 0.8. Note that nodes with high frequency
are contained in a lot of paths. An update factor U means that there are U%· |P|
new paths to be added to the collection P. Table 2 summarizes all parameters.

We perform four sets of experiments to show the effects on the size and the
construction time of the indices, as well as on the performance of the algorithms
for evaluating 5000 random reachability queries. In each set, we vary one of |P|,
lavg, V , zipf while we keep the remaining three parameters fixed to their default
values (see Table 2). In the fifth set of experiments, we study the updates of the
path collections. We vary only the U parameter while we set the remaining four
fixed to their default values.

Table 2. Experimental parameters

parameter values default value

|P| 50000, 100000, 500000 100000
lavg 5, 10, 30 10
|V | 10000, 50000, 100000, 500000 100000
zipf 0, 0.3, 0.6, 0.8 0.6

U 1%, 5%, 10% -

Varying the number of paths in the collection. Figure 6(a) illustrates the
effect on the index size. We note that in all cases, H-Index requires at least one
order of magnitude more space than the other two indices. P-Index is slightly
larger than the adjacency lists. As |P| increases all indices require more disk
space. The size of the adjacency lists increases, because the path collections
include more direct transitions between path nodes resulting in more dense GP

graphs. As expected P-Index requires more space since each node is contained in
more paths and therefore, the length of the paths lists increases. Finally, as |P|
increases, the paths have more nodes in common, which means that the length
of the edges lists increases too. Thus, H-Index also requires more disk space.

Figure 6(b) shows the effect on the construction time of the indices. As |P|
increases the construction of all indices takes more time. We notice that the
creation time of the adjacency lists is almost one order of magnitude higher
than the time for P-Index, in all cases. This is due to the fact that, we first
need to construct GP graph by removing repeated transitions between nodes.
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Fig. 6. (a) Index size, and (b) construction time varying |P|, for lavg = 10, |V | =
100000, zipf = 0.6

10

100

1000

10000

50 100 500

E
x
ec

u
ti
o
n

ti
m

e
(m

se
c)

|P| (×103)

dfs

♦ ♦
♦

♦
pfsP

+ + +

+
pfsH

� �
�

�

(a)

0.001

0.01

0.1

1

10

100

50 100 500

V
is

it
ed

n
o
d
es

(×
1
0
3
)

|P| (×103)

dfs

♦ ♦ ♦

♦
pfsP

+
+

+

+
pfsH

�
�

�

�

(b)

0.1

1

10

100

1000

50 100 500

D
is

k
p
a
g
es

re
a
d

(×
1
0
3
)

|P| (×103)

dfs

♦ ♦ ♦

♦
pfsP

+ + +

+
pfsH

�
�

�

�

(c)

Fig. 7. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying |P|, for lavg = 10, |V | = 100000, zipf = 0.6

On the other hand, the construction time of H-Index is always approximately
one order of magnitude higher than the time of the other indices.

Figure 7(a) presents the effects of |P| on the query execution time. In all
cases, the average execution time of pfsP and pfsH is lower than that of dfs. pfsP
is always almost one order of magnitude faster than dfs. pfsH is two orders of
magnitude faster than dfs. As |P| increases, the execution time of dfs increases
too. This is expected since GP graph becomes more dense. In contrast, pfsP is
less affected by the increase of |P|, whereas the execution time of pfsH decreases.
This is because, the length of the paths lists in P-Index and the edges lists in
H-Index increases and it is very likely that the join procedures in pfsP and pfsH
will identify common paths. Thus pfsP and pfsH, in all cases, need to visit fewer
nodes to answer a query as Figure 7(b) shows. Figure 7(c) confirms the above
observations with respect to the number of I/Os.

Varying the average length of the paths in the collection. Figure 8(a)
shows the effects of lavg on the disk space required to store indices. Similarly
to the case of increasing |P|, we notice that the size of H-Index is more than
one order of magnitude larger compared to the size of the adjacency lists of GP

graph. In contrast, P-Index is slightly larger than the adjacency lists. As lavg

increases, there are more direct transitions between path nodes. Thus, GP graph
becomes more dense and its adjacency lists contain more nodes. Finally, as (a)
the lavg increases, and (b) |V | remains fixed, the number of occurrences in the
paths for each node increases. This results to longer paths lists in P-Index and
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Fig. 8. (a) Index size, and (b) construction time varying lavg, for |P| = 100000, |V | =
100000, zipf = 0.6
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Fig. 9. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying lavg, for |P| = 100000, |V | = 100000, zipf = 0.6

to longer edges lists in H-Index too, because there exist more common nodes
between paths. Therefore, the space needed to store P-Index and H-Index also
increases.

Figure 8(b) shows the effect on the construction time of the indices. The
creation of all indices takes more time as lavg increases. Similarly to the case of
varying |P|, the construction time of the adjacency lists is higher than the time
of P-Index, since we first need to construct GP graph by removing the repeated
transitions between the nodes. The construction time of H-Index is always at
least one order of magnitude higher than the time of the other indices.

Figure 9(a) presents the effects of varying lavg on the query execution time.
The experimental results show that the average execution time of pfsP and pfsH
is lower than that of dfs in all cases. Moreover, as lavg increases, the execution
time of dfs increases, whereas the execution time of pfsP and pfsH decreases. dfs
becomes slower because the density of GP increases. On the other hand, the join
procedures in pfsP and pfsH will quickly identify a common path, since paths
and edges lists become longer. Thus, both pfsP and pfsH need to visit fewer
nodes to answer a query as Figure 9(b) shows. Figure 9(c) confirms the above
findings with respect to the number of I/Os.

Varying the number of nodes in the path collection. Figure 10(a) il-
lustrates the effects on the index size. As |V | increases the adjacency lists and
P-Index require more disk space. In the case of the adjacency lists, this is be-
cause GP becomes larger and more lists need to be stored. Similarly, the size of



Evaluating Reachability Queries over Path Collections 413

10

100

1000

10000

1050100 500

In
d
ex

si
ze

(M
B
)

|V | (×103)

H-Index�
� �

�

�
P-Index

+ + +
+

+
adj. lists

♦ ♦ ♦ ♦

♦

1

10

100

1000

1050100 500

C
o
n
st

ru
ct

io
n

ti
m

e
(s

ec
)

|V | (×103)

H-Index�
�

�
�

�
adj. lists

♦ ♦ ♦ ♦

♦
P-Index

+
+ +

+

+

(a) (b)

Fig. 10. (a) Index size, and (b) construction time varying |V |, for |P| = 100000, lavg =
10, zipf = 0.6
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Fig. 11. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying |V |, for |P| = 100000, lavg = 10, zipf = 0.6

P-Index also grows as |V | increases, since it contains more paths lists. On the
other hand, H-Index requires less disk space as |V | increases, because the paths
have fewer common nodes and thus, the edges lists become shorter. Note that
the total number of edges lists does not change as |P| is fixed to 100000.

Figure 10(b) shows the impact of varying |V | on the construction time of
the indices. As |V | increases the construction of the adjacency lists of GP and
P-Index takes more time. Similarly to the previous experiments, the construc-
tion time for the adjacency lists is higher since we need to construct GP graph
first. On the hand, the construction of H-Index takes less time since the edges
lists become shorter.

Figure 11(a) illustrates the effect of varying |V | on the query execution time.
All three algorithms are affected by the increase of |V |. Algorithms pfsP and pfsH
are, in all cases, faster than dfs but the difference in the execution time decreases
as |V | increases. The performance of dfs is expected because GP becomes larger
as |V | increases. Considering pfsP and pfsH, since (a) the collections include more
nodes and (b) the number of paths is fixed, each node is contained in fewer paths
and in addition, the paths have less nodes in common. In other words, since the
paths lists of P-Index and edges lists of H-Index become shorter, they will
likely have fewer common paths. Thus, both pfsP and pfsH need to visit more
nodes to answer the queries as Figure 11(b) shows. Figure 11(c) confirms the
above observations with respect to the number of I/Os.
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Fig. 12. (a) Index size, and (b) construction time varying zipf , for |P| = 100000,
|V | = 100000, lavg = 10
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Fig. 13. (a) Average execution time, (b) average number of visited nodes, (c) average
number of disk pages read varying zipf , for |P| = 100000, |V | = 100000, lavg = 10

Varying node frequency in the path collection. Figure 12(a) illustrates
the effects on the index size. As expected, the increase of zipf does not affect
the size of the adjacency lists. The total number of direct transitions between
the nodes of the collection, i.e., the edges in GP graph, does not change as zipf
increases. The increase of zipf does not change the total number of entries of
the paths lists in P-Index, and therefore the size of P-Index remains the same.
On the other hand, the size of H-Index increases. As zipf value increases some
nodes can act as links for more paths of the collection. Thus, the edges lists
become longer and the size of H-Index increases.

Figure 12(b) shows the impact of varying the number of nodes in the collection
on the construction time of the indices. As expected the construction time for the
adjacency lists and P-Index is not affected by the increase of zipf . In contrast,
as |V | increases the construction time of H-Index increases.

Figure 13(a) shows the effect of varying zipf on the query execution time.
We notice that the execution time of pfsP and pfsH is always lower than the
execution time of dfs. Algorithm pfsH is faster than pfsP for approximately one
order of magnitude for zipf < 0.8. As expected the execution time of dfs remains
approximately stable since GP does not change as zipf increases, whereas the
execution time of pfsP and pfsH increases. The increase in the case of pfsP is less
intense. Figure 13(b) shows that pfsP visits slightly more nodes as zipf increases.
On the other hand, pfsH visits fewer nodes as zipf increases but retrieving the
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Fig. 14. (a) Updating time varying U , (b) index size varying U for |P| = 100000,
lavg = 10, |V | = 100000, zipf = 0.6

edges lists of the paths that contain very frequent nodes, costs a lot. Figure 13(c)
confirms the above observations with respect to the number of I/Os.

Updating path collections. Finally, we study the methods for updating path
collections. We measure: (a) the time required to update memory-based indices
considering the new paths, and (b) the time needed to merge the disk-based
indices with the memory-based ones.

Figure 14(a) illustrates the time required to update the memory-based indices.
The updating time of H-Index is higher than the time of the adjacency lists and
P-Index in all cases. This is due to the fact that we need to access the edges lists
of the disk-based H-Index to update the memory-based one. On the other hand,
in all cases P-Index and the adjacency lists are updated in equal time. Finally,
Figure 14(b) shows that the time needed to merge the disk-based H-Index is
higher than the time required for the adjacency lists and P-Index.

8 Conclusions

We consider reachability queries on path collections. We proposed the path-first
search paradigm, which treats paths as first-class citizens, and further discussed
appropriate indices that aid the search algorithms. Methods for updating a path
collection and its indices were discussed. An extensive experimental evaluation
verified the advantages of our approach. Our ongoing work focuses on compres-
sion techniques forH-Index. In the future, we plan to extend our indexing meth-
ods to other types of queries, such as shortest path, nearest neighbor queries.
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Abstract. Queries over sets of complex elements are performed extract-
ing features from each element, which are used in place of the real ones
during the processing. Extracting a large number of significant features
increases the representative power of the feature vector and improves the
query precision. However, each feature is a dimension in the representa-
tion space, consequently handling more features worsen the dimension-
ality curse. The problem derives from the fact that the elements tends to
distribute all over the space and a large dimensionality allows them to
spread over much broader spaces. Therefore, in high-dimensional spaces,
elements are frequently farther from each other, so the distance differ-
ences among pairs of elements tends to homogenize. When searching for
nearest neighbors, the first one is usually not close, but as long as one is
found, small increases in the query radius tend to include several others.
This effect increases the overlap between nodes in access methods index-
ing the dataset. Both spatial and metric access methods are sensitive to
the problem. This paper presents a general strategy applicable to me-
tric access methods in general, improving the performance of similarity
queries in high dimensional spaces. Our technique applies a function that
“stretches” the distances. Thus, close objects become closer and far ones
become even farther. Experiments using the metric access method Slim-
tree show that similarity queries performed in the transformed spaces
demands up to 70% less distance calculations, 52% less disk access and
reduces up to 57% in total time when comparing with the original spaces.

1 Introduction

Querying data repositories require defining the comparison criterion used in
the operators that select the answer set. Simple data types, such as numbers
and small character strings handled in current Database Management Systems
(DBMS), assume a single, implicit, comparison criterion for each data domain:
the magnitude order of the numbers and the lexicographical order of small
strings. Those are valuable criteria, as they allow employing the total order-
ing (TO) property over the corresponding data domains. TO is the fundamental
concept that allows applying the relational comparison operators (<,≤, > or
≥) over simple data types, besides the universally available equality (= or �=)

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 417–434, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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operators. It allows the construction of efficient access methods, such as the well-
known B-tree and its variants, widely used in DBMS. However, more complex
data, such as images, do not meet the TO property. Therefore, other comparison
operators are required to retrieve such data types, and querying by similarity is
the most suited option.

Images are a complex type of data that is broadly present in computational
systems. The technique of querying image datasets based on its pictorial content
is called Content-Based Image Retrieval (CBIR) [1] [2]. It is based on submitting
each image to a set of image processing algorithms (called feature extractors) to
obtain its feature vector, which are used in place of the real image to execute the
comparison. For example, in generic CBIR systems, images are preprocessed to
retrieve their color and/or texture histograms, polygonal contours of the pictured
objects, etc.

Querying by similarity in such datasets requires defining a comparison criteria,
which is usually expressed as result of the distance function between two feature
vectors. In this paper, we employ the term metric for the distance function. The
metric must hold some properties and is expected to return smaller values for
more similar elements.

Formally, a metric space is a pair < S, d >, where S is the domain of data
elements and d : S × S → R+ is a metric holding the following properties, for
any s1, s2, s3 ∈ S. Identity: d(s1, s2) = 0 ⇒ s1 = s2; Symmetry: d(s1, s2) =
d(s2, s1); Non-negativity: 0 < d(s1, s2) < ∞ if s1 �= s2; and Triangular inequal-
ity: d(s1, s2) ≤ d(s1, s3) + d(s3, s2).

Any dataset S ⊂ S associated to a metric is said to be in a metric space. The
elements of a dataset S can be composed of numbers, vectors, matrices, graphs
and even functions. For example, images can be represented in a metric space
using their feature vectors associated to a metric such as the Euclidean (L2) or
the Manhattan distance (L1). There are studies aimed at developing extractors
that obtain highly representative features from images and designing specific
metrics in order to improve its precision [3,4].

Retrieving complex data by similarity is computationally expensive. There-
fore, metric access methods (MAM) were developed employing the properties of
metric spaces to index sets of complex data. A metric structure divides a dataset
into regions and chooses representative objects to represent each region. Besides
the objects, each node stores the representatives and their distances to the stored
objects. Representatives are stored also in parent nodes, hierarchically organiz-
ing the structure as a tree. To answer a query, the query center is compared with
the representatives in the root node. The triangular inequality is then used to
prune subtrees, but as this property does not enforce total ordering, overlapping
can occur.

It is well-known that a MAM’s performance relies on how well it partitions
the space, but it also depends on the behavior of the metric used [4]. A MAM is
associated with a metric that measures the similarity between pairs of elements
as the distance between them. The metric is then used to build and query the
tree, making it to be referenced also as “distance-based trees”.
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It is natural to think that as more significant features are extracted, the higher
the ability to correctly identify the images is, and more precise the answer will
be. However, as more features are added to the feature vector, the larger dimen-
sionality leads to the “dimensionality curse”. This condition worsens the results
and degrades the structure of the MAM [5]. Previous work targeted dimension-
ality reduction processes, but they are not useful for indexing, as they lead to
distortions in the answers that are not easily predictable, preventing the use of
correction techniques [6,7].

This paper proposes a technique to improve the performance of MAM by
properly stretching the metric space, weakening the effect of the dimensionality
curse. The technique employs a monotonically increasing function as a “stretch-
ing function”, to change the space metric, producing a new field of distances.
The field of stretched distances does not follow the properties of a metric space,
but we show how to employ its properties to transform a MAM into an access
method that perform similarity queries over the dataset using the distance field
more efficiently than a MAM can do using the original space.

This paper is organized as follows. Section 2 shows the required concepts
and related studies. Section 3 shows its motivation and describes the proposed
technique. Section 4 shows the properties met by the stretched space that can be
used to prune subtrees. Section 5 shows experiments and the results achieved.
Finally, section 6 summarizes the ideas presented in this paper and draws its
conclusions.

2 Background

Several Spatial Access Methods (SAMs) have been proposed for multidimen-
sional data. A comprehensive survey showing the evolution of SAM and their
main concepts can be found in [8]. However, the majority of them suffer from
the dimensionality curse, having the performance drastically degenerated as the
dimensionality increases [9,7,10]. Moreover, SAM are not applicable to non-
dimensional data. In fact, SAM were first developed to deal efficiently with low
dimensionality spaces, becoming inefficient as dimensionality raises above ten or
so dimensions [7]. Hence, SAM are not useful to index feature vectors extracted
from images, as they can have hundreds or thousands of dimensions.

A common practice to improve operations over data of large dimensional-
ity is to employ the dimensionality reduction techniques. Most of the existing
techniques rely on numeric processing or on neural networks, the majority of
them considering all attributes at once [11] [12][13]. If small clusters occurring
in the data depend on attributes that are meaningless for the bulk of the data,
dimensionality reduction techniques might drop them, distorting the result.

Providing spatial data with a metric to enable handling them as a metric
space helps reducing the problems derived from the dimensionality curse, be-
cause MAMs tend to follow the dimensionality of the object represented by
the data (the so-called intrinsic dimensionality), not the dimensionality of the
space where the object is embedded (the embedded dimensionality). Note that
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the intrinsic dimensionality is usually much smaller than the embedded one [7].
Moreover, many complex data do not have a defined dimensionality (e.g. poly-
gons defining regions on images, because the number of edges varies), although
a distance function can be defined to compare them. Thus, handling datasets of
low intrinsic-dimensionality (or even non-dimensional ones) using MAMs rather
than SAMs is an interesting way to speed up similarity queries. Two surveys on
MAMs can be found in [14] and [15].

The M-tree [16] was the first balanced, dynamic metric tree proposed, followed
by the Slim-tree [17], which includes the Slim-down algorithm to reduce node
overlapping. The OMNI concept proposed in [18] increases the pruning power on
searches by using strategically positioned elements, the foci set. These methods
precalculate distances between selected elements, enabling the triangular inequal-
ity property to be used to prune subtree accesses during query evaluation.

The iDistance [19] is a B+-tree based indexing method created to perform k-NN
queries in high dimensional spaces. After partitioning the data space, a reference
point is chosen for each partition, and the data points are transformed into a di-
mensional value, by using the similarity to the reference point, and indexed using
a B+-tree structure. Experiments comparing iDistance with other MAM suggests
it is well suited for clustering detection and high-dimensional data.

The study of Nadvorny and Heuser [20] describes that the low query perfor-
mance when querying text fields is a result from the achieved arrangement of
the objects in the datasets over the metric space. This arrangement is inappro-
priate for grouping, and can jeopardize query performance, once the metric-tree
structures are based on grouping objects. They propose applying a “twisting
function” over the metric space, in order to generate a new space, where ob-
jects are better arranged. However, this new space does not allow queries once
it does not have the metric properties, i.e., the triangular inequality (bounding
property) does not hold. The partial solution became coming back to original
space to do the queries. Although this approach enhances the data arrangement,
most of the chosen functions are not monotonically crescent when applying a
space mapping of distances. This condition makes it difficult deriving bounding
properties in order to prune subtrees, and could lead to not preserving the order
of distances from objects depending on the distribution of the dataset.

All of the above MAMs depend on the metric associated to the dataset. How-
ever, when the intrinsic dimensionality of the dataset is large, the dimensionality
curse also affects them. Here, we state that the problem is not in the way MAMs
organize themselves, but on the distribution of distances produced by the met-
rics associated to the datasets. The solution we propose acts at spreading the
distribution of distances, aiming at expanding the metric space, improving the
distance distribution in a way that enable a MAM to perform better.

3 Motivation

When there are many degrees of freedom, high dimensional data tend to
spread out in the space. As a consequence, the distances between near and far
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objects become more similar, reducing the differences in distances occurring in
the dataset.

In fact, in spaces of large dimensionality, elements tend to be far from each
other, and as long as the nearest neighbor is reached, small increases in the cover-
ing radius encompass several other elements. This effect degenerates the MAMs,
as they cannot partition the space adequately, increasing the node overlap. Both
spatial and metric access methods are sensitive to this problem.

For the sake of clarity, we reproduce here an experiment described by
Katayama and Satoh [21], which illustrates the effect of increasing the dimension-
ality over the distance distribution among elements of a dataset. The experiment
consists of creating several datasets with the same cardinality, each having a dif-
ferent dimensionality, and measuring the minimum and the maximum distance
between any pair of elements. Each element has a value randomly generated with
uniform distribution in the range [0, 1) in each dimension. Thus, each dataset
corresponds to a set of points in a unit hyper-cube with the dimensionality of
the dataset. We generated datasets with 100,000 points using 2, 4, 8, 16, 32, 64
and 128 dimensions. Figure 1 shows the minimum, maximum (diameter) and
average distances between any pair of points in each dataset. As it can be seen,
the minimum distance among elements of the 128-dimensional dataset is larger
than half the measured dataset diameter.

Fig. 1. Minimum, maximum and average distance between points in unit hyper-cubes
of varying dimensionality

The effect is equivalent to place every element near to the border of the
dataset, so no element has a really near neighbor. Executing similarity queries in
those spaces is very expensive, and no index structure can significantly improve
over sequential scan. Therefore, instead of trying to improve the access methods,
we propose to change the space: our approach is to counteract the described effect
developing a technique that stretches the metric space by the use of a “stretching
function”, in a way that the smaller distances are further compressed, and the
larger ones are further expanded.

A stretching function is a monotonically increasing function f : d ⊆ R+ → R+,
where d is a distance.
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In order to illustrate the result of applying a stretching function, consider Fig-
ure 3. It shows a stretching function fs used to compare elements (sc, s1, s2, s3),
which are ordered by their distances to a center element sc through the me-
tric d, which we call the original distances. The stretching function fs com-
presses/expands the original distance into a stretched distance field. To high-
light the effect, the stretched distances produced by fs ◦ d are shown in Figure 3
normalized to the largest distance among the elements. As it can be noticed, the
elements that were close to sc become even closer and the elements that were
far from sc become even farther. Therefore, applying the stretching function
counteracts the effect of the dimensionality curse in high-dimensional spaces.

Employing a stretching function is equivalent to performing a space mapping:
the stretching function maps the original field of distances centered at a given
element into another field, which lead to a “distance-stretched space”. Distinctly
from dimensionality reduction techniques, a distance-stretched space preserves
all the attributes in the feature vector, and all of them contribute equally to the
data distribution.

It must be noted that a distance-stretched space is not metric. In fact, it
is able to preserve the distance ordering of the original space considering only
one center. However, the distance differences among pairs of objects that allow
the objects to exchange positions are also governed by the stretching function.
Therefore, it is possible to calculate the differences as an error when calculating

Fig. 2. Minimum, maximum and average distances stretched by function fs = ed

Fig. 3. The effect of stretching the space
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the distances. A space mapping that guarantees a maximum error limit (α)
when mapping the distances from an original space into a target one is a well-
known algebraic concept of the metric space theory, called a Linear α-Lipschitz
Continuous Mapping. In this paper, as we restrict the stretching function to be
a strictly increasing continuous function, we analyze the function fs(d) = bd,
where b > 1 is the stretching-base. In this way, the Lipschitz mapping defined
for real valued distances is bounded by a constant defined as

α ≥ |b
d1 − bd2|
|d1 − d2|

for all d1, d2 ∈ R+ and b > 1.
To have an idea of how the distance distribution changes using a stretching

function, Figure 2 shows the same experiment from Figure 1 now using the
stretching function fs = ed (that is, using the Euler’s number e as the stretching-
base). As it can be noticed, the difference from the maximum to the minimum
distances in the 128-dimensional dataset changes from half to less than 1/7, that
is, similar to the distance distribution of the original 16-dimensional dataset.

The properties from the mapped space can be derived from those of the origi-
nal ones. The next section presents the properties relevant to create index struc-
tures, detailing the derivation process, and presents the general formulation for
any distance-stretched space modified by an exponential function.

4 Properties of Distance-Stretched Spaces

In this section we analyze the properties derived from a Linear α-Lipschitz
Continuous Mapping resulting from applying an exponential function to a me-
tric d (satisfying the metric axioms of identity, symmetry, non-negativity and
triangular inequality described before), aimed at discovering properties useful
for MAM to prune subtrees. Let us consider a stretching function defined as
fs(si, sj) = bd(si,sj), where b ∈ R+, b > 1 and d is a metric. The resulting
mapping produces a space that satisfies the properties as follows.

Identity property - In metric spaces, the identity property states that

d(si, sj) = 0⇒ si = sj

In the distance-stretched space, the identity property is transformed to the fol-
lowing expression

fs(si, sj) = 1⇒ si = sj

because b0 = 1
Symmetry and non-negativity properties - The original symmetry prop-

erty holds in distance-stretched spaces too, once

fs(si, sj) = bd(si,sj) = bd(sj ,si) = fs(sj , si)

as does the non-negativity property:

0 < fs(si, sj) = bd(si,sj) <∞
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Bounding property - The triangle inequality does not hold in distance-
stretched spaces. To derive a useful rule, able to allow search algorithms to
prune sub-trees, we use the triangular inequality property of the original spaces
to set the lower and the upper bounds that the stretched distances must satisfy
between pairs of any three elements. From the triangular inequality property,
we can write

|d(s1, s3)− d(s3, s2)|︸ ︷︷ ︸
lower bound

≤ d(s1, s2) ≤ d(s1, s3) + d(s3, s2)︸ ︷︷ ︸
upper bound

for any s1, s2, s3 ∈ D. Applying the stretching function, we can derive the bound-
ing property generated by the stretching function fs(s1, s2) = bd(s1,s2), which
results in

b|d(s1,s3)−d(s3,s2)| ≤ bd(s1,s2) ≤ bd(s1,s3)+d(s3,s2) .

Defining f−1
s (si, sj) = logb(fs(s1, s2)) = d(si, sj), we have

b|f
−1
s (s1,s3)−f−1

s (s3,s2)|︸ ︷︷ ︸
lower bound

≤ fs(s1, s2) ≤ b(f−1
s (s1,s3)+f−1

s (s3,s2))︸ ︷︷ ︸
upper bound

.

This property gives us the lower and upper bound distances that can occur
between any three elements in the distance-stretched space. This property can
be employed to prune subtrees during retrieval operations in an index tree.

Although we can choose any type of exponential stretching function, a partic-
ular formulation can be written when applying to a specific stretching function.
For example, without loss of generality, let us consider a stretching function of
the form fs(si, sj) = ed(si,sj). Then, the following properties hold in the distance
field generated.

1. Identity: fs(si, sj) = 1⇒ si = sj ;
2. Symmetry: fs(si, sj) = fs(sj , si);
3. Non-negativity: 0 < fs(si, sj) <∞;
4. Bounding: e|ln(fs(s1,s3))−ln(fs(s3,s2))| ≤ fs(s1, s2) ≤ e(ln(fs(s1,s3))+ln(fs(s3,s2)))

4.1 Similarity Queries on Distance-Stretched Spaces

The similarity queries on distance-stretched spaces can take advantage of the
bounding property in order to prune subtrees during the query execution. To
employ the proposed technique over a MAM, it must be adapted so the stretched-
distance space properties are employed in place of the metric ones. Although
the changes are straightforward to implement, for the sake of completeness we
present in this section the range query algorithm for the Slim-tree adapted to
handle the stretched-distance space properties, which we call the Slim-tree XS.

We assume that the distances d(sp, si) from each element si stored in a tree
node to the node representative sp are stored in the node (following the structure
of the Slim-tree, the M-tree, etc.), in order to reduce wasting time recalculating
distances. So, in the formulas following, we mark the distances already stored
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as d̆. To calculate the inverse mapping function is a costly operation too, so
we propose to modify the index structure to store also the stretched value of
the pre-calculated distances stored in the nodes, marking it as f̆s. Although
this modification reduces the node capacity, it is shown in Section 5 that it
is compensated by the higher pruning ability achieved by using the stretching
functions.

For illustration purposes, Figure 4(b) exemplifies a query in a 2-dimensional
Euclidean space. We use the notation (si, r

′
i) to represent a ball in a stretched-

distance space centered at element si and covering radius r′i, where r′i = bri . In
order to determine if the query ball (sq, r

′
q) intersects the elements stored in a

tree node covering the ball (si, r
′
i), we must evaluate if fs(si, sq) ≤ r′i + r′q . If

this condition is true, the balls intersect and the region of the ball (si, r
′
i) must

be visited, like Figure 4(a) indicates. However, we also want to avoid the calcu-
lation of fs(si, sq) using the lower bounding property and the stored distances.
Evaluating if b|f̆s

−1
(si,sp)−f−1

s (sp,sq)| > r′i + r′q , we know that the query ball does
not intersect the ball (si, r

′
i). It the test fails, the distance fs(si, sq) must be

calculated in order to determine if an intersection occurs.

(a) (b)

Fig. 4. (a) Intersection of balls in stretched space. (b) Example of a query Rq(sq, r
′
q).

The range query algorithm for distance-stretched spaces is presented in Al-
gorithm 1. The range query Rq(sq, r′q) must select every element sj such that
fs(sj , sq) < r′q. The algorithm starts from the root node and traverses every
subtree that cannot be excluded by the bounding property, as indicated in
Section 4.

A final note about the implementation details of the space-stretching tech-
nique regards the space normalization, as shown in Figure 3. Theoretically, nor-
malization is not required, but it is worth remembering that an exponential
function may generate very large values if the original distances are already
large. Therefore, it is a good idea to sample a few elements in the original data
space and use this reduced dataset to normalize the distances before applying
the stretching function, to avoid numeric overflow. Notice that a rough approx-
imation to a unit hypercube is enough as, unless preventing overflow, it has no
effect in the final results.
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Algorithm 1. Range Query (sq, r′q , root)

Input: query center sq , query radius r′q, root of subtree node.

1: Let sp be the parent element of node
2: if node.isLeaf() == false then
3: for all sj in node do

4: if b|f̆s
−1

(si,sp)−f−1
s (sp,sq)| ≤ r′i + r′q then

5: Evaluate fs(sj , sq);
6: if fs(sj , sq) ≤ r′i + r′q then
7: Range Query(sq, r′q, node.subtree(sj));
8: end if
9: end if

10: end for
11: else
12: for all sj in node do

13: if b|f̆s
−1

(si,sp)−f−1
s (sp,sq)| ≤ r′q then

14: Evaluate fs(sj , sq);
15: if fs(sj , sq) ≤ r′q then
16: Add oid(sj) to the result;
17: end if
18: end if
19: end for
20: end if

5 Experiments and Results

This section presents the experiments performed to analyze the effect of stretch-
ing a metric space in metric access methods built over both synthetic and real
world datasets. We used the Slim-tree MAM to measure the number of disk
accesses, number of distances calculated and total time spent when performing
similarity queries on both metric spaces and distance-stretched spaces.

The Slim-tree used is the one available at the Arboretum framework 1, which
is written in C++. The tests were performed on a machine with a Pentium D
3.4GHz processor and 2Gb of memory RAM. The Slim-trees were built using the
min-occupation and MST policies, which are considered as the best configuration
by the authors.

For each dataset, two Slim-trees where built: one corresponding to the tra-
ditional tree storing the original metric space (referred here as the Slim-tree),
and another corresponding to the modified tree storing the distance-stretched
space (referred here as the Slim-tree XS). Notice that the only changes in the
Slim-tree code are storing the stretched-distance version of every distance stored
in a node and the corresponding use of these values in the query algorithms. In
the experiments, the page size of the Slim-trees are set individually for each
dataset, in order to have nodes with a maximum occupancy of 50 elements.

1 http://gbdi.icmc.usp.br/arboretum
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Each corresponding Slim-tree XS for the same dataset has the same page size of
the Slim-tree, thus potentially leading to a maximum occupancy of slightly less
than 50 elements in the Slim-tree XS.

All experiments were performed using a set of 500 queries with different query
centers. For each experiment, it was measured the average number of disk ac-
cesses, the average number of distance calculations and the total time required
to perform the 500 queries. The query elements are randomly chosen from those
indexed in the structure.

Three kinds of datasets were used in the experiments, being one synthetic and
two from the real world, as follows.

Synthetic: A set of seven synthetic datasets, each having 10,000 points,
generated as a unit hypercube under a uniform distribution, with 2, 4, 8, 16,
32, 64 and 128 attributes (dimensions). We used the Euclidean metric for
those datasets. Each dataset leads to the worse effects of the dimensionality
curse in a dataset with the respective dimensionality, because no correlation
exists among attributes.
EnglishWords: A random sample of 24,893 English words, using the Ledit

metric. This is also a hard case for similarity search, as the metric results in
discrete values from a small cardinality codomain, leading to a large number
of ties.
PCA: A set of 17,162 images projected on an orthonormal space of 43
eigenvectors (PCA) defined from a training set formed by linear sampling.
We used the Euclidean metric for this dataset. This dataset exhibits an
average behavior of real world datasets based on arrays of features, as its
attributes are likely to present varying degrees of correlation.

5.1 Evaluating the Effect of the Dimensionality

The first experiment compares different stretching functions with the original
space of distances when indexing the Synthetic datasets. We selected them to
explore the high intrinsic dimension induced by the uniform distribution because,
as there is no correlation among attributes, the dimensionality curse will be the
strongest, hurting the performance of indexing structures the most.

We tested the functions

Power2: fs(si, sj) = 2d(si,sj)

PowerE: fs(si, sj) = ed(si,sj)

Power10: fs(si, sj) = 10d(si,sj)

composed with the Euclidean metric (L2).
In order to analyze when the dimensionality curse takes place in similarity

queries, we performed k-nearest neighbor queries (k-NNq) and range queries
(Rq) indexing the Synthetic datasets with the Slim-tree and the Slim-tree XS,
and evaluated their behavior as the dimensionality increases. The selected num-
ber of nearest neighbors for k-NNq is k = 6 and the covering radius for Rq was
set to radius = 0.01 (1% of the maximum dataset span in a dimension).
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Fig. 5. Evaluating different stretching functions on similarity queries over increasing
dimensionality of the Synthetic datasets. Plots a), b and c) correspond to k-NN queries
and plots d), e) and f) to range queries. Plots a) and d) show the average number of
disk accesses, plots b) and e) show the average number of distance calculations, and
plots c) and f) show the total evaluation time required to perform 500 queries.

The results are presented in Figure 5. Notice that both k-nearest (plots a),b),c)
at top line) and range queries plots (d),e),f) at lower line) follow the same pat-
tern. Regarding the number of distance calculations, Figures 5b) and 5e) show
that the distance-stretched space eases the dimensionality curse. In fact, after
16 dimensions, the stretched space provides a steady reduction of approximately
40% of the number of distance calculations for both k-NNq and range queries,
regardless of the stretching-base used. We also can see that, although increas-
ing the stretching-base reduces the required number of distance calculations, a
small base is enough to provide good reduction, and that after a base equal to
the Euler’s number e, further reductions becomes small.

Regarding the number of disk accesses, Figures 5a) and 5d) show that the
number of disk accesses required in the distance-stretched space is close but
always smaller than in the original space. This occurs likely because of the extra
distance stored in the node for each element. Thus, the Slim-tree XS storing the
distance-stretched space has more nodes than the Slim-tree in the original space.
However, even with more nodes, the figures show that the Slim-tree XS in the
distance-stretched space performs less disk accesses.

Figures 5c) and 5f) show the time spent to execute the queries. They show
that a stretching-base b = e or b = 10 leads to almost the same timing, whereas
b = 2 leads to the longest time. This is probably due to the large time required to
process the base 2 logarithm. It can also be seen that querying the original space
for datasets up to 4 dimensions is faster than querying the distance-stretched
space (probably due to not using the exponential and logarithm functions), but
at eight or more dimensions, querying the distance-stretched space is faster.
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Figure 5 shows that different stretching functions produce different distance
spaces with slightly variations on performance. Although it is intuitive that
functions bd with a higher base b better distribute the distances between pairs
of elements, there is a performance penalty based on the algorithm employed
to calculate both the exponential and, more costly, its inverse function logb d.
As we can see, the larger the value of the base, the better the improvement
achieved, although using a stretching-base larger than e leads to small gain.
Moreover, one must care for the value of the base, because if the distances
among pairs of objects are large, the stretching function overflows. Therefore,
this experiment shows that using e as the stretching-base is a good choice, and
the next experiments were performed using only the stretching function ed.

5.2 Evaluating the Performance of Range and k-NN Queries

The second experiment measures the performance of similarity queries over the
EnglishWords and the PCA datasets. Table 1 shows the number of distance
calculations and the time spent to construct the Slim-trees and the Slim-tree

Table 1. Construction statistics for the real datasets

PCA EnglishWords
Distances Time(ms) Distances Time(ms)

Slim-tree 1,209,833 3,640 1,882,419 9,437
Slim-tree XS 1,160,576 2,906 1,605,959 7,906

Fig. 6. Behavior of different stretching functions on similarity queries over increasing
size of the Synthetic dataset. The first line corresponds to k-NN queries and the second
to range queries. The first column shows the average number of disk accesses, the second
one shows the average number of distance calculations, and the third one shows the
total evaluation time required to perform 500 queries.
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Fig. 7. K Nearest Neighbor queries measures over the datasets PCA and EnglishWords

XS over both datasets. As we can see, constructing the Slim-trees XS required
less distance calculations and a shorter time for both datasets. Besides faster
to construct, the Slim-tree XS trees also enable faster query processing, as the
following experiments show.

In this experiment we also measured the average number of distances calcu-
lated, the average number of disk accesses and the total time spent to answer 500
queries. Figure 7 shows the results. The radius of the range queries, presented
in logarithmic scale in plots, is the percentile of similar elements obtained by
the query, i. e., a range query of radius 0.1 retrieves approximately 10% of the
elements from the dataset.

Analyzing the graphs of queries executed over the PCA dataset (the first
two columns of Figure 7), we can see that the Slim-tree XS achieved better
performance than the classical Slim-tree. In fact, the Slim-tree performed three
times more distance calculations in average than the Slim-tree XS (the first line
of plots in Figure 7). Regarding the number of disk accesses, both range and
k-NN queries presented the same behavior, and the regular Slim-tree performed
more than twice disk accesses, in average, than the Slim-tree XS (second line of
Figure 7). Considering the time spent, the Slim-tree XS also outperformed the
Slim-tree, being, in average, twice as faster as the Slim-tree.
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Fig. 8. Range queries measures over the datasets PCA and EnglishWords

Another interesting result is the performance of the Slim-tree XS indexing the
EnglishWords dataset. This dataset is adimensional, and the LEdit metric returns
integer values varying from 0 (for identity) up to 24 (the maximum number of
letters in a English word in the dataset). Again, we can see that the Slim-tree
XS exhibits better performance gains against the Slim-tree, as the Slim-tree
required in average 3.5 more distances calculations and twice the number of disk
accesses to perform both range and k-NN queries than the Slim-tree XS. The
Slim-tree XS was also at least 2.5 times faster than the Slim-tree for both kinds
of similarity queries.

5.3 Evaluating Scalability

The last experiment evaluates the scalability of the proposed technique. The
experiment performs range and k-nearest neighbor queries over Synthetic dataset
with 16 dimensions of increasing sizes indexed by both Slim-tree and Slim-tree
XS. We performed queries using different stretching functions, measuring the
average number of disk accesses, the average number of distance calculations
and the total time required to execute 500 queries.
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Figure 6 shows the results obtained when performing range and k-nearest
neighbor queries with increasing dataset size. The graphs show that the indexing
methods scales linearly with the size of the datasets, regardless of the stretching-
base employed. It also confirms that using a stretching base b > e is enough to
obtain a steady performance gain.

6 Conclusion

Many applications deal with complex data, where a large number of features,
or dimensions are necessary to represent the essence of the data contents. Thus,
these data are inherently high-dimensional, what leads to the problem of the
dimensionality curse when processing similarity queries. Consequently new tech-
niques are required to avoid this curse, which really damages the managing of
the information. Previous work targeted the dimensionality reduction processes.
However, the majority of them relies on changing the attributes of the data
space. Therefore, they are not adequate for indexing purposes supporting simi-
larity search, once they can cause distortions in the answers that are not easily
predictable.

In this paper we introduced a new mapping technique, which requires only
minor changes in existing metric access methods, and greatly reduces the neg-
ative effects of the dimensionality curse. Its main idea is to stretch the metric
space following an exponential function, in order to push the elements far from
the query center even farther, whereas close elements are pulled even closer. As
the stretching function modify the space of distances between pairs of elements,
new properties were derived from the axioms of metric spaces. They are used in
place of the metric ones in order to prune subtrees in indexing structures when
performing queries.

Experiments were made to evaluate query execution on the distance-stretched
space using the Slim-tree access method. However, the proposed method can be
straightforwardly applied to any MAM. The reformulation of a Slim-tree to work
on distance-stretched spaces supporting the proposed properties was called Slim-
tree XS.

Experiments made on synthetic datasets with up to 128 dimensions showed
that the Slim-tree XS achieved better performance than Slim-tree as the dataset
dimensionality increases. Results on k-NN queries pointed that the Slim-tree XS
achieved up to 43% less distance calculations and up demands to 7% less disk
accesses, resulting in a gain in time of 20%. Results on range queries pointed
that the Slim-tree XS achieved up to 25% less distance calculations and up to
4% less disk accesses, resulting in a gain in time of 18%.

Experiments made on real datasets showed that the mapping technique im-
proves the performance of similarity queries on high dimensional, real world
datasets, such as image features extracted with PCA methods and even on adi-
mensional datasets, such as a set of words from the English language. Considering
both datasets, results on k-NN queries pointed that the Slim-tree XS achieved
up to 70% less distance calculations, up to 52% less disk accesses and a gain in
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time of 57% as compared to the plain Slim-tree. Results on range queries showed
that the Slim-tree XS achieved up to 58% less distance calculations and up to
45% less disk accesses, resulting in a gain in time of 51%. Finally, scalability
analysis made on Synthetic datasets showed a that the technique scales linearly
as the dataset size increases.

Thus, we claim that the proposed distance-stretching technique is a novel and
very effective approach to extend the database technology to meet the increasing
need to support high dimensional objects in DBMS.
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Abstract. A probabilistic similarity query over uncertain data assigns
to each uncertain database object o a probability indicating the likeli-
hood that o meets the query predicate. In this paper, we formalize the
notion of uncertain time series and introduce two novel and important
types of probabilistic range queries over uncertain time series. Further-
more, we propose an original approximate representation of uncertain
time series that can be used to efficiently support both new query types
by upper and lower bounding the Euclidean distance.

1 Introduction

Similarity search in time series databases is an active area of research usually
with a focus on certain data. No work has been done so far to support query
processing on uncertain time series. Uncertainty is important in emerging ap-
plications dealing e.g. with moving objects or object identification as well as
sensor network monitoring. In all these applications, the observed values at each
time slot of a time series exhibit various degrees of uncertainty. Due to the
uncertainty of the data objects, similarity queries are probabilistic rather than
exact: we can only assign to each database object a probability that it meets the
query predicate. As a consequence, there is a need to adapt storage models and
indexing/search techniques to deal with uncertainty [1,2,3,4]. Furthermore sev-
eral approaches for probabilistic query processing have been proposed recently
including probabilistic range queries [5,6], probabilistic kNN and top-k queries
[7,8,9,2,10] and probabilistic ranking [10,11,12,13,14]. Applications where the
analysis of time series has to cope with uncertainty are e.g. traffic measurements
in road networks, location tracking of moving objects or measuring environmen-
tal parameters as temperature.

When looking at the above sketched applications, we can extract two types of
uncertain time series model uncertainty using a sampling approach rather than
probability density functions (pdfs). In the first two applications, the sample
values of different time slots are uncorrelated, i.e. there is no relationship between
a given sample observation at time slot i and another sample observation at time
slot (i + 1). On the other hand, in Application 2, each observed sample at time
slot i is correlated to an observation at time slot (i+1) and vice versa. Since both

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 435–443, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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types require different and complex solutions in order to support probabilistic
similarity queries, we only focus on uncorrelated uncertain time series throughout
the rest of the paper. As indicated above, we assume that uncertainty is modelled
using sample observations rather than pdfs.

To the best of our knowledge, this is the first paper, that formalizes the
problem of probabilistic queries on uncertain time series, focusing on two types
of probabilistic range queries (cf. Sec. 2). Furthermore, this paper proposes a
novel compact approximation of uncertain time series and shows how upper
and lower bounding distance estimations for Euclidean distance can be derived
from these representations (cf. Sec. 3). Third, it illustrates how these distance
approximations can be used to implement a multi-step query processor answering
probabilistic similarity queries on uncertain time series efficiently (cf. Sec. 3).

2 Probabilistic Queries over Uncertain Time Series

Usually, time series are sequences of (certain) d-dimensional points. Uncertain
time series are sequences of points having an uncertain position in the d-
dimensional vector space. This uncertainty is represented by a set of sample
observations at each time slot.

Definition 1 (Uncertain Time Series). An uncertain time seriesX of lengthn
consists of a sequence 〈X1, . . . , Xn〉 of n elements, where each element Xt contains
a set of s d-dimensional points (sample observations), i.e. Xt = {xt,1, . . . , xt,s}
with xt,i ∈ Rd. We call s the sample size of X . The distribution of the points in Xt

reflects the uncertainty of X at time slot t.

We will use the term regular time series for traditional, non-uncertain (i.e. exact)
time series consisting of only one d-dimensional point at each time slot1.

In order to measure the similarity of uncertain time series we need a distance
measure for such uncertain time series. For regular time series, e.g. any Lp-
norm is commonly used to measure the distance between pairs of time series.
Due to the uncertainty of the time series, also the distance between two time
series is uncertain. Instead of computing one unique distance value such as the
Lp-norm of the corresponding sequences, the distance between uncertain time
series rather consists of multiple distance values reflecting the distribution of
all possible distance values between the samples of the corresponding uncertain
time series. This intuition is formalized in the following definition.

Definition 2 (Uncertain Lp-Distance). For a one-dimensional uncertain
time series X of length n, let sX be the sample size of X and TSX be the set
of all possible regular time series that can be derived from the combination of
different sample points of X by taking one sample from each time slot, i.e.

TSX = {〈x1,1, x2,1, . . . , xn,1〉, . . . , 〈x1,sX , x2,sX , . . . , xn,sX 〉}.

1 For presentation issues, we assume 1-dimensional uncertain time series, the extension
to the general d-dimensional case is straightforward.
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The Lp-distance between two uncertain time series X and Y, denoted by d̃istp,
is a collection containing the Lp distances of all possible combinations from TSX
and TSY , i.e. d̃istp(X ,Y) = {Lp(x, y) |x ∈ TSX , y ∈ TSY}.

Based on the distance function d̃istp we define two query types for uncertain
time series. Thereby, we define the probability Pr(d̃istp(X ,Y) ≤ ε) that the
distance between two uncertain time series X and Y is below a given threshold
ε as

Pr(d̃istp(X ,Y) ≤ ε) =
|{d ∈ d̃istp(X ,Y)|d ≤ ε}|

sn
X · sn

Y
.

Definition 3 (Probabilistic Bounded Range Query). Let D be a database
of uncertain time series, ε ∈ R+, and τ ∈ [0, 1]. For an uncertain time series Q,
the Probabilistic Bounded Range Query (PBRQ) returns the following set

RQε,τ (Q,D) = {X ∈ D | Pr(d̃istp(Q,X ) ≤ ε) ≥ τ}.

Definition 4 (Probabilistic Ranked Range Query). Let D be a database
of uncertain time series and ε ∈ R+. For an uncertain query time series Q, the
Probabilistic Ranked Range Query (PRRQ) returns an ordered list:

RQ
ε,rank(Q,D) = (X1, . . . ,Xm),

where Pr(d̃istp(Q,Xi) ≤ Pr(d̃istp(Q,Xi+1) (1 ≤ i ≤, m−1) and Pr(d̃istp(Q,Xi)
≤ ε) for all i = 1, . . . , m. For efficiency reasons, we assume a function getNext
on the set RQε,rank(Q,D) that returns the next element of the ranking, i.e. the
first call of getNext returns the first element in RQε,rank(Q,D), the second call
returns the second element in RQε,rank(Q,D), and so on.

Let us note that in the database context where we have long time series (high
value of n) and high sample rates, the naive solution for both query types are
CPU-bound because for all X ∈ D we need to compute all distance observations
in d̃istp(Q,X ) in order to determine Pr(d̃istp(Q,X ) ≤ ε). This means that a
naive solution requires to compute for each X ∈ D exactly |d̃istp(Q,X )| = sn

Q·sn
X

distances. For large values of n, sQ, and sX , this is obviously much more costly
than sequentially scanning the disk to access all X ∈ D.

3 Multi-step Probabilistic Range Query Processing

Obviously, the CPU cost (and thus, the overall runtime) of our probabilistic
similarity queries are dominated by the number of distance calculations necessary
to determine the probability Pr(d̃istp(Q,X ) ≤ ε) for a query object Q and
all X ∈ D. This high number results from the combination of the observed
distance values between Q and X at each time slot. A first idea for runtime
reduction is that we only need to determine the number of distance observations
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Fig. 1. Different levels of approximating uncertain time series

d ∈ d̃istp(Q,X ) with d ≤ ε because |d̃istp(Q,X )| = sn
Q · sn

X . We can further
improve the runtime by calculating lower and upper bounds for the probability
that further reduce the number of distance computations. For that purpose,
we have to calculate an upper and a lower bound for the number of distance
observations d ∈ d̃istp(Q,X ) with d ≤ ε.

3.1 Approximative Representation

Intuitively, we construct the approximative representation of an uncertain time
series X by aggregating the observations xi,j ∈ Xi at each time slot i into groups
and use these groups to calculate the distance between uncertain time series.
Obviously, this reduces the sample rate and thus, the overall number of possi-
ble distance combinations. The groups are represented by minimum bounding
intervals2.

Definition 5 (Approximative Representation). The approximative repre-
sentation Xa of an uncertain time series X of length n consists of a sequence
〈{I1,1, . . . , I1,m1}, . . . , {In,1, . . . , In,mn}〉 of interval sets. Each interval Ii,j =
[li,j , ui,j ] minimally covers a given number |Ii,j | of sample points of Xi, i.e.
li,j and ui,j are sample points of Xi, at time slot i.

We use two levels of approximation. The first level describes all sample points
at time slot i by one minimal bounding interval (cf. Figure 1(b)), i.e. mi = 1 for
all time slots i and Xa = 〈I1,1, . . . , In,1〉. For the second level approximations,
the sample observations at time slot i are grouped into k clusters by applying
the algorithm k-means [15] on all xi,j ∈ Xi (cf. Figure 1(c)), i.e. mi = k for all
time slots i and Xa = 〈{I1,1, . . . , I1,k}, . . . , {In,1, . . . , In,k}〉.

3.2 Distance Approximations

Using approximative representations Xa and Ya of two uncertain time series X
and Y we are able to calculate lower and upper bounds for Pr(d̃istp(X ,Y) ≤ ε).

Analogously to Definition 2, let TSXa be the set of all possible approximated
regular time series derived from the combination of different intervals of Xa by
taking one interval from each time slot, i.e.

TSXa = {〈I1,1, I2,1, . . . , In,1〉, . . . , 〈I1,l1 , . . . , In,ln〉}.
2 Or minimum bounding hyper-rectangles in the d-dimensional case.
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Let Xa ∈ TSXa and let [lxi , uxi ] be the interval of Xa at time slot i. The distance
LLp(Xa, Ya) = p

√∑n
i=1 (max{0, max{lxi, lyi} −min{uxi , uyi}})

p is the smallest
Lp-distance between all intervals of Xa ∈ TSXa and Ya ∈ TSYa , whereas the
distance ULp(Xa, Ya) = p

√∑n
i=1 (max{uxi − lyi , uyi − lxi})p is the largest Lp-

distance between all intervals of Xa ∈ TSXa and Ya ∈ TSYa . Aggregating these
distance values by means of the distance function d̃istp, we obtain an interval
of distances bound by Ldist and Udist. Now, we can lower bound each distance
observation in d̃istp(X ,Y) by
LBp(Xa,Ya) = {(Ldist(Xa, Ya))|Xa|·|Ya||Xa ∈ TSXa, Ya ∈ TSYa}.
Analogously, we can upper bound each distance observation in d̃istp(X ,Y) by
UBp(Xa,Ya) = {(Udist(Xa, Ya))|Xa|·|Ya||Xa ∈ TSXa, Ya ∈ TSYa}.

Lemma 1. Let Xa = 〈Ix
1 , . . . , Ix

n〉 ∈ TSXa and Ya = 〈Iy
1 , . . . , Iy

n〉 ∈ TSYa be
approximated regular time series. For all x = 〈x1, . . . , xn〉, xi ∈ Ix

i and for all
y = 〈y1, . . . , yn〉, yi ∈ Iy

i , the following inequalities hold:

LLp(Xa,Ya) ≤ Lp(x, y).

ULp(Xa,Ya) ≥ Lp(x, y).

A lower bound of the probability Pr(d̃istp(X ,Y) ≤ ε) can be defined as

PrLB(d̃istp(X ,Y) ≤ ε) =
|{d ∈ UBp(Xa,Ya)|d ≤ ε}|

sn
X · sn

Y

and an upper bound as

PrUB(d̃istp(X ,Y) ≤ ε) =
|{d ∈ LBp(Xa,Ya)|d ≤ ε}|

sn
X · sn

Y
.

Lemma 2. For any uncertain time series X and Y, the following inequations
hold:

(1) PrLB(d̃istp(X ,Y) ≤ ε) ≤ Pr(d̃istp(X ,Y) ≤ ε)

(2) PrUB(d̃istp(X ,Y) ≤ ε) ≥ Pr(d̃istp(X ,Y) ≤ ε)

The proofs of Lemma 1 and 2 can be found in [16], but are omitted here due to
space limitations.

The two following query types are based on an iterative filter-refinement pol-
icy. A queue QRef is used to organize all uncertain time series sorted by de-
scending upper bounding probabilities PrUB(d̃istp(Q,X ) ≤ ε) w.r.t. the query
object Q.

3.3 Probabilistic Bounded Range Queries (PBRQ)

In an iterative process we remove the first element X of the queue Qref , com-
pute its lower and upper bounding probabilities PrLB(d̃istp(Q,X ) ≤ ε) and
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PrUB(d̃istp(Q,X ) ≤ ε), and filter X according to these bounds. If
PrLB(d̃istp(Q,X ) ≤ ε) ≥ τ , then X is a true hit and is added to the re-
sult set. If PrUB(d̃istp(Q,X ) ≤ ε) < τ , then X is a true drop and can be
pruned. Otherwise, X has to be refined. Let us note that we do not immedi-
ately refine the object completely. Rather, the refinement is performed in sev-
eral steps (1st level to 2nd level, 2nd level to exact representation). Details on
the strategies for the step-wise refinement are presented below in Section 3.5.
After the partial refinement step, X is again inserted into QRef if it cannot
be pruned or reported as true hit according to the above conditions and is
not refined completely yet. If an object X is refined completely, then obviously
PrLB(d̃istp(Q,X ) ≤ ε) = PrUB(d̃istp(Q,X ) ≤ ε) = Pr(d̃istp(Q,X ) ≤ ε). The
iteration loop stops if QRef is empty, i.e. all objects are pruned, identified as
true hits before complete refinement, or are completely refined.

3.4 Probabilistic Ranking Range Query (PRRQ)

After initialization, the method getNext() can be called, returning the next ob-
ject in the ranking. Obviously, an object X is the object with the highest proba-
bility if for all objects Y ∈ D the following property holds: PrLB(d̃istp(Q,X ) ≤
ε) ≥ PrUB(d̃istp(Q,Y) ≤ ε). Since the candidate objects of the database are
ordered by descending upper bounding probabilities in QRank, we only need to
check if the lower bounding probability of the first element in QRank is greater
or equal to the upper bounding probability of the second element. If this test
returns true, we can report the first object as the next ranked object. Otherwise,
we have to refine the first object in QRank in order to obtain better probability
bounds. As discussed above, this refinement is step-wise, i.e. several refinement
steps are necessary in order to obtain the exact probability. The idea of the
method getNext() is to iteratively refine the first object in QRank as long as the
lower bounding probability of this element is lower than the upper bounding
probability of the second element in QRank.

3.5 Step-Wise Refinement of Probability Estimations

The aim for each refinement step is to be able to identify an uncertain time
series as true hit or true drop. This aim is reached for an uncertain time series
X if the probability interval [PrLB(d̃istp(Q,X ) ≤ ε), PrUB(d̃istp(Q,X ) ≤ ε)]
is above or below τ . For this reason, we try to increase the lower bound of the
probability PrLB(d̃istp(Q,X ) ≤ ε) in the case that

τ − PrLB(d̃istp(Q,X ) ≤ ε) ≤ PrUB(d̃istp(Q,X ) ≤ ε)− τ

holds. Otherwise, we try to decrease PrUB(d̃istp(Q,X ) ≤ ε).
For increasing the lower bounds of the probabilities for X we have to refine

those intervals which are intersected by the ε value such that we refine first that
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Fig. 2. Refinement heuristics

approximated distance which probably will be resolved into a set of approxi-
mated distances that are clearly below ε and approximates as many distances
d ∈ d̃istp(Q,X ) as possible. Here we use the following heuristic: The increase of
the number of detected distances d ∈ d̃istp(Q,X ) that are clearly below ε can
be estimated by

w̃ = (1− su

maxi=1..n{du,i − dl,i}
) · |Xa| · |Qa|,

where su = Udist(Qa, Xa) − ε, du,i = max{uqi − lxi , uxi − lqi}, dl,i = max{0,
max{lqi , lxi}−max{uqi , uxi}} and |Xa| · |Qa| corresponds to the number of dis-
tances which are approximated by Udist(Qa, Xa) and Ldist(Qa, Xa). The ex-
ample depicted in Figure 2 shows the situation of the approximated distance
d̃ = (LL1(Qa, Xa), UL1(Qa, Xa)) before (top) and after (bottom) the refinement
step. The approximated distance d̃ is refined by refining exactly one of the n dis-
tance intervals in the time domain that correspond to d̃. Obviously, the number
of distances approximated by d̃ is the product of the number |Qa| of regular time
series approximated by Qa and the number |Xa| of regular time series approxi-
mated by Xa. In order to estimate the number of approximated distances that
fall below ε after refining d̃, we have to look at the distance intervals in the time
domain. When refining a distance interval in the time domain, e.g. (dl,5, du,5) in
our example, then all resulting distance intervals that are clearly below du,i− su

correspond to the resulting approximated distances that are below ε. Since w̃
has to be maximized, we should refine d̃ by refining the largest time interval
in the time domain. Finally, based on the described estimation, we refine the
approximated distance for which w̃ is maximal. In the case we want to decrease
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the upper bound of the probability PrUB(d̃istp(Q,X ) ≤ ε) we can use a very
similar refinement strategy.

4 Summary of Experimental Results

In this short proposal, we just want to give a brief summary of our experimental
results due to limited space. For the interesting reader we refer to [16] where a
broader discussion of our experiments can be found. Our datasets are based on
several artificial and real-world benchmark datasets derived from a wide range,
including CBF , GunX , SynCtrl and Leaf from the UCI Time Series Data
Mining Archive3. The time series are modified to get uncertain time series by
means of sampling around the given exact time series values according to spe-
cific distribution functions (e.g. uniform and Gaussian). As discussed above, the
computation of probabilistic similarity queries is CPU-bounded. To achieve a
fair comparison which is independent of the implementation, we measured the
efficiency by the average number of required calculations required to execute a
query.

At first we measured the speed-up factor our approach yields compared to
the straightforward approach naively computed as defined in Section 2. In the
first experiment, we examine how our approach can speed up PBRQ and PRRQ
for different datasets and varying sample rates. The speed-up factor of both
query types is between 1075 and 10300 and increases exponentially with linearly
increasing the sample rate. The rational for this is that the number of possible
time-series instances increases exponentially with the time series length and the
number of samples used for each time slot. Furthermore, we could show that
our approach scales significantly better than the competitor w.r.t. the database
size. Finally, we could experimentally show that our refinement strategy clearly
outperforms more simple refinement strategies and that this superiority of our
approach is robust w.r.t. all query parameters.

5 Conclusions

To the best of our knowledge, we propose the first approach for performing
probabilistic similarity search on uncertain time series in this paper. In partic-
ular, we formalize the notion of uncertain time series and introduce two novel
probabilistic query types for uncertain time series. Furthermore, we propose
an original method for efficiently supporting these probabilistic queries using a
filter-refinement query processing.
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16. Assfalg, J., Kriegel, H.P., Kröger, P., Renz, M.: Probabilistic Similarity Search for
Uncertain Time Series. Tech. Rep. (2009), http://www.dbs.ifi.lmu.de/~renz/

technicalReports/uncertainTimeSeries.pdf

http://www.dbs.ifi.lmu.de/~renz/technicalReports/uncertainTimeSeries.pdf
http://www.dbs.ifi.lmu.de/~renz/technicalReports/uncertainTimeSeries.pdf


Reverse k-Nearest Neighbor Search Based on Aggregate
Point Access Methods

Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Andreas Züfle,
and Alexander Katzdobler

Institute for Computer Science
Ludwig-Maximilians-University of Munich

{kriegel,kroegerp,renz,zuefle,katzdobl}@dbs.ifi.lmu.de

Abstract. We propose an original solution for the general reverse k-nearest neigh-
bor (RkNN) search problem in Euclidean spaces. Compared to the limitations
of existing methods for the RkNN search, our approach works on top of Multi-
Resolution Aggregate (MRA) versions of any index structures for multi-
dimensional feature spaces where each non-leaf node is additionally associated
with aggregate information like the sum of all leaf-entries indexed by that node.
Our solution outperforms the state-of-the-art RkNN algorithms in terms of query
execution times because it exploits advanced strategies for pruning index entries.

1 Introduction

For a given query object q, a reverse k-nearest neighbor (RkNN) query returns all ob-
jects of a database that have q among their actual k-nearest neighbors. In this paper, we
focus on the traditional reverse k-nearest neighbor problem in feature databases and do
not consider recent approaches for related or specialized RkNN tasks such as metric
databases, the bichromatic case, mobile objects, etc. RkNN queries are important in
many applications since the reverse k-nearest neighbors of a point p reflect the set of
those points that are influenced by p. As a consequence, a considerable amount of new
methods have been developed that usually extend existing index structures for RkNN
search. The use of an index structure is mandatory in a database context because RkNN
query processing algorithms are — like all similarity query processing algorithms —
I/O-bound. The naı́ve solution for answering RkNN queries would compute for all ob-
jects of the database the k-nearest neighbors (kNN) and report those objects that have
the query object on their kNN list. In order to present efficient solutions for RkNN
search, most existing approaches make specific assumptions in order to design special-
ized index structures. Those assumptions include the necessity that the value of the
query parameter k is fixed beforehand or the dimensionality of the feature space is low
(≤ 3). So far, the only existing approach for RkNN search that uses traditional (non-
specialized) index structures and does not rely on the afore mentioned assumptions is
called TPL [1]. In fact, the TPL approach computes a set of candidate points which is a
superset of the result set in a first filter round. These candidates are used to prune other
index entries already in this filter round. In a second refinement round, the kNNs of the
candidates are computed to generate the final result.

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 444–460, 2009.
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In this paper, we extend the TPL approach in two important aspects. First, we gen-
eralize the pruning strategy implemented by the TPL approach by considering also
other entries rather than only considering other objects. While the TPL approach usu-
ally needs to access several leaf nodes of the index although they may not include any
true hits in order to start pruning other entries, we can start the pruning earlier and can
save unnecessary refinements, i.e. disk accesses. Second, we show how entries may be
pruned by themselves, which is a completely new pruning strategy not yet explored by
the TPL approach. For this “self-pruning”, we use the concept of aggregated point ac-
cess methods like the aR-Tree [2,3]. Furthermore, we show how both the enhanced and
the new pruning strategies can be integrated into the original TPL algorithm by altering
only a very limited number of steps. Because our novel RkNN search algorithm imple-
ments both the enhanced and the new pruning strategies, it is expected to prune more
entries than the TPL approach, i.e. it produces less I/O overhead and reduces query
execution times considerably.

The reminder of this paper is organized as follows. In Section 2 we formally de-
fine the RkNN problem and discuss recent approaches for solving this problem. Sec-
tion 3 presents our novel RkNN query algorithm. Our new approach is experimentally
evaluated and compared to the state-of-the-art approach using synthetic and real-world
datasets in Section 4. Last but not least, Section 5 concludes the paper.

2 Survey

2.1 Problem Defintion

In the following, we assume that D is a database of n feature vectors, k ≤ n, and dist
is the Euclidean distance1 on the points in D. In addition, we assume that the points are
indexed by any traditional aggregate point access method like the aR-Tree family [2,3].

The set of k-nearest neighbors of a point q is the smallest set NN k(q) ⊆ D that
contains at least k points from D such that

∀o ∈ NN k(q), ∀ô ∈ D −NN k(q) : dist(q, o) < dist(q, ô).

The point p ∈ NN k(q) with the highest distance to q is called the k-nearest neigh-
bor (kNN) of q. The distance dist(q, p) is called k-nearest neighbor distance (kNN
distance) of q, denoted by nndistk(q).

The set of reverse k-nearest neighbors (RkNN) of a point q is then defined as

RNN k(q) = {p ∈ D | q ∈ NN k(p)}.
The naive solution to compute the RkNN of a query point q is rather expensive. For each
point p ∈ D, the kNN of p is computed. If the distance between p and q is smaller or
equal to the kNN distance of p, i.e. dist(p, q) ≤ nndistk(q), then q ∈ NN k(p) which
in turn means that point p is a RkNN of q, i.e. p ∈ RNN k(q). The runtime complexity
of answering one RkNN query is O(n2) because for all n points, a kNN query needs to
be launched which requires O(n) when evaluated by a sequential scan. The costs of an
RkNN query can be reduced to an average of O(n log n) if an index such as the R-Tree
[4] or the R*-Tree [5]) is used to speed-up the kNN queries.

1 Let us note that the concepts described here can also be extended to any Lp-norm.
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2.2 Related Work

Here, we focus on feature vectors rather than on metric data. Thus, we do not consider
approaches for metric data [6,7,8,9] as competitors. Usually, these approaches are less
efficient on Euclidean data because they cannot make use of the Euclidean geometry.
Existing approaches for the Euclidean RkNN search can be classified as self-pruning
approaches or mutual-pruning approaches.

Self-pruning approaches are usually designed ontop of a hierarchically organized
tree-like index structure. They try to estimate the kNN distance of each index entry E,
i.e. E can be a database point or an intermediate index node. If the kNN distance of
E is smaller than the distance of E to the query q, then E can be pruned. Thereby,
self-pruning approaches do usually not consider other points (database points or index
nodes) in order to estimate the kNN distance of an entry E but simply precompute
kNN distances of database points and propagate these distances to higher level index
nodes. The RNN-Tree [10] is an R-Tree-based index that precomputes for each point
p the distance to its 1NN, i.e. nndist1(p) and index for each point p a sphere with
radius nndist1(p) around p. The RdNN-Tree [11] extends the RNN-Tree by storing
the points of the database itself in an R-Tree rather than circles around them. For each
point p, the distance to p’s 1NN, i.e. nndist1(p), is aggregated. For each intermediate
entry E, the maximum of the 1NN distances of all child entries is aggregated. Since
the kNN distances need to be materialized, both approaches are limited to a fixed value
of k and cannot be generalized to answer RkNN-queries with arbitrary values of k. In
addition, approaches based on precomputed distances can generally not be used when
the database is updated frequently. Otherwise, for each insertion or deletion of points,
the kNN distances of the points influenced by the updates need to be updated as well
which is a considerably high computational overhead.

Mutual-pruning approaches use other points to prune a given index entry E. For
that purpose, they use special geometric properties of the Euclidean space. In [12] a two-
way filter approach for supporting R1NN queries is proposed that provides approximate
solutions, i.e. may suffer from false alarms and incomplete results. A different approach
is presented in [13] RkNN queries. Since it is based on a partition of the data space into
equi-sized units where the border lines of the units are cut at the query point q and
the number of such units increases exponentially with the data dimensionality, this ap-
proach is only applicable for 2D data sets. In [1] an approach for RkNN search was
presented, that can handle arbitrary values of k and may be applied to arbitrary dimen-
sional feature spaces. The method is called TPL and uses any hierarchical tree-based
index structure such as an R-Tree to compute a nearest neighbor ranking of the query
point q. The key idea is to iteratively construct Voronoi hyper-planes around q w.r.t. to
the points from the ranking. Points and index entries that are beyond k Voronoi hyper-
planes w.r.t. q can be pruned and need not to be considered for Voronoi construction.
The idea of this pruning is illustrated in Figure 1 for k = 1. Entry E can be pruned,
because it is beyond the Voronoi hyper-plane between q and candidate x. To decide
whether an entry E can be pruned or not, TPL employs a special trimming function
that examines if E is beyond k hyper-planes w.r.t. all current candidates. In addition, if
E cannot be pruned but one or more hyper-planes intersect the page region of E, the
trimming function trims the hyper-rectangular page region of E and, thus, potentially
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Fig. 1. TPL pruning (k = 1)

decreases the MinDist of E to q. As a consequence of such a trimming, E may move
towards the end of the ranking queue when reinserted into this queue. This increases the
chance that E can be pruned at a later step, because until then new candidates have been
added. The remaining candidate points must be refined, i.e. for each of these candidates,
a kNN query must be launched.

3 RkNN Search Using Multiple Pruning Strategies

3.1 Combining Multiple Pruning Strategies

As discussed above, we want to explore self-pruning as well as mutual pruning possibili-
ties in order to boost RkNN query execution. Our approach is based on an index structure
I for point data which is based on the concept of minimal-bounding-rectangles, e.g. the
R-tree family including the R-tree [4], the R∗-tree [5] and the X-tree [14]. In particular,
we use multi-resolution aggregate versions of these indexes as described in [2,3] that
e.g. aggregate for each index entry E the number of objects that are stored in the sub-
tree with root E. The set of objects managed in the subtree of an index entry E ∈ I
is denoted by subtree(E). Note that the entry E can be an intermediate node in I or a
point, i.e. an object in D. In the case that the entry E ∈ I is an object (i.e. E = e ∈ D)
then subtree(E) = {e}. The basic idea of our approach is to apply the pruning strategy
mentioned above during the traversal of the index, i.e. to identify true drops as early as
possible in order to reduce the I/O cost by saving unnecessary page accesses. The ability
to prune candidates already at the directory level of the index implies that a directory
entry is used to prune itself (self-pruning) or other entries (mutual-pruning).

For an RNN k query with k ≥ 1, an entry E can be pruned by another entry E′ if
there are at least k objects e′ ∈ subtree(E′) such that E is behind the Voronoi hyper-
plane between q and e′, denoted by ⊥(q, e′). In general, we call a hyperplane ⊥(q, e)
associated with the object e. Note, that a hyperplane ⊥ (q, e) represents all points in
the object space having equal distances to q and to e, i.e. for all points p ∈⊥ (q, e)
dist(p, q) = dist(p, e) holds as shown in the example depicted in Figure 2. An object
or point is called to be behind a hyperplane⊥(q, e) if it is located within the half space
determined by ⊥(q, e) which is opposite to the half space containing the query object
q. Consequently, objects which are behind a hyperplane⊥(q, e) are closer to e than to
q, i.e. object o is behind ⊥(q, e) implies that dist(o, q) > dist(o, e). Furthermore, an
entry E (intermediate index node) is called to be behind a hyper plane ⊥(q, e), if all
points of the entire page region of E are behind ⊥(q, e). In our example, object x as
well as entry E are behind ⊥(q, e).
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Fig. 2. Voronoi hyperplane between two objects q and e determining the half space which can be
used to prune RkNN candidates
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The key idea of the directory-level-wise pruning is to identify a hyperplane⊥(q, E)
which can be associated with an index entry E and which conservatively approximates
the hyperplanes associated with all objects e in the subtree of E, i.e. e ∈ subtree(E).
Figure 3 illustrates the idea of this concept. We say that the hyperplane associated with
an index entry E is related to the set of objects in the subtree of E. Since we assume
that the number of objects stored in the subtree of an index entry E is known, we
also know for the hyperplane associated with that index entry E, ⊥(q, E), how many
objects this hyperplane relates to. We can use this information in order to prune entries
according to E without accessing the child entries of E. For example, if the number
of objects that relate to ⊥(q, E) is greater than the query parameter k, we can prune
all points and entries that are behind ⊥(q, E). In Figure 3, entry X can be pruned for
k ≤ 5 because |subtree(E)| = 5. As mentioned above, to obtain the number of objects
stored in a subtree of an entry, we can exploit the indexing concept as proposed in [2].
This concept allows to store for each index entry E the number of objects stored in
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the subtree that has E as its root, i.e. the aggregate value |subtree(E)| is stored along
with each entry E. For example, the aggregate R-tree (aR-tree) [2,3] is an instance of
this indexing concept. Then, the number of objects that are related to ⊥(q, E) equals
|subtree(E)|.

In addition, we can use these considerations also for the self-pruning of entries. If
an entry stores more than k objects in its subtree, i.e. |subtree(E)| > k, and E is be-
hind the hyperplane that is associated with itself, ⊥(q, E), then E can be pruned. The
rational for this is that |subtree(E)| > k objects relate to ⊥(q, E), i.e. more than k hy-
perplanes are approximated by⊥(q, E). As a consequence, each object o ∈ subtree(E)
is behind at least k hyperplanes. This self-pruning can be performed without consider-
ing any other entry. For example, for k ≤ 4, the entry E in Figure 3 can also be pruned
without considering any other entry because each point in the subtree of E is behind
the hyperplane of all four other points in E.

Figure 4 visualizes the benefits of using higher level mutual-pruning and self-pruning
on a fictive 2D Euclidean database indexed by an R-Tree-like structure. The hyperplane
associated with an index entry E is denoted by ⊥ (q, E). If we assume that each of
the entries E1, E2, and E5 stores more than k objects in its particular subtree, all three
entries can be pruned by the self-pruning strategy which does not consider any other en-
tries. This can be done because all three entries are lying behind those hyperplanes that
are associated with themselves. On the other hand, entries E1, E2 and E3 can be pruned
by the mutual-pruning strategy which is based on heuristics that consider other entries.
While E3 can only be pruned for k = 1 due to the hyperplane associated with object
x, both E1 and E2 even can be pruned for k ≥ 1 with the assumption that each of the
values of |subtree(E1)| and |subtree(E2)| is greater than or equal to k. Let us note that a
mutual-pruning approach like [1] needs at least one exact object to prune other entries,
i.e. E1, E2 and E5 can neither prune themselves nor prune each other. In that case,
only entry E3 could be pruned and all other entries need to be refined. The extension of
the mutual-pruning strategy and the combination with the self-pruning strategy allows
us to prune all candidates except for E4 and object x. This simple example illustrates
the potential benefit of our approach. In other words, the aim of our novel method is to
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Fig. 5. Conservative approximation ⊥(q,E) of the hyperplanes associated with all objects of an
index entry E

provide the advantages of the mutual-pruning and the self-pruning approaches by fading
out the drawbacks of both, thus, providing the “best of two worlds”. As a consequence
our solution is expected to outperform the existing approach [1] in terms of query ex-
ecution times because of the advanced pruning capabilities that are derived from the
combination of the self-pruning and mutual-pruning potentials on higher index levels.

3.2 Intermediate Index Entry Hyperplanes

The most important question is, how to derive a hyperplane⊥(q, E) associated with an
entry E ∈ I. This hyperplane ⊥(q, E) associated with an index entry E is required to
constitute a conservative approximation of the hyperplanes associated with all objects
o in the subtree of E, i.e. o ∈ subtree(E). In fact, we will see that ⊥(q, E) is defined
by means of a set of hyperplanes rather than by only one hyperplane, depending on the
location in the feature space. In general, a set of hyperplanes H is called conservative
approximation of another set of hyperplanes H ′, if all objects related to the hyperplane
h ∈ H are definitely behind each hyperplane h′ ∈ H ′, formally:

(∀h ∈ H : o behind h)⇒ (∀h′ ∈ H ′ : o behind h′)

An example is shown in Figure 5, where the hyperplane ⊥(q, E) associated with the
index entry E forms a conservative approximation of all hyperplanes that are associated
with the objects covered by E. The hyperplane approximation consists of the three
hyperplanes h1, h2 and h3. Objects that are behind these three hyperplanes, e.g. object
o, are definitely behind all hyperplanes that are associated with the objects covered by
E, independent of their location in E. Such an approximation is sensible if we assume
that the set H is much smaller than the set H ′ and, thus, can be used to prune entries
more efficiently.

In the following, we show how we can define such a set of hyperplanes ⊥ (q, E)
associated with an index entry E which conservatively approximates the hyperplanes
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of all objects stored in the subtree of E. As mentioned above, a hyperplane associated
with an object o represents all points p which have the same distance to the query
point q and to o. In addition, we know that all objects stored in the subtree of an index
entry E are located inside the minimum bounding hyper-rectangle (mbr) that defines
the page region of E. Thus, we can determine a conservative hyperplane representation
of all points stored in the subtree of entry E if we replace the distances between the
hyperplane points p ∈⊥(q, E) and o ∈ subtree(E) by the maximum distance between
p and the mbr-region of E. Figure 6 illustrates the computation of such a conservative
approximation for a given index entry E in a two-dimensional feature space. First, we
have to specify the maximum distance between an mbr-region of the index entry E and
any point in the vector space. It suffices to find for each point p in the vector space the
point e within the mbr-region which has the maximum distance to p. This can be done
by considering partitions of the vector space which are constructed as follows: in each
dimension the space is split paraxially at the center of the mbr-region. As illustrated for
the two-dimensional example in Figure 6, we obtain partitions denoted by NW , NE,
SE and SW . In each of these partitions P , the corner point of the mbr-region which lies
within the diagonally opposite partition is the mbr-region point which has the maximum
distance to all points within P . In our example, for any point p in SW the maximum
distance of p to E is the distance between p and point b in partition NE. Consequently,
the hyperplane ⊥ (q, b) is a conservative approximation of all hyperplanes between
points within the mbr-region of E and the points within the partition SW . This way,
in our example the hyperplane associated with E is composed of the three hyperplanes
⊥ (q, a), ⊥ (q, b) and ⊥ (q, c). Generally, the conservative approximation of an mbr-
region in a d-dimensional space consists of at most 2d hyperplanes. This is due to the
fact that a d-dimensional space can be partitioned into 2d partitions according to an
mbr-region, such that the maximums distance between each point p in a partition and
an mbr-region E is defined by exactly one point within E.

In the following we will show that if we construct the hyperplane approximation
as mentioned above we achieve in fact a conservative hyperplane approximation. The
example illustrated in Figure 7 visualizes the scenario described in the following lemma.
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Lemma 1. Let q be a (query) point, R be an mbr-region in a d-dimensional space and
p be any d-dimensional point. Furthermore, let P denote the space partition which is
generated by splitting the space paraxially at the center of the mbr-region R in each
dimension and let P be the partition containing the point p. Then, the hyperplane be-
tween q and the corner point r of R which lies within the diagonally opposite partition
builds a conservative approximation of all hyperplanes between q and all other points
in R within the partition P . In other words, all points in P that are behind ⊥(q, r) are
also behind each hyperplane between q and any other point in R.

Proof. By definition, each point p behind the hyperplane⊥(q, r) has a smaller distance
to the point r than to q, i.e. dist(p, r) < dist(p, q). Furthermore, r is assumed to be
the point in R with the maximal distance to p, i.e. the distance from p to any point p′

in R is smaller or equal to dist(p, r). Consequently, the distance between p and p′ is
smaller than the distance between p and q. Since the hyperplane⊥(q, p′) associated with
any point p′ in R only contains points having equal distance to p′ and q by definition,
⊥(q, p′) cannot contain such a point p which is assumed to be behind ⊥(q, r). As a
consequence, no hyperplane associated with q and any point in R is behind ⊥ (q, r)
within the region P .

According to Lemma 1, we can combine all hyperplane approximations of all regions
associated with an mbr-region R into a set of hyperplanes that conservatively approxi-
mate the hyperplanes of all points in R w.r.t. the entire data space. The two-dimensional
example illustrated in Figure 5 shows that the combination of the three hyperplanes,
marked by the red dotted poly-line, conservatively approximates the hyperplanes asso-
ciated with all points within E. Each index entry X which lies behind the hyperplane
approximation⊥(q, E) associated with the entry E also lies behind each of the hyper-
planes associated with each object in E.

Note, that the shape of the hyperplane associated with an mbr-region depends on the
topology between the query point q and the mbr-region. Figure 8 exemplarily shows
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four cases with different topologies in the two-dimensional space. Case 1 (cf. Figure
8(a)) shows the standard case where the hyperplane associated with E can be repre-
sented by three regular hyperplanes, i.e. three hyperplanes each associated with a sin-
gle point. As shown in case 2 (cf. Figure 8(b)), the hyperplane associated with E is
generally represented by four regular hyperplanes. Case 3 (cf. Figure 8(c)) shows the
special scenario where q is located at one of the corner points of the mbr-region. Here,
the hyperplane associated with E is represented by only two regular hyperplanes. An
interesting case is case 4 where none of the four regular hyperplanes of which the hy-
perplane associated with E is constructed are applicable. The reason is that none of the
four regular hyperplanes which are used to construct the hyperplane associated with E
intersects the region it relates to and, thus, cannot be used to prune any candidate.

3.3 Pruning Candidates

In the following, we show how the hyperplanes⊥(q, E) associated with an index entry
E can be used to prune itself or other entries. Here, we assume that an RkNN-query
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with k ≥ 1 is issued. Since, the hyperplanes ⊥(q, E) associated with an index entry
E approximate all hyperplanes associated with all objects within the subtree of E, any
index entry X which lies behind ⊥(q, E) in fact must lie at least behind |subtree(E)|
hyperplanes, and, thus can be pruned by E if |subtree(E)| ≥ k. For this reason, we
assign a weight w(⊥ (q, E)) ∈ N+ to each hyperplane ⊥ (q, E) associated with an
index entry E. The weight w(⊥(q, E)) denotes the number of hyperplanes which are
approximated by⊥(q, E). Since, we use aggregate index structures, we assume that the
number of objects managed by an index entry E is accessible without the need to refine
the entry E. Once, the hyperplanes⊥(q, E) for an entry E are built, we can assign the
weight w(⊥(q, E)) = subtree(E) to them. Obviously, a hyperplane associated with an
object has the weight 1.

In summary, if we assume that we already determined a set of n hyperplanes S =
{⊥(q, E1),⊥(q, E1), · · · ,⊥(q, En)} behind which an index entry E lies, then, we can
prune E, if n ≥ k.

3.4 The RkNN Search Algorithm

The benefit of our formalization presented above is that the two pruning strategies,
general mutual-pruning and self-pruning, can now easily be integrated into the TPL al-
gorithm. In other words, our concepts allow us to use the TPL algorithm as a framework
for RkNN search. Thus, our novel algorithm also relies on a filter step and a refinement
step. Our filter step is very similar to the filter step of the TPL approach. We also man-
age a heap H to compute a nearest neighbor ranking, a set of candidates points Scnd

and a set of pruned entries Srfn. The key difference is that we call the trimming func-
tion in a different way. Instead of trimming an index entry or a database point w.r.t. the
candidate points in Scnd, we use all entries/points in H , Srfn, Scnd for trimming. This
implements the advanced mutual-pruning already on the directory level of the index as
well as the self-pruning of index entries. In addition, we have to generalize the trimming
function such that the clipping of page regions considers the weight of each hyperplane.
The clipping algorithm sketched in [1] can easily be adapted for this purpose. Finally,
our refinement step is algorithmically also very similar to the refinement step of TPL.
However, it is expected that it requires less disc accesses because usually less candi-
dates need to be refined. Intuitively, the refinement step tests for each point in Scnd if
the query q is among its kNN list by considering and iteratively refining the points and
index entries in Srfn.

4 Experimental Evaluation

We compared our novel approach for RkNN search, hereafter referred to as HPKRNN
(short for Hyper-Plane based RkNN), with TPL [1] the current state-of-the-art algo-
rithm. All experiments are based on an R*-Tree with a page sizes of 32 Byte and
1KByte. For all experiments, we executed 100 sample RkNN queries and averaged
the results.

Our experiments are conducted on four synthetic data sets with different features that
are summarized in Table 1.
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Table 1. Features of the synthetic data sets used for evaluation

Name size dimension distribution

Synth1 3,500 2 uniform
Synth2 3,500 2 6 Gaussians
Synth3 1,000,000 2 6 Gaussians
Synth4 1,500 20 uniform

HPKRNN

Fig. 9. Comparison of HPKRNN and TPL processing R1NN queries

Additionally, we conducted experiments on two real-word data sets. The “Genes”
data set contains appr. 5,000 points in a 5D space representing the expression levels of
genes. The data set “Cloud” contains 9D weather parameters recorded at appr. 17,100
different locations in Germany.

4.1 Evaluation of the I/O-Cost

Figure 9 displays the performance of the competitors on four data sets when process-
ing R1NN queries using an R*-tree with a page size of 32 byte. We used Synt1 and
Synt2 because they feature different characteristics, as well as the two real-world data
sets Genes and Cloud. It can be seen that our novel HPKRNN algorithm significantly
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Fig. 10. Benefit of different pruning strategies for HPKRNN
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outperforms the TPL approach in terms of I/O costs and, thus, query execution times.
The reason for this clear performance boost over the mutual-pruning approach TPL
can be derived from Figure 10 where the number of self-pruned objects, the number of
mutual-pruned objects on the leaf level, and the number of mutual-pruned objects on
higher levels in the index are displayed separately for our HPKRNN approach. As it
can be observed from this figure, the combination of the pruning strategies on multiple
levels as performed by HPKRNN is beneficial and superior over using only mutual-
pruning on the leaf level of the index as it is done by TPL. Especially when considering
pruned objects, the big positive effect of the mutual-pruning at the directory level be-
comes obvious (cf. Figure 10(b)). But also for pruning directory pages, especially the
mutual-pruning at the directory level erases a large number of candidates (cf. Figure
10(a)). It can also be observed from both charts in Figure 10, that contribution of the
self-pruning strategy seems to be less important on the applied data sets.
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Fig. 11. Scalability of the competitors w.r.t. the data set size using an R*-tree with a page size of
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Fig. 13. Performance of the competitors in the number of pages accessed w.r.t. different values of
k using an R*-Tree with a pagesize of 32 Byte

Next, we evaluated the scalability of the competitors w.r.t. the number of data objects
n. Figure 11 displays the results for an R*-Tree with a pagesize of 32Byte and Figure
12 reports the results for an R*-Tree with a pagesize of 1kB. Again, the performance
gain of our HPKRNN algorithm over the TPL method remains significant with varying
number of data objects. In particular for large databases our method outperforms the
TPL method by up to two orders of magnitude.

In the next experiments, we evaluated the impact of the query parameter k on the
scalability of the competitors. The resulting performances are visualized in Figure 13.
Again, our method clearly outperforms the TPL approach on most data sets especially
for smaller values of k. With increasing k, the gap between both approaches decreases.
A reason for this might be that the self-pruning and the mutual-pruning at the directory
level becomes less selective in this case. Rather, with increasing k, most directory pages
and objects are pruned with the mutual-pruning at the leaf level. However, as observable
from the Synt1 and Gene data sets, this effect is only visible for rather high values of k.

Figure 14 shows the influence of the query parameter k when using an R*-Tree with
a larger page-size (in this case 1K). Here, we evaluated the number of page accesses
(cf. Figure 14(a)) and the maximum size of the candidate set (cf. 14(b)) produced
by each method. The relatively large number of page accesses of the TPL algorithm
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Fig. 15. Performance of the competitors w.r.t. the number of dimensions d of the data set

(Figure 14(a)) can be explained by a rapidly growing number of entries in the candidate
set of the TPL algorithm, shown in Figure 14(b). Additionally, it can be observed in
Figure 14(a) that the vast majority of page accesses in both approaches occur in the
respective filter steps whereas the refinement round requires only a small number of
page accesses. This is an interesting observation because HPKRNN is clearly superior
to TPL in the filter step (cf. Figure 14(a)) and additionally in the number of objects that
need to be refined (cf. Figure 14(b)), i.e. produces a considerably smaller number of
candidates with a significantly smaller amount of page accesses.

We also evaluated the scalability of our approach w.r.t. the number of dimensions d
of the data set using the 20-dimensional data set “Synth4” containing 1,500 data points.
Figure 15 shows the results of the experiment in which we subsequently increased the
number of relevant dimensions. In this experiment, we chose a fixed capacity of data
points that can be stored in an R*-Tree node to keep the results comparable, in particu-
lar, a capacity of 30 data points for directory nodes and a capacity of 60 data points for
data (leaf) nodes.
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Fig. 16. Scalability of the competitors in terms of CPU costs w.r.t. k

It can be observed that our HPKRNN algorithm outperforms the TPL method for
dimensions less or equal to five, i.e. d ≤ 5. For higher dimensions, both approaches
appear to perform very similar. This can be explained by the general bad performance of
R*-Trees on more than 5-dimensional data. In order for an minimal bounding rectangle
(mbr) to contain its minimal number of entries, it has to cover an increasingly large
fraction of space in each dimension.

4.2 Evaluation of the CPU-Cost

Next, we evaluated the time required to compute the results of RkNN-queries with re-
spect to the database size in terms of CPU-time. We also compared the CPU costs of our
HPKRNN approach to the CPU costs of the TPL approach. Here, we only compared
the time required for the refinement step, because, in [1], the CPU costs of the filter step
is boosted using heuristics based on Hilbert values. Since our TPL algorithm does not
implement this heuristic, we decided to omit experiments on the runtime of the filter
step of the TPL, in order to avoid unfair comparisons. Note that not using these heuris-
tics proposed in the TPL approach does not affect the I/O costs of the TPL approach.
The result of this experiment is shown in Figure 16 for different values of k. It can be
seen that our method is competetive with the TPL approach in terms of CPU runtime.
This indicates that, since we need more effort to compute hyper-planes between the
query and a directory node, a less number of hyper-planes is needed to prune objects
and nodes. This coincides directly with the observation made above that our HPKRNN
method produces less candidates in the filter step because the number of hyper-planes
computed is determined by the number of candidates we have during the filter step.

4.3 Summary

In summary, the conducted experiments confirm that our novel approach clearly out-
performs the current state-of-the-art approach because it combines multiple pruning
strategies rather than implementing only one pruning paradigm. Even though our novel
pruning strategies may produce an additional overhead at the CPU end, we also showed
that the CPU costs of our algorithm is competitive with the CPU costs of the existing
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method. Furthermore, our approach saves a considerably number of page accesses dur-
ing the filter step and the refinement step. As a consequence, since the RkNN problem is
I/O-bound for large data sets, our new algorithm needs significantly less time to report
the results of RkNN queries than the current state-of-the-art approach for this problem.

5 Conclusions

In this paper, we propose a generalization of the TPL algorithm which is the current
state-of-the-art approach to Euclidean RkNN search. Our solution extends the TPL
method in two important ways. First, the mutual-pruning strategy of TPL is generalized
so that it can be applied already on higher levels of the index. Second, we introduced
a new pruning paradigm called self-pruning. The generalization of the mutual-pruning
strategy and its combination with the new self-pruning strategy helps to explore the full
pruning potentials in order to reduce query execution times. Our experimental evalua-
tion confirms that our new solution outperforms the existing methods significantly in
terms of query execution times.
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Abstract. For more than one decade, time series similarity search has been 
given a great deal of attention by data mining researchers. As a result, many 
time series representations and distance measures have been proposed. How-
ever, most existing work on time series similarity search focuses on finding 
shape-based similarity. While some of the existing approaches work well for 
short time series data, they typically fail to produce satisfactory results when the 
sequence is long. For long sequences, it is more appropriate to consider the 
similarity based on the higher-level structures. In this work, we present a histo-
gram-based representation for time series data, similar to the “bag of words” 
approach that is widely accepted by the text mining and information retrieval 
communities. We show that our approach outperforms the existing methods in 
clustering, classification, and anomaly detection on several real datasets. 

Keywords: Data mining, Time series, Similarity Search. 

1   Introduction 

Time series similarity search has been a major research topic for time series data 
mining for more than one decade. As a result, many time series representations and 
distance measures have been proposed [3, 6, 12, 15, 17, 19]. There are two kinds of 
similarities: shape-based similarity and structure-based similarity [13]. The former 
determines the similarity of two datasets by comparing their local patterns, whereas 
the latter determines the similarity by comparing their global structures. Most existing 
approaches focus on finding shape-based similarity. While some of these approaches 
work well for short time series data, they typically fail to produce satisfactory results 
when the sequence is long. To understand the need for a higher-level, structure-based 
similarity measure for long time series data, consider the scenario for textual data. If 
we are to compare two strings, we can use the string edit distance to compute their 
similarity. However, if we want to compare two documents, we typically do not com-
pare them on the word-to-word basis. Instead, it is more meaningful to use a higher-
level representation that can capture the structure or semantic of the document. Be-
low, we describe the two types of similarities in more detail [13]. 

Given two sequences A and B, shape-based similarity determines how similar 
these two datasets are based on local comparisons. The most well-known distance 
measure in data mining literature is the Euclidean distance, for which sequences are 
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aligned in the point-to-point fashion, i.e. the ith point in sequence A is matched with 
the ith point in sequence B. While Euclidean distance works well in general, it does 
not always produce accurate results when data is shifted, even slightly, along the time 
axis. For example, the top and bottom sequences in Figure 1 appear to have similar 
shapes. In fact, the sequence below is the shifted version of the sequence above. 
However, the slight shifts along the time axis will result in a large distance between 
the two sequences. 

Another distance measure, Dynamic Time Warping (DTW) [12, 24], overcomes 
this limitation by using dynamic programming technique to determine the best  
alignment that will produce the optimal distance. The parameter, warping length, 
determines how much warping is allowed to find the best alignment. A large warping 
window causes the search to become prohibitively expensive, as well as possibly 
allowing meaningless matching between points that are far apart. On the other hand, a 
small window might prevent us from finding the best solution. Euclidean distance can 
be seen as a special case of DTW, where there is no warping allowed. Figure 1 dem-
onstrates the difference between the two distance measures. Note that with Euclidean 
distance, the dips and peaks in the sequences are mis-aligned and therefore not 
matched, whereas with DTW, the dips and peaks are aligned with their corresponding 
points from the other sequence. While DTW is a more robust distance measure than 
Euclidean distance, it is also a lot more computationally intensive. Keogh [12] pro-
posed an indexing scheme for DTW that allows faster retrieval. Nevertheless, DTW is 
still at least several orders slower than Euclidean distance. 

 
Fig. 1. (Left) Alignment for Euclidean distance between two sequence data. (Right) Alignment 
for Dynamic Time Warping distance between two sequence data. 

Shape-based similarities work well for short time series or subsequences; however, 
for long sequence data, they produce poor results. To illustrate this, we extracted 
subsequences of length 682 from six different records on PhysioNet [10], an online 
medical archive containing digital recordings of physiological signals. The first three 
datasets (numbered #1 ~ #3) are measurements on respiratory rates, and the last three 
datasets (#4 ~ #6) are electrocardiograms (ECGs). As we can clearly see in Figure 2, 
these two types of vital signs have very different structures. Visually we can separate 
the two classes with no difficulty. However, if we cluster them using Euclidean dis-
tance as the distance measure, the result is disappointing. Figure 2 shows the hierar-
chical clustering result using Euclidean distance. The dendrogram illustrates that 
while datasets #5 and #6 are correctly clustered (i.e. they share a common parent 
node), the rest are not.  

 



 Finding Structural Similarity in Time Series Data 463 

 

Fig. 2.  Result of hierarchical clustering using Euclidean distance on raw data. In fact, using 
DTW produces the same result. 

One reason for the poor clustering result could be that the datasets within the same 
cluster are not perfectly aligned. In addition, the presence of anomalous points, as 
shown in the beginning of dataset #4, could also throw off the distances computed. 
DTW can be used to mitigate the first issue to a certain extent. However, in this  
example, DTW does not seem to offer any improvement; clustering using DTW pro-
duces a similar dendrogram as the one shown in Figure 2. Furthermore, the high com-
putational cost for dynamic time warping makes it a less desirable choice of distance 
measure for large datasets. 

A more appropriate alternative to determine similarity between long sequences is 
to measure their similarity based on higher-level structures. Several structure- or 
model-based similarities have been proposed that extract global features such as 
trend, autocorrelation, skewness, and model parameters from data [23, 26]. However, 
it is not trivial how to determine relevant features, and/or compute distances given 
these features [13]. In addition, often these global features are not sufficient enough to 
capture the information needed in order to distinguish between the data. 

In this paper, we focus on finding structural similarities between time series data. 
Our method is robust and efficient, and it is inspired by the well-known bag-of-words 
representation for text data. There are several advantages for our approach compared 
to existing structure-based method. First, since the overall representation is built from 
extracting the subsequences from data, we in fact take local structures into considera-
tion as well as global structures. Furthermore, the incremental construction of the 
representation suggests that it can be used in the streaming data scenario. Our repre-
sentation also allows users to understand the pattern distribution of the data by exam-
ining the resulting histograms. We show that our approach outperforms existing 
methods in the tasks of classification, clustering, and anomaly detection on real  
datasets.  

The rest of the paper is organized as follows. In Section 2 we briefly discuss back-
ground and related work. Section 3 presents our methodology. In Section 4, we show 
empirical results in clustering, classification, and anomaly detection. We conclude 
and discuss future work in Section 5. 
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2   Background and Related Work 

In this section, we briefly discuss background and related work on time series similar-
ity search. For concreteness, we begin with a definition of time series: 

 
Definition 1. Time Series: A time series T = t1,…,tp is an ordered set of p real-valued 
variables. 

 
Some distance measure Dist(A,B) needs to be defined in order to determine the simi-
larity between time series objects A and B. 

 
Definition 2. Distance: Dist is a function that has A and B as inputs and returns a 
nonnegative value R, which is said to be the distance from A to B.  

 
Each time series is normalized to have a mean of zero and a standard deviation of one 
before calling the distance function, since it is well understood that in virtually all 
settings, it is meaningless to compare time series with different offsets and amplitudes 
[15]. 

As mentioned, Euclidean distance and Dynamic Time Warping are among the most 
commonly used distance measures for time series. For this reason, we will use 
Euclidean distance for our new representation, and compare the results with using 
Euclidean distance and Dynamic Time Warping on raw data.  

In addition to comparing with well-known distance measures on the raw data, we 
also demonstrate that our method outperforms existing time series representations 
such as Discrete Fourier Transform (DFT) [1]. DFT approximates the signal with a 
linear combination of basis functions, and its coefficients represent global 
contribution of the signal. Another well-known representation is Discrete Wavelet 
Transform (DWT) [3]. Wavelets are mathematical functions that represent data or 
other functions in terms of the averages and differences of a prototype function, 
called the analyzing or mother wavelet. Contrary to DFT, wavelets are localized in 
time. Nevertheless, past studies have shown that DFT and DWT have similar 
performance in terms of accuracy [15].  

While there have been dozens of representations and distance measures proposed 
for time series shape-based similarity, there is relatively little work on finding 
structure-based similarity. Deng et al [4] proposed learning ARMA model on the time 
series, and using the model coefficients as the feature. This approach has an obvious 
limitation on the characteristics of input data. Ge and Smyth [8] proposed a 
deformable Markov Model template for temporal pattern matching, in which the data 
is converted to a piecewise linear model. However, this approach requires many 
parameters. Nanopoulos et al [23] proposed extracting statistical features of time 
series such as skewness, mean, variance, and kurtosis, and classifying the data using 
multi-layer perceptron (MLP) neural network.  

Recently, Keogh et al. [16] proposed a compression-based distance measure that 
compares the co-compressibility between datasets. Motivated by Kolmogorov 
Complexity [16, 19] and promising results shown in similar work in bioinformatics 
and computational theory, the authors devised a new dissimilarity measure called 
CDM (Compression-based Dissimilarity Measure). Given two datasets (strings) x and 
y, their compression-based dissimilarity measure can be formulated as follows: 
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CDM(x,y) = C(xy)
C(x) + C(y)

 

 

where C(xy) is the compressed size of the concatenated string x+y, C(x) and C(y) are 
the compressed sizes of the string x and y, respectively. In their paper, the authors 
show superior results compared to other existing structural similarity approaches. For 
this reason, we will compare our method with CDM, the best structure-based 
(dis)similarity measure reported. We will show that our approach is highly competi-
tive, with several additional advantages over existing methods. 

3   Finding Structural Similarity 

We propose a histogram-based similarity measure, using a representation similar to 
the one widely used for text data. In the Vector Space Model [25], each document can 
be represented as a vector in the vector space. Each dimension of the vector corre-
sponds to one word in the vocabulary, and the value of each component is the (rela-
tive) frequency of occurrences for the corresponding word in the document. As a 
result, an p-by-q term-to-document matrix X is constructed, where p is the number of 
unique terms in the text collection, q is the number of documents, and each element 
X(i,j) is the frequency of the ith word occurring in the jth document.  

This “bag of words” representation works well for documents. It is able to capture 
the structure or topic of a document, without knowing the exact locations or orderings 
of the word appearances. This suggests that we might be able to represent time series 
data in a similar fashion, i.e. as a combination of patterns from a finite set of patterns.  

There are two challenges if we wish to represent time series data as a “bag of 
patterns.” The first challenge concerns with the definition and construction of the 
patterns “vocabulary.” The second challenge comes from the fact that time series data 
are composed of consecutive data points. There is no clear “delimiters” between 
patterns. Fortunately, a symbolic representation for time series called SAX (Symbolic 
Aggregate approXimation) [20], previously developed by the current author and now 
a widely used discretization method, provides solutions to these challenges. The 
intuition is to convert the time series into a set of SAX words, and then construct a 
word-sequence matrix (analogous to the term-document matrix for text data) using 
these SAX words. In the next section, we briefly discuss how SAX converts time 
series data into strings.  

3.1   Symbolic Aggregate approXimation 

Given a time series of length n, SAX produces a lower dimensional representation of 
a time series by transforming the original data into symbolic words.  Two parameters 
are used to specify the size of the alphabet to use (i.e. α) and the size of the words to 
produce (i.e. w).  The algorithm begins by using a normalized version of the data and 
creating a Piecewise Aggregate Approximation (PAA). PAA reduces the 
dimensionality of a time series by transforming the original representation into a user 
defined number (i.e. w, typically w << n) of equal segments.  The segment values are 
determined by calculating the mean of the data points in that segment. The PAA 
values are then transformed into symbols by using a breakpoint table. The breakpoints 
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in the breakpoint table are defined such that all the regions have approximately equi-
probability based on a Gaussian distribution1. These breakpoints may be determined 
by looking them up in a statistical table. For example, Table 1 gives the breakpoints 
for values of α from 3 to 5. 

Table 1. A lookup table that contains the breakpoints that divides a Gaussian distribution into 
an arbitrary number (from 3 to 5) of equiprobable regions 

  βi       a 3 4 5 

β1 -0.43 -0.67 -0.84 

β2 0.43 0 -0.25 

β3  0.67 0.25 

β4   0.84 

Figure 3 summarizes how a time series is converted to PAA and then symbols, 
with parameters α = 3 and w = 8. 

 

Fig. 3. Example of SAX for a time series, with parameters α = 3 and w = 8. The time series 
above is transformed to the string cbccbaab, and the dimensionality is reduced from 128 to 8. 

3.2   Bag-of-Words Representation for Time Series 

Our algorithm works as follows. For each time series, we use a sliding window and 
extract every possible subsequence of length n (a user-defined parameter). Each 
subsequence is normalized to have mean of zero and standard deviation of one before 
it is converted to a SAX string. As a result, we obtain a set of strings, each of which 
corresponds to a subsequence in the time series. As noted in [20], given a 
subsequence Si, it is likely to be very similar to its neighboring subsequences, Si-1 and 
Si+1 (i.e. those that start one point to the left, and one point to the right of Si), 
especially if Si is in the smooth region of the time series. These subsequences are 
called trivial matches of Si. To avoid over-counting these trivial matches as true  
 
                                                           
1 The Gaussian assumption is the default, since in [20] the authors discover that most short time 

series subsequences follow the Gaussian distribution. However, the breakpoints can be ad-
justed based on the actual distribution of the data. 
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patterns, we need to perform numerosity reduction. Since SAX preserves the general 
shape of the sequence, in some cases we might see that multiple consecutive 
subsequences are mapped to the same string. In that case, we record only the first 
occurrence of the string, and ignore the rest until we encounter a string that is 
different. In other words, for each group of consecutive identical strings, we record 
only the first occurrence and count this group of occurrences only once.  

Once we obtain the set of strings for each time series dataset, we can construct the 
word-sequence matrix. Given α and w as the parameters for SAX, we know the size 
of our entire collection of possible SAX strings, or our “dictionary.” There are αw 
possible SAX words. For example, for α = 4 and w = 4, our dictionary size is only 
256. Clearly, the size of the dictionary increases exponentially with the increase of w. 
Experimental results in previous work [20] indicate that the choice of α does not 
critically affect the performance. Typically, a value of 3 or 4 works well for most time 
series datasets. In this paper, we choose α = 4.  

Having fixed α, we now have to determine the value for w. While the best choice 
of w is data-dependent, generally speaking, time series with smooth patterns can be 
described with a small w, and those with rapidly changing patterns prefer large w to 
capture the critical changes. We choose w = 6~8 for our experiments, with sliding 
window length of 100~300. 

With α = 4 and w = 8, the resulting dictionary size is αw = 48 = 65536, which is 
still quite large. However, as is the case for text documents, the matrix is likely to be 
sparse. Therefore, we can eliminate the words that never occur in the data, and/or 
store the matrix in a compressed format such as the Compressed Column Storage 
(CCS) format [5]. In our experiments, we find that only about 10% of all words have 
some subsequence mapped to it. 

The construction of the temporal “bag of patterns” matrix is straightforward. The 
matrix M is a word-sequence matrix, where each row i denotes a SAX word (i.e. a 
pattern) from the dictionary; each column j denotes a time series dataset; and each Mi,j 

stores the frequency of word i occurring in time series j. Within each matrix cell Mi,j, 
we can also store a list of pointers to the subsequence in time series j (typically on 
disk) that are mapped to word i. The lists of pointers will enable us to perform 
subsequence matching. However, since we are focused on finding structural 
similarities between time series data, we will contend ourselves with storing just the 
word frequency in the matrix for now. We call this new representation BOP (Bag of 
Patterns). 

The matrix provides a summary of time series data in terms of the frequency of 
occurrence for each pattern. Once we build the matrix M, we can then use any 
applicable distance measures or dimensionality reduction techniques to computes the 
similarity between different time series datasets. Figure 4 shows a visual example of 
this representation. Like the bag-of-words representation for documents, the orderings 
of words are lost. However, for long time series data, this level of details is exactly 
the reason why conventional shaped-based approaches do not work well. As our 
experiments demonstrate, BOP produces very good results even without knowing the 
ordering of the patterns. 
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Fig. 4. A visual example of the bag-of-patterns representation for time series. Each row de-
notes a SAX word, and each column denotes a time series data. We could also store, within 
each cell, pointers to corresponding subsequences. 

4   Empirical Evaluation 

In this section, we present empirical evaluation of our method on clustering, classifi-
cation, and anomaly detection.  

4.1   Clustering 

For this part of experiments, we demonstrate the effectiveness of our approach in 
clustering. We show that our representation out-perform existing approaches and 
produce more accurate clustering results. 
 
4.1.1 Hierarchical Clustering 
One of the most widely used clustering approaches is hierarchical clustering [11]. 
Hierarchical clustering computes pairwise distances of the objects (or groups of ob-
jects) and produces a nested hierarchy of the clusters. It has several advantages over 
other clustering methods. More specifically, it offers great visualization power with 
the hierarchy of clusters, and it requires no input parameters.  However, its intensive 
computational complexity makes it infeasible for large datasets. 

In Figure 2, we showed a simple example on hierarchical clustering where both 
Euclidean Distance and Dynamic Time Warping on the raw data fail to find the 
correct clusters. In this part of experiment, as a sanity check, we show the 
clustering result using BOP to represent the time series datasets. We use Euclidean 
distance to compute the similarity between the histograms (i.e. the column vectors). 
Figure 5 shows the resulting dendrogram. Note we are now clustering on the 
transformed time series, or the histogram of the patterns. For clarity, we also plot 
the original, corresponding time series to the left of the histograms. We can see  
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Fig. 5. New clustering result on the same data shown in Figure 2. This time, we use our histo-
gram-based, bag-of-patterns approach, and combine it with Euclidean distance. The two clus-
ters are well separated. 

 
Fig. 6. Clustering result using Euclidean distance on the raw data. Only three pairs of data are 
cleanly clustered together. 

clearly from the histograms that the time series clustered together share similar 
pattern distribution. 

While the example shown above gives us a first indication that our approach can 
find clusters while shape-based approaches cannot, with only six datasets, the 
example is too small and contrived to offer any conclusive insight. Therefore, we 
perform more hierarchical clustering experiments on larger datasets. We compare our 
approach with the following methods: (1) CDM proposed by Keogh et al [16], (2) 
Euclidean distance on raw time series, (2) Dynamic Time Warping on raw time 
series, and (4) Euclidean distance on DFT coefficients. 

Similar to the experimental setting in [16], we selected 13 pairs of datasets across 
different domains, with diverse structures from UCR Time Series Archive [14]. 
Although our method does not require the input time series to have the same length, 
for simplicity, we keep each dataset at length 1000. For Dynamic Time Warping, 
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however, since it is costly to compute, we reduce the time series length to 250 by 
systematic sampling. 

Figure 62 shows the dendrogram produced by hierarchical clustering using 
Euclidean distance on the raw data. We can see that out of 13 pairs of datasets, only 3 
pairs are successfully clustered together.  

As illustrated in Figure 7, DTW shows improvement over Euclidean distance and 
successfully clusters 10 pairs of dataset. Perhaps the clustering results for DTW 
would have been better if we used the entire dataset. However, its prohibitive time 
complexity makes it an unrealistic choice of distance measure for large datasets. 
Even at the reduced length, DTW took 156 times longer than our approach on the 
whole dataset. 

 

Fig. 7. Clustering result using Dynamic Time Warping on the raw data. The result is better than 
Euclidean: 10 pairs of data are cleanly clustered together. 

Next, we convert the time series by DFT, and cluster the data on the DFT 
coefficients. One of the advantages of DFT is that it offers dimensionality reduction. 
As demonstrated in [1], most “energy” concentrates on the first few DFT coefficients. 
Therefore, we can use only a few DFT coefficients to approximate the data, while still 
preserving the general shape of the data. If we use all the coefficients, then we get 
back the original sequence. In this experiment, we used 100 coefficients (compared to 
1000 data points in the raw data). Similar to using the raw data, only 3 pairs of data 
are cleanly clustered. Figure 8 shows the result. 

Figure 9 shows the clustering result produced by our BOP approach. Again, the 
histograms for the bag-of-patterns are shown in the middle of the figure. As we can 
see, all 13 pairs are successfully clustered. 

                                                           
2 The figures are best viewed in color. 
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Fig. 8. Clustering results using 100 DFT coefficients. Only three pairs are correctly clustered 
together. 

 

Fig. 9. Clustering results using our approach. All pairs of data are successfully clustered. 

The results above are promising. However, these time series are still relatively 
short, and they have very diverse structures. To see how our algorithm does on long 
sequences, and on data with less diverse structures, we performed hierarchical 
clustering on the ECG dataset presented in [16]. We will call this dataset ECG1. This 
dataset contains 20 ECG records that form 4 clusters. Details on the datasets can be 
found in [16]. Each record is of length 15,000. Our results are comparable to that 
reported in [16]. Regardless of the high level of noises in the data, all 4 clusters are 
correctly identified, as demonstrated in Figure 10. 

While CDM produces similar results, our approach offers several advantages. 
First, since we cluster on the pattern histograms, we can see the distribution of 
patterns from these histograms, and understand the underlying structures of the data. 
Furthermore, since we extract subsequences and use them to build the final 
representation, our approach is potentially suitable for streaming data.  
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Fig. 10. Clustering result on 20 ECG datasets, using our bag-of-patterns approach. Each record 
is 15,000 points long.  

Next, we compare our results with the three other methods that we mentioned. 
Figure 11 shows the clustering results using Euclidean distance on the raw data. Only 
9 out of 20 datasets are clustered correctly.  

 
Fig. 11. Clustering result on raw ECG1 data using Euclidean Distance. Only 9 datasets are 
correctly clustered (#11, #12, #14, #15, #16-#20). 

When we repeat the experiment using DTW, we had to sample down the data 
(20:1), due to its high computational cost. Our machine simply could not handle it. 
With DTW on the shorter datasets, the result is similar to that of Euclidean distance 
on the full datasets. To show that this poor result is not just due to the loss of data 
from sampling, we re-ran the experiment using our BOP representation on the 
sampled, shorter datasets, and obtained the same result as shown in Figure 10. 

For the final comparison, we convert the time series to DFT coefficients, and 
cluster the data on the coefficients. Similar to Euclidean Distance on the raw data, 
only 8 datasets are clustered correctly. We also tried different resolutions (100-1000 
coefficients), but obtained poor results regardless of the resolution. The result is 
shown in Figure 12. 
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Fig. 12. Clustering result on ECG1 data using 1000 DFT coefficients  

4.1.2 Partitional Clustering 
Although hierarchical clustering is a good sanity check from its visualization power, 
it has limited utility due to its poor scalability. The most commonly used data mining 
clustering algorithm is k-means [2, 22, 21]. We performed k-means using the 
Euclidean distance on the raw data, and on our bag-of-patterns representation. The 
basic intuition behind k-means (and in general, iterative refinement algorithms) is the 
continuous reassignment of objects into different clusters, so that the intra-cluster 
distance is minimized. 

We performed k-means using the Euclidean distance on the raw data, and on our 
histogram-based representation. CDM is not included in this experiment, as it’s 
unclear how to define the centroid of a cluster [16]. 

For this experiment, we extracted 250 records from the PhysioNet archive. Each 
record contains 2048 points. These records are extracted from various databases 
containing different vital signs, or patients with different heart conditions. We 
separated the records into 5 classes, and labeled them according to the databases that 
they are extracted from. We will call this dataset ECG2. Figure 13 shows one 
example from each of the 5 classes in ECG2 dataset. 

 

Fig. 13. One example from each of the 5 classes in ECG2 dataset 
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We ran k-means algorithm 10 times, and recorded the clustering labels obtained 
from the run with the smallest objective function (i.e. sum of intra-cluster distances). 
We then compare our cluster labels with the true labels, and compute the clustering 
quality using the evaluation method proposed by [7]. The evaluation method 
compares the similarity between two sets of cluster labels, and returns a number 
between 0 and 1 denoting how similar they are. Ideally, we would like the number to 
be as close to 1 as possible. Our approach achieves the best clustering quality (0.7133 
vs. 0.4644). The results are shown in Table 2. 

4.2   Classification 

Classification of time series has attracted much interest from the data mining 
community [10, 22, 23, 24]. For the classification experiments, we will consider the 
most common classification algorithm, nearest neighbor classification. To 
demonstrate the effectiveness on 1-nearest-neighbor classification, we use the same 
ECG2 dataset. We use the leave-one-out cross validation, and count the number of 
correctly classified objects, cc. The accuracy is the ratio of cc and the total number of 
objects (i.e. 250). For this experiment, we also add Dynamic Time Warping (again, 
with reduced length). The accuracy results are show in Table 2. The improvement is 
astounding. For our approach, the accuracy of 0.996 means that there is only 1 
misclassified object, out of 250 objects. 

4.3   Discord/Anomaly Detection 

In [18], a discord is defined as the data object that is the least similar to the rest of the 
dataset, i.e. it has the largest nearest neighbor distance. A discord can be seen as an 
anomaly in the data. In this section, we conduct discord/anomaly detection 
experiments, using our BOP representation and comparing it with Euclidean distance 
on the raw data. We use the same ECG2 dataset. We take one class of ECG2 data at a 
time (each class contains 50 ECG records), and manually insert an anomaly by 
randomly choosing one other ECG record that belongs to a different class. For each 
class, we repeat this experiment 20 times, which results in a total of 100 runs. We 
then compare the accuracy, or the percentage of discords found, of our representation 
against the raw data, both using Euclidean distance. The accuracy results are shown in 
Table 2.  

Table 2. Accuracy of our approach on clustering, classification, and discord discovery com-
pared to other methods. Our approach achieves the best accuracy for all tasks. All numbers are 
between 0 and 1. 

 Euclidean DTW Bag-of-Patterns 
k-means 0.4644 N/A 0.7133 

NN 0.44 0.728 0.996 
Discord 0.35 N/A 0.85 
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One of the reasons that our approach works so much better than using the raw data is 
that the ECG data are not at all aligned, even for datasets in the same class. Another 
reason is that sometimes an ECG data might contain local anomalies within the data; such 
anomalies can easily throw off the distances computed using the shape-based approach. 

We conclude this experiment by noting that the definition of discord can be easily 
extended to top k-discords. Applying k-discords discovery algorithm will allow us to 
find both global (i.e. data that do not belong in the cluster) and local (i.e. anomalies 
that occur within one time series) anomalies. 

5   Conclusion 

Most existing work on time series similarity search focuses on finding shaped-based 
similarity. While these shape-based approaches work reasonably well for short time 
series data, the accuracy typically degrades if the sequences are long. For long time 
sequences, it is more appropriate to measure the similarity by looking at their higher-
level structures, rather than point-to-point, local comparisons.   

In this work, we proposed a histogram-based similarity measure, BOP. Similar to 
the bag-of-words representation for textual data, our approach counts the frequency of 
occurrences of each pattern in the time series. We then compare the frequencies (or 
the histograms) of patters in the time series to obtain a (dis)similarity measure.  

Our experimental results show that our approach is superior to existing approaches 
in the tasks of clustering, classification, and anomaly detection. Furthermore, our 
approach has several advantages over existing structure-based similarity measures. 
Specifically, our approach considers local structures as well as global structure, by 
using subsequences to build our final representation. Our representation allows users 
to understand the pattern distribution by examining the histograms. Furthermore, our 
representation is suitable for streaming data, since the frequency vectors are built 
incrementally. 

We would like to note that since our approach determines similarity based on 
structures of the data, the input sequences should be reasonably long, or long enough 
such that the structures (or lack of structures) can be meaningfully captured and 
summarized.  

For future work, we will explore our representation on other types of data such as 
images. We will also try other existing distance measures such as cosine similarity, 
and/or devise a distance measure more suitable than Euclidean Distance. 

 
Acknowledgments. We would like to thank Eamonn Keogh for providing the data-
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Infrastructure-as-a-Service (IaaS) style cloud computing is emerging as a viable
alternative to the acquisition and management of physical resources. This raises
several questions. How can we take advantage of the opportunities it offers? Are
the current commercial offerings suitable for science? What cloud capabilities
are required by scientific applications? What additional infrastructure is needed
to take advantage of cloud resources?

In this talk, I will describe several application projects using cloud computing
in commercial and academic space and discuss the challenges and benefits of this
approach in terms of performance, cost, and ease-of-use. I will also discuss our
experiences with configuring and running the Science Clouds – a group of clouds
in academic domain available to scientific projects configured using the Nimbus
Toolkit. Finally, I will discuss the emerging trends and innovation opportunities
in cloud computing.
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Abstract. Given a data set D, such that (Xi, yi) ∈ D, yi ∈ R, we are
interested in first dividing the range of yi, i.e. (ymax − ymin), (where
ymax is the maximum of all yi corresponding to (Xi, yi) ∈ D and ymin

is the minimum of all yi corresponding to (Xi, yi) ∈ D), into contiguous
ranges which can be thought of as classes and then for a new point,
Xj , predicting which range (class) it falls into. The problem is difficult,
because neither the size of each range nor the number of ranges, is known
a-priori.

This was a practical problem that arose when we wanted to predict the
execution time of a query in a database. For our purposes, an accurate
prediction was not required, while a time range was sufficient and the
time ranges were unknown a-priori.

To solve this problem we introduce a binary tree structure called Class
Discovery Tree. We have used this technique successfully for predicting
the execution times of a query and this is slated for incorporation into a
commercial, enterprise level Database Management System.

In this paper, we discuss our solution and validate it on two more
real life data sets. In the first one, we compare our result with a naive
approach and in the second, with the published results. In both cases,
our approach is superior.

1 Introduction

In this work, we address the problem of classification with unknown classes.
Given a data set D, such that (Xi, yi) ∈ D, (where Xi is a vector, corresponding
to a multi-dimensional point and yi ∈ R), we are interested in first dividing
the range of yi, i.e. (ymax − ymin), (where ymax is the maximum of all yi cor-
responding to (Xi, yi) ∈ D and ymin is the minimum of all yi corresponding to
(Xi, yi) ∈ D), into contiguous ranges which can be thought of as classes and
then for a new point, Xj, predicting which range (class) it falls into.

This problem arose in the context of predicting the execution time of a
database query. Any autonomic data warehouse management system needs to
have some estimate of the execution time of a query. Previous researchers have
focused on predicting precise execution times. In our experience, this is extremely
difficult and not reliable even with a moderate accuracy. Furthermore, for our
(workload management) purposes, it is actually unnecessary to estimate a pre-
cise execution time. It is sufficient to estimate the query execution time in the
form of a time range, for instance, to assign queries to different queues. This
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relaxation allows us to reformulate the problem and bring in the machinery of
machine learning to address it. It is precisely this problem of estimating query
execution time that motivated this work.

It is desirable for a solution to this problem to have certain properties. We
highlight them below, and specify them precisely later in this paper.

1. The number of ranges should be sufficient. It would be meaningless to predict
that all queries belong to a single range. That is, it’s trivial to predict with
100% accuracy that a new point belongs to the entire range.

2. The span of every divided range should be meaningful. Very small ranges are
problematic because of overfitting and very large ranges are not very useful.

3. The user should be able to decide a trade-off between the accuracy of pre-
diction and the number of the ranges according to their requirement.

4. The model for prediction should be cheap to build and deploy.

A question arises as to why such a problem cannot be addressed through tra-
ditional regression-based techniques. Certain properties (like execution time of
a query) are stochastic and lend themselves to prediction by least square regres-
sion analysis. In such a scenario, let the response variable (such as query exe-
cution time) of the ith object oi, be denoted by yi. Let X = {x1i, x2i, . . . , xki}
be the vector features of object oi. Since the response variable is related to
the feature set, the relationship between the response and the features may be
mathematically described as yi = f(X, βi) + εi, where εi N(0, σ2). The best
fitting relationship can then be obtained by minimizing the sum of squares of
errors given by:

∑n
i=1 e2

i =
∑n

i=1 [yi − f(Xi, βi)]2. This however, requires us
to know the function f . Very often, the function cannot be obtained. For in-
stance, for query execution time, the interaction between the variables that af-
fect the execution time is not very clearly understood, since the code for the
operators can be very complex and not all the variables that affect the query
execution time can be measured precisely before or at the time of execution. In
other words, at most what we can hope for, is an approximate value or ranges
from the function f . When this problem is reformulated to discover and predict
ranges (instead of precise values), it is expressed as a minimization problem:
F =

∑n
i=1 [yi − f2(f1(Xi, βi))]2 +λg(p, wmax, wmin). Here, f1 discovers and pre-

dicts the range and f2 computes the center of the range as the predicted value
for the Xi, p is the number of ranges, wmax and wmin are the sizes of the maxi-
mum and the minimum range and g is some function of p, wmax and wmin. The
function g is expected to satisfy the first two constraints mentioned above. Even
this simplified problem (since f1 should be easier to compute than f from the
previous equation) is difficult to solve since the function g is unknown.

Hence, we take a data mining approach, where g is enforced algorithmically
through constraints and f1 is a data mining classification model instead of a
regression function. This overcomes the problem of knowing g algebraically. Fi-
nally the problem we solve is to minimize F =

∑n
i=1 [δr(yi),f1(Xi)], where r gives

the correct range of yi (r and f1 share the same set of ranges) and δ is the
Kronecker delta function.
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Fig. 1. Optimizer Cost and Actual Time Taken

To demonstrate the state of the art, and emphasize our approach, in Figure 1
we have plotted the actual execution time of a set of queries as a function of their
estimated optimizer cost from an actual commercial product. Estimated opti-
mizer cost is an analytically computed quantity that a data warehouse optimizer
proposes (most commercial products pursue this approach) as an estimate of the
actual execution time. It can be easily seen that the proposed cost including the
best fit line is a very poor estimate.

There are numerous other problems where classification with unknown classes
(or predicting ranges when the ranges are not predetermined) is needed. For
example, predicting price categories, or classifying customers based on the total
sale value, etc.

To address these problems, we introduce a simple binary tree structure, named
as Class Discovery Tree or CDTree. CDTree can discover the classes during the
building phase. CDTree is a binary tree with each node represents a range. Each
node contains a binary classifier that divides the corresponding range into two.
This way we obtain a set of ranges in the leaf nodes of the CDTree. The CDTree can
also be used to solve the classification problem with a large number of classes. Our
approach will group the classes into a smaller number of classes and then predict
the group class label. We present one such example in the experimental section.

A naive approach to the problem of Classification with unknown classes would
first use some histogram construction (to partition the whole range into contigu-
ous buckets) or clustering algorithm histogram to create the ranges. And then a
multi-class classifier can be learned on the set of ranges. However there are two
significant drawbacks in this straightforward approach:

1. In our problem, the number of classes is not known but this is typically
required as an input for histogram construction or a clustering algorithm.

2. Histogram methods give a set of contiguous buckets (and this would be true
for non-hierarchical clustering like k-means as well). Thus, offering the user
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a trade-off between accuracy and the number of ranges would require us to
build multiple different classification models.

A possible solution for the second drawback is to use a hierarchical clustering
approach to get a nested set of ranges. Later in this paper, we compare this
solution with our approach in detail to show why our approach is preferable.

Our contributions in this paper are as follows:

1. We address the problem of first dividing a range into classes and then pre-
dicting the class. The classes are not known a-priori.

2. To solve this problem we present a new technique based on a simple data
structure called CDTree.

3. We show that CDTree has application for multi-classification problem with
a large number of classes.

4. We present a detailed discussion of our methodology.
5. We present results on real life data sets.

In Section 2, we present the related work. In Section 3 our approach is dis-
cussed in detail and in Section 4 we compare our approach with the naive ap-
proach. In Section 5 we discuss some practical enhancements and in Section 6
the results of our experimental validation are shown. Finally, we conclude this
paper in Section 7.

2 Related Work

We first discuss the work related to our overall problem. Then, we present some
related work on predicting execution times of queries which motivated us.

To the best of our knowledge, there does not seem to be an existing solution to
the problem of classification with unknown class. A close technique is Regression
Trees [1]. The idea is to fit a regression line to the points in the leaves. This ap-
proach differs from ours in several significant ways. First and most importantly,
in a regression tree, the leaves need not represent contiguous non-overlapping
ranges which are essential to many problems. For example, query scheduling
might be (and often is) based on distinct classes of queries defined by the query
execution time. Furthermore, regression tree is used for regression and the split
decision is made to maximize the decrease in variance, whereas we are interested
in classification and our splitting criterion is a maximization of prediction of
accuracy for class labels.

As we had discussed earlier, a naive approach would be constructing a his-
togram followed by a multi-class classification. A good approach to construct
a histogram is v-optimal histogram [2] which minimizes the SSE between two
distributions. A good discussion on multi-class classification can be found in [3].
We will show through experiments and through discussion that our solution is
superior to the naive approach.

CDTree is closely related to the general technique of decision tree (for a good
survey see [4]) but differs in various ways, most basic of which is the fact that for
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our problem the classes are unknown. Another difference with classical decision
tree algorithms is that instead of using a single variable to split a node, we use
a function (classifier function) of many variables. Tree construction algorithms
have considered multivariate splits and one example is a Linear Discriminant
Tree [5], which uses a linear machines (linear structures that discriminate be-
tween multiple classes) at internal nodes. Again, the class needs to be known for
Linear Discriminant Trees.

Researchers and practitioners have built increasingly sophisticated database
cost models for query optimization (for example [6]). However, building an accu-
rate analytical model is difficult, especially under varying database load condi-
tions. Using an optimizer’s analytical cost model to estimate the actual execution
time of a query on a loaded system has met with limited success in the field and
it is common knowledge that query cost estimates produced by query optimizers
do not accurately reflect query run times (Please refer to Figure 1). Analytical
approaches have been used for estimating query response times [7,8] and there
are a few commercial products that use analytical and simulation models to pre-
dict query execution times [9, 10, 11]. The analytical approaches depend on the
creation of resource models which are notoriously complex and difficult. Assump-
tions that have to be made (for example, exponential service time distributions)
may not be true in practice, and hence the results may not be relevant.

Classification with unknown classes is a difficult problem. An earlier version of
CDTree is used specifically for prediction execution times [12]. In this paper we
abstract the problem to the problem of unknown classes and present a thorough
solution and detailed discussion.

3 Our Solution - CDTree

We state some definitions for the purpose of clarity in the text that follows. First
we specify the range of a set of points. The range of a set of points is the span
of the y values:

Definition 1. The range of a set S ⊂ D of points (Xi, yi) ∈ S is [ymin, ymax],
where ymax is the maximum value and ymin is the minimum value for all yi,
and Xi corresponds to the vector forming the point.

The predicted range or the class of a point is essentially the range that the point
is predicted to fall into:

Definition 2. The class or the range of a point (Xi, yi) ∈ D is the range [ya, yb)
or [ya, yb], where yi lies.

We now precisely define a CDTree.

Definition 3. A CDTree, denoted by Ts, is a binary tree such that:

1. For every node (or leaf) u of Ts there is a range associated [ua, ub). (For the
right-most node the range is right closed as [ua, ub]. This will not be repeated
below.)
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2. For every node u of Ts, there is an associated 2-class classifier fu.
3. The node u contains examples Eu, on which the classifier fu is trained.
4. The node u contains examples Vu which are used for validation
5. fu is a classifier that decides for each new point i if i should go to [ua, ua+Δ)

or [ua + Δ, ub), which are the ranges of u’s children.
6. For every node u of Ts, there is an associated accuracy Au, which is measured

as the percentage of correct predictions made by fu on the validation set Vu.

CDTree is a binary tree, where every node of the tree represents a range and the
children’s ranges are non-overlapping sub-ranges that cover the parent’s range.
These ranges form a tree of nested ranges. Every node contains an example set
Eu and a validation set Vu. The y values of points in Eu and in Vu fall in the
range of the node u. Conversely, from all the examples in the training set, the
points whose y value falls in the range of node u are in Eu and from all the
examples in the validation set, the points whose y value falls in the range of
node u are in Vu.

While building this tree, at every node we not only need to find the two sub
ranges for the range of that node but also a classifier that can predict the two
ranges, i.e., in a CDTree, at each node we need a combination of two meaningful
classes and a classifier.

We fix a set of classifiers F as candidates. For example, the set can include
three classifiers: nearest neighbor, C4.5 and Logistic Regression. For every node,
we compute a set of possible separation points S by looking at the points in the
example set Eu. For each f ∈ F , and each s ∈ S we build a classifier on the
example set Eu. Then, from these combinations of the classifiers and the ranges,
we choose the best one with the highest accuracy on the validation set Vu. We
discuss this in further detail in the next section.

When a new data point Xi comes in, it traverses down the constructed CDTree
in a top-down manner to a leaf l. The range of the leaf l is the predicted range
for the point Xi. In fact, the user can choose any range that lie on the path from
the root to the leaf l.

Example 1. In Figure 2, we present a sample CDTree. This was obtained in one
of our preliminary experiments where we were trying to predict the execution
time of a database query. The classifier, fu associated with the root node is a
classification tree with a time range of [1, 2690] seconds. The root node has two
children that divide its range into two: [1, 170) and [170, 2690]. The associated
accuracy of this classifier is 93.5%, i.e., for 93.5% of the example queries in the
validation set Vu of the root node, the classifier was able to predict the query’s
time range correctly. The rest of the nodes can be understood similarly. It can
be seen that the CDTree has five leaves. The final time ranges in second are:

{[1, 13), [13, 170), [170, 1000), [1000, 1629), [1629, 2690]}

The skew towards the smaller ranges correctly reflect the skew of the underlying
distribution of query execution times. Also note that, the CDTree is a hierarchi-
cal structure and the ranges are hierarchical, i.e., the children’s range is nested
in the parent’s range.
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Fig. 2. Sample CDTree

3.1 Building a CDTree

We now present a procedure for building a CDTree. Like all tree constructions,
a CDTree is built recursively. This is done by splitting the range of the parent
node, till some stopping criterion is reached. That is:

1. Start with all the training examples in the root node.
2. Find a point Xs such that corresponding ys lies within the range of the node.
3. Split the node into two, such that all points with yi < ys go into the left

node and all points with yi ≥ ys go to the right node.
4. Recursively keep splitting the nodes till a termination condition is reached.

Termination Conditions. We want our tree to have meaningful ranges. If the
range for a node is too small no additional useful information might be gained by
further splitting it. Besides meaningful ranges, we also want to have meaningful
classes. That is a class should contain at least a minimum number of points. This
is important since we are discovering classes and it does not make much sense
to let a class have very few points in it. Thus, we specify our stopping criterion
as follows:

1. Minimum Interval Size When the range of a node falls below a threshold do
not further split that node. We call this threshold minIntervalSize.

2. Minimum Number of Examples When the number of examples in a node
falls below a threshold do not further split the node. We call this threshold
minExample
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When we use only these two termination conditions we call it a Complete
CDTree.

We now specify how to build the node.

Node Construction. We now describe how an individual node is constructed:

1. For a node u, take all the points (Xi, yi) in the training example set Eu and
arrange them in ascending order of yi.

2. The average of each successive pairs of yi is one possible separation point
(class boundary). All possible separation points form a set S.

3. To avoid overfitting, we enforce two conditions mentioned earlier. (1) If, as
result of choosing a possible separation point, one of the children contains
fewer than (minExample)

2 points, that separation point is removed from the
candidate set S. (2) Similarly, if the range of one of the children is less than
(minIntervalSize)

2 , then that separation point is invalid. Let S′ be the new set
of separation points after applying the two conditions.

4. For each f ∈ F , and for each s ∈ S′, build a classifier on Eu that classifies
all Xi ∈ Eu into two sub-ranges, in one yi < s and in the other yi ≥ s. This
step gives us a several pairs of classification functions and separation points
(f, s).

5. For each pair (f, s), we compute the accuracy of predicting the two classes on
the validation set Vu, i.e., we divide Vu based on s and compute the accuracy
of predicting the classes using f .

6. Choose the pair (f, s) that has the highest accuracy as fu for the node u.

Example 2. Let’s say that node u consists of 10 points where the corresponding y
values are {16, 2, 5, 9, 5, 17, 3, 14, 2, 3}. Let F be {1-NN, C4.5}, minIntervalSize =
4 and minExample = 6. We first sort y in ascending order to get: {2, 2, 3, 3, 5,
5, 9, 14, 16, 17}. Now we compute the set of possible separation points and obtain
S = {2, 2.5, 3, 4, 5, 7, 11.5, 15, 16.5}. For separation points {2, 2.5, 3, 4} the range
value of the children will be less than 4

2 = 2. This is also true for {16.5}. So these
points are removed from S. For separation points {2, 2.5, 3, 4} and {15, 16.5} the
number of examples in the children would be less than 6

2 = 3. After removing
these invalid separation points we get S′ = {5, 7, 11.5}. We then consider each
of these separation point in turn. Suppose that, when we split Vu on 5, for the
two classifiers we get the accuracy as 70% and 72%, respectively; similarly, when
we split Vu on 7, for the two classifiers we get the accuracy as, 75% and 73%,
respectively; and when we split Vu on 11.5, for the two classifiers we get the
accuracy as, 67% and 68%, respectively. Then, for this node the best separation
point is 7 and the classifier, fu is 1-NN, since that combination of accuracy and
separation point has the highest accuracy of all the combinations.

Avoiding Overfitting. In classical decision trees, overfitting occurs when
nodes continue to be split in order to achieve “pure” nodes. This can lead to
nodes having a very few points. Similarly, in our problem when we discover the
two classes, if the number of examples from one class is far fewer than the num-
ber of examples in the second class it can lead to overfitting, i.e., the small class
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could exist only in the examples on which the classifier was created. To avoid
that we add a condition on the creation of possible separation points:

1. Skipping Separation Points. Do not consider a separation point s if as a
result of separation at s, one of the children contains less than nskip-percent
of the total number of examples in Eu.

Another way of looking at it is that while doing exhaustive search, skip nskip

percentage of separation points from the beginning and the end of range.

3.2 Discussion

We now discuss our choice of splitting rule, pruning. First we highlight two
properties of CDTree:

1. In a CDTree, the classes are nested, i.e., the children’s ranges are non-
overlapping subsets of the range of the parent node. This offers user a tradeoff
between the number of ranges and the accuracy.

2. In a CDTree, the accuracy monotonically decreases as we travel down the
tree.

The second property is undesirable. This is because errors are additive. For
example, suppose m1 points are misclassified at the root node, they will be
misclassified all the way to the leaf. Now assume that m2a and m2b points are
misclassified at the left child of the root and the right child of the root respec-
tively, then at depth two the total numbers of errors is m1 + m2a + m2b.

Splitting Rule. In traditional classification trees, the largest reduction in en-
tropy or the largest information gain is used to measure the performance. Accu-
racy is not traditionally used because:

1. Accuracy does not reflect the potential for finding a better splitting point.
2. The change in accuracy might be zero for all splits.

In the case of classical classification trees, the points have labels a-priori.
So even if a point is mislabeled at the parent node, it could still be correctly
labeled at a subsequent node. In our case since labels do not exist a-priori,
once a point is incorrectly classified it can never be correctly classified again.
So it makes more sense to locally optimize for a maximal gain in accuracy.
Furthermore, computing information gain (or entropy) while dividing the range
is not a natural definition of entropy. For example, in Regression Trees [1] which
address a problem similar to ours, the split that results in the largest reduction
in variance is chosen.

Pruning. In Minimum Cost-Complexity Pruning [1], a set of trees of decreasing
size (and contained in each other) are obtained. From this set, a final tree is
chosen based on the accuracy on the validation set. In our case, since classes are
continually created as the tree grows, to avoid overfitting we can:
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1. Choose the classes based on the validation set: This step is built into the
construction of the tree.

2. Restrict the splitting of a node: For this we introduce the improvement
discussed earlier, wherein if a class were to contain a few points, it is not
created. Allowing small classes could lead to overfitting because the small
class could exist only in the examples on which the classifier was created.
This can be thought of as a form of Pessimistic Pruning. We will show in
our results that this leads to an improvement in accuracy.

4 Comparison with the Naive Approach

Finally, we revisit the initial discussion on how our approach is superior to the
naive approach. As we mentioned earlier, a naive approach to solving our problem
could be:

1. First, create the ranges using some form of clustering or histogram construc-
tion, where a range is partitioned into contiguous buckets.

2. Then, learn a multi-class classifier on this set of ranges.

There are significant problems with this straightforward approach:

1. The number of classes is not known which is typically the input required
for constructing a histogram or for clustering. For CDTree, we discover the
classes as we build the tree. This eliminates the need for knowing the number
of classes a-priori.

2. Histograms give a set of contiguous buckets. To offer the user a choice at
the time of prediction, in a tradeoff between accuracy and the number of
buckets, we would have to build different classification models for each num-
ber of buckets. On the other hand, in a CDTree we obtain a set of nested
ranges. Thus in a single CDTree, a user can choose to stop at an intermedi-
ate node instead of traveling all the way down to a leaf, if the result ranges
are sufficient. This will give a result with a higher accuracy. For example
consider the tree shown in Figure 2, if a user is satisfied with the range of
[1000, 2690], she need not further decide if the point lies in [1000, 1629) or
[1629, 2690].

3. In our initial experiments, we used some histogram techniques (such as equi-
width, equi-depth) and then used multi-class classifiers. The results were
consistently inferior. Clustering gives better results than histogram as the
first step. In the experimental section we compare with the clustering ap-
proach and show that our results are better than those obtained with clus-
tering.

4. A way of obtaining partitions might be to cluster the points. All clustering
algorithms suffer from the first problem, i.e., the number of clusters need to
be known apriori. Partitional clustering (such as, k-means) suffers from the
second problem too since it cannot offer the user a tradeoff between accuracy
and the number of ranges. Furthermore, clustering under constraints (in our
case minimum size of the range, minimum number of examples in a class) is
not a very well understood problem.
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5. A solution for the problem of tradeoff is to get a nested set of ranges and
thus a hierarchical clustering approach can be used. Any solution that could
be given by hierarchical clustering is searched in our exhaustive search,
i.e., all possible permissible separation points are considered. Surely, they
would contain any partition suggested by a hierarchical clustering algo-
rithm.

6. As opposed to combining several binary classifiers, which happens in our
approach, a multi-class classifier considers all the classes at once, and this
makes the overall optimization problem more expensive to solve [13].

7. We have observed in our experiments that different regions of y have dif-
ferent rules for classification. For example, when predicting database query
execution times, smaller queries were classified on the optimizer cost and the
larger queries by the load on the system. A binary classifier not only discov-
ers these rules but also helps make sense of the classification itself, which is
the essence of a good data mining approach. (This could also be obtained
with a multi-class approach where different classes are grouped together, but
that approach is not as accurate as one-against-all approach for multi-class
classification.)

8. Finally, we demonstrate in our experimental section that our approach gives
consistently better results than the naive approach.

5 Practical Enhancements

In this section we suggest two practical enhancements over a Complete CDTree.

5.1 Bounding the Accuracy

We introduce a new termination condition on the accuracy:

1. Minimum Accuracy. Do not split a node if the highest accuracy on the
validation set is below a threshold minaccuracy.

As a result of terminating early because of accuracy, the tree does not grow
unnecessarily deep. Note that, this does not result in an increase in accuracy by
itself because such a tree will be contained in the complete CDTree. (Too deep
trees can cause overfitting in classical decision trees, but as we have discussed
earlier this is not a primary reason for overfitting in CDTrees).

Fixing minaccuracy is a way to decide the tradeoff between the number of
ranges and the overall accuracy of the tree. In our experiments below, we use
minaccuracy = 0.8. There is no theoretical reason for choosing this number. This
could be an interesting problem for further study but in our experience with pre-
diction of query execution times, 80% accuracy does lead to trees with ranges
and accuracy that meet user expectations. Another advantage of early termina-
tion is that the tree is easier to comprehend in terms of simpler classification
rules.
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5.2 Reducing the Computational Complexity

Exhaustive search for the best separation point can be expensive. For every
separation point in the set S′, all the classifiers in the set F are trained and
validated. To reduce the computation of exhaustive search, we could look at a
subset of the candidate separation points S′. To do that we first compute the
gaps. As before, first sort the yi in ascending order such that yi+1 ≥ yi. And
then compute the gaps, δ as: δ(yi+1) = yi+1−yi

yi
.

1. Largest Gaps. Take the yi corresponding to the largest ngap values as the
possible separation points.

Example 3. Let’s say node u consists of 10 points where there y values are
{16, 2, 5, 9, 5, 17, 3, 14, 2, 4}. Let ngap = 2. We first sort y in ascending order to
get: {2, 2, 3, 4, 5, 5, 9, 14, 16, 17}.The gaps are {0,0.5,0.33,0.25,0,0.8,0.55,0.14,0.06}.
Then the largest ngap differences are 0.8, 0.55. They correspond to the splitting
points (9, 14).

Note again that doing this does not necessarily increase the accuracy and has
the potential to decrease it, as compared to the complete CDTree construction.
This is because the set of partitions obtained in this way is a subset of possible
separation points obtained through exhaustive search. We suggest ngap = 5.
Again, there is no theoretical reason, but this gave us the speedups we were
looking for in a large number of experiments.

For example, given a dataset containing 473 training examples, 142 validation
examples and 154 testing examples, with 15 attributes, without ngap it takes
13913 ms to construct and test a CDTree, and with ngap = 5 it takes 3857 ms,
a speedup of about 3.6.

6 Experimental Results

We present results over three different data sets. As we had mentioned earlier,
this work arose out of a practical consideration, namely predicting the execution
times of database queries. We will present a set of results regarding this data set.
We have also used two other data sets to show the effectiveness of our approach.
The first data set, Abalone data set, has a large number of classes (29). We
show CDTree groups these classes into smaller number of classes. We compare
our results with a naive approach and the published results. For the second data
set on housing data in Boston, we compare our results with the naive approach.

For all the experiments the set F of classifier functions was 1-nearest neighbor
and decision trees with four different settings. We have used Weka’s [14] publicly
available libraries. An important point to note is that for the purpose of these
experiments we have used a small set for F . In real life applications, F could be
larger, possibly leading to higher accuracies.

In our results, we report the number of ranges and the accuracy. In order to
make a fair comparison between our CDTree approach and the naive approach,
the number of ranges is set to be the same. This is achieved by using the number
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of ranges obtained using the CDTree approach as input for the number of clusters
for the naive approach. Hence, when comparing the results of the two approaches,
it should be kept in mind that the naive approach is essentially solving only half
the problem.

Typically as the number of ranges goes up, the accuracy goes down (This can
be clearly seen in Table 2). Without the creation of some artificial metric it is not
possible to say which tree is better, one with higher accuracy and fewer ranges
or the one with lower accuracy but with the more ranges. These are tradeoffs
and we would prefer “high” accuracy and “reasonable” number of ranges. As
mentioned before, in our experiments below we use minaccuracy = 0.8 to achieve
this tradeoff.

In general, since we were motivated with a real life problem, we left the de-
cision on the tradeoff to the user. Here, the property of the CDTree that the
classes are nested and a user can choose to stop at a intermediate node without
going to a leaf node is useful for the user.

For the experiments, we construct CDTrees starting from a complete tree and
then adding on the improvements, to demonstrate how the results are affected
with the improvements. However, we first discuss how we constructed the naive
approach.

6.1 Naive Approach

Recall, that the naive approach is a two step process:

1. Cluster the data set on the y-values.
2. Fit a multi-class classifier on this data.

The ranges obtained as a result of clustering should follow the constraints
of minexample and minsize. There has been some work on the clustering with
constraints but there is no standard approach. We construct a basic algorithm
to do this. Note that clustering requires us to know the number of clusters. Let
the number of clusters be nc.

1. Using simple k-means find the nc clusters, where the k value is given by the
number of ranges obtained from corresponding CDTree approach.

2. If all the clusters meet the minexample and minsize constraints, stop. Oth-
erwise increase the number of clusters by 1 in k-means and goto step 1.

3. Assign the points of all the clusters that do not meet the criterion to the
cluster with the centroid nearest to them in terms of Euclidean Distance.

4. Count the number of clusters, if it is nc then stop. Otherwise increase the
number of clusters by 1 in k-means and goto step 1.

Once we have this clustering, we use clusters as class labels. For a fair com-
parison, we take all f ∈ F and make multi-class classifiers with 1-against all
(which is known to have higher accuracy) with each f . Then for each multi-class
classifier we compute the accuracy on the test set. We finally report the highest
accuracy amongst all these classifiers.
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6.2 Predicting Execution Times for Queries

This set of experiments for Customer X (for confidentiality reason we cannot dis-
close the name of the customer) was run on a database that was installed on a
machine with 256 Intel Itanium processors. We took a set of actual BI (Business
Intelligence) queries run in a single day by one of our customers. They include
both ad-hoc queries and canned reports. There were a total of 769 queries in
this data set. We created 12 different workloads by running a different number
of queries together. For each query, in each workload, we collected the execu-
tion times. The X values for each query are certain properties of the query
and the load on the system, the y values are the execution times. This way,
each workload gives us a data set. As mentioned before, the problem of predict-
ing execution times of a database query is difficult. For more detailed results
please refer to our previous work [12] where an earlier version of CDTree was
used.

Complete CDTree. For each of the twelve data sets (where a data set corre-
sponds to a workload), we create 10 different test sets by randomly distributing
60% of the points as the training set, 20% of the points as the test set and
20% of the points as the validation set. First, we present the results for a com-
plete CDTree. We have tabulated the averages for the ten runs per data set and
compared our results with the average of the naive approach. The results were
obtained with with minIntervalSize = 1 and minExamples = 25. They have been
tabulated in Table 1.

Each row of Table 1 represents one of the 12 workloads used in the experiment.
The second column shows the average accuracy obtained from the 10 test sets
using CDTree. The third column shows the average accuracy using the naive
approach with the same number of ranges as the CDTree. The number of ranges
obtained with CDTree is is shown in the fourth column. (For the naive approach,
for each run, the number of ranges obtained from CDTree was input as the

Table 1. Results Obtained with a Complete CDTree

Data Set Accuracy%(Complete CDTree) Accuracy%(Naive) # of Ranges
1 79.87 65.73 9.6
2 77.71 74.05 10.1
3 72.16 64.57 10.2
4 66.01 51.84 11.2
5 53.20 50.38 13.2
6 68.44 62.97 12.9
7 66.41 56.68 13.5
8 72.45 62.09 13.4
9 65.22 56.98 14.2
10 70.93 63.08 12.1
11 73.38 66.69 11.3
12 69.87 57.28 12.9
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number of clusters.) It can be seen that our approach outperforms the naive
approach for all twelve data sets. Also, we can observe that in general, the
accuracy of CDTree decreases with an increase in the number of ranges.

Using minaccuracy. Next, we present the results when we introduce the min-
imum accuracy criterion. We set minaccuracy = 0.80. The rest of the parameters
are the same as those for the complete CDTree discussed above. The results
have been tabulated in Table 2. The result can be interpreted in the same way
as Table 1. It can be seen that CDTree again outperforms the naive approach. In
comparison with Table 1, it can be observed that the effect of using minaccuracy

with CDTree, is an increase in accuracy and a decrease in the number of ranges.
This is the desired effect of introducing the minimum accuracy criterion.

Table 2. Results Obtained with a CDTree with minAccuracy = 80

Data Set Accuracy%(CDTree with Min Accuracy) Accuracy%(Naive) # of Ranges
1 95.43 89.76 3.6
2 89.81 84.11 4.8
3 81.67 83.76 5.4
4 72.67 67.25 9.4
5 82.67 79.23 7.7
6 69.30 65.59 12.3
7 70.81 66.08 11.9
8 76.70 67.13 11.7
9 72.86 64.10 12.3
10 72.46 66.80 11.6
11 76.59 74.84 9.9
12 72.98 64.28 12.0

With minaccuracy and nskip. Now we present the results of CDTree with
minaccuracy and nskip. We set nskip = 0.25, i.e., skip 25% points as possible
separation points from the beginning and the end of a range. The rest of the
parameters are the same as before. We have plotted the results for all 120 ex-
periments (12 workloads * 10 test settings) in Figure 3, where the accuracy of
the prediction is the x-axis and the number of ranges is the y-axis. For some of
the predictions the accuracy reaches 100% and the accuracy is 90% and above
for a large number of experiments.

Note that setting nskip is necessary even when minaccuracy is used, since
minaccuracy specifies the lower bound of accuracy of the classification while nskip

defines the minimum size of ranges.

6.3 Multi-class Classification with Large Number of Classes

The CDTree approach can be used in a multi-class classification problem where
there are a large number of classes. CDTree will automatically group these classes
into a smaller number of classes.
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Accuracy and Ranges for Customer X Data
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Fig. 3. Query Execution Times Prediction Results for Customer X

To demonstrate this, we use the Abalone (a type of shell fish) data set which
predicts the age of abalone from physical measurements. The attributes are
categorical, real and integer. The number of instances is 4177. The number of
classes is 29. This is pretty difficult data set to classify. The accuracy on the data
set is known to be 72.8% [15] when the classes were grouped into three classes
apriori by the researchers themselves.

The results of for this problem were obtained with the following settings:
minIntervalSize = 3, 4, 5 and minExamples = 25, minaccuracy = 0.80 and nskip =
0.25. Like the previous experiments, we used 60% of the data for training, 20%
for validation and the last 20% for testing. Again, as before, we created 10 runs
and report the averages.

The results are presented in Table 3. It can be observed that with all three
of our approaches we get high accuracy and a larger number of ranges (group of
classes) as compared to the naive approach. For the CDTree with minaccuracy +
nskip, not only is the accuracy higher than the best known result (to the best of
our knowledge) but the number of classes is also higher.

Most importantly, CDTree discovered the class groups on its own. In the
previous work, it was not clear how the authors arrived at their grouping. In
our case, these were discovered by the CDTree and they closely matched with
groupings used in the previous work.

6.4 Data Set 2: Boston Housing Data

This is a data set of housing prices in Boston. We have obtained it from the
UCI repository [16]. It has 14 attributes of real and integer types. There are
506 instances. This data set is typically used for regression. Like the previous
experiments, we used 60% of the data for training, 20% for validation and the
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Table 3. Abalone Data Set Results

Method CDTree(%) Naive(%) # Ranges
Complete Tree 69.57 45.86 6.0
minaccuracy 70.93 52.08 5.2

minacc. + nskip 73.63 60.06 4.2

Table 4. Boston Housing Data Set Re-
sults

Method CDTree(%) Naive(%) # Ranges
Complete Tree 60.9 57.43 6.5
minaccuracy 72.24 66.63 5.3

minacc. + nskip 72.49 66.65 5.2

last 20% for testing. As before, we created 10 runs and report the averages.
The results for complete CDTree were obtained with minIntervalSize = 10 and
minExamples = 25. When minaccuracy was added it was as set to 0.80 and nskip

was added it was set to 0.25.
The results have been presented in Table 4. As before, there is an increase in

overall accuracy at the expense of ranges as we move away from the Complete
CDTree. However, there is no significant improvement with addition of nskip.
This could be because no classes could be found in the part of ranges that was
to be skipped, which had accuracy greater than minaccuracy. Some of the sample
ranges were:

1. With five ranges: {[5.0, 12.6), [12.6, 25.1), [25.1, 31.5),
[31.5, 37.2), [37.2, 50.0]}. These were obtained without nskip

2. With six ranges: {[5.0, 12.6), [12.6, 17.8), [17.8, 25.1),
[25.1, 31.5), [31.5, 37.2), [37.2, 50.0]}. These were obtained with nskip.

7 Conclusions

In this work, we address the problem of classification with unknown classes
using a simple binary tree structure CDTree. Another application of CDTree is
a classification problem with a large number of classes. When building the tree,
certain properties were desired: (i) the ranges should be sufficient in number; (ii)
the span of a range should be meaningful; (iii) the user should be able to choose
a tradeoff between the accuracy of prediction and the number of ranges; (iv) the
model for prediction should be cheap to build and deploy. Our CDTree achieves
all these goals. We also presented a detailed discussion of our methodology and
demonstrated the effectiveness of our approach on real life data sets. We have
used this technique successfully for predicting the execution times of a query
and this is slated for incorporation into a commercial, enterprise class Database
Management System.
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Abstract. Heterogeneous data, i.e. data with both categorical and con-
tinuous values, is common in many databases. However, most data min-
ing algorithms assume either continuous or categorical attributes, but
not both. In high dimensional data, phenomena due to the “curse of
dimensionality” pose additional challenges. Usually, due to locally vary-
ing relevance of attributes, patterns do not show across the full set of
attributes.

In this paper we propose HSM, which defines a new pattern model
for heterogeneous high dimensional data. It allows data mining in arbi-
trary subsets of the attributes that are relevant for the respective pat-
terns. Based on this model we propose an efficient algorithm, which is
aware of the heterogeneity of the attributes. We extend an indexing struc-
ture for continuous attributes such that HSM indexing adapts to differ-
ent attribute types. In our experiments we show that HSM efficiently
mines patterns in arbitrary subspaces of heterogeneous high dimensional
data.

1 Introduction

Data mining is a knowledge discovery task that aims at identifying interesting
novel patterns in the data. Several subdisciplines exist, that typically focus on
different types of application scenarios [1]. In unsupervised learning, clustering
and frequent itemset mining are widely studied and applied. Whereas clustering
aims at automatically grouping similar objects into groups, separating dissimilar
ones, frequent itemset mining tries to detect objects that occur repeatedly in the
data. Clustering algorithms for continuous and categorical data sets have been
proposed in the literature [2,3], whereas frequent itemset mining assumes cate-
gorical data. Furthermore, there are new challenges associated with the “curse
of dimensionality” in high dimensional data, i.e. data with very many attributes
[4]. As a consequence, research has focused on detecting patterns in projections
of the full dimensional space [5,6,7].

In this work, we focus on mining of heterogeneous data types with continuous
and categorical attributes, as found in many practical applications. The discovery

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 497–516, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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of meaningful patterns that provide a consistent view on both data types requires
a pattern model that is consistent in defining interestingness and novelty for
continuous and categorical attributes alike.

We propose a novel model for heterogeneous data mining in high dimensional
data. Our model provides a consistent view on both data types, and derives a
common subspace clustering notion. Based on previous work on density-based
subspace clustering in continuous data [7], we extend our model in this work to
heterogeneous data. We highlight common challenges in subspace clustering and
frequent itemset mining by giving a thorough review and comparison of models in
both areas, before we present our novel model covering both areas. Our consistent
model ensures comparable subspace clustering results on heterogeneous data by
a consistent normalization of both density and frequency measures.

As recent research has shown, pattern detection in projections of high dimen-
sional data is a computationally challenging task [5,6,7]. Especially for different
data types, we need adaptive algorithms which ensure efficient pattern detection
in projections of heterogeneous data. We propose an algorithm for heteroge-
neous subspace clustering that exploits the nature of continuous and categorical
attributes in a novel index structure. This index is based on our previous work on
efficient density-based subspace clustering for continuous data [8]. We extend this
SCY-tree for continuous attributes in this work to an adaptive HSM-tree index
structure for heterogeneous data, by extracting common mining characteristics
of different attribute types in subspace clustering and frequent itemset mining.
Although it seems to be a simple combination of known indexing techniques,
the novel automatic adaptation between continuous and categorical attributes
is essential for efficient mining on heterogeneous data. As we show in thorough
evaluations our algorithm achieves a significant efficiency improvement compared
to recent subspace clustering algorithms.

As a running example to illustrate our work, we use the toy data set given
in Figure 1. Our example is based on a real world scenario: A sensor network
measuring different types of environmental parameters, vegetation and prevail-
ing animal types around the sensor. We have given a data set of 18 objects
(sensor measurements) described by 6 dimensions (sensor types). There are four
continuous data types: noise level, temperature, humidity, and illumination, as
well as two categorical data types: vegetation and animals. We have highlighted
the hidden patterns in the data by surrounding lines. For example we see that
there are three frequent itemsets present in the categorical attributes. Each of
them specifies a group of objects: o1− o7, o8− o12 and o13− o18. Taking also the
continuous valued attributes into account one can observe the same grouping
for the humidity attribute, while noise and temperature form other groupings.
However, groups do not appear in all attributes, as the attribute illumination is
noisy and provides almost random measurements. The goal is thus to identify
a grouping of objects that are similar in a subspace of the high dimensional
space, i.e. to identify the relevant subset of dimensions on which the grouping
appears.
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Fig. 1. Heterogeneous data running example

2 Heterogeneous Data Mining

To the best of our knowledge there is no technique that can detect heterogeneous
subspace patterns in high dimensional data. In this section, we discuss existing
approaches to mining of novel and interesting patterns in continuous or cate-
gorical domains. We analyze their advantages and disadvantages with respect to
mining heterogeneous data and propose a consistent model for both data types.
We illustrate our discussion with our running example.

2.1 Frequent Itemset Mining

For categorical attributes there exist algorithms for mining frequent patterns
out of transaction data. A transaction data set consists of sets of items that e.g.
in the typical market example are goods that were bought together. A frequent
itemset is a combination of several items that were surprisingly often bought
together. Each item is given by a categorical value.

Compared to our high dimensional data mining task there are two differences.
First, each object in our case has a fixed number of given attributes, while trans-
actions can be of different size. Second, attribute values in the same dimension
can not occur together as description of an object, while items can be combined
with arbitrary other items in transactions. For both differences we observe that
our high dimensional case is a specialization of itemset mining. In addition, both
mining tasks have a major point in common. Both have to identify a subset of
relevant items (attribute value combinations). For categorical data the objects
have exactly the same attribute values in the selected subspace. By counting the
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frequency of an itemset we thus measure the number of similar objects. This
frequency measure is called the support of an itemset. An itemset has then to
fulfill a given parameter value of minSupport to be frequent.

The frequency measure and its properties are a major topic concerning the
efficiency of mining. As a naive approach one would calculate the frequency of
all possible item combinations, which is exponential in the number of different
items occurring in the data. This is clearly inefficient. A first efficient approach
is the Apriori algorithm [9]. It uses a monotonicity property on the frequency
measure to efficiently prune the exponential search space. Monotonicity means
that removing one item from an itemset P , the support of this reduced P ′ can
only be greater or equal to the support of P . By removing an item one relaxes
the condition for the frequency and thus the number of objects that support this
pattern cannot decrease.

Definition 1 (Monotonicity Property).

Given a frequent itemset P := {I1, . . . Ik}, then all its subsets P ′ ⊂ P are also
frequent itemsets.

The Apriori algorithm first mines the frequent 1-itemsets and then iteratively
combines bottom-up k-itemsets to (k+1)-itemsets using the monotonicity prop-
erty to prune non-frequent (k+1)-itemsets. More efficient algorithms like the FP-
growth algorithm proceed recursively and thus achieve efficient frequent itemset
detection without the need of generating all smaller k-itemset candidates [10].
Frequent itemset mining is able to mine groups of objects which are identical
in a subspace of the high dimensional data. Using a monotonicity property on
the frequency measure one can efficiently prune the exponential search space. In
addition, indexing the data in the FP-tree provides an efficient detection of fre-
quent itemset without candidate generation. However, the FP-growth algorithm
is only applicable to categorical data.

2.2 Density-Based Subspace Clustering

For continuous valued attributes it is not meaningful to count the frequencies
of attribute values co-occurring in the database. As one has infinitely many
possible values per attribute, the probability of finding two data items having
the same value is low. Instead a range of values is usually examined. Given
the natural order of real values one can specify a neighborhood around an ob-
ject O. Objects inside this neighborhood N(O) can be seen as similar values
while objects outside the neighborhood N(O) are dissimilar to the object O.
This “density-based” paradigm detects arbitrary shaped clusters in continuous
data [2].

Further clustering paradigms can be identified in the literature, yet traditional
clustering algorithms do not scale to multi-dimensional or high-dimensional spaces.
As clusters do not show across all attributes, they are hidden by irrelevant at-
tributes [4]. Dimensionality reduction aims at discarding irrelevant, noisy di-
mensions [11]. In many practical applications, however, no globally irrelevant
dimensions exist.
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Consequently, subspace clustering aims at mining clusters in arbitrary, pos-
sibly overlapping, subspace projections. As the number of subspaces is expo-
nential in the number of dimensions, this is a challenging task. Therefore, some
subspace clustering algorithms discretize the space using grids. As such they can
only handle continuous values at the cost of accuracy [5,12]. In contrast, density-
based subspace clustering approaches are designed for continuous valued data
[6,7,8,13].

Density-based clustering has been shown to successfully identify clusters of
arbitrary shape even in noisy settings [2], while discretized and categorical data
types conflict with the definition of dense areas in continuous spaces. The density-
based paradigm defines clusters as maximal sets of density-connected objects.
An objects O is dense if its neighborhood, specified by an ε-radius around O,
contains more than the threshold minPoints many objects P from database
DB:

|Nε(O)| = |{P ∈ DB | dist(O, P ) ≤ ε}| ≥ minPoints

Two dense objects O and P are density-connected if there is a chain of dense
neighboring objects Q1 . . . Qn between them:

∃ Q1 . . . Qn ∈ DB : Q1 = P, Qn = O, ∀ i : dense(Qi)

∧ ∀ i = 1 . . .n− 1 : dist(Qi, Qi+1) ≤ ε.

For subspace clustering, these notions are projected to the respective subspace
[14,7,13]. In Figure 2(a) for example, the objects to the right form a 2d cluster
C4, as each of them contains many objects within its neighborhood (depicted
exemplarily as a circle centered at one of the objects).

2.3 Unbiased Density-Based Subspace Clustering

The above definition would result in dimensionality bias with respect to different
subspace projections: with increasing dimensionality, distances grow and typical
densities drop [14,12,7]. Figure 2(a) illustrates this effect: the 2d representation
of the data shows a larger spread than the 1d projections at the left and bottom.
In general, in high dimensional subspaces, the expected density is smaller than in
low dimensional spaces. Consequently, large thresholds are almost never exceeded
in high dimensional spaces, resulting in cluster loss. On the other hand, small
thresholds that find high dimensional clusters produce tremendous amounts of
trivial low dimensional subspace clusters.

In our previous work, we have defined an unbiased density-based subspace
clustering for continuous valued data [7]. We therefore normalized the density
by the expected density of the subspace dimensionality. The expected density is
simply the average number of objects in the ε-neighborhood w.r.t. the dimen-
sionality. This can be computed as the ratio of the volume of the ε-sphere to the
volume of the subspace. An object O is dense in subspace S of dimensionality
s if its ε-neighborhood in S contains more than minPoints objects and exceeds
the expected density in this subspace by a factor F :
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|NS
ε (O)| = |{P ∈ DB | distS(O, P ) ≤ ε}| ≥

max{minPoints, F · expDen(s)}

As subspace clustering algorithms usually generate huge outputs, it is im-
portant to exclude redundant results. Redundancy means that clusters contain
essentially the same information, as they are merely projections of the same pat-
tern in different subspaces. Including redundant subspace clusters in the output
is not useful as it leads to overwhelming result sizes without improving the qual-
ity of the result [13]. Typically, retaining only maximal subspace clusters, i.e. the
highest dimensional projection, leads to good quality of the result. Additionally,
this is useful for pruning in depth-first algorithms [13]. An example is included
in Figure 2(a): non-redundant result subspace clustering algorithms keep C1 and
C4, but not C2 and C3, which are already covered by the maximal C4 in the
higher dimensional space.
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Fig. 2. Subspace clustering

We summarize our unbiased density-based subspace cluster model [7] in the
following definition.

Definition 2. Unbiased Density-Based Subspace Cluster.
A set of objects C ⊆ DB in subspace S ⊆ D with |S| > 1 and |C| > minSize is
a subspace cluster if:

– C is density-connected: ∀O, P ∈ C: OS, PS density-connected w.r.t unbi-
ased density .

– C is maximal: ∀O, P ∈ DB: if O ∈ C and OS, PS density-connected then
P ∈ C.

– C is non-redundant: there is no higher-dimensional cluster containing
points in C.
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In general, the notion of density and density-connectivity is widely used for
continuous valued attributes, especially to detect arbitrarily shaped clusters and
to achieve a robust behavior in noisy settings. However, due to the density
measure it is only applicable to continuous valued attributes. For density compu-
tation, database scans are needed which results in high computation costs, espe-
cially when compared with the highly efficient frequent itemset mining without
candidate generation.

2.4 Comparison

Our main aim in this paper is to consistently extend the main properties de-
scribed in our unbiased subspace cluster definition, for heterogeneous data. For
categorical attributes a minimum number of occurrences in the data set makes
sense. In frequent itemset mining it corresponds to the minSupport a pattern
has to fulfill. However, as we mine patterns in arbitrary subspaces, this minimum
number has to be normalized according to expected frequency in this subspace.
We use a normalized density measure for unbiased density-based subspace clus-
tering to achieve a consistent cluster definition across arbitrary subspaces. For
an overall consistent model on heterogeneous data we will extend this model by
an unbiased frequency measure in the next section.

Redundancy of subspace clusters can be found in frequent itemset mining as
well. It is called closed itemset mining, as one searches for the maximal num-
ber of co-occurring items [15,16]. As given by the monotonicity property (cf.
Definition 1), all subsets of a frequent itemset are also frequent. The problem
in both worlds, frequent itemset mining and subspace clustering, is that one is
not interested in such obvious redundant information. The main difference be-
tween the two models is the density and frequency notion, as both are related
to characteristics of continuous or categorical values. Density connectivity and
maximality as given in Definition 2 are not directly applicable for categorical
data. To achieve an overall consistent model we have to be aware of these char-
acteristics. Each of them is meaningful in its domain. Thus, our main aim is to
ensure these differences without mixing up continuous and categorical attributes
by transformation or discretization.

A naive way of integrating both attribute types could be discretization of the
continuous attributes, e.g. by grid-based approaches [5,17]. They use discretiza-
tion either for subspace clustering [5] or for compression and mining of so-called
fascicles [17]. However, discretization loses some knowledge about the data, and
thus lacks a main property of density-based clustering. Density-based clustering
is capable of identifying arbitrarily shaped clusters by taking the neighborhood
around objects into account. Grid-based clustering approaches, however, can
only detect clusters that consist of cells with more objects than the specified
threshold. Consequently, the clustering results of these algorithms are heavily
sensitive to the grid resolution and position. Figure 2(b) illustrates this prob-
lem: assuming a threshold of at least five objects, the only cluster that would be
detected is the one located in cell (2,1). Moreover, this cluster would be revealed
only partially, as the remaining parts of the cluster do not exceed the threshold of
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five objects in their respective cells. Additional post-processing of such clusters
could remedy this problem, yet a cluster that is cut apart by the grid such that
none of these partitions exceed the threshold (e.g. in cell (3,2) and cell (3,3))
would still be missed completely. If one were to lower the threshold to just three
objects, this cluster would be detected, yet more false hits would be produced
(e.g. cell (1,3) would produce a pseudo-cluster). The finer grained grid cells are,
the less likely distortions are, yet the runtime complexity increases accordingly.
Only density-based clustering is capable of detecting all clusters reliably.

3 HSM Pattern Model

For categorical data, frequency counting is more meaningful and efficient than
the complex density measures, while for continuous data density-based clustering
can detect arbitrary shaped clusters and is robust against noise. A combination of
both types of models is the goal. We achieve this in an overall consistent manner
by incorporating both types of measurements into our HSM pattern model.

In density-based (subspace) clustering, the density of an object O is measured
via a density measure ϕ(O). This can be simply the number of objects in the ε-
neighborhood of O (ϕ(O) := |NS

ε (O)|) or any other density measure [7]. Objects
in the neighborhood are“density-connected”and assigned to the same cluster. As
density has to be comparable i.e. the density measure ϕS has to be unbiased with
respect to the dimensionality of the subspace S (cf. Definition 2). This is achieved
by normalizing with the expected density of the subspace dimensionality [7]:

Definition 3. Unbiased density normalization.
For any density measure ϕS with expectation E[ϕS ],

ϕS

E [ϕS ]
is dimensionality unbiased.

For continuous attributes, our previous work on dimensionality unbiased sub-
space clustering provides such an unbiased density measure [7]. Let Econt [ϕS ]
denote the expected density for a continuous valued subspace S. It is computed
as the number of objects in the database DB multiplied by the volume ratio of
the neighborhood in subspace S to the entire subspace S:

Definition 4. Continuous normalization.

Econt [ϕS ] = |DB| · vol(ε-sphereS)
vol(S)

For computation details, please refer to [7].
For heterogeneous data, computation of the expected density requires taking

categorical attributes into account. By definition, categorical data attributes
have no extension, i.e. only discrete values occur. As a consequence, distance
values are discrete as well and the notion of ε-sphere neighborhoods leads to
discontinuous densities.
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We unify density assessment for categorical and continuous attributes. To en-
sure a consistent density measure, the expected density should be normalized
for categorical attributes in the same manner as for continuous attributes. We
achieve this consistency by treating categorical values not as discrete points, but
as segments of the attribute value range. More precisely, the number of values
vi for each attribute dimension i of the categorical attributes is considered to be
the value range extension in this attribute. The overall volume of a categorical
subspace Scat is then defined as the product of these ranges, yielding a rectan-
gular overall volume vol(Scat) =

∏
i∈Scat vi. The expected density of categorical

attributes is then the number of objects in the database DB multiplied by the
ratio of the segment volume by the volume of the subspace.

Definition 5. Categorical normalization.

Ecat [ϕS ] = |DB| · vol(segment)
vol(S)

with vol(segment) = 1 as each segment corresponds to one discrete value. For
our running example the expected density for the categorical subspace Scat =
{d5, d6} is simple computed by 18 · 1

3·3 = 2 as we have 18 objects in our database
and 3 possible values in each of the two categorical dimensions. This means
that we expect to have two objects with the same categorical attribute value
combination in our dataset. Thus, a meaningful 2d-categorical cluster in our
example should have at least 2 objects, otherwise it has a frequency less than
the expected. At least 6 objects form a meaningful 1d-categorical cluster.

This modified density computation corresponds to a frequency count in the
categorical attributes, and fits in nicely with our continuous attribute normal-
ization in the sense that the overall expected density normalization E [ϕS ] is
consistent for both types of attributes in subspace S = Scont ∪ Scat:

Definition 6. Heterogeneous normalization.

E [ϕS ] = |DB| · vol(ε-sphereScont)
vol(Scont)

· vol(segment)
vol(Scat)

Thus, the overall normalization measures density of heterogeneous data objects by
the degree of deviation from the expected density in continuous
attributes and the expected frequency in categorical attributes. We have success-
fully used this normalization for e.g. ranking of outliers in heterogeneous data [18].

4 Efficient Algorithm

Pattern detection in projections of high dimensional data is a computationally
challenging task, especially for different data types. Using our consistent density
measurement for both continuous and categorical attributes, one has to efficiently
mine the heterogeneous subspace patterns. We propose an adaptive algorithm
for efficient pattern detection in projections of heterogeneous data. In contin-
uous data, density-based (subspace) clustering is known to be computationally



506 E. Müller, I. Assent, and T. Seidl

complex, because it involves repeated data scans to identify the objects in the
neighborhood [2]. This means that especially for subspace clustering, where the
neighborhood has to be computed for different subspace projections, efficiency is
a major concern. However, repeated database scans are not required for simple
frequency computations on categorical data. Our algorithm for heterogeneous
subspace clustering exploits such characteristics of continuous and categorical
attributes in a novel index structure. This index is based on our previous work
on efficient density-based subspace clustering for continuous values [8] and sim-
ilar structures for frequent itemset mining [10]. While these techniques are not
applicable to heterogeneous data on their own, our index is adaptive to hetero-
geneous data and yields a significant efficiency improvement compared to recent
subspace clustering approaches.

4.1 Continuous Attributes

In our previous work, we have developed an indexing structure, the SCY-tree for
efficient mining of continuous valued subspace clusters in a depth-first fashion
[13,8]. The general idea is to index regions such that they can be evaluated for
several different projections, and allow for merging of regions that might contain
parts of a subspace cluster.

This indexing structure, however, was devised only for continuous data types.
Obviously, we could consider a naive solution of simply treating categorical at-
tributes like continuous ones. However, as we will shortly see in greater detail, this
would ignore the very properties of categorical data: merges of adjacent regions
cannot occur, as in categorical values, this notion of range within a dimension does
not exist. Simply “turning off” the merges would also be far from ideal, as we will
see. We will analyze how we can reorganize the index such that heterogeneous data
can be mined for subspace clusters in a far more efficient fashion.

But first, we briefly review the SCY-tree. Essentially, the SCY-tree approach
benefits from the better efficiency of grid-based algorithms without losing the
quality provided by density-based clustering approaches. The idea is to check
not only each individual cell against a threshold, but to extend this in a density-
based fashion as well: as long as there are objects within a neighborhood distance
from the cell’s border, we do not discard the cell, but instead merge it with this
neighbor. Working in this fashion not only means efficient mining without loss
of accuracy, but it also is the basis for our indexing structure that stores the
compact cell counts, and also for just-in-time merging and mining of them.

SCY-trees are efficiently constructed by mapping of grid cells and additional
neighborhood ranges to index nodes. As discussed before, traditional grids, while
showing very good runtimes, lose clusters due to grid resolution and position.
This effect can be completely remedied by devising S-connectors, i.e. small grid
stripes of the size of the neighborhood ε along the border in each grid cell
to its lexicographically larger neighboring cell. Any cluster that would be cut
apart in traditional grids would be clearly identified through the presence of an
object in the S-connector between them. Figure 3 shows the situation in the
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Fig. 4. SCY-tree example

traditional grid to the left where the cluster in the grey area would be missed,
and the situation with the S-connectors where the cluster would be detected
after merging of the cells that are connected.

The index therefore not only stores the count of objects in each cell, but
additionally information on these S-connectors. Very efficient checks of these
S-connectors allow quick identification of clusters that reach into several cells.
These cells are then merged simply by merging of the corresponding node counts
in the tree. An example is given in Figure 4 at the right: the two (red) shaded
cells in a two-dimensional projection correspond to the SCY-tree in those two
dimensions (corresponding to the levels of the tree), and the object highlighted
(in green) in the S-connector corresponds to a special node in the tree. Each of
the nodes represents a cell id in that dimension with the corresponding object
count. For example, the cell with id 1 in the first dimension and id 2 in the second
dimension contains four objects which are reflected in the leaf entry count of four
at the path that starts with cell id 1 in the first dimension and then goes to cell
id 2 in the second dimension. Formally, we have:

Definition 7. SCY-tree structure.
A SCY-tree TD represents a region
D = {(d1, i1), . . . , (dk, ik)} in an arbitrary subspace.
The SCY-tree consists of nodes, each of them stores:

– a descriptor (d, i) for dimension d and interval i of the region and its count
c of objects

– a pointer to the parent node and a list of child pointers
– a pointer to a linked list of nodes with the same descriptor.
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The basic idea of the algorithm is to identify subspace clusters in a depth-first
fashion on the dimensionality of subspaces. By recursively restricting the region
under study to the relevant dimensions, maximal high dimensional subspace
clusters are quickly detected. Going back down to lower dimensional projections,
redundant subspace clusters can be immediately pruned. Restriction on SCY-
trees is easy, as it corresponds to simply reading off the relevant paths in the tree.
The key idea is to perform all the mining only on this tree structure and thus
avoid expensive database scans. After having build the initial SCY-tree with only
one database scan all the needed information is covered by the SCY-tree. We
explain this procedure with our running example. On the left side of Figure 4
we see the initial SCY-tree, which represents the four-dimensional continuous
space of our example. To compute the number of objects in any cell, for example
cell 5 in dimension three, simply read the values that correspond to any path
with id 5 in the third dimension. The distribution in dimensions one and two
is then represented as the restricted SCY-tree to the right. This restriction can
be performed recursively. Note that the order of dimensions is not important for
the accuracy of the result, even dimensions in-between can be simply disregarded
while all relevant paths for other projections are extracted.

4.2 Categorical Attributes

As mentioned in Section 2.1 for categorical data the FP-tree mines frequent item-
sets efficiently without candidate generation [10]. The basic idea is to have all the
needed information in this index structure to avoid expensive database scans. As
in the SCY-tree after building the initial tree, mining is performed only on the
tree structure. In Figure 5 we see the initial FP-tree for our running example.
As the FP-tree can only handle categorical data we hide the first four continu-
ous dimensions as one item “continuous”. Proceeding recursively, the FP-growth
algorithm restricts the initial FP-tree e.g. as depicted in the item “REPTILES”
by extracting all paths ending in a node labeled with that item.

Both the SCY-tree and the FP-tree from frequent itemset mining are related in
the sense that they operate on compact node entries that represent cell counts.
The SCY-tree, however, is capable of dealing with continuous values as well,
though merging of neighboring cells where necessary. However, such merge oper-
ations lead to computational overhead. Mining continuous data on the SCY-tree
has higher runtime than mining on the FP-tree. The FP-tree, for both attribute
types, on the other hand, is not able to handle continuous values.

dim 5

dim 1-4

DESERT:6GRASSLAND:5FOREST:7

CONTINUOUS:18

dim 6 INSECTS:1REPTILES:5MAMMALS:7 INSECTS:5

initial FP-tree T{ }

dim 5

dim 1-4

DESERT:5

CONTINUOUS:5

FP-tree T{ REPTILES }restrict_item( REPTILES)

Fig. 5. FP-tree example
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5 Heterogeneous Attributes (HSM-Tree)

As a straightforward solution to mining of heterogeneous data, we simply extend
the ideas of SCY-tree [8] and FP-tree [10] (cf. reviews in Sec. 4.1 and 4.2) to het-
erogeneous data. Our novel HSM-tree structure can handle both categorical and
continuous data types by automatically adapting to the actual data type. This
adaption makes the HSM-tree a non-trivial combination of two known tree struc-
tures. Furthermore, we introduce two novel strategies for adapting to different
data types during tree construction.

Definition 8. HSM-tree structure.
A HSM-tree THD represents a heterogeneous region HD = {hd1, . . . , hdk}.
Each level in the HSM-tree represents one dimension. The order of dimensions
st(d1) . . . st(dk) is given by (a subset of) the order st(di) ≤ st(dj) ∀i < j with
respect to strategy st(di).
The HSM-tree consists of nodes, each of them stores:

– a descriptor (d, i) for dimension d and
• if d is continuous, interval i of the region and its count c of objects
• if d is categorical, item i and its frequency c

– a pointer to the parent node and a list of child pointers
– a pointer to a linked list of nodes with the same descriptor.

As one can easily see by comparing the above definition of the HSM-tree with the
SCY-tree definition (Def. 7), we have two major differences: First, when building
the HSM-tree, we differentiate between continuous and categorical attributes to
compute the count for a region, or to record the frequency, respectively. Second,
the HSM-tree follows a strategy (cf. Sec. 5.2) for building the tree. This strategy
defines a favorable ordering of the dimensions for efficient mining. Please note
that two major changes of HSM-tree are not explicit in the above definition:
During mining on the HSM-tree, we use the consistent density normalization for
heterogeneous data (cf. Def. 6), and, most importantly, we adapt to the hetero-
geneous attributes indicated by the descriptors in the HSM-tree (cf. following
sections).

5.1 Adaptive Mining

Based on the simple HSM-tree structure we perform a novel adaptive mining.
Adaption is required as there is a fundamental difference between the data types
that merits more detailed consideration: There is no notion of ranges in categori-
cal values. That is, only in continuous values a cluster might stretch across several
grid cells in one dimension, because the values of the objects are neighboring,
e.g. show temperature values that do not differ much. In categorical dimensions,
this does not occur, e.g. either we are dealing with an insect or with a mammal,
but in general there is no notion about “closeness” or distance between the two
categorical values. This results in two effects for categorical values in HSM-trees:
first, we do not need to check S-connectors, and second, we do not need to merge
“cells” (i.e. attribute value combinations).
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However, just by eliminating the corresponding nodes for S-connectors and
omitting checks for merges, we are not doing as good as possible. We propose to
reorganize the tree to achieve far better runtimes of the mining process on the
HSM-tree. Basically, we observe that, the order of the dimensions in the HSM-
tree matters with respect to runtime performance. Mining starts with the leaf
nodes to extract the longest paths and thus also the high dimensional patterns.
Thus having categorical values which are highly clustered at the leaf level would
be beneficial for efficient mining.

Looking again at our running example we can construct the restricted HSM-
tree for “MAMMALS” as shown in Figure 6. It also illustrates the advantage
of combining both continuous and categorical information in one tree structure.
Having restricted the initial HSM-tree already to one categorical value, the highly
correlated attributes vegetation and prevailing animals directly form a cluster.
We only see “FOREST” nodes at the new leaf level, and all objects being rep-
resented by this HSM-tree also contribute to the hidden cluster. Furthermore,
after the first restrictions in categorical values we obtain small tree structures.
This is due to the fact that no merge operations have to be performed on these
trees.

HSM-tree T{MAMMALS } restrict(dim 3,interval 5)

dim 3

dim 2

dim 1

1 2:71:5

dim 4

1:18

5:3

1:3 3:21:2

5:45

3

HSM-tree
T{ MAMMALS  x  (3,5) }

dim 1
1:7

dim 2 1:3 2:41

dim 5
all nodes labled with FOREST

Fig. 6. HSM-tree example

Adaptation to restrictions in both categorical and continuous attributes is the
key characteristic of adaptive mining using the HSM-tree. Thus, our novel tree
structure enables the mining in heterogeneous subspaces of the data. Thus, in
our running example, we can mine the heterogeneous subspace “animals” and
“humidity” by restriction operations on the HSM-tree (cf. Figure 6). Performing
another restriction on a different attribute type (e.g. in cell 5 in the continu-
ous dimension 3) is quite easy as the whole mining process relies on a common
basis. We thus easily can mine a heterogeneous pattern e.g. “MAMMALS” x
(3,5) which represents the sensors surrounded by mammals and having a high
humidity around 50%. The frequency/density of this attribute value combina-
tion can easily be determined based on the given HSM-tree. The sum of all
nodels labeled with 5 in dimension 3 is equal to 7 (i.e. 7 objects support this
pattern).
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5.2 Adaptive Tree Construction

In construction of HSM trees, our goal is to ensure a structure that allows efficient
mining of arbitrary patterns in heterogeneous attributes. According to Definition
8 the dimensions are ordered d1 . . .dk with descriptors of d1 at the root node and
descriptors of dk at the leafs of the HSM-tree. The order is defined by a sorting
criterion st(di) such that the ordered dimensions fulfill st(di) ≤ st(dj) ∀i < j.
We study two different strategies for efficient mining. Both defining a different
sorting of the dimensions in the HSM-tree.

Strategy 1: Reducing the tree size
To reduce the size of the tree, one would sort dimensions with respect to the
scattering of data in this dimension. A dimension in which the data is distributed
over a wide range should not be inserted first in the tree as it would create a
branching at the top of the tree. As an extreme, we would not want to first insert
all continuous dimensions and then all categorical dimensions. This would clearly
constitute a worst case scenario with respect to the resulting tree size. Instead,
a dimension in which the data is clustered in one region leads to many common
paths in the tree when inserted first. Many common paths reduce the size of the
HSM-tree. In our first strategy, the idea is therefore to start by inserting the
categorical dimensions to minimize tree size.

Strategy 2: Reducing the number of merges
As a drawback to the previous strategy, however, we observe that mining scat-
tered dimensions with noisy data first forces many merges on large HSM-trees as
no other dimensions have been restricted yet. These merges might not even lead
to subspace clusters in the end as the minSize threshold might only be exceeded
due to the large size of the tree. Many merges can be avoided through a different
processing order. By mining the scattered continuous dimensions last, we need
to perform merges only on trees that have been restricted in several dimensions
and are thus small. Merges on small HSM-trees are faster which is beneficial
for the overall runtime. In this strategy, we focus on avoiding merges, and thus
we insert the dimensions that contain clustered data or contain only categorical
values last, i.e. in the opposite order as in the first strategy.

To detect scatter, we use entropy as a measure for both strategies. Entropy is an
information theoretic indicator for the homogeneity of the data and can be used
to assess the distribution of objects in each dimension. Given the discretized data
space for each dimension and thus also the percentage fi of objects in each interval
i = 1 . . .k entropy is calculated by E(f1, . . . , fk) = −

∑k
i=1 fi · log(fi). Inserting

dimensions with low entropy values first (ascending order) realizes the first sorting
strategy for small trees, while inserting dimensions with high entropy values (de-
scending order) realizes the second strategy for fast subspace mining. Both ascend-
ing and descending order will be analyzed in experiments in the following section.

An overview over mining on HSM-trees is given in Algorithm 1. For any
database, the algorithm uses only two database scans to build the HSM-tree.
One scan for the computation of the dimension order with respect to the chosen
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strategy and a second scan to create the initial HSM-tree. To reduce the number
of merge operations in later mining steps, we clearly differentiate between con-
tinuous and categorical attributes. In the mining phase, we proceed recursively
on the dimensionality for any region that might contain subspace clusters. For
any subspace region, we determine its unbiased density value according to the
consistent definition for heterogeneous data given in Def. 6, and merge neighbor-
ing regions only where necessary (i.e. in the continuous attributes). The result
of our algorithm is the set of all non-redundant heterogeneous subspace clusters,
detected efficiently using the HSM-tree.

Algorithm 1. Heterogeneous Subspace Mining on HSM-trees
Algorithm HSM ( Database DB, Strategy st, set of dimensions D )

1: compute order d1, . . . , dk, using strategy criterion st(di) � first scan of DB
2: for each object in DB do � second scan of DB
3: for i=1 to k do
4: if di continuous then
5: insert grid cell and object count into initial HSM-tree
6: else if di categorical
7: insert item and frequency into initial HSM-tree

� end of building phase
8: start recursive mining with initial HSM-tree T{}

in each recursive step with given HSM-tree THD do:
9: for each descriptor (d, i) ∈ HD in the HSM-tree THD do

10: restrict to THD∪(d,i)

11: compute density in merged grid cells of THD∪(d,i)

12: compute frequency for categorical items in THD∪(d,i)

13: in each subspace, use heterogeneous normalization as in Def. 6
14: recursive step for THD∪(d,i) until no further restriction possible

� end of mining phase
15: output all detected heterogeneous subspace clusters

6 Experiments

We first show scalability of our heterogeneous subspace mining approach. As
no other subspace mining algorithms exist on heterogeneous high dimensional
data, we compare with two recent subspace clustering algorithms on continuous
valued attributes. In a more detailed analysis we evaluate the impact of the het-
erogeneity of the data on the runtime of HSM. We show that our heterogeneous
approach achieves efficiency improvement on categorical data by orders of mag-
nitude. Due to the adaptive index structure we achieve improvements for the
categorical parts of the data. On continuous attributes we can further improve
efficiency by strategies for tree construction. For a thorough analysis, we evaluate
runtime and memory performance of HSM with both ascending and descending
sorting strategies.
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Synthetic data setup

We generate synthetic data for scalability experiments following a method pro-
posed in [6,7] to generate density-based clusters in arbitrary subspaces. Given
the subspace and the number of objects for each cluster, the generator creates
dense regions separated by noisy regions. In addition, our generator takes into
account that objects can belong to multiple subspace clusters, just as in most
real world data sets. We generate data of different dimensionalities and hide sub-
space clusters with a maximal dimensionality of 80% of the data dimensionality.
Subspace clusters are hidden in the synthetic data with partial overlapping of
objects.

Scalability w.r.t dimensionality

In our first experiment, we evaluate scalability with respect to the dimension-
ality of the subspace. As subspace clustering aims to detect patterns in high-
dimensional data scalability is crucial. Figure 7(a) illustrates all three algorithms,
HSM, SUBCLU and SCHISM, on datasets of dimensionalities 5 to 25. As we
can see, SUBCLU, an apriori-based algorithm, deteriorates extremely at more
than about 15 dimensions. SCHISM, a grid-based subspace clustering algorithm,
performs much better than SUBCLU. Our HSM approach, however, clearly out-
performs both competitors. HSM thus shows far better runtime performance
than SCHISM, even though SCHISM is an approximative approach that does
not mine the full result set.

Figure 7(b) illustrates the effect of varying subspace cluster dimensionalities.
In a database of fixed dimensionality 15, subspace cluster dimensionality is varied
from 2 to 15. As we can see, dimensionality of the subspace clusters is the de-
cisive factor in runtime performance of SUBCLU. It shows reasonable runtimes
up to about 10-dimensional subspace clusters. The breadth-first SUBCLU algo-
rithm generates all lower dimensional projections, thus does not scale beyond this
point. HSM is only slightly affected by the dimensionality of subspace clusters as
it avoids unnecessary generation of lower dimensional projections by its compact
tree structure.
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Scalability w.r.t heterogeneity

We increase the percentage of categorical data to evaluate how the runtime of
our HSM approach is affected by more and more categorical attributes. Due
to the simpler frequency measurement in categorical data the algorithm should
perform even better. In Figurer 8 we observe an efficiency improvement by orders
of magnitude as we increase the percentage of categorical attributes. Obviously
the HSM algorithm is able to adapt to the heterogeneous data. Being aware of
the fact that for categorical data frequency is meaningful but also very efficient
HSM achieves a significant runtime improvement for heterogeneous data.

Sorting strategies

We next evaluate the effect of different strategies for constructing the tree struc-
ture. As mentioned, the index construction mainly depends on the order of
the dimensions. Two strategies have been proposed in the last section: creat-
ing compact trees using an ascending order of the dimensions w.r.t. their en-
tropy or avoiding early merges by sorting the dimensions in descending order
w.r.t. their entropy. We first evaluate the effect of the different sorting strate-
gies on the runtime (see Figure 9(a)). Clearly, avoiding early merges improves
the overall runtime of HSM. Sorting in descending order almost halves the run-
time.
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On the other hand, by sorting in ascending order the size of the initial tree is
reduced as presented in Figure 9(b). This shows that even with a smaller initial
tree the mining algorithm cannot reach the good runtimes of the descending
order heuristic. For efficient mining it is thus essential to have as few merges
as possible in the first restrictions. This is achieved by the descending order
heuristic.

7 Conclusion

In this work, we have discussed data mining in heterogeneous data. We have
presented a model that bridges the gap between continuous and categorical data
types by providing a consistent view on interesting groups ob data objects. Our
approach takes the expected density and the expected frequency of the subspace
projections into account to uncover truly interesting patterns. Our algorithmic
approach makes best use of indexing possibilities by identifying suitable ordering
of the dimensions to achieve low runtimes. Our experiments demonstrate that
our technique for heterogeneous data mining outperforms existing techniques.
By adapting to the different characteristics of attribute types we further achieve
a significant efficiency improvement for heterogeneous data.
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Abstract. Clustering and classification hierarchies are organizational
structures of a set of objects. Multiple hierarchies may be derived over
the same set of objects, which makes distance computation between hi-
erarchies an important task. In this paper, we model the classification
and clustering hierarchies as rooted, leaf-labeled, unordered trees. We
propose a novel distance metric Split-Order distance to evaluate the or-
ganizational structure difference between two hierarchies over the same
set of leaf objects. Split-Order distance reflects the order in which sub-
sets of the tree leaves are differentiated from each other and can be used
to explain the relationships between the leaf objects. We also propose an
efficient algorithm for computing Split-Order distance between two trees
in O(n2d4) time, where n is the number of leaves, and d is the maximum
number of children of any node. Our experiments on both real and syn-
thetic data demonstrate the efficiency and effectiveness of our algorithm.

Keywords: Clustering Hierarchy, Classification Hierarchy, Tree Dis-
tance.

1 Introduction

Clustering and classification hierarchies are important tools for capturing the
relationships among objects. Two representative examples are dendrograms il-
lustrating the hierarchical clustering result (Fig. 1(a)) and taxonomies classify-
ing the biological species (Fig. 1(b)). A hierarchy organizes the set of objects
in a tree, where objects with higher similarity are grouped together at a lower
level, before more distant objects merge into bigger groups. The groups at the
intermediate levels represent subclusters or subclasses.

Clustering and classification hierarchies can be automatically constructed
given the pair-wise distance matrix over the set of objects. However, different
models and methods may yield different hierarchical structures. Quantifying the
differences between hierarchies becomes crucial for tasks such as summarization
of hierarchical patterns, computation of consensus hierarchies, and comparison
of hierarchically structured data. A motivating example is the comparison of
phylogenetic taxomonies, or phylogeny trees. A phylogeny tree (Fig. 1(b)) de-
scribes the evolutionary relationship between different organisms. The leaves of
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Fig. 1. Example clustering and classification hierarchies

the tree represent the species, and the internal nodes correspond to the special-
ization events, where the evolution diverges in different directions to generate
subspecies. The root of the tree is the most recent common ancestor for all the
species. Different hierarchies can be derived for a given set of species using differ-
ent phylogeny tree construction algorithms, such as UPGMA [16], neighbor-join
[14], maximum parsimony [6], etc. Comparing the similarity of different phy-
logeny trees is important for evaluating different algorithms and deriving the
consensus phylogeny tree.

Many algorithms have been proposed for comparing general tree topologies.
Tree edit distance is a classic metric to compare two trees with both internal
nodes and leaf nodes labeled. Different from a general tree structure, clustering
and classification hierarchies are leaf-labeled trees; leaves represent the objects.
The tree edit distance computation for unordered trees is NP-complete [21].
Polynomial-time algorithms [21,3,10,11,18] only exist for ordered trees. As for
classification or clustering hierarchies, there is no specific order among siblings.
If we were to consider classification or clustering hierarchies as ordered, fully-
labeled trees, metrics such as the tree edit distance may produce counter-intuitive
results. Consider four trees presented in Fig. 2. T1, T2, T3, and T4 are different
hierarchies over a common object set {a, b, c, d}. To apply the ordered tree edit
distance, we also impose labels for the internal nodes. As classification hierar-
chies, T2 and T4 are the same as T1. The objects are classified in the same way
in each tree; specifically, the order in which the objects are differentiated from
each other is the same. However, the tree edit distance between T1 and T2 is 2
since leaves a and b are transposed. The tree edit distance between T1 and T4
is also 2 since two internal nodes are transposed. In addition, T3 has a tree edit
distance of 2 from T1, which implies that T1, T2, and T3 are equidistant from
T1. However, the way in which a and d are classified in T3 is very different from
how they are classified in T1, even though a and d are classified in the same way
in both T1 and T2.

In this paper, we propose a novel distance metric, Split-Order distance, for
comparing clustering or classification hierarchies. Different from a general tree
structure, a clustering or classification hierarchy can be modeled as rooted, un-
ordered, leaf-labeled trees. Essential to these hierarchical structures is the set
of relationships among the leaf objects captured by the hierarchy: an object is
more closely related to another object which it merges with at a lower level than
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Fig. 2. An example with four trees. T1, T2, T3, and T4 are four hierarchies with the
same set of objects(leaf labels) {a, b, c, d}. To apply the tree edit distance, we also
impose labels for internal nodes. Trees are considered as ordered.

another object which it merges with at a higher level. We refer to a split between
two objects as the smallest subcluster or subclass in the hierarchy where both
objects belong to. A split corresponds to an internal node in the tree which is
the most recent common ancestor of the two leaf nodes representing the two
objects. All the splits form a partial order which uniquely determines the rela-
tionship among all the objects captured by the hierarchy. For example, in Fig.
1(a), the split between b and c happens at a lower level than the split between
c and f does; in Fig. 1(b), the split between polar bear and red bear occurs at
a higher level than the split between polar bear and brown bear. We define the
Split-Order distance between two hierarchical structures based on the order of
the splits occuring in the tree. Our contributions can be summarized as follows:

1. We define a novel distance metric, Split-Order distance, between two clus-
tering or classification hierarchies. We prove that Split-Order distance is a
metric.

2. We prove that a complete set of split orders uniquely defines a hierarchi-
cal structure. In addition, we propose an algorithm for reconstructing the
hierarchy using a set of split orders.

3. We propose an efficient algorithm for computing the Split-Order distance
between any two hierarchies over the same set of objects. Our algorithm
takes O(n2d4) time, where n is the number of leaves, d is the maximum
degree of any node.

The rest of the paper is organized as follows. We review the related work in
Section 2 and introduce the preliminaries in Section 3. In Section 4, we discuss the
formal definition of Split-Order distance. We present our algorithm for efficient
computation of the Split-Order distance in Section 5. The experimental results
are reported in Section 6, and Section 7 concludes the paper.

2 Related Work

Many algorithms have been proposed for comparing tree-like or hierarchically
structured data. One of the tree distance metrics which has been extensively
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studied is the tree edit distance. The tree edit distance evaluates the cost of
transforming a tree into another tree through a sequence of operations, such
as deleting, inserting, and relabeling nodes. A cost is defined for each opera-
tion, and the minimum of the total cost of all operations in a sequence is the
tree edit distance. Among the different tree edit distance computation algo-
rithms [4,17,3,10,11,18,21], two representative ones are Zhang-Shasha [21] and
Klein [10]. Both algorithms use dynamic programming techniques with worst-
case complexities O(n4) and O(n3logn), respectively. Besides tree edit distance,
another category of tree distance metrics compare the trees based on the struc-
tures they share such as maximum agreement subtrees [2], cousin-pairs [15],
etc. However, as mentioned in the previous section, these general tree distance
metrics may not be readily used for comparing clustering or classification hier-
archies which are usually modeled as rooted, unordered, leaf-labeled trees, and
are able to capture the relationship among leaf objects. For phylogeny trees, sev-
eral distance metrics have been proposed incorporating biologically meaningful
definitions [19,13,12,1,5]. But they may not work well on general clustering and
classification hierarchies.

3 Preliminaries

We model the clustering and classification hierarchies as rooted, unordered, leaf-
labeled trees, as shown in Fig. 3.
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15 16 17 18 19 20
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9 14

Fig. 3. A rooted, unordered, leaf-labeled tree representing a clustering or classification
hierarchy over a set of objects Σ = {a, b, c, d, e, f, g, h, i, j, k, l}

The leaf nodes represent the objects. Each internal node represents the split
of a cluster or class into several subclusters or subclasses. The root represents
the entire set of objects. We consider unordered trees, since the sibling order
does not exist in classification or clustering hierarchies. We also assume that
each internal node has at least two children; each child represents a different
subclass or subcluster resulting from the split.

Let the set of leaf labels be Σ = {σ1, . . . , σn}. We refer to a leaf node using
its label in the following discussion. All nodes in the tree are uniquely numbered
for easy reference (see Fig. 3). For a leaf node σi ∈ Σ, the internal nodes on
the path from σi to the root are ancestors of σi. The ancestors represent the
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subclusters or subclasses containing σi. For any two leaf nodes σi, σj , we define
the Split between σi, σj as follows:

Definition 1. The Split between σi, σj (denoted as Split(σi, σj)). Given a
rooted, unordered tree T with a set of leaf labels Σ, for any two leaf nodes
σi, σj ∈ Σ, the Split between σi, σj is defined as the most recent common ances-
tor of σi and σj in T .

Split(σi, σj) represents the smallest cluster or class which includes both σi and
σj , i.e., the split during the top-down hierarchical clustering or classification
process which divides σi, σj into different subclusters or classes. For example,
in Fig. 3, nodes 1, 2, 4, and 9 are ancestors of leaf node a, nodes 1, 2, and 4 are
ancestors of leaf node c. Therefore, Split(a, c) is node 4.

In the following section, we define the Split-Order distance for any two hier-
archies T1, T2 over the same set of leaf objects Σ.

4 Split-Order Distance

Given a rooted, unordered tree T with a set of leaf labels Σ, for any leaf node σi,
the order of the splits which separate σi and the remaining leaf nodes determines
the relationship between σi and other leaves. By “order”, we mean that the
split happens “earlier” (closer to the root) or “later” (closer to the leaf σi).
Formally, for any leaf node σi, we define the order relationship of any two splits
Split(σi, σj),Split(σi, σk) as follows:

Definition 2. Split-Order Relations. Given a rooted, unordered tree with a set
of leaf labels Σ, for any leaf node σi ∈ Σ, and any two other leaf nodes σj,
σk ∈ Σ, we define

1. SplitOrder(σi, σj , σk) =‘≺’, if Split(σi, σj) is an ancestor of Split(σi, σk),
(Split(σi, σj) happens earlier than Split(σi, σk));

2. SplitOrder(σi, σj , σk) =‘)’, if Split(σi, σk) is an ancestor of Split(σi, σj),
(Split(σi, σj) happens later than Split(σi, σk));

3. SplitOrder(σi, σj , σk) =‘=’, if Split(σi, σj) = Split(σi, σk), (Split(σi, σj)
happens at the same time with Split(σi, σk)).

For example, in Fig. 3, we have SplitOrder(a, b, c)=‘)’, SplitOrder(a, g, d)=‘≺’,
and SplitOrder(a, f, h) =‘=’. The topology of T determines a map Σ × Σ ×
Σ �→ {≺,), =}. In the following discussion, we show that the complete set of
the Split-Order relations Θ = {SplitOrder(σi, σj , σk) = θi,j,k}, ∀σi, σj , σk ∈ Σ,
θi,j,k ∈ {≺,), =} can serve as a unique signature of T .

Theorem 1. Given a complete set of the Split-Order relations Θ = {SplitOrder
(σi, σj , σk) = θi,j,k}, ∀σi, σj , σk ∈ Σ, θi,j,k ∈ {≺,), =}, we can either reconstruct
a unique tree or declare that a tree corresponding to Θ does not exist.
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Proof. We prove the theorem by describing the following recursive algorithm to
reconstruct a unique tree or report the nonexistence of a tree.

In the beginning, we start with the set of leaf nodes Σ. All the nodes are
unprocessed initially. Each time we pick an unprocessed leave node from Σ for
processing until all nodes in Σ are processed. Let σi be the node we pick. We
find the set of leaf nodes {σj} which have the latest split with σi:

{σj|∀σk ∈ Σ, σk �= σi, σk �= σj , SplitOrder(σi, σj , σk) =′≺′} (1)

It is intuitive to prove that σi and all nodes in {σj} must be siblings. Next, we
examine whether there are any conflicting Split-Order relations in Θ. For any
two leaf nodes σj1 , σj2 ∈ {σj}, we check whether the following two equations
hold:

SplitOrder(σi, σj1 , σk) = SplitOrder(σi, σj2 , σk)
∀σk ∈ Σ

(2)

SplitOrder(σj1 , σk, σl) = SplitOrder(σj2 , σk, σl) = SplitOrder(σi, σk, σl)
∀σk, σl ∈ Σ

(3)

If any of the above equations does not hold, which implies conflicting Split-
Order relations in Σ, a tree conforming to Σ does not exist. Due to limited
space, we omit the proof here. If both equations hold, we create a parent node
σnew for σi and all leaf nodes in {σj}. We add σnew to Σ(1), and mark {σj} and
σi as processed.

If Σ still contains unprocessed nodes, we pick another leaf node, and start
the process again. After all nodes in Σ have been processed, we start the next
iteration with Σ(1). All nodes in Σ(1) will be treated as leaf nodes, and their
Split-Order relations are determined by the nodes they represent, as follows:

SplitOrder(σ(1)
u′ , σ

(1)
v′ , σ

(1)
w′ ) = SplitOrder(σu, σv, σw) (4)

where σu is any child of σ
(1)
u′ , σv is any child of σ

(1)
v′ , and σw is any child of σ

(1)
w′ .

We recurse until at iteration p, Σ(p) contains only the root node. If at any
point, either Equation 2 or 3 does not hold, the process aborts and reports the
nonexistence of a tree. The complete algorithm is shown in Algorithm 1.

Definition 3. Split-Order distance. For two rooted, unordered trees T , T ′ with
the same set of leaf labels Σ, and their corresponding Split-Order relationship
sets Θ, Θ′, the Split-Order distance between T and T ′ is defined as

SODist(T, T ′) =
|{SplitOrder(σi, σj , σk) s.t. SplitOrder(σi, σj , σk) �= SplitOrder(σ′

i, σ
′
j , σ

′
k)}|

(5)
where (SplitOrder(σi, σj , σk) = θi,j,k) ∈ Θ, and (SplitOrder(σ′

i, σ
′
j , σ

′
k) = θ′i,j,k)

∈ Θ′.
The relative Split-Order distance is defined as:

SODistRel(T, T ′) = SODist(T, T ′)/n3 (6)
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Algorithm 1. ReconstructTree(Σ,Θ)
Input Σ: the leaf label set; Θ: the set of Split-Order relations over Σ, Θ =
{SplitOrder(σi, σj , σk) = θi,j,k}, ∀σi, σj , σk ∈ Σ, θi,j,k ∈ {≺,), =}
1: Σcurr ← Σ
2: while do
3: if |Σcurr| = 1 then
4: The only node in Σcurr is the root, return;
5: else
6: while Σcurr contains unprocessed nodes do
7: Pick an unprocessed node σi ∈ Σcurr.
8: Find the set of nodes {σj} which have the latest split with σi, according to

Equation 1.
9: Test conflict, according to Equations 2 and 3.

10: if there is a conflict then
11: Tree does not exist, return
12: else
13: Create a new node σnew as the parent of σi and all nodes in {σj}
14: Add σnew to Σnext

15: Mark σi and all nodes in {σj} as processed
16: end if
17: end while
18: Σcurr ← Σnext

19: end if
20: end while

where n = |Σ|. In other words, n3 = |Θ| = |Θ′|. Note that SODistRel(T,
T ′) ∈ [0, 1].

Theorem 2. The Split-Order distance is a metric.

Proof. Assume that we have three rooted, unordered trees T1, T2, T3 with the
same set of leaf labels Σ. The proof for symmetry, identity and non-negativity
properties are intuitive and omitted here. We will prove the triangle inequality:
SODist(T1, T2) ≤ SODist(T1, T3)+SODist(T2, T3). Denote the total number of
Split-Order relations for each tree as m. Then the number of common Split-Order
relations shared between T1 and T3 is m− SODist(T1, T3), and the number of
common Split-Order relations shared between T2 and T3 is m−SODist(T2, T3).
Therefore, the number of common Split-Order relations shared between T1, T2,
and T3 is at least

(m− SODist(T1, T3)) + (m− SODist(T2, T3))−m
= m− (SODist(T1, T3) + SODist(T2, T3))

Thus, the number of Split-Order relations which are different between T1 and
T2 is at most

m− (m− (SODist(T1, T3) + SODist(T2, T3)))
= SODist(T1, T3) + SODist(T2, T3)
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5 Split-Order Distance Computation

We propose an efficient algorithm for computing the Split-Order distance be-
tween any two trees T1, T2 over the same set of leaf objects Σ.

The naive algorithm computes the complete set of the Split-Order relations
for both trees and counts the number of different Split-Order relations in two
trees. Since there are O(n3) Split-Order relations for each tree, counting the
different Split-Order relations alone will take O(n3) time. In fact, computing
a single Split-Order relation has more than O(1) complexity. In the following
discussion, we propose an efficient algorithm for computing Split-Order distance
which takes only O(n2d4) time, where d is the maximum degree of any node.

Let Θ(T ) denote the complete set of the Split-Order relations of tree T . For
each internal node np, we compute a subset of Θ(T ), denoted as
SplitOrderSet(T, np):

SplitOrderSet(T, np) = {SplitOrder(σi1 , σi2 , σi3 ) = θi1,i2,i3 where
(Split(σi1 , σi2 ) = np) ∧ ((SplitOrder(σi1 , σi2 , σi3 ) = θi1,i2,i3) ∈ Θ(T ))} (7)

It is easy to prove that Θ(T ) can be divided into disjoint sets of
SplitOrderSet(T, np):

∪npSplitOrderSet(T, np) = Θ(T ) (8)

SplitOrderSet(T, np1) ∩ SplitOrderSet(T, np2) = φ (9)

The basic idea of our Split-Order distance computation algorithm is to count, for
any internal node np in T and any internal node np′ in T ′, the number of com-
mon Split-Order relations associated with them, i.e., |SplitOrderSet(T, np) ∩
SplitOrderSet(T ′, np′)|. In the following discussion, we only consider the Split-
Order relations of type ‘)’ and ‘=’, since we have

SplitOrder(σi1 , σi2 , σi3) =′≺′⇔
SplitOrder(σi1 , σi3 , σi2) =′)′ (10)

The total number of common Split-Order relations is twice the number of total
common ‘)’-type Split-Order relations plus the number of total common ‘=’-
type Split-Order relations. Furthermore, we only consider Split-Order relations
where σi1 , σi2 , and σi3 are three different leaf labels. If any two of them are the
same we already know that the relation is common between Θ(T ) and Θ(T ′).

We first explain how to compute the Split-Order relations of type ‘)’ and ‘=’
in SplitOrderSet(T, np) given a tree T and an internal node np. Denote the set
of leaf nodes which are inside the subtree rooted at np as Leaves(np), and the
kth child of np as Child(np, k) (see Fig. 4). It is easy to prove that Leaves(np) =
∪kLeaves(Child(np, k)), and Leaves(Child(np, k)) ∩ Leaves(Child(np, k

′)) =
φ. Here we assume that all child nodes are in an ordered list for the con-
venience of discussion. The child nodes can be of any order. For example in
Fig. 3, consider n4, Leaves(n4) = {a, b, c}. n9 and n10 are the children of n4,
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and Leaves(n9) = {a, b}, Leaves(n10) = {c}. Now we determine the neces-
sary conditions for SplitOrder(σi1 , σi2 , σi3 ) to be of ‘)’ or ‘=’ type. If σi1 ∈
Leaves(Child(np, k1)), and σi2 ∈ Leaves(Child(np, k2)), we know that k1 �= k2.
Otherwise, Split(σi1 , σi2 ) is Child(np, k1) or a descendent of Child(np, k1), but
not np. Therefore, σi1 ,σi2 are from different child nodes of np. For the re-
quirement of σi3 , we have σi3 ∈ Σ\Leaves(Child(np, k1)). Otherwise, if σi3 ∈
Leaves(Child(np, k1)), we have Split(σi1 , σi2 , σi3) =‘≺’. Furthermore, depend-
ing on the type of the Split-Order relationship (‘)’ or ‘=’), σi3 should belong
to either Σ\Leaves(np) or Leaves(np)\Leaves(Child(np, k1)). In summary, σi1 ,
σi2 , σi3 in a ‘)’-type Split-Order relation in SplitOrderSet(T, np) should satisfy
(see Fig. 4): ⎧⎨⎩σi1 ∈ Leaves(Child(np, k1))

σi2 ∈ Leaves(Child(np, k2)) ∧ k1 �= k2
σi3 ∈ Σ\Leaves(np)

where 1 ≤ k1, k2 ≤ K, and K is the number of children of node np. σi1 , σi2 , σi3

in an ‘=’-type SplitOrder relation in SplitOrderSet(T, np) should satisfy (see
Fig. 4): ⎧⎨⎩

σi1 ∈ Leaves(Child(np, k1))
σi2 ∈ Leaves(Child(np, k2)) ∧ k1 �= k2
σi3 ∈ Leaves(Child(np, k3)) ∧ k1 �= k3 ∧ σi2 �= σi3

where 1 ≤ k1, k2 ≤ K, and K is the number of children of np. As an example, for
node n7 in Fig. 3, we have SplitOrder(f, h, i) =‘=’ and SplitOrder(f, h, a) =‘)’.

Now we explain how to compute the size of SplitOrderSet(T, np) ∩
SplitOrderSet (T ′, np′) for a pair of internal nodes np, np′ in tree T and T ′,
respectively. As discussed earlier, we consider the ‘)’ and ‘=’ Split-Order rela-
tions. The number of common ‘)’ Split-Order relations Shared�(np, np′) can
be computed as follows:

Shared�(np, np′) = Σ1≤k1 �=k2≤K,1≤k′
1 �=k′

2≤K′

(|Leaves(Child(np, k1)) ∩ Leaves(Child(np′, k′
1))|

×|Leaves(Child(np, k2)) ∩ Leaves(Child(np′, k′
2))|

×|(Σ\Leaves(np)) ∩ (Σ\Leaves(np′))|)

(11)

In both trees, a ‘)’-type Split-Order relation satisfies the following conditions:
σi1 , σi2 are descendants of two different children of np and also of two different
children of np′ . In addition, σi3 is not in either Leaves(np) or Leaves(np′) (see
Fig. 4). Assume that computing the size of a set intersection takes constant time
(we will explain later how to compute it in constant time). Let the maximum
number of children for a node be d. The computation of Shared�(np, np′) takes
O(d4) time.
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Fig. 4. Illustration of Split-Order distance computation

The number of common ‘=’-type Split-Order relations Shared=(np, np′) can
be computed as follows:

Shared=(np, np′) = Σ1≤k1≤K,1≤k′
1≤K′

(|Leaves(Child(np, k1)) ∩ Leaves(Child(np′, k′
1))|

×(Σ1≤k2≤K,1≤k′
2≤K′,k2 �=k1,k′

2 �=k′
1

|Leaves(Child(np, k1)) ∩ Leaves(Child(np′, k′
2))|)

×((Σ1≤k2≤K,1≤k′
2≤K′,k2 �=k1,k′

2 �=k′
1

|Leaves(Child(np, k1)) ∩ Leaves(Child(np′, k′
2))|)− 1))

(12)

Similarly, in either tree, an ‘=’-type Split-Order relation satisfies the following
conditions: σi1 , σi2 , σi3 are all descendants of np and children of n′

p; also, σi2 and
σi3 must be descended from children which are not ancestors of σi1 ; finally, σi2 are
σi3 are different leaf labels (see Fig. 4). Again, if a set intersection computation
takes constant time, the computation of Shared=(np, np′) takes O(d4) time.

Therefore, let the total number of common ‘)’-type Split-Order relations
shared between two trees be Shared�(T, T ′), and the total number of common
‘=’-type Split-Order relations shared between two trees be Shared=(T, T ′). Then
we have:

Shared�(T, T ′) = Σ∀np∈T,np′∈T ′Shared�(np, np′) (13)

Shared=(T, T ′) = Σ∀np∈T,np′∈T ′Shared=(np, np′) (14)

Thus, the total number of common Split-Order relations shared between
SplitOrderSet(T, np) and SplitOrderSet(T ′, np′) is:

Shared(T, T ′) = Shared=(T, T ′) + 2× Shared�(T, T ′) (15)

Therefore, the Split-Order distance between T and T ′ is:

SODist(T, T ′) = n3 − (n + 3n(n− 1))− Shared(T, T ′) (16)
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Here n3 is the total number of Split-Order relations for a leaf label set of size n,
and n+3n(n− 1) is the number of Split-Order relations of which at least two of
σi1 ,σi2 ,σi3 have the same label. As mentioned before, these Split-Order relations
must be common for both trees.

Now we explain how we can compute the size of the set intersection in constant
time. The basic idea is that we compute in advance |Leaves(np) ∩ Leaves(np′)|
for all possible pairs of np and np′ , which are the internal nodes of T and T ′,
respectively. This can be done in O(n2) time as follows:

1. Initially, we compute |Leaves(np) ∩ Leaves(np′)| where np and np′ are leaf
nodes in T and T ′, respectively. Each |Leaves(np) ∩ Leaves(np′)| can be
done in constant time.

2. We compute |Leaves(np)∩Leaves(np′)| if either of the following cases holds:
(a) |Leaves(Child(np, k))∩Leaves(np′)| has been computed for all children

of np

(b) |Leaves(np)∩Leaves(Child(np′, k′))| has been computed for all children
of np′

This can be done in O(d) time where d is the maximum degree of any node.
For case (a):

|Leaves(Child(np, k)) ∩ Leaves(np′)| =
Σk|Leaves(Child(np, k)) ∩ Leaves(np′)| (17)

For case (b):

|Leaves(Child(np, k)) ∩ Leaves(np′)| =
Σk′ |Leaves(np) ∩ Leaves(Child(np′ , k′))| (18)

3. Repeat 2) until |Leaves(np)∩Leaves(np′)| is computed for any pair of nodes
np ∈ T , and np′ ∈ T ′

Therefore, computing Leaves(np) ∩ Leaves(np′) for all possible pairs of np and
np′ takes O(dn2) time. Note that in the computation of Shared�(np, np′), we also
need to compute |(Σ\Leaves(np)) ∩ (Σ\Leaves(np′))|, which can be computed
in constant time as follows:

|(Σ\Leaves(np)) ∩ (Σ\Leaves(np′))| =
n− |Leaves(np)| − |Leaves(np′)|+
|Leaves(np) ∩ Leaves(np′)|

(19)

We can easily compute |Leaves(np)| and |Leaves(np′)| in advance for all np ∈ T
and np′ ∈ T ′ using a post-order traversal for both trees, which takes O(nd) for
each tree.

The complete algorithm for computing Split-Order distance is in Algorithm 2.

Theorem 3. Algorithm 2 runs in O(n2d4) time.

Proof. To compute SODist(T, T ′), we consider every pair of nodes (np, np′).
The number of internal nodes for both trees are O(n), therefore, we have O(n2)
node pairs. Since computing Shared(np, np′) takes O(d4) time, the total time
complexity of Algorithm 2 is O(n2d4).
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Algorithm 2. SODist(T ,T ′,Σ)
Input Σ: the leaf label set; T, T ′: two trees
1: Compute all possible set intersections: |Leaves(np)∩Leaves(np′)|, for any internal

node np ∈ T and any internal node np′ ∈ T ′

2: Compute all |Leaves(np)|, |Leaves(np′)|, for any internal node np ∈ T and any
internal node np′ ∈ T ′

3: for any internal node np ∈ T and any internal node np′ ∈ T ′ do
4: Compute Shared�(np, np′) and Shared=(np, np′) according to Equation 10 and

11
5: end for
6: Compute SODist(T, T ′) according to Equation 12,13,14 and 15.

6 Experimental Results

We test the performance of our algorithm on both real and synthetic data sets.

– Iyer’s Data[7]: Iyer’s Data contains gene expression levels of 517 human
genes in response to serum stimulation over 12 time points. The 517 genes
can be clustered into hierarchical structures based on their co-expressions
[7,8].

– Synthetic Data: 1) SYN-Random: The synthetic dataset contains a
set of randomly generated, rooted, leaf labeled, unordered trees. The sim-
ulation is controlled by two parameters: the number of leaves n, and the
maximum degree d of any internal node. 2) SYN-2D: The 2-D synthetic
dataset contains 1000 sampled pixels from 4 shapes in an image, including
1% of background noises. Clustering hierarchy for SYN-2D is obtained by ap-
plying CLUTO software1. The 4 clusters (representing the four big branches
in the hierarchy) are illustrated using different colors in Fig. 6(a).

We compared the performance of our algorithm against the tree edit distance.
We used a Java implementation of Zhang-Shasha’s tree edit distance algorithm
[21] available online2. Zhang-Shasha’s algorithm applies to ordered, labeled trees.
Our Split-Order algorithm is implemented in both C++ and Java, and the exper-
iments are performed on an Intel Core 2 Duo 1.6GHz machine with 3GB memory.
The Java version of the Split-Order algorithm is mainly used for the comparison
of running time performance with the Java implementation of Zhang-Shasha’s
tree edit distance algorithm.

6.1 Distance Evaluation

Distance Comparison on Iyer’s Data. Iyer’s Data contains gene expression
levels of 517 human genes over 12 time points. We refer to the complete Iyer’s
Data as Iyer12. Six additional data sets are generated from Iyer12 by randomly
1 http://glaros.dtc.umn.edu/gkhome/views/cluto
2 http://www.ics.mq.edu.au/ swan/howtos/treedistance/package.html
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Fig. 5. Comparison of Split-Order distance and tree edit distance (Zhang-Shasha) on
Iyer’s data

choosing 11, 10, 9, 8, 7, 6 dimensions respectively. These data sets are referred
to as Iyer11, Iyer10, Iyer9, Iyer8, Iyer7, and Iyer6. We applied the same hier-
archical clustering algorithm on these 7 data sets with Euclidean distance and
single linkage, and obtained 7 trees: T12, T11, T10, T9, T8, T7, and T6. As more
dimensions are removed, the gene correlation captured by the resulting tree dif-
fers more from the original tree T12. We therefore expect that the distances of
T11, T10, T9, T8, T7, and T6 to T12 are in an increasing order.

Fig.5 compares the distance scores computed using Split-Order distance and
tree edit distance on the Iyer’s Data. The Split-Order scores are normalized with
the Split-Order distance of a random tree to T12 which is 0.664. Similarly, the tree
edit distance scores are normalized with the tree edit distance between a random
tree and T12 which is 1433. The Split-Order distance curve demonstrates a clear
increasing trend for distances of T11, T10, T9, T8, T7, and T6 to the original tree
T12, which is consistent with our expectation. Compared to tree edit distance,
Split-Order distance generates a much smaller distance for similar trees. The
Split-Order distance between T11 and T12 is 10% of the distance between a
random tree and T12. The tree edit distance between T11 and T12 is however
80% of the distance between a random tree and T12.

We also generated a random matrix of the same size (517 by 12) and performed
the same experiment on this data. The corresponding curves are plotted in Fig.5.
The two curves on random data are flat. The different behaviors of the random
data curves and the Iyer’s data curves can be explained by the gene correlation
existing in the Iyer’s data and the captured tree similarity due to the data
correlation.

Distance Evaluation on Synthetic Data. We performed the distance evalu-
ation on clustering hierarchies generated using SYN-2D. SYN-2D contains 1000
pixels uniformly sampled from 4 different shapes in an image, including 1% of
background noise. We generated 5 additional data sets by randomly choosing
10%, 20%, 30%, 40%, and 50% of pixels in SYN-2D and applied a random per-
turbation on each pixel. Clustering hierarchies are generated on all 6 data sets
using the hierarchical clustering function equipped with CLUTO [9]. We refer to
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(a) T0 (b) SODist(T0, T10) = 0.087 (c) SODist(T0, T20) = 0.128

(d) SODist(T0, T30) = 0.176 (e) SODist(T0, T40) = 0.217 (f) SODist(T0, T50) = 0.458

Fig. 6. Illustration of 4 big clusters in the clustering hierarchies computed for SYN-2D
and its perturbed data sets. The 4 clusters are represented using squares(in purple),
crosses(in green), stars(in blue) and pluses(in red). T0 is the clustering hierarchy com-
puted on SYN-2D, T10, T20, T30, T40, T50 are the clustering hierarchies computed on
SYN-2D with 10%, 20%, 30%, 40%, 50% of points applied perturbation.

the corresponding trees as T0, T10, T20, T30, T40, and T50. The four big clusters
(the four big branches) in each tree are plotted in Fig.6(a)-Fig.6(f).

The Split-Order distances of each of T0 to T10, T20, T30, T40, and T50 are
0.087, 0.128, 0.176, 0.216, and 0.458, respectively. The visual differences among
Fig.6(a)-Fig.6(f) reflect the clustering hierarchy differences among the corre-
sponding trees. The increasing order of the Split-Order differences are accordant
with the increasing visual differences shown in Fig.6(b) to Fig.6(f). Particularly,
from T50 to T40, the Split-Order distance increases dramatically by more than
100%. Comparing Fig. 6(e) and Fig. 6(f), we also observe a big change: the blue
cluster (stars) in 6(e) becomes part of the red cluster (pluses) in 6(f); part of
the red cluster (pluses) in 6(e) becomes blue cluster (stars) in 6(f). This implies
that the big branch representing the blue cluster in T40 switches positions with
a subbranch of the red cluster. This change impacts the relationship between
a large number of pixels, which results in a big difference in the corresponding
Split-Order distances.

6.2 Running Time Performance

We compare the running time performance of our algorithm (the Java version)
with tree edit distance (the Java implementation of Zhang-Shasha algorithm)
on the SYN-Random dataset.
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Fig. 7. Running time comparison of Split-Order distance (the Java implementation)
and tree edit distance (the Java implementation of Zhang-Shasha) with varying number
of leaf nodes n ((a)) and with varying max degree d ((b))

Running time vs. n: Fig. 7(a) compares the running time of Split-Order
and Zhang-Shasha on trees with varying number of leaves n. As n increases
from 200 to 1000, the running time for both algorithms increases. The Split-
Order distance is up to 10 times faster than the Zhang-Shasha algorithm and
demonstrates better scalability with increasing n. Each data point is the average
time taken for 10 distance computations for a given n. Although the running
time of Zhang-Shasha is acceptable for reasonably large trees (less than 150
seconds for trees with 1000 leaves), the speedup is still necessary considering
large number of tree edit distance computations required for applications such
as querying tree databases.

Running time vs. d: Fig. 7(b) compares the running time of Split-Order and
Zhang-Shasha on trees with varying maximum degree d. The tree edit distance
demonstrates a clear decline with increasing d, due to reduced total number of
nodes with increasing d and fixed number of leaves n. The Split-Order curve
remains almost flat with small variations. The time complexity of our algorithm
depends on the number of internal nodes (which is O(n)) and the maximum
degree of any node d. The running time increases with larger d. However, with
fixed n and increasing d, the number of internal nodes decreases, which cancels
out the increase introduced by larger d. The data is averaged over 10 runs of the
algorithms.

6.3 SODist Distribution

We examine the distribution of SODist between any two trees using SYN-
Random. 100 pairs of random trees are chosen and the relative Split-Order
distances (SODistRel) are computed for each pair. Fig. 8(a) and 8(b) illus-
trate the distribution of the average SODistRel with varying parameters. We
observe that the average SODistRel between any two random trees roughly falls
within the range [0.5, 0.6]. There are small variations when parameters change.
As shown in Fig. 8(a), SODistRel ranges between 0.53 and 0.61 as n varies from
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Fig. 9. The distribution of SODistRel and tree edit distance between random trees
in different settings. A total number of 500 Split-Order distance computations are
performed. X axis is SODistRel or tree edit distance, Y axis is the number of the
distance computations contained in each bin.

20 to 100 and d is fixed to be 3. The increase in the average SODistRel between
random trees is due to the increased topological variety of trees when n is larger.
In Fig. 8(b), the average SODistRel between random trees is computed as d
varies from 2 to 6, and n is fixed to be 30. We can observe a slow drop in the
average SODistRel between random trees when d increases. This is due to the
decrease in the number of internal nodes with increasing d and fixed n. As tree
becomes flatter, the amount of topological variety of trees also decreases.

Fig. 9(a)–9(d) plots the histogram of 500 SODistRels between 500 pairs of
random trees with different parameters settings: n = 20 and d = 2 (Fig. 9(a)),
n = 20 and d = 6 (Fig. 9(b)), n = 100 and d = 2 (Fig. 9(c)), n = 100 and
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d = 6 (Fig. 9(d)). We observe that all distributions have the bell shape. For
larger d (d = 6 compared to d = 2), more diversity exists in the tree space and
the histogram is more symmetric. For larger n (n = 100 compared to n = 20),
SODistRel becomes larger, and the mean of the distribution moves further to
the right. These histograms depict the variation of the tree space when param-
eters change evaluated by the Split-Order distance.

For comparison, we plot the four corresponding histograms of tree edit dis-
tances computed over the same 500 pairs of random trees in Figs. 9(e), 9(f),9(g)
and 9(h). The edit distance scores are normalized by 4n to get the relative scores.
4n is the upper bound of the tree edit distance between two trees with n leaves.
We observe that when d increases (from 2 to 6), the variance of the tree edit dis-
tance declines. This contradicts the fact that the topological diversity increases
as d increases, which suggests that the tree edit distance is not an ideal measure.

7 Conclusion and Future Work

In this paper, we proposed a novel metric, Split-Order distance, to evaluate
the distance between two clustering or classification hierarchies. This metric
compares the order of the splits in both trees. We proved that a complete set
of the split order relations uniquely determines the hierarchical structure. We
also proposed an algorithm for reconstructing the tree using the set of order
relations. Furthermore, we presented an efficient algorithm for computing the
Split-Order distance between two hierarchies which takes O(n2d4) time, where
n is the number of leaf nodes (objects), and d is the maximum number of children
of an internal node in a tree.

In the future, we would like to take weighted edges into consideration where
weights represent the distance from a node to its parent. This allows us to model
the situations where a single edge with different weights can result in different
relationships among objects, such as in a dendrogram with different edge lengths.
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Abstract. Many data mining applications analyze structured data that
span across many tables and accumulate in time. Incremental mining
methods have been devised to adapt patterns to new tuples. However,
they have been designed for data in one table only. We propose a method
for incremental clustering on multiple interrelated streams - a “multi-
table stream”: its components are streams that reference each other, ar-
rive at different speeds and have attributes of a priori unknown value
ranges. Our approach encompasses solutions for the maintenance of cach-
es and sliding windows over the individual streams, the propagation of
foreign keys across streams, the transformation of all streams into a
single-table stream, and an incremental clustering algorithm that op-
erates over that stream. We evaluate our method on two real datasets
and show that it approximates well the performance of an ideal method
that possesses unlimited resources and knows the future.

1 Introduction

Many knowledge discovery applications refer to data that span more than one
tables. For example, a customer of an online store is described by her web ses-
sions, the products she has purchased, the reclamations she has performed etc.
If we want to build profiles by clustering similar customers, we must consider
their purchases, reclamations and navigation habits, next to their personal data.
Most mining techniques cannot deal with this problem, because they operate on
single-table data. Methods that learn on multiple tables[1,2,3,4,5,6,7,8,9] deal
with static data. Many applications require the analysis of stream data, though,
such as the example above: there is a fast stream of transactions and a stream of
reclamations, a slower stream of customers (new and recurring ones), a stream
of products (that come in and out of the company’s portfolio). We propose a
method for clustering such a ”multi-table stream” i.e. a set of tables that refer-
ence each other and accumulate or flow as streams of different speeds.

For conventional stream mining over a single data table 1, the stream can
be perceived as a sequence of data points x1, . . . , xi, . . .; a window of length L
slides over them, and the the mining algorithm builds a model ζ on the tuples

1 This outline is based on the ”stream paradigm” described in [10].
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within the window. When new tuples arrive, the oldest ones are forgotten and ζ
is adapted to the updated content of the sliding window.

Multi-table stream mining cannot be easily fit into the above process. To mine
a multi-table stream, we must first select the ”target” stream T0 that will be the
basis of the model. If the online store of our example is interested in customer
profiles, the target stream is that of the customers; if they rather want to identify
trends in reclamations, the target stream is that of reclamations.

Once the target T0 is specified, information from all other streams must be
propagated to it. Assume that each tuple z ∈ T0 joins with nz ≥ 0 tuples of
stream T , e.g. the stream of purchases, the tuples of which join in turn with
those of other streams. To build a model ζ over the T0 tuples in the current
sliding window, we must first join them with the corresponding T tuples, which
must also joined first with other streams. This implies that (a) we must specify
how many T0 tuples will be ”cached” until the tuples to be joined with them
arrive, (b) we must maintain one window for each stream T that joins with T0,
each stream that joins with T etc and (c) when a new tuple of T0 arrives, we
must wait for all windows to be updated before we adapt the model.

These requirements seem to call for an n-way join but this still not sufficient
for mining. The reason is that mining algorithms assume that tuples are inde-
pendent. This is violated whenever a tuple of the target joins with more than
one tuples of another stream. In the above example, assume 10 elder and one
teenager customers, and assume that the teenager made 10 purchases, while
each other customer made only one purchase. The join result contains 21 tuples,
which a mining algorithm will assume to be independent: it will consider the 10
tuples of the teenager as 10 independent teenagers. This will most likely lead
to dubious conclusions about customer age distribution and buying preferences.
Multi-relational mining methods solve this problem by turning rows to columns:
instead of producing 10 tuples for the teenager, all her purchases are summarized
in additional columns of one output tuple. In stream mining this is problem-
atic, because the number of columns to be added to each stream tuple is not
known a priori. Hence, multi-table stream mining also requires (d) a strategy
that maintains the arriving data into a structure of fixed size.

Our approach deals with the above issues. We generalize the one-window
scenario of stream mining into a scenario involving caches and windows over all
components of the multi-table stream. We propose a mechanism that transforms
the multi-table stream into a single-table stream containing exactly one tuple per
original tuple of the target stream. We accompany this mechanism by a strategy
that updates the caches and windows before model adaptation and heuristically
minimizes information loss with respect to model learning. We couple our method
with conventional stream clustering [11].

The paper is organized as follows. In Section 2 we discuss related work. In
Section 3 we present our cache-and-window management strategy and the stream
propositionalization mechanism that transforms a multi-table stream to a single
stream. Our evaluation framework and experimental results are in Section 4. We
conclude with a summary of our findings and future work.
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2 Related Work

Clustering on a stream composed of multiple tables is a new problem. Related
work comes from multi-table learning on static data and from single-table stream
clustering. From the latter area, we depict solutions on referencing old data.

Stream mining algorithms process and then discard the arriving tuples. For
example, Guha et al maintain at each moment the m most recent tuples and K
medians that stand for K ×m tuples seen in the past [10]. However, multi-table
stream mining require the reconstruction of tuples that may refer to tuples seen
much earlier. Tuple reconstruction is studied in the context of stream joins.

Stream join algorithms incorporate a mechanism that discards old tuples. PROB
retains those tuples that are referenced many times [12], while LIFE discards the
oldest ones [12]. AGE assumes that the benefit of storing a tuple is a function
of its age, modeled as the time it remains within the sliding window [13]. The
motivation for AGE comes for online auction sites where a tuple receives many
bids just before it expires [13]. If a tuple is discarded and then other tuples
reference it, then the result of the stream join is a subset of the complete result,
achieved without forgetting. PROB attempts to maximize this subset [12], while
Archive Matrix of AGE [13] aims to build a proper random sample rather than
maximizing the subset of available join results.

Not all data referenced by a stream are themselves streams. Xie et al distin-
guish between joins involving two streams and those involving a stream and a
static table [14]. The first operation is termed joining, the second one caching.
Xie’s caching differs from the conventional one, because a conventional cache miss
is mended by retrieving the missing tuple. ”In contrast, when caching stream
tuples, a miss can cost a lot more: when a tuple is discarded, it is irrevocably
gone along with all result tuples that it could generate in the future” [14]. In
classic caching only the first reference is important; in stream joins, references
beyond the first one are also important. Xie et al propose HEEB, a technique that
maximizes the expected benefit of a fixed-size cache under the MAX-subset mea-
sure of PROB [14]. Unlike PROB and LIFE which are hardwired heuristics, HEEB
exploits the statistical properties of the arriving data [14].

These techniques only consider joins between two streams or between a stream
and a database table. Our cache-and-window management strategy deals with
joins involving more than one streams when preparing the data for mining.

Multi-relational mining algorithms exploit the schema to deduce the order
in which the tables must be processed to learn the patterns. Many of these
methods are based on Inductive Logic Programming (ILP) [15]. They include
multi-relational association rules [2,3], multi-relational decision trees [1,5] and
distance measures [16] for clustering [17]. However, they have all been designed
for static data and have high complexity [6].

Some multi-relational mining tools also deal with patterns that change over
time[8,9]. The database mining system PANDA supports elaborate pattern com-
parison [8], while PSYCHO supports temporal modeling and updating of pat-
terns [9]. None of them supports streams, though: pattern updating is initiated
manually when the static data are considered to have changed substantially.
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Multi-relational mining methods are dedicated algorithms that operate in a
database. In contrast, propositionalization methods like [4,7,18,6] prepare static
data as input to conventional mining algorithms. They transform static multi-
table data into a single table that preserves the original semantics and alleviates
the problem of interdependent tuples pointed out in Section 1. They do so by
summarizing the contents of interdependent tuples in additional columns.

The early propositionalization approach LINUS [4] used logic programming
as part of an ILP system. It was later extended to handle determinate clauses
[7]. The propositionalization overhead grows exponentially with the number of
new columns/attributes. The algorithms of Kobbe et al [18] and of Kroegel [6]
rather use join and data aggregation to build the output table.

The overhead of RelAggs grows linearly to the number of additional columns
[6]. To achieve this, RelAggs does not join all tables at once. It rather specifies
a target table, to which all other tables are joined in a sequence of join steps,
starting with those tables that are in relationship to the target table. Since the
overhead of this process is O(2n) to the number of tables n, RelAggs also per-
forms target ID propagation, i.e. it propagates the key attribute of the target
table to all tables, thus transforming the original schema into a kind of a star
schema2 that connects all tables to the target table (see Fig. 3). In our stream
propositionalization approach we adopt the join sequencing and target ID prop-
agation of RelAggs to reduce the overhead of processing the input streams.

3 Multi-table Stream Propositionalization for Clustering

To prepare a multi-table stream for clustering, we first specify the target ta-
ble/stream T0. Mining is performed at timepoints t1, . . . , ti, . . .. At each ti, a
model ζi upon the current data of T0 and of the other streams referring to it.
In the stream paradigm [10], ti is the arrival time of tuple xi. In our scenario,
ti can be defined similarly, or it may be the end of some period, e.g. a week or
year: this is closer to the intuition of building models at regular intervals. In
subsection 3.1 we present the cache-and-window management strategy we use to
collect the data of each stream needed to built ζi at each ti and explain how we
update these memory management structures to prepare for the next model ζi+1
at ti+1. In subsection 3.2 we present the stream propositionalization algorithm
that turns the multi-table stream at each ti into a single-table stream snapshot
for mining. Table 1 summarizes our notation.

3.1 Cache-and-Window Management over a Multi-table Stream

In a multi-table stream, a tuple of the target table T0 must be expanded with
all relevant information before being processed and then forgotten. For example,
consider the data in Fig. 1(a) and assume that Customer is the target table: a
customer tuple must be joined with all transactions of this customer, and should

2 Not to be confused with the “star schema” in OLAP.
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Table 1. Symbols & Terms

Symbol Description

Tj with schema Sj jth comp. of the multi-table stream, j = 0, . . . , n; T0 is target
Cj , Wj , Yj Cache XOR Window associated with Tj - Yj stands for either
XB Original schema of the data, composed of Sj , j = 0, . . . , n and

the relationships among them
T α T

′
relationship b/w streams T , T

′
, α ∈ {1-to-1,1-to-N,M-to-N}

x → y tuple x ∈ T references tuple y ∈ T ′

X C ”Star” schema of the data, with T0 in its center
t1, ti Initial and current timepoint
Si,0 Schema of the propositionalized target stream T0 at ti

Ci,j , Wi,j , Yi,j contents of Cj , resp. Wj at timepoint ti - Yi,j stands for either
Qi,j Number of references to each referenced tuple of Tj at ti;

Qi,j(x) refers to x ∈ Tj

domain(A, i) Domain of a nominal attribute A ∈ ∪jSj at timepoint ti

columns(A, i) ∈ [lA, rA] Number of columns allocated to att. A at ti; ranges between
max no. of permitted positions rA and a lower boundary lA

Transaction Customer

Product

Fig. 1. First tuples of (a) a multi-table stream on customers, transactions and prod-
ucts, (b) n-way join of the Customer data with Transaction and Product information
and (c) propositionalized version of the same target Customer

be thus kept available for as long as such transactions are expected. On the other
hand, a transaction tuple can be discarded immediately after being read. Hence,
we distinguish between tuples that may be forgotten and tuples that may not be
forgotten. We define a sliding window for the former and we use only those inside
the window for processing. For tuples that may not be forgotten we use a cache,
defined as in [14], as well as secondary storage for long-term maintenance 3.

When expanding a tuple x ∈ T0 with tuples from another stream T , we may
encounter the case that x refers to already seen tuples x1, . . . , xm ∈ T , not all
of which are still in the cache. If such a tuple is in the cache, then it is active

3 Long-term maintenance does not preclude tuple deletion. For example, an insurance
company may delete a customer after her last contract has been paid out.
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and is immediately joined to x. If it is not in the cache, it is inactive; it is then
fetched from the secondary storage and joined to x for the next mining run. It
contributes to the next model ζi+1. We next describe the cache updating strategy
and explain the impact of tuples referencing other tuples.

Cache-and-Window Updating. We associate with each stream of tuples T
that may be forgotten a time-based sliding window Wjof length L: at timepoint
ti, it contains the tuples seen since ti−L. A stream of tuples Tj′ that may not be
forgotten is associated with a cache Cj′ , which at first contains all tuples seen
until the first timepoint t1. Since the size of the cache is fixed, some tuples in
window Wi,j over stream Tj at timepoint ti may refer to tuples of Tj′ that are
not in Ci,j′ (cf. Table 1 for notation). These tuples must be fetched to the cache,
discarding inactive ones to acquire space. The pseudo-code of the CacheUpdate
algorithm (cf. Algorithm 1) is explained below.

Algorithm 1. CacheUpdate(XB)
Input : XB

for j = 0 to
∣∣∣XB

∣∣∣ and Tj has a cache do1
foreach referenced tuple x ∈ Tj do Qi,j(x)=(1+ε)*H(x) + M(x)2

for j = 0 to
∣∣∣XB

∣∣∣ and Tj has a cache do3
foreach referenced tuple x ∈ Tj do4

if j > 0 then /* not target */5
Qi,j(x)+= H(x) + (1+e)*M(x)6
Qi,j(x)+= PropInfo(x, Tj+1, ti)7

G(x) = Qi,j(x)8
foreach u = i − L to i − 1 do G(x)+ = Qu,j(x) ∗ decay(tu, ti)9

sort G [desc]10
Ci,j ← top-|Cj| tuples of G11

The algorithm CacheUpdate is invoked in turn for each stream Tj that has a
cache associated with it (line 1). For each tuple x ∈ Tj referenced during ti, we
count the number of times it was referenced by tuples from another stream Tu

that Tj
1−to−M Tu. We denote as H(x) the hits, i.e. the number of times x was

referenced and found in the cache Ci,j , and as M(x) the misses, i.e. the number
of times x was referenced and not found in Ci,j ; obviously, only one of the two
values is non-zero at any timepoint. As can be seen in line 3, the importance of
tuple x at ti is computed as the number of references to it, thereby assigning a
higher weight (1 + e) to hits, i.e. to tuples already in the cache.

The cache of the target stream is treated separately (lines 6 and from 9 on):
the gain to be achieved by caching tuple x ∈ T0 is computed by considering the
value computed at line 3 and the number of references to x within the whole
sliding window of length L (line 11). To reduce the influence of old statistics,
we use the decay function depicted in Eq. 1: it lowers the weight of old data
exponentially, unless there is a known periodicity with period P > 0. If the data
are periodic, tuples that correspond to the same period as the current one modulo
P are rejuvenated by assinging to them a weight p ∈ (0, 1]. The referenced tuples
are sorted (line 12) and the top-|C0| positions are kept in the cache (line 13).
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decay(tu, ti) =

⎧⎨⎩
1 ti − tu = 0
p ti > tu ∧ P > 0 ∧ (ti − tu)modP = 0
etu−ti otherwise

(1)

The gain computation G() (line 11) aims to maximize the number of tuples
contributing to the model. It thus favors tuples that are expected to produce
more output when they are joined with inter-linked streams. This corresponds
to the MAX-Subset error measure proposed in [12] for sliding-window joins.

Cache updating is an iterative process depicted in lines 4 to 13: a cache is
updated by removing tuples from it and inserting new ones; this affects the hits
and misses for tuples referenced by them. To explain the effects and side-effects
of cache updating, we first consider three streams three streams T1, T2, T3 from
XB that use caches and constitute a chain of relationships T1

M−to−1T2 and
T2

M−to−1T3. At ti, let x→ y, where x ∈ T1, y ∈ T2. Assume that during cache
updating at ti, tuple y is fetched and cached in Ci,2. If y → z for some z ∈ T3,
then y contains a possibly dangling reference; the need to fetch z was not known
before y was cached. Indeed, z can only be fetched to the cache of T3 only at the
next timepoint ti+1. In the general case of an arbitrary length chain of M-to-1
relations Tj1 , Tj2 , . . . , Tjk

, it will take k−1 timepoints to amend a cache miss for
tuple x ∈ Tj1 that propagates to the last stream in the chain. In other words,
only after k − 1 timepoints will it be possible to reconstruct tuple x, assuming
(optimistically) that all tuples needed are still cached at ti+k−1.

Fig. 2. (a) A chain of relationships and (b)transitive references

To load all tuples with their references, we update the caches iteratively,
starting with the cache of the target stream (if any). Once the first/next cache
has been updated, we calculate the references to the tuples of the remaining
streams anew (line 7). This time we assign a higher weight (1+ e) to the misses,
making referenced tuples outside the cache more likely candidates for caching.

Line 8 of the CacheUpdate algorithm deals with a problem of transitivity
across a chain of streams. Consider the example in Fig. 2(b), where all streams
are associated with caches and each stream is in M-to-1 relation with the next
one. Assume that tuples x3, x4 ∈ Tj are referenced more from Tj−1 than any
other tuple, so they would be preferred over tuples x1, x2. This is consistent with
the MAX-subset error measure that promotes tuples resulting in larger output.
Now consider the 3-way join Tj �� Tj−1 �� Tj−2. Tuples x3 and x4 would be again
preferred over x1 and x2, and this will be inconsistent under the MAX-subset
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error measure [12], because x1, x2 are going to produce more output tuples (cf.
Fig. 2). The reason for the inconsistency are the tuples referenced by tuples
referenced by x1, . . . , x4. Tuple referencing is transitive; we exploit this property
in that we add transitive references to the hits, resp, misses of a tuple x (line 8).
The responsible function PropInfo() is depicted in Eq. 2.

PropInfo(x, Tu, ti) =
∑

y∈Tu∧x→y

Qu+1,i(y) + PropInfo(y, Tu+1, ti)
D

(2)

This function takes as input a tuple x and a stream Tu from a chain T of
streams, such that Tu

M−to−1Tu+1. It computes the references of x to Tu and
invokes itself again for each tuple y referenced by x. At each invocation it uses
an information decay parameter D. This parameter ensures that the impact of
those additionally counted references drops as we navigate down the chain of
interlinked streams. The value of gain (line 9), as adjusted with PropInfo() is
consistent with the MAX-subset measure [12].

3.2 Transforming the Multi-table Streams into one Stream

After cache updating, we map the data in the caches and windows of the multi-
table streams into a single stream. For this, we extend the propositionalization
algorithm RelAggs for static data [6]. The core idea of propositionalization is:

Each tuple x of the target table T0 is expanded by joining it with all
tuples that refer to it (via external key id). If x joins with more than one
tuples x1, . . . , xm, then these tuples must be summarized into a single
row. This is done by adding columns to the schema of T0 for each distinct
attribute value v that appears in the set {x1, . . . , xm} =: matches(x).
This column contains the number of times v appears in matches(x).

We describe how propositionalization is performed in a stream setting by
joining and aggregating the tuples in the maintained windows and caches.

Propagating the Identifiers of the Target Stream. At each timepoint ti,
let Yi,0 be the set of tuples in the cache or window associated with the target
stream T0. Further, let Tj be a stream that directly references T0 and let Yi,j

be the contents of the cache or window associated with it. The key identifiers
of the T0 tuples in Ci,0 are propagated to Yi,j .This corresponds obviously to a
semijoin upon the stream contents seen thus far. This task is repeated in depth-
first manner for each Tj : the identifiers of Ci,0 are propagated and incorporated
to the tuples of each stream that references the identifiers of Tj. The algorithm
for this task is depicted in the Algorithm 2 below: it takes as input the schema
XB which encompasses the tables and the foreign key relationships among them,
transforms it into a tree that has the target T0 as root and the streams referencing
it as children. The tree edges are the foreign key relationships, across which
the identifiers of T0 are propagated towards the leaf nodes. The propagation is
performed with the insertion and query operation on lines 5 and 6 respectively.



Combining Multiple Interrelated Streams for Incremental Clustering 543

Algorithm 2. PropagateIds(XB)
Input : XB in tree form

foreach T and T ′ do /* traversed in depth-first order, first T is T0 with T ′ */1
/* as its leftmost child; Y, Y ′ are their caches/windows */

if T ′ doesn’t contain targetId then /* T ′ is child and T is parent */2
INSERT INTO Star(Y ′)3
SELECT Y.targetId, Y ′.* FROM Y, Y ′ WHERE Y ′.joinId=Y.id4

In line 4 of the PropagateIds algorithm we see the term ”Star”. The term
is used in RelAggs [6] in the context of transforming the original schema XB

into a star XS that has the target table T0 as its center. In the context of data
warehousing, this operation roughly corresponds to transforming a snowflake
schema into a single table. In Fig. 3 (left side) we see the data of the original
schema in Fig. 1 and the star schema with the target Customer at the center.

Propositionalization of the Target Stream. At timepoint ti, the current
contents of T0 in the cache or window Yi,0 must be ”propositionalized” to ac-
commodate the information of each cache or window Yi,j of stream Tj. We first
consider propositionalization for ti, i = 1: we perform the semijoin between the
cache or window Yi,0 of the target table T0 and the cache or window Yi,j of
each stream Tj that is in 1-to-1 or 1-to-M relationship with T0. Accordingly, we
expand x ∈ Yi,0 with the matching tuple y ∈ Yi,j , i.e./ x := x + +y. At a later
timepoint ti, i > 1, if x is already expanded with some (old) tuple of Yi,j , this old
expanded tuple is replaced by the new one. This initially unintuitive approach is
best explained by an example: assume the stream of students enrolled in a fac-
ulty (target stream) and the stream of examination results, as processed by the
examination office; a student has exactly one note value per course (including
the value NULL), so once a new value comes, it must replace the previous one.

For each Tj that is in 1-to-M or M-to-N relationship to T0, we associate each
tuple x ∈ Yi,0 with the set of matching tuples matches(x) ⊆ Yi,j . The tuples in
this set must be summarized in a single subtuple. We distinguish two cases: x is
a compute tuple, i.e. a tuple that is either new or was inactive at the previous
timepoint ti−1, or it is a re-compute tuple, i.e. was already active in ti−1. The
reason for this distinction is that tuples seen at ti−1 have been already considered
for the summarization. Hence, compute tuples are joined only to new ones, while
re-compute tuples are joined to all tuples in the window or cache.

For the summarization of the values of each numerical attribute A among
the matches(x), we generate four attributes and accommodate in them the
min, max, count and average of the A values seen in matches(x). In the ex-
ample on Fig. 1(a), the attribute Price is numeric and customer 1“David” has

Fig. 3. Original schema (left) and star schema (right) for RelAggs [6]
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Algorithm 3. Multi-Table Stream Propositionalization(XB,X C , T0)
Output: Single-Stream

PropagateIds(XB)1
list = GetStreams(XS)2
for j ← 1 to |list| do3

if T0
1−1 Tj OR T0

m−1 Tj then ⊕ tuples of Yj with Y04
else if T0

1−m Tj then5
GROUP BY operation on T0.id6
foreach attribute A ∈ Sj do7

if IsNum(A) then Si,0 ← ⊕ (avg(A), sum(A), min(A), max(A))8

if IsNom(A) then Si,0 ← ⊕c∈columns(A,ti)

(∣∣∣σv∈values(c,ti )(A)
∣∣∣)9

CacheMaintenanceProcedure(XB)10
AdjustNominal(XB)11

purchased two products; the prices of these products are summarized in the
columns MIN P,MAX P,AVG P of Fig. 1(c) while COUNT P accommodates the num-
ber of purchases - two. Differently from the students’ example above, the four
generated attributes are updated for each tuple x, not replaced.

For summarization of each nominal attribute, function AdjustNominal(XB)
(cf. Line 11, Algorithm 3) generates as many columns as there are distinct values
in matches(x). In the static scenario, this is feasible because we know the number
of distinct values for A in advance. In the stream scenario, the schema can
neither be expanded arbitrarily (memory is finite) nor can each value ever seen
be retained perpetually in it (memory must be used efficiently). We rather specify
for each nominal attribute A in the original schema XB an upper boundary rA

to the number of columns/positions that can be reserved for it in Yi,0 at any
ti. The space allocated initially for A is possibly less; it is the maximum of
domain(A, 1) - the number of distinct values seen for A at the first timepoint -
and a user-defined lower boundary lA (cf. Table 1). In the example of Fig. 1, the
attribute Category for products takes the values ”Book” and ”DVD”. If lA = 2
as well, then columns(”Category”, 1) = 2.

At ti, i > 1 the number of values for A to be accommodated may increase, e.g.
if the company decides to introduce the categories ”eBook” and ”CD”. Hence, we
must adjust the available space to the demand. For this, we propose a soft adjust-
ment and a hard adjustment method. Briefly, soft adjustment implies deleting
some of the past values to acquire space for the new ones, while hard adjust-
ment encompasses the grouping of values into rA groups. We explain these space
adjustment methods below.

Space Adjustment. At some timepoint ti, let A be a nominal attribute of some
stream Tj and let domain(A, i) be the set of values that A acquires at ti. These
are the values to be accommodated. The cache or window Yi,0 of T0 contains
columns for domain(A, i − 1), i.e. for the values of A accommodated at the
previous timepoint. The number of currently reserved columns columns(A, i−1)
is not necessarily equal to |domain(A, i − 1)|; it may be larger but is certainly
not exceeding the number of positions rA reserved for A.
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If |domain(A, i) \ domain(A, i − 1)| ≤ rA, then the new values are accom-
modated in some of the remaining reserved positions and the tuples Yi,0 are
expanded. Otherwise, some positions must be freed to accommodate the val-
ues in domain(A, i). If |domain(A, i))| ≤ rA, then some of the old values (from
domain(A, i− 1)) are replaced. This means that those columns in Yi,0 that have
been generated by propositionalization of Tj acquire new semantics. This case
is best perceived if one observes customers (target stream) and the products
they purchase: the longer one customer interacts with the shop, the more prod-
ucts s/he has purchased. However, for the learning of a model, it is reasonable to
forget some of the products purchased long ago for the sake of allowing new prod-
ucts to contribute more to the model. Our soft adjustment heuristic de-allocates
|domain(A, i) \ domain(A, i − 1)| columns among those accommodating values
from domain(A, i− 1) \ domain(A, i). It then assigns the free positions to these
new values. Currently, the columns to be de-allocated are selected at random,
but more sophisticated options are possible, e.g. eliminating the oldest values.

If |domain(A, i)| > rA, then we cluster the values in domain(A, i) into rA

clusters. Clustering implies that values appearing in the same cluster are ac-
commodated in one column and become indistinguishable. In our example, let
rCategry = 2, values(Category, i)= {eBook,CD,DVD} and columns(Category, i)=
{Book,DVD}. Then the set {Book,eBook,CD,DVD}must be stored in two columns.
Hence, this hard adjustment method incurs information loss.

Fig. 4. (a)Dependant nominal values converted to (b)feature vector for clustering

Clustering is based on semantic similarity among the objects. Here, the ob-
jects are distinct values of an attribute. We assert that two values are similar
if the tuples containing them are similar. This implies modeling a value as the
set or table of all tuples containing it. As we have already pointed out in Sec-
tion 1, mining algorithms assume tuples to be independent. Thus, similarly to
the propositionalization solution of summarizing tuples into a single one, we
summarize the tuples that have same value into one large tuple by turning rows
in columns. The generated feature vectors (cf. Fig. 4b) are independent and we
use Hierarchical Flat Clustering [19] with k=rA to cluster them.

4 Experiments

We have evaluated our method on the “Gazelle dataset” of the KDD Cup
2000 4[20] and on the “Financial dataset” of the PKDD Challenge 1999 5. Our
4 http://cobweb.ecn.purdue.edu/KDDCUP/data/
5 http://lisp.vse.cz/challenge/
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objective was to study the performance of our multi-table stream propositional-
ization and mining approach. To this purpose, we have designed a reference for
multi-table incremental clustering, in which we assume infinite data storage.

4.1 The Datasets

The Gazelle dataset consists of several tables that describe the activities of
users in an web commerce site in the period 02-05/2000. The tables in the
Financial dataset depict the activities of bank customers who have been granted
a loan and are paying it back in the period 01/1993-12/1998. The Financial
dataset has labeled data, so we have tested our strategies against the ground
truth.

Table 2. Tables and statistics from (a) the Gazelle and (b) the Financial datasets

Gazelle dataset Financial dataset
Table Tuples Table Tuples (A/C) (B/D)
Customers 3336 C Accounts 682 606 76

W Sessions 18113 C Districts 77
W Request 213,101 Clients 827
C Products 376 W Orders 1513
C Contents 77 Cards 170

W Transactions 191,556

In Table 2 we depict the tables of each dataset; the target table is under-
lined. In the first column, we mark with C each stream associated with a cache,
while W stands for window. In the Gazelle dataset, we build user profiles on
products inspected by each user (user “request”) during each session, so sessions
without product requests are dropped. There has been no information about
re-visits of users, so a user corresponds to a session, and Sessions is the tar-
get. The contents of a session may be of several types, depicted in the table
Content.

In the Financial dataset, a loan is associated with an account, which in
turn may belong to one or more clients. Credit card activities and orders are
recorded, but the main load comes from the Transactions stream. Originally,
the dataset had four classes. Already during the 1999 competition, the classes
A, C and B, D were merged into loan-trusted and loan-risk respectively. We do
the same.

4.2 Caching Strategies and Reference Strategy

Our hypothesis is that the amount of information remembered as the multi-
table stream progresses has an impact upon the quality of the clustering results.
The remembered information is affected by the cache size and by the number of
columns reserved for each nominal attribute A. We have thus varied these values
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for the tables Products, Contents of the Gazelle dataset and for Accounts,
District of the Financial dataset. To control the impact of the reserved columns
better, we have set lA = rA =: r for all attributes. The specification of cache size
and reserved columns is a ”cache strategy”. The strategies we used are in Table 3.
For example, strategy ”FIN2” uses a cache of 200 account’ and 40 district’s tuples
and reserves 3 columns for storing nominal values of each attribute.

Table 3. Strategies on the Gazelle and the Financial datasets

Gazelle Dataset Financial Dataset

Acronym G1 G2 G3 G4 G5 Acronym FIN1 FIN2 FIN3
Products 5 25 75 150 200 Accounts 100 200 300
Contents 5 15 40 60 70 District 20 40 50
r 7 7 7 7 14 r 3 3 3

Our reference strategy has unlimited storage and knows the future. It thus
does not need cache maintenance, nor information propagation. Also, r is large
enough to accommodate all nominal values that will come in the future.

The window size is the same for all strategies, including the reference. For the
Financial dataset we used a window w of 30 months, for the short-lived data
of the Gazelle dataset we experimented with w = 14, 21 where each window
contains w × 75 propositionalized sessions. For clustering we used Online-K-
Means [11] with cosine as measure of tuple similarity. For Gazelle, the number
of clusters was set to K = 5, while Financial dataset uses K = 3, 9.

4.3 Evaluation Measures

At timepoint ti, the incremental clustering algorithm adjusts the clusters of
model ζi−1 into model ζi

6. If the quality of ζi is lower than that of ζi−1 below
a threshold τ = 0.7, then the data are re-clustered.

We use following quality measures from [21]: silhouette coefficient to measure
the quality of one model/clustering; Jaccard coefficient to compare clusterings at
different timepoints and for different strategies; entropy to evaluate a clustering
against explicit class labels (only available for the Financial dataset).

To compute the silhouette coefficient of a tuple x in cluster C ∈ ζ, we calculate
its average distance ax from all other tuples in C and from the tuples in the
clusters of ζ \ {C}, say bx. Then s(x) = (bx−ax)

max(ax,bx) . The silhouette of C is the
average silhouette of its members. The silhouette for the clustering silhouette(ζ)
is the average over the cluster silhouettes, weighted with cluster cardinalities.

For the Jaccard assume two clusterings ζ, ζ′. Let f11 be the number of records
for which ζ, ζ′ agree that they should be in the same cluster. Let f10 be the
number of records that were put in the same cluster by ζ but in distinct clusters
by ζ′ (disagreement), and let f01 be the number of records put in the same
6 A model built by a clustering algorithm is a set of clusters - a ”clustering”. We use

the nouns ”model” and ”clustering” as synonyms hereafter.
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cluster by ζ′ but in distinct clusters by ζ (disagreement). Then, the Jaccard
coefficient is JaccardCoeff(ζ, ζ′) = f11

f11+f01+f10 [21].
The entropy measures the degree to which a cluster contains tuples belonging

to a single class. Let ζ be a clustering and ξ be the set of classes describing the
data. For each Cu ∈ ζ and Lv ∈ ξ, the probability that a tuple in C belongs
to Lv is puv = |Cu∩Lv|

|Cu| . The entropy of Cu is e(Cu, ξ) =
∑

Lv∈ξ puvlog2puv. The

entropy of ζ is then entropy(ζ, ξ) =
∑

Cu∈ζ |Cu|e(Cu)
|∪Cv∈ζCv| ; lower values are better.

4.4 Findings with the Financial Dataset

In the Financial dataset, we use a cache for the stream Accounts; at each time-
point it accommodates a set of accounts and, after propositionalization, of the
transactions on them. Each account arrives with zero transactions and evolves
into either ”loan-trusted” or ”loan-risk” class as more and more transactions are
recorded for it. To avoid learning our models on data that arrive early but are
not relevant (and would thus blur our results in an undisciplined way), we have
trained a classifier (J4.8 [22]) on it, identified the subset of predictive attributes
and then projected the remaining attributes away to reduce the noise. We varied
the number of columns reserved for each nominal attribute: r = 3 and r = 7,
but we found that the results were almost identical, except for some slight vari-
ations between timepoints t30 and t40. Therefore, we report the results of r = 3
only.

In the left side of Fig. 5, drawn for K = 9 clusters, we show the entropy values
when comparing each cache strategy against the ground truth. At the beginning,
all strategies have an entropy value of zero, because the first accounts belong all
to the same class. As soon as accounts from the other class arrive, the entropy
rises sharply.

It must be stressed here that accounts are dynamic objects that mature and
evolve over time. When accounts are introduced, the clusterer is only aware of
their initial static properties e.g. the information about the owner(s) and types
of card they hold, the district they were created in and etc. There is little or
no transaction information associated with them, so they are initially grouped
into clusters on the basis of these static properties. On the other hand, the

Fig. 5. Alternate cache strategies for w = 30 (Financial) (a)K = 9 and (b) K = 3
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class label reflects their final state, after many transactions have accumulated
on them. This is the reason that all strategies perform poorly at the beginning.

Around timepoint t10, the entropy of FIN1 (the strategy with the smallest
cache) starts dropping. By this time, more than 100 accounts have arrived, and
the CacheUpdate algorithm (Section 3.1) prefers those that have performed more
transactions. For FIN1 with its small cache, this means that accounts with few
transactions are not in the cache. All other strategies, including the reference
strategy, have larger caches and store these accounts, which cannot be easily
classified as loan-risk vs loan-trusted, and thus result in bad performance. At
later timepoints, i.e. after t23 for FIN2 and after t30 for FIN3, these strate-
gies also drift away from the reference strategy: as they reach their cache size
limit, they keep only mature accounts inside the cache, so their performance
increases.

From timepoint t32 until t55, the reference strategy with its infinite cache
shows the worst performance. The lesson learned is that in stream mining it is
not always desirable to remember all the data. For the Financial dataset, oblivion
is best: FIN1 that has the smallest cache size outperforms all other strategies.

After timepoint t55, only very few new accounts arrive, the last one at t60. For
the next 12 timepoints, all accounts keep evolving as new transactions arrive for
them. The performance of the reference strategy also improves towards the end
since there are no noisy accounts to perturb it. So it outperforms all strategies
as it there is no information loss due to memory limitations.

In the right side of Fig. 5, we show the cache strategies for K = 3 clusters.
We chose a small K to test whether the tuples of the majority class A/C are
better accommodated in few large clusters. K = 3 turned out to be not a goof
choice for the data with a very skewed distribution of classes and very little
separation between the data points. Before t32 when information about accounts
is very little, all the strategies perform very poorly. Its performance starts getting
better as information pours in. However, it should be noted that all the strategies
were able to separate a large number loan-risk accounts into one cluster but the
cluster also contained almost the same amount (or even more at some timepoints)
of loan-trusted accounts while the other two clusters were mostly clean. This
explains the relatively low entropy for the strategies with K = 3. Whereas
several small clusters with K = 9 were able achieve separation by discovering
clusters that contained only the loan-risk accounts.

4.5 Findings on the Gazelle Dataset

The Gazelle dataset has no ground truth, so we study the performance of our
strategies towards the reference. We also mark the timepoints of re-clustering.

In the left side of Fig. 6 we see the behavior of each strategy for a sliding
window of 14 units, where a unit is 75 propositionalized sessions. All strategies
are initially comparable to the reference, but their performance deteriorates as
records are forgotten. The large-cache strategies G4 and G5 have inferior perfor-
mance than small-cache strategies. This indicates a tendency for new products
and contents, in which small-cache strategies adapt fast.
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Fig. 6. Alternate cache strategies (Gazelle) (a)w = 14 and (b)w = 21

A concept shift occurs soon after timepoint 40, whereupon the reference and
some of the cache strategies experience re-clustering. The timepoint fits with
a TV advertisement for Gazelle, which is known to have led to an increase in
the site traffic. All strategies are slow in adapting to this concept shift, but the
large-cache strategy G5 is the first to show an upward trend. This indicates that
the range of products flowing into user profiles by that time is large.

The next concept shift occurs just before timepoint 70. After this shift, the
large-cache strategies perform closer to the reference, while small-cache strate-
gies do not perform well and re-cluster around timepoint 125. Two more shifts
cause re-clustering of the reference a little earlier; they were both accompanied
by a performance degradation for the large-cache strategies. It is remarkable
that the strategy G4 has been close to the reference, although it did not re-
cluster itself. This indicates that the clusters under this strategy were adapted
adequately to the changes in the population. This also holds at the last shift
around timepoint 135: the performance of the large-cache strategies deterio-
rates, but G4 experiences re-clustering only once. This indicates that a smaller
cache leads to a better adaptation during that period. This claim is further
supported by the small-cache strategies, whose performance improves without
re-clustering. We interpret this as a tendency of the users to concentrate on few
products.

On the right side of Fig. 6, we see the behavior of the strategies for a window
size w = 21. We can observe the same phenomena, i.e. shifts and re-clustering,
although the first shift is captured much later than for w = 14. Small-cache
strategies show a steeper performance deterioration in early timepoints but im-
prove in late timepoints and become more competitive. Until timepoint 175, G4
performs better than G5, which uses an even larger cache. At that timepoint,
G4 shows very poor performance but improves a bit after re-clustering, although
its quality is inferior to that of the small-cache strategies.

These results indicate that multi-table stream clustering allows for adapta-
tion to shifts. Small-cache strategies adapt without need of quality monitoring
and perform better when the data are very volatile. Large-cache strategies have
higher performance when there is some stability in the data, but require quality
monitoring to respond to concept shifts. As for many phenomena on streams,
the selection of a proper window size is of crucial importance. However, cache
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strategies allow for the incorporation of influence from data that do not belong
to the target table, while softening the impact of the window size selection. As
we have seen, even with a larger window size, caching allows for the adaptation
to shifts, although these shifts are recognized with some delay.

5 Conclusion

We studied the new problem of multi-table stream mining and presented an
incremental clustering method for it. Our method encompasses a cache-and-
window management strategy and a stream transformation algorithm. The for-
mer makes data available for model building and adaptation, favouring tuples
that produce larger output. The latter transforms the interrelated streams into
a single-stream. It thereby joins and summarizes the data into a single table of
a fixed schema, while ensuring that even an 1-to-M semjoin results in a single
output tuple per input tuple of the left join operand.

To study the performance of our approach we have designed a reference strat-
egy that knows the future and has unlimited resources. On this basis we have
experimented with two datasets that are of multi-stream nature and extrapolated
a ground truth by one of them. We have shown that our approach approximates
the reference well and outperforms it in those cases where oblivion is preferable
- in response to concept drifts and shifts.

As a next step, we want to study the potential of data sampling and investi-
gate more elaborate caching strategies We further intend to devise a method to
accommodate the stream data while minimizing the schema size.
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Abstract. In this paper we demonstrate and quantify the advantage
gained by allowing relation extraction algorithms to make use of in-
formation about the cardinality of the target relation. The two algo-
rithms presented herein differ only in their assumption about the nature
of the target relation (one-to-many or many-to-many). The algorithms
are tested on the same relation to show the degree of advantage gained
by their differing assumptions. Comparison of the performance of the
two algorithms on a one-to-many domain demonstrates the existence of
several, previously undocumented behaviors which can be used to im-
prove the performance of relation extraction algorithms. The first is a
distinct, inverted u-shape in the initial portion of the recall curve of the
many-to-many algorithm. The second is that, as the number of seeds
increases, the rate of improvement of the two algorithms descreases to
approach the rate at which new information is added via the seeds.

1 Introduction

The amount of information available on the Internet as unstructured text has
made text mining an increasingly important area of study. One aspect of text
mining is relation extraction. Relation extraction is the process by which the
relationship between entities in a text is identified and characterized. The result
of a relation extraction process is typically a table relating pairs of entities.
Often, properties of the relation being extracted, such as uniqueness constraints
on one element, can be exploited in the extraction algorithm. In this paper, we
conduct an experiment to measure the benefit of allowing an algorithm to make
use of such properties.

Each of the two algorithms presented is specialized to one common type of
binary relation. The first is specialized to many-to-many relations, and the sec-
ond to one-to-many relations. A one-to-many relation is a relation such that
each value for the first attribute of a tuple may appear in many tuples while the
second value may appear only once (it is unique). For example one mother can
have many children, while each child can have only one mother. A many-to-many
relation, which is the “null” assumption, since it places no constraints on the
values, is similar to a one-to-many relation but with no uniqueness constraint on
the values for the attributes. For example one child ‘x’ can have many cousins,
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each of whom can have many cousins other than ‘x’. In this paper we quantify
the amount of advantage to be gained by making use of knowledge of the nature
of the relation in the relation extraction process.

Section 2 of this paper compares the current work with prior works in the field.
Section 3 formally defines the problem and derives the Naive Bayes Classifier
used in both algorithms. Section 4 presents the two algorithms in detail. Section
5 describes the experiment. Section 6 discusses the results of the experiment.
Section 7 presents our conclusions.

2 Prior Works

The extraction algorithms developed for the experiment use a bootstrapping
process similar to [1] and [2]. [1] makes no assumptions about the target relation,
so implicitly assumes it is many-to-many. [2] requires the relation be one-to-many
and makes several improvements to [1] because of the improved specificity of the
algorithm. An experiment similar to the current work could be used to measure
the degree to which the stronger assumption of [2] gave it an advantage over [1],
and how much was due to improvements in the algorithm.

[3] hypothesizes that the most important syntactic and lexical features of a
relation occur along the shortest path between the two entities on the depen-
dency graph. We have used this hypothesis in building the algorithms presented
herein. However, testing this hypothesis is beyond the scope of this paper.

The algorithms presented herein, like [4], [2], [5], [6], [7], [8], [9], [10], [11], and
[12], use features derived from multiple sentences. Any sentence that contains
a seed value will potentially generate a feature. The features are then used to
classify the values that they are associated with.

3 Background

The two algorithms presented in this paper build approximations to a relation
from an initially supplied set of seed tuples. Specifically, we subdivide the set
of possible tuples into three subsets. The set S+ contains the positive seeds.
Positive seeds are known to be part of the relation. The set S− contains the
negative seeds. Negative seeds are known to not be part of the relation. The
set S? contains the unprocessed tuples. It is the task of the relation extraction
algorithm to correctly categorize (into the positive and negative sets) as many
tuples from S? as is possible.

The algorithms identify potential relation instances by matching them against
a linguistic template (“pattern”). The patterns are used to capture the syntactic
and lexical expression of a semantic relation. For example, the pattern “X is the
capital of Y ” may be used as a pattern for identifying potential instances of the
relation “capital of”, where the words associated with the labels X and Y would
become the attribute values composing one tuple of the relation. Let us call that
tuple ti = 〈X, Y 〉. Let us call the pattern q. We say that matches(q, ti) if there
exists a sentence that matches q, and X and Y are the corresponding words
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taken from that sentence. For example, given the pattern above and a sentence
“Berlin is the capital of Germany.”, we say matches(q, 〈Berlin, Germany〉). If we
can go further and say that ti should be assigned to the set of tuples that we
know to be instances of the relation R, we say t+i . If ti were already known to be
an instance of the relation, we would say ti ∈ S+. There are analogous meanings
for t−i and ti ∈ S−.

Initially, each potential relation instance is assigned to one of S+, S−, or
S?. The two algorithms presented in this paper identify potential tuples to be
moved from S? to another set based on an estimation of the probability that it
belongs in that set. We calculate P (t+i |Qi), P (t−i |Qi), and P (t?i |Qi) where Qi is
the set of patterns q such that matches(q, ti). The single tuple with the highest
probability ratio is selected and moved into the appropriate set.

We also define various notations to simplify the explanation of the algorithm.
A superscript on a Qi indicates that the patterns in the set only match tuples
from certain seed sets. For example, Q+?

i is the set of patterns that match ti and
that only match tuples from S+ and S?. Formally:

Q+?
i = {q|q ∈ Qi ∧ ∀tj¬(tj ∈ S− ∧matches(q, tj))} (1)

Q−?
i is defined similarly.

We wish to derive a formula for estimating P (t+i |Qi), P (t−i |Qi), and P (t?i |Qi).
Using Bayes’ Theorem, we write:

P (t+i |Qi) =
P (Qi|t+i )P (t+i )

P (Qi)
(2)

Next, we assume that we can estimate the prior probability from the known
data.1

P (t+i ) ≈ |S+|
|S+ ∪ S− ∪ S?| (3)

Then we assume that the matches are probabalistically independent, which
lets us write:

P (Qi|t+i ) =
∏

qj∈Qi

P (matches(qj , ti)|t+i ) (4)

The probability that a pattern qj matches a tuple ti given that t+i is:

P (matches(qj, ti)|t+i ) =
|S+ ∩Nj |
|S+| (5)

1 This assumption is very strong, since the known data is small (as small as one seed
tuple) and the entire set of possible tuples has over 1000 tuples. However, in practice,
the influence of the inaccuracy of this estimate is small enough to allow the algorithm
to bear good results, as shown in Section 6.
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where Nj is the set of tuples matched by qj . We can see that:

P (Qi|t+i ) =
∏

qj∈Qi

|S+ ∩Nj|
|S+| (6)

Using these results, we substitute into Equation 2:

P (t+i |Qi) =
|S+|

|S+ ∪ S− ∪ S?|P (Qi)

∏
qj∈Qi

|S+ ∩Nj |
|S+| (7)

Similar formulas can be generated for P (t−i |Qi) and P (t?i |Qi).
Using these equations, inequalities like P (t+i |Qi) > P (t?i |Qi) and ratios like

P (t+i |Qi)
P (t?i |Qi)

can be solved numerically, as many terms cancel out and the remaining
terms are numerically calculable. The numbers generated by this process will
be used by the algorithms presented in the next section in order to extract a
relation.

4 Algorithm Definitions

In this section, we present two algorithms for extracting a relation from a doc-
ument set. Both algorithms are semisupervised and use a small initial set of
user-supplied examples (seeds) to bootstrap the learning process. The algorithms
differ in the extent to which they incorporate information about the properties of
the target relation. The first algorithm makes no assumptions about the relation.
Effectively, it assumes that the target relation is many-to-many. The second op-
erates on the (correct) assumption that the target relation is one-to-many. Both
algorithms make use of three sets into which tuples are assigned: a set of unas-
signed tuples S?, a set of tuples judged to be relation instances S+, and a set of
tuples judged not to be relation instances S−.

4.1 An Algorithm for Many-to-Many Domains

Repeat:
Let X1 = {ti|ti ∈ S? ∧ P (t−i |Q−?

i ) > P (t+i |Q−?
i ) ∧ P (t−i |Q−?

i ) > P (t?i |Q−?
i )}

Let X2 = {ti|ti ∈ X1 ∧ ∀(tj ∈ X1)
P (t−i |Q−?

i )
P (t?i |Q−?

i )
≥ P (t−j |Q−?

j )

P (t?j |Q−?
j )
}

If X2 �= ∅ then move X2 from S? to S−.
Let Y1 = {ti|ti ∈ S? ∧ P (t+i |Q+?

i ) > P (t−i |Q+?
i ) ∧ P (t+i |Q+?

i ) > P (t?i |Q+?
i )}

Let Y2 = {ti|ti ∈ Y1 ∧ ∀(tj ∈ Y1)
P (t+i |Q+?

i )
P (t?i |Q+?

i )
≥ P (t+j |Q+?

j )

P (t?j |Q+?
j )
}

If Y2 �= ∅ then move Y2 from S? to S+.
Until X2 = ∅ ∧ Y2 = ∅

First, this algorithm selects tuples from S? such that the probability that the
tuple should be reassigned to S− is greater than either the probability that it
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should be reassigned to S+ or that it should remain in S?. From this set, it
selects that tuple which maximizes the ratio of the probability that it should be
reassigned to S− over the probability that it should remain in S?. This tuple
is moved from S? to S−. An analogous process is then carried out for tuples
that may be reassigned to S+. This entire process repeats until the most recent
iteration has produced no changes. In effect, this algorithm iteratively moves
tuples from the set of unassigned tuples into one of the other sets until no more
tuples pass the criteria for being moved.

4.2 An Algorithm for One-to-Many Relations

This algorithm takes advantage of the fact that the target relation is one-to-
many by constructing S− directly from S+. This can be done because once a
tuple with a particular value for the second attribute has been assigned to S+,
no other tuple with the same second value can be assigned to S+. This improves
the decision making process by removing from consideration those tuples that
violate the one-to-many constraint.

Repeat:
Let S− = {ti|ti /∈ S+ ∧ ∃tj(tj ∈ S+ ∧ ti2 = tj2)}
Let X1 = {ti|ti ∈ S? ∧ P (t+i |Q+?

i ) > P (t−i |Q+?
i ) ∧ P (t+i |Q+?

i ) > P (t?i |Q+?
i )}

Let X2 = {ti|ti ∈ X1 ∧ ∀(tj ∈ X1)
P (t+i |Q+?

i )
P (t?i |Q+?

i )
≥ P (t+j |Q+?

j )

P (t?j |Q+?
j )
}

If X2 �= ∅ then move X2 from S? to S+.
Until X2 = ∅

First, this algorithm constructs a new S− from S+ as discussed above. Then
it selects tuples from S? such that the probability that the tuple should be
reassigned to S+ is greater than both the probability that it should be reassigned
to the new S− and the probability that it should remain in S?. From this set, it
selects that tuple which maximizes the ratio of the probability that it should be
reassigned to S+ over the probability that it should remain in S?. This tuple is
moved from S? to S+. This process repeats until the most recent iteration has
produced no changes. In effect, this algorithm iteratively moves tuples from the
set of unassigned tuples into S+ until no more tuples pass the criteria for being
moved, each time using an S− that has been constructed using knowledge about
the one-to-many nature of the target relation.

5 Experiment

We hypothesize that the precision and recall of an extraction algorithm will be
higher if it makes use of information about the nature of the target relation. To
test this hypothesis, we have chosen a relation that is one-to-many. We compare
the accuracy of an algorithm developed for an arbitrary relation (many-to-many)
to one developed for a one-to-many relation.



558 E. Normand et al.

For this evaluation, we constructed the subset of documents from Wikipedia
that contain the word “geography”. All sentences from those documents that
contain both a country name and a continent name were parsed into dependency
graphs by the Stanford NLP Group statistical parser [13]. These sentences form
the corpus. The domain of possible tuples contains tuples of one country name
and one continent name. The target relation relates the name of a country to
the name of the continent in which it is located. It is not strictly one-to-many,
since several countries lay on the border of two continents. However, the vast
majority of countries are contained strictly within one continent. This relation
was chosen because results in support of the hypothesis would also indicate that
the domain model does not have to exactly match the real world data to have a
beneficial effect on the results.

Country names were taken from the NGA GNS Names File, a freely available
list of place names provided by the National Geospatial-Intelligence Agency.The
continent names type consists of six continents: America, Europe, Asia, Africa,
Antarctica, and Oceania. Variations in the name, such as North America and
Southeast Asia are allowed and canonicalized to their shorter, more general form.

We evaluated the extracted tuples against ground truth. The ground truth
used for this evaluation was a third-party description of which country exists in
which continents. These values were taken from the CIA’s The World Factbook, a
publication with political facts about countries [14]. We attempted to model the
information in the CIA World Factbook as closely as possible. The Factbook does
not present this relation as a one-to-many relation, though only a few countries
violate this property (Russia and Azerbaijan, for instance, lie both in Asia and
in Europe). In these cases, both continents were considered correct.

The algorithm was run with seed sets varying from one positive tuple to 40
positive tuples. The results from one thousand runs were averaged together.

Recall was calculated as the number of correct tuples in S+ over the number
of correct tuples. Precision was calculated as the number of correct tuples in S+

over the total number of tuples in S+. That is, we only counted tuples that were
correctly identified by the algorithm as representing fact (S+). We did not count
tuples which the algorithm classified as counter-factual (S−). We also followed
[2] and did not count tuples that did not occur in the document set. We chose
to calculate it this way since a naive algorithm which classified all tuples as
negative would classify approximately 5

6 , or 83% of the tuples correctly without
identifying one correct country-continent pair. The harder problem of extracting
the data table containing country-continent pairs would be left unsolved. It is
also unfair to penalize the algorithm for not extracting something that did not
exist in the corpus.

6 Results

Figures 1 and 2 show the recall and precision of the two algorithms versus the
seed set size (number of positive seeds given). Three notable behaviors occur in
these graphs.
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Fig. 1. The recall of the one-to-many algorithm slightly outperforms the unspecialized
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Fig. 2. The precision of the one-to-many algorithm takes fewer seeds to stabilize

First, in the many-to-many algorithm’s performance, there is a sharp increase
in the recall graph between 1 and 2 seeds. This increase comes with a concomi-
tant decrease in precision. This phenomenon indicates that the many-to-many
algorithm classified many tuples as positive, though many were not actually
positive. The classification was unreliable. This behavior typifies a classifier that
has insufficient knowledge about a relation and is guessing wildly. The algorithm
did not begin to stabilize and achieve steady improvement until after ten seeds
were inputted to it. The one-to-many algorithm did not exhibit this behavior.
It improved steadily from the first through the last seed set size due to its more
extensive knowledge of the nature of the relation. It should be noted that the
shape of the graph could lead to false conclusions if one only examined the first
several data points.

Second, the one-to-many and many-to-many graphs eventually converge. This
indicates that the extra information that the one-to-many algorithm contained
was eventually compensated for by the larger number of seeds. As the number of
seeds given to the algorithm increased, the advantage due to exploiting properties
of the relation decreased. However, for low numbers of seeds, the one-to-many
algorithm outperforms the many-to-many algorithm. Better performance with
fewer input seeds is clearly an improvement.
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Third, the recall and precision graphs eventually reach points beyond which
they only increase slowly and (almost) linearly. Beyond these points, the two al-
gorithms did not identify any new tuples by making use of the increased number
of seeds. Instead, the increase in recall and precision is due to nothing more than
the addition of one more user-supplied seed in the recall and precision calcula-
tions. The greatest rate of improvement in recall, without loss of precision, is
seen in the one-to-many algorithm with smaller numbers of seeds. This indicates
that a small number of seeds was sufficient for the algorithm to quickly learn
the majority of the relation that appears in the corpus.

When run on the same one-to-many relation, the one-to-many algorithm
achieved higher and more stable accuracy with fewer seeds than the many-to-
many algorithm. The results support the hypothesis that an algorithm special-
ized to a specific relation type performs better than an unspecialized algorithm
when extracting a relation of that type.

7 Conclusion and Future Work

In this paper we have quantified the improvement in performance gained by a
relation extraction algorithm by making use of additional information about the
cardinality of a relation. The results of our experiments show that an algorithm
designed to take advantage of the one-to-many property performs better, on
a one-to-many relation, than an unspecialized algorithm. This work suggests
that the performance of many relation extraction algorithms can be improved
by incorporating knowledge about the nature of the target relation. Moreover,
many properties, such as the uniqueness constraint in the one-to-many relation,
are very common and highly generalizable. It is believed that an algorithm could
be developed that would accept these domain properties as input, along with
the seeds, to improve its extraction accuracy. Further research to discover and
characterize these properties is therefore warranted.
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Abstract. Several approaches have been proposed for privacy preserv-
ing data publication. In this paper we consider the important case in
which a certain view over a dynamic dataset has to be released a num-
ber of times during its history. The insufficiency of techniques used for
one-shot publication in the case of subsequent releases has been previ-
ously recognized, and some new approaches have been proposed. Our
research shows that relevant privacy threats, not recognized by previous
proposals, can occur in practice. In particular, we show the cascading
effects that a single (or a few) compromised tuples can have in data
re-publication when coupled with the ability of an adversary to recog-
nize historical correlations among released tuples. A theoretical study of
the threats leads us to a defense algorithm, implemented as a significant
extension of the m-invariance technique. Extensive experiments using
publicly available datasets show that the proposed technique preserves
the utility of published data and effectively protects from the identified
privacy threats.

1 Introduction

There are many data repositories that store time-dependent data and that re-
quire recurrent release of recently acquired data to third parties. Many papers
have addressed the problem of anonymizing datasets for one-time publication
([1,2,3,4] among many others). The main defense technique consists in provid-
ing anonymity by generalizing the values of quasi-identifier (QI) attributes, so
that each released tuple belongs to a group (called QI-group) having the same
value for the QI attributes. This intuitively guarantees that within a group the
tuple respondents cannot be distinguished. The cardinality of the group as well
as the distribution of sensitive attribute values in each group are relevant pa-
rameters for the achieved anonymity. However, less attention has been given to
privacy threats that can occur upon re-publication of the same database after
updates have been performed. Indeed, it has been recognized that additional
privacy issues arise if the adversary obtains a history of tables anonymized as
described above. For example, by understanding that tuples t1 and t2 in differ-
ent releases refer to the same (anonymous) individual, the intersection of the
candidate respondents for t1 and t2 can lead to a privacy violation.

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 562–579, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Original and generalized microdata at the first and second release

(a) Original microdata at time τ1

Name Age Gender Zip Disease
Alice 33 Female 12000 cancer
Betty 31 Female 11000 bronchitis
Carl 35 Male 12000 AIDS

Doris 40 Female 13000 cancer
Erica 41 Female 14000 AIDS
Fiona 37 Female 13000 bronchitis

(b) Generalized microdata: 1st release
QI-group Age Gender Zip Disease

1 [31,35] × [11k,12k] cancer
1 [31,35] × [11k,12k] bronchitis
1 [31,35] × [11k,12k] AIDS
2 [37,41] Female [13k,14k] cancer
2 [37,41] Female [13k,14k] AIDS
2 [37,41] Female [13k,14k] bronchitis

(c) Original microdata at time τ2

Name Age Gender Zip Disease
Carl 35 Male 12000 AIDS

Doris 40 Female 13000 cancer
Fiona 37 Female 13000 bronchitis
Erica 41 Female 14000 AIDS
Grace 42 Female 13000 bronchitis

Hanna 42 Female 13000 cancer

(d) Generalized microdata: 2nd release
QI-group Age Gender Zip Disease

3 [35,40] × [12k,13k] AIDS
3 [35,40] × [12k,13k] cancer
3 [35,40] × [12k,13k] bronchitis
4 [41,42] Female [13k,14k] AIDS
4 [41,42] Female [13k,14k] bronchitis
4 [41,42] Female [13k,14k] cancer

As a motivating example, we consider data about patients and their cause of
hospitalization (called disease for simplicity in the rest of this paper) frequently
released by a hospital to certain institutions for data analysis. Each released
table contains one tuple for each patient hospitalized during the last L months.
In this scenario, certain tuples may be present in multiple releases, some tuples
that never appeared before can appear in new releases, and other tuples may
disappear in subsequent releases. Hence, we consider updates involving both
insertion and removal of tuples. For the sake of simplicity, we assume that when
a tuple appears in multiple releases, the corresponding private value remains the
same.1 We consider the realistic case that some tuples may be compromised;
for example, the actual disease of some patient may be known to the adversary
(note that, at least, every patient is aware of her own disease). The following
examples illustrate privacy threats that can occur in such a scenario.

Example 1. Consider the original microdata at time τ1 and τ2, shown in Ta-
bles 1(a) and 1(c), and the generalized microdata in Tables 1(b) and 1(d). Note
that each generalization guarantees anonymity according to state-of-the-art tech-
niques (k-anonymity [1] with k = 3, l-diversity [3] with l = 3, and t-closeness [4]
with t = 0); moreover the generalization at time τ2 also satisfies m-invariance [5]
with m = 3, a technique specifically designed for data re-publication.

The respondents of tuples belonging to QI-group 3 in Table 1(d) are Doris,
Fiona and Carl, and the set of their candidate private values is {cancer, bron-
chitis, AIDS}. Suppose that the tuple about Carl has been compromised, hence
revealing to the adversary that Carl has AIDS. This leads the adversary to de-
rive by exclusion that either Doris was hospitalized for cancer and Fiona for
bronchitis, or vice versa.

1 The assumption, also made in [5], can be easily relaxed by associating an id to each
tuple as often happens for real data. Referring to our example, we can use a different
id for a new hospitalization of the same patient (possibly for a different disease) to
enable the same kind of attack.
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Now, note that two new tuples have been inserted at τ2, namely those re-
garding Grace and Hanna, while the tuples regarding Alice and Betty have been
removed. In order to understand what we mean by historical correlation, con-
sider the histories of QI-groups of Doris’ and Fiona’s tuples, i.e., QI-group 2 in
Table 1(b) and QI-group 3 in Table 1(d). The set of respondents of the first
group is {Doris, Erica,Fiona} while for the second is {Carl, Doris, Fiona}, and
the corresponding set of private values is {cancer, bronchitis, AIDS} for both.
By assumption, the presence in both releases of tuples for Doris and Fiona im-
ply that each of them preserved her private value across releases. Hence, the
possible private values for Doris and Fiona, considering that Carl’s tuple has
been compromised, were {cancer, bronchitis} even at τ1. Since at τ1 the possible
private values for the QI-group 2 (including a tuple whose respondent must be
Erica) were {cancer, bronchitis, AIDS}, the adversary can conclude that Erica
was hospitalized for AIDS.

One of the first attempts to address privacy issues in data re-publication can
be found in [6]. That work proposes a technique to preserve a weak form of
l-diversity when multiple versions of the same table are released over time and
the table is updated by insertions only. One shortcoming of that technique is
that microdata publishing is postponed until the conditions for guaranteeing
the required level of l-diversity are met. A similar scenario is addressed in [7]
and in [8] in the case in which tuples are released together with their unique
identifier or not, respectively. Even if the solutions proposed in those works do
not require delaying data publication, they are restricted to the case in which
tables are updated with insertions only, and cannot be applied when tuples
are removed. The first work to address privacy-preserving data re-publication
when both insertions and deletions are allowed is [5], in which the m-invariance
property is proposed. That property ensures that i) all the QI-groups in which
a tuple appears have the same set of private values (the cardinality of such
set must be greater than or equal to m), and ii) the set of private values of
QI-groups maximize the level of diversity (i.e., each QI-group does not contain
tuples having the same private value). However, m-invariance is prone to privacy
threats (as the ones exemplified above) that were not identified before, for which
we propose both a theoretical study and a defense algorithm.

In this paper we consider the same scenario considered in [5], admitting both
insertion and removal of tuples, but also considering the case that some tuples
may be compromised. We show that, even when a very small percentage of tuples
is compromised, the correlation that can be identified between tuples in different
releases can lead to serious privacy leaks.

The main contributions of our work are the following: a) We perform a proba-
bilistic analysis showing that in realistic cases the application of state-of-the-art
techniques for privacy preservation in data re-publication can fail to protect
the privacy of individuals. b) We propose the Cor-Split algorithm as a defense
technique, inspired by m-invariance, against attacks exploiting compromised tu-
ples and historical correlations. The algorithm is proved to correctly provide
protection. c) We show experimental results on public data directly comparing
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Cor-Split with m-invariance: From the experiments we can conclude that the
extra protection offered by our algorithm has negligible costs over previously
known techniques.

The rest of this paper is organized as follows. Section 2 formalizes the privacy
threat we are considering. Section 3 reports a probabilistic analysis showing
the actual risk of a privacy breach according to the value of some parameters.
Section 4 illustrates the Cor-Split defense algorithm and its formal properties.
Section 5 shows experimental results, and Section 6 concludes the paper.

2 Model of Privacy Threats

In this section we formally model the notions of privacy breach, and the func-
tions that may be used by an adversary to restrict the set of private values
associated to each candidate tuple respondent. We call such functions private
value restriction functions.

2.1 Preliminary Definitions

In this paper we denote by Tj an original table at time τj , and by T ∗
j the general-

ization of Tj released by the data publisher; we denote byH∗
1,j = 〈T ∗

1 , T ∗
2 , . . . , T ∗

j 〉
a history of released generalized tables. We say that a tuple t has lifespan L if
the generalization t∗ of t appeared in each table T ∗

i with i ∈ L; we denote by t.r
the respondent of t.

Tables are generalized by a generalization function G : T × H̃ ×R×Θ → T ∗,
where T is the set of possible original tables, H̃ is the set of possible histories
of original microdata tables, R is the collection of possible sets of tuples respon-
dents, Θ is the set of functions that map each respondent r to her set of possible
private values Sr, and T ∗ is the set of possible generalized tables. We denote by
Sr,j the set of possible private values of respondent r at time τj .

We assume that the schema of tables in H∗
1,j remains unchanged throughout

the release history, and we classify the table columns into a set Aqi of quasi-
identifier attributes (for the sake of simplicity we assume that categorical values
are transformed in numeric ones), and into a single private attribute As having
domain S; t[A] is the projection of t onto A. Columns that do not act as either
quasi-identifier or private value are irrelevant with respect to privacy preserva-
tion and therefore they are ignored in the rest of the paper. Tuples in T ∗ are
partitioned into QI-groups; i.e., sets of tuples having the same values for their
quasi-identifier attributes. We denote by Q.R the set of respondents of tuples
belonging to a QI-group Q. The signature Q.sig of Q is the set of private values
of tuples belonging to Q.

We assume that the background knowledge available to an adversary is com-
posed of the generalization function G, and the set R of respondents, as well
as their QI values and their sets of possible private values. Moreover, as usual
in related work, we assume that, given a QI-group Q, an adversary may get
to know the exact set of respondents of tuples in Q. Note that the latter is a
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conservative assumption, since in general the generalized QI values of tuples in
Q could match more users than the actual respondents of Q’s tuples.

Definition 1 (privacy breach). A privacy breach occurs when an adversary
knows the sensitive association between a user and one or more of her private
values.

2.2 Threats Deriving from Compromised Tuples

As shown by Example 1, the presence of a compromised tuple in a QI-group Q
can be used by an adversary to restrict the set of possible private values of the re-
spondents of other tuples in Q. This kind of adversarial inference can be modeled
as a compromised tuples-based private value restriction (ct-pvr) function.

Definition 2 (ct-pvr function). Given a history of released tables H∗
1,j, the

respondent r of a tuple t∗ in H∗
1,j, r having prior set of possible private values Sr,

the set H∗
1,j(Q, t) of QI-groups published in H∗

1,j and containing a generalization
of t, and a set CH∗

1,j
of compromised tuples published in H∗

1,j, a ct-pvr function

is a function ct-pvr : R× 2S × 22T∗
× 2T∗ → 2S such that:

ct-pvr(r, Sr,H∗
1,j, CH∗

1,j
) =

= Sr \ {a ∈ S | ∃ Q ∈ H∗
1,j(Q, t), ∀u∗ ∈ Q, u∗[As] = a⇒ u∗ ∈ C}.

Note that in order to discard a value for a respondent of a tuple belonging to Q,
every tuple in Q having that value should be associated by the adversary to a
different respondent. The example below shows how the case of a compromised
tuple reported in Example 1 applies to Definition 2.

Example 2. Referring to Example 1, consider the history of released tables H∗
1,2

corresponding to Tables 1(b) and 1(d), and the respondent r=Doris having set
of possible private values Sr = {cancer, AIDS, bronchitis}; the set CH∗

1,2
of

compromised tuples known by the adversary includes the first tuple in Table 1(d).
Hence, by applying the ct-pvr function considering the QI-group 1, the adversary
can discard the value a=AIDS from Sr, since AIDS is known to be the private
value of Carl’s tuple. Consequently, after the application of the ct-pvr function
the set of Doris’ possible private values contain only cancer and bronchitis. The
same reasoning can be applied with r=Fiona.

2.3 Threats Deriving from Re-published Microdata

As shown in Example 1, re-published microdata is prone to a specific class of
adversarial inference. In order to model this kind of privacy threats we introduce
the notion of historical correlation.

Definition 3 (historical correlation). Given a history of released tables H∗
1,j,

and two QI-groups Q1 ⊆ T ∗
i ∈ H∗

1,j and Q2 ⊆ T ∗
l ∈ H∗

1,j (i �= l), a historical
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Fig. 1. Derivation of a historical correlation

correlation between two sets of respondents R1 and R2 can be recognized if there
exist two QI-groups Q1 and Q2 (Q1 �= Q2 and Q1.S = Q2.S, where Q1.S and
Q2.S are the multisets composed of private values of tuples in Q1 and in Q2,
respectively) such that all the following conditions hold:

c1) Q1.R ⊃ R1
c2) Q2.R ⊃ R2
c3) Q1.R \R1 = Q2.R \R2

where Q1.R and Q2.R are the sets of respondents of tuples belonging to Q1 and
Q2, respectively.

Theorem 1 (historical correlations). If two sets of respondents R1 and R2
are in a historical correlation, then the multiset composed of the private values
of respondents in R1 is equal to the multiset composed of the private values of
respondents in R2.

As it was shown in Example 1, historical correlations can be used to narrow the
set of candidate private values of a respondent, possibly leading to the exact
derivation of her private value. Such correlations are called historical since they
rely on the presence of the same sets of tuples in multiple views belonging to
a history of releases. For instance, in Example 1 an adversary was able to find
a historical correlation between R1={Carl} and R2={Erica} by observing QI-
group 2 and QI-group 3, released at time τ1 and τ2, respectively:

c1) (QI-group 3).R ⊃ {Carl}
c2) (QI-group 2).R ⊃ {Erica}
c3) (QI-group 3).R \ {Carl} = (QI-group 2).R \ {Erica}

Similarly, a historical correlation between {Alice, Betty} and {Doris, Fiona}
could be discovered observing QI-group 1 and QI-group 3.

Example 3. Consider Figure 1, which depicts two QI-groups Q1 = {t∗1, t∗2, t∗3, t∗4}
and Q2 = {t∗1, t∗2, t∗5, t∗6}, and the sets of respondent of Q1 and Q2, which are
Q1.R = {r1, r2, r3, r4} and Q2.R = {r1, r2, r5, r6}, respectively. In this situation
a historical correlation between R1 = {r3, r4} and R2 = {r5, r6} can be recog-
nized. Indeed, the set of respondents {r1, r2} (enclosed in a solid ellipse) appears
in both Q1.R and Q2.R and, since the private value of each tuple cannot change,
the private values of r1 and r2 are the same in Q1 and in Q2. As a consequence,
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the set of private values of {r3, r4} is the same as that of {r5, r6} (the sets of
tuples related by a historical correlation are enclosed in a dashed ellipse).

The adversarial inference that exploits historical correlations to the aim of re-
stricting the set of possible private values of a tuple respondent can be modeled
according to the following historical correlation-based private value restriction
(hc-pvr) function.

Definition 4 (hc-pvr function). Given a history of released tables H∗
1,j, the

respondent r of a tuple t∗ in H∗
1,j, r having initial set of possible private values

Sr, and the set R(H∗
1,j , r) of sets of respondents that are linked to r by a historical

correlation in H∗
1,j, a hc-pvr function is a function hc-pvr : R× 2S × 22R → 2S

such that:

hc-pvr(r, Sr,R(H∗
1,j , r)) = Sr \ {a ∈ S | ∃ R ∈ R(H∗

1,j , r), ∀r′ ∈ R, a /∈ Sr′,j}.

The following example shows how the adversarial inference presented in Ex-
ample 1 applies to Definition 4.

Example 4. Referring to Example 1, consider the history of released tables H∗
1,2

corresponding to Tables 1(b) and 1(d), and the respondent r=Erica having set
of possible private values Sr = {cancer, AIDS, bronchitis}; R(H∗

1,2, Erica) in-
cludes the set {Carl} (i.e., a historical correlation relating Erica and Carl was
discovered). The set of Carl’s possible private values includes neither cancer nor
bronchitis (i.e., the adversary knows that the private value of his tuple is AIDS ).
Hence,

hc-pvr(Erica, SErica,R(H∗
1,2, Erica)) =

= {cancer, AIDS, bronchitis} \ {cancer, bronchitis} = {AIDS}.

Then, after the second release the adversary derives that the set of possible
private values of Erica is {AIDS}. As a consequence, the sensitive association
between Erica and AIDS is discovered.

3 Probabilistic Analysis

The actual risk of a privacy breach due to the threats we are considering depends
on several parameters. In this section we perform a probabilistic analysis of this
risk, assuming that each tuple has probability p of being compromised. Without
loss of generality, we also assume that released microdata satisfy the m-invariance
principle, since – as it will be shown later in this section – this is a worst case
for our probabilistic analysis. As a consequence, we also assume that the set
S of private values includes at least as many values as the enforced level m of
m-invariance. We also assume that each tuple is released at most L times; i.e.,
for each tuple t, L is an upper limit for the cardinality of its lifespan L. The
probability of privacy breach is measured, depending on the parameters p, m, L
as well as others, as the result of the application of the private value restriction
functions described in Sections 2.2 and 2.3.
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Fig. 2. Probabilistic analysis

3.1 Probability of Excluding Private Values Due to Compromised
Tuples

As illustrated in Section 2.2, given a QI-group Q, if all the tuples in Q having
private value a are compromised, then an adversary can conclude that no other
respondent of tuples in Q has private value a. Of course, the probability that
such an event occurs decreases the higher is the number of occurrences of tuples
in Q having private value a. Hence, in order to analyze the worst case we assume
that each private value is owned by at most one tuple in a single QI-group. This
property is called m-uniqueness in [5], and it is guaranteed by the enforcement
of the m-invariance principle. The corresponding privacy threat is quantified by
the following lemma.

Lemma 1. Given a history of released tables H∗
1,j satisfying the m-invariance

principle, a set CH∗
1,j

of compromised tuples belonging to H∗
1,j, and a tuple t

having respondent r and lifespan LH∗
1,j

in H∗
1,j with max{|LH∗

1,j
|} ≤ j, the prob-

ability that a private value is discarded from the set Sr of possible private values
of r through the application of function ct-pvr(r, Sr,H∗

1,j, CH∗
1,j

) is:

pct(H∗
1,j , t) = 1− (1− p)

|LH∗
1,j

|
,

where p is the probability of a generic tuple to be compromised.

The plot shown in Figure 2(a) shows the value of pct(H∗
1,j , t) with respect to the

number of releases containing the tuple (here we assume that the lifespan of t
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covers the entire history) for different values of p. As expected, pct(H∗
1,j , t) grows

with the length of the release history and with the value of p.

3.2 Probability of Excluding Private Values Due to Historical
Correlation

The probability that a private value is excluded from the set of candidate private
values due to historical correlations is given by the following lemma.

Lemma 2. Given a history of released tables H∗
1,j satisfying the m-invariance

property, a tuple t having respondent r and lifespan LH∗
1,j

in H∗
1,j with

max{|LH∗
1,j
|} ≤ j, and the set R(H∗

1,j , r) of sets of respondents that are linked
to r by a historical correlation in H∗

1,j, the probability that a private value a is
discarded from the set Sr of possible private values of r through the application
of function hc-pvr(r, Sr,R(H∗

1,j , r)) is:

phc(H∗
1,j , t) = 1−

(
1−

(
p− p

m

)n
)|LH∗

1,j
|·�m

n �
,

where n = min
R∈R(H∗

1,j ,r)
{|R|} is the minimum cardinality of sets of respondents in

R(H∗
1,j , r), and p is the probability of a generic tuple to be compromised.

The plot shown in Figure 2(b) shows the value of phc(H∗
1,j , t) with respect to

the length j of the release history (assuming the lifespan of t covers the entire
history) and to the minimum cardinality n of sets of respondents involved in his-
torical correlations. The released tables are assumed to satisfy the m-invariance
property with m = 6, and the probability of a tuple to be compromised is set to
p = 0.04. As expected, phc(H∗

1,j , t) grows with the length of the release history
of the tuple and it is higher for smaller values of n.

3.3 Probability of Privacy Breach Due to Combined Threats

After having separately considered the threats deriving from functions ct-pvr
and hc-pvr we can quantify the probability of privacy breach deriving from the
application of both functions.

Theorem 2 (probability of privacy breach). Given a history of released
tables H∗

1,j satisfying the m-invariance principle, a tuple t having respondent
r and lifespan LH∗

1,j
in H∗

1,j with max{|LH∗
1,j
|} ≤ j, and the set R(H∗

1,j , r)
of sets of respondents that are linked to r by a historical correlation in H∗

1,j,
if n = min

R∈R(H∗
1,j ,r)
{|R|} is the minimum cardinality of sets of respondents in

R(H∗
1,j , r), and p is the probability of a generic tuple to be compromised, then

the probability that a privacy breach is determined by functions ct-pvr and hc-pvr
at time j is:
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ppb(H∗
1,j , t) =

(
1− (1− p)

|LH∗
1,j

| ·
(

1−
(
p− p

m

)n
)|LH∗

1,j
|·�m

n �)m−1
.

The plot shown in Figure 2(c) shows the value of ppb(H∗
1,j , t) with respect to

the length j of the release history (assuming the lifespan of t covers the entire
history) and to the minimum cardinality n of sets of respondents involved in his-
torical correlations. The released tables are assumed to satisfy the m-invariance
property with m = 6, and the probability of a tuple to be compromised is set
to p = 0.04. It can be observed that the probability of privacy breach is very
high with n = 1. The value of ppb is lower than 0.15 with n = 2; with n = 3 the
probability of privacy breach is lower than 0.1.

4 Defense

4.1 Safety against Private Value Restriction Functions

In order to defend re-published microdata against private value restriction func-
tions based on compromised tuples and historical correlations, our technique
consists in enforcing a generalization principle – which we name (m, n)-historical
safety – with parameters that guarantee that the probability of privacy breach
is below a certain threshold h. Before defining (m, n)-historical safety it is nec-
essary to introduce a novel principle, which we name weak m-invariance. As it
will we shown in Section 4.2, this principle can be applied to avoid the disclosure
of historical correlations while minimizing the number of counterfeits.

Definition 5 (weak m-uniqueness). A generalized table T ∗
j satisfies weak

m-uniqueness if each QI-group Q ⊆ T ∗
j contains at least m tuples with different

private values, and the number of occurrences in Q of tuples with a given private
value is the same for every private value belonging to the signature of Q.

Definition 6 (weak m-invariance). A history of released tables H∗
1,j satisfies

weak m-invariance if:

– ∀i ∈ [1, j], T ∗
i satisfies weak m-uniqueness, and

– ∀i, i′ ∈ [1, j], t ∈ Ti, t
′ ∈ Ti′ , if t∗ ∈ Qi and t′∗ ∈ Qi′ , then Qi.sig = Qi′ .sig.

Weak m-invariance is a weaker version of the m-invariance principle. Indeed,
while m-invariance requires that all the tuples in a QI-group have different pri-
vate values, according to weak m-invariance QI-groups can contain tuples with
duplicate private values, provided that their multiplicity is the same. Hence,
it is easy to verify that m-invariance is a particular case of weak m-invariance
in which the multiplicity of tuples having a given private value in a given QI-
group is always 1. With respect to privacy preservation, it can be observed that
weak m-invariance provides the same level of diversity as the one provided by
m-invariance. On the other hand, the obvious shortcoming of having multiplici-
ties of private values greater than 1 in a QI-group is that in most cases the degree
of generalization of QI values of that QI-group would grow with the multiplicity.
Hence, as it will be shown in Section 4.2, an objective of our devised generaliza-
tion algorithm is to minimize the multiplicity of private values in QI-groups.
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Definition 7 (hc-safety). Given a history of released tables H∗
1,j and a QI-

group Q ⊆ T ∗
i ∈ H∗

1,j, Q is hc-safe with degree n if either: i) no set of respon-
dents is related with the respondents of tuples in Q by a historical correlation
in H∗

1,j, or ii) the cardinality of each set of respondents that is related with the
respondents of tuples in Q by a historical correlation in H∗

1,j is greater than or
equal to n.

Definition 8 ((m, n)-historical safety). Given m, n ∈ N, n ≤ m, a gener-
alization function G is (m, n)-historically safe if, for each table Tj+1, for each
history of released tables H∗

1,j satisfying weak m-invariance, and

T ∗
j+1 = G(Tj+1,H∗

1,j, R, ϑ)

(R is the of tuples respondents, and ϑ is the function that maps each respondent
in R into her set of possible private values), the following conditions hold:

i) 〈H∗
1,j , T

∗
j+1〉 satisfies weak m-invariance;

ii) each QI-group Q ⊆ T ∗
j+1 is hc-safe with degree n with respect to 〈H∗

1,j , T
∗
j+1〉.

The above definition states that, in order to be (m, n)-historically safe, a general-
ization function must i) preserve weak m-invariance and ii) generate QI-groups
such that the cardinality of sets involved in historical correlations that can be
derived from them is greater than or equal to n. Condition i) is imposed to
protect against the attacks identified in [5]; condition ii) is imposed to protect
against historical correlations.

In order to guarantee that the probability of privacy breach for a tuple t is
below a certain threshold h it is necessary to have an estimate of the proba-
bility p of released tuples to be compromised, and to determine the maximum
cardinality L of its lifespan (i.e., the maximum number of times that t can be
republished). Note that L is an upper bound for the cardinality of LH∗

1,j
shown

in the definitions of private value restriction functions (see Section 3). In general,
the values of p and L depend on the domain of the data. For instance, a hospital
releasing microdata about patients and diseases may estimate that an adversary
may get to know the sensitive association about no more than 4% of its patients
(hence, p = 0.04), and it can decide to republish each tuple at most 24 times
(hence, L = 24). Once values for p and L have been determined it is possible to
express the concept of safety of a generalization function against a threshold h.

Definition 9 (pvr-safe generalization function). A generalization function
G is pvr-safe with threshold h ∈ (0, 1] if, for any history H∗

1,j of tables generalized
by G, ppb(〈T ∗

1 , . . . , T ∗
i 〉, t) < h for each i ∈ [1, j] and for each tuple t ∈ Ti.

4.2 The Cor-Split Algorithm

Given parameters p and L, the chosen level m of weak m-invariance to be en-
forced, and the required threshold h, the goal of the algorithm proposed in this
paper is to enforce (m, n)-historical safety with the smallest possible value of
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Input: Parameters p, L, m, h.
Output: Parameter n.

1: f(p, L, m, n) =
(
1 − (1 − p)L ·

(
1 −

(
p − p

m

)n
)L·� m

n
�)m−1

2: if � n′ ∈ [1, m] | f(p, L, m, n′) < h then
3: n := −1
4: else
5: n := min(n′ ∈ N+ | f(p, L, m, n′) < h)
6: end if
7: return n

Fig. 3. The n-Choose algorithm for determining the value of n

Input: Tj+1 is the microdata table at time τj+1; H∗
1,j is the history of released tables;

H is the history of original tables; R is the set of tuples respondents; ϑ is the function
that maps each respondent in R into her set of possible private values; m, n ∈ N are
the parameters for historical safety; Aqi is the set of QI attributes.
Output: the generalized table T ∗

j+1.
1: T ∗

j+1 := ∅
2: S- := {t ∈ Tj+1 | ∀ T ∈ H, t /∈ T}
3: S∩ := Tj+1 \ S-
4: B := Division(S∩)
5: for all buckets B ∈ B do
6: Balancing(B, S-)
7: end for
8: B′ := Assignment(B, S-, m, ϑ)
9: for all buckets B ∈ B′ do

10: T ∗
j+1 := Cor-Partition(T ∗

j+1, B, Aqi, n)
11: end for
12: return T ∗

j+1

Fig. 4. The Cor-Split algorithm

n that guarantees that the probability of privacy breach is below h. Since we
assume that those parameters do not change during the release history, the pa-
rameter n is chosen before the generalization of the first table, and it remains
unchanged throughout the release history. The algorithm for choosing n is shown
in Figure 3. Note that for certain values of p, L, m, and for a required threshold h,
the probability of privacy breach could be higher than h for every possible value
of n. In this case, microdata would not be released unless the value of parame-
ters L or m are changed. In the other case, microdata are generalized using the
value of n determined by the algorithm in Figure 3. Our devised generalization
algorithm, shown in Figure 4, is a significant modification of the algorithm for
m-invariant generalization proposed in [5]. Note that the algorithm in [5], though
enforcing weak m-invariance, does not provide guarantees about the cardinality
of sets of respondents involved in historical correlations. Moreover, our empirical
study (reported in Section 5) shows that QI-groups generated by that algorithm
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may allow an adversary to derive several historical correlations between small
sets of respondents, determining severe privacy threats.

Overview of our generalization algorithm. Given the original table Tj+1
at time τj+1, the history H∗

1,j of generalized tables published before τj+1, the set
R of respondents, and function ϑ, the output of our generalization algorithm is
the generalized table T ∗

j+1. Our algorithm can be roughly divided into 4 phases.
While the first 3 phases are essentially identical to the ones of the algorithm
in [5], Phase 4 is different, since in that phase (m, n)-historical safety is enforced.
Adopting the notation of [5] we call S∩ the set of tuples in Tj+1 that have been
released before τj+1, and S- the remaining tuples in Tj.

– Phase 1: Division. This phase consists in partitioning the set of tuples in
S∩ into buckets. Each bucket is uniquely identified by a signature among the
ones of tuples in S∩, and it contains only tuples that appeared in H∗

1,j in
QI-groups having the same signature of the bucket.

– Phase 2: Balancing. The balancing phase is applied in turn to each bucket.
Its goal is to guarantee that every private value of the bucket’s signature
is represented by the same number of tuples in the bucket. Buckets are
balanced by inserting tuples belonging to S- as long as this is possible; if no
other tuples in S- can be used to balance the bucket, counterfeit tuples are
inserted.

– Phase 3: Assignment. In this phase, the remaining tuples in S- are as-
signed to the existing buckets as long as they remain balanced. If no other
tuple can be assigned to the existing buckets without violating balancing,
new buckets are created, and the remaining tuples are assigned to the new
buckets such that the new buckets are balanced. The cardinality of the sig-
nature of new buckets is greater than or equal to m.

– Phase 4: Cor-Partition This phase is applied in turn to each bucket. In
this phase, buckets are partitioned into weak m-invariant QI-groups such
that, if a novel historical correlation can be identified by matching the new
QI-groups with those released during H∗

1,j , then the cardinality of the sets
of respondents involved in it is greater than or equal to n; i.e., QI-groups
are hc-safe with degree n. For brevity, when the degree n of hc-safety is
clear, we say that a QI-group is hc-safe (or hc-unsafe), omitting the degree
of hc-safety. This phase is described in detail in the following of this section.

Cor-Partition. The algorithm pseudo-code is illustrated in Figure 5. Consider
a generic bucket B composed of s · l tuples (s ≥ m), where s is the cardinality of
the signature of B (named B.sig), and l ≥ 1. After an initialization phase (line
1), the algorithm creates, for each QI attribute in Aqi, a list of the tuples in B
partially ordered according to their value for that attribute (line 2). We denote
Li the list regarding attribute Aqi

i , and L the set of such lists. Then, a cycle is
repeated until every tuple in B is assigned to a QI-group (lines 3 to 20).

At first, each list is traversed in turn to obtain a weak m-invariant QI-group Qi

(lines 6 to 8) by selecting, for each private value belonging to the signature of the
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Input: parameters T ∗
j+1, B, Aqi, n obtained from the Cor-Split algorithm.

Output: T ∗
j+1 incremented with the anonymization of tuples in B.

1: int c := 0; L := ∅; Q
(old)
i := ∅

2: for all Aqi
i ∈ Aqi do: List Li := order(B, Aqi

i ); Di := ∅; L := L ∪ {Li}
3: repeat
4: Q := ∅; SP := ∅
5: for all Li ∈ L do
6: repeat
7: QI-group Qi := createQIG(Li, Di, B.sig)
8: until hcSafe(Qi, n, j) ∨ (|Qi| < |B.sig|)
9: if |Qi| < |B.sig| then: Qi := createQIG(Li, ∅, B.sig); Q

(temp)
i := Qi; c′ := c

10: while
(
¬ hcSafe(Qi, n, j)

)
∧
(
c′ > 0

)
do

11: c′i := c′ − 1; Qi := Qi ∪ QIGc′

12: end while
13: if ¬ hcSafe(Qi, n, j) then: Qi := Q

(temp)
i ; Qi.setCounterfeits()

14: end for
15: i′ := i ∈ N |Qi.sp = min

∀j∈N

{Qj .sp}
16: QIGc := Qi′ ; T ∗

j+1.removeDuplicates(QIGc) T ∗
j+1 := T ∗

j+1∪ QIGc

17: B := B \ QIGc; c := c + 1
18: for all Li ∈ L do: Li := Li.remove(QIGc); Di := ∅
19: until B = ∅
20: return T ∗

j+1

Fig. 5. The Cor-Partition algorithm

bucket, the first tuple in Li having that value, temporarily discarding those tuples
Li that would determine hc-unsafe QI-groups. Temporarily discarded tuples are
randomly chosen from tuples in Qi and replaced with other tuples in B having the
same private value, as long as either the resulting QI-group is hc-safe, or no more
tuples are available from B. In the latter case (lines 9 to 12), an hc-unsafe QI-group
Q

(temp)
i is created, and it is merged with a growing number of QI-groups previ-

ously created from the same bucket, until either the resulting QI-group is hc-safe,
orno other availableQI-group remains. In the latter case (line 13), Q(temp)

i is trans-
formed by substituting a growing number of tuples in it with counterfeits, until the
resulting QI-group Qi is hc-safe. Note that counterfeit tuples are inserted only in
the case in which no other operation is possible to generate a hc-safe QI-group.

Hence, after line 14, for each QI attribute in Aqi a hc-safe QI-group is avail-
able. For each of these QI-groups we call semiperimeter the sum of the normal-
ized lengths of the interval of each QI value of tuples in it. Obviously, smaller
semiperimeters correspond to finer-grained generalization. For this reason, the
QI-group Qj having the smallest semiperimeter is chosen (line 15). Then (lines
16 to 18), tuples in Qj are removed from B, as well as from the lists in L, and
are added to T ∗

j+1, after having possibly removed duplicate tuples (indeed, in
line 11, Qj could have been merged with QI-groups already inserted into T ∗

j+1).
After that, if the bucket contains other tuples the algorithm continues from line
4; otherwise it returns the generalized table T ∗

j+1.
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Input: parameters Q, n, j obtained from the Cor-Split algorithm.
Output: true if Q is hc-safe with degree n; false otherwise.
1: for int i := 0 to j do
2: multiset (C, ω) := multiset(∅, ω)
3: for all generalized tuple t∗ ∈ Q do
4: respondent r := t∗.r
5: original tuple t := r.t
6: QI-group Q′ := t.QI(i)
7: if Q′ �= null then
8: C := C ∪ Q′.id
9: end if

10: end for
11: l := max

c∈C
(ω(c))

12: if |Q| − n < l < |Q| then
13: return false
14: end if
15: end for
16: return true

Fig. 6. Algorithm hcSafe for checking the hc-safety of a QI-group

Checking hc-safety. The algorithm for checking the hc-safety of a QI-group
to be released in T ∗

j+1 is illustrated in Figure 6. Given a release history H∗
1,j , a

QI-group Q and a degree n ∈ N, it follows from Definition 3 that in order to
check whether Q is hc-unsafe it is sufficient to check whether it exists a set of l
respondents whose tuples belonged to the same QI-group both in release T ∗

j and
T ∗

i ∈ H∗
1,j, with l smaller than |Q| and greater than |Q|−n. Hence (lines 2 to 10),

for each release T ∗
i ∈ H∗

1,j the algorithm creates a multiset that contains, for each
respondent r of tuples in Q, the unique identifier of the QI-group that included
r’s tuple in release T ∗

i (if it exists). Then (line 11), the maximum multiplicity
l of the elements of the multiset is calculated; i.e., l is the maximum number
of respondents of tuples in Q whose tuples also belonged to the same QI-group
in T ∗

i . If it exists at least one release T ∗
i such that the value l is smaller than

|Q| and greater than |Q| − n the algorithm determines that Q is hc-unsafe with
respect to the degree n; otherwise Q is hc-safe with degree n.

pvr-safety. The following lemma states a sufficient condition to ensure that a
generalization function is pvr-safe.

Lemma 3 (sufficient condition for pvr-safety). Let p be the probability of
released tuples to be compromised, L the maximum number of times that a single
tuple can be republished, h ∈ (0, 1] the threshold for pvr-safety, and m ∈ N+ the
required level of weak m-uniqueness. Then, if G is a generalization function en-
forcing (m, n)-historical safety with n = n-Choose(p, L, m, h), then G is pvr-safe
with threshold h.
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(b) m = 6, |T ∗| = 200, 000

Fig. 7. Number of hc-unsafe QI-groups generated by the m-invariance algorithm

The soundness of the Cor-Split algorithm is proved by the following theorem.

Theorem 3 (pvr-safety of the Cor-Split algorithm). The Cor-Split algo-
rithm computes a pvr-safe generalization function.

5 Experimental Evaluation

Experiments were performed using a real census dataset published by the Min-
nesota Population Center and available at http://ipums.org/. The dataset is
composed of 600, 000 tuples. Each tuple stores information about an individual;
it includes 4 QI-attributes (age, birthplace, education, gender) and one private
attribute income having 50 possible values, each one representing an income
range. In order to evaluate our technique with respect to different scenarios, we
simulated insertions and deletions from the dataset at different rates. Hence, we
started with a table T1 including 200, 000 (resp. 60, 000) tuples, and we obtained
a table T2 by randomly deleting 10% (resp. 33%) of T1’s tuples and inserting
the same number of tuples randomly chosen from unpublished tuples. The same
procedure was repeated with the subsequent tables to obtain a history having
length 21 (resp. 24). In these experiments we assumed that the probability of a
tuple to be compromised is p = 0.04, the enforced level of (weak) m-invariance is
m = 6, the maximum length of the release history of each tuple is L = 21 (resp.
L = 24), and the safety threshold is h = 0.1. Given these parameters, the level
n of (m, n)-historical safety to be enforced is n = 3. Results of experiments with
different values for parameters m and n (m = 4÷10, n = 1÷5) are not reported
here for lack of space; however, they essentially lead to the same conclusions as
the ones reported below.

Historical correlations determined by m-invariance. The first set of ex-
periments aimed at evaluating the threat determined by private value restriction
functions when microdata are generalized applying the m-invariance technique.
In particular, we adopted the algorithm in [5] to generalize microdata tables, and
at any release we counted the number of released QI-groups that were hc-unsafe
with respect to the degree n = 3; hc-unsafe QI-groups were recognized using the
algorithm reported in Figure 6. Results in the considered scenarios are illustrated

http://ipums.org/
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(a) m = 6, n = 3

Fig. 8. Number of counterfeits introduced by the Cor-Split algorithm
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(a) m = 6, n = 3, |T ∗| = 60000
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Fig. 9. Query error

in Figure 7, and show that many released QI-groups may allow an adversary to
derive historical correlations between small sets of respondents (having cardinal-
ity 1 or 2), determining relevant privacy threats.

Counterfeits and query error. The second set of experiments was performed
on microdata generalized by a Java implementation of the Cor-Split algorithm.
Tuples were generalized in order to enforce (m, n)-historical safety with m = 6
and n = 3. At first, we measured the number of counterfeit tuples introduced
by Cor-Split. Results are illustrated in Figure 8 and show that in both scenarios
the algorithm introduced a few counterfeits. Then, we compared the utility of
microdata generalized by Cor-Split and by the algorithm for m-invariance in
terms of the precision in answering aggregate queries (e.g., count the number
of individuals in the table whose QI-values belong to certain ranges). Queries
were randomly generated according to different values of expected selectivity, i.e.,
expected ratio of tuples to be returned by the query. For each value of expected
selectivity, 10, 000 queries were randomly generated. The imprecision in query
answering was calculated in terms of the median error of query answers. The
results reported in Figure 9 show that the accuracy of query answering obtained
by Cor-Split is very close the to one observed with the use of the generalization
algorithm for m-invariance, with the advantage of protecting from the threats
we have identified.
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6 Conclusions and Future Work

In this paper we have addressed privacy threats that may arise when a certain
view over a dynamic dataset has to be released multiple times during its history.
We have shown the limits of existing techniques to protect privacy in the case
an adversary is able to recognize correlations between sets of tuples released
in different views and even a small percentage of tuples is compromised. After
having formalized the problem, we have provided a probabilistic study of the
identified threats, and we have proposed a sound defense algorithm that has
been experimentally validated. Future work includes the study of other attacks
based on correlation between different releases. In particular, we are currently
investigating the case in which tuples for the same respondent in different releases
can have different private values; in this scenario our defense can still be effective
against the attacks considered in this paper, but the adversary may exploit a
different kind of historical correlation, based on private values associated to
candidate respondents in a history of released tuples.
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Abstract. Data summarization is an important data mining task which aims to 
find a compact description of a dataset. Emerging applications place special re-
quirements to the data summarization techniques including the ability to find 
concise and informative summary from high dimensional data, the ability to 
deal with different types of attributes such as binary, categorical and numeric 
attributes, end-user comprehensibility of the summary, insensibility to noise and 
missing values and scalability with the data size and dimensionality. In this 
work, a general framework that satisfies all of these requirements is proposed to 
summarize high-dimensional data. We formulate this problem in a bipartite 
graph scheme, mapping objects (data records) and values of attributes into two 
disjoint groups of nodes of a graph, in which a set of representative objects is 
discovered as the summary of the original data. Further, the capability of repre-
sentativeness is measured using the MDL principle, which helps to yield a 
highly intuitive summary with the most informative objects of the input data. 
While the problem of finding the optimal summary with minimal representation 
cost is computationally infeasible, an approximate optimal summary is achieved 
by a heuristic algorithm whose computation cost is quadratic to the size of data 
and linear to the dimensionality of data. In addition, several techniques are de-
veloped to improve both quality of the resultant summary and efficiency of the 
algorithm. A detailed study on both real and synthetic datasets shows the effec-
tiveness and efficiency of our approach in summarizing high-dimensional data-
sets with binary, categorical and numeric attributes. 

Keywords: Data Summarization, High-Dimensional Data, Bipartite Graph, the 
MDL Principle. 

1   Introduction 

Data summarization is an important data mining task which aims to find a compact 
description of a dataset. Many techniques have been proposed to summarizing  

                                                           
* Corresponding author. 
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transactional databases [19], categorical databases [5, 18], frequent patterns [2, 8], 
query results [11], texts [13], rules [9, 12] and graphs [14, 17]. Today, numerous 
systems and applications need to analyze high-dimensional datasets such as the gene 
expression data, collections of sensor network readings, document-term relationship 
data and market basket data, etc.. Below, we list some of these application domains. 

Gene Expression Data. In biomedical research, high-throughput experimental 
data, like microarray, is a typical high-dimensional data, where the expression 
level of a set of genes or proteins is recorded under a set of conditions. The ex-
pression levels under each condition can be either binary (expressed or not) or 
categorical (high, medium, and low expression level) or numeric (the actual value 
of expression). Summarizing such data can yield groups of genes with common 
functionalities and behaviors, helping to find potential interactions among genes. 

Document Term Data. In a search engine system, the document term relation-
ship can be represented in a matrix, in which each row corresponds to a document 
and each column corresponds to a term. Each cell ij of the matrix can be either 
binary (the jth term is contained by the ith document) or numeric (the value of 
tf/idf ). Summarizing such data can generate groups of documents with similar 
semantics, which can be used to classify documents and improve the performance 
of the document index. 

Sensor Network Data. Sensor network data contains periodic readings from a 
large set of sensor nodes over a period of time. If we regard sensors as objects 
and time points as the set of attributes, the groups of sensors with similarly evolv-
ing readings can be discovered, which can be used to direct the energy efficient 
data collection schemes such as online aggregation and semantic routing. 

Market Basket Data. Market basket data contains information about products 
bought by customers. Regarding customers as rows and products as columns, the 
data elements can be binary (purchased or not) or numeric (quantity/sales of a 
purchase for a product). Summarizing the data to find groups of customers with 
similar purchasing patterns can be helpful to customer segmentation and targeted 
advertising. 

A common topic in the above applications is the need to analyze datasets contain-
ing a large set of attributes which could be binary, categorical, numeric, or mixture of 
them. Summarizing such data is difficult, since it is hard to formulate the similarity 
between such objects in a uniform measure, due to the variant types of attributes. The 
requirements posed by such applications motivated us to develop a new solution that 
aims to summarize high-dimensional data with variant types of attributes effectively 
and efficiently.  

1.1   Requirements for Techniques to Summarize High-Dimensional Data 

In this section, we present the requirements to summarize high-dimensional data, 
which motivated our work on developing new solution to find high quality summary 
for high-dimensional data with variant types of attributes. 
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Concise and informative summary. A summary should be a compact descrip-
tion of a set of objects with little information loss. These two criteria are contra-
dictive, for the coverage of a summary is positively correlated to its size in most 
of time. A good solution should be able to trade off between the conciseness and 
information loss, to construct the summary with reduced representation size while 
the important characteristics of the data are emphasized. 

Adaptive to variant attributes. Datasets from different applications may contain 
variant types of attributes. Further, a dataset may contain attributes with different 
types. For example, the forest fires dataset [6] contains both categorical and nu-
merical attributes. The adaptiveness to variant types of attributes is important for 
the usability of a data summarization technique. 

Comprehensibility of summary. Data summarization aims at providing a com-
prehensible overview of data, thereby allowing an analyst to get an idea about the 
data easily without actually having to analyze the entire data. Thus, it is critical to 
design the summary representation which can be easily perceived by user. For 
high-dimensional datasets, it is especially important for a summary having a sim-
ple representation, because most visualization techniques do not work well for 
high-dimensional data. 

Scalability. Finally, the solution should be efficient and scale well with the di-
mensionality and the size of input data. 

Other requirements related to the usability issue include insensitiveness to outliers 
and the ability to handle missing values, which are common in real world datasets.  

1.2   Contributions and Paper Layout 

We propose a new research problem of discovering optimal summary of high-
dimensional data with variant types of attributes. A general framework, referred as 
BIGFIRES (a BIpartite Graph Framework with Illustrative REpresentatives for Sum-
marization), is developed to satisfy all above requirements. BIGFIRES extracts the set 
of most representative objects as the summary of high-dimensional data, which is 
compact and of high coverage. The most representative objects are listed in the de-
scending order of their coverage, along with their values in each attribute. Since each 
element of the summary is a real object from the data without any transformation, 
such a representation by illustration is easy to be understood by user. Both theoretical 
analysis and empirical evaluation shows that BIGFIRES scales quadratic to the num-
ber of objects, and linearly with the dimensionality of objects. 

The rest of the paper is organized as follows. In Section 2, the problem of con-
structing summary by the set of most representative objects is defined and related 
concepts are introduced. In Section 3, we introduce our algorithm. In Section 4, we 
evaluate the effectiveness and efficiency of BIGFIRES on real and synthetic datasets. 
We introduce related work in Section 5 and then summarize our work and discuss 
some future research directions in Section 6. 
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2   Problem Statement 

In this section, we state the problem of summarizing high-dimensional data sets that 
have binary, categorical and numeric attributes. We denote the dataset as D = O × A, 
where O stands for a set of objects O= {O1, O2, ..., On} and A stands for a set of at-
tributes A = {A1, A2,…, Am}, for each Oi O, we define Oi = {Oi1, Oi2, … , Oim} 
(1 i n), in which Oij is the value of the object Oi on the attribute Aj. 

To achieve a uniform and meaningful similarity measure for objects with different 
types of attributes, a bipartite graph representation is introduced to represent the data. 
We first present the bipartite graph representation for a dataset D. 

2.1   The Bipartite Graph Representation 

A bipartite graph G=<V1, V2, E> is constructed to represent D in two steps: 

Step 1. Preprocessing of numeric attributes. For each numeric attribute Ai A, 
transform Ai into a categorical attribute Ai’ by techniques such as discretization, then 
replace the original numeric values of Ai with categories in Ai’. This is a preprocess-
ing step in which better discretization quality could be achieved with advices from 
domain experts. For instance, an attribute of gene expression level is usually trans-
formed into a categorical attribute with three categories: low, medium, and high  
expressed, each of which has its range of expression level. Data discretization is 
common in handling numeric attributes of high-dimensional data, such as subspace 
clustering [3] as well as data summarization [5]. After this step, the dataset contains 
only binary and categorical attributes. 

Step 2. Transforming D into G. In this step, we construct a bipartite graph from a 
dataset with only binary and categorical attributes. The set of objects and the values of 
attributes are mapped into the two disjoint groups of nodes in the resultant bipartite 
graph, while each edge represents for an object containing a value. Without any extra 
effort to handle the missing values, they can be ignored safely in this transformation. 
The detailed transform process is listed as follows: 

1 For each object Oi O, put Oi into V1  
2   For each value of Oi on attribute Aj (i.e. Oij) 
3     If Aj is a binary attribute 
4       Put Aj into V2 if Aj V2 
5       Put an edge e<Oi, Aj> into E if Oij = 1 
6     If Aj is a categorical attribute 
7       Put Aj.Oij into V2 if Aj.Oij V2 
8       Put an edge e<Oi, Aj.Oij > into E 
9   End For 
10 End For 
 

After the transformation, the bipartite graph G contains all objects of D in V1 (i.e. 
V1 = O), and all binary attributes and values of categorical attributes are contained in 
V2, while E contains relationships between objects and the values.  

We define the value set of an object Oi as its neighbor set in G, denoted as Ni. 
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Exmaple 1. A synthetic dataset of cars is present in table 1, which has its numeric 
attribute HorsePower discretized to a categorical attribute with equi-length interval. 
The constructed bipartite graph is shown in Figure 1. The value set of Car1 is 
N1={BC.Silver, CD, Weight.100~200}. 

Table 1.  A synthetic dataset of cars 

Cars Body Color (BC) DVD CD Horsepower (HP) … 
Car1 Silver 0 1 100~200 … 
Car2 Black 1 0 200~300 … 
Car3 Black 0 0 0~100 … 
Car4 Silver 0 1 100~200 … 
… … … … … … 

Car1 Car2 Car3 Car4

BC.
Silver

HP.
200~300DVD

HP.
0~100

HP.
100~200CDBC.

Black

 

Fig. 1. An example bipartite graph constructed by the dataset in Table 1 

2.2   The Problem Formulation with the MDL Principle 

Minimum Description Length (MDL) principle [16] provides a direction for achieve a 
concise but informative summary from data. In the case of inferring a model from a 
dataset, a simple summary may result more description error than a complex sum-
mary, while the complex one may be too large, counteracting the reduction of descrip-
tion error it brings. The MDL principle states that the best model M to describe a set 
of data D is the one which minimizes the total representation cost of M and the data 
modeled by M, which can be denoted as cost(M) + cost(D | M). From this perspective, 
we view summarization as an extraction process from D to a smaller set of representa-
tive objects S as the model to summarize the dataset D with an objective of minimize 
the sum of (i) the representation cost of S and (ii) the representation cost of D when it 
is represented by S. 

Below, we define the concepts of summary and representation cost with the bipar-
tite graph to formulate the summarization problem with the MDL principle. 

Definition 1. (Summary) A summary S of a dataset D, is a set of representative ob-
jects S = {OS1, OS2, ..., OSl } such that (i) S  O and (ii) each OSi  S represents a 
subset of O. 

Definition 2. (Representation cost of object(s)) The representation cost of an object 
Oi is the size of its value set, that is, cost(Oi) = |Ni|. Further, the representation cost of 
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a set of objects P O is the sum of the representation cost of the objects belonging to 
it, that is cost(P) = ( ). We can conclude that cost(O) = | |  =|E|. 

Definition 3. (Representation cost for an object Oi represented by another object 
Oj) For two objects Oi, Oj O, the representation cost of Oi represented by Oj is the 
edit distance of the value sets of the two nodes. cost(Oi | Oj) = | Ni - Nj | + | Nj - Ni |.  

The intuition of the concept of representation cost between objects is that an object Oi 
can be transformed to Oj by adding into Ni the values that are not in Ni but in Nj (i.e. 
Nj - Ni), then removing the values not in Nj but in Ni (i.e. Ni - Nj) from Ni. In addition, 
we have cost(Oi | Oj) = cost(Oj | Oi) and cost(Oi | Oi) = 0. 

Definition 4. (Representation cost for an object Oi represented by a summary S) 
For an object Oi O and a summary S, the representation cost of Oj represented by S is 

cost(Oi | S) = 
min ( | ), if min ( | ) < ( )( ), otherwise  

When the representation cost for Oi represented by one of the object OSl  S achieves 
a minimal cost c, we compare c with cost(Oi). If c is less than cost(Oi), which means 
the representation cost of Oi can be smaller when represented by S, then the represen-
tation cost is the minimum c. Otherwise, when c is not less than cost(Oi), since S 
cannot reduce the representation cost for Oi, the cost of Oi remains without any 
change.  

Definition 5. (Representation cost for a set of objects O represented by summary 
S) For a set of objects O and a summary S of O, the representation cost of O repre-
sented by S is cost(O | S) = ( | ). 
Example 2. As shown in Figure 2(a), a bipartite graph G is presented with the set of 
objects {O1, O2, O3, O4} and the set of values {v1, v2, v3, v4, v5}. cost(O1) = 3, for N1 = 
{v1, v2, v3}; cost (O2) = 4, for N2 = {v1, v2, v3, v4}; cost (O3)= 2, for N3 = {v4, v5}, cost 
(O4)= 3, for N4 = {v3, v4, v5}; cost (O) = 12. cost(O2|O1)=1, for there is only one value 
should be edited (remove v4 from N2) when transforming N2 to N1. 

So far, we have defined the concepts of summary and representation cost in several 
cases. Below, we define the best summary which achieves the minimal total represen-
tation cost that follows the MDL principle. 

Definition 6. (Optimal Summary) A summary S of a set of objects O following the 
MDL principle is referred as the optimal summary, if the total representation cost of 
summary S and O represented by S is minimized. Formally, the optimal summary S of 
O satisfies: 

    argmin  (cost(S) + cost(O|S)). 

Using the Definition 6, the problem of summarizing a high dimensional dataset is 
reducing to discovering the optimal summary of the bipartite graph that represents the 
dataset. In this paper, we investigate efficient methods to discover the optimal sum-
mary. 
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Example 3. The optimal summary of the graph in Figure 2(a) is S= {O1, O3}, where 
cost(S) + cost(O | S) = cost(O1) + cost(O3) + cost(O1|O1) + cost(O2|O1) + cost(O3|O3) + 
cost(O4|O3) = 3 + 2 + 0 + 1 + 0 + 1 = 7. The summary S is presented in Figure 2(b) as 
graph G’. 

O1 O3O2

v1 v5v4v3v2

O4 O1 O3

v1 v5v4v3v2

        (a)                                      (b)  

Fig. 2. An Example Bipartite Graph (a) graph G; (b) graph G’, the summary of G 

3   Discovering of the Optimal Summary 

The problem of discovering the optimal summary for a given set of objects is diffi-
cult. To achieve the exact answer, one has to enumerate all subset of O and pick the 
one with the minimal total representation cost. The complexity of such a brute force 
solution is O(2|O|), which is computational infeasible.  

A heuristic solution for the optimal summary problem is to find a set of most repre-
sentative objects to approximate the exact optimal summary. We first formulate the 
measure of representativeness of an object. 

Intuitively, an object with high representativeness can represent many other objects 
with a significant reduction in the total representation cost. We use the total reduced 
cost of an object to measure its representativeness. First, we define the reduced cost 
between objects. 

Definition 7. (The reduced cost of object Oi represented by Oj) The reduced cost of 
object Oi represented by Oj is defined as RC(Oi | Oj) = cost(Oi) -cost(Oi | Oj) 

The reduced cost of object Oi when represented by Oj is used to measure how well 
Oi can be represented by Oj: the larger reduced cost, the better Oj can represent Oi. On 
the other hand, if RC(Oi | Oj)  0, we can conclude that it is infeasible for Oj to repre-
sent Oi. 

For an object Oj to represent Oi well, a positive reduced cost is not sufficient. Fig-
ure 3 shows an example: RC (v | u) >0, but u cannot represent v well. To tackle this 
problem, we use the relationship of valid representation between objects Oi and Oj,. 

Definition 8. (The relationship of valid representation between objects Oi and Oj) 
Objects Oi can be a valid representation of Oj if and only if RC(Oi | Oj) >0 and RC(Oj | 
Oi) > 0. The relationship of valid representation between Oi and Oj is denoted as  

r(Oi, Oj) = 
, if ( | ) > 0 ( | ) > 0, otherwise . In fact, it is straight for-

ward to have r(Oi, Oj)=r(Oj, Oi). 
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v u

a dcb
 

Fig. 3. RC(v | u) > 0, but u cannot represent v well. 

The relationship of valid representation is of several desirable properties. 

Property 1. If r(Oi, Oj)=true, | Ni  Nj | > max(|Ni|/2, |Nj|/2). 

Proof. From RC(Oi | Oj) >0 and RC (Oj | Oi) > 0,  
we have | Ni | - (| Ni - Nj | + | Nj - Ni | )>0 … (1) 
and  | Nj | - (| Nj - Ni | + | Ni - Nj | ) >0 …  (2) 
From (1)  | Ni | - (| Ni - Nj | + | Nj - Ni | )  

= | Ni | - (| Ni - (Ni  Nj) | + | Nj - (Ni  Nj)| ) 
= | Ni | - (| Ni | + | Nj | - 2|Ni  Nj|) = 2|Ni  Nj| - | Nj | > 0 

       |Ni  Nj| > |Nj|/2 ….(3) 
     Similarly, From (2) |Ni  Nj| > |Ni|/2……(4) 

     Together with (3) and (4) |Ni  Nj| > max(|Ni|/2, |Nj|/2).                                        
 

This property means when two objects Oi and Oj can be valid representation to each 
other, the number of common values is greater than half number of their values. 

Property 2. If r(Oi, Oj)=true, then |Nj|/2 < |Ni| < 2 |Nj| 

Proof. From RC(Oi | Oj) >0 and RC(Oj | Oi) > 0,  
From equation (3) and (4) in the above proof, we have 
2|Ni  Nj| > |Ni| and 2|Ni  Nj| > |Nj|,  

From the former we have |Ni| < 2| Ni  Nj |  2 |Ni|, 
Similarly, from the latter we have |Nj|/2 < |Ni  Nj|  |Ni|, 

In summary, we have |Nj|/2 < |Ni| < 2 |Nj|.                                                              
 

If Oi is a valid representation of Oj, this property limits the size of Ni by no less than 
half and no more than twice the size of Nj. In other words, an object should have simi-
lar size on the value set with that of objects it represents. 

We denote the set of objects can be validly represented by object Oi as VRi, for-
mally, VRi = { Oj | r(Oi, Oj) = true, Oj  O} . We call VRi as the validly represented set 
of object Oi. 

Definition 9. The total reduced cost of object Oi is the sum of the reduced cost of 

objects in VRi when represented by Oi. Formally, RC(VRi | Oi) = ( | ) 
The total reduced cost of an object is a good measure for selecting the most repre-

sentative objects which compose an approximate optimal summary. In the rest of this 
section, we will introduce our summarization method based on greedy search, as well 
as the optimization heuristics.  
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3.1   The Greedy Algorithm to Discover Approximate Optimal Summary 

Algorithm: Approximate Optimal Summary 
INPUT: A Bipartite Graph G<V1, V2, E> 
OUTPUT: Summary S 

1   Initialization: for each object Oi in V1, calculate VRi and RC(VRi | Oi)  
2   Oremain = V1, S=  
3   While (Oremain )) 
4       Find Oi with maximal RC(VRi | Oi) in Oremain 
5       S = S  { Oi } 
6       Oremain = Oremain –VRi 
7       For each object Oj in Oremain 
8           A = VRi VRj 
9           If (A )) 
10              Update VRj = VRj - A 
11              Update RC(VRj | Oj) = RC(VRj | Oj) - ( | ) 
12      End for 
13  End while 
14  Output S. 

The algorithm is designed to discover approximate optimal summary using a 
greedy search approach. At the initialization phase, for each object, the validly 
represented set is calculated, along with the total reduced cost. In the following 
iterations, it repeats Lines 3-12 by selecting the object Oi which has the maximal 
total reduced cost (Line 4) and adding it into the summary (Line 5). After remov-
ing the objects that are validly represented by Oi from the remaining object set 
Oremain (Line 6), it is necessary to update the validly represented set and the total 
reduced cost for each remaining object, if the validly represented set contains any 
object that has just been removed (Line 7-12). The iteration procedure is termi-
nated when the remaining object set is empty, that is, all objects have been cov-
ered by the summary.  

The process of initialization calculates the reduced cost of each pair of objects, in 
which the cost of computation for the overlap of two sets of values is linear to the 
average size of the value set, thus takes O(n2d) in time, where n is the number of ob-
jects and d is the dimensionality. The dimensionality is the sum of the number of 
categorical/numeric attributes and the average transaction length (count of ‘1’) for 
binary attributes. The process of finding the object with maximal total reduced cost is 
O(n), and updating the total reduced cost for each of the remaining objects is also in 
time O(n). The number of iterations is n in worst case, so it can be terminated in time 
O(n2). Hence, the cost of the algorithm is O(n2d + n2). 

3.2   Optimization Heuristics 

We developed two optimization heuristics to improve the effectiveness and efficiency 
of the algorithm. 
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3.2.1   Outlier Detection 
An outlier is defined as an object that has a small set of validly represented objects. 
For instance, an object which can only be validly represented by itself could not con-
tribute to reduce the total representation cost.  

In the algorithm, each outlier poses an iteration and being added into the summary. 
Detecting outlier early benefits both the performance of the algorithm and the con-
ciseness of the resultant summary. There are two kinds of outliers which need to be 
handled respectively. 

Natural Outliers: The natural outliers are the set of objects each of which can only 
be validly represented by itself. Such kind of outliers is caused by noise or exception. 
We can detect natural outliers in the initialization process: when the computation of 
an object’s validly represented set is over, we can check its size to identify whether 
the object is an outlier. If so, it should be removed from the set of objects. However, 
natural outliers may be valuable for carrying exceptional patterns. They also can be 
recorded for applications that are interested in such patterns. 

Derived Outliers: The derived outliers are generated in the update phase of the  
algorithm, where the set of valid represented objects is reduced to a small one. Such 
outliers can be detected right after the update phase and removed from the set of re-
maining objects.  

The ability of handling these two kinds of outliers is helpful to discover a more 
concise summary. 

3.2.2   Reassignment of Objects 
The reassignment is a post-processing step in which the validly represented set of 
each object in summary is turned into the best represented set. The best represented 
set is defined as follows: for an object Oi in summary, its best represented set contains 
those objects, each of which achieves the maximal reduced cost with Oi. Formally, for 
an object Oi  S, BRi is the best represented set of Oi, where BRi = {Oj O | Ok S, 
cost(Oj | Oi)  cost(Oj | Ok)}. In other words, objects in Oi’s best represented set are 
best represented by Oi. Instead of the validly represented set, the best represented set 
is used to calculate the coverage and accuracy (see Section 3.4) of each object in the 
summary, which are meaningful measures to understand the characteristic of each 
objects in the summary. 

The process of reassignment is similar to that of point assignment in K-means: 
each point is assigned to its nearest center point. Natural outliers are excluded because 
there is not any object in the summary that can be a valid representation of them. The 
reassignment needs one pass through all objects. For each object Oi, it searches in the 
summary for an object Oj that has the least representation cost when Oi is represented 
by Oj. When the object Oj is found, the object Oi is assigned into BRj. The cost of 
reassignment is O(kn), where k is the size of the summary and n is the number of 
objects.  

3.3   Top-k Summary 

The MDL principle provides an automatic approach to find the optimal summary 
for the given dataset, where the representative objects are selected to minimize the 
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total representation cost. When the summary following the MDL principle (say, 
MDL-summary) is still too large to study by users one by one, a refined summary 
with limited size and most representative objects (say, top-k summary) is  
preferred.  

Based on BIGFIRES, it is straightforward that a refined summary can be achieved 
by applying a top-k query on the MDL-summary. For the objects are selected in the 
descending order of their representativeness, the top-k representative objects are the 
first k objects in the MDL-summary. That is, a top-k summary is a part of an MDL 
summary with the first k objects. 

3.4   Quality Evaluation 

One way to evaluate the quality of the summary is to calculate the accuracy of each 
value of each object in summary, which is defined as the percentage of objects in the 
best represented set BRi having the same value with Oi. Formally, given an object 
Oi S, for each value Oij of Oi, the accuracy is defined as  

acc(Oij) = |{Ok| Ok BRi and Okj = Oij}| / |BRi|.  

Further, the average accuracy for an object Oi in summary is defined as 

average_acc (Oi) = ( )/|Ni|  

To measure the representativeness of an object in a summary, the coverage of an 
object Oi S is defined as the percentage of objects that can be best represented by it. 
Formally, given an object Oi S, the coverage of Oi is denoted as  

cover(Oi) =  |BRi| / |O|.  

Further, to measure the representativeness of a summary S, the coverage of S is de-
fined as  

cover(S)=| | / |O|. 

4   Experiments 

In this section, we present the experimental results to evaluate the effectiveness and 
efficiency of BIGFIRES on a variety of real and synthetic datasets. The algorithm of 
BIGFIRES is implemented in Java. We first import the datasets into a bipartite graph, 
which contains two sets of nodes V1 and V2, V1 stands for the set of objects in the 
dataset while V2 includes the binary attributes, the categories for categorical attributes 
and discrete intervals for numeric attributes. We stored the set of edges by recording 
the set of neighbors (nodes from V2) of each node in V1. The set of neighbors are 
stored in a hash map by which we can calculate the overlap of neighbors between 
nodes efficiently in the manner of hash join. All experiments were run on a 2.0GHz 
AMD Sempron machine running Windows XP, and equipped with 1.5GB RAM. We 
set the JVM heap space to 512MB in all experiments. 
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4.1   Experimental Datasets 

In this section, we describe the datasets used in our empirical evaluation. We use 
three real datasets and two synthetic datasets to explore the effectiveness. The datasets 
are listed in Table 2. 

Table 2. Experimental datasets 

Name Attributes |V1| |V2| 
Edge 
size Type 

Missing 
Value 

Mushroom 19 8,124 108 151,876 Categorical Yes 

Forest Fire 10 517 88 5,170 
Categorical, 
Numeric 

No 

Drug Order 137 328 137 13,929 Binary No 
T10I4D100K ~1K 100K ~1K ~1000K Binary No 
T40I10D100K ~1K 100K ~1K ~4000K Binary No 

 
The following three real datasets are mainly used to evaluate the effectiveness of 

BIGFIRES, while the two synthetic datasets are used to evaluate the efficiency. 

Mushroom Dataset. It is a classical dataset with two forms: one is from UCI Ma-
chine Learning Repository [4] which is of 8,124 instances and 22 categorical attrib-
utes plus one classification attribute (edible mushrooms or poisonous mushrooms) 
used for classification; the other one is transformed to the transactional dataset used 
for frequent itemset mining in FIMI Repository [1]. Both forms can be imported 
into the same bipartite graph structure, in which V1 is the set of 8,124 instances of 
mushrooms and V2 is the set of 119 items/categories. For ease of explaining the 
results, we use the UCI form with categorical attributes. 4 attributes are deleted 
from the dataset beforehand for they are almost constant attributes and contribute 
little for classification. After the deletion, there are 18 categorical attributes remain-
ing with one classification attribute, which turns to be 108 items/categories in total. 
There are over 1.6% missing values in the dataset, occurring in the 11th attribute 
(stalk-root).  

Forest Fire Dataset. This dataset is also from UCI Machine Learning Repository. It 
contains 517 instances of forest fire and 13 attributes, in which 4 attributes (Location 
X/Y, Month and Day) are categorical and the other 9 attributes (FFMC [18.7 to 
96.20], DMC [1.1 to 291.3], DC [7.9 to 860.6], ISI [0.0 to 56.10], temperature [2.2 to 
33.30], relative humidity [15.0 to 100], wind [0.40 to 9.40], rain [0.0 to 6.4] and area 
[0.00 to 1090.84]) are numeric. This dataset is used for regression task, where the aim 
is to predict the burned area of forest fires, in the northeast region of Portugal. More 
information of this dataset refers to [6]. Unlike its original task, we use this data for 
discovering the characteristic of these forest fires. Similar to the Mushroom data, we 
removed two attributes from the dataset: rain and area whose values are mostly 0. In 
additional, the location spatial coordinate X and Y are combined into one categorical 
attribute to avoid being processed separately. After the transformation, there are 10 
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attributes remaining and 5,170 edges in total for there are no missing values (each 
instance has 10 edges). 

Drug Order Dataset. This dataset is a real order dataset with 328 distributors  
ordering 137 kinds of drugs from a drug factory. We use it as a binary dataset: V1 
represents for distributors and V2 represents for the set of different drugs. Each edge 
between one distributor and one drug in the bipartite graph means there is at least one 
order that the distributor had purchased the drug. Summarization on such data is help-
ful to discover some typical purchase patterns, while providing knowledge for cus-
tomer segmentation. 

Synthetic Datasets. Other than the real datasets, synthetic datasets are used to evalu-
ate the efficiency of our method. We select two synthetic datasets T10I4D100K 
andT40I10D100K as binary datasets. Although the two datasets are of same number 
of nodes, the latter’s number of edges (~4000K) is four times than that of the former 
(~1000K), fragments of different size from these two dataset are used to test the scal-
ability of our method.  

4.2   Effectiveness Evaluation 

We first evaluate the effectiveness of our summarization method on three real datasets 
Mushroom, Forest Fire and Drug Order respectively.  

For limit of space, we couldn’t list all representative objects with the full set of at-
tributes. We select attributes with high accuracy values to present the top-k summary. 
Table 3 is an overview of the summaries discovered by BIGFIRES from the three real 
datasets. The summaries are relative small to the original object set, while cover most 
objects in the data. The following sub-sections get deeper into the results of these 
three dataset respectively.  

Table 3. An overview of the set of representative objects from real datasets 

Dataset |S| |S| / |O| cover(S) 
Mushroom 16 0.002 100% 
Forest Fire 30 0.058 97.7% 
Drug Order 24 0.073 74.1% 

 
Summary of Mushroom Dataset 
In this experiment, we are interested in the correlation between the classification at-
tribute (edible or poisonous) and other attributes. As shown in Table 3, the resultant 
set of representative objects composes 16 representative mushrooms, which can rep-
resent all 8124 mushrooms. From the summary, there are 13 representative mush-
rooms get very high support on the classification attribute (over 95%). In Table 4 we 
list the top-5 representative mushrooms with 6 selected attributes, which cover over 
75% mushrooms in total. The values of each representative mushrooms are presented 
with their accuracy. Thus, the characteristic of each type of mushroom can be per-
ceived by user easily.  



 A Bipartite Graph Framework for Data Summarization 593 

Table 4. Top-5 representative Mushrooms, attribute are chosen by high accuracy values  

Oi e /p bruise odor gill 
spacing 

gill 
size 

stalk 
shape 

ring 
type 

cover 
(Oi) 

2406 
e 
96.7% 

t 
99.5% 

n 
74.5% 

c 
96% 

b 
95.3% 

t 
74.0% 

p 
100% 

30.5% 

3855 
p 
100% 

f 
100% 

f 
100% 

c 
100% 

b 
100% 

e 
100% 

l 
100% 

15.8% 

6228 
p 
100% 

f 
100% 

f 
41.9% 

c 
100% 

n 
98.9% 

t 
98.9% 

e 
98.9% 

12.1% 

1320 
e 
100% 

f 
98.3% 

n 
98.3% 

w 
98.3% 

b 
100% 

t 
95.4% 

e 
95.4% 

9.9% 

6692 
p 
100% 

f 
100% 

s 
44.4% 

c 
100% 

n 
100% 

t 
100% 

e 
100% 

9.2% 

 
Obviously, each representative mushroom gets high accuracy on the classification at-

tribute, which reveals that there are strong correlations between the classification attrib-
utes and the other attributes. For example, in Table 4, we can find that most edible 
mushrooms are of no odor (odor is ‘n’), while those poisonous are possibly of fishy or 
spicy odor (odor is ‘f’ or ‘s’). Furthermore, a mushroom with broad gill (gill size is ‘b’) 
and tapering stalk (stalk shape is ‘t’) is probably a edible one. The summary with repre-
sentative objects provides great conveniences for such kind of analysis. 

 

Summary of Forest Fire Dataset 
In this experiment, we evaluate the effectiveness of BIGFIRES on the Forest Fire 
dataset with 517 instances and 10 attributes (including 3 categorical and 7 numeric 
attributes). We use an equi-length intervals approach to discretize the values of the 7 
numeric attributes. The number of intervals is set to 5. There are 30 representative 
instances returned. Table 5 is the top-5 representative forest fire which covers over 
50% instances. When study on the result, we can discover a strong correlation be-
tween the forest fire with seasons (mostly September and August) through the high 
accuracy with the values on Month. Furthermore, high FFMC (80.7 - 96.2) and low 
ISI (0.0 - 11.2) are common in most forest fires. 

 

Summary of Drug Order Dataset 
The drug order dataset is a transactional dataset which can be considered as a binary 
dataset by transforming it into a binary matrix. In the binary matrix, the rows stand for 
328 drug distributors and the columns stand for 137 kinds of drugs. The summary 
composes of 24 representative distributors. The first representative distributor reveals 
a huge pattern, for it can valid represent 116 distributors (35% of all distributors), and 
best represent 82 distributors (25% of all distributors). The representative distributor 
of the huge pattern has ordered 97 kinds of drugs, which can be regarded as an ap-
proximate frequent pattern containing 97 items with a support of 25%, and the ap-
proximation ratio is nearly 80% (see Figure 4(b)). 
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Table 5. Top-5 representative Forest Fires, attributes are chosen by high accuracy values 

Oi Month FFMC DMC DC ISI cover 
(Oi) 

353 
Sep 
91.8% 

80.7 - 96.2 
100% 

59.1 -117.2 
76.3% 

690.1 - 860.6 
90.72% 

0.0 - 11.2 
90.72% 

18.8% 

94 
Aug 
87.7% 

80.7 - 96.2 
100% 

117.2 - 175.2 
53.9% 

519.5 - 690.1 
90.77% 

0.0 - 11.2 
81.54% 

12.6% 

119 
Mar 
84.3% 

80.7 - 96.2 
96.1% 

1.1 - 59.1 
100% 

7.9 - 178.4 
100.00% 

0.0 - 11.2 
96.08% 

9.9% 

15 
Sep 
100% 

80.7 - 96.2 
100% 

117.2 - 175.2 
80.0% 

690.1 - 860.6 
94.29% 

0.0 - 11.2 
94.29% 

6.8% 

268 
Aug 
93.1% 

80.7 - 96.2 
100% 

117.2 - 175.2 
69.0% 

519.5 - 690.1 
96.55% 

11.2 - 22.4 
79.31% 

5.6% 

  
                                           (a)                                                                       (b) 

Fig. 4. (a) the size of validly and best represented objects and (b) the average accuracy on the 
attributes of representative objects on the Drug Order dataset 

As shown in Figure 4, we compare the size of validly represented set with the size 
of best represented set. The first four representative distributors in the Figure 4(a) can 
be regarded as four approximate frequent patterns with a support of 5%. These pat-
terns are composed of 36 - 97 kinds of different drugs, which are too long to be dis-
covered efficiently for frequent pattern mining algorithms [20]. From the Figure 4(b) 
we can see that the average accuracy of most representative distributors is over 70%. 
For the sake of privacy, details of the distributors and drugs are neglected.  

4.3   Efficiency Experiment 

This section evaluates the efficiency of BIGFIRES on both Mushroom and synthetic 
dataset by taking fragments of different size from them. 

We first test the efficiency on the Mushroom dataset from first 1,000 instances to 
8,000 instances (there are 8,124 instances in Mushroom dataset), comparing the cases 
with and without the procedure of reassignment. As shown in Figure 5(a), the per-
formance is dominated by the initial phase of validly represented set computation for 
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each instance with a cost of O(n2d), while the procedure of reassignment with cost of 
O(kn) only add a relatively small times to the total execution process. 

The two synthetic datasets, T10I4D100K and T40I10D100K, are used to test the 
scalability on both the size and dimensionality of instances. When the size of in-
stances are same, the ratio of the size of edges of the two datasets is 1:4 approxi-
mately. As shown in Figure 5(b), similar to that of Mushroom dataset, the execution 
time is quadratic to the number of instance, while the time cost on T40I10D100K is 4 
times of that of T10I4D100K, from which we can conclude that the execution time 
grows linear with the dimensionality of the dataset. 

    
                                    (a)                                                                   (b) 

Fig. 5. (a) Execution Time on Mushroom dataset with and without reassignment. (b) Execution 
Time on synthetic datasets of T10I4D100K and T40I10D100K. 

5   Related Work 

Our work of data summarization is generally in the line of descriptive data mining. 
Clustering [3,7] is used to summarize numeric datasets. Agrawal. et al [3] propose a 
subspace clustering for high-dimensional datasets with a rectangle representation. 
Gao. et al. [7] extend descriptive data mining from a clustering description to a dis-
criminative setting using a rectangle notation. Clustering techniques are not efficient 
for high-dimensional datasets and often generate a too large set of subspace clusters to 
be explored by users. Data summarization techniques on categorical and transactional 
databases are closely related with our work. Wang and Karypis [18] propose to sum-
marize categorical databases by mining summary set. Each summary set contains a set 
of summary itemsets. A summary itemset is the longest frequent itemsets supported 
by a transaction. Chandola and Kumar [5] compress datasets of transactions with 
categorical attributes into informative representations by summarizing transactions. 
They show their methods are effective in summarizing network traffic. Siebes. et al. 
[15] propose to recognize significant itemsets by their ability to compress a database 
based on the MDL principles. The compression strategy can be explained as covering 
the entire database using the non-overlapped hyper-rectangles with no false positives 
allowed. Xiang. et al. [19] summarize transactional database with rectangle represen-
tation. They make use of the frequent itemsets to accelerate the process of generating 
the rectangles covering the dataset. Most of these methods are based on rectangle 
representation, while BIGFIRES is based on the most representative objects. The 
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other difference is that these methods are not capable to deal with variant attributes in 
the data. 

Another related topic is graph summarization. Navlakha. et al. [14] propose a 
graph summarization technique along with a MDL representation of the summary. 
Tian. et al. [17] propose a graph summarization approach by aggregating nodes with 
similar values and relationships. Although BIGFIRES works on a graph context, the 
goals are different: they try to find a small and high-level graph as the summary to 
exhibit the relationships between nodes, while we try to find the most typical nodes in 
the graph to represent objects in the dataset. 

Compressing large Boolean matrices or transactional databases is becoming an in-
creasingly important research topic as the size of databases is growing at a very fast 
pace. For instance, in [10], Johnson et al. tries to reorder the rows and columns so that 
the consecutive 1’s and 0’s can be com-pressed together. Summarization, on the other 
hand, aims at providing an overview of the data, thereby allowing an analyst to get an 
idea about the data without actually having to analyze the entire data. 

In summary, we believe the above algorithms are orthogonal to ours in that we are 
more focused on the problem of choosing most representative objects in high-
dimensional datasets with variant attributes.  

6   Conclusion and Future Work 

Data summarization is an important task of descriptive data mining. In this paper, we 
proposed the research problem of summarizing high-dimensional data with variant 
types of attributes. The generated summary is composed of most representative ob-
jects in the data. We formulate this problem in a bipartite graph scheme, in which the 
MDL principle is applied to characterize the task as a problem of discovering the 
optimal summary of the input data. A framework, BIGFIRES, is proposed with sev-
eral optimization heuristics. The effectiveness and efficiency of our method is pre-
sented by experiments on several real and synthetic datasets. 

In our future work, we plan to address two issues. First, the efficiency may be op-
timized further, especially improving the scalability by decreasing the cost to linear or 
sub-linear to the data size. Second, we plan to extend BIGFIRES with a hierarchical 
summary structure, which provides summary with varying detail levels and may be 
used as an index for similarity search in the high-dimensional databases. 
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Abstract. Newer spatial technologies, such as spatio-temporal
databases, geo-sensor networks, and other remote sensing methods, re-
quire mechanisms to efficiently process spatial data and identify (and
in some cases fix) data items that do not conform to rigorously defined
spatial data type definitions. In this paper, we propose an O(n lg n) time
complexity algorithm that examines a spatial configuration, eliminates
any portions of the configuration that violate the definition of spatial re-
gions, and constructs a valid region out of the remaining configuration.

1 Introduction

Spatial databases have become rather mature and many commercial products
are based upon them; however, newer technologies have introduced new problems
in spatial data management, and highlighted problems in existing technologies
that have yet to be fully addressed. We illustrate this with an example from
moving objects databases. Current spatial technologies are built upon a rigid
definition of spatial data types. For example, a complex region [1] (which we will
refer to simply as a region) can consist of multiple faces, each containing zero
or more holes (e.g., Italy has multiple islands as faces and a hole where Vatican
City lies). A moving region is a complex region that moves and changes over
time (Figure 1a). A well known operation over moving regions is to extract a
region at a specific time t [2]. Figure 1b depicts the region in Figure 1a at time
t; note that the region contains some lines that do not form a face, but are one-
dimensional components. Such components violate the definition of regions; yet,
in the case of moving regions they are typically required to indicate that a face
of a region is about to come into existence, or has just ceased to exist. Because
the configuration at time t contains such anomalies, we cannot simply extract
the spatial configuration at that time and apply other spatial operations to it
since spatial operations must have valid input to preserve type closure properties.
Therefore, a mechanism is required to differentiate the invalid and valid portions
of the configuration. In the case of the region in Figure 1b, we must be able to
generate the region in Figure 1c. Additional occurrences of this type of problem
arise with respect to data quality issues in fields such as geo-sensor networks and
remote sensing, in which large amounts of data are generated.

More formally, we can characterize the problem highlighted above as follows:
given a set of straight line segments S in two dimensional space, does there exist

M. Winslett (Ed.): SSDBM 2009, LNCS 5566, pp. 598–607, 2009.
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Fig. 1. A moving region (a), the scene at time t (b), and the region at time t (c)

some subset of segments R ⊆ S that forms a valid spatial region. We consider
a valid spatial region to fit the definition of complex regions as provided by [1].
We term this the region extraction and verification problem (REVP).

This paper provides a solution to the REVP that: i) identifies the parts of
a scene that form a valid region, ii) identifies the parts of the scene that are
invalid according to the definition of complex regions, iii) is efficient in terms of
both computation and space requirements, and iv) is suited for implementation
in spatial and spatio-temporal databases. Our algorithm takes an arbitrary set
of segments and returns two sets of segments: those that form a valid region,
and the remaining segments. Furthermore, the segments that form a valid region
will be properly annotated for input to existing algorithms for spatial operations
such as intersection, topological predicate operations, etc.

2 Related Work

Although much work has been completed in the literature with respect to ge-
ometric algorithms for spatial data applications, the authors are unaware of
any work which directly addresses the problem stated in Section 1. Specifically,
no algorithm exists that is applicable to complex regions. Algorithms, such as
those presented in [3,4,5,6], detect polygon structures in arrangements of line
segments, or create planar maps from arrangements of line segments; however,
the REVP is fundamentally different than the problems solved in these papers
because (i) there are no restrictions on the polygons detected (i.e., they do not
have to be convex, they can contain holes, etc.) (ii) holes and outer cycles of re-
gions must be handled correctly, and (iii) all polygons formed must collectively
fit the constraints provided by the definition of complex regions.

We employ the well known plane-sweep algorithmic paradigm in our algo-
rithm. This type of algorithm is original to Shamos and Hoey [7], and a popular
version is introduced by Bentley and Ottmann [8], and much additional work
has been proposed on the technique [9,10].

3 Data Model

A Halfsegment Representation of Regions: In this section, we provide an in-
formal type definition. For a formal definition, see [1]. Spatial operation imple-
mentations between regions based on the plane sweep algorithm require input
to be a region encoded not as a sequence of line segments, but as a sequence
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of halfsegments. We define the type halfsegment = {(s, d, l, r)|s ∈ segment, d ∈
bool, l, r ∈ Z} where a segment is a straight line segment between two endpoints
and l and r are labels corresponding to the portion of the embedding space that
lies above or to the left of the line that the halfsegment lies on, and the portion
that lies below and to the right, respectively. Thus, a halfsegment is said to have
two sides, a left and right side corresponding to each label. For a halfsegment
h = (s, d, l, r), if d is true (false), the smaller (greater) endpoint of s is the domi-
nating point of h, and h is called a left (right) halfsegment. Hence, each segment
s is mapped to two halfsegments (s, true) and (s, false). Given one halfsegment
h, we denote the halfsegment with identical endpoints and an opposite boolean
flag as h’s brother. We require an order relation on halfsegments. Informally, a
complete ordering over halfsegments exists based on their dominating points. If
two halfsegments have the same dominating point, then the smaller halfsegment
is the one encountered first when rotating a vertical line extending above the
dominating point counter-clockwise around the dominating point. A simple poly-
gon is a connected sequence of segments that forms a single cycle. Two simple
polygons are edge-disjoint if their interiors are disjoint and they possibly share
single boundary points but not boundary segments. A face is a simple polygon
possibly containing a set of edge-disjoint holes, which are simple polygons, such
that these holes do not collectively separate the interior of the face. A complex
region is a set of edge-disjoint faces.

Classifying Invalid Cases: We make the assumption that halfsegments used
as input intersect at endpoints only. This can be enforced with geometric al-
gorithms without affecting the worst case time complexity of our algorithm
(Section 4.3).

Based on our data model, we make the observation that all invalid config-
urations fall into one of two categories: (i) adjacent cycles, when two cycles
are not edge-disjoint, and (ii) stick configurations, in which halfsegments do
not form a cycle. Figure 2 depicts an example of each case. In Figure 2a, ei-
ther the right or left cycle may be discarded and a valid region remains. In
Figure 2b, Figure 2c, and Figure 2d, the halfsegments forming the sticks must
be discarded to form a valid region. These figures respectively illustrate the
various forms of the stick configuration that must be handled correctly: (i) dis-
connected stick configurations (when sticks do not connect to any cycle), (ii)
internal stick configurations (when sticks connect to the interior of a cycle), and
(iii) external stick configurations (where sticks connect to the exterior of a cycle).
Lemma 1 shows that adjacent cycle and stick configurations are the only invalid
configurations.

a b c d

Fig. 2. Invalid halfsegment configurations
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Lemma 1. The only invalid configurations that arise in the given data model
for complex regions are stick configurations and adjacent cycle configurations.

Proof Sketch. Consider a region r of straight line segments. Clearly, the removal
of any of the segments in r cannot cause segments to intersect at points other
than endpoints, but may cause stick or adjacent cycle configurations. Second,
consider the addition of new line segments to an already valid region. Because of
our definition of regions, and the requirement that line segments only intersect
at endpoints, the addition of new segments can only result in the addition of new
stick features or new cycles. Therefore, stick and adjacent cycle configurations
are the only invalid configurations that must be handled. �

4 Algorithm

Our algorithm removes segments involved in adjacent cycle and stick configura-
tions in an input halfsegment sequence until no such configurations remain. The
result is a valid region with properly annotated halfsegments.

Our algorithm operates by removing halfsegments from consideration once
it is able to identify them as being part of a valid cycle or stick configuration.
Removing halfsegments is achieved by marking their labels to indicate that a
halfsegment is part of a valid cycle (in which case one label indicates the interior
of a region, and the other indicates the exterior), or that it is part of an invalid
configuration (in which case both labels are marked as being invalid). Thus, any
adjacent cycles will have some of their halfsegments removed; the result is that
adjacent cycles are converted into stick configurations (Figure 3). Therefore, the
algorithm is complete when all halfsegments are marked as valid or invalid. The
algorithm proceeds in the following steps: (i) find the first halfsegment that is
not yet removed from consideration, (ii) determine if the halfsegment lies on the
interior of a known face, (iii) discover all other halfsegments that form a cycle or
stick configuration containing the current halfsegment and label them, and (iv)
repeat until all halfsegments are properly labeled.

4.1 Finding and Labeling an Unprocessed Halfsegment

The algorithm begins by finding the least halfsegment h in halfsegment order
that is not yet removed from consideration. We say that such a halfsegment is
unprocessed. We must then determine if h lies on the interior of a known face
of a region, or if it lies in the exterior of a region (i.e., h is potentially part of
an outer cycle of a face of a region). Therefore, we frame our algorithm in terms of

a b c

Fig. 3. An input to our algorithm containing adjacent cycle configurations (a), the
scene after identifying the leftmost cycle as valid (b), and the final valid region (c)
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a plane sweep algorithm. Recall that a plane sweep algorithm uses an imaginary
line that traverses the input halfsegment sequence and each time it encounters
a left halfsegment, that halfsegment is placed in the active list. The active list is
ordered according to the point at which each segment in the active list intersects
the sweep line. Each time a right halfsegment is encountered, its corresponding
left halfsegment is removed from the active list.

When a new halfsegment h is encountered, we can always determine whether
or not it is part of an outer cycle or hole cycle by looking at the labels of half-
segment b that will be immediately below h in the active list. This information
allows us to move on to the next step (the cycle walk in Section 4.2) and iden-
tify all halfsegments that form a cycle with h. b will always have been previously
processed due to the halfsegment ordering.

Once a cycle walk has been performed, the plane sweep portion of the algo-
rithm resumes and traverses the halfsegment sequence until a partially processed
(Section 4.2) or unprocessed halfsegment is found. If a halfsegment is found that
is unprocessed, then the cycle walk portion of the algorithm is executed. If the
halfsegment is partially processed, then it is marked as being part of an in-
valid configuration, and the plane sweep portion of the algorithm continues. The
reasoning is given in the following lemma:

Lemma 2. A partially processed halfsegment encountered in the plane sweep
portion of the algorithm is always part of a stick configuration.

Proof Sketch. According to Lemma 4, the cycle walk portion of the algorithm will
convert any adjacent cycle configurations to stick configurations. Furthermore,
the only time a halfsegment is partially processed is during the cycle walk portion
of the algorithm. Therefore, since a partially processed halfsegment has already
been visited by a cycle walk, it must be part of a stick configuration since the
cycle walk will correctly identify halfsegments that belong to a valid cycle. �

4.2 Walking the Cycle

Once an unprocessed halfsegment h is found and it is known whether h lies in
the interior of a face of a region or not, the next step is to identify all halfseg-
ments that form the cycle or stick configuration that h is part of. In order to
identify the segments that form a cycle containing h, we make the observation
that according to the definition of complex regions, each cycle that forms part
of the boundary of a region separates the embedding space into three, disjoint
point sets: the interior, exterior, and boundary. Therefore, given a halfsegment h
and the knowledge of upon which side of the halfsegment the interior of the cycle
lies, the adjacent halfsegment in the cycle can be found by rotating h around
its submissive point through the interior of the cycle until a new halfsegment
hnext is found. Because h was rotated through the interior of a cycle, the next
halfsegment encountered must also bound the interior of that cycle and we can
trivially determine on which side of the halfsegment the interior lies for labeling.
This is repeated until a stopping condition (see below) occurs. Due to halfseg-
ment ordering, a clockwise rotation around submissive points is always used.
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Fig. 4. Instances of stick configurations

We denote the procedure of visiting halfsegments in a cycle in cyclic order and
assigning their appropriate labels as a cycle walk.

Let the notation 1l, 1r to refer to the left and right halfsegment of segment 1,
etc. A cycle walk beginning at halfsegment h proceeds until one of three stopping
conditions occurs: (i) h is encountered a second time, (ii) the brother of h, hb

is encountered, or (iii) a halfsegment j is encountered that is already correctly
labeled. In the first case, encountering h a second time during a cycle walk
indicates that the complete and valid cycle has been walked (e.g., walking of the
leftmost cycle in Figure 4a by visiting 1l then 5l then 2r). The second case deals
with a leading stick configuration. In this case, the exterior of a cycle (or cycles)
is walked (e.g., a cycle walk on Figure 4b will visit 1l, then 4l then continue
until it reaches 1r). In this case, any segment that has had both corresponding
halfsegments visited is a stick. Any other halfsegments cannot be marked as valid
or invalid, so they are labeled as being partially processed (we know upon which
side of the halfsegment the exterior lies, but cannot ensure that the segments
are part of a valid cycle). The final case indicates that a stick configuration was
formed due to the previous identification of a valid cycle. We denote this case a
trailing stick configuration, and it arises in Figure 4a. Internal stick configurations
are identified when the first stopping condition occurs, and both corresponding
halfsegments forming internal stick configurations are visited.

Lemma 3. The cycle walk portion of the algorithm correctly identifies segments
belonging to stick configurations and segments that form valid cycles.

Proof Sketch. A halfsegment rotation through a cycle’s interior guarantees that
halfsegments that bound the cycle will be visited. It is clear that segments form-
ing internal stick configurations will have both corresponding halfsegments vis-
ited, and will therefore be marked as invalid. In order to classify the boundary
halfsegments correctly, we must be able to identify if a cycle walk or an external
walk occurred. In a cycle walk, the halfsegment h that began the cycle walk will
be encountered before its brother hb. Otherwise, an external walk must have been
performed and h is the first halfsegment in a leading stick configuration. This
follows directly from the halfsegment ordering and a clockwise rotation around
endpoints. Therefore, we can discern the cycle walk scenarios. �

Lemma 4. The cycle walk portion of the algorithm must only be able to identify
stick configurations and valid cycles, not adjacent cycle configurations.

Proof Sketch. Once a halfsegment has been identified as being part of a valid cy-
cle or is identified as being invalid, then it is removed from consideration from the
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algorithm. In the case of adjacent cycles, a cycle walk will identify one cycle, and
remove its halfsegments from consideration. This effectively converts adjacent cy-
cles to a valid cycle and a stick configuration (Figure 3). Therefore, the cycle walk
algorithm must only be able to identify valid cycles and stick configurations. �

4.3 Discussion

A plane sweep algorithm for finding line segment intersections can be imple-
mented in O(n lg n + k) time complexity and O(n + k) space complexity for
n segments and k segment intersections. We begin with the assumption that
line segments do not intersect; therefore, we have O(n lg n) and O(n) time and
space complexity, respectively. Each halfsegment is visited at most twice in the
algorithm, once to partially process it, and once to fully process it. Whenever
a halfsegment is marked as fully processed, we mark its brother identically.
Thus, a logarithmic search technique is used to locate the brother. The cycle
walk portion of the algorithm requires us to find a halfsegment in cyclic order
from a given halfsegment. This can be done in logarithmic time using a binary
search technique that takes advantage of halfsegment ordering. Therefore, the

Algorithm 1: A pseudo-code implementation of the proposed algorithm.

Input: Sequence of non-labeled halfsegments H
Output: Sequence of labeled halfsegments J
while not end of plane sweep do1

Advance sweep line to h, the left-most unprocessed or partially processed halfsegment.;2
Find halfsegment j below h in the sweep line active list;3
var isOutercycle ← True;4
var interiorIsAboveHalfsegment ← True;5
var currCycle ← 5; var unvisitedLabel ← 0;6
var exteriorLabel ← 3; var interiorLabel ← 4;7
var invalidAndInExterior ← 1; var invalidAndInInterior ← 2;8
var invalidLabel ← invalidAndInExterior;9
// check to see if h lies in the interior of the face bordered by j
if j.labelAbove �= exteriorLabel OR j.labelAbove = invalidAndInInterior then10

isOutercycle ← False;11
invalidLabel ← invalidAndInInterior;12

// handle the case that h is partially processed. If h has an exterior on one
side, and an unvisited label on the other, it is partially processed.

if (h.labelAbove = unvisitedLabel AND h.labelBelow = exteriorLabel) OR13
(h.labelAbove = exteriorLabel AND h.labelBelow = unvisitedLabel) then

// Fully process h, setting the labels of both sides to the invalid label
h.aboveLabel ← h.belowLabel ← invalidLabel;14
Find hb, the brother of h;15
hb.aboveLabel ← hb.belowLabel ← invalidLabel;16

else17
// Walk the cycle
if isOutercycle then18

h.labelAbove ← currCycle; h.labelBelow ← exteriorLabel;19
else h.labelAbove ← exteriorLabel; h.labelBelow ← currCycle;20
interiorIsAboveHalfsegment ← isOuterCycle;21
prev ← h;22
k ← findNextInCycle(h);23
visitedStack ← emptystackofhalfsegments;24
// (continued)

70
71
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Algorithm 1: (continued).

while True do25
// find if the interior of the face is above this halfsegment
if ¬sameInteriorAbove(prev, k) then26

interiorIsAboveHalfsegment ← ¬interiorIsAboveHalfsegment;27

// Check to see if the cycle walk is complete
if k = h then28

// Convert the partially processed labels to fully processed labels
foreach halfsegmenti in visitedStack do29

if i.labelAbove > interiorLabel then30
i.labelAbove ← interiorLabel;31

else if i.labelAbove = unvisitedLabel then32
i.labelAbove ← exteriorLabel;33

if i.labelBelow > interiorLabel then34
i.labelBelow ← interiorLabel;35

else if i.labelBelow = unvisitedLabel then36
i.labelBelow ← exteriorLabel;37

Find ib, the brother of i;38
ib.aboveLabel ← i.aboveLabel;39
ib.belowLabel ← i.belowLabel;40

goto ENDOFCYCLEWALK;41

// Now check for the invalid cases
// First invalid case: we encounter the same segment twice in a cycle walk
Find kb, the brother of k;42
if kb.labelAbove = currCycle OR kb.labelBelow = currCycle AND k �= hb then43

// Mark the halfsegment as invalid
k.labelAbove ← k.labelBelow ← invalidLabel;44
kb.labelAbove ← kb.labelBelow ← invalidLabel;45

// Second invalid case: we started on a stick and performed an exterior walk46
// Third invalid case: we encounter a fully processed halfsegment, which means we

performed an exterior cycle walk on some halfsegments
else if (k = hb) OR (k.labelAbove �= currCycle AND k.labelAbove �= unvisitedLabel47
AND k.labelBelow �= currCycle AND k.labelBelow �= unvisitedLabel) then

// Flip the labels since we have walked the exterior
foreach halfsegment i in visitedStack do48

tmp ← i.labelAbove;49
i.labelAbove ← i.labelBelow;50
i.labelBelow ← tmp;51
if i.labelAbove = i.labelBelow then52

// Visited the halfsegment twice in a cycle walk. It is a stick
i.labelAbove ← i.labelBelow ← invalidLabel;53

else54
// Assign the label that is not on the exterior side to unknown label
if i.labelAbove > interiorLabel then i.labelAbove ← unvisitedLabel;55
if i.labelBelow > interiorLabel then i.labelBelow ← unvisitedLabel;56

// Mark h and hbas being invalid
h.labelAbove ← h.labelBelow ← invalidLabel;57
hb.labelAbove ← hb.labelBelow ← invalidLabel;58
goto ENDOFCYCLEWALK;59

else60
// If we get here, then there is nothing wrong. process this halfsegment.
if interiorIsAboveHalfsegment then61

k.labelAbove ← currCycle;62
if k.labelBelow = unvisitedLabel then k.labelBelow ← exteriorLabel;63

else64
k.labelBelow ← currCycle;65
if k.labelAbove = unvisitedLabel then k.labelAbove ← exteriorLabel;66

// Set up for the next iteration of the cycle walk loop
prev ← k;67
k ← findNextInCycle(prev);68

ENDOFCYCLEWALK;69
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complete algorithm is bounded by O(n lg n) in time complexity and O(n) space
complexity for an input configuration of n segments. Running a line segment
intersection algorithm to ensure that segments intersect only at endpoints takes
O(n lg n + k) time complexity, and in practice does not affect running time in
typical cases.

Algorithm 1 shows the final algorithm as it has been described. The final step
is to ensure correctness. Our definition of correctness is that our algorithm can
effectively handle all invalid spatial configurations, and that it returns a valid re-
gion. Lemmas 1-4 describe the possible invalid cases that must be handled by the
algorithm, and show that the algorithm handles the cases correctly. Therefore,
our algorithm will always return a valid region given a valid input:

Theorem 1. Given valid input, the proposed algorithm will identify, correctly
label, and return halfsegments forming a valid region.

Proof Sketch. Lemmas 1-4 indicate the cases that the algorithm must handle and
shows how the algorithm correctly handles each case. �

5 Conclusion

In this paper, we have identified the REVP as an important problem in the
growing fields of spatio-temporal and moving objects databases, and provided
examples of the problem in traditional spatial applications such as remote sens-
ing and geo-sensor networks. We have developed, implemented, and presented
an efficient O(n lg n) time complexity algorithm that can be used to solve this
problem that can be incorporated into spatial systems. Furthermore, our algo-
rithm uses an input format that is common in spatial algorithms and spatial
data representations so that it can be easily incorporated into existing sys-
tems.
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Abstract. Real-life spatial objects are usually described by their ge-
ographic locations (e.g., longitude and latitude), and multiple quality
attributes. Conventionally, spatial data are queried by two orthogonal
aspects: spatial queries involve geographic locations only; skyline queries
are used to retrieve those objects that are not dominated by others on all
quality attributes. Specifically, an object pi is said to dominate another
object pj if pi is no worse than pj on all quality attributes and better than
pj on at least one quality attribute. In this paper, we study a novel query
that combines both aspects meaningfully. Given two spatial datasets P
and S, and a neighborhood distance δ, the most endangered object query
(MEO) returns the object s ∈ S such that within the distance δ from s,
the number of objects in P that dominate s is maximized. MEO queries
appropriately capture the needs that neither spatial queries nor skyline
queries alone have addressed. They have various practical applications
such as business planning, online war games, and wild animal protec-
tion. Nevertheless, the processing of MEO queries is challenging and it
cannot be efficiently evaluated by existing solutions. Motivated by this,
we propose several algorithms for processing MEO queries, which can be
applied in different scenarios where different indexes are available on spa-
tial datasets. Extensive experimental results on both synthetic and real
datasets show that our proposed advanced spatial join solution achieves
the best performance and it is scalable to large datasets.

1 Introduction

Real-life spatial objects (e.g., hotels) are not only associated with geographic
locations but also with multiple quality attributes (e.g., price and star). Con-
ventionally, spatial objects are retrieved by using two orthogonal query types.
Spatial queries (e.g., nearest neighbor query, closest pair query) select objects
solely based on their geographic locations, or derived measures such as distances.
These queries fail to utilize the rich information captured by quality attributes.

On the other hand, the skyline query [1] is a powerful multi-criteria optimiza-
tion tool for retrieving objects based on their quality attributes. Specifically, this
query returns the objects that are not dominated by others on all quality at-
tributes. An object pi is said to dominate another object pj if pi is no worse than
pj on all quality attributes and better than pj on at least one quality attribute.
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Unfortunately, skyline queries focus only on the quality attributes, disregarding
the importance of spatial distances among the objects.

Motivation of Retrieving the Most Endangered Objects
Nowadays, spatial decision support systems need to combine both the location
and quality aspects of spatial objects in a meaningful way to retrieve desired ob-
jects for the users. This is especially true for a practical application that identifies
objects in endangered positions and conducts appropriate planning for them. As
an example, suppose that a hotel chain is facing financial challenges and it plans
to shut down one of its hotels. Intuitively, a hotel is unlikely to make profit if
it is located close to a large number of competitor hotels that have dominating
advantages on all quality attributes. Such a hotel may be considered to be shut
down. Note that the business of a hotel is not significantly affected by competitor
hotels that are far away. Thus, two hotels are considered as geographically close
if their distance is within a given neighborhood distance δ.

hotel price star

s1 $200 4
s2 $100 2
s3 $250 5
s4 $160 3
s5 $160 3

Fig. 1. Candidate set S

hotel price star

h1 $180 4
h2 $200 3
h3 $200 5
h4 $250 3
h5 $200 5
h6 $220 4
h7 $100 2
h8 $150 3
h9 $200 5
h10 $160 4

Fig. 2. Competitor set P
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Fig. 3. Locations of hotels

Specifically, given a spatial dataset P (of competitors), a spatial dataset S (of
candidates), and a neighborhood distance δ, the most endangered object query
(MEO) query returns the object s ∈ S such that within the distance δ from s,
the number of objects of P that dominate s is maximized.

Figure 1 lists the quality attributes (price and star) of hotels in a candidate set
S that belongs to a hotel chain. Similarly, Figure 2 shows the quality attributes of
the set P of competitor hotels. Here, lower prices and higher stars are preferred.
For example, the candidate s1 is dominated by the competitors h1, h3, h5. The
locations of all hotels are shown in Figure 3, where competitors are drawn as dots,
candidates are shown as triangles, and the neighborhood distance δ is indicated
by dashed circles. Within the distance δ, the hotel s1 is only dominated by h1. s2
is dominated by no hotels, even though it is surrounded by h2 and h3. Next, s3 is
dominated by the nearby h5 only; s5 is dominated by both h8 and h10. Therefore,
the MEO query returns the hotel s5 as the result since it is dominated by the
largest number of competitors within the spatial distance δ.

In addition to the business planning application described above, MEO queries
also provide useful results for other fields. For online war games (e.g., War of
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Warcraft), P is the set of enemy troop locations and S is the set of ally troop
locations. Each troop can be described by multiple quality attributes like solider
number, equipment level, etc. The MEO query can then be used to identify
the most endangered troop of S that need additional combat support. In wild
animal protection, S denotes the set of endangered species and P represents
their enemies. Quality attributes refer to abilities such as strength, agility, and
stamina. The MEO query helps to identify the animal most worthy of extra
protection.

Deficiency of Existing Solutions
It is noteworthy that neither a conventional spatial query nor a skyline query
alone will return the same result as a MEO query. A skyline query on the com-
petitor set followed by a spatial query with respect to all candidates does not
help either, because some candidates are dominated by non-skyline competitors.
Referring to our earlier example, the candidate s1 is dominated by the competi-
tor h1 which however is not a skyline object among the competitors (since h1 is
dominated by h10).

In Section 2.3, we will elaborate two straightforward solutions that correctly
process the MEO query: (i) an RDBMS solution, and (ii) a multi-step R-tree
based solution. Those solutions do not fully exploit the characteristics of the
MEO query so they incur high processing cost.

Our Contributions
Motivated by these observations, we propose several algorithms for processing
MEO queries. These algorithms can be applied in different scenarios where dif-
ferent indexes are available on input datasets. Our first algorithm is a baseline
iterative approach which needs only an R-tree index on the dataset P . Our next
two algorithms require that the dataset S is indexed by an R-tree RS , and the
dataset P is indexed by an aggregate R-tree RP . In the aggregate R-tree [12], each
node entry stores a count of objects in its subtree. Then the query is processed by
a depth-first or best-first search on the tree RS , based on efficient upper bound
counting techniques using RP . Our last algorithm requires the same indexes as
the previous two, but it evaluates the query in a spatial join manner.

The remainder of this paper is organized as follows. Section 2 formally defines
the MEO query and briefly reviews the related work. Section 3 develops our
algorithms for processing MEO queries. Section 4 presents extensive experimen-
tal results of our proposals on both synthetic and real data. Finally, Section 5
concludes the paper and discusses future research directions.

2 Preliminaries

2.1 Problem Statement

We assume that all quality attributes are numeric and each attribute domain is
totally ordered. Let c be the number of quality attributes. A quality vector is a
point ψ in the c-dimensional space Rc, where each dimension refers to a quality
attribute. ψ[i] denotes the i-th (quality) attribute value of ψ.
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Without the loss of generality, we assume that smaller values are preferred
to larger ones in quality attributes throughout this paper. According to [1], a
quality vector ψ dominates another one ψ′ (denoted as ψ ≺ ψ′) when:

(∃ 1 ≤ i ≤ c, ψ[i] < ψ′[i]) ∧ (∀ 1 ≤ i ≤ c, ψ[i] ≤ ψ′[i]) (1)

A location is a pair (x, y) in the Euclidean space R2, where x and y are
coordinate values. A spatial object o = 〈loc, ψ〉 consists of both a location o.loc
and a quality vector o.ψ. The notation dist(o, o′) denotes the Euclidean distance
between the locations of the spatial objects o and o′. Given two spatial objects
o and o′, o is said to dominate o′ when o.ψ ≺ o′.ψ.

Definition 1 (Neighborhood Dominating Score). Given a spatial object
set P , a spatial object s, and a neighborhood distance δ, the neighborhood domi-
nating score of s on P with respect to δ is defined as:

ΦP,δ(s) = |{o ∈ P | dist(o, s) ≤ δ, o.ψ ≺ s.ψ}|

Whenever the context becomes clear, we drop the subscripts of Φ(s). We then
define the most endangered object query (MEO) as follows. Our objective is to
design an I/O-efficient solution for processing MEO queries on large datasets.

Definition 2 (Most Endangered Object Query). Given two spatial object
sets P and S, for competitors and candidates respectively, and a neighborhood
distance δ, the most endangered object query (MEO) returns from S an
object s such that ΦP,δ(s) is maximized, i.e., ∀ s′ ∈ S, ΦP,δ(s) ≥ ΦP,δ(s′)

2.2 Related Work

Spatial Join
Given a distance bound δ, and two spatial datasets S and P , the δ-distance join
retrieves each pair 〈s, p〉 (where s ∈ S and p ∈ P ) such that their Euclidean dis-
tance dist(s, p) is within δ. The R-tree join (RJ) [2] can be applied to evaluate the
δ-distance join if both S and P are indexed by R-trees RS and RP respectively.
RJ first examines the entries in the root nodes of RS and RP . If an entry eS (of
the tree RS) and an entry eP (of the tree RP ) satisfies mindist(eS, eP ) ≤ δ, then
the subtrees of eS and eP may contain some objects within δ. In that case, RJ
is recursively applied on the subtrees of eS and eP . Eventually, RJ reaches the
leaf level and reports the pairs of objects that are within δ. Efficient δ-distance
join algorithms on high-dimensional data have been studied in [8]. Zhu et al. [19]
proposed the top-k spatial join for computing k objects of S that intersect with
the largest number of objects in P .

The above studies consider only the spatial relationship between the objects
in S and P , but not their dominance relationship on quality attributes of objects
in our MEO query.

Location Selection Queries
In the literature, various constraints have been combined with conventional spa-
tial queries in order to select semantically optimal locations or objects.
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Du et al. [5] proposed the optimal-location query. Given a site set S, a weighted
object set O, and a spatial region Q, the optimal-location query returns a lo-
cation in Q with the maximum influence. The influence of a location l is de-
fined as the total weights of objects in O, each of which has l as its nearest
neighbor in the set S ∪ {l}. Using the same influence definition, Xia et al. [15]
formulated a different top-k most influential spatial sites query, which returns
k sites (from S and within Q) having the highest influences. In the same con-
text, Zhang et al. [17] proposed the min-dist optimal-location query. Rather than
maximizing influence, this query selects from Q a location l which minimizes the
average distance from every object in O to its nearest site in S ∪ {l}. All these
optimal-location queries differ from our MEO query in the sense that they do
not consider multi-dimensional dominance relationship among the non-spatial
quality attributes of the objects. This renders their solutions inapplicable to our
problem.

Yiu et al. [16] formalized the top-k spatial preference query, which returns the
k spatial objects with the highest ranking scores, based on the feature qualities
in their spatial proximity. Such score functions, however, do not support multi-
dimensional dominance relationship as in our MEO query.

Li et al. [9] proposed Dominant Relationship Analysis (DRA), for discover-
ing the dominant relationship between products and potential consumers. To
efficiently answer different analysis queries of DRA, the authors proposed a dat-
acube structure, named DADA, which stores the dominant relationships in the
way supporting ordered access and compressing. Li et al. [10] combined domi-
nance relationship with spatial distance and defined complex location selection
problems. However, its solution cannot be applied to solve our problem. Only
one dataset is considered in [10], from which desirable objects are selected. In
contrast, our problem involves two datasets with different practical semantics,
and aims at selecting an object (from the candidate dataset S) with the highest
score defined with respect to the competitor dataset P .

Skyline Queries in Spatial and Spatiotemporal Settings
Skyline queries has been adopted in spatial and spatiotemporal database to
define specific problems. Huang and Jensen [6] proposed an in-route skyline
query for location-based services. When moving along a pre-defined road route
towards her/his destination, a user may visit points of interest in the network.
Points to visit are selected in terms of multiple distance-related preferences like
detour and total traveling distance. The authors optimize such selections using
skyline queries involving specific interesting dimensions.

Sharifzadeh and Shahabi [14] studied the spatial skyline query, which is in
fact a specialized version of the dynamic skyline query [13]. Given a set of query
points Q = {q1, . . . , qn} and two points p and p′, p is said to spatially dominate p′

iff dist(p, qi) ≤ dist(p′, qi) for any qi ∈ Q and dist(p, qi) < dist(p′, qi) for at least
one qi ∈ Q. The spatial skyline of a set of points P is the subset of all points not
spatially dominated by any other point of P . Observe that such queries consider
only spatial attributes but not any non-spatial quality attributes.
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Huang et al. [7] defined continuous skyline query in a spatiotemporal context.
A spatial object p dominates another object p′ with respect to a query location
q, if p is closer to q than p′ and p dominates p′ on all non-spatial attributes. A
continuous skyline query then maintains all spatial objects not dominated by any
others, while the query q is continuously moving along a specified trajectory in
the Euclidean space. Using a similar setting, Zheng et al. [18] addressed how to
compute the valid scope for such a query result without knowing the movement
pattern of the object.

Our MEO query is also different from the constrained skyline query [13], in
which the objects being considered is restricted by a given constraint region
in the domain space of (multiple) quality attributes. In contrast, the spatial
distance constraint δ employed in the MEO query is only used in the spatial
domain but not on quality attributes.

The main difference of the MEO query from the above studies is that the
MEO query is not a skyline problem. Recall from the motivation example in the
Introduction that a non-skyline object (e.g., hotel h1) in the competitor set can
still dominate a candidate object (e.g., hotel s1) within its spatial neighborhood.

2.3 Straightforward Solutions

In this section, we describe two straightforward solutions for evaluating the MEO
query, and then discuss their drawbacks.

RDBMS Solution (SQL)
In fact, the MEO query can be expressed by the following SQL statement (see
Figure 4), and thus it can be executed in any existing commercial RDBMS. Here,
we assume that the input datasets are stored in two relational tables S and P,
which share the same schema. The attribute id is the identifier of a tuple. The
attributes x and y represent spatial coordinates; whereas the attributes psi_1,
psi_2, etc, are the quality attributes. The query parameter δ is translated to
the value delta in the SQL query.

In the following query, we first join the tuples of the tables S and P. Definition
1 is expressed by the join condition in the WHERE clause: the first line refers
to the neighborhood distance constraint, and the last two lines represent the
dominance comparison. After that, the intermediate join result set is partitioned
into groups based on its id in S. Then, the count of each group is computed and
the id of the largest group (together with its count) is returned as the result.

SELECT S.id, COUNT(*)

FROM S, P

WHERE (S.x-P.x)*(S.x-P.x)+(S.y-P.y)*(S.y-P.y)<=delta*delta

AND ( P.psi_1<=S.psi_1 AND P.psi_2<=S.psi_2 AND ... )

AND ( P.psi_1< S.psi_1 OR P.psi_2< S.psi_2 OR ... )

GROUP BY S.id

ORDER BY COUNT(*) DESC LIMIT 1

Fig. 4. Expression of MEO Query in SQL
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The main disadvantage of this method is that it incurs very high execution
time in existing RDBMS. Even though typical indexes (e.g., B+-trees and hash
indexes) may be used by the RDBMS engine, it cannot fully exploit the complex
join condition (shown in the WHERE clause) for optimizing the search cost.

Multi-step R-tree based Solution (3Step)
Another straightforward method for the MEO query is as follows, assuming that
the datasets S and P are indexed by two R-trees RS and RP respectively.

In the first step, this method performs the δ-distance join by applying the
RJ algorithm [2] on those two trees, in order to obtain the pairs 〈s, p〉 that are
within the δ distance. In the second step, any pair 〈s, p〉 is pruned if it does not
satisfy p.ψ ≺ s.ψ. In the third step, the remaining pairs are assigned into groups
according to s.id, and the object s having the largest group count is reported as
the result.

The drawback of this method is that the first step incurs a high cost at a large
δ value, regardless of the pruning effectiveness of the second step.

3 Algorithms for Most Endangered Object Queries

We in this section detail our algorithms for processing most endangered object
queries. We first present the baseline approach that carries out an iterative search
on all candidate objects without any index on them. Then improved algorithms
are presented with specific index requirements. Table 1 lists the notations to be
used throughout the paper.

Table 1. Table of Notations

Notation Meaning

P the set of objects for competitors
S the set of objects for candidates

ψ ≺ ψ′ a quality vector ψ dominates another one ψ′

dist(o, o′) Euclidean distance between two objects o and o′

mindist(e, e′) minimum distance between two R-tree entries e and e′

Φ(s) neighborhood dominating score of an object s

�(s, δ) a circular region with center s and radius δ

Ξ(e, δ) δ-Minkowski region of an R-tree entry e

3.1 A Baseline Approach: Iterative Search Algorithm

In this section, we assume that the dataset P is indexed by an R-tree RP and
the dataset S is not indexed. We first present a basic algorithm for computing
the score Φ(s) of an object s ∈ S, and then apply it iteratively on each object
in order to obtain the final result.

ObjectScore (see Algorithm 1) is a recursive algorithm for computing the
Φ(s) value of the object s with respect to the objects in the subtree of the entry
eP (of the R-tree RP ). The input parameter δ represents the distance threshold.
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At line 1, the counter v is used to maintain the value of Φ(s). In case eP is a
leaf entry (line 2), we check whether its distance to s is within δ and its quality
vector dominates that of s. If so, then the counter v is incremented. When eP is
a non-leaf entry (line 5), we read its the child node, and recursively process each
of its entry e′P if the minimum distance mindist(e′P , s) from e′P to s is within δ.

Algorithm 1. ObjectScore(Object s, Entry eP of the R-tree RP , Distance δ)
1: v := 0
2: if eP is a leaf entry then
3: if dist(eP , s) ≤ δ and eP .ψ ≺ s.ψ then
4: v := 1
5: else � eP is a non-leaf entry
6: read the child node CN pointed to by eP ;
7: for each entry e′P in CN do
8: if mindist(e′P , s) ≤ δ then
9: v := v+ObjectScore(s, e′P , δ)

10: return v

We then propose the iterative search (IS) for processing the MEO query. Its
pseudo code is shown in Algorithm 2. It takes as input (i) an R-tree on competitor
set P , (ii) the candidate object set S, and (iii) the distance δ. The object meo is
used to keep track the result object found so far, and the value γ corresponds to
the score of meo. At line 1, we initialize meo to null and γ to 0 respectively. For
each location s of the set S, the algorithm applies the ObjectScore function on
the root of R-tree RP (lines 2–3) to obtain the score Φ(s) of s. If Φ(s) is higher
than γ, then the result and its score will be updated (lines 4–6). Finally, the
algorithm returns the object meo as the result.

The IS algorithm is able to exploit the main-memory buffer better if it pro-
cesses all the locations of S via a locality-preserving order. Thus, we develop the
algorithm IS-Hil, which first applies external sorting on the locations in S based
on the Hilbert ordering [4,11], and then processes them by IS.

Algorithm 2. IS(R-tree RP on P , Object set S, Distance δ)
1: meo :=null; γ := 0
2: for each object s ∈ S do
3: Φ(s) :=ObjectScore(s, RP .root, δ)
4: if Φ(s) > γ then
5: γ := Φ(s)
6: meo := s
7: return meo

3.2 Aggregate R-Tree Search Algorithms

Observe that IS algorithm processes every object once in the set S. We now
propose to index the set S by an R-tree RS and develop an efficient method to
prune unqualified subtrees of RS that cannot contribute to the result.
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In order to support efficient counting operations, we index the dataset P by
an aggregate COUNT R-tree RP [12]. Specifically, each non-leaf entry eP of the
tree RP stores an additional count value, denoted as eP .count, which is equal
to the number of objects in the subtree of eP .

Derivation of Upper Bound Score
Suppose that eS is a non-leaf entry of the tree RS . Figure 5 shows the spatial
extent of eS as a rectangular region. We wish to derive an upper bound score
Φ+(eS) of eS such that Φ(s) ≤ Φ+(eS) for any object s in the subtree of eS .

eS

Fig. 5. Ξ(eS, δ)
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Fig. 6. Pruning Rule 1
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Fig. 7. Pruning using Φ∗(eS)

First, we introduce the concept of δ-Minkowski region [3] of eS, denoted by
Ξ(eS , δ), which is the set of possible locations whose minimum distance from eS

is within the distance δ.

Ξ(eS , δ) = {t ∈ R2 | mindist(t, eS) ≤ δ} (2)

The region Ξ(eS , δ) is illustrated in Figure 5 as the region extended from the
rectangle eS by the distance δ. Given the dataset P and the distance δ, we define
the upper bound neighborhood dominating score Φ+

P,δ(eS) of eS as the number of
objects in P that fall into the region Ξ(eS, δ).

Φ+
P,δ(eS) = |{o ∈ P | o ⊆ Ξ(eS , δ)}| (3)

The nice property of the upper bound score Φ+
P,δ(eS) (of a non-leaf entry eS)

is that it is guaranteed to be greater than or equal to the score ΦP,δ(s) of any
object s in the subtree of eS . This is shown in the following lemma.

Lemma 1. Let δ be a distance threshold and P be a dataset of objects. Given a
rectangle eS, it holds that ΦP,δ(s) ≤ Φ+

P,δ(eS) for any object s that falls into eS.

Proof. Let s be an object that falls into eS. According to Definition 1, each object
o ∈ P that contributes to ΦP,δ(s) must satisfy the inequality dist(o, s) ≤ δ (and
also the condition o.ψ ≺ s.ψ). Each such object o also satisfies mindist(o, eS) ≤ δ
because s falls into eS . That means such object o falls into the region Ξ(eS , δ)
and thus contributes to Φ+

P,δ(eS). Therefore, we have ΦP,δ(s) ≤ Φ+
P,δ(eS). �
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We proceed to present the EntryScore algorithm, whose pseudo code is shown
in Algorithm 3. It takes as input (i) an entry eS of the R-tree RS on S, (ii) an
entry eP in the aggregate R-tree RP on P , and (iii) the distance threshold δ.
This algorithm serves for two purposes, depending on whether eS is a leaf entry
or not. If eS is a leaf entry, then the algorithm calls the ObjectScore function to
compute the exact score Φ(eS) of eS (lines 2–3).

Otherwise, eS is a non-leaf entry, lines 4–11 are used to compute the upper
bound score Φ+(eS) of eS. We then check whether the region Ξ(eS , δ) contains
eP . If so, then each object in the subtree of eP is guaranteed to fall in Ξ(eS, δ).
Thus, we increment the counter v by the count eP .count, without visiting the
subtree of eP . If not, then we need to read the child node of eP . An entry e′P in
the child node is recursively processed if it intersects Ξ(eS , δ), i.e., having the
potential of contributing to Φ+(eS).

Algorithm 3. EntryScore(Entry eS of the R-tree RS on S, Entry eP in the
aggregate R-tree RP on P , Distance δ)
1: v := 0
2: if eS is a leaf entry then
3: v :=ObjectScore(eS , eP , δ)
4: else � eS is a non-leaf entry
5: if Ξ(eS, δ) contains eP then
6: v := eP .count
7: else
8: read the child node CN pointed to by eP

9: for each child e′P in CN do
10: if Ξ(eS, δ) intersects e′P then
11: v := v+EntryScore(eS, e′P , δ)
12: return v

Figure 6 illustrates an example of computing the upper bound score Φ+(eS)
of a non-leaf entry eS (of the tree RS), by using the EntryScore algorithm.
Here, the aggregate R-tree RP (of the dataset P ) only has the non-leaf entries
eP1, eP2, eP3, whose associated count values are 5, 8, 6 respectively. Since eP1
is contained by Ξ(eS , δ), its count (5) is added to the upper bound score of eS ,
without visiting the subtree. As the entries eP2 and eP3 intersect Ξ(eS , δ), their
child nodes need to be accessed. Then, the child nodes of eP2 and eP3 are found
to have 4 and 3 objects, respectively, that fall into the region Ξ(eS , δ). Therefore,
the values 4 and 3 are added to the upper bound score of eS . In summary, we
obtain: Φ+(eS) = 5 + 4 + 3 = 12.

Search Algorithm
Recall that we have studied the notion of Φ+(eS) (for a non-leaf entry eS), and
the EntryScore algorithm for computing it. We continue to present a pruning
rule for reducing the search space, and then develop two algorithms for solving
MEO based on the pruning rule.
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According to Lemma 1, we devise the following pruning rule to identify an
unpromising entry eS (of the R-tree RS on S) whose subtree cannot contain the
MEO object.

Pruning Rule 1. Let s ∈ S be an object from S, and eS be a non-leaf entry
from R-tree RS on S. If Φ(s) > Φ+(eS), then the entry eS can be safely pruned.

We continue with the example of Figure 6 to illustrate this pruning rule. Suppose
that we have already examined object s and computed its exact value Φ(s) = 20
(by the EntryScore algorithm). Next, we want to check whether it is necessary
to visit the subtree of the non-leaf entry eS . Its upper bound score Φ+(eS) =
5+4+3 = 12 can be computed by the EntryScore algorithm, as discussed before.
Since Φ+(eS) < Φ(s), the entry eS cannot contribute to the result and therefore
it can be safely pruned.

It is desirable to find early an object s with high Φ(s) value such that unqualified
subtrees of RS can be effectively pruned. The search on RS can be conducted in
two tree search paradigms, namely best-first search or depth-first search.

The pseudo code of the best-first search (BFS) is shown in Algorithm 4. It em-
ploys a max-heap H so as to visit the tree entries of RS in descending order of their
upper bound scores. Initially, the algorithm inserts into H the root entry of RS

together with its upper bound score |P |. Each time a non-leaf entry is deheaped,
all its child entries are enheaped with their own priorities obtained by calling the
EntryScore algorithm (lines 5–8). If the entry being deheaped is a leaf entry, it will
be returned as the most endangered object (line 9–10). The correctness of the BFS
algorithm is guaranteed by (i) the property of the max-heap, and (ii) the upper
bound computed by EntryScore(RP .root, eS , δ) (stated in Lemma 1).

Algorithm 4. BFS(Aggregate R-tree RP on P , R-tree RS of S, Distance δ)
1: initialize a max-heap H
2: enheap(H, 〈RS .root, |P |〉)
3: while H is not empty do
4: eS :=deheap(H)
5: if eS is a non-leaf entry then
6: read the child node CN pointed to by eS;
7: for each child e′S of eS do
8: enheap(H, 〈e′S, EntryScore(e′S, RP .root, δ)〉)
9: else

10: return eS

Similarly, it is also possible to traverse the R-tree RS in the depth-first manner.
The resulting algorithm is called the depth-first search (DFS). Due to the space
limit, we omit its pseudo code here.

3.3 Spatial Join Based Algorithm

As in Section 3.2, here we assume that the set of candidates objects S is indexed
by an R-tree RS and the set of competitor objects P is indexed by an aggregate
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R-tree RP . Recall that both the BFS and DFS algorithms need to compute the
upper bound score of a non-leaf entry eS (of the tree RS) explicitly by accessing
the tree RP , incurring considerable cost. This section presents a more efficient
solution by deriving an upper bound score of eS with low cost and tightening
the score bound gradually whenever necessary.

Formulation of a Join List
Before proposing the solution, we first introduce several relevant concepts. Let
eS be an entry of the R-tree RS . At query time, we associate each encountered
entry eS with its join list eS .JL, for storing the entries of the R-tree RP that
may combine with the subtree of eS to generate potential results.

Specifically, a join list eS .JL is required to satisfy both of these conditions:

– (i) each entry eP in eS.JL satisfies eP ∩ Ξ(eS , δ) �= ∅,
– (ii) for each p ∈ P satisfying p ∩ Ξ(eS , δ) �= ∅, there is exactly one ancestor

entry eP (of p) in eS .JL.

The first condition ensures that the entries stored in eS.JL are relevant to eS

because they intersect the Minkowski region Ξ(eS , δ) of eS . The second condition
ensures that there is no missing entry or redundant entry in eS.JL.

The next question is how to check whether a particular join list satisfies both
conditions (i) and (ii) stated above. First of all, we start with the root join list
eS .JL = {RP .root}, which trivially satisfies the condition (ii). The condition
(i) can be easily checked on eS .JL. In each subsequent step, we can apply the
following expansion operation on eS.JL; this operation guarantees that its output
join list must satisfy both conditions (i) and (ii). Each time, we pick an non-leaf
entry eP from eS .JL, read the child node CN pointed to by eP , and then insert
each entry e′P ∈ CN satisfying e′P ∩ Ξ(eS , δ) �= ∅ into the list eS .JL.

Having described the concept of a join list eS .JL, we then define the upper
bound score of eS with respect to eS .JL as:

Φ∗
P,δ(eS) =

∑
e′∈eS .JL

e′.count (4)

The above upper bound score Φ∗
P,δ(eS) is guaranteed to be greater than or

equal to the score ΦP,δ(s) of any object s in the subtree of eS . This is formally
stated in the following lemma.

Lemma 2. Φ∗
P,δ(eS) ≥ ΦP,δ(s) for any object s that falls into eS.

Proof. Let s be an object that falls into eS . According to Lemma 1, we obtain
Φ+

P,δ(es) ≥ ΦP,δ(s). From the property (ii) of the join list, we derive Φ∗
P,δ(eS) ≥

Φ+
P,δ(eS). By combining both inequalities above, we have Φ∗

P,δ(eS) ≥ ΦP,δ(s). �

We illustrate an example on exploiting the upper bound score of join list for
pruning unnecessary subtrees of the tree RS . Figure 7 shows a non-leaf en-
try eS . Suppose that we have encountered an object with ΦP,δ(s) = 20. Next,
we check whether it is necessary to access the child node of eS. Suppose that
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eS .JL = {ep1, ep2, ep3}, and Φ∗
P,δ(eS) = 5 + 8 + 6 = 19 < 20, i.e., lower than

the score of object s. Therefore, the entry eS (together with its join list) can be
safely pruned as no object in eS can have higher score than s.

Search Algorithm
Algorithm 5 is the pseudo code of the spatial join based algorithm. It employs a
max-heap H to keep all RS entries to be processed. Each RS entry eS is enheaped
together with its join list eS .JL and a count value obtained from Equation 4.

If the RS entry eS being deheaped is a leaf node and its join list is null, it
is returned as the most endangered object according to the max-heap property
(lines 5–8). If the leaf entry eS ’s join list is not null, its exact neighbor dominator
count is calculated by calling the ObjectScore algorithm for each entry in its join
list (lines 10–12). After that, eS is enheaped again with a null join list and the
calculated count value (line 13).

Algorithm 5. SJB(Aggregate R-tree RP of P , R-tree RS of S, Distance δ)
1: initialize a max-heap H
2: eroot := RS .root; eroot.JL := {RP .root}
3: enheap(H, 〈eroot, eroot.JL, 0〉)
4: while H is not empty do
5: 〈eS, eS.JL〉 := deheap(H)
6: if eS is a leaf entry then
7: if eS .JL is null then
8: return eS

9: else
10: v := 0
11: for each ej in eS .JL do
12: v := v+ObjectScore(eS, ej , δ)
13: enheap(H, 〈eS, null, v〉)
14: else
15: read the child node CNS pointed to by eS

16: for each entry ei in CNS do
17: v := 0; ei.JL := ∅
18: for each ej in eS .JL do
19: if Ξ(ei, δ) contains ej then
20: add ej to ei.JL; v := v + ej .count
21: else
22: read the child node CNP pointed to by ej

23: for each child e′ in CNP do
24: if Ξ(ei, δ) intersects e′ then
25: add e′ to ei.JL; v := v + e′.count

26: enheap(H, 〈ei, ei.JL, v〉)

Otherwise, the join is executed by expanding the non-leaf RS entry eS being
deheaped, and enheaping each subentry in eS with its corresponding join list
and count value (15–26). In particular, when eS is expanded its each subentry
ei gets part of entries in eS.JL as ei.JL. In this way, as the join proceeds on the
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RS entries are enheaped with join lists of smaller coverage, thus giving tighter
upper bounds of neighbor dominator counts which favors pruning.

4 Experimental Study

In this section, we experimentally evaluate our proposed algorithms for process-
ing MEO queries. All algorithms were implemented in Java and were run on a
Windows XP PC with a 2.8GHz Intel Pentium D CPU and 1GB RAM. We used
synthetic and real datasets for both the competitor set P and the candidate
set S. In each dataset, all spatial coordinates are normalized to Euclidean space
[0,10000]2, whereas each quality attribute is normalized to the unit interval [0,1].
In all experiments, the disk page size is set to 4KBytes and a LRU memory buffer
with 512KBytes is used. We issue 20 queries for each test case in each experi-
ment, and the spatial distance constraint δ in each query is a random value in
(0,1000]. We measure the average node access cost per each query because it
dominates the total query processing cost.

4.1 Experimental Results on Real Data

In this section, we used two real datasets from AllStays.com1 that maintains
collections of hotels, resorts, campgrounds, etc. around the world. We chose
the dataset of hotels in US and cleaned it up as follows. We removed all those
records without longitude and latitude, and discarded quality attributes with
very few non-null values. For each remaining quality attribute, any null value
was replaced by a random value from its attribute domain. As a result, we
obtained 30,918 hotel records with the schema (longitude, latitude, review, stars,
price). Value conversion was done on a quality attribute if necessary, e.g., a
higher stars value was converted to a lower value in the normalized range [0, 1].
This way, lower values are preferable to higher ones. After normalizing the hotel
records as mentioned above, one third (10,306 records) are randomly picked as
the S dataset and the others (20,612 records) form the P dataset.

We then used different quality attribute combinations and got four variants
of P dataset: review and stars (denoted as rs), review and price (denoted as
rp), stars and price (denoted as sp), and all three attributes (denoted as rsp).
The corresponding S dataset variants were obtained in the same way. We then
performed three groups of experiments on the real datasets obtained.

The first group of experiments investigated into the effect of different real
dataset variants. We also implemented the multi-step R-tree based solution men-
tioned in Section 2.3 (named 3Step for short). The average node access cost
results are reported in Figure 8(a). The 3Step solution is inefficient because it
cannot exploit the characteristics of the MEO query for effective pruning. The
SJB algorithm has the lowest cost.

The second group of experiments studied the effect of distance constraint δ.
We used the rsp datasets and varied δ from 500 to 3000. The results are reported
1 Hotel and Travel Guide. http://www.allstays.com/
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Fig. 8. Results on real datasets

in Figure 8(b). Since SJB applies an effective pruning technique, it outperforms
the other algorithms.

In the last group of experiments, we executed the RDBMS solution mentioned
in Section 2.3 (named SQL for short) on the rsp dataset. We executed SQL in
the Oracle RDBMS; we could only obtain the response time of SQL but not its
I/O cost. Therefore, we compared the response time of SQL with our proposed
BFS, DFS and SJB algorithms (see the results in Figure 8(c)). Obviously, our
algorithms incur considerably shorter response time than SQL.

In subsequent experiments, we discard the solutions 3Step and SQL due to
their high query cost.

4.2 Scalability and Robustness Experiments on Synthetic Data

Having studied the performance of our algorithms on real data, we now test their
scalability and robustness by using synthetic data. Table 2 lists the parameters
for the generation of synthetic datasets; the default parameter values are shown
in bold. The cardinality of the set P varies from 100K to 1000K. For each P
set, the cardinality of the corresponding S set changes from 10% to 50% of
the cardinality of P . For both P sets and S sets, all locations are generated
randomly in the normalized Euclidean space [0,10000]2. The quality attribute
dimensionality of those datasets varies from 2 to 5. For both P and S sets, we
generated quality values following the independent (IN) distribution and the
anti-correlated (AC) distribution, according to Borzonyi et al. [1].

Table 2. Parameters of synthetic datasets

Parameter Setting

Competitor dataset cardinality, |P | 100K, 200K, . . ., 1000K

Candidate dataset cardinality, |S| 10%·|P |, 20%·|P |, . . ., 60%·|P |
Quality attribute dimensionality, c 2, 3, 4, 5
Quality attribute distribution Independent (IN), Anti-correlated (AC)

Effect of Competitor Dataset Cardinality |P |
We first varied |P | from 100K to 1000K to see its effect on the performance of
all algorithms. The results are reported in Figure 9(a) and Figure 10(a), on IN
and AC distribution respectively. As |P | increases, both IS and IS-Hil algorithms
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incur more node accesses. The reason is that the recursive ObjectScore algorithm
needs to access more nodes from the R-tree on a larger P . While BFS and DFS
algorithms degrade first and then improve as |P | increases. As |S| was fixed to
10% of that of |P |, a larger P leads to a larger S and a larger R-tree on S.
Therefore BFS and DFS degrade as they have to search a larger R-tree. The
subsequent improvement is resulted from a better organized R-tree on S, which
is achieved only when S contains enough objects. The performance of the SJB
algorithm fluctuates more visibly, as the join operation complicates the use of
both the R-tree on S and the aggregate R-tree on P . Among all algorithms, SJB
performs the best as the join is very efficient due to the powerful pruning rule
it employs.

Effect of Candidate Dataset Cardinality |S|
We then varied |S| from 10% to 50% of that of |P |. The results on the effect
of varying |S| are reported in Figure 9(b) and Figure 10(b). Observe that the
SJB algorithm still outperforms all others; BFS and DFS are the second best
among all. As |S| increases, both BFS and DFS improve slightly. This again is
attributed to a better organized R-tree on S.

Both IS and IS-Hil algorithms degrades slightly as |S| increases, because they
invoke the recursive ObjectScore algorithm for every object in S. Whereas the
latter performs slightly better steadily as |S| varies. Accessing objects of S in
the Hilbert curve order enables IS-Hil to considerably reuse RP tree nodes in
the buffer, which offsets the effect of increasing |S|.
Effect of Quality Attribute Dimensionality c
To observe the effect of quality attribute dimensionality, we varied the qual-
ity dimensionality c from 2 to 5. The results on IN and AC data are shown
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in Figure 9(c) and Figure 10(c) respectively. All algorithms are insensitive to
the variation of attribute dimensionality. This is attributed to the fact that all
indexes used in those algorithms are spatial access methods. They only index
spatial coordinates of all objects, and therefore are not affected much by the
number of quality attributes in each object dataset. Here SJB remains to be the
best solution.

Effect of Distance Constraint δ
We also investigated into the effect of the distance constraint δ used in most
endangered object queries. In this batch of experiments, we used the default
settings and changed δ from 500 to 3000. Figure 11 reports the relevant results.
On both attribute distributions, larger distance ranges result in marked perfor-
mance degradation for IS and IS-Hil algorithms. This is because the ObjectScore
algorithm (Algorithm 1) is called more often by these two algorithms when the
distance range is larger. In contrast, almost no performance change is visible for
the BFS, DFS and SJB algorithms. This implies that the variation of distance
range does not affect the pruning power via the the R-trees exploited by those
algorithms. Note that SJB still performs the best, indicating the strong pruning
power of the upper bound score obtained from an entry’s join list.

5 Conclusion and Future Work

In this paper we formalize a novel query, the most endangered object query
(MEO), which takes into account both spatial distance constraint and multiple
quality attributes. Given a competitor object set P and a candidate object set
S, and a distance δ, the MEO query returns from S an object s such that it
maximizes the number of objects of P dominating s within the δ-neighborhood
(of s). It has important applications in business planning, online war games, wild
animal protection, etc.

We propose several algorithms for processing MEO queries efficiently. The IS
algorithm is an iterative search approach which requires that only P is indexed
by an R-tree. To improve the performance, we index S by an aggregate R-tree,
which enables effective pruning by using the aggregate count in each node entry.
Then, best-first search (BFS) and depth-first search (DFS) for evaluating the
query are studied. A spatial-join based algorithm (SJB) is also developed to



Identifying the Most Endangered Objects from Spatial Datasets 625

process query fast. An extensive experiment study for the above methods is
conducted on both synthetic and real datasets. Empirical results show that the
SJB algorithm outperforms other solutions and it scales well for large datasets.

Several interesting directions exist for future research. First, we want to cap-
ture the realistic scenario that dominators (from P ) tend to have more impact on
a candidate object s ∈ S when they are close to s. For this, the score function
(in Definition 1) can be redefined by assigning higher weights to competitors
that are close to s. The challenge is then to extend our proposed algorithms
for such a weighted score function. Second, the set S of candidate locations can
appear in other forms than a location set. For example, certain practical appli-
cations need to find the most endangered location(s) on a pre-defined trajectory
of a wild animal or a military operation. Third, it is also of interest to define
a generic query type that combines spatial locations and quality attributes. A
fundamental solution can be developed for such a generic definition, which can
be instantiated to process concrete queries like MEO queries in this paper.

Acknowledgments. We thank the anonymous reviewers and SSDBM 2009 PC
Chair for their constructive comments.
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Abstract. With the drastic increase of object trajectory data, the anal-
ysis and exploration of trajectories has become a major research focus
with many applications. In particular, several approaches have been pro-
posed in the context of similarity-based trajectory retrieval. While these
approaches try to be comprehensive by considering the different proper-
ties of object trajectories at different degrees, the distance functions are
always pre-defined and therefore do not support different views on what
users consider (dis)similar trajectories in a particular domain.

In this paper, we introduce a novel approach to learning distance func-
tions in support of similarity-based retrieval of multi-dimensional object
trajectories. Our approach is more generic than existing approaches in
that distance functions are determined based on constraints, which spec-
ify what object trajectory pairs the user considers similar or dissimilar.
Thus, using a single approach, different distance functions can be de-
termined for different users views. We present two learning techniques,
transformed Euclidean distance and transformed Dynamic Time Warp-
ing. Both techniques determine a linear transformation of the attributes
of multi-dimensional trajectories, based on the constraints specified by
the user. We demonstrate the flexibility and efficiency of our approach
with applications to clustering and classification on real and synthetic
object trajectory datasets from different application domains.

1 Introduction

Driven by major advancements in sensor technology, GPS-enabled mobile de-
vices, and object tracking, large amounts of data describing moving object tra-
jectories are currently generated and managed in various application domains
(see, e.g., [17,19] for some excellent surveys). In order to effectively analyze and
explore such data for patterns of interest and unexpected phenomena, several
data mining techniques for object trajectories have been developed. In most of
the applications, trajectory data are typically multi-dimensional. In particular,
trajectory data can be treated as multi-dimensional time series and thus respec-
tive data analysis techniques can be applied.

A fundamental ingredient of most of the trajectory analysis tasks are distance
measures that allow to effectively determine the similarity of trajectories. Re-
spective tasks include trajectory clustering, classification, and k-nearest neighbor
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search. Several approaches and distance measures have been proposed, tailored
to multi-dimensional object trajectories, e.g., [3,20,21]. Common to all the ex-
isting approaches is that distances measures (or functions) are explicitly given
as part of the framework. Although these measures try to be comprehensive by
considering the various dimensions of trajectory data, they typically assume that
the dimensions determining similarity are the original dimensions that describe
the trajectories. However, there are several application domains where different
users have different views on what trajectories are similar and which ones are
not. For example, if variables x and y describe 2-d trajectories, for the first user,
dimension x might be important in determining similarity while for the second
user, y is more important. And a third user considers a linear combination of x
and y as a critical factor to describe trajectory similarity. If x is a basic compo-
nent of the distance function, the similarity measure is of little help to the second
and third user. In this sense, existing approaches relying on unsupervised, “hard-
coded” distance measures do not provide much flexibility in terms of supporting
different user views and domain specific knowledge about trajectories.

In this paper, we address this problem by introducing a novel approach in
which, given a set of multi-dimensional object trajectories, distance measures
are learned from constraints. These constraints are specified by the user and
simply consist of a few pairs of trajectories the user considers similar or dis-
similar. We propose learning techniques of two distance measures, transformed
Euclidean Distance and transformed Dynamic Time Warping, which are based
on posing an optimization problem. Both techniques detect critical attributes
that determine similarity between the multi-dimensional trajectories based on
the constraints specified by the user. A resulting linear transformation matrix is
then simply embedded in a distance function that satisfies the user constraints
best. In our approach we do not rely on the traditional techniques that uti-
lize a comprehensive set of labeled training data, as they typically appear in
(supervised) classification problems. The types of constraints considered in this
paper are much simpler. Consequently, our approach cannot only be applied to
traditional classification problems but also to clustering and similarity search
for object trajectories. In order to also accommodate similarity views that con-
sider object movement patters at different rates, an important consideration is
that the distance measure has the ability to allow time warping along the time
axis. We achieve this through our novel transformed Dynamic Time Warping
technique, which is different from techniques that simply learn a Mahalanobis
distance for multi-dimensional data points in a supervised fashion (e.g., [23]).

Thus, the main contribution of our work is to provide a single framework
that allows to derive distance measures that satisfy different user needs and
(subjective) views on some given trajectory data. This approach enables the
efficient computation of distance measures applicable to various mining tasks
for object trajectories, as we will demonstrate in our comprehensive experiments
where we use different datasets and consider typical data mining tasks such as
trajectory clustering and classification.
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The rest of the paper is organized as follows. After a discussion of related work
in the following section, in Sec. 3, we outline the concepts underlying trajectories
and distance measures. In Sec. 4, we discuss in detail our approach to learning
distance functions in the context of user constraints. After a demonstration of
the effectiveness of the proposed approach using different datasets in Sec. 5, we
conclude the paper in Sec. 6.

2 Related Work

Our approach is mostly related to the areas of similarity search for moving object
trajectories and distance learning.

Recently, there has been very active research on mining trajectories, which
typically can be viewed as (multi-dimensional) time series, and trajectory simi-
larity search. For this, several alternative distance measures have been proposed.
In [12], Lee et al. use the Euclidean Distance (ED) for multi-dimensional time
series. Euclidean Distance, however, is known to be sensitive to local distor-
tions in the time axis. To address this problem, Vlachos et al. extend Dynamic
Time Warping (DTW) and Longest Common Subsequence (LCSS) for multi-
dimensional trajectories [20]. Chen et al. in [3] study Edit Distance on Real se-
quence (EDR), which is based on string edit distance. Chen et al. in [2] propose
ERP, which tries to combine the advantages of DTW and EDR. In [24], Wu et
al. study a One-way distance (OWD) function to compute the spatial similarity
of trajectories. Lee et al. also developed approaches for trajectory clustering [11]
based on sub-trajectories. Vlachos et al. present a DTW-based distance measure
that is invariant to rotation in [21].

All these approaches are designed for multi-dimensional trajectories. How-
ever, all these proposed distance measures assume that the dimensions used to
describe trajectory similarity are the original dimensions that describe the tra-
jectories. Our work is different from these approaches, because in our approach,
distance measures are learned from user-specified constraints and are thus able
to satisfy user views on trajectory similarity. Users are allowed to give examples
to indicate which trajectories they consider similar and/or dissimilar. Our algo-
rithm then detects meaningful underlying dimensions that allow to explain the
similarity and/or dissimilarity, and yields a distance measure that satisfies the
user constraints best.

Our work is also different from traditional unsupervised feature extraction
techniques such as principal component analysis (PCA), factor analysis (FA),
and Isomap. Also these techniques do not guarantee to capture the trajectory
properties that are of interest to the user. They are learned only using the
intrinsic properties of the trajectory data. For example, PCA simply performs
a coordinate rotation that aligns the transformed axes with the directions of
maximum variance.

There also has been considerable work on supervised distance learning, such
as learning a distance function for classification problems (e.g., [5,25]). How-
ever, a problem with these methods is that they need a labeled training dataset
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for which then the classification accuracy can be optimized. We do not assume
such a labeled training dataset but only a few simple user constraints that in-
dicate which trajectories are (dis)similar. Xing et al. in [23] assume similar user
constraints and propose a global Mahalanobis distance for data points that re-
spect such constraints. However, we believe that their method does not solve our
problem at hand, for the following reasons. First, the objective of our approach
is to learn a good distance function for multi-dimensional object trajectories.
Their approach, including many other distance learning techniques (see [25]),
try to learn a distance for multi-dimensional data points, where only a snapshot
of attribute values is meaningful. Second, many trajectory mining tasks aim to
discover objects that have similar movement patterns, even at different rates.
Hence, the distance measure is expected to have the ability to allow time warp-
ing in the time axis. This important consideration, however, is not present in
learning a distance measure for multi-dimensional data points.

3 Background: Trajectories and Distances

In this paper, we consider object trajectories where n measurements are recorded
at discrete points in time. For a trajectory of the pattern P = [p1, p2, . . . , pm],
each component pi is an n-dimensional vector of measurements (attributes)
(p1,i, p2,i, . . . , pn,i) ∈ Rn recorded at time i. We refer to the number of time
instants in P as size of the trajectory.

For one-dimensional time series (trajectory data), the Euclidean distance (ED)
and Dynamic Time Warping (DTW) distance are commonly used as similarity
measures (e.g., [1,7,15,16]). Both distance measures can easily be extended to
multi-dimensional trajectories as suggested, for example, by Vlachos et al. [20].
Because Euclidean distance is only defined for trajectories of the same size, an
interpolation needs to be applied to the input trajectories. For this, different
techniques can be used (see, e.g., [9,15]).

Definition 1. Given two n-dimensional trajectories P and Q of size k (after
interpolation). The Euclidean Distance between P and Q, denoted ED(P, Q), is
defined as

ED(P, Q) :=

√
k∑

i=1
(pi − qi)T (pi − qi)

For the DTW distance, input trajectories do not necessarily have to have the
same size. In the following, for a trajectory P = [p1, p2, . . . , pm], we denote
with P1...i the sub-trajectory of P containing the i first elements of P , i.e.,
P1...i = [p1, p2, . . . , pi].

Definition 2. Given two n-dimensional trajectories P and Q of size m and l,
respectively. The DTW distance between P and Q, denoted as DTW (P, Q), is
determined by evaluating the recurrence equation
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DTW(P1...i, Q1...j) :=√√√√√(pi − qj)T (pi − qj) + min

⎧⎨⎩
DTW 2(P1,...,i−1, Q1,...,j−1)
DTW 2(P1,...,i−1, Q1,...,j)
DTW 2(P1...,i, Q1,...,j−1)

Note that some papers (e.g., [20,22]) omit the square root function in the def-
inition of DTW. It is only used for some optimizations and does not change
the essence of the function [22]. DTW finds the optimal alignment between two
time series so that their distance is minimized. An alignment can be obtained by
using dynamic programming to solve the recurrence equation. In order to speed
up the computation and to prevent pathological warping, band constraints such
as the Sakoe-Chiba band [18] can be applied. For more details on DTW, we refer
the reader to [1,15].

4 Learning Distance Functions

In this section, we introduce two flexible distance functions for multi-dimensional
object trajectories, called transformed Euclidean distance and transformed
DTW. We present the learning algorithms underlying these two distance func-
tions in Sections 4.1 and 4.2, respectively.

Throughout the paper, we use the notion of (user) constraints. For this, as-
sume a given set of trajectories S = {si}ui=1, si ∈ Rn×m. Constraints are spec-
ified by the user in the form of two sets: the ML (Must-Link) set and the CL
(Cannot-Link) set. If the user specifies a pair (si, sj) to be in ML, then he
(subjectively) considers the trajectories si and sj to be similar. Analogously, he
specifies a pair (si, sj) to be in CL, if he considers si and sj to be dissimilar.

Given ML and CL constraints, the objective is now to learn a distance mea-
sure for a given set of trajectories such that the pairs of trajectories in ML end
up to be similar to each other (based on the computed distance) and the pairs in
CL are dissimilar to each other. For this, we first propose the following distance
functions, transformed Euclidean distance and transformed DTW, to be learned.
After this, we provide the intuition behind these two functions.

Definition 3. Given two n-dimensional trajectories P and Q of length k after
interpolation and a real symmetric positive semi-definite matrix A ∈ Rn×n. The
Transformed Euclidean distance between P and Q, denoted EDA(P, Q), is de-
fined as

EDA(P, Q) :=

√
k∑

i=1
(pi − qi)T A(pi − qi).

Definition 4. Given two n-dimensional trajectories P and Q of length m and
l, respectively, and a real symmetric positive semi-definite matrix A ∈ Rn×n.
The Transformed Dynamic Time Warping distance between P and Q, denoted
DTWA(P, Q), is obtained by evaluating the following recurrence equation
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DTWA(P1...i, Q1...j) :=√√√√√(pi−qj)T A(pi−qj) + min

⎧⎨⎩
DTW 2

A(P1,...,i−1, Q1,...,j−1)
DTW 2

A(P1,...,i−1, Q1,...,j)
DTW 2

A(P1...i, Q1,...,j−1))

In order to give the intuition behind the two distance measures and explain what
A actually is, we introduce the concept of transformed trajectories.

Definition 5. Given a trajectory P = [p1, p2, . . . , pm], pi ∈ Rn and a linear
transformation matrix W ∈ Rn×n. The transformed trajectory, denoted PW , is
defined as PW := [Wp1, Wp2, . . . , Wpm].

The transformation of P using matrix W thus can be considered as applying a
linear transformation matrix W to each point pi(1 ≤ i ≤ m) in P , replacing pi

with Wpi. If and only if A is real symmetric, positive semi-definite, one can find a
real matrix W = A1/2, i.e. A = WT W . Then one can also find a correspondence
between EDA, DTWA, and the transformed trajectories, as discussed below.
Given above definitions, it is straightforward to see that

(1) EDA(P, Q) = ED(PA1/2 , QA1/2) and
(2) DTWA(P, Q) = DTW(PA1/2 , QA1/2)

Hence, learning EDA(P, Q) or DTWA(P, Q) is equivalent to finding a transfor-
mation matrix W (W = A1/2) for all trajectories such that all pairs of trajectories
in ML end up to be similar to each other, and the pairs of trajectories in CL
are dissimilar to each other.

4.1 Learning a Transformed Euclidean Distance from Constraints

In the following, we present the algorithm for learning the transformed Euclidean
distance EDA for a set of trajectories from some user-specified ML and CL
constraints. We pose the distance learning approach as an optimization problem
in a way similar to the approach proposed by Xing el al. in [23]. Their approach
focuses on learning a distance metric for multi-dimensional data points, while our
method tries to learn distance functions for multi-dimensional object trajectories.
Intuitively, the desired transformed Euclidean distance measure should bring
each pair of trajectories (si, sj) in ML as close as possible, and each pair of
trajectories (si, sj) in CL as far apart as possible. Therefore, for the optimization,
the sum of squared distances between all pairs (si, sj) in ML, denoted f(A), is
to be minimized, with the constraint that the sum of distances between all pairs
(si, sj) in CL, denoted g(A), is greater than the constant 1 to ensure that A �= 0.
In the constraint formulation (2) below, we do not use ED2

A(si, sj) because this
then always leads to the matrix A having rank 1. As indicated earlier, another
constraint is that the matrix A is positive semi-definite, denoted A ≥ 0. The
optimization problem then is stated as follows:

min
A

f(A) =
∑

(si,sj)∈ML

ED2
A(si, sj) (1)
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s.t. g(A) =
∑

(si,sj)∈CL

EDA(si, sj) ≥ 1 and A ≥ 0 (2)

Note that the constant 1 on the right hand side of the first constraint in (2)
can be replaced by any other positive constant c because this only leads to A
being replaced by c2A. According to the definition of EDA, the objective function
f(A) and both constraints are convex functions. Therefore, one can efficiently
find the global optimum. If A is a diagonal matrix, then the transformation W
(i.e., A1/2) is a scaling matrix. Each diagonal entry W (i, i) can be considered as
the “weight” assigned to the dimension di, 1 ≤ i ≤ n. Finding the optimum is
then equivalent to minimizing

∑
(si,sj)∈ML

ED2
A(si, sj)− log

⎛⎝ ∑
(si,sj)∈CL

EDA(si, sj)

⎞⎠
To solve this optimization problem, we choose the well-known Newton-Raphson
method as in [23]. If A is a full n × n square matrix, this method takes O(n6)
to invert the Hessian matrix. For efficiency, we solve the problem using gradient
ascent and iterative projections in O(n2), as proposed by Xing et al. in [23].

4.2 Learning Transformed Dynamic Time Warping from
Constraints

We now discuss the learning algorithm for DTWA, which can address the prob-
lem of distortions in the time axis. First, we pose the optimization problem.
Then, we discuss the case where A is diagonal and finally present the solution
of a full matrix A.

Optimization Problem. Based on an idea similar to deriving the optimization
problem in Sec. 4.1, we now simply replace the distance function EDA with
DTWA and obtain our new optimization problem, denoted OP1, as follows:

min
A

f(A) =
∑

(si,sj)∈ML

DTW 2
A(si, sj) (3)

s.t. g(A) =
∑

(si,sj)∈CL

DTWA(si, sj) ≥ 1 and A ≥ 0 (4)

However, according to the definition of DTWA, the objective function f(A)
and the constraints are not convex, and it thus cannot be solved using the
methods presented earlier. We now formulate the problem in a different way,
denoted OP2, as follows:

min
A

h(A) =
f(A)
g2(A)

=

∑
(si,sj)∈ML

DTW 2
A(si, sj)

(
∑

(si,sj)∈CL

DTWA(si, sj))2
(5)

s.t. trace(A) =1 and A ≥ 0 (6)
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OP2 is in fact equivalent to OP1. Due to space constraints, we only give
proof sketch here: Suppose AOP1 is a solution of OP1, we can prove that AOP1
multiplied by a certain constant is a solution of OP2, and vise versa. According to
the definition of DTWA, a constant factor to A only results in all pairwise DTWA

distances between trajectories multiplied by the square root of this constant.
Thus it does not change the clustering, classification, or similarity search result.

In OP2, the objective function h(A) is derived from f(A) and g(A). h(A)
is to be minimized under the constraints that the trace of A is 1 and A is
positive semi-definite (A ≥ 0). Our motivation for this specific choice is that it
significantly simplifies the heuristic search. The solution A is required to satisfy
all the constraints and minimize the objective function. If we treat the set of
matrices satisfying the constraints as the search space, then the task is to find
a matrix within this search space that minimizes the objective function. In the
problem formulation OP2, the search space is the set of all positive semi-definite
matrices with trace 1, which is equivalent to the set of symmetric matrices whose
eigenvalues add up to 1 and each eigenvalue is non-negative. As we will show in
the next sections, this search space is constructed very easily.

The case of a diagonal matrix A. In the following, we consider the case of
learning a diagonal matrix A, which corresponds to a scaling matrix W whose
diagonal entries W (i, i) are considered the “weight” assigned to dimension i.

In this approach, we use a hill-climbing search algorithm to find a good solu-
tion for A. The components of the search algorithm are the initial state, heuristic
function, successor function, and goal test. We first give the intuition behind this
approach before explaining how we realize these four components.

We denote the diagonal matrix A from learning EDA in Sec. 4.1 as A0, that is,
A0 is the global optimum when EDA is used. Now we start with A0 and increase
or decrease its diagonal entries to find a matrix A that works better than A0
when DTWA is used. In order to mitigate the problem of a local optimum in hill-
climbing search, we also conduct the search by multiple restarts with a random
diagonal matrix A. We then compare the solutions for A from both approaches
and finally choose the one with the minimum objective function.

(1) Initial State: We perform experiments on two different initial states.

– Starting with A0, the diagonal matrix from learning the transformed Eu-
clidean distance EDA.

– Starting with Arand, a diagonal matrix with random diagonal entries between
0 and 1.

Note that the sum of diagonal entries of A0 and Arand is normalized to 1, required
by constraint (6). This can simply be done by dividing each entry by the sum of
all diagonal entries.

(2) Heuristic Function: The heuristic function h is used to evaluate the quality
of an operation. We use as heuristic function the objective function (5) formu-
lated in the optimization problem OP2, i.e.,
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Fig. 1. Illustration of hill-climbing algorithm, n = 3. α is the step-size parameter

h =

∑
(si,sj)∈ML

DTW 2
A(si, sj)

(
∑

(si,sj)∈CL

DTWA(si, sj))2
(7)

(3) Successor function: Once the initial state has been determined, we want
to improve that solution. A successor function generates a successor state of the
current state. Figure 1 illustrates this progress. We define a step-size parameter
α, 0 ≤ α ≤ 1. Assume there are n dimensions. In the current state, the weights of
the corresponding dimensions are A(1, 1), A(2, 2), . . . , A(n, n). To generate the
successor states, we increment the weight A(i, i), 1 ≤ i ≤ n by α and decrement
another weight A(j, j), j �= i, 1 ≤ j ≤ n by α. In this case, the sum of the
weights is always 1. We apply this step to each (i, j) pair and pick the optimal
successor state to survive and reproduce. According to our definition of the
heuristic function, the optimal successor state is the state whose h is minimal
among the states at the same level. If it is better than the current state, let it
reproduce. If not, return the current state.

(4) Terminal test: It defines the condition when to stop the search. We stop
the search if no improvement can be made, and the current state is returned.

The case of a full matrix A. We now detail the learning approach for a
full matrix A. The idea again is to use a hill-climbing algorithm. Similar to the
learning of a diagonal matrix A, we start with the full matrix A from learning
of EDA, denoted as Ae, and try to find a matrix A that works better than Ae

with DTWA.
First, we find the number of parameters that determine a real symmetric

n × n full matrix A. With eigendecomposition, A = ULUT . Since A is real
symmetric, we can always find an orthonormal matrix U with det(U) = 1. Hence,
both U and UT are rotation matrices in an n-dimensional space. Similarly, with
eigendecomposition, we obtain Ae = UeLeU

T
e , where Ue is a rotation matrix.

We can relate U to Ue as U = BUe, where B is also a rotation matrix. Hence, A
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can be expressed as A = BUeLUT
e BT . A = Ae when B = In, L = Le. Since Ue is

known, A is determined by only two matrices B and L. L is parameterized by n
eigenvalues of A. As a rotation matrix in n-dimensional space, B is determined by
n(n−1)

2 angles. This is obvious in a 2-dimensional space where a simple rotation

matrix is parameterized by one angle θ as [ cosθ −sinθ
sinθ cosθ

]. Generally, a rotation

matrix in an n-dimensional space can be considered as a composition of the
rotations occurring in each plane formed by any two coordinate axes, and there
are n(n−1)

2 such planes. In an n-dimensional space, the rotation matrix that
rotates the axis

Xi in the direction of Xj by angle θ is Ri,j(θ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
rab |

ri,i = cosθ
rj,j = cosθ
ri,j = −sinθ
rj,i = sinθ
ra,a = 1, a �= i, a �= b
ra,b = 0, elsewhere

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

As a rotation matrix in n-dimensional space, B can be obtained by building the
product of all Ri,j(θ) [6]. As one can see, each matrix Ri,j has one parameter θ.
Thus B is parameterized by n(n−1)

2 angles. We therefore conclude that learning
A is equivalent to assigning values to n(n−1)

2 angles and n eigenvalues.
We now determine the search space. According to constraint (6), Li,i (i.e., the

eigenvalues of A) should satisfy
n∑

i=1
Li,i = 1 and Li,i ≥ 0, 1 ≤ i ≤ n. Each angle

is between 0 and 2π. Let θ1, . . . , θn(n−1)
2

denote the angles that parameterize B.
The components of the search algorithm are then as follows:

(1) Initial State: Similar to the learning of a diagonal A, there are two different
initial states, corresponding to Ae and a random matrix A, respectively.

(1) θi = 0; L = Le.
(2) Random θi and L with random entries.

(2) Heuristic Function:

h =

∑
(si,sj)∈ML

DTW 2
A(si, sj)

(
∑

(si,sj)∈CL

DTWA(si, sj))2
(8)

(3) Successor Function: The successor function generates successor states by
changing the values of the parameters in the current state. Suppose αθ, αL are
the step-size parameters for θi and Li, respectively. In the current state, suppose
the angles are θ1, . . . , θn(n−1)

2
and the eigenvalues are L1, . . . , Ln. There are two

available successor functions:

(a) Increasing θi by αθ if θi + αθ ≤ 2π.
(b) Increasing Li by αL and decrementing another eigenvalue Lj by αL, to keep

the sum of Li as 1.
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(a) and (b) alternate in the process. The algorithm evaluates the successor
states according to the heuristic function presented above and chooses the best
state to continue the search.

(4) Goal Test: The search terminates if no successor state is better than the
current state.

5 Experiments and Evaluation

In this section, we present the experiments and evaluations we conducted to
demonstrate the flexibility and effectiveness of our distance learning approach. In
Sec. 5.1, we discuss the adaptivity of our approach to user-specified constraints.
In Sec. 5.2, we then show how our learning approach is used to improve clustering
and classification performance for object trajectories. In our experiments, we use
synthetic and real-world datasets that describe object trajectories.

For this, we compare the performance of the following six distance measures:

– (1) Euclidean distance ED and (2) Dynamic Time Warping DTW,
– Transformed Euclidean distance EDA with (3) diagonal and (4) full matrix

A, and
– Transformed Dynamic Time Warping DTWA with (5) diagonal and (6) full

matrix A.

We chose the measures ED and DTW, because Ding et al. have shown that
EDR, LCSS, ERP etc. are not more accurate than the classic DTW in general
[4]. Thus, if our learned distance measures beat ED and DTW, this suggests that
they also beat the other distance measures. Therefore, we do not discuss mea-
sures other than ED and DTW in our experiments. Furthermore, we constrain
the warping band of DTW and DTWA to up to 20% of the trajectory size as in
[20]. We use α = αL = 0.1, and αθ = π/8 in this work.

5.1 Adaptivity to Constraints

In the following, we show that our learning approach produces distance measures
that are adaptive to the constraints specified by users. Assume two users with
different views on similarity of a given trajectory dataset and each user specifies
a set of constraints reflecting his view. By first learning the distance measures
from the constraints and then performing clustering using the learned distance
measures, we show that our “single” learning approach can help both users find
the results satisfying their views on trajectory similarity.

We use a real world trajectory dataset to verify the adaptivity of our approach
to constraints. In addition to the clustering accuracy of the six different distance
measures on this dataset, we also present the visual comparison between original
and transformed trajectories to illustrate the flexibility of our approach.

For this experiment, we generated a trajectory dataset, called myMotion [26],
that represents human motion. The myMotion dataset consists of human gait
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data captured by a VICON system. All the data were created using a female actor
who had markers attached. The female actor performed 4 groups of movements,
each group consisting of 9 examples. The camera recording rate was 60 frames
per second. For each marker, its 3-d positions x, y and z in each frame were
recorded. The 4 groups of motion data represent the following movements:

G1: Walking in a straight line and swinging one arm.
G2: Walking in a straight line and keeping arms stable.
G3: Walking in a Z-shape line and keeping arms stable.
G4: Walking in a Z-shape line and swinging one arm.

We use the data readings from 3 markers attached to the actor’s body, one
arm, and one leg. Each marker has 3 features, corresponding to the x, y, and z
positions. Thus, each example has 9 features. The myMotion dataset contains
a total of 36 9-d time series data instances. All instances have the same length
of 100, obtained through interpolation. Each dimension is Z-normalized, as a
standard preprocessing step in motion matching.

Figure 2 shows four samples of the 9-d trajectories. Each of the four plots
represents one sample from G1 to G4. In the figures, each dimension is plotted
as a time series in a unique color. The x axis represents the time t, and the y
axis corresponds to the coordinates.
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(d) Sample from G4.

Fig. 2. Four original samples from the myMotion dataset

Suppose there are two users with different views of similarity and they both
want to cluster the 36 trajectories into 2 clusters. For the first user, the “true
clusters” are distinguished by the actor’s arm movements. Therefore, he thinks
that the data from G1 and G4 belong to one cluster and G2 and G3 belong
to the other. On the other hand, the “true clusters” for the second user are
distinguished by the actor’s walking routine, i.e., Z-shape or straight line. He
considers the trajectories from G1 and G2 being one cluster and the trajectories
from G3 and G4 being the other cluster. Both users now specify their preferences
in the form of ML and CL constraints, indicating their respective similarity
views. In this experiment, we “simulate” the specification of user constraints by
random sampling. That is, trajectories in a user’s cluster are assumed to have
the same label. Constraints ML are random samples from all pairs of trajectories
with the same label from the user’s point of view, and constraints CL include
random samples of all pairs of trajectories having different labels.

For each user and his constraints CL and ML, the learning approach generates
the distance measures from his constraints. Then the trajectories are clustered
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according to the learned distance measures. In the clustering experiment, we use
the group average hierarchical clustering algorithm to cluster the data. In the
corresponding dendrogram, we look at the first (top) branch, which produces
two subtrees, each representing one cluster. The cluster accuracy is given as

Accuracy = number of correctly labeled data
number of all data .

We compute the clustering accuracy based on ED, DTW and the four distance
measures EDA and DTWA for a diagonal and full matrix A, respectively. Here,
4% of all pairs of trajectories having the same label (resp. different labels) are
randomly sampled as ML (resp. CL). We will talk more about the relation
between the size of constraints and the clustering accuracy in Sec. 5.2. Table 1
lists the accuracy values for both users for the learned matrix A. As one can
see, although the two users give two different sets of constraints, our approach
achieves a very high clustering accuracy in both cases.

Table 1. Clustering accuracy for the myMotion dataset given two different sets of
user constraints. The numbers in bold show the best clustering accuracy for each user.
DTWA performs best for both users.

EDA, diag. A EDA, full A DTWA, diag. A DTWA, full A DTW ED
User 1 83.3% 94.4% 97.22% 100% 72.2% 83.3%
User 2 61.1% 55.56% 97.22% 94.4% 72.2% 61.1%

Recall that learning the matrix A is equivalent to finding a transformation
W (W = A1/2) of the trajectories so that the pairs in ML are more similar
to each other and the pairs in CL are different from each other. To visually
illustrate this aspect, we plot the transformed trajectories learned from the first
and second user constraints, respectively. The transformation corresponds to
the distance measure leading to the best clustering accuracy for each case. In
other words, the transformation in Fig. 3 is based on the full matrix A with
DTWA learned from the first user’s constraints, and the transformation in Fig. 4
corresponds to the diagonal matrix A with DTWA learned from the second user’s
constraints.

As one can see in Fig. 3, after the transformation, the trajectory samples
from G1 (Fig. 3(a)) and G4 (Fig. 3(d)) are very similar to each other. Also the
samples from G2 (Fig. 3(b)) and G3 (Fig. 3(c)) look similar now. On the other
hand, in Fig. 4, the samples from G1 (Fig. 4(a)) and G2 (Fig. 4(b)) are similar
and so are the samples from G3 (Fig. 4(c)) and G4 (Fig. 4(d)).

5.2 Improvement of Accuracy for Clustering and Classification

The other important application of our approach is to improve the accuracy
in the context of clustering and classification. To demonstrate this feature, we
performed experiments on datasets from different application domains.
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Fig. 3. Four transformed samples. The transformation corresponds to a full matrix
A when DTWA is learned from the first user’s constraints. Samples from G1 and G4
show similarity, and the G2 sample is very similar to the G3 sample.
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Fig. 4. Four transformed samples. The transformation corresponding to a diagonal
matrix A for DTWA is learned from the second user’s constraints. Samples from G1
and G2 show similarity, and the G3 sample is very similar to the G4 sample.

Application to Clustering. First, we show that our method can be applied to
improve the accuracy of clustering. Assume a trajectory dataset S = {si}ui=1 and
constraints ML and CL specified by a user. As mentioned before, (si, sj) ∈ML
means that the user considers si and sj to belong to the same cluster, and for
(si, sj) ∈ CL, si and sj belong to different clusters. We applied our approach to
two labeled multi-dimensional time series datasets, ASL and Trace.

The Australian Sign Language (ASL) dataset [13] consists of the hand tra-
jectories of a native ASL speaker when he expressed signs. We use the cleaned
dataset from the UCR data archive [14]. The dataset has 10 classes, and each
class has 20 examples. The 20 examples in each class represent the same word
in ASL, each example having 8 features. All trajectories are interpolated to the
length of 30. In this clustering experiment, we use two pair of classes, which
represent the signs “read” and “thank”, “right” and “science”, respectively.

The Transient Classification Benchmark (Trace) dataset [14] is synthetic and
has 16 classes. We use the class pairs (2 and 3), and (6 and 7) in the clustering
experiments. We use 20 instances from each class, where each instance has 4
features. All data are interpolated to the same length of 50.

For each pair of classes, we combine the data into one set and perform the
group-average hierarchical clustering algorithm to distinguish them. The com-
putation of the clustering accuracy is the same as the one used for myMotion
dataset in Sec. 5.1. With each dataset, the ML and CL constraints are gener-
ated as follows. ML is generated by selecting a random subset of all pairs of
data having the same class label. Analogously, CL includes a random subset of
all pairs of data with different class labels.
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Fig. 5. Clustering accuracy vs size of constraints; the x axis is the fraction of all pairs
of data sharing the same (different) class label(s) that are sampled to be included in
ML (CL); the y axis shows the clustering accuracy

In order to discover the relationship between clustering accuracy and size
(i.e., number) of constraints, we generated sets of constraints of different sizes
and determined the clustering accuracy for each set. We repeated the experiment
five times, because of the randomness of the selection of constraints. The average
accuracy of the five trials is shown in Fig. 5, which shows the plot of clustering
accuracy vs. size of constraints for the ASL dataset. The results for the Trace
dataset are shown in Fig. 6.

As one can see in Fig. 5 and Fig. 6, the clustering accuracy is obviously affected
by the size of the constraints. We tried constraint sizes from 1% to 10% of all
pairs of data with the same label. Clearly the accuracy of ED and DTW does not
change with the size of the constraints as they do not consider constraints. Both
EDA with diagonal and full matrix A and DTWA with diagonal and full matrix
A have a better performance when the number of constraints increases, except in
Fig. 6(b), where DTWA with full matrix A achieves high accuracy even when the
constraint size is very small. In Fig. 5, when the number of constraints is small,
DTWA performs better than EDA. If we specify a larger size of constraints, EDA

achieves a performance comparable to the one of DTWA. However, for the Trace
dataset, whose results are shown in Fig. 6, DTWA always performs better than
EDA. The reason for this is that there is more distortion in the time axis in the
Trace dataset than in the ASL dataset.

Application to Classification. The learning approach presented in this paper
can also be used to improve the accuracy of classification. In this experiment,
we use three labeled multi-dimensional time series datasets.

50CommonWords data. The 50CommonWords dataset from the UCR data
repository [14] contains 50 distinct words, each of which has various handwriting
instances. Each instance is represented by 4 features describing the handwriting
of a word. The instances of the same word are considered data having the same
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Fig. 6. Clustering accuracy vs size of constraints; the x axis is the fraction of all pairs
of data having the same (different) class label(s) that are sampled to be included in
ML (CL); the y axis shows the clustering accuracy

label. For simplicity, we picked the instances of the commonly used words “of”,
“be”, and “at”. “of” has 54 instances, “be” has 38 instances, and “at” has 22
instances. All instances were interpolated to the length of 50.

ASL dataset. Here we used the classes “girl”, “come” and “name”, which are
different from the data in the clustering experiment.

Trace dataset. We used the classes 9, 11, and 13 here to use data different
from the clustering experiment.

We evaluate the application of our distance measure learning approach to
classification by using an objective evaluation framework proposed by Ding et
al. [4]. The general idea is to use a cross validation method and a 1-nearest
neighbor (1NN) classifier for the labeled data to evaluate the accuracy of the
learned distance measure. Assume a labeled dataset partitioned into a training
dataset and a test dataset. For each data item in the test dataset, we predict its
label to be the same as the label of its nearest neighbor in the training dataset.
If the predicted label is the same as the actual label, it is considered a hit,
otherwise it is considered a miss.

In order to conduct the k cross validation, the labeled dataset is randomly
partitioned into k sets. The k cross validation has k runs. In each run, one of
the k sets is chosen as the training dataset, and the other k− 1 sets are used as
the testing dataset. The ML and CL constraints are generated from the train-
ing dataset in the same way as in the clustering experiments described above.
For the generated constraints, the distance learning algorithms are invoked to
generate the distance measures (1) EDA with a diagonal matrix A and a full
matrix A, and (2) DTWA parameterized with a diagonal matrix A and a full
matrix A. For each of the resulting four distance measures, we conduct the 1NN
classification to evaluate its accuracy. We also apply the 1NN classification to
the pre-defined distance measures ED and DTW for comparison. We used the
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Table 2. The classification accuracy of six distance measures for the three datasets.
The numbers in bold indicate the best accuracy for each dataset. In general, for all
datasets, the best accuracy is obtained by using the learned distance measures.

ED DTW EDA, diag. A EDA, full A DTWA, diag. A DTWA, full A
ASL 78.75% 75% 95.42% 93.75% 91.67% 90.83%
Trace 39.58% 52.92% 41.67% 40.27% 60.42% 57.50%
50Com. 90.94% 95% 91.25% 90.94% 95.94% 95.31%

LB-Keogh lower bounding [15] to speed up the computation for DTW and
DTWA and the following formula to compute the accuracy for each run:

Accuracy = number of correctly labeled testing data
number of all testing data .

Because there are k runs, we compute the average of the accuracy of k runs,
as recommended by Ding et al. in [4]. The accuracy measures how well the
predicted labels match the actual labels of the testing data. In this experiment,
we use k = 5, which is within the range recommended by [4] to minimize the bias
and variation. Table 2 lists the classification accuracy for all the datasets. As
one can see, for all datasets, the best accuracy is obtained by using the learned
distance measures. DTWA performs best on the Trace and 50CommonWords
datasets and EDA performs best for the ASL dataset.

Note that EDA performs better than (resp. equal to) DTWA on the ASL
dataset in classification (resp. clustering). This is consistent with the fact that
ED performs better than DTW on the ASL dataset in all experiments, indicating
that there is not much distortion in the time axis in this dataset. In a practical
use, if one can obtain some more information about the time distortion in the
dataset, one then can decide which distance measure performs better.

6 Conclusions and Ongoing Work

Distance measures play an important role in many data mining and analysis tasks
for multi-dimensional object trajectories. Instead of relying on some of the exist-
ing, hard-coded distance measures and to support different user views on what
trajectories are (dis)similar in a particular domain, in this paper, we presented
a comprehensive approach for learning distance measures from user constraints.
A key idea is to pose the proposed learning approach as an optimization prob-
lem that effectively utilizes well-known techniques. Our evaluations demonstrate
that the learned transformed Euclidean and transformed DTW not only provide
a high degree of adaptivity to user constraints but also achieve a high degree of
accuracy in clustering and classification tasks for object trajectories. In general,
the proposed techniques provide much more flexibility to support different user
views than existing approaches.

We are currently studying the performance of the learning approach using
additional datasets from other domains, in order to better evaluate the choice
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between transformed Euclidean and transformed DTW distance. Another inter-
esting aspect, along the line of [20], is to derive an index structure for indexing
the trajectories once a distance measure has been learned.
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Züfle, Andreas 444


	Title Page
	Preface
	Organization
	Table of Contents
	Invited Presentation
	The Scientific Data Management Center: Providing Technologies for Large Scale Scientific Exploration

	Improving the End-User Experience
	Query Recommendations for Interactive Database Exploratio
	Introduction
	Related Work
	Preliminaries
	Database and Querying Model
	Interactive Data Exploration

	Personalized Query Recommendations
	Conceptual Framework
	A Witness-Based Collaborative Filtering Approach

	Experimental Evaluation
	Data Set
	Methodology
	Results

	Conclusions
	References

	Scientific Mashups: Runtime-Configurable Data Product Ensembles
	Introduction
	Modeling Scientific Mashups
	Injecting Interactivity
	Inferring Data Flow
	Tailoring Mashups for Specific Audiences
	Challenges and Limitations

	Related Work
	System Architecture
	A Mashup Factory for an Ocean Observatory
	Conclusions and Future Work
	References

	View Discovery in OLAP Databases through Statistical Combinatorial Optimization
	Introduction and Related Work
	OLAP Formalism
	Chaining Operations in the View Lattice of Data Tensor Cubes
	Relational Expressions and Background Filtering
	Example

	Conditional Views
	Information Measures on Conditional Views
	Hop-Chaining View Discovery
	Preliminaries
	Method
	Extension to Hierarchical Data Cubes

	Implementation
	Examples
	Discussion, Analysis, and Future Work
	References

	Designing a Geo-scientific Request Language - A Database Approach
	Introduction
	Conceptual Model
	Design Rationales
	Requirements
	Candidates

	Request Language
	Service Embedding
	Reference Implementation
	Application Scenarios
	Satellite Image Time Series Services
	Gene Research Data Services

	Conclusion
	References

	SEEDEEP: A System for Exploring and Querying Scientific Deep Web Data Sources
	Introduction
	System Infrastructure
	System Modules
	Schema Mining
	Schema Matching
	Query Planning
	Query Reuse
	Incremental Plan Generation
	Plan Execution

	System Demonstration and Evaluation
	System Implementation
	Case Study

	Conclusion
	References

	Expressing OLAP Preferences
	Introduction and Motivation
	Background Definitions and Working Example
	Preferences on Facts
	Base Preferences on Attributes
	Base Preferences on Measures
	Base Preferences on Hierarchies
	Preference Composition

	Conclusions and Related Works
	References


	Indexing, Physical Design, and Energy
	Energy Smart Management of Scientific Data
	Introduction
	Contributions of This Paper

	Related Work
	Model
	Definitions and Notations
	Power Cost
	Numerical Results

	Procedure for Selecting Parameters of Disk Storage Configuration
	Procedure
	Illustration

	The Simulation
	Hard Disk Characteristics
	Workload Generator
	File Dispatcher and Mapping Table

	Experimental Results
	Evaluation of the Model
	Constraints on Response Time
	Using Trace Logs of Scientific Data Accesses

	Conclusion and Future Work
	References

	Data Parallel Bin-Based Indexing for Answering Queries on Multi-core Architectures
	Introduction
	Background and RelatedWork
	Related Bitmap Index Work
	Related GPU-DatabaseWork

	GPUs and Data Parallel Programming Languages
	A Data Parallel Bin-Based Indexing Strategy (DP-BIS)
	Overview
	Base Data Encoding
	Extending OrBiC to Support Data Parallelism
	DP-BIS: Answering a Query

	Datasets, Index Strategies, and Test Setup
	Datasets
	Index Strategies
	Test Setup

	Query Performance
	Answering a Simple Range Query
	Answering a Compound Range Query

	Conclusions
	References

	Finding Regions of Interest in Large Scientific Datasets
	Introduction
	Bitmap Indexes
	From Bitmaps to Query Lines
	RegionGrowingPhase
	Union-Find
	Region Growing

	Interesting Mesh Orderings
	Experiments
	Conclusion
	References

	Adaptive Physical Design for Curated Archives
	Introduction
	Related Work
	TheAdaptPDTool
	Algorithms in AdaptPD
	OnlinePD
	HeuPD

	Cost Estimation in AdaptPD
	Transition Cost Estimation
	Query Cost Estimation

	Experiments
	Experimental Setup
	Results

	Summary and Future Work
	References

	MLR-Index: An Index Structure for Fast and Scalable Similarity Search in High Dimensions
	Introduction
	Related Works
	Preliminary
	Problem Settings
	Search Node
	MLR-Index

	Finding Nearest Search Node
	Basic Similarity Search
	$r$-Range Search
	$k$-NN Search

	$m$-NS Based Similarity Search
	$r$-Range Search
	$k$-NN Search

	Hierarchical Similarity Search
	$r$-Range Search
	$k$-NN Search

	Experiments
	$r$-Range Search
	k-NN Search

	Conclusions
	References


	Application Experience
	B-Fabric: An Open Source Life Sciences Data Management System
	Introduction to B-Fabric
	Experiences with B-Fabric
	Outlook
	References

	Design and Implementation of Metadata System in PetaShare
	Introduction
	PetaShare
	PetaShare Metadata System
	Protege-Based Metadata System Framework
	iRODS-Based Metadata System Framework

	Issues and Observations in Performance Evaluation Experiments
	Conclusion
	References

	Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA
	Introduction
	Background and Related Work of Evolutionary Covariation Analysis
	Background for Covariation Analysis on Aligned Sequences
	Related Work

	Methods and Implementations
	Data Schema and Database Design
	An Entropy Based Coarse Filter

	Performance and Experiments Results
	Database Performance Evaluations
	Effectiveness of Coarse Filtering Methods.
	Performance Comparison with CO Model
	Experimental Results Evaluations

	Conclusions and Discussions
	References


	Invited Presentation
	What Makes Scientific Workflows Scientific?
	References


	Workflow
	Enabling Ad Hoc Queries over Low-Level Scientific Data Sets
	Introduction
	SystemOverview
	Technical Details
	Query Decomposition
	Metadata Registration
	Workflow Planning

	System Evaluation
	Related Efforts
	Conclusion and Future Work
	References

	Exploring Scientific Workflow Provenance Using Hybrid Queries over Nested Data and Lineage Graphs
	Introduction
	Models of Provenance
	Querying Provenance
	Provenance Queries Using QLP
	Implementation and Evaluation of QLP Query Support

	Related Work
	Conclusion
	References

	Data Integration with the DaltOn Framework – A Case Study
	Introduction
	Motivating Scenario
	Identified Issues in the Current Implementation

	The DaltOn Integration Framework
	Architecture of DaltOn

	Data Integration with DaltOn
	Conclusion
	References

	Experiment Line: Software Reuse in Scientific Workflows
	Introduction
	Supporting the Life Cycle of Scientific Experiments
	Limitations of WfMS in Supporting Workflows in Different Levels of Abstractions
	Experiment Line
	Conclusions
	References

	Tracking Files in the Kepler Provenance Framework
	Introduction
	Provenance
	Provenance Framework

	Tracking Data Files
	Tracking Files That Exist on Disk
	Tracking Archived Data Files

	Related Work
	Conclusion and Future Work
	References

	BioBrowsing: Making the Most of the Data Available in Entrez
	Motivation
	BioBrowsing Architecture
	Overview
	BBUpdate and BBProfile: Generating the Query Support
	BioGuide and BBWrapBG: Querying with BioBrowsing

	Related Work
	Conclusion
	References

	Using Workflow Medleys to Streamline Exploratory Tasks
	Introduction
	Manipulating Workflow Specifications
	Workflows
	SimplifyingWorkflows

	Creating and Interacting with Medleys
	Case studies
	Related Work
	Conclusion
	References


	Query Processing
	Experiences on Processing Spatial Data with MapReduce
	Introduction
	Using MapReduce in Practice
	Building R-Tree with MapReduce
	Partitioning Function
	R-Tree Construction

	Tile Quality Computation Using MapReduce
	Experiments
	R-Tree Construction
	Tile Quality

	Related Work
	Conclusions
	References

	Optimization and Execution of Complex Scientific Queries over Uncorrelated Experimental Data
	Introduction
	The ATLAS Application Queries
	Query Processing in SQISLE
	The Profile-Controller Operator for Runtime Query Optimization
	Attribute Statistics Profiling
	Group Statistics Profiling
	Two-Phase Statistics Profiling
	Query Rewrite Strategies

	Performance Evaluation
	Evaluated Strategies
	Experimental Results

	Related Work
	Summary and Future Work
	References

	Comprehensive Optimization of Declarative Sensor Network Queries
	Introduction
	Query Language
	Query Compiler/Optimizer
	Phase 1: Single-Site Optimization
	Phase 2: Multi-site Optimization
	Phase 3: Code Generation

	Experimental Evaluation
	Conclusions
	References

	Efficient Evaluation of Generalized Tree-Pattern Queries with Same-Path Constraints
	Introduction
	Related Work
	Data Model and Partial Tree Pattern Query Language
	DataModel
	Query Language
	Generality of Partial Tree Pattern Query Language

	Data Structures and Functions for PTPQ Evaluation
	PTPQ Evaluation Algorithm
	Algorithm PartialTreeStack
	An Example
	Analysis of PartialTreeStack

	Experimental Evaluation
	Comparison Algorithms
	Experimental Results

	Conclusion
	References

	Mode Aware Stream Query Processing
	Introduction
	PRELIMINARIES
	Hopping Window Query Semantics
	Operator Classification

	Comparison of DRA Versus CRA Query Processing
	ModeAwarePhysicalDesign
	Conversion Operator
	Operator Physical Design
	Cost Model for Operators

	Mode-Aware Query Optimization
	Mode Assignment
	Optimal Mode Aware Plan Generation
	Heuristic Optimization

	Experimental Evaluation
	Query 1: Single Join Operator Plan
	Query 2: Single Difference Operator Plan
	Query 3: Assigned Plan Versus CICO Plan
	Query 4: Assigned Plan Versus DIDO Plan
	Heuristic Rule Evaluation
	Putting It All Together

	Related Work
	Conclusion
	References

	Evaluating Reachability Queries over Path Collections
	Introduction
	Related Work
	Problem Definition
	Evaluating Reachability Queries over Path Collections
	The Path-First Search Algorithm
	$\mathcal{P}-Index$: Indexing Path Collections

	Capturing Reachability Information Using $\mathcal{H}-graphs$
	The $\mathcal{H}-graph$ and Its $\mathcal{H}-Index$
	The {\sf pfsH} Algorithm

	Updating Path Collections
	Experiments
	Conclusions
	References


	Similarity Search
	Easing the Dimensionality Curse by Stretching Metric Spaces
	Introduction
	Background
	Motivation
	Properties of Distance-Stretched Spaces
	Similarity Queries on Distance-Stretched Spaces

	Experiments and Results
	Evaluating the Effect of the Dimensionality
	Evaluating the Performance of Range and k-NN Queries
	Evaluating Scalability

	Conclusion
	References

	Probabilistic Similarity Search for Uncertain Time Series
	Introduction
	Probabilistic Queries over Uncertain Time Series
	Multi-step Probabilistic Range Query Processing
	Approximative Representation
	Distance Approximations
	Probabilistic Bounded Range Queries (PBRQ)
	Probabilistic Ranking Range Query (PRRQ)
	Step-Wise Refinement of Probability Estimations

	Summary of Experimental Results
	Conclusions
	References

	Reverse k-Nearest Neighbor Search Based on Aggregate Point Access Methods
	Introduction
	Survey
	Problem Defintion
	RelatedWork

	RkNN Search Using Multiple Pruning Strategies
	Combining Multiple Pruning Strategies
	Intermediate Index Entry Hyperplanes
	Pruning Candidates
	The R$k$NN Search Algorithm

	Experimental Evaluation
	Evaluation of the I/O-Cost
	Evaluation of the CPU-Cost
	Summary

	Conclusions
	References

	Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation
	Introduction
	Background and Related Work
	Finding Structural Similarity
	Symbolic Aggregate approXimation
	Bag-of-Words Representation for Time Series

	Empirical Evaluation
	Clustering
	Classification
	Discord/Anomaly Detection

	Conclusion
	References


	Keynote Address
	Cloud Computing for Science

	Mining
	Classification with Unknown Classes
	Introduction
	Related Work
	Our Solution - CDTree
	Building a CDTree
	Discussion

	Comparison with the Naive Approach
	Practical Enhancements
	Bounding the Accuracy
	Reducing the Computational Complexity

	Experimental Results
	Naive Approach
	Predicting Execution Times for Queries
	Multi-class Classification with Large Number of Classes
	Data Set 2: Boston Housing Data

	Conclusions
	References

	HSM: Heterogeneous Subspace Mining in High Dimensional Data
	Introduction
	Heterogeneous Data Mining
	Frequent Itemset Mining
	Density-Based Subspace Clustering
	Unbiased Density-Based Subspace Clustering
	Comparison

	HSM Pattern Model
	Efficient Algorithm
	Continuous Attributes
	Categorical Attributes

	Heterogeneous Attributes (HSM-Tree)
	Adaptive Mining
	Adaptive Tree Construction

	Experiments
	Conclusion
	References

	Split-Order Distance for Clustering and Classification Hierarchies
	Introduction
	Related Work
	Preliminaries
	Split-Order Distance
	Split-Order Distance Computation
	Experimental Results
	Distance Evaluation
	Running Time Performance
	$SODist$ Distribution

	Conclusion and Future Work
	References

	Combining Multiple Interrelated Streams for Incremental Clustering
	Introduction
	Related Work
	Multi-table Stream Propositionalization for Clustering
	Cache-and-Window Management over a Multi-table Stream
	Transforming the Multi-table Streams into one Stream

	Experiments
	The Datasets
	Caching Strategies and Reference Strategy
	Evaluation Measures
	Findings with the Financial Dataset
	Findings on the Gazelle Dataset

	Conclusion
	References

	Improving Relation Extraction by Exploiting Properties of the Target Relation
	Introduction
	Prior Works
	Background
	Algorithm Definitions
	An Algorithm for Many-to-Many Domains
	An Algorithm for One-to-Many Relations

	Experiment
	Results
	Conclusion and Future Work
	References

	{\it Cor-Split}: Defending Privacy in Data Re-publication from Historical Correlations and Compromised Tuples
	Introduction
	Model of Privacy Threats
	Preliminary Definitions
	Threats Deriving from Compromised Tuples
	Threats Deriving from Re-published Microdata

	Probabilistic Analysis
	Probability of Excluding Private Values Due to Compromised Tuples
	Probability of Excluding Private Values Due to Historical Correlation
	Probability of Privacy Breach Due to Combined Threats

	Defense
	Safety against Private Value Restriction Functions
	The {\it Cor-Split} Algorithm

	Experimental Evaluation
	Conclusions and Future Work
	References

	A Bipartite Graph Framework for Summarizing High-Dimensional Binary, Categorical and Numeric Data
	Introduction
	Requirements for Techniques to Summarize High-Dimensional Data
	Contributions and Paper Layout

	Problem Statement
	The Bipartite Graph Representation
	The Problem Formulation with the MDL Principle

	Discovering of the Optimal Summary
	The Greedy Algorithm to Discover Approximate Optimal Summary
	Optimization Heuristics
	Top-$k$ Summary
	Quality Evaluation

	Experiments
	Experimental Datasets
	Effectiveness Evaluation
	Efficiency Experiment

	Related Work
	Conclusion and Future Work
	References


	Spatial Data
	Region Extraction and Verification for Spatial and Spatio-temporal Databases
	Introduction
	Related Work
	DataModel
	Algorithm
	Finding and Labeling an Unprocessed Halfsegment
	Walking the Cycle
	Discussion

	Conclusion
	References

	Identifying the Most Endangered Objects from Spatial Datasets
	Introduction
	Preliminaries
	Problem Statement
	Related Work
	Straightforward Solutions

	Algorithms for Most Endangered Object Queries
	A Baseline Approach: Iterative Search Algorithm
	Aggregate R-Tree Search Algorithms
	Spatial Join Based Algorithm

	Experimental Study
	Experimental Results on Real Data
	Scalability and Robustness Experiments on Synthetic Data

	Conclusion and Future Work
	References

	Constraint-Based Learning of Distance Functions for Object Trajectories
	Introduction
	Related Work
	Background: Trajectories and Distances
	Learning Distance Functions
	Learning a Transformed Euclidean Distance from Constraints
	Learning Transformed Dynamic Time Warping from Constraints

	Experiments and Evaluation
	Adaptivity to Constraints
	Improvement of Accuracy for Clustering and Classification

	Conclusions and Ongoing Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




