

Lecture Notes in Artificial Intelligence 5514
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

FoLLI Publications on Logic, Language and Information

Editors-in-Chief

Luigia Carlucci Aiello, University of Rome "La Sapienza", Italy

Michael Moortgat, University of Utrecht, The Netherlands

Maarten de Rijke, University of Amsterdam, The Netherlands

Editorial Board

Carlos Areces, INRIA Lorraine, France

Nicholas Asher, University of Texas at Austin, TX, USA

Johan van Benthem, University of Amsterdam, The Netherlands

Raffaella Bernardi, Free University of Bozen-Bolzano, Italy

Antal van den Bosch, Tilburg University, The Netherlands

Paul Buitelaar, DFKI, Saarbrücken, Germany

Diego Calvanese, Free University of Bozen-Bolzano, Italy

Ann Copestake, University of Cambridge, United Kingdom

Robert Dale, Macquarie University, Sydney, Australia

Luis Fariñas, IRIT, Toulouse, France

Claire Gardent, INRIA Lorraine, France

Rajeev Goré, Australian National University, Canberra, Australia

Reiner Hähnle, Chalmers University of Technology, Göteborg, Sweden

Wilfrid Hodges, Queen Mary, University of London, United Kingdom

Carsten Lutz, Dresden University of Technology, Germany

Christopher Manning, Stanford University, CA, USA

Valeria de Paiva, Palo Alto Research Center, CA, USA

Martha Palmer, University of Pennsylvania, PA, USA

Alberto Policriti, University of Udine, Italy

James Rogers, Earlham College, Richmond, IN, USA

Francesca Rossi, University of Padua, Italy

Yde Venema, University of Amsterdam, The Netherlands

Bonnie Webber, University of Edinburgh, Scotland, United Kingdom

Ian H. Witten, University of Waikato, New Zealand

Hiroakira Ono Makoto Kanazawa
Ruy de Queiroz (Eds.)

Logic, Language,
Information
and Computation

16th International Workshop, WoLLIC 2009
Tokyo, Japan, June 21-24, 2009
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Hiroakira Ono
Japan Advanced Institute of Science and Technology
1–1 Asahidai, Nomi, Ishikawa 923–1292, Japan
E-mail: ono@jaist.ac.jp

Makoto Kanazawa
National Institute of Informatics
2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo 101–8430, Japan
E-mail: kanazawa@nii.ac.jp

Ruy de Queiroz
Universidade Federal de Pernambuco, Centro de Informática
Recife, PE, Brazil
E-mail: ruy@cin.ufpe.br

Library of Congress Control Number: Applied for

CR Subject Classification (1998): I.2, F.4.1, F.1, F.2, G.1, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-02260-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02260-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12693528 06/3180 5 4 3 2 1 0

Preface

The Workshop on Logic, Language, Information and Computation (WoLLIC)
has met every year since 1994 with the aim of fostering interdisciplinary research
in pure and applied logic. The idea is to have a forum which is large enough in
the number of possible interactions between logic and the sciences related to
information and computation, and yet is small enough to allow for concrete and
useful interaction among participants.

This volume contains the texts of the 25 contributed papers selected out of 57
submissions for presentation at WoLLIC 2009. It also includes six papers written
or coauthored by the invited speakers. Between them they give a representative
sample of some of the most active areas of research on the frontiers between
computation, logic, and linguistics.

We are grateful to all the people who made this meeting possible and are
responsible for its success: the members of the Program Committee and the
external reviewers, the invited speakers, the contributors, and the people who
were involved in organizing the workshop.

We would also like to express our gratitude to the following organizations for
supporting WoLLIC 2009: the Association for Symbolic Logic (ASL), the Interest
Group in Pure and Applied Logics (IGPL), the European Association for Logic,
Language and Information (FoLLI), the European Association for Theoretical
Computer Science (EATCS), the Sociedade Brasileira de Computação (SBC),
and the Sociedade Brasileira de Lógica (SBL).

The reviewing for the workshop and the preparation of the proceedings were
greatly aided by the free EasyChair conference management system, for which
we are extremely grateful to its main developer, Andrei Voronkov.

April 2009 Hiroakira Ono
Makoto Kanazawa

Ruy de Queiroz

Organization

WoLLIC 2009 Program Committee

Toshiyasu Arai Kobe University, Japan
Matthias Baaz Vienna University of Technology, Austria
Alexandru Baltag Oxford University, UK
Josep Maria Font University of Barcelona, Spain
Silvio Ghilardi University of Milan, Italy
Katsumi Inoue National Institute of Informatics, Japan
Marcus Kracht University of Bielefeld, Germany
Hiroakira Ono Japan Advanced Institute of Science and

Technology, Chair
Masanao Ozawa Nagoya University, Japan
John Slaney Australian National University, Australia
Mark Steedman University of Edinburgh, UK
Hans Tompits Vienna University of Technology, Austria

Additional Reviewers

Stefano Aguzzoli
Patrick Allo
Mutsunori Banbara
Alexander Bochman
Richard Booth
Felix Bou
Gerhard Brewka
Anna Bucalo
Martin Caminada
Giovanna D’Agostino
Anuj Dawar
Paul Dekker
Robert Demolombe
Uwe Egly

Mauro Ferrari
Camillo Fiorentini
Amélie Gheerbrant
Angel Gil
Rajeev Gore
Ramon Jansana
Yusuke Kubota
Thomas Lukasiewicz
Pierluigi Minari
Franco Montagna
Sergei Odintsov
Johannes Oetsch
Mario Ornaghi
Valeria De Paiva

Francesco Paoli
Joerg Puehrer
Bryan Renne
Eike Ritter
Chiaki Sakama
Marko Samer
Sonja Smets
Sylvie Thiebaux
Satoshi Tojo
Mirek Truszczynski
Stefan Woltran
Akihiro Yamamoto
Satoshi Yamane
Jonathan Zvesper

WoLLIC 2009 Organizing Committee

Makoto Kanazawa National Institute of Informatics, Japan
(Co-chair)

Anjolina de Oliveira Federal University of Pernambuco, Brazil
Ruy de Queiroz Federal University of Pernambuco, Brazil

(Co-chair)
Ken Satoh National Institute of Informatics, Japan

VIII Organization

WoLLIC Steering Committee

Samson Abramsky, Johan van Benthem, Joe Halpern, Wilfrid Hodges, Daniel
Leivant, Angus Macintyre, Grigori Mints, Ruy de Queiroz

Table of Contents

Tutorials and Invited Talks

A Characterisation of Definable NP Search Problems in Peano
Arithmetic . 1

Arnold Beckmann

Algebraic Valuations as Behavioral Logical Matrices 13
Carlos Caleiro and Ricardo Gonçalves

Query Answering in Description Logics: The Knots Approach 26
Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus

Mathematical Logic for Life Science Ontologies . 37
Carsten Lutz and Frank Wolter

Recognizability in the Simply Typed Lambda-Calculus 48
Sylvain Salvati

Logic-Based Probabilistic Modeling . 61
Taisuke Sato

Contributed Papers

Completions of Basic Algebras . 72
Majid Alizadeh

Transformations via Geometric Perspective Techniques Augmented
with Cycles Normalization . 84

Gleifer V. Alves, Anjolina G. de Oliveira, and Ruy de Queiroz

Observational Completeness on Abstract Interpretation 99
Gianluca Amato and Francesca Scozzari

SAT in Monadic Gödel Logics: A Borderline between Decidability and
Undecidability . 113

Matthias Baaz, Agata Ciabattoni, and Norbert Preining

Learning by Questions and Answers: From Belief-Revision Cycles to
Doxastic Fixed Points . 124

Alexandru Baltag and Sonja Smets

First-Order Linear-Time Epistemic Logic with Group Knowledge: An
Axiomatisation of the Monodic Fragment . 140

Francesco Belardinelli and Alessio Lomuscio

X Table of Contents

On-the-Fly Macros . 155
Hubie Chen and Omer Giménez

Abductive Logic Grammars . 170
Henning Christiansen and Verónica Dahl

On the Syntax-Semantics Interface: From Convergent Grammar to
Abstract Categorial Grammar . 182

Philippe de Groote, Sylvain Pogodalla, and Carl Pollard

Observational Effort and Formally Open Mappings 197
Bernhard Heinemann

Forcing-Based Cut-Elimination for Gentzen-Style Intuitionistic Sequent
Calculus . 209

Hugo Herbelin and Gyesik Lee

Property Driven Three-Valued Model Checking on Hybrid Automata . . . 218
Kerstin Bauer, Raffaella Gentilini, and Klaus Schneider

Team Logic and Second-Order Logic . 230
Juha Kontinen and Ville Nurmi

Ludics and Its Applications to Natural Language Semantics 242
Alain Lecomte and Myriam Quatrini

Spoilt for Choice: Full First-Order Hierarchical Decompositions 256
Sebastian Link

Classic-Like Analytic Tableaux for Finite-Valued Logics 268
Carlos Caleiro and João Marcos

A Duality for Algebras of Lattice-Valued Modal Logic 281
Yoshihiro Maruyama

An Independence Relation for Sets of Secrets . 296
Sara Miner More and Pavel Naumov

Expressing Extension-Based Semantics Based on Stratified Minimal
Models . 305

Juan Carlos Nieves, Mauricio Osorio, and Claudia Zepeda

Deep Inference in Bi-intuitionistic Logic . 320
Linda Postniece

CL: An Action-Based Logic for Reasoning about Contracts 335
Cristian Prisacariu and Gerardo Schneider

Ehrenfeucht-Fräıssé Games on Random Structures 350
Benjamin Rossman

Table of Contents XI

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 365
Katsuhiko Sano

The Arrow Calculus as a Quantum Programming Language 379
Juliana Kaizer Vizzotto, André Rauber Du Bois, and Amr Sabry

Knowledge, Time, and Logical Omniscience . 394
Ren-June Wang

Author Index . 409

A Characterisation of Definable NP Search
Problems in Peano Arithmetic

Arnold Beckmann�

Department of Computer Science
Swansea University

Swansea SA2 8PP, UK
a.beckmann@swansea.ac.uk

Abstract. The complexity class of ≺-bounded local search problems with
goals is introduced for well-orderings ≺, and is used to give a character-
isation of definable NP search problems in Peano Arithmetic.

1 Introduction

A search problem in general is just a binary relation R. The search task is to
find, given x as input, some y satisfying R(x, y). Search problems play a special
role in complexity theory. Usually, they are ignored, that is, studied through
corresponding decision problems. Often this leads to satisfying results, for ex-
ample when the reduction is given by a natural self-reduction which produces a
polynomially equivalent decision problem. However, there are situations where
this approach is unsatisfying as the decision problem is not computationally
equivalent. This is particularly important if we are concerned with total search
problems, that is, search problems which satisfy (∀x)(∃y)R(x, y).

Total NP search problems are those where R is polynomial time computable
and polynomially bounded — the latter means that R(x, y) always implies that
the length of y is polynomially bounded in the length of x. Johnson, Papadim-
itriou and Yannakakis [JPY88] have initiated the study of total NP search prob-
lems, and in particular identified several natural subclasses of total NP search
problems depending on the mathematical principle needed to proof their totality.

The totality of NP search problems, or in general the totality of definable
(multi-)functions, is also an important theme in the study of logical theories, like
fragments of arithmetic, in particular Bounded Arithmetic. Bounded Arithmetic
has been introduced by Buss [Bus86] as first-order theories of arithmetic with a
strong connection to computational complexity. These theories can be given as
restrictions of Peano Arithmetic in a suitable language. A main goal in the study
of Bounded Arithmetic is to give natural descriptions of the class of total search
problems / (multi-)functions whose totality can be shown within some theory of
Bounded Arithmetic [Bus86, Kra93, BK94, Pol99]. Recently, some advances have

� Supported in part by EPSRC grant EP/D03809X/1, and by a grant from the John
Templeton Foundation.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 A. Beckmann

been made in providing characterisations for missing pairs of level of definability
and theories of Bounded Arithmetic [KST07, ST07, Pud06, BB08]. In particular,
characterisations have been obtained using a machinery which originated from
the proof-theoretic study of Peano Arithmetic, using so called proof notations
for continuous cut-elimination [AB08, BB09].

At this point, it natural to ask whether it is also possible to obtain natural
descriptions of those total NP search problems whose totality can be proven in
stronger theories than Bounded Arithmetic.1 The present paper is a first contri-
bution to this programme by studying the definable NP search problems of Peano
Arithmetic, and characterising them in terms of a kind of generalised local search
problems which we denote formalised α-bounded local search problems for α < ε0.
Of course, it is not surprising thatα rangesover ordinal notations for the ordinal ε0,
as ε0 is the well-known proof-theoretic ordinal for Peano Arithmetic, first implic-
itly established by Gentzen [Gen36] in his consistency proof for Peano Arithmetic.

The next section will briefly introduce Peano Arithmetic in a way suitable for
our proof-theoretic investigations. Section 3 defines the search problem classes
of α-bounded local search. This is followed in Section 4 by the definition of
an ordinal notation system of order-type ε0. Section 5 briefly reviews necessary
definitions and results on notations and cut-reduction for Peano Arithmetic from
[AB08]. This is followed by the section defining the search problems which come
from proofs in Peano Arithmetic, and stating our main result concerning the
characterisation of definable NP search problems in terms of α-bounded local
search for α < ε0.

2 Peano Arithmetic

Our definition of Peano Arithmetic is based on Bounded Arithmetic, as we want
to make use of the machinery developed in [AB08]. Also, we want to obtain
in later sections notation systems which have polynomial time computable in-
gredients, which in particular means that closed terms in the language must
evaluate in polynomial time. Thus, allowing symbols for stronger functions than
polynomial time computable ones is problematic.

Our proof-theoretic investigations are very much independent of the exact
choice of the language. Therefore, we will be very liberal and allow symbols for
all polynomial time computable functions. We introduce Bounded Arithmetic
very briefly, and in a slightly nonstandard way similar to [AB08]. The reader
interested in the general theory of Bounded Arithmetic is kindly referred to the
literature [Bus86].

For a ∈ N let |a| denote the length of the binary representation of a. We will
use | · | also as a symbol for a unary function in the next definition. This will
never lead to confusion.
1 This question has also been formulated in a draft of a book by Pavel Pudlák. The

author would like to thank Pavel Pudlák for discussing this question during a one
week visit of the author at the Mathematical Institute of the Academy of Sciences of
the Czech Republic. The author would also like to thank Jan Kraj́ıček, Pavel Pudlák
and Neil Thapen for their hospitality during his stay.

A Characterisation of Definable NP Search Problems in Peano Arithmetic 3

Definition 1 (Language of Bounded Arithmetic). The language LBA of
Bounded Arithmetic contains as nonlogical symbols {=,≤} for the binary rela-
tion “equality” and “less than or equal”, and a symbol for each polynomial time
computable function. In particular, LBA includes a constant ca for a ∈ N whose
interpretation in the standard model N is cN

a = a, and unary function symbols
| · | whose standard interpretation is given by | · |N : a �→ |a|. We will often write
a instead of ca, and 0 for c0.

Atomic formulas are of the form s = t or s ≤ t where s and t are terms.
Literals are expressions of the form A or ¬A where A is an atomic formula.
Formulas are build up from literals by means of ∧ , ∨ , (∀x), (∃x). The negation
¬C for a formula C is defined via de Morgan’s laws. Negation extends to sets of
formulas in the usual way by applying it to their members individually.

We will use the following abbreviations.

Definition 2. The expression A → B denotes ¬A ∨ B. Bounded quantifiers
are introduced as follows: (∀x≤t)A denotes (∀x)(x ≤ t → A), (∃x≤t)A denotes
(∃x)(x ≤ t ∧ A), where x may not occur in t.

Definition 3 (Bounded Formulas). The set of bounded LBA-formulas is the
set of LBA-formulas consisting of literals and being closed under ∧ , ∨ , (∀x≤t),
(∃x≤ t).

Definition 4. The set sΣb
1 consists of all literals and all formulas of the form

(∃x≤ s)A(x) where A is a literal. A, s and t may depend on other variables not
mentioned here.

Definition 5. As axioms we allow all disjunctions of literals, i.e., all disjunc-
tions A of literals such that A is true in N under any assignment. Let us denote
this set of axioms by BASIC.

The set BASIC is not recursive. Although this is nonstandard for usual formu-
lation of Bounded Arithmetic [Bus86], it is quite normal for the type of proof
theoretic invistigations we are after, i.e. using notations for infinitary derivations.
It comes from the fact that the complexity of the set of axioms (measured by
its arithmetic complexity) of a formal system does not influence the complexity
of cut-elimination (measured by the ordinal height of infinitary derivation trees)
in the corresponding infinitary propositional derivations.

Definition 6. Let Ind(A, z, t) denote the expression

Az(0) ∧ (∀z ≤ t)(A → Az(z + 1)) → Az(t) .

Definition 7. Let S1
2 denote the theory consisting (of universal closures) of for-

mulas in BASIC and (of universal closures) of formulas of the form Ind(A, z, |t|)
with A ∈ sΣb

1 , z a variable and t an LBA-term.
Let PA denote the theory consisting (of universal closures) of formulas in

BASIC and (of universal closures) of formulas of the form Ind(A, z, t) with A
an LBA formula (not necessarily bounded), z a variable and t an LBA-term.

4 A. Beckmann

Definition 8. Let Σb
1 be the set of formulas ϕ such that there exist ψ ∈ sΣb

1
with S1

2 � ϕ ↔ ψ.
Let Δb

1 be the set of formulas ϕ such that there exist formulas σ, π with σ,¬π ∈
sΣb

1 and S1
2 � (ϕ ↔ σ) ∧ (ϕ ↔ π).

3 Bounded Local Search with Goals

A binary relation R ⊆ N× N is called polynomially bounded iff there is a poly-
nomial p such that (x, y) ∈ R implies |y| ≤ p(|x|). R is called total if for all x
there exists a y with (x, y) ∈ R.

Definition 9 (Total and Definable NP Search Problems). Let R ⊆ N×N
be a polynomially bounded, total relation which is polynomial time computable.
The (total) NP search problem associated with R is this: Given input x ∈ N,
return a y ∈ N such that (x, y) ∈ R. R is called definable in a theory T , if
there exists a sΣb

1 -formula (∃y)ϕ(x, y) (the bound to y is implicit in ϕ) with
all free variables shown, such that (x, y) ∈ R iff N � ϕ(x, y), and such that
T � (∀x)(∃y)ϕ(x, y).

A binary relation ≺ on N × N is a polynomial time computable well-ordering,
if it satisfies the conditions that it is polynomial time computable as a binary
relation, that it is a total order, and that it is well-founded, i.e. does not contain
infinite descending sequences.

We now define the class of ≺-bounded local search problems with goals. It
will be defined similar to polynomial local search (PLS) problems as introduced
by Johnson, Papadimitriou, and Yannakakis [JPY88], and in particular Πp

k -PLS
with Πp

� -goals from [BB08, BB09]. The main difference will be that the set of
possible solutions is not required to be polynomially bounded. We discuss below
immediate consequences of this, after we have given the next definition.

Definition 10 (≺-BLS Problems with Goals). Let ≺ be a polynomial time
computable well-ordering. A ≺-bounded local search (≺-bls) problem with goal
is a tuple L = (S,G, d,N, c, i) consisting of, for a given input x, a set S(x) of
possible solutions, a goal set G(x) with a polynomial bound d, a neighbourhood
function N(x, s) mapping a solution s to another solution, a function c(x, s)
computing the cost of a solution s according to the well-ordering ≺, and a func-
tion i(x) computing an initial solution, such that the functions N , c and i and
the predicates F and G are polynomial time computable, and the following six
conditions are satisfied:

≺ is a total order. (3.1)
(∀x, s)(s ∈ G(x) → |s| ≤ d(|x|)) (3.2)

(∀x)(i(x) ∈ S(x)) (3.3)
(∀x, s)(s ∈ S(x) → N(x, s) ∈ S(x)) (3.4)
(∀x, s)(N(x, s) = s ∨ c(x,N(x, s)) ≺ c(x, s)) (3.5)
(∀x, s)(s ∈ G(x) ↔ (N(x, s) = s ∧ s ∈ S(x))) (3.6)

A Characterisation of Definable NP Search Problems in Peano Arithmetic 5

The search task is, for a given input x, to find some s with s ∈ G(x).
If the well-ordering is understood from the context, we often refer to it by its

ordertype given as an ordinal, and e.g. speak of α-bounded local search problems
with goals.

We have introduced F and G as sets. They will usually be given via a corre-
sponding relation, e.g. “s ∈ S(a)” in terms of S(a, s).

The following fact is obvious.

Fact 11. Any ≺-bls problem with goal defines a total NP search problem in the
sense of Definition 9.

The next observation is almost obvious, and uses the fact that the set of possible
solutions is not necessarily polynomially bounded.

Observation 12. Any total NP search problem can be defined by some <-bls
problem with goal, where < is the natural ordering on N.

Proof. The proof is based on a simple padding idea. As the set of possible solu-
tions is not required to be polynomially bounded, we first increase the size of a
possible solution to reach a possible solution which is exponentially bigger that
the polynomially bound of our goal set. At this point it is feasible to directly
search for a solution in the goal set.

To be more precise, let R be a total binary relation, which is polynomi-
ally bounded using some polynomial d. We define a <-bls problem with goal
L = (S,G, d,N, c, i) which defines the NP search problem associated with R
in the sense of Definition 10: let b := 2d(|x|) (which implies d(|x|) < |b|) and
define G(x) := {y : |y| ≤ d(|x|) and R(x, y)}, S(x) := {〈x, b, n〉 : n ∈ N} ∪G(x),
N(x, 〈x, b, n〉) :=

〈
x, b, n2 + 2

〉
if |n| < b, N(x, 〈x, b, n〉) := y if |n| ≥ b and

y smallest with R(x, y) (observe that in this case y < b ≤ |n| ≤ | 〈x, b, n〉 |,
thus it is feasible to search for y,) N(x, s) := s otherwise, i(x) := 〈x, b, 0〉 and
c(x, 〈x, b, n〉) := 1 + (b ·− |n|), c(x, s) := 0 otherwise. ��

The previous fact and observation show that the general formulation of ≺-bls
problems with goals cannot be used to make any meaningful assertions about
total NP search problems. That is, they do not lead to a meaningful combinatorial
description of a kind of local search problem, which expresses the totality of the
overall search problem in some natural way. If we study the previous proof we
can see why this is the case: in order to obtain that the neighbourhood function
as defined in the previous proof is a well-defined function (that is, is total) we
have to know for the step N(x, 〈x, b, n〉) := y if |n| ≥ b and y smallest with
R(x, y), that a y with R(x, y) exists, which means that at this point we already
have to invest that the R defines a total NP search problem. And for the proof
of existence it does not help that n is very big.

One way to ensure that the description of a ≺-bounded local search problem
stays in some sense “purely combinatorial”, is to require that all its conditions
can be formalised in some weak theory suitable for formalising combinatorics. We
follow this line of thought in the following definition by taking as such theory S1

2.

6 A. Beckmann

Definition 13 (Formalised ≺-BLS Problems). A ≺-bls problem with goal
in the sense of Definition 10 is formalised provided the predicates S, G and ≺
are given by Δb

1-formulas, and the defining conditions (3.1)–(3.6) are provable
in S1

2.

4 Ordinal Notations for ε0

Let < denote the ‘real’ semantic concept of ordinal orderings. Recall the Cantor
normal form for ordinals; i.e., every ordinal α > 0 can be written uniquely in
the form

α = ωα1 + ωα2 + ωα3 + · · ·+ ωαk ,

where k ≥ 1 and α1 ≥ α2 ≥ α3 ≥ · · · ≥ αk. This is the basis for the well-known
representation of ordinals less than ε0: namely, write an ordinal α < ε0 as a term
in Cantor normal form, recursively writing the exponents of ω in the same form.
We repeat the definition of compact representations for ordinals less than ε0 as
given in [BBP03].

Definition 14. We simultaneously and inductively define a set of expressions,
called normal compact forms for ordinals less than ε0, and a binary relation ≺ε0

on normal compact forms, as follows, where “=” denotes identity on strings:

1. If α1, . . . , αk are normal compact forms, and n1, . . . , nk ∈ N \ {0}, then the
expression ωα1 ·n1 + · · ·+ωαk ·nk is a normal compact form. For k = 0 this
is the empty word which we denote by 0.

2. ωα1 · n1 + · · · + ωαk · nk ≺ε0 ωβ1 · m1 + · · · + ωβ� · m� holds if and only if
there is some i with 0 ≤ i ≤ min{k, �}, such that αj = βj and nj = mj for
j = 1, . . . , i, and one of the following cases is satisfied:
(a) either i = k < �; or
(b) i < min{k, �} and αi+1 ≺ε0 βi+1; or
(c) i < min{k, �}, αi+1 = βi+1 and ni+1 < mi+1.

We also write α ≺ε0 ε0 to indicate that α is a normal compact form.

It can be shown (cf. [BBP03]) that S1
2 can formalise the notion of normal compact

forms by using standard sequence coding methods to define the Gödel number
of a normal compact form. We assume that some efficient method of sequence
coding is used for Gödel numbers so that the length of the Gödel number of a
basic form α is proportional to the number of symbols in α.

In this way, the set of normal compact forms and the relation ≺ε0 can be
seen to be polynomial time computable based on their inductive definitions, and
that the bounded arithmetic theory S1

2 can Δb
1-define the syntactic concepts of

normal compact forms and the relation ≺ε0, see [BBP03] for more details.
It is also easy to see that the operations α, β �→ α+β of addition and α �→ 3α of

exponentiation to base 3 on ordinals can be represented on normal compact forms
by polynomial time computable functions. Also observe that the embedding of N
into normal compact forms, given by n �→ ω0 ·n, is polynomial time computable.

Finally, we show that S1
2 can prove that ≺ε0 is a total ordering on normal

compact forms, satisfying transitivity and trichotomy.

A Characterisation of Definable NP Search Problems in Peano Arithmetic 7

Theorem 15. Let α be a normal compact form. The α-bls problems with goals
are definable NP search problems in PA.

Proof. Let L = (S,G,N, c, i) be an α-bls problem with goal. Let x be given. The
set A := {c(x, s) : s ∈ S(x)} is a non-empty subset of {β : β ≺ε0 α} by (3.3) and
(3.4), and can be expressed by a Σ1 formula. PA proves transfinite induction up
to α ≺ε0 ε0 for Σ1 properties [Poh09]. Thus, arguing in PA, we can choose some
c ∈ A which is ≺ε0-minimal. Pick s ∈ S(x) with c(x, s) = c, and let s′ := N(x, s).
Then s′ ∈ S(x) by (3.4). By construction c(x, s′) �≺ε0 c(x, s), hence (3.5) shows
s′ = N(x, s) = s. Hence, (3.6) shows s ∈ G(x). ��

5 Notation System for Peano Arithmetic

In [AB08], a general framework has been developed which is suitable to char-
acterise definable search problems / (multi-)functions in Bounded Arithmetic.
This framework is based on notations for propositional proofs. In principle, the
same framework can also be used to characterise the definable NP search prob-
lems of Peano Arithmetic. The main difference between the notation system for
Bounded Arithmetic and that for Peano Arithmetic is that heights of proposi-
tional proofs can become infinite in the case of Peano Arithmetic, and therefore
have to be bounded by ordinals.

Due to the lack of space, we will only briefly introduce proof notations, and
mainly state the differences between those for Bounded Arithmetic and those
needed for Peano Arithmetic. The reader interested in more details is kindly
referred to [AB08].

A proof notation system is a set (of proof terms) which is equipped with some
functions, most prominently a function computing the last inference tp(h) of a
proof named by some notation h, and a function that, given a notation h and
a natural number i computes some notation h[i] for the i’th subproof of the
derivation named by h. So, a proof notation completely determines an explicit
propositional derivation tree; the tree can be reconstructed by exploring it from
its root and determining the inference at each node of the tree.

The cut-reduction operator can be defined on the names for derivation trees.
Using continuous cut-elimination, these transformations will be particularly sim-
ple on the names; note that, using names, for derivations it makes sense to ask
about the complexity of getting the i’th subderivation, or about the size of the
name, even if it denotes an infinite object. It has been shown [AB08] that the
cut-reduction operator on proof notations can be understood as a polynomial
time operation. Continuous normalisation for infinitary propositional proofs has
been invented by Mints [Min78, KMS75]. The approach in [AB08] is build on
Buchholz’ technical very smooth approach to notation systems for continuous
cut-elimination [Buc91, Buc97].

In [AB08], a notation system HBA has been defined which denotes proposi-
tional derivations obtained by translating [Tai68, PW85] Bounded Arithmetic
proofs. Applying the machinery of notations for continuous cut-elimination, a
notation system CHBA of cut-elimination for HBA has been obtained which has

8 A. Beckmann

the property that its implicit descriptions, most notably the functions mentioned
above, will be polynomial time computable.

To obtain a similar notation system for Peano Arithmetic we can proceed as
follows. Let FPA be the set of closed formulas in LBA. We define the outermost
connective function tp(f) for f ∈ FPA to be � or ⊥ for true or false literals,
respectively,

∧
for universally quantified formulas and conjunctions, and

∨
for

existentially quantified formulas and disjunctions. The sub-formula function f [n]
for f ∈ FPA and n ∈ N is defined in the obvious way, where for finite conjunctions
and disjunctions the last conjunct or disjunct is treated as if it were repeated
infinitely often. The rank rk(A) of a formula A in FPA is defined in the usual
way measuring its depth: rk(A) := 0 for atomic formulas A, for A = B ∧ C or
A = B ∨ C let rk(A) := 1 + max{rk(B), rk(C)}. If A = (∀x)B or A = (∃x)B,
let rk(A) := 1 + rk(B).

As closed terms are evaluated to numbers when translating PA-proofs into
propositional ones, notations have to be considered modulo the natural inten-
tional equivalence relation ≈N which identifies terms with the same value. As our
definition of LBA only contains function symbols for polynomial time computable
functions, ≈N will be polynomial time decidable if the depth of expressions is
restricted, and the number of function symbols representing polynomial time
functions is also restricted to a finite subset.

Let PA∞ denote the propositional proof system over FPA. The last inference
of a derivation in PA∞ can be of the form (AxA) for A ∈ FPA with tp(A) = �
indicating an axiom, (

∧
C) for C ∈ FPA with tp(C) =

∧
indication an application

of a
∧

-inference with main formula C, (
∨i

C) for C ∈ FPA with tp(C) =
∨

and
i ∈ N indicating an application of a

∨
-inference with main formula C and

side formula C[i], (CutC) for C ∈ FPA with tp(C) ∈ {�,
∧
} indicating an

application of a cut inference, and the void repetition inference (Rep) which
neither introduces nor discharges a formula.

The finitary proof system PA� is some particularly nice formal proof system
for first order logic, which includes also some special rules for induction. It is
mainly given by the same inference symbols as BA� in [AB08].

Finally, let HPA be the set of closed PA�-derivations. For each h ∈ HPA we
define the denoted last inference tp(h) and subderivations h[j] following the
obvious translation into propositional logic, were induction up to 2i is proved by
a balanced tree of cuts of height i. The height o(h) is defined according to the
above description of a tree of balanced cuts; the increase of the height caused
by one application of induction can be bounded by ω. The cut-rank crk(h) of
a derivation h ∈ HPA is defined as usual by strictly bounding the ranks of all
cut-formulas. We write h �≈N

Γ to indicate that Γ is a superset (modulo ≈N) of
the end-sequent of the propositional derivation denoted by h.

As for HBA [AB08], we can now add notations for cut-elimination to obtain
CHPA. In particular, we add a symbol E which represents the reduction of cuts
by one level, and which has the following properties: If h �≈N

Γ , then Eh �≈N
Γ ,

crk(Eh) ≤ crk(h) ·− 1 and o(Eh) = 3o(h).

A Characterisation of Definable NP Search Problems in Peano Arithmetic 9

As in the case of HBA it can be seen that all functions involved in HPA and
CHPA are polynomial-time computable.

Theorem 16. Assume PA � ϕ with FV(ϕ) ⊆ {x}. Then, there is some PA�-
derivation h such that FV(h) ⊆ {x}, h �≈N

ϕ, and o(h(a/x)) ≺ε0 ω · 2.

6 Definable NP Search Problems in Peano Arithmetic

We start by describing the idea for computing witnesses using proof trees. As-
sume we have a PA-proof of a formula (∃y)ϕ(y) in sΣb

1 and we want to compute
an n such that ϕ(n) is true — in case we are interested in definable search prob-
lems, such a situation is obtained from a proof of (∀x)(∃y)ϕ(x, y) by inverting
the universal quantifier to some a ∈ N. Assume further, that we have applied cut-
elimination to obtain a PA∞ derivation d0 of (∃y)ϕ(y) with crk(d0) = 0. Then
we can define a path through d0, represented by sub-derivations d1, d2, d3 . . . ,
such that dj is an immediate sub-derivation of dj+1, and the end-sequent of dj is
of the form (∃y)ϕ(y), Γj where all formulas A ∈ Γj are false and either atomic or
instances of sub-formulas of (∃y)ϕ(y). Such a path must be finite as the height
of dj is strictly decreasing. Say it ends with some d�. In this situation we must
have that last inference of d� is

∨k
(∃y)ϕ(y) and that ϕ(k) is true. Hence we found

our witness.
Before we capture this idea in Definition 18 we will define a function on proof

notations that computes the next step in the path described above.

Definition 17. Let CHk
PA denote the set of notations h in CHPA which satisfy

that the index of any function symbols occurring in h is bounded by k, and that
the depths of any formula or term occurring in h is also bounded by k (the depth
of constants is counted as 0.)

We define a function red : CHk
PA ∪ {0}→ CHk

PA ∪ {0} by h �→ red(h) with

red(h) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if h = 0 or tp(h) = AxA or
tp(h) =

∨d
(∃y)ϕ(a,y) with ϕ(a, d) true,

h[1] if tp(h) = CutC with C true,
h[1] if tp(h) =

∧
A0 ∧ A1

with A0 ∧A1 of the form
ϕ(a, d) for some d and A0 true,

h[0] otherwise.

It is clear from the introduction of proof notations for PA that red is polynomial
time computable.

Definition 18. We define a parameterised α-bounded local search problem by
k ∈ N, α ≺ε0 ε0, a PA�-derivation h which defines an initial value function

h(·) : N → CHPA, a �→ h(a) := E · · ·E︸ ︷︷ ︸
crk(h)×

h(a/x) ,

10 A. Beckmann

and a formula (∃y)ϕ(x, y) ∈ sΣb
1 , such that S1

2 proves, for a ∈ N, that h(a) �≈N

(∃y)ϕ(a, y), crk(h(a)) = 0, and o(h(a)) ≺ε0 α. We denote such a parametrisation
by P = 〈k, α, h, (∃y)ϕ(x, y)〉.

This parametrisation defines an α-bounded local search problem with goal L =
(S,G, d,N, c, i) in the following way: Let t(x) be the bound to y which is implicit
in (∃y)ϕ(x, y). An instance is given by some a ∈ N. The goal set is defined as
G(a) := {y : ϕ(a, y)}; the set of possible solutions as

S(a) := G(a) ∪ {〈t(a), h0, . . . , h�〉 : h0 = h(a), h� �= 0 and
(∀i<�)hi+1 = red(hi)} ;

the neighbourhood function is defined as

N(a, 〈t(a), h0, . . . , h�〉) :={
〈t(a), h0, . . . , h�, red(h�)〉 if red(h�) �= 0
d if red(h�) = 0 and tp(h�) =

∨d
(∃y)ϕ(x,y)

N(a, d) := d for d ≤ t(a) ;

the initial value function is given by i(a) := 〈t(a), h(a)〉; and the cost function
is defined as c(a, 〈t(a), h0, . . . , h�〉) := o(h�), and c(a, d) := 0 for d < Da.

Proposition 19. The local search problem L = (S,G, d,N, c, i) parameterised
by P = 〈k, α, h, (∃y)ϕ(x, y)〉 from Definition 18 provides an α-bls problem with
goal according to Definition 10 which solves ϕ.

Theorem 20. The definable NP search problems in PA can be characterised by
formalised α-bls problems with goals for α ≺ε0 ε0.

Proof. Assume PA � (∀x)(∃y)ϕ(x, y) with (∃y)ϕ(x, y) ∈ sΣb
1 . Inverting the (∀x)

quantifier we obtain PA � (∃y)ϕ(x, y). By Theorem 16, we obtain some PA�-
derivation h such that FV(h) ⊆ {x}, h �≈N

(∃y)ϕ(x, y), and o(h(a/x)) ≺ε0 ω · 2.

Let k be so large that it bounds all indices of function symbols occurring in h, as
well as the logical depths of all formulas and terms (where constants have depth
0) occurring in h. Let α := 3crk(h)(ω · 2). Then P = 〈k, α, h, (∃y)ϕ(x, y)〉 defines
a parameterised α-bls problem according to Definition 18, because the following
are provable in S1

2, using h(a) := E · · ·E︸ ︷︷ ︸
crk(h)×

h(a/x):

– h(a) �≈N
(∃y)ϕ(a, y);

– crk(h(a)) = crk(h(a/x)) ·− crk(h) = crk(h) ·− crk(h) = 0;
– o(h(a)) = 3crk(h)(o(h(a/x))) ≺ε0 3crk(h)(ω · 2) = α.

By Proposition 19, this defines an α-bls problem with goal which solves ϕ. ��

Together with Theorem 15 we obtain the following

Corollary 21. The definable NP search problems in PA are exactly charac-
terised by formalised α-bls problems with goals for α ≺ε0 ε0.

A Characterisation of Definable NP Search Problems in Peano Arithmetic 11

7 Conclusion

We have characterised the definable NP search problems of Peano Arithmetic
in terms of formalised α-bls problems with goals for α ≺ε0 ε0. One immediate
question is whether the defining conditions (3.1)–(3.6) can be turned into some
independent principle, by rendering all involved polynomial time functions and
predicates in a generic way using oracles (cf. [BB08, BB09]).

Further steps in this programme will be to investigate whether it can be
extended to stronger theories than PA. The hope would be that for any theory
for which a suitable ordinal analysis has been accomplished [Poh09], this can
be turned into some feasible notation system which can form the basis of some
class of ≺-bls problems characterising the definable NP search problems of that
theory. A next step here could be to use the description of Γ0 in [BBP03].

References

[AB08] Aehlig, K., Beckmann, A.: On the computational complexity of cut-
reduction. Submitted to APAL (2008)

[BB08] Beckmann, A., Buss, S.R.: Polynomial local search in the polynomial hier-
archy and witnessing in fragments of bounded arithmetic. Technical Report
CSR15-2008, Department of Computer Science, Swansea University (De-
cember 2008)

[BB09] Beckmann, A., Buss, S.R.: Characterising definable search problems in
bounded arithmetic via proof notations. Technical report, Department of
Computer Science, Swansea University (January 2009)

[BBP03] Beckmann, A., Buss, S.R., Pollett, C.: Ordinal notations and well-orderings
in bounded arithmetic. Ann. Pure Appl. Logic 120(1-3), 197–223 (2003)

[BK94] Buss, S.R., Kraj́ıček, J.: An application of Boolean complexity to separation
problems in bounded arithmetic. Proc. London Math. Soc. (3) 69(1), 1–21
(1994)

[Buc91] Buchholz, W.: Notation systems for infinitary derivations. Archive for
Mathematical Logic 30, 277–296 (1991)

[Buc97] Buchholz, W.: Explaining Gentzen’s consistency proof within infinitary
proof theory. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997.
LNCS, vol. 1289, pp. 4–17. Springer, Heidelberg (1997)

[Bus86] Buss, S.R.: Bounded arithmetic. Studies in Proof Theory. Lecture Notes,
vol. 3. Bibliopolis, Naples (1986)

[Gen36] Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math.
Ann. 112, 493–565 (1936)

[JPY88] Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local
search? J. Comput. System Sci. 37(1), 79–100 (1988); 26th IEEE Confer-
ence on Foundations of Computer Science (Portland, OR, 1985)

[KMS75] Kreisel, G., Mints, G.E., Simpson, S.G.: The use of abstract language in
elementary metamathematics: Some pedagogic examples. In: Parikh, R.
(ed.) Logic Colloquium. Lecture Notes in Mathematics, vol. 453, pp. 38–
131. Springer, Heidelberg (1975)

[Kra93] Kraj́ıček, J.: Fragments of bounded arithmetic and bounded query classes.
Trans. Amer. Math. Soc. 338(2), 587–598 (1993)

12 A. Beckmann

[KST07] Kraj́ıček, J., Skelley, A., Thapen, N.: NP search problems in low fragments
of bounded arithmetic. J. Symbolic Logic 72(2), 649–672 (2007)

[Min78] Mints, G.E.: Finite investigations of transfinite derivations. Journal of
Soviet Mathematics 10, 548–596 (1978); Translated from: Zap. Nauchn.
Semin. LOMI 49 (1975); Cited after Grigori Mints. Selected papers in Proof
Theory. Studies in Proof Theory. Bibliopolis (1992)

[Poh09] Pohlers, W.: Proof theory. The first step into impredicativity. Universitext.
Springer, Berlin (2009)

[Pol99] Pollett, C.: Structure and definability in general bounded arithmetic theo-
ries. Ann. Pure Appl. Logic 100(1-3), 189–245 (1999)

[Pud06] Pudlák, P.: Consistency and games—in search of new combinatorial prin-
ciples. In: Logic Colloquium 2003. Lect. Notes Log., vol. 24, pp. 244–281.
Assoc. Symbol. Logic, La Jolla (2006)

[PW85] Paris, J., Wilkie, A.: Counting problems in bounded arithmetic. In: Dold,
A., Eckmann, B. (eds.) Methods in Mathematical Logic (Proceedings Cara-
cas 1983). Lecture Notes in Mathematics, vol. 1130, pp. 317–340. Springer,
Heidelberg (1985)

[ST07] Skelley, A., Thapen, N.: The provable total search problems of bounded
arithmetic (2007); Typeset manuscript

[Tai68] Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The
Syntax and Semantics of Infinitatry Languages. Lecture Notes in Mathe-
matics, vol. 72, pp. 204–236. Springer, Heidelberg (1968)

Algebraic Valuations as
Behavioral Logical Matrices�

Carlos Caleiro1 and Ricardo Gonçalves1,2

1 Instituto de Telecomunicações and Dept. Mathematics, IST, TU-Lisbon, Portugal
2 CENTRIA, FCT-UNL, Portugal

Abstract. The newly developed behavioral approach to the algebraiza-
tion of logics extends the applicability of the methods of algebraic logic
to a wider range of logical systems, namely encompassing many-sorted
languages and non-truth-functionality. However, where a logician adopt-
ing the traditional approach to algebraic logic finds in the notion of a
logical matrix the most natural semantic companion, a correspondingly
suitable tool is still lacking in the behavioral setting. Herein, we analyze
this question and set the ground towards adopting an algebraic formu-
lation of valuation semantics as the natural generalization of logical
matrices to the behavioral setting, by establishing a few simple but
promising results. For illustration, we will use da Costa’s paraconsistent
logic C1.

Keywords: algebraic logic, behavioral algebraization, logical matrix,
valuation semantics.

1 Introduction

A novel behavioral approach to the algebraization of logics was introduced
in [7] with the aim of extending the range of applicability of the traditional
tools of algebraic logic. The extended theory is able to provide a meaning-
ful algebraic counterpart also to logics with a many-sorted syntax, or includ-
ing non-truth-functional connectives, and which are not algebraizable with the
usual approach. Intuitively, while the algebraization process is usually cen-
tered around the notion of congruence, behavioral algebraization is centered
around the weaker notion of behavioral equivalence. Behavioral equivalence has
its roots in computer science, namely in the field of algebraic specifications
of data-types, where it is often necessary to reason about data which can-
not be directly accessed [16]. In such situations, it is perfectly possible that
one cannot distinguish between two different values if those values provide ex-
actly the same results for all available ways of observing and experimenting
with them. Hence, unsorted equational logic is replaced by many-sorted be-
havioral equational logic (sometimes called hidden equational logic) based on
� This work was partially supported by FCT and EU FEDER, namely via the project

KLog PTDC/MAT/68723/2006 of SQIG-IT. The second author was also supported
by FCT under the postdoctoral grant SFRH/BPD/47245/2008.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 13–25, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

14 C. Caleiro and R. Gonçalves

the notion of behavioral equivalence, given a set of available experiments. Be-
havioral reasoning in equational logic has been consistently developed, see for
instance [14,19].

As a consequence of the generalization of the process of algebraizing logics
to the behavioral setting, however, one finds that the central notion of matrix
semantics [15] is no longer adequate. Of course, it is well-known that every struc-
tural logic is fully characterized by the class of its matrix models, or even better
by the class of its reduced matrix models [20]. In the case of a logic algebraizable
according to the traditional methods, one even gets an equational characteriza-
tion of the algebras underlying these matrix models, a neat characterization of
matrix congruences by means of the Leibniz operator, and a way of recovering
the corresponding matrix filters by using the defining equations of the algebraiza-
tion [2,13]. In contrast, in the behavioral approach, this is not such an easy task.
First of all, due to the additional freedom provided by the notion of behavioral
equivalence, the corresponding behavioral version of the Leibniz operator is in
general not a congruence over the whole language of the logic. Moreover, as ex-
pected in the case of logics that are not algebraizable under the usual approach
(but which may be behaviorally algebraizable), the connection between the logic
and its matrix semantics may be weak and uninteresting. A paradigmatic exam-
ple of this situation can be found in da Costa’s system of paraconsistent logic
C1 [8]. In fact, C1 is well-known not to be algebraizable using traditional means,
and additionally all its Lindenbaum matrices are reduced.

Still, the logic C1 is behaviorally algebraizable, and its resulting behaviorally
equivalent algebraic semantics is quite interesting [6]. Namely, with little effort,
it allows us to recover the non-truth-functional bivaluation semantics of [9].
Valuations as a general semantic tool were proposed in [10] precisely with the aim
of providing a semantic ground for logics that, like C1, lack a meaningful truth-
functional semantics. The key idea is, in the extreme case, to drop the condition
that formulas should always be interpreted homomorphically in an algebra over
the same signature. Besides lacking a thorough study, namely if contrasted to the
myriad of interesting and valuable algebraic theory underlying logical matrices
(see [20]), valuation semantics has been criticized for its excessive generality (see,
for instance, [12]). Still, everyone would agree that matrix semantics is simply
a clever and algebraically well-behaved way of defining a valuation semantics.
What we propose in this paper, taking into account the experience with C1, and
as already suggested in [7,5], is to adopt a suitable algebraic version of valuation
semantics as the natural generalization of logical matrices to the behavioral
setting. Namely, we will drop the requirement that formulas must be interpreted
homomorphically, but we will require that there is an algebraic way of specifying
these exceptions. This is just preliminary work, in the sense that our proposal
will lack a deep body of results, namely as those available about logical matrices
in the usual theory of abstract algebraic logic. What we hope, herein, is to set the
ground for developing such results about algebraic valuations and the behavioral
approach in the near future.

Algebraic Valuations as Behavioral Logical Matrices 15

The paper is organized as follows. In Section 2, we fix notation and concepts
that will be necessary for the remainder of the paper, most notably behavioral
equational reasoning. Section 3 briefly overviews the notion of behavioral alge-
braizable logic, as well as the behavioral version of the Leibniz operator. Then,
in Section 4, we motivate and present the notion of valuation semantics, and
some of its properties. Section 5 is dedicated to establishing a few promising
results that parallel, for valuations and in the behavioral setting, well known
bridging results between logical matrices and traditional algebraization. Finally,
in Section 6, we draw some conclusions and point to some topics of future work.

2 Preliminaries

In this work we will focus our attention on a wide class of logics: those whose lan-
guage can be built from a rich many-sorted signature. A many-sorted signature
is a pair Σ = 〈S, F 〉 where S is a set (of sorts) and F = {Fws}w∈S∗,s∈S is an in-
dexed family of sets (of operations). For simplicity, we write f : s1 . . . sn → s ∈ F
for an element f ∈ Fs1...sns. As usual, we denote by TΣ(X) = {TΣ,s(X)}s∈S the
S-sorted family of carrier sets of the free Σ-algebra TΣ(X) with generators
taken from a sorted family X = {Xs}s∈S of variable sets. We will denote by
x:s the fact that x ∈ Xs. Often, we will need to write terms over a given fi-
nite set of variables t ∈ TΣ(x1 : s1, . . . , xn : sn). For simplicity, we will denote
such a term by t(x1 : s1, . . . , xn : sn). Moreover, if T is a set whose elements are
all terms of this form, we will write T (x1 : s1, . . . , xn : sn). A substitution over
Σ is a S-sorted family of functions σ = {σs : Xs → TΣ,s(X)}s∈S. As usual,
σ(t) denotes the term obtained by uniformly applying σ to each variable in
t. Given t(x1 : s1, . . . , xn : sn) and terms t1 ∈ TΣ,s1(X), . . . , tn ∈ TΣ,sn(X),
we will write t(t1, . . . , tn) to denote the term σ(t) where σ is a substitu-
tion such that σs1(x1) = t1, . . . , σsn(xn) = tn. Extending everything to sets,
given T (x1 : s1, . . . , xn : sn) and U ∈ TΣ,s1(X) × · · · × TΣ,sn(X), we will use
T [U] =

⋃
〈t1,...,tn〉∈U T (t1, . . . , tn). A derived operation of type s1 . . . sn → s

over Σ is simply a term in TΣ,s(x1 : s1, . . . , xn : sn). For w ∈ S∗, we denote
by DerΣ,ws the set of all derived operations of type w → s over Σ. A (full)
subsignature of Σ is a many-sorted signature Γ = 〈S, F ′〉 such that, for each
w ∈ S∗ and s ∈ S, F ′ws ⊆ DerΣ,ws. Given a many-sorted signature Σ = 〈S, F 〉,
a Σ-algebra is a pair A=〈{As}s∈S , A〉, where each As is a non-empty set, the
carrier of sort s, and A assigns to each operation f : s1 . . . sn → s a func-
tion f

A
: As1 × . . . × Asn → As. An assignment over A is a S-sorted family

of functions h = {hs : Xs → As}s∈S . As usual, we will often overload h and
use it to denote also the unique extension of the assignment to an homomor-
phism h : TΣ(X) → A. Given a Σ-algebra A, a term t(x1 : s1, . . . , xn : sn) and
〈a1, . . . , an〉 ∈ As1 × . . .×Asn , then we denote by tA(a1, . . . , an) the value h(t)
that t takes in A under an assignment h such that h(x1) = a1, . . . , h(xn) = an.
We denote by A|Γ the Γ -algebra obtained by forgetting in a given Σ-algebra A
the interpretation of all the operations not in the subsignature Γ . We will use
t ≈ u to represent an equation between terms t, u ∈ TΣ,s(X) of the same sort

16 C. Caleiro and R. Gonçalves

s, in which case we dub it an s-equation. The S-sorted set of all Σ-equations
will be written as EqΣ . We will denote quasi-equations by (t1 ≈ u1) & . . .&
(tn ≈ un) → (t ≈ u). A set Θ of equations with variables in {x1 :s1, . . . , xn :sn}
will be dubbed Θ(x1 : s1, . . . , xn : sn). As usual, we say that an assignment h
over A satisfies the equation t ≈ u, in symbols A, h � t ≈ u if h(t) = h(u).
We say that A satisfies t ≈ u, in symbols A � t ≈ u, if A, h � t ≈ u for every
assignment h over A. Given a class K of Σ-algebras, the equational consequence
over Σ associated with K, �K⊆ P(EqΣ) × EqΣ , is such that Θ �K t ≈ u if for
every A ∈ K and assignment h over A we have that A, h � t ≈ u whenever
A, h � Θ. Moreover, we say that A satisfies a quasi-equation (t1 ≈ u1) & . . .&
(tn ≈ un) → (t ≈ u), denoted by A � (t1 ≈ u1) & . . .& (tn ≈ un) → (t ≈ u),
whenever {t1 ≈ u1, . . . , tn ≈ un} �{A} t ≈ u.

As mentioned above, the key ingredient of the behavioral approach to alge-
braizing logics is to use behavioral equational logic in the role usually played
by plain equational logic. The distinctive feature of behavioral equational logic
is the fact that sorts are split in two disjoint sets, of visible and hidden sorts,
and only certain operations of visible sort are allowed as experiments. In the
visible sorts we can perform simple equational reasoning, but we can only rea-
son indirectly about hidden sorts using behavioral indistinguishability under the
available experiments. Intuitively, we must evaluate equations involving hidden
values using only their visible properties. It may happen that under the avail-
able experiments two certain hidden terms always coincide, which makes them
behaviorally equivalent, even though they might actually have distinct values.
We now put forward the rigorous definitions. A hidden many-sorted signature is
a tuple 〈Σ, V, E〉 where Σ = 〈S, F 〉 is a many sorted-signature, V ⊆ S is the set
of visible sorts, and E is the set of available experiments, that is, a set terms of
visible sort of the form t(x : s, x1 : s1, . . . , xn : sn) where x is a distinguished
variable of hidden sort s ∈ H = S \ V .

Definition 1. Consider a hidden many-sorted signature 〈Σ, V, E〉 and a Σ-
algebra A. Given a hidden sort s ∈ H , two values a, b ∈ As are
E-behaviorally equivalent, in symbols a ≡E b, if for every experiment
t(x :s, x1 :s1, . . . , xn :sn) ∈ E and every 〈a1, . . . , an〉 ∈ As1 × . . . × Asn , we have
that tA(a, a1, . . . , an) = tA(b, a1, . . . , an).

Now that we have defined behavioral equivalence, we can talk about behavioral
satisfaction of an equation by a Σ-algebra A. We say that an assignment h over
A E-behaviorally satisfies an equation t ≈ u of hidden sort s ∈ H , in symbols
A, h �E t ≈ u if h(t) ≡E h(u). Expectedly, equations of visible sort are satisfied
as usual, that is, if t ≈ u is an equation of sort s ∈ V then we write A, h �E t ≈ u
if h(t) = h(u). These notion can now be smoothly extended. We say that A E-
behaviorally satisfies t ≈ u, in symbols A �E t ≈ u, if A, h �E t ≈ u for every
assignment h over A. Given a class K of Σ-algebras, the behavioral consequence
over Σ associated with K and E , |≡E

K
⊆ P(EqΣ)×EqΣ , is such that Θ |≡E

K
t ≈ u

if for every A ∈ K and every assignment h over A we have that A, h �E t ≈ u
whenever A, h �E t′ ≈ u′ for every t′ ≈ u′ ∈ Θ. Moreover, we say that A
E-behaviorally satisfies a quasi-equation (t1 ≈ u1) & . . . & (tn ≈ un) → (t ≈ u),

Algebraic Valuations as Behavioral Logical Matrices 17

denoted by A �E (t1 ≈ u1) & . . .& (tn ≈ un) → (t ≈ u), whenever {t1 ≈
u1, . . . , tn ≈ un} |≡E{A} t ≈ u. We refer the reader to [18] for more details on the
subject of behavioral equational reasoning.

3 Behavioral Algebraization

From now on, we will work only with many-sorted signatures Σ = 〈S, F 〉 with
a distinguished sort φ (the syntactic sort of formulas). We assume fixed a S-
sorted family X of variables. We define the induced set of formulas LΣ(X) to
be the carrier set of sort φ of the free algebra TΣ(X) with generators X , that
is, LΣ(X) = TΣ,φ(X). We now introduce the class of logics that is the target of
our approach.

Definition 2. A many-sorted logic is a tuple L = 〈Σ,�〉 where Σ is a many-
sorted signature and �⊆ P(LΣ(X))×LΣ(X) is a consequence relation satisfying,
for every Φ1∪Φ2∪{ϕ} ⊆ LΣ(X): if ϕ ∈ Φ1 then Φ1 � ϕ (reflexivity); if Φ1 � ϕ
for all ϕ ∈ Φ2, and Φ2 � ψ then Φ1 � ψ (cut); if Φ1 � ϕ and Φ1 ⊆ Φ2 then
Φ2 � ϕ (weakening). A logic L is further said to be structural if whenever
Φ1 � ϕ then, for every substitution σ, σ[Φ1] � σ(ϕ); and said to be finitary if
whenever Φ1 � ϕ then Φ2 � ϕ for some finite Φ2 ⊆ Φ1. In this paper, unless
otherwise stated, all the logics considered are assumed to be structural.

Note that propositional-like logics appear as a particular case of many-sorted
logics. They can be obtained by taking φ to be the only sort of the signature,
that is, considering a signature Σ = 〈S, F 〉 such that S = {φ}. In the sequel,
we will use �L instead of just � to refer to the consequence relation of a given
logic L = 〈Σ,�〉. Moreover, as usual, if Φ1, Φ2 ⊆ LΣ(X), we will write Φ1 �L Φ2
whenever Φ1 �L ϕ for all ϕ ∈ Φ2. We say that ϕ, ψ ∈ LΣ(X) are interderivable
in L, which is denoted by ϕ ��L ψ, if ϕ �L ψ and ψ �L ϕ. Analogously, we
say that Φ1 and Φ2 are interderivable in L, which is denoted by Φ1 ��L Φ2, if
Φ1 �L Φ2 and Φ2 �L Φ1. The theorems of L are the formulas ϕ such that ∅ �L ϕ.
A theory of L is a set of formulas Φ such that if Φ �L ϕ then ϕ ∈ Φ. As usual,
Φ�L denotes the least theory of L that contains Φ.

In the present setting, given the signature Σ = 〈S, F 〉 of a logic, the corre-
sponding free many-sorted algebra will have a set of terms of each sort, but only
those terms of sort φ will correspond to formulas of the logic. Therefore, in the
logic itself, one can only observe the behavior of terms of other sorts by their
indirect influence on the formulas where they appear. The behavioral approach
to the algebraization of logics is built over the idea of taking this situation a
step further. Namely, we will hide all the sorts of Σ, including φ, and introduce
a new unique visible sort for observing the behavior of formulas. Experiments
must be carefully chosen among the well-behaved connectives of the logic, de-
termined by a given subsignature Γ of Σ, thus possibly allowing the remaining
connectives to behave in a non-congruently. This can be achieved by consid-
ering behavioral equational logic over an extended many-sorted signature. We
define the extended signature Σo = 〈So, F o〉 such that So = S

⊎
{v}, where

18 C. Caleiro and R. Gonçalves

v is the newly introduced sort of observations of formulas. The indexed set of
operations F o = {F o

ws}w∈(So)∗,s∈So is such that F o
ws = Fws if w ∈ S∗ and

s ∈ S, F o
φv = {o}, and F o

ws = ∅ otherwise. Intuitively, we are just extending
the signature with a new sort v for the observations that we can perform on
formulas using the observation operation o. Finally, the extended hidden signa-
ture is 〈Σo, {v}, EΓ 〉 where EΓ = {o(t(x : s, x1 : s1, . . . , xm : sm)) : t ∈ TΓ,φ(X)}.
Henceforth, we will use Γ instead of EΓ to qualify the corresponding notions of
behavioral reasoning. Before we recall the notion of a behaviorally algebraizable
logic, we need a further concept. Let Θ(x : φ) be a set of φ-equations. Θ is said
to be Γ -compatible with a class K of Σo algebras if, given any variable y : φ, it
is the case that x ≈ y,Θ(x) |≡Γ

K
Θ(y).

Definition 3. A many-sorted logic L = 〈Σ,�〉 is behaviorally algebraizable if
there exists a subsignature Γ of Σ, a class K of Σo-algebras, a set Θ(x : φ)
of φ-equations Γ -compatible with K, and a set Δ(x1 : φ, x2 : φ) ⊆ TΓ,φ({x1 :
φ, x2 : φ}) of formulas such that, for every Φ ∪ {ϕ} ⊆ LΣ(X) and for every set
Ψ ∪ {t ≈ u} of φ-equations, we have:

i) Φ �L ϕ iff Θ[Φ] |≡Γ
K
Θ(ϕ);

ii) Ψ |≡Γ
K
t ≈ u iff Δ[Ψ] �L Δ(t, u);

iii) x ��L Δ[Θ(x)] and x1 ≈ x2 ≡||≡Γ
K
Θ[Δ(x1, x2)].

The set Θ is called the set of defining equations, Δ the set of equivalence formulas,
and K a behaviorally equivalent algebraic semantics for L. This definition is
parameterized by the choice of the subsignature Γ of Σ. We will say that a logic
is Γ -behaviorally algebraizable if we want to stress the choice of Γ .

The attentive reader will notice that the statement above follows very closely the
usual definition of an algebraizable logic, but with behavioral reasoning replac-
ing the usual equational reasoning. As shown in [7], behavioral algebraization
indeed enlarges the scope of the traditional theory of algebraization, but main-
tains many of its nice properties. Namely, given a Σ-algebra A, there is a very
natural way of defining a corresponding Γ -behavioral Leibniz operator ΩA

Γ that
maps each filter D ⊆ Aφ to the largest congruence ΩA

Γ (D) of A|Γ that is com-
patible with D. Note that ΩA

Γ (D) is in general not a congruence over A if Γ is a
proper subsignature of Σ. In particular, if we consider the free algebra TΣ(X),
we will write ΩΓ instead of ΩTΣ(X)

Γ . As in the traditional approach, the behav-
ioral Leibniz operator can be used to characterize important classes of logics
with respect to their algebraic properties. Namely, a logic L is Γ -behaviorally
algebraizable exactly when, on the theories of L, ΩΓ is injective, monotone, and
commutes with inverse substitutions [7].

Example 1. As an application of the behavioral approach, let us consider the
example of da Costa’s paraconsistent logic C1 of [8]. As shown in detail in [7,6],
the logic is behaviorally algebraizable despite the well-known fact that it is not
algebraizable according to the usual theory, and that it further lacks a meaningful
matrix semantics. We just need to let Γ include all the classical connectives

Algebraic Valuations as Behavioral Logical Matrices 19

of the logic, but not its non-congruent paraconsistent negation. Moreover, the
resulting behaviorally equivalent algebraic semantics for the logic, KC1 , is very
rich, allowing not only to fully explain the relational semantics provided by the
so-called da Costa algebras, but also to recapture its best known semantics based
on non-truth-functional bivaluations [9].

In the classical theory of algebraization, the class of models canonically associ-
ated with a logic L is typically not the whole family Matr(L) of matrix models
of L, but rather the subclass Matr∗(L) of L’s reduced matrices1. In general, a
matrix for L can be reduced by simply factoring it with the corresponding Leib-
niz congruence. This is however a problem in the behavioral case, as typically
the behavioral Leibniz congruence is not a congruence over the whole matrix.

4 Algebraic Valuations

Valuation semantics appeared in [10] as an effort to provide a semantic ground to
logics that, like C1, lack a meaningful truth-functional semantics. The underlying
idea is to drop the condition that formulas should always be interpreted homo-
morphically, and instead accept any possible interpretation as a function from
the set of formulas of the logic to a set of truth-values equipped with a subset of
designated values. Besides lacking a thorough supporting theory, namely if con-
trasted to the rich theory of logical matrices, valuation semantics has been mostly
criticized for its excessive generality, namely as it can be (mis)understood at the
light of Suszko’s bivalence thesis (see, for instance, [4,12]). What we propose in
this paper, is to adopt a suitable algebraic version of valuation semantics as the
natural generalization of logical matrices to the behavioral setting. Namely, we
drop the requirement that formulas must be interpreted homomorphically, but
we still require that a certain regularity is maintained. Given the signature Σ
of a many-sorted logic, recall that a Σ-matrix is a pair 〈A, D〉 where A is a
Σ-algebra and D ⊆ Aφ is a set of designated elements. In the matrix semantics
setting formulas are interpreted by means of the homomorphic extension of any
assignment h over A. The key idea of the valuation semantics is to drop this
assumption. There can be operations that are always interpreted homomorphi-
cally, but also some that are not. Below, we will consider fixed a many-sorted
signature Σ = 〈S,O〉 and a subsignature Γ of Σ.

Definition 4. A Γ -valuation is a triple ϑ = 〈A, D, h〉 such that 〈A, D〉 is a Γ -
matrix, and h is a sorted function h : TΣ(X) → A such that h(f(t1, . . . , tn)) =
fA(h(t1), . . . , h(tn)) for every f : s1 . . . sn → s ∈ Γ and ti ∈ TΣ,si(X) with
i ∈ {1, . . . , n}. A Γ -valuation semantics over Σ is a collection V of Γ -valuations.

1 We have borrowed here the terminology used, for instance, in [20]. In the modern
terminology of algebraic logic [13], the classes Matr(L) and Matr∗(L) are instead
denoted by Mod(L) and Mod∗(L), respectively. We dropped this terminology here, as
our main point is precisely that matrices do not provide the most natural semantical
approach in the behavioral algebraic setting.

20 C. Caleiro and R. Gonçalves

A Γ -valuation is a matrix over the subsignature Γ of Σ together with a function
that satisfies the homomorphism condition for every connective in Γ . In other
words, h : TΣ(X)|Γ → A must be an homomorphism between Γ -algebras. In
this way we are allowing valuations that do not necessarily satisfy the homo-
morphism condition with respect to connectives outside Γ . Both the notion of
matrix semantics and the original notion of valuation semantics are particular
cases of this definition. The former can be obtained by taking Γ = Σ and requir-
ing that, for each relevant Σ-algebra A, every homomorphism h : TΣ(X) → A
is considered. The latter can be obtained by observing that the original valua-
tion semantics assume fixed sets of truth and designated values. So, by letting
Γ = 〈S, ∅〉 and requiring that all Γ -valuations share the same algebraic reduct,
we have an original valuation semantics.

Expectedly, given a Γ -valuation ϑ = 〈A, D, h〉 and a formula ϕ ∈ LΣ(X),
we say that ϑ satisfies ϕ, denoted by ϑ � ϕ, if h(ϕ) ∈ D. As usual, given
Φ ⊆ LΣ(X), we write ϑ � Φ whenever ϑ � ϕ for every ϕ ∈ Φ. Let L = 〈Σ,�〉 be
a many-sorted logic over Σ, not necessarily structural. The Γ -valuation ϑ is said
to be a Γ -model of L when it happens that if ϑ � Φ and Φ �L ϕ then ϑ � ϕ.
In this case, D is called a Γ -deductive filter for L, or just a L-Γ -filter, over A.
The set of all Γ -models of L will be denoted by ValΓ (L). Given a Γ -valuation
semantics V = {〈Ai, Di, hi〉 : i ∈ I} over Σ, we define the consequence relation
associated with V , �V ⊆ P(LΣ(X))× LΣ(X), by letting Φ �V ϕ if for every Γ -
valuation ϑ ∈ V we have that ϑ � ϕ whenever ϑ � Φ. A Γ -valuation semantics
V is sound for L if �L⊆�V . Symmetrically, V is adequate for L if �V ⊆�L. The
Γ -valuation semantics V is complete for L if it is both sound and adequate, that
is �L=�V .

One can also recast the usual Lindenbaum-Tarski constructions. For each set
Φ ⊆ LΣ(X) of formulas, we can define the Γ -valuation ϑΦΓ = 〈LΣ(X)|

Γ
, Φ, id 〉

where id : LΣ(X) → LΣ(X) is the identity function. The Γ -valuations of the
form ϑΦΓ are dubbed Lindenbaum Γ -valuations for Σ. The family VΓ (L) = {ϑΦΓ :
Φ is a theory of L} is called the Lindenbaum Γ -bundle of L.

Proposition 1. For every many-sorted logic L,

– L is complete with respect to its Lindenbaum Γ -bundle;
– L is complete with respect to the class of its Γ -models.

Proof. Clearly, VΓ (L) ⊆ ValΓ (L). To see that VΓ (L) is an adequate Γ -valuation
semantics for L, just suppose that Φ �L ϕ for some Φ ∪ {ϕ} ⊆ LΣ(X). Then
ϑΦ

�L
Γ � Φ but ϑΦ

�
Γ � ϕ, and hence Φ �VΓ (L) ϕ. As a consequence, also ValΓ (L)

is adequate for L. ��

As the class of all matrix models of L in the usual approach, the class ValΓ (L) is
very important since it captures algebraically some of the metalogical properties
of L. As we will show below, when a logic is behaviorally algebraizable, we are
able to algebraically specify not only the class of algebras associated with the
logic, but also the admissible ways that formulas can be interpreted in these
algebras, as the valuations are now incorporated in the algebraic models. Note

Algebraic Valuations as Behavioral Logical Matrices 21

that it is precisely the extended signature Σo that gives the algebraic handle
that allows us to specify these. There are, however, other desirable properties
that a valuation semantics might enjoy. One semantical property which is very
characteristic of the algebraic setting, and which holds for a matrix semantics, is
that we can consider all possible assignments over a given algebra. A Γ -valuation
semantics V over Σ is said to be Laplacian if whenever ϑ = 〈A, D, h〉 ∈ V then
for every assignment ρ over A there exists a Γ -valuation ϑρ = 〈A, D, h′〉 ∈ V
such that h′|X = ρ. Another typical property of a matrix semantics is repre-
sentativity. A Γ -valuation semantics V over Σ is is said to be representative if
ϑ = 〈A, D, h〉 ∈ V implies that ϑ◦σ = 〈A, D, h◦σ〉 ∈ V for every substitution σ.
This last property is well-known to be closely connected with structurality [20].

Theorem 1. Let L be a many-sorted logic over signature Σ, not necessarily
structural, and Γ a subsignature of Σ. Then, L is structural iff the class ValΓ (L)
is representative.

Proof. Suppose that L is structural, let ϑ ∈ ValΓ (L) and take any substitution
σ. Assume that Φ �L ϕ and ϑ ◦ σ � Φ. Clearly, this is equivalent to having
ϑ � σ[Φ]. But, by structurality, it is also the case that σ[Φ] �L σ(ϕ) and, as
ϑ ∈ ValΓ (L), it follows that ϑ � σ(ϕ). Equivalently, then, ϑ ◦ σ � ϕ, and hence
ϑ ◦ σ ∈ ValΓ (L), and ValΓ (L) is representative.

To prove the converse, given that according to Proposition 1 L is complete
with respect to ValΓ (L), it suffices to show that the consequence associated
with an arbitrary representative valuation semantics V is necessarily structural.
Assume that Φ �V ϕ and take any substitution σ. Given ϑ ∈ V , if ϑ � σ[Φ] then,
equivalently, ϑ ◦ σ � Φ. But we know that ϑ ◦ σ ∈ V , and therefore ϑ ◦ σ � ϕ, or
equivalently, ϑ � σ(ϕ). Hence, σ[Φ] �V σ(ϕ) and �V is structural. ��
To see that some further important results of the fruitful theory of logical ma-
trices generalize to valuation semantics, we will end this section by present-
ing an example of such a result, namely an adaptation of Bloom’s theorem
[3] that characterizes finitary logics in our setting. We start by introducing
some necessary extended operations on valuations. Given a set Λ = {ϑi =
〈Ai, Di, hi〉 : i ∈ I} of Γ -valuations the direct product of Λ is the Γ -valuation
Πi∈Iϑi = 〈Πi∈IAi, Πi∈IDi, (hi())i∈I〉. Recall that, given a set I, an ultrafilter
on I is a set U consisting of subsets of I such that: 1) ∅ /∈ U ; 2) if A ∈ U and
A ⊆ B then B ∈ U ; 3) if A,B ∈ U then A ∩ B ∈ U ; 4) if A ⊆ I, then either
A ∈ U or I \A ∈ U . Note that, axioms 1) and 3), imply that A and I \A cannot
both be elements of U . Given Λ = {ϑi : i ∈ I} and an ultrafilter U on I we
can define a (sorted) equivalence relation ∼U on the direct product Πi∈Iϑi as
follows: a ∼U b iff {i ∈ I : ai = bi} ∈ U . The ultraproduct of the Γ -valuations
Λ modulo an ultrafilter U , denoted by ΠUϑi, is the quotient of Πi∈Iϑi by the
equivalence ∼U (that is indeed a congruence of the underlying Γ -algebra). Con-
cretely, let ΠUϑi = 〈(Πi∈IAi)/U , [{(ai)i∈I ∈ Πi∈IAi,φ : {i ∈ I : ai ∈ Di} ∈
U}]U , [(hi())i∈I]U〉.
Theorem 2. Let L be a many-sorted logic over signature Σ, and Γ a subsigna-
ture of Σ. Then, L is finitary iff the class ValΓ (L) is closed under ultraproducts.

22 C. Caleiro and R. Gonçalves

Proof. Suppose first that L is finitary. Let {ϑi : i ∈ I} ⊆ ValΓ (L) be a family of
Γ -models of L and U an ultrafilter on I. We aim to prove that ΠUvi ∈ ValΓ (L).
So, suppose that Φ �L ϕ and that ΠUϑi � Φ. Since L is finitary, there must
exist {ϕ1, . . . , ϕn} ⊆ Φ such that ϕ1, . . . , ϕn �L ϕ. For each 1 ≤ j ≤ n, we have
that ΠUϑi � ϕj , and thus Ij = {i ∈ I : ϑi � ϕj} ∈ U . Since U is an ultrafilter
we have that I1 ∩ . . . ∩ In = {i ∈ I : ϑi � {ϕ1, . . . , ϕn}} ∈ U . Note also that,
since each ϑi is a Γ -model of L, I1 ∩ . . . ∩ In ⊆ {i ∈ I : ϑi � ϕ}. Since U is an
ultrafilter we have that {i ∈ I : ϑi � ϕ} ∈ U and so ΠUϑi � ϕ.

Suppose now that ValΓ (L) is closed under ultraproducts. To prove that L is
finitary let Φ be infinite and assume that Φ′ �L ψ, for every finite Φ′ ⊆ Φ. Let I
denote the set of all finite subsets of Φ. For each i ∈ I, define i∗ = {j ∈ I : i ⊆ j}.
Using well-known results on ultrafilters [20] we can conclude that there exists
an ultrafilter U over I that contains the family {i∗ : i ∈ I}. For every i ∈ I,
consider the theory i�L and let ϑi = ϑi

�L
Γ ∈ ValΓ (L) be the corresponding

Lindenbaum Γ -valuation. Let ΠUϑi be the ultraproduct of the family by the
ultrafilter U . Then, for every ϕ ∈ Φ we have that {ϕ}∗ ⊆ {i ∈ I : ϑi � ϕ}. So,
{i ∈ I : ϑi � ϕ} ∈ U for every ϕ ∈ Φ, and consequently we have that ΠUϑi � Φ.
But {i ∈ I : ϑi � ψ} = ∅ and so ΠUϑi � ψ. Since ΠUϑi ∈ ValΓ (L) we have that
Φ � ϕ, and we can conclude that L is finitary. ��

The class of models canonically associated with a logic L is typically not the
whole of Matr(L), but rather the subclass Matr∗(L) of reduced matrices. In
the behavioral setting, we can define an analogous class of reduced Γ -valuation
models, by setting Val∗Γ (L) = {〈A, D, h〉 ∈ ValΓ (L) : ΩA

Γ (D) is the identity}.
Expectedly, given Φ ⊆ LΣ(X), we can also define the Γ -valuation ϑ∗ΦΓ =
〈(LΣ(X)|Γ)/ΩΓ(Φ), [Φ]ΩΓ(Φ), []ΩΓ(Φ)〉 ∈ Val∗Γ (L). The Γ -valuations of this
form are dubbed reduced Lindenbaum Γ -valuations for Σ. The family V∗Γ (L) =
{ϑ∗ΦΓ : Φ is a theory of L} is called the reduced Lindenbaum Γ -bundle of L.

Proposition 2. For every many-sorted logic L,

– L is complete with respect to its reduced Lindenbaum Γ -bundle;
– L is complete with respect to the class of its reduced Γ -models.

Proof. Noting that V∗Γ (L) ⊆ Val∗Γ (L), the results follows easily from Proposi-
tion 1, once we observe that, for every theory Φ of L and every ϕ ∈ LΣ(X), we
have that ϑ∗ΦΓ � ϕ iff ϑΦΓ � ϕ. This equivalence follows easily from the fact that
ΩΓ(Φ) is compatible with Φ. ��

5 Some Bridge Results

In this section we give a first step into studying the connection between algebraic
valuation semantics and behavioral algebraization. We fix a Γ -behaviorally al-
gebraizable many-sorted logic L = 〈Σ,�〉 with behaviorally equivalent algebraic
semantics K and defining equations Θ. One important consequence of assuming
that L is Γ -behaviorally algebraizable is that given a Σo-algebra A ∈ K, and by

Algebraic Valuations as Behavioral Logical Matrices 23

setting DA = {a ∈ Aφ : δiA(a) ≡Γ εiA(a) for every i ∈ I}, we can recover a filter
such that 〈A|Σ , DA〉 ∈ Matr(L). However, as we have discussed, the behavioral
Leibniz congruence cannot help us to obtain a corresponding reduced matrix.
Still, if we consider instead an assignment h on this matrix and take the corre-
sponding Γ -valuation ϑA,h = 〈A|Γ , DA, h〉 ∈ Val(L), we can now obtain the re-
duced Γ -valuation ϑ∗A,h ∈ Val∗(L). We need just quotient ϑA,h by the behavioral

Leibniz congruence Ω = ΩA|Γ
Γ (DA), that is, ϑ∗A,h = 〈(A|Γ)/Ω, [DA]Ω, []Ω ◦h〉.

We define VK = {ϑA,h : A ∈ K and h is an assignment over A}, and V∗
K

=
{ϑ∗A,h : ϑA,h ∈ VK}. We can now establish a sequence of results relating the be-
havioral consequence associated with K and the corresponding valuation seman-
tics. The results generalize well-known bridge results linking matrix semantics
with traditional algebraization [13].

Proposition 3. Given Φ ∪ {ψ} ⊆ LΣ(X), we have that

Φ �V∗
K
ϕ iff Φ �VK

ϕ iff Θ[Φ] |≡Γ
K
Θ(ϕ).

Proof. The property follows straightforwardly from the fact that, given an alge-
bra A ∈ K, an assignment h over A and a formula ϕ ∈ LΣ(X), we have that
ϑ∗A,h � ϕ iff ϑA,h � ϕ iff A, h �Γ Θ(ϕ). Proving this equivalence is an easy
exercise and its proof will be omitted. ��

Corollary 1. If L is a Γ -behaviorally algebraizable logic with behaviorally equiv-
alent algebraic semantics K then,

– L is complete with respect to the class V∗
K
;

– L is complete with respect to the class VK.

We can further show that V∗
K

enjoys other properties that are typical of matrix
semantics.

Proposition 4. If L is a Γ -behaviorally algebraizable logic with behaviorally
equivalent algebraic semantics K then V∗

K
is both Laplacian and representative.

Proof. Suppose that ϑ = 〈A, D, h〉 ∈ VK. Then there exists B ∈ K and an
assignment h′ over B such that ϑ = ϑB,h′ .

Consider given an assignment ρ over A. Recall that by construction A results
of a quotient construction from B|Γ . Therefore, it is always possible to choose
an assignment hρ over B such that, for every s ∈ S and every x ∈ Xs, we have
that hρs(x) ∈ ρs(x). We can then conclude that ϑB,hρ = 〈A, D, hρ〉 ∈ V∗

K
and

hρ|X = ρ. Hence, V∗
K

is Laplacian.
To show that V∗

K
is representative, take any substitution σ. Clearly, h′ ◦ σ is

also an assignment over B. Hence, ϑB,h′◦σ = ϑB,h ◦ σ ∈ V∗K. ��

In [7] the authors prove that when a logic is Γ -behaviorally algebraizable we can
obtain a behavioral equational specification (even if infinite) of its equivalent
algebraic semantics K. Therefore, by construction, we can also obtain a spec-
ification of the complete Γ -valuation semantics V∗

K
. Moreover, when the logic

is finitary and finitely Γ -behaviorally algebraizable the specification mentioned
above is also finite.

24 C. Caleiro and R. Gonçalves

Example 2. As shown in [7,6], the complete reduced valuation semantics for da
Costa’s paraconsistent logic C1 resulting from its behavioral algebraization is the
class V∗

KC1
of valuations 〈A, D, h〉 such that A is a Boolean algebra, D = {�A},

and h : LC1(X) → A satisfies:

– h(t) = �A and h(f) = ⊥A;
– h(x ∧ y) = h(x) �A h(y);
– h(x ∨ y) = h(x) �A h(y);
– h(x ⊃ y) = h(x) ⇒A h(y);
– −Ah(x) ≤A h(¬x);
– h(¬¬x) ≤A h(x);
– h(x◦) �A h(x) �A h(¬x) = ⊥A;
– h(x◦) �A h(y◦) ≤A h((x ∧ y)◦);
– h(x◦) �A h(y◦) ≤A h((x ∨ y)◦);
– h(x◦) �A h(y◦) ≤A h((x ⊃ y)◦).

The well-known bivaluation semantics of C1 from [9] can be easily recovered
from these valuations by looking at the underlying irreducible Boolean algebras,
as explained in [6].

6 Conclusion

We have introduced an algebraic based notion of valuation semantics that arose
naturally in semantical considerations in the novel behavioral approach to the al-
gebraization of logics. We have started to pave the way towards the development
of a consistent algebraic theory of valuations, that may mirror in the behavioral
setting the role played by matrix semantics in the traditional approach to alge-
braic logic. The results and characterizations obtained are promising. Of course,
this paper raises more questions than it gives answers, but the path seems to be
clear despite the difficulties raised by the fact that the model-theory of behavioral
equational logic remains relatively unexplored. We refer the reader to [17] for a
glimpse of what lays ahead. In any case, the references [2,13,20], among others,
will provide the essential guidelines for future work. The experience of da Costa’s
logic C1 and the recovery of its non-truth-functional bivaluation semantics from
the Boolean-based algebraic valuations obtained by the behavioral algebraiza-
tion process also suggest that a systematic study of the Birkhoff-like operations
over valuations is crucial. A related direction in the development of the behav-
ioral theory of algebraization that will need attention is related with Suszko’s
reduction. Also alternatives to valuation semantics, as proposed here, should be
carefully inspected. In particular, we would like to have characterization results
for the classes of valuations resulting from non-deterministic matrices [1], both
in the static and dynamic versions, or gaggles [11], as well as bridges to the
classes of logics that they characterize. We hope to report on these and related
questions in forthcoming papers.

Algebraic Valuations as Behavioral Logical Matrices 25

References

1. Avron, A.: Non-deterministic matrices and modular semantics of rules. In: Béziau,
J.-Y. (ed.) Logica universalis, pp. 149–167. Birkhäuser, Basel (2005)

2. Blok, W., Pigozzi, D.: Algebraizable logics. Memoirs of the AMS, 77(396) (1989)
3. Bloom, S.L.: Some theorems on structural consequence operations. Studia Log-

ica 34, 1–9 (1975)
4. Caleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J.: Two’s company: The hum-

bug of many logical values. In: Béziau, J.-Y. (ed.) Logica Universalis, pp. 169–189.
Birkhäuser, Basel (2005)

5. Caleiro, C., Gonçalves, R.: An algebraic perspective on valuation semantics (ab-
stract). CLE 30/XV EBL/XIV SLALM, Bulletin of Symbolic Logic (in print)
(2008)

6. Caleiro, C., Gonçalves, R.: Behavioral algebraization of da Costa’s C-systems. Jour-
nal of Applied Non-Classical Logics (in print)

7. Caleiro, C., Gonçalves, R., Martins, M.: Behavioral algebraization of logics. Studia
Logica 91(1), 63–111 (2009)

8. da Costa, N.: On the theory of inconsistent formal systems. Notre Dame Journal
of Formal Logic 15, 497–510 (1974)

9. da Costa, N., Alves, E.H.: A semantical analysis of the calculi Cn. Notre Dame
Journal of Formal Logic 18, 621–630 (1977)

10. da Costa, N., Béziau, J.-Y.: Théorie de la valuation. Logique et Analyse 37(146),
95–117 (1994)

11. Dunn, J.M.: Gaggle theory: an abstraction of Galois connections and residuation,
with applications to negation, implication, and various logical operators. In: van
Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 31–51. Springer, Heidelberg (1991)

12. Font, J.: Taking degrees of truth seriously. Studia Logica (in print)
13. Font, J., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic. Studia

Logica 74(1–2), 13–97 (2003)
14. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),

55–101 (2000)
15. �Loś, J., Suszko, R.: Remarks on sentential logics. Indagationes Mathematicae 20,

177–183 (1958)
16. Reichel, H.: Behavioural validity of conditional equations in abstract data types. In:

Contributions to general algebra 3, Proc. Conf., Vienna 1984, pp. 301–324 (1985)
17. Roşu, G.: A Birkhoff-like axiomatizability result for hidden algebra and coalgebra.

Electronic Notes in Theoretical Computer Science 11, 179–196 (1998)
18. Roşu, G.: Hidden Logic. PhD thesis, University of California at San Diego (2000)
19. Roşu, G.: Behavioral abstraction is hiding information. Theoretical Computer Sci-

ence 327(1-2), 197–221 (2004)
20. Wójcicki, R.: Theory of Logical Calculi. In: Synthese Library. Kluwer Academic

Publishers, Dordrecht (1988)

Query Answering in Description Logics:
The Knots Approach�

Thomas Eiter1, Carsten Lutz2, Magdalena Ortiz1, and Mantas Šimkus1

1 Institute of Information Systems, Vienna University of Technology
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,ortiz,simkus}@kr.tuwien.ac.at

2 Fachbereich Mathematik und Informatik, University of Bremen
Bibliothekstraße 1, D-28359 Bremen, Germany

clu@informatik.uni-bremen.de

Abstract. In the recent years, query answering over Description Logic
(DL) knowledge bases has been receiving increasing attention, and vari-
ous methods and techniques have been presented for this problem. In this
paper, we consider knots, which are an instance of the mosaic technique
from Modal Logic. When annotated with suitable query information,
knots are a flexible tool for query answering that allows for solving the
problem in a simple and intuitive way. The knot approach yields optimal
complexity bounds, as we illustrate on the DLs ALCH and ALCHI, and
can be easily extended to accommodate other constructs.

1 Introduction

The recent use of Description Logics (DLs) in a widening range of fields like
the Semantic Web, data and information integration and ontology-based data
access, has led to the study of new reasoning problems. In particular, accessing
semantically enhanced data schemata expressed by means of DL ontologies via
(extensions of) the popular conjunctive queries (CQs) has become an active area
of research, cf. [3,9,8,11,18]. CQs are in general not expressible in the language
of most DLs (at least not succinctly), and suitable methods for answering CQs
are not always apparent.

The mosaic technique is a well-known method in Modal Logics [17,2], which
has also been applied for reasoning in DLs [14,24]. Mosaics are small ‘blocks’ for
building models, and possibly infinite models are represented by finite sets of these
blocks. Local consistency conditions on mosaics and global coherency condition on
sets of mosaics ensure correct model representation. As only finitely many mosaics
must be considered and the global and local conditions are effectively verifiable,
model existence can be decided by finding a suitable set of mosaics.

Here we discuss an instance of the mosaic technique called knots [6]. Knots
are small tree-shaped mosaics easy to employ for solving the DL knowledge base
� This work has been partially supported by the Austrian Science Fund (FWF) grants

P20840 and P20841, the EU Project Ontorule (FP7 231875), and the Mexican Na-
tional Council for Science and Technology (CONACYT) grant 187697.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 26–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Query Answering in Description Logics: The Knots Approach 27

satisfiability problem. An attractive feature of this method is that it can be grace-
fully extended to CQ answering: we mark each knot with a set of (sub)queries
that cannot be mapped locally into the model part the knot describes, and global
conditions on sets of marked knots ensure that a full countermodel for the query
can be constructed from them.

In this paper, we illustrate the approach on the DLs ALCH and ALCHI,
and obtain a worst-case optimal algorithm for CQ answering in both logics
in a transparent way. For illustration of the core technique and to keep mat-
ters simple, we focus on a restricted case considering knowledge bases with a
very simple data component (i.e., ABox), and give a general outline of how
the technique extends to the general setting. As we will see, the marking of
the knots is simple and intuitive, and flexible enough to easily extend to other
DLs with different constructs. Furthermore, it allows for elegant refinements
that yield optimal bounds even in the presence of very subtle sources of
complexity.

The rest of the paper is organized as follows. After introducing the DLs we
consider and their query answering problem in Section 2, we describe the knot-
based algorithm in Section 3. This is done in three steps. First, we describe the
generic knot-marking algorithm, and then we show how it can be used in the
two considered DLs to obtain optimal complexity. The extensions to the case
of unrestricted knowledge bases and to other DLs are briefly described next.
Finally, related worked is addressed in Section 4.

2 Preliminaries

We introduce the DLs ALCH and ALCHI considered in this paper and discuss
the basics of conjunctive query answering. We start with defining knowledge
bases. Let C, R, and I be countably infinite sets of concept names, role names,
and individual names. A role is either a role name r ∈ R or an expression r−

(called the inverse role of r). Concepts are defined inductively: (i) all concept
names A ∈ C are concepts, and (ii) if C,D are concepts and r is a role, then
¬C, C � D, C � D, ∀r.C and ∃r.C are concepts. As usual, for an inverse role
r = s−, we write r− to denote s.

An ALCHI knowledge base (KB) K is a finite set of statements of the follow-
ing form: (i) concept inclusions (CIs) C � D with C and D concepts; (ii) role
inclusions (RIs) r � s with r and s roles; (iii) concept assertions A(a), with a
an individual name and A a concept name; and (iv) role assertions r(a, b), with
a, b individual names and r a role. If K does not contain inverse roles, then it
is an ALCH knowledge base. By CK and RK, we denote the sets of all concept
and role names, respectively, that occur in K.

The semantics is given via first-order interpretations. An interpretation I =
(ΔI , ·I) consists of a non-empty set ΔI (the domain) and a valuation function
·I that maps each concept name A ∈ C to subset AI of ΔI , each role name
r ∈ R to a subset rI of ΔI × ΔI , and each individual name a to an element
aI ∈ ΔI . The function ·I is extended to all concepts and roles as follows:

28 T. Eiter et al.

(p−)I = {(y, x) | (x, y) ∈ rI},
(¬C)I = ΔI\CI ,

(C �D)I = CI ∩DI , (C �D)I = CI ∪DI ,

(∃r.C)I = {x | ∃y.(x, y) ∈ rI ∧ y ∈ CI},
(∀r.C)I = {x | ∀y.(x, y) ∈ rI → y ∈ CI}.

An interpretation I satisfies a CI C �D if CI ⊆ DI , an RI r � s if rI ⊆ sI ,
a concept assertion A(a) if aI ∈ AI , and a role assertion r(a, b) if (aI , bI) ∈ rI .
Moreover, I is a model of a KB K (in symbols, I |= K) if it satisfies all inclusions
and assertions in K. A KB is consistent if it has a model.

We now recall conjunctive queries. To keep the presentation simple, we restrict
ourselves to Boolean conjunctive queries, i.e., queries without answer variables.
Technically, the general case is no more difficult than this restricted one and
admits the same techniques and similar algorithms. We also consider queries
with variables only, and constants can be simulated in the usual way. Let V be
a countably infinite set of variables. A (Boolean) conjunctive query (CQ) is a
finite set of atoms of the form A(x) or r(x, y), where A is a concept name, r is a
role, and x, y ∈ V. The variables occurring in the atoms of q are denoted V(q).
When we work with ALCH KBs, we assume that CQs contain only role names,
but no inverse roles.

A match for q in an interpretation I is a mapping π : V(q) → ΔI such that
(i) π(x)∈AI for each A(x)∈ q, and (ii) (π(x), π(y))∈ rI for each r(x, y)∈ q. If
such π exists, we write I |= q. We write K |= q (and say “K entails q”) if there
is a match for q in every model of the KB K. This defines the problem that we
consider in this paper: given a KB K and a CQ q, decide whether K entails q.
There is one additional simplifying assumption concerning the structure of the
query. As usual and w.l.o.g., we assume throughout the paper that all queries
are connected, i.e., there is only one connected component in the query graph
Gq, which is the directed graph with nodes V(q) that has an edge from x to
y iff r(x, y) ∈ q for some role r. Non-connected queries can be answered by
independently answering each connected component.

In most parts of this paper, we will concentrate on knowledge bases that
contain only a single concept assertionC0(a0) and no role assertions. We call such
a KB simple. Just like the simplifying assumptions that we make on conjunctive
queries, this serves the purpose of an easier exposition. In contrast to those
assumptions, however, this case is technically simpler than the general case. We
will discuss this in more detail in Section 3.4. When deciding query entailment
over a simple ALCHI KB K, it suffices to concentrate on models of K that are
tree shaped. Formally, a model I of K is a tree model if:

1. ΔI is a prefixed-closed subset of N∗ (i.e., of words over the natural numbers);
the empty word is denoted by ε and called the root of ΔI ,

2. if (d, e) ∈ (∃r.C)I for some role r and some concept C, then, for some j ∈ N,
(d, d·j) ∈ rI and d·j ∈ CI , and

Query Answering in Description Logics: The Knots Approach 29

3. if (d, e) ∈ rI for some role name r, then, for some j ∈ N, either (i) e = d·j,
or (ii) d = e·j.

If I is a tree model of K, and for each (d, e) ∈ rI we have e = d·j for some j ∈ N
(i.e., if (3ii) never applies), then I is a 1-way tree model. In the case of ALCH
KBs, it even suffices to concentrate on 1-way tree models. From now on, the size
of a knowledge base K is denoted |K|.

Proposition 1. Every consistent simple ALCHI KB K has a tree model, and
for each query q, if K �|= q, then there exists a tree model I of K such that
I �|= q. The model I is such that ΔI ⊆ {0, . . . , |K| − 1}∗ and it is 1-way if K is
an ALCH KB.

We note that a similar proposition can be established for non-simple KBs, but
then tree models have to be replaced by forest-like ones; see Section 3.4.

3 Query Answering by Knot Elimination

We describe the knot technique, and show how it can be used to decide CQ
entailment over simple KBs formulated in ALCH and ALCHI, yielding tight
upper complexity bounds. Then we discuss extensions to general KBs and more
expressive DLs.

3.1 Knots

The aim of the knot technique is to obtain a finite representation of potentially
infinite tree models by decomposing them into a collection of small pieces. Each
such piece is described by a knot, a schematic labeled tree of depth ≤1 with
bounded branching. A knot describes a node in the tree model together with all
its successors, fixing the concepts that are satisfied at each node and the roles
connecting the nodes. By restricting ourselves to only the relevant concepts and
roles, we achieve that only finitely many distinct knots exist, and thus every
tree model can be represented as a finite knot set. Conversely, knots can be
viewed as the ‘building blocks’ for a potential tree model. To ensure that knots
can indeed be assembled into such a model, two kinds of conditions are imposed.
Local conditions apply to individual knots and deal with the internal consistency
of the nodes in a knot. Global conditions ensure that instances of the knots in a
set can be assembled together.

We assume from now on that concepts are in negation normal form (NNF).
It is well know that every concept can be converted into an equivalent one in
NNF in linear time. We use ∼C to denote the result of converting ¬C into NNF.
For the rest of the section, fix a simple ALCHI knowledge base K with concept
atom C0(a0).

Definition 1 (Knot). Let cl(K) denote the smallest set of concepts that con-
tains every concept in K and is closed under subconcepts and NNF-negation “∼”.
A concept-type for K is a set τ ⊆ cl(K) such that for all C,D∈ cl(K),

30 T. Eiter et al.

1. C � D ∈ K implies ∼C ∈ τ or D ∈ τ ;
2. C ∈ τ implies ∼C �∈ τ ,
3. if C �D∈ τ , then {C,D}⊆ τ , and
4. if C �D∈ τ , then C ∈ τ or D∈ τ .

A role-type (for K) is a set ρ ⊆ RK ∪ {p− | p ∈ RK}. A knot for K is a pair
κ=(τ, S) that consists of a concept-type τ for K (called root type) and a set S
of pairs (ρ, τ ′), where ρ and τ ′ are a role-type and a concept-type for K.

A knot κ = (τ, S) can be viewed as a tree of depth ≤ 1, whose nodes are labeled
with subsets of cl(K), and whose edges are labeled with sets of roles. More
specifically, τ is the label of the root node and each pair (ρ, τ ′) ∈ S describes a
successor with edge label ρ and node label τ ′. Next, we define local conditions
for knots which ensure that there are no contradictions within the knot.

Definition 2 (Knot consistency). A knot κ=(τ, S) is K-consistent if:

1. if ∃r.C ∈ τ , then r∈ ρ and C ∈ τ ′ for some (ρ, τ ′)∈S;
2. if ∀r.C ∈ τ , then C ∈ τ ′ for all (ρ, τ ′)∈S with R ∈ ρ;
3. if ∀r.C ∈ τ ′ for some (ρ, τ ′)∈S and r− ∈ ρ, then C ∈ τ ; and
4. if r�s∈K and (ρ, τ ′)∈S, then r∈ ρ implies s∈ ρ, and r− ∈ ρ implies s− ∈ ρ.
5. |S| ≤ |cl(K)|.

A knot being free of local contradictions does not yet guarantee that it can be
part of a tree model as there could be existential restrictions at successor nodes
that cannot be expanded into a full model. We therefore also need a global
condition which guarantees that such an expansion is always possible.

Definition 3 (Coherency of knot sets). Given a knot set K, a knot (τ, S) ∈
K is good in K, if for each (ρ, τ ′) ∈ S, there is a knot (τs, Ss) ∈ K with τ ′ = τs.
Then K is K-coherent if (i) each knot (τ, S) ∈ K is K-consistent and good in K;
and (ii) there is a knot (τ, S) ∈ K with C0 ∈ τ .

A tree-shaped model I of K can be decomposed into a K-coherent knot set in
a straightforward way. Conversely, if we have a K-coherent set of knots K, we
can build a tree model of K: start with the knot (τ, S) with C0 ∈ τ as the ‘root
knot’, then repeatedly append suitable successor knots to the leafs of the tree.

Theorem 1. K is consistent iff there exists a K-coherent knot set.

3.2 Non-entailment of a Set of Tree-Shaped Queries

We now present a knot-based approach to decide query entailment in ALCH and
ALCHI, which yields a tight ExpTime upper bound in the ALCH case, and a
tight 2-ExpTime upper bound for ALCHI. We proceed in two steps. The first
step is presented in the current section, where we give a knot-based algorithm
for query entailment in ALCHI that presupposes tree-shaped queries and runs
in ExpTime. In fact, the algorithm works with sets of queries and decides a
special, non-standard version of entailment. The second step is presented in the

Query Answering in Description Logics: The Knots Approach 31

subsequent section, where we reduce standard query entailment to the special
case treated in the current section.

We say that a query q is tree-shaped if the query graph Gq is a tree. We assume
that the nodes in tree-shaped queries q have canonical names: the root of Gq is xε
and if xw is a node in Gq with n children, then these children are xw·1, . . . , xw·n.
For a variable xw, we denote by subq(q, xw) the canonical query obtained by
restricting q to the subtree rooted at xw , renaming the nodes accordingly. We
now introduce the special kind of entailment used in this section.

Definition 4 (Directed Entailment). Let K be an ALCHI KB, I be a tree
model of K, Q a set of tree-shaped queries, and q ∈ Q. For d ∈ ΔI, we write
I |=∗ q[d] if there exists a match π for q in I such that π(xε) = d and for every
r(x, y) ∈ q, we have π(y) = π(x) · i for some i ≥ 0. We write I |=∗ q if I |=∗ q[d]
for some d ∈ ΔI, I |=∗ Q if I |=∗ q for some q ∈ Q, and K |=∗ Q if I |=∗ Q for
every tree model I of the knowledge base K.

Observe that the matches used in Definition 4 are directed in the sense that, even
if the tree model is not 1-way, we map every atom r(x, y) ∈ q only “downwards”.
If the tree model is 1-way and the query does not involve inverse roles as in the
case of ALCH, then these matches coincide with standard ones, i.e., we have
K |= q iff K |=∗ {q}.

The algorithm devised in this section decides, given an ALCH or ALCHI
KB K and a set of tree-shaped queries Q, whether K |=∗ Q. The following
characterization of directed entailment is easy to establish.

Proposition 2. Let I be a tree model of an ALCHI KB K, d ∈ ΔI , and q a
tree-shaped query. Then I �|=∗ q[d] iff one of the following holds:

(i) {A | A(xε) ∈ q} �⊆ {A | d ∈ AI} or
(ii) there exists a variable xε·i of q such that for each child d·j ∈ ΔI of d we

have:
– {r | r(xε, xε·i) ∈ q} �⊆ {r | (d, d·j) ∈ rI}, or
– I �|=∗ subq(q, xε·i)[d·j].

For the rest of the section, fix a simple ALCH or ALCHI KB K and a set of
tree-shaped queries Q. The aim of our algorithm is to decide whether K |=∗ Q
by using knots to verify the existence of a tree model I of K with I �|=∗ Q (a
countermodel). Proposition 2 suggests that we can do this by extending knots
with auxiliary information that enables us to track the satisfaction of conditions
(i) and (ii) for each query in Q at each node of the tree.

Definition 5 (Marked knots). Let Q∗ denote the smallest set such that Q ⊆
Q∗, and if q ∈ Q∗ and xε·i is a variable of q, then subq(q, xε·i) ∈ Q∗. A Q-marked
knot is a tuple (τ, S, ν) where (τ, S) is a knot and ν : {ε} ∪ S → 2Q

∗
.

Intuitively, every node in a Q-marked knot is labeled with the set of those sub-
queries of queries in Q for which a (directed) match of the root should be avoided
at that node. To capture this formally, we define additional local conditions.

32 T. Eiter et al.

algorithm CounterModel(K, Q)
Compute the set K0 of all Q-avoiding knots for K
i := 0
repeat

i := i + 1
Ki := Ki−1 \ {(τ, S, ν) ∈ Ki−1 | (τ, S, ν) is not good in Ki−1}

until Ki �= Ki−1;
if there is (τ, S, ν) ∈ Ki with C0 ∈ τ then return “ a counter model exists”

else return “a counter model does not exist”

Fig. 1. The knot elimination algorithm

Definition 6 (Query avoiding knots). A Q-marked knot (τ, S, ν) is Q-avoi-
ding, if for each q ∈ Q, we have q ∈ ν(ε) and that one of the following holds:

(a) {A | A(xε) ∈ q} �⊆ τ , or
(b) there exists some variable xε·i such that for every (r, τ ′) ∈ S, it holds that

{r | r(xε, xε·i) ∈ q} �⊆ ρ or subq(q, xε·i) ∈ ν((ρ, τ)).

The above just mimics the conditions in Proposition 2. We now define global
conditions to ensure that the marking is consistent between knots.

Definition 7 (Coherency of marked knot sets). For a set K of Q-marked
knots, we call (τ, S, ν) ∈ K good in K if for each (ρ, τ ′) ∈ S, there is some
(τs, Ss, νs)∈K such that τ ′ = τs and ν((ρ, τ ′)) = νs(ε). Then K is K-coherent if
for each (τ, S, ν) ∈ K, (τ, S) is K-consistent and (τ, S, ν) is Q-avoiding and good
in K.

To show the following, we can now argue as for Theorem 1, additionally using
Proposition 2.

Proposition 3. K �|=∗ Q iff there exists a K-coherent set of Q-marked knots.

To decide whether K �|=∗ Q, it thus suffices to decide the existence of a knot set as
in Proposition 3. This is done by knot elimination, inspired by the so-called type
elimination technique due to Pratt; see Section 4. The details of the algorithm
are presented in Figure 1, where we assume that C0(a0) is the concept assertion
in K. The algorithm runs in exponential time since there are only exponentially
many Q-marked knots for K and it can be checked in polynomial time whether
a knot is Q-avoiding and good in a knot set.

Theorem 2. Given K and Q, it can be decided in time exponential in the size
of K and Q whether K |=∗ Q.

3.3 From Unrestricted Queries to Tree-Shaped Ones

We now show how Theorem 2 can be used to derive tight complexity bounds for
standard entailment of a conjunctive query q that is not necessarily tree-shaped
by a simple ALCHI KB K. By Proposition 1, q not being entailed by K implies
that there is a tree model I of K that witnesses non-entailment. Further, any
match π for q in model I gives rise to a rewriting qπ of q as follows:

Query Answering in Description Logics: The Knots Approach 33

– the variables of qπ are {xd | ∃x ∈ V(q) : π(x) = d};
– the concept atoms of qπ are {A(xd) | ∃ A(x) ∈ q : π(x) = d};
– the role atoms are {r(xd, xd·i) | ∃ r(x, y) ∈ q : π(x) = d and π(y) = d · i} ∪
{r(xd, xd·i) | ∃ r−(y, x) ∈ q : π(x) = d and π(y) = d · i}

Since q is connected and I is a tree model, qπ is obviously tree-shaped (and
it is straightforward to assign canonical names to the variables). Moreover, the
construction of qπ ensures that I |=∗ qπ, i.e., there is a directed match for qπ
in I. This observation suggests that entailment of q can be verified by replacing
q with a set of tree-shaped rewritings and checking directed entailment.

Definition 8. A tree-shaped query q′ is a tree rewriting of q if there is a sur-
jective map ν : V(q) → V(q′) such that

(i) A(x) ∈ q iff A(ν(x)) ∈ q′, and
(ii) r(x, y) ∈ q iff r(ν(x), ν(y)) ∈ q′ or r−(ν(y), ν(x)) ∈ q′.

Let TRew(q) denote all tree rewritings of q.

Based on the observation above, the following is easy to prove.

Lemma 1. For each simple ALCHI KB K and CQ q, we have K �|= q iff K �|=∗
TRew(q).

For an ALCHI KB K, we can thus decide whether K |= q by using the algorithm
from the previous section with Q = TRew(q). Since the cardinality of TRew(q)
is exponential in the size of q, we obtain a 2-ExpTime upper bound. This bound
is tight: in [12], it was shown that CQ entailment over simple ALCI KBs (i.e.,
ALCHI KBs without role inclusions) is 2-ExpTime-hard.

In the case of ALCH, we can replace TRew(q) with a single query! Recall that
ALCH terminologies enjoy 1-way tree models and that we disallow inverse roles
in the query when working with ALCH. Together, this means that if we have
I |= q with I a 1-way tree-model of the (simple) input KB K, we can obtain
a tree-shaped rewriting q′ of q with I |= q′ in a very easy way: simply elimi-
nate all forks r(x, y), r(x′, y) in q by identifying the variables x and x′. Observe
that, in contrast to the case of ALCHI, this rewriting is independent of the
concrete match π of q in I. Thus, we obtain only a single rewriting q′ (which
can be obtained in polynomial time). As noted already in Section 3.2, we then
have I |= q′ iff I |=∗ q′ which enables the use of the algorithm in the previous
section.

Definition 9 (Query rewriting). [12] Let K be a simple ALCH KB, q a CQ
without inverse roles, and let FE(q) denote the result of eliminating all forks in
q. Then K |= q iff K |=∗ {FE(q)}.

We thus obtain an ExpTime upper bound by Theorem 2. A lower bound is
easily obtained by a trivial reduction of satisfiability in ALCH.

34 T. Eiter et al.

3.4 Extensions

The knot-based approach to query answering can be extended to the case of
non-simple KBs and to more expressive DLs than ALCH and ALCHI. We start
with the former. As noted in Section 2, Proposition 1 can be adapted to the
case of non-simple KBs by replacing tree models with forest-shaped ones. More
precisely, such models consist of a core whose relational structure is unrestricted
and a collection of possibly infinite trees whose roots are from the core. The core
contains precisely those elements that are identified by some individual name
in the knowledge base K, and thus its size is bounded by that of K. This also
explains why the relational structure of the core cannot be restricted: it needs
to mirror the role assertions r(a, b) in K.

In the knot approach, the whole core is represented by a single, large knot, cf.
the min-graphs of [20]. To avoid matches when constructing a countermodel, we
now have to deal with three types of matches: (i) matches located purely inside
the core; (ii) matches located partially in the core and partially in one or more
of the trees; and (iii) matches located purely inside a tree. This can be done by a
careful extension of the local and global conditions for marked knots and is most
subtle in the case ofALCH. There, it is crucial to show that, although in matches
of type (ii) there are exponentially many ways to split the query between the
core and the trees, only polynomially many queries need to be taken into account
when avoiding matches in the tree parts [20,13]. The assumption made in this
paper that knowledge bases are simple allows us to concentrate on matches of
type (iii). Though this may appear to be the easiest of the three cases, in ALCH
and ALCHI it is actually the source of complexity: the 2-ExpTime lower bound
for ALCHI in [12] applies to simple KBs, and the complexity does not increase
for non-simple ones [9].

We now come to more expressive DLs than ALCH and ALCHI. It is not hard
to extend our approach to number restrictions by imposing counting constraints
on the successors in knots, thus capturing the DLs ALCHQ and ALCHIQ. The
extended algorithm still yields ExpTime and 2-ExpTime upper bounds, respec-
tively, though some care has to be taken when combining Q and I. A particularly
interesting extension is provided by transitive roles. In their presence, it is not
possible to generate a set of tree-shaped queries of polynomial size even when
we are working with 1-way models and simple KBs. The knot-based approach
thus yields a 2-ExpTime upper bound [19], which is optimal if the considered
DL also has role inclusions (i.e., if it contains the DL SH) [5]. In [19], a class
of queries is identified for which the complexity of CQ entailment in SH drops
to ExpTime. When we disallow role inclusions, the 2-ExpTime upper bound is
no longer tight. In fact, a somewhat intricate refinement of the knot approach
can be used to show that, in ALC with transitive roles (also known as S), CQ
entailment w.r.t. simple KBs is still in ExpTime [5]. In the same paper, we show
that for non-simple KBs, the complexity raises to co-NExpTime-hardness. In a
nutshell, this is due to matches of type (ii) being more complicated than without
transitive roles and giving rise to an exponential number of queries to be avoided
in the tree parts of models. A tight complexity bound is still missing.

Query Answering in Description Logics: The Knots Approach 35

4 Related Work and Conclusion

There is a large number of other approaches to conjunctive query entailment
in DLs, including reductions to satisfiability [9,8,12], automata and tableaux
methods [3,18], and resolution [11]. We omit a detailed discussion due to lack of
space and instead discuss techniques that are similar in spirit to knots. As already
mentioned, knots are a special instance of the mosaic technique [17] that has
been used to obtain decidability and complexity results in modal and description
logic. The reader may refer to [16,2] and consult e.g. [14,24] as examples from
the DL literature. With the exception of [4,23], we are not aware of papers
in which other variations of the mosaic technique have been used for query
answering. Both knots and mosaics are closely related to type elimination, which
has been used extensively in description and modal logic, see e.g. [22,21,10,15].
Roughly, a type is a small mosaic with only one element and type elimination
is the analogue of Figure 1 with knots replaced by types. We remark that the
algorithm in Section 3.2 can also be formulated using annotated types instead
of annotated knots. However, using knots allows for simpler local and global
conditions, especially when extending the approach to more expressive DLs such
as those involving transitive roles.

Summing up, in this paper we have illustrated how the knot technique can be
applied for answering conjunctive queries in DLs. The method is conceptually
simple yet powerful enough to handle different DLs with considerably different
computational properties. To wit, we presented a worst-case optimal algorithm
that directly scales from the DL ALCH to the exponentially harder DL ALCHI.
Given that knots are special mosaics tailored for DLs with tree-shaped models,
investigating the mosaic technique for query answering in more expressive DLs
which lack this property, like (fragments of) SHOIQ and SROIQ, is an inter-
esting topic for future research.

References

1. Baader, F., Lutz, C., Motik, B. (eds.): Proceedings of the 21st International Work-
shop on Description Logics (DL 2008), Dresden, Germany, May 13-16, 2008. CEUR
Workshop Proceedings, vol. 353. CEUR-WS.org (2008)

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Sc., vol. 53. Cambridge University Press, Cambridge (2001)

3. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive
description logics: An automata-theoretic approach. In: Proc. of the 22nd Nat.
Conf. on Artificial Intelligence (AAAI 2007), pp. 391–396 (2007)

4. Eiter, T., Gottlob, G., Ortiz, M., Šimkus, M.: Query answering in the description
logic Horn-SHIQ. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008.
LNCS, vol. 5293, pp. 166–179. Springer, Heidelberg (2008)

5. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics
with transitive roles. In: Boutilier, C. (ed.) Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009). AAAI Press/IJCAI (2009)

6. Eiter, T., Ortiz, M., Simkus, M.: Reasoning using knots. In: Cervesato, I., Veith,
H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 377–390. Springer, Hei-
delberg (2008)

36 T. Eiter et al.

7. Fox, D., Gomes, C.P. (eds.): Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008. AAAI
Press, Menlo Park (2008)

8. Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query entailment for SHOQ.
In: Proc. of the 2007 Description Logic Workshop (DL 2007). CEUR Electronic
Workshop Proceedings, vol. 250, pp. 65–75 (2007), http://ceur-ws.org/Vol-250/

9. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Answering conjunctive queries in
the SHIQ description logic. Journal of Artificial Intelligence Research 31, 150–
197 (2008)

10. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

11. Hustadt, U., Motik, B., Sattler, U.: A decomposition rule for decision procedures
by resolution-based calculi. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS,
vol. 3452, pp. 21–35. Springer, Heidelberg (2005)

12. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

13. Lutz, C.: Two upper bounds for conjunctive query answering in SHIQ. In: Baader,
et al [1]

14. Lutz, C., Sattler, U., Tendera, L.: The complexity of finite model reasoning in
description logics. Inf. Comput. 199(1-2), 132–171 (2005)

15. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In:
Demri, S., Jensen, C.S. (eds.) Proc. 15th International Symposium on Temporal
Representation and Reasoning (TIME 2008), pp. 3–14. IEEE Computer Society,
Los Alamitos (2008)

16. Marx, M., Venema, Y.: Local variations on a loose theme: Modal logic and decid-
ability. In: Finite Model Theory and Its Applications, vol. 7, pp. 371–429. Springer,
Heidelberg (2007)

17. Németi, I.: Free algebras and decidability in algebraic logic. DSc. thesis, Mathe-
matical Institute of The Hungarian Academy of Sciences, Budapest (1986)

18. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in ex-
pressive description logics via tableaux. J. of Automated Reasoning 41(1), 61–98
(2008)

19. Ortiz, M., Simkus, M., Eiter, T.: Conjunctive query answering in SH using knots.
In: Baader, et al [1]

20. Ortiz, M., Simkus, M., Eiter, T.: Worst-case optimal conjunctive query answering
for an expressive description logic without inverses. In: Fox and Gomes [7], pp.
504–510

21. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal
logic k. Journal of Applied Non-Classical Logics 16(1-2), 169–208 (2006)

22. Pratt, V.R.: Models of program logics. In: FOCS, pp. 115–122. IEEE, Los Alamitos
(1979)

23. Pratt-Hartmann, I.: Data-complexity of the two-variable fragment with count-
ing quantifiers. Information and Computation (2008) (Forthcoming)CoRR,
http://arxiv.org/abs/0806.1636

24. Rudolph, S., Krötzsch, M., Hitzler, P.: Terminological reasoning in SHIQ with
ordered binary decision diagrams. In: Fox and Gomes [7], pp. 529–534

http://ceur-ws.org/Vol-250/
http://arxiv.org/abs/0806.1636

Mathematical Logic for Life Science Ontologies

Carsten Lutz1 and Frank Wolter2

1 Department of Computer Science, University of Bremen, Germany
clu@informatik.uni-bremen.de

2 Department of Computer Science, University of Liverpool, UK
frank@csc.liv.ac.uk

Abstract. We discuss how concepts and methods introduced in mathe-
matical logic can be used to support the engineering and deployment of
life science ontologies. The required applications of mathematical logic
are not straighforward and we argue that such ontologies provide a new
and rich family of logical theories that wait to be explored by logicians.

1 Introduction

In recent years, life sciences such as medicine and biology have experienced an
abundant growth of terminology. This is mainly due to increasing interdisci-
plinarity and significant scientific advances such as the decoding of the human
genome, which have established novel research areas such as pharmacogenomics
(study of the effect of genes on drug response). Indeed, life science terminology
has grown to a point where it information processing and exchange is seriously
hampered as it can no longer be guaranteed that multiple parties interpret the
data in the same way and using the same terminology. To address this problem,
there is a strong trend to construct reference terminologies, which list a standard
vocabulary to be used in information processing and data exchange, and which
also fixes the meaning of each vocabulary item.

Reference terminologies, which are nowadays usually called ontologies, are
often given in a logical language to obtain a formal semantics and make use of
automated reasoning technology. More specifically, a logical signature is used
to define the vocabulary and a (finitely axiomatized) logical theory defines the
meaning of the vocabulary. Such ontologies are typically formulated in fragments
of first-order logic and are thus amenable to the concepts and tools developed in
mathematical logic. The aim of this paper is to provide a glimpse into the field
of life science ontologies for readers with a mathematical logic background, to
demonstrate that concepts and tools from mathematical logic can be fruitfully
applied to engineering problems for ontologies, and to argue that, conversely,
life science ontologies provide a rich landscape of logical theories that present
interesting and novel challenges for logicians.

The paper is divided into two parts. In the first part, we introduce a typical
and successful example of a medical ontology: Snomed CT, the Systematized
Nomenclature of Medicine, Clinical Terms. We give an idea of what Snomed CT

is, how it is developed and kept up to date, what its main applications are, and

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 37–47, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

38 C. Lutz and F. Wolter

what kind of logical axioms are used to define the logical theory unterlying it. In
the second part of this paper, we show how concepts from mathematical logic can
be applied to ontologies in general, and to Snomed CT in particular. As concrete
examples for successful such applications, we consider conservative extensions as
a tool for achieving modularity of ontologies and uniform interpolants as a tool
for obtaining an axiomation of a relevant fragment of an ontology. We close with
some hints to other techiques from mathematical logic that potentially have
interesting applications in the area of ontologies.

2 Snomed CT

A large number of medical ontologies have emerged in recent years, including
the National Cancer Institute (NCI) thesaurus [11], the Foundational Model of
Anatomy (FMA) [1], Galen [26], and Snomed CT [22,28]. Among these ontolo-
gies, Snomed CT plays a particularly prominent role as it is used to produce
the standard healthcare terminology for a number of countries such as the US,
Canada, the UK, and Sweden.

2.1 Overview

Snomed CT is a comprehensive clinical healthcare terminology that comprises
more than 400.000 vocabulary items and almost the same number of logical
axioms. Since 2007, the intellectual property rights of Snomed CT are held
by a not-for-profit association called International Heath Terminology Stan-
dards Development Organisation (IHSTDO). Currently, IHSTDO is made of
nine nations, including the ones listed above. The general goal is to develop
Snomed CT into the global clinical terminology, thus “enabling clinicians,
researchers and patients to share and exchange healthcare and clinical data
worldwide” [2].

Technically, Snomed CT is a finite set of first-order predicate logic sentences
and uses standard Tarski semantics. Medical terms are regarded as unary pred-
icates such as

Disease, Appendicitis, Inflammation, Arthritis,

and binary predicates such as

Associated Morphology, Finding Site, Procedure Site.

An example of a typical Snomed CT axiom is as follows:

∀x (Appendicitis(x) → Disease(x)∧
∃y(Associated Morphology(x, y) ∧ Inflammation(y))).

Though easily translatable, the official syntax of Snomed CT is not classi-
cal first-order syntax and does not contain variables and first-order quantifiers.
Instead, the syntax is based on so-called description logics (DLs), a family of

Mathematical Logic for Life Science Ontologies 39

knowledge representation formalisms often used as ontology languages [6]. In
description logic, a theory generally consists of axioms of the form

∀x (ϕ(x) → ψ(x)) and ∀x (ϕ(x) ↔ ψ(x)),

where ϕ(x) and ψ(x) are first-order formulas with one free variable using unary
and binary predicates (formulated in DL syntax).

The admissible form of ϕ(x) and ψ(x) depends on the description logic used.
Without going into any details, we briefly give three examples of descriptions
logics in increasing order of expressivity. The most inexpressive one is EL [5],
where ϕ(x) and ψ(x) are composed using conjunction and guarded existential
quantification. Although inexpressive, EL is a popular ontology language and
is used, for example, for Snomed CT. When EL is extended with disjunction,
negation, and guarded universal quantification, we obtain the description logic
ALC. For example, the NCI thesaurus is formulated in this language. By further
admitting guarded counting quantifiers and a number of other constructors, one
obtains the description logic OWL DL (the Web Ontology Language) that, for
example, is used for the medical ontology GALEN.

In many ontologies, the structure of axioms is restricted further by impos-
ing unfoldability. In this case, ϕ(x) has to be an atom P (x), and thus ax-
ioms ∀x (P (x) → ψ(x)) give necessary conditions for being a P and axioms
∀x (P (x) ↔ ψ(x)) give both necessary and sufficient conditions. In addition, no
predicate name may be used on the left-hand side of more than one axiom and
an acyclicity condition is enforced which basically says that ψ may not refer to
P , neither directly nor indirectly. Both Snomed CT and NCI are unfoldable
terminologies, whereas GALEN is not.

2.2 Applications and Engineering

The main purpose of Snomed CT is to produce a hierarchically organized cat-
alogue of medical terms, with more general terms higher up in the hierarchy
and more specialized ones further down. Each term is annotated with a natural
language description of its meaning, a numerical code that uniquely identifies
the term, and a logical axiom that defines the term’s meaning (on a high level
of abstraction).

The classical application of Snomed CT is to simply use the catalogue and
numerical codes in medical IT applications, without exploiting or having access
to the logical axioms [3] (but see below). As an example for this use of Snomed

CT, consider the generation, processing, and storage of medical records. Whether
working in a hospital or independently, physicians have to generate a detailed
record of every patient visit, including details on findings, diagnosis, treatment,
and medication. The purpose of the resulting medical records is manifold and
ranges from archiving via accounting and billing to communication with external
labs and hospitals. When a physician enters a medical record at his PC, he can
browse medical terms by navigating along the Snomed CT hierarchy and view
the natural language descriptions when necessary. After selecting a relevant term,

40 C. Lutz and F. Wolter

the Snomed CT numerical code can be automatically inserted into the record.
In fact, there is a strong trend towards electronic medical records, and standard
data formats such as the Health Level 7 Clinical Document Architecture (CDA)
are already in wide-spread use. To make sure that medical records represented in
such standard formats are not misinterpreted, it is important to use standardized
medical terminology. To this effect, CDA is based on Snomed CT numerical
codes (among others). The general idea of Snomed CT is that, if this standard
is adopted by the healthcare system of a nation, then all medical data storage
and exchange is in terms of Snomed CT codes.

Why, then, is Snomed CT a logical theory? We first note that other stan-
dardized medical terminologies such as ICD-10 are not based on logic. However,
the designers of Snomed CT find it useful to employ logic during the design
and maintenance of their ontology. In fact, engineering a large terminology is
far from trivial. To generate an ontology of the size of Snomed CT that covers
a range of specialized areas, many medical experts and IT experts have to work
together and follow agreed-upon design patterns that guide design decisions. But
even with a good design methodology, ensuring that the ontology is of consistent
quality and free of mistakes is very difficult. It is here that logic comes into play:
the designers of Snomed CT use automated reasoning to verify their modelling
and derive consequences that are only implicit in it. Traditionally, they concen-
trate on deciding implication in the description logic EL; for example, a recently
discovered mistake was the following entailed implication:

Snomed CT |= ∀x (Amputation of arm(x) → Amputation of hand(x)).

As we will discuss later, deciding entailment of implications is only the tip of the
iceberg and there are many more opportunities for automated reasoning and logic
techniques to support ontology design. Additional need for automated reasoning
support is due to the fact that medical knowledge, national legislation, etc., are
constantly changing, which requires frequent changes to the ontology. Finally,
Snomed CT is customized to national needs and translated into various (hu-
man) languages, which results in a large number of different, but closely related
versions of the same ontology that need to be consistent with one another. From
the perspective of mathematical logic, we thus have a huge and continuously
developing first-order theory and a large number of slightly modified variants of
this theory that are closely interrelated.

The design of large ontologies is not only difficult, but also time-consuming and
expensive. For this reason and since IHSTDO is pleasantly liberal in giving out
Snomed CT for research purposes, Snomed CT is increasingly being viewed as
a valuable general-purpose tool and many novel applications are being proposed.
Often, these novel applications involve logical reasoning and provide additional
opportunities to apply techniques from logic. We mention only one such applica-
tion as an example. Given that electronic medical records are gaining rapid popu-
larity and that they use Snomed CT codes for representing medical data, it is an
intriguing idea to exploit not only the codes, but also the logical definitions when
querying medical data, thus enabling more complete answers. For example, when

Mathematical Logic for Life Science Ontologies 41

answering a query asking for patients with a liver disease, we may use Snomed

CT to deduce that hepatitis is a liver disease and thus include all patients suffer-
ing from hepatitis in the answer. In this way, query answering turns into logical
deduction. From a logic perspective, an interesting new flavour of this application
is scale: in addition to the already large Snomed CT, the logical theory now also
comprises a potentially huge amount of medical data (as ground facts), and new
questions arise due to the special use of deduction in this application [23,17].

3 Mathematical Logic

Today, it has become standard to apply automated reasoning and knowledge
representation techniques during the design and deployment of ontologies. In
particular, reasoning in languages such as EL, ALC, and OWL-DL has been
investigated in depth and found to be decidable and PTime-, ExpTime-, and
coNExpTime-complete, respectively [5,6]. A large variety of automated reason-
ing systems are available and fruitfully employed by ontology engineers and users.
In this section, we consider the potential role of mathematical logic, understood
as the study of properties of logical theories and their interrelation. Specifically,
we discuss how the notions of conservative extension and uniform interpolation
can be employed for ontology engineering tasks. It is worth, though, to men-
tion that these notions have previously been used in other areas of computer
science. For example, uniform interpolation has been studied in AI under the
name forgetting for more than a decade [27,8] and modular program specifica-
tion is another area of computer science where notions of conservativity and
interpolation are of great interest [25,21].

3.1 Conservative Extensions

As mentioned above, ontologies arenot static objects, but are frequently corrected,
customized, extended, and even merged with other ontologies. To understand and
control the relationship between the resulting distinct versions of an ontology, one
can directly employ notions from mathematical logic. The simplest such notion
is probably that of a conservative extension. In mathematical logic, conservative
extensions are used for relative consistency proofs and to decompose a theory into
simpler subtheories. In ontology engineering, they can be used to give a rigorous
definition of when the extension of an ontology by additional axioms interferes (in
some possibly unintended way) with the original ontology, and to decompose an
ontology into subtheories and modules [29]. To describe this application in more
detail, recall that the notion of a conservative extension comes in two flavours. Let
T and T ′ be two sets of axioms and L a logical language.

– Model-theoretic: T ∪T ′ is a model-conservative extension of T if every model
of T can be expanded to a model of T ′;

– Language-dependent : T ∪T ′ is an L-conservative extension of T if T ∪T ′ |= ϕ
implies T |= ϕ, for all L-sentences ϕ with sig(ϕ) ⊆ sig(T).

42 C. Lutz and F. Wolter

In mathematical logic, L is typically first-order logic (FO) or some language that
extends FO. Every model-theoretic conservative extension is an FO-conservative
extension, but the converse is well-known to fail. Both notions can, in princi-
ple, be used without modification to analyse the effect of adding axioms T ′ to
a given ontology T . It tuns out, however, that the corresponding decision prob-
lem “decide whether T ∪ T ′ is a conservative extension of T ” is undecidable
for theories T and T ′ formulated in EL, ALC, and OWL-DL, both for model-
conservative extensions and FO-conservative extensions [19,18]. In the case of
unfoldable theories, the situation changes: for ALC and OWL-DL, model and
FO-conservativity are still undecidable whereas for EL, model-conservativity is
decidable in polynomial time [14].

The tractability result for unfoldable EL-theories has been used to extract
modules from Snomed CT. The need for module extraction is due to the huge
size of Snomed CT and the fact that in many applications, only a small subset
Σ of the 400.000 terms of Snomed CT are required. In this case, it is useful
to extract a minimal subset M of the set of Snomed CT axioms such that
Σ is included in the signature sig(M) of M and Snomed CT is a conserva-
tive extension of M . The user can then work with M instead of Snomed CT.
By extending the algorithm that decides model-conservativity, one can extract
such modules in polynomial time. A very encouraging experimental evaluation
of this approach has been given in [14], see also the discussion of Figure 3.2
below. Interestingly, the modules extracted using such a logic-based approach
are significantly smaller than modules extracted using heuristic approaches.

Under some natural conditions, model-conservativity becomes decidable even
for non-unfoldable theories. For example, if T ′ and T share unary predicates only,
then model-conservativity is coNExpTime

NP-complete for ALC [14]. Taken to-
gether, the stated negative and positive results show that a naive application
of mathematical logic concepts to ontology engineering can fail because the as-
sociated algorithmic problems become unfeasible even for very weak fragments
of FO, and thus the true challenge lies in adapting these notions to the needs
of ontology engineers and users. Instead of resorting to unfoldable theories or
unary predicates, there is another interesting direction to explore: the reason for
undecidability of FO-conservativity in the case of non-unfoldable theories is due
to the fact that we have considered FO -consequences, rather than consequences
formulated at the same level of abstractness as ontologies. Indeed, an ontology
engineer or user is typically not interested in arbitrary FO-consequences of an
ontology, but in consequences relevant to her application. We now consider two
notions of conservative extensions tailored towards ontology engineering.

Implication Conservativity. As illustrated by the “amputation of arm” example
above, ontology engineers typically concentrate on implications formulated in the
language L of the ontology. Therefore, it is natural to consider L-conservativity
with L the set of implications ∀x(ϕ(x) → ψ(x)) formulated in EL, ALC, and
OWL-DL, respectively. For simplicity, we simply speak of EL-conservativity,
ALC-conservativity, and OWL-conservativity. To analyze these syntactically de-
fined notions of conservative extension, it is useful to first establish a

Mathematical Logic for Life Science Ontologies 43

model-theoretic characterization. Using techniques from modal logic, one can
show that an ALC-theory T ∪ T ′ is an ALC-conservative extension of T if and
only if for every model M of T , there exists a sig(T)-bisimilar model M ′ of T∪T ′.
Using this characterization, one can show that deciding ALC-conservativity is
decidable and 2ExpTime-complete [9]. A similar characterization, using simula-
tions instead of bisimulations, can be used to characterize EL-conservativity. In
this case, the corresponding decision problem is ExpTime-complete [19]. Unfor-
tunately, OWL-conservativity is undecidable [12]. We note, though, that there
are extensions ofALC with guarded counting quantifiers for which conservativity
is still decidable and 2ExpTime-complete [18].

Because of their high computational complexity, it remains to be seen in how
far the decision problems associated with these notions of conservativity are
useful in practice. Recall, however, that Snomed CT is unfoldable. To analyze
EL-conservativity for unfoldable EL-theories, it is preferable to follow a proof-
theoretic approach. Using the sequent calculus of [13], one can give a polynomial
time algorithm that decides EL-conservativity. The resulting algorithm has fruit-
fully been employed to ontology versioning [15].
Query Conservativity. At the end of Section 2, we have briefly discussed how
Snomed CT can be used to query electronic medical records. In logic terms,
one poses a query to a theory K that consists of an ontology T and a set A
of ground facts that represent the data (called an ABox in description logic).
Query languages of interest are instance queries of the form “output all con-
stant symbols a such that T ∪ A |= P (a)” and conjunctive queries in which
P is a first-order formula built from conjunction and existential quantification.
To compare theories K1 and K2, it is in principle possible to again apply stan-
dard notions of conservativity. However, ground facts change frequently and are
typically unknown at the design time of the ontology. Thus, it is more useful
to regard ground facts not as a part of the theory, but as an unknown “black-
box”. We say that T ∪ T ′ is a query-conservative extension of T if, and only
if, for all sets A of ground facts and all queries q using symbols from T only,
T ∪T ′∪A |= q[a] iff T ∪A |= q[a]. The resulting notions of conservativity depend
on the query language used and typically lie between implication conservativity
and FO-conservativity. Again, model-theoretic and proof-theoretic methods can
be applied to analyze it. For example, in [20] it is shown using model-theoretic
methods that for EL, query-conservativity (w.r.t. conjunctive queries) can be
reduced to implication conservativity for an extension of EL with non-guarded
existential quantification, and that the corresponding decision problem is decid-
able and ExpTime-complete.

3.2 Uniform Interpolation

As mentioned above, many applications of ontologies require only a rather small
part of a large ontology, identified by a subvocabulary. Therefore, ontology users
are interested in generating small ontologies that “say the same” about the sub-
vocabulary of interest as the original ontology. As discussed above, one possibility
to obtain such an ontology is to extract a module, i.e., a subset of the original

44 C. Lutz and F. Wolter

ontology of which the latter is a conservative extension. Another interesting way
of generating such a small ontology is to compute a uniform interpolant. Let
Σ be a signature, T a logical theory, and L a logical language. A finite set of
L-sentences TΣ is called a uniform interpolant for T w.r.t. Σ and L if

– the signature sig(TΣ) of TΣ is contained in Σ;
– T |= TΣ;
– for all ϕ ∈ L: if T |= ϕ and sig(ϕ) ∩ T ⊆ Σ, then TΣ |= ϕ.

In other words, TΣ provides an axiomatization of what T “says” about Σ in L
without using symbols not in Σ. Apart from the motivation discussed above,
there are various applications of uniform interpolants in ontology engineering.
An example is ontology exploration: to avoid mistakes, an ontology engineer can
identify a signature that captures a certain subject matter (such as amputations),
generate a uniform interpolant that axiomatizes this subject matter, and then
inspect it for problems. Another example is ontology re-use, where it may be
more appropriate to import a uniform interpolant covering only the relevant
terms than being forced to import additional terms as well.

For many logical languages, it is known that uniform interpolants do not
always exist; this is true for FO, but also for various modal logics [10,30]. Positive
results are known for propositional intuitionistic logic [24] and the modal μ-
calculus [7]. Thus, the applicability of uniform interpolants crucially depends on
the ontology language used and the language L in which uniform interpolants are
to be axiomatized. The following simple example shows that even for EL, uniform
interpolants do not always exist unless one admits second-order expressivity in L:
let Σ = {A, r} and

T = {∀x (A(x) → B(x)), ∀x (B(x) → ∃y(r(x, y) ∧B(y))}.

The class of Σ-reducts of T -models coincides with the models satisfying

A(x) → (there exist x1, x2, . . . such that r(x, x1), r(x1, x2), . . .)

and the first-order theory of this class of models is axiomatized by

{A(x) → ∃x1 · · · ∃xn (r(x, x1) ∧ · · · ∧ r(xn−1, xn)) | n > 0}

which is not finitely axiomatizable in FO. We are thus again faced with the
problem that a naive application of tools from mathematical logic is only of
limited use, and a more careful analysis of the situation is required. We explore
three options.

First, there are useful cases in which uniform interpolants are guaranteed
to exist: observe that, although rather simple, the theory T above is not un-
foldable. Indeed, it turns out [15,16] that for unfoldable EL-theories, uniform
interpolants w.r.t. EL-implications always exist. These uniform interpolants can
be of exponential size in the worst case, and so their practical relevance can
only be evaluated with the help of experiments. Figure 3.2, which is taken
from [16], compares the size of minimal modules based on model-conservative

Mathematical Logic for Life Science Ontologies 45

extensions extracted from Snomed CT using the prototype implementation
MEX with the size of uniform interpolants computed using the prototype im-
plementation NUI. For 83 randomly generated signatures consisting of 3000
unary and 20 binary predicates, it gives the number of modules and uniform
interpolants (vertical axis) of a given size (horizontal axis), where the size is
measured as as the number of symbols that occur in the module/interpolant.
Thus, 10 uniform interpolants consist of more than 1 000 000 symbols. For
all 83 signatures, the size of corresponding modules is between 125 000 and
150 000 symbols (which is about 3% of full Snomed CT). Note that, in con-
trast to modules, the size of uniform interpolants depends a lot on the concrete
signature. It is not clear yet, however, whether the very large uniform inter-
polants have a smaller axiomatization not found by the prototype implemen-
tation. Similar results hold for uniform interpolants formulated in languages L
that correspond to query conservativity as discussed above. These first experi-
ments suggest that uniform interpolants can become a useful tool for ontology
engineering.

Second, even in setups where uniform interpolants are not guaranteed to ex-
ist, it might well be the case that for those ontologies that are actually used,
uniform interpolants do usually exist. Then, it is of interest to develop algo-
rithms that decide, given a signature Σ and an ontology T , whether a uniform
interpolant exists. An example of such a result is the following: there do not
always exist uniform interpolants for ALC-theories (with uniform interpolants
also formulated in ALC), but it is decidable whether a uniform interpolant
exists. Tight complexity bounds and experimental evaluation is still missing,
though.

Third, one can move to a language L for the uniform interpolant that admits
second-order expressivity. The modal μ-calculus has uniform interpolation, and
so a natural option is to consider as the language L extensions of EL, ALC, and
OWL-DL with fixpoint operators.

46 C. Lutz and F. Wolter

4 Discussion

We have discussed how two notions introduced in mathematical logic, conser-
vative extensions and uniform interpolation, can be applied to ontology engi-
neering. Many other notions from mathematical logic remain to be explored. An
example is interpretations between logical theories, which can be regarded as a
generalization of conservative extensions. In many applications of ontologies such
as data integration, mappings between the symbols of ontologies are of crucial
importance. Investigating the relation between the mappings used by ontology
engineers and theory interpretations as known from mathematical logic could
be of great interest. Another research direction is abstract model theory for on-
tology languages: a main problem in the field of ontology languages is a lack of
logic-based criteria to classify languages and understand their place within the
landscape of all potential ontology languages. Currently, only concrete languages
are investigated and compared, and methods from abstract model theory might
well lead to a better understanding.

References

1. Foundational Model Explorer,
http://fme.biostr.washington.edu:8089/FME/index.html

2. http://www.ihtsdo.org/

3. KR-Med: Representing and sharing knowledge using SNOMED. In: CEUR Work-
shop Proceedings, vol. 410 (2008)

4. Andreka, H., Madarasz, J., Nemeti, I.: Logic of space-time and relativity theory.
In: Handbook of Spatial logic, pp. 607–711. Springer, Heidelberg (2007)

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI. Morgan
Kaufmann, San Francisco (2005)

6. Baader, F., Calvanes, D., McGuiness, D., Nardi, D., Patel-Schneider, P.: The De-
scription Logic Handbook: Theory, implementation and applications. Cambridge
University Press, Cambridge (2003)

7. D’Agostino, G., Lenzi, G.: An axiomatization of bisimulation quantifiers via the
μ-calculus. Theoret. Comput. Sci. 338 (2005)

8. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. In-
tell. 172(14), 1644–1672 (2008)

9. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logic. In: Proc. KR, pp. 187–197 (2006)

10. Ghilardi, S., Zawadowski, M.: Undefinability of propositional quantifiers in the
modal system S4. Studia Logica 55 (1995)

11. Golbeck, J., Fragaso, G., Hartel, F., Hendler, J., Parsia, B., Oberhaler, J.: The
national cancer institute’s thesaurus and ontology. J. of Web Semantics (2003)

12. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
Theory and practice. Journal of Artificial Intelligence Research 31, 273–318 (2008)

13. Hofmann, M.: Proof-theoretic approach to description-logic. In: Proc. LICS, pp.
229–237 (2005)

14. Konev, B., Lutz, C., Walther, D., Wolter, F.: Semantic modularity and module
extraction in description logic. In: Proc. ECAI, pp. 55–59 (2008)

http://fme.biostr.washington.edu:8089/FME/index.html
http://www.ihtsdo.org/

Mathematical Logic for Life Science Ontologies 47

15. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 259–274. Springer, Heidelberg (2008)

16. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-
scale description logic terminologies. In: Proceedings of IJCAI (2009)

17. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in el using a rela-
tional database system. In: Proceedings of IJCAI (2009)

18. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. IJCAI, pp. 453–458 (2007)

19. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic
EL. In: Pfenning, F. (ed.) CADE 2007. LNCS, vol. 4603, pp. 84–99. Springer,
Heidelberg (2007)

20. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensios in the
description logic EL. Journal of Symbolic Computation (2009)

21. Mosses, P.D. (ed.): CASL Reference Manual. LNCS, vol. 2960. Springer, Heidelberg
(2004)

22. I. H. T. S. D. Organisation. SNOMED CT User Guide (2008),
http://www.ihtsdo.org/snomed-ct/snomed-ct-publications/

23. Patel, C., Cimino, J., Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma,
L., Schonberg, E., Srinivas, K.: Matching patient records to clinical trials using
ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 816–829. Springer,
Heidelberg (2007)

24. Pitts, A.: On an interpretation of second-order quantification in first-order intu-
itionistic propositional logic. J. Symbolic Logic 57 (1992)

25. Diaconescu, J.G.R., Stefaneas, P.: Logical support for modularisation. In: Huet,
G., Plotkin, G. (eds.) Logical Environments (1993)

26. Rector, A.L., Rogers, J.: Ontological and practical issues in using a description
logic to represent medical concept systems: Experience from galen. In: Reasoning
Web, pp. 197–231 (2006)

27. Reiter, R., Lin, F.: Forget it? In: Proceedings of AAAI Fall Symposium on Rele-
vance, pp. 154–159 (1994)

28. Spackman, K.: Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass. (2000); Fall Symposium Special Issue

29. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies.
LNCS, vol. 5445. Springer, Heidelberg (2009)

30. Visser, A.: Uniform interpolation and layered bisimulation. In: Gödel 1996 (Brno,
1996). Lecture Notes Logic, vol. 6. Springer, Heidelberg (1996)

http://www.ihtsdo.org/snomed-ct/snomed-ct-publications/

Recognizability in the Simply Typed
Lambda-Calculus

Sylvain Salvati

INRIA Bordeaux – Sud-Ouest,
351, cours de la Libération Bâtiment A29

33405 Talence cedex France
sylvain.salvati@labri.fr

Abstract. We define a notion of recognizable sets of simply typed λ-
terms that extends the notion of recognizable sets of strings or trees.
This definition is based on finite models. Using intersection types, we
generalize the notions of automata for strings and trees so as to grasp
recognizability for λ-terms. We then expose the closure properties of this
notion and present some of its applications.

1 Introduction

Formal language theory is mainly concerned with the study of structures like
strings, trees or even graphs. In this paper we try to add simply typed λ-terms
to the scope of this theory. This article is a first step: the definition of recognizable
sets which are a fundamental notion of formal language theory.

Languages of λ-terms appear in several research areas, but there has been re-
ally few research explicitly mentioning them and even fewer studying them. To
our knowledge the first work explicitly defining a notion of language of λ-terms
is that of de Groote [1]. In mathematical linguistics, the pioneering work Mon-
tague [2] shows how to connect syntax and semantics of natural language with
the simply typed λ-calculus. Syntactic structures are interpreted via a homomor-
phism built with λ-terms. The normal forms obtained this way denote formulae
of higher-order logic whose interpretation in a suitable model gives the seman-
tics of the sentence. The set of formulae that this technique allows to generate
can be seen as a language and one may wonder whether such a language can
be parsed similarly to other languages like context-free languages. Parsing such
languages results in generating sentences from their meaning representation. We
have showed that this could effectively be done [3].

Still in mathematical linguistics, the type-logical tradition originating from
Lambek’s work [4], defines syntactic structures as proofs in some substructural
logic. Several proposals have emerged in order to control the structure of those
proofs such as in Moortgat’s work [5] and his followers. These proofs may be
represented as simply typed λ-terms and the set of syntactic structures defines
a language of λ-terms.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 48–60, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Recognizability in the Simply Typed Lambda-Calculus 49

Since simply typed λ-terms generalize both strings and trees, a notion of
recognizable language of simply typed λ-terms should naturally extend those al-
ready defined for strings and trees. Furthermore, these languages should also be
closed under the operational semantics of the λ-calculus, i.e. βη-convertibility.
The easiest way to obtain such an extension is to use the algebraic characteri-
zation of recognizable sets of strings or trees which says that recognizable sets
are precisely the sets that are the union of equivalence classes of a finite con-
gruence. Generalizing this definition to sets of simply typed λ-terms consists in
saying that such sets are recognizable if and only if they the set of terms that
are interpreted as certain points in a finite model. But such a definition may
not be useful in certain situations, this is the reason why we need a notion of
automaton of λ-terms that coincides with that of recognizability. We define such
automata using intersection types.

This work provides a natural framework in which several results that have ap-
peared in the literature on simply typed λ-calculus can be related. In particular,
our work shows that Urzyczyn’s result on the undecidability of the emptiness
problem for intersection types[6] can be seen as a corollary of Loader’s result
on the undecidability of λ-definability [7]. Moreover, we have showed in [3] that
the singleton language can be defined with intersection types, the equivalence
we establish here between recognizability in terms of finite models and in terms
of automata gives an alternate proof of Statman’s completeness theorem [8]
(see also [9]). Furthermore, Statman [8] has showed that higher order match-
ing is related to λ-definability. Since our notion of recognizability is related to
λ-definability it gives tools with which we can study this problem.

The paper is organized as follows: section 2 gives the necessary definitions,
section 3 gives the definition of recognizable sets of λ-terms. In section 4 we
give an automaton-like characterization of recognizability. Section 5 gives its
closure properties and section 6 shows some basic applications of the notion of
recognizability for parsing and higher order matching. Finally we conclude in
section 7.

2 Preliminaries

We here briefly review various notions concerning the simply typed λ-calculus
and some related notions.

2.1 Simply Typed λ-Calculus

Higher Order Signatures (HOS) declare a finite number of constants by assigning
them types. An HOS Σ is a triple (A, C, τ), whereA is a finite set of atomic types,
from which the set of complex types, TΣ , is built using the binary infix operator
→, C is a finite set of constants and τ is a function from C to TΣ . As usual, we
will consider that → associates to the right and write α1 → · · · → αn → α for
the type (α1 → (· · ·→ (αn → α) · · ·)). The order of a type α, ord(α), is 1 when
α is atomic and max(ord(α1) + 1, ord(α2)) when α = α1 → α2. By extension,

50 S. Salvati

the order of a HOS is the maximal order of type it associates to a constant.
We suppose that we are given an infinite countable set of λ-variables V . We use
types à la Church and variables explicitly carry their types. So we will write xα,
yα or zα (possibly with indices) the elements of V × {α}, the variables of type
α. A HOS Σ defines a set of simply typed λ-terms ΛΣ. This set is the union of
the sets of the family (Λα

Σ)α∈TΣ defined as the smallest sets verifying:

1. xα ∈ Λα
Σ ,

2. for c ∈ C, c ∈ Λ
τ(c)
Σ ,

3. if M1 ∈ Λα→β
Σ and M2 ∈ Λα

Σ then (M1M2) ∈ Λβ
Σ ,

4. if M ∈ Λβ then λxα.M ∈ Λα→β
Σ .

We take for granted the notions of free variables, closed terms, substitution, the
various notions of conversions and reductions associated to the λ-calculus, the
notions of normal form, of η-long form (or long form) and the notion of linearity.
We write Λα

Σ,W to designates the set of terms of type α built on Σ whose set of
free variables is included in W .

2.2 Trees and Strings as λ-Terms

A HOS is said to be a tree-HOS when it is a second order HOS and that it uses
only one type namely o. We write on → o in the place of o → · · ·→ o︸ ︷︷ ︸

n

→ o and

say that a constant of type on → o has arity n. It is easy to see that every freely
and finitely generated sets of ranked trees can be seen as a the closed normal
terms of type o built on a tree-HOS.

A HOS is said to be a string-HOS when it is a tree-HOS whose constants all
have arity 1. Strings are represented as closed terms of type o → o and the string
c1 . . . cn is represented by the term λxo.c1(. . . (cnxo) . . .) denoted by /c1 . . . cn/.
The empty string is λxo.xo and the concatenation operation can be represented
by function composition λxo.s1(s2 x

o) (c.f. [1]).

2.3 Homomorphisms

A homomorphism between the signatures Σ1 and Σ2 is a pair (g, h) such that g
maps TΣ1 to TΣ2 , h maps ΛΣ1 to ΛΣ2 and verify the following properties:

1. g(α → β) = g(α) → g(β),
2. h(xα) = xg(α),
3. h(c) is a closed term of Λg(τ(c))

Σ2
,

4. h(M1M2) = h(M1)h(M2) and
5. h(λxβ .M) = λxg(β).h(M).

A homomorphism is said to be linear whenever constants are mapped to linear
terms. We write H(α) and H(M) respectively instead of g(α) and of h(M) for
a given homomorphism H = (g, h). Note that if H is a homomorphism from Σ1

to Σ2 and M ∈ Λα
Σ1

then H(M) ∈ Λ
H(α)
Σ2

.

Recognizability in the Simply Typed Lambda-Calculus 51

The order of a homomorphismH is the maximal order of the type it associates
to an atomic type. The usual notion of tree-homomorphism (resp. string homo-
morphism) is a first order homomorphism (in our sense) between tree-signatures
(resp. string-signatures). A first order homomorphism between Σ1 and Σ2 that
maps constants of Σ1 to constants of Σ2 is called a relabeling.

2.4 Models

Given a signature Σ, a full model of Σ is a pair M = ((Mα)α∈TΣ , ρ) where:

1. (Mα)α∈TΣ is a family of sets verifying:
(a) for all α, β ∈ TΣ , Mα→β = MαMβ

,
(b) the sets Mα such that α is atomic are pairwise disjoint.

2. ρ is a function from C to Mα so that α = ρ(c).

A full model, M = ((Mα)α∈TΣ , ρ), of Σ is said finite when for all α ∈ TΣ , Mα

is a finite set. Remark that M is finite if and only if for all atomic types α, Mα

is finite.
Given M = ((Mα)α∈TΣ , ρ) a full model of Σ, the terms of Λα

Σ are interpreted
as elements ofMα. This interpretation necessitates the definition of variable as-
signments which are partial functions that associate elements ofMα to variables
like xα. A variable assignment is said finite when its domain is finite. Given a
variable assignment ν, a variable xα and m ∈ Mα we define ν[xα ← m] to be
the variable assignment verifying:

ν[xα ← m](yβ)
{
m if yβ = xα

ν(yβ) otherwise

Given a full model M = ((Mα)α∈TΣ , ρ) a variable assignment ν, the inter-
pretation of the elements of ΛΣ (whose sets of free variables are included in the
domain of definition of ν) in M is inductively defined as follows:

1. [[xα]]Mν = ν(xα)
2. [[c]]Mν = ρ(c)
3. [[M1M2]]Mν = [[M1]]Mν ([[M2]]Mν)
4. [[λxα.M]]Mν is the function which maps m ∈Mα to [[M]]Mν[xα←m].

It is well-known that the semantics of λ-terms is invariant modulo βη-reduction.

3 Recognizable Sets of λ-Terms

We wish to extend the notion of recognizability that already exists for strings
and trees to λ-terms. An abstract way of defining recognizability for strings
and trees is to use Myhill-Nerode theorem [10], [11], that describes it in terms of
congruence of finite index over strings or trees which is equivalent to describing it
in terms of finite algebra for trees or finite semigroups for strings. This approach
has been successfully extended in the seminal paper [12] to any abstract algebra.
We shall follow this line of work in order to define recognizability for the simply
typed λ-calculus. Since the finite full models form the functional closure of finite
algebra, we use them so as to extend recognizability to λ-terms.

52 S. Salvati

Definition 1. Given a HOS Σ and α ∈ TΣ a set R included in Λα
Σ is said to

be recognizable iff there is a finite and full model M = ((Mα)α∈TΣ , ρ) a finite
variable assignment ν and a subset P of Mα such that: R = {M |[[M]]Mν ∈ P}.

Note that in this definition when ν is chosen to be the empty assignment function
then the set R only contains closed terms. In particular, when Σ is a tree (resp.
string) signature, and that α is the atomic type o (resp. the type o → o) then
the set of closed λ-terms that are recognizable correspond exactly to set of
recognizable trees (resp. strings).

The result by Loader [7] shows that in general it is undecidable to check
whether a recognizable set is empty. But as soon as the finite and full model and
the assignment function are given we can check whether a term is in the set. In
what follows we give a mechanical way (corresponding to automata for trees or
strings) to define recognizable sets and check whether a certain term belongs to
that set.

A classical and simple example of recognizable set of trees being the set of
true boolean formulae, we exemplify the notion of recognizability for λ-terms
with the set of true Quantified Boolean Formulae (QBF). For this it suffices to
use a HOS B whose constants are: ∧ : b2 → b, ∨ : b2 → b, ¬ : b → b, 1 : b, 0 : b,
∀ : (b → b) → b and ∃ : (b → b) → b. We use a finite model B = ((Bα)α∈TB , ρ)
such that Bb = {0; 1} and ρ associates the obvious functions to the constants of
B. Then the set of terms representing a true QBF is the set of closed λ-terms of
Bb which are interpreted as 1 in B and therefore this set is recognizable.

4 Automata Characterizing Recognizable Sets

We here generalize the notion of automata for trees and strings in order to obtain
a mechanical definition of recognizability for λ-terms. Our notion of automaton is
based on the notion of Higher Order Intersection Signature (HOIS) introduced
in [3] which, in turn, is based on intersection types [13]. A HOIS is a tuple
Π = (Σ, I, ι, χ) where Σ is a HOS, I is a finite set of atomic intersection types,
ι is a function from I to the atomic types of Σ, χ is a function that associates
to every element of C a subset of ∩τ(c)

Π where (∩αΠ)α∈TΣ is the smallest family
verifying:

1. for α and atomic type ∩αΠ = ι−1(α),
2. ∩α→β

Π = 2∩
α
Π × {α} × ∩βΠ (we write 2P , the powerset of the set P)

A trivial induction on the structure of α shows that for each type α, the set ∩αΠ
is finite.

We now define the type system that allows to associate types to λ-terms. Given
a HOIS Π = (Σ, I, ι, χ), a Π-typing environment (or simply, typing environment,
when there is no ambiguity) , is a partial mapping from typed variables to 2∩Π

whose domain is finite and such that Γ (xα), when it is defined, is included in
∩αΠ . We write Γ to denote the domain of Γ . Judgements over Π are objects of
the form Γ �Π M : p where Γ is a typing environment, M is an element of

Recognizability in the Simply Typed Lambda-Calculus 53

ΛΣ and p is an element of ∩Π . Judgements are derived by using the following
inference system:

p ∈ Γ (xα)
Axiom

Γ �Π xα : p

p ∈ χ(c)
Const

Γ �Π c : p

Γ �Π M : p p �α
Π q

Sub

Γ �Π M : q

Γ, xα : S �Π M : p
Abst

Γ �Π λxα.M : (S, α, p)

Γ �Π M : (S, α, p) N ∈ Λα
Σ,Γ

∀q ∈ S. Γ �Π N : q
App

Γ � (MN) : p

Where the relation �α
Π is defined as follows:

i ∈ ι(α)

i �ι
Π i

T ⊆ ∩αΠ ∀p ∈ S.∃q ∈ T .q �α
Π p

T �α
Π S

S �α
Π T q �β

Π p

(T, α, q) �α→β
Π (S, α, p)

Notice that the rule App, has two premises, concerning N . The reason of
being of the premise N ∈ Λα

Σ,Γ
is that when M has an intersection type of the

form (∅, α, p), the premise ∀q ∈ S. Γ �Π N : q is trivially true and without
such a premise we would derive judgments on terms which would not be simply
typed.

We will use the notation Γ �Π M : S where S is a subset of ∩αΠ to denote
the all the judgements of the form Γ �Π M : p where p in S. In the same spirit,
given S and T that are respectively subsets of ∩αΠ and of ∩βΠ , we write (S, α, T)
to denote the subset of ∩α→β

Π , {(S, α, p)|p ∈ T }.
We now give the principal properties of that system. The proofs of those

properties can be found in [3].

Theorem 1 (subject reduction). If Γ �Π M : p is derivable and M
∗→βη N

then Γ �Π N : p is derivable.

Notice that this Theorem would only hold for β-reduction without the use of
the rule Sub.

Theorem 2 (subject expansion). If M ∈ Λα
Σ, M ∗→βη N and Γ �Π N : p is

derivable then Γ �Π M : p is derivable.

Theorem 3 (Singleton). Given M ∈ Λα
Σ, there is Π, Γ and S ⊆ ∩αΠ such

that given N ∈ Λα
Σ, Γ �Π N : S is derivable if and only if M =βη N .

This Singleton Theorem, requires some comments. We proved it referring to
coherence theorems such as the one proved in [14]. It is also related to a Theorem
proved by Statman [8], [9], since we will see that HOIS and finite full models
can be represented one in the other.

Since, with intersection type we can represent graphs of functions, the set
of λ-terms that are interpreted as a certain element in a finite full model are
exactly the λ-terms that verify a certain judgement.

54 S. Salvati

Theorem 4. Given a HOS Σ, a finite model of Σ, M = (Mα, ρ), a finite
variable assignment ν over M and an element e of Mα then there is a HOIS
over Σ, Π, a typing environment Γ and a subset S of ∩αΠ such that for every
λ-term M the two following properties are equivalent:

1. [[M]]Mν = e
2. Γ �Π M : S

A consequence of the previous theorem is that we can obtain the undecidabil-
ity result by [6] about the emptiness of intersection type as a corollary of the
undecidability of λ-decidability [7].

We now prove the converse of the previous theorem, that is, typability proper-
ties in HOIS can be seen as properties of interpretations in finite full models. The
principle of this proof is to interpret intersection types as functions operating
over intersection types.

We define the operator app which maps, for all α and β, 2∩
α→β
Π ×2∩

α
Π to 2∩

β
Π .

It is defined by: app(S, T) = {p|∃(Q,α, p) ∈ S.T � Q}
The finite model in which we will interpret intersection types built over Π is

MΠ = ((Mα)α∈IA , ρ) where for α atomic we let Mα be 2ι
−1(α). The definition

of ρ requires an auxiliary function Fα that sends subsets of ∩αΠ to subsets of
Mα and that verifies:

1. for α atomic and S included in ∩αΠ we let Fα(S) = {T ⊆ ∩αΠ |S ⊆ T },
2. for S included in ∩α→β

Π we let

Fα→β(S) = {h ∈Mα→β |∀T ⊆ ∩αΠ .∀g ∈ Fα(T).h(g) ∈ Fβ(app(S, T))}

It is easy to verify that for every S included in ∩αΠ , the set Fα(S) is not empty.
We choose ρ(c) as an element of Fτ(c)(χ(c)). We then have the following theorem.

Theorem 5. Given a HOS Σ, a HOIS Π over Σ, Γ and S a subset of ∩αΠ , we
set ν(xα) to be an element of Fα(Γ (xα)), then the two following properties are
equivalent:

1. Γ �Π M : S
2. [[M]]MΠ

ν belongs to Fα(S)

The Theorems 4 and 5 relate finite models and typability in HOIS. This leads
us to the definition of a generalized notion of automaton, typing-automata.

Definition 2. A typing-automaton, A, over a HOS Σ is a tuple (α,Π, Γ, {S1;
. . .Sn}) where: α ∈ TΣ, Π is a HOIS over Σ, Γ is a Π-typing environment, for
all i in {1; . . . ;n}, Si is a subset of ∩αΠ . The language defined by A is

L(A) = {M |∃i ∈ N. Γ �Π M : Si}

Using Theorems 4 and 5 we get:

Theorem 6. A language of λ-terms L is recognizable if and only if there is a
typing-automaton A such that L = L(A).

Recognizability in the Simply Typed Lambda-Calculus 55

5 Closure Properties

5.1 Boolean Closure

In this section we shall quickly outline how to construct of typing-automata for
the boolean closure properties of recognizable sets of λ-terms. Interestingly these
constructions can be seen as generalizations of the usual constructions that are
used for tree/string-automata. For example, concerning the intersection of two
recognizable languages, we can construct the product of two typing-automata.
We first start by defining the product of two HOIS.

Definition 3. Given Π1 = (Σ, I1, ι1, χ1) and Π2 = (Σ, I2, ι2, χ2) we define the
HOIS Π1 ⊗Π2 to be (Σ, I, ι, χ) where:

1. I is a subset of I1 × I2 which is equal to {(p1, p2)|ι1(p1) = ι2(p2)},
2. ι((p1, p2)) = ι1(p1), note that by definition of I, ι((p1, p2)) = ι2(p2),
3. χ(c) = {p1 ⊗ p2|p1 ∈ χ1(c) and p2 ∈ χ2(c)}.

where given p1 in ∩αΠ1
and p2 in ∩αΠ2

we define p1 ⊗ p2 by:

1. if α is atomic then p1 ⊗ p2 = (p1, p2)
2. if α = α1 → α2 then p1 = (S1, α1, q1) and p2 = (S2, α2, q2) and p1 ⊗ p2 =

(S1 ⊗ S2, α1, q1 ⊗ q2) where S1 ⊗ S2 = {r1 ⊗ r2|r1 ∈ S1 and r2 ∈ S2}

If we define the product of two typing environment Γ and Δ to be Γ ⊗Δ such
that Γ ⊗Δ(x) = Γ (x)⊗Δ(x), we can prove the following property:

Theorem 7. The judgements Γ �Π1 M : P and Δ �Π2 M : Q are derivable if
and only if the judgement Γ ⊗Δ �Π1⊗Π2 M : P ⊗Q is derivable.

This allows us to define the product A⊗ B of two typing-automata A and B.

Definition 4. Given two typing-automata over some HOS Σ, A=(α,Π1, Γ, T1)
and B = (α,Π2, Δ, T2), we let A⊗B be (α,Π1⊗Π2, Γ⊗Δ,T1⊗T2) where T1⊗T2
is the set {S1 ⊗ S2|S1 ∈ T1 and S2 ∈ T2}.

Theorem 8. Given two typing automata of the same type over some HOS Σ,
A and B we have L(A⊗ B) = L(A) ∩ L(B).

The closure under complement of the class of recognizable sets of λ-terms, is
a direct consequence of its definition in terms of finite models. Interestingly, if
one wishes to construct the typing-automaton recognizing the complementary
language of a given typing-automaton, then one would use the construction that
serves in Theorem 5 which on a tree or string automaton would corresponds
to determinization. This induces a notion of deterministic typing-automata that
grasps the notion of recognizability, and corresponding to the fact that intersec-
tion types correspond to partial function over the finite model generated by the
atomic intersection types.

56 S. Salvati

5.2 Homomorphisms

It is well-known that recognizable sets of strings are closed under arbitrary ho-
momorphisms while recognizable sets of trees are closed under linear homomor-
phisms. We will see that recognizable sets of λ-terms are not even closed under
relabeling. This has the consequence, that Monadic Second Order Logic (MSO)
over the structure of normal λ-terms is not grasped by our notion of recogniz-
ability, since relabelings allow to represent set quantification. On the other hand,
alike strings and trees, recognizable sets of λ-terms are closed under arbitrary
inverse homomorphisms.

We now turn to show that recognizable sets of λ-terms are not closed under
relabeling. In order to show this we use the following signature Σ = {∀ : (b →
b) → b,∧ : b → b → b,∨ : b → b → b,¬ : b → b,� : b → b → b,� : b → b → b}.
Since terms built on Σ are usual boolean expressions, we shall use the standard
notation for those expressions instead of the λ-term notation. Thus we shall
write ∀x.t, t1 ∧ t2 and t1 ∨ t2 instead of ∀(λx.t), ∧t1 t2 and ∨t1 t2. The terms
built on Σ are interpreted in a finite model B = ((Bα)α∈TΣ , ρ) where Bb = {0; 1}
and ρ interprets the usual boolean connectives and quantifiers (∧, ∨, ¬ and ∀)
with their usual truth tables and ρ interprets the connectives � and � as the
functions such that ρ(�)xy = x and ρ(�)xy = y. By definition the set T of
closed terms whose semantic interpretation in B is 1 is recognizable.

We use a relabeling H which maps the terms built on Σ to terms built on
Σ′ = {∀ : (b → b) → b,∧ : b → b → b,∨ : b → b → b,¬ : b → b, � : b → b → b} so
the constants ∀, ∧, ∨ and ¬ are mapped to themselves by H and � and � are
both mapped to � .

We let ⇔ be the λ-term λxy.(x ∧ y) ∨ (¬x ∧ ¬y); as for the other connective,
we adopt an infix notation, i.e. we shall write t1 ⇔ t2 instead of ⇔ t1 t2.

As the connective � (resp. �) takes the value of its left (resp. right) argument,
if f and g are terms whose free variables are x1, . . . , xn, then we have the
following identities [[∀x1. . . . ∀xn.(�f g) ⇔ f]]B = 1 and [[∀x1. . . .∀xn.(�f g) ⇔
g]]B = 1.

The closed term λxb1 . . .xbn.t built on Σ can be interpreted as a function
from {0; 1}n to {0; 1} (modulo curryfication) in B, i.e. an n-ary boolean func-
tion. For a given n there are 2n+1 such functions and we know that for each
such function f we can build, using only ∧, ∨ and ¬, a term f̃ such that
[[λx1 . . .xn.f̃]]B = f . Given F = {f1; . . . ; fp} a set of such functions, we write
[F] the term � f̃1(� f̃2(. . . (� f̃p−1f̃p) . . .)). Remark that for all i in {1; . . . ; p},
there is Hi such that H(Hi) = [F] and [[∀(x1. . . .∀(xn.Hi ⇔ f̃i) . . .)]]B = 1 and
thus ∀(x1. . . .∀(xn.[F] ⇔ f̃i) is in H(T). Furthermore for every H such that
H(H) = F there is i in {1; . . . ; p} such that [[∀(x1. . . .∀(xn.H ⇔ f̃i) . . .)]]B = 1.
If we suppose that H(T) is recognizable, then there is a finite model M =
((Mα)α∈TΣ , ρ) and a subset N ofMb such that the closed terms M are in H(T)
if and only if [[M]]M ∈ N ; we assume that Mb contains q elements. Each closed
term λxb1 . . .xbn.M built on Σ′ is interpreted in M as a function from {1; . . . ; q}n
to {1; . . . ; q} (modulo curryfication). We are going to show that for every sets
of n-ary boolean functions F and G, it is necessary that [[λxb1 . . .xbn.[F]]]M and

Recognizability in the Simply Typed Lambda-Calculus 57

[[λxb1 . . .xbn.[G]]]M are different when F and G are different. Indeed, if F and G
are different, we can assume without loss of generality that F is not empty,
and then there is a boolean function f which is in F and which is not in G.
Since there is H such that H(H) = [F] and [[∀x1. . . .∀xn.H ⇔ f̃]]B = 1, then
∀x1. . . .∀xn.[F] ⇔ f̃ is in H(T). But for an n-ary boolean g, there is an H ′

such that H(H ′) = [G] and [[∀x1. . . . ∀xn.H ′ ⇔ g̃]]B = 1 iff g is in G. Thus the
term ∀x1. . . . ∀xn.[G] ⇔ f̃ is not in H(T) and [[λxb1 . . .xbn.[F]]]M is different from
[[λxb1 . . .xbn.[G]]]M. But there are 22n+1

sets of n-ary boolean functions while there
are qn+1 functions from {1; . . . ; q}n to {1; . . . ; q} and thus for n sufficiently big,
it is not possible to verify that [[λxb1 . . .xbn.[F]]]M and [[λxb1 . . .xbn.[G]]]M are dif-
ferent when F and G are different. Therefore, H(T) is not a recognizable set.
This implies that the class of recognizable sets of λ-terms is not closed under
relabeling.

While there seems to be no interesting class of homomorphisms under which
our notion of recognizability is closed, we can show that recognizable sets of
λ-terms are closed under inverse homomorphism.

Theorem 9. Given Σ1, Σ2 two HOS and H a homomorphism between Σ1 and
Σ2, if R is a recognizable set of Σ2 then H−1(R) ∩ Λα

Σ,V is also recognizable.

Recognizable sets contain only λ-terms of a given type and there is no reason
why H−1(R) is a set containing terms having all the same type. So intersecting
H−1(R) with set set of the form Λα

Σ,V is necessary.

6 Some Applications of Recognizability

We here quickly review some direct applications of the notion of recognizability
in the simply typed λ-calculus.

6.1 Parsing

Theorem 9 gives a very simple definition of parsing for many formalisms. Indeed
in formalisms, such as Context Free Grammars, Tree Adjoining Grammars, Mul-
tiple Context Free Grammars, Parallel Multiple Context Free Grammars etc. . .
can be seen as the interpretation of trees via homomorphism (see [15]). Thus
these grammars can be seen a 4-tuple (Σ1, Σ2,H, S) where Σ1 is a multi-sorted
tree signature, Σ2 is a string signature, H is a homomorphism from Σ1 to Σ2
and S is the type of the trees that are considered as analyses. Thus if we want to
parse a word w we try to find the set {M ∈ ΛS

Σ1
|M is closed and H(M) =βη w}

which is actually H−1({w}). But we know from Theorem 3 that {w} is a rec-
ognizable set and thus parsing amounts to compute the inverse homomorphic
image of a recognizable set. This gives a new proof of the theorem of [16] which
proves that the set of parse trees of a sentence in a context free grammars is a
recognizable set, and it furthermore generalizes the result to a wide family of
formalisms. Moreover, this view on parsing also applies to grammars generat-
ing tree or λ-terms, it also shows that parsing a structure is similar to parsing

58 S. Salvati

recognizable sets. Parsing recognizable sets instead of singleton structures has
the advantage that it allows to parse ambiguous inputs, such as noisy phonetic
transcriptions, or ambiguous tagging of sentences. . .

6.2 Higher Order Matching

The γ-higher-order matching problem (γ-HOM), with γ ∈ {β;βη}, consists in
solving an equation of the form M

?=γ N where N is a closed term. A solution of
such an equation is a substitution σ such that M.σ =γ N . Using the extraction
Lemma of [3], and Theorem 3, it is easy to see that the solutions of βη-HOM
form finite unions of cartesian products of recognizable sets. Observing this,
allows us to obtain in an alternative way the relation between λ-definability and
βη-HOM showed in [8]. Furthermore, we can easily obtain the result that βη-
HOM is decidable (see [17]) when the terms in a solution are arity bounded, i.e.
under the constraint that the number of variables that can be free in a subterm
is bounded by some number k. Indeed, because of the subformula property and
the bound on the number of free variables, arity-bounded terms of a given type
can all be represented with finitely many combinators; this means that we can
represent those terms in a tree-HOS Σ and recover them with a homomorphism
H. Thus, the set S of terms that are solution of arity bounded βη-HOM can
be effectively represented as a recognizable set of trees, namely H−1(S) , the
emptiness of recognizable sets of trees being decidable this gives the decidability
of arity bounded βη-HOM. In particular, this leads to the decidability of arity
bounded βη-HOM. Since arity-bounded βη-HOM is more general than 3rd and
4th order βη-HOM [17], this technique sheds some light on the results obtained
by [18] that relate the solutions of these special cases to tree automata. Contrary
to most approach to HOM, the one we use is completely direct, we do not need
to transform the problem within a set of interpolation equations.

β-HOM [19] is undecidable while βη-HOM seems to be decidable [20]. But
there is no satisfying explanation on the difference between β-HOM and βη-
HOM so as to account satisfactorily of that difference. But as we have seen,
intersection types make a discrimination between β-reduction and βη-reduction
with the rule Sub, without which the subject reduction Theorem does not hold
for βη-reduction. Thus intersection types seem to be a good tool to investigate
this problem.

7 Conclusion and Future Work

We have defined a notion of recognizability for the λ-calculus that naturally ex-
tends recognizability for trees or strings. We have exhibited the closure properties
of this notion and showed how it could be exploited to understand parsing of the
higher order matching problem. Contrary to strings and trees where recogniz-
ability comes with three kinds of characterization, a mechanical one (automata),
an algebraic one and a logical one (Monadic Second Order Logic, MSOL), here
our notion only comes with a mechanical and an algebraic characterization. It

Recognizability in the Simply Typed Lambda-Calculus 59

seems difficult to come up with a logical characterization since this notion is
not closed under relabeling. And closure under relabeling is central to represent
quantification in MSOL. As we wish to use this notion of recognizability so as
to describe particular sets of λ-terms, it would be nice to obtain a connection
with some logic. First-order logic would be a first step. A more general ques-
tion would be whether there is a logic that exactly corresponds to this notion of
recognizability.

Another question is to characterize the restrictions under which the emptiness
of recognizable sets is decidable. Theorem 9 gives a positive answer when the
terms are bound to be generated with a finite set of combinators since it reduces
this emptiness problem to the emptiness problem of some recognizable set of
trees. But we do not know whether there are weaker constraints for which this
holds. When we look at the situation for graphs, there is no class of graphs [21]
which can be generated only with infinitely many combinators (this means that
the class of graphs has an infinite treewidth) for which this emptiness problem
is decidable. Thus, this question can be related to the definition of a suitable
notion for normal λ-terms that would be similar to treewidth for graphs.

Finally we hope that the notion of recognizability for λ-terms can be of interest
in the study of trees generated by higher-order programming schemes. It has
been showed that those trees had a decidable MSO theory[22]. It is likely that
intersection types should be more adapted to conduct this proof, and yield to
new techniques.

References

1. de Groote, P.: Towards abstract categorial grammars. In: Association for Compu-
tational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference, pp. 148–155 (2001)

2. Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Yale
University Press, New Haven (1974)

3. Salvati, S.: On the membership problem for Non-linear Abstract Categorial Gram-
mars. In: Muskens, R. (ed.) Proceedings of the Workshop on New Directions in
Type-theoretic Grammars (NDTTG 2007), Dublin, Ireland, Foundation of Logic,
Language and Information (FoLLI), August 2007, pp. 43–50 (2007)

4. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

5. Moortgat, M.: Categorial Investigations: Logical & Linguistic Aspects of the Lam-
bek Calculus. Foris Pubns USA (1988)

6. Urzyczyn, P.: The emptiness problem for intersection types. J. Symb. Log. 64(3),
1195–1215 (1999)

7. Loader, R.: The undecidability of λ-definability. In: Anderson, C.A., Zeleny, M.
(eds.) Logic, Meaning and Computation: Essays in memory of Alonzo Church, pp.
331–342. Kluwer, Dordrecht (2001)

8. Statman, R.: Completeness, invariance and λ-definability. Journal of Symbolic
Logic 47(1), 17–26 (1982)

9. Statman, R., Dowek, G.: On statman’s finite completeness theorem. Technical Re-
port CMU-CS-92-152, University of Carnegie Mellon (1992)

60 S. Salvati

10. Myhill, J.: Finite automata and the representation of events. Technical Report
WADC TR-57-624, Wright Patterson Air Force Base, Ohio, USA (1957)

11. Nerode, A.: Linear automaton transformations. In: Proceedings of the American
Mathematical Society, vol. 9, pp. 541–544. American Mathematical Society (1958)

12. Mezei, J., Wright, J.: Algebraic automata and context-free sets. Information and
Control 11, 3–29 (1967)

13. Dezani-Ciancaglini, M., Giovannetti, E., de’ Liguoro, U.: Intersection Types,
Lambda-models and Böhm Trees. In: MSJ-Memoir. Theories of Types and Proofs,
vol. 2, pp. 45–97. Mathematical Society of Japan (1998)

14. Babaev, A.A., Soloviev, S.V.: Coherence theorem for canonical maps in cartesian
closed categories. Journal of Soviet Mathematics 20 (1982)

15. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial gram-
mars: Representing context-free formalisms. Journal of Logic, Language and Infor-
mation 13(4), 421–438 (2005)

16. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of finite automata theory. Journal of Computer and System Sci-
ences 1(4), 317–322 (1967)

17. Schmidt-Schauß, M.: Decidability of arity-bounded higher-order matching. In:
Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 488–502. Springer, Heidelberg
(2003)

18. Comon, H., Jurski, Y.: Higher-order matching and tree automata. In: CSL, pp.
157–176 (1997)

19. Loader, R.: Higher order β matching is undecidable. Logic Journal of the
IGPL 11(1), 51–68 (2003)

20. Stirling, C.: A game-theoretic approach to deciding higher-order matching. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 348–359. Springer, Heidelberg (2006)

21. Robertson, N., Seymour, P.D.: Graph minors. v. excluding a planar graph. J. Comb.
Theory, Ser. B 41(1), 92–114 (1986)

22. Ong, C.H.L.: On model-checking trees generated by higher-order recursion schemes.
In: LICS, pp. 81–90. IEEE Computer Society Press, Los Alamitos (2006)

Logic-Based Probabilistic Modeling

Taisuke Sato

Tokyo Institute of Technology, Ookayama Meguro Tokyo Japan
http://sato-www.cs.titech.ac.jp/

Abstract. After briefly mentioning the historical background of PLL/
SRL, we examine PRISM, a logic-based modeling language, as an in-
stance of PLL/SRL research. We first look at the distribution semantics,
PRISM’s semantics, which defines a probability measure on a set of possi-
ble Herbrand models. We then mention characteristic features of PRISM
as a tool for probabilistic modeling.

1 Introduction

Logic has long been considered as a discipline concerning certainty with ma-
jor attention on deductive inference. However recent developments in machine
learning and other related areas are expanding the role of logic from a vehicle
for deductive inference to the one for probabilistic knowledge representation and
statistical inference, and has spawned an interdisciplinary subfield of machine
learning called PLL (probabilistic logic learning) and/or SRL (statistical rela-
tional learning) that combine logic and probability for probabilistic modeling1.

As its name suggests, PLL[1] has LP (logic programming) and ILP (inductive
logic programming) as its backbone. PLL however adds to LP/ILP probability
and makes logical formulas random variables taking true and false probabilisti-
cally. With such probabilistic formulas we can express logical yet probabilistic
phenomena such as gene inheritance cleanly at predicate level. Moreover prob-
abilities statistically learned from real data makes it possible to evaluate how
probable a given formula is in the real world.

Furthermore by amalgamating with probability, LP/ILP, or more generally
logic, acquires an ability to cope with missing information. Suppose we are going
for a picnic tomorrow (P) if the weather is clear (W). Also suppose we have to
prepare a lunch box tonight (L) if we go for a picnic tomorrow (P). Then it
follows by deduction that we have to prepare a lunch box tonight if the weather
is clear tomorrow (L ⇐ W). However we do not know the truth value of W ,
tomorrow’s weather. Should we prepare a lunch box tonight? In such a case a
purely logical inference would completely get stuck as we do not know the truth
value of W . The amalgamated system on the other hand will be able to help
our decision on whether we should prepare a lunch box or not by looking at the
probability associated with W .

1 SRL seems more often used than PLL now.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 61–71, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 T. Sato

SRL [2], independently of PLL, originated from uncertainty reasoning in BNs
(Bayesian networks)[3]. BNs are a graphical representation of joint distributions
in terms of directed acyclic graphs. BNs are powerful. First they can visualize com-
plex dependencies among random variables graphically as parents-child nodes.
Second they allow us to perform various types of probabilistic inference and pa-
rameter learning such as maximum likelihood inference, MAP (maximum a poste-
riori) inference and Bayes inference. These inferences are efficiently carried out by
well-developed algorithms including the celebrated BP (belief propagation) algo-
rithm. Also there are ones for structure learning as well that learn a directed graph
from data. As a result BNs are used as one of the standard tools for handling uncer-
tainty and applied to bioinformatics, natural language processing, speech recog-
nition, planning, diagnosis, datamining, decision support and so on.

Nevertheless from a viewpoint of knowledge representation in AI, BNs are
primitive. Basic assertions available in BNs are limited to X = x type such that
X is a random variable and x is a value. In other words, BNs are a propositional
system where X = x is a propositional variable which is true with probability
P (X = x). BNs’ lack of logical variables, relations and quantifiers, the hallmark
of predicate calculus, implies we have no way to express (probabilistic) rules such
as “a friend of a friend is a friend with probability 0.3.” One might say BNs is
a low level language just like machine code.

The low-levelness of BNs prompted the emergence of the KBMC (knowledge-
based model construction) approach in the nineties. Initially KBMC built BNs
from a knowledge base using a high level language mostly as a matter of conve-
nience. But later it evolved to SRL which upgrades BNs themselves by explic-
itly introducing variables and relations and/or by embedding them in a richer
programming language be it logical or otherwise. Variables in such a language
recover an ability to express general patterns. More importantly the introduction
of relations opened a new dimension for feature-based probabilistic modeling2

by using relations themselves as new features [2].
Currently SRL and PLL are moving toward unification but it remains to

be seen whether they are eventually unified or not. In this talk, we look into
some details of PRISM [4,5,6]3 as an instance of ongoing PLL/SRL research.
PRISM is a probabilistic extension of Prolog with a declarative semantics called
distribution semantics which is a probabilistic generalization of the standard
least model semantics of logic programs [7]. Despite the fact that PRISM adopts
a single data structure, a single probability computation algorithm and a single
parameter learning algorithm, all independent of target models, it universally
covers generative models from Bayesian networks to probabilistic grammars with
efficiency supported by the PRISM architecture. In what follows we review the
distribution semantics in detail and then illustrate some aspects of PRISM from
a machine learning point of view.

2 Features are a function from an input to a real number that characterizes the input.
In statistical natural language proceeding for example, often an individual word is
used as a feature that returns 1 if the input contains the word, else 0.

3 http://sato-www.cs.titech.ac.jp/prism/index.html

Logic-Based Probabilistic Modeling 63

2 Probabilistic Semantics

2.1 The Basic Principle

The distribution semantics, PRISM’s declarative semantics, is a probabilistic
generalization of the least model semantics in logic programming. Before pro-
ceeding however, we look back on a fundamental theorem which underlies it.

When logic and probability are combined, probabilities P (ϕ) are assigned to
formulas ϕ. However since probabilities have to respect Kolmogorov’s axioms
while formulas obeys their own logical laws, it is not self-evident how to coher-
ently assign probabilities to formulas4. We here review Fenstad’s representation
theorem [8] in our context which states a formal relationship between formulas
and their probabilities.

We introduce some notations. Let L be a countable first order language with-
out equality and ω be a model on a certain fixed domain U5. We assume vari-
ables are indexed by natural numbers N. We denote by ϕ[ω] {a ∈ UN | ω |=a

ϕ(xi, . . . , xj)} where a is an assignment for the variables such that a(i) is as-
signed to xi etc. ϕ[ω] denotes the set of sequences of elements from U whose
substitution for the variables in ϕ makes ϕ true in the model ω.

Theorem 1 (Fenstad 67). Let ϕ, φ be formulas in L. Suppose probabilities
assigned to formulas satisfy the following.

(i) P (ϕ ∨ φ) + P (ϕ ∧ φ) = P (ϕ) + P (φ)
(ii) P (¬ϕ) = 1− P (ϕ)

(iii) P (ϕ) = P (φ), if � ϕ ↔ φ
(iv) P (ϕ) = 1, if � ϕ

Then there is a σ-additive probability measure λ on the set Ω of models on U
for L. There is also for each ω ∈ Ω, a probability μω on the sets of ϕ[ω]’s such
that

P (ϕ) =
∫
S

μω(ϕ[ω]) dλ(ω).

When the domain U is finite and ϕ is closed, the above theorem reduces to

P (ϕ) =
∑
ω|=ϕ

λ({ω}).

So in this case, the probability is given as the sum of probabilities of the models
that satisfy the formula.

Fenstad’s theorem strongly suggests to us that if we assign probabilities to
formulas in a reasonable way, we should first define a probability measure over
models. The distribution semantics[4] we explain next follows this idea.

4 In addition since probabilities are supposed to be used in a probabilistic model, they
need to be computable and learnable from data.

5 U can be taken as a Herbrand universe for L.

64 T. Sato

2.2 The Distribution Semantics

Formally a PRISM program DB is a set of definite clauses. We write it as
DB = F ∪ R where F is a set of ground atoms corresponding to primitive
probabilistic events such as coin tossing and R is a set of rules (definite clauses).
We assume no atom in F unifies with a head appearing in R.

We consider the set of Herbrand models (we often call them just worlds for
simplicity) ΩDB for DB and define a probability measure PDB over ΩDB as
follows. First enumerate ground atoms in F like A1, A2, . . . and identify a Her-
brand interpretation of F with a binary infinite vector (1, 0, . . .) that specifies
A1 is true (1), A2 is false (0) and so on. Let ΩF =

∏
i{0, 1}i be the set of

such binary vectors. We give ΩF a product topology where {0, 1} has a discrete
topology. Also let PF be a base distribution which is any probability measure on
the σ-algebra generated by open sets of ΩF .

Consider an arbitrary subset F ′ of F . DB ′ = F ′ ∪ R has the least Herbrand
model M(DB ′) defined as follows. Let T be the immediate consequence operator
[7]. It is applied to a set I of ground atoms and defined by T (I) = {A | A ⇐ B1∧
· · · ∧Bh(h ≥ 0) is a ground instance of a clause in DB ′ and {B1, . . . , Bh} ⊆ I}.
Put I∞ = ∪∞k=0T

k(∅) and verify I∞ is the least fixpoint of T , i.e. T (I∞) = I∞.
Define a Herbrand model M(DB ′) by a ground atom A is true in M(DB ′)
iff A ∈ I∞

6. M(DB ′) is called the least Herbrand model of DB ′7. Using this
M(DB ′) = M(F ′ ∪ R) as a model parameterized by F ′, a subset of F , we can
extend PF by Kolmogorov’s extension theorem to a probability measure PDB on
the σ-algebra generated by open sets in ΩDB with a product topology (see [5]
for details). We consider PDB as the denotation of PDB (distribution semantics).

From the construction of PDB , it is easy to see every closed formula ϕ is
measurable when considered as a function from ΩDB to {0, 1} such that

ϕ(ω) =
{

1 if ω |= ϕ
0 else

and hence we define the probability PDB (ϕ) of ϕ as PDB (ϕ = 1). Probabilities
thus defined satisfy the conditions from (i) to (iv) of Fenstad’s representation
theorem. Also we can see the distribution semantics is a generalization of the
least model semantics because if the base distribution PF puts all probability
mass on one Herbrand model making F ′ ⊆ F true, PDB also will put all proba-
bility mass on the least Herbrand model of F ′ ∪R.

3 PRISM: From Semantics to Implementation

The distribution semantics considers PDB as the denotation of a program DB =
F ∪ R. PDB always exists, uniquely, for any set F of ground atoms, any base
measure PF on F and any set R of definite clauses. Such “semantic robustness”
6 Proof theoretically DB ′ � A iff A ∈ I∞ for every ground atom A.
7 In logic programming, the least Herbrand model is considered as the canonical de-

notation of definite clause programs.

Logic-Based Probabilistic Modeling 65

is one of the unique features of PRISM compared to other systems dealing with
infinite domains and infinitely many random variables [2,1].

However defining a semantics is one thing and implementing it is another.
When implementing the distribution semantics as PRISM as an extension of
Prolog, we fix F and restrict the base measure PF to a denumerable product of
of Bernoulli distributions to make PDB computable in probabilistic modeling.

More concretely we introduce ground atoms called msw atoms8 representing
a probabilistic choice that take the form msw(i, v) where i is a choice name and
v is a chosen value and both are ground terms. We fix the set Fmsw of ground
msw atoms and give a (-n infinite) joint distribution Pmsw(·) in such a way that
if a probabilistic choice named i has k choices v1, . . . , vk, correspondingly, one
of nmsw(i,v1), . . . , msw(i,vk), say msw(i,vj) is exclusively true with probability
θvj = Pmsw(msw(i,vj)) (

∑
j θvj = 1). msw(i,v) is the only probabilistic built-in

predicate in PRISM and used to simulate simple probabilistic events such as coin
flipping and dice throwing. The role of definite clauses in R then is to organize
such simple events into a complex event corresponding to our observation in
the real world. The following is a PRISM program describing the inheritance of
ABO blood type. As you see a PRISM program is just liken an ordinary Prolog
program9.

values x(gene,[a,b,o],[0.5,0.2,0.3]).

bloodtype(P) :-

genotype(X,Y),

(X=Y -> P=X ; X=o -> P=Y ; Y=o -> P=X ; P=ab).

genotype(X,Y) :-

msw(gene,X), msw(gene,Y).

Fig. 1. ABO-blood type program DB1

The first clause values x(gene,[a,b,o],[0.5,0.2,0.3]) is a PRISM dec-
laration specifying Fmsw and Pmsw(·). It introduces a set of mutually exclusive
atoms {msw(gene, a), msw(gene, b), msw(gene, o)} corresponding to a probabilis-
tic choice named gene having three possible outcomes a, b and o, representing
three genes determing one’s ABO blood type. They are true with 0.5, 0.2 and
0.3 respectively as indicated by the values x declaration. The second clause is
a rule specifying the relationship between genotypes (pair of genes) and phe-
notypes (ABO blood type, a, b, o, ab). For example if a genotype is (a, b), the
blood type is ab. The last clause simulates the inheritance of two genes, one from
each parent. Sampling msw(gene,X) returns X = a with probability 0.5 etc. In
PRISM, textually different occurrences of msw atoms in a program are treated

8 msw stands for “multi-ary random switch.”
9 Some familiarity with Prolog is assumed here.

66 T. Sato

as independent. So msw(gene,X) and msw(gene,Y) are independent. This pro-
gram as a whole describes how bloodtype(P), our observation, is generated by
a sequential choices made by msw(gene,·) atoms.

Once loaded into computer memory by the PRISM system, DB1 can answer
various questions such as the probability of bloodtype(a). PRISM computes
it by way of search and the resulting propositional AND/OR formula called
an explanation graph. To be precise it first performs an exhaustive SLD search
for ?- bloodtype(a) and collects all conjunctions E1, E2 and E3 such that
Ei, DB1 � bloodtype(a) (i = 1, 2, 3) where E1 = msw(gene, a) ∧ msw(gene, a),
E2 = msw(gene, a) ∧ msw(gene, o) and E3 = msw(gene, o) ∧ msw(gene, a). We
call each Ei an explanation for bloodtype(a). Since the search is exhaustive,
bloodtype(a) ⇔ E1 ∨ E2 ∨ E3 holds with probability one in terms of PRISM’s
semantics. In addition since E1, E2 and E3 are obtained by mutually exclusive
proof paths, they are mutually exclusive as well. Also recall that msw atoms are
independent. Putting these together PDB1(bloodtype(a)) is calculated as

PDB1(bloodtype(a) | θa, θb, θo) = PDB1(E1 ∨ E2 ∨ E3)
= PDB1(E1) + PDB1 (E2) + PDB1(E3)
= θ2

a + θaθo + θoθa

= 0.45

where θa = Pmsw(msw(gene, a)) = 0.5, θb = Pmsw(msw(gene, b)) = 0.2 and θo =
Pmsw(msw(gene, o)) = 0.310 as specified by values x(gene,[a,b,o],[0.5,
0.2,0.3]).

4 Statistical Abduction

Although PRISM is an extension of Prolog, their inferences are of different type.
Prolog is a logical language for (controlled) deduction whereas PRISM is a logical
language for (controlled) abduction. In general abduction refers to “inference
to the best explanation.” Given a knowledge base K, a set of formulas, and
an observation O, we seek for the best explanation E in abduction such that
K ∧ E � O and K ∧ E is consistent. The exhaustive search for explanations for
the given goal in PRISM is exactly an abductive inference. One of the problems
in abduction is that there can be many explanations just like a student has many
excuses for not doing homework. In the blood type example, PRISM abduces
three explanations E1, E2, and E3 for the observation bloodtype(a) but in
the case of parsing where observations are sentences, the knowledge base is a
grammar and an explanations is a parse tree, we often have tens of thousands
of parse trees for one sentence. In the face of multiple explanations, we need to
choose somehow one of them as the best one.

10 PDB1(·) is an extension of Pmsw(·), so PDB1(E1) = Pmsw(msw(gene, a)∧msw(gene, a)) =
Pmsw(msw(gene, a))2 = θa

2.

Logic-Based Probabilistic Modeling 67

Statistical abduction[9] resolves the problem of multiple explanations that
arises in abduction by introducing a probabilistic model P (·) connecting ex-
planations E, a knowledge base K and an observation O. Using P (·) we choose
the most probable E giving the highest P (E | O,K) such that K∧E � O. In this
sense PRISM is not just a language for abduction but a language for statistical
abduction, and indeed the first one with an ability to perform statistical infer-
ence to our knowledge. In PRISM the knowledge base is a program DB for which
the distribution semantics guarantees PDB (iff(DB)) = 111 [5]. Accordingly

E∗ = argmaxEPDB (E | O, iff(DB))
= argmaxEPDB (E ∧O ∧ iff(DB))
= argmaxEPDB (E ∧ iff(DB))
= argmaxEPDB (E)

holds. Thus seeking for the best explanation in statistical abduction is equiva-
lent to Viterbi inference implemented in PRISM, giving E∗ = E1 as the best
explanation for bloodtype(a).

5 Probabilistic Modeling

So far we have been looking at theoretical aspects of PRISM. Here we exam-
ine PRISM as a practical tool for probabilistic modeling. As a modeling tool,
the most salient feature of PRISM is model specification by (recursive) definite
clauses12, which results in

– universality (for generative models and their parameter learning)
– high level specification (small amount of coding) and
– interpretability (what the system does is readable to humans).

The first point is due to the fact that PRISM can simulate, as an extension
of Prolog, a non-deterministic Turing machine in which non-determinacy is re-
solved by a probabilistic choice, and in addition, PRISM has a generic routine
(the graphical EM algorithm [5]) for parameter learning. The universality covers
PCFGs (probabilistic context free grammars) [11] as well as BNs [3]. A PCFG
is a CFG with probabilities assigned to grammar rules. It generates a sentence
by repeatedly making a probabilistic choice of a grammar rule and expanding a
nonterminal with it until no nonterminal remains. Since there is no upper limit
on the number of applications of grammar rules, if there is a recursive rule, we
use a countably many iid random variables. Hence finite probabilistic models

11 iff(DB) is the if-and-only-if completion of DB . Definite clauses with a common head
such as A ⇐ B and A ⇐ C in a program are lumped together to the if-and-only-if
form A ⇔ B ∨ C in iff(DB).

12 Actually general clauses (those that may contain negative goals in the clause body)
are allowed under a certain condition[10].

68 T. Sato

end

a,b

a,b

a,b a,b

s1s0

Fig. 2. An HMM

values x(init,[s0,s1],[0.5,0.5]).

values x(out(),[a,b],[0.5,0.5]).

values x(trans(),[s0,s1,end],[0.7,0.2,0.1]).

hmm(L):- msw(init,S0),hmm(S0,L).

hmm(S,L):- msw(trans(S),NextS),

(NextS=end -> L=[] ; msw(out(S),C), L=[C|Cs], hmm(NextS,Cs)).

Fig. 3. DB hmm for the HMM in Fig.2

such as BNs or otherwise cannot express PCFGs though they are the most basic
class of probabilistic grammars [12].

The second point owes to the power of first-order expressions such as variables,
terms, relations and recursion. For example HMMs (hidden Markov models)
which are a class of stochastic automata very popular in machine learning can
be expressed in three lines (together with three line declarations) as shown in
Fig. 3.

We hope the program DBhmm in Fig. 2 is self-explanatory but add comments13.
This program generates indefinitely long lists of a and b. There are two states s0
and s1 both of which can be an initial state. After choosing the initial state, it
goes into infinite recursion, while outputting a or b on transition, until a choice
of transition to end, the final state, is made probabilistically.

Fig. 4 is a sample session of DBhmm. After loading, we issue ?-prob(hmm([a,a,
b])) to compute the probability of hmm([a,a,b]). Next we ask what is the most
probable state transition sequence (Viterbi inference) for generating hmm([a,a,
b]). The answer is given as a calling sequence (in Prolog) of subgoals. Finally, we
learn parameters from a list of observations {hmm([a, a, b]), hmm([b, a]), hmm([b, b]),
hmm([a, b, a])} by invoking the graphical EM algorithm using learn/1. After 18
iterations it converged with log-likelihood −12.908717468, giving parameters as
listed. “Switch init” signifies the parameters are for msw(init,·).

13 values x(out(),[a,b],[0.5,0.5]) is a template where the underscore can be
replaced with any term.

Logic-Based Probabilistic Modeling 69

?- prob(hmm([a,a,b])).

Probability of hmm([a,a,b]) is: 0.012345679012346

?- viterbif(hmm([a,a,b])).

hmm([a,a,b]) <= hmm(s0,[a,a,b]) & msw(init,s0)

hmm(s0,[a,a,b]) <= hmm(s1,[a,b]) & msw(trans(s0),s1) & msw(out(s0),a)

hmm(s1,[a,b]) <= hmm(s1,[b]) & msw(trans(s1),s1) & msw(out(s1),a)

hmm(s1,[b]) <= hmm(s1,[]) & msw(trans(s1),s1) & msw(out(s1),b)

hmm(s1,[]) <= msw(trans(s1),end)

?- learn([hmm([a,a,b]),hmm([b,a]),hmm([b,b]),hmm([a,b,a])]).

...

#em-iterations: 0.(18) (Converged: -12.908717468)

Switch init: s0 (p: 0.000005604) s1 (p: 0.999994396)

Switch out(s0): a (p: 0.499954371) b (p: 0.500045629)

Switch out(s1): a (p: 0.500019760) b (p: 0.499980240)

Switch trans(s0): s0 (p: 0.430352826) s1 (p: 0.000001065) end (p: 0.569646108)

Switch trans(s1): s0 (p: 0.573218835) s1 (p: 0.426780543) end (p: 0.000000623)

Fig. 4. Running DBhmm

We remark that it is straightforward to extend and modify, say merge with
a PCFG, the above skeletal program to one’s purpose. When the user modifies
his probabilistic model, it often happens that he has to start from designing a
new data structure all over again. Since PRISM adopts a single data structure
(explanation graphs), there is no need for a new data structure. All you need to
change when you change your model is the specification part alone, which is a
labor saving aspect of PRISM.

The third point, interpretability, is of particular importance in practice. Even-
tually the outcome of our analysis by probabilistic modeling must be transferred
to non-experts. However think of non-generative probabilistic models specified
by “weights” wi like P (y | x) ∝ exp(

∑
i wifi(x, y)). It would be very hard to ex-

plain the meaning of those weights to non-experts, and especially so when there
are a huge number of weights like in statistical natural language processing. On
the contrary, logic-based probabilistic modeling uses logical formulas to specify
models, which seem more readable and more meaningful to non-experts than
weights, though we admit logical formulas themselves might be an obstacle.

Last but not least, we comment on complexity. PRISM is a high-level mod-
eling language and models can be described succinctly as a PRISM program.
However one might ask if the ease of modeling sacrifices efficiency. The answer is
possibly so but marginally. Due to the complexity analysis of representative mod-
els [5], HMMs, PCFGs and BNs can be computed in the same time complexity
as specialized algorithms (the Baum-Welch algorithm for HMMs, the Inside-
Outside algorithm for PCFGs, BP for BNs [13]). The reason is that explanation
graphs, PRISM’s data structure, realize structure-sharing and probabilities and

70 T. Sato

expectations (needed for parameter learning) are computed by dynamic pro-
gramming exploiting such structure-sharing. The real issue here is the trade off
between general data structure for every model and specialized data structure
for a specific model. PRISM lies on the general end of this scale. It constructs
explanation graphs using pointers as their size depends on a model and data
and is unknown beforehand in general. This causes a disadvantage in computa-
tional efficiency. We believe however the flexibility can compensate for such a
disadvantage and implementation efforts can make it minimal.

6 Concluding Remarks

We reviewed the historical background of PLL/SRL and examined PRISM as
an instance of PLL/SRL research. It is a logic-based modeling language we have
been developing in the past decade and provides a general tool for generative
modeling in machine learning. As an extension of Prolog, it subsumes Prolog and
furthermore has the ability to learn parameters from data based on an abductive
framework called “statistical abduction.” We omitted most of computational
details but they can be reached by [4,5,14,6]. Also omitted is variational Bayes
which is the latest feature of PRISM for Bayesian inference [15].

References

1. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Probabilistic Inductive
Logic Programming. LNCS, vol. 4911, pp. 1–27. Springer, Heidelberg (2008)

2. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

3. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco (1988)

4. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming
(ICLP 1995), pp. 715–729 (1995)

5. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

6. Sato, T., Kameya, Y.: New Advances in Logid-Based Probabilistic Modeling by
PRISM. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.) Prob-
abilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 118–155.
Springer, Heidelberg (2008)

7. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1984)
8. Fenstad, J.E.: Representation of probabilities defined on first order languages.

In: Crossley, J.N. (ed.) Sets, Models and Recursion Theory, pp. 156–172. North-
Holland, Amsterdam (1967)

9. Sato, T., Kameya, Y.: Statistical abduction with tabulation. In: Kakas, A.C., Sadri,
F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI),
vol. 2408, pp. 567–587. Springer, Heidelberg (2002)

10. Sato, T., Kameya, Y., Zhou, N.F.: Generative modeling with failure in PRISM. In:
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI 2005), pp. 847–852 (2005)

Logic-Based Probabilistic Modeling 71

11. Wetherell, C.S.: Probabilistic languages: a review and some open questions. Com-
puting Surveys 12(4), 361–379 (1980)

12. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

13. Sato, T.: Inside-Outside probability computation for belief propagation. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 2605–2610 (2007)

14. Zhou, N.F., Sato, T., Shen, Y.D.: Linear tabling strategies and optimization. The-
ory and Practice of Logic Programming 8(1), 81–109 (2008)

15. Sato, T., Kameya, Y., Kurihara, K.: Variational bayes via propositionalized proba-
bility computation in prism. Annals of Mathematics and Artificial Intelligence (to
appear)

Completions of Basic Algebras

Majid Alizadeh�

School of Mathematics, Statistics and Computer Science, College of Science,
University of Tehran, P. O. Box 14155-6455, Tehran, Iran

Research center for Integrated Science, Japan Advanced Institute of Science and
Technology, Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract. We discuss completions of basic algebras. We prove that the
ideal completion of a basic algebra is also a basic algebra. It will be
shown that basic algebras are not closed under MacNeille completions.
By adding the join-infinite distributive law to basic algebras, we will
show that these kind of basic algebras are closed under the closed ideal
completion and moreover any other regular completions of these alge-
bras are isomorphic to the closed ideal completion. As an application
we establish an algebraic completeness theorem for a logic weaker than
Visser’s basic predicate logic, BQL, a proper subsystem of intuitionistic
predicate logic, IQL.

Keywords: Heyting algebra, Basic algebra, Completion, Visser’s basic
logic, Intuitionistic logic.

1 Introduction

In the present paper, we will discuss completions of algebras for Visser’s basic
logic and a completeness theorem for it which is obtained using completions.
Completions of basic algebras and some of its subvarieties are discussed in the
second and third sections. In the second section, we will first give a brief overview
of the canonical extensions of basic algebras and then we will introduce the ideal
completion of a basic algebra. We will see that the ideal completion is also
a Heyting algebra and consequently we can embed every basic algebra into a
complete Heyting algebra as a lattice. None of these completions of basic algebras
are regular, i.e., the embedding of a basic algebra into these two kinds of complete
algebras does not preserve existing infinite joins and meets in general. In the
third section, we first show that the variety of basic algebras, a subvariety of this
variety called Löb algebras and all the subvarieties of the latter are not closed
under MacNeille completions. Then, we introduce the closed ideal completion
of a basic algebra satisfying the join-infinite distributive law and show that the
� I would like to thank Prof. Mohammad Ardeshir for his valuable comments. This

paper was completed during my stay at Japan Advanced Institute of Science and
Technology, JAIST, as a visiting researcher. I am grateful to Prof. Hiroakira Ono for
his invitation to my attendance at JAIST also for reading early draft of the paper
and giving helpful comments and suggestions.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 72–83, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Completions of Basic Algebras 73

class of basic algebras which satisfies the join-infinite distributive law is closed
under this completion and moreover any other regular completions of these kinds
of algebras are isomorphic to the closed ideal completion. In the last section,
we apply the regular completion of basic algebras that satisfy the join-infinite
distributive law to prove an algebraic completeness theorem for a logic weaker
than Visser’s basic predicate logic.

2 Canonical Completion and Ideal Completion

In this section first we give a brief overview of canonical extension of basic
algebras and then we will introduce the ideal completion of these algebras.

Definition 1. A basic algebra B = 〈B,∧,∨,→, 0, 1〉 is a structure with con-
stants 0 and 1, and binary functions ∧, ∨, and →, such that

1. with respect to 0, 1, ∧, and ∨ we have a bounded distributive lattice, and
2. for → we have the additional identities and quasi-identities

a → b ∧ c = (a → b) ∧ (a → c);

b ∨ c → a = (b → a) ∧ (c → a);

a → a = 1;

a ≤ 1 → a; and

(a → b) ∧ (b → c) ≤ a → c.

The relation ≤ is expressible in term of equations with ∧ or ∨ in the standard
way, i.e.,

a ≤ b iff a ∧ b = a iff a ∨ b = b.

So this class of algebras forms a variety. A basic algebra B is called a Löb algebra
iff for all x ∈ B, (1 → x) → x = 1 → x.

Lemma 1. [1]. Let B be a basic algebra. Then for a, b,∈ B,

1. if a ≤ b, then a ∧ (b → c) = a ∧ (1 → c),
2. if a ≤ b, then b → c ≤ a → c, and c → a ≤ c → b,
3. if a ∧ b ≤ c, then a ≤ b → c.

A basic algebra B is called complete if it is complete as a lattice. A variety of
basic algebras is closed under a completion method if the completion of every
algebra in the variety according to the method belongs to the variety too.

Canonical extensions of basic algebras, introduced by Ardeshir [4], are briefly
described as follows. For a basic algebra B, let W = WB be the set of all prime
filters of B. Define a binary relation ≺ on W as follows: F ≺ F

′
iff b ∈ F

′

whenever a → b ∈ F and a ∈ F
′
. A subset X of W is called an upset of W if

and only if for each F,G ∈ W such that F ∈ X and F ⊆ G, we have G ∈ X .
Then the structure 〈UP (W),∩,∪,→, ∅,W 〉 of upsets, UP (W), of W is a basic
algebra, where

74 M. Alizadeh

X → Y = {F ∈ W : ∀G � F (if G ∈ X then G ∈ Y)}.

One can embed the original algebra B in its canonical extension by a mapping
f defined by

f(a) = {P | P is a prime filter and a ∈ P}, for each a ∈ B.

It is well-known that the above canonical embedding works well for distribu-
tive lattices but it does not preserve existing infinite joins and meets in general.
In the rest of this section we introduce the ideal completion of basic algebras.
First, let us recall some known definitions.

A subset I ⊂ B is an ideal on B if 0 ∈ I; if a, b ∈ I, then a∨b ∈ I and if a ≤ b
and b ∈ I, then a ∈ I. An ideal I on B is called prime, if a ∧ b ∈ I implies that
a ∈ I or b ∈ I. As usual we use the symbol (a] for the ideal generated by the
element a of the basic algebra B, i.e., (a] = {x ∈ B : x ≤ a}. For S ⊆ B, put
I(S) = (S] = {x ∈ B : x ≤ (a1 ∨ ... ∨ an) for some elements a1, ..., an in S}.
It is easy to show that (S] is the minimal ideal containing S. For ideals I and J
in B we define I ∧ J = I ∩ J . For a set Γ of ideals of B, ∨Γ is defined by (∪Γ],
in particular I ∨ J = (I ∪ J].

For a basic algebra B the set I(B) of all ideals of B forms a complete dis-
tributive lattice with respect to ∧ and ∨. We call it the ideal completion of B.

Theorem 1. Let B be a basic algebra. Then I(B) = 〈I(B),∧,∨,→∗, (0], (1]〉
where, for I, J ∈ I(B),

I →∗ J = {x ∈ B : for every i in I there is a j in J such that x ≤ i → j}
is a basic algebra.

Proof. First, we show that I →∗ J is an ideal, for every ideal I and J . Easily one
can see that 0 ∈ I →∗ J also if x ≤ y and y ∈ I →∗ J , then x ∈ I →∗ J . Now let
x, y ∈ I →∗ J , we show that x∨ y ∈ I →∗ J . Let i ∈ I, then there are j1, j2 ∈ J
such that x ≤ i → j1 and y ≤ i → j2. So, x∨y ≤ (i → j1)∨(i → j2) ≤ i → j1∨j2.
Thus x ∨ y ∈ I →∗ J .

It is clear that for every ideal I and J , J ⊆ I →∗ J . For ideals I, J and K we
only show that, I ∨ J →∗ K = (I →∗ K) ∧ (J →∗ K).

Let x ∈ (I →∗ K)∧(J →∗ K) and u ∈ I∨J , then there exist a1, ..., at ∈ I and

b1, ..., bs ∈ J such that, u≤ (
t∨

i=1

ai) ∨ (
s∨

i=1

bi). Let a =
t∨

i=1

ai and b =
s∨

i=1

bi, then

a ∈ I and b ∈ J , so there exist v1, v2 ∈ K such that, x ≤ a → v1 ≤ a → v1 ∨ v2
and x ≤ b → v2 ≤ b → v1 ∨ v2. Then x ≤ a ∨ b → v1 ∨ v2 ≤ u → v1 ∨ v2. Hence
x ∈ I ∨ J →∗ K. The converse is trivial and by semilar arguments we can prove
the others.

Theorem 2. Let B be a basic algebra. Then the map x �−→ (x] embeds B into
the complete basic algebra I(B).

Proof. Clearly x �−→ (x] is one to one and preserves ∧,∨, 0 and 1. We show
that it also preserves ” → ”. Let a ∈ (x] →∗ (y], then for element u ≤ x,
there is an element v ≤ y such that a ≤ u → v. Suppose that u = x, then

Completions of Basic Algebras 75

a ≤ x → v ≤ x → y, therefore a ∈ (x → y] and so (x] →∗ (y] ⊆ (x → y]. The
converse is obvious.

In the following theorem we show the relation between the ideal completion and
Heyting algebras

Proposition 1. The basic algebra I(B) is a Heyting algebra if and only if B is
a Heyting algebra.

Proof. It is known that a basic algebra B is a Heyting algebra if and only if for
any element x we have 1 → x = x, see [1]. On the other hand, by Theorem 1,
for any element x in basic algebra B we have (1 → x] = (1] →∗ (x]. Now we can
get the desired result.

In the following theorem we give some basic properties of the ideal completion
of basic algebras.

Theorem 3. LetB be a basic algebra. Then I(B) satisfies the following properties:

1. I ∧
∨

t∈T Jt =
∨

t∈T (I ∧ Jt),
2. I ∨

∧
t∈T Jt ≤

∧
t∈T (I ∨ Jt),

3.
∨

t∈T (It →∗ J) ≤
∧

t∈T It →∗ J ,
4.
∨

t∈T (I →∗ Jt) ≤ I →∗ ∨
t∈T Jt,

5.
∧

t∈T (It →∗ J) =
∨

t∈T It →∗ J ,
6.
∧

t∈T (It →∗ Jt) ≤
∨

t∈T It →∗ ∨
t∈T Jt.

Proof. We only prove clauses 1 and 5. Similar arguments work for the others.
1. Let x ∈ I ∧

∨
t∈T Jt, then there exist elements a1, . . . , an ∈

⋃
t∈T Jt such

that x ≤
∨n

i=1 ai. Without loss of generality we can assume that ai ∈ Ji, so x ∈∨n
i=1 Ji. By distributivity of I(B), we have x ∈

∨n
i=1(I∧Ji), so x ∈

∨
t∈T (I∧Jt).

The converse is trivial.
5. Let x ∈

∧
t∈T (It →∗ J), then for every t ∈ T , x ∈ It →∗ J . Let u ∈∨

t∈T It, then there exist elements a1, ..., an, such that u ≤
∨n

i=1 ai. Without
loss of generality we can assume that ai ∈ Ii. For each ai there is bi in J such
that x ≤ ai → bi ≤ ai →

∨n
i=1 bi, then x ≤ (a1 →

∨n
i=1 bi) ∧ ... ∧ (an →∨n

i=1 bi) ≤ u →
∨n

i=1 bi. So x ∈
∨

t∈T It →∗ J , since
∨n

i=1 bi ∈ J . On the
other hand, we have It ≤

∨
t∈T It, so

∨
t∈T It →∗ J ≤ It →∗ J and hence∨

t∈T It →∗ J ≤
∧

t∈T (It →∗ J).

Definition 2. A lattice L is called join-infinite distributive, if the equality a ∧
(
∨

t bt) =
∨

t(a ∧ bt) holds in the case that
∨

t bt exists.

It is well-known that a complete bounded distributive lattice is a Heyting algebra
if and only if it is join-infinite distributive. From Theorem 2 and 3 it follows that
the ideal completion of every basic algebra A has (implicity) a structure of a
Heyting algebra. In this algebra the Heyting implication is the operation defined
for every a, b by:

a ↪→ b =
∨
{c : a ∧ c ≤ b}

This implication may be different from the basic algebra implication defined in
Theorem 1, as the following example shows.

76 M. Alizadeh

Example 1. Let B be a bounded distributive lattice with universe B = {0, a, b, 1}
such that a ∧ b = 0, a ∨ b = 1. We define an implication on B as follows:
1 → a = b → a = a, 1 → b = a → b = 1, x → 0 = a, for x > 0 and x → y = 1,
for x ≤ y. It is easy to see that 〈B,→〉 is a basic algebra.

Now the ideal completion of B is a finite distributive lattice, so it is a Heyting
algebra too. In this case we haveB ↪→∗ (b] = (b]. But by basic algebra implication
defined in Theorem 1 we have B →∗ (b] = B.

Theorem 2 implies only the following:

Theorem 4. Every basic algebra can be embedded in a complete Heyting algebra
as a lattice.

Similar to canonical extensions of basic algebras, also the ideal completion of
these algebras does not preserve the existing infinite joins and infinite meet in
general. In fact, it does not preserve infinite joins. We end this section by a
theorem which says that the variety of Löb algebras is not closed under the ideal
completion. First we note the following

Lemma 2. [2]. Let B be a Löb algebra. Then for any element x ∈ B, 1 → x = x
if and only if x = 1.

Theorem 5. The variety of Löb algebras is not closed under the ideal comple-
tion.

Proof. Take the linear order structure 〈N + N∗, <〉, where N is the set of all
natural numbers with the strict order, followed by a copy of N with reverse
order, i.e., {0 < 1 < 2 < · · · < 2∗ < 1∗ < 0∗}. Let B be the algebra with
universe N +N∗ and with greatest and least elements 0∗ and 0, respectively. For
each element x ∈ N − {0}, the successor s(x∗) of x∗ is defined to be (x − 1)∗.
For every element x, y in B, x → y is equal to s(y), if y < x and 0∗ otherwise.

It can easily be seen that this structure is a Löb algebra. Now for ideal N =
(N] in the ideal completion of B we have B →∗ N = N . So by pervious Lemma
the ideal completion of B is not a Löb algebra.

3 MacNeille Completions and Closed Ideal Completions

In the previous section we saw that the canonical extension and the ideal com-
pletion of a basic algebra do not necessarily preserve existing infinite joins and
meets in the original algebra. In this section we will discuss two other completions
of basic algebras, the MacNeille completion and the closed ideal completion. It
is well-known that the MacNeille completion of a distributive lattice preserves
existing infinite joins and meets but does not necessarily preserve distributivity.
But MacNeille completions of Heyting algebras are still Heyting algebras.The
MacNeille completion of a distributive lattice is briefly described as follows. For
a distributive lattice A and B ⊆ A, let L(B) be the collection of all lower bounds
of B, U(B) be the collection of all upper bounds of B, and call B a normal ideal

Completions of Basic Algebras 77

of A if B = LU(B). Then the collection of all normal ideals of A is the MacNeille
completion of A. Unlike the variety of Heyting algebras, in the following theo-
rem we will see that the variety of basic algebras is not closed under MacNeille
completions.

Theorem 6. The variety of basic algebras is not closed under MacNeille com-
pletions.

Proof. It is well-known [6] that the variety of bounded distributive lattices is not
closed under MacNeille completions. Now suppose that L is a bounded lattice
which is distributive and → is defined as the function constantly equal to 1. Then
〈L,→〉 is a basic algebra, indeed a Löb algebra. Now if L is a distributive lattice
whose MacNeille completion is not distributive, then independently of how one
extends implication, it is clear that the result can not be a basic algebra.

A basic algebra B is called an L1-algebra if it satisfies 1 → 0 = 1. Note that in
every basic algebra B, 1 → 0 = 1 if and only if for any element a and b in B we
have a → b = 1. It is easy to see that every L1-algebra is a Löb algebra. In [3] it
was shown that the minimal subvarieties of the variety of basic algebras are only
the variety of Boolean algebras and the variety of L1-algebras, and consequently
the latter is the single minimal variety of the variety of Löb algebras. Two famous
varieties of basic algebras are the variety of Heyting algebras and the variety of
Löb algebras and all of their subvarieties. It was shown [7] that the only varieties
of Heyting algebras which are closed under MacNeille completions are the trivial
variety, the variety of Boolean algebras, and the variety of Heyting algebras. We
have the following theorem for the variety of Löb algebras.

Theorem 7. 1. If a subvariety of basic algebras contains the two elements L1-
algebra, then it is not closed under MacNeille completions.

2. The variety of Löb algebras and all of its subvarieties are not closed under
MacNeille completions.

Proof. It was shown [3] that the two elements L1-algebra generates the variety
of all L1-algebras. Now by using the same argument of Theorem 6 one can get
the desired result. 2 is a corollary of 1.

Let us recall some definitions to introduce the closed ideal completion for basic
algebras. An ideal I of a basic algebra B is closed if for every subset S in I we have∨
S ∈ I, whenever

∨
S exists. Suppose that Ic(B) is the set of closed ideals of B.

For Γ ⊆ Ic(B) we define
∨c

Γ = Ic(
⋃

Γ), i.e., the minimal closed ideal including⋃
Γ . Note that for every subset X of a basic algebra, there exists a unique

minimal closed ideal Ic(X) including X . In fact Ic(X) is the intersection of all
closed ideals including X . For I, J ∈ Ic(B) we define I →c J = Ic(I →∗ J). Note
that in any Heyting algebra, according to the presence of the law of residuation,
i.e.,

a ∧ b ≤ c if and only if a ≤ b → c

78 M. Alizadeh

we can show that an ideal is normal if and only if it is closed under existing
joins. So in the variety of Heyting algebras, MacNeille completions and closed
ideal completions coincide. We will show that the analogous result is true for
some kind of basic algebras. For convenience we include a proof of the following
known result.

Proposition 2. Let B be a join-infinite distributive basic algebra and X ⊆ B.
Then every element x of Ic(X) is characterized as follows:

x =
∨
{y | y ≤ x and y ≤ z for some z ∈ X}.

Proof. Let J be the set of all x’s in the proposition. First we show that it is
an ideal. Suppose that x ∈ J and a ≤ x, then by the following sequences of
identities we can get a ∈ J .

a = a ∧ x = a ∧
∨
{y | y ≤ x and y ≤ z for some z ∈ X}

=
∨
{y ∧ a | y ≤ x and y ≤ z for some z ∈ X}

=
∨
{y | y ≤ a and y ≤ z for some z ∈ X}.

In the third identity we used the join-infinite distributive law. It is fairly easy
to show that if x and y are in J , then x ∨ y is also in J . Now assume that S is
a subset of J and a =

∨
{s | s ≤ a and s ∈ S}. For s ∈ S put As = {x | x ≤

s and x ≤ y for some y ∈ X}. Then s =
∨
As for s in S. So

a =
∨
{
∨
As | s ≤ a and s ∈ S} =

∨
{x | x ≤ a and x ≤ y for some y ∈ X}.

Therefore a is in J . J also includes X and the minimality of J is clear.

Let us recall that an embedding of an algebra B to a complete algebra B∗ is
called regular embedding if it preserves the existing infinite joins and meets in
B. In this case the complete algebra B∗ is called a regular completion of B.

Theorem 8. Let B be a join-infinite distributive basic algebra. Then

Ic(B) = 〈Ic(B),∧,∨c,→c, (0], (1]〉

is a join-infinite and complete basic algebra and the embedding f : B −→ Ic(B);
f(x) = (x] is a regular embedding.

Proof. Clearly Ic(B) is a bounded lattice. we show that it is also join-infinite
distributive. Obviously

∨c
J∈Γ I∧J ≤ I∧

∨c
Γ , for every closed ideal I and every

subset Γ of Ic(B) with
∨c

Γ = Ic(∪Γ). Let x be an element of I ∧
∨c

Γ , then
x ∈ I and x =

∨
{y|y ≤ x and y ∈ J for some J ∈ Γ}, by previous Proposition.

Therefore x ∈ Ic(∪J∈Γ I ∧ J) =
∨c

J∈Γ I ∧ J .
It is clear that for ideals I and J , J ⊆ I →c J . For ideals I, J and K we show

that I ∨c J →c K = (I →c K) ∧ (J →c K).
Let x ∈ (I →c K) ∧ (J →c K). By the previous proposition we have

x =
∨
{y|∃z ∈ I →∗ K with y ≤ z}

=
∨
{y′|∃z′ ∈ J →∗ K with y′ ≤ z′}

=
∨
{t|∃u ∈ I ∨ J →∗ K with t ≤ u}.

Note that in the third equality we used both join-infinite distributivity and
the fact that z ∧ z′ ∈ (I →∗ K) ∧ (J →∗ K) = I ∨ J →∗ K, since z ∈ I →∗ K

Completions of Basic Algebras 79

and z′ ∈ J →∗ K. The converse inclusion is trivial. We can prove the other
properties of ” → ” by similar arguments.

By Theorem 2, f is an embedding. Now we show that f preserves all infinite
joins. Suppose that

∨
S exists for S ⊆ B. Let U = {f(s) | s ∈ S}, then

∨
S ∈

Ic(
⋃
U). Therefor f(

∨
S) = Ic(

⋃
U) =

∨c
U =
∨c

s∈S f(s).

Similar to the ideal completion of basic algebras we have

Proposition 3. The basic algebra Ic(B) is a Heyting algebra if and only if B
is a Heyting algebra.

Proof. Note that for every closed ideal I, (1] →c I = I if and only if (1] →∗ I = I.
Now apply Proposition 1.

Proposition 4. Every join-infinite distributive basic algebra can be regularly
embedded in a complete Heyting algebra as a lattice.

As we mentioned before, in the case of Heyting algebras the ideal completion and
MacNeille completions coincide. Here we will generalize this fact for join-infinite
distributive basic algebras. Let us recall the following definition

Definition 3. Let B and B∗ be join-infinite distributive basic algebras which B∗

is also a regular completion of B with related embedding f . B∗ is called a join
dense completion of B if for any element a in B∗ we have a =

∨
{f(x)| f(x) ≤

a and x ∈ B}.

Theorem 9. Let B be a join-infinite distributive basic algebra. Then every join
dense completion of B is lattice isomorphic to Ic(B).

Proof. Let f be the related embedding of B into Ic(B) and B∗ be a join dense
completion of B with related embedding g. For ever closed ideal I we define
h(I) =

∨
x∈I g(x). We show that h is the required isomorphism. Let I and J be

two closed ideals. Since B∗ is join-infinite distributive we have h(I) ∧ h(J) =∨
x∈I g(x)∧

∨
y∈J g(y) =

∨
x∈I
∨

y∈J g(x∧y) ≤
∨

z∈I∧J g(z) = h(I∧J). The other
direction is trivial. Now we show that h preserves infinite joins. Let Γ be a set
of closed ideal, it is sufficient to show that h(

∨c
Γ) ≤

∨
I∈Γ h(I). For x ∈

∨c
Γ ,

x =
∨
{y|y ≤ x and y ∈

⋃
Γ}. Then g(x) =

∨
{g(y)|y ≤ x and y ∈

⋃
Γ}, since

g is regular. Now for every y ∈
⋃
Γ there exists an ideal I in Γ such that y ∈ I,

so g(x) ≤
∨

z∈I g(z) = h(I). Now one can get the required inequality.
For injectivity suppose that h(I) = h(J). Then

∨
x∈I g(x) =

∨
y∈J g(y). So for

every x ∈ I, g(x) ≤
∨

y∈J g(y) which implies that g(x) =
∨

y∈J g(x∧y). We show
that x =

∨
y∈J x∧y and so x ∈ J . Clearly x is a upper bound. Suppose that z is

an element such that for any y ∈ J , x∧y ≤ z. Then g(x) =
∨

y∈J g(x∧y) ≤ g(z),
it implies that x ≤ z, since g is injective. Hence, I = J .

For surjectivity of h suppose that x ∈ B∗, then x =
∨
{g(y)| g(y) ≤ x and y ∈

B}. It is easy to see that h(
∨c{f(y)| g(y) ≤ x and y ∈ B}) = x, since h and g

preserve infinite joins.

80 M. Alizadeh

In fact the above proof shows that h o f = g. It means that our isomorphism is
unique, since suppose that h′ is another isomorphism with the same properties.
Then for any closed ideal I we have h(I) = h(

∨c{f(a)| a ∈ I}) =
∨
{h(f(a))| a ∈

I} =
∨
{h′(f(a))| a ∈ I} = h′(I). As a corollary we have

Corollary 1. Let B be a join-infinite distributive basic algebra and I be an ideal
in B. I is a closed ideal if and only if it is a normal ideal.

Proof. First note that our related regular embedding in the MacNeille comple-
tions is g(x) = (x]. We show that the above unique isomorphism h is the identity
function, i.e., for any closed ideal I, h(I) = I.

h(I) = h(
∨c{f(x)| x ∈ I}) =

∨c{h(f(x))| x ∈ I} =
∨c{
∨

y≤x g(y)| x ∈ I} =∨c{(x]| x ∈ I} = I. So every closed ideal is a normal ideal.
For the converse, suppose I is a normal ideal, S ⊆ I and

∨
S = a. If x ∈ U(I),

then a ≤ x, and hence a ∈ LU(I) = I.

Corollary 2. The class of all join-infinite distributive basic algebras is closed
under MacNeille completions.

4 Algebraic Completeness of Visser’s Predicate Logic

Visser’s basic predicate logic is a predicate logic with intuitionistic language
which is interpreted in Kripke models with transitive accessibility relation. The
propositional part of the logic was first introduced by Visser [9], called basic
propositional logic, BPL, and developed by Ardeshir and Ruitenburg [5]. Basic
predicate logic, BQL, as a predicate extension of BPL was first introduced by
Ruitenburg in [8].

The language of BQL, L, contains a denumerable set of predicate symbols of
each finite arity, a denumerable set V of variable symbols, parentheses, logical
constants � and ⊥, the logical connectives ∧, ∨, → and quantifiers ∃ and ∀. Our
language is freed of function symbols. We usually include the binary predicate =
for equality. Formulas are defined as usual, except for the universally quantified
formulas. A universally quantified formula is of the form ∀x(φ(x) → ψ(x)), in
which x = (x1, x2, · · · , xn), a finite sequence of distinct variables. A sequent is
an expression of the form φ ⇒ ψ, in which φ and ψ are formulas. We often write
φ for � ⇒ φ. A rule with a double horizontal line means a two direction rule.
For more details see [8]. We give an axiomatization with the axioms and rules

1) φ ⇒ φ, 2) ⊥⇒ φ, 3) φ ⇒ �, 4) �⇒ x = x,

5) φ ∧ (ψ ∨ η) ⇒ (φ ∧ ψ) ∨ (φ ∧ η),

6) ∃xφ ∧ ψ ⇒ ∃x(φ ∧ ψ), x is not free in ψ,

7) x = y ∧ φ ⇒ φ[x/y], A is atomic, 8) ∀x(φ → ψ) ∧ ∀x(ψ → η) ⇒ ∀x(φ → η),

Completions of Basic Algebras 81

9) ∀x(φ → ψ) ∧ ∀x(φ → η) ⇒ ∀x(φ → ψ ∧ η),

10) ∀x(φ → η) ∧ ∀x(ψ → η) ⇒ ∀x(φ ∨ ψ → η),

11) ∀x(φ → ψ) ⇒ ∀y(φ → ψ), no variable in y is free on the left hand side,

12) ∀x(φ → ψ) ⇒ ∀x(φ[x/t] → ψ[x/t]), no variable in t is bounded in φ
or ψ,

13) φ⇒ψ ψ⇒η
φ⇒ψ , 14)

φ⇒ψ φ⇒η

φ⇒ψ∧η , 16)
φ⇒η ψ⇒η

φ∨ψ⇒η ,

17) φ∧ψ⇒η
φ⇒∀x(ψ→η) , no variable in x is free in φ,

18) φ⇒ψ

∃xφ⇒ψ
, x is not free in ψ,

19) φ⇒ψ
φ[x/t]⇒ψ[x/t] , no variable in t is bounded in the denominator,

20) ∀yx(φ → ψ) ⇒ ∀y(∃xφ → ψ), x is not free in ψ.

BQL without the last axiom above is shown by BQL−. In the following, we
prove the algebraic completeness and soundness for BQL−.

An algebraic model is a structure B = 〈B,D, I〉, where B is a join- infinite
distributive complete basic algebra and D is a non-empty set. Let D̄ be the set
of names of all elements in D. I is a map from atomic sentences of L(D), the
language L expanded with the constants in D, to B which satisfies the following
conditions: for any a and b in D̄, and for nay atomic formula P (x),

I(a = a) = 1, and I(P (a)) ∧ I((a = b)) ≤ I(P (b)).
The map I can be uniquely extended to the set of all sentences on L(D). For

quantified formulas we have:

1. I(∀x(φ → ψ)) =
⋂

a∈D̄ I(φ[x/a] → ψ[x/a]), and
2. I(∃xφ) =

⋃
a∈D̄ I(φ[x/a]).

For φ, ψ ∈ For(L), suppose that FV (φ) ∪ FV (ψ) = {x1, ..., xn}. A sequent
φ ⇒ ψ is satisfied in B, B |= φ ⇒ ψ, if for any a1, ..., an ∈ D, I(φ[x1/a1, ..., xn/
an]) ≤ I(ψ[x1/a1, ..., xn/an]). A sequent φ ⇒ ψ is valid, |= φ ⇒ ψ, if for every
model B, B |= φ ⇒ ψ.

Theorem 10. (Soundness and completeness) For any formulas φ and ψ,
BQL− � φ ⇒ ψ if and only if BQL− |= φ ⇒ ψ.

Proof. The proof of the soundness part of the theorem proceeds by induction
on the height of the derivation. For the completeness part, we construct the
Lindenbaum algebra U of BQL. Consider the equivalence relation ∼ defined in
the set of all formulas by: φ ∼ ψ iff � φ ⇒ ψ and � ψ ⇒ φ. This relation
is a congruence with respect to the operations associated with the connectives.
Then U is the quotient algebra of the algebra of formulas given by the operations

82 M. Alizadeh

associated with the connectives, � and ⊥. One may easily check that the algebra
U is a basic algebra whose lattice order is such that [φ] ≤ [ψ] iff � φ ⇒ ψ. In
addition we have:

[∃xφ] =
⋃
y∈V

[φ[x/y]]; [∀x(φ → ψ)] =
⋂
y∈V

[φ[x/y] → ψ[x/y]].

We check the first equality. It is easy to show that � φ(x) ⇒ ∃xφ(x). So, �
φ[x/y] ⇒ ∃xφ(x), for every variable y. Therefore [∃xφ] is an upper bound for
the set {[φ[x/y]]|y ∈ V }. To show that it is the least upper bound suppose that
ψ is a formula, such that � φ[x/y] ⇒ ψ for all y ∈ V. If x �∈ FV (ψ), then
take x for y. So we have � φ(x) ⇒ ψ, then we can deduce � ∃xφ(x) ⇒ ψ,
which implies [∃xφ] ≤ [ψ]. If x ∈ FV (ψ), take fresh variable z. Then, by our
assumption, we have � φ[x/z] ⇒ ψ. Therefore � ∃zφ[x/z] ⇒ ψ, which implies
[∃zφ[x/z]] ≤ [ψ]. By axiom (6), the basic algebra U is countable join-infinite
distributive basic algebra but it does not have to be complete. By Theorem 8,
U can be embedded into a complete basic algebra B, in which the infinite meets
and infinite joins of elements of U are preserved. Note that in this case the
complete algebra B is also countable. Consider a model B = 〈B,V, I〉 where V
is the set of variables and I is the map from the atomic sentences of L(V) given
by I(φ(x1, . . . , xn)) = [φ(x1, . . . , xn)] for every atomic formula φ(x1, . . . , xn). By
induction it follows that I(φ(x1, . . . , xn)) = [φ(x1, . . . , xn)] for every formula
φ(x1, . . . , xn). Now we are in a position to prove the completeness. Suppose
|= φ ⇒ ψ. Then for any model C, C |= φ ⇒ ψ. Take B for C, then [φ] ≤ [ψ],
which means � φ ⇒ ψ.

By the same method as above we can prove one direction of the above theorem
for BQL.

Theorem 11. (Completeness) For any formulas φ and ψ, if BQL |= φ ⇒ ψ,
then BQL � φ ⇒ ψ.

To prove the soundness for BQL we need to prove that the regular completions
of join-infinite basic algebras satisfy clause 5 of Theorem 3. At this moment,
unfortunately, we don’t know if the closed ideal completion satisfies this property
or not. It is an interesting problem to introduce a complete algebraic semantics
for BQL.

References

1. Alizadeh, M., Ardeshir, M.: Amalgamation property for the class of basic algebras
and some of its natural subclasses. Archive for Mathematical Logic 45, 913–930
(2006)

2. Alizadeh, M., Ardeshir, M.: On Löb algebras. Mathematical Logic Quarterly 52,
95–105 (2006)

3. Alizadeh, M., Ardeshir, M.: On Löb algebras II (submitted)
4. Ardeshir, M.: Aspects of basic logic. PhD thesis, Department of Mathematics, Statis-

tics and Computer Science, Marquette University (1995)

Completions of Basic Algebras 83

5. Ardeshir, M., Ruitenburg, M.: Basic propositional calculus I. Mathematical Logic
Quarterly 44, 317–343 (1998)

6. Harding, J.: Any lattice can be regularly embedded into the Macneille completion
of a distributive lattice. Houston J. Math. 19, 39–44 (1993)

7. Harding, J., Bezhanishvili, G.: MacNielle completions of Heyting algebras. Houston
J. Math. 30, 937–950 (2004)

8. Ruitenburg, W.: Basic predicate calculus. Notre Dame Journal of Formal Logic 39,
18–46 (1998)

9. Visser, V.: A propositional logic with explicit fixed points. Studia Logica 40, 155–175
(1981)

Transformations via Geometric Perspective
Techniques Augmented with Cycles

Normalization

Gleifer V. Alves, Anjolina G. de Oliveira, and Ruy de Queiroz

Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
{gva,ago,ruy}@cin.ufpe.br

Abstract. A normalization procedure is presented for a classical nat-
ural deduction (ND) proof system. This proof system, called N-Graphs,
has a multiple conclusion proof structure where cycles are allowed. With
this, we have developed a thorough treatment of cycles, including cy-
cles normalization via an algorithm. We also demonstrate the usefulness
of the graphical framework of N-Graphs, where derivations are seen as
digraphs. We use geometric perspective techniques to establish the nor-
malization mechanism, thus giving a direct normalization proof.

Keywords: proof theory, normalization, proof-graphs, multiple conclu-
sion, cycles.

1 Introduction

Our main goal is to use geometric perspective techniques in order to establish
a normalization procedure capable of handling derivations with multiple con-
clusion proof structure where cycles are admissible. Normalization is defined for
N-Graphs, which has been conceived by de Oliveira in her doctoral thesis ([1],
[2]), as a suitable solution to the lack of symmetry in classical ND logic. The
resulting proof system defined by de Oliveira is a multiple conclusion natural de-
duction system augmented with structural rules. The structural rules together
with constants (⊥, �) have a key role in building proof-graphs. Derivations in
N-Graphs are drawn as digraphs. The multiple conclusion proof structure allows
for cycles in proof-graphs.

Now we briefly describe the two scenarios which correspond to our efforts: geo-
metric perspective and normalization for classical ND logic. The term ‘geometric
perspective’ is used to denote a particular way of abstracting from syntactic ma-
nipulation by turning explicit certain implicit symmetries in proof calculi via
the extraction of formula occurrence flow graphs. With this we define an ab-
stract graphical framework, as an abstract representation of proofs, proof objects
(i.e., formulas, rules, operators, etc) and related properties (e.g., soundness and
normalization) by means of graphical resources, where these resources are given
via graph-theoretic concepts and mechanisms.

There are different kinds of frameworks. Here we should mention the graph
framework used in Statman’s pioneering work [3]. Besides, the logical flow graphs

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 84–98, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Transformations via Geometric Perspective Techniques 85

framework of S. Buss are used to trace the flow of formula-occurrences. For
instance, we cite Carbone’s work [4], where flow graphs are used to analyze the
cut-elimination procedure. Also N-Graphs and Alessio–Gundersen work [5] bring
the use of flow graphs. Yet we mention the circuit framework, which is used in
the work of Blue et. al. [6], where proof-nets are drawn as circuits.

Our normalization procedure is devised for classical ND, where the work of
Prawitz appears as a seminal reference [7]. Moreover, we mention some exten-
sions of Prawitz normalization, Statman, Massi-Pereira [8] and St̊almarck [9]
works, in order to define normalization for the full set of ND operators. These
works are for single conclusion systems. But we are also interested on normaliza-
tion for multiple conclusion systems. As established in the works of Ungar [10],
Cellucci [11] and Blute et. al. The first two authors define normalization without
using a graphical framework, while Blute et. al. use a graphical representation
for proof-nets.

We realize that on the one hand, some works are devised to define normal-
ization guided by an abstract graphical framework. On the other hand, some
works use a framework to represent the system and it’s rules, but do not rep-
resent transformations among derivations. Or yet the normalization does not
use graphical representations. Now we remark those works which define nor-
malization by means of some abstract graphical framework. Wwe cite Statman’s
work, where the homomorphism concept is used to establish a correspondence
among proof systems. We also have the work of Blute et. al., where the graphical
framework of proof-nets is used to describe the reduction rules and cycles. But
cycle structures are not normalized. Yet we mention Carbone’s work where flow
graphs are used to analyze the process of cut-elimination in classical sequent cal-
culus. Additionally the work of Alessio–Gundersen shows the use of an abstract
graphical framework to represent a proof system and the normalization proce-
dure. Notice Alessio–Gundersen admit and handle cycle structures. But they do
not normalize cycles.

We notice that only the first two works aforementioned define normalization
for classical ND logic. Besides, only Blute et. al. and Alessio–Gundersen admit
cycles. However, they both do not present a normalization for cycles. As a result,
there is a lack of a specific mechanism capable to check whether or not a given
(valid) cycle has a detour.

2 Related Work

In this section we briefly present those works which are devised to define a
normalization mechanism by means of some abstract graphical framework.

Firstly Statman has used the concept of homomorphism in order to deter-
mine the correspondence among two different proof systems: X and Y . With
such correspondence it is possible to indirectly define normalization for X , since
normalization for Y is already known. Secondly we show Carbone’s work, where
logical flow graphs have been used to analyze the complexity of proofs in sequent
calculus. Logical flow graphs are constructed by tracing the flow of information

86 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

(i.e., the formulas) in proofs of the sequent calculus. In logical flow graphs the
different occurrences of a formula in a proof are linked by the edges of the graph.
Thirdly we mention the work of Blute et. al. [6], where the authors intend to
define translations among proof-nets and categories. The circuit framework is
used to represent the proof-nets. And the normalization mechanism is guided by
an abstract graphical framework.

In [5], Alessio–Gundersen present normalization via an abstract graphical frame-
work for SKS system. SKS is a formalism for the calculus of structures in deep
inference logic. The abstract framework is defined via the atomic flows, which are
directed graphs obtained from a derivation by only retaining information about
the creation and destruction of atom occurrences. Atomic flows are based on
S. Buss logical flow graphs. The abstract framework has a simple representation
of derivations, since logical rules are discharged and only structural rules are
used. Cycle structures are represented in atomic flows. However cycles are only
handled in one fragment of normalization reductions. When all normalization
reductions are used, cycles should be dismissed. Otherwise normalization would
be non-terminating.

3 N-Graphs

N-Graphs has logical and structural rules. Derivations are graphically represented
by means of labelled digraphs, augmented with a multiple conclusion proof struc-
ture. Thus introduction and elimination rules share a symmetry. And cycle
structures are allowed in derivations. Proofs are represented by proof-graphs,
which are graphs whose vertices are labelled with formula occurrences and edges
represent atomic steps in a derivation. And N-Graphs are those proof-graphs
which are logically sound. The propositional language of N-Graphs has the fol-
lowing elements: (i) propositional constants: ⊥,�; (ii) connectives: ¬,∧,∨,→;
(iii) formula-occurrences: A,B,C, And the grammar of the language is given
as follows, where p ranges over a countable set of propositional letters: A,B :=
p | � | ⊥ | ¬A | A ∧B | A ∨B | A → B.

Definition 1 ((Focussing/Defocussing) Branch point). A branch point
is a vertex in a digraph with three edges attached to it; while a focussing branch
point is a vertex in a digraph with two edges oriented towards it; and a defo-
cussing branch point is a vertex in a digraph with two edges oriented away
from it.

Definition 2. (i) A focussing link is a set {(u1, v), (u2, v)} in which v is called
the branch point (or focussing branch point) of this link. u1 and u2 are the
premises and v is the conclusion. (ii) A defocussing link is a set {(u, v1), (u, v2)}
in which u is called the branch point (or defocussing branch point) of this link.
v1 and v2 are the conclusions and u is the premiss. (iii) A simple link is an
edge (u, v) which belongs neither to a focussing nor to a defocussing link. u is
the premiss and v is the conclusion.

Transformations via Geometric Perspective Techniques 87

Definition 3 (Proof-graph). A proof-graph is a connected directed graph G
defined as follows: (i) G is constructed by means of three kinds of links: simple,
focussing and defocussing. N-Graphs links are divided into logical and structural
links; (ii) there are two kinds of edges: meta and solid. Meta-edges are labelled
with m in order to identify the respective edge, where a meta-edge is used to
represent cancellation of a hypothesis. Solid edges are left unlabelled; (iii) each
vertex is labelled with a formula-occurrence; (iv) every vertex in a proof-graph
is labelled with a conclusion of a unique link and is the premiss of at most one
link.

In Fig. 1 we present the logical and structural links of N-Graphs. Notice expansion
and contraction links are also named as switching links. And their edges are
respectively called switching edges.

Fig. 1. N-Graphs links

Definition 4 (Conjunctive and disjunctive links). The links ∧-I, ¬-E, →
-E, �-focussing-weakening and expansion link are called conjunctive. While the
links ∨-E, ¬-I, → -I, ⊥-defocussing-weakening and contraction link are called
disjunctive.

3.1 Cycles in N-Graphs

In a proof-graph we may have multiple formulas as premisses and conclusion
nodes. The remaining formulas (which are neither premisses nor conclusions)
are called nodes. When the proof-graph is a cycle we extend these notions. So,
respectively, we have: cycle premiss node (or CP), cycle conclusion node (or CC)
and those nodes in a cycle which are neither CP nor CC are the cycle nodes
(or CN). Every logical link has two sorts of formulas: cutting center and cutting
periphery. Cutting center is the formula which has the connective that is being

88 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

Fig. 2. Cycle structures: examples

introduced or eliminated. Cutting periphery is the formula which neither has the
connective that is being introduced nor eliminated. For example, in links ¬-I
and ¬-E, A is a cutting periphery and ¬A is a cutting center. This terminology
is suggested by Statman in his thesis [3].

De Oliveira has defined the soundness criterion for N-Graphs based on Danos-
Regnier criterion for proof-nets [1]. The switching links (expansion and contrac-
tion) are necessarily used to build cycles in N-Graphs. The criterion chiefly states
the following: one of the two edges of each switching link should be removed. By
removing these edges one must check whether or not the resulting graph is acyclic
and connected, in this case the proof-graph in an N-Graph, i.e., a sound proof.

With this, we can extract the two basic patterns of simple valid cycles: (i) The
CP is premiss of an expansion link and the CC is conclusion of a focussing and
conjunctive link; (ii) The CP is premiss of a defocussing and disjunctive link and
the CC is conclusion of a contraction link. In Fig. 2 we bring examples. Notice
that G1, G2 and G4 are valid cycles. While G3 is a non-valid cycle, since G3 has
no switching link at all.

4 Normalization for N-Graphs

In this section we present a set of cut rules responsible to remove three kinds of
detours from N-Graphs. The first one is defined bellow. Before state this definition
we mention that an I-flavour element represents both: a logical introduction link
and a ⊥ link where it’s conclusion is a non-atomic node, while an E-flavour
element represents both: a logical elimination link and a � link where it’s premiss
is a non-atomic node.

Definition 5 (cut node). A proof-graph G has a cut node α when α is a
cutting center of an I-flavour element and at the same time it is a cutting center
of an E-flavour element. Notice I-flavour and E-flavour should share the same
connective.

In order to remove the cut nodes we define β cut transformations, logical-β
and structural-β. A logical-β is defined when there is logical introduction link
followed by an elimination link. In Fig. 3 we present at left a logical-β.

The second kind of detour is named cut path.

Transformations via Geometric Perspective Techniques 89

Fig. 3. Cuts: β and permutative weakening

Definition 6 (cut path). A proof-graph G which has a cut path is defined as
follows: (1). G has an I-flavour element where φ is the respective cutting center
node; (2). Next G has a sequence of one or more weakening structural links where
φ is propagated via these structural links; (3). And G has an E-flavour element
where φ is the respective cutting center node. Thus, a cut path is established by
the sequence of φ nodes existent in G. Notice that a cut path may have the three
parts defined above, alternatively the first or the last part may be empty.

The so-called permutative weakening cut transformations are conceived
to remove the cut paths. The basic mechanism used by all weakening transfor-
mations is simple and can be summarized as follows: I-flavour elements should
be pushed bellow the weakening structural links, while the E-flavour elements
should be pushed above the weakening structural links. At right of Fig. 3 one
permutative weakening cut is shown. The third detour is called cut hole.

Definition 7 (cut hole). A cut hole is a subgraph H from a proof-graph G (as
illustrated at left of Fig. 4), where the following holds: Subgraph H may have a
single formula or n links, where any link is admissible, i.e., simple, focussing,
defocussing, logical and structural links; Δ is the set of premisses of H; Γ is
the set of conclusions of H; Δ and Γ should have only ⊥ and/or � constants;
Proviso: Δ must have at least one ⊥ constant.

Fig. 4. ⊥:� cuts

90 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

Roughly speaking when we have some ⊥ constant and we simply want to obtain
some� constant, we understand that these constants should be directly obtained
via ⊥ link and/or structural links. As a result, any other link (or node) placed
among these constants is placed in a hole and should be removed. We define
two kinds of ⊥:� cut transformations to remove cut holes. The first kind is the
simple ⊥:� cut which is defined when H has a single node or only simple links.
The second kind is the extended ⊥:� cut and it is defined when H has at least
one focussing or defocussing link. Fig. 4 shows both kinds of ⊥:� cuts.

5 Cycles in Proof-Graphs

N-Graphs normalization demands a treatment of cycles which includes a defini-
tion of (valid) classes and a specific algorithm.

5.1 Classes of Cycles

At subsection 3.1 we had defined the terms: CP, CC and CN for those nodes which
are placed in a cycle. Now we extend these definitions. Previously on Fig. 2 we
have seen three (sound) cycles. Note that G4 cycle has some branches. Thus,
we have: branch cycle premiss node (BP) and branch cycle conclusion node (BC).
Specifically G4 has node R as BP and Q as BC. Yet cycles have the so-called
initial and final links. An initial link is a defocussing link, while a final link is a
focussing link. G1 has expansion as initial and ∧-I as final link.

There are two classes of N-Graphs cycles, the basic and the recursive cycles
which are builded from the basic class.

Definition 8 (basic cycle). A basic cycle has one CP and one CC, the CP be-
longs to the initial link and the CC to the final link. Moreover, it has two parallel
structures connecting these two links. The left subgraph (or LS) and right subgraph
(or RS). The subgraphs can be empty, or may have any kind of link. Thus, three
different structures for subgraphs can be obtained: (1). a diamond structure: when
both subgraphs (LS and RS) are empty, in Fig. 2 G1 is a basic diamond cycle;
(2). a unbranched structure: when at least one of the subgraphs (LS and RS) has
only simple links, in Fig. 2 G2 is a basic unbranched cycle; (3). a branched
structure: when at least one of the subgraphs (LS and RS) necessarily has focussing
and/or defocussing links, in Fig. 2 G4 is a basic branched cycle. Notice that in
order to obtain the three basic cycles we still must apply the soundness criterion.

The class of recursive cycles is divided into two kinds of cycles.

Definition 9 (recursive cycle). The recursive sequence cycle is defined
by a sequence of cycles. It has yn elements (y1, . . . , yn, n ≥ 2), where some CC
of y1 is connected to some CP of y2, and so on. An example is shown at left of
Fig. 5. The recursive nested cycle has a structure with initial and final links
which are connected via two parallel structures named left nested (LN) and right
nested (LN). These parallel structures admit any kind of cycle. At right of Fig. 5
an example is given.

Transformations via Geometric Perspective Techniques 91

Fig. 5. Examples: sequence and nested cycles

The soundness criterion for recursive cycles says that each cycle must be in-
dependently checked for soundness. Additionally the nested cycle should have
exactly the initial or the final link as a switching link.

5.2 Cycle Algorithm

To normalize N-Graphs cycles we have defined an algorithm named cut-cycle
checking algorithm (or 3CA). 3CA is responsible to determine whether or not a
given cycle is redundant (i.e., a cut cycle). The algorithm works as follows:
given a proof-graph G; we obtain the same proof-graph G, in case G is not a
cut cycle; or we obtain a new proof-graph G′, in case G is a cut cycle. The basic
mechanism of 3CA is defined to determine if it’s possible to obtain a tree from
some premisses towards some conclusions of G, if so, then G is transformed in
G′. Fig. 6 shows an example of 3CA application, where the following terms are
used: LP/LC for lists of premisses/conclusions; LN for list of matched nodes;
and LRP/LRC for lists of remaining premisses/conclusions. The cycle (shown
at Fig. 6) is a cut cycle, since a tree from the cycle structure has been obtained
by means of an →-E link (see center of Fig. 6). Next the resulting tree is ob-
tained by joining at the aforementioned tree the remaining node R (see right of
Fig. 6).

Fig. 6. 3CA - example

92 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

6 Normalization Proof

We shall demonstrate that the set of cut transformations together with the 3CA
algorithm are responsible to transform a given redundant N-Graph into a non-
redundant N-Graph. In order to build the proof we give some definitions, property
and trace an analysis of the reduction strategies.

Proposition 1 (Soundness preservation). Let G be an N-Graph, and G′ a
proof-graph resulting from the application of a cut transformation to G, then G′

is also an N-Graph.

Proof idea. By inspection over the sets of cut transformations and the 3CA
algorithm. �

Definition 10 (Cut/Cut free N-Graph). A given proof-graph G is said to be a
cut N-Graph when G has at least one of the following cut structures: cut node, cut
path, cut hole or cut cycle. Conversely, if G does not any of the aforementioned
cut structures, then G is a cut free N-Graph.

There are three kinds of normalization reduction strategies: direct, hidden and
overlapped reduction strategy. Before describing them we give the following
definition.

Definition 11 (Valid reduction strategy). A valid reduction strategy in a
proof-graph G is determined by: (i) choosing the maximum cut structure C of
G; (ii) applying the respective transformation of C; (iii) and check if the nor-
malization measure of G has been decreased. We repeat this process until the
normalization measure is reduced to zero and G becomes a cut free N-Graph.

Note that each cut structure has a specific value assigned to it, this value
is determined by the so-called normalization measure, which is defined in the
Appendix.

The direct reduction strategy is used when we have a redundant N-Graph G
with one or more cut structures. Then we simply choose the cut structure with
the maximum cut structure and apply the corresponding transformation. The
hidden reduction strategy is similar with the above strategy, but it has a major
difference, the notion of a hidden cut.

Definition 12 (Hidden cut). Given a proof-graph G with a cut structure C
and considering we apply the corresponding transformation of C. We obtain
a proof-graph G′ which is free of C. Nonetheless, a new and unexpected cut
structure C′ has been uncovered at G′. Thus, we say C′ is a hidden cut of C.

The overlapped reduction strategy is determined by the following concepts.

Definition 13 (Overlapped cuts). Given a proof-graph G, which has two cut
structures: C1 and C2. If C1 and C2 have at least one node or link in common,
then we say C1 and C2 are overlapped cuts.

Transformations via Geometric Perspective Techniques 93

The overlapped strategy may lead to different strategies for a given proof-graph,
or as defined bellow to a critical pair. When a given proof-graph has a critical pair
one needs to determine if the different reduction strategies lead to a convergent or
a divergent critical pair. For divergent critical pairs we need to build equivalence
relations in order to obtain a weak confluence property.

Definition 14 (Critical pair). If we have a proof-graph G with two overlapped
cuts: C1 and C2, where we can draw two different reduction strategies: one starting
at C1 and other at C2. Then, we say that C1 and C2 conceive a critical pair.

Generally speaking, our normalization proof must demonstrate that every
(valid) reduction strategy constructed in N-Graphs normalization reduces a cut
N-Graph into a cut free N-Graph, is finite, weak confluent and has it’s normaliza-
tion measure decreased in each reduction step. The normalization proof together
with related definitions and auxiliary examples are described in the Appendix.

7 Conclusion

Our normalization procedure for N-Graphs brings the following contributions:
(i) normalization for the full set of N-Graphs operators; (ii) reductions for ⊥/�
operators; (iii) use of abstract graphical framework; (iv) treatment of cycle struc-
tures (i.e, classification and normalization); and (v) construction of a direct nor-
malization proof. As forthcoming developments we intend to use normalization
techniques to guide the investigation towards an identity of proofs for N-Graphs.
Furthermore, we foresee the use of N-Graphs in the extension of Abramsky’s
proofs as processes paradigm from linear to classical logic [12].

References

1. de Oliveira, A.G.: Proofs from a Geometric Perspective. PhD thesis, Centro de
Informática - Universidade Federal de Pernambuco (April (2001))

2. de Oliveira, A.G., de Queiroz, R.J.G.B.: 1 of Logic for Concurrency and Synchro-
nisation. Trends in Logic - Studia Logic Library. In: Geometry of Deductions via
Graphs of Proofs, pp. 1–86. Kluwer Academic Publishers, Dordrecht (2003)

3. Statman, R.: Structural Complexity of Proofs. PhD thesis, Stanford University
(May 1974)

4. Carbone, A.: Duplication of directed graphs and exponential blow up of proofs.
Ann. Pure Appl. Logic 100(1-3), 1–67 (1999)

5. Guglielmi, A., Gundersen, T.: Normalisation control in deep inference via atomic
flows. Logical Methods in Computer Science 4, 1–36 (2008)

6. Blute, R., Cockett, J.R.B., Seely, R.A.G., Trimble, T.H.: Natural deduction and
coherence for weakly distributive categories. Journal of Pure and Applied Alge-
bra 13(3), 229–296 (1996)

7. Prawitz, D.: Ideas and results in proof theory. In: Fenstad, J.E., ed.: Proceed-
ings 2nd Scandinavian Logic Symp., Oslo, Norway, 18–20 June (1970); Studies in
Logic and the Foundations of Mathematics, vol. 63, pp. 235–307. North-Holland,
Amsterdam (1971)

94 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

8. Pereira, L.C.P.D., Massi, C.D.B.: Normalização para a lógica clássica. III Encontro
Nacional de Filosofia, 5 Gramado, RS - Brasil (1988)

9. St̊almarck, G.: Normalization theorems for full first order classical natural deduc-
tion. Journal of Symbolic Logic 56(1), 129–149 (1991)

10. Ungar, A.M.: Normalization, Cut-Elimination and the Theory of Proofs. CSLI
Lecture Notes, vol. 28. CSLI Publications, Stanford (1992)

11. Cellucci, C.: Existential instantiation and normalization in sequent natural deduc-
tion. Annals of Pure and Applied Logic 58(2), 111–148 (1992)

12. Abramsky, S.: Proofs as processes. Theoretical Computer Science 135, 5–9 (1994)

Appendix: Normalization Proof

This appendix describes the normalization proof. In order to construct the proof
we shall define the so-called normalization measure. Besides we illustrate some
reduction strategies by means of examples.

Definition 15 (Cut structure degree). The degree for each cut structure is
given as follows, where d(C) represents the cut structure degree1 of a given cut C.

– cut node: the cut node degree is determined by the formula degree which
labels the cut node and it is represented as: d(C) = d(cut node).

– cut path: the cut path degree is given by the degree from the node which
is the cutting center of the introduction link or the cutting center of the
elimination link and belongs to the cut path. This cut structure degree is
represented by: d(C) = d(cutting center node). At left of Fig. 7 we have a
cut path which has it’s cutting center node given by d(P ∧Q).

– cut hole: the degree of the cut hole is zero, it is represented by: d(C) = 0.
– cut cycle: the cut cycle degree is established by the sum from the degrees

of the following sets: cycle premiss (CP), branch cycle premiss (BP), cy-
cle conclusion (CC) and branch cycle conclusion (BC) plus 1 as a penalty
(considering the cycle as a redundant framework). Notice the sets BP and
BC may be empty. The cut cycle degree is represented as follows: d(C) =
d(CP) + d(BP) + d(CC) + d(BC) + 1. At center of Fig. 7 we have a cut
cycle, where it’s degree is determined by: d(R)+d(P ∧Q)+d(R)+d(Q)+1.

Definition 16 (Amount of cut structure nodes). Notation n(C) represents
the amount of nodes for a given cut structure C.

– cut node: a cut node has a single node, n(C) = 1.
– cut path: every cut path has a sequence of weakening structural links which

starts at the cutting center node of an introduction link and/or ends at the
cutting center node of an elimination link. With this, the cutting center node
is propagated through the weakening structural links. Therefore, the amount
of nodes in a cut path is given by the number of cutting center node copies
which exist in the structural part. The amount is given by: n(C) = s, where
s ≥ 2. In the example at left of Fig. 7 the amount of nodes is equal to 3.

1 The degree of a formula A is defined as the number of occurrences of logical constants
in A, except ⊥ and � constants.

Transformations via Geometric Perspective Techniques 95

Fig. 7. Examples: cut path, cut cycle and cut periphery

– cut hole: the amount of nodes in a cut hole is established by the number of
nodes which are placed inside the cut hole structure, n(C) = h, where h ≥ 1.

– cut cycle: the amount of nodes in a cut cycle is defined by the number of
elements from the following sets: CN , CP , BP , CC and BC. Thus, we
have: n(C) = n(CN) + n(CP) + n(BP) + n(CC) + n(BC). Respectively, in
the example at center of Fig. 7 the amount of nodes is: 6 + 1 + 1 + 1 + 1.

The third measure element is a specific case defined for cut nodes and cut paths
which are placed in a cycle structure. We remark this cycle structure can not be
a cut cycle. This measure is called cut periphery.

Definition 17 (Cut periphery). Given a proof-graph G which has a cut node
(or a cut path) C. If C is placed in a cycle structure P , where P is not a cut
cycle, then, we say that P is the cut periphery of C, represented as: P (C) = 1.

At right of Fig. 7 we shown an example with a cut periphery. Notice the cycle
is not a cut cycle, but we do have a cut node at P ∧R. As a result, the cycle is
the cut periphery of P ∧R.

In terms of the above concepts we determine our normalization measure.

Definition 18 (Normalization measure). The normalization measure for a
given proof-graph G, which has a maximum cut structure C is determined by
the following tuple. We remark that if G has two (or more) maximum cut struc-
tures, for example, C1 and C2, then we can freely select C1 or C2. normalization
measure(G) := 〈P (C),MaxCut(C), NCuts(G)〉

– P (C): is the cut periphery of C, according with Def. 17.
– MaxCut(C): is determined by the following pair: MaxCut(C) :=(d(C), n(C))

• d(C): is the degree of C, according with Def. 15.
• n(C): is the amount of nodes in C, according with Def. 16.

– NCuts(G): is the total number of cut structures in G.

We consider that a proof-graph G has been transformed into a new proof-graph
G′, by means of applying some cut transformations. Thus, we establish that nor-
malization measure(G′) should be less than normalization measure(G), respecting
the following lexicographic order.

96 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

P (C′) < P (C)
or P (C′) = P (C) and d(C′) < d(C)

or P (C′) = P (C) and d(C′) = d(C) and n(C′) < n(C)
or P (C′) = P (C) and d(C′) = d(C) and n(C′) = n(C) and

NCuts(G′) < NCuts(G)

Before state the normalization proof we give further definitions related with
overlapped reduction strategy.

Definition 19 ((Major/Minor) overlapped cut). For a given proof-graph
G with two overlapped cuts: C1 and C2. If we apply the reduction strategy of
C1 and as a side-effect C2 is removed from G. Then, we say C1 is the major
overlapped cut of G. Conversely if we apply the reduction strategy of C2 and C1
remains at G. Then, we say C2 is the minor overlapped cut of G.

Definition 20 ((Different/Equivalent) overlapped cuts). Given a proof-
graph G with two overlapped cuts: C1 and C2, where C1 is a major overlapped
cut and C2 is a minor overlapped cut, or vice-versa. We say G has different
overlapped cuts. Conversely if the normalization measure of C1 is equal to the
normalization measure of C2 and C1 and C2 are not defined as major/minor
overlapped cuts. Then, we say G has equivalent overlapped cuts.

Next we illustrate hidden and overlapped strategies via two examples. In Fig. 8
we present a hidden cut. Note that at left we have the cut N-Graph which has
a cut node at P ∧ R. But, we realize that this cut node is placed in a cycle
structure. As a result, this cut node has a cut periphery. Thus, we obtain nz
measure:= 〈1, (1, 1), 1〉. Next, we remove the cut node and a hidden cut arises in
proof-graph, i.e., a cut cycle. Therefore, the new measure is given by: 〈0, (4, 9), 1〉.
At last, the 3CA algorithm is applied and we obtain a cut free N-Graph.

Next Fig. 9 shows an overlapped cut among a cut hole and a cut cycle. We
remark they are different overlapped cuts, since cut hole is a major overlapped
cut and cut cycle is a minor overlapped cut. Yet, cut hole has nz measure:=
〈0, (0, 5), 2〉 and cut cycle has nz measure:= 〈0, (1, 5), 2〉. At left of Fig. 9 we
present the first reduction strategy, where the cut hole is removed and the cut
free N-Graph is directly obtained. At right of Fig. 9, we bring the second reduction

Fig. 8. Normalization proof - hidden cut example

Transformations via Geometric Perspective Techniques 97

strategy, where we have nz measure:= 〈0, (1, 5), 2〉. Then, the cut cycle is removed
and the cut hole is changed, but it remains in the proof-graph. Thus, the new
nz measure:= 〈0, (0, 1), 1〉. With this, the last step of reduction is responsible to
remove the cut hole and obtain a cut free N-Graph. We still emphasize that this
example yields a convergent critical pair.

Fig. 9. Normalization proof - different overlapped cut with convergent critical pair

Additionally we emphasize a remarkable difference in the above example.
Note at right of Fig. 9 we have been chosen the maximum cut and generated
a valid reduction strategy. However, at left of Fig. 9 we have not been chosen
the maximum cut. Even though we have obtained a reduction strategy where
it’s normalization measure has been decreased and a cut free N-Graph has been
obtained. But the reduction strategy used at left can not be said as a valid
reduction strategy, (see Def. 11), since it does not start by selecting the maximum
cut structure from the proof-graph. As a result, we need to define a slightly
different kind of reduction strategy named quasi-valid reduction strategy. A
quasi-valid reduction strategy in a proof-graph G is determined by not choosing
the maximum cut structure C of G. But, choosing an overlapped cut of C, that is
C′. Then, we apply the transformation of C′ and even though the normalization
measure of G is decreased.

Theorem 1 (Normalization). Every cut N-Graph G can be transformed into
a cut free N-Graph G′, where the sets of premisses and conclusions of G′ are
equivalent to the respective sets of (G).

Proof. The normalization proof determines the following: termination, weak con-
fluence and demonstrate that every reduction strategy builded in the
normalization procedure is, in fact, a valid or quasi-valid reduction strategy. Termi-
nation property is guarantee, because every valid or quasi-valid reduction strategy
is necessarily a finite and uncyclic process. We remark that every N-Graph cut
transformation is applied in a single direction. Therefore, a cyclic normalization
process is avoided. A confluence property is obtained by means of analyzing the
overlapped cuts that yield critical pairs. A weak version of confluence property is
obtained, since some overlapped reduction strategies generate divergent critical
pairs.

The general mechanism of normalization procedure for N-Graphs is defined to
demonstrate that only valid or quasi-valid reduction strategies for G are obtained.

98 G.V. Alves, A.G. de Oliveira, and R. de Queiroz

The mechanism starts by choosing the maximum cut structure of G or selecting
other cut structure of G in case we have different overlapped cuts. Then, we
apply a cut transformation or 3CA. As a result, the normalization measure of G
is decreased. This procedure continues until we obtain a cut free N-Graph G′ for
G. We demonstrate that the three kinds of reduction strategies lead to a valid
or quasi-valid reduction strategy.

The first kind of reduction strategy (direct) can be verified by means of an
inspection over cut transformations and 3CA. Considering a cut N-Graph G which
is immediately transformed into a cut free N-Graph G′ or in a cut N-Graph G′′

(where normalization measure(G′′) is less than normalization measure(G)) by
means of the following transformations: (1). logical-β or structural-β: the cut
node of G is removed. (2). weakening permutative cuts: the cut path of G
is removed or decreased. (3). ⊥:� or extended ⊥:� cuts: the cut hole of G is
removed. (4). 3CA: the cut cycle of G is removed. The second and third kinds
of reduction strategies, respectively, hidden and overlapped strategies have been
illustrated in the aforementioned examples.

Observational Completeness on Abstract
Interpretation

Gianluca Amato and Francesca Scozzari

Dipartimento di Scienze, Università di Chieti-Pescara
{amato,scozzari}@sci.unich.it

Abstract. In the theory of abstract interpretation, we introduce the ob-
servational completeness, which extends the common notion of complete-
ness. A domain is complete when abstract computations are as precise
as concrete computations. A domain is observationally complete for an
observable π when abstract computations are as precise as concrete com-
putations, if we only look at properties in π. We prove that continuity of
state-transition functions ensures the existence of the least observation-
ally complete domain. When state-transition functions are additive, the
least observationally complete domain boils down to the complete shell.

1 Introduction

Abstract Interpretation. Abstract interpretation [3,4] is a general theory for
approximating the behavior of a discrete dynamic system. The idea is to replace
the formal semantics of a system with an abstract semantics, computed over a
domain of abstract objects. There are many different methods to describe the
semantics of a system. Most of them are based on a partially ordered set (poset)
〈C,≤C〉 of states and a set F of monotone state-transition functions f : C → C.
The semantics S is defined as the (least) fixpoint of a semantic function F
obtained as a composition of state-transition functions. The poset 〈C,≤C〉 is
called concrete domain and S = lfpF is called the concrete semantics.

An abstract interpretation is specified by the poset 〈A,≤A〉 of abstract objects.
The abstract objects describe the properties of the system we are interested in.
The relationship between the concrete and abstract objects is formalized by
a monotone concretization map γ : A → C which, given a property a ∈ A,
yields the biggest concrete state c ∈ C which enjoys the property a. Therefore,
a property a is a correct approximation of a concrete state c when c ≤C γ(a).

any

pos

���������
zero neg

���������

empty

���������

���������

For instance, consider the concrete do-
main ℘(Z) with the standard ordering given
by inclusion, and Sign = {empty, pos, neg,
zero, any} ordered as depicted on the right.
The intuition is that pos represents the set
of (strictly) positive integers, zero represents
the singleton {0}, while empty represents the
empty set of integers. This may be formalized

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 99–112, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

100 G. Amato and F. Scozzari

by defining γ as follows: γ(empty) = ∅, γ(pos) = {n ∈ Z | n > 0}, γ(neg) =
{n ∈ Z | n < 0}, γ(zero) = {0}, γ(any) = Z.

Often, it is possible to define a monotone abstraction map α : C → A which
yields the largest properties a enjoyed by a concrete object c, such that c ≤C

γ(a) ⇐⇒ α(c) ≤A a. In the previous example, the abstraction is given by α(c) =
{a ∈ A | c ≤C γ(a)}. For instance, α({−1,−2}) = neg while α({−1, 0}) = any.

An abstract domain is given by the poset A of the abstract objects and the
pair of maps 〈α, γ〉. However, since γ is uniquely determined by α and viceversa,
in the following we specify an abstract domain just by giving α.

The goal of any abstract interpretation is to compute α(S), that is to find out
the properties enjoyed by the semantics of the system. Instead of computing S
(which is not computable) and then applying α, the idea is to replace, in the the
definition of F , every state-transition function f with an abstract counterpart
f# : A → A, which must be correct. We say that f# is correct if, whenever a
is a correct approximation of c, then f#(a) is a correct approximation of f(c).
This is equivalent to say that any abstract computation f#(α(c)) approximates
the corresponding concrete computation f(c), i.e.:

α ◦ f ≤A→A f# ◦ α , (1)

where ≤A→A is the pointwise extension of ≤A. In particular, there is a best
correct abstraction of f , denoted by fα, which is fα = α ◦ f ◦ γ. If we replace
the state-transition functions in the definition of F with the corresponding best-
correct abstractions, we obtain a new semantic function F# and a new abstract
semantics S# = lfpF#, and the theory of abstract interpretation ensures that

α(S) ≤A S# . (2)

As an example of abstract state-transition function, consider inc : ℘(Z) →
℘(Z) such that inc(X) = {n+ 1 | n ∈ X}. The best correct abstraction of inc is

incα(a) =

⎧⎪⎨⎪⎩
empty if a = empty,

pos if a = zero or a = pos,

any otherwise.

Completeness. Generally speaking, the inequalities (1) and (2) are strict.
This means that computing in the abstract domain is (strictly) less precise
than computing on the concrete one. For instance, α(inc(−1)) = zero but
incα(α(−1)) = any. When α ◦ f = fα ◦ α we say that the abstract domain
is complete for the function f . Intuitively, when this happens, the best correct
abstraction fα perfectly mimics the concrete function f . For example, given
sq(X) = {x2 | x ∈ X}, the best correct abstraction is

sqα(a) =

{
pos if a = pos or a = neg,

a otherwise.

Observational Completeness on Abstract Interpretation 101

It follows that sq({−1,−2}) = {1, 4}, and its abstraction is α(sq({−1,−2})) =
pos, meaning that the square of any integer in {−1,−2} is positive. The same
result may be obtained by first abstracting {−1,−2} and then computing sqα,
since sqα(α({−1,−2})) = sqα(neg) = pos. It is easy to show that, for any set
of integers X ∈ ℘(Z), it holds that sqα(α(X)) = α(sq(X)). Thus, the abstract
domain Sign is complete for the function sq.

Completeness enjoys many good properties. If an abstract domain α is com-
plete for f and g, then it holds that:
– α is complete for f ◦ g and fα ◦ gα = (f ◦ g)α;
– α(lfp f) = lfp(fα).

This implies that (2) is an equality, and therefore one does not lose precision by
computing on the abstract domain.

When an abstract domain α is not as precise as the concrete one, that is, the
abstract semantics S# does not coincide with α(S), then we need to refine the
abstract domain α. This means to replace α by a new domain β and S# by a
new abstract semantics S◦, such that α(S) may be recovered by S◦. Here, S◦
is obtained by replacing all the state-transition functions f in F with fβ. Con-
ceptually, the domain β is the computational domain and α is the observational
domain, which contains all the properties we want to observe. The abstract ob-
jects in β which do not belong to α are only used to compute intermediate
steps in order not to lose precision. Obviously, we want to keep β as small as
possible.

In the literature of abstract interpretation, the standard way of refining α is
to compute the least complete domain for F which includes α. This is called the
complete shell of α, and may be constructively computed [8].

The Goal. In this paper, we show that the complete shell may not be the
smallest abstract domain which enables us to recover the property α(S). This is
because we are only interested in properties in α, and not in the new objects in-
troduced by β. This observation suggests another notion of completeness, which
we call observational completeness. A domain β is observationally complete for
a function f and an observational domain α when every concrete computation
may be approximated in β without losing precision on the properties in α. In
order to formalize the observational completeness, we first need to introduce a
new ordering between abstract domains. We say that an abstract domain β is
more precise than an abstract domain β′ for observing properties in α when-
ever the result of each computation on β observed on α is approximated by the
result of the corresponding computation on β′, observed on α. We show that,
under suitable conditions, there exists the smallest observationally complete do-
main for a given set F of functions and an observational domain. We prove that
any complete domain which contains α is also observationally complete for α,
but the converse does not hold. We give the conditions under which the least
observationally complete domain corresponds to the complete shell.

Plan of the Paper. The next section recalls some basic definitions and nota-
tions about abstract interpretation. In Sect. 3 we define the notion of

102 G. Amato and F. Scozzari

observational completeness, in Sect. 4 we study the relationships between obser-
vational completeness and standard completeness. In Sect. 5 we briefly compare
observational completeness to other notions of completeness in the literature,
such as forwards completeness and fixpoint completeness.

2 Basic Notions of Abstract Interpretation

In the abstract interpretation theory, abstract domains can be equivalently spec-
ified either by Galois connections or by upper closure operators (ucos) [4].
When an abstract domain A is specified by a Galois connection, i.e., a pair
of abstraction and concretization maps 〈α, γ〉, then γ ◦ α ∈ uco(C) is the
corresponding uco on C. On the contrary, given an uco ρ, the corresponding
Galois connection is 〈ρ, id〉. In the rest of the paper, we will use ucos, since
they are more concise. Moroever, we assume that the concrete domain C is a
complete lattice, which is a standard hypothesis in the abstract interpretation
theory.

An uco ρ on the concrete domain C is a monotone, idempotent (i.e., ρ(ρ(x)) =
ρ(x)) and extensive (i.e., ρ(x) ≥ x) operator on C. Each uco ρ on C is uniquely
determined by the set of its fixpoints, which is its image, i.e. ρ(C) = {x ∈
C | ρ(x) = x}, since ρ = λx.

∧
{y ∈ C | y ∈ ρ(C), x ≤ y}. Moreover, a subset

X ⊆ C is the set of fixpoints of an uco on C iff X is meet-closed, i.e. X =
M (X) = {∧Y | Y ⊆ X}. For any X ⊆ C, M (X) is called the Moore-closure
of X . Often, we will identify closures with their sets of fixpoints. This does not
give rise to ambiguity, since one can distinguish their use as functions or sets
according to the context. It is well known that the set uco(C) of all ucos on C,
endowed with the pointwise ordering ⊇, gives rise to a complete lattice. The top
on uco(C) is {�C}, the bottom is C, and the join operation is set intersection
∩. The ordering on uco(C) corresponds to the standard order used to compare
abstract domains: A1 is more concrete than A2 (or A2 is more abstract than A1)
iff A1 ⊇ A2 in uco(C).

An abstract domain ρ ∈ uco(C) is complete for f iff ρ ◦ f = ρ ◦ f ◦ ρ holds.
Giacobazzi et al. [8] give a constructive characterization of complete abstract
domains, under the assumption of dealing with continuous concrete functions.
A function f : C → C is (Scott) continuous if it preserves least upper bounds of
chains in C, i.e., f(

∨
B) =

∨
f(B) for any chain B ⊆ C. The idea is to build the

greatest (i.e., most abstract) domain in uco(C) which includes a given domain
ρ and which is complete for a set F ⊆ C → C of continuous state-transition
functions, i.e., for each function in F . In particular, [8] define a mapping RF :
uco(C) �→ uco(C) as follows:

RF (ρ) =M
(⋃

f∈F,a∈ρ max({x ∈ C | f(x) ≤ a})
)

,

where max(X) is the set of maximal elements in X . They prove that the most ab-
stract domain which includes ρ and is complete for F is gfp(λη.M (ρ ∪RF (η))).
This domain is called the complete shell of ρ for F .

Observational Completeness on Abstract Interpretation 103

3 Observational Completeness

In abstract interpretation, it is common that, in order to observe a property π
with a good deal of precision, we need to perform the computation in a richer
domain ρ ⊇ π. In the following, we call π the observational domain and ρ the
computational domain. In the rest of the paper, we assume given a complete
lattice C (the concrete domain), a set F of monotone functions from C to C and
an uco π ⊆ C which represents the set of observable properties.

A common problem is to find a domain ρ such that if we perform any com-
putation on ρ and we project over π, we obtain the same result of the concrete
computation, projected over π. In order to formalize this notion, we first need to
define the concept of computation (on both an abstract and a concrete domain).

Definition 1 (Computation). A finite sequence ξ = 〈f1, . . . , fn〉 of elements
of F is called computation. Given a computation ξ, a domain α, and an element
c ∈ C, we denote by ξα(c) the value (α◦f1 ◦ . . .◦α◦fn)(α(c)). As a special case,
when ξ is the empty computation, we define ξα(c) = α(c).

Note that, if id is the identity abstraction, then ξid (c) = (f1 ◦ . . . ◦ fn)(c). We
write ξ(c) as a short form for ξid (c).

We are now able to compare abstract domains in terms of precision of their
computations. We say that a domain α is more precise than a domain β if it is the
case that, the result of a computation on α projected over π is more precise (it
is approximated by) the result of the corresponding computation on β projected
over π.

Definition 2 (More Precise than). We say that α is more precise than β
for computing F observing π, and we write it as α ≤ β, when

πξα(c) ≤ πξβ(c)

for every computation ξ and c ∈ C.

Although the relation ≤ depends on F and π, we prefer to use just ≤ instead of
a more precise notation such as ≤π

F , in order to avoid a cumbersome notation.
Since F and π are fixed, this does not cause ambiguities.

It is easy to check that ≤ is a preorder, which may be viewed as a generaliza-
tion of the standard ordering between ucos: if α ⊇ β then α ≤ β. Our notion is
more general than the standard ordering since it allows us to compare two dif-
ferent domains (α and β) w.r.t. their precision on a third domain (π), and does
not require neither α nor β to be in any relation with π. Note that, if π = id ,
then α ≤ β iff α ⊇ β, since we also consider the empty computation.

Our formal notion of precision suggests to define a corresponding notion of
completeness. We say that a domain α is observationally complete for π if any
computation on α projected over π, gives the same result of the correspond-
ing concrete computation, projected over π. Here, the key notion is that any
computation is always observed on π.

104 G. Amato and F. Scozzari

Definition 3 (Observational Completeness). We say that a domain α is
observationally complete (for F and π) if α is more precise than the concrete
domain, i.e., α ≤ id .

Among all the observationally complete domains, we are interested in the least
(most abstract) one w.r.t. set inclusion. In general, the least observationally
complete domain does not exist, as the following example shows.

Example 1. Let us consider the dia-
gram on the right, where the nodes
are the elements of the domain C =
{�,⊥, a, b, c1, c2, . . . , ci, . . .}, solid and
dotted edges represent the ordering on
C and dashed arrows represent a func-
tion f : C → C.

Let π = {�, a}, ρ1 = {�, a, b,⊥}∪{ci |
i is even} and ρ2 = {�, a, b,⊥} ∪ {ci |
i is odd}. It is easy to check that both
ρ1 and ρ2 are observationally complete.
However, ρ = ρ1 ∩ ρ2 = {�, a, b,⊥}
is not observationally complete, since,
for the computation ξ = 〈f〉, we have
that π(ξ(c1)) = a while π(ξρ(c1)) =
π(ρ(f(ρ(c1)))) = π(ρ(f(a)) = �. ��

As a key result we show that, if all
the functions in F are continuous, the
least observationally complete domain
exists.

�������	�

������a

��

�

�
�

��������� ���������
������b

								

��

	

�

�������	ci

����������

�������	c3

��

�������	c2

���
�

�
�

�
�

�
�

�
�

�
�

�������	c1

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������	⊥

��������

����������������������������������� 		
�

�
�

Theorem 1. If F is a set of continuous functions, than

σ =M
(⋃

{max{x ∈ C | ξ(x) ≤ a} | ξ computation and a ∈ π}
)

is the least observationally complete domain (for F and π).

In order to exploit this notion of observational completeness for approximating
the formal semantics S, we need to show that an observationally complete do-
main σ preserves the least fixpoint of any composition of functions from F . This
result implies that, we can safely approximate the concrete semantic function F
with the abstract semantic function on σ without losing precision on π.

Theorem 2 (Fixpoint Preservation). Let α be observationally complete for
F and π. Then α preserves the least fixpoint of any composition of functions
from F , when observing π. In formulas, we have that:

∀f1, . . . fn ∈ F, π(lfp(f1 ◦ . . . ◦ fn)) = π(lfp(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)) .

Observational Completeness on Abstract Interpretation 105

The previous theorem allows us to say that π(lfp(F)) = π(lfp(F#)) for any
observationally complete domain. In other words, if we only want to observe
π, an observationally complete domain does not lose precision in the fixpoint
computation involving any composition of functions from F .

4 Observational Completeness and Complete Shell

In this section we study the relationships between observational completeness
and the standard notion of completeness, in particular between the least obser-
vationally complete domain and the complete shell.

It is immediate to show that if α is complete for F and α ⊇ π, then α
is observationally complete for F and π. More generally, α is observationally
complete for F and α. We wonder whether:

a) every observationally complete domain for F and π is complete for F ;
b) the least observationally complete domain for F and π is the complete shell

of π for F .

With respect to the first question, note that if α is observationally complete
for F and π, every β ⊇ α is still observationally complete. This does not hold for
completeness: α may be complete for F , although some β ⊇ α may not. This is
because in the observational completeness the observable properties remain fixed
when we refine the initial domain, while for standard completeness the notion
of observational domain coincides with the computational domain.

Example 2. Consider the concrete domain C = {�, a, b, c,⊥} depicted in Fig. 1a.
The domain α = {�, a, b} is complete for the function depicted in the diagram,
hence it is also observationally complete for π = {�, a}. However, the domain
{�, a, b, c} is observationally complete for π but it is not complete. ��

Since completeness implies observational completeness, we may argue that the
least observationally complete domain for π and F coincides with the complete
shell of π. In the general case this is not true and the least observationally
complete domain is more abstract than the complete shell. The next examples
illustrate this case.

Example 3. Consider the concrete domain C = {�, a, b, c, d,⊥} depicted in
Fig. 1b. Assume π = {�, a}. If we build the complete shell of π for F , in the first
step we include the element b and c, since they are the maximal x ∈ C such that
f(x) ≤ a, and the element d since it is the meet of b and c. At the second step,
we also include ⊥, which is the greatest element x ∈ C such that f(x) ≤ c. Note
that, in each step, we consider all the elements generated in the previous steps,
forgetting the observational domain π which started the process. However, it is
trivial to check that the domain α = C \ {⊥} has the same precision of C when
observing π, i.e. πf i(x) = π(αfα)i(x) for every x ∈ C and i ∈ N. When x ∈ α,
the stronger property f i(x) = (αfα)i(x) holds. When x = ⊥, it is not true that
f i(⊥) = (αfα)i(⊥): for example it does not hold for i = 1. However, for each i,
πf i(⊥) = a = π(αfα)i(⊥), hence α is observationally complete. ��

106 G. Amato and F. Scozzari

�������	�
		

�
�

�

������a

��

�

�
�

������b

�
��

��������c

��

�

�
�

�������	⊥

��

�

�
�

(a) Example 2

�������	�
��

��
�

������a

��

�

�
�

������b

��������
�
� � ��������c

									

��

	

�

������d

��������

��

�
�

� ��������

�������	⊥

��

�
� �

(b) Example 3

�������	�
��

��
�

������a

��

�

�
�

�������	c1

��
�
� �

���������
�������	b1

��������

��

�
�

�

�������	c2

��

�
�

�

�������	b2

��

�

�
�������	⊥��

��
�

���������

(c) Example 4

Fig. 1. Counterexamples

Example 4. Consider the concrete domain C = {�, a, b1, b2, c1, c2,⊥} depicted
in Fig. 1c. If π = {�, a}, the complete shell is the entire domain C. However, c2
is useless when observing π, since the least observationally complete domain is
C \ {c2}. ��

4.1 The Case of Additive Functions

We will show that, when all the functions in F are (completely) additive, the
least observationally complete domain and the complete shell coincide. However,
in order to prove this result, we need to give an alternative construction for the
complete shell, more similar to the construction for the least observationally
complete domain. In more details, we replace the standard refinement operator
RF : uco(C) �→ uco(C) given in Sect. 2 with a new operator R̂F : ℘(C) �→
℘(C) simply obtained by removing the Moore closure from the definition of RF .
Therefore, we define

R̂F (X) =
⋃

f∈F,a∈X
max{x ∈ C | f(x) ≤ a} .

Note that R̂F (X) may not be an uco even if X is an uco, and that RF (X) =
M
(
R̂F (X)

)
. We recall that, given a function G : ℘(C) → ℘(C), we have that

Gω(X) = ∪i∈NG
i(X) where G0(X) = X and Gi+1(X) = G(Gi(X)).

Theorem 3. For every set F of continuous maps, the complete shell of π for
F is given by

S = M
(
R̂ω

F (π)
)

.

Observational Completeness on Abstract Interpretation 107

This new construction, which is the key result to prove Theorem 4, is inter-
esting in itself, since it sheds a new light on the construction of the complete
shell. First of all, it shows that it is not necessary to compute the Moore closure
at each step of the refinement, but it suffices to compute it at the end. Secondly,
it shows that we need at most ω steps of refinement to reach the fixpoint.

We recall that a function f : C → C is (completely) additive if it preserves
arbitrary least upper bounds, i.e., f(

∨
B) =

∨
f(B) for any B ⊆ C.

Theorem 4. If F is a set of completely additive functions, the complete shell
S of π for F is the smallest observationally complete domain σ for F and π.

It is worth noting that, even if F is a set of additive functions, this theorem does
not imply that observational completeness and completeness are the same thing:
in Example 2 the function f is additive, yet there is an observationally complete
domain which is is not complete.

5 Conclusions and Related Work

Different kinds of completeness have been proposed in the literature. The first
notion of completeness appears in Cousot and Cousot [4]. In the same paper, the
notion of fixpoint completeness is formalized. A domain α is fixpoint complete
for a function f when it preserves the least fixpoint of f , in formulas α(lfp f) =
lfp(α ◦ f ◦ α). Cousot and Cousot have shown that complete domains are also
fixpoint complete. A detailed study on completeness and fixpoint completeness
can be found in Giacobazzi et al. [8], where the authors solve the problem of
synthesizing complete abstract domains.

Cousot and Cousot [2] introduced a different notion of completeness called
exactness. The same notion has been renamed as forward completeness (F-
completeness) by Giacobazzi and Quintarelli [7] who apply the completeness
results on model checking. Moreover, to distinguish between standard complete-
ness and F-completeness, Giacobazzi and Quintarelli renamed the former as
backward completeness (B-completeness). A domain α is F-complete for a func-
tion f when f ◦ α = α ◦ f ◦ α. Intuitively, this means that the result of any
abstract computation coincides with the result of the corresponding concrete
one, when the starting object is an abstract object.

Our notion of observational completeness differs from all the previous no-
tions (B-completeness, fixpoint completeness, F-completeness). The main point
is that, in our notion, we have two concepts of observational and computa-
tional domain and, most importantly, the observational domain is kept fixed
when refining. We believe that, in any static analysis or semantics definition,
the observable property does not change when looking for better domains. On
the contrary, B-completeness is self-referential, since the observational domain
changes when refining the domain. More precisely, given a domain π, the com-
plete shell of π for f is the least abstract domain β containing π which is ob-
servationally complete for β (and thus it is observationally complete for π).
Moreover, the self-referentiality of completeness yields some counter-intuitive

108 G. Amato and F. Scozzari

behaviors. For instance, if α is complete and β contains α, it may well hap-
pen that β is not complete even if, according to our intuition, β is “richer”
than α. This does not happen for observational completeness, where super-
sets of observationally complete domains are still observationally complete (see
Example 2).

The notion of F-completeness does not fix any observable property. This kind
of completeness is useful when we are interested in a subset of the concrete
domain closed for the application of any state-transition function.

Finally, fixpoint completeness does not take into consideration intermedi-
ates steps during the abstract computation. In fact, it is only required that
the abstract least fixpoint (computed on the abstract domain) coincides with
the abstraction of the concrete least fixpoint. Giacobazzi et al. [8] show that,
even under strong hypotheses, the existence of the least fixpoint complete do-
main containing π cannot be ensured. They show that, even if the concrete
domain is a complete Boolean algebra or a finite chain, and the concrete func-
tion f is both additive and co-additive, the least fixpoint complete domain con-
taining π does not necessarily exist. The counterexamples suggest that finding
reasonable conditions for the existence of least fixpoint complete domains is
not viable.

Other notions of completeness have been proposed for dealing with logic (see,
for instance, Cousot and Cousot [5], Schmidt [9], Dams et al. [6]). In general,
completeness problems on fragments of temporal logic are considered (covering,
preservation, strong preservation). All these notions are very different from the
other forms of completeness, since they consider only fixed logical operators,
and, in general, one is not interested in least fixpoint preservation.

As a future work, we think that observational completeness could be general-
ized, in order to be relative to an abstract domain, instead of the concrete one.
We say that a domain α is observationally complete for π and F relatively to
the domain β, when the result of any abstract computation, observed over π,
is more precise than the corresponding abstract computation on the domain β,
observed over π. Here, the novelty is that the domains α, β and π do not need
to be in any relation. Thus, the least observationally complete domain for π and
F relatively to β could be incomparable with β.

Observational completeness naturally arises once we fix the preorder ≤ on
domains, which formalizes the intuitive notion of precision. The novelty with
respect to the standard treatment of completeness is that we have two order-
ings on ucos: standard inclusion ⊇ and precision ≤. The latter is used to define
what an observationally complete domain is, while the former selects, among
observationally complete domains, the preferred one. In the complete shell con-
struction the two orderings coincide. In principle, we could change the standard
inclusion ordering, obtaining a different notion of “least” observationally com-
plete domain. For instance, we could compare two abstract domains on the base
of their cardinality or of a suitable notion of “complexity” of their abstract
objects.

Observational Completeness on Abstract Interpretation 109

References

1. Birkhoff, G.: Lattice Theory, 3rd edn., vol. XXV. AMS Colloquium Publications,
American Mathematical Society (1967)

2. Cousot, P.: Types as abstract interpretations, invited paper. In: POPL 1997: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 316–331. ACM Press, New York (1997)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977:
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages, pp. 238–252. ACM Press, New York (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: POPL
1979: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pp. 269–282. ACM Press, New York (1979)

5. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: POPL 2000: Proceed-
ings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 12–25. ACM Press, New York (2000)

6. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Transactions on Programming Languages and Systems 19(2), 253–291 (1997)

7. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp.
356–373. Springer, Heidelberg (2001)

8. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete.
Journal of the ACM 47(2), 361–416 (2000)

9. Schmidt, D.A.: Comparing completeness properties of static analyses and their log-
ics. In: Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 183–199. Springer,
Heidelberg (2006)

A Appendix

In some proofs we will make use of the Hausdorff’s maximality principle [1]. We
recall that a chain Y in a poset P is maximal (with respect to set inclusion)
whenever for any other chain Y ′ in P , Y ⊆ Y ′ implies Y = Y ′. The Hausdorff’s
maximal principle says that every chain in a poset P can be extended to a
maximal chain in P .

Theorem 1. If F is a set of continuous functions, than

σ =M
(⋃

{max{x ∈ C | ξ(x) ≤ a} | ξ computation and a ∈ π}
)

is the least observationally complete domain (for F and π).

Proof. First of all, we show that σ is observationally complete. We prove, by in-
duction on the length of ξ, that ξ(x) ≤ a implies ξσ(x) ≤ a for each computation
ξ and a ∈ π. If |ξ| = 0, then ξ(x) = x and ξσ(x) = σ(x). Note that σ ⊇ π since
if a ∈ π then a =

∨
{x ∈ C | x ≤ a}. Hence x ≤ a implies σ(x) ≤ a. Now assume

|ξ| = i+1. If ξ(x) ≤ a, consider the poset C′ = {c ∈ C | ξ(c) ≤ a} and the chain
{x} ⊆ C′. By Hausdorff’s maximality principle there exists a maximal chain

110 G. Amato and F. Scozzari

Y ⊇ {x} which is contained in C′. Let y =
∨
Y . By continuity of ξ, we have that

ξ(y) ≤ a. Since Y is a maximal chain in C′, then y ∈ maxC′. Moreover, by def-
inition of σ we have that y ∈ σ. It follows that ξ(σ(x)) ≤ ξ(y) ≤ a. If ξ = ξ1 · f ,
by inductive hypothesis ξσ(x) = ξσ1 (f(σ(x))) ≤ a since ξ1(f(σ(x))) ≤ a.

Now we show that σ is the least observationally complete domain. Assume,
without loss of generality, that v ∈ max{x ∈ C | ξ(x) ≤ a} for some computation
ξ and a ∈ π and let ρ be a domain such that v /∈ ρ. Then, ξ(ρ(v)) �≤ a since
ρ(v) > v and by definition of v. Hence, also ξρ(v) �≤ a, which means ρ is not
observationally complete. ��

Theorem 2 (Fixpoint Preservation). Let α be observationally complete for
F and π. Then α preserves the least fixpoint of any composition of functions
from F , when observing on π. In formulas, we have that:

∀f1, . . . fn ∈ F, π(lfp(f1 ◦ . . . ◦ fn)) = π(lfp(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)) .

Proof. It clearly holds that

π(lfp(f1 ◦ . . . ◦ fn)) ≤ π(lfp(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)) ,

since α is extensive. We now show the other direction. We prove that, for any
c ∈ C and ordinal ε, it holds that

π
(∨

i∈ε(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)i(c)
)
≤ π
(∨

i∈ε(f1 ◦ f2 ◦ . . . ◦ fn)i(c)
)

.

Since π is an upper closure operator, it is complete for arbitrary lubs. It follows
that:

π
(∨

i∈ε(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)i(c)
)

=

π
(∨

i∈ε π(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)i(c)
)

.

Since α is observationally complete for F and π, then

π
(∨

i∈ε π(α ◦ f1 ◦ α ◦ f2 ◦ . . .α ◦ fn ◦ α)i(c)
)

=

π
(∨

i∈ε π(f1 ◦ f2 ◦ . . . ◦ fn)i(c)
)

,

which is equivalent to π
(∨

i∈ε(f1 ◦ f2 ◦ . . . ◦ fn)i(c)
)
. ��

Lemma 1. For every set F of continuous functions and every X ⊆ C, we have

M
(
R̂F (M (X))

)
=M

(
R̂F (X)

)
.

Proof. It is immediate by monotonicity of R̂F andM () thatM
(
R̂F (M (X))

)
⊇ M

(
R̂F (X)

)
. For the converse inequality, since M () is an upper closure

operator on ℘(C), it is enough to prove that R̂F (M (X)) ⊆M
(
R̂F (X)

)
. Given

Observational Completeness on Abstract Interpretation 111

y ∈ R̂F (M (X)), we have y ∈ max{x ∈ C | f(x) ≤ a} and a =
∧

i∈I ai where
f ∈ F and {ai}i∈I ⊆ X .

For each i ∈ I, consider the set Yi = max{x ∈ C | f(x) ≤ ai} ⊆ R̂F (X).
Since f(y) ≤ a ≤ ai and f is continuous, there is an yi ∈ Yi such that yi ≥ y.
We may find yi as the least upper bound of a maximal chain in Yi containing y,
which exists by Hausdorff’s maximality principle. It is enough to prove that y =∧

i∈I yi. By definition of the yi’s, we have y ≤
∧

i∈I yi. Moreover, f(
∧

i∈I yi) ≤
f(yi) ≤ ai hence f(

∧
i∈I yi) ≤ a. Since y is a maximal element such that f(y) ≤

a, this means that y =
∧

i∈I yi. ��

Theorem 3. For every set F of continuous maps, the complete shell S of π for
F is given by

S = M
(
R̂ω

F (π)
)

.

Proof. It can be easily proved that

S = M (Gκ({�}))

for some ordinal κ, where G : uco(C) �→ uco(C) is the map

G(ρ) = M (π ∪RF (ρ)) =M
(
π ∪ R̂F (ρ)

)
.

It is enough to prove that M
(
R̂ω

F (π)
)

is a subset of S and a fixpoint of G. In

order to prove M
(
R̂ω

F (π)
)
⊆ S it is enough to show that Ri

F (π) ⊆ Gi+1({�})
for every i < ω. The proof is by induction over i. For i = 0, we have R̂0

F (π) = π ⊆
G({�}). If i = j + 1, R̂i

F (π) = R̂F (R̂j
F (π)) ⊆ R̂F (Gi({�})) ⊆ G(Gi({�})) =

Gi+1({�}). Now we prove that M
(
R̂ω

F (π)
)

is a fixpoint of G. We have that

G
(
M
(
R̂ω

F (π)
))

= M
(
π ∪ R̂F

(
M
(
R̂ω

F (π)
)))

=M
(
π ∪M

(
R̂F

(
M
(
R̂ω

F (π)
))))

= M
(
π ∪M

(
R̂F (R̂ω

F (π))
))

= M
(
π ∪
⋃
{R̂i+1

F (π) | i < ω}
)

= M
(
R̂ω

F (π)
)

.

This concludes the proof. ��

Theorem 4. If F is a set of completely additive functions, the complete shell
S of π for F is the least observationally complete domain σ for F and π.

112 G. Amato and F. Scozzari

Proof. We know that S is observationally complete, since it is complete and
contains π. It is enough to prove that if a ∈ R̂ω

F (π) and a /∈ ρ, then ρ is not
observationally complete for π and F . Assume a ∈ R̂i

F (π) and there is no j < i

such that a ∈ R̂i
F (π). It means there exist a computation ξ = 〈f1, . . . , fi〉 of

maps in F and a sequence a0, . . . , ai of objects in C such that a = ai, a0 ∈ π
and aj ∈ max{x ∈ C | fj(x) ≤ aj−1} for any j ∈ [1, . . . , i]. It immediate to check
that ξ(a) ≤ a0. We prove that ξρ(a) �≤ a0.

Note that, if f is completely additive, then max{x ∈ C | f(x) ≤ y} is a
singleton for any y ∈ C. Therefore, if max{x ∈ C | f(x) ≤ y} = {z} and x �≤ z,
then f(x) �≤ y. In our proof, this means that, for each j ∈ [1, . . . , i], x �≤ aj
implies fj(x) �≤ aj−1. Since ρ(f(x)) ≥ f(x), this also implies ρ(fj(aj)) �≤ aj−1.
Since a /∈ ρ, then ρ(a) > a, i.e. ρ(a) �≤ a, hence ξρ(a) �≤ a0. ��

SAT in Monadic Gödel Logics: A Borderline
between Decidability and Undecidability

Matthias Baaz, Agata Ciabattoni�, and Norbert Preining��

Technische Universität Wien, Austria

Abstract. We investigate satisfiability in the monadic fragment of first-
order Gödel logics. These are a family of finite- and infinite-valued logics
where the sets of truth values V are closed subsets of [0, 1] containing 0
and 1. We identify conditions on the topological type of V that determine
the decidability or undecidability of their satisfiability problem.

1 Introduction

Monadic logic is a first-order logic in which all predicates are unary. Classical
monadic logic is a rather simple fragment: decidable (both the validity and sat-
isfiability problem) and having finite model property. The same does not hold
for many-valued monadic logics in which a rather complex landscape appears
and many questions are still open, see e.g. [10, 9, 3].

The family of (finite- and infinite-valued) Gödel logics is a prominent example
of many-valued logics. Gödel logics, defined in general over sets of truth values V
which are closed subsets of [0, 1] containing both 0 and 1, are the only many-
valued logics which are completely specified by the order structure of V [4]. This
fact characterizes Gödel logics as logics of comparative truth and renders them
an important case of so-called fuzzy logics, see [8].

Different choices of V in general induce different Gödel logics, see [13, 4, 6].
For V = {0, 1} the resulting logic coincides with classical logic.

Validity for monadic Gödel logic with V = [0, 1] was shown to be undecidable
in [2]. Note that in contrast with classical logic, in Gödel logics validity and sat-
isfiability are not dual concepts. A general investigation of the (un)decidability
status for the validity problem in monadic Gödel logics was carried out in [3],
where it was shown that with the possible exception of Gödel logic G↑ in which
V = {1 − 1/n : n ≥ 1} ∪ {1}, validity is undecidable when V is infinite, even
when restricted to prenex formulas.

In this paper we investigate the (1-)satisfiability problem SATm in monadic
Gödel logics. We identify conditions on the topological type of V which charac-
terize Gödel logics with decidable and with undecidable SATm. SATm is shown
to be decidable for Gödel logics in which 0 is an isolated point in V (i.e., 0 has
Cantor-Bendixon rank |0|CB = 0, see e.g. [12]). Finite-valued Gödel logics being

� Supported by Vienna Science and Technology Fund (WWTF), project MA07-016.
�� Supported by Austrian science foundation (FWF), project P19872-N13.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 113–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

114 M. Baaz, A. Ciabattoni, and N. Preining

prominent examples (and any witnessed Gödel logic [11] as well as any prenex
Gödel logic can be treated in the same way). In the remaining Gödel logics the
presence of at least three predicate symbols, one of which is a constant different
from 0 or 1, makes SATm undecidable. A complex argument is used to show
that without this constant predicate, SATm remains undecidable for all Gödel
logics in which 0 is a limit point of limit points in V (i.e., |0|CB ≥ 2). Gödel
logic with V = [0, 1] being a prominent example. The (un)decidability status of
SATm is left open for Gödel logics in which |0|CB = 1 in V and no constant
predicate is available; this case is shown to contain only one logic: Gödel logic
G↓ in which V = {1/n : n ∈ N} ∪ {0}. SATm of monadic Gödel logics extended
with the projection operator ! of [1] is also investigated. This operator allows
one to recover classical reasoning inside Gödel logics. We show that the addition
of ! does not affect the decidability of SATm in the finite-valued case, while
it does in all infinite-valued Gödel logics (even in the witnessed case) for which
SATm is undecidable in presence of !.

2 Syntax and Semantics of Gödel Logics

The language of first-order Gödel logics is identical to that of classical logic.
We call any closed set V ⊆ [0, 1] which contains 0 and 1 a Gödel set. Let V be

a Gödel set, we denote with GV the Gödel logic based on the set of truth values
V . An interpretation (or evaluation) ϕGV for GV maps constants and object
variables to elements of a domain D, n-ary function symbols to functions from
Dn into D, and n-ary predicate symbol P to a function from Dn into V . (We
will use ϕG when the truth value set V is clear from the context)

The interpretation ϕGV extends in the usual way to a function mapping all
terms of the language to an element of the domain. ϕGV evaluates atomic for-
mulas Q ≡ P (t1, . . . , tn) and the truth constant ⊥ as

ϕGV (Q) = ϕGV (P)(ϕGV (t1), . . . , ϕGV (tn)) ϕGV (⊥) = 0

Extension to all formulas is given by

ϕGV (A → B) =

{
1 if ϕGV (A) ≤ ϕGV (B)
ϕGV (B) otherwise,

ϕGV (A ∧B) = min(ϕGV (A), ϕGV (B))
ϕGV (A ∨B) = max(ϕGV (A), ϕGV (B))

¬A, A ↔ B and A ≺ B abbreviate A → ⊥, (A → B) ∧ (B → A) and ((B →
A) → B), respectively; in particular ϕGV (A ≺ B) is 1 iff either ϕGV (A) <
ϕGV (B), or ϕGV (A) = ϕGV (B) = 1. Hence the formula A ≺ B expresses
’strictly less’ but at 1 (note that ϕGV (1 ≺ 1) = 1). Let us define the distribution
of a formula A and a free variable x with respect to an interpretation ϕGV

as Distr(A(x)) = {ϕ′GV
(A(x)) : ϕ′GV

∼x ϕGV }, where ϕ′GV
∼x ϕGV means

that ϕGV is exactly as ϕGV with the possible exception of the domain element

SAT in Monadic Gödel Logics 115

assigned to x. The semantics of quantifiers is given by the infimum and supremum
of the corresponding distribution, that is

ϕGV (∀xA(x)) = inf Distr(A(x)) ϕGV (∃xA(x)) = sup Distr(A(x)).

In the case that all infima and suprema are actually realized by an element, i.e.,
all infima are minima and all suprema are maxima, we speak about witnessed
Gödel logics, see e.g. [11].

Definition 1. A formula A is valid or is a tautology (resp. a positive tautology)
in GV if for every interpretation ϕGV , ϕGV (A) = 1 (resp. ϕGV (A) > 0). A is
1-satisfiable, or simply satisfiable, if there is an interpretation ϕGV such that
ϕGV (A) = 1; otherwise A is said to be unsatisfiable.

In contrast with classical logic, in Gödel logics validity and satisfiability are not
dual concepts. However the following relation holds: A is a positive tautology if
and only if ¬A is unsatisfiable.

Consider the unary operator ! with the following meaning [1]:

ϕGV (!A) =

{
1 if ϕGV (A) = 1
0 otherwise.

We will investigate monadic Gödel logics (with and without the operator !)
i.e., in which all predicate symbols are (at most) unary and no function symbol
occur. Every Gödel set V induces a logic GV over the language without ! and
a logic G�

V if ! is present. Standard Gödel logic is G[0,1]; i.e., the logic over the
full real unit interval as truth value set, see, e.g., [8,16]. We use Gn to denote the
n-valued Gödel logic for n ≥ 2. Let G be a Gödel logic, we denote with TAUTm

G

and SATm
G the validity and satisfiability problems of monadic G, respectively.

2.1 Cantor-Bendixon Ranks and Gödel Sets

In Gödel logics, the validity of a formula depends only on the relative ordering
and the topological type of the truth values of atomic formulas, and not on their
specific values. It is therefore important to investigate the topological structure
of the underlying truth values sets of Gödel logics, see [4, 13]. We recall some
definitions for the theory of polish spaces, details may be found in [12].

Definition 2. A limit point of a topological space is a point that is not isolated,
i.e., for every open neighborhood U of x there is a point y ⊂ U with y �= x. For
any topological space X let X ′ = {x ∈ X : x is limit point of X}. We call X ′

the Cantor-Bendixon derivative of X and the operation itself Cantor-Bendixon
derivation. Using transfinite recursion we define the iterated Cantor-Bendixon
derivatives Xα, α ordinal, as follows:

X0 = X Xα+1 = (Xα)′ Xλ =
⋂
α<λ

Xα, λ limit ordinal.

For any polish space X, the least ordinal α0 such that Xα0 = Xα for all α > α0
is called the Cantor-Bendixon rank of X. For any x ∈ X, we define its (Cantor-
Bendixon-)rank |x|CB = sup{α : x ∈ Xα}.

116 M. Baaz, A. Ciabattoni, and N. Preining

3 Decidability Results

As is well known, the satisfiability problem for monadic classical logic (i.e., G2)
is decidable, whereas already a single binary predicate symbol leads to unde-
cidability. We show below that this result can be generalized to monadic Gödel
logics GV in which 0 is an isolated point in V (i.e., |0|CB = 0); satisfiability in
these logics, which includes Gn, coincides with satisfiability in monadic G2. The
same result holds also for any witnessed or prenex monadic Gödel logic. The
addition of ! to Gn does not change the decidability status of SATm

GΔ
n

, though
satisfiability is not anymore equivalent to satisfiability in G2.

Theorem 1. Let V be any Gödel set with |0|CB = 0. SATm
GV

is equivalent to
SATm

G2
.

Proof. Let Q be any formula of GV . If Q is satisfiable in monadic classical logic
then Q is satisfiable in GV . For the converse direction, consider any interpreta-
tion ϕG of GV such that ϕG(Q) = 1. An interpretation ϕCL of classical logic
such that ϕCL(Q) = 1 is defined as follows: for any atomic formula A

ϕCL(A) =

{
1 if ϕG(A) > 0
0 otherwise.

It is easy to see that for each formula P , (∗) ϕG(P) = 0 if and only if ϕCL(P) = 0
and ϕG(P) > 0 if and only if ϕCL(P) = 1. The proof proceeds by induction on
the complexity of P and all cases go though for all Gödel logics except when P
has the form ∀xP1(x); in this case, being 0 an isolated point in V , ϕG(P) = 0 if
and only if there is an element u in the domain of ϕG such that ϕG(P1(u)) = 0;
by induction hypothesis ϕCL(P1(u)) = 0 and hence ϕCL(∀xP1(x)) = 0. �

Corollary 1. Satisfiability in the existential fragment of all monadic Gödel log-
ics coincides with satisfiability in monadic classical logic.

Corollary 2. Satisfiability in monadic witnessed Gödel logics coincides with
satisfiability in monadic classical logic.

Corollary 3. Satisfiability in prenex1 monadic Gödel logics coincides with sat-
isfiability in monadic classical logic.

Proof. Let Q = Qx̄P be any prenex formula, were Qx̄ is the formula prefix
and P does not contain quantifiers. The proof is similar to that of Theorem 1.
Assume that ϕG(Q) = 1. As above we can prove (∗) for P . ϕCL(Q) = 1 easily
follows by induction on the number n of quantifiers in Qx̄. �

This result contrasts with the undecidability of the validity problem proved in [3]
for all prenex monadic Gödel logics with the exception of Gn and (possibly) G↑.

Corollary 4. SATm
Gn

coincides with SATm
G2

.

1 In general Gödel logics do not admit equivalent prenex formulas, see e.g. [4].

SAT in Monadic Gödel Logics 117

Consider Gn extended with !; the formula ¬¬A ∧ ¬!A is satisfiable in G�
n ,

with n > 2 (take any interpretation ϕG such that 0 < ϕG(A) < 1) but it is
not in classical logic. This shows that satisfiability in G�

n is not the same as
satisfiability in classical logic. Nevertheless we have

Theorem 2. SATm
G�

n
is decidable.

Proof. Proceed similarly to the decidability proof of TAUTm
G�

n
in [3]. Given any

monadic formula P , it is indeed enough to consider interpretations with domain
{1, . . . , nk}, where k is the number of different predicate symbols occurring in
P . The number of such interpretations is finite (at most nk·n

k

). �

4 Undecidability Results

In this section we prove that SATm
GV

is undecidable in the following cases: all
infinite-valued Gödel logics with ! (Section 4.1), all Gödel logics where 0 is
not isolated and there are three predicates, one of which is a constant eval-
uated between 0 and 1 (Section 4.2), and all Gödel logics where 0 has at
least Cantor-Bendixon rank 2, i.e., 0 is a limit point of limit points
(Section 4.3).

Our results adapt and generalize the undecidability proof of TAUTm
G[0,1]

sketched in [7]. Consider a generic formula A in the classical theory CE of
two equivalence relations ≡1 and ≡2. Without loss of generality we can assume
that A is in prenex and disjunctive normal form, i.e., A is of the form:

A = Q∗
∨
j

∧
k

(xkj ≡i y
k
j)l

where Q∗ is the formula prefix and l is either −1, in which case the atomic
equivalence is negated, or 1, in which case it is positive (not negated).

In the subsections below we will translate A into formulas of GV by replacing
each term (xkj ≡i y

k
j)l in A by suitable σ((ukj ≡i v

k
j)l). As notational extension

we write σ(A) = Q∗
∨

j

∧
k σ((xkj ≡i y

k
j)l).

Lemma 1. Given two interpretations ϕCE and ϕG. If for each term ukj and vkj

ϕCE((ukj ≡i v
k
j)l) = 1 ⇔ ϕG(σ(ukj ≡i v

k
j)l) = 1

(with l = −1, 1) and ϕG(σ(ukj ≡i v
k
j)l) = 1 or ϕG(σ(ukj ≡i v

k
j)l) ≤ k < 1 then

ϕCE(A) = 1 ⇔ ϕG(σ(A)) = 1.

4.1 Infinite-Valued Gödel Logics with �

We show the undecidability of SATG�
V

, where V is any infinite Gödel set. Our
argument, which applies also to all infinite-valued witnessed Gödel logics with
!, is similar to that for the undecidability of TAUTG�

V
in [3].

118 M. Baaz, A. Ciabattoni, and N. Preining

Theorem 3. Let V be any infinite Gödel set. Satisfiability of monadic formulas
in G�

V , with at least two predicate symbols, is undecidable.

Proof. Validity of formulas in the classical theory CE of two equivalence rela-
tions was shown in [15] to be r.e. but not recursive. As a formula in classical
logic is valid if and only if its negation is unsatisfiable, the satisfiability problem
in CE is undecidable and not even recursively enumerable. The theorem’s claim
follows by faithfully interpret CE in the monadic fragment of G�

V . Indeed, let
P1 and P2 be different unary predicate symbols in G�

V . A translation σ(A) of
CE-formulas A into monadic G�

V -formulas is simply defined by translating each
atomic formula in A as follows: σ(xkj ≡i y

k
j) = !(Pix ↔ Piy).

Assume first that a CE-valuation ϕCE of A is given such that ϕCE(A) = 1.
By the Löwenheim-Skolem’s theorem we can assume the universe U of its model
to be countable, without loss of generality. Therefore also the set of equivalence
classes [u]i = {v | ϕCE(u ≡i v) = 1} with respect to the two equivalence relations
is countable. Since our Gödel set V is infinite, there exists a injection λ:

λ : {[u]1, [u]2 : u ∈ U}→ V \ {0, 1}.

Using this injection we define the valuation in G�
V as

ϕG(Piu) = λ([u]i).

We now show that the assumptions of Lemma 1 are fulfilled:

ϕCE(ukj ≡i v
k
j) = 1 ⇔ [ukj]i = [vkj]i ⇔ λ([ukj]i) = λ([vkj]i)

⇔ ϕG(Piu
k
j) = ϕG(Piu

k
j) ⇔ ϕG(Piu

k
j ↔ Piu

k
j) = 1

⇔ ϕG(!(Piu
k
j ↔ Piu

k
j)) = 1 ⇔ ϕG(σ(ukj ≡i v

k
j)) = 1

We can similary prove that ϕCE(ukj �≡i v
k
j) = 1 ⇔ ϕG(σ(ukj �≡i v

k
j)) = 1.

Moreover, ϕG(σ(ukj ≡i v
k
j)) and ϕG(σ(ukj �≡i v

k
j)) are either 0 or 1. Hence, by

Lemma 1, ϕG(σ(A)) = 1.

Now assume that there exists a valuation ϕG in G�
V such that ϕG(σ(A)) = 1.

Define the valuation ϕCE in classical logic as

ϕCE(u ≡i v) = 1 iff ϕG(σ(u ≡i v)) = 1

the above equivalence chains together with Lemma 1 give ϕCE(A) = 1. �

Corollary 5. SATm is undecidable in prenex or witnessed Gödel logics with !,
in presence of two predicate symbols.

Proof. The very same proof as for Theorem 3 can be used. �

The undecidability result applies also to the monadic fragments of �Lukasiewicz
and product logics, two important formalizations of fuzzy logic [8]. For the for-
mer logic, Ragaz [14] proved the undecidability of the satisfiability problem in
presence of at least four predicate symbols. This result was extended in [5] to
product logic.

SAT in Monadic Gödel Logics 119

Corollary 6. Satisfiability of monadic �Lukasiewicz and product logic extended
with ! is undecidable, in presence of at least two predicate symbols.

Proof. Follows by the embeddability of G�
[0,1] in �Lukasiewicz and product logic

extended with !, cf. [5]. �

4.2 Infinite Gödel Sets with |0|CB > 0

We show the undecidability of SATm
GV

where V is infinite, the truth value 0 has
Cantor-Bendixon rank |0|CB > 0 in V (i.e., 0 is not isolated) and there is a (0-ry)
predicate S which is always evaluated to a real between 0 and 1.

Theorem 4. SATm
GV

is undecidable in any Gödel logic GV where |0|CB > 0
in presence of at least three predicates one of which is a constant S such that
0 < ϕG(S) < 1 for each valuation ϕG.

Proof. Proceed similarly to that of Theorem 3. Here we define the (local) trans-
lation σ as follows:

σ(xkj ≡i y
k
j) = (Pix

k
j ↔ Piy

k
j)

σ(xkj �≡i y
k
j) = (Pix

k
j ↔ Piy

k
j) → S

and translate the CE formula A as τ(A) = σ(A) ∧ ∀x(P1x ≺ S)∧ ∀x(P2x ≺ S).
Assume first that a valuation ϕCE of A in classical logic is given such that

ϕCE(A) = 1. Following the first steps of the proof of Theorem 3 we define

ϕG(Piu) = λ([u]i)

but here the injection λ maps equivalence classes into truth values below ϕG(S):

λ : {[u]i, [u]2 : u ∈ U}→ V ∩ (0, ϕG(S)).

This can always be achieved as 0 is not isolated, thus, below any given point
in V , in our case below ϕG(S), there are at least countably many truth values.

We now show that the remaining assumptions of Lemma 1 are fulfilled (by
definition ϕG(σ(ukj ≡i v

k
j)) and ϕG(σ(ukj �≡i v

k
j)) are either 1 or below ϕG(S)).

Obviously ϕCE(ukj ≡i v
k
j) = 1 iff ϕG(Piu

k
j) = ϕG(Piv

k
j). Moreover

ϕCE(ukj �≡i v
k
j) = 1 ⇔ [ukj]i �= [vkj]i ⇔1 λ([ukj]i) �= λ([vkj]i)

ϕG(Piu
k
j) �= ϕG(Piu

k
j) ⇔ ϕG(Piu

k
j ↔ Piu

k
j) ≤ ϕG(S)

⇔ ϕG((Piu
k
j ↔ Piu

k
j) → S)) = 1 ⇔ ϕG(σ(ukj �≡i v

k
j)) = 1

(where 1 follows from the injectivity of λ). By Lemma 1, we have ϕG(σ(A)) = 1
and by the definition of ϕG, ϕG(τ(A)) = 1.

For the converse direction, assume to have a valuation ϕG such that ϕG(τ(A))=
1. Define the valuation ϕCE in a straightforward way as

ϕCE(u ≡i v) = 1 iff ϕG(σ(u ≡i v)) = 1.

Notice that by ϕG(∀x(Pix ≺ S)) = 1 follows that ϕG(Pix) < ϕG(S) < 1 for all
x. The equivalences above together with Lemma 1 give ϕCE(A) = 1. �

120 M. Baaz, A. Ciabattoni, and N. Preining

4.3 Infinite Gödel Sets with |0|CB ≥ 2

We show the undecidability of SATm
GV

where V is infinite, 0 has Cantor-Bendixon
rank |0|CB ≥ 2 (i.e., 0 is limit point of limit points) and the language of GV

contains at least three predicate symbols. G[0,1]being a prominent example.

Theorem 5. SATm
GV

is undecidable when |0|CB ≥ 2 in V and in presence of at
least three predicate symbols.

Proof. Proceed similarly to the proofs of Theorem 4. First notice that the cen-
tral property used in this proof (cf. Lemma 1) is that there is a way to decide
whether an evaluation is below 1 or it is 1. Indeed, for the reverse direction of
the undecidability proof (i.e., given a satisfying Gödel interpretation ϕGV we
have to construct a satisfying interpretation in CE) we need to select an open
interval in V strictly between 0 and 1, objects with valuations of the equiva-
lence predicates Pi within that interval, and use them to define the equivalence
classes in CE. In Theorem 4, the predicate constant is used to this purpose.
Here a formula ∃y∃z(Piz ≺ Piy ∧ . . .) would not be enough as our ‘strictly less’
relation ≺ collapses at 1 (see Section 2) and therefore we cannot be sure that
ϕGV (Piy) and ϕGV (Piz) are choosen below 1. To overcome this problem we
use the third predicate P whose valuation we force to be a decreasing sequence
to 0. This can be expressed by ¬∀xPx∧∀x¬¬Px, as the first conjunct says that
the infimum of all evaluations of P is 0, and the second that every valuation
of P is bigger than 0. So we can say that either the valuation of Px is 1, or
we can find y and z ‘below’ x (i.e., the valuations of Py and Pz are below the
valuation of Px) defining the needed open interval. This leads to the formula
∀x(Px∨∃y∃z(Pz ≺ Py ∧Py ≺ Px)); on the other hand requiring the existence
of objects w with ϕGV (Piw) within the interval can be simply expressed by
∃w(Pz ≺ P1w ≺ Py ∧ Pz ≺ P2w ≺ Py).

Consider now the forward direction of the proof, i.e., constructing a satisfying
valuation in GV from a satisfying valuation in CE. The use of the formulas
above complicates the matters as we have to deal with countably many ϕG(Px)
for x ∈ UG and below each of them open intervals (coming from Py and Pz),
in which the equivalence classes are interpreted in parallel. This gives rise to
the condition that the Cantor-Bendixon rank of 0 is at least 2. This ‘parallel
construction’ also hints that in translating our formula A of CE into a formula
τ(A) of GV we will duplicate the universe UCE for each interval so that we can
faithfully embed the equivalence classes of CE into the respective intervals. This
leads to the fact that in the translated formula τ(A) the quantifiers act over a
much larger universe, as we have to duplicate the universe for each interval. To
confine the valuations of elements of the ’correct’ interval we add in the formula
(1a) below disjuncts evaluating to 1 for objects outside the considered interval.

We are now ready to present the formal definition of the translation of our
formula A in CE into GV which uses the (not anymore local) translation σa,b(A),
where a and b define the interval [b, a] in which the evaluation takes place:

SAT in Monadic Gödel Logics 121

σa,b(∀rB) = ∀r(P1r ≺ Pb ∨ Pa ≺ P1r ∨ P2r ≺ Pb ∨ Pa ≺ P2r ∨ σa,b(B)) (1a)
σa,b(∃rB) = ∃r((Pb ≺ P1r ≺ Pa) ∧ (Pb ≺ P2r ≺ Pa) ∧ σa,b(B)) (1b)

σa,b(
∨
j

∧
k

(rkj ≡i s
k
j)

l) =
∨
j

∧
k

σ((rkj ≡i s
k
j)

l) (1c)

σa,b(r ≡i s) = (Pir ↔ Pis) (1d)
σa,b(r �≡i s) = ((Pir ↔ Pis) → Pa)) (1e)

The translation τ(A) of the CE formula A is defined as:

τ(A) =¬∀xPx ∧ ∀x¬¬Px∧ (2a)
∀x(Px ∨ ∃y∃z[(2b)

Pz ≺ Py ∧ Py ≺ Px ∧ (2c)
∀u(Pu → Pz ∨ Py → Pu) ∧ (2d)
∃w(Pz ≺ P1w ≺ Py ∧ Pz ≺ P2w ≺ Py) ∧ (2e)
σy,z(A)]) (2f)

As in the proofs of Theorems 3 and 4 we assume first that ϕCE(A) = 1
and we construct an interpretation ϕG of GV in which ϕG(τ(A)) = 1. By
the Löwenheim-Skolem’s theorem we assume that the domain UCE of ϕCE is
countable. As mentioned above we duplicate the universe UCE countably many
times, and for good measure we throw in another countable set of objects (cn)
which we use to define the decreasing sequence Pcn to 0. Thus, the universe of
our valuation ϕG is defined as UG = {un : u ∈ UCE, n ∈ N} ∪ {cn : n ∈ N},
where all the un and cn are different. Note that we add the index n as superscript
to u to indicate copies of the elements u ∈ UCE.

The values of P under ϕG meet the following requirements: ϕG(Pcn) satisfies
(i) ϕG(Pcn+1) < ϕG(Pcn), (ii) limn→∞ ϕG(Pcn) = 0, (iii) ϕG(Pcn) ∈ V ′ \
{0, 1}, where V ′ is the Cantor-Bendixon derivative of V , and (iv) ϕG(Pun) = 1
for all n and u ∈ UCE. This definition makes sure that ϕG((2a)) = 1.

From |0|CB ≥ 2 and (iii) follow that below any given ϕG(Pcn) there exist
countably many disjoint open intervals, each containing countably many truth
values. Define f : N → N and Kn such that: (a) f is strictly monotone increasing,
and (b) the open interval Kn = (ϕG(Pcf(n)+1), ϕG(Pcf(n))) contains countably
many truth values. As a consequence of (a) and (b) we have (c) the intervals Kn

are all disjoint.
Since there are at least countably many truth values in each Kn there is for

any n an injection λn : {[u]1, [u]2 : u ∈ UCE}→ Kn∩V . The valuation of Pi(un)
is then defined as

ϕG(Pi(un)) = λn([u]i).

This ensures that (2e) is satisfied. To complete the definition of the valuation of
atomic formulas we set ϕG(Pi(cn)) = 1 for all n.

We will now show that ϕG(τ(A)) = 1. Consider the universal quantifier ∀x
in (2b) and pick up an arbitrary element x from UG. If x = un then ϕG(Px) = 1
(see (iv) above). Assume now that x = cn. We choose cf(n) for y and cf(n)+1

122 M. Baaz, A. Ciabattoni, and N. Preining

for z. (Remember that the interval Kn defined through the evaluations of P with
these elements contains countably many truth values). It is easy to see that with
these chosen y and z the parts (2c) and (2d) are satisfied.

To prove that ϕG(τ(A)) = 1 it remains to show that ϕG(σn(A)) = 1 where
σn is a shorthand for σcf(n),cf(n)+1 . We can indeed give a selection function
for the existentially quantified variables: If all the quantifiers in front of an
existential quantifier are instantiated, simply drop all the super-scripts in un,
consider the resulting assignment in CE, and use the object selected by the
existential quantifier there, adding the index of the current interval in which we
evaluate. Therefore the existential quantifiers are always evaluated in the current
interval, and thus the first two conjuncts of (1b) are satisfied.

On the other hand considering the universal quantifier and (1a) we see that if
the object instantiating the universal quantifier is outside the current interval,
i.e., the valuations are outside the interval defined by ϕG(Py) = ϕG(Pcf(n))
and ϕG(Pz) = ϕG(Pcf(n)+1), the evaluation of (1a) immediately becomes 1.

So we can assume in the following that all objects instantiating quantified
variables in (2f), i.e., in σy,z(A), give valuations of P1 and P2 within the interval
under discussion. The very same computations as in Theorem 4 (with Pcf(n)
playing the role of S) show ϕG(σn(A)) = 1 for each n if ϕCE(A) = 1. Hence
ϕG(τ(A)) = 1 if ϕCE(A) = 1.

For the reverse direction assume that ϕG(τ(A)) = 1. For ϕG the following
hold: (i) there exists an u′ such that 0 < ϕG(Pu′) < 1, as ϕG((2a)) = 1; (ii)
there are y = v and z = w such that (2c)-(2e) hold. Define the universe of ϕCE as

UCE = {u ∈ UG : ϕG(Pw) < ϕG(Piu) < ϕG(Pv), i = 1, 2}

Note that UCE cannot be empty as ϕG((2e)) = 1. Define a valuation ϕCE as

ϕCE(a ≡i b) = 1 iff ϕG(Pia ↔ Pib) = 1

from which follows that ϕCE(A) = 1 being ϕCE(A) nothing but the valuation
ϕG(σv,w(A)). �

Notice that all infinite-valued Gödel logics GV with at least three predicate
symbols satisfy the hypothesis of the theorem above, with the exception of those
in which |0|CB = 0 or |0|CB = 1 in V . In the former case, Theorem 1 ensures the
decidability of SATm

GV
. We show below that the latter case, which is the only

case left open, refers, in fact, to one Gödel logic: the one known as G↓ and in
which V = {1/n : n ∈ N} ∪ {0}.

Proposition 1. If V has |0|CB = 1, then SATGV is equivalent to SATG↓ .

Proof. For any Gödel set V in which |0|CB = 1 there is a λ �∈ V , 0 < λ < 1,
such that below λ there are only isolated truth values and 0. Using the same
technique as in Theorem 1 but projecting everything above λ to 1 we see that
all such V are order isomorphic to {1/n : n ∈ N} ∪ {0}; i.e., to the truth values
set of G↓. �

SAT in Monadic Gödel Logics 123

References

1. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In:
Proceedings Gödel 1996. Kurt Gödel’s Legacy. LNL, vol. 6, pp. 23–33. Springer,
Heidelberg (1996)

2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s Theorem for Prenex Gödel
Logic and its Consequences for Theorem Proving. In: Nieuwenhuis, R., Voronkov,
A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 201–216. Springer, Heidelberg (2001)

3. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Monadic Fragments of Gödel Logics:
Decidability and Undecidability Results. In: Dershowitz, N., Voronkov, A. (eds.)
LPAR 2007. LNCS (LNAI), vol. 4790, pp. 77–91. Springer, Heidelberg (2007)

4. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Annals of Pure and
Applied Logic 147, 23–47 (2007)

5. Baaz, M., Hájek, P., Svejda, D., Kraj́ıcek, J.: Embedding Logics into Product Logic.
Studia Logica 61(1), 35–47 (1998)

6. Beckmann, A., Goldstern, M., Preining, N.: Continuous Fräıssé conjecture. Or-
der 25(4), 281–298 (2008)

7. Gabbay, D.M.: Decidability of some intuitionistic predicate theories. J. of Symbolic
Logic 37, 579–587 (1972)

8. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
9. Hájek, P.: Arithmetical complexity of fuzzy predicate logics: a survey II. Annals of

Pure and Applied Logic (to appear)
10. Hájek, P.: Monadic Fuzzy Predicate Logics. Studia Logica 71(2), 165–175 (2002)
11. Hájek, P., Cintula, P.: On theories and models in fuzzy predicate logics. Journal

of Symbolic Logic 71(3), 863–880 (2006)
12. Kechris, A.S.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)
13. Preining, N.: Complete Recursive Axiomatizability of Gödel Logics. PhD thesis,

Vienna University of Technology, Austria (2003)
14. Ragaz, M.: Die Unentscheidbarkeit der einstelligen unendlichwertigen

Prädikatenlogik. Arch. math. Logik 23, 129–139 (1983)
15. Rogers, H.: Certain logical reduction and decision problems. Annals of Mathemat-

ics 64, 264–284 (1956)
16. Takeuti, G., Titani, T.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory.

J. of Symbolic Logic 49, 851–866 (1984)

Learning by Questions and Answers:
From Belief-Revision Cycles to Doxastic Fixed

Points

Alexandru Baltag1 and Sonja Smets2,3

1 Computing Laboratory, University of Oxford
Alexandru.Baltag@comlab.ox.ac.uk

2 Dep. of Artificial Intelligence & Dep. of Philosophy, University of Groningen
3 IEG Research Group, University of Oxford

S.J.L.Smets@rug.nl

1 Introduction

We investigate the long-term behavior of iterated belief revision with higher-level
doxastic information. While the classical literature on iterated belief revision
[13, 11] deals only with propositional information, we are interested in learning
(by an introspective agent, of some partial information about the) answers to
various questions Q1, Q2, . . ., Qn, . . . that may refer to the agent’s own beliefs
(or even to her belief-revision plans). Here, “learning” can be taken either in
the “hard” sense (of becoming absolutely certain of the answer) or in the “soft”
sense (accepting some answers as more plausible than others). If the questions
are binary (“is ϕ true or not?”), the agent “learns” a sequence of true doxastic
sentences ϕ1, . . . , ϕn, “Investigating the long-term behavior” of this process
means that we are interested in whether or not the agent’s beliefs, her “knowl-
edge” and her conditional beliefs stabilize eventually or keep changing forever.

The initial beliefs are given by a finite “plausibility” structure as in [5, 7, 6]:
a finite set of possible worlds with a total preorder, representing the worlds’ rel-
ative plausibility. These structures are standard in Belief Revision: they are spe-
cial cases of Halpern’s “preferential models” [20], Grove’s “sphere” models [19],
Spohn’s ordinal-ranked models [25] and Board’s “belief-revision structures” [10].
A (pointed plausibility) model is a plausibility structure with a designated state
(representing the actual state of the real world) and a valuation map (capturing
the ontic “facts” in each possible state of the world). We adopt our finiteness
assumption for three reasons. First, all the above-mentioned semantic approaches
are equivalent in the finite case: this gives a certain “semantic robustness” to our
results. Secondly, it seems realistic to assume that an agent starts with a belief
base consisting of finitely many sentences (believed on their own merits, even if
by logical omniscience, all their infinitely many consequences are also believed).
Since all the languages considered here have the finite model property, any finite
base can be represented in a finite model. Thirdly, our problem as formulated
above makes sense primarily for finite structures: only for finite models it is rea-
sonable to expect that revision might stabilize after finitely many iterations.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 124–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Learning by Questions and Answers 125

A belief upgrade will be a type of model transformation, i.e. a (partial) function
taking (pointed plausibility) models as inputs and returning “upgraded” models
as outputs. Examples of upgrades have been proposed in the literature on Belief
Revision e.g. by Boutilier [12] and Rott [24], in the literature on dynamic se-
mantics for natural language by Veltman [26], and in Dynamic Epistemic Logic
by J. van Benthem [9]. Three of them (“update”, “radical” upgrade and “con-
servative” upgrade) are mentioned in this paper, and our results bear specific
relevance to them. But we also generalize these proposals to a natural notion of
“belief upgrade”, in the spirit of Nayak [23], which turns out to be a special case
of our “Action Priority Update” [7]. So our results have a general significance:
they are applicable to any reasonable notion of iterated belief revision.

Not every model transformation makes sense as a way to change beliefs. The
fact that we are dealing with purely “doxastic” events imposes some obvious
restrictions: we assume nothing else happens in the world except for our agent’s
change of beliefs; so the upgrade should not change the facts of the world but only
the doxastic state. Hence, the actual state and the valuation of atomic sentences
should stay the same (since we interpret atomic sentences as ontic, non-doxastic
“facts”). The only things that might change are the set S of possible worlds and
the order ≤: the first reflects a change in the agent’s knowledge, while the sec-
ond reflects a change in her (conditional) beliefs. Moreover, in the single-agent
case, it is enough to consider only changes in which the new set S′ of states is a
subset S′ ⊆ S of the old set: since our agent has perfect recall and nothing else
happens in the world except for her own belief change, there is no increase in
uncertainty; hence, the set of possibilities can only shrink or stay the same1.

So single-agent upgrades correspond essentially to a shrinking (or maintain-
ing) of the set of possible worlds, combined with a relational transformation. Still,
not even every transformation of this type will make sense as a doxastic change.
Our idea is that, in general, a belief upgrade comes by learning some (certain or
uncertain) information about the answer to some specific question.

There is a large literature on the semantics and pragmatics of questions, start-
ing with the classical work of Grice [17]. Here, we adopt Groenendijk’s approach
to questions-as-partitions [18]. Questions in a given language are in this view
partitions of the state space, such that each cell of the partition is definable by a
sentence in the language. In particular, a binary question is given by a two-cell
partition {A,¬A} definable by a sentence A, while a general question (“which of
the following is true...?”) may have more cells {A1, . . . , An}, each corresponding
to a possible answer Ai. As underlying languages, we consider the language of ba-
sic doxastic logic (with operators for “belief”) and its extension with conditional
belief operators, as in [10, 9, 5, 7, 6]. In addition, we use dynamic operators for
“learning” answers to questions: these operators are eliminable, but they provide
a compact way of expressing properties of dynamic belief revision.

In the “hard” sense, the action of “learning the correct answer” to a question
Q = {A1, . . . , An} restricts the state space to the cell A := Ai that contains

1 As shown in the Dynamic Epistemic Logic literature, this is not the case for multi-
agent upgrades, see e.g. [4, 3, 7, 6].

126 A. Baltag and S. Smets

the real state of the world; the plausibility relation and the valuation are corre-
spondingly restricted, while the real world is left the same. This operation (as a
possible semantics for the AGM revision operator T ∗A) is known as condition-
ing in the literature on Belief Revision (as a qualitative analogue of Bayesian
conditioning), and as update (or “public announcement”) in the Dynamic Epis-
temic Logic literature [8]. Intuitively, it represents the kind of learning in which
the agent becomes absolutely certain that the correct answer is A: she comes to
“know” that A was true, in an irrevocable, un-revisable way. Such learning can
never be undone: the deleted states can never be considered “possible” again.

However, one can also learn the answer to a question Q = {A1, . . . , An} in a
“softer” (and more realistic) sense of “learning”: one may come to believe that
the correct answer A := Ai is more plausible than the others; in addition, one
may come to rank the plausibility of the various other possible answers. This
means that what is “learned” is in fact a plausibility order on the cells of the
partition Q. The effect of this type of learning is that the order between states
in different cells Ai, Aj (i �= j) is changed (in accordance to the newly learned
plausibility relation on cells), while the order between states in the same cell
is kept the same. This is the obvious qualitative analogue of Jeffrey Condition-
ing. An example is the “radical” (or “lexicographic”) upgrade ⇑ A from [24, 9]:
the A-worlds are “promoted”, becoming more plausible than the non-A-worlds,
while within the two zones the old order is kept the same. This is a soft learning
of the answer to a binary question Q = {A,¬A}. Our setting can also capture
another type of doxastic transformation proposed in the literature: the “conser-
vative” upgrade ↑ A, promoting only the most plausible A-worlds (making them
the most plausible overall), and leaving everything else the same.

In practice, we may combine soft “Jeffreyan” learning with hard “Bayesian”
learning: while ranking some of the possible answers in their order of plausibility,
one may simultaneously come to exclude other answers as impossible. In prag-
matic terms: although receiving only soft information about the correct answer,
one may also learn in the hard sense that the correct answer is not one of the
answers to be excluded. So the most general notion of “learning the answer” to
a question Q = {A1, . . . , An} is an action that throws out (all the states lying
in) some of the cells of the partition, and imposes some (new) plausibility order
between (the states in) any two remaining cells Ai, Aj (i �= j), while leaving
unchanged the order between the states in the same cell.

Any such action of “learning an answer” to a question Q = {A1, . . . , An} can
thus be encoded as a plausibility order (or preorder) on some set {Ai1 , . . . , Aik}
of possible answers (a subset of the set of all possible answers {A1, . . . , An}).
We call this type of actions belief upgrades: they represent our proposal for a
general notion of “natural single-agent belief-revision event”. One can easily rec-
ognize them as a special case of the “doxastic action models” (or “doxastic event
models”), introduced (as ordinal-ranked models) in [2, 14] and (as qualitative
plausibility models) in [7, 6]: namely, the special case in which the preconditions
of every two events are mutually disjoint. But the important thing is the meaning
of this representation. The intended effect (as described in the paragraph above)

Learning by Questions and Answers 127

of this action on any initial plausibility model is a kind of lexicographic refine-
ment of the “old” total preorder by the new preorder. This can be recognized as a
special case (the single-agent, partitional case) of the Action Priority Rule intro-
duced in our previous work [7, 6] on multi-agent belief revision. While this move
was seen there as the natural generalization to a belief-revision-friendly setting
of the so-called “update product” from Dynamic Epistemic Logic [4, 3, 15], the
special case considered here is even more closely related to mainstream work in
Belief Revision. Indeed, it is a semantic counterpart of Nayak’s “Jeffryzation” of
belief revision [23], as expressed in the following quote: “(...) one of the morals we
have learnt from Richard Jeffrey’s classical work (...) is that in belief updating,
the representation of the belief state, the representation of the new information
and the result of the update should be of the same type.” ([23], page 361).

An upgrade is said to be “correct” if the believed answer is true: the actual
state belongs to the “most plausible cell” (according to the newly learnt plau-
sibility relation on possible answers). In the case of radical upgrades ⇑ A, this
means that the upgrade is “truthful”, i.e. A is true in the real world.

We are interested in iterated belief revision processes induced by sequences of cor-
rect upgrades. We formalize this in our notion of “correct” upgrade streams. A par-
ticular case is the one of repeated (correct) upgrades : the same (partial information
about the same) answer is repeatedly learnt in the same way, so the same transfor-
mation is iterated. The reason this is a non-superfluous repetition is that the learnt
information may be doxastic: it may refer to the agent’s own (conditional) beliefs,
which are subject to change during the process. Hence, the truth value of an an-
swermay change; as a consequence, itmaybenon-redundant to announce again the
same answer to the same question! This phenomenon is well-known in the multi-
agent case, see e.g. the Muddy Children Puzzle [16]. But, despite the existence of
Moore sentences [22] (e.g. “p is the case, but you don’t believe it!”), many authors
tend to think that the problem becomes trivial in the (introspective) single-agent
case: since the agent already knows what she believes and what not, it may appear
that whenever she learns a new information, she can separate its ontic content from
its (already known) doxastic part, and can thus simply learn a non-doxastic sen-
tence. This is indeed the case for a fixed initial model, but in general the process
of “eliminating the doxastic part” is highly complex and model-dependent: in dif-
ferent contexts, the same doxastic sentence may convey different information. And
we cannot simply disregard such sentences: new informationmay come “packaged”
in such a way that it explicitly refers to the agent’s beliefs in order to implicitly
convey important new information about reality, in a way that is highly context-
dependent. An example is the announcement: “You are wrong about p: whatever
you believe about (whether or not) p is false!” This announcement cannot be truth-
fully repeated, since (like a Moore sentence) it becomes false after being learnt.

Our counterexamples in this paper are of a similar nature, but with added
subtleties, designed to keep the announcement truthful after it was learned. They
decisively show that Introspection does not trivialize the problem of repeated
upgrades: even when applied on an initial finite model, a correct upgrade (with
the same true sentence) may be repeated ‘ad infinitum’, without ever reaching

128 A. Baltag and S. Smets

a fixed point of the belief-revision process! Finite models may keep oscillating,
changing cyclicly, and so do the agent’s conditional beliefs.

However, we also have some positive convergence results: when iterating cor-
rect upgrades (starting on a finite initial model), the agent’s simple (non-cond
itional) beliefs (as well as her knowledge) will eventually stabilize, reaching a
fixed point. Moreover, if we apply correct repeated upgrades with (the same) new
information refering only to simple (non-conditional) beliefs (i.e. we repeatedly
revise with the same sentence in basic doxastic logic), then the whole model al-
ways stabilizes after a finite number of repeated upgrades: so in this case even
the agent’s conditional beliefs reach a fixed point.

The above stabilization results form the main technical contribution of this
paper (besides the above-mentioned easy, but rather surprising and conceptu-
ally important, counterexamples); their proofs are non-trivial and are relegated
to the Appendix. These results are applicable in particular to the important case
of iterating (or repeating) truthful “radical” upgrades ⇑ A. In contrast (as our
second counterexample shows), even the simple beliefs may never stabilize when
repeating truthful “conservative” upgrades ↑ A. The reason for which the above
result doesn’t apply is that conservative upgrades, no matter how “truthful”,
can still be “deceiving” (i.e. fail to be “correct”).

2 Questions and Upgrades on Preferential Models

A (finite, single-agent) plausibility frame is a structure (S,≤), consisting of a
finite set S of “states” and a total preorder (i.e. a reflexive, transitive and “con-
nected”2 binary relation on S)≤⊆ S×S. The usual reading of s ≤ t is that “state
s is at least as plausible as state t”. We write s < t for the “strict” plausibility
relation (s is more plausible than t): s < t iff s ≤ t but t �≤ s. Similarly, we write
s ∼= t for the “equi-plausibility” (or indifference) relation (s and t are equally
plausible): s ∼= t iff both s ≤ t and t ≤ s. The “connectedness” assumption is not
actually necessary for any of the results in this paper3, but it is convenient to
have, as it simplifies the definition of (conditional) beliefs. For infinite models,
it is usually assumed that the relation ≤ is well-founded, but in the finite case
(the only one of concern here) this condition is automatically satisfied.

A (pointed) plausibility model is a structure S = (S,≤, ‖·‖, s0), consisting of a
plausibility frame (S,≤) together with a valuation map ‖·‖ : Φ → P(S), mapping
every element p of some given set Φ of “atomic sentences” into a set of states
‖p‖ ⊆ S, and together with a designated state s0 ∈ S, called the “actual state”.

Knowledge, Belief and Conditional Belief. Given a plausibility model S,
and sets P,R ⊆ S, we put: best P = Min≤P := {s ∈ P : s ≤ s′ for all s′ ∈ P},
best := bestS, KP := {s ∈ S : P = S}, BP := {s ∈ S : best ⊆ P},
BRP := {s ∈ S : bestR ⊆ P}.
2 A binary relation R ⊆ S×S is called “connected” (or “complete”) if for all s, t ∈ S we

have either sRt or tRs. A connected (pre)order is usually called a “total” (pre)order.
3 And in fact for multi-agent frames it needs to be replaced by “local connectedness”,

see [7, 6].

Learning by Questions and Answers 129

Interpretation. The states of S represent possible descriptions of the real world.
The correct description of the world is given by the “actual state” s0. Intuitively,
our (implicit) agent considers a description s as “possible” iff s ∈ S. The atomic
sentences p ∈ Φ represent “ontic” (i.e. non-doxastic) facts. The valuation tells
us which facts hold in which worlds. The plausibility relations ≤ capture the
agent’s (conditional) beliefs about the world: if the agent learnt that the real
state is either s or t, she would believe (conditional on this information) that it
was the most plausible of the two. best P is the set of “most plausible” states
satisfying P , while KP , BP , BRP represent respectively the propositions “P is
known”, “P is believed” and “P is believed conditional on R”. So ‘‘knowledge”
corresponds to truth in all the worlds that the agent considers as “possible”.
Belief corresponds to truth in all the “most plausible” worlds ; while conditional
belief given a condition R corresponds to truth in all the most plausible R-
worlds. So conditional beliefs BR describe the agent’s contingency plans for belief
revision in case she learns R. To quote J. van Benthem [9], conditional beliefs
“pre-encode” the agent’s potential belief changes. Note that the sets KP , BP ,
BRP are always equal either to the empty set ∅ or to the whole state space S;
this reflects our implicit Introspection assumption: the agent knows what she
knows (and what she believes) and what she doesn’t know (or doesn’t believe).

Example 1. Consider a pollster (Charles) with the following beliefs about how
a voter (Mary) will vote:

�� ��

�� !s : r ��
�� ��

�� !t : ��
�� ��

�� !w : d

In the representation, we skip the loops and the arrows that can be obtained by
transitivity. There are three possible worlds s (in which Mary votes Republican),
w (in which she votes Democrat) and t (in which she doesn’t vote). We assume
there are no other options: i.e. there are no other candidates and it is impossible
to vote for both candidates. The atomic sentences are r (for “voting Republican”)
and d (for “voting Democrat”). The valuation is given in the diagram: ‖r‖ = {s},
‖d‖ = {w}. We assume the real world is s, so in fact Mary will vote Republican!
But Charles believes that she will vote Democrat (d); and in case this turns out
wrong, he’d rather believe that she won’t vote (¬d∧¬r) than accepting that she
may vote Republican: so t is more plausible than s.

Doxastic Propositions. A doxastic proposition is a map P assigning to each
model S some set PS ⊆ S of states in S. We write s |=S P, and say that P is
true at s in model S, iff s ∈ PS. We skip the subscript and write s |= P when the
model is fixed. We say that P is true in the (pointed) model S, and write S |= P,
if it is true at the “actual state” s0 in the model S (i.e. s0 |=S P). We denote by
Prop the family of all doxastic propositions. In particular, the “always true” �
and “always false” ⊥ propositions are given pointwise by ⊥S := ∅,�S := S. For
each atomic sentence p there exists a corresponding proposition p, given by pS =
‖p‖S. All the Boolean operations on sets can be lifted pointwise to operations on
Prop: negation (¬P)S := S\PS, conjunction (P∧R)S := PS∩RS etc. Similarly,
we can define pointwise the “best” operator, a special doxastic proposition best

130 A. Baltag and S. Smets

and the epistemic and (conditional) doxastic modalities : (bestP)S := best (PS),
bestS := bestS, (KP)S := KPS etc. Finally, the relation of entailment P |= R
is given pointwise by set-inclusion: P |= R iff PS ⊆ RS for all S.

Questions and Answers. A question is a (finite) family Q = {A1, . . . ,An} of
exhaustive and mutually disjoint propositions, i.e.

∨
i=1,n Ai = � and Ai∧Aj =

⊥ for all i �= j. Every question Q induces a partition {A1
S, . . . ,A

n
S} on any model

S. Any of the sets Ai is a possible answer to question Q. The correct answer to
Q in a pointed model S is the unique true answer Ai (i.e. such S |= Ai).
Example 1, continued: In the above example, the relevant question is “how
will Mary vote?” This can be represented as a question Q = {r,d,¬r∧¬d}. An-
other relevant question is “will Mary vote Democrat?”, given by Q′ = {d,¬d}.

Learning the Answer with Certainty: Updates. The action by which the
agent learns with absolute certainty the correct answer A = Ai to a question
Q is usually denoted by !A. This operation is known as ‘update” in Dynamic
Epistemic Logic, and as “conditioning” in the Belief Revision literature (where
the term “update” is used for a different operation, the Katzuno-Mendelzon
update [21]). This action deletes all the non-A-worlds from the pointed model,
while leaving everything else the same. The update !A is executable on a pointed
model S iff it is truthful, i.e. S |= A. So formally, an update !A is a partial
function that takes as input any pointed model S = (S,≤, ‖ ‖, s0) satisfying A
and returns a new pointed model !A(S) = (S′,≤′, ‖ ‖′, s′0), given by: S′ = AS,
s ≤′ t iff s ≤ t and s, t ∈ S′, ‖p‖′ = ‖p‖ ∩ S′, for all atomic p, and s′0 = s0.

Example 2. Consider the case in which Charles learns for sure that Mary will
not vote Democrat : this is the update !(¬d), whose result is the updated model

�� ��

�� !s : r ��
�� ��

�� !t :

Learning uncertain information: Upgrades. If the agent only learns some
uncertain information about the answer to a question Q, then what is actually
learnt is a plausibility relation ≤ on a subset A ⊆ {A1, . . . ,An} of the set of all
possible answers. Intuitively, the agent learns that the correct answer belongs
to A, and that some answers are more plausible than others. We encode this
as a plausibility frame (A,≤), called a belief “upgrade”, whose “worlds” A ∈
A are mutually disjoint propositions. This is a special case of “event models”
[4, 3, 2, 14, 7, 6] (in which every two events have mutually disjoint preconditions).

A belief upgrade α = (A,≤) is executable on a model S if the disjunction of all
its answers is true (S |=

∨
A). As an operation on (pointed) models, the upgrade

α = (A,≤) is formally defined to be a (partial) function α taking as input any
model S = (S,≤, ‖ ‖, s0) satisfying

∨
A, and returning a new model

α(S) = (S′,≤′, ‖ ‖′, s′0),

given by: S′ = (
∨
A)S; s ≤′ t iff either s ∈ Ai, t ∈ Aj for some answers such that

Ai < Aj , or else s ≤ t and s, t ∈ Ai for the same answer Ai; ‖p‖′ = ‖p‖ ∩ S′,

Learning by Questions and Answers 131

for all atomic p; and s′0 = s0. So this operation deletes all the worlds not sat-
isfying any of the answers in the list A, and “promotes” the worlds satisfying
more plausible answers, making them more plausible than the worlds satisfying
less plausible answers ; in rest, everything else stays the same.

It is easy to see that the model α(S) obtained by applying a belief upgrade
α = (A,≤) to an initial model S is precisely the anti-lexicographic product “up-
date” S⊗ α of the state model S and the event model (A,≤), as prescribed by
the Action Priority Rule in [7, 6].

Important Special Case: Standard Upgrades. An upgrade (A,≤) is “stan-
dard” if the preorder ≤ is actually an order ; in other words, if the plausibility
relation between any two distinct answers Ai �= Aj in A is strict (i.e. Ai �∼= Aj).

Lemma 1. Every belief upgrade is equivalent to a standard upgrade: for every
upgrade α there is a standard upgrade α′ s. t. α(S) = α′(S) for all models S.

Standard Form. So we can assume (and from now we will assume) that all our
upgrades are standard. This allows us to denote them using a special notation,
called standard form: (A1, . . . ,An) represents the upgrade having {A1, . . . ,An}
as its set of answers and in which the order is A1 < A2 < . . . < An.

Standard Upgrade Induced by a Propositional Sequence. Any sequence
P1, . . . ,Pn of propositions induces a standard upgrade [P1, . . . ,Pn], given by

[P1, . . . ,Pn] := (P1,¬P1 ∧P2, . . . ,
∧

1≤i≤n−1

¬Pi ∧Pn).

Special Cases: updates, radical upgrades, conservative upgrades.
(1) Updates: !P is a special case of upgrade: !P = [P] = (P).

(2) Radical Upgrades: An operation ⇑ P called “radical upgrade” (or “lex-
icographic upgrade”) was introduced by various authors [23], [24], [9], as one
of the natural ways to give a “dynamic” semantics to the AGM belief revision
operator [1]. This operation can be described as “promoting” all the P-worlds
so that they become “better” (more plausible) than all ¬P-worlds, while keeping
everything else the same: the valuation, the actual world and the relative order-
ing between worlds within either of the two zones (P and ¬P) stay the same.
Radical upgrade is a special case of upgrade:

⇑ P = [P,�] = [P,¬P] = (P,¬P).

(3) Conservative Upgrades: Following [12, 24, 9], consider another operation
↑ P, called “conservative upgrade”. This corresponds to “promoting” only the
“best” (most plausible) P-worlds, so that they become the most plausible overall,
while keeping everything else the same. This operation seems a more appropriate
semantics for AGM revision, since it performs the “minimal” model-revision that
is forced by believing P. It is also a special case of our “upgrades”:

↑ P =⇑ (bestP) = [bestP,�] = (bestP,¬bestP).

132 A. Baltag and S. Smets

Correctness. A standard upgrade (A1, . . . ,An) is said to be correct with re-
spect to a pointed model S if its most plausible answer is correct ; i.e. if A1 is
true in the actual state: S |= A1. A correct upgrade induces a true belief with
respect to its underlying question: the agent comes to believe the correct answer.

Correctness and Truthfulness. An update !P, a radical upgrade ⇑ P or a
conservative upgrade ↑ P are said to be truthful in a pointed model S if S |= P. It
is easy to see that an update !P, seen as an upgrade (P), is correct (with respect
to S) iff it is truthful. Similarly, a radical upgrade ⇑ P, seen as an upgrade
(P,¬P), is correct iff it is truthful. However, for conservative upgrades, the two
notions differ: seen as an upgrade (bestP,¬bestP), ↑ P is correct iff S |= bestP
(which is not equivalent to S |= P). As a result, correctness of a conservative
upgrade implies truthfulness, but the converse is false. So a truthful conservative
upgrade can still be “deceiving” (i.e. incorrect)!

Examples. In Example 1, suppose that a trusted informer tells Charles that
Mary will not vote Democrat. Charles is aware that the informer is not infalli-
ble: so this is not an update! Nevertheless, if Charles has a strong trust in the
informer, then this learning event is a radical upgrade ⇑ (¬d), whose result is:

�� ��

�� !w : d ���� ��

�� !s : r ��
�� ��

�� !t :

Now, Charles believes that Mary will not vote at all (and so that she won’t vote
Democrat)! But if he later learned that this is not the case, he’d still keep his new
belief that she won’t vote Democrat (so he’d conclude she votes Republican).

Contrast this situation with the case in which Charles hears a rumor that
Mary will not vote Democrat. Charles believes the rumor, but only barely: if he
later needs to revise his beliefs, he’d give up immediately his belief in the rumor.
This is a conservative upgrade ↑ ¬d of the model in Example 1, resulting in:

�� ��

�� !s : r ��
�� ��

�� !w : d ��
�� ��

�� !t :

Now, Charles believes Mary will not vote, but if he later learned this was not the
case, he’d dismiss the rumor and revert to believing that Mary votes Democrat.

Operations on Upgrades: Dynamic Modalities and Sequential Com-
position. Given an upgrade α, we can define a dynamic upgrade modality [α],
associating to any doxastic proposition P another proposition [α]P, given by

([α]P)S := Pα(S).

Since upgrades are functions, we can compose them functionally α ◦ α′ or rela-
tionally α;α′ (=α′ ◦ α). The resulting function is again an upgrade:

Proposition 2. Upgrades are closed under composition.

The Logic of Upgrades and Conditional Beliefs. We can use the standard
form to introduce a nice syntax for the logic of upgrades and conditional beliefs:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Bϕϕ | [[ϕ, . . . , ϕ]]ϕ

Learning by Questions and Answers 133

Here [[ϕ1, . . . , ϕn]] denotes the dynamic modality for the standard upgrade
[ϕ1, . . . , ϕn]. This logic can be embedded in the logic in [7, 6]. The semantics is de-
fined compositionally, in the obvious way: to each sentence ϕ we associate a dox-
astic proposition ‖ϕ‖, by induction on the structure of ϕ, e.g. ‖Bϕψ‖ = B‖ϕ‖‖ψ‖
etc. The operators K, [!ϕ] and [⇑ ϕ] can be defined in this logic. There exists a
complete axiomatization (to be presented in an extended version of this paper).

3 Iterated Upgrades

Since in this paper we are concerned with the problem of long-term learning
via iterated belief revision, we need to look at sequences of upgrades. We are
particularly interested in learning true information, and so in iterating correct
upgrades. Our main problem is whether or not the iterated revision process in-
duced by correct upgrades converges to a stable set of (conditional) beliefs.

An upgrade stream α is an infinite sequence of upgrades (αn)n∈N . An up-
grade stream is definable in a logic L if for every n all the answers of αn are
propositions that are definable in L. A repeated upgrade is an upgrade stream of
the form (α, α, . . .), i.e. one in which αn = α for all n ∈ N .

Any upgrade stream induces a function mapping every model S into a (possibly
infinite) sequence α(S) = (Sn) of models, defined inductively by:

S0 = S, and Sn+1 = αn(Sn), if αn is executable on Sn.

The upgrade stream α is said to be executable on a pointed model S if every
αn is executable on Sn (for all n ∈ N). Similarly, α is said to be correct with
respect to S if αn is correct with respect to Sn, for every n ∈ N . If an upgrade
stream is an update stream (i.e. one consisting only of updates), or a radical
upgrade stream (consisting only of radical upgrades), or a conservative upgrade
stream, then we call it truthful if every αn is truthful with respect to Sn.

We say that an upgrade stream α stabilizes a (pointed) model S if the process
of model-changing induced by α reaches a fixed point; i.e. there exists some
n ∈ N such that Sn = Sm for all m > n.

We say α stabilizes the agent’s (simple, non-conditional) beliefs on the model
S if the process of belief-changing induced by α on S reaches a fixed point; i.e.
if there exists some n ∈ N such that Sn |= BP iff Sm |= BP, for all m > n and
all doxastic propositions P. Equivalently, iff there exists some n ∈ N such that
bestSn = bestSm for all m > n.

Similarly, we say α stabilizes the agent’s conditional beliefs on the model S
if the process of conditional-belief-changing induced by α on S reaches a fixed
point; i.e. if there exists n ∈ N such that Sn |= BRP iff Sm |= BRP, for all
m > n and all doxastic propositions P,R. Equivalently, iff there exists n ∈ N
such that (bestP)Sn = (bestP)Sm for all m > n and all doxastic propositions P.

Finally, α stabilizes the agent’s knowledge on the model S if the knowledge-
changing process induced by α on S reaches a fixed point; i.e. if there exists
n ∈ N such that Sn |= KP iff Sm |= KP for all m > n and all propositions P.
Equivalently, iff there exists n ∈ N such that Sn = Sm for all m > n.

134 A. Baltag and S. Smets

Lemma 3. An upgrade stream stabilizes a pointed model iff it stabilizes the
agent’s conditional beliefs on that model.

Lemma 4. If an upgrade stream stabilizes the agent’s conditional beliefs then
it also stabilizes her knowledge and her (simple) beliefs.

Proposition 5. Every upgrade stream stabilizes the agent’s knowledge.

Corollary 6. [8] Every executable update stream stabilizes the model (and thus
it stabilizes the agent’s knowledge, beliefs and conditional beliefs).

The analogue of Corollary 6 is not true for arbitrary upgrade streams, not even
for correct upgrade streams. It is not even true for repeated correct upgrades:

Counterexample: In Example 1, suppose that the trusted informer tells Charles
the following true statement A: “If you’d truthfully learn that Marry won’t vote
Republican, then your resulting belief about whether or not she votes Democrat
would be wrong”. So A is the sentence r ∨ (d ∧ ¬B¬rd) ∨ (¬d ∧ B¬rd). This
radical upgrade ⇑ A is truthful (since A is true in s), and so correct, yielding

�� ��

�� !w : d ���� ��

�� !s : r ��
�� ��

�� !t :

In this model, A is true in s (and in w), so another correct upgrade ⇑ A yields:
�� ��

�� !t : ��
�� ��

�� !w : d ���� ��

�� !s : r

Yet another correct upgrade with the same proposition produces
�� ��

�� !w : d ��
�� ��

�� !t : ���� ��

�� !s : r

then another correct upgrade ⇑ A gets us back to the previous model :
�� ��

�� !t : ��
�� ��

�� !w : d ���� ��

�� !s : r

Clearly from now on the last two models will keep reappearing, in an endless
cycle: hence in this example, conditional beliefs never stabilize! But note that
the simple beliefs are the same in the last two models: so the set of simple (non-
conditional) beliefs stays the same from now on. This is not an accident, but a
symptom of a more general converge phenomenon:

Theorem 7. Every correct upgrade stream stabilizes the agent’s beliefs.
This is the main result of this paper (proved in the Appendix), and it has a

number of important consequences.

Corollary 8. Every correct repeated upgrade α, α, . . . , α, . . . whose answers are
definable in doxastic-epistemic logic (i.e. the language of simple belief and knowl-
edge operators) stabilizes every model, and thus stabilizes the conditional beliefs.

Corollary 9. Every truthful radical upgrade stream (⇑ Pi)i∈N stabilizes the
agent’s beliefs.

Corollary 10. Every repeated stream of truthful radical upgrades ⇑ ϕ, . . . ,⇑ ϕ
of a sentence definable in doxastic-epistemic logic stabilizes every model (with

Learning by Questions and Answers 135

respect to which it is truthful), and thus stabilizes the agent’s conditional beliefs.
The (analogues of the) last two Corollaries fail for conservative upgrades :

Counterexample: In the situation S from Example 1, suppose Charles hears
a rumor B saying that: “Either Mary will vote Republican or else your beliefs
about whether or not she votes Democrat are wrong”. So B is the sentence r ∨
(d∧¬Bd)∨ (¬d∧Bd). The conservative upgrade ↑ B is truthful : s ∈ BS. (But
this is not a correct upgrade: s �∈ (bestB)S = {t}.) The result of the upgrade is:

�� ��

�� !s : r ��
�� ��

�� !w : d ��
�� ��

�� !t :

Again, the sentence B is true in the actual state s (as well as in w), so the rumor
↑ B can again be truthfully spread, resulting in... the original model once again:

�� ��

�� !s : r ��
�� ��

�� !t : ��
�� ��

�� !w : d

So from now on, the two models (that support opposite beliefs !) will keep reap-
pearing, in an endless cycle: the agent’s beliefs will never stabilize!

4 Conclusions

This paper is an investigation of the long-term behavior of iterated belief revision
with higher-level doxastic information. We propose a general notion of “correct
belief upgrade”, based on the idea that non-deceiving belief revision is induced by
learning (partial, but true information about) answers to questions. The surpris-
ing conclusion of our investigation is that iterated revision with doxastic infor-
mation is highly non-trivial, even in the single-agent case. More concretely, the
revision is not guaranteed to reach a fixed point, even when indefinitely repeat-
ing the same correct upgrade: neither the models, nor the conditional beliefs are
necessarily stabilized. But we also have some important stabilization results : both
knowledge and beliefs are eventually stabilized by iterated correct upgrades; more-
over, both the models and the conditional beliefs are stabilized by repeated cor-
rect upgrades with non-conditional information (expressible in doxastic-epistemic
logic). These positive results have a wide scope, being applicable in particular
to truthful radical upgrades (as well as to “updates”). However, their range
of applicability is limited by the existence of “truthful-but-deceiving” (incorrect)
upgrades : in particular, the repetition of the conservative upgrade in our last
counterexample leads to infinite cycles of non-stabilizing beliefs.

Acknowledgments. The authors give special thanks to J. van Benthem for
stimulating discussions and seminal ideas. We thank D. Mackinson for his in-
sightful commentary on the second’s author’s LSE presentation of preliminary
work leading to this paper. We thank to an anonymous WOLLIC referee for
useful references. The research of the first author was partially supported by the
Netherlands Organization for Scientific Research, grant number B 62-635, which
is herewith gratefully acknowledged. The second author acknowledges the sup-
port by the University of Groningen via a Rosalind Franklin research position.

136 A. Baltag and S. Smets

References

[1] Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. JSL 50, 510–530 (1985)

[2] Aucher, G.: A combined system for update logic and belief revision. Master’s
thesis, ILLC, University of Amsterdam, Amsterdam, the Netherlands (2003)

[3] Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139, 165–224
(2004); Knowledge, Rationality & Action 1–60

[4] Baltag, A., Moss, L.S., Solecki, S.: The logic of common knowledge, public an-
nouncements, and private suspicions. In: Gilboa, I. (ed.) Proc. of TARK 1998, pp.
43–56 (1998)

[5] Baltag, A., Smets, S.: Conditional doxastic models: a qualitative approach to
dynamic belief revision. ENTCS 165, 5–21 (2006)

[6] Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts in Logic and
Games 4, 9–32 (2008)

[7] Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision.
Texts in Logic and Games 3, 9–58 (2008)

[8] van Benthem, J.F.A.K.: One is a lonely number. In: Koepke, P., Chatzidakis,
Z., Pohlers, W. (eds.) Logic Colloquium 2002, pp. 96–129. ASL and A.K. Peter,
Wellesley (2006)

[9] van Benthem, J.F.A.K.: Dynamic logic of belief revision. JANCL 17(2), 129–155
(2007)

[10] Board, O.: Dynamic interactive epistemology. Games and Economic Behaviour 49,
49–80 (2002)

[11] Booth, R., Meyer, T.: Admissible and restrained revision. Journal of Artificial
Intelligence Research 26, 127–151 (2006)

[12] Boutilier, C.: Iterated revision and minimal change of conditional beliefs.
JPL 25(3), 262–305 (1996)

[13] Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelli-
gence 89, 1–29 (1997)

[14] van Ditmarsch, H.P.: Prolegomena to dynamic logic for belief revision. Syn-
these 147, 229–275 (2005)

[15] van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic Epistemic Logic.
Synthese Library, vol. 337. Springer, Heidelberg (2007)

[16] Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

[17] Grice, P.: Logic and conversation. In: Studies in the Ways of Words. Harvard
University Press, Cambridge (1989)

[18] Groenendijk, J., Stokhof, M.: Questions. In: van Benthem, J., ter Meulen, A. (eds.)
Handbook of Logic and Language, pp. 1055–1124. Elsevier, Amsterdam (1997)

[19] Grove, A.: Two modellings for theory change. JPL 17, 157–170 (1988)
[20] Halpern, J.Y.: Reasoning about Uncertainty. MIT Press, Cambridge (2003)
[21] Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base

and revising it. Cambridge Tracts in Theoretical Computer Science, pp. 183–203
(1992)

[22] Moore, G.E.: A reply to my critics. In: Schilpp, P.A. (ed.) The Philosophy of G.E.
Moore. The Library of Living Philosophers, vol. 4, pp. 535–677. Northwestern
University, Evanston (1942)

[23] Nayak, A.C.: Iterated belief change based on epistemic entrenchment. Erkennt-
nis 41, 353–390 (1994)

Learning by Questions and Answers 137

[24] Rott, H.: Conditionals and theory change: revisions, expansions, and additions.
Synthese 81, 91–113 (1989)

[25] Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states.
In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and
Statistics, vol. II, pp. 105–134 (1988)

[26] Veltman, F.: Defaults in update semantics. JPL 25, 221–261 (1996)

Appendix: Proofs

Proof of Lemma 1: We change the question A to a different question A′,
consisting of all the disjunctions of equi-plausible answers from A. We change
the answer, taking the order induced on A′:

∨
i∈I Ai <′

∨
j∈J Aj iff Ai < Aj

for some i ∈ I, j ∈ J .

Proof of Prop 2: Given two standard upgrades α = (A1, . . . ,An) and α′ =
(B1, . . . ,Bm), the composition α;α′ is the upgrade having {Ai ∧ [Ai]Bj : i =
1, n, j = 1,m} as set of answers, endowed with the anti-lexicographic order:
(Ai ∧ [Ai]Bj) < (Ak ∧ [Ak]Bl) iff either j < l, or j = l and i < k.

Proof of Lemma 3: One direction is obvious: if the model stabilizes, then so
do conditional beliefs. The other direction: suppose conditional beliefs stabilize
at stage n. Then we have Sn = Sm (else, if t ∈ Sn \ Sm then Sm |= B{t}⊥
but Sn �|= B{t}⊥, contradicting the stabilization of conditional beliefs at n). For
s, t ∈ Sn = Sm, we have the equivalencies: s < t in Sn iff Sn |= B{s,t}¬{t} iff
Sm |= B{s,t}¬{t} iff s < t in Sm.

Proof of Lemma 4: The conclusion follows from the observation that knowl-
edge and simple belief are definable in terms of conditional beliefs: KP = B¬PP,
BP = B�P.

Proof of Prop. 5: α(S) ⊆ S for every upgrade (A,≤) and every model S. So
S0 ⊇ S1 ⊇ · · ·Sn ⊇ · · · is an infinite descending chain of finite sets, hence it
must stabilize: there exists n such that Sn = Sm for all m > n.

Proof of Cor. 6: An update changes only the set of possible states. By Prop.
5, the set of states stabilizes at some finite stage, so the model itself stabilizes
at that stage.

To prove Theorem 7, we first fix the setting and prove some preliminary
results.

Let α = (αn)n∈N be an upgrade stream in standard form αn = (A1
n, . . . ,A

mn
n),

and let A(n) := A1
n be the “best” (most plausible) answer of αn. Let S =

(S,≤, ‖ · ‖, s0) be a model, and let (Sn)n∈N be the sequence of pointed models
Sn = (Sn,≤n, ‖ · ‖, s0) defined by applying in turn each of the upgrades in α:

S0 = S, and Sn+1 = αn(Sn).

In the following we assume α is correct with respect to S, i.e. s0 ∈ A(n)Sn

for all n ∈ N .

138 A. Baltag and S. Smets

Lemma 11. For all n ∈ N we have s <n t for all s ∈
⋂

i<n A(i)Si and all
t ∈ Sn \

(⋂
i<n A(i)Si

)
.

Proof. This is by induction on n: for n = 0, it is trivially true (since
⋂

i<0 A(i)Si =
∅). For the induction step: we assume it true for n. After applying αn to Sn, we
have (by the definition of an upgrade) that

s <n+1 w for all s ∈ A(n)Sn and all w ∈ Sn+1 \A(n)Sn

(since all A(n)-worlds get “promoted”) and also that

s <n+1 t for all s ∈ A(n)Sn ∩
(⋂
i<n

A(i)Si

)
and all t ∈ A(n)Sn \

(⋂
i<n

A(i)Si

)
(because of the induction assumption together with the fact that inside the
A(n)Sn -zone the old order ≤n is preserved by applying αn). Putting these two
together, and using the transitivity of <n+1, we obtain the desired conclusion.

Lemma 12. For all n ∈ N , we have bestSn ⊆
⋂

i<n A(i)Si .

Proof. Suppose towards a contradiction that, for some n, there is some state
t ∈ bestSn such that t �∈

⋂
i<n A(i)Si . By the “correctness” assumption, we

have s0 ∈ A(i)Si for all i, so s0 ∈
⋂

i<n A(i)Si . By Lemma 11, s0 <n t, which
contradicts with t ∈ bestSn.

Lemma 13. For all n ∈ N , we have bestSn = Min≤n

(⋂
i<n A(i)Si

)
.

Proof. This follows immediately from the previous Lemma, together with the
definition of bestSn and of Min≤nP .

Lemma 14. There exists a number n0 s. t.
⋂

i<n0
A(i)Si =

⋂
i<m A(i)Si for all

m ≥ n0.

Proof. The sequence S = S0 ⊇ A(0)S0 ⊇ A(0)S0 ∩A(1)S1 ⊇ · · ·
⋂

i<n A(i)Si ⊇
· · · is an infinite descending sequence of finite sets, so it must stabilize at some
stage n0.

Proof of Theorem 7: By definition of upgrades (and by A(m) being the most
plausible answer of αm), we know that for all m, the order inside the A(m)Sm -
zone is left the same by αm. Let now n0 be as in Lemma 14. So we must have⋂

i<n0
A(i)Si ⊆ A(m)Sm , for all m ≥ n0. Hence, the order inside

⋂
i<n0

A(i)Si

is left the same by all future upgrades αm, with m ≥ n0. As a consequence, we
have:

Min≤n0

(⋂
i<n0

A(i)Si

)
= Min≤m

(⋂
i<n0

A(i)Si

)
for all m ≥ n0.

This, together with the previous two Lemmas, gives us that:

bestSn0=Min≤n0

(⋂
i<n0

A(i)Si

)
=Min≤m

(⋂
i<n0

A(i)Si

)
=Min≤m

(⋂
i<m

A(i)Si

)
=bestSm

for all m ≥ n0. So the sequence of most plausible states stabilizes at n0.

Learning by Questions and Answers 139

Proof of Corollary 8: Suppose we have a repeated upgrade α, α, . . ., where
α = [ϕ1, . . . , ϕk] is such that all sentences ϕi belong to doxastic-epistemic logic.
Putting together Proposition 5 and Theorem 7, we know that both the knowledge
(the set of all states) and the beliefs (the set of most plausible states) stabilize:
there exists some n0 such that Sn0 = Sm and bestSn0 = bestSm for all m > n0.
We also know that the valuation is stable. Using these (together with the full
introspection of knowledge and beliefs), we can check (by induction on ϕ) that,
for every (single-agent) doxastic-epistemic sentence ϕ, we have ‖ϕ‖Sn0

= ‖ϕ‖Sm

for all m > n0. (Here, ‖ϕ‖S is the interpretation of ϕ in model S, i.e. the set
{s ∈ Sn : s |=Sn ϕ}.) So the interpretations of all the answers ϕi stabilize at
stage n0. Hence (by the definition of the model transformation induced by α),
applying α after this stage will not produce any changes.

Proofs of Corollaries 9 and 10: These follow immediately from Theorem 7
and Corollary 8, together with the fact that a radical upgrade is correct iff it is
truthful.

First-Order Linear-Time Epistemic Logic
with Group Knowledge:

An Axiomatisation of the Monodic Fragment

Francesco Belardinelli and Alessio Lomuscio

Department of Computing
Imperial College London, UK

{F.Belardinelli,A.Lomuscio}@imperial.ac.uk

Abstract. We investigate quantified interpreted systems, a computa-
tionally grounded semantics for a first-order temporal epistemic logic
on linear time. We report a completeness result for the monodic frag-
ment of a language that includes LTL modalities as well as distributed
and common knowledge. We exemplify possible uses of the formalism by
analysing message passing systems, a typical framework for distributed
systems, in a first-order setting.

1 Introduction

Propositional modal logics to reason about knowledge and time have been thor-
oughly investigated by researchers in artificial intelligence both as regards their
theoretical properties (completeness, decidability, complexity) [7,9], as well as
for the specification and verification of multi-agent systems [4,28].

These temporal epistemic logics have been explored in several directions. In
one line of research, epistemic modalities have been added to represent group
knowledge such as distributed and common knowledge [8,10]. In another one,
the temporal fragment has been modified according to different models of time
(e.g., linear or branching, discrete or continuous) [16,18]. In yet another line,
temporal epistemic logic has been studied at the first order [1,15].

In this paper we extend a combination of epistemic and temporal logic to the
predicate level. We provide this language with a computationally grounded se-
mantics [27] given in terms of quantified interpreted systems [1,2], and we present
a complete axiomatisation of the monodic fragment of this logic, where at most
one free variable appears in the scope of any modal operator. Finally, we apply
this formalism to the modeling of message passing systems, a typical framework
in distributed systems [17,4].

Our starting point is a number of results by Hodkinson, Wolter, and Za-
kharyaschev, among others, regarding the axiomatisability [22,25], decidability
[15,24], and complexity [12,13] of first-order modal logics, including both posi-
tive [11,21] and negative results [14,23,26]. Specifically, we prove completeness
for our first-order temporal epistemic logic via quasimodels. These structures

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 140–154, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

First-Order Linear-Time Epistemic Logic with Group Knowledge 141

have been used in [15] to prove decidability for monodic fragments of first-order
temporal logic (FoTL) on a variety of flows of time. These investigations were
further pursued in [14], where branching flows of time are analyzed, and in [11],
which deals with the packed fragment of FoTL. In [12,13] the complexity of the
decision problem for a number of monodic fragments of FoTL is considered.

As regards general first-order modal logic, the decidability of monodic frag-
ments has been investigated in [24]. In [26] it is proved that first-order epistemic
logic with common knowledge is not axiomatisable. However, in [23] it is shown
that its monodic fragment is. Finally, this paper relies on results in [22,25]. In
[25] the authors present a complete axiomatisation for the monodic fragment of
FoTL on the naturals. In [22] we have a similar result for a variety of first-order
epistemic logics with common knowledge. Note that none of these articles uses
interpreted systems [4,19] as the underlying semantics, as we do here.

Our motivation for this contribution comes from an interest in first-order tem-
poral epistemic formalisms to model high-level properties of multi-agent systems
(MAS). While temporal epistemic logics are well understood at the propositional
level, their usefulness has been demonstrated in a number of applications, and
model checking tools have been developed for them [6,20], still we believe there
is a growing need in web-services, security, as well as other areas, to extend these
languages to the first order. As preliminary contributions to this project, in [2] we
introduced a “static” version of quantified interpreted systems to model a first-
order epistemic formalism. This was then extended to the temporal dimension in
[1]. Differently from these previous works, here we explicitly assume linear-time
operators and the natural numbers as the flow of time. Both features are crucial
for applications, but they also increase the complexity of the formalism.

Scheme of the paper. In Section 2 we introduce the first-order temporal
epistemic language Lm, for a set A = {1, . . . ,m} of agents, and in Section 3 we
provide it with a semantics in terms of quantified interpreted systems and present
its monodic fragment. In Section 4 we explore its expressive power in specifying
message passing systems. In Sections 5 and 6 we introduce an axiomatisation for
the monodic fragment of Lm and prove its completeness. We present detailed
proofs in Appendix A.

2 Syntax

The first-order temporal epistemic language Lm contains individual variables
x1,x2,. . ., individual constantsc1,c2, . . ., and n-ary predicative lettersPn

1,P
n
2,. . .,

for n ∈ N, the propositional connectives ¬ and →, the universal quantifier ∀, the
temporal operators © and U , the epistemic operators Ki, for i ∈ A, D, and C.
The only terms t1, t2, . . . in Lm are individual variables and constants.

Definition 1. Formulas in Lm are defined in the BN form as follows:

φ ::= P k(t1, . . . , tk) | ¬ψ | ψ → ψ′ | ∀xψ | ©ψ | ψUψ′ | Kiψ | Dψ | Cψ

The formulas ©φ and φUφ′ are read as “φ holds at the next step” and “φ′

will hold and φ is the case until that moment”. The formula Kiφ represents

142 F. Belardinelli and A. Lomuscio

“agent i knows φ”, while formulas Dφ and Cφ respectively mean “φ is distributed
knowledge” and “φ is common knowledge” in the group A of agents.

We define the symbols ∧, ∨, ↔, ∃, G (always in the future), F (some time in
the future) as standard. Further, Eφ =

∧
i∈AKiφ, and for ! equal to E or ©,

!kφ is defined as follows for k ∈ N: !0φ = φ and !k+1φ = !!kφ.
By φ[y] we mean that y = y1, . . . , yn are all the free variables in φ; while

φ[y/t] is the formula obtained by substituting simultaneously some, possibly all,
free occurrences of y in φ with t = t1, . . . , tn, renaming bounded variables.

3 Quantified Interpreted Systems

In this section we present a dynamic version of the “static” quantified interpreted
systems in [2] by assuming the natural numbers N as the underlying flow of time.
Specifically, for each agent i ∈ A in a multi-agent system we introduce a set Li

of local states li, l
′
i, . . ., and a set Acti of actions αi, α

′
i, We consider local

states and actions for the environment e as well. The set S ⊆ Le×L1× . . .×Lm

contains the global states of the MAS, while Act ⊆ Acte×Act1×. . .×Actm is the
set of joint actions. We also introduce a transition function τ : Act → (S → S).
Intuitively, τ(α)(s) = s′ encodes that agents can access the global state s′ from
s by performing the joint action α. We say that the global state s′ is reachable
in one step from s, or s � s′, iff there is α ∈ Act such that τ(α)(s) = s′.

To represent the temporal evolution of the MAS we consider the flow of
time 〈N, <〉 of natural numbers N with the strict total order <. A run r over
〈S, Act, τ,N〉 is a function from N to S such that r(n) � r(n + 1). Intuitively,
a run represents a possible evolution of the MAS according to the transition
function τ and assuming N as the flow of time. We now define the quantified
interpreted systems for the language Lm as follows:

Definition 2 (QIS). A quantified interpreted system over 〈S, Act, τ,N〉 is a
triple P = 〈R,D, I〉 such that (i) R is a non-empty set of runs over 〈S, Act, τ,N〉;
(ii) D is a non-empty set of individuals; (iii) I is an interpretation of Lm such
that I(c) ∈ D, and for r ∈ R, n ∈ N, I(P k, r, n) is a k-ary relation on D.
We denote by QIS the class of all quantified interpreted systems.

Following standard notation [4] a pair (r, n) is a point in P . If r(n)=〈le,l1,. . . , lm〉
is the global state at the point (r, n), then re(n) = le and ri(n) = li are the
environment’s and agent i’s local state at (r, n) respectively. Further, a QIS is
synchronous if for all i ∈ A, ri(n) = r′i(n

′) implies n = n′, that is, time is part
of the local state of any agent. QISsync is the class of all synchronous QIS.

Now we assign a meaning to the formulas of Lm in quantified interpreted
systems. Let σ be an assignment from the variables to the individuals in D, the
valuation Iσ(t) of a term t is defined as σ(y) for t = y, and Iσ(t) = I(c), for
t = c. A variant σ

(
x
a

)
of an assignment σ assigns a ∈ D to x and coincides with

σ on all the other variables.

Definition 3. The satisfaction relation |= for φ ∈ Lm, (r, n) ∈ P, and an
assignment σ is defined as follows:

First-Order Linear-Time Epistemic Logic with Group Knowledge 143

(Pσ, r, n) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, r, n)
(Pσ, r, n) |= ¬ψ iff (Pσ, r, n) �|= ψ
(Pσ, r, n) |= ψ → ψ′ iff (Pσ, r, n) �|= ψ or (Pσ, r, n) |= ψ′

(Pσ, r, n) |= ∀xψ iff for all a ∈ D, (Pσ(x
a), r, n) |= ψ

(Pσ, r, n) |= ©ψ iff (Pσ, r, n + 1) |= ψ
(Pσ, r, n) |= ψUψ′ iff there is n′ ≥ n such that (Pσ, r, n′) |= ψ′

and for all n′′, n ≤ n′′ < n′ implies (Pσ, r, n′′) |= ψ
(Pσ, r, n) |= Kiψ iff for all (r′, n′), ri(n) = r′i(n′) implies (Pσ, r′, n′) |= ψ
(Pσ, r, n) |= Dψ iff ri(n) = r′i(n

′) for all i ∈ A, implies (Pσ, r′, n′) |= ψ

(Pσ, r, n) |= Cψ iff for all k ∈ N, (Pσ, r, n) |= Ekψ

The truth conditions for ∧, ∨, ↔, ∃, G, and F are defined from those above. A
formula φ ∈ Lm is true at a point (r,m) iff it is satisfied at (r,m) by every σ; φ
is valid on a QIS P iff it is true at every point in P ; φ is valid on a class C of
QIS iff it is valid on every QIS in C.

3.1 The Monodic Fragment

In what follows we focus on the monodic fragment of the language Lm.

Definition 4. The monodic fragment L1
m is the set of formulas φ ∈ Lm such

that any subformula of φ of the form Kiψ, Dψ, Cψ, ©ψ, or ψ1Uψ2 contains at
most one free variable.

The monodic fragments of a number of first-order modal logics have been thor-
oughly investigated [22,25,15,13,24]. In the case of Lm this fragment is quite
expressive as it contains formulas like the following:

∀y (Resource(y) → C (∀zAvailable(y, z)U∃xRequest(x, y)) (1)
D©∀xyz(Request(x, y) → ¬Available(y, z)) →
→©D∀xyz(Request(x, y) → ¬Available(y, z)) (2)

According to (1), it is common knowledge that every resource will eventually
be requested, but until that time the resource is universally available. By (2) if
it is distributed knowledge that at the next step any resource is not available
whenever it is requested, then at the next step it is distributed knowledge that
this is the case.

Note that the monodic fragment of Lm contains all de dicto formulas, i.e.,
formulas where no free variable appears in the scope of modal operators, as in
(2). So, the limitation is really only on de re formulas.

4 Message Passing Systems

In this section we model message passing systems [4,17] in the framework of QIS.
A message passing system (MPS) is a MAS in which the only actions for the
agents are sending and receiving messages. This setting is common to a variety
of distributed systems, well beyond the realms of MAS and AI.

144 F. Belardinelli and A. Lomuscio

To define our message passing QIS we introduce a set Msg of messagesμ1,μ2,. . .,
and define the local state li for agent i as a history over Msg, that is, a sequence of
events of the form send(i, j, μ) and rec(i, j, μ), for i, j ∈ A, μ ∈ Msg. Intuitively,
send(i, j, μ) represents the event where agent i sends to j message μ, while the
meaning of rec(i, j, μ) is that agent i receives from j message μ. A global state
s ∈ S is a tuple 〈le, l1, . . . , ln〉, where l1, . . . , ln are local states as above, and le
contains all the events in l1, . . . , ln.

A run r over 〈S,N〉 is a function from the natural numbers N to S such that:

MP1 ri(0) is a sequence of length zero, and ri(m+1) is either identical to ri(m)
or results from appending an event to ri(m).

By MP1 the local states of each agent record the messages she has sent or
received, and at each step at most a single event occurs to any agent. We define
message passing QIS (MPQIS) as the class of quantified interpreted systems
P = 〈R,D, I〉, where R is a non-empty set of runs satisfying MP1, D contains
the agents in A and the messages in Msg, and I is an interpretation for Lm. We
use the same notation for objects in the model and syntactic elements.

For the specification of MPS we introduce a predicative letter Send such that
(Pσ, r, n) |= Send(i, j, μ) iff event send(i, j, μ) occurs to agent i at time n in run
r, i.e., ri(n) is the result of appending send(i, j, μ) to ri(n−1). Also, we introduce
the predicate Sent such that (Pσ, r, n) |= Sent(i, j, μ) iff event send(i, j, μ) occurs
to agent i before time n in run r, i.e., send(i, j, μ) appears in ri(n). The predicates
Rec and Rec’ed are similarly defined for event rec(i, j, μ).

Let us now explore the range of specifications that can be expressed in this
formalism. A property often required in MPS is channel reliability. We express
this by stating that every sent message is eventually received. Notice that ac-
cording to the definition of message passing QIS, it is possible that a message
is lost during a run of the system. We can force channel reliability by requiring
the following specification on MPQIS:

∀μ(∃ijSend(i, j, μ) → F∃i′j′Rec(j′, i′, μ)) (3)

In fact, we can be more specific and require that every message is received at
most (at least) k steps after being sent, or exactly k steps after being sent:

∀μ(∃ijSend(i, j, μ) →©k∃i′j′Rec’ed(j′, i′, μ)) (4)
∀μ(∃ijSent(i, j, μ) →©k∃i′j′Rec(j′, i′, μ)) (5)
∀μ(∃ijSend(i, j, μ) →©k∃i′j′Rec(j′, i′, μ)) (6)

Note that all of (3)-(6) are monodic. In these specifications the identities of
the sender and the receiver are left unspecified. So, in cases in which we are not
interested in singling out the addresser and the addressee, the monodic fragment
suffices.

Another property often required on MPQIS is that there are no “ghost” mes-
sages: if agent i receives a message μ, then i knows that μ must actually have
been sent by some agent j. This specification is expressible as a monodic formula:

∀μ(∃jRec’ed(i, j, μ) → Ki∃j′Sent(j′, i, μ)) (7)

First-Order Linear-Time Epistemic Logic with Group Knowledge 145

We compare (7) with a further relevant property of MPQIS, i.e., authentication:
if agent i has received a message μ from agent j, then i knows that μ had actually
been sent by j. This specification can be expressed as the de re version of (7):

∀μj(Rec’ed(i, j, μ) → KiSent(j, i, μ)) (8)

Note that differently from (7), (8) is not monodic.
Even if we allow an agent i not to know whether a received message μ has

actually been sent, that is, we reject (7), by definition of MPQIS it is distributed
knowledge that a message μ has been sent and received as soon as it has been
received, i.e., the following monodic formula holds:

∀μ(∃ijRec’ed(i, j, μ) → D∃i′j′(Sent(j′, i′, μ) ∧ Rec’ed(i′, j′, μ)))

On the other hand, the corresponding formula

∀μ(∃jRec’ed(i, j, μ) → Ki∃j′(Sent(j′, i, μ) ∧ Rec’ed(i, j′, μ)))

is not valid for any agent i.
Furthermore, in L1

m we can express that an agent i cannot aquire the knowl-
edge that message μ has been sent to her, other than by receiving the message:

∀μ(∃jSent(j, i, μ) → (¬Ki∃j′Sent(j′, i, μ)U∃j′′Rec(i, j′′, μ))

Finally, we might want to check whether at a certain point in the evolution
of the MPQIS it will be common knowledge that a message has been sent or
received:

∀μ(∃ijSent(i, j, μ) → FC(∃i′j′Sent(i′, j′, μ))) (9)
∀μ(∃ijRec’ed(i, j, μ) → FC(∃i′j′Rec’ed(i′, j′, μ))) (10)

From results in [4] regarding the attainability of common knowledge in systems
with unreliable communication, we may infer that some assumption on channel
reliability in MPQIS is needed in order to satisfy specifications (9) and (10). The
conclusion we can draw from the observations above is that the monodic frag-
ment of the language Lm allows for rich specifications on MPS, notwithstanding
the limitation on free variables in modal contexts.

5 Axiomatisation

In this section we present a sound and complete axiomatisation of the set of
monodic validities in the class of quantified interpreted systems. The system
QKT 1

m is a first-order multi-modal version of the propositional epistemic system
S5 combined with the linear temporal logic LTL.

Definition 5. The system QKT 1
m on L1

m contains the following schemes of ax-
ioms and inference rules, where 	 is any of the epistemic operators Ki, for
i ∈ A, D, or C, and φ, ψ and χ are formulas in L1

m:

146 F. Belardinelli and A. Lomuscio

Taut classic propositional tautologies
MP φ → ψ, φ ⇒ ψ

K© ©(φ → ψ)→ (©φ →©ψ)
©¬φ ↔ ¬© φ
φUψ ↔ ψ ∨ (φ ∧ (φUψ))

Nec© φ ⇒©φ
χ→ ¬ψ ∧©χ⇒ χ→ ¬(φUψ)

K� 	(φ → ψ)→ (φ → 	ψ)
T 	φ → φ
4 	φ → 		φ
5 ¬	φ → 	¬	φ
Nec� φ ⇒ 	φ

Kiφ → Dφ
Cφ ↔ (φ ∧ECφ)
φ → (ψ ∧Eφ)⇒ φ → Cψ

BF© ©∀xφ↔ ∀x© φ
BF� 	∀xφ↔ ∀x	φ
Ex ∀xφ→ φ[x/t]
Gen φ → ψ[x/t] ⇒ φ → ∀xψ, for x not free in φ

The operators Ki, D and C are S5 modalities, while the next © and until U
operators are axiomatised as linear-time modalities. To this we add the classic
postulates Ex and Gen for quantification. We consider the standard definitions
of proof and theorem: � φ means that φ ∈ L1

m is a theorem in QKT 1
m.

It is easy to check that the axioms of QKT 1
m are valid on every QIS and

the inference rules preserve validity. As a consequence, we have the following
soundness result:

Theorem 1 (Soundness). The system QKT 1
m is sound with respect to the

class QIS of quantified interpreted systems.

Thus, QKT 1
m is sound also for the class QISsync of synchronous QIS.

5.1 Kripke Models

To prove the completeness of QKT 1
m with respect to QIS we first introduce an

appropriate class of Kripke models, and prove completeness for these models.
Then we apply a correspondence result between Kripke models and QIS.

Definition 6. A Kripke model for Lm is a tupleM = 〈〈Nj , <j〉j∈J , {∼i}i∈A,D,
I〉 such that (i) each Nj is a copy of the naturals with the strict total order <j; (ii)
for i ∈ A, ∼i is an equivalence relation on

⋃
j∈J Nj; (iii) D is a non-empty set

of individuals; (iv) the interpretation I is such that I(c) ∈ D, and for nj ∈ Nj,
I(P k, nj) is a k-ary relation on D.
The class of all Kripke models is denoted by K.

A Kripke model is synchronous if for all i ∈ A, nj ∈ Nj , nj ∼i n′j′ implies
n = n′. Ksync is the class of all synchronous Kripke models. Further, let R∗ be
the reflexive and transitive closure of a given relation R. The satisfaction relation
|= for an assignment σ is inductively defined as follows:

First-Order Linear-Time Epistemic Logic with Group Knowledge 147

(Mσ, nj) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, nj)
(Mσ, nj) |= ¬ψ iff (Mσ, nj) �|= ψ
(Mσ, nj) |= ψ → ψ′ iff (Mσ, nj) �|= ψ or (Mσ, nj) |= ψ′

(Mσ, nj) |= ∀xψ iff for all a ∈ D, (Mσ(x
a), nj) |= ψ

(Mσ, nj) |= ©ψ iff (Mσ, n + 1j) |= ψ
(Mσ, nj) |= ψUψ′ iff there is n′

j ≥j nj such that (Mσ, n′
j) |= ψ′

and for all n′′
j , nj ≤j n′′

j <j n′
j implies (Mσ, n′′

j) |= ψ
(Mσ, nj) |= Kiψ iff for all n′

j′ , nj ∼i n′
j′ implies (Mσ, n′

j′) |= ψ
(Mσ, nj) |= Dψ iff for all n′

j′ , (nj , n
′
j′) ∈

⋂
i∈A ∼i implies (Mσ, n′

j′) |=ψ
(Mσ, nj) |= Cψ iff for all n′

j′ , (nj , n
′
j′) ∈ (

⋃
i∈A ∼i)∗ implies (Mσ, n′

j′) |=ψ

We compare Kripke models and quantified interpreted systems by means of
a map g : K → QIS. Let M = 〈〈Nj , <j〉j∈J , {∼i}i∈A,D, I〉 be a Kripke model.
For every equivalence relation ∼i, for nj ∈ Nj , let the equivalence class [nj]∼i =
{n′j′ | nj ∼i n

′
j′} be a local state for agent i, while Nj is the set of local states

for the environment. Then define g(M) as the tuple 〈R,D, I ′〉 where R contains
the runs rj such that rj(n) = 〈nj , [nj]∼1 , . . . , [nj]∼m〉, D is the same as in M,
and I ′(P k, rj , n) = I(P k, nj). The structure g(M) is a QIS that satisfies the
following result:

Lemma 1. For every φ ∈ Lm, n ∈ N,

(Mσ, nj) |= φ iff (g(M)σ, rj , n) |= φ

We omit the proof of this lemma for reasons of space. Note that if M is syn-
chronous, then also g(M) is synchronous, i.e., g : Ksync → QISsync.

6 Completeness

In this section we outline the main steps in the completeness proof; we refer to
the appendix for definitions and detailed proofs.

The completeness of the system QKT 1
m with respect to the class QIS of

quantified interpreted systems is proved by means of a quasimodel construction
[5]. In particular, the version of quasimodels here considered combines the purely
epistemic structures in [22] and the purely temporal structures in [25]. As the
first step we show that for monodic formulas satisfability in quasimodels implies
satisfability in Kripke models.

Lemma 2. If there is a quasimodel Q for a monodic formula φ ∈ L1
m, then φ

is satisfiable in a Kripke model.

Note that if the quasimodel Q for φ is synchronous, then also the Kripke model
built from Q in Lemma 2 is synchronous.

Next we prove the existence of such a quasimodel for φ.

Lemma 3. Suppose that φ ∈ L1
m is a consistent monodic formula, then there

exists a (synchronous) quasimodel for φ.

148 F. Belardinelli and A. Lomuscio

In the proof of Lemma 3 we make use of results in [22,25] regarding purely
epistemic and temporal first-order logic. By combining Lemmas 3 and 2 we can
state the main result of this paper.

Theorem 2 (Completeness). The system QKT 1
m is complete with respect to

the class QIS of quantified interpreted systems.

Assume that � φ, then ¬φ is consistent and by Lemmas 3 and 2 there is a
Kripke model M satisfying ¬φ. By Lemma 1 the QIS g(M) does not validate
φ, therefore QIS �|= φ. Similarly, we can prove the following result.

Theorem 3 (Completeness). The system QKT 1
m is complete with respect to

the class QISsync of synchronous QIS.

We refer to the appendix for the details of the proofs.

7 Conclusions and Further Work

In this paper we analysed a quantified version of interpreted systems, and proved
completeness for the system QKT 1

m defined on the monodic fragment of the first-
order language Lm, which includes linear-time modalities and epistemic opera-
tors for group knowledge. This result makes use of previous contributions on the
axiomatisation of pure first-order epistemic and temporal logic [22,25]. Further,
we showed that a wide range of specifications on message passing systems can
be expressed in the monodic fragment of Lm.

Still, further work is needed in this line of research. The present paper deals
with the class QIS of all quantified interpreted systems and the class QISsync
of synchronous QIS. In the axiomatisation QKT 1

m for these classes there is no
interaction between temporal and epistemic operators, but interaction is essen-
tial to express epistemic concepts such as perfect recall and no learning. These
refinements have been widely studied at the propositional level [7,9], but it is
not clear to which extent these results apply to the first order. By results in
[10] the set of validities in L1

m on the class of QIS with perfect recall is not
axiomatisable, as we have unaxiomatisability already at the propositional level.
However, to our knowledge there is no result about the monodic fragment in the
case that we drop either the linear-time modalities © and U , and retain only F
and G, or the common knowledge operator C. Results along this line would be
of interest for the investigation of the expressive power of modal logic between
propositional and full first-order.

Finally, another issue not tackled in this paper is decidability. We believe
that by combining the techniques in [15,24] it is likely to find decidable monodic
fragments of first-order temporal epistemic logic. However, this topic demands
further investigations.

Acknowledgements. The research described in this paper was partly sup-
ported by the EC Framework 6 funded project CONTRACT (IST Project Num-
ber 034418), by the research project “Logica Modale e Conoscenza” funded by
the Scuola Normale Superiore, Pisa, and by the Royal Society through an Inter-
national Joint Project award to both authors.

First-Order Linear-Time Epistemic Logic with Group Knowledge 149

References

1. Belardinelli, F., Lomuscio, A.: A Complete First-Order Logic of Knowledge and
Time. In: Proceedings of the 11th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2008), pp. 705–714. AAAI Press, Menlo
Park (2008)

2. Belardinelli, F., Lomuscio, A.: Quantified Epistemic Logics for Reasoning
about Knowledge in Multi-Agent Systems. Artificial Intelligence (to appear),
http://dx.doi.org/10.1016/j.artint.2009.02.003

3. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic.
Elsevier, Amsterdam (2006)

4. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge (1995)

5. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics. Elsevier, Amsterdam (2003)

6. Gammie, P., van der Meyden, R.: MCK: Model Checking the Logic of Knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

7. Halpern, J., van der Meyden, R., Vardi, M.: Complete axiomatisations for reasoning
about knowledge and time. SIAM Journal on Computing 33(3), 674–703 (2003)

8. Halpern, J., Moses, Y.: Knowledge and common knowledge in a distributed envi-
ronment. Journal of the ACM 37(3), 549–587 (1990)

9. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54, 319–379 (1992)

10. Halpern, J., Vardi, M.: The complexity of reasoning about knowledge and time 1:
lower bounds. Journal of Computer and System Sciences 38(1), 195–237 (1989)

11. Hodkinson, I.: Monodic packed fragment with equality is decidable. Studia Log-
ica 72, 185–197 (2002)

12. Hodkinson, I.: Complexity of monodic guarded fragments over linear and real time.
Annals of Pure and Applied Logic 138, 94–125 (2006)

13. Hodkinson, I., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: On the
computational complexity of decidable fragments of first-order linear temporal log-
ics. In: Proceedings of the International Symposium on Temporal Representation
and Reasoning (TIME 2003), pp. 91–98. IEEE Press, Los Alamitos (2003)

14. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable and undecidable frag-
ments of first-order branching temporal logics. In: Logic in Computer science (LICS
2002), pp. 393–402. IEEE Computer Society Press, Los Alamitos (2002)

15. Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragment of first-order
temporal logics. Annals of Pure and Applied Logic 106(1-3), 85–134 (2000)

16. van der Hoek, W., Meyer, J.-J.C., Treur, J.: Formal semantics of temporal epistemic
reflection. In: Fribourg, L., Turini, F. (eds.) LOPSTR 1994 and META 1994. LNCS,
vol. 883, pp. 332–352. Springer, Heidelberg (1994)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

18. van der Meyden, R.: Axioms for knowledge and time in distributed systems with
perfect recall. In: Logic in Computer Science (LICS 1994), pp. 448–457. IEEE, Los
Alamitos (1994)

19. Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, Cambridge (1995)

20. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by
model checking via OBDDs. Journal of Applied Logic 5(2), 235–251 (2007)

http://dx.doi.org/10.1016/j.artint.2009.02.003

150 F. Belardinelli and A. Lomuscio

21. Reynolds, M.: Axiomatising first-order temporal logic: until and since over linear
time. Studia Logica 57(2/3), 279–302 (1996)

22. Sturm, H., Wolter, F., Zakharyaschev, M.: Monodic epistemic predicate logic. In:
Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA
2000. LNCS, vol. 1919, pp. 329–344. Springer, Heidelberg (2000)

23. Sturm, H., Wolter, F., Zakharyaschev, M.: Common knowledge and quantification.
Economic Theory 19, 157–186 (2002)

24. Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order modal logics.
Journal of Symbolic Logic 66(3), 1415–1438 (2001)

25. Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order
temporal logic. Annals of Pure and Applied Logic 118(1-2), 133–145 (2002)

26. Wolter, F.: First order common knowledge logics. Studia Logica 65(2), 249–271
(2000)

27. Wooldridge, M.: Computationally grounded theories of agency. In: Proceedings of
the International Conference on Multi-Agent Systems (ICMAS 2000), pp. 13–22.
IEEE Press, Los Alamitos (2000)

28. Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)

A Appendix

In this appendix we provide definitions for the main concepts used in the com-
pleteness proof for the system QKT 1

m, as well as the relevant partial results.
Intuitively, a quasimodel for a monodic formula φ ∈ L1

m is a relational structure
whose points are sets of sets of subformulas of φ. Each set of sets of subformulas
describes a “possible state of affairs”, and contains sets of subformulas defining
the individuals in the point.

Definition 7. Given a formula φ ∈ L1
n, we denote by subφ the set of subfor-

mulas of φ, and define subCφ as subφ ∪ {ECψ | Cψ ∈ subφ} ∪ {KiCψ | Cψ ∈
subφ, i ∈ A}. Further, let subC©φ be the set subCφ∪{¬ψ | ψ ∈ subCφ}∪{©ψ |
ψ ∈ subCφ} ∪ {©¬ψ | ψ ∈ subCφ}.

Let subnφ be the subset of subC©φ containing formulas with at most n free
variables, and let x be a variable not occurring in φ, we define subxφ as {ψ[y/x] |
ψ[y] ∈ sub1φ}. Clearly, x is the only free variable in subxφ. By conφ we denote
the set of all constants occurring in φ.

Definition 8 (Type). A type for φ is any subset t of subxφ such that for every
ψ, χ ∈ subxφ, (i) ψ ∧ χ ∈ t iff ψ ∈ t and χ ∈ t; (ii) ¬ψ ∈ t iff ψ /∈ t.

This definition of type is completely standard [5,22,25]. Two types t, t′ agree on
sub0φ iff t ∩ sub0φ = t′ ∩ sub0φ. Given a type t for φ and a constant c ∈ conφ,
the pair 〈t, c〉 is called an indexed type for φ.

Also the following definition of state candidate is standard.

Definition 9 (State Candidate). Let T be a set of types for φ that agree on
sub0φ, and T con a set containing for each c ∈ conφ an indexed type 〈t, c〉 such
that t ∈ T , then the pair C = 〈T, T con〉 is a state candidate for φ.

Given a state candidate C = 〈T, T con〉 we define formula αC as follows:

First-Order Linear-Time Epistemic Logic with Group Knowledge 151

αC :=
∧
t∈T

∃xt[x] ∧ ∀x
∨
t∈T

t[x] ∧
∧

〈t,c〉∈T con

t[x/c]

A state candidate C is consistent iff the formula αC is consistent with QKT 1
m;

consistent state candidates will be the points of our quasimodel. We now de-
fine a relation of suitability for types and state candidates which constitute the
relational part of our quasimodel.

Definition 10. 1. A pair (t1, t2) of types is ©-suitable iff the formula t1∧©t2
is consistent. It is i-suitable iff the formula t1 ∧¬Ki¬t2 is consistent, and it
is D-suitable iff the formula t1 ∧ ¬D¬t2 is consistent

2. A pair of state candidates (C1,C2) is ©-suitable iff the formula αC1 ∧©αC2

is consistent. It is i-suitable iff the formula αC1 ∧ ¬Ki¬αC2 is consistent,
and it is D-suitable iff the formula αC1 ∧ ¬D¬αC2 is consistent.

We now introduce the frame underlying the quasimodel for φ.

Definition 11 (Frame). Let A+ = A ∪ {D}. A frame F is a tuple
〈〈Nj , <j〉j∈J , {≺l}l∈A+〉 such that (i) each Nj is a copy of the natural num-
bers with the strict total order <j; (ii) the pair 〈

⋃
j∈J Nj ,

⋃
l∈A+ ≺l〉 is a set of

disjoint intransitive trees1.

A frame is synchronous if for all l ∈ A+, n = n′ whenever nj ≺l n
′
j′ . Further, we

introduce state functions mapping points in F to state candidates.

Definition 12 (State Function). A state function for φ over F is a map f
associating with each nj ∈ F a consistent state candidate f(nj) = Cnj for φ such
that (i) the domain of f is not empty; (ii) if f is defined on nj, then f is defined
on n + 1j; (iii) if f is defined on nj and nj ≺l n

′
j′ then f is defined on n′j′ .

This definition of state function takes into account also the case of synchronous
systems. In what follows we often do not distinguish between a state nj and its
associated state candidate f(nj) = Cnj .

Finally, we provide the definition of objects, which correspond to the runs in
[22,25]. We choose this name to avoid confusion with the runs in QIS.

Definition 13 (Object). Let f be a state function for φ over F . An object in
〈F , f〉 is a map ρ associating with every nj ∈ Nj a type ρ(nj) in Tnj such that

1. the pairs (ρ(nj), ρ(n + 1j)) are ©-suitable;
2. ρ(nj) and ρ(n′j′) are l-suitable whenever nj ≺l n

′
j′ ;

3. if χUψ ∈ ρ(nj) then there is n′ ≥ n such that ψ ∈ ρ(n′j) and χ ∈ ρ(n′′j) for
all n ≤ n′′ < n′;

4. if ¬Kiψ ∈ ρ(nj) then for some n′j′ , ρ(nj) ≺i ρ(n′j′) and ψ /∈ ρ(n′j′);

1 The pair 〈U, R〉 is an intransitive tree iff (i) there is a root u0 ∈ U such that u0R
∗u

for every u ∈ U ; (ii) for every u ∈ U the set {u ∈ U | uR∗u} is finite and linearly
ordered by R∗; (iii) every u ∈ U but the root u0 has exactly one predecessor; (iv)
the root u0 is irreflexive.

152 F. Belardinelli and A. Lomuscio

5. if ¬Dψ ∈ ρ(nj) then for some n′j′ , ρ(nj) ≺D ρ(n′j′) and ψ /∈ ρ(n′j′);
6. if ¬Cψ ∈ ρ(nj) then for some n′j′ , (ρ(nj), ρ(n′j′)) ∈ (

⋃
l∈A+ ≺l)∗ and ψ /∈

ρ(n′j′).

A map ρ associating with every nj ∈ Nj a type ρ(nj) ∈ Tnj such that only
(1) and (3) hold is a temporal object. Similarly, a map ρ associating with every
nj ∈ Nj a type ρ(nj) ∈ Tnj such that only (2) and (4)-(6) hold is an epistemic
object. Now we have all the elements to give the definition of quasimodels.

Definition 14 (Quasimodel). A quasimodel for φ is a tuple Q = 〈F , f,O〉
such that f is a state function over F , and

1. φ ∈ t, for some t ∈ Tnj and Tnj ∈ Cnj

2. every pair (Cnj ,Cn+1j) is ©-suitable, and every pair (Cnj ,Cn′
j′

) is l-suitable
whenever nj ≺l n

′
j′

3. for every t ∈ Tnj there exists an object ρ ∈ O such that ρ(nj) = t
4. for every c ∈ conφ, the function ρc such that ρc(nj) = t, for 〈t, c〉 ∈ T con

nj
is

an object in O.

We can now prove Lemma 2.

Lemma 2 If there is a quasimodel Q for a monodic formula φ ∈ L1
m, then φ is

satisfiable in a Kripke model.

Proof. The proof of this lemma is similar to those for Lemmas 11.72 and 12.9
in [5].

First of all, for every monodic formula ψ ∈ L1
m of the form Kiχ, Dχ, Cχ,©χ,

or χ1Uχ2 we consider a k-ary predicate P k
ψ , for k equal to 0 or 1. The formula

P k
ψ(x) is the surrogate of ψ. Given a formula φ ∈ L1

m we denote by φ the formula
obtained from φ by substituting all its modal subformulas which are not within
the scope of another modal operator by their surrogates.

Since every state candidate C in the quasimodel Q is consistent and the system
QKT 1

m is based on first-order logic, the formula αC is consistent with first-order
(non-modal) logic. As a consequence, by completeness of first-order logic, there
is a first-order structure I = 〈I,D〉, where D is a non-empty set of individuals
and I is an interpretation on D, which satisfies αC, that is, Iσ |= αC for some
assignment σ to D.

Now, we consider a cardinal κ ≥ ℵ0 greater than the cardinality of the set
O of all objects in Q, and define D = {〈ρ, ξ〉 | ρ ∈ O, ξ < κ}. By the theory of
first-order logic, we can assume without loss of generality that D is the domain
of the first-order structure Inj = 〈Inj ,D〉 satisfying αCnj

, that is, all structures
Inj share a common domain D, and for every t ∈ Tnj , 〈ρ, ξ〉 ∈ D, ρ(nj) = t iff
Iσnj

|= t[x], for σ(x) = 〈ρ, ξ〉. Moreover, Inj (c) = 〈ρ, 0〉, for every c ∈ conφ.
Let us now define the Kripke model M. Let F = 〈〈Nj , <j〉j∈J , {≺l}l∈A+〉

be the frame of the quasimodel Q, we define M as 〈〈Nj , <j〉j∈J , {Ri}i∈A,D, I〉
where each sequence Nj of naturals in F belongs also to M; each relation Ri

is the reflexive, symmetric and transitive closure of ≺i ∪ ≺D; D is defined as
above; and the interpretation I is obtained by gluing together the various Inj .

First-Order Linear-Time Epistemic Logic with Group Knowledge 153

By induction on the length of ψ ∈ subxφ we can show that for every σ,

Iσnj
|= ψ iff (Mσ, nj) |= ψ

The base of induction follows by definition of I. The step for propositional
connectives and quantifiers follows by the induction hypothesis and equations
ψ1 → ψ2 = ψ1 → ψ2, ¬ψ1 = ¬ψ1, ∀xψ1 = ∀xψ1. To deal with modal operators
we state without proof the following remark, the relevant cases directly follow.

Remark 1. For every ρ ∈ O and nj ∈ Nj ,

(i) © ψ ∈ ρ(nj) iff ψ ∈ ρ(n + 1j)
(ii) ψUχ ∈ ρ(nj) iff there exists n′j ≥j nj such that χ ∈ ρ(n′j)

and for every nj ≤j n
′′
j < n′j , ψ ∈ ρ(n′′j)

(iii) Kiψ ∈ ρ(nj) iff for every n′j′ , njRin
′
j′ implies ψ ∈ ρ(n′j′)

(iv) Dψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈

⋂
i∈A

Ri implies ψ ∈ ρ(n′j′)

(v) Cψ ∈ ρ(nj) iff for every n′j′ , (nj , n
′
j′) ∈

(⋃
i∈A

Ri

)∗
implies ψ ∈ ρ(n′j′)

The proof of this remark is similar to the one for Lemma 12.10 in [5]. To complete
the proof of Lemma 2 we remark that by definition of quasimodel φ ∈ t, for some
t ∈ Tnj and Tnj ∈ Cnj , therefore we have that φ is satisfied in the Kripke model
M. ��

Note that if Q is a synchronous quasimodel for φ, then the Kripke model built
from Q in Theorem 2 is also synchronous.

Now it is left to prove the existence of such a quasimodel for φ.

Lemma 3 Suppose that φ ∈ L1
m is a consistent monodic formula, then there

exists a (synchronous) quasimodel for φ.

In the proof we use the following partial results. These lemmas, which we state
without proof, are modifications of Lemmas 11.73 and 12.11 in [5].

Lemma 4. Let C be a consistent state candidate, then we can construct an
infinite sequence {Cn}n∈N of state candidates such that (i) every pair (Cn,Cn+1)
is ©-suitable; (ii) for every t ∈ Tn there exists a temporal object ρ such that
ρ(n) = t; (iii) for c ∈ conφ, the function ρc such that ρc(n) = t, for 〈t, c〉 ∈ T con

n ,
is a temporal object.

Lemma 5. Let C be a consistent state candidate, then we can construct a struc-
ture W = 〈W,≺1, . . . ,≺m,≺D〉 such that W is a non-empty set of state candi-
dates, and the pair 〈W,

⋃
l∈A+ ≺l〉 is a tree. Further, (i) C ≺l C′ only if C and

C′ are l-suitable; (ii) for every t ∈ T , w ∈W , there exists an epistemic object ρ
such that ρ(w) = t; (iii) for c ∈ conφ, the function ρc such that ρc(w) = t, for
〈t, c〉 ∈ T con

w , is an epistemic object.

154 F. Belardinelli and A. Lomuscio

We can now prove Lemma 3.

Proof. Let πφ be the disjunction of all formulas αC, for all state candidates for φ.
Note that πφ is true in every first-order model, so by completeness we have that
� πφ. Since φ is consistent, also φ ∧ πφ is consistent. Then there is a consistent
state candidate C = 〈T, T con〉 such that φ ∈ t, for some t ∈ T .

We define the structure 〈F , f〉 underlying the quasimodel Q in steps. At step
2n+1 we extend the structure with a chain NC′ of state candidates for every
state candidate C′ introduced at step 2n. At stage 2n+2 we provide every state
candidate introduced at step 2n+1 with a tree of state candidates as shown in
Lemma 5.

We start with the base of induction. Define F0 = 〈〈Nj , <j〉j∈J0 , {≺0
l }l∈A+〉,

where J0 is empty and for every l ∈ A+, ≺0
l is also empty. The function f0 is

empty as well. We also consider a set U0 which contains only the state candidate
C defined above, and assume U−1 = ∅.

At step 2n+1 the frame F2n+1 is defined as the tuple 〈〈Nj , <j〉j∈J2n+1 ,

{≺2n+1
l }l∈A+〉 such that J2n+1 = J2n ∪ {U2n \ U2n−1}, and for each l ∈ A+,

≺2n+1
l =≺2n

l . Further, for every u ∈ U2n \ U2n−1 by Lemma 4 there exists a se-
quence {uk}k∈N of state candidates such that u0 = u. Thus, the state function
f2n is extended to f2n+1 such that f2n+1(nu) = un, for u ∈ U2n \ U2n−1, and
f2n+1 is equal to f2n on all the other u. Finally, U2n+1 =

⋃
j∈J2n+1

Nj .
For defining F2n+2 we take J2n+2 = J2n+1. Moreover, by Lemma 5 for ev-

ery u ∈ U2n+1 \ U2n there is a structure 〈Wu, {≺l}l∈A+〉 such that the pair
〈Wu,

⋃
l∈A+ ≺l〉 is a tree. We define ≺2n+2

l as ≺2n+1
l ∪ ≺l, for each l ∈ A+.

Finally, f2n+2 = f2n+1 and U2n+2 = U2n+1 ∪
⋃

u∈U2n+1\U2n
Wu.

Now consider the quasimodel Q = 〈F , f,O〉, where F = 〈〈Nj , <j〉j∈J ,
{≺l}l∈A+〉 such that J =

⋃
k∈N

Jk and ≺l=
⋃

k∈N
≺k
l , for l ∈ A+, f =

⋃
k∈N

fk,
and O is the set of all objects on 〈F , f〉. By Lemmas 4 and 5 and by construction
of Q we can show that the objects in O satisfy the constraints on quasimodels.
Since φ ∈ t, for some t ∈ C and C ∈ Q, we have that Q is a quasimodel for φ.

Furthermore, if we want to obtain a synchronous quasimodel from the con-
struction above we modify the step 2n+1, for n ≥ 1, as follows. For every
u ∈ U2n \ U2n−1 by construction there exists a structure 〈Wu′ , {≺l}l∈A+〉, for
some u′ ∈ U2n−1, such that u ∈ Wu′ . Moreover, for some j ∈ J2n, m ∈ N,
u′ = mj. Now, by Lemma 4 there exists a sequence {uk}k∈N of state candi-
dates such that u0 = u, but now define the state function f2n+1 such that
f2n+1((m + k)u) = uk for k ∈ N, where m is as above. It it not difficult to show
that by this construction the quasimodel Q for φ is synchronous. This completes
the proof of Lemma 2. ��

From Lemmas 3 and 2, Theorems 2 and 3 follow by Lemma 1. This completes
the completeness proof.

On-the-Fly Macros

Hubie Chen1 and Omer Giménez2

1 Dept. of Information and Communication Technologies, UPF (Barcelona, Spain)
hubie.chen@upf.edu

2 Dept. de Llenguatges i Sistemes Informàtics, UPC (Barcelona, Spain)
omer.gimenez@upc.edu

Abstract. We present a domain-independent algorithm for planning that com-
putes macros in a novel way. Our algorithm computes macros “on-the-fly” for a
given set of states and does not require previously learned or inferred informa-
tion, nor prior domain knowledge. The algorithm is used to define new domain-
independent tractable classes of classical planning that are proved to include
Blocksworld-arm and Towers of Hanoi.

1 Introduction

A planning instance involves deciding if an initial state can be transformed into a goal
state via the application of a sequence of actions. Each planning instance has a set
of variables associated with it; a state is a mapping defined on these variables that
describes the relevant features of the situation being modelled. An action describes how
a state can be transformed into another. For instance, in the well-known 15 puzzle,
there is a 4-by-4 grid with 15 tiles labelled with the numbers 1 through 15, and the
objective is to arrange the tiles in increasing order via a sequence of moves; a move
consists of sliding a tile into the unoccupied position. This puzzle can be formulated as
a planning problem by letting the variables represent locations of the grid, and a state
would map each location to a tile or the unoccupied position; the act of sliding a tile
into the unoccupied position corresponds to the application of an action.

A domain is a collection of related planning instances that typically model a particu-
lar application area. For instance, the set of “sliding tile” problem instances on n-by-n
grids with n ≥ 2 over all possible initial states might be taken as a domain. An over-
arching research goal in planning is to develop an automated planner that can robustly
solve problems in a domain-independent manner.

Macros—a term we use broadly to refer to combinations of actions—have long been
studied in planning [1, 2]. Many domain-dependent applications of macros have been
exhibited and studied [3–5]; also, a number of domain-independent methods for learn-
ing, inferring, filtering, and applying macros have been the topic of research continuing
up to the present [6–8].

In this paper, we present a domain-independent algorithm that computes macros in
a novel way. Our algorithm computes macros “on-the-fly” and does not require previ-
ously learned or inferred information, nor any prior domain knowledge. This stands in
contrast to previous work on macros, since our macros are generated and applied not
over a domain or even over an instance, but with respect to a “current state” s and a

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 155–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

156 H. Chen and O. Giménez

(small) set of related states S. This ensures that the macros generated are tailored to the
state set S, and no filtering due to over-generation of macros is necessary.

We exhibit the power of our algorithm by using it to define new domain-independent
tractable classes of planning that strictly extend previously defined such classes [9], and
can be proved to include Blocksworld-arm and Towers of Hanoi. We believe that this
is notable as theoretically defined, domain-independent tractable classes have generally
struggled to incorporate construction-type domains such as these two. We hence give
theoretically grounded evidence of the computational value of macros in planning.

Our algorithm. Consider the following reachability problem: given an instance Π
of planning and a subset S of the state set of Π , compute the ordered pairs of states
(s, t) ∈ S × S such that the second state t is reachable from the first state s. (By
reachable, we mean that there is a sequence of actions that transforms the first state
into the second.) This problem is clearly hard in general, as deciding if one state is
reachable from another captures the complexity of planning itself (which, under the
usual propositional STRIPS formulation, is known to be PSPACE-complete [10]).

A natural—albeit incomplete—algorithm for solving this reachability problem is to
first compute the pairs (s, t) ∈ S×S such that the state t is reachable from the state s by
application of a single action, and then to compute the transitive closure of these pairs.
This algorithm is well-known to run in polynomial time (in the number of states and the
size of the instance) but will only discover pairs for which the reachability is evidenced
by plans staying within the set of states S: the algorithm is efficient but incomplete.

The algorithm that we introduce is a strict generalization of this transitive closure
algorithm for the described reachability problem. We now turn to a brief, high-level
description of our algorithm. Our algorithm begins by computing the pairs connected
by a single action, as in the just-described algorithm, but each pair is labelled with its
connecting action. The algorithm then continually applies two types of transformations
to the current set of pairs until a fixed point is reached. Throughout the execution of the
algorithm, every pair has an associated label which is either a single action or a macro
derived by combining existing labels. The first type of transformation (which is similar
to the transitive closure) is to take pairs of states having the form (s1, s2), (s2, s3) and
to add the pair (s1, s3) whose new label is the macro obtained by “concatenating” the
labels of the pairs (s1, s2) and (s2, s3). If the pair (s1, s3) is already contained in the
current set, the algorithm replaces the label of (s1, s3) with the new label if the new
label is “more general” than the old one. The second type of transformation is to take
a state s ∈ S and a label of an existing pair (s1, s2) with s �= s1, and to see if the
label applied to s yields a state t ∈ S; if so, the pair (s, t) is introduced, and the same
replacement procedure as before is invoked if the pair (s, t) is already present.

Our algorithm, as with the transitive closure, operates in polynomial time (as proved
in the paper) and is incomplete. We want to emphasize that it can, in general, iden-
tify pairs that are not identified by the transitive closure algorithm. Why is this? Cer-
tainly, some state pairs (s, t) introduced by the first type of transformation have macro
labels that, if executed one action at a time, would stay within the set S, and hence
are pairs that are discovered by the transitive closure algorithm. However, the second
type of transformation may apply such a macro to another state s to discover pairs
(s, t) ∈ S×S that would not be discovered by the transitive closure: this occurs when a

On-the-Fly Macros 157

step-by-step execution of the macro, starting from s, would leave the set S before ar-
riving to t. Indeed, these two transformations depend on and feed off of each other: the
first transformation introduces increasingly powerful macros, which in turn can be used
by the second to increase the set of pairs, which in turn permits the first to derive yet
more powerful macros, and so forth.

We now describe a concrete result to offer the reader a feel for the power of our
algorithm. Consider the Towers of Hanoi domain. Figure 1 shows the initial state init
and the goal state goal for the case n = 5. Although these two states only differ in
the values of three variables—namely, dn-on, p1-clear and p3-clear—it is well known
that (2n − 1) disk movements are required to reach the goal state from the initial state.
We prove that our algorithm, given the set S = H(init, 4), by which we denote the
set of states within Hamming distance 4 of init, will discover macros that move any
subtower of discs from one peg to another; in particular, it will derive a macro for
moving the whole tower from the first to the third peg, thus solving the problem.The
radius 4 arises from the local transformations that our algorithm needs to discover the
macros, and is completely independent of the number n of discs of the Towers of Hanoi
instance. Since the set S = H(init, 4) is of polynomial size O(n4), our algorithm finds
the exponentially long solution in polynomial time! Indeed, this is only possible due to
the use of macros, as in [11]: the macro solving the problem is defined in terms of other
macros, which are in turn defined in terms of other macros, and so on.

d1-on = d2
d2-on = d3
d3-on = d4
d4-on = d5
d5-on = p1

d1-clear = T
d2-clear = F
d3-clear = F
d4-clear = F
d5-clear = F

p1-clear = F
p2-clear = T

p3-clear = T

d1-on = d2
d2-on = d3
d3-on = d4
d4-on = d5
d5-on = p3

d1-clear = T
d2-clear = F
d3-clear = F
d4-clear = F
d5-clear = F

p1-clear = T
p2-clear = T

p3-clear = F

Fig. 1. Initial and goal states in the Towers of Hanoi planning problem of size n = 5

Our algorithm is fully domain-independent, and does not require the particular char-
acteristics of the Towers of Hanoi domain to produce interesting macros. Indeed, we
also obtain useful macros for the Blocksworld-arm domain, where a robotic arm has to
move and stack blocks to reach a goal configuration. In this domain, we show that for a
state s and the set S = H(s, 4), our algorithm derives macros moving any subtower of
blocks into the ground, preserving the subtower structure.

Towards a tractability theory of domain-independent planning. Many of the bench-
mark domains—such as Gripper, Logistics and Blocksworld-arm—can now be handled
effectively and simultaneously by domain-independent planners, as borne out by empir-
ical evidence [12]. This empirically observed domain-independent tractability of many
common benchmark domains naturally calls for a theoretical explanation. By a theo-
retical explanation, we mean the formal definition of tractable classes of planning in-
stances, and formal proofs that domains of interest fall into the classes. Clearly, such an

158 H. Chen and O. Giménez

explanation could bring to the fore structural properties shared by these benchmark do-
mains. To the best of our knowledge, research proposing tractable classes has generally
had other foci, such as understanding syntactic restrictions on the set of actions [10, 13,
14], studying restrictions of the causal graph, as in [15–17, 11], or empirical evaluation
of simplification rules [18]. Aligned with the present aims is the work of Hoffmann [19]
that gives proofs that certain benchmark domains are solvable by local search with re-
spect to various heuristics.

To demonstrate the efficacy of our algorithm, we use it to extend previously defined
tractable classes. In particular, previous work [9] presented a complexity measure called
persistent Hamming width (PH width), and demonstrated that any set of instances hav-
ing bounded PH width—PH width k for some constant k—is polynomial-time tractable.
It was shown that both the Gripper and Logistics domains have bounded PH width,
giving a uniform explanation for their tractability. In the appendix, we show that an
extension of this measure yields a tractable class containing both the Blocksworld-arm
and Towers of Hanoi domains, and we therefore obtain a single tractable class which
captures all four of these domains. As mentioned, we believe that this is significant
as theoretical treatments have generally had limited coverage of construction-type do-
mains such as Blocksworld-arm and Towers of Hanoi.

We want to emphasize that our objective here is not to simply establish tractability
of the domains under discussion: in them, plan generation is already well-known to be
tractable on an individual, domain-dependent basis. Rather, our objective is to give a
uniform, domain-independent explanation for the tractability of these domains. Neither
is our goal to prove that these domains have low time complexity; again, our primary
goal is to present a simple, domain-independent algorithm for which we can establish
tractability of these domains with respect to the heavily-studied and mathematically
robust concept of polynomial time.

Previous work on macros. Macros have long been studied in planning [1]. Early work
includes [20], which developed filtering algorithms for discovered macros, and [2],
which demonstrated the ability of macros to exponentially reduce the size of the search
space. Some recent research on integrating macros into domain-independent planning
systems is as follows. Macro-FF [6] is an extension of FF that has the ability to automat-
ically learn and make use of macro-actions. Marvin [7] is a heuristic search planner that
can form so-called macro-actions upon escaping from plateaus that can be reused for
future escapes. Both of these planners participated in the International Planning Com-
petition (IPC). A method for learning macros given an arbitrary planner and example
problems from a domain is given in [8].

A more theoretical approach was taken by [11], who studied the use of macros in
conjunction with causal graphs. This work gives tractability results, and in particular
shows that domain-independent planners can cope with exponentially long plans in
polynomial time, which is also a feature of the present work.

2 Preliminaries

An instance of the planning problem is a tuple Π = (V, init, goal, A) whose compo-
nents are described as follows. The set V is a finite set of variables, where each variable

On-the-Fly Macros 159

v ∈ V has an associated finite domain D(v). Note that variables are not necessarily
propositional, that is, D(v) may have any finite size. A state is a mapping s defined on
the variables V such that s(v) ∈ D(v) for all v ∈ V . A partial state is a mapping p
defined on a subset vars(p) of the variables V such that for all v ∈ vars(p), it holds
that p(v) ∈ D(v). Then, init is a state called the initial state, and goal is a partial state.
Finally, A is a set of actions. An action a consists of a precondition pre(a), which is
a partial state, as well as a postcondition post(a), also a partial state. We sometimes
denote an action a by 〈pre(a); post(a)〉.

The Hamming distance between two states s, s′ is the number of differing variables.
The set H(s, k) is the set of all states s′ within distance k of s. For a state or partial
state s and a subset W of the variable set V , we use s
 W to denote the partial state
resulting from restricting s to W . Sometimes we will use the representation of a partial
function f as the relation {(a, b) : f(a) = b}. We say that a state s is a goal state if
(s
 vars(goal)) = goal or, equivalently, viewing s and goal as relations, goal ⊆ s.

An action a is applicable at a state s if pre(a) ⊆ s. We define a plan to be a sequence
of actions P = a1, . . . , an, with ai ∈ A. We will always speak of actions and plans
relative to some planning instance Π = (V, init, goal, A), but we want to emphasize
that when speaking of an action, the action need not be an element of A; we require
only that its precondition and postcondition are partial states over Π .

Starting from a state s, we define the state resulting from s by applying a plan P ,
denoted by s[P], inductively as follows. For the empty plan P = ε, we define s[ε] = s.
For non-empty plans P , where P = P ′, a and a applicable on s[P ′], we define s[P ′, a]
as the state equal to post(a) on variables v ∈ vars(post(a)), and equal to s[P ′] on
variables v ∈ V \ vars(post(a)). If a not applicable on s[P ′], then s[P ′, a] = s[P ′].

A state s is reachable if there exists a plan P such that s = init[P]. We are concerned
with the problem of plan generation: given an instance Π = (V, init, goal, A) obtain a
plan P that solves it, that is, a plan P such that init[P] is a goal state.

3 Macro Computation Algorithm

In this section, we develop our macro computation algorithm. This algorithm makes use
of a number of algorithmic subroutines. Before defining them, we introduce the notion
of action graph, the data structure on which these operations work. We emphasize that
whenever we refer to actions, both in the definitions and in the algorithms, we mean
precondition-postcondition pairs that need not appear in the original set of actions A.

Definition 1. An action graph is a directed graphG whose vertex set, denoted by V (G),
is a set of states, and whose edge set, denoted by E(G), consists of labelled edges that
are actions, with the restriction that the label a of an edge (s, s′) must be applicable at
s and s[a] = s′. We denote the the label of an edge e = (s1, s2) by a = lG(e) (or l(e)
when G is clear from context), and we say that the triplet (s, a, s′) forms a transition.

Note that for every ordered pair of vertices (s, s′), there may be at most one edge
(s, s′) in E(G), and each edge has exactly one label.

We now give the pseudo-code of the two macro-producing operations discussed in the
introduction, apply and transitive, whose aim is to add as many edges as possible to

160 H. Chen and O. Giménez

the action graph G. They depend on the algorithmic functions better, addlabel and
combine, which we define later. Notice that in our pseudocode, the assignment operator
:= is intended to be a value copy (as opposed to a reference copy, as in some program-
ming languages).

Definition 2. The pseudocode of the macro-producing operations apply(G,A, a, s)
and transitive(G, s1, s2, s3) is as follows. Typewise, G is an action graph, A is a set
of actions, a is an action and s, s1, s2 and s3 are vertices in G.
apply(G, A, a, s) returns G’ {

G’ := G;
if (a∈A ∨ a appears as a label in G’) ∧

s[a] �=s ∧ s[a]∈V(G) ∧ better(a, (s,s[a]), G) then
G’ := addlabel(G, s, s[a], a);

return G’;
}
transitive(G, s1, s2, s3) returns G’ {

G’ := G;
if (s1,s2)∈E(G) ∧ (s2,s3)∈E(G) then {

a := l(s1,s2);
a’ := l(s2,s3);
a’’ := combine(a, a’);
if better(a’’, (s1,s3), G) then G’ := addlabel(G, s1, s3, a’’);

}
return G’;

}

Definition 3. The pseudocode of the functions addlabel(G, s, s′, a), better(a,(s, s′), G)
and combine(a, a′) is as follows. Typewise, G is an action graph, s and s′ are vertices
in G, and a and a′ are actions. In the particular case of combine(a, a′) we require that,
for some state s1, a and a′ are respectively applicable in s1 and s1[a]. This requirement
is enforced in the function transitive, which is the only place that calls combine(a, a′).
addlabel(G, s, s’, a) returns G’ {

G’ := G;
if (s,s’)/∈E(G) then place (s,s’) in E(G’);
l_{G’}(s,s’) := a;
return G’;

}
better(a, (s,s’), G) returns boolean {

if (s,s’)/∈E(G) then return TRUE;
a’ = l(s,s’)
if pre(a)⊆pre(a’) ∧ post(a)⊆post(a’) ∧ a �=a’ then return TRUE;
else return FALSE;

}
combine(a, a’) returns action a’’ {

R := vars(pre(a))\vars(post(a));
s := post(a) ∪ (pre(a)�R);
O := vars(post(a))\vars(post(a’));
pr := pre(a) ∪ (pre(a’)\s);
pos := post(a’) ∪ (post(a)�O);
return <pr; pos\pr>;

}

Note that in the definition of combine the partial state s represents what we know about
a state if all we are told is that the action a has just been successfully executed. The
following propositions identify key properties of the combine function.

Proposition 4. Let a, a′ be actions and let s be a state. The action combine(a, a′) is
applicable at s if and only if a is applicable at s and a′ is applicable at s[a]. When this
occurs, s[combine(a, a′)] is equal to s[a, a′].

On-the-Fly Macros 161

This property ensures the general applicability of actions obtained from the combine
procedure. That is, we may merge the pair of actions a, a′ into a single action a′′ =
combine(a, a′), since the sequence (a, a′) and the action a′′ are indistinguishable: they
can be applied to the same states, and they produce the same result.

Proposition 5 (Associativity). Assume that a1, a2 and a3 are actions that are re-
spectively applicable in states s, s[a1] and s[a1, a2], for some s. Then, the action
combine(combine(a1, a2), a3) is equal to the action combine(a1, combine(a2, a3)).

The following is our macro computation algorithm. As input, it takes a set of states S
and a set of actions A. The running time can be bounded by O(n|S|3(|A| + |S|2)),
where n denotes the number of variables.
compute_macros(S, A) returns G, M {

M := {};
V(G) := S;
E(G) := ∅;
do {

A’ := (A ∪ labels(E(G)));
for all: a∈A’, s∈V(G) {

G := apply(G, A, a, s);
}
for all: s1,s2,s3∈V(G) {

G := transitive(G, s1, s2, s3);
if transitive produces a transition then

M[l(s1,s3)] := l(s1,s2), l(s2,s3);
}

} while (some change was made to G);
return (G, M);

}

The resulting action graph G contains the reachability information found by the algo-
rithm. The mapping M contains the macros that have been used, that is, the description
of how to decompose the actions appearing in G into simpler actions, up to those of A.

Understanding compute macros. By a combination over A, we mean an action in A
or an action that can be derived from actions in A by (possibly multiple) applications of
the combine function. Clearly, all actions derived by the compute macros algorithm are
combinations of the original set of actions A. Although the actual combinations derived
by the algorithm may depend on details such as the order in which the for all loops
are executed, under certain assumptions it is possible to prove that some actions, which
we call derivable, will be discovered by any run of the algorithm.

Definition 6. We say that a transition (s, a, s′) is condition-minimal with respect to a
set of actions A if for any combination a′ over A, if s[a′] = s′ then pre(a) ⊆ pre(a′)
and post(a) ⊆ post(a′). In other words, either a = a′ or better(a, a′) holds true.

Having defined the notion of a condition-minimal transition, we turn our attention to
those that can be found by the compute macros algorithm.

Definition 7. An action graph program over a set of states S and a set of actions A is
a sequence of commands Σ = σ1, . . . , σn of the form apply(G,A, a, s), with s ∈ S, or
transitive(G, s1, s2, s3), with s1, s2, s3 ∈ S. The execution of an action graph program
takes place as follows. First, G is initialized to be the action graph with S as vertices
and no edges. Then, the commands of Σ are executed in order; for each i, after σi is
executed, G is replaced with the returned value.

162 H. Chen and O. Giménez

Definition 8. AnA-condition-minimal-program (for short,A-CM-program) over states
S and actions A′ is an action graph program over S and A such that when executed,
apply is only passed pairs (a, s) such that (s, a, s[a]) is condition-minimal with respect
to A, and the transitive commands produce only transitions that are condition-minimal
with respect to A.

Definition 9. The set of (S,A)-derivable actions is the smallest set satisfying: any ac-
tion of a transition produced by an A-CM-program over states S and the set of actions
that are (S,A)-derivable or in A, is (S,A)-derivable.

Lemma 10. Relative to a planning instance Π with action set A, let s be a state. Any
(H(s, k), A)-derivable action is discovered by a call to the function compute macros
with the first two arguments H(s, k) and A, by which we mean that any such an action
will appear as an edge label in the graph output by compute macros.

4 Results on compute macros

We will present results with respect to formulations of the Blocksworld-arm and the
Towers of Hanoi domains, which are based strongly on their propositional STRIPS
formulations. We choose these formulations primarily to lighten the presentation, and
remark that it is straightforward to verify that our proofs and results apply to the propo-
sitional formulations.

Domain 1. (Blocksworld-arm domain) We use a formulation of this domain where
there is an arm. Formally, in an instance Π = (V, init, goal, A) of the Blocksworld-arm
domain, there is a set of blocks B, and the variable set V is defined as {arm} ∪ {b-on :
b ∈ B} ∪ {b-clear : b ∈ B} where D(arm) = {empty} ∪ B and for all b ∈ B,
D(b-on) = {table, arm} ∪ B and D(b-clear) = {T,F}. The b-on variable tells what
the block b is on top of, or whether it is being held by the arm, and the b-clear variable
tells whether or not the block b is clear.

There are four kinds of actions.

– ∀b ∈ B, pickupb = 〈b-clear = T, b-on = table, arm = empty; b-clear = F, b-on =
arm, arm = b〉

– ∀b ∈ B, putdownb = 〈arm = b; arm = empty, b-clear = T, b-on = table〉
– ∀b, c ∈ B, unstackb,c = 〈b-clear = T, b-on = c, arm = empty; b-clear =

F, b-on = arm, arm = b, c-clear = T〉
– ∀b, c ∈ B, stackb,c = 〈arm = b, c-clear = T; arm = empty, c-clear = F, b-clear =

T, b-on = c〉

We say that a state s is consistent if it satisfies the following restrictions.

– ∀b′ ∈ B, s(b′-clear) = T ⇒ |{b ∈ B|s(b-on) = b′}| = 0.
– ∀b′ ∈ B, s(b′-clear) = F, s(arm) �= b′ ⇒ |{b ∈ B|s(b-on) = b′}| = 1.
– ∀b ∈ B, s(arm) = b ⇔ s(b-on) = arm, s(b-clear) = F.
– ∀b ∈ B, ∃b1, . . . , bk ∈ B such that b-on = bk, bk-on = bk−1, . . . , b1-on = table.

On-the-Fly Macros 163

The planning domain Blocksworld-arm is the set of planning instances Π where init
and goal are consistent, goal is total and goal(arm) = empty. In any Blocksworld-arm
planning instance, a state s is reachable if and only if s is consistent. In particular, all
planning instances with consistent goal state are solvable. 	

Definition 11. A pile P of a state s is a non-empty sequence of blocks (b1, . . . , bk)
such that s(bi-on) = bi+1 for all i ∈ [1, k − 1]. The top of the pile P is the block
top(P) = b1, and the bottom of the pile is the block bottom(P) = bk. The size of P is
|P | = k. A sub-tower of s is a pile P such that s(top(P)-clear) = T; a tower is a sub-
tower such that s(bottom(P)-on) = table. The notation P≥(b) (respectively, P>(b),
P≤(b), P<(b)) denotes the sub-tower with bottom block b (respectively, the sub-tower
stacked on b, and the piles supporting b, either including b or not.)

Definition 12. Let P = (b1, . . . , bk) be a pile, b and b′ be two different blocks not in
P , and q be the partial state {b1-clear = T, arm = empty, b1-on = b2, . . . , bk−1-on =
bk}. We define actions with q as common precondition. The action subtow-tableP,b =
〈q, bk-on = b; bk-on = table, b-clear = T〉 moves a sub-tower P from b to the table.
The action subtow-blockP,b,b′ = 〈q, bk-on = b, b′-clear = T; bk-on = b′, b-clear =
T, b′-clear = F〉 moves a sub-tower P from a b onto b′. The action tow-blockP,b′ =
〈q, bk-on = table, b′-clear = T; bk-on = b′, b′-clear = F〉 moves a tower P onto b′.

Theorem 13. Let s be a reachable state with s(arm) = empty. If P is a sub-tower
of s and s(bk-on) = b, then subtow-tableP,b is (H(s, 4), A)-derivable. If P is a sub-
tower of s, s(bk-on) = b and s(b′-clear) = T, then subtow-blockP,b,b′ is (H(s, 5), A)-
derivable. If P is a tower of s, s(bk-on) = table and s(b′-clear) = T, then tow-blockP,b′
is (H(s, 4), A)-derivable.

The previous theorem states that our macro computing algorithm will always discover
these interesting actions when applied to the state s and the set S = H(s, 5). Note
that the polynomial bound on the running time of the algorithm does not depend on the
height of the subtower being moved.

Domain 2. (Towers of Hanoi domain) We study the formulation of Towers of Hanoi
where, for every disk d, a variable stores the position (that is, the disk or the peg) the disk
d is on. Formally, in an instance Π = (V, init, goal, A) of the Towers of Hanoi domain,
there is a set of disks D = {d1, . . . , dn} and a set of positions P = D ∪ {p1, p2, p3}.
We consider the partial order < in the set of positions defined by di < dj for every
i < j, and di < pj for every i and j. The set of variables V is defined as {d-on : d ∈
D} ∪ {x-clear : x ∈ P}, where D(d-on) = P and D(x-clear) = {T,F}.

The only actions in Towers of Hanoi are movement actions moved,x,x′ that move
a disk d into a position x from a position x′, provided that both d and x are clear,
and d < x. That is, moved,x′,x = 〈d-clear = T, x-clear = T, d-on = x′;x-clear =
F, x′-clear = T, d-on = x〉. The planning domain is the set of planning instances Π
such that the init and goal are certain predetermined total states. Namely, in both states
init and goal it holds di-on = di+1 for all i ∈ [1, . . . , n−1], d1-clear = T, di-clear = F
for all i ∈ [2, n] and p2-clear = T. They only differ in three variables: init(dn-on) = p1,
init(p1-clear) = F and init(p3-clear) = T, but goal(dn-on) = p3, goal(p1-clear) = T
and goal(p3-clear) = F. 	

164 H. Chen and O. Giménez

Definition 14. Let Π be a planning domain instance of Towers of Hanoi. Let i be
an integer i ∈ [1, k]. Let x = init(di-on) and x′ ∈ {p2, p3}. We define the ac-
tion subtow-posi,x,x′,x′′ = 〈d1-clear = T, d1-on = d2, . . . , di−1-on = di, di-on =
x, x′-clear = T, x′′-clear = T; di-on = x′′, x-clear = T, x′′-clear = F〉, that is, the
action that moves the tower of height i from x to x′′ using the clear position x′ as an
intermediate position.

Theorem 15. Any action subtow-posi,x,x′,x′′ is (H(init, 4), A)-derivable.

References

1. Fikes, R.E., Nilsson, N.: STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence 5(2), 189–208 (1971)

2. Korf, R.E.: Learning to solve problems by solving for macro-operators. In: Research notes
in artificial intelligence. Pitman (1985)

3. Iba, G.A.: A heuristic approach to the discovery of macro-operators. Machine Learning 3(4),
285–317 (1989)

4. Junghanns, A., Schaeffer, J.: Sokoban: enhancing single-agent search using domain knowl-
edge. Artificial Intelligence 129, 219–251 (2001)

5. Hernádvölgyi, I.: Searching for macro-operators with automatically generated heuristics. In:
14th Canadian Conference on AI, pp. 194–203 (2001)

6. Botea, A., Enzenberger, M., Müller, M., Schaeffer, J.: Macro-FF: Improving ai planning with
automatically learned macro-operators. JAIR 24, 581–621 (2005)

7. Coles, A., Smith, A.: Marvin: A heuristic search planner with online macro-action learning.
JAIR 28, 119–156 (2007)

8. Newton, M.A.H., Levine, J., Fox, M., Long, D.: Learning macro-actions for arbitrary plan-
ners and domains. In: ICAPS (2007)

9. Chen, H., Gimenez, O.: Act local, think global: Width notions for tractable planning. In:
ICAPS (2007)

10. Bylander, T.: The computational complexity of propositional STRIPS planning. Artificial
Intelligence 69, 165–204 (1994)

11. Jonsson, A.: The role of macros in tractable planning over causal graphs. In: ICAPS, pp.
1936–1941 (2007)

12. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic
search. JAIR 14, 253–302 (2001)

13. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Computational Intelli-
gence 11(4), 625–655 (1995)

14. Erol, K., Nau, D.S., Subrahmanian, V.S.: Complexity, decidability and undecidability results
for domain-independent planning. Artificial Intelligence 76, 625–655 (1995)

15. Brafman, R., Domshlak, C.: Structure and complexity of planning with unary operators.
JAIR 18, 315–349 (2003)

16. Brafman, R., Domshlak, C.: Factored planning: How, when, and when not. In: AAAI (2006)
17. Helmert, M.: The fast downward planning system. JAIR 26, 191–246 (2006)
18. Haslum, P.: Reducing accidental complexity in planning problems. In: IJCAI (2007)
19. Hoffmann, J.: Utilizing Problem Structure in Planning. LNCS (LNAI), vol. 2854. Springer,

Heidelberg (2003)
20. Minton, S.: Selectively generalizing plans for problem-solving. In: IJCAI, pp. 596–599

(1985)

On-the-Fly Macros 165

A Width

In this section, we present the definition of macro persistent Hamming width and present
the width results on domains. For a state s, we define wrong(s) to be the variables that
are not in the goal state, that is, wrong(s) = {v ∈ vars(goal) | s(v) �= goal(v)}.

Definition 16. A state s′ is an improvement of a state s if: for all v ∈ V , if v ∈
vars(goal) and s(v) = goal(v), then s′(v) = goal(v); and, there exists u ∈ vars(goal)
such that u ∈ wrong(s) and s′(u) = goal(u). In this case, we say that such a variable
u is a variable being improved. We say that a plan P improves the state s if s[P] is a
goal state, or s[P] is an improvement of s.

We remark that in the previous definition we permit P to be the empty plan ε; in partic-
ular, we have that the empty plan improves any goal state.

Definition 17. (from [9]) A planning instance Π = (V, init, goal, A) has persistent
Hamming width k (for short, PH width k) if no plan exists solving Π , or for every
reachable state s, there exists a plan (over A) improving s that stays within Hamming
distance k of s.

In this definition, when we say that a plan stays within Hamming distance k of a state
s, we mean that when the plan is executed in s, all intermediate states encountered (as
well as the final state) are within Hamming distance k of s.

Relative to a planning instance, we say that a state s dominates another state s′ if
{v ∈ V : s(v) �= s′(v)} ⊆ vars(goal) and wrong(s) ⊆ wrong(s′); intuitively, s may
differ from s′ only in that it may have more variables set to their goal position.

Definition 18. A planning instance Π = (V, init, goal, A) has macro persistent Ham-
ming width k (for short, MPH width k) if no plan solving Π exists, or for every
reachable state s dominating the initial state init, there exists a plan over (H(s, k), A)-
derivable actions improving s that stays within Hamming distance k of s.

It is straightforward to verify that if an instance has PH width k, then it has MPH
width k. We now give a polynomial-time algorithm for sets of planning instances having
bounded MPH width. We establish the following theorem.

Theorem 19. Let C be a set of planning instances having MPH width k. The plan
generation problem for Π = (V, init, goal, A) belonging to C is solvable in polynomial
time via the following algorithm, in time O(n3k+2d3k(|A|+ (nd)2k)). Here, n denotes
the number of variables |V | and d denotes the maximum size of a domain.

solve_mph((V, init, goal, A), k) {
Q := empty plan;
M := empty set of macros;
s := init;
while s not a goal state do {

(G, M’) := compute_macros(H(s,k), A);
append M’ to M;
if an improvement s’ of s is reachable from s in G then s := s’;
else {print "?"; halt;}
append l(s, s’) to Q;

}
print M, Q;

}

166 H. Chen and O. Giménez

We remark that solve mph can really be viewed as an extension of an algorithm for
persistent Hamming (PH) width; one essentially obtains an algorithm for PH width from
solve mph by replacing the call to compute macros with a command that simply
sets G to be the directed graph with vertex set H(s, k) and an edge (s1, s2) present if
there is an action a in A such that s1[a] = s2.

Theorem 20. All instances of the Blocksworld-arm domain have MPH-width 8.

According to Theorem 13, at any state s we may consider our set of applicable actions
enriched by these new macro-actions. We now show how we can use them to improve
any reachable state s. The proof is conceptually simple: improve s just by moving
around a few piles of blocks. For instance, if s(b-on) = b′ but goal(b-on) = b′′, then
apply action subtow-tableP>(b′′),b′′ (if s(b′′-clear) = F), and subtow-blockP≥(b),b′,b′′ .
However, we must not forget that variables that were already in the goal state in s must
remain so after the improvement. For instance, if b was on top of b′ in s, then unstacking
b from b′ will make b′-clear change from F to T. We may try to solve this by placing
something else on top of b′, but then this movement may affect some other variable
which was already in the goal state, and so forth.

The following lemma is a case-by-case analysis of the solution to the difficulty we
have described, which allows us to prove Theorem 20.

Lemma 21. Let Π be an instance of the Blocksworld-arm domain, and let s be a reach-
able state of Π such that s(arm) = empty. If a block b is such that s(b-clear) = T but
goal(b-clear) = F, then there is a (H(s, 6), A)-derivable action that improves the vari-
able b-clear in s.

With respect to Towers of Hanoi, it is clear that any instance can be solved by a single
application of the H(init, 4)-derivable action subtow-posn,p1,p2,p3

. This is enough to
ensure MPH-width 4, since no state dominates the initial state init other than goal.

Theorem 22. All instances of the Towers of Hanoi domain have MPH-width 4.

B Proofs

Proof of Lemma 10. Let Σ = σ1, . . . , σn be an A-CM-program over H(s, k) obtained
by compute macros, and let G be the resulting action graph. We prove by induction
on i ≥ 1 that after the command σi is executed and returns graph Gi, for every edge
(s, s′) ∈ E(Gi), it holds that (s, s′) ∈ E(G) and lGi(s, s′) = lG(s, s′).

If σi is an apply command (with arguments s and a) that effects a change in the
graph, then the input action must be in l(E(Gi)). The command σi can be successfully
applied at G. Since G is a fixed point over all apply and transitive commands, the action
a passed to apply or one that is better (according to the function better) must appear in
G at lG(s, s[a]). By condition-minimality of (s, a, s[a]), we have that a = lG(s, s[a]).

If σi is a transitive command that produces a transition (s, a, s′), then the actions a′

and a′′ (from within the execution of the command), by induction hypothesis,
appear in G. Since G is a fixed point over all apply and transitive commands, the
action combine(a, a′) or one that is better must appear in G at lG(s, s′). By condition-
minimality of (s, combine(a, a′), s′), we have that combine(a, a′) = lG(s, s′). 	

On-the-Fly Macros 167

Proof of Theorem 13. The proof has two parts. First, we show that the aforementioned
actions are condition-minimal. Then, we describe how to obtain an A-CM-program that
produces the actions inside H(s, 5). We consider the case a = subtow-blockP,b,b′ ; the
remaining actions admit similar proofs that only require Hamming distance 4.

To prove condition-minimality of a, consider a combination C = (a1, . . . , at) of
primitive actions from A such that s[C] = s[a]. We must show that the actions
unstackb1,b2 , . . . , unstackbk,b, stackbk,b′ appear in C in the given relative order, and
that no matter what are the remaining actions of C, this already implies that pre(a) ⊆
pre(C) and post(a) ⊆ post(C). We remark that the proof is not straightforward, since
pre(C) and post(C) are the result of applying the combine subroutine to several actions
not yet determined.

To prove that there exists an A-CM-program that produces actions subtow-table and
tow-block inside H(s, 4) we use a mutual induction; we omit the proof here. We then
use these results for subtow-block, the proof for which we sketch here. Precisely, we
now show that subtow-blockP,b,b′ is (H(s, 5), A)-derivable. When |P | = 1, we derive
subtow-blockP,b,b′ by combining actions a1 = unstackb1,b and a2 = stackb1,b′ . The
states s[a1] and s[a1, a2] differ from s respectively on 4 and 3 variables, so both states lie
inside H(s, 5). When |P | = k, let P ′ = P>(bk) in state s. We use the derivable actions
a1 = subtow-tableP ′,bk

, a2 = unstackbk,b, a3 = stackbk,b′ and a4 = tow-blockP ′,bk
.

It is easy to check that the state s[a1, a2, a3] is the one that is furthest from s, differing
at the 5 variables b-clear, bk−1-on, bk-clear, bk-on and b′-clear. 	

Proof of Theorem 15. We prove this by induction on i, the height of the subtower.
The proof makes use of the classical recursive solution to Towers of Hanoi: the action
subtow-posi,x,x′,x′′ is the combination of actions subtow-posi−1,x,x′′,x′ , movedi,x,x′′

and subtow-posi−1,x′,x,di
.

We show that these actions are derivable from init within Hamming distance 4. This
is trivial to show for the case i = 1, which moves a single disk; by induction, we can
assume that any action of the form subtow-posi−1,w,w′,w′′ is also H(init, 4)-derivable.
To prove that subtow-posi,x,x′,x′′ is H(init, 4)-derivable, we consider a state s satis-
fying the pre-conditions of subtow-posi,x,x′,x′′ as close as possible to the initial state
init. Notice that this state s is not required to be reachable (it is not even required to
be consistent!) since the compute macros algorithm takes all states within the appropi-
ate Hamming distance into consideration. If none of the positions x, x′ and x′′ is a
peg, let the state s be the non-consistent state obtained from init by setting di-on = x,
x′-clear = T, x′′-clear = T. We just need to check that the sequence of H(init, 4)-
derivable actions subtow-posi−1,x,x′′,x′ , movedi,x,x′′ and subtow-posi−1,x′,x,di

is ap-
plicable to the state s, and that the number of differing variables after the application
of any of these three actions never exceeds 4. A similar argument works for the case
where some of the positions x, x′ or x′′ is a peg. 	

Proof of Theorem 19. Let Π ∈ C be a planning instance such that there exists a plan
for Π = (V, init, goal, A). We want to show that solve mph outputs a plan. During
the execution of solve mph, the state s can only be replaced by states that are im-
provements of it, and thus s always dominates the initial state init. By definition of
MPH width, then, for any s encountered during execution, there exists a plan over

168 H. Chen and O. Giménez

(H(s, k), A)-derivable actions improving s staying within Hamming distance k of s.
By Lemma 10, all of the actions are discovered by compute macros, and thus the reach-
ability check in solve mph will find an improvement.

We now perform a running time analysis of the algorithm. Let v denote the number
of vertices in the graphs in compute macros, that is, |H(s, k)|. We have v ≤

(
n
k

)
dk ∈

O((nd)k). Let e be the maximum number of edges; we have e =
(
v
2

)
∈ O((nd)2k).

The do-while loop in compute macros will execute at most 2n · e ∈ O(ne) times,
since once an edge is introduced, its label may change at most 2n times, by definition
of better. Each time this loop iterates, it uses no more than (a+e)v+v3 time: apply can
be called on no more than (a+ e)v inputs, and transitive can be called on no more than
v3 inputs. The while loop in solve mph loops at most n times, and each time, by the
previous discussion, it requires ne((a+ e)v+ v3) time for the call to compute macros,
and (v + e) time for the reachability check. The total time is thus O(n(ne((a + e)v +
v3) + (v + e))) which is O(n2e((a + e)v + v3)) which is O(n2e(a + e)v) which is
O(n3k+2d3k(a + (nd)2k)). 	

Proof of Lemma 21. Clearly, b = top(P1) for some tower P1 of s. Let P2, . . . , Pt be
the remaining t− 1 towers of s, and let t′ be the number of towers of goal.

The proof proceeds by cases. If there is i such that goal(bottom(Pi)-on) �= table,
we say we are in Case 1. Otherwise, it holds that t ≤ t′. In particular, there are t′ blocks
b′ such that goal(b′-clear) = T (block b not one of them), and t blocks b′ �= b such that
s(b′-clear) = T (block b being one of them). It follows that it exists a block b′ such that
goal(b′-clear) = T but s(b′-clear) = F. We say we are in Case 2 if the block b′ belongs
to the tower P1, and in Case 3 if not. Throughout this proof we say that a block b′ is
badly placed if s(b′-on) �= goal(b′-on).

Case 1. The tower Pi is wrongly placed in the table, so we are allowed to change
the value of bottom(Pi)-on without worry. If i �= 1, then use tow-blockPi,b to stack the
tower Pi on top of b. If i = 1 and a tower Pj with j > 1 has a badly placed block b′,
then a possible solution is to insert P1 below b′. That is, move the sub-tower P≥(b′) on
top of P1, and then move the new resulting tower on top of the place where b′ was in
state s, that is, on top of s(b′-on).

If i = 1 and no tower Pj with j > 1 has badly placed blocks, then consider the pile
P ′i in state goal that b belongs to, and let b′ = top(()P ′i). If block b′ is in Pj for j > 1
in state s, then Pj would have some badly placed block, since b′ and b, sharing pile P ′i
in the goal state, would be in different piles in state s. So b′ is in P1, goal(b′-clear) = T
but s(b′-clear) = F, since b is the top of P1. It follows that the block on top of b′

in pile P1 is badly placed. To improve b-clear use actions subtow-tableP>(b′),b′ and
tow-blockP≤(b′),b, that is, break the tower over block b′ and swap the two parts.

Note that an action like tow-blockP≤(b′),b is not derivable from s since the pile
P≤(b′) is not a subtower of s, but it is derivable from s′ = s[subtow-tableP>(b′),b′],
a state within distance 2 from s. This fact may increase the width required to discover
the derivable actions; a careful examination reveals that we need up to width 5.

Case 2. Note that if Case 1 does not apply then t ≤ t′. Let b′ be the highest block in
P1 such that s(b′-clear) = F but goal(b′-clear) = T. If t > 1 and a tower Pj with j > 1
has a badly placed block b′′, then we insert the pile P>(b′) below b′′. This procedure
improves variables b-clear and b′-clear at the same time, but it needs width 6. If there is

On-the-Fly Macros 169

a second block b′′ in P1 such that goal(b′′-clear) = T, then swap the sub-tower P>(b′)
with the pile between b′ and b′′, the block b′′ not including. This procedure requires
width 5.

If there is no second block b′′ in P1 but all the towers Pj with j > 1 have no badly
placed blocks, it follows that either t = 1 or all towers Pj with j > 1 are exactly as in
the goal state. Observe that, in this situation, the blocks of P1 form a tower in s and in
goal, but the order of the blocks in the two towers must differ: the pile P ′ = P≤(b′),
which is such that goal(top(P ′)-clear) = T and goal(bottom(P ′)-on) = table, cannot
be a pile in goal. Hence there is a badly placed block below b′. This situation requires
width 5.

Case 3. There is a block b′ such that s(b′-clear) = F but goal(b′-clear) = T, and
the block is in some tower Pi other than P1. We just stack the sub-tower P>(b′) on top
of b. 	

Proof of Theorem 20. Let Π be an instance of the Blocksworld-arm domain, and let s
be a reachable state of Π that is not a goal state. We show how to improve one of the
variables of s within Hamming distance 8. We first show how to improve the variable
arm; for the remaining cases, we safely assume that s(arm) = goal(arm) = empty.

Improving arm. We assume s(arm) �= goal(arm) = empty. We use the action
putdownb to place the block b = s(arm) on the table. This improves the variable arm
and may also improve b-on. Note, however, that s(b-clear) = F (according to the given
formulation, the block is not clear when the arm holds it); if goal(b-clear) = F, then
putdownb is affecting a variable which had already the right value. In that case, we use
Lemma 21 to improve b-clear. The action putdownb changes the value of 3 variables, in-
cluding b-clear; the action of Lemma 21 changes the value of at most 6 variables, includ-
ing the common variable b-clear. Hence the combination of both is H(s, 8)-derivable.

Improving b-on. Assume s(b-on) = table, goal(b-on) = b′. If s(b′-clear) = F, then
move the sub-tower P>(b′) onto the table. (This changes the variable b′′-on, where b′′

is the block on top of b′ in s, which was not in the goal state in s.) Now the block b′ is
clear, so we stack the tower P≥(b) onto b′.

Now, assume s(b-on) = b′′, goal(b-on) = b′. If s(b′-clear) = F then we can swap
piles P>(b′′) and P>(b′), which only changes the value of two variables, neither of
which was in the goal state. Otherwise, we stack P>(b′′) on top of b′, but then b′′-clear
becomes true. This is a problem if goal(b′′-clear) = F, so we may need to apply
Lemma 21 at the current state. As in the previous case, the combination of both ac-
tions is H(s, 8)-derivable.

Finally, we address the case s(b-on) = b′′, goal(b-on) = table. Move P≥(b) onto
the table. As in the previous case, we can apply Lemma 21 to the current state if
goal(b′′-clear) = F. The combination is H(s, 8)-derivable.

Improving b-clear. Assume s(b-clear) = F, goal(b-clear) = T. This implies that the
variable b′-on, where b′ is the block such that s(b′-on) = b, is not in the goal state. Thus
we can safely move the pile P>(b) onto the table to improve b-clear, which only takes
width 4. To solve the case s(b-clear) = T, goal(b-clear) = F we just need to apply
Lemma 21, which requires width 6. 	

Abductive Logic Grammars

Henning Christiansen1 and Verónica Dahl2,3

1 Roskilde University, Denmark
2 Simon Fraser University, Canada

3 Universidad de Rovira i Virgili, Spain

Abstract. By extending logic grammars with constraint logic, we give
them the ability to create knowledge bases that represent the meaning
of an input string. Semantic information is thus defined through extra-
grammatical means, and a sentence’s meaning logically follows as a by-
product of string rewriting. We formalize these ideas, and exemplify them
both within and outside first-order logic, and for both fixed and dynamic
knowledge bases. Within the latter variety, we consider the usual left-to-
right derivations that are traditional in logic grammars, but also – in a
significant departure from the norm – arbitrary (i.e., order-independent)
derivations. We show that rich and accurate knowledge extraction from
text can be achieved through the use of this new formalism.

1 Introduction

Natural language question-answering systems usually comprise two separate
modules operating in sequence: the analyzer, which transform an input sen-
tence into some meaning representation of it, and the database – also called
the knowledge base if it has inferential capabilities. The meaning representation
produced by the analyzer can be more or less directly mapped into a query to
be processed by the knowledge base in order to produce an answer. E.g., the
input sentence “Where is Waldo?” could be analyzed into the meaning represen-
tation is in(waldo,Place) which would fairly directly serve as a Prolog query:
?- is in(waldo,Place) to be answered by a Prolog database containing such
facts, e.g., {is in(waldo,lalaland), is in(eve,paradise)}. Some analyzers
also comprise two separate modules operating in sequence: one to give a syntactic
representation of the sentence, or parse tree; another one to map that syntactic
representation into the desired database query. These two phases are sometimes
justified by the need to lay out the complete syntactic structure first in order to
correctly interpret some sentences, e.g., to determine the effect of some natural
language quantifiers over others. However it has long been recognized that syn-
tax and semantics inform each other; for instance semantic types can be used to
discard a syntactically correct sentence (such as “The sofa thinks”) on the basis
of semantic anomaly, and syntactic information such as whether a sentence is in
active or passive voice can be used to determine, for instance, that “Adam” is
the actor both in “Adam ate the apple” and in “The apple was eaten by Adam”.
This recognition is the basis for syntactico-semantic analyzers.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 170–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Abductive Logic Grammars 171

The semantic parts of a syntactico-semantic analyzer usually involve only lin-
guistic concepts like number and gender, used for instance to disallow sentences
such as “Witches flies”), perhaps aided by world knowledge information mod-
ules; for instance to discard “The sofa thinks”, a taxonomy might be consulted
which identifies “the sofa” as an inanimated object. The notion of constraints
has been increasingly used to implement syntactico-semantic interactions, e.g.,
sentences of the form “X thinks” are accepted subject to the constraint that X
must belong to the “human” type.

Constraint based reasoning has recently proved valuable for information sys-
tems as well, for its ability to prune the search space early, with consequent
substantial gains in speed. For instance an integrity constraint that people can’t
live more than 120 years would block updating a database with a new person
older than that, rather than allowing the new information to sneak in, only
to produce some later inconsistency – or worse still, an undetected error. In
general, however, information system constraints don’t interact with linguistic
constraints, even when they both may form part of the same overall system and
might use the same kind of constraining mechanism.

In this article we propose a new family of formalisms – Abductive Logic Gram-
mars – which uses constraint logic to implement syntactico-semantic interactions,
as has been done in the past, but also to abduce knowledge base items as a by-
product of the parse – which to the best of our knowledge has not been done
before in a way fully integrated with the grammar.

2 Motivation

Classic grammars are defined through string rewriting, both in pure and in com-
putational linguistics. This entails extra apparatus for contextual information,
as we shall see in the next section. Further, the contextual information typically
considered limits itself to linguistic tasks, such as checking gender and number
agreement in order to avoid overgeneration, whereas the reference to what makes
sense is typically not used to help disambiguation in any systematic way.

Current grammar applications, however, are expanding our concept of contex-
tual information through their increasing need for specialized knowledge bases.
E.g., a web mining system might access various domain-oriented taxonomies in
order to relate “water” to subclasses such as “river” or “lake” in the process of
figuring out if “clear cuts near water” refers to the forestry domain.

Knowledge representation languages supporting logic inference have for sev-
eral years now been recognized as a more promising approach, e.g., web mining
metadata languages have been developed to let people embed knowledge into
web documents in terms of logical statements that represent it; cf. the ongoing
direction of “Semantic Web”. However, as argued, e.g., in [1], even this is insuf-
ficient for precise, scalable, and flexible information retrieval, since the logical
statements used to represent knowledge are typically dissociated from the lin-
guistic knowledge that natural language grammars, if used concomitantly with
knowledge extraction, could contribute into the process of knowledge extraction.

172 H. Christiansen and V. Dahl

We propose a seamless integration between logic statement generation and
natural language analysis, by extending logic grammars with constraint logic in
such a way that the process of linguistic analysis intermingles with the process
of generating meaning representation, with each of these processes helping the
other one out. We differ from both the classical grammar and the logic gram-
mar traditions by combining string rewriting with “semantic processing” defined
by extra-grammatical means, with first-order logic as an example. We propose,
formally define, and discuss the merits and shortcomings of different variants
of such extended logic grammars, in the aim of finding the best logic grammar
framework that is able to create knowledge bases representing the meaning, or
interpretation, of an input string, as a by-product of string rewriting.

3 Background

Classical grammar formalisms are often defined solely in terms of rewriting of
strings of symbols. In two-level grammars [2], for example, contextual informa-
tion is represented by additional “internal” context-free rules (independently of
whether this is really the best way of representing context).

Logic grammar formalisms such as Metamorphosis Grammars [3] or DCGs [4],
on the other hand, use logic terms as grammar symbols, so that string rewriting
involves unification rather than simple rewriting, and that contextual informa-
tion can be expressed through grammar symbol arguments. Manipulating the
contextual information, however, is not easy since it must be explicitly passed
along in these arguments to all concerned parts of the grammar.

The introduction into logic grammars of assumptions [5,6] and constraints [7]
provided better ways to represent contextual information in logic grammars:
the former by allowing to dynamically record information that becomes globally
accessible over the continuation, and the latter by allowing Constraint Handling
Rules [8] to suitably constrain, also in globally accessible fashion, what can be
derived.

Our work leans on constraint logic (programming), with a knowledge base
evolving as a “global” state during the analysis that integrates grammatical and
semantic-pragmatic analysis. This is exactly the sort of processing done in a
constraint solver: accommodation of new knowledge is the same as adding new
constraints, the accumulated knowledge may be transformed into some normal
form, and the possibility of identifying inconsistencies, equivalent to a failure-
and-backtrack in a logic program. In earlier work, we have exposed this relation-
ship [9,10,7], so here we will take this identification for granted.

4 Static Abductive Grammars with Logical Knowledge
Base

We augment grammar rules with the ability to identify pieces of knowledge as
they are being built and we expand our notion of a grammar into that of a
grammar-with-fixed-knowledge-base, as follows.

Abductive Logic Grammars 173

We consider some first order logic language Σ and define a knowledge base as a
set of Σ formulas. For simplicity of notation, we allow Σ formulas (or fragments
thereof) to be represented as terms within grammar rules (which we shall define
later); in the following, K refers to the set of such terms.

Ground terms (atoms, literals, formulas, etc.) are defined as being variable-
free. An instance of any structure s (atoms, formulas, etc., and grammar rules
to be defined) is given by a systematic replacement of variables in s. Variables
are generally distinguished by initial capital letter.

A model M for a knowledge base K is a set of ground literals over Σ such
that every formula in K evaluates to true in M ; evaluation is defined in the
usual way with the truth value of a literal not in M considered undefined and
with true ∧ undefined ≡ undefined, false ∧ undefined ≡ false and analogous for
disjunction, negation and quantifiers. The notation K |= φ indicates that the
term φ represents a formula which is logically entailed by knowledge base K,
meaning that φ evaluates to true in any model of K; K being consistent means
that there exists a model of K.

For simplicity, we explain derivation for grounded rule instances only, taking
for granted that an implementation may introduce logical variables and unifica-
tion whenever possible; these are standard techniques and will not be commented
on here; see, e.g., [11].

Definition 1. A grammar-with-fixed-knowledge-base is a 5-tuple 〈N,T,K,R, S〉
where

– N are nonterminal symbols, each of which has a given arity; N ′ will refer
to the set of all instances of N , also referred to as nonterminals.

– T a set of terminal (symbol)s,
– K is the knowledge base, which is a satisfiable set of formulas over Σ,
– R is a set of rules, each of the form

N ′ → ({K}+ N ′ + T)∗.
– S is a 0-ary nonterminal called the start symbol.

The elements of N ′∪T are called grammar symbols. Notation ground(R) refers
to the set of instances of grammar rules in which grammar symbols are ground
and in any occurrence of {φ}, φ can be interpreted as a formula.

Notice that the arrow → and the curly brackets are used as meta-symbols
within grammars, similar to their usages within DCGs. We use notation lhs →
rhs1 | rhs2 | · · · for abbreviating grammar rules with identical left-hand side,
lhs → rhs1, lhs → rhs2, etc. Be aware that the arrow symbol is also used as
logical implication in Σ formulas.

Example 1. Let Γ1 = 〈N1, T1,K1, R1, s〉 be a grammar-with-fixed-knowledge-
base given as follows.

N1 = {s/0, np/1, vp/2}
T1 = {thinks, stands, curie, marie, pierre, the, sofa, ...}
K1 = {thinks(marie curie)}

174 H. Christiansen and V. Dahl

R1 = {s → np(X) vp(X,Knowledge) {Knowledge},
np(marie curie)→ marie curie,

np(sofa7)→ the sofa,

vp(X, thinks(X))→ thinks,

vp(X, stands(X))→ stands}
Now we must adapt the derivation relation to include in particular the derivation
of knowledge base items sanctioned by the grammar. This is done by removing
from a sentential form any knowledge items that logically follow from the knowl-
edge base, which indicated their acceptance, since only those sentential forms
will go on to generate another sentential form potentially leading to a successful
parse. More formally:

Definition 2. Given a grammar-with-fixed-knowledge-base Γ = 〈N,T,K,R, S〉,
the derivation relation ⇒Γ is defined by the following two cases.

αnβ ⇒Γ αγβ whenever (n → γ) ∈ ground(R)
α{k}β ⇒Γ αβ whenever K |= k

Derivations and notation ⇒∗
Γ are defined as usual. The language L(Γ) generated

by Γ is the set of terminal strings τ ∈ T ∗ for which S ⇒∗
Γ τ . For τ ∈ L(Γ) we

say that τ is an expression of K and that K is an interpretation of τ .

Example 2. We have that s ⇒∗
Γ1

marie curie thinks, which means that K1 =
{thinks(marie curie)} is an interpretation of the sentence marie curie thinks.
To see this, notice that the following rule instances are used in the derivation.

s → np(marie curie) vp(marie curie, thinks(marie curie)){thinks(marie curie)}
np(marie curie) → marie curie

vp(marie curie, thinks(marie curie)) → thinks

We do not have s ⇒∗
Γ1

the sofa stands, as it would require the rule instance
s → np(sofa7) vp(sofa7, stands(sofa7)) {stands(sofa7)},

but this is not allowed in derivations of Γ1 since K1 �|= stands(sofa7).

Derivations from the grammars we have considered so far can be applied for
generating expressions of given knowledge and for verifying a claimed interpre-
tation of a given sentence. This is interesting as a first proposal, but obviously
inadequate for real life applications, as we should not expect at beforehand, a
list given of interpretations of all possible sentences of the language, which are
typically infinite in number. So we now change focus and consider interpretations
as dynamic components created by the grammar for a given sentence.

Definition 3 (Unconstrained abduction problem). An (unconstrained)
abductive grammar is a 4-tuple Γ = 〈N,T,R, S〉 where the components are
as in def. 1 above.

The unconstrained abductive interpretation problem for string τ ∈ T ∗ given
Γ is the problem of finding a knowledge base K such that τ ∈ L(ΓK) where
ΓK = 〈N,T,K,R, S〉. It this case, K is an (abductive) interpretation of τ .

Abductive Logic Grammars 175

Example 3. Consider the unconstrained abductive interpretation problem for
the string marie curie thinks given the unconstrained abductive grammar
Γ2 = 〈N1, T1, R1, s〉, where the components are as in ex. 1. We have that
K1 = {thinks(marie curie)} is an abductive interpretation, and so is K2 =
{thinks(marie curie), thinks(pierre curie)}. The string the sofa thinks has
similar interpretations such as K3 = {thinks(sofa7)}.

The problem with definition 3 is that it specifies too much. While K1 appears
to be reasonable, K2 contains information that is not accounted for in the sen-
tence, and K3 seems to conflict with the generally accepted understanding of
sofas’ intellectual capacities. We shall therefore fine-tune our definitions so that
only certain predicates, predefined as abducible, can be added to a given back-
ground knowledge base. The background knowledge base may express integrity
conditions to be preserved by the interpretation and similar semantic requisites.

Definition 4 (Constraint system). A constraint system for abduction is a
pair 〈A,Kbg〉 where A is a set of predicates (called abducibles) and background
knowledge base Kbg, which is a satisfiable set of formulas over Σ.

An admissible knowledge base based on 〈A,Kbg〉 is a set KA of ground literals
whose predicates are in A such that Kbg ∪KA is consistent.

Definition 5 (Constrained abduction problem). A constrained abductive
grammar is a pair 〈Γ,C〉 where Γ is an abductive grammar and C a constraint
system for abduction, Γ = 〈N,T,R, S〉 and C = 〈A,Kbg〉.

Given a constrained abductive grammar 〈Γ,C〉 as above, the constrained ab-
ductive recognition problem for τ ∈ T ∗ is the problem of finding an admissible
knowledge base KA such that τ ∈ L(ΓKA) where ΓKA = 〈N,T,Kbg ∪KA, R, S〉.
In this case, KA is called a constrained (abductive) interpretation of τ , or for
short, an interpretation.

Such an interpretation KA is minimal whenever no proper subset of it is an
interpretation of τ given 〈Γ,C〉.
Example 4. We extend our sample abductive grammarΓ2with a constraint system
as follows. LetΓ3 = 〈Γ2, C〉whereC = 〈A,Kbg〉 is the following constraint system.

A = {thinks/1, stands/1}
Kbg = {thinks(X) → human(X),

stands(X)→ (human(X) ∨ thing(X)),

¬(human(X) ∧ thing(X)),

human(marie curie), human(pierre curie), thing(sofa7)}

The interpretations of marie curie thinks, K1 and K2 of example 3, are still
valid in the constrained Γ3, and with K1 as the only minimal one.

However, we notice that no interpretation exists of the sofa thinks in Γ3 as
the information thinks(sofa7) is inconsistent with the background knowledge
Kbg

3 : having thinks(sofa7) ∈ KA indicates that any model of Kbg
3 ∪KA contains

human(sofa7); together with the known fact thing(sofa7) ∈ Kbg
3 , this produces

falsity of ¬(human(X) ∧ thing(X)).

176 H. Christiansen and V. Dahl

Example 5. We extend our sample abductive grammar with additional rules and
change the knowledge base so it fits discourse analysis; the new nonterminal d
represents discourses alias sequences of sentences.

We consider here the task of identifying the classes to which entities appearing
as nps belong, i.e., we forget about marie curie being human, etc., and try
to learn that fact from what is expressed directly in the discourse. Let Γ4 =
〈〈N4, T4, R4, d〉, C4〉 be the constrained abductive grammar given as follows.

N4 = N1 ∪ {d/0, s/0}
T4 = T1

R4 = R1 ∪ {d → s | s d}
C4 = 〈A4, K

bg
4 〉

A4 = {human/1, thing/1}
Kbg

4 = {thinks(X) ↔ human(X),

stands(X)↔ (human(X) ∨ thing(X)),

¬(human(X) ∧ thing(X))}

The only minimal interpretation of marie curie thinks is now {human(marie
curie)}. The sentence marie curie stands has two minimal explanations,
{human(marie curie)} and {thing(marie curie)}; the discourse combining the
two sentences has exactly {human(marie curie)} as its minimal interpretation.

The previous examples indicate some general problems that abductive logic pro-
gramming avoids by restricting knowledge bases to logic programs in which no
abducibles can appear in the head of a rule. We will consider how the possible min-
imal interpretations ofmarie curie stands vary with the choice of abducible pred-
icates A, when we assume the background formula stands(X) ↔ (human(X) ∨
thing(X)). With A = {human/1, thing/1}, we get two minimal interpretations
I1 = {human(marie curie)} and I2 = {thing(marie curie)}; letting instead
A = {stands/1}, we get one interpretation I3 = {stands(marie curie)}. For
both choices of abducible predicates, this seems reasonable. However, including
all predicates as abducibles, i.e., A = {human/1, thing/1, stands/1}, we obtain
three minimal explanations, namely I1, I2 and I3; the purely syntactic charac-
terization of minimality (by a subset relationship) proves unsatisfactory, since I3
subsumes both I1 and I2. Defining minimality by logical entailment is not satisfac-
tory either, since for A = {human/1, thing/1, stands/1} this would reduce to one
minimal explanation, namely I3, so that no explicit information about abducibles
thing/1 and human/1 is provided.

The following definition seems to provide the intuitively right characterization
independently of the sort of knowledge bases that are used.

Definition 6. Let Γ be a constrained abductive grammar with constraint system
〈A,Kbg〉. An interpretation I of a string τ in Γ is called a substantiated interpre-
tation whenever I = M |A where M is a model of Kbg ∪ I and M |A is the subset
of literals in M whose predicate belongs to A. A substantiated interpretation is
minimal whenever no proper subset of it is a substantiated interpretation.

Abductive Logic Grammars 177

The following property indicates that substantiated interpretations characterize
the full space of interpretations.

Proposition 1. Let Γ be a constrained abductive grammar and I an interpre-
tation of a string τ in Γ . Then there exists an substantiated interpretation E
with I ⊆ E; when I is minimal, E can be chosen as a minimal substantiated
interpretation.

Example 6. Assume a constrained grammar similar to Γ4 of ex. 5 above, but with
the extended set of abducible predicates {human/1, thing/1, stands/1, thinks
/1}. This provides two substantiated interpretations of marie curie stands:

{stands(marie curie), thing(marie curie)}
{stands(marie curie), thinks(marie curie), human(marie curie)}

5 Dynamic Abductive Grammars

Here we drop the restriction of a first-order semantics for the knowledge base
and allow it to develop along a derivation (as opposed to the static abductive
case). We allow now explicit “knowledge update terms” within grammar rules
to modify the knowledge base whenever the rule is applied in a derivation.

We now let K be some set of possible formulas that can appear in grammar
rules and refer to the knowledge base. Whenever k ∈ K and K is a knowledge
base, we use the notation accommodate(k,K) for a new knowledge base updated
with k. The actual definition of ‘accommodate’ depends on the sort of knowledge
bases and updating operations K as well as the application. Intuitively, we may
expect that accommodate(k,K) entails k and that K is repaired properly in
order to restore consistency, if necessary. Notice that accommodate(k,K) may
have many possible or no values at all; the latter corresponds to impossibility
of accommodating k in any acceptable way. There is no need for an explicit
constraint system as a similar effect is implied by accomodate.

Definition 7. A dynamic abuctive grammar is a 5-tuple 〈N,T,Kinit, R, S〉
where

– N are nonterminal symbols, each with a given arity, and N ′ as above,
– T a set of terminal (symbol)s,
– Kinit is an initial knowledge base,
– R is a set of rules, each of the form

N ′ → ({K}+ N ′ + T)∗.
– S is a 0-ary nonterminal called the start symbol.

Definition 8. Given a dynamic abuctive grammar Γ = 〈N,T,Kinit, R, S〉, the
derivation relation ⇒Γ is defined over pairs of sentential form and knowledge
base by the following two cases.

〈αnβ,K〉⇒Γ 〈αγβ,K〉 whenever (n → γ) ∈ ground(R)
〈α{k}β,K〉⇒Γ 〈αβ,K ′〉 whenever accommodate(k,K) = K ′

178 H. Christiansen and V. Dahl

Derivations and notation ⇒∗
Γ are defined as usual. The interpreted language

defined by Γ , L(Γ) consists of all pairs of the form 〈τ,K〉 for which 〈S,K0〉⇒∗
Γ

〈τ,K〉 and τ ∈ T ∗.
When 〈τ,K〉 ∈ L(Γ), we say that K is an interpretation of τ by Γ . Minimal

interpretations are defined as usual. The LR (or left-to-right) derivation relation,
denoted LR⇒Γ , is defined in a similar way, except in the two cases requires α ∈ T ∗.
PR interpretations and their minimality notions is defined analogously.

Non-minimal interpretations of a given string may be created due to different
choices of possible accommodations as well as alternative choice of rule instances.
We have not defined the explicit notion of substantiated interpretation, but this
will be relevant to study in detail for any specific choice of knowledge represen-
tation mechanism employed in a dynamic abductive grammar.

Constrained abductive interpretation problems were specified in an abstract
way that does not anticipate any solution method. We can, as an important
result, show a translation of a constrained abductive grammar into a version
with a dynamic knowledge base, which will generate an interpretation as a side-
effect of syntactic derivation.

Theorem 1. Consider a constrained abductive grammar AG = 〈Γ,C〉 with
Γ = 〈N,T,R, S〉 and C = 〈A,Kbg〉. Construct a dynamic abuctive grammar
Δ(AG) = 〈N,T,Kbg, R, S〉 by, for any Σ formula k and any knowledge base
K, having the set of acceptable results for accommodate(k,K) being of the form
K ∪K ′ where K ′ is a smallest set of ground abducible literals such that K ∪K ′

is consistent and K ∪K ′ |= k; if no such K ′ exists, accommodate(k,K) is not
defined.

Completeness: Then, for any minimal interpretation I of a string τ under
AG, Kbg ∪ I is an interpretation of τ under Δ(AG).

Soundness: Any interpretation of a string τ under Δ(AG) can be written as
Kbg ∪ I where I is an interpretation of τ under AG.

The proof is straightforward and omitted: a derivation in one grammar is easily
mapped into a derivation of the other and vice versa. It is interesting to see
that this theorem holds without any restrictions on the derivation order, which
emphasizes why we called the traditional approach to abduction static.

The theorem showed how a static abductive analysis can be implemented
using a suitable accommodation function with LR or unrestricted derivations.
The more interesting applications are when the accomodation function is truly
nonmonotonic1 in which case it seems natural to confine derivations to LR: that
relates the temporal information embedded in one sentence being uttered before
others, and thus knowledge changes over time. The knowledge base at time t can
thus be thought of as a current set of beliefs that apply to the state of affairs at
time t and which may be inconsistent with the state of affairs at time t + 1.
1 Static abduction is often mistaken as a kind of nonmonotonic reason since knowledge

operationally is added piece by piece as, e.g., indicated by our theorem, but this does
not change the fact the static abduction is searching for a single knowledge base that
can explain the whole discourse.

Abductive Logic Grammars 179

Example 7. The framework of Global Abduction proposed by [12,13] uses a
knowledge representation based on logic programs whose fact base may change
dynamically; it has the distinguished feature that adding information contra-
dicting previous knowledge does not lead to a failure, but the newer informa-
tion replaces the old one. [14] has shown how this paradigm can be mapped
into Constraint Handling Rules [8]. Global Abduction was intended for agent
planning in a dynamic environment, but it will fit nicely as knowledge repre-
sentation formalism with accommodation function within a dynamic abductive
grammar.

The update mechanism used in Global Abduction provides a particularly
straightforward way to handle variants of general belief revision [15]. It seems
possible that any suggestion for a belief revision system can utilized in our frame-
work.

6 Related Work and Concluding Remarks

Abductive Logic Grammars relate to abductive logic programming [16] by im-
plementing knowledge base extraction through constrained-based abduction – a
paradigm used, e.g., for abducing molecular acid strings from RNA secondary
structure [17] – with the novel feature that they allow abducibles to appear in
heads of clauses, cf. our notion of substantiated answers. They relate also to
knowledge extraction from texts, with the novelty that they allow us to blend
linguistic and meaning representation capabilities within the same process, so
that their interaction can fine-tune the resulting knowledge bases in ways war-
ranted by the linguistic information, thus going beyond the state of the art
capabilities in text mining. And of course, they relate to logic grammars, with
the novelty that meaning representations can be richer than ever, since they
can interact during the process of their construction with all kinds of con-
textual information, gleaned this time through abduction, to guide that
process.

Among specific related works, [18] is perhaps the closest to our own: it couples
a syntactico-semantic grammar and a knowledge base implemented in Descrip-
tion Logics which is consulted by the grammar in order to ensure that only
semantically acceptable parses are built. While the knowledge base can also
learn new information from the parser’s calls (i.e., from a new sentence being
analysed), this information focusses mostly on lexical semantics, given that this
approach’s main aim is semantic correctness. In contrast, Abductive Logic Gram-
mars can infer full knowledge bases from their description in human language,
semantic correctness being only one of its possible applications. Future work will
focus in concrete applications of this promising new framework, and on incor-
porating weighting schemes for prioritizing different interpretations, e.g., based
on probabilities that have proved effective in other logic and constraint based
settings for abduction [19,20,21].

180 H. Christiansen and V. Dahl

References

1. Martin, P., Eklund, P.W.: Knowledge retrieval and the world wide web. IEEE
Intelligent Systems 15(3), 18–25 (2000)

2. van Wijngaarden, A.: The generative power of two-level grammars. In: Loeckx, J.
(ed.) ICALP 1974. LNCS, vol. 14, pp. 9–16. Springer, Heidelberg (1974)

3. Colmerauer, A.: Metamorphosis grammars. In: Bolc, L. (ed.) Natural Language
Communication with Computers. LNCS, vol. 63, pp. 133–189. Springer, Heidelberg
(1978)

4. Pereira, F.C.N., Warren, D.H.D.: Definite clause grammars for language analysis -
a survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence 13(3), 231–278 (1980)

5. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear
logic. In: LICS, pp. 32–42. IEEE Computer Society Press, Los Alamitos (1991)

6. Dahl, V., Tarau, P., Li, R.: Assumption grammars for processing natural language.
In: ICLP, pp. 256–270 (1997)

7. Christiansen, H.: CHR Grammars. Int’l Journal on Theory and Practice of Logic
Programming 5(4-5), 467–501 (2005)

8. Frühwirth, T.: Theory and practice of constraint handling rules, special issue
on constraint logic programming. Journal of Logic Programming 37(1–3), 95–138
(1998)

9. Christiansen, H., Dahl, V.: Meaning in Context. In: Dey, A.K., Kokinov, B., Leake,
D.B., Turner, R. (eds.) CONTEXT 2005. LNCS, vol. 3554, pp. 97–111. Springer,
Heidelberg (2005)

10. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with
assumptions and abduction. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 159–173. Springer, Heidelberg (2005)

11. Lloyd, J.W.: Foundations of logic programming, 2nd extended edn. Springer, Hei-
delberg (1987)

12. Satoh, K.: “All’s well that ends well” - a proposal of global abduction. In: Del-
grande, J.P., Schaub, T. (eds.) NMR, pp. 360–367 (2004)

13. Satoh, K.: An application of global abduction to an information agent which modi-
fies a plan upon failure - preliminary report. In: Leite, J., Torroni, P. (eds.) CLIMA
2004. LNCS, vol. 3487, pp. 213–229. Springer, Heidelberg (2005)

14. Christiansen, H.: On the implementation of global abduction. In: Inoue, K., Satoh,
K., Toni, F. (eds.) CLIMA 2006. LNCS, vol. 4371, pp. 226–245. Springer, Heidel-
berg (2007)

15. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2),
510–530 (1985)

16. Kakas, A., Kowalski, R., Toni, F.: The role of abduction in logic programming. In:
Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press,
Oxford (1998)

17. Bavarian, M., Dahl, V.: Constraint based methods for biological sequence analysis.
Journal of Universal Computing Science 12(11), 1500–1520 (2006)

Abductive Logic Grammars 181

18. Sagot, B., Ghali, A.E.: Coupling grammar and knowledge base: Range concatena-
tion grammars and description logics. In: Sojka, P., Kopeček, I., Pala, K. (eds.)
TSD 2004. LNCS, vol. 3206, pp. 195–202. Springer, Heidelberg (2004)

19. Poole, D.: Logic programming, abduction and probability - a top-down anytime
algorithm for estimating prior and posterior probabilities. New Generation Com-
puting 11(3), 377–400 (1993)

20. Sato, T., Kameya, Y.: Prism: A language for symbolic-statistical modeling. In:
IJCAI, pp. 1330–1339 (1997)

21. Christiansen, H.: Implementing probabilistic abductive logic programming with
constraint handling rules. In: Schrijvers, T., Frühwirth, T. (eds.) Constraint Han-
dling Rules, Current Research Topics. LNCS (LNAI), vol. 5388, pp. 85–118.
Springer, Heidelberg (2008)

On the Syntax-Semantics Interface:
From Convergent Grammar

to Abstract Categorial Grammar�

Philippe de Groote1, Sylvain Pogodalla2, and Carl Pollard3

1 LORIA/INRIA Nancy – Grand Est
philippe.degroote@loria.fr

2 LORIA/INRIA Nancy – Grand Est
sylvain.pogodalla@loria.fr
3 The Ohio State University

pollard@ling.ohio-state.edu

Abstract. Cooper’s storage technique for scoping in situ operators has
been employed in theoretical and computational grammars of natural
language (NL) for over thirty years, but has been widely viewed as ad
hoc and unprincipled. Recent work by Pollard within the framework of
convergent grammar (CVG) took a step in the direction of clarifying the
logical status of Cooper storage by encoding its rules within an explicit
but nonstandard natural deduction (ND) format. Here we provide further
clarification by showing how to encode a CVG with storage within a
logical grammar framework—abstract categorial grammar (ACG)—that
utilizes no logical resources beyond those of standard linear deduction.

Introduction

A long-standing challenge for designers of NL grammar frameworks is posed
by in situ operators, expressions such as quantified noun phrases (QNPs,
e.g. every linguist), wh-expressions (e.g. which linguist), and comparative phrases
(e.g. more than five dollars), whose semantic scope is underdetermined by their
syntactic position. One family of approaches, employed by computational se-
manticists [1] and some versions of categorial grammar [2] and phrase structure
grammar [3,4] employs the storage technique first proposed by Cooper [5]. In
these approaches, syntactic and semantic derivations proceed in parallel, much
as in classical Montague grammar (CMG [6]) except that sentences which dif-
fer only with respect to the scope of in-situ operators have identical syntactic
derivations.1 Where they differ is in the semantic derivations: the meaning of an
in-situ operator is stored together with a copy of the variable that occupies the
hole in a delimited semantic continuation over which the stored operator will

� The authors wish to acknowledge support from the Conseil Régional de Lorraine.
1 In CMG, syntactic derivations for different scopings of a sentence differ with respect

to the point from which a QNP is ‘lowered’ into the position of a syntactic variable.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 182–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Syntax-Semantics Interface: From CVG to ACG 183

scope when it is retrieved; ambiguity arises from nondeterminism with respect
to the retrieval site.

Although storage is easily grasped on an intuitive level, it has resisted a clear
and convincing logical characterization, and is routinely scorned by theoreticians
as ‘ad hoc’, ‘baroque’, or ‘unprincipled’. Recent work [7,8] within the CVG frame-
work provided a partial clarification by encoding storage and retrieval rules within
a somewhat nonstandard ND semantic calculus (Section 1). The aim of this paper
is to provide a logical characterization of storage/retrieval free of nonstandard fea-
tures. To that end, we provide an explicit transformation of CVG interface deriva-
tions (parallel syntax-semantic derivations) into a framework (ACG [9]) that em-
ploys no logical resources beyond those of standard (linear) natural deduction.
Section 2 provides a preliminary conversion of CVG by showing how to re-express
the storage and retrieval rules (respectively) by standard ND hypotheses and an-
other rule already present in CVG (analogous to Gazdar’s [10] rule for unbounded
dependencies). Section 3 introduces the target framework ACG. And Sect. 4 de-
scribes the transformation of a (pre-converted) CVG into an ACG.

1 Convergent Grammar

A CVG for an NL consists of three term calculi for syntax, semantics, and the
interface. The syntactic calculus is a kind of applicative multimodal categorial
grammar, the semantic calculus is broadly similar to a standard typed lambda
calculus, and the interface calculus recursively specifies which syntax-semantics
term pairs belong to the NL.2 Formal presentation of these calculi are given in
Appendix A.

In the syntactic calculus, types are syntactic categories, constants (nonlog-
ical axioms) are words (broadly construed to subsume phrasal affixes, includ-
ing intonationally realized ones), and variables (assumptions) are traces (axiom
schema T), corresponding to ‘overt movement’ in generative grammar. Terms
are (candidate syntactic analyses of) words and phrases.

For simplicity, we take as our basic syntactic types np (noun phrase), s (non-
topicalized sentence), and t (topicalized sentence). Flavors of implication corre-
spond not to directionality (as in Lambek calculus) but to grammatical functions.
Thus syntactic arguments are explicitly identitifed as subjects (�s), comple-
ments (�c), or hosts of phrasal affixes (�a). Additionally, there is a ternary
(‘Gazdar’) type constructor AC

B for the category of ‘overtly moved’ phrases that
bind an A-trace in a B, resulting in a C.

Contexts (left of the �) in syntactic rules represent unbound traces. The elim-
ination rules (flavors of modus ponens) for the implications, also called merges
(M), combine ‘heads’ with their syntactic arguments. The elimination rule G for
the Gazdar constructor implements Gazdar’s ([10]) rule for discharging traces;
thus G compiles in the effect of a hypothetical proof step (trace binding) imme-
diately and obligatorily followed by the consumption of the resulting abstract
2 To handle phonology, ignored here, a fourth calculus is needed; and then the interface

specifies phonology/syntax/semantics triples.

184 P. de Groote, S. Pogodalla, and C. Pollard

by the ‘overtly moved’ phrase. G requires no introduction rule because it is only
introduced by lexical items (‘overt movement triggers’ such as wh-expressions,
or the prosodically realized topicalizer).

In the CVG semantic calculus, as in familiar semantic λ-calculi, terms corre-
spond to meanings, constants to word meanings, and implication elimination to
function application. But there is no λ-abstraction! Instead, binding of semantic
variables is effected by either (1) a semantic ‘twin’ of the Gazdar rule, which binds
the semantic variable corresponding to a trace by (the meaning of) the ‘overtly
moved’ phrase; or (2) by the Responsibility (retrieval) rule (R), which binds
the semantic variable that marks the argument position of a stored (‘covertly
moved’) in situ operator. Correspondingly, there are two mechanisms for intro-
ducing semantic variables into derivations: (1) ordinary hypotheses, which are
the semantic counterparts of (‘overt movement’) traces; and the Commitment
(Cooper storage) rule (C), which replaces a semantic operator a of type AC

B with
a variable x : A while placing a (subscripted by x) in the store (also called the
co-context), written to the left of the � (called co-turnstile).

The CVG interface calculus recursively defines a relation between syntactic
and semantic terms. Lexical items pair syntactic words with their meanings.
Hypotheses pair a trace with a semantic variable and enter the pair into the
context. The C rule leaves the syntax of an in situ operator unchanged while
storing its meaning in the co-context. The implication elimination rules pair
each (subject-, complement-, or affix-)flavored syntactic implication elimination
rule with ordinary semantic implication elimination. The G rule simultaneously
binds a trace by an ‘overtly moved’ syntactic operator and a semantic variable
by the corresponding semantic operator. And the R rule leaves the syntax of the
retrieval site unchanged while binding a ‘committed’ semantic variable by the
retrieved semantic operator.

2 About the Commitment and Retrieve Rules

In the CVG semantic calculus, C and R are the only rules that make use of the
store (co-context), and their logical status is not obvious. This section shows
that they can actually be derived from the other rules, in particular from the G
rule. Indeed, the derivation on the left can be replaced by the one on the right3:

one:
...π1

Γ � a : AC
B � Δ

C
Γ � x : A � ax : AC

B , Δ

...π2

Γ, Γ ′ � b : B � ax : AC
B, Δ

′, Δ
R

Γ, Γ ′ � ax b : C � Δ′, Δ

�
...π1

Γ � a : AC
B � Δ

x : A � x : A �
...π2

x : A,Γ ′ � b : B � Δ′
G

Γ, Γ ′ � ax b : C � Δ,Δ′

3 The fact that we can divide the context into Γ and Γ ′ and the store into Δ and Δ′,
and that Γ and Δ are preserved, is shown in Proposition 1 of Appendix B.

On the Syntax-Semantics Interface: From CVG to ACG 185

This shows we can eliminate the store, resulting in a more traditional presenta-
tion of the underlying logical calculus. On the other hand, in the CVG interface
calculus, this technique for elimiating C and R rules does not quite go through
because the G rule requires both the syntactic type and the semantic type to be
of the form αγ

β . This difficulty is overcome by adding the following Shift rule to
the interface calculus:

Γ � a, b : A,BD
C � Δ

ShiftE
Γ � SE a, b : AE

E , B
D
C � Δ

where SE is a functional term whose application to an A produces a AE
E . Then

we can transform

...π1

Γ � a, b : A,BD
C � Δ

C
Γ � a, x : A,B � bx : BD

C , Δ

...π2

Γ, Γ ′ � e, c : E,C � bx : BD
C , Δ,Δ′

R
Γ, Γ ′ � e, bx c : E,D � Δ′, Δ

to:

...π1

Γ � a, b : A,BD
C � Δ

ShiftE
Γ � SE a, b : AE

E , B
D
C � Δ

t, x : A,B � t, x : A,B �
...π2

t, x : A,B;Γ ′ � e, c : E,C � Δ′
G

Γ, Γ ′ � (SEa)t e, bx c : E,D � Δ,Δ′

provided (SEa)t e = (SE a) (λt.e) = e[t := a]. This follows from β-reduction as
long as we take SE to be λy P.P y. Indeed:

(SE a) (λt.e) = (λy P.P y) a (λt.e) =β (λP.P a) (λt.e) =β (λt.e) a =β e[t := a]

With this additional construct, we can get rid of the C and R rules in the
CVG interface calculus. This construct is used in Section 4 to encode CVG
into ACG. It can be seen as a rational reconstruction of Montague’s quantifier
lowering technique as nothing more than β-reduction in the syntax (unavailable
to Montague since his syntactic calculus was purely applicative).

3 Abstract Categorial Grammar

Motivations. Abstract Categorial Grammars (ACGs) [9], which derive from
type-theoretic grammars in the tradition of Lambek [11], Curry [12], and Mon-
tague [6], provide a framework in which several grammatical formalisms may be
encoded [13]. The definition of an ACG is based on a small set of mathemat-
ical primitives from type-theory, λ-calculus, and linear logic. These primitives
combine via simple composition rules, which offers ACGs a good flexibility. In

186 P. de Groote, S. Pogodalla, and C. Pollard

particular, ACGs generate languages of linear λ-terms, which generalizes both
string and tree languages. They also provide the user direct control over the parse
structures of the grammar, which allows several grammatical architectures to be
defined in terms of ACG.

Mathematical preliminaries. Let A be a finite set of atomic types, and let
TA be the set of linear functional types types (in notation, α � β) built upon
A. A higher-order linear signature is then defined to be a triple Σ = 〈A,C, τ〉,
where: A is a finite set of atomic types; C is a finite set of constants; and τ is
a mapping from C to TA. A higher-order linear signature will also be called a
vocabulary. In the sequel, we will write AΣ , CΣ , and τΣ to designate the three
components of a signature Σ, and we will write TΣ for TAΣ .

We take for granted the definition of a λ-term, and we let the relation of βη-
conversion to be the notion of equality between λ-terms. Given a higher-order
signature Σ, we write ΛΣ for the set of linear simply-typed λ-terms.

Let Σ and Ξ be two higher-order linear signatures. A lexicon L from Σ to
Ξ (in notation, L : Σ −→ Ξ) is defined to be a pair L = 〈η, θ〉 such that: η is
a mapping from AΣ into TΞ ; θ is a mapping from CΣ into ΛΞ ; and for every
c ∈ CΣ , the following typing judgement is derivable: �Ξ θ(c) : η̂(τΣ(c)), where
η̂ : TΣ → TΞ is the unique homomorphic extension of η.4

Let θ̂ : ΛΣ → ΛΞ be the unique λ-term homomorphism that extends θ.5 We
will use L to denote both η̂ and θ̂, the intended meaning being clear from the
context. When Γ denotes a typing environment ‘x1 : α1, . . . , xn : αn’, we will
write L (Γ) for ‘x1 : L (α1), . . . , xn : L (αn)’. Using these notations, we have
that the last condition for L induces the following property: if Γ �Σ t : α then
L (Γ) �Ξ L (t) : L (α).

Definition 1. An abstract categorial grammar is a quadruple G = 〈Σ,Ξ,L , s〉
where:

1. Σ and Ξ are two higher-order linear signatures, which are called the abstract
vocabulary and the object vocabulary, respectively;

2. L : Σ −→ Ξ is a lexicon from the abstract vocabulary to the object vocabu-
lary;

3. s ∈ TΣ is a type of the abstract vocabulary, which is called the distinguished
type of the grammar.

A possible intuition behind this definition is that the object vocabulary specifies
the surface structures of the grammars, the abstract vocabulary specifies its
abstract parse structures, and the lexicon specifies how to map abstract parse
structures to surface structures. As for the distinguished type, it plays the same
part as the start symbol of the phrase structures grammars. This motivates the
following definitions.

The abstract language of an ACG is the set of closed linear λ-terms that are
built on the abstract vocabulary, and whose type is the distinguished type:
4 That is η̂(a) = η(a) and η̂(α � β) = η̂(α) � η̂(β).
5 That is θ̂(c) = θ(c), θ̂(x) = x, θ̂(λx. t) = λx. θ̂(t), and θ̂(t u) = θ̂(t) θ̂(u).

On the Syntax-Semantics Interface: From CVG to ACG 187

A(G) = {t ∈ ΛΣ | �Σ t : s is derivable}

On the other hand, the object language of the grammar is defined to be the
image of its abstract language by the lexicon:

O(G) = {t ∈ ΛΞ | ∃u ∈ A(G). t = L (u)}

It is important to note that, from a purely mathematical point of view, there
is no structural difference between the abstract and the object vocabulary: both
are higher-order signatures. Consequently, the intuition we have given above
is only a possible interpretation of the definition, and one may conceive other
possible grammatical architectures. Such an architecture consists of two ACGs
sharing the same abstract vocabulary, the object vocabulary of the first ACG
corresponding to the syntactic structures of the grammar, and the one of the sec-
ond ACG corresponding to the semantic structures of the grammar. Then, the
common abstract vocabulary corresponds to the transfer structures of the syn-
tax/semantics interface. This is precisely the architecture that the next section
will exemplify.

4 ACG Encoding of CVG

The Overall Architecture. As Section 1 shows, whether a pair of a syntactic
term and a semantic term belongs to the language depends on whether it is
derivable from the lexicon in the CVG interface calculus. Such a pair is indeed an
(interface) proof term corresponding to the derivation. So the first step towards
the encoding of CVG into ACG is to provide an abstract language that generates
the same proof terms as those of the CVG interface. For a given CVG G, we shall
call ΣI(G) the higher-order signature that will generate the same proof terms as
G. Then, any ACG whose abstract vocabulary is ΣI(G) will generate these proof
terms. And indeed we will use two ACG sharing this abstract vocabulary to
map the (interface) proof terms into syntactic terms and into semantic terms
respectively. So we need two other signatures: one allowing us to express the
syntactic terms, which we call ΣSimpleSyn(G), and another allowing us to express
the semantic terms, which we call ΣLog(G).

Finally, we need to be able to recover the two components of the pair out of
the proof term of the interface calculus. This means having two ACG sharing the
same abstract language (the closed terms of Λ(ΣI(G)) of some distinguished type)
and whose object vocabularies are respectively ΣSimpleSyn(G) and ΣLog(G). Fig. 1
illustrates the architecture with GSyn = 〈ΣI(G), ΣSimpleSyn(G),L Syn, s〉 the first
ACG that encodes the mapping from interface proof terms to syntactic terms,
and GSem = 〈ΣI(G), ΣLog(G),L Log, s〉 the second ACG that encodes the mapping
from interface proof terms to semantic formulas. It should be clear that this
architecture can be extended so as to get phonological forms and conventional
logical forms (say, in TY2) using similar techniques. The latter requires non-
linear λ-terms, an extension already available to ACG [14] . So we focus here on
the (simple) syntax-semantics interface only, which requires only linear terms.

188 P. de Groote, S. Pogodalla, and C. Pollard

Λ(ΣI(G))
LSyn

Λ(ΣSimpleSyn(G)) Λ(ΣLog(G))

L Log

GSyn GSem

for instance
strings or phonology

Fig. 1. Overall architecture of the ACG encoding of a CVG

Table 1. CVG lexicon for topicalization

Chris, Chris’ : np, ι top, top’ : np �a npt
s , ι � ιπ

π

liked, like’ : np �c np �s s , ι � ι � π topin-situ, top’ : np �a np, ι � ιπ
π

Table 2. ACG translation of the CVG lexicon for topicalization

Chris : 〈np, ι〉 top : 〈np, ι〉� 〈npt
s , ιπ

π〉
liked : 〈np, ι〉� 〈np, ι〉 � 〈s, π〉 topin-situ : 〈np, ι〉� 〈np, ιπ

π〉

We begin by providing an example of a CVG lexicon (Table 1). Recall that
the syntactic type t is for overtly topicalized sentences, and � a is the flavor of
implication for affixation. We recursively define the translation · τ of CVG pairs
of syntactic and semantics types to ΣI(G) as:

– α, β
τ

= 〈α, β〉 if either α or β is atomic or of the form γεδ. Note that this
new type 〈a, β〉 is an atomic type of ΣI(G);

– α � β, α′ � β′
τ

= α, α′
τ � β, β′

τ 6.

When ranging over the set of types provided by the CVG lexicon7, we get all
the atomic types of ΣI(G). Then, for any w, f : α, β of the CVG lexicon of G,
we add the constant w, f

c
= w of type α, β

τ
to the signature ΣI(G).

The application of · c and · τ to the lexicon of Table 1 yields the signature
ΣI(G) of Table 2. Being able to use the constants associated to the topicalization
operators in building new terms requires additional constants having e.g. 〈np, ιππ〉
as parameters. We delay this construct to Sect. 4.

Constants and types in ΣSimpleSyn(G) and ΣLog(G) simply reflect that we want
them to build terms in the syntax and in the semantics respectively. First, note
that a term of type αγ

β , according to the CVG rules, can be applied to a term
of type α � β to return a term of type γ. Moreover, the type αγ

β does not
exist in any of the ACG object vocabularies. Hence we recursively define the � · �
6 This translation preserves the order of the types. Hence, in the ACG settings, it

allows abstraction everywhere. This does not fulfill one of the CVG requirements.
However, since it is always possible from an ACG G to build a new ACG G ′ such
that O(G ′) = {t ∈ A(G)|t consists only in applications} (see the construct in Ap-
pendix C), we can assume without loss of generality that we here deal only with
second order terms.

7 Actually, we should also consider additional types issuing from types of the form αγ
β

when one of the α, β or γ is itself a type of this form.

On the Syntax-Semantics Interface: From CVG to ACG 189

function that turns CVG syntactic and semantic types into linear types (as used
in higher-order signatures) as:

– �a � = a if a is atomic
– �αγ

β � = (�α � � �β �) � �γ �
– �α �x β � = �α � � �β �

Then, for any CVG constant w, f : α, β we have w, f
c

= w : α, β
τ

in ΣI(G):

L Syn(w) = w L Log(w) = f

L Syn(α, β
τ
)= �α � L Log(α, β

τ
)= �β �

So the lexicon of Table 1 gives8:

L Syn(Chris) = Chris L Syn(liked) = λxy.
[s
y
[
liked x c

]]
L Log(Chris) = Chris’ L Log(liked) = λxy.like’ y x

And we get the trivial translations:

L Syn(liked SandyChris) =
[s

Chris
[
liked Sandy c

]]
: s

L Log(liked SandyChris) = like’Chris’ Sandy’ : π

On the Encoding of CVG Rules. There is a trivial one-to-one mapping
between the CVG rules Lexicon, Trace, and Subject and Complement Modus
Ponens, and the standard typing rules of linear λ-calculus of ACG: constant typ-
ing rule (non logical axiom), identity rule and application. So the ACG deriva-
tion that proves �ΣI(G) likedSandyChris : 〈s , π〉 in Λ(ΣI(G)) is isomorphic to
�
[s

Chris
[
liked Sandy c

]]
, like’ Sandy’ Chris’ : s , π � as a CVG interface deriva-

tion. But the CVG G rule has no counterpart in the ACG type system. So it
needs to be introduced using constants in ΣI(G).

Let’s assume a CVG derivation using the following rule:

...π1

Γ � a, d : AC
B, D

F
E � Δ

...π2
t, x : A,D;Γ ′ � b, e : B,E � Δ′

G
Γ ;Γ ′ � at b, dx e : C,F � Δ;Δ′

and that we are able to build two terms (or two ACG derivations) t1 : 〈AC
B, D

F
E〉

and t2 : B,E
τ

of Λ(ΣI(G)) corresponding to the two CVG derivations π1

and π2. Then, adding a constant G〈AC
B ,DF

E〉 of type 〈AC
B , D

F
E〉 � (A,D

τ �
B,E

τ
) � C,F

τ
in ΣI(G), we can build a new term G〈AC

B ,DF
E〉 t1 (λy.t2) :

C,F
τ ∈ Λ(ΣI(G)). It is then up to the lexicons to provide the good realizations of

8 In order to help recognizing the CVG syntactic forms, we use additional operators
of arity 2 in ΣSimpleSyn(G):

[s
s p
]

instead of writing (p s) when p is of type α �s β
and
[
p c x
]

instead of just (p c) when p is of type α �x β with x �=s. This syntactic
sugar is not sufficient to model the different flavors of the implication in CVG, the
latter topic being beyond the scope of this paper.

190 P. de Groote, S. Pogodalla, and C. Pollard

G〈AC
B ,DF

E〉 so that if L Syn(t1) = a, L Log(t1) = d, L Syn(t2) = b and L Log(t2) =
e then L Syn(G〈AC

B ,DF
E〉 t1 (λy.t2)) = a (λy.b) and L Log(G〈AC

B ,DF
E〉 t1 (λy.t2)) =

d (λy.e). This is realized when L Syn(G〈AC
B ,DF

E〉)=L Log(G〈AC
B ,DF

E 〉)=λQR.QR.
A CVG derivation using the (not in-situ) topicalization lexical item and the
G rule from �

[
Sandy top a

]
, top’ Sandy’ : npts , ιππ � and from t, x : np, ι �[s

Chris
[
liked t c

]]
, like’xChris’ : s, π � would result (conclusion of a G rule) in

a proof of �
[
Sandy top a

]
t

[s
Chris

[
liked t c

]]
, (top’ Sandy’)x (like’xChris’) : t , π �,

the latter being isomorphic to the derivation in Λ(ΣI(G)) proving:
�ΣI(G) G

〈npts ,ιππ〉
(top Sandy)(λx.liked xChris) : 〈t , π〉. Let’s call this term t.

Then with L Syn(top) = λx.
[
top x a

]
: �np �a npts � = np � (np � s) � t ,

L Log(top) = top’ : �ι � ιππ � = ι � (ι � π) � π, and L Syn(G
〈npts ,ιππ〉

) =

L Log(G〈npts ,ιππ〉
) = λP Q.P Q, we have the expected result:

L Syn(t) =
[
Sandy top a

]
(λx.
[s

Chris
[
liked x c

]]
)

L Log(t) = (top’ Sandy’)(λx.like’ xChris’)

The C and R Rules. Section 2 shows how we can get rid of the C and R rules
in CVG derivations. It brings into play an additional Shift rule and an additional
operator S. It should be clear from the previous section that we could add an
abstract constant corresponding to this Shift rule. The main point is that its
realization in the syntactic calculus by L Syn should be S = λeP.P e and its
realization in the semantics by L Log should be the identity.

Technically, it would amount to have a new constant S〈A,BD
C 〉 : 〈a,BD

C 〉 �
〈AE

E , B
D
C 〉 such that L Log(S〈A,BD

C 〉) = λx.x : �BD
C � � �BD

C � (this rule does
not change the semantics) and L Syn(S〈A,BD

C 〉) = λxP.P x : �A � � (�A � �
�E �) � �E � (this rule shift the syntactic type). But since this Shift rule is meant
to occur together with a G rule to model C and R, the kind of term we will actually
consider is: t = G〈AE

E ,BD
C 〉(S〈A,BD

C 〉 x)Q for some x : 〈A,BD
C 〉 and Q : 〈AE

EE,BD
C 〉.

And the interpretations of t in the syntactic and in the semantic calculus are:

L Log(t) = (λP Q.P Q) L Syn(t) = (λP Q.P Q)
((λy.y)L Log(x))L Log(Q) ((λeP.P e)L Syn(x))L Syn(Q)

= L Log(x)L Log(Q) = L Syn(Q)L Syn(x)

So basically, L Log(λxQ.t) = L Log(G〈AE
EE,BD

C 〉), and this expresses that noth-
ing new happens on the semantic side, while L Syn(λxQ.t) = λxQ.Qx expresses
that, somehow, the application is reversed on the syntactic side.

Rather than adding these new constants S (for each type), we integrate their
interpretation into the associated G constant9. This amounts to compiling the
composition of the two terms. So if we have a pair of type A,BD

C occurring in
a CVG G, we add to ΣI(G) a new constant GS

〈A,BD
C 〉

: 〈A,BD
C 〉 � (〈A,B〉 τ �

9 It correspond to the requirement that the Shift rule occurs just before the G rule in
the modeling the interface C and R rule with the the G rule.

On the Syntax-Semantics Interface: From CVG to ACG 191

〈E,C〉 τ) � 〈E,D〉 τ (basically the above term t) whose interpretations are:
L Syn(GS

〈A,BD
C 〉

) = λP Q.QP and L Syn(GS
〈A,BD

C 〉
) = λP Q.P Q.

For instance, if we now use the in-situ topicalizer of Table 1 (triggered by
stress for instance), from � Ss

[
Sandy top

in-situ
a
]
, top’ Sandy’ : nps

s , ι
π
π � and t, x :

np, ι �
[s

Chris
[
liked t c

]]
, like’xChris’ : s , π � we can derive, using the G rule, �

(Ss
[
Sandy top

in-situ
a
]
)t
[s

Chris
[
liked t c

]]
, (top’ Sandy’)x(like’xChris’) : s , π � Note

that:

(Ss
[
Sandy topin-situ

a])t([sChris
[
liked t c]]) = ((λeP.P e)

[
Sandy topin-situ

a])
(λt.
[s

Chris
[
liked t c]])

=β

[s
Chris

[
liked

[
Sandy top

in-situ

a] c]]
In order to map this derivation to an ACG term, we use the constant topin-situ :
〈np, ι〉 � 〈np, ιππ〉 and the constant that will simulate the G rule and the Shift
rule together GS

〈np,ιππ〉 : 〈np, ιππ〉 � (〈np, ι〉 � 〈s , π〉) � 〈s , π〉 such that, ac-

cording to what precedes: L Syn(GS
〈np,ιππ〉) = λP Q.QP and L Log(GS

〈np,ιππ〉) =
λP Q.P Q. Then the previous CVG derivation corresponds to the following term
of Λ(ΣI(G)): t = GS

〈np,ιππ〉(topin-situ Sandy)(λx.liked xChris) and its expected
realizations as syntactic and semantic terms are:

L Syn(t) = (λP Q.QP)(
[
Sandy top

in-situ
a
]
) L Log(t) = (λP Q.P Q)(top’ Sandy’)

(λx.
[s

Chris
[
liked x c

]]
) (λx, like’xChris’)

=
[s

Chris
[
liked

[
Sandy topin-situ

a
]

c
]]

= (top’ Sandy’)(λx.like’xChris’)

Finally the G〈α,β〉 and GS
〈α,β〉 are the only constants of the abstract signature

having higher-order types. Hence, they are the only ones that will possibly trigger
abstractions, fulfilling the CVG requirement.

When used in quantifier modeling, ambiguities are dealt with in CVG by the
non determinism of the order in which semantic operators are retrieved from
the store. It corresponds to the (reverse) order in which their ACG encoding are
applied in the final term. However, by themselves, both accounts don’t provide
control on this order. Hence, when several quantifiers occur in the same sentence,
all the relative orders of the quantifiers are possible.

Conclusion

We have shown how to encode a linguistically motivated parallel formalism,
CVG, into a framework, ACG, that has mainly been used to encode syntac-
tocentric formalisms until now. In addition to providing a logical basis for the
CVG store mechanism, this encoding also sheds light on the various components
(such as higher-order signatures) that are used in the interface calculus. It is
noteworthy that the signature used to generate the interface proof terms relate
to what is usually called syntax in mainstream categorial grammar, whereas the
CVG simple syntax calculus is not expressed in such frameworks (while it can
be using ACG, see [15]).

192 P. de Groote, S. Pogodalla, and C. Pollard

References

1. Blackburn, P., Bos, J.: Representation and Inference for Natural Language. A First
Course in Computational Semantics. CSLI (2005)

2. Bach, E., Partee, B.H.: Anaphora and semantic structure (1980); Reprinted in
Partee, B.H., Compositionality in Formal Semantics, pp. 122–152. Blackwell

3. Cooper, R.: Quantification and Syntactic Theory. Reidel, Dordrecht (1983)
4. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. CSLI Publications,

Stanford (1994); Distributed by University of Chicago Press
5. Cooper, R.: Montague’s Semantic Theory and Transformational Syntax. PhD the-

sis, University of Massachusetts at Amherst (1975)
6. Montague, R.: The proper treatment of quantification in ordinary english. In: Hin-

tikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to natural language: proceed-
ings of the 1970 Stanford workshop on Grammar and Semantics. Reidel, Dordrecht
(1973)

7. Pollard, C.: Covert movement in logical grammar (submitted)
8. Pollard, C.: The calculus of responsibility and commitment (submitted)
9. de Groote, P.: Towards abstract categorial grammars. In: Association for Compu-

tational Linguistics, 39th Annual Meeting and 10th Conference of the European
Chapter, Proceedings of the Conference, pp. 148–155 (2001)

10. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistic In-
quiry 12, 155–184 (1981)

11. Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65,
154–170 (1958)

12. Curry, H.: Some logical aspects of grammatical structure. In: Jakobson, R. (ed.)
Studies of Language and its Mathematical Aspects, Providence, Proc. of the 12th
Symp. Appl. Math., pp. 56–68 (1961)

13. de Groote, P., Pogodalla, S.: On the expressive power of abstract categorial gram-
mars: Representing context-free formalisms. Journal of Logic, Language and Infor-
mation 13(4), 421–438 (2004), http://hal.inria.fr/inria-00112956/fr/

14. de Groote, P., Maarek, S.: Type-theoretic extensions of abstract categorial gram-
mars. In: New Directions in Type-Theoretic Grammars, proceedings of the work-
shop, pp. 18–30 (2007),
http://let.uvt.nl/general/people/rmuskens/ndttg/ndttg2007.pdf

15. Pogodalla, S.: Generalizing a proof-theoretic account of scope ambiguity. In:
Geertzen, J., Thijsse, E., Bunt, H., Schiffrin, A. (eds.) Proceedings of the 7th
International Workshop on Computational Semantics - IWCS-7, Tilburg Univer-
sity, Deparment of Communication and Information Sciences, pp. 154–165 (2007),
http://hal.inria.fr/inria-00112898

16. Hinderer, S.: Automatisation de la construction sémantique dans TYn. PhD thesis,
Université Henri Poincaré – Nancy 1 (2008)

http://hal.inria.fr/inria-00112956/fr/
http://let.uvt.nl/general/people/rmuskens/ndttg/ndttg2007.pdf
http://hal.inria.fr/inria-00112898

On the Syntax-Semantics Interface: From CVG to ACG 193

A The CVG Calculi

A.1 The CVG Syntactic Calculus

Lex� a : A
T (t fresh)

t : A � t : A

Γ � b : A �s B Δ � a : A
Ms

Γ,Δ �
[s
a b
]

: B
Γ � b : A �c B Δ � a : A

Mc

Γ,Δ �
[
b a c
]

: B

Γ � b : A �a B Δ � a : A
Ma

Γ,Δ �
[
b a a
]

: B

Γ � a : AC
B t : A;Γ ′ � b : B

G
Γ ;Γ ′ � at b : C

A.2 The CVG Semantic Calculus

Lex� a : A � T (x fresh)
x : B � x : B �

� f : A � B � Δ � a : A � Δ′
M� (f a) : B � Δ;Δ′

Γ � a : AC
B � Δ x : A;Γ ′ � b : B � Δ′

G
Γ ;Γ ′ � ax b : C � Δ;Δ′

� a : AC
B � Δ

C (x fresh)� x : A � ax : AC
B ;Δ

� b : B � ax : AC
B;Δ

R
Γ � (ax b) : C � Δ

A.3 The CVG Interface Calculus

Lex� w, c : A,B � T
x, t : A,B � x, t : A,B �

Γ � f, v : A �s B,C � D � Δ Γ ′ � a, c : A,C � Δ′
Ms

Γ ;Γ ′ �
[s
a f
]
, (v c) : B,D � Δ;Δ′

Γ � f, v : A �c B,C � D � Δ Γ ′ � a, c : A,C � Δ′
Mc

Γ ;Γ ′ �
[
f a c
]
, (v c) : B,C � Δ;Δ′

Γ � f, v : A �a B,C � D � Δ Γ ′ � a, c : A,C � Δ′
Mc

Γ ;Γ ′ �
[
f a a
]
, (v c) : B,C � Δ;Δ′

Γ � a, d : AC
B , D

F
E � Δ t, x : A,D;Γ ′ � b, e : B,E � Δ′

G
Γ ;Γ ′ � at b, dx e : C,F � Δ;Δ′

Γ � a, b : A,BD
C � Δ

C (x fresh)
Γ � a, x : A,B � bx : BD

C ;Δ
� e, c : E,C � bx : BD

C ;Δ
R

Γ � e, (bx c) : E,D � Δ

Example of a simple interface derivation:

194 P. de Groote, S. Pogodalla, and C. Pollard

...π
�
[
liked Sandy c

]
, like’ Sandy’ : np �s s , ι � π � Lex� Chris,Chris : np, ι �

Ms

�
[s

Chris
[
liked Sandy c

]]
, like’ Sandy’ Chris’ : s , π �

π =
Lex� liked, like’ : np �c np �s s , ι � ι � π � Lex� Sandy, Sandy’ : np, ι �

Mc�
[
liked Sandy c

]
, like’ Sandy’ : np �s s, ι � π �

Example using the G rule
...π1

�
[
Sandy top a], top’ Sandy’ : npt

s , ι
π
π !

...π2

t, x : np, ι �
[sChris

[
liked t c]], like’xChris’ : s, π !

G�
[
Sandy top a](λt.[sChris

[
liked t c]]), (top’ Sandy’)(λx.like’xChris’) : t, π !

with trivial derivations for π1 and π2.

B On CVG Derivations

Proposition 1. Let π be a CVG semantic derivation. It can be turned into a
CVG semantic derivation where all C and R pairs of rule have been replaced by
the above schema, and which derives the same term.

Proof. This is proved by induction on the derivations. If the derivation stops on
a Lexicon, Trace, Modus Ponens, G or C rule, this is trivial by application of
the induction hypothesis.

If the derivation stops on a R rule, the C and R pair has the above schema.
Note that nothing can be erased from Γ in π2 because every variable in Γ occur
(freely) only in a and Δ. So using a G rule (the only one that can delete material
from the left hand side of the sequent) would leave variables in the store that
could not be bound later. The same kind of argument shows that nothing can
be retrieved from Δ before ax had been retrieved. This means that no R rule
can occur in π2 whose corresponding C rule is in π1 (while there can be a R
rule with a corresponding C rule introduced in π2). Hence we can make the
transform and apply the induction hypothesis to the two premises of the new G
rule.

C How to Build an Applicative ACG

Let ΣHO = 〈AHO, CHO, τHO〉. This section section shows how to build an ACG
G = 〈Σ2nd, ΣHO,L , s ′〉 such that O(G) is the set of t : s ∈ ΛΣHO such that
there exists π a proof of �ΣHO t : s and π does not use the abstraction rule. This
construction is very similar to the one given in [16, Chap. 7].

Definition 2. Let α be a type. We inductively define the set Decompose(α) as:

– if α is atomic, Decompose(α) = {α};
– if α = α1 � α2, Decompose(α) = {α} ∪ {α1} ∪ Decompose(α2).

On the Syntax-Semantics Interface: From CVG to ACG 195

Let T be a set of types. We then define:

– Base(T) = ∪α∈TDecompose(T);
– At(T) a set of fresh atomic types that is in a one to one correspondence with

Base(T). We note := one of the correspondence from At(T) to Base(t) (we
also note := its unique homomorphic extension that is compatible with �.
The later is not necessarily a bijection);

– let α ∈ Base(T). The set AtPT (α) of its atomic profiles is inductively defined
as:
• if α is atomic, AtPT (α) = {α′} such that α′ is the unique element of

At(T) and α′ := α;
• if α = α1 � α2, AtPT (α) = {α′} ∪ {α′1 � α′2 |α′2 ∈ AtPT (α2)} where:

∗ α′ is uniquely defined in At(T) and α′ := α;
∗ α′1 is uniquely defined in At(T) and α′1 := α1. There exists such an
α′1 because α1 ∈ Decompose(α) and Decompose(α) ⊂ Base(T) when
α ∈ Base(T).

Note that for the same reason, α′2 is well defined.

Note that for any α ∈ Base(T), The types in AtPT (α) are of order at most 2.

Proposition 2. Let T be a set of types and α ∈ Base(T) with α = α1 � . . . �
αk � α0 such that α0 is atomic. Then |AtPT (α)| = k + 1.

Proof. By induction.

Proposition 3. Let T be a set of types and α ∈ Base(T). Then for all α′ ∈
AtPT (α) we have α′ := α.

Proof. By induction.

In the following, we always consider T = ∪c∈CHOτHO(c). We then can define
Σ2nd = 〈A2nd, C2nd, τ2nd〉 with:

– A2nd = At(T)
– s ′ ∈ A2nd the unique term such that s ′ := s
– C2nd = ∪c∈CHO{〈c, α′〉|α′ ∈ AtPT (τHO(c))} (AtPT (τHO(c)) is well defined

because τHO(c) ∈ Base(T))
– for every c′ = 〈c, α′〉 ∈ C2nd, τ2nd(c′) = α′

Note that according to Proposition 2, for every constant c of CHO of arity k
(i.e. τHO(c) = α1 � . . . � αk � α0), there are k + 1 constants in C2nd.

Finally, in order to completely define G , we need to define L :

– for α′ ∈ A2nd, there exists a unique α ∈ Base(T) such that α′ := α by
construction of At(T). We set L (α′) = α.

– for c′ = 〈c, α′〉 ∈ C2nd, we set L (c′) = c

According to Proposition 3, we have L (τ2nd(c′)) = α where α is the type of
L (c′) so L is well defined.

196 P. de Groote, S. Pogodalla, and C. Pollard

Proposition 4. There exists t : α ∈ ΛΣHO build using only applications if and
only if there exists t′ : α′ a closed term of ΛΣ2nd with α′ the unique element of
At(T) such that α′ := α and L (t′) = t.

Proof. ⇒ We prove it by induction on t. If t is a constant, we take t′ = 〈t, α′ with
α′ the unique element of At(T) such that α′ := α. By definition, L (t′) = t.
If t = c u1 . . .uk, then c ∈ CHO is of type α1 � . . . � αk � α and for
all i ∈ [1, k] uk is of type αi. We know there exist c′ = 〈c, β′〉 ∈ Σ2nd such
that β′ = α′1 � . . .α′k � α′ with for all i ∈ [1, k], α′i is the unique element
of At(T) such that α′i := αi and α′ the unique element of At(T) such that
α′ := α. By induction hypothesis, we also have for all i ∈ [1, k] a term u′i : α′i
with α′i the unique element of At(T) such that α′i := αi and L (u′i) = ui.
If we take t′ = 〈c, β′〉u′1 . . .u′k, we have L (t′) = L (〈c, β′〉u′1 . . .u′k) =
L (〈c, β′〉)L (u′1) . . . L (u′k) = c u1 . . .uk = t which completes the proof.

⇐ If α′ ∈ At(T) and t′ is a closed term then because Σ2nd is of order 2, then
t′ is build only using applications. Hence its image by L is also only build
using applications.

Observational Effort and Formally Open
Mappings

Bernhard Heinemann

Fakultät für Mathematik und Informatik,
FernUniversität in Hagen,
58084 Hagen, Germany

bernhard.heinemann@fernuni-hagen.de

Abstract. Starting off with Moss and Parikh’s investigation into knowl-
edge and topology, we propose a logical system which is capable of
formally handling endomorphisms of subset spaces. The motivation for
doing so originates from dynamic agent logics. Usually, these logics com-
prise certain epistemic actions. Our aim is to show that an appropriate
extension of the Moss-Parikh system can serve similar purposes. In fact,
since the semantics of an action can be described as a function inducing
a change of the knowledge states of the involved agents, such transfor-
mations are to be modeled accordingly. Due to the ambivalence of the
framework used here, this has some quasi-topological impact, too, in so
far as a certain notion of open mapping can be captured now. The main
issues of this paper concern the basic logical properties of the arising sys-
tem, in particular, completeness. Our main technical resource for that is
hybrid logic.

Keywords: topology and epistemic logic, subset spaces, hybrid logic,
open mappings.

1 Introduction

Caused by the demands for spatial reasoning in AI, a renewed interest in an old
topic has recently got a good response in the relevant literature: the modal logic
view of topology, initiated by Tarski approximately 70 years ago; cf [1] or [2].
A comprehensive overview of the modern developments referring to this can be
found in the handbook [3].

Different priorities have been set for analysing the relationship between topol-
ogy and modal logic. We here focus on a particular approach due to Moss and
Parikh which not only brings about a modern account of the classical results of
McKinsey and Tarski, but also stresses the information-theoretic content of topo-
logical spaces as epistemic structures; cf [4] or [5]. The present paper is based
on this work of Moss and Parikh so that the essentials of their system should be
mentioned in advance. Basically, the underlying language, L, contains a modal-
ity K describing the knowledge of an agent under discussion, and a second one, 	,
formalizing observational effort to acquire knowledge. The semantic domains are

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 197–208, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

198 B. Heinemann

triples (S,O, V) called subset spaces. These models consist of a non-empty set S
of states, a set O of subsets of S representing the knowledge states of the agent,1

and a valuation V determining the states where the atomic propositions are true.
The L-formulas are interpreted in subset spaces with respect to neigbourhood sit-
uations x, U , where x ∈ U ∈ O. In particular, the operator K quantifies over all
states that are taken from some fixed knowledge stateU ∈ O, whereas 	 quantifies
‘downward’ over all U ′ ∈ O that are contained in U since shrinking and gaining
knowledge correspond to each other. Thus, compared to the original framework
the class of admissible domains is indeed expanded, but topological spaces can be
characterised

The generality of L is accompanied by its weak expressiveness. With regard to
special purpose applications it is, therefore, desirable to strengthen the language
appropriately. To this end, certain functions were added to L in the papers [6] and
[7], respectively. In epistemic contexts, functions play an important part since
they appear, eg, as the semantics of actions of agents. That is why integrating
functions constitutes some kind of dynamic epistemic logic, in the spirit of [8].

It turned out that additional means of expression were needed for doing this
successfully. In fact, hybrid logic, cf [9], Sect. 7.3, provides a suitable basis for
dealing with functions in connection with subset spaces. In the paper [10], a
basic logical system, called HS, was developed, which contains nominals for both
states and sets, and the global modality, cf [9], Sect. 7.1, for simulating hybrid
satisfaction operators.

The system HS is structurally rather simple thus. But it gets it about right,
apart from one crucial point: It is impossible that a state-valued function f
is forced to transform the actual neighbourhood onto an element of O, or, in
other words, to respect knowledge states. The latter exactly means that f is
an endomorphism of subset spaces, or – as the reader will see when we give the
precise definitions –, an “open mapping”. However, the ability to formally specify
such an important property is very desirable, especially in view of dynamic
epistemic logic. Hence that deficiency will be rectified in the present paper.

For this purpose, the system HS must be upgraded first. We now take also the
hybrid ↓-binder, cf [11], Sect. 2, into account, and we design a correspondingly
enriched hybrid logic of subset spaces. This makes up the bulk of the paper,
before we will be able to conclude our actual intention.

In detail, the technical part of the paper is organised as follows. In Section 2,
we define and discuss the language our study is based on. To be more precise, we
first fix the function-free part of the language and incorporate functions into it
afterwards. The next section then deals with the main model-theoretic aspect of
the arising logic, viz completeness. Subsequently, in Section 4, we show that our
sytem is strong enough to treat open mappings logically. The paper is concluded
with a summary and a discussion of the achievements we have obtained so far,
some hints to future research and a comparison with other approaches.

1 Due to the topological connection, the elements of O are sometimes called the opens
here. This is in accordance with the common manner of speaking, eg, in the funda-
mental paper [4].

Observational Effort and Formally Open Mappings 199

2 The Upgraded Hybrid Language

We now extend the hybrid language for subset spaces from [10]. The new lan-
guage should additionally contain the ↓-binder. In this case, it is common to have
also state variables at one’s disposal; cf [11], loc cit. Since the source language
is sorted, we will have two sorts of variables here though, in fact state variables
and set variables.

Let be given five mutually disjoint denumerably-infinite sets of symbols, Prop
= {p, q, . . .}, Nstat = {i, j, . . .}, Vstat = {x, y, . . .}, Nsets = {I, J, . . .} and Vsets =
{X,Y, . . .}. The elements of these sets are called proposition variables, names of
states, state variables, names of sets and set variables, respectively. The set Form
of formulas over Prop ∪Nstat ∪Vstat ∪Nsets ∪Vsets is then defined by the rule

α ::= p | i | x | I | X | ¬α | α ∧ α | Kα | 	α | Aα | ↓x.α | ↓X.α.

The missing boolean connectives �,⊥,∨,→,↔ are treated as abbreviations, as
needed. The duals of the modal operators K, 	 and A are denoted L, � and E,
respectively. The ↓-binder turns out to be self-dual.

The semantic domains of our language are subset spaces where the usual
modal valuations are extended to nominals. Moreover, assignments to variables
have to be taken into account as well. All this is contained in the following
definition, in which the powerset of a given set S is designated P(S).

Definition 1 (Subset frames; hybrid subset spaces; assignments).

1. A subset frame is a pair S = (S,O), where S is a non-empty set (of states)
and O ⊆ P(S) a set of subsets of S.

Now, let S = (S,O) be a subset frame.

2. The set NS := {s, U | s ∈ U and U ∈ O} is called the set of neighbourhood
situations of S. (Although neighbourhood situations are pairs, they are mostly
written without brackets.)

3. An S-valuation is a mapping V : Prop ∪Nstat ∪Nsets → P(S) such that
(a) V (p) ∈ P(S) for all p ∈ Prop,
(b) V (i) either equals ∅ or is a singleton subset of S for every i ∈ Nstat , and
(c) V (I) ∈ O for every I ∈ Nsets .

4. A triple M := (S,O, V), where S = (S,O) is a subset frame and V an
S-valuation, is called a hybrid subset space (or, in short, an HSS). We say
that M is based on S then.

5. An S-assignment2 is a mapping g : Vstat ∪Vsets → P(S) such that
(a) g(x) is either ∅ or a singleton subset of S for every x ∈ Vstat , and
(b) g(X) ∈ O for every X ∈ Vsets .

2 If the underlying frame is clear, then the prefix ‘S ’ is sometimes omitted. The same
applies for valuations.

200 B. Heinemann

Note that it is generally accepted for the original language L that {S, ∅} ⊆ O; cf
[4], Sect. 1.1. This is not required from the outset here. But note that nominals
and variables, respectively, may have an empty denotation nevertheless, which
is appropriate to us for technical reasons, but is not common in standard hybrid
logic.

Neighbourhood situations as well as assignments are used for defining the
relation of satisfaction being relevant to hybrid subset spaces M = (S,O, V). It
is convenient to introduce a little more notation in advance: Let ξ ∈ Vstat∪Vsets ,
and let Φ ∈ S∪O be of the same type as ξ. Furthermore, let g be any assignment.
Then gΦξ denotes the assignment which equals g except for the argument ξ which
is assigned to Φ.

Given an HSS M based on a frame S and an S-assignment g, we now define
the relation of satisfaction, |=M,g , between the neighbourhood situations of S
and the formulas from Form.

Definition 2 (Satisfaction and validity).

1. Let M = (S,O, V) be an HSS based on S = (S,O), g an S-assignment and
s, U a neighbourhood situation of S. Then

s, U |=M,g p : ⇐⇒ s ∈ V (p)
s, U |=M,g i : ⇐⇒ s ∈ V (i)
s, U |=M,g x : ⇐⇒ s ∈ g(x)
s, U |=M,g I : ⇐⇒ V (I) = U

s, U |=M,g X : ⇐⇒ g(X) = U

s, U |=M,g ¬α : ⇐⇒ s, U �|=M,g α

s, U |=M,g α ∧ β : ⇐⇒ s, U |=M,g α and s, U |=M,g β

s, U |=M,g Kα : ⇐⇒ t, U |=M,g α for all t ∈ U

s, U |=M,g 	α : ⇐⇒ ∀U ′ ∈ O : (s ∈ U ′ ⊆ U ⇒ s, U ′ |=M,g α)
s, U |=M,g Aα : ⇐⇒ t, U ′ |=M,g α for all t, U ′ ∈ NS
s, U |=M,g↓x.α : ⇐⇒ s, U |=M,gs

x
α

s, U |=M,g↓X.α : ⇐⇒ s, U |=M,gU
X
α,

where p ∈ Prop, i ∈ Nstat , x ∈ Vstat , I ∈ Nsets , X ∈ Vsets , and α, β ∈ Form.
In case s, U |=M,g α is true we say that α holds in M at the neighbourhood
situation s, U under the assignment g.

2. Let M be an HSS and g an assignment. A formula α is called valid in M
under g, iff it holds in M under g at every neighbourhood situation s, U of
the subset frame M is based on. (Manner of writing: M, g |= α.)

Let ϕ ∈ Nstat ∪Vstat and Ψ ∈ Nsets ∪Vsets . Then, for a fixed assignment, the for-
mula ϕ∧Ψ holds at a single neighbourhood situation at most. Thus it is possible
to identify neighbourhood situations by formulas of this type. Since neighbour-
hood situations constitute the semantic atoms of the language of subset frames,
it therefore makes sense to associate a satisfaction operator with such a formula.

Observational Effort and Formally Open Mappings 201

By the following definition, satisfaction operators are properly integrated into
the hybrid language for subset spaces:

@(ϕ∧Ψ)α :≡ E(ϕ ∧ Ψ ∧ α),

for all α ∈ Form.
For the rest of this section, subset frames with funtions are underlain our

treatment. For simplicity, we add only one function, F , which is represented by
a further modal operator, [F]. We retain the designation Form for the arising
set of formulas.

Definition 3 (Functional subset frames). Let (S,O) be a subset frame and
F : S → S a function. Then the triple S := (S,O, F) is called a functional subset
frame. The modifications of the other notions from Definition 1 are derived from
this in a straightforward manner.

As it has already been indicated in the introduction, we are particularly inter-
ested in subset frames with endomorphisms.

Definition 4 (Preserving opens). A functional subset frame S = (S,O, F)
is said to preserve opens, iff F (U) ∈ O holds for all U ∈ O. In this case, the
mapping F is called formally open.

We now extend the notion of satisfaction to functional hybrid subset spaces
preserving opens. For convenience, we call these structures simply the pertinent
HSSs.

Definition 5 (Satisfaction). Let M = (S,O, F, V) be a pertinent HSS based
on S = (S,O, F), g an S-assignment and s, U a neighbourhood situation of S.
Then

s, U |=M,g [F]α : ⇐⇒ F (s), F (U) |=M,g α,

where α ∈ Form. The notion of validity is defined as in Definition 2.

With that, the new language is completely specified. – The following proposition,
saying that the operator [F] is self-dual, is obvious.

Proposition 1 (Self-duality). Let M = (S,O, F, V) be a pertinent HSS based
on S = (S,O, F), g an S-assignment and s, U a neighbourhood situation of S.
Then we have that

s, U |=M,g ¬[F]α iff s, U |=M,g [F]¬α.

The next proposition gives an example of the expressiveness of the new language.
We establish a particular validity which will play an important part in the course
of this paper since it forces formal openness.

Proposition 2. Let M and g be as in the previous proposition. Then,

M, g |=↓x. ↓X. [F]K ↓y. @(x∧X)L[F]y.

The proof of this proposition relies on Definition 2 and Definition 5. It can be
found in the appendix.

202 B. Heinemann

3 Hybrid Completeness

First in this section, we give a brief review of those features of HS which are also
significant to the logic resulting from the full language. We then deal with the
necessary extensions.

Concerning axioms, the reader is referred to Sect. 3 of the paper [10]. For us,
only the properties these axioms imply are important since we want to outline
the model construction underlying the corresponding completeness proof. Our
starting point is a maximal consistent set Γ of formulas containing a given HS-
consistent formula γ. By means of an appropriate Lindenbaum Lemma, Γ can
be extended to a certain maximal consistent set Γ ′ of formulas in a language
L′ containing enough nominals. It is one of the particular properties of Γ ′ that
this set is named, i.e., Γ ′ contains some state name and some set name. Let
Δ−→ be the accessibility relation belonging to the modality Δ ∈ {K,	,A} of

the canonical model of HS relative to L′.3 Then, the second important property
of Γ ′ ensures that named witnesses are provided, i.e., the submodel M′ having
domain D := {Σ | Σ is named and Γ ′

A−→Σ} of that canonical model satisfies
the Existence Lemma; cf [10], 3.3 and 3.6.

Since the operator K follows the S5 laws, the relation K−→ is an equivalence.

Let [Σ] := {Σ′ ∈ D | Σ K−→Σ′} denote the K−→ -equivalence class of the point
Σ ∈ D, and let Q := {[Σ] | Σ ∈ D} be the set of all such classes. The following
relation of precedence between elements of Q proves to be useful:

[Σ] [Θ] : ⇐⇒ ∃Σ′ ∈ [Σ], Θ′ ∈ [Θ] : Σ′ �−→Θ′,

for all Σ,Θ ∈ D. It turns out that is a left-directed partial order. Moreover, if
[Σ] [Θ] is true, then the relation �−→ restricted to [Σ] in the domain and [Θ]
in the range is an injective and surjective partial function; see [10], 3.8. Now, for
all [Σ], [Θ] ∈ Q such that [Σ] [Θ], let f

[Θ]
[Σ] : [Θ] → [Σ] be the mapping which

is inverse to that function. Let S be the set of all partial functions f : Q → D
of which the domain dom(f) is a maximal subset of Q regarding the following
two conditions:

1. f([Σ]) ∈ [Σ] for all [Σ] ∈ dom(f),
2. f([Σ]) = f

[Θ]
[Σ] (f([Θ])) for all [Σ], [Θ] ∈ dom(f) such that [Σ] [Θ].

We write fΣ := f([Σ]) if f([Σ]) exists. The set S serves as the carrier set of
the desired model M. We also recall the definition of the distinguished set of
subsets. Let U[Σ] := {f ∈ S | fΣ exists}, for all Σ ∈ D; then let O := {U[Σ] |
Σ ∈ D} ∪ {∅}. The valuation V of M is derived from the canonical one in a
standard manner.

It is worth mentioning that a function f ∈ S is already determined by its value
for a single argument; see [10], 3.9. On the other hand, every Σ ∈ D actually

3 Later on, we denote the accessibility relations for further modalities correspondingly.

Observational Effort and Formally Open Mappings 203

induces a function passing through this point, according to the definition of S.
Hence this function is unique and denoted fΣ thus.

Finally, a few remarks on the nominal structure of M′ and M, respectively.
First, it should be mentioned that not only every point of M′ is named, but also
that every pair i, I, where i ∈ Nstat and I ∈ Nsets , is the ‘name’ of at most one
such point. In other words, the formulas i ∧ I act as proper nominals for M′;
cf the remark right after Definition 2 and see [10], 3.5.3. Second, a state name
i ∈ Nstat is constant along every function f ∈ S as follows immediately from one
of the Axioms of HS ([10], Sect. 3, Axiom 11). And third, we have the following
strong uniqueness property for names of states with regard to M. If i ∈ Nstat is
contained in Σ ∩ Σ′, where Σ,Σ′ ∈ D, then fΣ = fΣ

′
. This fact can easily be

concluded from the previous one, the left-directedness of and [10], 3.5.5.
The subsequent Truth Lemma was proved in [10], 3.11, from which the com-

pleteness of HS with respect to the class of all HSSs follows readily.

Lemma 1. The model M is an HSS such that for all formulas α, functions
f ∈ S, and points Σ ∈ D satisfying f ∈ U[Σ], we have that α holds in M at the
neighbourhood situation f, U[Σ] iff α ∈ fΣ.

This completes the review of HS. We now argue that the same way of proceeding
can be utilised for the extended system, ad hoc called EHS, as well. For a start,
the treatment of variables is completely analogous to that of nominals. We have,
in particular, the schemata 11 – 14 from [10] also for state and set variables,
respectively. But variables need not be included in the naming process connected
to the Lindenbaum Lemma. Hence it is clear how the assignment g associated
with M has to be defined. Furthermore, we can directly go on with the ↓-case of
the Truth Lemma. Two additional axioms are needed for handling it successfully,
which read

(1) A (i → (↓x.α ↔ α[x/i])) and (2) A (I → (↓X.α ↔ α[X/I])) ,

where i ∈ Nstat , I ∈ Nsets , x ∈ Vstat , X ∈ Nsets and α ∈ Form; substitution
(of variables with nominals) is here defined as in first-order logic, where binding
only concerns the operator ↓. As one will see in a minute, these axioms effect a
reduction of the ↓-case to the nominal case so that one can exploit the nominal
structure of M appropriately.

Lemma 2 (Truth Lemma). LetM and g be as above. Then, for all α ∈ Form,
f ∈ S, and Σ ∈ D satisfying f ∈ U[Σ], we have that f, U[Σ] |=M,g α iff α ∈ fΣ.

Proof. Only the case of the ↓-binder has to be considered. We confine ourselves
to state variables since the case of set variables is similar. So let α = ↓ y.β.
Moreover, Let f and Σ be given such that f ∈ U[Σ]. Take a nominal i ∈ fΣ .
(Such a nominal actually exists.) Due to the construction of M, we then have
V (i) = f . Consequently, we get

204 B. Heinemann

f, U[Σ] |=M,g↓y.β ⇐⇒ f, U[Σ] |=M,gf
y
β (by Definition 2)

⇐⇒ V (i), U[Σ] |=M,g
V (i)
y

β (since V (i) = f)
⇐⇒ V (i), U[Σ] |=M,g β[y/i] (by induction on β)
⇐⇒ β[y/i] ∈ fΣ (by induction hypothesis)
⇐⇒ ↓y.β ∈ fΣ (due to Axiom (1)).

This proves the lemma in the case we selected in advance.

As an immediate consequence of Lemma 2 we obtain the desired completeness
result for EHS.

Theorem 1 (Hybrid completeness). The system EHS is sound and complete
with respect to the class of all HSSs.

4 The Logic of Pertinent HSSs

In the main part of this paper following now, we give an axiomatic description
of pertinent hybrid subset spaces. Focussing on the operator [F] we prove a
corresponding completeness theorem. Some comments on the upcoming logic
are postponed to the concluding section. – The validities concerning [F] read as
follows.

1. [F](α → β) → ([F]α → [F]β)
2. ¬[F]α ↔ [F]¬α
3. �[F]i → 	[F]i
4. K[F] (α → Lβ) ∨ K[F] (β → Lα)
5. ↓x. ↓X. [F]K ↓y. @(x∧X)L[F]y
6. Aα → [F]α,

where i ∈ Nstat , x, y ∈ Vstat , X ∈ Vsets and α, β ∈ Form. The reader will easily
check that this list in fact involves only validities. While this is obvious for (1) –
(3) and (6), it is best seen indirectly in case of (4); as to (5), see Proposition 2.

By adding suitable proof rules for [F]4 a logic called PHS results from these
axioms. For PHS, we obtain the following theorem.

Theorem 2 (Extended completeness). PHS is sound and complete with re-
spect to the class of all pertinent HSSs.

The rest of this section is devoted to the proof of Theorem 2. Keeping the
notations from the previous section and omitting some routine arrangements,
we define the function F : S → S interpreting the modality [F] right away. Let
f be an arbitrary element of S. Then there is some Θ ∈ D such that fΘ is

defined. Due to Axiom (2), there exists some Σ ∈ D such that fΘ
[F]−→Σ. We

now let
F (f) := fΣ .

Clearly, we must show that F is correctly defined in this way.
4 See [10], where corresponding rules are stated for the modalities of the basic language.

Observational Effort and Formally Open Mappings 205

Lemma 3. The mapping F is well-defined.

Proof. It must be proved that the definition of F is independent of both Σ and

Θ. So let us assume that fΘ
[F]−→Σ as well as fΘ′

[F]−→Σ′ is valid. We know that
there is some i ∈ Nstat contained in Σ. Using Axiom (2) among other things, it
follows that [F]i ∈ fΘ. We now utilise that there exists some Ξ ∈ D such that

fΞ
�−→fΘ and fΞ

�−→fΘ′ . Thus �[F]i ∈ fΞ . With the aid of Axiom (3) we get
	[F]i ∈ fΞ . Consequently, [F]i ∈ fΘ′ , hence i ∈ Σ′. This implies fΣ = fΣ

′
, as

it was stated in Sect. 3. Therefore, the definition of F is independent of both Σ
and Θ, as desired.

Let the extension of the original model with F be equally designated M. The
decisive property of M is that opens are respected by the mapping F .

Lemma 4. For all U ∈ O, we have that F (U) ∈ O.

Proof. Let U ∈ O be given. Then there is some Σ ∈ D such that U = U[Σ]. Let

Δ be the unique point of D satisfying Σ
[F]−→Δ. We claim that F (U) = U[Δ]. To

this end, the following two properties must be established.

(a) If f ∈ U[Σ], then F (f) ∈ U[Δ].
(b) If h ∈ U[Δ], then there exists f ∈ U[Σ] such that h = F (f).

We first prove (a). For that, it suffices to show that if fΣ
[F]−→Θ, then Δ

K−→Θ.
Assuming the contrary gives us formulas α, β ∈ Form such that

α ∈ Δ,¬Lα ∈ Θ and β ∈ Θ,¬Lβ ∈ Δ.

This implies L[F](α∧¬Lβ)∧L[F](β ∧¬Lα) ∈ Σ, contradicting Axiom (4). Thus
the assumption was wrong, i.e., (a) is valid.
We now prove (b). This is the place where Axiom (5) comes into play. So let
h ∈ U[Δ] be given. Since every axiom is contained in Σ and every element of
D is named, Axiom (5) and the two schemata from Sect. 3 imply that there is

some Ξ ∈ D such that Σ
K−→Ξ and Ξ

[F]−→ hΔ; cf the proof of Proposition 2.
This is what we wanted to show since F

(
fΞ
)

= h is valid then according to the
definition of F . – Now, F (U) = U[Δ] follows readily from (a) and (b).

Consequently, the extended model M is a pertinent HSS. In order to complete
the proof of Theorem 2 it remains to establish the Truth Lemma for the case
involving [F].

Lemma 5. Lemma 2 holds for the system PHS as well.

Proof. Let α = [F]β. Moreover, Let f and Σ be given such that f ∈ U[Σ].
Finally, let h = F (f) and F (U) = U[Δ]. Then h = fΘ, where Θ is determined

from fΣ
[F]−→Θ, and we get

206 B. Heinemann

f, U[Σ] |=M,g [F]β ⇐⇒ F (f), F
(
U[Σ]
)
|=M,g β (by Definition 5)

⇐⇒ β ∈ hΔ (by induction hypothesis)
⇐⇒ [F]β ∈ fΣ (since hΔ = Θ).

This proves the lemma. – Altogether, the proof of Theorem 2 is completed with
that.

5 Discussion

In the present paper, the basic hybrid logic for reasoning about knowledge and
topology from [10] was extended with sorted variables for states and sets as
well as with corresponding ↓-binders. In this way, the integration of endomor-
phisms into that system was facilitated. The final outcome was an axiomatic
characterisation of the resulting logic by means of a corresponding soundness
and completeness theorem.

Given a functional subset frame S = (S,O, F) preserving opens, the mapping
F need not be contracting, i.e., the property F (U) ⊆ U need not necessarily
be valid for all U ∈ O. The fact that knowledge may get lost through certain
epistemic actions accounts for that. However, if the contraction property is re-
quired, then we have the well-known Cross Axiom for K and [F], which reads
K[F]α → [F]Kα; cf [4], Sect. 1.2, where the Cross Axiom is stated for K and 	.
This axiom is so strong that we can dispense with the schemata containing the
↓-binder then; see [13] for showing this in a simple case.

It is clearly no problem to enlarge the system by taking several epistemic
actions into account, i.e., multiple functions F1, . . . , Fn. But combining these
functions in the spirit of deterministic dynamic logic requires additional work.
This is postponed to future research.

Unfortunately, the logic PHS is undecidable. This is true since the satisfiability
problem of the hybrid system H (@, ↓), see [11], is polynomial time reducible to
that of PHS; now, Theorem 37 of [11] applies.

Finally, we relate the issues of this paper to those of the paper [14]. In that
paper, the ↓-binder was considered in connection with subset spaces for the
first time. The author introduced, in particular, a binder of the form ↓Xx , where
x ∈ Vstat and X ∈ Vsets . That is, both components of the actual neighbour-
hood situation are always involved in the process of binding. For our purposes,
however, it is evidently more suitable to separate bindings. Nevertheless, the
operator ↓Xx can be taken for theoretical reasons equally well, whereas a corre-
ponding @-operator is problematic with regard to the neighbourhood situation
semantics;5 see [14], Def. 3. But principally, special emphasis is placed on an
appropriate sequent calculus in [14]. Thus the respective approaches not only
are distinct regarding the technical details, but also have different goals.

Acknowledgement. I would like to thank Konstantinos Georgatos very much
for discussions related to the topic of this paper.
5 That is why our satisfaction operators are simulated with the aid of the global

modality.

Observational Effort and Formally Open Mappings 207

References

1. McKinsey, J.C.C.: A solution to the decision problem for the Lewis systems S2 and
S4, with an application to topology. Journal of Symbolic Logic 6, 117–141 (1941)

2. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Annals of Mathematics 45,
141–191 (1944)

3. Aiello, M., Pratt-Hartmann, I.E., van Benthem, J.F.A.K.: Handbook of Spatial
Logics. Springer, Heidelberg (2007)

4. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowl-
edge. Annals of Pure and Applied Logic 78, 73–110 (1996)

5. Moss, L.S., Parikh, R., Steinsvold, C.: Handbook of Spatial Logics [3], pp. 299–341.
Springer, Heidelberg (2007)

6. Heinemann, B.: Reasoning about knowledge and continuity. In: Goebel, R., Sut-
cliffe, G. (eds.) Proceedings 19th International Florida Artificial Intelligence Re-
search Society Conference (FLAIRS 2006), pp. 37–42. AAAI Press, Menlo Park
(2006)

7. Heinemann, B.: Reasoning about operations on sets. In: Kobti, Z., Wu, D. (eds.)
Canadian AI 2007. LNCS, vol. 4509, pp. 308–319. Springer, Heidelberg (2007)

8. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library, vol. 337. Springer, Heidelberg (2007)

9. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

10. Heinemann, B.: A hybrid logic for reasoning about knowledge and topology. Journal
of Logic, Language and Information 17(1), 19–41 (2008)

11. Areces, C., ten Cate, B.: Handbook of Modal Logic [12], pp. 821–868. Elsevier,
Amsterdam (2007)

12. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Studies in
Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2007)

13. Heinemann, B.: Topological nexttime logic. In: Kracht, M., de Rijke, M., Wansing,
H., Zakharyaschev, M. (eds.) Advances in Modal Logic 1, Stanford, CA. CSLI
Publications, vol. 87, pp. 99–113. CSLI Publications, Kluwer (1998)

14. Wang, Y.N.: A two-dimensional hybrid logic of subset spaces. In: Ramanujam, R.,
Sarukkai, S. (eds.) Logic and Its Applications, ICLA 2009. LNCS, vol. 5378, pp.
196–209. Springer, Heidelberg (2009)

Appendix

Proof of Proposition 2. Let s, U be any neighbourhood situation. We must show
that

(∗) s, U |=M,g↓x. ↓X. [F]K ↓y. @(x∧X)L[F]y

is true. According to Definition 2, (∗) is equivalent to

s, U |=M,gs,U
x,X

[F]K ↓y. @(x∧X)L[F]y,

where gs,Ux,X := (gsx)UX . But this is the case iff

F (s), F (U) |=M,gs,U
x,X

K ↓y. @(x∧X)L[F]y,

208 B. Heinemann

because of Definition 5. Again by Definition 2, the latter holds iff

for all t ∈ F (U) : t, F (U) |=M,gs,U
x,X
↓y. @(x∧X)L[F]y.

Substituting the ↓-operator equivalently yields

for all t ∈ F (U) : t, F (U) |=M,gs,t,U
x,y,X

@(x∧X)L[F]y,

where gs,t,Ux,y,X is (gs,Ux,X)ty. Due to the semantics of the @-operator we obtain

for all t ∈ F (U) : ∃ s′, U ′ ∈ NS : s′, U ′ |=M,gs,t,U
x,y,X

x ∧X ∧ L[F]y

as a condition of equal value, which means that

for all t ∈ F (U) : s, U |=M,gs,t,U
x,y,X

L[F]y.

A further application of Definition 2 leads us to

for all t ∈ F (U) there is some u ∈ U : F (u), F (U) |=M,gs,t,U
x,y,X

y

so that we finally get

for all t ∈ F (U) there is some u ∈ U : F (u) ∈ gs,t,Ux,y,X(y) = {t},

which is obviously true. This completes the proof of (∗) and of the proposition
thus.

Forcing-Based Cut-Elimination for
Gentzen-Style Intuitionistic Sequent Calculus

Hugo Herbelin1 and Gyesik Lee2

1 INRIA & PPS, Paris Université 7
Paris, France

Hugo.Herbelin@inria.fr
2 ROSAEC center, Seoul National University

Seoul, Korea
gslee@ropas.snu.ac.kr

Abstract. We give a simple intuitionistic completeness proof of Kripke
semantics with constant domain for intuitionistic logic with implication
and universal quantification. We use a cut-free intuitionistic sequent cal-
culus as formal system and by combining soundness with completeness,
we obtain an executable cut-elimination procedure. The proof, which has
been formalised in the Coq proof assistant, easily extends to the case of
the absurdity connective using Kripke models with exploding nodes.

Keywords: Intuitionistic Gentzen-style sequent calculus, Kripke seman-
tics, completeness, cut-elimination.

1 Introduction

The intuitionistic completeness proofs for intuitionistic full first-order predicate
logic given by Veldman [1] and Friedman [2, Chapter 13] use nonstandard Kripke
model and Beth model, respectively (the false formula may be forced at some
nodes). Both the proof of Veldman and that of Friedman work by building a
model made of infinite contexts. Especially, they had to deal with language
extensions and work with spreads in order to meet some closure conditions for
disjunction and existential quantification:

– Γ � A ∨B implies Γ � A or Γ � B.
– Γ � ∃xA(x) implies Γ � A(c) for some constant c.

Note however that this is not only the case for intuitionistic proofs, but also
the case for a classical, Henkin-type proof given in Troelstra and van Dalen [2,
Chapter 2].

On the other hand, C. Coquand [3] shows that an intuitionistic proof for in-
tuitionistic propositional logic with implication as a sole logical symbol can be
obtained in a much simpler way by building a universal model made of finite
contexts of formulae. She gave a mechanised proof of the completeness proof and
even got a cut-elimination proof by using some interpreter and inversion func-
tions, a method called “normalisation by evaluation” in general, cf. [4]. They

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 209–217, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Hugo.Herbelin@inria.fr
gslee@ropas.snu.ac.kr

210 H. Herbelin and G. Lee

correspond to the soundness and the completeness, respectively, of the propo-
sitional logic with implication as sole connective w.r.t. Kripke semantics. The
completeness result there is strong in two ways: in the traditional sense that it
holds in arbitrary contexts (see [2]) and in a sense (due to Okada [5]) that it
builds normal proofs. In this paper, we extend C. Coquand’s idea to the intu-
itionistic first-order predicate logic with implication and universal quantification
as logical symbols.

The predicate system used here is a Gentzen-style sequent calculus. The ad-
vantage is that the notion of normal proofs is easy to define: one just has to
remove the cut rule. More precisely, the calculus we consider is the intuitionis-
tic restriction LJT of a sequent calculus named LKT that Danos et al [6] de-
rived from an analytical decomposition of Gentzen’s LK within Girard’s Linear
Logic [7]. LKT is a constrained variant of LK. Its main property is the bijective
correspondence between its set of cut-free proofs and the set of normal forms1 of
classical natural deduction [8]. LJT itself is a constrained variant of LJ and its
main property is the bijective correspondence between its set of cut-free proofs
and the set of normal forms of natural deduction [9,10]. By choosing LJT and
its cut-free variant as our reference calculus, we emphasise that our complete-
ness theorem builds not any arbitrary proofs but cut-free ones in a subset of LJ
which bijectively maps to normal natural deduction proofs (and hence to normal
λ-terms).

We show that the strong completeness holds both for the system with or with-
out (⊥i). In case of with (⊥i), we adopt Veldman’s modified Kripke semantics.
Both proofs are intuitionistic and almost the same. Therefore, we can get a very
simple cut-elimination proofs as a by-product at the end. A main difference com-
pared with Veldman’s or Friedman’s proof is that we deal with contexts made
of formulae, not just of sentences, therefore we need to handle substitutions.

The Kripke models we are considering are Kripke models with constant do-
main, i.e. with the domain function D being the same for every world:

D = D(w) for all w.

As a consequence, in the case of universal quantification, considering of all pos-
sible future worlds is not necessary and the following simpler definition

w � ∀xA(x) iff, for all d ∈ D, w � A(d).

gets equivalent, by monotonicity of forcing and invariance of the domain, to the
standard definition:

w � ∀xA(x) iff, for all w′ ≥ w and for all d ∈ D, w′ � A(d).

This paper is organised as follows. We first prove the soundness of the Kripke
semantics with respect to cut-free LJT. Then give a intuitionistic strong com-
pleteness proof which results in the intuitionistic completeness proof. Finally, an
intuitionistic cut-elimination process is described.
1 To be precise: normal forms along a call-by-name reduction semantics.

Cut-Elimination for Gentzen-Style Intuitionistic Sequent Calculus 211

2 The Sequent Calculus LJT

Let L = L(C,F,P) be a first-order language with an infinite set C of individ-
ual constants, among them a distinguished constant c0, a non-empty set F of
functions, and a non-empty set P of predicates. The logical symbols are the impli-
cation → and the universal quantification ∀. We assume furthermore that there
are countably many free variables. Terms, formulae and sentences are defined in
the usual way. We follow the convention that A(x) denotes the formula A where
the variable x might appear. Any two formulae are considered identical when
they are different only in names for bound variables. A variable or a constant is
called fresh in a formula A or a context Γ when it does not occur free or at all,
respectively.

Definition 1 (Simultaneous substitutions). Let ρ be a function from finite
set of variables to the set of terms.

1. Given a term t, t[.\ρ] is inductively defined:

– x[.\ρ] =

{
ρ(x) if x ∈ dom(ρ),
x otherwise.

– c[.\ρ] = c for any c ∈ C.
– (f t1 · · · tn)[.\ρ] = f (t1[.\ρ]) · · · (tn[.\ρ]).

2. Given a formula A, A[.\ρ] is inductively defined:
– (P t1 · · · tn)[.\ρ] = P (t1[.\ρ]) · · · (tn[.\ρ]).
– (A → B)[.\ρ] = (A[.\ρ] → (B[.\ρ]).
– (∀xA)[.\ρ] = ∀x (A[.\ρ−x]).

Here ρ−x denotes the function obtained from ρ with dom(ρ−x) = dom(ρ)\{x},
i.e., if y ∈ dom(ρ) and x �= y, then ρ−x(y) = ρ(y) and undefined otherwise. We
also take care of variable capture by changing bound variables when necessary.

Given a formula A(x), we use Ax(t) or A[x\t] for A[.\ρ] where ρ = {(x, t)}. We
also consider substitution of a term t for a constant c in a similar way and use
the notation Ac(t).

The Gentzen-style sequence calculus LJT is obtained from the intuitionistic
sequent calculus LJ by restricting the use of the left introduction rules of the im-
plication and the universal quantification. See Table 1 for the cut-free fragment.
In that way, one can get a one-to-one correspondence between cut-free proofs in
LJT and normal terms in λ-style calculus.

In LJT, a sequent has one of the forms Γ ;A � C or Γ � C, where Γ is a
list of formulae. That is, the location of a formula occurring multiple times is
important. The right side of “;” in the antecedence is called stoup . Γ, Γ ′, Δ, ...
vary over lists of formulae. We write A ∈ Γ when A occurs in Γ . Γ � Δ denotes
that, for all A, A ∈ Γ implies A ∈ Δ. Γc(t) is obtained from Γ by replacing each
formula A with Ac(t).

Lemma 2 (Weakening and Exchange). Let A,C be formulae and Γ, Γ ′ two
contexts such that Γ � Γ ′.

212 H. Herbelin and G. Lee

Table 1. Cut-free LJT

Γ ; A � A
(Ax)

Γ ; A � C A ∈ Γ

Γ � C
(Contr)

Γ � A Γ ; B � C

Γ ; A → B � C
(→)

A,Γ � B

Γ � A → B
(→r)

Γ ; Ax(t) � C

Γ ;∀x A(x) � C
(∀)

Γ � A(x) x fresh in Γ

Γ � ∀x A
(∀r)

1. Γ � C implies Γ ′ � C.
2. Γ ;A � C implies Γ ′ ;A � C.

Proof. One can easily prove both claims by a simultaneous induction on the
deduction. ��

Lemma 3. Let Γ be a context, A,C formulae, and c a constant.

1. Γ � C implies Γc(y) � Cc(y) for any variable y which is not bound in Γ,A.
2. Γ ;A � C implies Γc(y) ;Ac(y) � Cc(y) for any variable y which is not bound

in Γ,A,C.

Proof. By a simple simultaneous induction on deduction. ��

The following lemma says that a fresh constant is as good as a fresh variable
and will play an important role in the proof of the strong completeness.

Lemma 4. Given a context Γ , a formula A(x), and a constant c fresh in Γ and
A(x), Γ � Ax(c) implies Γ � Ax(y) for any variable y which is not bound in
Γ,A.

Proof. It follows directly from the lemma just before. ��

3 Kripke Semantics

Kripke semantics was created in the late 1950s and early 1960s by Saul Kripke
[11,12]. It was first made for modal logic, and later adapted to intuitionistic logic
and other non-classical systems. In this section we discuss Kripke models for the
first-order predicate logic with implication and universal quantification as sole
logical symbols and their connection with intuitionistic validity.

Definition 5. A Kripke model is a quadruple K = (W ,≤,�,D, V), W inhab-
ited, such that

1. (W ,≤) is a partially ordered set.

Cut-Elimination for Gentzen-Style Intuitionistic Sequent Calculus 213

2. D is an inhabited set, called the domain of K.
3. Let the language be extended with constant symbols for each element of D.

Then � is a relation between W and the set of prime sentences in the ex-
tended language such that

(w ≤ w′ ∧ w � P d1 · · · dn) ⇒ w′ � P d1 · · · dn
where w,w′ ∈ W, P ∈ P, d1, ..., dn ∈ D, and n = arity(P).

4. V is a function such that
– V (c) ∈ D for all c ∈ C.
– V (f) : Darity(f) → D for all f ∈ F.

An association ρ based on K is a function from a finite set of variables to D.
Given an association ρ, each term has an interpretation in D:

– x [ρ] =

{
ρ(x) if x ∈ dom(ρ),
V (c0) otherwise.

– c [ρ] = V (c) for any c ∈ C.
– (f t1 · · · t�) [ρ] = V (f)(t1 [ρ]) · · · (t� [ρ]).

The forcing relation is then inductively extended by the forthcoming clauses
to all L-formulae.

– w � (P t1 · · · tn)[ρ] iff w � P (t1 [ρ]) · · · (tn [ρ]).
– w � (A → B)[ρ] iff, for all w′ ≥ w, if w′ � A [ρ], then w′ � B [ρ].
– w � (∀xA)[ρ] iff, for all d ∈ D, w � A [ρ(x �→ d)].

Here ρ(x �→ d) denotes the association ρ′ such that ρ′(y) = ρ(y) if y �= x and
ρ′(x) = d. The definition of forcing is extended to contexts as follows:

w � Γ [ρ] iff w � A [ρ] for all A ∈ Γ ,

Remark 6. There are two points to be mentioned.

1. The forcing relation is upward monotone, i.e., if w ≤ w′ and w � A [ρ], then
w′ � A [ρ].

2. As mentioned in the introduction, the forcing definition at the universal
quantification case is much simpler than the usual definition, where the do-
main depends on worlds:

w � (∀xA(x))[ρ] iff, for all w′ ≥ w and d ∈ D(w), w′ � A [ρ(x → d)].

Indeed, they are “functionally equivalent” in the sense that soundness and
completeness hold in both cases.

We consider a formulation of Kripke semantics for sequent calculus built on two
kinds of judgements Γ � C and Γ ;A � C.

Theorem 7 (Soundness). We have the following soundness.

1. if Γ � C then, for all w and ρ, w � Γ [ρ] implies w � C [ρ].
2. if Γ ;A � C then, for all w and ρ, (w � Γ [ρ] and w � A [ρ]) implies

w � C [ρ].

Proof. By a simultaneous induction on the deduction. ��

214 H. Herbelin and G. Lee

4 Completeness

In this section we present a constructive completeness proof by constructing a
simple universal model. First we construct a universal model for which a strong
completeness holds.

Definition 8 (Universal Kripke model). The universal Kripke model U =
(Wu,�,�u,Du, Vu) is defined as follows:

– Wu is the set of all contexts.
– � denotes the sub-context relation, i.e., Γ � Γ ′ holds when, for all A ∈ Γ ,

A ∈ Γ ′.
– Du consists of all closed terms.
– Vu(c) = c for all c ∈ C, and Vu(f)(t1, ..., t�) = f t1 · · · t� for all f ∈ F and

t1, ..., t� ∈ Darity(f)
u

– Γ � P t1 · · · t� if Γ � P t1 · · · t�. It is obvious that Γ � Γ ′ and Γ � P t1 · · · t�
imply Γ ′ � t1 · · · t�.

Theorem 9 (Strong Completeness). Let Γ be a context of sentences, A a
formula, and ρ an association based on Ku such that FV (A) ⊆ dom(ρ). Then

1. If Γ � A [ρ] then Γ � A[.\ρ].
2. If, for all formula C and context Γ ′ such that Γ � Γ ′, Γ ′ ;A[.\ρ] � C implies

Γ ′ � C, then it holds that Γ � A [ρ].

Proof. Given the assumptions we prove both claims by a simultaneous induction
on the complexity of A. Note first that t [ρ] = t[.\ρ] for any term t occurring in
A since FV (A) ⊆ dom(ρ).

1. case: A is a prime formula. Then the first claim is obvious. For the second
claim take just Γ ′ := Γ and C := A[.\ρ].

2. case: A = A1 → A2.

– Assume Γ � (A1 → A2) [ρ]. To show Γ � A1[.\ρ] → A2[.\ρ], it suffices
to prove that A1[.\ρ], Γ � A2[.\ρ]. Note that the i.h. on A1 for the second
claim implies that A1[.\ρ], Γ � A2 [ρ]. Indeed, the premise of the second
claim holds trivially for any Γ ′ such that A1[.\ρ], Γ � Γ ′. This in turn
implies that A1[.\ρ], Γ � A2 [ρ] by the assumption. Then the i.h. on A2 for
the first claim leads to the goal.

– Assume for all formula C and context Γ ′ such that Γ � Γ ′, Γ ′ ;A1[.\ρ] →
A2[.\ρ] � C implies Γ ′ � C. Assume furthermore that Γ � Δ and Δ � A1 [ρ].
Then it remains to show Δ � A2 [ρ]. For that we apply the i.h. on A2 for
the second claim. Let C be a formula and Δ′ a context such that Δ � Δ′,
assume Δ′ ;A2[.\ρ] � C. Note that Δ � A1[.\ρ] by i.h. on A1 for the first
claim, hence Δ′ � A1[.\ρ] by the Weakening Lemma 2. By applying (→�) we
get Δ′ ;(A1 → A2)[.\ρ] � C, so Δ′ � C holds by the assumption.

Cut-Elimination for Gentzen-Style Intuitionistic Sequent Calculus 215

3. case: A = ∀xB(x).

– Assume Γ � (∀xB) [ρ], i.e., for all closed term t, Γ � B [ρ(x �→ t)]. To
show Γ � ∀x (B[.\ρ−x]), we need to prove that Γ � (B[.\ρ−x])[x\y] for some
variable y fresh in Γ and B[.\ρ−x]. For this we show Γ � (B[.\ρ−x])[x\c]
for some constant c and apply Lemma 4. Let c be a constant fresh in Γ and
B[.\ρ−x]. Note first that

(B[.\ρ−x])[x\c] = B[.\ρ−x(x �→ c)] = B[.\ρ(x �→ c)]

since the values of ρ are closed terms. However, Γ � B[.\ρ(x �→ c)] follows
from the i.h. on B for the first claim.2

– Assume for all formula C and context Γ ′ such that Γ � Γ ′, it holds that
Γ ′ ; ∀x (B[.\ρ−x]) � C implies Γ ′ � C. Given a closed term t, we have to
show that Γ � B [ρ(x �→ t)]. In order to apply the i.h. on B for the second
claim assume furthermore that a formula C and a context Γ ′ are given
such that Γ � Γ ′ and Γ ′ ;B[.\ρ(x �→ t)] � C. Note that B[.\ρ(x �→ t)] =
B[.\ρ−x][x\t] since only closed terms are substituted. Therefore, it holds
that Γ ′ ; ∀x (B[.\ρ−x]) � C. Then by the main assumption, Γ ′ � C. The i.h.
implies Γ � B [ρ(x �→ t)]. ��

Corollary 10. For any context Γ of sentences, Γ � Γ .

Proof. The second claim of the strong completeness and the rule (Contr) implies
that Γ � A for any A ∈ Γ . ��

Theorem 11 (Completeness). Let Γ be a context of sentences and A a sen-
tence. If for all Kripke model K and a world w in K, w � Γ implies w � A, then
Γ � A.

Proof. It follows from the Strong Completeness and the fact that Γ � Γ , i.e.,
Γ � A iff Γ � A. ��

Corollary 12. In the intuitionistic predicate logic with implication and univer-
sal quantification as sole connectives, the Kripke semantics with constant domain
is functionally equivalent to the usual Kripke semantics where the domain de-
pends on worlds in the sense that soundness and completeness hold in both cases.

Proof. The exactly same proofs for soundness and completeness hold with the
usual Kripke models. ��

Remark 13. We furthermore believe that, in the first-order predicate language
with →, ∧ and ∀ as sole connectives, the usual Kripke semantics is equivalent to
the Kripke semantics with constant domain in the sense that each usual Kripke
model can be transformed into an equivalent Kripke model with a constant
domain.
2 One can see here that we don’t need any quantification in the definition of w �
∀x A(x).

216 H. Herbelin and G. Lee

Remark 14. The completeness above easily extends to the case of the absurdity
connective

Γ � ⊥
Γ � C

(⊥i)

using modified Kripke models with exploding nodes à la Veldman.
A modified Kripke model K = (W ,≤,�,D, V) is defined as the (unmodified)

Kripke model, but with one change:

– w � (P t1 · · · tn)[ρ] iff (w � P (t1 [ρ]) · · · (tn [ρ]) or w � ⊥).

The universal Kripke model is defined in the same way as before, but with
the following additional clause:

– Γ � ⊥ iff Γ � ⊥.

Then nothing new is involved in the proof of completeness, the construction
proceeds as before. Note only that Γ � ⊥ implies Γ � A for any formula A.

On the other hand, if we include the absurdity rule and want to stick to the
(unmodified) Kripke semantics, we have to give up constructiveness in the proof
above. This is because we have to deal only with consistent context Γ , i.e., Γ � ⊥.
However, it is in general undecidable to check if a context is consistent or not. In
the implication case of the strong completeness, we had to make case distinction
between A1[.\ρ], Γ � ⊥ or not. This maybe is not so surprising because, in
the full first-order predicate logic, an intuitionistic completeness proof entails
Markov’s Principle, a non-intuitionistic principle, see Kreisel [13].

5 Cut Admissibility

In this section we consider only sentences and contexts of sentences. Then the
cut-rule is admissible with/without (⊥i).

Theorem 15 (Cut admissibility). Γ � A and Γ ;A � B imply Γ � B.

Proof. By the Strong Completeness it suffices to show Γ � B. But this follows
from the Soundness applied on the two assumptions. Note also that � denotes a
cut-free system. ��

6 Conclusion

We extended C. Coquand’s proof of soundness and completeness for implicative
natural deduction w.r.t. Kripke semantics [3] to the case of predicate logic with
implication and universal quantification. We could show that omitting disjunc-
tion and existential quantification from the intuitionistic first-order predicate
logic results, as it was the case for C. Coquand, in a significantly simple, intu-
itionistic completeness proof with respect to (also simplified) Kripke semantics.

The fact that all of the proofs given in this paper are intuitionistic has been
verified in the proof assistant Coq, cf. [14]. Indeed, the whole work is formalised,

Cut-Elimination for Gentzen-Style Intuitionistic Sequent Calculus 217

so that we can get a mechanical process producing cut-free proofs. The formali-
sation is performed using cofinite quantification for fresh variables and a locally
named approach with two kinds of names for variables, one for free variables
and the other for binders. The formalisation is publicly available from the web
page of the first author, directory code/kripke.

References

1. Veldman, W.: An intuitionistic completeness theorem for intuitionistic predicate
logic. J. Symb. Log. 41(1), 159–166 (1976)

2. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction
I and II. Studies in Logic and the Foundations of Mathematics, vol. 121, 123.
North-Holland, Amsterdam (1988)

3. Coquand, C.: From Semantics to Rules: A Machine Assisted Analysis. In: Meinke,
K., Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 91–105. Springer,
Heidelberg (1994)

4. Berger, U., Eberl, M., Schwichtenberg, H.: Normalisation by Evaluation. In: Möller,
B., Tucker, J.V. (eds.) NADA 1997. LNCS, vol. 1546, pp. 117–137. Springer, Hei-
delberg (1998)

5. Okada, M.: A uniform semantic proof for cut-elimination and completeness of var-
ious first and higher order logics. Theor. Comput. Sci. 281(1-2), 471–498 (2002)

6. Danos, V., Joinet, J.B., Schellinx, H.: LKQ and LKT: sequent calculi for second
order logic based upon dual linear decompositions of the classical implication.
In: Advances in Linear Logic, vol. 222, pp. 211–224. Cambridge University Press,
Cambridge (1995)

7. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
8. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical nat-

ural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201.
Springer, Heidelberg (1992)

9. Herbelin, H.: A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent
Calculus Structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 61–75. Springer, Heidelberg (1995)

10. Herbelin, H.: Séquents qu’on calcule: de l’interprétation du calcul des séquents
comme calcul de λ-termes et comme calcul de stratégies gagnantes. Ph.D. thesis,
Université Paris 7 (January 1995)

11. Kripke, S.: A Completeness Theorem in Modal Logic. J. Symb. Log. 24(1), 1–14
(1959)

12. Kripke, S.: Semantical considerations on modal and intuitionistic logic. Acta Philos.
Fennica 16, 83–94 (1963)

13. Kreisel, G.: On Weak Completeness of Intuitionistic Predicate Logic. J. Symb.
Log. 27(2), 139–158 (1962)

14. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
(Coq’Art: The Calculus of Inductive Constructions). EATCS Texts in Theoretical
Computer Science, vol. XXV. Springer, Heidelberg (2004)

Property Driven Three-Valued Model Checking on
Hybrid Automata

Kerstin Bauer, Raffaella Gentilini, and Klaus Schneider

University of Kaiserslautern, Department of Computer Science, Germany
{k bauer,gentilin,schneider}@cs.uni-kl.de

Abstract. In this paper, we present a three-valued property driven model check-
ing algorithm for the logic CTL on hybrid automata. The technique of multi-
valued model checking for hybrid automata aims at combining the advantages
of classical methods based either on the preorder of simulation or on bounded
reachability. However, as originally defined, it relies on the preliminary defini-
tion of special abstractions for combined over- and under-approximated reacha-
bility analysis, whose size is crucial and can be infinite. Our procedure avoids the
above problem, since it is based on an incremental construction of the abstraction
for the original hybrid automaton, that is suitably driven by the property under
consideration.

1 Introduction

Hybrid automata [11,1] provide an appropriate modeling paradigm for systems where
continuous variables interact with discrete modes. Such models are frequently used
in complex engineering fields like embedded systems, robotics, automotive industries,
avionics, and aeronautics [2,18,9]. In hybrid automata, the interaction between discrete
and continuous dynamics is naturally expressed by associating a set of differential equa-
tions to every location of a finite automaton.

Finite automata and differential equations are well established formalisms in math-
ematics and computer science. Despite of their long-standing tradition, their combina-
tion in form of hybrid automata leads to surprisingly difficult problems that are often
undecidable. In particular, the reachability problem is undecidable for most families
of hybrid automata [14,15,16,10,1,5], and the few decidability results are built upon
strong restrictions of the dynamics [3,12]. The reachability analysis of hybrid automata
is a fundamental task, since checking safety properties of the underlying system can be
reduced to a reachability problem for the set of bad configurations [11].

For this reason, a growing body of research is being developed on the issue of deal-
ing with approximated reachability on undecidable – yet reasonably expressive – hybrid
automata [6,19,8,17,18]. To this end, most of the techniques proposed so far either rely
on bounded state-reachability or on the definition of finite abstractions. While the first
approach suffers inherently of incompleteness, the quest for soundness is a key issue
in the context of methods based on abstractions. In fact, abstractions can introduce
unrealistic behaviors that may yield to spurious errors being reported in the safety anal-
ysis. Usually, a simulation preorder is required to relate the abstraction to the concrete

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 218–229, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Property Driven Three-Valued Model Checking on Hybrid Automata 219

dynamics of the hybrid system under consideration, ensuring at least the correctness
of each response of non-reachability. In general, the simulation preorder from the ab-
straction to the hybrid automaton allows for preservation of only true formulas in the
universal fragment of a branching temporal logic. Recently, a novel framework has
been proposed [7,4], featuring the capability of both proving and disproving properties
expressed by means of the logic CTL or even the mu-calculus on (undecidable) hybrid
automata. Such a method is based on the definition of a sound three-valued semantics
[13] for the considered logics over so-called discrete bounded bisimulation (DBB) ab-
stractions. Unfortunately, the size of the DBB quotients is not guaranteed to be finite
for general hybrid systems. In fact, the method in [7,4] was applied to the only (unde-
cidable) family of fully o-minimal hybrid automata.

In this paper, we sharpen the results concerning the size of the DBB abstractions on
different classes of hybrid automata. Moreover, we design a new framework for three-
valued model checking of the logic CTL on (undecidable) hybrid automata. Such a
method has the key advantage of avoiding the a-priori construction of DBB abstractions
that could result into an infinite partitioning. Rather, the abstraction is built on-the-fly
and is driven by the ongoing three-valued model checking task.

2 Preliminaries

In this section, we introduce the basic definitions and the notations used in the paper.

Definition 1 (Hybrid Automata [3]). A hybrid automaton is a tuple H = (L,E,X ,
Init, Inv, F,G,R) with the following components:

• a finite set of locations L
• a finite set of discrete transitions E ⊆ L× L
• a finite set of continuous variables X = {x1, . . .xn} that take values in R
• an initial set of conditions: Init⊆ L× Rn

• an invariant location labeling Inv: L �→ 2R
n

• a function F : L× Rn �→ 2R
n

assigning to each location � ∈ L a differential rule
defining the evolution of continuous variables within �

• a guard edge labeling G : E �→ 2R
n

• a reset edge labeling R : E × Rn �→ 2R
n

We write v to represent a valuation (v1, . . . , vn) ∈ Rn of the variables’ vector x =
(x1, . . . , xn), whereas ẋ denotes the first derivatives of the variables in x (they all de-
pend on the time, and are therefore rather functions than variables). A state in H is
a pair s = (�,v), where � ∈ L is called the discrete component of s and v is called
the continuous component of s. A run of H = (L,E,X, Init, Inv, F,G,R), starts at
any (�,v) ∈ Init and consists of continuous evolutions (within a location) and dis-
crete transitions (between two locations). Formally, a run of H is a path with alternat-
ing continuous and discrete steps in the time abstract transition system of H , defined
below:

Definition 2. The time abstract transition system of the hybrid automaton H = (L,E,
X, Init, Inv, F,G,R) is the transition system TH =(Q,Q0, �→, →), where:

220 K. Bauer, R. Gentilini, and K. Schneider

• Q ⊆ L× Rn and (�,v) ∈ Q if and only if v ∈ Inv(�)
• Q0 ⊆ Q and (�,v) ∈ Q0 if and only if v ∈ Init(�) ∩ Inv(�)
• �→ = E ∪ {δ} is the set of edge labels
• →⊆ Q× �→ ×Q is the set of labeled transitions, that are determined as follows:

– there is a continuous transition (�,v) δ→ (�,v′), if and only if there is a differ-
entiable function f : [0, t] → Rn, with ḟ : [0, t] → Rn such that:
1. f(0) = v and f(t) = v′

2. for all ε ∈ (0, t), f(ε) ∈ Inv(�), and ḟ(ε) = F (�, f(ε)).
– there is a discrete transition (�,v) e→ (�′,v′) if and only if there exists an edge
e = (�, �′) ∈ E, v ∈ G(�) and v′ ∈ R((�, �′),v).

A region is a subset of the states Q of TH =(Q,Q0, �→, →). Given a region B and
a transition label a ∈ �→, the predecessor region prea(B) is defined as the region
{q ∈ Q | ∃q′ ∈ B. q

a→ q′}. The bisimulation and the simulation relations are two
fundamental tools in the context of hybrid automata abstraction.

Definition 3 ((Bi)simulation). Let T1 = 〈Q1, Q1
0, �→,→1〉, T2 = 〈Q2, Q2

0, �→,→2〉,
Q1 ∩Q2 = ∅, be two labeled transition systems1 and let P be a partition on Q1 ∪Q2.
A simulation from T1 to T2 is a non-empty relation on ρ ⊆ Q1 × Q2 such that, for all
(p, q) ∈ ρ:

• p ∈ Q1
0 iff q ∈ Q2

0 and [p]P = [q]P , where [p]P ([q]P) is the class of p (q) w.r.t. P .
• for each label a ∈ �→, if there exists p′ such that p

a→ p′, then there exists q′ such
that (p′, q′) ∈ ρ and q

a→ q′.

If there exists a simulation from T1 to T2, then we say that T2 simulates T1, denoted
T1 ≺S T2. If T1 ≺S T2 and T2 ≺S T1, then T1 and T2 are said similar, denoted
T1 ≡S T2. If ρ is a simulation from T1 to T2, and ρ−1 is a simulation from T2 to T1,
then ρ is said a bisimulation.

Definition 4 formally introduces the concept of abstraction for hybrid automata, on the
ground of the notion of simulation.

Definition 4. Let H = (L,E,X , Init, Inv, F,G,R) be a hybrid automaton. An ab-
straction of H is a finite labeled transition system A = 〈QA, Q0

A, �→,→〉 where:

– QA is a finite partition of Q, Q0
A is a finite partition of Q0, �→ = {δ} ∪ E, and

→⊆ QA ×QA.

– A∗ = 〈QA, Q0
A, �→,

e→ ∪ δ→∗〉 simulates2 TH

Definition 6 recapitulates the semantics of the temporal logic CTL (where the neXt
temporal operator is intensionally omitted because of the density of the underlying time
framework) on hybrid automata [1,11].

Definition 5 (CTL for Hybrid Automata). Let AP be a finite set of propositional let-
ters and p ∈ AP. CTL is the set of formulas defined by the following grammar rules:

φ ::= p |¬φ | φ1 ∧ φ2 | E(φ1Uφ2) | A(φ1Uφ2)
1 A labeled transition system is a quadruple 〈Q,Q0, �→,→〉, where Q0 ⊆ Q,→⊆ Q×�→×Q.
2 Given a relation→, we denote by→∗ its transitive and reflexive closure.

Property Driven Three-Valued Model Checking on Hybrid Automata 221

Definition 6 (CTL Semantics). Let H = (L,E,X , Init, Inv, F,G,R) be a hybrid au-
tomaton, let Q (Q0) be he set of states (initial states) of H , and let AP be a set of
propositional letters. Consider �AP : L × Rn �→ 2AP. Given φ ∈ CTL and s ∈ Q,
s |= φ is inductively defined as follows:

• s |= p if and only if p ∈ �AP(s)
• s |= ¬φ if and only if not s |= φ
• s |= φ1 ∧ φ2 if and only if s |= φ1 and s |= φ2
• s |= E(φ1Uφ2) if and only if there exists a run ρ and a time t such that:

· ρ(t) |= φ2
· ∀t′ ≤ t. ρ(t′) |= φ1

• s |= A(φ1Uφ2) if and only if for each run ρ there exists a time t such that:
· ρ(t) |= φ2
· ∀t′ ≤ t. ρ(t′) |= φ1

Then, H |= φ iff ∀s ∈ Q0. s |= φ.

3 Three-Valued Model Checking on Hybrid Automata and the
Problem of Discrete Bounded Bisimulation Explosion

In this section we recall the notion of discrete bounded bisimulation abstraction on
hybrid automata [7] and we sharpen the results relative to the size of its quotient on
different families of hybrid systems. Discrete bounded bisimulation (cf. Definition 7)
was introduced in [7] as a bisimulation approximation for hybrid automata, suitable to
support sound three-valued model checking results on these systems.

Definition 7 (Discrete Bounded Bisimulation (DBB)). Consider the time abstract
transition system TH = (Q,Q0, �→,→) of a hybrid automaton H , and let P be a
partition on Q:

1. ≡0∈ Q×Q is the maximum relation on Q such that for all p, q ∈ Q:
if p ≡0 q then (a) [p]P = [q]P and p ∈ Q0 iff q ∈ Q0

(b) ∀p′. p δ→ p′ ⇒ ∃q′. p′ ≡0 q′ ∧ q
δ→ q′

(c) ∀q′. q δ→ q′ ⇒ ∃p′. p′ ≡0 q′ ∧ p
δ→ p′

2. Given n ∈ N+, ≡n is the maximum relation on Q such that for all p, q ∈ Q:
if p ≡n q then (a) p ≡n−1 q

(b) ∀p′. p δ→ p′ ⇒ ∃q′. p′ ≡n q′ ∧ q
δ→ q′

(c) ∀q′. q δ→ q′ ⇒ ∃p′. p′ ≡n q′ ∧ p
δ→ p′

(d) ∀p′. p e→ p′ ⇒ ∃q′. p′ ≡n−1 q′ ∧ q
e→ q′

(e) ∀q′. q e→ q′ ⇒ ∃p′. p′ ≡n−1 q′ ∧ p
e→ p′

Given n ∈ N, the relation ≡n will be referred to as n-DBB equivalence.

In [7] the notion of DBB was shown to provide finite abstractions on the family of fully
o-minimal hybrid automata, for which the reachability problem is not decidable [14].
On this ground, it was possible to design a three-valued model checking algorithm for

222 K. Bauer, R. Gentilini, and K. Schneider

x, y ≥ 0
ẋ, ẏ ∈ [0, 1]

Fig. 1. Single location
rectangular automaton

x

y

g2

g1

S0

Fig. 2. Initial partition of the
state space

x

y

g2

g1

S0
S1

S2

S3

Fig. 3. Infinite bisimulation
computation

the logic CTL and the μ-calculus on fully o-minimal hybrid systems. Unfortunately,
there are other important families of undecidable hybrid automata for which such a
finiteness result does not hold. In particular, the following example (cf. Example 1)
considers the class of (non-initialized) rectangular automata (RHA) for which the dif-
ferential inclusions describing the continuous dynamics are rectangular, i.e. given by∧

i=1...n

ẋi ∈ [ai, bi], ai, bi ∈ R+

RHA are well known to be undecidable w.r.t. the reachability problem [12], unless
strong constraints such as the so-called initialization3 are considered. Example 1 proves
that the size of DBB abstractions cannot be guaranteed to be finite on RHA. Thus,
the (DBB based) framework for the three-valued model checking of hybrid automata
developed in [7] can not be applied to RHA.

Example 1 (DBB explosion for RHA). Consider the simple rectangular automaton given
in Figure 1. Figure 2 provides an initial partition over the states-space ofH , given by the
line g1 : y = 2x, the point S0 = (8, 4), and the segment g2 : y = 1

2x∧ 0 ≤ x < 8. Fig-
ure 3 depicts the construction procedure of the 0-DBB abstraction over H , w.r.t. the ini-
tial partition given in Figure 2. The procedure does not terminate since the regions g1, g2
need to be split into the infinite set of regions {(S2i+3, S2i+1]}i≥0, {(S2i+2, S2i]}i≥0,
with S2i+1 = (x2i,

1
4y2i) and S2i = (1

4x2i−1, y2i−1)due to the point S0 = (8, 4).

4 A General Algorithmic Framework for Property Driven
Three-Valued CTL Model Checking on Hybrid Automata

In this Section, we develop a new algorithmic approach to the three-valued model
checking of hybrid automata. Rather than relying on a preliminary static abstraction
of the considered dynamical system, our method features a dynamic partitioning pro-
cess, which is suitably driven by the three-valued model checking of the formula given
as input. In other words, the three-valued verification task is accomplished on the fly,
thus avoiding the problems related to the (possibly infinite) size of the DBB-abstraction.

As shown in Figure 4, our algorithm PROPERTYDRIVEN3MC accomplishes its task
upon the subsequent usage of (1) the discrete switches (within the procedure D3MC,
called at line 7) and (2) the continuous dynamics of the hybrid automaton given as input

3 RHA are initialized, iff for each continuous variable during any discrete transition either the
continuous flow does not change or the value of the variable is reinitialized.

Property Driven Three-Valued Model Checking on Hybrid Automata 223

PROPERTYDRIVEN3MC (H, φ, lAP, n)
Input: Hyb. Aut. H, φ ∈ CTL, lAP : Q �→ 2AP , n ∈ N
Output: Abstraction A, �.�A : {ψ | ψ � φ} × QA → {0, ⊥, 1}

/*————–Initialization————————*/
(1) QA := Init. partition on Q induced by l;

A := MAKEABSTRACTION (H, QA)
(3) for all ϕ ∈ AP, α ∈ QA :

�ϕ�(α) :
j

1 ϕ ∈ lAP(α)
0 otherwise

(4) for all ψ ∈ {ψ | ψ � φ ∧ ψ /∈ AP}, α ∈ QA : �ψ�A(α) :=⊥

/*————–3-Valued on the fly model checking—*/
(6) for i = 1 to n do
(7) (A, �.�A) := D3MC(A, �.�A, φ);
(8) (A, �.�A) := C3MC(A, �.�A, φ);

(9) return (A, �.�A)

MAKEABSTRACTION (H, QA)
Input: Hybrid Automaton H = (L, E, X , Init, Inv, F, G, R),

partition QA of Q respecting Q0
Output: Abstraction A = 〈QA, Q0

A, �→, →〉

(1) Q0
A := {α | α ⊆ Q0};

�→ := {δ} ∪ E; →:= ∅;
(2) for all α, β ∈ QA
(3) if ∃s ∈ α. q ∈ β. s

e→ q

(4) then →:=→ ∪{α
e→ β}

(5) for all α, β ∈ QA
(6) if ∃s ∈ α. ∃q ∈ β. s

δ→ q traversing only α and β

(7) then →:=→ ∪{α
δ→ β}

(8) return A = 〈QA, Q0
A, �→, →〉

Fig. 4. The Property Driven Three-Valued Model Checking Procedure

(within the procedure C3MC, called at line 8). Both discrete and continuous dynamics
are employed to grow dynamically an abstractionA having the following key property.
On the one hand, A can be globally viewed as an over-approximation of the dynamics
of the original hybrid automaton H . On the other hand, one can enucleate local under-
approximations of the evolutions in H . These features permit to perform our on the fly
three-valued model checking task. In particular, underapproximations (overapproxima-
tions) can be suitably used to deal with existential (universal) subformulas.

4.1 The Procedure D3MC

Within each iteration of the main algorithm, the procedure D3MC in Figure 5 exploits
the discrete dynamics of the underlying hybrid automaton to (1) refine a growing ab-
straction A, and (2) proceed with its on the fly three-valued model checking. First,
each discrete edge is used to split those classes in the current partition, for which
some (sub)-formula of interest evaluates to the third value ⊥ (lines (2)–(4)). Such a
split allows to separate set of states that must evolve to different regions via a discrete
switch, and therefore should be assigned distinguished model checking values. Then,
the paths throughA are used to suitably propagate the current information, in order to
infer new sound true or false evaluations of the (sub)-formulas of interest. This is done
within the subprocedure D3MCFORM, called at line 7. More in detail, D3MCFORM

D3MC(A, φ, �.�A)
Input: Abstraction A, φ ∈ CTL, interpretation function �.�A
Output: Refined abstraction B, refined interpretation function �.�B
(1) B := A; �.�B := �.�A
/*————————————————Partitionrefinement of B w.r.t. discrete transitions—————————————————————-*/

(2) for all α
e→ β in A do

(3) if missinglabel(α) then
(4) for all α ⊇ α̂ ∈ QB do : α1 := α̂ ∩ pree(β); α2 := α̂ \ α1; QB := (QB \ {α̂}) ∪ {α1, α2}
(5) MAKEABSTRACTION(H, QB);

/*———————————————-3-valuedModel checking on B ———————————————————————————–*/
(6) for all ψ � φ, α ∈ QB do: �ψ�B(α) := �ψ�A(α), where α ⊆ α′ ∈ QA
(7) D3MCFORM(B, A, φ, �.�B, �.�A)
(8) return(B, �.�B)

Fig. 5. The procedure D3MC within the algorithm PROPERTYDRIVEN3MC

224 K. Bauer, R. Gentilini, and K. Schneider

D3MCFORM (B, A, φ, �.�B, �.�A)
Input: Abstractions B, A, CTL formula φ, interpretation functions �.�B, �.�A
Output: refined interpretation function �.�B
(1) case φ = ¬ϕ do
(2) D3MCFORM(B, A, ϕ, �.�B, �.�A); �φ�B = ¬�ϕ�B
(3) case φ = ϕ1 ∧ ϕ2 do
(4) D3MCFORM(B, A, ϕ1, �.�B, �.�A); D3MCFORM(B, A, ϕ2, �.�B, �.�A); �ϕ1 ∧ ϕ2�B = �ϕ1�B ∧ �ϕ2�B
(5) case φ = E(ϕ1Uϕ2) do
(6) D3MCFORM(B, A, ϕ1, �.�B, �.�A); D3MCFORM(B, A, ϕ2, �.�B, �.�A)
(7) for all α ∈ QB : E(ϕ1Uϕ2)(α) =⊥ do
(8) �E(ϕ1Uϕ2)�B(α) = 1 iff

�ϕ2�B(α) = 1 ∨ �ϕ1�B(α) = 1 ∧ ∃α
e→ β. �E(ϕ1Uϕ2)�A(β) = 1

(9) �E(ϕ1Uϕ2)�B(α) = 0 iff
B does not contain any path starting in α and modelling ϕ1Uϕ2 (by using a standard 2-valued model checking procedure on B)

(10) case φ = A(ϕ1Uϕ2) do
(11) D3MCFORM(B, A, ϕ1, �.�B, �.�A); D3MCFORM(B, A, ϕ2, �.�B, �.�A)
(12) for all α ∈ P : A(ϕ1Uϕ2)(α) =⊥ do
(13) �A(ϕ1Uϕ2)�B(α) = 0 iff

�ϕ2�B(α) = 0 ∨ �ϕ1�B(α) = 1 ∧ ∃α
e→ β. �A(ϕ1Uϕ2)�A(β) = 0

(14) �A(ϕ1Uϕ2)�B(α) = 1 iff
All paths in B starting in α model ϕ1Uϕ2(by using a standard 2-valued model checking procedure on B)

Fig. 6. The subprocedure D3MCFORM, used within the algorithm PROPERTYDRIVEN3MC

(cf. Figure 6) refines the interpretation function following different schemes, depending
on the existential (resp. universal) character of the considered operator. For existen-
tial formulas, only paths consisting of a single discrete switch are followed, since the
latter provide (local) under-approximations of the concrete evolutions (lines 5–9). For
universal formulas instead, global paths are followed (lines 10–14).

On the ground of Lemma 1, Lemma 2 below states formally the correctness of each
on the fly model checking macro-step based on the usage of discrete switches, and
performed within the procedure D3MC. Consider a call to D3MC(A, φ, �·�A), where
φ is a CTL formula, A is an abstraction of the hybrid automaton H , and �·�A : Γ =
{ϕ | ϕ � φ} × QA �→ {0, 1,⊥}4. Moreover, let from now on) be the information
ordering on the set of truth values {⊥, 0, 1}, in which ⊥) 1,⊥) 0, and x) x (for all
x ∈ {⊥, 0, 1}).

Lemma 1. The abstraction refinement B of A produced upon the execution of the pro-
cedure D3MC(A, φ, �·�) is such that5:

1. TH ≺S B∗ ≺S A∗.
2. If α

e→ β in B, then each state in α has a discrete successor in the unique class of
A containing β.

Lemma 2. Consider D3MC(A, φ, �·�A) and assume that �·�A is sound w.r.t. the model
checking of φ on H , i.e: ∀α ∈ QA. ∀ϕ � φ. �ϕ�A(α = [s])) �ϕ�H(s)
Then, the refined interpretation function �·�B computed by D3MC(A, φ, �·�A) satisfies:

∀α ∈ QB. ∀ϕ � φ. �φ�A(α̂)) (�ϕ�B(α = [s])) �ϕ�H(s), where α ⊆ α̂ ∈ A
4 We use Kleene’s definition of three-valued logic [13].
5 Recall that given an abstraction A = 〈QA, Q0

A, �→,
e→ ∪ δ→〉 for the hybrid automaton H ,

we denote by A∗ the structure A∗ = 〈QA, Q0
A, �→,

e→ ∪ δ→∗〉, according to Definition 4.

Property Driven Three-Valued Model Checking on Hybrid Automata 225

C3MC (A, φ, �.�A)
Input: Abstraction A, CTL formula φ, interpretation functions �.�B, �.�A
Output: refined Abstraction B, interpretation function �.�B
Requires: TH ≺S B∗ ≺S A∗

∀α ∈ QB. ∀ϕ � φ. �φ�A(α̂) � (�ϕ�B(α = [s]) � �ϕ�H (s), where α ⊆ α̂ ∈ A
(1) case φ = ¬ϕ do
(2) C3MC(A, ϕ, �.�A); �φ�A = ¬�ϕ�A
(3) case φ = ϕ1 ∧ ϕ2 do
(4) C3MC(A, ϕ1, �.�A); C3MC(A, ϕ2, �.�A); �ϕ1 ∧ ϕ2�A = �ϕ1�A ∧ �ϕ2�A

(5) case φ = E(ϕ1Uϕ2) do
(6) C3MC(A, ϕ1, �.�A); C3MC(A, ϕ2, �.�A)
(7) SPLIT&CHECKEU(A, ϕ1ϕ2, �.�A)

(8) case φ = A(ϕ1Uϕ2) do
(9) C3MC(A, ϕ1, �.�A); C3MC(A, ϕ2, �.�A)
(10) SPLIT&CHECKAU(A, ϕ1, ϕ2�.�A)
(11) return (A, �.�A)

Fig. 7. The subprocedure C3MC within the algorithm PROPERTYDRIVEN3MC

4.2 The Subprocedure C3MC

The purpose of the procedure C3MC in our main algorithm is that of gaining infor-
mation from the continuous dynamics of the given hybrid automaton to proceed – on
the fly – in the three-valued model checking of the considered property. The continuous
dynamics associated to hybrid automata can be governed by differential inclusions (like
in RHA) or by differential equations, the latter defined in a variety of theories over the
reals (linear [11], semi-algebraic [6,17], o-minimal [14]). To cope with such a variety
of patterns, we proceed bottom-up by defining first a simple interface for our procedure
C3MC (cf. Figure 7). Within such an interface boolean formulae are dealt with using
standard techniques. Instead, the resolution of temporal operators is only required to be
implemented by adhering to the following constraints: If 〈B, �·�B〉 are the refined ab-
straction and the interpretation function computed by the function SPLIT&CHECKEU
(resp. SPLIT&CHECKAU) then

– TH ≺S B∗ ≺S A∗
– ∀α ∈ QB. ∀ϕ � φ. �φ�A(α̂)) (�ϕ�B(α = [s])) �ϕ�H(s), where α ⊆ α̂ ∈ A

In the next section, we will propose various implementations of the interface for the pro-
cedure C3MC, specialized for different classes of hybrid automata. Theorem 1, states
the correctness of the main algorithm PROPERTYDRIVEN3MC, assuming a sound im-
plementation of the interface for C3MC.

Theorem 1. The algorithm PROPERTYDRIVEN3MC(H,φ, lAP, n), where the subpro-
cedure C3MC implements correctly the corresponding interface, is sound w.r.t. the
three-valued model checking of φ on H .

5 Specializing the General Algorithmic Framework for Different
Classes of Hybrid Automata

In this section we consider various classes of hybrid automata that do not admit a finite
discrete bounded bisimulation. Thereof, we propose suitable specializations of our gen-
eral on the fly three-valued model checking algorithm. In particular, we appropriately

226 K. Bauer, R. Gentilini, and K. Schneider

instantiate the interface given in the previous section for the procedure C3MC, taking
into account different possible concrete descriptions of the continuous dynamics.

5.1 The Case of Hybrid Automata Based on Autonomous ODEs and Decidable
Theories over the Reals: A Symbolic Approach

The first family of hybrid automata considered is the class of autonomous hybrid au-
tomata, for which the continuous evolution is described by means of a system of au-
tonomous ordinary differential equations (ODEs). In autonomous hybrid automata, the
continuous evolution originated from a given state is the same regardless of when it
starts, and thus is uniquely determined. An important subfamily of autonomous hybrid
systems is the class of o-minimal hybrid automata [14], for which continuous evolutions
are also defined within an o-minimal theory. Such an assumption guarantees the finite-
ness of the discrete bounded bisimulation abstraction, while its removal leads easily to
the realm of infiniteness6 [14].

To implement the interface for C3MC (cf. Figure 7), we need to consider the op-
erators EU, AU. In virtue of the deterministic character of the continuous component
in autonomous systems, we can provide suitable symbolic descriptions of the sets of
states satisfying E(ϕUψ), A(ϕUψ). In particular, let f = E(ϕUψ), g = E(ϕUψ), and
suppose that you want to refine two corresponding (previously computed) sound inter-
pretation functions �f� and �g�, using the continuous evolution in a given location �.
Let Φ : R+

0 × Rn �→ Rn be the flow of the system of ODE associated to �. Then, the
symbolic formulas (2)–(5), below, determine the sets of states within the considered
location for which f and g evaluate to v ∈ {0, 1,⊥}, due to the continuous evolution
among the regions induced by �f� and �g�.

ι(x, t) := ∀0 ≤ t′ ≤ t. Φ(x, t′) ∈ Inv(�) (1)

f〈1〉(x) := ∃t. ι(x, t) ∧ �f�(Φ(x, t)) = 1 ∧ ∀0 ≤ t′ ≤ t. �ϕ�(Φ(x, t′)) = 1 (2)

f〈⊥,1〉(x) := ∃t. ι(x, t) ∧ ((�ψ�(Φ(x, t)) �= 0 ∨ (3)

∃y. Φ(x, t) e→ y ∧ �f�(y) �= 0)) ∧ ∀0 ≤ t′ ≤ t. �ϕ�(Φ(x, t′)) �= 0
g〈0〉(x) := ∀t. �ψ�(Φ(x, t)) = 0 ∧ ι(x, t) (4)

∨∃t. �g�(Φ(x, t)) = 0 ∧ ι(x, t) ∧ ∀0 ≤ t′ < t. �ψ�(Φ(x, t′)) = 0
g〈0,⊥〉(x) := ∀t. ι(x, t) ∧ �ψ�(Φ(x, t)) �= 1 ∨ ∀t. �g�(Φ(x, t)) = 1 ∧ ι(x, t) (5)

→ ∃0 ≤ t′ < t. �ϕ�(Φ(x, t′)) �= 1 ∨ ∃y. Φ(x, t′) e→ y ∧ �g�(y) �= 1

LetAdec be the subclass of autonomous hybrid automata for which all relevant sets (i.e.
flow, invariants, initial states, . . .) are defined within a decidable theory of the reals. By
Lemma 3 and 4, below, formulas (1)–(5) correctly implement SPLIT&CHECKEU and
SPLIT&CHECKAU onAdec, w.r.t. the constraints imposed in the interface C3MC.

Lemma 3. Consider the abstraction A of the hybrid automaton H and assume that
�·�A is sound w.r.t. the model checking of E(φUψ). Then, the following holds true:

6 [14] proves that autonomous (non o-minimal) continuous dynamical systems do not admit a
finite bisimulation, implying infiniteness of 0-DBB for the corresponding hybrid systems.

Property Driven Three-Valued Model Checking on Hybrid Automata 227

P1

P2

β

g2 : y =
ay
bx

x + P1

g1 : y =
by
ax

x + P2

α

pre
β
∀(α)

pre∃(β)
P1

P2

β

g2 : y =
ay
bx

x + P1

g1 : y =
by
ax

x + P2

α

pre
β
∀(α)

pre∃(β)

Fig. 8. Geometric approach to obtain pre∃(β) and preβ
∀(α)

• x ∈ f〈1〉 ⇒ �E(ϕUψ)�H(x) = 1
• �E(ϕUψ)�H(x) = 1 ⇒ x ∈ f〈⊥,1〉

Lemma 4. Consider the abstraction A of the hybrid automaton H and assume that
�·�A is sound w.r.t. the model checking of A(φUψ). Then, the following holds true:

• x ∈g〈0〉 ⇒ �A(ϕUψ)�H (x) = 0
• �A(ϕUψ)�H (x) = 0 ⇒ x ∈ g〈0,⊥〉

5.2 The Case of (Uninitialized) Rectangular Automata: A Geometric Approach

In this subsection we consider the class of rectangular hybrid automata (RHA) that we
proved in Section 3 not to admit a finite discrete bounded bisimulation.

Unlike for hybrid automata based on autonomous ODEs, in RHA the continuous evo-
lution traversing a state x is not uniquely determined, since it is defined by differential
inclusions. In order to cope with such a non deterministic behavior for the continuous
component, we introduce two basic operators (pre∃(α), preβ∀(α)) that allow to quantify
existentially (resp. universally) on the set of continuous paths evolving to the (convex)
region α ⊆ Inv(�), within a given location �. The operators pre∃(α), preβ∀(α) are for-
mally defined by the Equations 6 and 7, below. Here, we use the symbol �� to represent
a (feasible) continuous path within location �.

pre∃(α) := {v ∈ Inv(�) | ∃v′ ∈ α.v �� v
′} (6)

preβ∀(α) := {v ∈ pre∃(β) | ∀v′ ∈ β. v �� v
′ ⇒ ∃v′′ ∈ α.v �� v

′′ � v′} (7)

Note that for the operator preβ∀(α), the additional parameter β allows to restrict the
universal quantification to the only paths that will eventually reach β. In particular, if β
is the entire state space the operator boils down to collect the set of states for which all
the paths evolve to α. The implementation of the operators pre∃(β), preβ∀(α) on RHA
can be obtained by simple geometrical reasoning. Consider e.g. the two regions α, β
depicted in Figure 8, and the rectangular differential inclusion a ≤ x ≤ b. The figure
illustrates the geometrical approach allowing to obtain the regions pre∃(β), preβ∀(α).
Such approach can be easily generalized to consider arbitrary located regions α, β.

Let f = E(φUψ), g = A(φUψ) for which the three-valued on the fly model checking
is left open for C3MC in Figure 7. Let � be a location of the hybrid automaton, let P�

228 K. Bauer, R. Gentilini, and K. Schneider

be a partition of Inv(�) and let �f� (resp �g�) a sound three-valued interpretation of f
(resp. g) over P�. Formulas (8)–(11), determine the sets of states within the location �
for which f and g evaluate to v ∈ {0, 1,⊥}, due to the continuous evolution over P�.

f〈1〉(x) =
⋃

α∈Inv(�):�E(φUψ)�(α)=1

(pre∃(α) \ preα∀ (
⋃

β:�φ�(β) �=1

β)) (8)

f〈⊥,1〉(x) =
⋃

α ∈ Inv(�) : �ψ�(α) �= 0∨
∃α

e→ γ. �E(φUψ)�(γ) �= 0

(pre∃(α) \ preα∀ (
⋃

β:�φ�(β)=0

β)) (9)

g〈0〉(x) =
⋃

α ∈ Inv(�) : �A(φUψ)�(α) = 0∨
inf(α) = 1 ∧ �ψ�(α) = 0)

(pre∃(α) \ preα∀(
⋃

β:�ψ�(β) �=1

β)) (10)

g〈0,⊥〉(x) =
⋃

α ∈ Inv(�) : �ψ�(α) �= 1∨
∃α

e→ γ. �A(φUψ)�(γ) �= 1

(pre∃(α) \ preα∀ (
⋃

β:�ψ�(β)=1

β)) (11)

The above sets can be used to appropriately split each class α∈P� for which �f�(α)=⊥
(resp. �g�(α) =⊥), refining on the fly the current information for the three-valued
model checking of f (resp. g). Lemma 5 and Lemma 6, below, ensure that the sets
f〈1〉(x), f〈⊥,1〉(x), g〈0〉(x), g〈0,⊥〉(x) are sound, and can be used to implement the func-
tions SPLIT&CHECKEU and SPLIT&CHECKAU in procedure C3MC according to the
requirements.

Lemma 5. Consider the abstraction A of the hybrid automaton H and assume that
�·�A is sound w.r.t. the model checking of E(φUψ). Then, the following holds true:

• x ∈ f〈1〉 ⇒ �E(ϕUψ)�H(x) = 1
• �E(ϕUψ)�H(x) = 1 ⇒ x ∈ f〈⊥,1〉

Lemma 6. Consider the abstraction A of the hybrid automaton H and assume that
�·�A is sound w.r.t. the model checking of A(φUψ). Then, the following holds true:

• x ∈ g〈0〉 ⇒ �A(ϕUψ)�H (x) = 0
• �A(ϕUψ)�H (x) = 0 ⇒ x ∈ g〈0,⊥〉

6 Conclusions

We sharpen the results relative to the size of the DBB abstraction for HA, showing
that the family of RHA does not admit a finite DBB. On this ground, we extend the
applicability of three-valued model checking on classes of HA having infinite DBBs.
In particular, we provide a property driven three-valued model checking algorithm that
does not require an a-priori discretization of the states-space by means of the DBB.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

Property Driven Three-Valued Model Checking on Hybrid Automata 229

2. Alur, R., Henzinger, T., Ho, P.-H.: Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering 22(3), 181–201 (1996)

3. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems.
Proceedings of the IEEE 88(7), 971–984 (2000)

4. Bauer, K., Gentilini, R., Schneider, K.: A uniform approach to three-valued semantics for μ-
calculus on abstractions of hybrid automata. In: Hu, A., Chockler, H. (eds.) Haifa Verification
Conference (HVC), Haifa, Israel. LNCS. Springer, Heidelberg (2008)

5. Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-minimal hybrid systems. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 219–233. Springer, Heidelberg
(2004)

6. Fränzle, M.: What will be eventually true of polynomial hybrid automata? In: Kobayashi, N.,
Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 340–359. Springer, Heidelberg (2001)

7. Gentilini, R., Schneider, K., Mishra, B.: Successive abstractions of hybrid automata for
monotonic CTL model checking. In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS,
vol. 4514, pp. 224–240. Springer, Heidelberg (2007)

8. Ghosh, R., Tiwari, A., Tomlin, C.: Automated symbolic reachability analysis with applica-
tion to delta-notch signaling automata. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 233–248. Springer, Heidelberg (2003)

9. Ghosh, R., Tomlin, C.: Lateral inhibition through delta-notch signaling: A piecewise affine
hybrid model. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001.
LNCS, vol. 2034, pp. 232–245. Springer, Heidelberg (2001)

10. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and infinite graphs.
In: Seberry, J., Pieprzyk, J. (eds.) Annual Symposium on Foundations of Computer Science
(FOCS), p. 453. IEEE Computer Society Press, Los Alamitos (1995)

11. Henzinger, T.: The theory of hybrid automata. In: Verification of Digital and Hybrid Systems.
NATO Advanced Study Institute Series F: Computer and Systems Sciences, vol. 170, pp.
265–292. Springer, Heidelberg (2000)

12. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
Journal of Computer and System Sciences 57(1), 94–124 (1998)

13. Kleene, S.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)
14. Lafferriere, G., Pappas, G., Sastry, S.: O-minimal hybrid systems. Mathematics of Control,

Signals, and Systems 13(1), 1–21 (2000)
15. Lafferriere, G., Pappas, J., Yovine, S.: A new class of decidable hybrid systems. In: Vaan-

drager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 137–151.
Springer, Heidelberg (1999)

16. Miller, J.: Decidability and complexity results for timed automata and semi-linear hybrid
automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–309.
Springer, Heidelberg (2000)

17. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., Mishra, B.: Algorithmic
algebraic model checking I: Challenges from systems biology. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 5–19. Springer, Heidelberg (2005)

18. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based
abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
573–589. Springer, Heidelberg (2005)

19. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Green-
street, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

Team Logic and Second-Order Logic�

Juha Kontinen and Ville Nurmi

Department of Mathematics and Statistics, P.O. Box 68, 00014 University of
Helsinki, Finland

{juha.kontinen,ville.v.nurmi}@helsinki.fi

Abstract. Team logic is a new logic, introduced by Väänänen [1], ex-
tending dependence logic by classical negation. Dependence logic adds
to first-order logic atomic formulas expressing functional dependence of
variables on each other. It is known that on the level of sentences depen-
dence logic and team logic are equivalent with existential second-order
logic and full second-order logic, respectively. In this article we show
that, in a sense that we make explicit, team logic and second-order logic
are also equivalent with respect to open formulas. A similar earlier result
relating open formulas of dependence logic to the negative fragment of
existential second-order logic was proved in [2].

1 Introduction

Team logic is a new logic arising from the so-called Dependence Logic [1] by
adding classical negation. Dependence logic adds the concept of dependence to
first-order logic by means of new atomic formulas

=(x1, . . . , xn, y) (1)

the meaning of which is that the values of x1, . . . , xn completely determine the
values of y. This is made precise in dependence logic by basing semantics in the
concept of a set of assignments satisfying a formula (rather than an individual
assignment satisfying a formula, as in first-order logic). Such sets are called
teams. The idea of team based semantics is due to Hodges [3]. A team X is said
to satisfy the formula (1) if any two assignments s and s′ from X that agree
about x1, . . . , xn also agree about y. If we think of X as a database, this is the
concept of functional dependence, studied extensively in database theory.

We review briefly the short history of team logic. In first-order logic the order
in which quantifiers are written determines the mutual dependence relations
between variables. For example, in

∀x0∃x1∀x2∃x3φ

� The first author was supported by grant 127661 of the Academy of Finland and the
European Science Foundation Eurocores programme LogICCC [FP002 - Logic for
Interaction (LINT)] through grant 129208 of the Academy of Finland. The second
author was supported by the MALJA Graduate school in Mathematical logic.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 230–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Team Logic and Second-Order Logic 231

the variable x1 depends on x0, and the variable x3 depends on both x0 and x2.
In dependence logic we write down explicitly the dependence relations between
variables and by so doing make it possible to express dependencies not otherwise
expressible in first-order logic.

The first step in this direction was taken by Henkin [4] with his partially
ordered quantifiers, e.g. (

∀x0 ∃x1
∀x2 ∃x3

)
φ,

where x1 depends only on x0 and x3 depends only on x2. The second step was
taken by Hintikka and Sandu [5,6], who introduced the slash-notation

∀x0∃x1∀x2∃x3/∀x0φ,

where ∃x3/∀x0 means that x3 is ”independent” of x0 in the sense that a choice for
the value of x3 should not depend on what the value of x0 is. The observation of
Hintikka and Sandu was that we can add slashed quantifiers ∃x3/∀x0 coherently
to first-order logic if we give up some of the classical properties of negation,
most notably the Law of Excluded Middle. They called their logic Independence
Friendly Logic (IF). In [1] Väänänen takes the further step of writing down
explicitly the mutual dependence relationships between variables. Thus he writes

∀x0∃x1∀x2∃x3(=(x2, x3) ∧ φ) (2)

to indicate that x3 depends on x2 only. The new atomic formula =(x2, x3) has
the explicit meaning that x3 depends on x2 and on nothing else. This results in
a logic Väänänen calls Dependence Logic. It is equivalent in expressive power
to the logic of Hintikka and Sandu in the sense that there are truth-preserving
translations from one to the other. Both have the same expressive power on the
level of sentences being equivalent to the existential fragment of second-order
logic.

The negation ¬ of dependence logic does not satisfy the law of excluded middle
and is therefore not the classical Boolean negation. This is clearly manifested by
the existence of non-determined sentences φ in dependence logic. In such cases,
the failure of M |= φ does not imply M |= ¬φ. Hintikka [6] introduced extended
independence friendly logic by taking the Boolean closure of his independence
friendly logic. We take the further action of making classical negation ∼ one of
the logical operations on a par with other propositional operations and quanti-
fiers. This yields an extension of the Boolean closure of dependence logic. The
new logic is called Team Logic in [1].

While we define team logic we have to restrict the negation ¬ of dependence
logic. The game-theoretic intuition behind ¬φ is that it says something about
”the other player.” The introduction of ∼ unfortunately ruins the basic game-
theoretic intuition, and there is no ”other player” anymore. If φ is a formula of
dependence logic, then ∼φ has the meaning ”player II does not have a winning
strategy,” but it is not clear what the meaning of ¬∼φ would be.

Just as a formula φ of first-order logic with free variables x1, . . . , xn defines
an n-ary relation in a model M, i.e., the set of n-tuples (a1, . . . , an) that satisfy

232 J. Kontinen and V. Nurmi

φ in M, a formula φ of team logic defines a set of n-ary relations, namely the
set of teams that satisfies φ. It was shown in [2] that a set X of n-ary relations is
defined in this sense by a formula φ(x1, . . . , xn) of dependence logic if and only if
X is definable in existential second-order logic by a formula Φ(P) with an n-ary
predicate symbol P occuring negatively only. The goal of this paper is to prove
a similar result for team logic, namely, we show that a set X of n-ary relations
is defined in this sense by a formula φ(x1, . . . , xn) of team logic if and only if
X is definable in second-order logic by a formula Φ(P) with an n-ary predicate
symbol P .

2 Preliminaries

In this section we define dependence logic and team logic and recall some of their
properties.

The syntax of dependence logic and team logic extend the syntax of first-order
logic by new atomic (dependence) formulas of the form

=(t1, . . . , tn), (3)

where t1, . . . , tn are terms. The intuitive meaning of the dependence formula
(3) is that the value of the term tn is determined by the values of the terms
t1, . . . , tn−1. As singular cases we have

=(),

which we take to be universally true, and

=(t),

which declares that the value of the term t depends on nothing, i.e., is constant.
In order to define the semantics of dependence logic and team logic, we first

need to define the concept of a team. LetM be a model with domain M . Assign-
ments of M are finite mappings from variables into M . The value of a term t in
an assignment s is denoted by 〈t〉s or 〈t〉f,s if t contains some function variables
whose interpretations are given by f .

If s is an assignment, x a variable, and a ∈ M , then s(x �→ a) denotes the
assignment which agrees with s everywhere except that it maps x to a.

Let M be a set and {x1, . . . , xk} a finite (possibly empty) set of variables.
A team X of M with domain {x1, . . . , xk} is any set of assignments from the
variables {x1, . . . , xk} into the set M . In particular, there are two teams with
the empty domain, namely, the empty team ∅ and the full team {∅}. We denote
by Rel(X) the k-ary relation of M corresponding to X

Rel(X) = {(s(x1), . . . , s(xk)) : s ∈ X} .

Team Logic and Second-Order Logic 233

Definition 1. Let X be a team of M , a ∈ M and F : X → M . The following
operations on teams will be used:

X(x �→ a) := {s(x �→ a) : s ∈ X}
X(x �→ F) := {s(x �→ F (s)) : s ∈ X}
X(x �→ M) := {s(x �→ a) : s ∈ X and a ∈M}

It might help one’s intuition to note that the first two operations can only
decrease the cardinality of a team, whereas the third operation can potentially
multiply team’s cardinality by the factor of |M | .

We are now ready to define the syntax and semantics of dependence logic and
team logic. Since team logic is the closure of dependence logic under classical
negation, we will first give simultaneously the syntax and semantics of team logic
and then indicate how dependence logic can be acquired as a fragment of team
logic.

Definition 2. Let L be a vocabulary, M a L-model and X a team of M . We
define the satisfaction relation M, X |= φ for L-formulas of team logic in the
following way. Below, we assume that the domain of X contains at least the
variables which appear free in φ. Also, the case of atomic formulas refers to the
usual truth definition of first-order logic.

M, X |= Rt1, . . . , tk ⇐⇒ for all s ∈ X: M, s |= Rt1, . . . , tk

M, X |= ¬Rt1, . . . , tk ⇐⇒ for all s ∈ X: M, s |= ¬Rt1, . . . , tk

M, X |= =(t1, . . . , tk, u) ⇐⇒ there is f such that for all s ∈ X:
〈u〉s = f(〈t1〉s, . . . , 〈tk〉s)

M, X |= ¬=(t1, . . . , tk, u) ⇐⇒ X = ∅
M, X |= ∼φ ⇐⇒ M, X �|= φ

M, X |= φ ∨ ψ ⇐⇒ M, X |= φ or M, X |= ψ

M, X |= φ ∧ ψ ⇐⇒ M, X |= φ and M, X |= ψ

M, X |= φ⊗ ψ ⇐⇒ there is Y, Z ⊆ X such that Y ∪ Z = X and
M, Y |= φ and M, Z |= ψ

M, X |= φ⊕ ψ ⇐⇒ for all Y, Z ⊆ X: if Y ∪ Z = X then
M, Y |= φ or M, Z |= ψ

M, X |= ∃xφ ⇐⇒ there is F : X → M such that
M, X(x �→ F) |= φ

M, X |= ∀xφ ⇐⇒ for all F : X → M : M, X(x �→ F) |= φ

M, X |= !xφ ⇐⇒ M, X(x �→ M) |= φ

Finally, a sentence φ is true in a model M if M, {∅} |= φ.

As already mentioned, team logic is the extension of dependence logic by classical
negation ∼. Dependence logic can be acquired as the fragment of team logic

234 J. Kontinen and V. Nurmi

allowing only atomic formulas and their negations (¬) and the connectives ∧,
⊗, ∃ and !. In the context of dependence logic, the connectives ⊗ and ! are
usually denoted by ∨ and ∀. However, in team logic classical disjunction ∨ and
the connectives ⊕ and ∀ arise as the duals of ∧, ⊗ and ∃ with respect to ∼.
Therefore, in this paper we think of dependence logic as the fragment of team
logic using only the connectives ∧, ⊗, ∃ and !.

It is instructive to note that also first-order logic can be embedded into team
logic (and dependence logic) in a canonical way. The canonical translation of
a first-order formula φ (in negation normal-form) into a team logic formula φ∗

goes as follows.

(Rt1, . . . , tk)∗ := Rt1, . . . , tk (¬φ)∗ := ¬φ∗

(φ ∨ ψ)∗ := φ∗ ⊗ ψ∗ (φ ∧ ψ)∗ := φ∗ ∧ ψ∗

(∃xφ)∗ := ∃xφ∗ (∀xφ)∗ := !xφ∗

It is easy to verify that this translation satisfies

M, X |= φ∗ ⇐⇒ ∀s ∈ X : M, s |= φ,

from which it follows, for any sentence φ, that φ and φ∗ are logically equivalent.

3 Background

In this section we discuss the expressive power of dependence logic and team
logic and formalize the goal of this paper. We begin with dependence logic.

It is known that, on the level of sentences, the expressive power of dependence
logic coincides with that of existential second-order logic (Σ1

1):

Theorem 1. For every sentence φ of dependence logic there is a sentence Φ of
Σ1

1 such that

For all models M: M |={∅} φ ⇐⇒ M |= Φ . (4)

Conversely, for every sentence Φ of Σ1
1 there is a sentence φ of dependence logic

such that (4) holds.

Proof. Using the method of [7,8] (See Theorems 6.2 and 6.15 in [1]).

Theorem 1 does not tell us, on the face of it, anything about the formulas
of dependence logic with free variables. Recall that a formula φ of first-order
logic, with free variables x1, . . . , xn, defines an n-ary relation in a model M,
i.e., the set of n-tuples (a1, . . . , an) that satisfy φ in M. On the other hand, a
formula φ(x1, . . . , xn) of team logic defines, in a modelM, a set of n-ary relations
Rel(X) ⊆Mn, namely, the set of teams X with domain {x1, . . . , xn} that satisfy
φ inM. It was proved in [2] that a set X of n-ary relations is defined in this sense
by a formula φ(x1, . . . , xn) of dependence logic if and only if X is definable in
existential second-order logic by a sentence Φ(P) with an n-ary predicate symbol

Team Logic and Second-Order Logic 235

P occuring negatively only. On the semantical side, the assumption that P can
only occur negatively corresponds to downward monotonicity. The following fact
(Fact 11.1 in [3], see Proposition 3.10 in [1]) implies that the result in [2] is the
best possible:

Proposition 1 (Downward closure). Suppose Y ⊆ X. Then M, X |= ϕ
implies M, Y |= ϕ.

Our goal in this article is to characterize definable sets of teams, i.e., sets of the
form,

{X :M, X |= φ}, (5)

in team logic. It was shown in [9] that on the level of sentences the expressive
power of team logic corresponds to full second-order logic (SO).

Theorem 2. For every sentence φ of team logic there is a sentence Φ of second-
order logic such that

For all models M: M |={∅} φ ⇐⇒ M |= Φ . (6)

Conversely, for every sentence Φ of second-order logic there is a sentence φ of
team logic such that (6) holds.

In this article our goal is to generalize Theorem 2 from sentences to arbitrary
formulas.

4 Examples

In this section we illustrate the question studied in this paper with examples.

Example 1. Let L be a vocabulary, M a L-model, and X a family of sets of
r-tuples of M . In [2] it was proved that the following are equivalent:

1. X = {Rel(X) : M, X |= ψ(v1, . . . , vr)} for some L-formula ψ(v1, . . . , vr) of
dependence logic.

2. X = {Y : M, Y |= φ(R)} for some sentence φ ∈ Σ1
1[L ∪ {R}], in which R

occurs only negatively.

Since team logic is closed under boolean operations, it follows that the family
of definable collections X of teams over M is closed under boolean operations
and thus properly contains the family of X which can be defined in dependence
logic.

In the following example we show that very simple formulas can be used
to express properties of teams which cannot be expressed by any formula of
dependence logic.

Example 2. Let φ(x) and ψ(x, y) be the formulas

ψ(x, y) := ∼=(x, y)
φ(x) := ∼¬=(x).

236 J. Kontinen and V. Nurmi

Let M be a model and X is a team of M with domain {x, y}. It is easy to verify
that

M, X |= ψ(x, y) iff ∃s, s′ ∈ X(s(x) = s′(x) ∧ s(y) �= s′(y)) .

On the other hand, it is immediate that for all M and X :

M, X |= φ(x) iff X �= ∅ .

Note that the formula ψ(x, y) does not satisfy the downward closure as defined
in Proposition 1 and therefore it cannot be expressed in dependence logic. On
the other hand, the formula φ(x) is satisfied by all non-empty teams and hence
it cannot be expressed in dependence logic since all formulas of dependence logic
are satisfied by the empty team [1].

The next example shows that team logic is closed under interesting operations
which can be used to define new properties of teams from any property which is
already definable (see Examples 8.14 and 8.15 in [1]).

Example 3. Suppose that ψ(x) is a formula of team logic. There are formulas
ϕ(x) and θ(x) of team logic such that for all models M and teams X :

M, X |= ϕ(x) ⇐⇒ ∀Y ⊆ X(M, Y |= ψ(x))
M, X |= θ(x) ⇐⇒ ∀Y ⊆ X∃Z ⊆ Y (M, Z |= ψ(x)).

In our last example we indicate that team logic has interesting applications also
outside of logic.

Example 4. Recall that Arrow’s theorem in social choice theory shows that no
voting system, with three or more discrete options to choose from, can con-
vert the ranked preferences of individuals into a community-wide ranking which
would meet a certain set of reasonable criteria. Equivalently, if a social welfare
function satisfies a certain set of reasonable criteria with at least three discrete
options to choose from then it is a dictatorship, i.e., there is a single person
whose preferences determine the preferences of the social welfare function. Ar-
row’s Theorem can be interpreted as a valid sentence in team logic [10]. Without
going to the details we note the logical form of the corresponding sentence is

!x∀y(∼ (φ ∧=(t, v)) ∨ (
N∨
i=1

(ti = v))),

where φ is a quantifier-free first-order formula.

5 The Main Result

In this section we characterize the properties of teams definable in team logic.
In other words, we characterize the expressive power of open formulas of team
logic.

The following theorem (Theorem 8.13 in [1]) gives an upper-bound for the
solution.

Team Logic and Second-Order Logic 237

Theorem 3. Let L be a vocabulary and φ(v1, . . . , vr) a L-formula of team logic
with free variables v1, . . . , vr. Then there is a sentence ηφ(R), where R is r-
ary, of second-order logic such that for all model M and teams X with domain
{v1, . . . , vr}:

M, X |= φ ⇐⇒ M,Rel(X) |= ηφ(R) .

We will next show that the converse of Theorem 3 also holds. In our proof we
will be using the fact that formulas of second-order logic can be transformed to
the so-called Skolem Normal Form [11] (see [12]).

Lemma 1. Every formula of second-order logic is equivalent to a formula of the
form

∃f1
1 . . . ∃f1

n ∀f2
1 . . . ∀f2

n . . . ∃fp1 . . . ∃fpn ∀x1 . . .∀xn θ,

where θ is a quantifier-free formula.

Theorem 4. Let L be a vocabulary, R r-ary predicate symbol not in L, and
φ(R) an L ∪ {R}-sentence of second-order logic. Then there is an L-formula of
team logic ψ(v1, . . . , vr) such that for all models M and teams X with domain
{v1, . . . , vr}:

M, X |= ψ ⇐⇒ M,Rel(X) |= φ .

Proof. See the Appendix. ��

Theorem 4 can be also localized to a fixed model analogously to Theorem 4.10
in [2].

Corollary 1. Let L be a vocabulary, M a L-model, and X a family of sets of
r-tuples of M . Then the following are equivalent:

1. X = {Rel(X) : M, X |= ψ(v1, . . . , vr)} for some L-formula ψ(v1, . . . , vr) of
team logic.

2. X = {Y :M, Y |= φ(R)} for some sentence φ ∈ SO[L ∪ {R}].

6 Applications

In this section we discuss applications of Theorem 4 and present an open problem.
Theorem 4 shows that team logic is equivalent to full second-order logic in a

strong way. In [2] an analogous semantical ”completeness” result of dependence
logic with repect to (negative) Σ1

1 was used to argue that extending dependence
logic by certain new connectives does not increase the expressive power of depen-
dence logic. Theorem 4 allows us to reason analogously about team logic. The
motivation for this line of study arises from the fact that there are many natural
and interesting connectives that can be used with logics having semantics based
on teams (see, e.g., [13]). In this respect Theorem 4 also shows that the set of
connectives we used to define team logic gives rise to the (semantically) maximal

238 J. Kontinen and V. Nurmi

logic which is equivalent to second-order logic both on the level of sentences and
open formulas.

We will next take an example of a new connective ↪→ that could be added to
team logic. Define the connective ↪→ by the clause:

M, X |= φ ↪→ ψ ⇐⇒ for all Y ⊆ X , if M, Y |= φ and for all Z
such that Y � Z ⊆ X it holds that M, Z �|= φ, then M, Y |= ψ.

Denote by TL(↪→) the extension of team logic by ↪→. It is straightforward to
verify that the connective ↪→ can be expressed in second-order logic. In particu-
lar, the proof of Theorem 3 can be extended to cover also the case of ↪→. Now,
by Theorem 4 we can actually translate any formula of the logic TL(↪→) into an
equivalent team logic formula. The question remaining open is whether there is
a compositional way of doing this translation which does not use the translation
to second-order logic and Theorem 4.

Acknowledgments. We are grateful to Jouko Väänänen for valuable comments
and suggestions in all the stages of writing this article.

References

1. Väänänen, J.: Dependence logic: A New Approach to Independence Friendly Logic.
London Mathematical Society Student Texts, vol. 70, p. 234. Cambridge University
Press, Cambridge (2007)

2. Kontinen, J., Väänänen, J.: On definability in dependence logic. To appear in
Journal of Logic, Language and Information (2007)

3. Hodges, W.: Compositional semantics for a language of imperfect information. Log.
J. IGPL 5(4), 539–563 (1997) (electronic)

4. Henkin, L.: Some remarks on infinitely long formulas. In: Infinitistic Methods
(Proc. Sympos. Foundations of Math., Warsaw, 1959), pp. 167–183. Pergamon
Press, Oxford (1961)

5. Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon.
In: Logic, methodology and philosophy of science, VIII (Moscow, 1987). Stud. Logic
Found. Math, vol. 126, pp. 571–589. North-Holland, Amsterdam (1989)

6. Hintikka, J.: The Principles of Mathematics Revisited. Cambridge University Press,
Cambridge (1996)

7. Walkoe Jr., W.J.: Finite partially-ordered quantification. J. Symbolic Logic 35,
535–555 (1970)

8. Enderton, H.B.: Finite partially-ordered quantifiers. Z. Math. Logik Grundlagen
Math. 16, 393–397 (1970)

9. Nurmi, V.: Dependence Logic: Investigations into Higher-Order Semantics Defined
on Teams. PhD thesis, University of Helsinki (2009)

10. Väänänen, J.: Personal communication (2009)
11. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder

Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen.
Skrifter utgit av Videnskappsselskapet i Kristiania (1920)

12. Skolem, T.: Selected works in logic. Edited by Jens Erik Fenstad. Universitetsfor-
laget, Oslo (1970)

Team Logic and Second-Order Logic 239

13. Abramsky, S., Väänänen, J.: From IF to BI, a tale of dependence and separation.
Technical report, University of Amsterdam, ILLC Prepublication Series, PP-2008-
27 (2008)

Appendix

Proof (of Theorem 4). By Lemma 1, we may assume that φ is of the form

∃f1
1 . . . ∃f1

n ∀f2
1 . . .∀f2

n . . . ∃fp1 . . .∃fpn ∀x1 . . . ∀xn θ′, (7)

where θ′ is quantifier-free. We may further assume (see the proof of Theorem
6.15 in [1] for details) that θ′ is in conjunctive normal form, all occurences of
the relation variable R in θ′ are of the form Rx, where x denotes the sequence
x1, . . . , xr, and finally each function variable f ij occurs in θ′ only in occurrences
of the term tij := f iju

i,j
1 , . . . , ui,jk(i,j), where each ui,jk is a variable. We can rewrite

φ in the logically equivalent form

φ :=
�

j≤n
f1
j

�

j≤n
f2
j . . .

�

j≤n
fpj
�

j≤n
xj θ, (8)

where n is possibly increased for the sake of obtaining two new function variables
fpn−1 and fpn which we shall simply call f1 and f2, and

θ := (Rx ∨ ¬(f1x = f2x)) ∧ (¬Rx ∨ f1x = f2x) ∧ θ′,

where we replace the occurrences of Rx in θ′ by f1x = f2x. Note that θ is in
conjunctive normal form just like θ′ and there are only one positive and one
negative occurrence of Rx in θ, both occurrences in their own conjuncts.

Let ψ be the team logic formula

ψ :=
�

i≤n
xi
�

j≤n
y1
j

�

j≤n
y2
j . . .

�

j≤n
ypj

(
∼
∧

i≤p even
j≤n

χij ∨
(∧
i≤p odd
j≤n

χij ∧ θ∗
))

,

where θ∗ is the canonical translation of θ into team logic (defined in Sect. 2)
with the following replacements of terms and subformulas;

tij �→ yij

¬Rx �→
⊗
i≤r

¬(vi = xi)

Rx �→
�

i≤r
zi

(∨
i≤r
∼=(zi) ∨ ∼

⊗
i≤r

¬(vi = zi) ∨
⊗
i≤r

¬(xi = zi)
)
,

where vi and zi, for i ≤ r, are new variables, and χij for i ≤ p and j ≤ n we
define as

χij := =
(
ui,j1 , . . . , ui,jk(i,j), y

i
j

)
.

240 J. Kontinen and V. Nurmi

We shall call ypn−1 simply y1 and ypn we call y2, according to the notation of f1
and f2.

Let X be a team with domain {v1, . . . , vr}. Assume first thatM,Rel(X) |= φ.
We will show M, X |= ψ. From M,Rel(X) |= φ we get that alternately for
each odd i ≤ p we can pick some particular sequence f i1, . . . , f

i
n of functions

such that whichever sequence we pick for each even i ≤ p, it always results in
M,Rel(X), (f ij)i,j |= ∀x1 . . . ∀xnθ. We can translate this same function picking
strategy to the side of team logic; for each i and j, let F i

j map assignments like
F i
j (s) = f ij

(
s(ui,j1), . . . , s(ui,jk(i,j))

)
. If we can show that team Y , where

Y := X(xi �→ M)i≤n(yij �→ F i
j)i≤p, j≤n, (9)

satisfies the conditional subformula of ψ, we get that M, X |= ψ. The team Y
satisfies χij for each i and j. Therefore, in order for X to satisfy ψ, Y should
satisfy θ∗, i.e. Y should satisfy each of the conjuncts in θ∗. Note that, for each
s ∈ Y , 〈yij〉s = 〈tij〉f

i
j ,s.

Note that in essence we are proving the powerful claim that, for arbitrary
interpretations of the function variables f ij for all i and j, it holds that

M,Rel(X), (f ij)i,j |= ∀x1 . . . ∀xnθ ⇐⇒ M, Y |= θ∗, (10)

where Y extends X as defined in (9).
There are three types of conjuncts in θ∗. We will show that Y satisfies con-

juncts of all the three types. This is the implication from left to right in (10).

– To see that Y satisfies the formula that replaced Rx∨¬(f1x = f2x), consider
any s ∈ Y . From M,Rel(X), (f ij)i,j , s |= θ we get either M,Rel(X), s |= Rx

or M, (f ij)i,j , s |= ¬(f1x = f2x). We can then split Y = Y1 ∪ Y2, where
Y1 = {s ∈ Y : (s(x1), . . . , s(xr)) ∈ Rel(X)} and Y2 = Y \ Y1 such that
s(y1) �= s(y2) holds for all s ∈ Y2. Thus M, Y2 |= ¬(y1 = y2). We also have
that, for all s ∈ Y1 and all (a1, . . . , ar) ∈ Rel(X) there is some s′ ∈ Y1 such
that s′(vi) = ai for all i ≤ r and s′(xi) = s(xi) for all i ≤ n.
Let (F1, . . . , Fr) be a sequence of successive supplement functions for Y1 and
consider Z := Y1(zi �→ Fi)i≤r . If some Fi is not a constant function, then
M, Z |= ∼=(zi) and thus M, Z |=

∨
i≤r ∼=(zi). Otherwise Z = Y1(zi �→

ai)i≤r for some (a1, . . . , ar) ∈ M r. If for all s ∈ Z there is i ≤ r such that
s(xi) �= ai, then M, Z |=

⊗
i≤r ¬(xi = zi). Otherwise there is s ∈ Z such

that s(xi) = ai for all i ≤ r. Then there is some s′ ∈ Z, where s′(vi) = s(xi)
for all i ≤ r. Since we must have s′(zi) = s(zi) = ai, for all i ≤ r, it holds that
s′(vi) = s(xi) = ai = s′(zi) for all i ≤ r, whence M, Z |= ∼

⊗
i≤r ¬(vi = zi).

This shows that Y satisfies the conjunct.
– To see M, Y |=

⊗
i≤r ¬(vi = xi) ⊗ y1 = y2, consider any s ∈ Y . As

above, we get from M,Rel(X), (f ij)i,j , s |= θ either M,Rel(X), s |= ¬Rx

or M, (f ij)i,j , s |= f1x = f2x. We can then split Y = Y1 ∪ Y2, where Y1 =
{s ∈ Y : (s(x1), . . . , s(xr)) �∈ Rel(X)} and Y2 = {s ∈ Y : s(y1) = s(y2)}.
Then M, Y1 |=

⊗
i≤r ¬(vi = xi) because for each s ∈ Y1, (s(v1), . . . , s(vr)) ∈

Rel(X). Clearly M, Y2 |= y1 = y2.

Team Logic and Second-Order Logic 241

– To see M, Y |=
⊗

i≤q α
∗
i , where each αi is an atomic formula where R

does not occur, simply split Y =
⋃

i≤q Yi such that each Yi = {s ∈ Y :
M, (f ij)i,j , s |= αi}. Then M, Yi |= α∗i for each i ≤ q.

For the other direction, assume M, X |= ψ. We will show M,Rel(X) |= φ.
FromM, X |= ψ we getM, Y |= θ∗, where Y is as in (9) for certain sequences of
supplement functions F i

j . We translate them into functions f ij by setting for each
sequence of a1, . . . , ak(i,j) ∈M , f ij(a1, . . . , ak(i,j)) = F i

j (s), where s(ui,jk) = ak for
each k ≤ k(i, j). Then each f ij is well defined because M, Y |= χij for each i and
j. If we can show thatM,Rel(X), (f ij)i,j |= ∀x1 . . . ∀xnθ, we getM,Rel(X) |= φ.
To this end, let s be an assignment that interprets each xi, i ≤ n. There are
(possibly several) extensions of s in Y that we will be referring to. To make
things simple, we can think that s itself is one of those extensions in Y —the only
difference is that s then interprets the additional variables v1, . . . , vr, y

1
1, . . . , y

p
n

that do not occur in θ. Note that 〈yij〉s = 〈tij〉f
i
j ,s.

We will next show the implication from right to left in (10), i.e. we will show
it for the three kinds of conjuncts in θ for an arbitrary s.

– To see M,Rel(X), (f ij)i,j , s |= Rx ∨ ¬(f1x = f2x), assume M, (f ij)i,j , s |=
f1x = f2x. Then note that from M, Y |= θ∗ we get a split Y = Y1 ∪ Y2 such
that

M, Y1 |=
�

i≤r
zi

(∨
i≤r
∼=(zi) ∨ ∼

⊗
i≤r

¬(vi = zi) ∨
⊗
i≤r

¬(xi = zi)
)

(11)

and M, Y2 |= ¬(y1 = y2). Because s(y1) = s(y2), we have s ∈ Y1. Now, for
all (a1, . . . , ar) ∈ M r, if ai = s(xi), for i ≤ r, then there is some s′ ∈ Y1
such that ai = s′(vi) for all i ≤ r (this follows from the assumption that
(11) holds). But we know that (s′(v1), . . . , s′(vr)) ∈ Rel(X), which is what
we wanted.

– To seeM,Rel(X), (f ij)i,j , s |= ¬Rx∨f1x = f2x, assumeM,Rel(X), s |= Rx.
Then note that from M, Y |= θ∗ we get a split Y = Y1 ∪ Y2 such that
M, Y1 |=

⊗
i≤r ¬(vi = xi) and M, Y2 |= y1 = y2. Consider s′ := s(vi �→

s(xi))i≤r . Then s′ ∈ Y because s ∈ Y and (s(x1), . . . , s(xr)) ∈ Rel(X).
Because s′(vi) = s(xi) for all i ≤ r, we have s′ ∈ Y2, whence s′(y1) = s′(y2),
i.e., M, (f ij)i,j , s |= f1x = f2x, as we wanted.

– It is left to show M,Rel(X), (f ij)i,j , s |=
∨

i≤q αi, where no αi mentions R.
From M, Y |= θ∗ we get a split Y =

⋃
i≤q Yi such that M, Yi |= α∗i for each

i ≤ q. Because s ∈ Yi for some i, we have M, s |= αi. ��

Ludics and Its Applications to Natural Language
Semantics

Alain Lecomte1 and Myriam Quatrini2

1 UMR ”Structures Formelles de la Langue”, CNRS-Université Paris 8 - Vincennes-Saint-Denis
2 UMR ”Institut de Mathématiques de Luminy”, CNRS-Aix-Marseille Université

Abstract. Proofs in Ludics, have an interpretation provided by their counter-
proofs, that is the objects they interact with. We shall follow the same idea by
proposing that sentence meanings are given by the counter-meanings they are
opposed to in a dialectical interaction. In this aim, we shall develop many con-
cepts of Ludics like designs (which generalize proofs), cut-nets, orthogonality
and behaviours (that is sets of designs which are equal to their bi-orthogonal).
Behaviours give statements their interactive meaning. Such a conception may be
viewed at the intersection between proof-theoretic and game-theoretical accounts
of semantics, but it enlarges them by allowing to deal with possibly infinite pro-
cesses instead of getting stuck to an atomic level when decomposing a formula.

1 Meanings, Proofs and Games

The dominant trend in Natural Language Semantics is based on Frege’s conceptions
on Logics and Language according to which the meaning of a sentence may be ex-
pressed in terms of its truth conditions. There is however an alternative conception
according to which we don’t find meanings in truth conditions but in proofs, par-
ticularly expressed by the Brouwer-Heyting-Kolmogorov (BHK) - interpretation. This
conception has been used in philosophy, linguistics and mathematics. In Natural Lan-
guage Semantics, it has been for instance developed by Martin-Löf, Sundholm and
Ranta ([Martin-Löf 84, Sundholm 86, Ranta 94]), but this framework is limited because
proofs are finite objects. At a certain stage of the proof of a formula, atomic formulae
are obtained, but what is the proof of an atomic formula? Actually, we expect a proof
of a sentence to be an object of the same symbolic nature as the sentence. There is no
way to escape from language or from mind to directly reach the external world.

Other similar attempts to provide a foundation for meaning in natural language are
based on works by Hintikka, Kulas and Sandu ([Hintikka-Kulas 83, Hintikka-Sandu 97]).
In their interpretation, meanings are provided by strategies in a language game. Their
views meet Wittgenstein’s according to which meaning is use and the use of language
is showed in language games. But still those accounts meet difficulties when dealing
with atomic sentences: in this case, the logician is obliged to refer to some model (in
the traditional sense of Model Theory) in order to evaluate the truth value of an atomic
sentence.

Still more seriously, they only take in consideration games which are of a very par-
ticular kind: they are oriented towards the notions of winner, winning strategy, score

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 242–255, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Ludics and Its Applications to Natural Language Semantics 243

and pay-off function, contrarily to what Wittgenstein suggested in his Philosophische
Untersuchungen when he spoke of games for a very large family (even mere pastimes).
Neither Wittgenstein’s games do refer to a priori rules which would be attached, like in
GTS, with logical particles (cf. [Pietarinen 07]).

Finally, none of these alternatives to the truth-conditions based framework ever en-
visaged to take proofs or games as infinite devices (or partial and underspecified ones)
and of course none of these traditions took into account the fact that proofs and strate-
gies can be the same objects, simply viewed from different angles.

If this concerns formalized theories of meaning, what to say of theories of meaning
which have not been formalized, like that of argumentative meaning, in O. Ducrot’s
sense ([Ducrot 1984]). Ducrot pointed out the so-called polyphonic aspect of language,
that is the fact that utterrances are not simple statements which are confronted with
”reality”, but dynamical processes which are oriented towards possible or impossible
continuations (for instance I have a few books cannot be pursued by ∗and even none,
while He read few books may be). In the same way, dialogues may be studied according
to what utterrance may be an appropriate reply to another one, and what may not be.

In this paper, we shall present some applications of Ludics to these topics. In a nut-
shell, proofs in Ludics, have an interpretation provided by their counter-proofs, that is
the objects they interact with. We shall follow the same idea by proposing that sen-
tence meanings are given by the counter-meanings they are opposed to in a dialectical
interaction.

2 Dialogues and Ludics

2.1 Ludics: A Theory of Interaction

Ludics can be sum up as an interaction theory, formulated by J.-Y. Girard ([Girard 01])
as the issue of several changes of paradigms in Proof Theory : from provability to com-
putation, then from computation to interaction. The first change of paradigm arose with
the intuitionnistic logic, while the second was due to the development of linear logic.

Starting from a geometrical viewpoint on proofs, which provided an internal ap-
proach to the dynamics of proofs, Ludics takes the notion of interaction (that is the cut
rule and its process of elimination) as primitive. Therefore, it simply starts from loci,
or adresses (where interaction can take place) and formulae are given up, at least for
a while, since the challenge is to regain them at the output of the construction. Proto-
formulae are used as mere scaffoldings for building the main objects we shall deal with
(the designs).

The central object of Ludics: the design. Using the metaphor of Games, a design can
be understood as a strategy, i.e. as a set of plays (or chronicles) ending by answers of
Proponent against the moves planned by Opponent. The plays are alternated sequences
of moves (actions). A move is defined as a 3-uple consisting in

– a polarity (positive for Proponent, negative for Opponent),
– an adress or locus, coded by a finite sequence of integers (denoted by ξ, ρ, σ . . .),

where the move is said to be anchored,

244 A. Lecomte and M. Quatrini

– a finite set of integers, or ramification which indicates the positions which can be
reached in one step. A unusual positive move is also possible : the daı̈mon, which
may end up a play.

Positions are organized in forks, which are presented under the general form: Γ � Δ;
where Γ and Δ are finite sets of loci such that Γ is either the empty set or a singleton.
The fork corresponding to the starting position is called the base of the design. When
Γ is not empty, the following (opponent) move starts from the only element it contains,
and the fork is said to be negative, in the other case, Proponent chooses the locus in Δ
from where it starts and the fork is said to be positive.

Perhaps this may seem not new with regards to GTS, let us notice however that moves
are defined abstractly, independently from any particular connective or quantifier, and
that at each step, the whole history of the previous moves is available.

Now, more importantly, a design may be also seen as a proof search in some linear
formal system, according to the following methodological choices:

– the object we are building not only provides a proof, but at the same time, con-
tributes to the determination of the formula which is proved. Loci point out the
position where such a formula could be located, and at the same time, the ”logical”
decomposition this formula could have,

– by means of the focalisation property discovered by Andréoli [Andréoli 92] ac-
cording to which in linear logic, it is always possible to draw a proof by following
a strict discipline (focusing) which amounts to grouping together successive blocks
of rule applications of the same polarity, it is possible to have only two rules (one
positive and one negative).

– it may happen that the research be not successful. In this case, one may give up the
proof search, thus using a specific non logical rule (or paralogism) : the daı̈mon
rule.

A design can therefore be represented by a tree of forks, built by means of three rules :
Daı̈mon

†
� Λ

Negative rule

... � ξ (J, ΛJ ...
(−, ξ,N)

ξ � Λ

Positive rule
... ξ (i � Λi ...

(+, ξ, I)
� ξ, Λ

where I and J are finite subsets of N, i ∈ I , with the Λi pairwise disjoints, N is a set
(possibly infinite) of finite subsets of N, each J of the negative rule being an element of
this set, all the ΛJ are included in Λ, and moreover each base sequent is well formed in
the sense that all addresses are pairwise disjoint.

The Fax. Since we have not yet introduced formulae, there is no opportunity to use
axiom-links. Instead, we will have a particular design based on a fork ξ � ξ′. Roughly

Ludics and Its Applications to Natural Language Semantics 245

speaking, this design ensures that both loci ξ and ξ′ could be locations of a same for-
mula. That means that as soon as a logical decomposition may be handled on the right
hand side, the same may also be handled on the left hand side. Such a design, called
Fax, is recursively defined as follows:

Faxξ,ξ′ =
...

...

Faxξ′i,ξi

ξ′ (i � ξ (i ...
(+, ξ′, J)

� ξ (J, ξ′ ...
(−, ξ,Pf (N))

ξ � ξ′

At the first (negative) step, the negative locus is distributed over all the finite subsets of
N, then for each set of addresses (relative to some J), the positive locus ξ′ is chosen and
gives rise to a subaddress ξ′ (i for each i ∈ Jk, and the same machinery is relaunched
for the new loci obtained.

Defining interaction. Interaction is concretely expressed by a coincidence of two loci
in dual position in the bases of two designs. This creates a dynamics of rewriting of the
cut-net of the two designs, called, as usual, normalisation. We sum up this process as
follows: the cut link is duplicated and propagates over all immediate subloci of the ini-
tial cut locus as long as the action anchored on the positive fork containing the cut-locus
corresponds to one of the actions anchored on the negative one. The process terminates
either when the positive action anchored on the positive cut-fork is the daı̈mon, in which
case we obtain a design with the same base as the starting cut-net, or when it happens
that in fact, no negative action corresponds to the positive one. In the later case, the pro-
cess fails (or diverges). The process may not terminate since designs are not necessarily
finite objects.

When the normalization between two designs D and E (respectively based on � ξ
and ξ �) succeeds, the designs are said to be orthogonal, and we note: D ⊥ E . In this
case, normalization ends up on the particular design :

[†]
�

LetD be a design,D⊥ denotes the set of all its orthogonal designs. It is then possible
to compare two designs according to their counter-designs. We set D ≺ E when D⊥ ⊂
E⊥.

The separation theorem [Girard 01] ensures that this relation of preorder is an order,
so that a design is exactly defined by its orthogonal.

Behaviours. One of the main virtues of this ”deconstruction” is to help us rebuilding
Logic.

– Formulas are now some sets of designs. They are exactly those which are closed
(or stable) by interaction, that is those which are equal to their bi-orthogonal. Tech-
nically, they are called behaviours.

– The usual connectives of Linear Logic are then recoverable, with the very nice
property of internal completeness. That is : the bi-closure is useless for all linear
connectives. For example, every design in a behaviour C⊕D may be obtained by
taking either a design in C or a design in D.

246 A. Lecomte and M. Quatrini

– Finally, proofs will be now designs satisfiying some properties, in particular that of
not using the daı̈mon rule.

2.2 Ludics as a Formal Framework for Dialogues

Concerning dialogues, let us focalize on the mere supports of the interaction. That is
the locus where a speech turn is anchored (among the loci previously created) and the
loci that it creates, which are also those which may be used later on.
Because Ludics may display the history of the dialogue by means of chronicles, and it
takes into account the strategies of any speaker by means of designs, it allows us to see
a dialogue as the result of an interaction between the strategies of two speakers. In that
case, the rules have the following interpretation:

– when being active (that is using a positive rule), a speaker chooses a locus and
therefore has an active role,

– when being negative (that is using a negative rule), s/he has no choice and has a
passive role

If, therefore, positive steps are understood as moves where the intervener asks a ques-
tion or makes an assertion, and negative steps as moves where s/he is apparently passive,
recording an assertion and planning a further reply, positive actions of one speaker are
not opposed to positive actions of the other one (as it is the case in most formal accounts
of dialogue, even the logical ones) but to negative ones of the other. This point meets an
important requirement formulated by Ducrot according to whom ”the semantic value of
an utterrance is built by allusion to the possibility of another utterrance (the utterrance
of the Other speaker)”.

Examples

– The following example is deliberately simple, and only given for a pedagogic pur-
pose.
Let us consider the following dialogue between Annie and Barbara:
A : did you meet some friends yesterday evening to the party ? B : I only saw
Bruno and Pierre. A : Was Pierre still as nice as during the last year ? B : Yes, he
did. A : That is what I wanted to know.
Such an exchange is represented by an interaction between two designs : one is
seen from the point of view of A and the other from the point of view of B:

From A’s point of view From B’s point of view
†

� 0.1.1.1.1 0.1.1.1.1 �
0.1.1.1 � � 0.1.1.1

� 0.1.1, 0.1.2 0.1.1 � 0.1.2 �
0.1 � � 0.1
� 0 0 �

The trace of the interaction (the cut between the two loci 0) is the alternated se-
quence of actions: (+, 0, {1})(−, 0.1, {1, 2})(+, 0.1.1, {1})(−, 0.1.1.1, {1})†.
In this case the normalisation ends up on the daı̈mon. The interaction converges.

Ludics and Its Applications to Natural Language Semantics 247

– The second example is taken from Schopenhauer’s ”Dialectica eristica” (or ”The
Art of Always Being Right”) which provides a series of so-called stratagems in
order to be always right in a debate. It formalizes the first given stratagem.
“I asserted that the English were excellent in drama. My opponent attempted to
give an instance of the contrary, and replied that it was a well-known fact that in
opera, they were bad. I repelled the attack by reminding him that, for me, dramatic
art only covered tragedy and comedy”
We give an account of this dialogue by the following interaction:

� ξ.1.1 � ξ.1.2
C

ξ.1 �
A

� ξ

ξ.1.3 �
B

� ξ.1

ξ �

Where the action A corresponds with the claim: ”The English are excellent in
drama” ; the action B with “I disagree, it is a well-known fact that in opera, they
could do nothing at all.” and the action C with “But by dramatic art, I only mean
tragedy and comedy.”
Of course, the net built with these two designs does not converge. In fact, things
don’t happen this way: initially, the set of loci the first speaker has in mind could
also cover opera. What happens when willing to repel the attack is retracting one
branch (or replay the game according to a different strategy). This leads us to enter
more deeply into the decomposition of dialogues and in what we consider as units
of action.

While, at the most elementary level, which is relevant as long as the dialogues we
consider are simple (for instance exchanges of information), the interaction is between
elementary actions, those elementary actions are replaced by (sub)-designs as soon as
we are concerned by dialogues of a more complex nature like controversies.

– A third example comes from Aristotle’s Sophistical Refutations, where it is given
the name multiple questions.
Let us imagine a judge asking a man the question:
“Do you still beat your father ?”.
The judge asks a question that presupposes something that has not necessarily been
accepted by the man. S/he imposes to him the following implicit exchange:
- “Do you beat your father?” - “ Yes” - “ Do you stop beating him ?”.
This exchange between the judge J and the man D must be represented by the
following interaction :

ξ.0.1.0 �
� ξ.0.1 � ξ.0.2

ξ.0 �
� ξ

� ξ.0.1.0

ξ.0.1 �
� ξ.0

ξ �
J D

248 A. Lecomte and M. Quatrini

In fact, the judge utterance: - “Do you still beat your father ?” contains what we
call nowadays a presupposition. It can’t therefore be represented by a single action,
but by the whole chronicle: (+, ξ, {0}) (−, ξ.0, {1}) (+, ξ.0.1, {0}). This enables
us to give an account of the fact that one of the loci where the interaction might
continue is in fact not available ; in some sense the action giving this possibility is
skipped, some successive one is immediately proposed and, by this way, constrains
the answers.

The ludical approach thus allows us to get a formalized conception of stratagems and
fallacies, something which appeared out of reach for many researchers (see for instance
[Hamblin 70]). Moreover, we claim that it could improve some issues in formal seman-
tics, like we try to show it in the following section.

3 Logical Forms and Ludics

In the sequel, we propose a conception of interactive meaning based on Ludics. In the
same way a design is defined by its orthogonal (according to the separation theorem),
we may postulate that the meaning of a sentence is given by the set of all its dual sen-
tences: that is all the sentences with which the interaction converges. For this purpose,
we associate a behaviour or a family of behaviours with a sentence. Such behaviours
are built in a compositional way, like in standard formal semantics, but their ultimate
components are neither atoms nor atomic formulae, like in the Intensional Logic Mon-
tague was using. Let us underline the points which are slightly different and new and
which could favourably extend the standard models of semantics:

– The fact that the mathematical object associated with the meaning of a sentence
may be more and more refined seems to us very important. Such an objective is
realized because of the order on designs involved by the separation theorem, which
enables one to explore more and more precisely the argumentative potential of a
sentence. Moreover, new designs may always be added to such an object, thus en-
larging our conception of meaning.

– The fact that Ludics strictly encompasses logic and that logical concepts like formu-
las, proofs or connectives are defined in a world which is larger than the strictly log-
ical one (let us remember that we have paralogisms like the daı̈mon, and counter-
proofs in that world!) makes us to expect more freedom in defining ”logical” forms.
For instance it may be the case that behaviours are composed by means of a non-
logical operator (but which could nevertheless be interpreted).

The following example illustrates a classical problem of ambiguty (scope ambiguity).

3.1 Meaning through Dual Sentences

The meaning of a sentence is given by all the utterances which correctly interact (that
means : converge) with it.

Let us consider the statement (from now on denoted by S): “Every linguist speaks
some african language”. Usually two logical forms can be associated with such a sen-
tence S, depending on whether some has the narrow or the wide scope. Namely:

Ludics and Its Applications to Natural Language Semantics 249

S1 = ∀x(L(x) ⇒ ∃y(A(y) ∧ P (x, y)))
S2 = ∃y(A(y) ∧ ∀x(L(x) ⇒ P (x, y)))

where L(x) means ”x is a linguist” , A(y) means ”y is an african language” and P (x, y)
means ”x speaks y”.
When ”some” has the narrow scope, we assume that the logical form converges with
the LF of sentences like:

(1) There is a linguist who does not know any african language.
(2) Does even John, who is a linguist, speak an african language ?
(3) Which is the African language spoken by John ?

On the opposite, if ”some” has the wide scope, the logical form converges with :

(4) There is no african language which is spoken by all the linguists.
(5) Which african language every linguist speaks ?

3.2 Meaning as a Set of Justifications

We materialize the claim according to which meaning is equated with a set of dual
sentences by associating with the meaning of S a set of designs. Such designs may be
seen as justifications of S. That is the supports of the dialogues during which a speaker
P asserts and justifies the statement S against an adressee O who has several tests at
his/her disposal.

Let us make such a design, based on the arbritary fork � 0, more precise:

– the first action corresponds to the assertion of S. Its ramification is a singleton ;
only one locus is created for continuing the interaction. Nevertheless, the speaker
who has to anticipate the reactions of his/her adressee is committed to one of the
readings of S. S/he is ready to assume one of the two possibilities, the wide or the
narrow scope for ”some”. This is taken into account by distinguishing between two
possible first actions, that we symbolize for instance by (+, 0, {0}) and (+, 0, {1}).
It is then possible to distinguish between two kinds of designs, considered as justi-
fications of S according to the choice of the first action.

– let us for instance focus on the first reading of S. We then simulate an interaction
between P and O who tries to negate P ’s claim:

P O

Dd′

...

0.0.2d.1e � 0.0.2d.2e �
3

� 0.0.1d, 0.0.2d

Dd′′

...
2

0.0 �
1

� 0

0.0.1d �

Ee′

...
† 4

� 0.0.2d.1e, 0.0.2d.2e

Ee′′

...
3′

0.0.2d �
2′

� 0.0
1′

0 �

250 A. Lecomte and M. Quatrini

The normalisation stages may be commented as follows:

1 P asserts S and is ready to continue the interaction with the first reading of S
1’ O records the claim made by P and is ready to answer it. Notice that if O had been

ready to answer according to the second reading, its action would have been (−, 0, {1}) and
the interaction would have diverged

2 P is ready to give justifications for any individual : d,d′,. . .
2’ O proposes an individual d (arguing that d is a linguist (localized in 0.0.1d) and

that d doesn’t know any african language (localized in 0.0.2d))
3 P exhibits some language e (arguing that e is an african language and d speaks e)
3’ at the same time, O is ready to receive such a claim by P for some language among

e′,e, e′′ . . .
4 if P has given some language e such that d speaks it, O may be ready to give up.

Thus, the interaction between ”Every linguist speaks some african language” and the
attempt to negate it ”There is some linguist which doesn’t speak any african language”
normalizes.

Let us denote by D the foregoing design of P . We could also find another design
as justification of S with its first reading : P may ask to check if d is really a linguist,
O may ask to check if d really speaks e and so on thus providing a deeper interaction.
Further exchanges may enter into debates on what it means for a person to be a linguist,
or on what it means for a language to be an african one, or on what it means for a person
and a language to be such that the person speaks the language and so on...

In any way, if S1 denotes the set of designs representing the first reading of S and if
S2 denotes the set of designs representing the second one, the set of designs representing
the meaning of S is the union of both sets : S = S1 ∪ S2.

3.3 Meaning as Behaviour

The previous attempt to associate a set of design with the meaning of S is still general
and imprecise. D actually belongs to the following behaviour1:

∀x(↓ L(x) −◦ ∃y(↓ A(y)⊗ ↓ P(x, y)))

provided that L(x) , A(y) and P(x, y))) are behaviours. Indeed, following the corre-
spondance between designs and proofs of the hypersequentialized polarised linear logic
H which is given in the annex, the design D may be seen as an attempt to prove the
formula S = S1 ⊕ S2 where S1 and S2 are the (proto) - formulas associated with the
first and second reading of S in their linear and hypersequentialized formulations :

Dd′

...

↓ A⊥(ed) � ↓ P⊥(d, ed) �

�↓ L⊥(d),∃y(↑ A(y)⊗ ↑ P (d, y))

Dd′′

...

(∀x(↑ L(x) −◦ ∃y(↑ A(y)⊗ ↑ P (x, y))))⊥ �
� S

1 ∀ and ∃ are used here because of their intuitive appeal, but in fact they stand for the generalized
additives connectives &x and⊕y (cf. annex). There is nevertheless a slight difference between
both pairs of concepts: strictly speaking, in Ludics the correct use of first order quantifiers with
regards to mathematical formulas would involve a uniformity property ([Fleury-Quatrini 04])
which is neither relevant nor satised here.

Ludics and Its Applications to Natural Language Semantics 251

We retrieve the semantical notion of “logical form” but resting on behaviours instead of,
simply, logical formulae. There are finally two possible ways to associate a behaviour
with a sentence:

- either, we can consider that the design obtained (as in the previous section) as
a minimal justification of S may generate a behaviour associated with S. Thus
Sgen = D⊥⊥.

- or we can consider that the behaviour associated with S corresponds to the linear
formula (in an hypersequentialised formulation):

S = (∀x(↓ L(x) −◦ ∃y(↓ A(y)⊗ ↓ P(x, y)))) ⊕ ∃y(↓ A(y)⊗ ∀x ↑ (↓ L(x) −◦↓
P(x, y))).

The later interpretation of S’s meaning is in fact a family of behaviours because S
depends on the behaviours L(x) , A(y) and P(x, y))).

Remark 1. As a logical formula, S is seen as the disjunction of S1 and S2 , namely
as the formula S = S1⊕ ↓ S2, and as a behaviour, seen as the union2 of the two
behaviours associated with the two terms of the disjunct. Hence we get a logical ac-
count of the fact that interaction may activate only one of both logical sub-formulas,
depending on the scope of “some”.

Remark 2. The behaviour Sgen contains all the behaviours logically built from the be-
haviours associated with the elemantary pieces L(x), A(y) and P (x, y). This way we
get a first (and still rough) account of the logical particles of meaning.

Finally, Ludics enables us to go further into the specification of the logical form.

Decomposing “atomic formulas”

1. It is of course possible to consider the leaves of a decomposition as atomic formu-
lae, if decomposition ends up. In this case, they are seen as data items3

We can thus consider the following design D′ as a justification of S :

Dd′

...

∅
� A(ed)

↓ A⊥(ed) �

∅
� P (d, ed)

↓ P⊥(d, ed) �

�↓ L⊥(d),∃y(↑ A(y)⊗ ↑ P (d, y))

Dd′′

...

(∀x(↑ L(x) −◦ ∃y(↑ A(y)⊗ ↑ P (x, y))))⊥ �

Let us remark thatD′ is more defined thanD. In Ludics this means thatD⊥ ⊂ D′⊥
and this may be understood here that the justification is more informative, more
precise.

2 This is one of the mains results of Ludics: the internal completeness ensures that the elementary
operation of union is enough to obtain all the designs of the disjunction.

3 in Ludics this is possible by means of the use of the linear multiplicative constant 1.

252 A. Lecomte and M. Quatrini

2. But we may also consider that L(x), A(y) and P (x, y) are still decomposable.
That amounts to recognize that S1 contains other designs: all those which are more
defined than D. Designs more defined than D are built on the same schema than
D′ but instead of ending on the the empty set, they continue on non empty rami-
fications, thus allowing the exploration of A(ef) or P (f, ef) which were alleged
atomic formulae in the previous designs.

The vericonditional interpretation is here retrieved as an indirect (and secondary) con-
sequence of our ”(para)proofs as meanings”4 interpretation because now, D′ is really
a proof provided that A(f) and P (f, ef) are either data items, that is the true linear
formula 1 or are provable when they are decomposable.

3.4 How to Go Further ?

Towards speech acts - and the use of Fax. Instead of simple yes/no questions, where
convergence occurs for ”yes” and divergence for “no”, we may take so called wh-
questions into consideration, for example “which is the african language that John
speaks ?”. In this case we expect that the interaction has the answer as its by-product
(or its side effect).

To reach this goal, let us associate with such a question (that we may see as a speech
act) a design in which there is a locus for storing the answer. In our formulation of
designs as HS-paraproofs, this question will be associated with a paraproof of the se-
quent S � A where A is a formula equal to ↑ A1 ⊕ · · · ⊕ ↑ An corresponding to the
logical form of ” is some african language” (afar, peul, ewe, ewondo...). A complex

design using Fax will be associated with the question ”which is the african language

that John speaks ?” . The result of the interaction of this design with D′ is :

∅
� Ae

↓ A⊥
e �

� A

which can be read as “ Ae is this african language” (where Ae is the african language
that John speaks (in D′)).

In our opinion, this suggests a way to perform in Ludics a unified treatment of Logi-
cal Forms and Speech Acts. At the same time, this underlines the richness of the ludical
framework to give an account of the interactions in language.

4 Conclusion

In this paper, we tried to give an account of Ludics and of the new way it allows to
specify Meaning in Language: not by considerations on truth conditions but by using
the important concept of interaction. To access the meaning of a sentence is mainly to
know how to question, to answer to or to refute this sentence, and to know how to extend
the discourse (or the dialogue) to which it belongs. In such a conception, the meaning of
a sentence is a moment inside an entire process which coud be conceived as infinite (if

4 In the opposition of two processes of proof search, both cannot be ”real” proofs, it is the reason
why we call them paraproofs.

Ludics and Its Applications to Natural Language Semantics 253

for instance we admit that the interpretation or the argumentation process with regards
to any statement is potentially infinite). Ludics gives a precise form to these views by
means of the notions of normalization and behaviour.

Otherwise, the emphasis put on loci has, as a valuable consequence, the fact that we
may conceive several instances of the same sign (a sentence, a word etc.) as having var-
ious meanings, according to the location it has in a discourse or a dialogue, thus giving
suggestions for dealing with many rhetorical figures (and fallacies). The infinite design
Fax allows to delocate such meanings but its use is not mandatory. Moreover, the fact
(not much developed in this extended abstract) that a design may be viewed either as
a kind of proof (in a syntactic setting of the framework) or as a game (in a semantic
setting of it) provides us with interesting insights on Pragmatics and Wittgensteinian
language games. In a pragmatic theory of presupposition, for instance, presupposing
implies making an assertion where the hearer has no access to a previous step made by
the speaker, if (s)he rejects this step, (s)he makes the process to diverge. Other ”games”
may be explored. Wittgenstein for instance quoted elicitation, that is the way in which
somebody may obtain an answer to a question. Every time, Fax is used to transfer a
meaning from a location to another one (for instance from the discourse or the brain of
the other speaker to the one of the eliciter). Those games may be envisaged without any
kind of ”winning strategy”. In a speech act seen as a game, there is no win, simply the
appropriate use of some designs in order to reach an objective (which may be a common
one). Future works will be done in those directions.

References

[Andréoli 92] Andréoli, J.-M.: Logic Programming with Focusing Proofs in Linear
Logic. The Journal of Logic and Computation 2, 3, 297–347 (1992)

[Curien 2004] Curien, P.-L.: Introduction to linear logic and ludics, part I and II, to
appear,
http://www.pps.jussieu.fr/˜curien/LL-ludintroI.pdf

[Ducrot 1984] Ducrot, O.: Le dire et le dit, Editions de Minuit, Paris (1984)
[Fleury-Quatrini 04] Fleury, M.-R., Quatrini, M.: First order in Ludics. Mathematical Struc-

tures in Computer Science 14(2), 189–213
[Girard 99] Girard, J.-Y.: On the Meaning of Logical Rules-I in Computational

Logic. In: Berger, U., Schwichtenberg, H. (eds.). Springer, Heidelberg
(1999)

[Girard 01] Girard, J.-Y.: Locus Solum Mathematical Structures in Computer. Sci-
ence 11, 301–506 (2001)

[Girard 03] Girard, J.-Y.: From Foundations to Ludics. Bulletin of Symbolic
Logic 09, 131–168 (2003)

[Girard 06] Girard, J.-Y.: Le Point Aveugle, vol. I, II. Hermann, Paris (2006)
[Hamblin 70] Hamblin Fallacies, C.-L.: Vale Press, Newport News (republished, 2004)
[Hintikka-Kulas 83] Hintikka, J., Kulas, J.: The Game of Language: Studies in Game Theo-

retical Semantics and its Applications. D. Reidel (1983)
[Hintikka-Sandu 97] Hintikka, J., Sandu, G.: Game Theoretical Semantics. In: Van Benthem,

J., ter Meulen, A. (eds.) Handbook of Logic and Language, ch. 6, Else-
vier, Amsterdam (1997)

[Martin-Löf 84] Martin-Löf, P.: Intuitionistic Type Theory, Bibliopolis, Naples (1984)

http://www.pps.jussieu.fr/~curien/LL-ludintroI.pdf

254 A. Lecomte and M. Quatrini

[Pietarinen 07] Pietarinen, A.-V.: Game Theory and Linguistic Meaning. Elsevier, Am-
sterdam (2007)

[Ranta 94] Ranta, A.: Type-Theoretical Grammar. Oxford University Press, Oxford
(1994)

[Schopenhauer] Schopenhauer, A.: The Art of Always Being Right
[Sundholm 86] Sundholm, G.: Proof Theory and Meaning. In: Gabbay, D., Guenthner, F.

(eds.) Handbook of Philosophical Logic, vol. III, pp. 471–506. D. Reidel,
Dordrechtz (1986)

[Tronçon 06] Tronçon, S.: Dynamique des démonstrations et théorie de l’interaction,
PhD thesis, Université d’Aix-Marseille (2006)

[Wittgenstein 53] Wittgenstein, L.: Philosophische Untersuchungen. Blackwell, Malden
(1953)

A A Hypersequentialized Version of the Linear Sequent Calculus

We give here a short presentation of a hypersequentialized version of linear calculus,
which enables one to manipule the designs as (para)proofs of a logical calculus.

A.1 Formulas and Sequents

By means of polarity, we may simplify the calculus by keeping only positive formulae.
Of course, there are still negative formulae... but they are simply put on the left-hand
side after they have been changed into their negation. Moreover, in order to make para-
proofs to look like sequences of alternate steps (like it is the case in ordinary games),
we will make blocks of positive and of negative formulae in such a way that each one is
introduced in only one step, thus necessarily using synthetic connectives. Such connec-
tives are still denoted ⊕ and ⊗ but are of various arities. We will distinguish the case
where both ⊕ and ⊗ are of arity 1 and denote it ↓.

- The only linear formulae which are considered in such a sequent calculus are built
from the set P of linear constants and propositionnal variables according to the
following schema :

F = P |(F⊥ ⊗ · · · ⊗ F⊥)⊕ · · · ⊕ (F⊥ ⊗ · · · ⊗ F⊥)| ↓ F⊥

– The sequents are denoted Γ � Δ where Δ is a multiset of formulas and Γ contains
at most a formula.

A.2 Rules

– There are some axioms (logical and non logical axioms):

P � P � 1 �↓ T,Δ
†

� Δ

where P is a propositionnal variable ; 1 and T are the usual linear constants (re-
spectively positive and negative).

Ludics and Its Applications to Natural Language Semantics 255

– The ”logical” rules are the following ones :
Negative rule

� A11, . . . , A1n1 , Γ . . . � Ap1, . . . , Apnp , Γ

(A11 ⊗ · · · ⊗A1n1)⊕ · · · ⊕ (Ap1 ⊗ · · · ⊗Apnp) � Γ

Positive rule

Ai1 � Γ1 . . .Aini � Γp

� (A11 ⊗ · · · ⊗A1n1)⊕ · · · ⊕ (Ap1 ⊗ · · · ⊗Apnp), Γ

where ∪Γk ⊂ Γ and for k, l ∈ {1, . . .p} the Γk ∩ Γl = ∅.

A.3 Remarks on Shifts

Using the shift is a way to break a block of a given polarity. Separate steps may be
enforced by using the shift operators ↓ and ↑ which change the negative (resp. posi-
tive) polarity into the positive (resp. negative) one. The rules introducing such shifted
formulas are particular cases of the positive and the negative one:

A⊥ � Γ
[+]

�↓ A,Γ
� A⊥, Γ

[−]
↓ A � Γ

where A is a negative formula.

Example. In a block like A ⊗ B ⊗ C in principle, A,B and C are negative, but if we
don’t want to deal with A,B,C simultaneously, we may change the polarity of B ⊗ C
(which is positive) and make it negative by means of ↑. We write then A⊗ ↑ (B ⊗ C).
Compare the two following partial proofs, where (1) does not use any shifts and (2)
uses one :

instead of (1):
A⊥ � B⊥ � C⊥ �

� A⊗B ⊗ C we get (2) :

A⊥ �

B⊥ � C⊥ �
� B ⊗ C

↓ (B ⊗ C)⊥ �
� A⊗ ↑ (B ⊗ C)

We may use the notation ⊕y (and dually &x) instead of Fy1 ⊕ · · · ⊕ Fyn or simply ∃y
(dually ∀x) when it is clear in context that y belongs to a finite set.

Spoilt for Choice:
Full First-Order Hierarchical Decompositions

Sebastian Link�

School of Information Management
Centre for Logic, Language and Computation

Victoria University of Wellington, New Zealand
sebastian.link@vuw.ac.nz

Abstract. Database design aims to find a database schema that per-
mits the efficient processing of common types of queries and updates
on future database instances. Full first-order decompositions constitute
a large class of database constraints that can provide assistance to the
database designer in identifying a suitable database schema.

We establish a finite axiomatisation of full first-order decompositions
that reflects best database design practice: an inference engine derives all
potential candidates of a database schema, but the final choice remains
with the database designer.

Keywords: Database Decomposition, Database Constraint, Axiomati-
sation, Propositional Logic.

1 Introduction

Modern database management systems provide commensurate tools to store,
manage and process different kinds of data. The core of these systems still re-
lies on the sound technology that is based on the relational model of data [8].
From the perspective of finite model theory, a relational database is a finite
structure over a relational signature [24]. Relations permit the storage of incon-
sistent data, i.e., data that violate conditions which every legal database instance
ought to satisfy. Consequently, semantic constraints are specified by the database
designer in order to restrict the databases to those which are considered mean-
ingful to the application at hand. During database normalisation join-related
constraints are explored to minimise data redundancy for efficient means of up-
dating. In practice, most normalised schemata are subject to denormalisation in
order to facilitate the efficient processing of the most common types of queries.
The quality of the target database depends on the ability to reason correctly
and appropriately about database constraints [14,28].

Full first-order hierarchical decompositions (FOHDs) constitute a large class
of relational constraints [9]. A relation is a model of an FOHD when it is the

� This research is supported by the Marsden fund council from Government funding,
administered by the Royal Society of New Zealand.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 256–267, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Spoilt for Choice: Full First-Order Hierarchical Decompositions 257

Table 1. A relation over Work and two of its projections

Employee Child Insurance Salary Year
Al Bud AMI 52k 2009
Al Kelly AMI 52k 2009
Al Kelly State 52k 2009
Al Bud State 52k 2009

Employee Child
Al Kelly
Al Bud

Employee Insurance Salary Year
Al AMI 52k 2009
Al State 52k 2009

natural join over at least two of its projections that all share the same join
attributes. More precisely, a relation r satisfies the FOHD X : [Y1 | · · · | Yk]
when r is the natural join over the projections r[XYi] of r to the attribute sets
XYi for all i = 1, . . . , k.

Example 1. As a running example we consider the relation schema Work com-
prising the attributes Employee, Salary, Year, Insurance and Child. Intuitively,
any row over the table Work collects information about an employee, the salary
of this employee in a certain year, an insurance that the employee has taken out,
and a child of the employee. It appears that the information on the child of any
employee is independent of the information on the insurance, salary and year
of the same employee. This separation of facts can be modelled by the FOHD
Employee : [Child | Insurance,Salary,Year]. We may also choose to specify the
FOHD Employee : [Salary,Year | Child,Insurance] indicating that the informa-
tion on the year’s salary depends only on the employee independently of the
employee’s information on children and insurances. The Work-relation in Ta-
ble 1 satisfies the first FOHD since it is the natural join over its two projections
on {Employee,Child} and {Employee,Insurance,Salary,Year}. ��

Database constraints interact with one another. In fact, a constraint is implic-
itly specified if it is satisfied by any database that satisfies all the constraints
that have been specified explicitly. A fundamental problem is the determination
of such implicit knowledge. An axiomatisation for the implication of database
constraints can form the basis of an enumeration algorithm that lists all conse-
quences. In practice, such an enumeration is often desirable to validate explicit
knowledge. For instance, the FOHD Employee : [Child | Insurance | Salary,Year]
is implied by the the two FOHDs from Example 1.

FOHDs tell the database designer which attribute sets can form independent
information units, e.g. {Employee, Child} and {Employee, Salary, Year, Insur-
ance} based on the FOHD Employee : [Child | Insurance,Salary,Year]. Moreover,
the original notion of an FOHD, as introduced by Delobel [9], also tells us in
which order the separation of these information units takes place.

Example 2. The FOHD Employee : [Child | Insurance | Salary,Year] instructs us
to first decompose the relation schema Work from Example 1 into {Employee,
Child} and {Employee,Insurance,Salary,Year}, and subsequently to decompose
the latter schema into {Employee,Insurance} and {Employee,Salary,Year}. ��

258 S. Link

Intuitively, the decomposition can be processed in an arbitrary order and not
just in the order that is indicated by a given FOHD. That is, for any permutation
π the FOHD X : [Yπ(1) | · · · | Yπ(k)] is implied by the FOHD X : [Y1 | · · · | Yk].
Syntactically, this can be represented as the inference rule

X : [Y1 | · · · | Yk]
X : [Yπ(1) | · · · | Yπ(k)]

known as the permutation rule [9,29].

Example 3. Given the FOHD Employee : [Child | Insurance | Salary,Year] we
apply the permutation rule to infer Employee : [Insurance | Salary,Year | Child].
This FOHD instructs us to first decompose the relation schema Work from
Example 1 into {Employee,Insurance} and {Employee,Salary,Year,Child}, and
subsequently to decompose the latter schema into {Employee,Salary,Year} and
{Employee,Child}. ��

The final database schema of a decomposition is invariant under the order in
which attribute sets on the right-hand side of an FOHD appear. In practice,
however, it is rarely the case that the final database schema of a decomposition is
chosen as the layout of the target database. The reason for this is that normalised
database schemata only guarantee the efficient processing of updates [30]. Very
commonly, the efficient processing of common queries outweighs the maintenance
of database constraints and hence, databases are denormalised.

Example 4. Consider the two database schemata D1:

{Employee,Child}, {Employee,Insurance}, {Employee,Salary,Year}

and D2:{Employee,Child,Insurance}, {Employee,Salary,Year}. The schema D1
provides a good choice when the most common types of queries do not re-
quire any joins between the three relation schemata and/or updates of either
Child-, or Insurance- or Salary- and Year-information based on Employee-values
are common. In that case no maintenance of FOHDs on any of the relation
schemata is necessary. The second schema D2 may become preferable if common
queries require a combination of Child- and Insurance-values, e.g. what is the
most common insurance of employees that have at least two children? The ef-
ficient processing of these queries may outweigh the maintenance of the FOHD
Employee : [Child | Insurance] on {Employee,Child,Insurance}. ��

We note that denormalised database schemata occur in intermediate steps of the
normalisation process, e.g. {Employee,Salary,Year,Child} in Example 3. Such de-
normalised schemata may only be discovered due to the inference of an implicitly
specified FOHD. In particular, the order in which the attribute sets occur on
the right-hand side of an FOHD does seem to matter after all.

However, in database practice it is the database designer who chooses the final
layout of the database. Consequently, the database designer chooses the order in
which the information units are separated from one another. Hence, we would

Spoilt for Choice: Full First-Order Hierarchical Decompositions 259

like to gain complete knowledge about these information units, i.e., the minimal
sets of attributes that are independent of one another.

Contributions. In this paper, we will develop a theory that reflects this common
practice in database design. First, we develop a theory based on the original
notion of an FOHD. We establish an axiomatisation in which it is always possible
to delay an application of the permutation rule to the very last step of the
inference. Consequently, the decision on the order in which the information units
are separated from one another is delayed until the end of the design process
(this reflects the choice of the database designer after they become aware of all
possibilities for separating the information). If it was not always possible to shift
the permutation rule to the very last step of an inference, then one may argue
that database designers are limited in their choices for the final layout of the
database. That is, the inference engine pre-determines an order in which the
information units are to be separated, without any good reason.

Secondly, we introduce order-invariant hierarchical dependencies (OIHDs)
which do not take the order of a decomposition into account. Intuitively, an
OIHD X : {Y1, . . . , Yk} represents the set

{X : [Yπ(1) | · · · | Yπ(k)] : π is a permutation on {1, . . . , k}}

of FOHDs. The OIHD Employee:{{Insurance}, {Salary,Year},{Child}} repre-
sents the 6 different FOHDs where the left-hand side is Employee and the right-
hand side is a permutation of {Insurance}, {Salary,Year}, and {Child}, for
example. We establish an axiomatisation for the implication of OIHDs which
contains exactly the inference rules adapted from our axiomatisation of FOHDs,
but without the permutation rule. This is a further explanation of our intuition
about the design process in practice: an inference engine mechanically determines
those information units that can be separated, and, subsequently, the database
designer decides how the actual separation will be implemented.

Finally, we show that correspondences between dependencies and fragments
of propositional logic [19,27] do not carry over to full-first order decompositions.

Organisation. We repeat concepts of the relational model of data in Section
2, in particular FOHDs, their semantic implication and syntactical inference. In
Section 3 we establish an axiomatisation of FOHDs that reflects the role of the
permutation role. We study order-invariant hierarchical dependencies in Section
4 and comment on their relationships to propositional logic in Section 5. We
conclude in Section 6.

2 Full First-Order Decompositions

Let A = {A1, A2, . . .} be a (countably) infinite set of symbols, called attributes.
A relation schema is a finite set R = {A1, . . . , An} of attributes from A. Each
attribute A of a relation schema is associated with a domain dom(A) which rep-
resents the set of possible values that can occur in the column named A. If X
and Y are sets of attributes, then we may write XY for X ∪ Y .

260 S. Link

If X = {A1, . . . , Am}, then we may write A1 · · ·Am for X . In particular, we may
write simply A to represent the singleton {A}. A tuple over R (R-tuple or simply
tuple, if R is understood) is a function t : R →

⋃
A∈R

dom(A) with t(A) ∈ dom(A)

for i = 1, . . . , n. For X ⊆ R let t[X] denote the restriction of the tuple t over R
on X , and dom(X) =

∏
A∈X dom(A) the Cartesian product of the domains of at-

tributes in X . A relation r overR is a finite set of tuples overR. Let r[X] = {t[X] |
t ∈ r} denote the projection of the relation r over R on X ⊆ R. For X,Y ⊆ R,
r1 ⊆ dom(X) and r2 ⊆ dom(Y) let r1 � r2 = {t ∈ dom(XY) | ∃t1 ∈ r1, t2 ∈
r2(t[X] = t1[X] ∧ t[Y] = t2[Y])} be the natural join of r1 and r2.

Definition 1. A full first-order hierarchical decomposition over the relation
schema R is an expression X : [Y1 | . . . | Yk] with a non-negative integer k,
X,Y1, . . . , Yk ⊆ R such that Y1, . . . , Yk forms a partition of R−X. A relation r
over R is said to satisfy (or said to be a model of) the full first-order hierarchical
decomposition X : [Y1 | · · · | Yk] over R, denoted by |=r X : [Y1 | · · · | Yk], if and
only if r = (· · · (r[XYk] � r[XYk−1]) � · · ·) � r[XY1] holds. ��

The FOHD ∅ : [Y1 | · · · | Yk] expresses the fact that any relation over R is the
Cartesian product over its projections to attribute sets in {Yi}ki=1. For k = 0,
the FOHD X : [] is satisfied trivially, where [] denotes the empty list.

Suppose we allow the sets Yi to be empty. Then for all positive k we have
the property that for all relations r the FOHD X : [∅, Y2, . . . , Yk] is satisfied by
r if and only if r satisfies the FOHD X : [Y2, . . . , Yk]. In particular, if k = 1,
then X : [∅] is equivalent to X : []; more specifically, they are satisfied by
the same relations. One may now define an equivalence relation over the set of
FOHDs defined on some fixed relation schema. Indeed, two such FOHDs are
equivalent whenever they are satisfied by the same relations over the schema.
Strictly speaking, we will apply inference rules to these equivalence classes of
FOHDs. For the sake of simplicity, however, we have limited Definition 1 to
those FOHDs where no empty sets are allowed to occur within the sequence of
attribute sets. As the property above shows, this is not a real limitation but just
a suitable choice of a representative from the equivalence classes.

For the design of a relational database schema semantic constraints are defined
on the relations which are intended to be instances of the schema. During the
design process one usually needs to determine further constraints which are
logically implied by the given ones.

Definition 2. Let Σ ∪ {ϕ} be a set of constraints on the relation schema R.
We say that Σ implies ϕ if and only if every relation r over R that satisfies all
constraints in Σ also satisfies ϕ. ��

In order to determine implied FOHDs one can use the set of inference rules from
Table 2 [9,29]. These inference rules have the form

premise
conclusion

and inference rules without a premise are called axioms.

Spoilt for Choice: Full First-Order Hierarchical Decompositions 261

Table 2. Inference Rules for Full First-Order Hierarchical Decompositions

∅ : [R]
(universal, U)

X : [Y1 | · · · | Yk]
XZ : [Y1 − Z | · · · | Yk − Z]

X : [X1 | X2] XXi : [Y1 | · · · | Yk]
X : [Y1 | · · · | Yk | Xi]

(augmentation, A) (transitivity, T)

X : [Y1 | · · · | Yk]
X : [Y1 | · · · | YiYj | · · · | Yk]

X : [Y1 | · · · | Yk]
X : [Yπ(1) | · · · | Yπ(k)]

(merging, M) (permutation, P)

Let Σ ∪ {ϕ} be a set of semantic constraints from the class C, all defined
over the relation schema R. In this paper, the class C may refer to full first-
order hierarchical dependencies or order-invariant hierarchical dependencies. Let
Σ �S ϕ denote the inference of ϕ from a set Σ of constraints in C by the set
S of inference rules. Let Σ+

S = {ϕ | Σ �S ϕ} denote the closure of Σ under
inferences by S. The set S is called sound for the implication of constraints in
C if for every relation schema R and for every set Σ of constraints in C over R
we have Σ+

S ⊆ Σ∗ = {ϕ ∈ C | Σ implies ϕ}. The set S is called complete for the
implication of constraints in C if for every relation schema R and for every set Σ
of constraints in C over R we have Σ∗ ⊆ Σ+

S. A complete set S is called minimal
for the implication of constraints in C if the removal of any inference rule from
S results in a system that is incomplete for the implication of constraints in C.

Note the following global condition that we enforce on all applications of
inference rules that infer FOHDs. Whenever we apply such an inference rule, we
remove all empty sets from the exact position in which they occur as elements in
the sequence in the conclusion. For instance, we can infer R : [] by an application
of the augmentation rule A to the FOHD ∅ : [R]. The split rule

X : [X1 | X2] X : [Y1 | · · · | Yk]
X : [Y1 | · · · | Yj ∩Xi | Yj −Xi | · · · | Yk]

is derivable from {A, T ,M,P}.

Theorem 1. The set F of inference rules from Table 2 is sound, complete and
minimal for the implication of full first-order decompositions. ��

The completeness argument in the proof of Theorem 1 is similar to the com-
pleteness proof for multivalued dependencies [3,5]. It relies on the notion of a
dependency basis. Let DepR(X) be the set of all W ⊆ R − X for which some
FOHD X : [Y1 | · · · | Yk] with W ∈ {Y1, . . . , Yk} can be inferred from Σ by F.
Due to our definition of FOHDs, we must explicitly enforce the empty set to be

262 S. Link

included in DepR(X) as well. Note that DepR(X) is finite, and (DepR(X),⊆
,∪,∩, (·)C , ∅, R−X) constitutes a Boolean algebra due to the soundness of the
merging and split rule. In particular, every finite Boolean algebra is atomic [16].
The set DepBR(X) of all atoms of (DepR(X),⊆, ∅) is called the dependency
basis of X with respect to Σ [2].

Even though F forms a minimal axiomatisation one may still simplify the
inference rules in F. For example, the transitivity rule T ′:

X : [X1 | X2] XX1 : [Y1 | · · · | Yk]
X : [Y1 | · · · | Yk | X1]

and the permutation rule P allow us to infer the transitivity rule T . Moreover,
the merging rule M′:

X : [Y1 | · · · | Yk]
X : [Y1Y2 | · · · | Yk]

and the permutation rule P allow us to derive the merging rule M.

Corollary 1. The set F′ = {U ,A, T ′,M′,P} is an axiomatisation for the im-
plication of full first-order hierarchical decompositions. ��

3 The Role of the Permutation Rule

We will show now that the axiomatisation F has the following property. For all
relation schemata R, for all sets Σ of FOHDs on R, and for all inferences γ of an
FOHD ϕ from Σ by F there is an inference ξ of ϕ from Σ by F in which the per-
mutation rule is only applied in the very last step of ξ. Consequently, F soundly
reflects the role of the permutation rule as a means for fixing a decomposition
strategy, but not as a means to derive elements of the dependency basis.

Example 5. The FOHD Employee:[Insurance|Salary,Year,Child] can be inferred
by F from Employee:[Salary,Year |Child,Insurance] and Employee:[Child | Insur-
ance,Salary,Year]. Indeed, the inference

Employee : [Salary,Year | Child, Insurance]
P : Employee : [Child, Insurance | Salary,Year]

Employee : [Child | Insurance, Salary,Year] A : Employee,Child : [Insurance | Salary,Year]
T : Employee : [Insurance | Salary,Year | Child]
M : Employee : [Insurance | Salary,Year,Child]

applies the permutation rule P in an intermediate step. According to our rea-
soning, this inference is not adequate. In fact,

Employee : [Salary,Year | Child, Insurance]
Employee : [Child | Insurance, Salary,Year] A : Employee,Child : [Salary,Year | Insurance]
T : Employee : [Salary,Year | Insurance | Child]
M : Employee : [Salary,Year,Child | Insurance]
P : Employee : [Insurance | Salary,Year,Child]

shows an inference by F which is indeed adequate. ��

Spoilt for Choice: Full First-Order Hierarchical Decompositions 263

The reasoning in Example 5 applies to arbitrary inferences by F.

Theorem 2. Let R be some relation schema, and Σ a set of FOHDs over R.
For each inference γ from Σ by F there is an inference ξ from Σ by F with the
following properties:

– γ and ξ infer the same full first-order hierarchical decomposition,
– in ξ the permutation rule P is applied at the very last step only. ��

Theorem 2 says that the set consisting of the universal axiom U , the augmenta-
tion rule A, the transitivity rule T and the merging rule M is almost complete
for the implication of FOHDs in the following sense.

Corollary 2. Let R be some relation schema and Σ a set of full first-order
hierarchical decompositions on R. Then for all X : [Y1 | · · · | Yk] on R we have:
X : [Y1 | · · · | Yk] ∈ Σ+

F if and only if there is some permutation π on {1, . . . , k}
such that X : [Yπ(1) | · · · | Yπ(k)] ∈ Σ+

{U ,A,T ,M}. ��

Note that it is, by no means, self-evident that an axiomatisation of FOHDs has
the property that applications of the permutation rule can always be deferred
until the very last step of an inference. The axiomatisation F ′, for example, does
not have this property.

4 Order-Invariant Hierarchical Dependencies

We will now introduce and study order-invariant hierarchical dependencies. A
single order-invariant hierarchical dependency X : {Y1, . . . , Yk} is a compact
representation of k! many full first-order hierarchical decompositions.

Definition 3. An order-invariant hierarchical dependency over relation schema
R is an expression X : {Y1, . . . , Yk} with non-negative integer k, X,Y1, . . . , Yk ⊆
R such that Y1, . . . , Yk forms a partition of R − X. A relation r over R is
said to satisfy the order-invariant hierarchical dependency X : {Y1, . . . , Yk} on
R, denoted by |=r X : {Y1, . . . , Yk}, if and only if r is the natural join over
{r[XYi]}ki=1, i.e., if r = r[XY1] � · · · � r[XYk] holds. ��

Intuitively, the set-notation of OIHDs makes any application of the permutation
rule unnecessary. The remarks regarding empty attribute subsets in FOHDs also
apply to OIHDs. In particular, we apply the same global condition to inferences
by the inference rules in Table 2.

Theorem 3. The set O of inference rules from Table 3 is sound, complete and
minimal for the implication of OIHDs. ��

Corollary 2 enables us to reason about OIHDs by reasoning about FOHDs, and
vice versa. Let ϕ denote the OIHD X : {Y1, . . . , Yk} if ϕ̄ denotes the FOHD
X : [Y1 | · · · | Yk], and let Σ̄ = {σ̄ | σ ∈ Σ} denote the set of FOHDs if Σ
denotes a set of OIHDs.

264 S. Link

Table 3. Inference Rules for Order-Invariant Hierarchical Dependencies

X : {Y1, . . . , Yk}
XZ : {Y1 − Z, . . . , Yk − Z}

X : {X1, X2} XXi : {Y1, . . . , Yk}
X : {Y1, . . . , Yk, Xi}

(augmentation, A) (transitivity, T)

∅ : {R}
X : {Y1, . . . , Yk}

X : {Y1, . . . , YiYj , . . . , Yk}
(universal axiom, U) (merging, M)

Corollary 3. Let R be some relation schema, Σ a set of order-invariant hier-
archical dependencies and Σ̄ a set of full first-order hierarchical decompositions
on R. Then for all OIHDs ϕ on R we have: ϕ ∈ Σ+

O if and only if ϕ̄ ∈ Σ̄+
F .

Moreover, for all FOHDs ϕ̄ on R we have: ϕ̄ ∈ Σ̄+
F if and only if ϕ ∈ Σ+

O. ��

5 Logic and Data Dependencies

Essentially, data dependencies are certain first-order formulae [13]. For instance,
the OIHD A : {B,C,D} over the relation schema R can be expressed by

∀a, b, c, d, b′, c′, d′, b′′, c′′, d′′
((R(a, b, c, d) ∧R(a, b′, c′, d′) ∧R(a, b′′, c′′, d′′)) ⇒ R(a, b, c′, d′′)).

Binary OIHD X : {Y1, Y2} are known as multivalued dependencies [12,5]. The
implication of multivalued dependencies (MVDs) is even in one-to-one corre-
spondence with fragments of propositional logic [10,11,27].

For a relation schema R let VR = {VA : A ∈ R} denote its corresponding set
of propositional variables. For an OIHD X : {Y1, . . . , Yk} on R, denoted by ϕ,
let ϕ′ denote the following propositional formulae over VR:(∧

A∈X
VA

)
⇒
(

k∨
i=1

(∧
B∈Yi

VB

))
. (1)

For a set Σ of OIHDs over R let Σ′ denote the set {σ′ : σ ∈ Σ} of propositional
formulae over VR. The following theorem holds for MVDs [27].

Theorem 4. [27] Let R be some relation schema, and let Σ ∪ {ϕ} be a set of
MVDs over R. Then Σ |= ϕ if and only if Σ′ |= ϕ′. ��

However, for the class of OIHDs an extension of the correspondence to the frag-
ment of formulae defined by Equation (1) fails. In fact, let us consider the OIHD
σ = A : {{B,C}, {D}} and the OIHD ϕ = A : {{B}, {C}, {D}}. We observe
that σ does not imply ϕ as the two tuple relation {(a, b, c, d), (a, b′, c′, d)} over
R = ABCD shows. However, σ′ = VA ⇒ ((VB ∧ VC) ∨ VD) does logically imply
ϕ′ = VA ⇒ (VB ∨ VC ∨ VD). Hence, the correspondence fails.

Spoilt for Choice: Full First-Order Hierarchical Decompositions 265

We will now briefly discuss which dependencies do correspond to the fragment
of propositional logic defined by Equation (1). These are degenerated OIHDs, a
subclass of Boolean dependencies [27]. The syntax of a degenerated OIHD is
that of an OIHD. A relation r over R is said to satisfy the degenerated OIHD
X : {Y1, . . . , Yk} over R if for all tuples t1, t2 ∈ r the following holds: if t1[X] =
t2[X], then there is some i ∈ {1, . . . , k} such that t1[Yi] = t2[Yi] holds. This is the
same as saying that for all tuples t1, t2 ∈ r it is true that for some i ∈ {1, . . . , k}
the two-tuple relation {t1, t2} satisfies the functional dependency X → Yi.

A consequence of Theorem 4 is that the implication of binary OIHDs corre-
sponds exactly to the implication of degenerated OIHDs (i.e. degenerated multi-
valued dependencies) [27]. In general, however, the implication of OIHDs is not
equivalent to the implication of degenerated OIHDs. For instance, if we view the
OIHDs σ and ϕ as degenerated OIHDs, then σ does imply ϕ. Hence, σ implies
ϕ when viewed as degenerated OIHDs, but σ does not imply ϕ when viewed as
OIHD. Vice versa, ϕ implies σ when viewed as OIHDs, but ϕ does not imply σ
when viewed as degenerated OIHDs.

6 Conclusion

We have established an axiomatisation of full first-order hierarchical decompo-
sitions that reflects the role of the permutation rule as a mere means to fix the
order in which a database schema is decomposed. Hence, the permutation rule
does not have any impact on the set of minimal units into which a database
schema can be separated, i.e., the elements of the dependency basis. Indeed, our
axiomatisation allows applications of the permutation rule to be delayed until
the very last step of an inference. Removing the permutation rule from the ax-
iomatisation results in a set of inference rules that is sound and complete for the
implication of order-invariant hierarchical dependencies.

The results of this paper are complementary to Biskup’s results on the role of
the complementation rule in the context of multivalued dependencies [4]. Indeed,
there are axiomatisations of MVDs in which applications of the complementa-
tion rule could be avoided completely or deferred until the very last step of
an inference [4,25]. Consequently, the complementation rule is a mere means to
achieve database normalisation. These results were extended to the context of
partial database relations [26], full hierarchical dependencies [22], functional and
multivalued dependencies [5].

The eXtensible Markup Language (XML) [6] offers a flexible way to store
data. As such, it has received considerable interest from the database commu-
nity. One challenging area of XML research addresses constraints, which provide
effective means to capture important semantic information about XML data [15].
So far, the interest in XML constraints has mainly addressed keys [7,18,20,21]
and functional dependencies [1,17,23,31,32]. As far as the author is aware, the
decomposition of XML data based on integrity constraints has not been studied.

266 S. Link

References

1. Arenas, M., Libkin, L.: A normal form for XML documents. ACM Trans. Database
Syst. 29(1), 195–232 (2004)

2. Beeri, C.: On the membership problem for functional and multivalued dependencies
in relational databases. ACM Trans. Database Syst. 5(3), 241–259 (1980)

3. Beeri, C., Fagin, R., Howard, J.H.: A complete axiomatization for functional and
multivalued dependencies in database relations. In: SIGMOD, pp. 47–61. ACM
Press, New York (1977)

4. Biskup, J.: Inferences of multivalued dependencies in fixed and undetermined uni-
verses. Theor. Comput. Sci. 10(1), 93–106 (1980)

5. Biskup, J., Link, S.: Appropriate reasoning about data dependencies in fixed and
undetermined universes. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008.
LNCS, vol. 4932, pp. 58–77. Springer, Heidelberg (2008)

6. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0, 4th edn. W3C recommendation (2006),
http://www.w3.org/TR/xml

7. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Keys for XML. Computer
Networks 39(5), 473–487 (2002)

8. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

9. Delobel, C.: Normalisation and hierarchical dependencies in the relational data
model. ACM Trans. Database Syst. 3(3), 201–222 (1978)

10. Demetrovics, J., Rónyai, L., Son, H.: On the representation of dependencies by
propositional logic. In: Thalheim, B., Gerhardt, H.-D., Demetrovics, J. (eds.)
MFDBS 1991. LNCS, vol. 495, pp. 230–242. Springer, Heidelberg (1991)

11. Fagin, R.: Functional dependencies in a relational data base and propositional logic.
IBM Journal of Research and Development 21(6), 543–544 (1977)

12. Fagin, R.: Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst. 2(3), 262–278 (1977)

13. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
14. Fagin, R., Vardi, M.Y.: The theory of data dependencies: a survey. In: Mathematics

of Information Processing: Proceedings of Symposia in Applied Mathematics, pp.
19–71. American Mathematical Society (1986)

15. Fan, W.: XML constraints. In: DEXA Workshops 2005: Proceedings of the 16th
International Workshop on Database and Expert Systems Applications, pp. 805–
809. IEEE Computer Society Press, Los Alamitos (2005)

16. Graetzer, G.: General Lattice Theory. Birkhäuser, Basel (1998)
17. Hartmann, S., Link, S.: More functional dependencies for XML. In: Kalinichenko,

L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798,
pp. 355–369. Springer, Heidelberg (2003)

18. Hartmann, S., Link, S.: Numerical keys for XML. In: Leivant, D., de Queiroz, R.
(eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 203–217. Springer, Heidelberg (2007)

19. Hartmann, S., Link, S.: Characterising nested database dependencies by fragments
of propositional logic. Ann. Pure Appl. Logic 152(1-3), 84–106 (2008)

20. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2:2) (2009)

21. Hartmann, S., Link, S.: Expressive, yet tractable XML keys. In: EDBT, ACM
International Conference Proceeding Series, vol. (360), pp. 357–367 (2009)

http://www.w3.org/TR/xml

Spoilt for Choice: Full First-Order Hierarchical Decompositions 267

22. Hartmann, S., Link, S., Köhler, H.: Full hierarchical dependencies in fixed and
undetermined universes. Ann. Math. Artif. Intell. 50(1-2), 195–226 (2007)

23. Hartmann, S., Trinh, T.: Axiomatising functional dependencies for XML with fre-
quencies. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp. 159–178.
Springer, Heidelberg (2006)

24. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2006)
25. Link, S.: Charting the completeness frontier of inference systems for multivalued

dependencies. Acta Inf. 45(7-8), 565–591 (2008)
26. Link, S.: On the implication of multivalued dependencies in partial database rela-

tions. Int. J. Found. Comput. Sci. 19(3), 691–715 (2008)
27. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: An equivalence between rela-

tional database dependencies and a fragment of propositional logic. J. ACM 28(3),
435–453 (1981)

28. Thalheim, B.: Dependencies in Relational Databases. Teubner-Verlag (1991)
29. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.

Springer, Heidelberg (2000)
30. Vincent, M.: Semantic foundation of 4NF in relational database design. Acta

Inf. 36, 1–41 (1999)
31. Vincent, M., Liu, J., Liu, C.: Strong functional dependencies and their application

to normal forms in XML. ACM Trans. Database Syst. 29(3), 445–462 (2004)
32. Yu, C., Jagadish, H.: XML schema refinement through redundancy detection and

normalization. VLDB J. 17(2), 203–223 (2008)

Classic-Like Analytic Tableaux
for Finite-Valued Logics

Carlos Caleiro1 and João Marcos2

1 Instituto de Telecomunicações and Dept. Mathematics, IST, TU-Lisbon, Portugal
2 Department of Informatics and Applied Mathematics, UFRN, Brazil

Abstract. The paper provides a recipe for adequately representing a
very inclusive class of finite-valued logics by way of tableaux. The only
requisite for applying the method is that the object logic received as
input should be sufficiently expressive, in having the appropriate lin-
guistic resources that allow for a bivalent representation. For each logic,
the tableau system obtained as output has some attractive features: ex-
actly two signs are used as labels in the rules, as in the case of classical
logic, providing thus a uniform framework in which different logics can
be represented and compared; the application of the rules is analytic, in
that it always reduces complexity, providing thus an immediate proof-
theoretical decision procedure together with a counter-model builder for
the given logic.

Keywords: many-valued logics, proof theory.

1 Background

The fact that any abstract consequence relation may be represented by way of
an adequate many-valued semantics (cf. [16]) makes many-valued logics ubiqui-
tous in the realm of inference systems. Moreover, the compositional feature that
characterizes truth-functional semantics makes the latter extremely attractive
for computational or linguistic purposes. This much from a purely semantical
perspective. From a proof-theoretical perspective, on the other hand, the ex-
istence of appropriate and efficient deductive formalisms and theorem-proving
frameworks for truth-functional logics provides many-valued logics with useful
tools for automating their variegated approaches to entailment and for develop-
ing deep computational insights into their underlying reasoning mechanisms.

General procedures for providing arbitrary finite-valued logics with adequate
tableau systems are known since long in the literature (cf. [3,8]). Reasonably
up-to-date implementation-oriented accounts of such axiom-extraction strategies
can be found in [10,4]. The price to pay for the full generality of such approaches
is that of a certain semantic intromission in the proof-theoretical formulation of
the corresponding object logics: the tableau rules, in each case, contain formulas
labeled by as many different signs as there are truth-values, or collections of
truth-values. The issue here goes beyond a mere sacrifice in elegance: the stag-
gering and heavily semantic-dependent wealth of signs for formulas culminates

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 268–280, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Classic-Like Analytic Tableaux for Finite-Valued Logics 269

in irksome difficulties for the task of comparing different logics on what regards
their deductive strengths, given the inexistence of a uniform object-language
framework for dealing with all of them at once.

The intrinsic bivalence that underlies the usual definition of entailment for
many-valued logics has suggested that the many ‘algebraic’ truth-values of the
latter might be represented by the use of just two ‘logical’ values (cf. [15]).
A constructive procedure for producing an equivalent bivalent semantics for
any sufficiently expressive finite-valued logic has been proposed in [6]. Suitable
machineries for extracting classic-like sequent systems for generous classes of
such bivalent semantics were set up in [5,1], and a sketch of how any such bivalent
semantics may give origin to classic-like 2-signed tableaux was offered in [6] and
implemented in [13]. The advantage of uniformity of framework provided by
the mentioned constructive extraction of adequate 2-signed tableau-theoretic
formalizations for finite-valued logics was partially canceled, however, by the
fact that among such tableau rules a non-analytic dual branching version of the
cut rule was to be found. In contrast, the present paper is to show in detail how
adequate classic-like tableau systems may be constructively extracted directly
from the corresponding finite-valued semantics, this time with the additional
advantage of analyticity, a feature that allows for the immediate design of fully
automated decision tacticals for the logics characterized by such semantics.

2 Truth-Functionality vs. Bivalence

Consider an alphabet consisting of a denumerable set A = {p0, p1, p2, . . .} of
atoms/variables and a finite set of connectives Σ = {+0,+1, . . . ,+k}. The arity of
a given connective+ ∈ Σ will be denoted by ar+. The set S of formulas, as usual, is
the algebra freely generated overAwith respect to Σ. Let Vn = {v0, v1, . . . , vn−1}
be a set of truth-values, partitioned into a set D ⊆ Vn of designated values and a
set U = Vn \ D of undesignated values. In what follows, it will be handy in many
cases to assume F = v0 and T = vn−1. In general, an n-(valued) assignment of
truth-values to the atoms is any mapping ρ : A → Vn, and an n-(valued) valua-
tion is any extension w : S → Vn of such an assignment to the set of all formulas.
An n-valent semantics for S based on Vn, then, is simply an arbitrary collection of
n-valued valuations. In particular, we will call bivalent any (classic-like) seman-
tics where V2 = {F, T } and D2 = {T }; the corresponding valuations are called
bivaluations. Canonical notions of entailment |=x ⊆ Pow(S) × S characterizing a
logic L may be associated to any valuation w and any n-valent semantics Sem, if
one simply sets Γ |=w α iff (w(α) ∈ D whenever w(Γ) ⊆ D), and Γ |=Sem α iff
(Γ |=w α for every w ∈ Sem), where Γ ∪ {α} ⊆ S. Any pair 〈Γ, α〉 ∈ Pow(S) × S
such that Γ |=Sem α is called a valid inference of Sem.

A particularly interesting case of n-valent semantics corresponds to the ones
we call truth-functional, namely, semantics provided to the set of formulas S
by defining an appropriate Σ-algebra V with carrier Vn, associating to each
+ ∈ Σ an ar+-ary operator +̂ ∈ V, and collecting in Sem the set of all ho-
momorphisms § : S → V. Any such homomorphism, as is usual in the field of

270 C. Caleiro and J. Marcos

universal algebra, can be understood as the unique extension of an assignment
ρ : A→ Vn into a valuation §ρ : S → V where one imposes §(+(ϕ1, . . . , ϕar#)) =
+̂(§(ϕ1), . . . , §(ϕar#)). This way, one might say that such a semantics is composi-
tional, in that the meaning it attributes to a complex expression clearly depends
(functionally) on the meaning of its directly subordinated subexpressions. Any
logic characterized by truth-functional means, for a given Vn, is called n-valued;
we will say that an n-valued logic L with an entailment relation |=Sem is gen-
uinely n-valued in case there is no m < n such that |=Sem can be canonically
obtained by way of an m-valued truth-functional semantics.

Example 1. Our running example for this paper will involve a well-known class
of truth-functional n-valued logics, namely �Lukasiewicz’s logics �Ln, for n > 2.
Each �Ln may be characterized by considering the unary connective ¬ and the
binary connective ⊃, together with a set of truth-values Vn where the designated
ones form the singleton D = {vn−1}, while interpreting ¬̂vi as v(n−1)−i and
interpreting vi⊃̂vj as v(n−1)−(i−j) in case i > j, and as v(n−1) otherwise, where
0 ≤ vi, vj ≤ n− 1.

Taking advantage of the residual shadow of bivalence that lurks in the distinction
between designated and undesignated truth-values, it is easy to see that any
entailment relation characterizing an n-valued logic can also be characterized by
way of a bivalent semantics. Indeed, consider the total mapping t : Vn → V2
such that t(v) = T iff v ∈ D and define, for any valuation § : S → V of an
n-valued semantics Sem, the bivaluation b§ = t ◦ §. Collect all such bivaluations
into a semantics Sem2 and notice that Γ |=x α iff Γ |=y α, where 〈x, y〉 ∈
{〈§, b§〉, 〈Sem, Sem2〉}.

Now, given a genuinely n-valued logic, for n > 2, describing this same logic by
way of a bivalent (non-truth-functional) semantics would seem to throw away the
fundamental feature of compositionality, making the resulting semantic charac-
terization less appealing both from a meta-theoretical and from a practical point
of view. As we will see in what follows, however, this is not necessarily the case,
as bivalent semantics can be quite profitable and informative, even in the non-
truth-functional case, where in fact an extended notion of compositionality may
be entertained.

Let’s first try and find a way of distinguishing each pair of values of a genuinely
n-valued logic L. Given vi, vj ∈ V , we write vi) vj and say that vi and vj are
separated in case vi and vj belong to different classes of truth-values, that is,
in case t(vi) �= t(vj). Given any two variables pi and pj and any valuation §
such that vi = §(pi) �= §(pj) = vj yet b§(pi) = b§(pj), we say that a one-variable
formula θij(p) of L separates vi and vj if §(θij(pi))) §(θij(pj)) (or, equivalently,
b§(θij(pi)) �= b§(θij(pj))). In that case we will also say that the values vi and vj
of L are effectively distinguishable, as they may be separated using just the
original linguistic resources of L. Finally, we will say that the logic L is effectively
separable in case its truth-values are pairwise effectively distinguishable, that is,
for any pair of distinct values 〈vi, vj〉 ∈ D2∪U2 a one-variable formula θij(p) can
be found in L that separates vi and vj . Collect, without repetition, all such one-
variable formulas into a finite sequence θ1(p), . . . , θs(p), and assume θ0(p) = p ;

Classic-Like Analytic Tableaux for Finite-Valued Logics 271

obviously, θ0(p) by itself suffices to separate any pair of values 〈vi, vj〉 ∈ (D ×
U) ∪ (U × D). Then, the binary print of a value v ∈ V will be the sequence
v = [b§(θr(p))]sr=0, where §(p) = v. Notice that for every pair of distinct values
〈vi, vj〉 ∈ V2 it is now obviously the case that vi �= vj .

Example 2. Back to the example of the �Ln, one has to devise a way of pairwise
separating each of the n − 1 undesignated values, in each case. A well-known
general method, in the case of the �Ln, is to use the Rosser-Turquette functions
(cf. [14]). To give an independent illustration of how the separation can be done
in the particular case of �L3, one might either define θ01(p) = θ1(p) as ¬p, using
a primitive connective of the language of �L3, or alternatively define this same
θ1(p) using a more complex formula such as ¬p ⊃ p. To simplify notation, in
this particular case of �L3, where a single separating formula θ1 suffices, we shall
drop its subscript. For different reasons, it is obvious in each case that v0 �= v1.
Indeed, using the first definition, the binary prints corresponding respectively
to v0, v1 and v2 are 〈F, T 〉, 〈F, F 〉 and 〈T, F 〉; the second definition originates,
respectively, the binary prints 〈F, F 〉, 〈F, T 〉 and 〈T, T 〉.
The next sections will show how such effective separation of truth-values, when-
ever it can be effected —and that is a decidable property of a finite-valued
logic—, may be used to automatically produce adequate classic-like analytic
tableau systems for the corresponding finite-valued logics.

3 A Uniform Analytic Deductive Formalism

The result, mentioned in the last section, that allowed for the characterization
of a finite-valued logic by way of bivalent semantics, coupled with the technique
that allows for the separation of the algebraic truth-values of the object logic by
way of the binary print defined with the help of the linguistic resources of that
very logic, gives a hint on how the corresponding adequate bivalent semantics
may be constructively described, in each case. A further step will now be to
show in detail how this bivalence may be explored in order to devise an adequate
classic-like formalism to investigate a finite-valued logic from a proof-theoretic
perspective. Before outlining the general method we intend to propose, having as
output an appropriate labeled (in fact, 2-signed) tableau system for some given
sufficiently expressive finite-valued logic, let’s illustrate it in the present section
with a fully worked example. We shall use & to represent conjunction in the
classical metalanguage, || to represent disjunction, =⇒ to represent implication,
and � to represent an absurd.

Now, consider again the case of �L3, where Σ = {¬,⊃}, and recall the par-
ticular separation of truth-values produced by setting θ(p) = ¬p ⊃ p. It follows
that θ(¬ϕ1) = ¬¬ϕ1 ⊃ ¬ϕ1 and θ(ϕ1 ⊃ ϕ2) = ¬(ϕ1 ⊃ ϕ2) ⊃ (ϕ1 ⊃ ϕ2). Using
the 3-valued semantics of �L3 one will then notice that:

§(θ(¬ϕ1))=v0 only if §(ϕ1) = v2 and §(θ(¬ϕ1))=v2 only if §(ϕ1) ∈ {v0, v1}

272 C. Caleiro and J. Marcos

Recalling the binary prints of v0 as 〈F, F 〉, of v1 as 〈F, T 〉, and of v2 as 〈T, T 〉,
one might rewrite now the above by way of the following first-order schematic
sentences, whose consequents are written in a kind of ‘disjunctive normal form’:

(�L3.1) F :θ(¬ϕ1) =⇒ (T :ϕ1 & T :θ(ϕ1))
(�L3.2) T :θ(¬ϕ1) =⇒ (F :ϕ1 & F :θ(ϕ1)) || (F :ϕ1 & T :θ(ϕ1))

Similarly, one might also notice that:

§(θ(ϕ1 ⊃ ϕ2)) = v0 only if §(ϕ1) = v2 and §(ϕ2) = v0,
§(θ(ϕ1 ⊃ ϕ2)) �= v1 for every valuation §, and
§(θ(ϕ1 ⊃ ϕ2)) = v2, otherwise.

These immediately translate into:

(�L3.3) F :θ(ϕ1 ⊃ ϕ2) =⇒ (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))
(�L3.4) T :θ(ϕ1 ⊃ ϕ2) =⇒ (F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))

|| (F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & F :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))
|| (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (T :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))

We will call the expressions (�L3.1)–(�L3.4) θ-rules. The full description of �L3 will
also include the following non-θ-rules, obtained by using the binary prints now
to describe the original truth-tables of the primitive connectives of �L3:

(�L3.5) F :¬ϕ1 =⇒ (F :ϕ1 & T :θ(ϕ1)) || (T :ϕ1 & T :θ(ϕ1))
(�L3.6) T :¬ϕ1 =⇒ (F :ϕ1 & F :θ(ϕ1))
(�L3.7) F :(ϕ1 ⊃ ϕ2) =⇒ (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))

|| (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2)) || (T :ϕ1 & T :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2))
(�L3.8) T :(ϕ1 ⊃ ϕ2) =⇒

(F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & F :θ(ϕ2)) || (F :ϕ1 & F :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & F :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2)) || (F :ϕ1 & T :θ(ϕ1) & F :ϕ2 & T :θ(ϕ2))
|| (F :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2)) || (T :ϕ1 & T :θ(ϕ1) & T :ϕ2 & T :θ(ϕ2))

The above first-order expressions are intended to represent tableau rules: the an-
tecedent of each rule is the head, and the disjunction in the consequent describes
the branches that may be created once the head is matched on a previously given
branch. In addition to the traditional closure rule for 2-signed tableaux, which says
that a branch is closed once it contains two signed formulas of the form F :ϕ and
T :ϕ, additional closure rules will be needed in order to exclude each binary print
not allowed for the given logic with a given choice of separating formulas. In the
present case, as only the pair 〈T, F 〉 fails to be among the pairs allowed as binary
prints of the initial collection of truth-values, an additional closure rulewill say that
branches containing both a signed formula of the form T :ϕ and a signed formula of
the form F :θ(ϕ) may be closed. One might represent such closure rules by writing:

(�L3.C0) F :ϕ & T :ϕ =⇒ � (�L3.C1) T :ϕ & F :θ(ϕ) =⇒ �

Classic-Like Analytic Tableaux for Finite-Valued Logics 273

There is, of course, a lot of redundancy to be found among the above mechani-
cally extracted θ-rules and non-θ-rules. A simpler tableau system for �L3 might be
defined, though, by any set of expressions first-order-equivalent to (�L3.1)–(�L3.8),
together with the already mentioned appropriate closure rules. An example of
such a simpler axiomatization is provided by (�L3.C0) and (�L3.C1) together with:
θ-rules
(�L3.1)∗ F :θ(¬ϕ1) =⇒ T :ϕ1 (�L3.2)∗ T :θ(¬ϕ1) =⇒ F :ϕ1

(�L3.3)∗ F :θ(ϕ1 ⊃ ϕ2) =⇒ (T :ϕ1 & F :θ(ϕ2))
(�L3.4)∗ T :θ(ϕ1 ⊃ ϕ2) =⇒ F :ϕ1 || T :θ(ϕ2)

non-θ-rules
(�L3.5)∗ F :¬ϕ1 =⇒ T :θ(ϕ1) (�L3.6)∗ T :¬ϕ1 =⇒ F :θ(ϕ1)
(�L3.7)∗ F :(ϕ1 ⊃ ϕ2) =⇒ (T :ϕ1 & F :ϕ2) || (T :θ(ϕ1) & F :θ(ϕ2))
(�L3.8)∗ T :(ϕ1 ⊃ ϕ2) =⇒ F :θ(ϕ1) || T :ϕ2 || (F :ϕ1 & T :θ(ϕ2))

Figure 1 (see Appendix) shows an example of a tableau for �L3, using the
above simpler set of rules. There, the branches (2.1) and (2.2) originate from the
application of rule (�L3.7)∗ to the signed formula (1), and the same rule applies to
(2.1.2) to originate branches (3.1) and (3.2). The branch that goes through (4)
originates from the application of rule (�L3.3)∗ to the signed formula (2.2.2). The
usual closure rule for tableaux, (�L3.C0), closes the leftmost branch, in view of the
nodes (2.1.1) and (3.1.2). Similarly for the rightmost branch, in view of (2.2.1)
and (4.2), even though the involved formula in this case is non-atomic. As for
the innermost branch, notice that (3.2.2) has the form F :θ(p0), so the additional
closure rule of �L3, (�L3.C1), finishes off the branch, in view of (2.1.1).

Special care must be exercised, in the present environment, as θ-rules might
interfere with non-θ-rules, or with other θ-rules, and as the blind application
of tableau rules might make the same signed formula appear over and over
again, in the same branch. Even worse, it would appear that, applied in the
wrong order, some signed formulas might give rise to increasingly more complex
signed formulas. For instance, suppose that in the tableau from Fig. 1 one never
applied the combination of rules (�L3.3)∗ and (�L3C0) after (2.2.2), but applied
instead rule (�L3.8)∗ to the signed formula T :θ(p0) that appears in (2.2.1). One
of the originating branches would then extend this branch exactly by adding the
signed formula F :θ(¬p0). If, further on, to this new signed formula one applied
rule (�L3.8)∗ instead of rule (�L3.1)∗, a new branch would originate in which the
signed formula T :θ(¬¬p0) were added. Such unfortunate sequential choice of
rules could of course go on forever, producing more and more complex signed
formulas, originating thus a tableau branch that would never be closed.

A way of avoiding the above phenomenon would consist in only allowing
rule application in building tableaux when the signed formulas originating from
a given node are strictly ‘less complex’ than the signed formula present in that
node. One might realize such intent by choosing an appropriate complexity mea-
sure � : S → N for formulas that is guaranteed to decrease with rule applica-
tion. In the particular case of �L3 one might define �(p) = 0, �(θ(ϕ)) = �(ϕ),
�(¬ϕ1) = �(ϕ1) + 1 and �(ϕ2 ⊃ ϕ3) = �(ϕ2) + �(ϕ3) + 1, where p ∈ A,
ϕ,ϕ1, ϕ2, ϕ3 ∈ S, and where ϕ2 is not of the form ¬ϕ3, that is, ϕ2 ⊃ ϕ3 does not

274 C. Caleiro and J. Marcos

appear at the head of a θ-rule. One might now use such complexity measure as
a guide while constructing tableaux for �L3, observing that: (i) no rule applies to
an atom p, and similarly no rule should be applied to a formula of the form θ(p),
as both p and θ(p) have complexity zero; (ii) θ-rules contribute more to the re-
duction of complexity than non-θ-rules, as a formula of the form θ(ϕ) has the
same complexity as ϕ, and the consequent of an application of a θ-rule involves
only formulas of lower complexity, of the forms ϕr or θ(ϕr), where ϕr is a proper
subformula of ϕ. Furthermore, although it is not the case for �L3, it may happen
in general that more than one θ-rule is applicable to the same signed formula. In
such a case, as we will impose below, one ought to choose the θ-rule whose head
is more ‘concrete’. As it turns out, it is always possible to order the rules in a
way that solves all ambiguities while guaranteeing also that all tableau construc-
tions terminate. We shall dub such tableau-building heuristics a requirement of
analyticity, and, as we shall see, it will guarantee that our tableau proofs are
normalized and terminate. In the case of the previous example, the requirement
of analyticity would guarantee that rule (�L3.8)∗ would never be applied to node
(2.2.1), as the formula with sign T that appears in the that node already has
complexity zero. Indeed, as we have seen, modifying the above example in allow-
ing a non-θ-rule to be applied before a θ-rule in a situation involving non-atomic
formulas turned out to allow for the production of increasingly more complex
formulas — as it is obviously the case, for instance, that �(θ(ϕ)) < �(θ(¬ϕ)).

The next section will show how the above illustrated procedure may be gener-
alized so as to provide adequate and well-behaved proof-theoretical formalisms,
together with a classic-like decision procedure, for a very inclusive class of truth-
functional logics.

4 The Extraction of Adequate Classic-Like Tableau
Systems for Finite-Valued Logics

Let L be an effectively separable n-valued logic with a set of formulas S generated
over the denumerable set of atoms A = {p0, p1, p2, . . .} with respect to the set
of connectives Σ = {+0,+1, . . . ,+k} and having D ⊆ Vn as its set of designated
values, and assume that its binary prints are produced by a convenient sequence
of one-variable separating formulas θ1(p), . . . , θs(p). Recall that we set θ0(p) = p.
So, for each truth-value v ∈ Vn, we might take an atom p and an n-valued
assignment § such that §(p) = v, and consider the distinctive characterizing
bivalent sequence v = [b§(θr(p))]sr=0. As a matter of convention, we shall say that
an n-valued valuation § satisfies a labeled formula of the form X :δ if b§(δ) = X .

As for the associated tableau rules, consider first the usual classic-like closure
rule (C0) of the form: F :ϕ & T :ϕ =⇒ �. Furthermore, let BP = {[cr]sr=0 :
cr ∈ {F, T }} be the set of all possible (s + 1)-long binary prints, and let CL =
BP \ {v : v ∈ Vn} be the set of all such bivalent sequences that are not produced
as binary prints of truth-values of L. Intuitively, any closuring sequence c̃ ∈ CL
brings about information that is unobtainable by way of the initial truth-values
of L, allowing one thus to close a tableau branch that contains such a sequence.

Classic-Like Analytic Tableaux for Finite-Valued Logics 275

Information, even if partial, leading unambiguously to a binary print in CL should
always give rise to a closed tableau. Let a partial binary print be any sequence
c̃R = [cr]r∈R such that R ⊆ {0, . . . , s} and each cr ∈ {F, T } (this definition
includes, of course, the total binary prints in BP, as strict partiality occurs
exactly when R is a proper subset of {0, . . . , s}). Given two partial binary prints
c̃R1 and d̃R2 , we say that c̃R1 extends d̃R2 if R2 � R1 and dr = cr for every
r ∈ R2. We can now conclude that closuring information is carried by any
partial binary print c̃R such that all of its 2s+1−Card(R) possible total extensions
are in CL. Hence, it would be reasonable to add a different closure rule for each
such partial closuring information. However, it suffices to take into account just
the minimal closuring situations, that is, closuring partial binary prints c̃R that
cannot be obtained as extensions of any other closuring partial binary print.

In general, where c̃R = [cr]r∈R is some partial binary print, and δ stands for
an arbitrary schematic formula, we write c̃S

R(δ) = [cr:θr(δ)]r∈R for the linguistic
2-signed version of such partial binary print. Accordingly, for each minimal clo-
suring partial binary print c̃R, consider an additional closure rule (C#) of the
form: &(c̃S

R(ϕ)) =⇒ �.
Recall, moreover, that for each connective + : Sj → S of Σ with arity j = ar+

there is an associated operator +̂ : Vjn → Vn in the algebra of truth-values. This
interpretation mapping can immediately be extended homomorphically to any
formula δ of any given arity, and we shall denote this by δ̂. Finally, consider
again the flattening total mapping t : Vn → {F, T } such that t(v) = T iff
v ∈ D. Given X ∈ {F, T }, a j-ary connective + and a separating formula θ, let
Bθ#
X ([ϕi]

j
i=1) = {&[viS(ϕi)]

j
i=1 : t(θ̂(+̂([vi]

j
i=1))) = X}. For each Bθ#

X ([ϕi]
j
i=1)

consider then a rule of the form: X :θ(+([ϕi]
j
i=1)) =⇒ || Bθ#

X ([ϕi]
j
i=1). Such rules

are called θ-rules when θ = θi, for some 0 < i ≤ s; otherwise, when θ = θ0(p),
they are called non-θ-rules. Notice that those rules generate as many branches as
there are members (conjunctions) of Bθ#

X ([ϕi]
j
i=1). The number of different non-

θ-rules is 2×Card(Σ), and there are 2×s×Card(Σ) different θ-rules. For each fixed
j-ary connective + and each fixed separating formula θ, the summed number of
branches of the rules Bθ#

F ([ϕi]
j
i=1) and Bθ#

T ([ϕi]
j
i=1) generated by the above

procedure always amounts to nj ; additionally, each branch will have exactly
s+1 labeled formulas. In the best case, one might use Ceiling(log2 Max(d, n−d))
separating formulas, besides identity, where d = Card(D), to pairwise distinguish
the n truth-values of L; in the worst case, n−1 such connectives will be needed.
The case in which, say, Bθ#

F ([ϕi]
j
i=1) turns out to be empty originates in fact a

new closure rule, and in that case the rule Bθ#
T ([ϕi]

j
i=1) can thus be omitted;

the case in which Bθ#
T ([ϕi]

j
i=1) turns out to be empty is entirely symmetric.

Tableaux are built as usual, by applying the above rules, given an initial
sequence of 2-signed formulas, and a branch is said to be closed if its closure is
obtained by the application of any of the (C#) rules, including (C0). Branches
that are not closed are said to be open. A tableau is said to be closed in case all of
its branches are closed. By the construction of the above rules, it is easy to check
the following soundness result with respect to the initially given truth-functional
semantics:

276 C. Caleiro and J. Marcos

Theorem 1. If a valuation satisfies some initial sequence of 2-signed formu-
las, then it satisfies all the formulas in some open branch of any tableau that
originates from that set of formulas.

To enforce the requirement of analyticity for our tableaux the following strategy
will be helpful. Notice that, from the point of view of analyticity, only a formula
in the set Θ = {θr(ϕ) : 0 < r ≤ s, ϕ ∈ S \ A} is possibly ‘problematic’, as more
than one rule may apply to (an appropriate labelling of) it. In the case of such
a formula we will always apply a carefully chosen θ-rule, as follows. In general,
given δ ∈ Θ, let Iδ = {0 < r ≤ s : there exists +r ([δi]

jr

i=1) ∈ S such that δ =
θr(+r([δi]

jr

i=1))}. To ensure the termination of the tableau construction proce-
dure, the choice of rule to be applied in each case will be guided by the following
complexity measure � : S → N, defined for the formulas of L:

(�0) �(p) = �(θr(p)) = 0, where p ∈ A;
(�1) �(δ) = 1 + Minr∈Iδ

(∑jr
i=1 �(δi)

)
, where δ ∈ Θ;

(�2) �(!([ϕi]ji=1)) = 1 +
∑j

i=1 �(ϕi), otherwise.

Accordingly, no rule application should be allowed in a tableau for nodes of com-
plexity 0; moreover, applications of θ-rules should always precede applications
of non-θ-rules, as the former clearly contribute more than the latter to decreas-
ing the overall complexity of the corresponding nodes. A particularly interesting
situation arises in the case where the heads of more than one θ-rule are matched
by the same node. In that case, the θ-rule to be applied may be chosen by heed-
ing the minimality requirement in clause (�1) of the definition of the complexity
measure. This choice is typically very simple. Indeed, consider the situation in
which a formula δ can be obtained either as θi(ϕi) or as θj(ϕj). In that case,
θi(pi) might be thought of as a formula on the variable pi, of which θi(ϕi) is a
substitution instance, and similarly for θj(pj) as a formula on the variable pj .
Now, by Robinson’s unification algorithm, θi(pi) and θj(pj) will have a most gen-
eral unifier, that is, either it is the case that pi = σ(pj) or else that pj = σ(pi),
for an appropriate substitution σ. In the former case, where pi = σ(pj), the
θ-rule to be applied first is the one for θj , as θj(pj) = θi(σ(pj)); the latter case
is entirely symmetric. As it can easily be seen, this prioritary application of the
‘most concrete’ rule will provide the greater decrease in complexity for a given
node, and will help implementing the requirement of analyticity. The situation
is a bit more complex in the remaining case, where the most general unifier of
θi(pi) and θj(pj) asserts simultaneously that σ(pi) = δi and σ(pj) = δj where
δi, δj are formulas in which the variables pi, pj, respectively, do not occur. In this
(peculiar) case, and only for the formula θi(δi) = θj(δj), we must directly check
which of the two corresponding θ-rules matches the minimality requirement.

Say that a tableau branch is exhausted if it is closed, or if the appropriate θ-
rules have been applied to every node whose formulas have non-null complexity
and non-θ-rules have been applied to every other non-atomic node. Our main
normalization result guarantees that:

Lemma 1. Exhausted tableaux always exist.

Classic-Like Analytic Tableaux for Finite-Valued Logics 277

A nice thing about exhausted tableaux is that all counter-models for non-valid
inferences can be built from them. Indeed, using the above lemma one may easily
prove now the following completeness result:

Theorem 2. From every open branch of an exhausted tableau for a given ini-
tial sequence of 2-signed formulas one may extract a valuation satisfying those
formulas.

As an immediate byproduct of the previous results, it follows that:

Corollary 1. For a given logic L with semantics Sem:
γ1, . . . , γm |=Sem α iff there is a closed tableau for T :γ1, . . . , T :γm, F :α.

5 Future Work

There are a number of possible directions for further extension of our present
results. Previous work on extraction of non-analytic tableau rules for sufficiently
expressive finite-valued logics (cf. [6]) has been implemented (cf. [13]) for the
extraction of appropriate axioms in the framework of Isabelle’s intuitionis-
tic higher-order logic. A similar implementation might now be performed for
the presently illustrated procedure, with the advantage that analyticity guar-
antees the existence of fully automated decision procedures, and these can be
constructively assembled as tacticals in Isabelle’s meta-language. Moreover,
the 2-signed ‘normal form’ that underlies the statement of our tableau rules in
the (intuitionistic) meta-language may also be used as a basis for the study of
classic-like automated reasoning mechanisms based on satisfiability checking or
signed resolution (cf. [11,4,9]).

On what concerns the issue about ‘sufficient expressiveness’, a requisite for
the application of our present procedure to a given finite-valued logic, it should
be noted that the calculation of a convenient collection of separating formulas,
whenever it exists, may also be performed automatically. Moreover, as it can be
shown, for the logics that turn out not to be sufficiently expressive, a conser-
vative extension of the original language may be devised by the addition of a
convenient number of 0-ary connectives in order to make such logics amenable
to our method. Such is the case, for instance, for Gödel-Dummett n-valued log-
ics, with finite n > 3. The complexity of such procedures, not yet described nor
implemented in detail, is still to be fully explored.

Finally, it will be interesting to investigate the amount in which the above
procedures can be extended so as to apply to logics characterized by seman-
tics that broaden the notion of truth-functionality, such as non-deterministic
semantics (cf. [2]) and possible-translations semantics (cf. [12]). For one thing,
as we shall show in future studies, the adequacy results that connect bivalent
semantics to the corresponding tableau systems can in fact be generalized so
as to cover many other logics characterized by what we call ‘dyadic semantics’
[6,7], including numerous interesting infinite-valued logics. Such generic results,
in fact, also take into account logics whose non-truth-functional semantics is
formulated using more than 2 ‘logical values’.

278 C. Caleiro and J. Marcos

Acknowledgments. The first author was partially supported by FCT and
EU FEDER via the KLog project PTDC/MAT/68723/2006 of SQIG-IT. The
second author acknowledges partial support by SQIG-IT and CNPq. The authors
are deeply indebted to their colleagues W. Carnielli and M. Coniglio for many
fruitful discussions on topics related to this work, and also to D. Mendonça and
three anonymous referees for their attentive reading and valuable suggestions of
improvements on earlier drafts of the paper.

References

1. Aguzzoli, S., Ciabattoni, A., Di Nola, A.: Sequent calculi for finite-valued
�Lukasiewicz logics via Boolean decompositions. Journal of Logic and Computa-
tion 10(2), 213–222 (2000)

2. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic
and Computation 15, 241–261 (2005)

3. Surma, S.J.: An algorithm for axiomatizing every finite logic. In: Rine, D.C. (ed.)
Computer Science and Multiple-Valued Logics, Selected Papers from the IV In-
ternational Symposium on Multiple-Valued Logics, 2nd edn., pp. 143–149. North-
Holland, Amsterdam (1974) 2nd edn. (1984)

4. Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued log-
ics. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning,
pp. 1355–1402. Elsevier and MIT Press (2001)

5. Béziau, J.-Y.: Sequents and bivaluations. Logique et Analyse (N.S.) 44(176), 373–
394 (2001)

6. Caleiro, C., Carnielli, W., Coniglio, M.E., Marcos, J.: Two’s company: The humbug
of many logical values. In: Béziau, J.-Y. (ed.) Logica Universalis, pp. 169–189.
Birkhäuser Verlag, Basel (2005),
http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf

7. Caleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J.: How many logical values
are there? Dyadic semantics for many-valued logics. Draft (forthcoming) (2005)

8. Carnielli, W.A.: Systematization of the finite many-valued logics through the
method of tableaux. The Journal of Symbolic Logic 52(2), 473–493 (1987)

9. Fermüller, C.G., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision proce-
dures. In: Handbook of Automated Reasoning, pp. 1791–1849. Elsevier, Amster-
dam (2001)

10. Hähnle, R.: Tableaux for many-valued logics. In: D’Agostino, M., Gabbay, D.,
Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 529–580.
Springer, Heidelberg (1999)

11. Hähnle, R.: Advanced many-valued logics. In: Gabbay, D.M., Guenthner, F. (eds.)
Handbook of Philosophical Logic, 2nd edn., vol. 2, pp. 297–395. Kluwer, Dordrecht
(2001)

12. Marcos, J.: Possible-translations semantics. In: Carnielli, W.A., Diońısio, F.M.,
Mateus, P. (eds.) Proceedings of the Workshop on Combination of Logics: Theory
and applications (CombLog 2004), held in Lisbon, PT. 1049-001 Lisbon, PT, 2004.
Departamento de Matemática, Instituto Superior Técnico. July 28–30, 2004, Lis-
bon, PT, July 28–30, 2004, pp. 119–128 (2004),
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/04-M-pts.pdf

http://wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdf
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/04-M-pts.pdf

Classic-Like Analytic Tableaux for Finite-Valued Logics 279

13. Marcos, J., Mendonça, D.: Towards fully automated axiom extraction for finite-
valued logics. In: Carnielli, W., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.) The
Many Sides of Logic, London. Studies in Logic. College Publications (2009),
http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/08-MM-towards.pdf

14. Rosser, J.B., Turquette, A.R.: Many-Valued Logics. Studies in Logic and the Foun-
dations of Mathematics. North-Holland, Amsterdam (1952)

15. Suszko, R.: The Fregean Axiom and Polish mathematical logic in the 1920s. Studia
Logica 36, 373–380 (1977)

16. Wójcicki, R.: Theory of Logical Calculi. Kluwer, Dordrecht (1988)

Appendix

Illustration of a Tableau for �L3

The following example employs the simplified rules (�L3.#)∗, together with the
corresponding closure rules (�L3.C0) and (�L3.C1):

(1) F :(p0 ⊃ (p1 ⊃ p0))

(2.1.1) T :p0

(2.1.2) F :(p1 ⊃ p0)

(3.1.1) T :p1

(3.1.2) F :p0

�

(3.2.1) T :(¬p1 ⊃ p1)
(3.2.2) F :(¬p0 ⊃ p0)

�

(2.2.1) T :(¬p0 ⊃ p0)
(2.2.2) F :(¬(p1 ⊃ p0) ⊃ (p1 ⊃ p0))

(4.1) T :p1

(4.2) F :(¬p0 ⊃ p0)

�

Fig. 1. A failed attempt to refute p0 ⊃ (p1 ⊃ p0)

Proofs of the Main Results

Proof of Theorem 1. First, observe that if a valuation § : S → Vn satisfies
the head of a rule

X :θ(+([ϕi]
j
i=1)) =⇒ || Bθ#

X ([ϕi]
j
i=1)

then, by construction, one may conclude that § also satisfies &[viS(ϕi)]
j
i=1 for

some sequence [viS(ϕi)]
j
i=1 of labeled formulas such that t(θ̂(+̂([vi]

j
i=1))) = X ,

that is, b§(ϕi) = vi, for 1 ≤ i ≤ j.
Suppose now that a valuation § satisfies a given sequence of 2-signed formulas.

Then, by the above observation, it is clear that § satisfies all the formulas in
some branch of any tableau built from these initial formulas by applying rules
as above. To see that any such branch must be open, just note that no closure
rule may be applied. To that effect, the branch would have to contain labeled

http://wslc.math.ist.utl.pt/ftp/pub/MarcosJ/08-MM-towards.pdf

280 C. Caleiro and J. Marcos

formulas that match the head F :ϕ & T :ϕ of the classic-like closure rule (C0), or
else the head &(c̃S

R(ϕ)) of a closure rule (C#), for some given minimal closuring
partial binary print c̃R. It would follow then that any valuation that satisfies
this branch would either have to assign two different values to the formula ϕ or
have to associate to ϕ a closuring partial binary print.

Proof of Lemma 1. We first check that every rule applied according to the
specified requirement of analiticity does indeed reduce the complexity.

– Consider ϕ = θ(+([ϕi]
j
i=1)) ∈ Θ with �(ϕ) = 1+ �(ϕ1)+ . . . + �(ϕj), and the

corresponding θ-rule:

X :θ(+([ϕi]
j
i=1)) =⇒ || Bθ#

X ([ϕi]
j
i=1).

Then, for each 1 ≤ i ≤ j and 0 ≤ r ≤ s, we have that:
�(ϕ) = 1 + �(ϕ1) + . . . + �(ϕj) > �(ϕi) ≥ �(θr(ϕi)).

– Consider now ϕ = +([ϕi]
j
i=1) /∈ Θ, and the corresponding non-θ-rule:

X :+ ([ϕi]
j
i=1) =⇒ || B#X([ϕi]

j
i=1).

Then, for each 1 ≤ i ≤ j and 0 ≤ r ≤ s, we again have that:
�(ϕ) = 1 + �(ϕ1) + . . . + �(ϕj) > �(ϕi) ≥ �(θr(ϕi)).

In either case the complexity of every signed formula in the conclusion of the
rule is lower than the complexity of the head signed formula. Hence, given an
initial finite set with m many 2-signed formulas of complexity bounded by g, the
tableau will be exhausted after the application of at most m×ug rules, where u
is the maximum number of formulas in the conclusion of a rule.

Proof of Theorem 2. Given an open branch of an exhausted tableau, consider
any assignment ρ : A→ Vn such that, for every p ∈ A, the binary print ρ(p) =
[Xi]si=0 of ρ(p) agrees with the information available, that is:

– either Xi:θi(p) occurs in the branch, or
– neither T :θi(p) nor F :θi(p) occur in the branch.

Accordingly, if Xi = T then F :θi(p) does not appear in the branch; mutatis
mutandis, if Xi = F then T :θi(p) does not appear in the branch. Note that since
none of the closure rules can be applied to the branch, we have non-closuring
information about every atom p, and such an assignment ρ can always be defined.
To prove that the homomorphic extension §ρ : S → V of such assignment indeed
satisfies all the formulas in the branch it is sufficient to prove that if §ρ satisfies
all the formulas in some branch of a tableau rule, then it also satisfies the head
of the rule. To such purpose, we need only consider the generic case of a rule

X :θ(+([ϕi]
j
i=1)) =⇒ || Bθ#

X ([ϕi]
j
i=1).

Assume that §ρ satisfies one of the disjunctions in the conclusion of the rule, that
is, §ρ satisfies some Bθ#

X ([ϕi]
j
i=1) = {&[viS(ϕi)]

j
i=1 : t(θ̂(+̂([vi]

j
i=1))) = X}. Then,

for each 1 ≤ i ≤ j, §ρ satisfies viS(ϕi) or, equivalently, §ρ(ϕi) = vi. Therefore, it
follows that t(§ρ(θ(+([ϕi]

j
i=1)))) = X , and thus §ρ satisfies the head of the rule

X :θ(+([ϕi]
j
i=1)).

A Duality for Algebras of
Lattice-Valued Modal Logic

Yoshihiro Maruyama

Department of Humanistic Informatics, Graduate School of Letters,
Kyoto University, Japan

maruyama@i.h.kyoto-u.ac.jp

Abstract. In this paper, we consider some versions of Fitting’s L-valued
logic and L-valued modal logic for a finite distributive lattice L. Using the
theory of natural dualities, we first obtain a natural duality for algebras
of L-valued logic (i.e., L-VL-algebras), which extends Stone duality for
Boolean algebras to the L-valued case. Then, based on this duality, we
develop a Jónsson-Tarski-style duality for algebras of L-valued modal
logic (i.e., L-ML-algebras), which extends Jónsson-Tarski duality for
modal algebras to the L-valued case. By applying these dualities, we
obtain compactness theorems for L-valued logic and for L-valued modal
logic, and the classification of equivalence classes of categories of L-VL-
algebras for finite distributive lattices L.

1 Introduction

Fitting [16] introduced L-valued logic and L-valued modal logics for a finite dis-
tributive lattice L, where all the elements of L are encoded as truth constants in
the languages of Fitting’s logics.L-valued modal logics are particularly important
for the study of reasoning about knowledge and belief (see [18,20,24]). Fitting’s
logics have been studied from different perspectives. Proof-theoretic aspects are
studied in the papers [16,17,19]. Model-theoretic aspects are studied in the papers
[13,21,22]. However, there are few papers on algebraic aspects of them.

Although [13] mentions the difficulty of developing algebraic semantics for
Fitting’s logics, [23] provides algebraic semantics for Fitting’s logics modified
by replacing truth constants (except 0 and 1) with unary connectives Ta’s for
all a ∈ L, where Ta(x) intuitively means that the truth value of a proposition
x is a (see Definition 1). For motivations of the modification, see [23, Section
1]. We remark that Fitting’s L-valued logic modified in the above manner can
be considered not only as a many-valued logic but also as a modal logic, which
is discussed in Section 4. The class of L-VL-algebras introduced in [23] is the
algebraic counterpart of Fitting’s L-valued logic modified in the above manner.
The class of L-ML-algebras introduced in [23] is the algebraic counterpart of
Fitting’s L-valued modal logic modified in the above manner.

In this paper, we develop topological dualities for L-VL-algebras and for L-
ML-algebras, following Stone’s maxim: “One must always topologize” (see [25]).
However, why must one always topologize?

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 281–295, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

282 Y. Maruyama

From the viewpoint of mathematical logic, we give two reasons related to
results of this paper: (1) In general, one of the advantages of a topological duality
for algebras of a logic is that we can understand the geometric meanings of the
logic and its properties. For example, by a topological duality for algebras of a
logic, we often notice that the compactness of the logic can be represented by
the compactness of the dual space of the Lindenbaum algebra of the logic, which
holds true of dualities developed in this paper. By using the dualities in this
paper, we can actually show compactness theorems for L-valued logic and for
L-valued modal logic (see Theorem 2 and Theorem 7). (2) Another advantage
is that a duality for algebras of a logic often leads us to a completeness result
for the logic, which holds true of dualities developed in this paper, and therefore
topological duality contributes to study of completeness, which is one of the
most important properties of a logic.

From the algebraic viewpoint, topological duality makes it possible to solve
purely algebraic problems more easily by topological methods than by algebraic
methods. In this paper, we can actually obtain the classification of equivalence
classes of categories of L-VL-algebras for finite distributive lattices L by con-
sidering the dual topological categories of those categories via a duality for L-
VL-algebras (see Theorem 3).

From the viewpoint of computer science, topological dualities provide useful
tools for studying the semantics of programming languages (for example, see
[1,5,4]). In particular, there is an application of Jónsson-Tarski duality for modal
algebras (see [3,9,12]) to program semantics in [5].

Finally, we remark that topological dualities play fundamental roles also in
other areas of mathematics, such as algebraic geometry, functional analysis and
non-commutative geometry (see [11,10,8]).

In the following two paragraphs, we briefly explain how to develop dualities
for L-VL-algebras and for L-ML-algebras.

In order to develop a duality for L-VL-algebras, we use the theory of natural
dualities (see [7]), which is a general theory of a duality for the quasi-variety
generated by a finite algebra and therefore can be considered as a general theory
of a duality for algebras of M -valued logic for a finite algebra M . Since a finite
distributive lattice L endowed with Ta’s for all a ∈ L forms a semi-primal
algebra (see Definition 7), it follows from results in [23] and the theory of natural
dualities that a natural (strong) duality holds for L-VL-algebras (Theorem 1),
which confirms the applicability of the theory of natural dualities. By letting L
be the two-element Boolean algebra, we can recover Stone duality for Boolean
algebras from the duality for L-VL-algebras.

Based on the natural duality for L-VL-algebras, we develop a Jónsson-Tarski-
style duality for L-ML-algebras (Theorem 6), where “Jónsson-Tarski-style”
means that, as in Jónsson-Tarski duality for modal algebras (see [3,9,12]), we
equip the dual space of an L-ML-algebra with a certain relation (see Defini-
tion 16), by which we can define a modal operator 	 on the double dual of
an L-ML-algebra. The Jónsson-Tarski-style duality for L-ML-algebras is an L-
valued version of Jónsson-Tarski duality for modal algebras. By letting L be the

A Duality for Algebras of Lattice-Valued Modal Logic 283

two-element Boolean algebra, we can recover Jónsson-Tarski duality for modal
algebras from the duality for L-ML-algebras. For a related result, we refer to a
duality presented in [27]. Whereas the lattice of truth values is {0, 1/n, 2/n, ..., 1}
for n ∈ ω with n ≥ 1 in [27], the lattice of truth values is an arbitrary (not
necessarily totally ordered) finite distributive lattice in this paper. Hence, the
duality developed in this paper seems to be more general than that in [27]. Note
also that [27] considers an �Lukasiewicz-style many-valued modal logic, while a
Fitting-style many-valued modal logic is considered in this paper.

According to the ideas in [23, Section 4], we could develop different dualities
for L-VL-algebras and L-ML-algebras. The relationships between the duali-
ties developed in this paper and the dualities suggested in [23] are discussed
in Section 4. Roughly speaking, the modified L-valued logic is considered as a
many-valued logic in the dualities developed in this paper, while it is considered
as a modal logic in the dualities suggested in [23] by replacing Ta’s with Ua’s
(see Proposition 3), where Ua’s are inter-definable with Ta’s ([23, Proposition 7])
and can be considered as modalities ([23, Proposition 8]). The modified L-valued
logic is “schizophrenic” in this sense.

2 A Natural Duality for L-VL-Algebras

In this paper, L denotes a finite distributive lattice with the greatest element 1
and the least element 0, where we assume 0 �= 1. Then L forms a finite Heyting
algebra. For a, b ∈ L, let a → b denote the pseudo-complement of a relative to b.

Let 2 denote the two-element Boolean algebra.

Definition 1. Endow L with unary operations Ta(-)’s for all a ∈ L defined by

Ta(x) =

{
1 (if x = a)
0 (if x �= a)

L-valued logic L-VL is defined as follows. The connectives of L-VL are ∧, ∨,
→, 0, 1 and Ta for each a ∈ L, where every Ta is a unary connective, 0 and 1
are nullary connectives, and the others are binary connectives. PV denotes the
set of propositional variables. The formulas of L-VL are recursively defined in
the usual way. Form denotes the set of formulas of L-VL.

Definition 2. v is an L-valuation on Form iff v is a function from Form to
L and satisfies the following:

1. v(Ta(x)) = Ta(v(x));
2. v(x ∧ y) = inf(v(x), v(y));
3. v(x ∨ y) = sup(v(x), v(y));
4. v(x → y) = v(x) → v(y);
5. v(a) = a for a = 0, 1.

x ∈ Form is called valid in L-VL iff v(x) = 1 for any L-valuation v on Form.

284 Y. Maruyama

Definition 3. Let X ⊂ Form. Then, X is satisfiable iff there is an L-valuation
v on Form such that v(x) = 1 for any x ∈ X.

A compactness theorem for L-VL is proved in Theorem 2 below via a topological
duality for L-VL-algebras, which are defined in the following subsection.

2.1 L-VL-Algebras and Their Spectra

We introduce L-VL-algebras, which provide a sound and complete semantics for
L-valued logic L-VL as is shown in [23].

Let x ≤ y denote x ∧ y = x and x ↔ y denote (x → y) ∧ (y → x).

Definition 4 ([23]). (A,∧,∨,→,Ta(a ∈ L), 0, 1) is an L-VL-algebra iff it sat-
isfies the following for any a, b ∈ L and any x, y ∈ A:

1. (A,∧,∨,→, 0, 1) forms a Heyting algebra;
2. Ta(x) ∧Tb(y) ≤ Ta→b(x → y) ∧ Ta∧b(x ∧ y) ∧ Ta∨b(x ∨ y);

Tb(x) ≤ TTa(b)(Ta(x));
3. T0(0) = 1; Ta(0) = 0 for a �= 0;

T1(1) = 1; Ta(1) = 0 for a �= 1;
4.
∨
{Ta(x) ; a ∈ L} = 1;

Ta(x) ∧Tb(x) = 0 for a �= b;
Ta(x) ∨ (Ta(x) → 0) = 1;

5. T1(Ta(x)) = Ta(x); T0(Ta(x)) = Ta(x) → 0;
Tb(Ta(x)) = 0 for b �= 0, 1;

6. T1(x) ≤ x; T1(x ∧ y) = T1(x) ∧ T1(y);
7.
∧

a∈L(Ta(x) ↔ Ta(y)) ≤ x ↔ y.

A homomorphism of L-VL-algebras is defined as a function which preserves
all the operations (∧,∨,→,Ta(a ∈ L), 0, 1).

Ta(x) ∧ Tb(y) ≤ Ta∨b(x ∨ y) intuitively means that if the truth value of x is a
and the truth value of y is b then the truth value of x ∨ y is a ∨ b. The other
inequalities following from the item 2 above can be explained in similar ways.∨

{Ta(x) ; a ∈ L} = 1 in the item 4 above is called the L-valued excluded
middle, since the 2-valued excluded middle coincides with the ordinary excluded
middle (see [23, Proposition 2]).

2-VL-algebras coincide with Boolean algebras (see [23, Proposition 2]).

Definition 5. Let A be an L-VL-algebra. For a subalgebra M of L, SpecM (A)
denotes the set of all homomorphisms from A to M . We equip SpecM (A) with
the topology generated by 〈x〉 for x ∈ A, where 〈x〉 = {v ∈ SpecM (A) ; v(x) = 1}.

Note that SpecM (A) is a subspace of SpecL(A) for any subalgebra M of L and
that Spec2(A) consists of all homomorphisms from A to 2.

Definition 6. Let A be an L-VL-algebra. Define B(A) = {x ∈ A ; T1(x) = x}.
An element of B(A) is called a Boolean element of A.

A Duality for Algebras of Lattice-Valued Modal Logic 285

For a homomorphism f : A → B between L-VL-algebras, if x ∈ A is a Boolean
element, then f(x) ∈ B is also a Boolean element.

Proposition 1. Let A be an L-VL-algebra. Then, B(A) is a Boolean algebra.

Proof. This is easily verified via completeness (see [23, Theorem 4]). Note that
the operations are well-defined on B(A).

Proposition 2. For an L-VL-algebra A, define t1 : SpecL(A) → Spec2(B(A))
by t1(v) = T1 ◦ v for v ∈ SpecL(A). Then, t1 is a homeomorphism.

Proof. Note that t1(v) ∈ Spec2(B(A)) for v ∈ SpecL(A). We show that t1 is
injective. Let v �= u for v, u ∈ SpecL(A). Then v(x) �= u(x) for some x ∈ A. Let
a = v(x). Then v(Ta(x)) = 1 and u(Ta(x)) = 0. Thus we have t1(v) �= t1(u).

We show that t1 is surjective. Let u ∈ Spec2(B(A)). Define v : A → L
by v(x) = a ⇔ u(Ta(x)) = 1, where note that Ta(x) is a Boolean element
for any x ∈ A and that v is well-defined as a function. We claim that v is a
homomorphism. We show only v(x → y) = v(x) → v(y) for x, y ∈ A, since
the other cases are verified in similar ways. Let v(x) = a and v(y) = b. Then
u(Ta(x)) = 1 and u(Tb(y)) = 1, whence u(Ta(x) ∧ Tb(y)) = 1. Thus, by 2 in
Definition 4, we have u(Ta→b(x → y)) = 1 and so v(x → y) = a → b = v(x) →
v(y). To complete the proof of the surjectivity of t1, it remains to show t1(v) = u.
It is clear that if u(x) = 1 for x ∈ B(A), then (t1(v))(x) = 1. If u(x) = 0 for
x ∈ B(A), then u(T0(T1(x))) = u(T1(x) → 0) = u(x → 0) = 1 by 5 in Definition
4, whence v(T1(x)) = 0 and so (t1(v))(x) = 0. Thus we have t1(v) = u.

It is straightforward to verify the remaining part of the proof.

Let M be a subalgebra of L. Since M is a finite distributive lattice, it follows
from the above proposition that SpecM (A) is homeomorphic to Spec2(B(A)).

We define unary operations Ua as in the next proposition (for the proof, see
[23]). Ua(x) intuitively means: The truth value of x is more than or equal to a.
Ua’s are used in the definition of L-ML-algebras (see Definition 15).

Proposition 3. For a ∈ L, define Ua(x) =
∨
{Tb(x) ; a ≤ b}. For x ∈ L, we

have Ua(x) = 1 for a ≤ x and Ua(x) = 0 for a � x.

Note that Ua is order-preserving and that Ua(x ∧ y) = Ua(x) ∧Ua(y).
In fact, Ua’s are inter-definable with Ta’s (see [23, Proposition 7]).

2.2 A Natural Duality for L-VL-Algebras

As in universal algebra, we mean by an algebra a set A endowed with a collection
of operations on A (see [6,7]). For an algebra A, ISP(A) denotes the class of all
isomorphic copies of subalgebras of direct powers of A (see [6,7]).

Definition 7 ([7]). Let A be a finite algebra. Define the ternary discriminator
function t : A3 → A on A as follows:

t(x, y, z) =

{
x if x �= y

z if x = y.

286 Y. Maruyama

A is called a semi-primal algebra iff t is a term function of A and there is no
isomorphism between non-empty subalgebras of A other than the identity maps.

Lemma 1. (L,∧,∨,→,Ta(a ∈ L), 0, 1) forms a semi-primal algebra.

Proof. Define t : L3 → L by

t(x, y, z) = ((T1(x ↔ y) → 0) → x) ∧ (T1(x ↔ y) → z).

It is easily verified that t is actually the ternary discriminator function on L.
Suppose for contradiction that there exists an isomorphism f : L1 → L2 such

that both L1 and L2 are non-empty subalgebras of L and that f(a) �= a for some
a ∈ L1. Then, we have 1 = f(Ta(a)) = Ta(f(a)) = 0, which is a contradiction.

Definition 8. L-VA denotes the category of L-VL-algebras and homomorphisms
of L-VL-algebras.

A Boolean space is defined as a zero-dimensional compact Hausdorff space.

Definition 9. SubAlg(L) denotes the set of all subalgebras of L. For a Boolean
space S, SubSp(S) denotes the set of all closed subspaces of S.

Note that a closed subspace of a Boolean space is also a Boolean space.

Definition 10. We define a category L-BS as follows.
An object in L-BS is a tuple (S, α) such that S is a Boolean space and that a

function α : SubAlg(L) → SubSp(S) satisfies the following:

1. S = α(L);
2. if L1 is a subalgebra of L2, then α(L1) ⊂ α(L2);
3. if L3 = L1 ∩ L2, then α(L3) = α(L1) ∩ α(L2).

An arrow f : (S, α) → (T, β) in L-BS is a continuous map f : S → T
which satisfies the condition that, for any M ∈ SubAlg(L), if x ∈ α(M) then
f(x) ∈ β(M). We call a map satisfying the condition a subspace-preserving map.

Definition 11. We define a contravariant functor Spec : L-VA → L-BS.
For an object A in L-VA, define Spec(A) = (SpecL(A), αA), where αA is

defined by αA(M) = SpecM (A) for M ∈ SubAlg(L).
For an arrow f : A → B in L-VA, Spec(f) : Spec(B) → Spec(A) is defined

by Spec(f)(v) = v ◦ f for v ∈ SpecL(B).

We equip L and its subalgebras with the discrete topologies. Define αL :
SubAlg(L) → SubSp(L) by αL(M) = M for M ∈ SubAlg(L). Then, (L,αL)
is an object in L-BS.

Definition 12. We define a contravariant functor Cont : L-BS → L-VA.
For an object (S, α) in L-BS, Cont(S, α) is defined as the set of all subspace-

preserving continuous maps from (S, α) to (L,αL) endowed with the opera-
tions (∧,∨,→,Ta(a ∈ L), 0, 1) defined pointwise: For f, g ∈ Cont(S, α), define
(f@g)(x) = f(x)@g(x) for @ = ∧,∨,→. Define (Ta(f))(x) = Ta(f(x)). Finally
0 (resp. 1) is defined as the constant function whose value is always 0 (resp. 1).

For an arrow f : (S1, α1) → (S2, α2) in L-BS, Cont(f) : Cont(S2, α2) →
Cont(S1, α1) is defined by Cont(f)(g) = g ◦ f for g ∈ Cont(S2, α2).

A Duality for Algebras of Lattice-Valued Modal Logic 287

The following is a natural duality for L-VL-algebras.

Theorem 1. The category L-VA is dually equivalent to the category L-BS via
the functors Spec(-) and Cont(-).

Proof. Let Id1 denote the identity functor on L-VA and Id2 denote the identity
functor on L-BS. It is sufficient to show that there are two natural isomorphisms
ε : Id1 → Cont ◦ Spec and η : Id2 → Spec ◦ Cont.

For an L-VL-algebra A, define εA : A → Cont ◦ Spec(A) by εA(x)(v) = v(x),
where x ∈ A and v ∈ SpecL(A).

For an object (S, α) in L-BS, define η(S,α) : (S, α) → Spec ◦ Cont(S, α) by
η(S,α)(x)(f) = f(x), where x ∈ S and f ∈ Cont(S, α).

Since L forms a semi-primal algebra by Lemma 1 and since the class of L-VL-
algebras coincides with ISP(L) by [23, Theorem 3], it follows from [7, Theorem
3.3.14] that η and ε are natural isomorphisms.

By Theorem 1, we can show a compactness theorem for L-VL.

Theorem 2. Let X ⊂ Form. Assume that any finite subset of X is satisfiable.
Then, X is satisfiable.

Proof. Let A be the Lindenbaum algebra of L-VL. We may consider X ⊂ A.
Then {〈x〉 ; x ∈ X} consists of clopen subsets of SpecL(A). By assumption,
{〈x〉 ; x ∈ X} has finite intersection property, since an L-valuation on Form
can be seen as a homomorphism from A to L. Since SpecL(A) is compact by
Theorem 1, there is v ∈

⋂
{〈x〉 ; x ∈ X}. Hence, X is satisfiable.

By Theorem 1, we can also classify the equivalence classes of the categories
L-VA’s for finite distributive lattices L as follows (for definitions from category
theory, we refer to [2]).

Theorem 3. Let L1 and L2 be finite distributive lattices. Then, the following
are equivalent:

1. L1-VA and L2-VA are categorically equivalent;
2. (SubAlg(L1),⊂) and (SubAlg(L2),⊂) are order isomorphic.

Proof. We show that (2) implies (1). Assume (2). Then, L1-BS and L2-BS are
categorically equivalent by the definition of L-BS. Thus, by Theorem 1, L1-VA
and L2-VA are categorically equivalent.

We show that (1) implies (2). Assume (1). Then, by Theorem 1, L1-BS and
L2-BS are categorically equivalent. For i = 1, 2, equip {i} with the discrete
topology and define αi : SubAlg(Li) → SubSp({i}) by αi(M) = {i} for any
M ∈ SubAlg(Li). Then, ({i}, αi) is a terminal object of Li-BS for i = 1, 2.
Let SubOb({i}, αi) denote the category of non-empty subobjects of ({i}, αi)
in Li-BS (for the definition of the category of subobjects, see [2, Definition
5.1]). Since L1-BS and L2-BS are categorically equivalent, SubOb({1}, α1) and
SubOb({2}, α2) are categorically equivalent. We consider SubOb({1}, α1) and

288 Y. Maruyama

SubOb({2}, α2) as partially ordered sets in the usual way. Then, SubOb({1}, α1)
and SubOb({2}, α2) are order isomorphic.

To complete the proof, it suffices to show that SubOb({i}, αi)op is order iso-
morphic to (SubAlg(Li),⊂) for i = 1, 2. For (X,αX) ∈ SubOb({i}, αi), define

hi(X,αX) =
⋂
{M ∈ SubAlg(Li) ; αX(M) = {i}},

where we may assume X = {i}. Then we claim that hi is an order isomor-
phism from SubOb({i}, αi)op to (SubAlg(Li),⊂). Since {M ; αX(M) = {i}}
is upward closed with respect to ⊂ by the item 2 of Definition 10 and since
αX(hi(X,αX)) = {i} by the item 3 of Definition 10, hi is injective. It is straight-
forward to verify the remaining part of the claim.

3 A Jónsson-Tarski-Style Duality for L-ML-Algebras

L-valued modal logic L-ML is defined by L-valued Kripke semantics as follows.
The connectives of L-ML are a unary connective 	 and the connectives of L-VL.
Then, Form� denotes the set of formulas of L-ML.

Definition 13. Let (M,R) be a Kripke frame, i.e., R is a relation on a set M .
Then, e is a Kripke L-valuation on (M,R) iff e is a function from M ×Form�
to L and satisfies the following for each w ∈M and x ∈ Form�:

1. e(w,	x) =
∧
{e(w′, x) ; wRw′};

2. e(w,Ta(x)) = Ta(e(w, x));
3. e(w, x@y) = e(w, x)@e(w, y) for @ = ∧,∨,→;
4. e(w, a) = a for a = 0, 1.

We call (M,R, e) an L-valued Kripke model. x ∈ Form� is said to be valid in
L-ML iff e(w, x) = 1 for any L-valued Kripke model (M,R, e) and any w ∈M .

Definition 14. Let X ⊂ Form�. X is Kripke-satisfiable iff there are an L-
valued Kripke model (M,R, e) and w ∈M such that e(w, x) = 1 for any x ∈ X.

A compactness theorem for L-ML is shown in Theorem 7 below.

3.1 L-ML-Algebras and Their Relational Spectra

We introduce L-ML-algebras, which provide a sound and complete semantics
for L-valued modal logic L-ML as is shown in [23]. Recall that Ua(x) is the
abbreviation of

∨
{Tb(x) ; a ≤ b}.

Definition 15 ([23]). (A,∧,∨,→,Ta(a ∈ L),	, 0, 1) is an L-ML-algebra iff it
satisfies the following:

1. (A,∧,∨,→,Ta(a ∈ L), 0, 1) forms an L-VL-algebra;
2. 	(x ∧ y) = 	x ∧	y and 	1 = 1;
3. 	Ua(x) = Ua(x) for all a ∈ L.

A Duality for Algebras of Lattice-Valued Modal Logic 289

A homomorphism of L-ML-algebras is defined as a homomorphism of L-VL-
algebras which additionally preserves the operation 	.

Let A be an L-ML-algebra. Since T1(x) = U1(x) for any x ∈ A, we have
	T1(x) = T1(x) by the item 3 in the above definition.

Note that 2-ML-algebras coincide with modal algebras.

Definition 16. Let A be an L-ML-algebra. Define a relation R� on SpecL(A)
by

vR�u ⇔ ∀a ∈ L ∀x ∈ A (v(x) ≥ a implies u(x) ≥ a).

Define e : SpecL(A) × A → L by e(v, x) = v(x) for v ∈ SpecL(A) and x ∈ A.
Then, (SpecL(A), R�, e) is called the L-valued canonical model of A.

Proposition 4. Let A be an L-ML-algebra. Then, the L-valued canonical model
(SpecL(A), R�, e) of A is actually an L-valued Kripke model. In particular,
e(v,	x) = v(x) =

∧
{u(x) ; vR�u} for x ∈ A and v ∈ SpecL(A).

Proof. See [23, Proposition 10]. Note that, for an L-VL-algebra A, there is a
natural bijection between the homomorphisms of L-VL-algebras from A to L
and the “prime L-filters” of A (see [23, Proposition 5]). Prime L-filter gives an
internal description of homomorphism into L.

Proposition 5. Let A be an L-ML-algebra. Then B(A) is a modal algebra.

Proof. By Proposition 1, it suffices to show that B(A) is closed under 	. For
x ∈ B(A), we have T1(x) = 	T1(x) = 	x.

Proposition 6. Let A be an L-ML-algebra and v, u ∈ SpecL(A). Then the fol-
lowing holds: vR�u iff t1(v)R�t1(u), where R� in the right-hand side is defined
only on Spec2(B(A)) (for the definition of t1, see Proposition 2).

Proof. From 	T1(x) = T1(x), it follows that vR�u implies t1(v)R�t1(u).
We show the converse. Assume t1(v)R�t1(u). In order to show vR�u, it suf-
fices to show that, for any a ∈ L and any x ∈ A, v(Ua(x)) ≥ 1 implies
u(Ua(x)) ≥ 1, which follows from the assumption, since we have Ua(x) ∈ B(A)
and T1(Ua(x)) = Ua(x).

By Proposition 2 and Proposition 6, we notice that t1 is an “isomorphism” from
(SpecL(A), R�) to (Spec2(B(A)), R�) for an L-ML-algebra A.

3.2 A Jónsson-Tarski-Style Duality for L-ML-Algebras

Definition 17. L-MA denotes the category of L-ML-algebras and homomor-
phisms of L-ML-algebras.

Definition 18. Let (S,R) be a Kripke frame and f a function from S to L.
Define 	Rf : S → L by (Rf)(x) =

∧
{f(y) ; xRy}.

290 Y. Maruyama

For a Kripke frame (S,R) and X ⊂ S, let R−1[X] = {y ∈ S ; ∃x ∈ X yRx}. For
x ∈ S, let R[x] = {y ∈ S ; xRy}.

Definition 19. We define a category L-RS as follows.
An object in L-RS is a triple (S, α,R) such that (S, α) is an object in L-BS

and a relation R on S satisfies the following conditions:

1. if ∀f ∈ Cont(S, α)((Rf)(x) = 1 ⇒ f(y) = 1) then xRy;
2. if X ⊂ S is clopen in S, then R−1[X] is clopen in S;
3. for any M ∈ SubAlg(L), if x ∈ α(M) then R[x] ⊂ α(M).

An arrow f : (S1, α1, R1) → (S2, α2, R2) in L-RS is an arrow f : (S1, α1) →
(S2, α2) in L-BS satisfying the following conditions:

1. if xR1y then f(x)R2f(y);
2. if f(x1)R2x2 then there is y1 ∈ S1 such that x1R1y1 and f(y1) = x2.

The item 1 in the object part of Definition 19 is an L-valued version of the
tightness condition of descriptive general frames in classical modal logic (for the
definition of the tightness condition, see [9]).

Definition 20. We define a contravariant functor RSpec : L-MA → L-RS. For
an object A in L-MA, define RSpec(A) = (SpecL(A), αA, R�). For an arrow
f : A → B in L-MA, define RSpec(f) by RSpec(f)(v) = v ◦f for v ∈ SpecL(B).

The well-definedness of RSpec is shown by the following two lemmas.

Lemma 2. Let A be an L-ML-algebra. Then, RSpec(A) is an object in L-RS.

Proof. First, we show that RSpec(A) satisfies the condition 1 in the object part
of Definition 19. We show the contrapositive. Assume (v1, v2) /∈ R� for v1, v2 ∈
SpecL(A). Then there are a ∈ L and x ∈ A such that v1(x) ≥ a and v2(x) � a,
whence we have v1(Ua(x)) = 1 and v2(Ua(x)) �= 1. Define f : SpecL(A) → L
by f(v) = v(Ua(x)). Then, by Proposition 4 and 	Ua(x) = Ua(x), we have

(Rf)(v1) =
∧
{f(v) ; v1R�v} =

∧
{v(Ua(x)) ; v1R�v} = v1(Ua(x)) = 1.

By the definition of f , f(v2) �= 1. It is easy to verify that f is continuous.
Second, we show that RSpec(A) satisfies the condition 2. It is enough to show

that R−1
� (〈x〉) is clopen in S for any x ∈ A. We claim that

R−1
� (〈x〉) = 〈¬	¬T1(x)〉,

where ¬x is the abbreviation of x → 0. Note that the right-hand side is clopen.
Assume v ∈ 〈¬	¬T1(x)〉. Then, v(¬	¬T1(x)) = 1 and so v(¬T1(x)) = 0.
By Proposition 4, we have 0 = v(¬T1(x)) =

∧
{u(¬T1(x)) ; vR�u}. Since

u(¬T1(x)) is either 0 or 1, there exists u ∈ SpecL(A) with vR�u such that
u(¬T1(x)) = 0, i.e., u(x) = 1. Therefore we have v ∈ R−1

� (〈x〉). The converse is
proved in a similar way.

A Duality for Algebras of Lattice-Valued Modal Logic 291

Third, we show that RSpec(A) satisfies the condition 3. Suppose for contra-
diction that u ∈ SpecM (A) and R[u] \ SpecM (A) �= ∅ for some M ∈ SubAlg(L).
Then there is v ∈ R[u] \ SpecM (A) and so there is x0 ∈ A with v(x0) /∈ M .
Define a = v(x0). Then we have: For w ∈ SpecL(A),

w(Ta(x0) → x0) =

{
1 if w(x0) �= a

a if w(x0) = a.

Therefore, it follows from Proposition 4 and uRv that

u((Ta(x0) → x0)) =
∧
{w(Ta(x0) → x0) ; uRw} = a = v(x0).

This contradicts u ∈ SpecM (A) by v(x0) /∈M , which completes the proof.

Lemma 3. For L-ML-algebras A1 and A2, let f : A1 → A2 be a homomorphism
of L-ML-algebras. Then, RSpec(f) is an arrow in L-RS.

Proof. By Theorem 1, RSpec(f) is an arrow in L-BS. Define f∗ : B(A1) → B(A2)
by f∗(x) = f(x) for x ∈ B(A1). By Proposition 5, f∗ is a homomorphism between
2-ML-algebras (i.e., modal algebras). Consider RSpec(f∗) : RSpec(B(A2)) →
RSpec(B(A1)). It follows from Proposition 2, Proposition 6 and Jónsson-Tarski
duality for modal algebras (see [12,3]) that RSpec(f∗) is an arrow in 2-RS. We
also have RSpec(f) = RSpec(f∗) on RSpec(B(A2)). By using these facts and
Proposition 6, it is verified that RSpec(f) is an arrow in L-RS.

Definition 21. We define a contravariant functor MCont : L-RS → L-MA.
For an object (S, α,R) in L-RS, define MCont(S, α,R) = (Cont(S, α),	R).
For an arrow f : (S1, α1, R1) → (S2, α2, R2) in L-RS, define MCont(f) by
MCont(f)(g) = g ◦ f for g ∈ Cont(S2, α2).

The well-definedness of MCont is shown by the following two lemmas.

Lemma 4. Let (S, α,R) be an object in L-RS. Then, MCont(S, α,R) is an L-
ML-algebra.

Proof. We first show that if f ∈ MCont(S, α,R) then 	Rf ∈ MCont(S, α,R).
Let f ∈ MCont(S, α,R). Now we have the following: For a ∈ L,

(Rf)−1(a) = R−1[(Ta(f))−1(1)] ∩ (S \R−1[(Ua(f))−1(0)]),

where note: x ∈ R−1[(Ta(f))−1(1)] means that there is y ∈ S such that xRy
and f(y) = a; x ∈ S \R−1[(Ua(f))−1(0)] means that there is no y ∈ S such that
xRy and f(y) � a. Since R−1[(Ta(f))−1(1)]∩ (S \R−1[(Ua(f))−1(0)]) is clopen
in S, 	Rf is a continuous map from S to L. It follows from the condition 3 in
Definition 19 that 	Rf is subspace-preserving. Thus 	Rf ∈ MCont(S, α,R).

Next we show that Ua(f) = 	Ua(f). It suffices to show that

Ua(
∧
{f(y) ; xRy}) =

∧
{Ua(f(y)) ; xRy},

which is easily verified. The remaining part of the proof is also easy to check.

292 Y. Maruyama

Lemma 5. Let f : (S1, α1, R1) → (S2, α2, R2) be an arrow in L-RS. Then,
MCont(f) is a homomorphism of L-ML-algebras.

Proof. By Theorem 1, MCont(f) is an arrow in L-VA. It remains to show that
MCont(f)(g2) = 	(MCont(f)(g2)) for g2 ∈ Cont(S2, α2). Let x1 ∈ S1. Then,

(MCont(f)(g2))(x1) = 	g2 ◦ f(x1) =
∧
{g2(y2) ; f(x1)R2y2}.

Let a denote the rightmost side of the above equation. We also have

((MCont(f)(g2)))(x1) = ((g2 ◦ f))(x1) =
∧
{g2(f(y1)) ; x1R1y1}.

Let b denote the rightmost side of the above equation. Since x1R1y1 implies
f(x1)R1f(y1), we have a ≤ b. Since f satisfies the condition 2 in the arrow part
of Definition 19, we have a ≥ b. Hence a = b, which completes the proof.

Theorem 4. Let A be an L-ML-algebra. Then, A is isomorphic to MCont ◦
RSpec(A) in the category L-MA.

Proof. Define ε′A : A → MCont ◦ RSpec(A) by ε′A(x)(v) = v(x) for x ∈ A and
v ∈ SpecL(A). Note that ε′A is almost the same as εA in the proof of Theorem
1. By Theorem 1, ε′A is an isomorphism of L-VL-algebras.

Therefore, it remains to show that ε′A preserves 	, i.e., ε′A(x) = 	R�ε
′
A(x)

for x ∈ A. For v ∈ RSpec(A), we have the following:

(R�ε
′
A(x))(v) =

∧
{ε′A(x)(u) ; vR�u}

=
∧
{u(x) ; vR�u}

= v(x) (by Proposition 4)
= ε′A(x)(v).

This completes the proof.

Theorem 5. Let (S, α,R) be an object in L-RS. Then, (S, α,R) is isomorphic
to RSpec ◦MCont(S, α,R) in the category L-RS.

Proof. Define η′(S,α,R) : (S, α,R) → RSpec ◦MCont(S, α,R) by η′(S,α,R)(x)(f) =
f(x) for x ∈ S and f ∈ Cont(S, α). Note that η′(S,α,R) is almost the same as
η(S,α) in the proof of Theorem 1. By Theorem 1, η′(S,α,R) is an isomorphism in
the category L-BS. In the below, we denote η′(S,α,R) by η′S .

We show: For any x, y ∈ S, xRy iff η′S(x)R�R
η′S(y). Note that the right-hand

side holds iff the following holds:

∀a ∈ L ∀f ∈ Cont(S, α) (η′S(x)(Rf) ≥ a implies η′S(y)(f) ≥ a).

Assume xRy. Let a ∈ L and f ∈ Cont(S, α) with η′S(x)(Rf) ≥ a. Since

a ≤ η′S(x)(Rf) = (Rf)(x) =
∧
{f(z) ; xRz},

A Duality for Algebras of Lattice-Valued Modal Logic 293

we have η′S(y)(f) = f(y) ≥ a. Next we show the converse. To prove the contra-
positive, assume that (x, y) /∈ R. By Definition 19, there is f ∈ Cont(S, α) such
that (Rf)(x) = 1 and f(y) �= 1. Then, η′S(x)(Rf) ≥ 1 and η′S(y)(f) � 1.

Now it remains to prove that ηS and η−1
S satisfy the condition 2 in the arrow

part of Definition 19, which follows immediately from the above facts.

The following is a Jónsson-Tarski-style duality for L-ML-algebras.

Theorem 6. The category L-MA is dually equivalent to the category L-RS via
the functors RSpec(-) and MCont(-).

Proof. Let Id1′ denote the identity functor on L-MA and Id2′ denote the identity
functor on L-RS. It is sufficient to show that there are natural isomorphisms
ε′ : Id1′ → MCont ◦ RSpec and η′ : Id2′ → RSpec ◦ MCont. For an L-ML-
algebra A, define ε′A as in the proof of Theorem 4. For an object (S, α,R) in
L-RS, define η′(S,α,R) as in the proof of Theorem 5. Then it is straightforward to
verify that η′ and ε′ are natural transformations. It follows from Theorem 4 and
Theorem 5 that η′ and ε′ are natural isomorphisms.

The following is a compactness theorem for L-ML, which we prove using the
compactness of the spectrum of an L-ML-algebra.

Theorem 7. Let X ⊂ Form�. Assume that any finite subset of X is Kripke-
satisfiable. Then, X is Kripke-satisfiable.

Proof. We use the notions of L-filter, prime L-filter, and maximal L-filter (see
[23, Definition 4 and Definition 5]).

Let A be the Lindenbaum algebra of L-ML. We may consider X ⊂ A. Then,
{〈x〉; x ∈ X} consists of clopen subsets of SpecL(A). We show that {〈x〉; x ∈ X}
has finite intersection property. Since 〈x〉∩〈y〉 = 〈x∧y〉 for x, y ∈ A, it suffices to
show that 〈x〉 �= ∅ for any x ∈ X . Since {x} is Kripke-satisfiable by assumption,
T1(x) �= 0. Let F be the set of those L-filters F of A such that T1(x) ∈ F and
0 /∈ F . Then, {y ∈ A ; T1(x) ≤ y} ∈ F . By Zorn’s lemma, we have a maximal
element P in F . Then, P is a maximal L-filter and so is a prime L-filter of A by
[23, Proposition 3]. Define vP : A → L by vP (z) = a ⇔ Ta(z) ∈ P for z ∈ A. By
[23, Proposition 4], vP is a homomorphism with vP (x) = 1, whence vP ∈ 〈x〉.
Thus, {〈x〉 ; x ∈ X} has finite intersection property.

Since SpecL(A) is compact and 〈x〉 is closed, we have v ∈
⋂
{〈x〉 ; x ∈ X}.

Consider the L-valued canonical model (SpecL(A), R�, e) of A. Then, e(v, x) =
v(x) = 1 for any x ∈ X . Thus, X is Kripke-satisfiable.

4 Conclusions and Future Work

In this paper, we developed a natural duality for L-VL-algebras and a Jónsson-
Tarski-style duality for L-ML-algebras. By applying the dualities, we obtained
compactness theorems for L-VL and for L-ML, and the classification of equiv-
alence classes of the categories L-VA’s for finite distributive lattices L.

294 Y. Maruyama

The dualities developed in this paper are essentially different from the ones
mentioned as future work in [23, Section 4]. The dualities mentioned in [23] are
based on the theory of canonical extensions ([15,14]), while the dualities in this
paper are based on the theory of natural dualities ([7]). In other words, L-VL
is considered as a many-valued logic in the dualities in this paper, while L-VL
is considered as a modal logic in the dualities mentioned in [23], where note
that the theory of canonical extensions can be considered as a general theory
of dualities for modal-like logics (or lattices with operators). Let us explain the
difference in more details in the following three paragraphs.

In the dualities mentioned in [23], we consider Ua’s as modalities and equip
the dual space of an L-VL-algebra with some canonical relations corresponding
to each Ua for a ∈ L (see [15, Subsection 2.3]), where recall that Ua’s are inter-
definable with Ta’s. On the other hand, in the dualities in this paper, Ua’s (or
Ta’s) are considered as the same kind of operations as the other operations of
L-VL-algebras and the dual space SpecL(A) of an L-VL-algebra A is equipped
with no relation. This seems to be the most striking difference between the
dualities mentioned in [23] and the dualities presented in this paper.

One of the most significant aspects of topological dualities is that we can
understand the geometric meanings of logics or algebras by them. Since a duality
becomes less geometric when a dual space is equipped with a relation, we may
consider from the geometric viewpoint that it is better to equip a dual space
with as less relations as possible and therefore the dualities developed in this
paper are superior to the dualities mentioned in [23].

However, it also seems to be significant to see Ua’s as modalities, i.e., L-
VL as a multi-modal logic, and develop dualities for L-VL-algebras and L-
ML-algebras in the way described above. The reasons are as follows. It seems
interesting that a many-valued logic can be seen also as a modal logic. From
the mathematical point of view, it confirms the applicability of the theory of
canonical extensions, which is one of the most important duality theories along
with the theory of natural dualities. From the philosophical point of view, it
would contribute to our understanding of the notion of modality. Thus, our future
work will be to develop dualities for L-VL-algebras and for L-ML-algebras by
considering Ua’s as modalities and using the theory of canonical extensions.

Finally, there is a remark on Theorem 3. Let L1 and L2 be finite distributive
lattices. Theorem 3 implies that, even if L1 and L2 are not isomorphic, L1-VA
and L2-VA can be categorically equivalent. This means that, even if L1-VL
and L2-VL are not equivalent as logics, L1-VA and L2-VA can be categorically
equivalent, which might contradict our intuition. By this fact, it seems that the
identity of logics is strictly weaker (as a relation) than the equivalence of cate-
gories of Lindenbaum algebras of logics (for a discussion on the identity of logics,
see [26]).

Acknowledgement. The author would like to thank Kentaro Sato for his sug-
gesting a similar result to Theorem 3 for the category of algebras of �Lukasiewicz
n-valued logic.

A Duality for Algebras of Lattice-Valued Modal Logic 295

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77
(1991)

2. Awodey, S.: Category theory. OUP (2006)
3. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. CUP (2001)
4. Bonsangue, M.M.: Topological duality in semantics. Electr. Notes Theor. Comput.

Sci. 8 (1998)
5. Brink, C., Rewitzky, I.M.: A paradigm for program semantics: power structures

and duality. CSLI Publications, Stanford (2001)
6. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Springer, Heidelberg

(1981)
7. Clark, D.M., Davey, B.A.: Natural dualities for the working algebraist. CUP (1998)
8. Connes, A.: Noncommutative geometry. Academic Press, London (1994)
9. Chagrov, A., Zakharyaschev, M.: Modal logic. OUP (1997)

10. Doran, R.S., Belfi, V.A.: Characterizations of C∗-algebras; The Gelfand-Naimark
theorems. Marcel Dekker Inc., New York (1986)

11. Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique: I. Le langage
des schémas. Publications Mathématiques de l’IHÉS 4, 225–228 (1960)

12. Hansoul, G.: A duality for Boolean algebras with operators. Algebra Universalis 17,
34–49 (1983)

13. Eleftheriou, P.E., Koutras, C.D.: Frame constructions, truth invariance and validity
preservation in many-valued modal logic. J. Appl. Non-Classical Logics 15, 367–388
(2005)

14. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 239, 345–371
(2001)

15. Gehrke, M., Nagahashi, H., Venema, Y.: A Sahlqvist theorem for distributive modal
logic. Ann. Pure Appl. Logic 131, 65–102 (2005)

16. Fitting, M.C.: Many-valued modal logics. Fund. Inform. 15, 235–254 (1991)
17. Fitting, M.C.: Many-valued modal logics II. Fund. Inform. 17, 55–73 (1992)
18. Fitting, M.C.: Many-valued non-monotonic modal logics. In: Nerode, A., Taitslin,

M.A. (eds.) LFCS 1992. LNCS, vol. 620, pp. 139–150. Springer, Heidelberg (1992)
19. Fitting, M.C.: Tableaus for many-valued modal logic. Studia Logica 55, 63–87

(1995)
20. Koutras, C.D., Zachos, S.: Many-valued reflexive autoepistemic logic. Logic Journal

of the IGPL 8, 33–54 (2000)
21. Koutras, C.D., Peppas, P.: Weaker axioms, more ranges. Fund. Inform. 51, 297–310

(2002)
22. Koutras, C.D.: A catalog of weak many-valued modal axioms and their correspond-

ing frame classes. J. Appl. Non-Classical Logics 13, 47–72 (2003)
23. Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal

logic. In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS (LNAI), vol. 5378,
pp. 172–186. Springer, Heidelberg (2009)

24. Maruyama, Y.: The logic of common belief, revisited (in preparation)
25. Stone, M.H.: The representation of Boolean algebras. Bull. Amer. Math. Soc. 44,

807–816 (1938)
26. Straßburger, L.: What is a logic, and what is a proof? Logica Universalis 2nd edn.,

135–152 (2007)
27. Teheux, B.: A duality for the algebras of a �Lukasiewicz n+1-valued modal system.

Studia Logica 87, 13–36 (2007)

An Independence Relation for Sets of Secrets

Sara Miner More and Pavel Naumov

Department of Mathematics and Computer Science
McDaniel College, Westminster, Maryland 21157, USA

{smore,pnaumov}@mcdaniel.edu

Abstract. A relation between two secrets, known in the literature as
nondeducibility, was originally introduced by Sutherland. We extend it to
a relation between sets of secrets that we call independence. This paper
proposes a formal logical system for the independence relation, proves
the completeness of the system with respect to a semantics of secrets,
and shows that all axioms of the system are logically independent.

1 Introduction

In this paper we study interdependence between secrets. For example, if b1, b2,
and b3 are secrets with boolean values, then b1 ⊕ b2 ⊕ b3 = 0 is an example of
interdependence. If an interdependence between secrets is fixed and is publicly
known, then knowledge of one secret may reveal something about the other
secrets. In the above example, knowing the value of secret b1 reveals whether or
not secrets b2 and b3 are equal.

Let us now suppose that A = {a1, . . . , an} and B = {b1, . . . , bk} are two sets of
secrets that are not interdependent. That is, knowledge of values a1, . . . , an reveals
no information about values b1, . . . , bk. In this case we say that the sets of secrets
A and B are independent. We will use the notation A ‖ B to denote independence
ofA andB. If n = k = 1, then the independence predicate is essentially equivalent
to the “no information flow” relation introduced by Sutherland [1].

In this work, we study properties of the independence predicate that are true
regardless of the publicly-known interdependencies between secrets that may
exist. For example, for any three secrets a, b, and c, if secrets a and b together
reveal no information about secret c, then secret a alone will also reveal no
information about secret c:

a, b ‖ c → a ‖ c
A less obvious property of independence that can be expressed in propositional
language and which is true regardless of the set of interdependencies that exist is:

a, b ‖ c → (a ‖ b → a ‖ b, c) (1)

Below, we introduce a set of axioms for the independence predicate and prove
the completeness of our logical system with respect to a semantics of secrets. In
particular, property (1) above will follow from these axioms. We call this logical
system Logic of Secrets.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 296–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Independence Relation for Sets of Secrets 297

Our work is related to the study of information flow. Most of the literature
in this area, however, studies information flow from the language-based [2,3] or
probabilistic [4,5] points of view. Historically ([6], page 185), one of the first
attempts to capture independence in our sense was undertaken by Goguen and
Meseguer [7] through their notion of noninterference between two computing
devices. Later, Sutherland [1] introduced his no information flow relation, which
is essentially our independence relation restricted to single-element sets. This
relation has since become known in the literature as nondeducibility. Cohen [8]
presented a related notion called strong dependence. Unlike nondeducibility, how-
ever, the strong dependence relation is not symmetric. More recently, Halpern
and O’Neill [4,5] introduced f -secrecy to reason about multiparty protocols. In
our notation, f -secrecy is a version of the nondeducibility predicate whose left
or right side contains a certain function of the secret rather than the secret it-
self. However, all of these works focus on the application of the independence
relation in the analysis of secure protocols, whereas the main focus of our work
is on logical properties of the relation itself.

2 Semantics of Secrets

In this section we define a formal semantics for the independence relation.
Throughout the rest of this paper we assume that there is a fixed infinite

set of “secret variables”: a, b, c, Intuitively, these variables can be viewed as
names of secrets. A structure that serves as a model of the Logic of Secrets will
be called a protocol. A protocol specifies names of the secret variables used, their
possible values, and all publicly known interdependencies between secrets. The
last of these is given as an explicit specification of all legitimate combinations of
secret values, which we call “runs”. Occasionally, we will refer to secret variables
as just “secrets”.

Definition 1. A protocol is an arbitrary triple P = 〈S,V ,R〉, where

1. S is a subset of the set of secret variables.
2. V is an arbitrary function that maps a secret variable s ∈ S into an arbitrary

“set of values” of this secret V(s).
3. R is a set of functions, called runs of the protocol, such that each run r

assigns a value r(s) ∈ V(s) to each secret variable s ∈ S.

For any protocol P , by R(P) we mean the set of all runs of this protocol.

Definition 2. A protocol P = 〈S,V ,R〉 is finite if set S is finite and V(s) is
finite for any s ∈ S.

In the following definition, and in the remainder of the paper, we write f =X g
if f(x) = g(x) for any x ∈ X .

Definition 3. A set of secret variables A ⊆ S is independent from a set of secret
variables B ⊆ S under protocol P, if for any runs r1, r2 ∈ R(P) there is a run
r ∈ R(P) such that r =A r1 and r =B r2.

298 S.M. More and P. Naumov

A special case of the independence predicate is the statement “the set of variables
A is independent from the set of variables A”. This statement, by definition,
means that r1 =A r2 for any runs r1, r2 ∈ R(P). In other words, for any a ∈ A,
value r(a) is the same for all runs r ∈ R(P). Thus, all secrets in A have fixed
known values, and we will say that A is “public knowledge”.

Definition 4. The language of secrets consists of secret variables a, b, c . . . , the
independence predicate ‖, implication →, and false constant ⊥. The set of for-
mulas in this language is recursively defined as follows:

1. ⊥ is a formula,
2. X ‖ Y is a formula, for any two finite sets of secret variables X and Y ,
3. if φ and ψ are formulas, then φ → ψ is a formula.

The language of secrets is similar to the universal fragment of propositional logic
where a1, . . . , an ‖ b1, . . . , bk is a predicate of arity n+k. The difference, however,
is that predicates in first order logic have a fixed arity, while our predicate ‖ does
not.

Definition 5. We define a binary relation � between a protocol P and a formula
φ by induction on the structural complexity of φ as follows:

1. P � ⊥,
2. P � X ‖ Y if and only if X and Y are independent under P,
3. P � φ → ψ if and only if P � φ or P � ψ.

3 Logic of Secrets

Definition 6. The Logic of Secrets is defined by the following axioms and in-
ference rule:

1. All propositional tautologies in the language of secrets,
2. Empty Set Axiom: ∅ ‖ A,
3. Monotonicity Axiom: A,B ‖ C → A ‖ C,
4. Public Knowledge Axiom: A ‖ A → (B ‖ C → A,B ‖ C),
5. Exchange Axiom: A,B ‖ C,D → (A ‖ B → (D ‖ C → A,C ‖ B,D)),
6. Modus Ponens inference rule.

Above and everywhere below, by A,B we mean A ∪ B. As usual, we will write
X � φ if formula φ can be derived in the Logic of Secrets possibly using additional
hypotheses from set X .

Lemma 1 (symmetry). For any finite sets of secrets A and B,

� A ‖ B → B ‖ A.

Proof. By Exchange Axiom, ∅, A ‖ B,∅ → (∅ ‖ A → (∅ ‖ B → ∅, B ‖ A,∅)).
Taking into account Empty Set Axiom, ∅A ‖ B,∅ → ∅, B ‖ A,∅. Thus,
A ‖ B → B ‖ A.

An Independence Relation for Sets of Secrets 299

As an example, let us now prove property (1) from these axioms. For convenience,
we repeat the property below:

a, b ‖ c → (a ‖ b → a ‖ b, c)

By assuming A = {a}, B = {b}, C = ∅, and D = {c} in Exchange Axiom, we
get a, b ‖ c → (a ‖ b → (c ‖ ∅ → a ‖ b, c)). Thus, it will be sufficient to prove
that c ‖ ∅. This, in turn, follows from Empty Set Axiom and Lemma 1.

Lemma 2. If X � A ‖ B, then X � A′ ‖ B′ for any A′ ⊆ A and B′ ⊆ B.

Proof. Follows from Monotonicity Axiom and Lemma 1.

4 Soundness

Theorem 1. If � φ, then P � φ for any protocol P.

Proof. It will be sufficient to verify that P � φ for each axiom φ of the Logic of
Secrets.

Empty Set Axiom. Consider any two runs r1, r2 ∈ R(P). Let r = r2. It is easy
to see that r =∅ r1 and r =A r2.

Monotonicity Axiom. Consider any two runs r1, r2 ∈ R(P). If r =A,B r1 and
r =C r2, then r =A r1 and r =C r2.

Public Knowledge Axiom. Assume that A ‖ A and B ‖ C. Consider any two runs
r1, r2 ∈ R(P). By the assumption that B ‖ C, there is a run r ∈ R(P) such that
r =B r1 and r =C r2. It will be sufficient to show that r =A r1. Indeed, by the
assumption A ‖ A, there is a run r′ ∈ R(P) such that r =A r′ =A r1. Therefore,
r =A r1.

Exchange Axiom. Consider any two runs r1, r2 ∈ R(P). By the assumption that
A ‖ B, there is a run r3 ∈ R(P) such that r3 =A r1 and r3 =B r2. Since
D ‖ C, there is a run r4 ∈ P such that r4 =D r2 and r4 =C r1. Finally, by
the assumption the A,B ‖ C,D, there is a run r ∈ R(P) such that r =A,B r3
and r =C,D r4. Thus, r =A r3 =A r1, r =C r4 =C r1, r =B r3 =B r2, and
r =D r4 =D r2. Therefore, r =A,C r1 and r =B,D r2.

5 Completeness

Theorem 2. If P � φ for any finite protocol P, then � φ.

The rest of the section contains the proof of this theorem. Assume that � φ.

Definition 7. Let S be the set of all secret variables appearing in φ.

Definition 8. Let Ψ be the minimal set that includes

300 S.M. More and P. Naumov

1. all subformulas of φ and their negations,
2. A ‖ B and ¬(A ‖ B) for any A,B ⊆ S

Let X be a maximal consistent subset of Ψ that contains ¬φ. We proceed now
to define a finite protocol P = 〈S,V ,R〉 such that S is the defined above set of
secret variables. Later we will show that P � φ.

Definition 9. For any secret s ∈ S, we define set of values V(s) as follows:

1. if X � s ‖ s, then V(s) = {0},
2. if X � s ‖ s, then V(s) = {−1, 0, 1}.

Next, we introduce terminology that allows us to define the set R of valid runs
on protocol P .

Definition 10. A pair (A,B) ∈ 2S × 2S is called critical if

1. X � A ‖ B,
2. if X � A′ ‖ B′, then A = A′ and B = B′, for any A′ ⊆ A and B′ ⊆ B.

Lemma 3. For any pair (A,B) ∈ 2S × 2S such that X � A ‖ B, there is a
critical pair (A′, B′) such that A′ ⊆ A and B′ ⊆ B.

Proof. Follows from finiteness of sets A and B.

Lemma 4. If (C,D) is a critical pair, then X � s ‖ s for any s ∈ C ∪D.

Proof. Assume that X � s ‖ s for some s ∈ C. By Public Knowledge Axiom,
X � C\{s} ‖ D → C ‖ D. On the other hand, by the definition of critical pair,
X � C ‖ D. Thus, X � C\{s} ‖ D, which is a contradiction with the definition
of critical pair. Therefore, X � s ‖ s. Case s ∈ D is similar, due to Lemma 1.

Definition 11. A run r is called void if there are sets of secrets C,D such that

1. pair (C,D) is critical,
2. r(s) = 1, for any s ∈ C,
3. r(s) = −1, for any s ∈ D.

Definition 12. Let R be the set of all runs that are not void.

This concludes the definition of the finite protocol P = 〈S,V ,R〉.
Lemma 5. If P � A ‖ B, then X � A ‖ B, for any A,B ⊆ S.

Proof. Assume that X � A ‖ B. By Lemma 3, there is a critical pair (A′, B′) such
that A′ ⊆ A and B′ ⊆ B. Consider runs r+ and r− such that for any secret s:

r+(s) =
{

+1 if X � s ‖ s
0 otherwise

r−(s) =
{
−1 if X � s ‖ s
0 otherwise

We will show that r+, r− ∈ R. Let us start by showing that r+ ∈ R. Indeed,
assume the opposite. Then there are C,D ⊆ S such that, taking into account
Lemma 4 and Definition 11,

An Independence Relation for Sets of Secrets 301

1. pair (C,D) is critical,
2. +1 = r+(s) = +1, for any s ∈ C,
3. +1 = r+(s) = −1, for any s ∈ D,

Note that the last statement implies that D is empty. Thus, by Empty Set
Axiom, � D ‖ C. By Lemma 1, � C ‖ D. This contradicts the fact that (C,D)
is a critical pair.

We now will prove that r− ∈ R. As in the previous case, assume the opposite.
Hence, there are sets of secrets C,D such that, taking into account Lemma 4
and Definition 11,

1. pair (C,D) is critical,
2. −1 = r−(s) = +1, for any s ∈ C,
3. −1 = r−(s) = −1, for any s ∈ D,

Note that the second statement implies C is empty. Thus, by Empty Set Axiom,
� C ‖ D, which contradicts the fact that (C,D) is a critical pair.

We are ready to show that P � A ‖ B. Indeed, by Definition 11, there is no run
r ∈ R such that ∀s ∈ A′ (r(s) = +1) and ∀s ∈ B′ (r(s) = −1). Hence, there is no
run r ∈ R such that ∀s ∈ A′ (r(s) = r+(s)) and ∀s ∈ B′ (r(s) = r−(s)). Finally,
since A′ ⊆ A and B′ ⊆ B, there is no run r ∈ R such that ∀s ∈ A (r(s) = r+(s))
and ∀s ∈ B (r(s) = r−(s)). Therefore, P � A ‖ B.

Lemma 6. If X � A ‖ B, then P � A ‖ B.

Proof. Assume that X � A ‖ B. Consider any two runs r1, r2 ∈ R. We need to
find a run r ∈ R such that ∀s ∈ A (r(s) = r1(s)) and ∀s ∈ B (r(s) = r2(s)).
Consider run r, defined as

r(s) =

⎧⎨⎩
r1(s) if s ∈ A
r2(s) if s ∈ B
0 otherwise

We will start by proving that run r is well-defined. For this, we need to show
that r1(s) = r2(s) if s ∈ A ∩ B. Indeed, consider any s ∈ A ∩ B. Note that
X � A ‖ B. Thus, by Lemma 2, X � s ‖ s. Hence, by Definition 9, V(s) = {0}.
Therefore, r1(s) = r2(s).

We now only need to show that r ∈ R. In other words, we need to show that
run r is not void. Assume the opposite. Hence, there are sets of secrets C,D ⊆ S
such that

1. (C,D) is a critical pair,
2. r(s) = +1, for any s ∈ C,
3. r(s) = −1, for any s ∈ D.

302 S.M. More and P. Naumov

Note that r(s) = 0 for any s /∈ A ∪B. Thus,

C = (C ∩A) ∪ (C ∩B) (2)

D = (D ∩A) ∪ (D ∩B) (3)

Case 1: (C∩A,D∩A) = (C,D). Thus, C ⊆ A and D ⊆ A. Hence r1(s) = r(s) =
+1, for any s ∈ C, and r1(s) = r(s) = −1, for any s ∈ D. Therefore, r1 is void,
which is a contradiction.

Case 2: (C ∩B,D ∩B) = (C,D). Similar to Case 1.

Case 3: (C ∩A,D ∩ A) �= (C,D) and (C ∩ B,D ∩B) �= (C,D). Since (C,D) is
a critical pair, these two statements imply that

X � C ∩A ‖ D ∩A (4)

and
X � C ∩B ‖ D ∩B. (5)

Note that by the assumption of the theorem, X � A ‖ B. Thus, by Lemma 2,

X � C ∩A,D ∩A ‖ C ∩B,D ∩B

By Exchange Axiom, using (4), (5), and Lemma 1,

X � C ∩A,C ∩B ‖ D ∩A,D ∩B

Taking in to account (2) and (3), X � C ‖ D, which contradicts the fact that
the pair (C,D) is critical.

Lemma 7. For any ψ ∈ Ψ , P � ψ if and only if ψ ∈ X.

Proof. We use induction on the structural complexity of ψ.

1. If ψ ≡ ⊥, then P � ⊥ and, since X is consistent, X � ⊥.
2. If ψ ≡ ψ1 → ψ2, then P � ψ if and only if P � ψ1 and P � ψ2. Thus, by the

induction hypothesis, P � ψ if and only if X � ψ1 and X � ψ2. Hence, since
X is a maximal and consistent set of formulas, P � ψ if and only if ψ ∈ X .

3. ψ ≡ A ‖ B. See Lemma 5 and Lemma 6.

Finally, we note that Theorem 2 follows from the previous lemma.

6 Axiom Independence

In this section we will prove that each of the axioms of the Logic of Secrets
is independent from the other axioms. This is done by defining non-standard
semantics for the independence predicate.

Theorem 3. Empty Set Axiom is not provable from the other axioms.

Proof. Consider a new semantics of the independence predicate under which
A ‖ B is false for all sets of secret variables A and B. Under this non-standard

An Independence Relation for Sets of Secrets 303

semantics, Empty Set Axiom is false, but Monotonicity, Public Knowledge, and
Exchange Axioms are true. Therefore, Empty Set Axiom is independent from
the other axioms.

Theorem 4. Monotonicity Axiom is not provable from the other axioms.

Proof. Fix an arbitrary secret variable s0. Consider a new semantics of the in-
dependence predicate under which A ‖ B is true if and only if at least one of
the following conditions is true:

1. A is empty,
2. B is empty,
3. s0 ∈ A ∪B.

Let us show that this definition satisfies Empty Set, Public Knowledge, and
Exchange axioms, and does not satisfy Monotonicity axiom.
Empty Set Axiom. A ‖ ∅ because ∅ is an empty set.
Public Knowledge Axiom. Assume that A ‖ A and B ‖ C. The first of these
statements implies that either A is empty or s0 ∈ A. If A is empty, then A,B =
B. Hence, B ‖ C implies A,B ‖ C. Suppose s0 ∈ A. Thus, s0 ∈ A ∪B ∪ C, and
therefore, A,B ‖ C.
Exchange Axiom. Assume that A,B ‖ C,D as well as A ‖ B and D ‖ C. If
s0 ∈ A ∪B ∪C ∪D, then A,C ‖ B,D is true. Suppose that s /∈ A ∪B ∪C ∪D.
Thus, A ‖ B and D ‖ C imply that one set out of A and B and one set out of
C and D are empty. If empty sets are A and C or B and D, then A,C ‖ B,D
is true. So, it will be sufficient to consider the case when A and D are empty or
B and C are empty.

1. First, consider the case where A and D are empty. Assumption A,B ‖ C,D
implies that B ‖ C. Hence, either B or C is empty. Therefore, either B ∪D
or A ∪ C is empty. Thus, A,C ‖ B,D.

2. Second, consider the case where B and C are empty. Assumption A,B ‖ C,D
implies that A ‖ D. Hence, either A or D is empty. Therefore, either A ∪C
or B ∪D is empty. Thus, A,C ‖ B,D.

Monotonicity Axiom. Let t and u be secret variables different from variable
s0. Consider any protocol P and sets A = {t}, B = {s0}, and C = {u}. By
definition, P � A,B ‖ C, but P � A ‖ C.

Theorem 5. Public Knowledge Axiom is not provable from the other axioms.

Proof. Consider a new semantics of the independence predicate under which
secret variables are interpreted as nodes of a certain undirected graph. Inde-
pendence predicate A ‖ B is true if and only if there is no crossing edge that
connects a node from set A with a node from set B. It is easy to see that Empty
Set Axiom and Monotonicity Axiom are true under this interpretation.
Exchange Axiom. Suppose that A,B ‖ C,D, as well as A ‖ B and D ‖ C. We
will need to show that A,C ‖ B,D. Assume the opposite: there is a crossing
edge e from A∪C to B ∪D. There are four cases to consider: (a) if e goes from

304 S.M. More and P. Naumov

A to B, then A ‖ B is false, (b) if e goes from A to D, then A,B ‖ C,D is false,
(c) if e goes from C to B, then A,B ‖ C,D is false, (d) if e goes from C to D,
then D ‖ C is false.
Public Knowledge Axiom. Finally, we will show that there is a graph G and sets
of nodes A, B, and C, for which A ‖ A → (B ‖ C → A,B ‖ C) is false. Let
graph G consist of only three nodes a, b, and c. Assume that (a, c) is the only
edge of this graph. Note that a ‖ a and b ‖ b are true, but a, b ‖ c is false.

Theorem 6. Secret Exchange Axiom is not provable from the other axioms.

Proof. Consider a non-standard semantics for independence predicate under
which A ‖ B stands for “set A is empty”. It is easy to see that Empty Set
Axiom, Monotonicity Axiom, and Public Knowledge Axiom are true under this
interpretation. At the same time, if sets A, B, and D are empty and set C is
not, then Exchange Axiom is false.

7 Conclusion

In this paper, we have introduced a logical system that describes properties of
independence between two sets of secret variables. Naturally, one can ask about
an independence predicate for three or more sets of secret variables. For example,
an independence predicate for three sets A, B, and C could be defined as

A ‖ B ‖ C ⇐⇒ ∀r1, r2, r3 ∃r (r =A r1 ∧ r =B r2 ∧ r =C r3).

We conclude with the observation that independence predicates that have more
than two sets of arguments can be expressed through the two-argument inde-
pendence predicate studied in this paper. For example, it can be shown that
A ‖ B ‖ C is logically equivalent to the conjunction (A ‖ B) ∧ (A,B ‖ C).

References

1. Sutherland, D.: A model of information. In: Proceedings of Ninth National Computer
Security Conference, pp. 175–183 (1986)

2. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Journal
on Selected Areas in Communications 21(1), 5–19 (2003)

3. Amtoft, T., Banerjee, A.: A logic for information flow analysis with an application to
forward slicing of simple imperative programs. Sci. Comput. Program. 64(1), 3–28
(2007)

4. Halpern, J., O’Neill, K.: Secrecy in multiagent systems. In: Proceedings of the Fif-
teenth IEEE Computer Security Foundations Workshop, pp. 32–46 (2002)

5. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. ACM Trans. Inf. Syst.
Secur. 12(1), 1–47 (2008)

6. MacKenzie, D.: Mechanizing Proof: Computing, Risk, and Trust. MIT Press, Cam-
bridge (2004)

7. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of IEEE Symposium on Security and Privacy, pp. 11–20 (1982)

8. Cohen, E.: Information transmission in computational systems. In: Proceedings of
Sixth ACM Symposium on Operating Systems Principles, Association for Comput-
ing Machinery, pp. 113–139 (1977)

Expressing Extension-Based Semantics Based on
Stratified Minimal Models

Juan Carlos Nieves1, Mauricio Osorio2, and Claudia Zepeda3

1 Universitat Politècnica de Catalunya
Software Department (LSI)

c/Jordi Girona 1-3, E08034, Barcelona, Spain
jcnieves@lsi.upc.edu

2 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com
3 Benemérita Universidad Atónoma de Puebla

Facultad de Ciencias de la Computación,
Puebla, Puebla, México
czepedac@gmail.com

Abstract. Extension-based argumentation semantics is a successful ap-
proach for performing non-monotonic reasoning based on argumentation
theory. An interesting property of some extension-based argumentation
semantics is that these semantics can be characterized in terms of logic
programming semantics. In this paper, we present novel results in this
topic. In particular, we show that one can induce an argumentation se-
mantics (that we call Stratified Argumentation Semantics) based on a
logic programming semantics that is based on stratified minimal mod-
els. We show that the stratified argumentation semantics overcome some
problems of extension-based argumentation semantics based on admissi-
ble sets and we show that it coincides with the argumentation semantics
CF2.

Keywords: Non-monotonic reasoning, extension-based argumentation
semantics and logic programming.

1 Introduction

Argumentation theory has become an increasingly important and exciting re-
search topic in Artificial Intelligence (AI), with research activities ranging from
developing theoretical models, prototype implementations, and application stud-
ies [3]. The main purpose of argumentation theory is to study the fundamental
mechanism, humans use in argumentation, and to explore ways to implement
this mechanism on computers.

Dung’s approach, presented in [6], is a unifying framework which has played
an influential role on argumentation research and AI. This approach is mainly
orientated to manage the interaction of arguments. The interaction of the ar-
guments is supported by four extension-based argumentation semantics: stable

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 305–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

306 J.C. Nieves, M. Osorio, and C. Zepeda

a b

a) b)

Fig. 1. In a), it is presented the graph representation of the argumentation framework:
〈{a, b}, {(a, a), (a, b)}〉. In b), it is presented the graph representation of the argumen-
tation framework: 〈{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉.

semantics, preferred semantics, grounded semantics, and complete semantics.
The central notion of these semantics is the acceptability of the arguments. It is
worth mentioning that although these argumentation semantics represents dif-
ferent pattern of selection of arguments, all these argumentation semantics are
based on the concept of admissible set.

An important point to remark w.r.t. the argumentation semantics based on
admissible sets is that these semantics exhibit a variety of problems which have
been illustrated in the literature [17,2,3]. For instance, let AF be the argumenta-
tion framework which appears in Figure 1-a. In this AF there are two arguments:
a and b. The arrows in the figure represent conflicts between the arguments. We
can see that the argument a is attacked by itself and the argument b is attacked
by the argument a. Some authors as Prakken and Vreeswijk [17] suggest in a
intuitive way, that one can expect that the argument b can be considered as an
acceptable argument since it is attacked by the argument a which is attacked by
itself. However, none of the argumentation semantics suggested by Dung is able
to infer the argument b as acceptable.

Another interesting argumentation framework which has been commented on
literature [17,2] is presented in Figure 1-b.

Some authors, as Prakken and Vreeswijk [17], Baroni et al [2], suggest that
the argument e can be considered as an acceptable argument since it is attacked
by the argument d which is attacked by three arguments: a, b, c. Observe that
the arguments a, b and c form a cyclic of attacks.

We can recognize two major branches for improving Dung’s approach. On the
one hand, we can take advantage of graph theory; on the other hand, we can
take advantage of logic programming with negation as failure.

With respect to graph theory, the approach suggested by Baroni et al, in
[2] is maybe the most general solution defined until now for improving Dung’s
approach. This approach is based on a solid concept in graph theory which is
a strongly connected component (SCC). Based on this concept, Baroni et al,
describe a recursive approach for generating new argumentation semantics. For
instance, the argumentation semantics CF2 suggested in [2] is able to infer the
argument b as an acceptable argument of the AF of Figure 1-a. Also CF2 regards
the argument e as an acceptable argument from the AF of Figure 1-b.

Extension-Based Semantics Based on Stratified Minimal Models 307

Since Dung’s approach was introduced in [6], it was viewed as a special form
of logic programming with negation as failure. For instance, in [6] it was proved
that the grounded semantics can be characterized by the well-founded semantics
[8], and the stable argumentation semantics can be characterized by the stable
model semantics [9]. Also in [4], it was proved that the preferred semantics can
be characterized by the p-stable semantics [16]. In fact, the preferred semantics
can be also characterized by the minimal models and the stable models of a
logic program [14]. By regarding an argumentation framework in terms of logic
programs, it has been shown that one can construct intermediate argumentation
semantics between the grounded and preferred semantics [12]. Also it is possible
to define extensions of the preferred semantics [15].

When we have a logic program which represents an argumentation framework,
it is natural to think that we can split this program into subprograms where each
subprogram could represents a part of an argumentation framework. The idea of
splitting a logic program into its component, in order to define logic programming
semantics, has been explored by some authors in logic programming [5]. For
instance, by splitting a logic program, Dix and Müller in [5] combine ideas of
the stable model semantics and the well-founded semantics in order to define a
skeptical logic programming semantics which satisfies the property of relevance
and the general principle of partial evaluation.

In this paper, we are going to explore the idea of splitting a logic program
into its components in order to achieve two main objectives:

1. To explore the definition of candidate argumentation semantics in terms of
logic programming semantics. In particular, we define an extension-based
argumentation semantics, that we call stratified argumentation semantics.
This semantics will be induced by the stratified minimal model semantics. We
will show that this new argumentation semantics coincides with CF2 which
is considered as the most acceptable argumentation semantics introduced in
[2].

2. To introduce a recursive construction which define a new logic programming
semantics, that we call stratified minimal models semantics. Based on the
construction of this semantics, we will show that there exists a family of logic
programming semantics that are always defined and satisfy the property of
relevance.

The rest of the paper is divided as follows: In §2, we present some basic
concepts w.r.t. logic programming and argumentation theory. In §3, we define the
stratified minimal model semantics and introduce our first main theorem. In §4,
we introduce the stratified argumentation semantics and present our second main
theorem of this paper. Finally in the last section, we present our conclusions.

2 Background

In this section, we define the syntax of the logic programs that we will use in
this paper and some basic concepts of logic programming semantics and argu-
mentation semantics.

308 J.C. Nieves, M. Osorio, and C. Zepeda

2.1 Syntax and Some Operations

A signature L is a finite set of elements that we call atoms. A literal is either
an atom a, called positive literal ; or the negation of an atom ¬a, called negative
literal. Given a set of atoms {a1, ..., an}, we write ¬{a1, ..., an} to denote the set
of atoms {¬a1, ...,¬an}. A normal clause, C, is a clause of the form

a ← b1 ∧ . . . ∧ bn ∧ ¬bn+1 ∧ . . . ∧ ¬bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m. In a slight abuse of
notation we will denote such a clause by the formula a ← B+ ∪ ¬B− where the
set {b1, . . . , bn} will be denoted by B+, and the set {bn+1, . . . , bn+m} will be
denoted by B−. We define a normal program P , as a finite set of normal clauses.
If the body of a normal clause is empty, then the clause is known as a fact and
can be denoted just by: a ←.

We write LP , to denote the set of atoms that appear in the clauses of P . We
denote by HEAD(P) the set {a|a ← B+, ¬B− ∈ P}.

A program P induces a notion of dependency between atoms from LP . We say
that a depends immediately on b, if and only if, b appears in the body of a clause
in P , such that a appears in its head. The two place relation depends on is the
transitive closure of depends immediately on. The set of dependencies of an atom
x, denoted by dependencies-of (x), corresponds to the set {a | x depends on a}.
We define an equivalence relation ≡ between atoms of LP as follows: a ≡ b if
and only if a = b or (a depends on b and b depends on a). We write [a] to denote
the equivalent class induced by the atom a.

Example 1. Let us consider the following normal program,
S = {e ← e, c ← c, a ← ¬b ∧ c, b ← ¬a ∧ ¬e, d ← b}.

The dependency relations between the atoms of LS are as follows:
dependencies-of (a) = {a, b, c, e}; dependencies-of (b) = {a, b, c, e}; dependencies-
of (c) = {c}; dependencies-of (d) = {a, b, c, e}; and dependencies-of (e) = {e}.
We can also see that, [a] = [b] = {a, b}, [d] = {d}, [c] = {c}, and [e] = {e}.

We take <P to denote the strict partial order induced by ≡ on its equivalent
classes. Hence, [a] <P [b], if and only if, b depends-on a and [a] is not equal to
[b]. By considering the relation <P , each atom of LP is assigned an order as
follows:

– An atom a is of order 0, if [a] is minimal in <P .
– An atom a is of order n+1, if n is the maximal order of the atoms on which

a depends.

We say that a program P is of order n, if n is the maximum order of its atoms.
We can also break a program P of order n into the disjoint union of programs
Pi with 0 ≤ i ≤ n, such that Pi is the set of rules for which the head of each
clause is of order i (w.r.t. P). We say that P0, . . . , Pn are the relevant modules
of P .

Extension-Based Semantics Based on Stratified Minimal Models 309

Example 2. By considering the equivalent classes of the program S in Example 1,
the following relations hold: {c, e} <S {a, b} <S {d}. We also can see that: a is
of order 1, d is of order 2, b is of order 1, e is of order 0, and c is of order 0. This
means that S is a program of order 2.

The following table illustrates how the program S can be broken into the
disjoint union of the following relevant modules S0, S1, S2:

S S0 S1 S2

e ← e. e ← e.
c← c. c ← c.
a← ¬b ∧ c. a ← ¬b ∧ c.
b← ¬a ∧ ¬e. b← ¬a ∧ ¬e.
d← b. d ← b.

Now we introduce a single reduction for any normal program. The idea of this
reduction is to remove from a normal program any atom which has already fixed
to some true value. In fact, this reduction is based on a pair of sets of atoms
〈T ;F 〉 such that the set T contains the atoms which can be considered as true
and the set F contains the atoms which can be considered as false. Formally,
this reduction is defined as follows:

Let A = 〈T ;F 〉 be a pair of sets of atoms. The reduction R(P,A) is obtained
by 4 steps:

1. We replace every atom x that occurs in the bodies of P by 1 if x ∈ T , and
we replace every atom x that occurs in the bodies of P by 0 if x ∈ F ;

2. we replace every occurrence of ¬1 by 0 and ¬ 0 by 1;
3. every clause with a 0 in its body is removed;
4. finally we remove every occurrence of 1 in the body of the clauses.

We want to point out that this reduction does not coincide with the Gelfond-
Lifschitz reduction [9].

Example 3. Let us consider the normal program S of Example 1. Let P be the
normal program S \ S0, and let A be the pair of sets of atoms 〈{c}; {e}〉. This
means that we obtain the following programs:

P : R(P,A):
a ← ¬b ∧ c. a ← ¬b.
b ← ¬a ∧ ¬e. b ← ¬a.
d ← b. d ← b.

2.2 Semantics

From now on, we assume that the reader is familiar with the single notion of
minimal model. In order to illustrate this basic notion, let P be the normal
program {a ← ¬b, b ← ¬a, a ← ¬c, c ← ¬a}. As we can see, P has
five models: {a}, {b, c}, {a, c}, {a, b}, {a, b, c}; however, P has just two minimal
models: {b, c}, {a}. We will denote by MM(P) the set of all the minimal models
of a given logic program P . Usually MM is called minimal model semantics.

310 J.C. Nieves, M. Osorio, and C. Zepeda

A semantics SEM is a mapping from the class of all programs into the power-
set of the set of (2-valued) models. SEM assigns to every program P a (possible
empty) set of (2-valued) models of P . If SEM(P) = ∅, then we informally say
that SEM is undefined for P .

Given a set of interpretations Q and a signature L, we define Q restricted to
L as {M ∩L |M ∈ Q}. For instance, let Q be {{a, c}, {c, d}} and L be {c, d, e},
hence Q restricted to L is {{c}, {c, d}}.

Let P be a program and P0, . . . , Pn its relevant modules. We say that a seman-
tics S satisfies the property of relevance if for every i, 0 ≤ i ≤ n, S(P0∪. . .∪Pi) =
S(P) restricted to LP0∪...∪Pi .

2.3 Argumentation Basics

Now, we present some basic concepts with respect to extended-based argumen-
tation semantics. The first concept that we consider is the one of argumentation
framework. An argumentation framework captures the relationships between the
arguments.

Definition 1. [6] An argumentation framework is a pair AF = 〈AR, attacks〉,
where AR is a finite set of arguments, and attacks is a binary relation on AR, i.e.
attacks ⊆ AR×AR. We write AFAR to denote the set of all the argumentation
frameworks defined over AR.

We say that a attacks b (or b is attacked by a) if (a, b) ∈ attacks holds. Usually an
extension-based argumentation semantics SArg is applied to an argumentation
framework AF in order to infer sets of acceptable arguments from AF . An
extension-based argumentation semantics SArg is a function from AFAR to 2AR.
SArg can be regarded as a pattern of selection of sets of arguments from a given
argumentation framework AF .

Given an argumentation framework AF = 〈AR, attacks〉, we will say that an
argument a ∈ AR is acceptable, if a ∈ E such that E ∈ SArg(AF).

3 Stratified Minimal Model Semantics

In this section, we introduce a constructive logic programming semantics, called
stratified minimal model semantics, which is based on minimal models. This
semantics has some interesting properties as: it satisfies the property of rele-
vance, and it agrees with the stable model semantics for the well-known class of
stratified logic programs (the proof of this property can be found in [12,13]).

In order to define the stratified minimal model semantics MM r, we define the
operator ∗ and the function freeTaut as follows:

– Given Q and L both sets of interpretations, we define Q ∗ L := {M1 ∪
M2 |M1 ∈ Q,M2 ∈ L}.

– Given a logic program P , freeTaut denotes a function which removes from
P any tautology.

Extension-Based Semantics Based on Stratified Minimal Models 311

The idea of the function freeTaut is to remove any clause which is equivalent
to a tautology in classical logic.

Definition 2. Given a normal logic program P , we define the sstratified mini-
mal model semantics MM r as follows: MM r(P) = MM r

c (freeTaut(P)∪{x ←
x | x ∈ LP \HEAD(P)} such that MM r

c (P) is defined as follows:

1. if P is of order 0, MM r
c (P) = MM(P).

2. if P is of order n > 0, MM r
c (P) =

⋃
M∈MM(P0){M}∗MM r

c (R(Q,A)) where
Q = P \ P0 and A = 〈M ;LP0 \M〉.

We call a model in MM r(P) a stratified minimal model of P .

Observe that the definition of the stratified minimal model semantics is based
on a recursive construction where the base case is the application of MM . It
is not difficult to see that if one changes MM by any other logic programming
semantics S, as the stable model semantics, one is able to construct a relevant
version of the given logic programming semantics (see [12,13] for details).

In order to introduce an important theorem of this paper, let us introduce
some concepts. We say that a normal program P is basic if every atom x that
belongs to LP , then x occurs as a fact in P . We say that a logic programming
semantics SEM is defined for basic programs, if for every basic normal program
P then SEM(P) is defined.

The following theorem shows that there exists a family of logic programming
semantics that are always defined and satisfy the property of relevance.

Theorem 1. For each semantics SEM that is defined for basic programs, there
exists a semantics SEM ′ that satisfies the following:

1. For every normal program P , SEM ′(P) is defined.
2. SEM ′ is relevant.
3. SEM ′ is invariant under adding tautologies.

An instantiation of SEM and SEM ′ of Theorem 1 are the semantics MM and
MM r respectively. Observe that essentially this theorem is suggesting that given
any logic programming semantics SEM , such as MM , that is defined for basic
program, one can construct a relative similar semantic SEM ′, such as MM r,
to SEM satisfying the three properties described in this Theorem 1.

4 Stratified Argumentation Semantics

In this section, we show that by considering the stratified minimal model seman-
tics, one can induce an argumentation semantics. In fact, we show that this new
argumentation semantics will take advantage of the properties of the stratified
minimal model semantics.

As the stratified minimal model semantics is a semantics for logic programs,
we require a function mapping able to construct a logic program from an argu-
mentation framework. Hence, let us introduce a simple mapping to regard an

312 J.C. Nieves, M. Osorio, and C. Zepeda

argumentation framework as a normal logic program. In this mapping, we use
the predicates d(x), a(x). The intended meaning of d(x) is: “the argument x is
defeated” (this means that the argument x is attacked by an acceptable argu-
ment), and the intended meaning of a(X) is that the argument X is accepted.

Definition 3. Let AF = 〈AR, attacks〉 be an argumentation framework, P 1
AF =

{d(a) ← ¬d(b1), . . . , d(a) ← ¬d(bn) | a ∈ AR and {b1, . . . , bn} = {bi ∈
AR | (bi, a) ∈ attacks}}; and P 2

AF =
⋃

a∈AR{a(a) ← ¬d(a)}. We define:
PAF = P 1

AF ∪ P 2
AF .

The intended meaning of the clauses of the form d(a) ← ¬d(bi), 1 ≤ i ≤ n, is that
an argument a will be defeated when anyone of its adversaries bi is not defeated.
Observe that, essentially, P 1

AF is capturing the basic principle of conflict-freeness
(this means that any set of acceptable argument will not contain two arguments
which attack each other). The idea P 2

AF is just to infer that any argument a that
is not defeated is accepted.

Example 4. Let AF be the argumentation framework of Figure 1-b. We can see
that PAF = P 1

AF ∪ P 2
AF is:

P 1
AF : P 2

AF :
d(a)← ¬d(b). a(a)← ¬d(a).
d(b)← ¬d(c). a(b)← ¬d(b).
d(c)← ¬d(a). a(c)← ¬d(c).
d(d)← ¬d(a). a(d)← ¬d(d).
d(d)← ¬d(b). a(e)← ¬d(e).
d(d)← ¬d(c).
d(e)← ¬d(d).

Two relevant properties of the mapping PAF are that the stable models of PAF

characterize the stable argumentation semantics and the well founded model of
PAF characterizes the grounded semantics [12].

Once we have defined a mapping from an argumentation framework into logic
programs, we are going to define a candidate argumentation semantics which is
induced by the stratified minimal model semantics.

Definition 4. Given an argumentation framework A, we define a stratified ex-
tension of AF as follows: Am is a stratified extension of AF if exists a stratified
minimal model M of PAF such that Am = {x|a(x) ∈M}. We write MM r

Arg(AF)
to denote the set of stratified extensions of AF . This set of stratified extensions
is called stratified argumentation semantics.

In order to illustrate the stratified argumentation semantics, we are going to
presents some examples.

Example 5. Let AF be the argumentation framework of Figure 1-b and PAF be
the normal program defined in Example 4. In order to infer the stratified argu-
mentation semantics, we infer the stratified minimal models of PAF . As we can
see PAF has three stratified minimal models : {d(a), d(b), d(d), a(c), a(e)}{d(b),
d(c), d(d), a(a), a(e)}{d(a), d(c), d(d), a(b), a(e)}, this means that AF has three

Extension-Based Semantics Based on Stratified Minimal Models 313

x

z d

u

y

Fig. 2. Graph representation of AF = 〈{x, y, z, u, d}, {(x, z), (z, y), (y, x), (u, x),
(z, d), (d, u)}〉

stratified extensions which are: {c, e}, {a, e} and {b, e}. Observe that the strati-
fied argumentation semantics coincides with the argumentation semantics CF2.

Let us consider another example.

Example 6. Let us consider the argumentation framework of Figure 2. It is not
difficult to obtain its PAF = P 1

AF ∪P 2
AF where P 1

AF and P 2
AF correspond to the

following programs:
P 1

AF : P 2
AF :

d(x)← ¬d(y). a(x)← ¬d(x).
d(y)← ¬d(z). a(y)← ¬d(y).
d(z)← ¬d(x). a(z)← ¬d(z).
d(x)← ¬d(u). a(d)← ¬d(d).
d(d)← ¬d(z). a(u)← ¬d(u).
d(u)← ¬d(d).

Now let us compute the argumentation semantics MM r
Arg. Since MM r(PAF)=

{ {d(y), d(z), d(u), a(x), a(d)}, {d(x), d(z), d(d), a(y), a(u)}, {d(u), d(x), d(z),
a(y), a(d)}, {d(x), d(y), d(d), a(z), a(u)} } then, MM r

Arg(AF) = { {x, d}, {y, u},
{y, d}, {z, u} }. Notice that MM r

Arg coincides with the argumentation semantics
CF2.

We are going to present our second main theorem of this paper. This theorem
formalizes that the stratified argumentation semantics and the argumentation
semantics CF2 coincide.

Theorem 2. Given an argumentation framework AF = 〈AR,Attacks〉, and
E ∈ AR, E ∈MM r

Arg(AF) if and only if E ∈ CF2(AF).

As final result of this paper, we show an important result w.r.t. the decision
problem of knowing if a set of arguments is a stratified extension.

Lemma 1. Given an argumentation framework AF = 〈AR,Attacks〉 and a set
of argument E ⊆ AR, the decision problem of knowing if E is a stratified exten-
sion of AF is polynomial time computable.

Observe that by this lemma and Theorem 2, one can infer that the decision
problem of knowing if a set of arguments belongs to CF2 is polynomial time
computable. Recall that on the other hand, the corresponding complexity deci-
sion problem for the preferred semantics is CO-NP-Complete [7].

314 J.C. Nieves, M. Osorio, and C. Zepeda

5 Conclusions

It is well-accepted that extension-based argumentation semantics is a promising
approach for performing non-monotonic reasoning. However, since in the litera-
ture of argumentation has been exhibited a variety of problems of some of the
existing argumentation semantics, nowadays it has increased the number of new
argumentation semantics in the context of Dung’s argumentation approach. We
have to recognize that many of these new argumentation semantics are only
motivated by particular examples, and also these introduced argumentation se-
mantics lack of logic foundations. In this paper, we show that one can induce
novel argumentation semantics by considering logic programming semantics. In
particular, we introduce a novel argumentation semantics (stratified argumenta-
tion semantics) based on a new logic programming semantics (stratified minimal
model semantics). In fact, we show that the stratified argumentation semantics
coincides with the argumentation semantics CF2 which was introduced in terms
of graph theory’s terms (Theorem 2). It is worth mentioning that the stratified
argumentation semantics is just one of the multiples candidate argumentation
semantics that can be induced by the family of logic programming semantics
identified by Theorem 1 (for more details about other new candidate argumen-
tation semantics see [12,13]).

An important property of the stratified argumentation semantics is that the
decision problem of knowing if a set of arguments is a stratified extension is
polynomial time computable. This means that this semantics is computationally
less expensive than the preferred semantics. This result also suggests that the
decision problem of knowing if a set of arguments belongs to CF2 is polynomial
time computable. We believe that the study of argumentation semantics in terms
of logic programming semantics could help to explore the non-monotonic prop-
erties of the argumentation semantics. The study of non-monotonic properties
of an argumentation semantics could suggests some guidelines in order to find
suitable argumentation semantics for the applications of these to real domains.

Acknowledgement

We are grateful to anonymous referees for their useful comments. We would
like to acknowledge support from the EC founded project ALIVE (FP7-IST-
215890). The views expressed in this paper are not necessarily those of the
ALIVE consortium.

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, Heidelberg (2008)

2. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for
argumentation semantics. Artificial Intelligence 168, 162–210 (2005)

3. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171(10-15), 619–641 (2007)

Extension-Based Semantics Based on Stratified Minimal Models 315

4. Carballido, J.L., Nieves, J.C., Osorio, M.: Inferring Preferred Extensions by Pstable
Semantics. Iberoamerican Journal of Artificial Intelligence (Inteligencia Artifi-
cial) 13(41), 38–53 (2009)

5. Dix, J., Müller, M.: Partial evaluation and relevance for approximations of stable
semantics. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp.
511–520. Springer, Heidelberg (1994)

6. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

7. Dunne, P.E., Bench-Capon, T.J.: Coherence in finite argument systems. Artificial
Intelligence 141(1), 187–203 (2002)

8. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM 38(3), 620–650 (1991)

9. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming.
In: Kowalski, R., Bowen, K. (eds.) 5th Conference on Logic Programming, pp.
1070–1080. MIT Press, Cambridge (1988)

10. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic program-
ming. In: Gabbay, D., Hogger, C.J., Robinson, J.A. (eds.) Handbook in Artificial
Intelligence and Logic Programming, vol. 5, pp. 235–324. Oxford University Press,
Oxford (1998)

11. Kakas, A.C., Mancarella, P.: Generalized stable models: A semantics for abduction.
In: ECAI, pp. 385–391 (1990)

12. Nieves, J.C.: Modeling arguments and uncertain information — A non-monotonic
reasoning approach. PhD thesis, Software Department (LSI), Technical University
of Catalonia (2008)

13. Nieves, J.C., Osorio, M.: A General Schema For Generating Argumentation Seman-
tics From Logic Programming Semantics. Research Report LSI-08-32-R, Technical
University of Catalonia, Software Department, LSI (2008),
http://www.lsi.upc.edu/dept/techreps/buscar.php

14. Nieves, J.C., Osorio, M., Cortés, U.: Preferred Extensions as Stable Models. Theory
and Practice of Logic Programming 8(4), 527–543 (2008)

15. Nieves, J.C., Osorio, M., Cortés, U., Olmos, I., Gonzalez, J.A.: Defining new
argumentation-based semantics by minimal models. In: Seventh Mexican Interna-
tional Conference on Computer Science (ENC 2006), pp. 210–220. IEEE Computer
Society Press, Los Alamitos (2006)

16. Osorio, M., Navarro, J.A., Arrazola, J.R., Borja, V.: Logics with Common Weak
Completions. Journal of Logic and Computation 16(6), 867–890 (2006)

17. Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: Gabbay,
D., Günthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp.
219–318. Kluwer Academic Publishers, Dordrecht (2002)

Appendix A: Proof of Theorem 1

Proof. The proof is by construction.
First of all, we recall some definitions about the notion of generalized S model.
Let S be a logic programming semantics, P be a logic program and A be a set

of atoms (called abductives) such that A ⊆ LP . We say that MB is a generalized

http://www.lsi.upc.edu/dept/techreps/buscar.php

316 J.C. Nieves, M. Osorio, and C. Zepeda

S model1 of P with respect to A if M ∈ S(P ∪B) where B ⊆ A and M ⊆ LP .
It is also possible to define a partial order between generalized S models (with
respect to A) of a program according to the set inclusion with respect to the
subindex B. We say that M is a minimal generalized S model of P with respect
to A if there exists a set of atoms B, such that MB is a generalized S model of
P with respect to A and MB is minimal with respect to the partial order just
defined.

We write S∗ to denote the minimal generalized S semantics, where A = LP .
Namely S∗(P) is the collection of minimal generalized S models of P with respect
to LP . Observe that in our definition we are not instantiating the definition to
a particular logic programming semantics.

It is immediate to verify that for every semantics S and program P , S∗(P) is
defined.

Now, let S be a semantics that is always defined. We define the associate Sr

semantics recursively as follow: Given a program P of order 0, Sr(P) = S(P).
For a program P of order n > 0 we define Sr(P) =

⋃
M∈S(P0){M}∗Sr(R(Q,A))

where Q = P \ P0 and A = 〈M ;LP0 \M〉.
Note that if S is always defined then Sr is always defined. More over Sr is

relevant by construction.
Our final semantics is the following: Let P be a normal program. Let

freetaut(P) be program P after removing every tautology. Let tautp(P) =
freetaut(P) ∪ {x ← x : x ∈ LP }. Then

S′(P) = S∗
r

(tautp(P)).

Clearly S′(P) is always defined and relevant and invariant under adding tau-
tologies.

Appendix B: Proof of Theorem 2

In order to present the proof of Theorem 2, we are going to present some defini-
tions w.r.t. the argumentation semantics CF22, and we are going to show some
lemmas.

Definition 5. A set S of arguments is said to be conflict-free if there are no
arguments a, b in S such that a attacks b.

We will denote by max conflict freeSets(AF) the set of maximal conflict free
sets (w.r.t. set inclusion) of an argumentation framework AF .

Given an argumentation framework AF = 〈AR, attacks〉, the binary relation
of path-equivalence between nodes, denoted as PEAF ⊆ (AR × AR), is defined
as follows:
— ∀α ∈ AR, (α, α) ∈ PEAF ,
1 The concept of generalized S model is closely related to the semantics of abductive

logic programming [11,10], in particular to the concept of generalized answer set.
2 The details of these definitions are presented in [2].

Extension-Based Semantics Based on Stratified Minimal Models 317

— given two distinct nodes α, β ∈ AR, (α, β) ∈ PEAF if and only if there is a
path from α to β and a path from β to α.

Given an argumentation framework AF = 〈AR, attacks〉, the strongly con-
nected components of AF are the equivalence classes of nodes under the relation
of path-equivalence. The set of the strongly connected components of AF is de-
noted as SCCSAF . Given a node α ∈ AR, the strongly connected component α
belongs to is denoted as SCCAF (α).

Now, given an argumentation framework, let AF = 〈AR, attacks〉, and S ⊆
AR, the restriction of AF to S is the argumentation frameworkAF↓S=〈S,attacks∩
(S × S)〉.

Considering an argumentation framework, AF = 〈AR, attacks〉, a set E ⊆ AR
and a strongly connected component S ∈ SCCSAF , the set DAF (S,E) consists
of the nodes of S attacked by E from outside S, the set UAF (S,E) consists of
the nodes of S that are not attacked by E from outside S and are defended by
E (i.e., their defeaters from outside S are all attacked by E), and PAF (S,E)
consists of the nodes of S that are not attacked by E from outside S and are not
defended by E (i.e., at least one of their defeaters from outside S is not attacked
by E). Finally, UPAF (S,E) = (S \DAF (S,E)) = (UAF (S,E) ∪ PAF (S,E)).

Here, we define GF (AF,C) for an argumentation frameworkAF=〈AR, attacks〉
and a set C ⊆ A, representing the defended nodes of AF: two cases have to be
considered in this respect.

If AF consists of exactly one strongly connected component, it does not admit
a decomposition where to apply the directionality principle, therefore it has to
be assumed that GF (AF,C) coincides in this case with a base function, denoted
as BFS(AF,C), that must be assigned in order to characterize a particular
argumentation semantics S.

On the other hand, if AF can be decomposed into several strongly connected
components, then, GF (AF,C) is obtained by applying recursively GF to each
strongly connected component of AF , deprived of the nodes in DAF (S,E). For-
mally, this means that for any S ∈ SCCSAF , (E∩S) ∈ GF (AF ↓UPAF (S,E), C

′),
where C′ represents the set of defended nodes of the restricted argumentation
framework AF ↓UPAF (S,E). The set C′ can be determined taking into account
both the attacks coming from outside AF and those coming from other strongly
connected components of AF.

Definition 6. A given argumentation semantics S is SCC-recursive if and only
if for any argumentation framework AF=〈AR, attacks〉, ES(AF)=GF (AF,AR),
where for any AF = 〈AR, attacks〉 and for any set C ⊆ AR, the function
GF (AF,C) ⊆ 2AR is defined as follows: for any E ⊆ AR, E ∈ GF (AF,C)
if and only if

– in case |SCCSAF | = 1, E ∈ BFS(AF,C),
– otherwise,∀S ∈ SCCSAF (E ∩ S) ∈ GF (AF ↓UPAF (S,E) , UAF (S,E) ∩ C).

where BFS(AF,C) is a function, called base function, that, given an argumenta-
tion framework AF = 〈AR, attacks〉 such that |SCCSAF | = 1 and a set C ⊆ AR,
gives a subset of 2AR.

318 J.C. Nieves, M. Osorio, and C. Zepeda

Observe that Definition 6 does not define any particular semantics, essentially
it defines a general schema for defining argumentation semantics. In particular,
when BFS(AF,C) is instantiated by the function which returns the maximal
conflict free sets of AF w.r.t. C, Definition 6 defines CF2.

The following lemma shows that the number of strongly connected compo-
nents of an argumentation framework AF is the same to the number of compo-
nents of the normal logic program PAF .

Lemma 2. Let AF be an argumentation framework. If PAF = P 1
AF ∪P 2

AF such
that P 1

AF is of order n, then |SCCAF | = n + 1.

Proof. (sketch) Since the number of components of P 1
AF depends on the number

of equivalent classes of atoms in LPAF and the number of strongly connected
components depends on the number of equivalent classes of nodes in PEAF , the
proof follows from that fact that:

– The number of equivalent classes of atoms induced by the relation depends
on in LPAF is the same to the number of classes of nodes induces by the
relation path-equivalence in PEAF .

Lemma 3. Let AF = 〈AR,Attacks〉 be an argumentation framework. If PAF =
P 1
AF ∪ P 2

AF such that P 1
AF is of order 0, then E ∈ max conflict freeSets(AF)

if and only if {a(a)|a ∈ E} ∪ {d(a)|a ∈ AR \ E} is a minimal model of PAF .

Proof. Observations:

1. M is a minimal model of PAF if and only if there exists M1 and M2 such
that M = M1 ∪M2, M1 is a minimal model of P 1

AF and M2 = {a(a)|a(a) ←
¬d(a) ∈ P 2

AF , d(a) /∈M1}.
2. If E is a conflict free set of AF , then M = {d(a)|a ∈ AR \ E} is a model of

P 1
AF .

3. If M is a model of P 1
AF , then E = {a|a(a) ∈M} is a conflict free set of AF .

=> If E is a maximal conflict free set of AF , then, by Proposition 1 of [14] and
Observation 2, M1 = {d(a)|a ∈ AR \E} is a minimal model of P 1

AF . Hence,
by Observation 1, M1 ∪ {a(a)|a ∈ E} is a minimal model of PAF .

<= If M = M1 ∪M2 such that E ⊆ AR, M1 = {d(a)|a ∈ AR \ E}, M2 =
{a(a)|a ∈ E} and M is a minimal model of PAF , hence by Observation 1,
M1 is a minimal model of P 1

AF . Therefore, by Observation 3 and Proposition
1 of [14], E is a maximal conflict free of AF .

Given the set of strongly connected components SCC(AF), we denote by ≤SCC

the partial order between strongly connected components defined in [2]. This
partial order is induced by the so called directionality principle and the relation
of attack between set of arguments.

Extension-Based Semantics Based on Stratified Minimal Models 319

Main Proof

Proof. Theorem 2. (sketch) Since the construction of both semantics is recur-
sive, the proof is by induction w.r.t. the number of components n of the normal
logic program PAF .

Base Step. If n = 0, then AF has just one strongly connected component
(Lemma 2); hence, MM r

Arg(AF) = CF2(AF) by Lemma 3.
Inductive Step. If n > 0, then the proof follows from the following observa-

tions:
1. The partial order ≤SCC and the partial order <P define equivalent

classes of sets of arguments of AF and atoms in LPAF respectively.
2. The base function for the construction of MM r

Arg and CF2(AF) are
equivalent (Lemma 3).

Appendix C: Proof of Lemma 1

Proof. Lemma 1. (sketch)
The proof follows from the following observations:

1. By the definition of the stratified argumentation semantics, the decision of
knowing if the set of arguments E is a stratified extension of AF is reduced
to the decision problem of knowing if a given set of atoms M is a minimal
model of a logic program P (it is a consequence of the base case of the
recursive function MM r

c (P), see Definition 2).
2. Since there is a relationship between minimal models and logic consequence

(see Lemma 1 of [14]), the decision problem of knowing if M ⊆ LPAF is a
minimal model of PAF can be reduced to the decision problem of 2-UNSAT.

3. It is known that the decision problem of 2-UNSAT is polynomial time com-
putable [1].

Deep Inference in Bi-intuitionistic Logic

Linda Postniece

Logic and Computation Group
College of Computer Science and Engineering

The Australian National University
Linda.Postniece@anu.edu.au

Abstract. Bi-intuitionistic logic is the extension of intuitionistic logic
with exclusion, a connective dual to implication. Cut-elimination in bi-
intuitionistic logic is complicated due to the interaction between these
two connectives, and various extended sequent calculi, including a display
calculus, have been proposed to address this problem.

In this paper, we present a new extended sequent calculus DBiInt for
bi-intuitionistic logic which uses nested sequents and “deep inference”,
i.e., inference rules can be applied at any level in the nested sequent. We
show that DBiInt can simulate our previous “shallow” sequent calculus
LBiInt. In particular, we show that deep inference can simulate the resid-
uation rules in the display-like shallow calculus LBiInt. We also consider
proof search and give a simple restriction of DBiInt which allows termi-
nating proof search. Thus our work is another step towards addressing
the broader problem of proof search in display logic.

1 Introduction

Bi-intuitionistic logic (BiInt) is the extension of intuitionistic logic with exclu-
sion −< (also known as “subtraction” and “co-implication”), a connective dual
to implication →. In a sequent calculus setting, the left-introduction rule for
exclusion is dual to the right introduction rule for implication:

A ⇒ B,Δ −<L
A−<B ⇒ Δ

Γ,A ⇒ B →R
Γ ⇒ A → B

BiInt was first studied by Rauszer as a Hilbert calculus with algebraic and
Kripke semantics [13]. More recently, Crolard has investigated applications of
BiInt to type theory [3]. The duality between implication and exclusion also
makes it interesting to study BiInt purely from a proof-theoretic point of view,
since cut-elimination in BiInt is non-trivial. That is, the only cut-free calculi for
BiInt either use extended sequent mechanisms such as labels [12], variables [6]
or nested sequents [8], or display calculi that rely on residuation [5].

In this paper we follow up on our previous work on nested sequent calculi for
BiInt [8], as well as our more recent work on deep inference for tense logics [7].
Nested sequents are structures that can be seen as trees of traditional sequents,
and have been studied, among others, by Kashima [11] and Brünnler [2] in the

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 320–334, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Deep Inference in Bi-intuitionistic Logic 321

context of classical modal and tense logics. Nested sequent calculi allow either
“shallow” or “deep” inference: in shallow inference calculi inference rules are
applied at the top level only, and residuation rules are used to re-orient the
trees to bring the required structures to the top-level. In deep inference calculi,
inference rules can be applied at any level, and propagation rules move formulae
around the trees. We are not aware of any nested sequent calculi for intuitionistic
logics that use deep inference, although there has been work on deep inference
in the calculus of structures for intuitionistic logic [14]; see Section 6 for details.

In [7], we showed that deep inference in nested sequents for tense logic can
simulate the residuation rules of a shallow inference nested sequent calculus.
Since BiInt is the intuitionistic analog of tense logic, a natural question is whether
deep inference can be applied to BiInt. We address this question here, and show
that indeed we can simulate residuation using deep inference for BiInt.

More precisely, we show that residuation, an operation on the trees encoded
in nested sequents, can be simulated by propagation rules, which only move
formulae between the nodes rather than change the shape of the trees. Due to
the intuitionistic nature of the logic, some differences from [7] arise. Namely, we
introduce the concept of polarity, and some rules are only applicable in positive
or negative sub-structures, rather than general sub-structures as in tense logic.

The rest of the paper is organised as follows. First, in Section 2, we give
the syntax of BiInt as well as our nested sequent structures. We then present
two nested sequent calculi for BiInt in Section 3: we recall the shallow inference
calculus LBiInt [8] and give a new deep inference calculus DBiInt. In Section 4,
we show that provability in DBiInt is equivalent to provability in LBiInt,
which is the central result of our paper. The non-trivial part is showing that
the residuation rules of LBiInt can be simulated by the propagation rules and
deep inference of DBiInt. In Section 5, we give a simple restriction of DBiInt
that allows terminating backward proof search. In Section 6, we describe related
work and outline future work. The Appendix contains more detailed proofs.

2 Nested Sequents

The formulae of BiInt are built from a set of atoms Atoms according to the
following grammar, where p ∈ Atoms:

A := p | � | ⊥ | A → A | A−<A | A ∧A | A ∨A.

A structure is defined by the following grammar, where A is a BiInt formula:

X := ∅ | A | (X,X) | X �X.

The structural connective “,” (comma) is associative and commutative and ∅
is its unit. We always consider structures modulo these equivalences. To reduce
parentheses, we assume that “,” binds tighter than “�”. Thus, we write X,Y �Z
to mean (X,Y) � Z. If X and Y are structures, then X � Y is a nested deep
sequent, and X ⇒ Y is a nested shallow sequent.

322 L. Postniece

A context is a deep sequent with a single hole, and is written Σ[]. We write
Σ[X] to denote the sequent that results from filling the hole in Σ[] with X . For
example, if Σ1[] = Z1 � [], Z2 then Σ1[X1 � Y1] = Z1 � (X1 � Y1), Z2.

A hole in a context can have either negative or positive polarity. If X, [] � Y
is a substructure of Σ, then Σ[] is a negative context and we write Σ−[]. If
X � [], Y is a substructure of Σ, then Σ[] is a positive context and we write Σ+[].
For example, Σ−[] = X1 � ([] � Y1) is a negative context and Σ+[] = (X1 � []) � Y1
is a positive context.

We define the immediate super-structure of a context as:
︷︸︸︷
Σ[] = X � Y

such that X � Y is a sub-structure of Σ and X = [], X ′ for some structure
X ′ or Y = [], Y ′ for some structure Y ′. We define the top-level formulae of a
structure as: {X} = {A | X = (A, Y) for some A and Y }. For example, if Σ[] =

A,B�C, (D, (E �F)� []), then
︷ ︸︸ ︷
Σ[G] = (D, (E�F)�G), and {D, (E�F)} = {D}.

While deep inference allows us to “zoom-in” to any sub-structure deep inside
the nested sequent, the concept of an immediate super-structure acts the op-
posite way in that it allows us to “zoom-out” from a context to its immediate
surrounding nested structure. This will be useful when we restrict our rules for
terminating proof-search, allowing us to impose local checks on the rules.

3 Nested Sequent Calculi

We now present the two nested sequent calculi that we will use in the rest of
the paper: the shallow inference calculus LBiInt from our previous work [8] and
a new deep inference calculus DBiInt. We repeat the rules of LBiInt here to
make the present paper self-contained, see [8] for the full details.

Fig. 1 gives the rules of the cut-free fragment of LBiInt (LBiInt has cut-
elimination). Central to this calculus is the idea that inference rules can only
be applied to formulae at the top level of nested sequents, and the structural
rules sL, sR, �L and �R are used to bring the required sub-structures to the
top level. These rules, very similar to residuation postulates in display logic,
are essential for the cut-elimination proof of LBiInt, however, they contain too
much non-determinism for effective proof search.

Note that we have changed the notation slightly from [8] for an expository
purpose: we are using � as the only structural connective, while the original
LBiInt had < in negative sub-structures and > in positive sub-structures. Also,
the �L and �R rules contained an implicit weakening which we have removed here.
We also use ⇒ for the sequent turnstile, reserving � for denoting provability. That
is, we write �LBiInt Π : X ⇒ Y to mean that there exists an LBiInt-derivation
Π of the sequent X ⇒ Y .

Fig. 2 gives the rules of our new deep inference calculus DBiInt. Here the
inference rules can be applied at any level of the nested sequent, indicated by
the use of contexts. Notably, there are no residuation rules; indeed the main goal
of our paper is to show that the residuation rules of LBiInt can be simulated by
deep inference and propagation rules in DBiInt. We write �DBiInt Π : X � Y
to mean that there exists a DBiInt-derivation Π of the sequent X � Y .

Deep Inference in Bi-intuitionistic Logic 323

Identity and logical constants:

id
X, A ⇒ A,Y

⊥L
X,⊥ ⇒ Y

�R
X ⇒ �, Y

Structural rules:

X ⇒ Y wL
X, A ⇒ Y

X ⇒ Y wR
X ⇒ A, Y

X, A, A ⇒ Y
cL

X, A ⇒ Y

X ⇒ A,A, Y
cR

X ⇒ A, Y

(X1 � Y1), X2 ⇒ Y2
sL

X1, X2 ⇒ Y1, Y2

X1 ⇒ Y1, (X2 � Y2)
sR

X1, X2 ⇒ Y1, Y2

X2 ⇒ Y2, Y1
�L

(X2 � Y2)⇒ Y1

X1, X2 ⇒ Y2
�R

X1 ⇒ (X2 � Y2)
Logical rules:

X, Bi ⇒ Y ∧L i ∈ {1, 2}
X, B1 ∧B2 ⇒ Y

X ⇒ A, Y X ⇒ B, Y ∧R
X ⇒ A ∧B, Y

X, A ⇒ Y X, B ⇒ Y ∨L
X, A ∨ B ⇒ Y

X ⇒ Bi, Y ∨R i ∈ {1, 2}
X ⇒ B1 ∨B2, Y

X ⇒ A,Y X, B ⇒ Y →L
X, A → B ⇒ Y

X, A ⇒ B →R
X ⇒ A → B, Y

A ⇒ B, Y −<L
X, A−<B ⇒ Y

X ⇒ A, Y X, B ⇒ Y −<R
X ⇒ A−<B, Y

Fig. 1. LBiInt: a shallow inference system for BiInt

We write |Π | for the height of a derivation, i.e., the number of sequents on the
longest branch, where Π is either an LBiInt-derivation or a DBiInt-derivation.

3.1 Examples

We give two examples to illustrate the difference between shallow inference in
LBiInt and deep inference in DBiInt.

Example 1. The following is a derivation of Uustalu’s formula [12] in LBiInt:

idp ⇒ q, p idp, q ⇒ q −<Rp ⇒ q, p−<q
�L

p � q ⇒ p−<q
wL

p � q, r ⇒ p−<q
id

(p � q), r ⇒ r ∧R
(p � q), r ⇒ (p−<q) ∧ r →R

p � q ⇒ r → ((p−<q) ∧ r)
sL

p ⇒ q, r → ((p−<q) ∧ r)

This example uses the rules �L and sL to bring the required sub-structures to
the top-level to apply the inference rules.

324 L. Postniece

Identity and logical constants:

id
Σ[X, A � A,Y]

⊥L
Σ−[⊥]

�R
Σ+[�]

Propagation rules:

Σ−[{X}, (X � Y)]
�L1

Σ−[X � Y]

Σ+[(X � Y), {Y }]
�R1

Σ+[X � Y]

Σ[X � (W, ({X}, Y � Z))]
�L2

Σ[X � (W, (Y � Z))]
Σ[((X � Y, {Z}), W) � Z]

�R2
Σ[((X � Y), W) � Z]

Logical rules:

Σ−[A ∨B, A] Σ−[A ∨B, B]
∨L

Σ−[A ∨B]

Σ+[A ∨B, A, B]
∨R

Σ+[A ∨B]

Σ−[A ∧B, A, B]
∧L

Σ−[A ∧B]

Σ+[A ∧B, A] Σ+[A ∧B, B]
∧R

Σ+[A ∧B]

Σ−[A−<B, (A � B)]
−<L

Σ−[A−<B]

Σ+[A → B, (A � B)] →R

Σ+[A → B]

Σ[X, A → B � A, Y] Σ[X, A → B, B � Y] →L
Σ[X, A → B � Y]

Σ[X � Y, A−<B, A] Σ[X, B � Y, A−<B]
−<R

Σ[X � Y,A−<B]

Fig. 2. DBiInt: a deep inference system for BiInt

Example 2. The following is a derivation of Uustalu’s formula in DBiInt where
we abbreviate A = r → ((p−<q) ∧ r), B = (p−<q) ∧ r and X = p, r � B, p−<q
to save space. For readability, we draw a box around the structure that the
inference rule is applied to, unless it is the top-level structure:

id
p q, A,X,B, p−<q, p

id
p, q q, A,X, B, p−<q

−<R
p q, A,X, B, p−<q

 R1

p q,A, (p, r B, p−<q)
id

p q, A, (p, r B, r)
∧R

p q,A, (p, r (p−<q) ∧ r)
 L2

p q, A, (r (p−<q) ∧ r) →R
p q, r → ((p−<q) ∧ r)

This example uses deep inference to apply the inference rules at any level.
The formula propagation rules �R1 and �L2 ensure that the required formulae
are propagated to the appropriate sub-structure.

Deep Inference in Bi-intuitionistic Logic 325

4 Soundness and Completeness of DBiInt

4.1 Soundness of DBiInt

We first show that the propagation rules of DBiInt can be derived in LBiInt
using residuation. This is not a surprising result, since the residuation rules in
display logics are used exactly for the purpose of displaying and un-displaying
sub-sequents so that inference rules can be applied to them.

Theorem 1 (Soundness). For any structures X and Y , if �DBiInt Π : X �Y
then �LBiInt Π

′ : X ⇒ Y .

Proof. By induction on |Π |. We show one interesting case. The given DBiInt-
derivation is on the left, and we obtain the LBiInt-derivation on the right, where
Π ′

1 is obtained by the induction hypothesis (IH).

Π1

X � (Y1 � Y2), {Y2} �R1
X � (Y1 � Y2)

�

Π ′
1

X ⇒ (Y1 � Y2), {Y2} sR
X,Y1 ⇒ Y2, {Y2} cR

X,Y1 ⇒ Y2 �R
X ⇒ (Y1 � Y2)

4.2 Completeness of DBiInt

Our aim is to show that DBiInt is complete w.r.t. LBiInt. But first we state
some basic lemmas, which can all be proved using simple induction on |Π |.

Lemma 1 (Admissibility of general weakening). For any structures X and
Y : if �DBiInt Π : Σ[X] then �DBiInt Π

′ : Σ[X,Y] such that |Π ′| ≤ |Π |.

Lemma 2 (Invertibility). All DBiInt rules are invertible: if the conclusion
is derivable, so are all the premises.

Lemma 3 (Admissibility of formula contraction). For any structure X
and formula A: if �DBiInt Π : Σ[X,A,A] then �DBiInt Π

′ : Σ[X,A].

Corollary 1. For any structure X, if �DBiInt Π : Σ[X, {X}] then �DBiInt Π
′ :

Σ[X].

We now show that the residuation rules of LBiInt are admissible in DBiInt;
that is, they can be simulated by the propagation rules of DBiInt. Lemmas 4
to 7 are proved by induction on |Π |. We show some interesting cases, where Π
ends with a propagation rule.

Lemma 4 (Admissibility of sL). If �DBiInt Π : (X �Y), Z �W then �DBiInt
Π ′ : X,Z � Y,W .

326 L. Postniece

Proof. Suppose Π ends as below left. Then we obtain a derivationΠ ′
1of X,{X},Z�

Y,W from the IH, and a derivation Π ′′
1 of X,Z �Y,W from Corollary 1 and Π ′

1.
Then the derivation on the right gives the required:

Π1

{X}, (X � Y), Z � W
�L1

(X � Y), Z � W

�
Π ′′

1

X,Z � Y,W

Lemma 5 (Admissibility of sR). If �DBiInt Π : X �Y, (Z �W) then �DBiInt

Π ′ : X,Z � Y,W .

Lemma 6 (Admissibility of �L). If �DBiInt Π : X � Y,Z then �DBiInt Π ′ :
(X � Y) � Z.

Lemma 7 (Admissibility of �R). If �DBiInt Π : X,Y � Z then �DBiInt Π
′ :

X � (Y � Z).

Proof. Suppose Π ends as below left. Then we obtain a derivation Π ′
1 of (X1 �

X2, {Z}) � (Y � Z) from the IH, and a derivation Π ′′
1 of (X1 � X2, {Z}) � ((Y �

Z), {Z}) from Lemma 1 and Π ′
1. Then the derivation on the right gives the

required:

Π1

(X1 � X2, {Z}), Y � Z
�R2

(X1 � X2), Y � Z

�

Π ′′
1

(X1 � X2, {Z}) � ((Y � Z), {Z})
�R2

(X1 � X2) � ((Y � Z), {Z})
�R1

(X1 � X2) � (Y � Z)

Lemma 8 (Admissibility of general contraction). For any structures X
and Y : if �DBiInt Π : Σ[X,Y, Y] then �DBiInt Π

′ : Σ[X,Y].

Proof. By induction on the size of Y . The interesting case is when Y = (Y1 �Y2).
This can be reduced to contractions on Y1 and Y2, which are admissible by the
IH; Y1 � Y2 can then be reconstructed using Lemmas 4 to 7.

Theorem 2 (Completeness). For any structures X and Y , if �LBiInt Π :
X ⇒ Y then �DBiInt Π

′ : X � Y .

Proof. By induction on |Π |. We illustrate one case where Π ends in a logical rule
application and one where Π ends in a structural rule application. The other
interesting cases use Lemmas 4 to 7.

– Suppose Π is as below left. Then we first obtain DBiInt-derivations Π ′
1 and

Π ′
2 of X � A, Y and X,B � Y respectively from the IH. Second, we obtain

Π ′′
1 and Π ′′

2 by Lemma 1 from Π ′
1 and Π ′

2. Finally, the required DBiInt-
derivation is as below right:

Π1

X ⇒ A, Y

Π2

X, B ⇒ Y →L
X, A → B ⇒ Y

�

Π ′′
1

X, A → B � A, Y

Π ′′
2

X, A → B, B � Y →L
X, A → B � Y

Deep Inference in Bi-intuitionistic Logic 327

– Suppose Π is as below left. Then we first obtain a DBiInt-derivation Π ′
1 of X, Y �Z

by the IH. Second, we obtain a DBiInt-derivation Π ′′
1 of X � (Y � Z) from Π ′

1 by
Lemma 7. Then the required DBiInt-derivation is as below right:

Π1

X, Y ⇒ Z
�R

X ⇒ (Y � Z)
�

Π ′′
1

X � (Y � Z)

Theorem 3. For any structures X and Y , �LBiInt Π : X ⇒ Y if and only if
�DBiInt Π

′ : X � Y .

Proof. By Theorems 1 and 2.

5 Proof Search

Naive proof search in DBiInt does not terminate. Consider the following proof
attempt fragment, where X = (A → B) → C, (D → E) → F and we only show
the left premise of each →L rule instance:

...
X � G,A → B, (X,A � B,D → E, (X,A,D � E,A → B, (A � B))) →R

X � G,A → B, (X,A � B,D → E, (X,A,D � E,A → B))
→L

X � G,A → B, (X,A � B,D → E, (X,A,D � E))
�L2

X � G,A → B, (X,A � B,D → E, (D � E))
→R

X � G,A → B, (X,A � B,D → E)
→L

X � G,A → B, (X,A � B)
�L2

X �G,A → B, (A � B) →R
X � G,A → B →L

(A → B) → C, (D → E) → F � G

There is an interaction between the →R, �L2 and →L rules that causes non-
termination, even for the intuitionistic fragment of the logic. This well-known
problem occurs in traditional sequent calculi as well, and it is caused by the
implicit contraction in the →L rule. For intuitionistic logic, this problem has
been addressed by contraction-free calculi [4] and history-based loop-checks [10].
However, these methods are less suitable for BiInt where the interaction between
→ and −< formulae needs to be considered. Here we address termination using
a saturation process and two derived rules that speed up proof search. The
approach is similar to our previous work [8], but here we apply it to deep inference
and contexts instead of top-level sequents only.

Let −<L1 and →R1 denote two rules derived as below, where a dashed infer-
ence line means the conclusion is derived from the premise using Lemma 1:

328 L. Postniece

Σ−[A,A−<B]
Lemma 1

Σ−[A−<B,A, (A � B)]
�L1

Σ−[A−<B, (A � B)] −<L
Σ−[A−<B]

�
Σ−[A,A−<B] −<L1
Σ−[A−<B]

Σ+[A → B,B]
Lemma 1

Σ+[A → B, (A � B), B]
�R1

Σ+[A → B, (A � B)] →R
Σ+[A → B]

�
Σ+[A → B,B] →R1
Σ+[A → B]

Let Σ[Z] be any sequent. Then let X�Y =
︷ ︸︸ ︷
Σ[Z]. We say that Σ[Z] is saturated

iff all the following conditions are met:

1. {X} ∩ {Y } = ∅
2. If A ∧B ∈ {X} then A ∈ {X} and B ∈ {X}
3. If A ∧B ∈ {Y } then A ∈ {Y } or B ∈ {Y }
4. If A ∨B ∈ {X} then A ∈ {X} or B ∈ {X}
5. If A ∨B ∈ {Y } then A ∈ {Y } and B ∈ {Y }
6. If A → B ∈ {X} then A ∈ {Y } or B ∈ {X}
7. If A−<B ∈ {Y } then A ∈ {Y } or B ∈ {X}
8. If A → B ∈ {Y } then B ∈ {Y }
9. If A−<B ∈ {X} then A ∈ {X}

Let X and Y be two structures. We say that a formula A → B is realised by
X�Y iff there exists a structure Z�W ∈ Y such that A ∈ Z and B ∈ W . We say
that a formula C−<D is realised by X�Y iff there exists a structure Z�W ∈ X
such that C ∈ Z and D ∈ W . We define the super-set relation on sequents as
follows: X1 � Y1 ⊃ X0 � Y0 iff {X1} ⊃ {X0} or {Y1} ⊃ {Y0}. Then the following
simple modifications of DBiInt ensure termination using only local checks:

Definition 1. Let DBiInt1 be the system obtained from DBiInt with the fol-
lowing changes:

1. Add the derived rules −<L1 and →R1.
2. Replace rules −<L, →R by the following:

Σ−[A−<B, (A � B)] −<L
Σ−[A−<B]

where Σ−[A−<B] is saturated and A−<B is not realised by
︷ ︸︸ ︷
Σ−[A−<B]

Σ+[A → B, (A � B)] →R
Σ+[A → B]

where Σ+[A → B] is saturated and A → B is not realised by
︷ ︸︸ ︷
Σ+[A → B]

Deep Inference in Bi-intuitionistic Logic 329

3. Replace rules �L2 and �R2 by the following:

Σ[X � (W, ({X}, Y � Z))]
�L2 where {X} ⊃ {Y }

Σ[X � (W, (Y � Z))]

Σ[((X � Y, {Z}),W) � Z]
�R2 where {Z} ⊃ {Y }

Σ[((X � Y),W) � Z]
4. Replace rules →L, −<R, �L1, �R1, ∧L, ∧R, ∨L, ∨R with the following re-

stricted versions:
(a) Let γ0 be the conclusion of the rule let γ1 (and γ2) be the premises. The

rule is applicable only if:
︷︸︸︷
γ1 ⊃

︷︸︸︷
γ0 and

︷︸︸︷
γ2 ⊃

︷︸︸︷
γ0 .

Theorem 4. For any structures X and Y , �DBiInt Π : X � Y if and only if
�DBiInt1 Π ′ : X � Y .

Theorem 5. For any X and Y , backward proof search in DBiInt1 for X � Y
terminates.

6 Related Work, Future Work and Conclusion

Deep inference: Deep inference in the calculus of structures was pioneered by
Guglielmi [9]. In his work, inference rules can be applied deep inside formulae,
not just deep inside nested sequent structures as in our case. This method has
also been applied to intuitionistic logic [14]. The works of Kashima [11] and
Brünnler [2] are closer to ours since their deep inference rules are applied to
nested structures (Brünnler calls them deep sequents). However, both [11] and [2]
only cover classical modal and tense logics, while we have extended the notion
of deep inference to bi-intuitionistic logic using polarised contexts.

Taming display logic: Areces and Bernardi [1] appear to be the first to have
noticed the connection between deep inference and residuation in display logic in
the context of categorial grammar. However, they do not give an explicit proof
of this correspondence as we have done here for our calculi.

Extensions and restrictions: Since BiInt is a conservative extension of in-
tuitionistic logic, our calculi are also sound and complete for the intuitionistic
fragment of BiInt: we simply need to ignore all rules for −<. We are also inter-
ested in extending our technique to similar logics such as Lambek-Grishin logic.
Since many of our proofs use associativity and commutativity, it is not obvious
that our technique will be immediately applicable to substructural logics.

Our contributions: The main contribution of our paper is showing that deep
inference in nested sequent calculi for bi-intuitionistic logic can mimic residuation
in display-like calculi. Thus our work is another step towards addressing the
broader problem of proof search in display logic. Secondly, our calculus DBiInt
and its restriction DBiInt1 are interesting calculi for proof search in BiInt in
their own right. We leave the details of an efficient implementation of DBiInt1
for future work.

330 L. Postniece

Acknowledgements. We would like to thank Rajeev Goré, Alwen Tiu and the
anonymous reviewers for their comments on an earlier version of this paper.

References
1. Areces, C., Bernardi, R.: Analyzing the core of categorial grammar. Journal of

Logic, Language, and Information 13(2), 121–137 (2004)
2. Brünnler, K.: Deep sequent systems for modal logic. In: Governatori, G., et al.

(eds.) Advances in Modal Logic, vol. 6, pp. 107–119. College Publications (2006)
3. Crolard, T.: A formulae-as-types interpretation of Subtractive Logic. Journal of

Logic and Computation 14(4), 529–570 (2004)
4. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. The Journal

of Symbolic Logic 57(3), 795–807 (1992)
5. Goré, R.: Substructural logics on display. LJIGPL 6(3), 451–504 (1998)
6. Goré, R., Postniece, L.: Combining derivations and refutations for cut-free com-

pleteness in bi-intuitionistic logic. Journal of Logic and Computation. To appear,
Advance Access,
http://logcom.oxfordjournals.org/cgi/content/abstract/exn067

7. Goré, R., Postniece, L., Tiu, A.: Taming displayed tense logics using nested se-
quents with deep inference. To appear in Proceedings of TABLEAUX 2009 (2009)

8. Goré, R., Postniece, L., Tiu, A.: Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In: Advances in Modal Logic, vol. 7,
pp. 43–66. College Publications (2008)

9. Guglielmi, A.: A system of interaction and structure. ACM Trans. Comput.
Log. 8(1) (2007)

10. Heuerding, A., Seyfried, M., Zimmermann, H.: Efficient loop-check for backward
proof search in some non-classical propositional logics. In: Miglioli, P., Moscato, U.,
Ornaghi, M., Mundici, D. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 210–225.
Springer, Heidelberg (1996)

11. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–
135 (1994)

12. Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-
intuitionistic propositional logic with labelled sequents. To appear in Proceedings
of TABLEAUX 2009 (2009)

13. Rauszer, C.: An algebraic and Kripke-style approach to a certain extension of
intuitionistic logic. Dissertationes Mathematicae 168 (1980)

14. Tiu, A.: A local system for intuitionistic logic. In: Hermann, M., Voronkov, A.
(eds.) LPAR 2006. LNCS, vol. 4246, pp. 242–256. Springer, Heidelberg (2006)

A Proofs

Proof of Theorem 1:
Proof. By induction on |Π |. We show the interesting cases. In each case the
given DBiInt-derivation is on the left, and we obtain the LBiInt-derivation on
the right, where Π ′

1 is obtained by the IH.

Π1

{X1}, (X1 � X2) � Y �L1
(X1 � X2) � Y

�

Π ′
1

{X1}, (X1 � X2) ⇒ Y
sL{X1}, X1 ⇒ X2, Y cL

X1 ⇒ X2, Y �L
(X1 � X2) ⇒ Y

http://logcom.oxfordjournals.org/cgi/content/abstract/exn067

Deep Inference in Bi-intuitionistic Logic 331

Π1

X � (W, ({X}, Y1 � Y2)) �L2
X � (W, (Y1 � Y2))

�

Π ′
1

X ⇒ W, ({X}, Y1 � Y2) �L
X �W ⇒ {X}, Y1 � Y2 sR
(X �W), {X}, Y1 ⇒ Y2 �R
(X �W), {X}⇒ Y1 � Y2 �R
X �W ⇒ {X} � (Y1 � Y2) sL
X ⇒ W, ({X} � (Y1 � Y2)) sR
X, {X}⇒ W, (Y1 � Y2) cL

X ⇒ W, (Y1 � Y2)

Π1

((X � Y, {Z}),W) � Z
�R2

((X � Y),W) � Z
�

Π ′
1

(X � Y, {Z}),W ⇒ Z
�R

X � Y, {Z}⇒ W �Z
sL

X ⇒ Y, {Z}, (W � Z)
�L

X � Y ⇒ {Z}, (W � Z)
�L

(X � Y) � {Z}⇒ W � Z
sR

(X � Y) � {Z},W ⇒ Z
sL

(X � Y),W ⇒ {Z}, Z
cR

(X � Y),W ⇒ Z

Each of the following proofs is by induction on |Π |. Π ′
1 is obtained from Π1

using the IH. A dashed inference line labeled W means that the conclusion is
obtained from the premise using Lemma 1. A dashed inference line labeled C
means that the conclusion is obtained from the premise using Corollary 1. Proof
of Lemma 4:

Proof.

Π1

Σ[(X � ({X}, Y1 � Y2)), Z � W]
�L2

Σ[(X � (Y1 � Y2)), Z � W]
�

Π ′
1

Σ[X, Z � ({X}, Y1 � Y2), W]
W

Σ[X, Z � ({X, Z}, Y1 � Y2), W]
�L2

Σ[X, Z � (Y1 � Y2), W]

Π1

Σ[(X � Y), Z � (W1 � W2), {W2}
�R1

Σ[(X � Y), Z � (W1 � W2)
�

Π ′
1

Σ[X, Z � Y, (W1 � W2), {W2}]
�R1

Σ[X, Z � Y, (W1 � W2)]

Π1

Σ[(X � Y, {W}), Z � W]
�R2

Σ[(X � Y), Z � W]
�

Π ′
1

Σ[X, Z � Y, {W}, W]
C

Σ[X, Z � Y, W]

332 L. Postniece

Proof of Lemma 5:

Proof.

Π1

Σ[{X1}, (X1 � X2) � Y, (Z � W)]
�L1

Σ[(X1 � X2) � Y, (Z � W)]
�

Π ′
1

Σ[{X1}, (X1 � X2), Z � Y, W]
�L1

Σ[(X1 � X2), Z � Y, W]

Π1

Σ[X � Y, ({Z1}, (Z1 � Z2) � W)]
�L1

Σ[X � Y, (Z1 � Z2 � W)]
�

Π ′
1

Σ[X, {Z1}, (Z1 � Z2) � Y, W]
�L1

Σ[X, (Z1 � Z2) � Y, W]

Π1

Σ[X � Y, ({X}, Z � W)]
�L2

Σ[X � Y, (Z � W)]
�

Π ′
1

Σ[X, {X}, Z � Y, W]
C

Σ[X, Z � Y, W]

Π1

Σ[X � Y, (Z � W), {W}]
�R1

Σ[X � Y, (Z � W)]
�

Π ′
1

Σ[X, Z � Y, W, {W}]
C

Σ[X, Z � Y, W]

Π ′
1

Σ[X � Y, ((Z1 � Z2, {W}) � W)]
�R2

Σ[X � Y, ((Z1 � Z2) � W)]
�

Π ′
1

Σ[X, (Z1 � Z2, {W}) � Y, W]
�R2

Σ[X, (Z1 � Z2) � Y,W]

Proof of Lemma 6:
Proof.

Π1

Σ[{X1}, (X1 � X2) � Y, Z]
�L1

Σ[(X1 � X2) � Y, Z]
�

Π ′
1

Σ[({X1}, (X1 � X2) � Y) � Z]
�L1

Σ[((X1 � X2) � Y) � Z]

Π1

Σ[X � ({X}, Y1 � Y2), Z]
�L2

Σ[X � (Y1 � Y2), Z]
�

Π ′
1

Σ[(X � ({X}, Y1 � Y2)) � Z]
�L2

Σ[(X � (Y1 � Y2)) � Z]

Π1

Σ[X � Y, ({X}, Z1 � Z2)]
�L2

Σ[X � Y, (Z1 � Z2)]
�

Π ′
1

Σ[(X � Y) � ({X}, Z1 � Z2)]
W

Σ[{X}, (X � Y) � ({X}, Z1 � Z2)]
�L2

Σ[{X}, (X � Y) � (Z1 � Z2)]
�L1

Σ[(X � Y) � (Z1 � Z2)]

Π1

Σ[X � (Y1 � Y2), {Y2}, Z]
�R1

Σ[X � (Y1 � Y2), Z]
�

Π ′
1

Σ[(X � (Y1 � Y2), {Y2}) � Z]
�R1

Σ[(X � (Y1 � Y2)) � Z]

Π1

Σ[X � Y, (Z1 � Z2), {Z2}]
�R1

Σ[X � Y, (Z1 � Z2)]
�

Π ′
1

Σ[(X � Y) � (Z1 � Z2), {Z2}]
�R1

Σ[(X � Y) � (Z1 � Z2)]

Deep Inference in Bi-intuitionistic Logic 333

Π1

Σ[(X1 � X2, {Y, Z}) � Y, Z]
�R2

Σ[(X1 � X2) � Y,Z]
�

Π ′
1

Σ[((X1 � X2, {Y, Z}) � Y) � Z]
W

Σ[((X1 � X2, {Y, Z}) � Y, {Z}) � Z]
�R2

Σ[((X1 � X2) � Y, {Z}) � Z]
�R2

Σ[((X1 � X2) � Y) � Z]

Proof of Lemma 7:

Proof.

Π1

Σ[{X1}, (X1 � X2), Y � Z]
�L1

Σ[(X1 � X2), Y � Z]
�

Π ′
1

Σ[(X1 � X2) � ({X1}, Y � Z)]
W

Σ[({X1}, (X1 � X2)) � (!{X1}, Y � Z)]
�L2

Σ[({X1}, (X1 � X2)) � (Y � Z)]
�L1

Σ[(X1 � X2) � (Y � Z)]

Π1

Σ[X, {Y1}, (Y1 � Y2) � Z]
�L1

Σ[X, (Y1 � Y2) � Z]
�

Π ′
1

Σ[X � ({Y1}, (Y1 � Y2) � Z)]
�L1

Σ[X � ((Y1 � Y2) � Z)]

Π1

Σ[X, Y � ({X, Y }, Z1 � Z2)]
�L2

Σ[X, Y � (Z1 � Z2)]
�

Π ′
1

Σ[X � (Y � ({X, Y }, Z1 � Z2))]
W

Σ[X � ({X}, Y � ({X, Y }, Z1 � Z2))]
�L2

Σ[X � ({X}, Y � (Z1 � Z2))]
�L2

Σ[X � (Y � (Z1 � Z2))]

Π1

Σ[X, Y � (Z1 � Z2), {Z2}]
�R1

Σ[X, Y � (Z1 � Z2)]
�

Π ′
1

Σ[X � (Y � ((Z1 � Z2), {Z2}))]
�R1

Σ[X � (Y � (Z1 � Z2))]

Proof of Lemma 8:

Proof. By induction on the size of Y . The interesting case is when Y = (Y1 �
Y2). We show how this can be reduced to contractions on Y1 and Y2, which
are admissible by the IH. A dashed inference line means that the conclusion is
obtained from the premise using the respective Lemma or the IH. Suppose we
have Y in a negative context, the other case is symmetric:

Σ[(Y1 � Y2), (Y1 � Y2) � Z]
Lemma 4

Σ[Y1, (Y1 � Y2) � Y2, Z]
Lemma 4

Σ[Y1, Y1 � Y2, Y2, Z]
IH

Σ[Y1 � Y2, Y2, Z]
IH

Σ[Y1 � Y2, Z]
Lemma 6

Σ[(Y1 � Y2) � Z]

334 L. Postniece

Proof of Theorem 4:

Proof. For the left-to-right direction, use induction on |Π |. The interesting cases
are when |Π | ends with rule instance that does not meet one of the restrictions 2
to 4 imposed by Definition 1.

– Suppose restriction 2 of the rule →R is not met, so that Σ+[A → B] is not
saturated. Then we use Lemma 2 and the IH to permute the offending rule
instance upwards.

– Suppose restriction 2 of the rule →R is not met, so that A → B is in fact

realised by
︷ ︸︸ ︷
Σ+[A → B]. Then Π is as below:

Π1

Σ+[A → B, (A � B), (X,A � B, Y)] →R
Σ+[A → B, (X,A � B, Y)]

Then by the IH, there exists a DBiInt1-derivation Π2 of Σ+[A → B, (A �
B), (X,A � B, Y)]. By Lemma 1, there exists a DBiInt1-derivation Π3 of
Σ+[A → B, (X,A � B, Y), (X,A � B, Y)]. Finally, by Lemma 8, there exists
a DBiInt1-derivation Π ′′

1 of Σ+[A → B, (X,A � B, Y)].

The right-to-left direction is obvious, since every rule of DBiInt1 is a rule of
DBiInt, or can be derived in DBiInt.

Proof sketch of Theorem 5:
We can define a translation from DBiInt1 sequents to trees, similar to the one

in [7]. We then show that the depth of the trees is bounded (using restriction 2
of Definition 1) and that the size of the nodes is bounded (using restrictions 3
and 4 of Definition 1).

CL: An Action-Based Logic for Reasoning about
Contracts�

Cristian Prisacariu and Gerardo Schneider

Department of Informatics, University of Oslo,
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

{cristi,gerardo}@ifi.uio.no

Abstract. This paper presents a new version of the CL contract speci-
fication language. CL combines deontic logic with propositional dynamic
logic but it applies the modalities exclusively over structured actions.
CL features synchronous actions, conflict relation, and an action nega-
tion operation. The CL version that we present here is more expressive
and has a cleaner semantics than its predecessor. We give a direct seman-
tics for CL in terms of normative structures. We show that CL respects
several desired properties from legal contracts and is decidable. We relate
this semantics with a trace semantics of CL which we used for run-time
monitoring contracts.

1 Introduction

Internet-based negotiation and contracting is becoming more diverse and com-
plex in the e-business and e-government environments. This calls for a more
formal apparatus which can be used by the computer to automate and help in
some of the tasks involved in e-contracting; e.g. detection of contradictions and
inconsistencies in contracts, identification of superfluous clauses, and checking
some desired properties on a contract. This contracting style found in e-business
and virtual organizations (and inspired from legal contracts) can also be used in
service oriented architectures, component based systems [1], and agent societies
[2]. In these areas contracts are used to regulate the interaction and exchanges
between the parties involved (being that services, components, or agents).

Much research has been invested into giving a formalization of contractual
clauses, and also into providing a machine readable language for specifying con-
tracts. Such a formal language is desired for doing static (like model-checking)
or dynamic (like run-time monitoring) analysis of (abstractions of) contracts.
Moreover, the automation of the negotiation process becomes a feasible goal.
The most promising approaches are based on variants of deontic logic.

In this paper we present a logic (which we call CL) designed to represent and
reason about contracts. The goal of CL is to preserve many of the natural proper-
ties and concepts relevant to legal contracts, while avoiding deontic paradoxes, and
� Partially supported by the Nordunet3 project “COSoDIS – Contract-Oriented Soft-

ware Development for Internet Services” (http://www.ifi.uio.no/cosodis/).

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 335–349, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

336 C. Prisacariu and G. Schneider

at the same time to have a suitable language for the specification of software con-
tracts. CL combines deontic logic [3] with propositional dynamic logic (PDL) [4,5].
CL applies the (deontic and dynamic) modalities exclusively over actions instead
of over formulas (or state of affairs) as is the case in standard deontic logic (SDL)
[3]. Therefore, CL adopts what is known as the ought-to-do approach to deontic
logic as opposed to the ought-to-be approach of SDL. The ought-to-do approach
has been advocated by von Wright [6] which argued that deontic logic would ben-
efit from a “foundation of actions”, and many of the philosophical paradoxes of
SDL would be eliminated. Important contributions to this approach were done by
Segerberg to introduce actions inside the deontic modalities [7] and by the seminal
work of Meyer on dynamic deontic logic (DDL) [8,9].
CL extends the (regular) actions, which are usually considered in DDL and

PDL, with a concurrency operator to model the notion of actions “done at the
same time”. The model of concurrency that we adopt is the synchrony model
of Milner’s SCCS [10]. Synchrony is easy to integrate with the other regular
operations on actions (choice, sequence, and repetition). Moreover, synchrony is
a natural choice for reasoning about the notion “at the same time” for human-
like actions that we have in legal contracts.

The notion of synchrony has different meanings in different areas of com-
puter science. Here we take the distinction between synchrony and asynchrony
as presented in the SCCS calculus and later implemented in e.g. the Esterel syn-
chronous programming language [11]. We understand asynchrony as when two
concurrent systems proceed at indeterminate relative speeds (i.e. their actions
may have different non-correlated durations); whereas in the synchrony model
each of the two concurrent systems instantaneously perform a single action at
each time instant. This is an abstract view of the actions found in contracts and
is good for reasoning about properties of the contract.

The synchrony model of concurrency takes the assumption that time is dis-
crete and that basic actions are instantaneous and represent the time step. More-
over, at each time step all possible actions are performed, i.e. the system is
considered eager and active. For this reason, if at a time point an obligation
to perform an action is enabled, then this action must be immediately exe-
cuted so that the obligation is not violated. The mathematical framework of
the synchrony model is much cleaner and more general than the asynchronous
interleaving model (SCCS has the (asynchronous) CCS as a subcalculus [10]).

Because of the assumption of an eager behavior for the actions the scope of
the obligations (and of the other deontic modalities too) is immediate, making
them transient obligations which are enforced only in the current world. One can
get persistent obligations by using temporal operators, like the always operator
(CL can encode temporal operators with the dynamic modality [5]). The eager-
ness assumption facilitates reasoning both about the existence of the deontic
modalities as well as about violations of the obligations or prohibitions.

Initial investigations into CL have been done in [12]. The CL language pre-
sented in this paper is more expressive. A variant of this syntax of the CL (with-
out the propositional constants) was used in [13] for doing run-time monitoring

CL: An Action-Based Logic for Reasoning about Contracts 337

of electronic contracts. There we used a restricted semantics based on traces of
actions. This semantics was specially designed for monitoring the actions of the
contracting parties at run-time with the purpose of detecting when a contract is
violated. In [12] there was no direct semantics for CL. In the present paper we
give full semantics for CL based on normative structures and relate it with the
trace based semantics of [13].

In this paper we present theoretical results and thus we use a simple and un-
restricted syntax for CL, in practice some syntactic restrictions may be imposed
(see [12]). Since our main objective is to analyze contracts through formal tools
like model-checking and run-time monitoring, we aim at a tractable language
(i.e. decidable and with manageable complexities).

Related work: Compared to [8,9,14,15], which also consider deontic modalities
applied over actions, the investigation presented in this paper at the level of the
deontic actions is different in several ways. First we add a synchrony operation,
and second, we exclude the Kleene star ∗. None of the few papers that consider
repetition as an action combinator under deontic modalities [14,9] give a precise
motivation for having such recurring actions inside obligations, permissions, or
prohibitions. Even more, the use of repetition inside the deontic modalities is
counter intuitive: take the expression O(a∗) - “One is obliged to not pay, or
pay once, or pay twice in a row, or...” - which puts no actual obligations; or
take P (a∗) - “One has the right to do any sequence of action a.” - which is a
very shallow permission and is captured by the widespread Closure Principle
in jurisprudence where what is not forbidden is permitted [7]. Moreover, [9] ar-
gues that expressions like F (a∗) and P (a∗) should be simulated with the PDL
modalities as 〈a∗〉F (a) respectively [a∗]P (a). In our opinion the ∗ combinator
under deontic modalities can be captured by using temporal or dynamic logic
modalities along with deontic modalities over ∗-free actions.

Regarding the synchronous actions inside the dynamic modality, CL is in-
cluded in the class of extensions of PDL which can reason about concurrent
actions: PDL∩ with intersection of actions [16] which is undecidable for deter-
ministic structures; or concurrent PDL [17]. In contrast, CL with synchronous
composition over deterministic actions (see Definition 3) inside the dynamic
modality is decidable. This makes CL more attractive for automation of reason-
ing about contracts.

Due to lack of space we do not present full proofs here; please refer to the
technical reports [19,22] for proofs and more technical details.

2 The Contract Language CL

The syntax of CL is defined by the grammar in Table 1. In what follows we
provide intuitions of the CL syntax and define our notation and terminology.

We call a formula C a (general) contract clause (or plainly contract). We con-
sider a finite number of propositional constants φ drawn from a set ΦB. We
call OC(α), P (α), and FC(α) the deontic modalities, representing the obligation,
permission, or prohibition of performing a given action α. CL includes directly

338 C. Prisacariu and G. Schneider

Table 1. Syntax of the contract language CL

C := φ | OC(α) | P (α) | FC(α) | C → C | [β]C | ⊥
α := a | 0 | 1 | α×α | α · α | α + α
β := a | 0 | 1 | β×β | β · β | β + β | β∗ | ϕ?

ϕ? := φ | 0 | 1 | ϕ? ∨ ϕ? | ϕ? ∧ ϕ? | ¬ϕ?

in the definition of the obligation and prohibition the reparations in case of
violations. Intuitively OC(α) states the obligation to perform α, and the repa-
ration C in case the obligation is violated, i.e. whenever α is not performed.
The reparation may be any contract clause. The modality OC(α) (resp. FC(α))
represents what is called contrary-to-duty obligations, CTDs, (resp. contrary-to-
prohibitions, CTPs) in dynamic deontic logic.1 Obligations without reparations
are written as O⊥(α) where ⊥ (and conversely �) is the Boolean false (respec-
tively true). We usually write O(α) instead of O⊥(α). The prohibition modality
FC(α) states the actual forbidding of the action α together with the reparation C
in case the prohibition is violated. Note that it is possible to express nested CTDs
and CTPs. Permissions have no reparations associated because they cannot be
violated; permissions can only be exercised.

Throughout the paper we denote by a, b, c ∈ AB the basic actions (e.g. “pay”,
“deliver”, or “redraw”), by indexed α ∈ A deontic actions, and by indexed β the
dynamic actions. Actions α are used inside the deontic modalities, whereas the
(more general) actions β are used inside the dynamic modality. An action term
α is constructed from the basic actions a ∈ AB and the special actions 0 and
1 (called the violating action and respectively the skip action) using the binary
constructors: choice “+”, sequence “·”, and synchrony (or concurrency) “×”.
Actions β have the extra operators Kleene star ∗ (for repetition) and Boolean
test ?. Tests ϕ? are constructed with the Boolean operators from basic tests
which in our case are the propositional constants φ ∈ ΦB (also denoted A?

B)
We define a symmetric and irreflexive relation over the basic actionsAB, which

we call conflict relation and denote by #C ⊆ AB × AB . The conflict relation
is a notion often found in legal contracts and is given a priori. The intuition of
the conflict relation is that if two actions are in conflict then the actions cannot
be done at the same time. This intuition explains the need for the following
equational implication at the level of the deontic actions: a#C b → a×b = 0,
∀a, b ∈ AB . This is necessary for detecting (and for ruling out) a first kind of
conflicts in contracts: “Obligatory to go west and obligatory to go east” should
result in a conflict (see Proposition 2-(16)). The second kind of conflicts that
CL rules out are: “Obligatory to go west and forbidden to go west” which is a
standard requirement on a deontic logic.

1 The notions of CTD and CTP from CL are in contrast with the classical notion
of CTD as found in the SDL literature [18]. In SDL, what we call reparations are
secondary obligations which hold in the same world as the primary obligation. In
our setting where the action changes the context (the world) one can see a violation
of an obligation (or prohibition) only after the action is performed and thus the
reparations are enforced in the changed context (next world).

CL: An Action-Based Logic for Reasoning about Contracts 339

The dynamic logic modality [·]C is parameterized by actions β. The expression
[β]C is read as: “after the action β is performed C must hold”. Therefore, CL
can reason about synchronous actions inside the dynamic modality. We use the
classical Boolean implication operator →; the other operators ∧,∨,¬,↔,�,⊕
(exclusive or) are expressed in terms of → and ⊥ as in propositional logic.

In CL we can write conditional obligations, permissions and prohibitions of
two different kinds. As an example consider conditional obligations. The first
kind is given with the propositional implication: C → OC(α) which is read as “if
C is the case then it is obligatory that action α” (e.g. “If Internet traffic is high
then the Client is obliged to pay”). The second kind is given with the dynamic
box modality: [β]OC(α) which is read as “if action β was performed then it is
obligatory that action α” (e.g. “after receiving necessary data the Provider is
obliged to offer password”).

The formalization of the actions has been thoroughly investigated in [19] where
interpretations for the actions have been defined, and completeness and decid-
ability results have been established. The semantics of the CL language is based
on the interpretation of the deontic actions as rooted trees with edges labeled
by elements of 2AB . Denote by I(α) the tree interpreting the deontic action α.
Intuitively, + provides the branching in the tree and · provides the parent-child
relation on each branch (see also Theorem 3 in the appendix).

Each dynamic action β denotes a set of guarded concurrent strings.

Definition 1 (guarded concurrent strings). Over the set of basic tests A?
B

we define atoms as functions ν : A?
B → {0, 1} which assign a Boolean value to

each basic test. Denote by Atoms = {0, 1}A?
B the set of all such functions. A

guarded concurrent string (denoted by u, v, w) is a sequence

w = ν0x1ν1 . . .xnνn, n ≥ 0,

where νi ∈ Atoms and xi ∈ 2AB are sets of basic actions.

For each dynamic action β we can construct a special two level finite automaton
(denoted GNFA(β)) which accepts all and only the guarded concurrent strings
denoting β. The important detail is that with each state of the automaton of the
upper level it is associated a special finite state automaton (denoted ,s-) which
accepts a set of atoms. (An atom ν can be seen as a valuation of a test ϕ? iff
the truth assignments of ν to the basic tests make ϕ? true; thus, for each test
ϕ? there is a set of all atoms which make it true.) The results of [19] ensure that
working with the dynamic actions or with the automata on guarded concurrent
strings is the same (they are different notations for the same set).

Proposition 1 (automata for tests). There exists a class of finite state au-
tomata, denoted M, which accept all and only the subsets of Atoms; in notation
L(M) ∈ 2Atoms, M ∈M and ∀A ∈ 2Atoms, ∃M ∈M s.t. L(M) = A.

Definition 2 (automata on guarded concurrent strings). Consider a two
level finite automaton GNFA = (S,P(AB), S0, ρ, F, ,·-). It consists at the first
level of a finite automaton on concurrent strings (S,P(AB), S0, ρ, F), together

340 C. Prisacariu and G. Schneider

with a map ,·- : S → M. An automaton on concurrent strings (i.e. the first
level automation) consists of a finite set of states S, the finite alphabet 2AB

(i.e. the powerset of the set of basic actions AB), a set of initial states S0 ⊆ S,
a transition relation ρ : 2AB → S × S, and a set of final states F . At the lower
level the mapping ,·- associates with each state of the first level an automaton
M ∈M as defined in Proposition 1 which accepts a set of atoms denoted L(,s-).

Intuitively, a GNFA(β) accepts a guarded concurrent string ν0x1ν1 . . .xnνn if
there is a sequence of nodes s0 . . . sn ∈ S with sn ∈ F s.t. the xi label the
transitions si−1, si and the atoms νi are accepted by the corresponding automata
(on the second level) ,si-. The definition with two levels of GNFA is needed when
defining the special operations for fusion product and synchronous composition
corresponding to respectively · and× (see [19]).

3 Semantics

The formulas C of the logic are given a model theoretic semantics in terms of
(what we define as) normative structures.

Definition 3 (normative structure). A normative structure is a tuple de-
noted KN = (W , ρ,V , *) where W is a set of worlds, V : W → 2ΦB is a
valuation function returning for each world the set of propositional constants
which hold in that world. AB is a finite set of basic labels and 2AB represents
the labels of the structure as sets of basic labels; ρ : 2AB → 2W×W is a function
returning for each label a partial function (therefore for each label from one world
there is at most one reachable world), and * : W → 2Ψ is a marking function
which marks each state with one or several markers from Ψ = {◦a, •a | a ∈ AB}.
The marking function respects the restriction that no state can be marked by
both ◦a and •a (for any a ∈ AB). A pointed normative structure is a normative
structure with a designated state i (denoted by KN , i).

Notation: We denote by t a node of a tree (or by r the root) and by s (or
i for initial) a world of a normative structure. Henceforth we use the more

graphical notation t
α×−→ t′ (s

β×−→ s′) for an edge (transition) in a tree (normative
structure), where α×, β× ∈ 2AB denote labels. Note that we consider both the
trees and the normative structures to have the same set of basic labels AB. For
the sake of notation we can view the valuation of one particular world V(s) as
a function from ΦB to {0, 1} where ∀ϕ ∈ ΦB , V(s)(ϕ) = 1 iff ϕ ∈ V(s) and 0
otherwise. Therefore, we can say that V(s) is accepted by the automata of the
second level of GNFA and write V(s) ∈ L(,s-).

One difference from the standard PDL is that we consider deterministic struc-
tures. This is natural and desired in legal contracts as opposed to the program-
ming languages community where nondeterminism is an important notion. In
contracts the outcome of an action like “deposit 100$ in the bank account” is
uniquely determined. The deterministic restriction of Kripke structures was in-
vestigated in [20]. Note that deterministic PDL is undecidable if action negation
(or intersection of actions) is added [5].

CL: An Action-Based Logic for Reasoning about Contracts 341

The marking function and the markers are needed to identify obligatory (i.e.
◦) and prohibited (i.e. •) actions. Markers with different purposes were used in
[8] to identify violations of obligations, in [14] to mark permitted transitions, and
in [15] to identify permitted events. The labels of the normative structure (and of
the trees I(α) or automata GNFA(β)) are sets of basic labels AB. Therefore, we
can compare them using set inclusion (and call one label bigger than another).

Definition 4 (simulation). For a tree T = (N , E ,AB) and a normative struc-
ture KN = (W , ρ,V , *) we define a relation S ⊆ N × W which we call the
simulation of the tree node by the state of the structure.

tS s iff ∀t γ−→t′∈T , ∃s γ′
−→s′∈KN s.t. γ⊆γ′ ∧ t′Ss′ and

∀s γ′
−→s′∈KN with γ⊆γ′ then t′ S s′.

We say that a tree T , with root r is simulated by a normative structure KN

w.r.t. a state s, denoted T SsKN , iff r S s.

Note two differences with the classical definition of simulation: first, the labels of
the normative structure may be bigger than the labels in the tree because respect-
ing an obligatory action means executing an action which includes it (is bigger).
We can drop this condition and consider only γ = γ′, in which case we call the rela-
tion strong simulation and denote by Ss . Second, any transition in the normative
structure that can simulate an edge in the tree must enter under the simulation
relation. This is because from the state s′ onwards we need to be able to continue
to look in the structure for the remaining tree (to see that it is simulated). We
can weaken the definition by combining this condition with the one before into:

∀t γ−→ t′ ∈ T , ∀s γ′
−→ s′ ∈ KN with γ ⊆ γ′ then t′ S̃ s′. We call the resulting

relation partial simulation and denote it by S̃ .

Definition 5 (semantics). We give in Table 2 a recursive definition of the
satisfaction relation |= of a formula C w.r.t. a pointed normative structure KN , i;
it is written KN , i |= C and is read as “C is satisfied in the normative structure
KN at state i”. The notions of satisfiability and validity are defined as usual.

CL has particular properties found in legal contracts (which we list in Propo-
sitions 2 and 3). Some intuitive motivation for these properties from the per-
spective of legal contracts has been given in [12]. Here we explain how these
properties influenced our decisions in the design of the semantics of CL.

For the OC the semantics has basically two parts. The first part (lines one to
four) gives the interpretation of the obligation. Line one says how to walk on the
structure depending on the tree of the action α. The normative structure must
simulate the tree of the action, completely. This is because all the actions (i.e. on
all the choices) that are obligatory must appear as transitions in the structure in
order to guarantee properties like (21) and (8). Moreover, the simulation relation
allowes for the labels of the structure to be bigger than (not necessary the same
as) the labels in the tree. This is to guarantee property (7). Intuitively it means
that if we do these (bigger) actions the obligation of α is still respected. The
second condition of the simulation relation is needed also for properties like (8)

342 C. Prisacariu and G. Schneider

Table 2. Semantics for CL

KN , i |= ϕ iff ϕ ∈ V(i).
KN , i |= C1 → C2 iff whenever KN , i |= C1 then KN , i |= C2.
KN , i |= OC(α) iff I(α) Si KN , and

∀t γ−→t′ ∈ I(α), ∀s γ′
−→s′ ∈ KN s.t. tS s ∧ γ ⊆ γ′ then

∀a ∈ γ, ◦a ∈ �(s′), and

∀s γ′
−→s′ ∈ K

I(α),i
rem , ∀a ∈ γ′ then ◦a �∈ �(s′), and

KN , s |= C ∀s ∈ N with tSs s ∧ t ∈ leaves(I(α)).
KN , i |= FC(α) iff I(α) S̃i KN then

∀σ ∈ I(α) a full path s.t. σ Si KN ,

∃t γ−→ t′ ∈ σ s.t. ∀s γ′
−→ s′ ∈ KN with tS s ∧ γ ⊆ γ′ then

∀a ∈ γ′, •a ∈ �(s′), and
KN , s |= C ∀s ∈ N with tS s ∧ t ∈ leaves(σ).

KN , i |= P (α) iff I(α) Si KN , and
∀t γ−→ t′ ∈ I(α), ∀s γ−→ s′ ∈ KN s.t. tSs s ∧ t′ Ss s′ then

∀a ∈ γ, •a �∈ �(s′).
KN , i |= [β]C iff ∀t ∈ W with (i, t) ∈ ρ(β) then KN , t |= C.

ρ(β) = {(s, t) | ∃k,∃σ = x0 . . . xk a final path in GNFA(β),
∃s0 . . . sk ∈ W s.t. s0 = s, sk = t, and ∀i ≤ k, V(si) ∈ L(#xi$), and

∀0 ≤ i < k with xi
β×−→ xi+1 ∈ σ then (si, si+1) ∈ ρ(β×)}

because regardless of the way to respect a first obligation we must be able to
enforce the subsequent obligations; which is related to property (8).

Lines two and three in the semantics of OC say how the states must be marked
with ◦. Note that the markers correspond exactly to the basic actions in the tree
and not to the basic actions in the structure (which may be more). This is
needed in the proof of the property (7) and property (17) and, in conjunction
with the restriction on the normative structures, that no state is marked with
both markers ◦a and •a for any a ∈ AB, also for properties like (6) and (14).
Moreover, note that all the relevant transitions in the normative structure must
enter under the marking function in order to have properties like (18).

Line four ensures that no other reachable relevant transitions of the structure
(i.e. from the non-simulating remainder structure K

I(α),i
rem) are marked with obli-

gation markers ◦. (See Definition 8 of K
I(α),i
rem in Appendix.) This is needed

for property (22). It says that all the transitions which are outside the ac-
tion (say outside α) should not be labeled with ◦ markers. Thus transitions
from any other actions of a choice (e.g. of α′ from α + α′) cannot be marked
correctly.

The second part of the semantics of OC is just the last line and handles
our notion of reparation in case of violations of obligations. The negation of a
compound action α encodes all possible ways of violating the obligation O(α).
Therefore, at the end of each of these possible ways of violation the reparation
must be enforced. (See the Definition 9 of α in Appendix.)

CL: An Action-Based Logic for Reasoning about Contracts 343

The conflict relation #C with the equational implication a#C b → a×b = 0
and properties (1) and (7) is needed to prove how CL avoids conflicts like (16).

In the semantics of FC the first condition uses partial simulation. This is be-
cause we want to capture the assumption that if a transition is not present in the
normative structure then this is forbidden by default. In the second condition
we consider all the paths in the tree which are simulated by the structure (i.e.
come from the partial simulation) to have the property (10); prohibition of a
choice must prohibit all. Note that we are interested only in full paths simu-
lated by the structure because for the other paths some of the transitions are
missing in the structure and thus there is some action on the sequence which
is forbidden. On the other hand, in the third condition we consider at least one
of the transitions on this full path in order to have the property (11); forbid-
ding a sequence means forbidding some action on that sequence. Moreover, note
that the • markers are associated with the labels in the normative structure
and not with the labels in the tree (as for OC) in order to capture the prop-
erty (9); i.e., forbidding an action implies forbidding any action that is bigger.
Also note that all the transitions in the normative structure that simulate the
chosen transition in the path are considered so that to capture the property
(23). The last condition takes care to put the reparations where a violation of
a prohibition is observed; i.e. after executing one full path in the tree of the
prohibited action.

The semantics of P is similar to that of OC . It considers the simulation relation
in order to have properties like (12). The difference is that the states must not
be marked with • markers in order to have properties (15), (3), and (4); and to
capture the principle that what is not forbidden is permitted.

The semantics of the dynamic modality [β]C is classical; it checks that the
clause C holds at all β-reachable states. The reachability function ρ is extended
to all compound actions β. Special for CL is that we extend the regular ac-
tions with synchrony and thus we define the reachability function for com-
pound actions using the associated automata GNFA(β), in the style of
APDL [21].

4 Properties

Proposition 2 (validities). The following statements hold:

|= ¬OC(0) (1)

|= OC(1) (2)

|= P (α)→ ¬FC(α) (3)

|= OC(α)→ P (α) (4)

if α = α′ then |= OC(α)↔ OC(α′) (5)

|= OC(α)→ ¬FC(α) (6)

|= OC(α) ∧ OC(α′)→ OC(α×α′) (7)

|= OC(α · α′)↔ OC(α) ∧ [[α]]OC(α′) (8)

|= FC(α)→ FC(α×α′) (9)

|= FC(α + α′)↔ FC(α) ∧ FC(α′) (10)

|= FC(α · α′)↔ FC(α) ∨ 〈〈α〉〉FC(α′) (11)

|= P (α + α′)↔ P (α) ∧ P (α′) (12)

|= P (α · α′)↔ P (α) ∧ [α]P (α′) (13)

The following point out conflicts that are avoided in CL:

344 C. Prisacariu and G. Schneider

|= ¬(OC(α) ∧ FC(α)) (14)

|= ¬(P (α) ∧ FC(α)) (15)

if α #C α′ then |= ¬(OC(α) ∧OC(α′)) (16)

The symbols [[·]] and 〈〈·〉〉 are the corresponding of the dynamic modalities [·]
and 〈·〉 only that they consider any action bigger than the action inside the
modality. With the semantics of Table 2 we cannot prove validity of expressions
like F (a) ∧ (φ → P (a)) which may be intuitive for the reader; e.g. some action
a is forbidden and only in exceptional cases (when ϕ holds) it is permitted.
The formula is not satisfied in a model which has a state s s.t. •a ∈ *(s) (from
F (a)) and where φ holds and thus from the semantics of P (a) is required that
•a �∈ *(s) which is impossible. Nevertheless, the example can be modelled in CL
as (¬ϕ → F (a)) ∧ (ϕ → P (a)) which is also more natural.

The following result shows that the semantics avoids unwanted implications.

Proposition 3 (unwanted implications). The following statements hold:

�|= OC(α)→ OC(α×α′) (17)

�|= OC(α×α′)→ OC(α) (18)

�|= OC(α + α′) → OC(α×α′) (19)

�|= OC(α×α′)→ OC(α + α′) (20)

�|= OC(α)→ OC(α + α′) (21)

�|= OC(α + α′) → OC(α) (22)

�|= FC(α×α′) → FC(α) (23)

�|= P (α×α′)→ P (α) (24)

�|= OC(α)⊕OC(α′)→ OC(α + α′) (25)

�|= OC(α + α′) → OC(α)⊕OC(α′) (26)

We show that CL is decidable by showing that it has the finite model property.
We do this by first showing that CL has the tree model property. For proving
the finite model property we use the selection technique [23, sec.2.3] because it
is hard to use the filtration technique in our case as we do not know what are
subformulas of an obligation of a complex action like OC(a · (b+ c)). (For proofs
see technical report [22].)

Theorem 1 (decidability). CL with the semantics of Table 2 is decidable.

In Appendix A.1 we give the relation between the full semantics presented so far
and a trace semantics for CL from [13]. The results hold in a slightly restricted
setting which is due to the restrictions on CL coming from the trace semantics
and the run-time monitoring setting where it is used.

5 Conclusion

Some technical details of the interpretation of the actions and of the CL formulas
have been omitted due to space restrictions in favor of intuitive explanations;
the interested reader can find these details in [22]. The CL logic presented here
has a decidable satisfiability problem. The technical difficulties in the underlying
semantics come from the many properties that the logic needs to capture. Some
of the novelties of CL are the use of synchronous actions and the definitions of
the conflict relation and the normative structures.

CL: An Action-Based Logic for Reasoning about Contracts 345

References

1. Owe, O., Schneider, G., Steffen, M.: Components, objects, and contracts. In:
SAVCBS 2007, pp. 91–94. ACM Digital Library, Dubrovnik (2007)

2. van der Torre, L.: Contextual deontic logic: Normative agents, violations and in-
dependence. Ann. Math. Artif. Intell. 37(1-2), 33–63 (2003)

3. von Wright, G.H.: Deontic logic. Mind 60, 1–15 (1951)
4. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: STOC

1977, pp. 286–294. ACM Press, New York (1977)
5. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
6. von Wright, G.H.: An Essay in Deontic Logic and the General Theory of Action.

North Holland Publishing Co., Amsterdam (1968)
7. Segerberg, K.: A deontic logic of action. Studia Logica 41(2), 269–282 (1982)
8. Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a

variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136
(1988)

9. Broersen, J., Wieringa, R., Meyer, J.J.C.: A fixed-point characterization of a de-
ontic logic of regular action. Fundam. Inf. 48(2-3), 107–128 (2001)

10. Milner, R.: Calculi for synchrony and asynchrony. TCS 25, 267–310 (1983)
11. Berry, G.: The foundations of Esterel. In: Proof, language, and interaction: essays

in honour of Robin Milner, pp. 425–454. MIT Press, Cambridge (2000)
12. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bon-

sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
Springer, Heidelberg (2007)

13. Kyas, M., Prisacariu, C., Schneider, G.: Run-time monitoring of electronic con-
tracts. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA
2008. LNCS, vol. 5311, pp. 397–407. Springer, Heidelberg (2008)

14. Van der Meyden, R.: Dynamic logic of permission, the. In: LICS 1990, pp. 72–78.
IEEE Computer Society Press, Los Alamitos (1990)

15. Castro, P.F., Maibaum, T.: A complete and compact propositional deontic logic.
In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp.
109–123. Springer, Heidelberg (2007)

16. Harel, D.: Recurring dominoes: Making the highly undecidable highly understand-
able. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 177–194. Springer,
Heidelberg (1983)

17. Peleg, D.: Concurrent dynamic logic. In: STOC 1985, pp. 232–239. ACM Press,
New York (1985)

18. Prakken, H., Sergot, M.: Dyadic deontic logic and contrary-to-duty obligation. In:
Defeasible Deontic Logic, pp. 223–262. Kluwer Academic Publishers, Dordrecht
(1997)

19. Prisacariu, C.: Extending Kleene Algebra with Synchrony – technicalities. Techni-
cal Report 376, Univ. Oslo (2008)

20. Ben-Ari, M., Halpern, J.Y., Pnueli, A.: Finite models for deterministic proposi-
tional dynamic logic. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115,
pp. 249–263. Springer, Heidelberg (1981)

21. Harel, D., Sherman, R.: Propositional dynamic logic of flowcharts. In: Karpinski,
M. (ed.) FCT 1983. LNCS, vol. 158, pp. 195–206. Springer, Heidelberg (1983)

22. Prisacariu, C., Schneider, G.: CL: A Logic for Reasoning about Legal Contracts
–Semantics. Technical Report 371, Univ. Oslo (2008)

23. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

346 C. Prisacariu and G. Schneider

A Additional Proofs and Definitions

This Appendix contains formal definitions for some of the concepts given in the
paper, as well as more thorough presentation of the results. All these, and more
detailed explanations, examples, and full proofs can be found in the technical
report [22].

The Definition 9 of action negation and the tree interpretation of the deontic
actions in Theorem 3 are based on a notion of canonical form.

Definition 6 (canonical form). We say that an action α is in canonical form
denoted by α iff it has the following form:

α = +i∈I αi
× · αi

where αi
× ∈ A×B and αi ∈ A is an action in canonical form. The indexing set I

is finite as αi
× ∈ A×B are finite; therefore there is a finite number of application

of the + combinator. Actions 0 and 1 are in canonical form.

Theorem 2 ([19]). For every action α there exists a corresponding action α in
canonical form and equivalent to α.

Definition 7 (rooted tree). A rooted tree is an acyclic connected graph (N , E)
with a designated node r called root node. N is the set of nodes and E is the set
of edges (where an edge is an ordered pair of nodes (n,m)). We consider rooted
trees with labeled edges and denote the labeled directed edges with (n, α,m)
and the tree with (N , E ,AB). The labels α ∈ 2AB are sets of basic labels; e.g.
α1 = {a, b} or α2 = {a} with a, b ∈ AB. Labels are compared for set equality (or
set inclusion). Note the special empty set label. We consider a special label Λ to
stand for an impossible label. We restrict our presentation to finite rooted trees
(i.e., there is no infinite path in the graph starting from the root node). The set
of all such defined trees is denoted T .

Theorem 3 (interpretation of deontic actions). For any action α there
exists a tree representation corresponding to the canonical form α.

Proof. The representation is an interpretation function I : A→ T which inter-
prets all action terms as trees. More precisely, given an arbitrary action of A, the
canonical form is computed first and then I generates the tree representation.

Λ {} {a} {a, b}

rrr r

nnn n

(i) (ii) (iii) (iv)

Fig. 1. Trees corresponding to 0, 1, a ∈ AB , and a×b ∈ A×
B

CL: An Action-Based Logic for Reasoning about Contracts 347

The function I is defined inductively. The basis is to interpret each concurrent
action of A×B as a tree with labeled edges from 2AB as pictured in Fig.1. Note
that actions ofA×B∪{0,1} are in canonical form. For a general action in canonical
form α = +i∈I αi

× · αi the tree is generated by adding one branch to the root
node for each element αi

× of the top summation operation. The label of the
branch is the set {αi

×} corresponding to the concurrent action. The construction
continues inductively by attaching at the end of each newly added branch the
tree interpretation of the smaller action αi.

The semantics for OC relies on a notion of non-simulating reminder structure
and on the operation of action negation for deontic actions.

Definition 8 (non-simulating reminder). Whenever T SiKN then we call
the maximal simulating structure w.r.t. T and i, and denote it by KT,i

max =
(W ′, ρ′,V ′, *′) the sub-structure of KN = (W , ρ,V , *) s.t.:

1. i ∈ W ′

2. V ′ = V|W′ and *′ = *|W′

3. ∀t γ−→t′ ∈ T then ∀s γ′
−→s′ ∈ KN s.t. tS s ∧ γ ⊆ γ′ ∧ t′ S s′ do add s′ to W ′

and add s
γ′
−→s′ to ρ′.

We call the non-simulating remainder of KN w.r.t. T and i the sub-structure
KT,i

rem = (W ′′, ρ′′,V ′′, *′′) of KN s.t.: s
γ−→ s′ ∈ ρ′′ iff s

γ−→ s′ �∈ KT,i
max ∧ s ∈

KT,i
max ∧∃s

γ−→s′′ ∈ KT,i
max; and s ∈ W ′′ iff s is part of a transition in KT,i

rem; and
V ′′ = V|W′′ and *′′ = *|W′′ .

Definition 9 (action negation). The action negation is denoted by α and
is defined as a function : A → A (i.e. action negation is not a principal
combinator for the actions) and works on the equivalent canonical form α as:

α = +
i∈I

αi
× · αi = +

β×∈R
β× + +

j∈J
γj× · +

i∈I′
αi

Consider R = {αi
× | i ∈ I}. The set R contains all the concurrent actions β×

with the property that β× is not bigger than any of the actions αi
×:

R = {β× | β×∈ A×B and ∀i ∈ I, αi
× �⊂ β×};

and γj× ∈ A×B and ∃αi
× ∈ R s.t. αi

× ⊆ γj×. The indexing set I ′ ⊆ I is defined for
each j ∈ J as:

I ′ = {i ∈ I | αi
×⊆ γj×}.

A.1 Relations with the Trace Semantics of CL

In [13] we presented a trace semantics for CL with the goal of monitoring elec-
tronic contracts at run-time. This semantics is intended for identifying the re-
specting and violating traces of actions for a CL clause. Here we just present

348 C. Prisacariu and G. Schneider

Table 3. Trace semantics of CL

For �,⊥,→,∧,∨,⊕ take a standard LTL-style semantics.

σ |= [α×]C if α× = σ(0) and σ(1..) |= C, or α× �= σ(0).

σ |= [β · β′]C if σ |= [β][β′]C.
σ |= [β + β′]C if σ |= [β]C and σ |= [β′]C.
σ |= [β∗]C if σ |= C and σ |= [β][β∗]C.
σ |= [C1?]C2 if σ �|= C1, or ifσ |= C1 and σ |= C2.

σ |= OC(α×) if α×⊆ σ(0), or if σ(1..) |= C.
σ |= OC(α · α′) if σ |= OC(α) and σ |= [[α]]OC(α′).

σ |= OC(α + α′) if σ |= O⊥(α) or σ |= O⊥(α′) or σ |= [α + α′]C.
σ |= FC(α×) if α× �⊆ σ(0), or if α×⊆ σ(0) and σ(1..) |= C.
σ |= FC(α · α′) if σ |= F⊥(α) or σ |= [[α]]FC(α′).

σ |= FC(α + α′) if σ |= FC(α) and σ |= FC(α′).

briefly the trace semantics and then concentrate on relating it with the full
semantics of Table 2.

Consider an infinite trace denoted σ = a0, a1, . . . as a map σ : N → A×B ∪ {1}
from natural numbers (denoting positions) to concurrent actions from A×B. We
denote by σ(i) the element of a trace at position i, by σ(i..j) a finite subtrace,
and by σ(i..) the infinite subtrace starting at position i in σ.

Consider the satisfaction relation |=t defined over pairs (σ, C) of a trace and
a contract which we write σ |=t C and read as “trace σ respects the contract
(clause) C”. For a brief definition of |=t see Table 3 and for details see [13].

The standard interpretation of [α×]C is over branching structures as we did in
Table 2. Here we interpret the two dynamic modalities over linear structures, i.e.
over traces. A trace σ respects the formula [α×]C if either the first (set of actions)
element of the trace σ(0) is not equal with the (set of basic actions forming the)
action α× or otherwise σ(0) is the same as action α× and C is respected by the
rest of the trace (i.e. σ(1..) |= C).

A trace σ respects an obligation OC(α×) if any of the two complementary
conditions is satisfied. The first condition deals with the obligation itself: O(α×)
is respected if the first action of the trace includes α×. Otherwise, in case the
obligation is violated,2 the only way to fulfill the contract is by respecting the
reparation C; i.e. σ(1..) |=C.

A folk technique called linearization takes (in our case) a pointed normative
structure and returns all the (in)finite traces that start in the designated state
i of the pointed structure. Denote this set of traces by ‖KN , i‖. We use the
notation σ ∈ ‖KN , i‖ to mean that the trace σ is part of the traces of KN

starting as state i. Therefore, the following statement is obvious: For any trace
σ we can find a normative structure KN and a state i s.t. σ ∈ ‖KN , i‖.

2 Violation of an obligatory action is encoded by the action negation.

CL: An Action-Based Logic for Reasoning about Contracts 349

When not mentioned otherwise, the following results hold for a restricted
syntax of CL which does not consider negation of clauses, nor tests inside the
dynamic modalities. These syntactic restrictions are enough for doing run-time
monitoring. For proofs see technical report [22].

Lemma 1. For any KN and i ∈ KN , if KN , i |= C then ∀σ ∈ ‖KN , i‖ σ |=t C.

Corollary 1. ⋃
KN ,i|=C

‖KN , i‖ ⊆ {σ | σ |=t C}

Proposition 4. With the general syntax of CL from Table 1 we can find a
contract clause C s.t. ∃σ s.t. σ |=t C and � ∃KN , � ∃i ∈ KN s.t. KN , i |= C.

Lemma 2 states the relation between the satisfiability in the trace semantics
and satisfiability in the branching semantics. It says that if a contract clause is
respected by some trace of actions then the contract is satisfiable in the branching
semantics.

Lemma 2. If ∃σ s.t. σ |=t C then ∃KN , ∃i ∈ KN s.t. KN , i |= C.

Lemma 3. If σ |=t C then ∃KN , ∃i ∈ KN s.t. KN , i |= C and σ ∈ ‖KN , i‖.

Corollary 2.
{σ | σ |=t C} ⊆

⋃
KN ,i|=C

‖KN , i‖

The two corollaries relate the validities in the two semantics (under the restricted
syntax). If a clause C is valid w.r.t. the trace semantics (i.e. there is no way of
doing a sequence of actions to violate the contract) then the clause is valid in
the full semantics (i.e. any model of the contract also entails the existence of
this contract clause).

Ehrenfeucht-Fräıssé Games on Random
Structures

Benjamin Rossman�

Massachusetts Institute of Technology, Cambridge MA 02139, USA

Abstract. Certain results in circuit complexity (e.g., the theorem that
AC0 functions have low average sensitivity [5, 17]) imply the existence
of winning strategies in Ehrenfeucht-Fräıssé games on pairs of random
structures (e.g., ordered random graphs G = G(n, 1/2) and G+ = G ∪
{random edge}). Standard probabilistic methods in circuit complexity
(e.g., the Switching Lemma [11] or Razborov-Smolensky Method [19,
21]), however, give no information about how a winning strategy might
look. In this paper, we attempt to identify specific winning strategies in
these games (as explicitly as possible). For random structures G and
G+, we prove that the composition of minimal strategies in r-round
Ehrenfeucht-Fräıssé games
r(G, G) and
r(G+, G+) is almost surely
a winning strategy in the game
r(G, G+). We also examine a result of
[20] that ordered random graphs H = G(n, p) and H+ = H ∪ {random
k-clique} with p(n) % n−2/(k−1) (below the k-clique threshold) are al-
most surely indistinguishable by &k/4'-variable first-order sentences of
any fixed quantifier-rank r. We describe a winning strategy in the cor-
responding r-round &k/4'-pebble game using a technique that combines
strategies from several auxiliary games.

1 Introduction

Let A be an arbitrary finite structure, let P be a uniform random subset of A,
let q be a uniform random element of A, and let P ′ = P � {q}. Let (A, P) and
(A, P ′) denote the expansions of A by a new unary relation symbol interpreted
as P and P ′, respectively. Results in circuit complexity [1, 8] and descriptive
complexity [12, 10] imply that structures (A, P) and (A, P ′) almost surely satisfy
the same first-order sentences up to a fixed quantifier-rank r (as the size of A
increases). Equivalently, there exists a winning strategy (for “Duplicator”) in
the r-round Ehrenfeucht-Fräıssé game on these structures, which we denote by

r((A, P), (A, P ′)).

Standard proofs of this fact via circuit complexity merely show that a win-
ning strategy must exist using probabilistic arguments (generally based on either
the Switching Lemma [4, 11] or Razborov-Smolensky Method [19, 21]). These
proofs, however, say nothing about what a winning strategy might actually look
like. In this paper, we aim for an explicit characterization of a winning strat-
egy in
r((A, P), (A, P ′)). Our result involves two natural notions concerning
strategies:
� Supported by a National Defense Science and Engineering Graduate Fellowship.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 350–364, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Ehrenfeucht-Fräıssé Games on Random Structures 351

composition (Definition 6) given strategies S1 and S2 in games
r(A,B1) and

r(B2, C) (where structures B1 and B2 have a common universe), there is a
natural composition strategy S1 ◦ S2 in the game
r(A, C)

minimal strategy (Definition 7) for every structureAwith universe {1, . . . , n},
there is a canonical (lexicographically) minimal winning strategy in the game

r(A,A).

We show (Theorem 8) that the composition S ◦ S′ is almost surely a winning
strategy in the game
r((A, P), (A, P ′)) where S and S′ are the minimal winning
strategies in games
r((A, P), (A, P)) and
r((A, P ′), (A, P ′)).

A second result of this paper (Proposition 13) gives a criterion for (construc-
tively) establishing the existence of winning strategies in r-round k-pebble games
among a family of k-tupled structures with a common universe. We explain how
this criterion is applied in [20] to prove that k-Clique is not definable in .k/4/-
variable first-order logic. This criterion involves a novel technique for combining
games across multiple structures.

Organization of the paper. In §2, we give the relevant definitions of structures,
games and strategies (including minimal strategies and composition of strate-
gies). In §3, we identify a particular winning strategy in the game
r((A, P),
(A, P ′)). In §4, we present a criterion for ≡k

r -equivalence. In §5, we explain how
this criterion is used to prove that k-Clique is not definable in .k/4/-variable
first-order logic. In §6, we study this criterion in the setting of games on Kripke
structures. Two appendices (§A, §B) contains proofs that do not fit in the body
of the paper.

2 Preliminaries: Structures, Games and Strategies

Throughout this paper, structures are finite relational structures. We assume
that the universe of every structure is equipped with a linear order (not neces-
sarily occurring as a relation in the structure); without loss of generally, every
structure has universe {1, . . . , n} for some natural number n.

Definition 1 (Structures). We now make this precise. A relational signa-
ture σ consists of finitely many “relation symbols” R1, . . . , Rt with associated
“arities” r1, . . . , rt � 1. A σ-structure A consists of a set A (called the universe
of A) together with interpretations for all relation symbols in σ, i.e., relations
RAi ⊆ Ari for i = 1, . . . , t. We denote the universe of A by A, the universe of B
by B, etc. For S ⊆ A, the induced substructure of A with universe S is denoted
by A|S .

By default, all structures are σ-structure for an arbitrary fixed relational sig-
nature σ. If A is a structure and R ⊆ Ar is an r-ary relation on A, then we
denote by (A, R) the (σ ∪ {R})-structure expanding A, in which R interprets a
new r-ary relational symbol R.

A k-tupled structure is a pair (A, ā) where ā = (a1, . . . , ak) ∈ Ak. In partic-
ular, structures are 0-tupled structures.

352 B. Rossman

Definition 2 (≡r- and ≡k
r -equivalence). For all k, r ∈ �, equivalence rela-

tions ≡r and ≡k
r on the class of k-tupled structures are defined by the following

induction. Let (A, ā) and (B, b̄) be k-tupled structures.

– (A, ā) ≡0 (B, b̄) ⇐⇒ (A, ā) ≡k
0 (B, b̄) def⇐⇒ {(a1, b1), . . . , (ak, bk)} is a par-

tial isomorphism between A and B (i.e., a bijective function between subsets
of A and B that preserves all relations).

For r � 1,

– (A, ā) ≡r (B, b̄) def⇐⇒
{
∀a′ ∈ A ∃b′ ∈ B (A, āa′) ≡r−1 (B, b̄b′),
∀b′ ∈ B ∃a′ ∈ A (A, āa′) ≡r−1 (B, b̄b′);

(note: here ≡r−1 is an equivalence relation on (k + 1)-tupled structures)
– (A, ā) ≡k

r (B, b̄) def⇐⇒ (A, ā) ≡k
0 (B, b̄) and for all i ∈ [k],

∀a′∈A ∃b′∈B (A, a1, . . . , ai−1, a
′, ai+1, . . . , ak) ≡k

r−1 (B, b1, . . . , bi−1, b
′, bi+1, . . . , bk),

∀b′∈B ∃a′∈A (A, a1, . . . , ai−1, a
′, ai+1, . . . , ak) ≡k

r−1 (B, b1, . . . , bi−1, b
′, bi+1, . . . , bk).

This induction is clearly well-founded: the definition of ≡r on k-tupled structures
depends on the definition of ≡r−1 on (k+1)-tupled structures, etc., which even-
tually depends on the (base case) definition of ≡0 on (k + r)-tupled structures.
Note that ≡r+1 refines ≡r, which refines ≡k

r .

Definition 3 (Ehrenfeucht-Fräıssé game). The r-round Ehrenfeucht-
Fräıssé game on structures A and B, denoted
r(A,B), is played as follows.
There are two players, Spoiler (who wishes to establish that A and B are non-
isomorphic) and Duplicator (who attempts to prevent Spoiler from achieving his
goal). The “game board” consists of structures A and B and the “game pieces”
are r pairs of pebbles (p1, q1), . . . , (pr, qr). The game is played in a sequence of
r rounds. In round i of the game, Spoiler picks a structure (either A or B) and
places pebble pi on an element of his choice in that structure. Duplicator then
replies by placing pebble qi on an element of his choice in the other structure. Af-
ter r rounds, the positions of pebbles p1, . . . , pk, q1, . . . , qk describe two r-tuples
(a1, . . . , ar) ∈ Ar and (b1, . . . , br) ∈ Br. Duplicator is declared the winner if
and only if {(a1, b1), . . . , (ar, br)} is a partial isomorphism from A to B (i.e., an
isomorphism from A|{a1,...,ar} to B|{b1,...,br}).

The r-round k-pebble game on k-tupled structures (A, ā) and (B, b̄), denoted

k
r ((A, ā), (B, b̄)), is similar. However, in this game there are exactly k pairs of

pebbles (α1, β1), . . . , (αk, βk). At the start of the game, these pairs of pebbles rest
on (a1, b1), . . . , (ak, bk). In each round of the game, Spoiler picks an index j ∈ [k]
and a structure (either A or B) and moves the jth pebble in that structure to an
element of his choice. Duplicator then moves the jth pebble in the other structure
to an element of his choice. Duplicator is declared the winner if and only if for
every i ∈ [r], the set {(α(i)

1 , β
(i)
1), . . . , (α(i)

k , β
(i)
k)} is a partial isomorphism from

A to B where α
(i)
j , β

(i)
j denote the positions in A,B of pebbles αj , βj after round

i of the game.

Ehrenfeucht-Fräıssé Games on Random Structures 353

We are interested in strategies in games
r(A,B) and
k
r ((A, ā), (B, b̄)). By

“strategy” we always mean a deterministic strategy for Duplicator; we are never
concerned with strategies for Spoiler, who we simply assume plays optimally.
For instance, the statement “there exists a winning strategy” should be read as
“there exists a (deterministic) winning strategy (for Duplicator)”.

To avoid redundancy, we present definitions and lemmas concerning the game

r(A,B) only. It will be obvious how to adapt the corresponding definitions and
lemmas to the k-pebble game
k

r ((A, ā), (B, b̄)).

Definition 4 (Strategy). An r-round strategy on sets A and B is a function

S :
⋃r

i=1(A �B)i −→ A �B

such that S(x1, . . . , xi) ∈ A ⇐⇒ xi ∈ B for all (x1, . . . , xi) ∈ (A � B)i.
The intention is that if x1, . . . , xi are Spoiler’s moves in the first i rounds (i.e.,
which elements of which structures he plays), then S(x1, . . . , xi) is Duplicator’s
response in round i under strategy S.

We say that S is a winning strategy in the game
r(A,B) if Duplicator is
guaranteed to win by playing according to S (no matter how Spoiler plays).

Note that we define strategies on pairs of sets A and B, rather than structures
A and B. For structures A1,A2,B1,B2 where A1 = A2 and B1 = B2, the same
strategy S might thus be a winning strategy in
r(A1,B1), but not in
r(A2,B2).

The simplest example of a winning strategy is the “copycat” strategy in the
r-round game on two copies of a single structure A. Duplicator easily defeats
Spoiler by always playing the same element in the opposite structure.

The next proposition (a basic fact in model theory, see e.g. [16]) connects
games, ≡(k)

r -equivalence and logic.

Proposition 5. The following are equivalent:

i. A ≡r B (resp. (A, ā) ≡k
r (B, b̄));

ii. there exists a winning strategy in
r(A,B) (resp.
k
r ((A, ā), (B, b̄)));

iii. A and B satisfy the same first-order sentences of quantifier-rank r (resp.
(A, ā) and (B, b̄) satisfy the same first-order formulas φ(x1, . . . , xk) of
quantifier-rank r in which every subformula has at most k free variables).

The following concept of the composition of strategies is fairly intuitive.

Definition 6 (Composition of strategies). Let S be an r-round strategy on
sets A and B, and let T be an r-round strategy on sets B and C. The composition
S ◦T is an r-round strategy on A and C defined as follows. Given i ∈ {1, . . . , r}
and (x1, . . . , xi) ∈ (A � C)i, define (y1, . . . , yi) ∈ (A � B)i and (z1, . . . , zi) ∈
(B � C)i inductively for j = 1, . . . , i by

– if xj ∈ A, then yj � xj and zj � T(z1, . . . , zj−1,S(y1, . . . , yj)),
– if xj ∈ C, then zj � xj and yj � S(y1, . . . , yj−1,T(z1, . . . , zj)).

Then (S ◦T)(x1, . . . , xi) �
{
zi if xi ∈ A,

yi if xi ∈ C.

354 B. Rossman

For two structures A and B with given well-orderings such that A ≡r B, there
is a canonical way to define a winning strategy in the r-round game on A and
B: let Duplicator always play the minimal winning move.

Definition 7 (Minimal winning strategy). Let A and B be structures with
given well-orderings such that A ≡r B. The (lexicographically) minimal winning
r-round strategy MA,B

r :
⋃r

i=1(A � B)i −→ (A � B) on A and B is defined
inductively as follows. Let i ∈ {1, . . . , r} and assume MA,B

r has been defined
on all sequences of length i − 1. Consider any (x1, . . . , xi) ∈ (A � B)i. For all
j ∈ {1, . . . , i− 1}, define aj ∈ A and bj ∈ B by

aj =

{
xj if xj ∈ A,

MA,B
r (x1, . . . , xj) if xj ∈ B,

bj =

{
xj if xj ∈ B,

MA,B
r (x1, . . . , xj) if xj ∈ A.

Assuming that (A, a1, . . . , ai−1) ≡r−i+1 (B, b1, . . . , bi−1) (which is guaranteed by
the induction), define MA,B

r (x1, . . . , xi) ∈ A �B as follows:

– if xi ∈ A, then MA,B
r (x1, . . . , xi) is the minimal bi ∈ B such that

(A, a1, . . . , ai−1, xi) ≡r−i (B, b1, . . . , bi−1, bi),

– if xi ∈ B, then MA,B
r (x1, . . . , xi) is the minimal ai ∈ A such that

(A, a1, . . . , ai−1, ai) ≡r−i (B, b1, . . . , bi−1, xi).

We write MA
r (instead of MA,A

r) for the minimal winning strategy in the r-
round game on two copies of a single structure A. (Note that MA

r is generally
not the “copycat” strategy.)

3 A Winning Strategy in
r((A, P), (A, P ′))

We now return the result mentioned in §1 concerning a winning strategy in
the game
r((A, P), (A, P ′)). As in §1, let A be an arbitrary structure with a
universe of size n, let P be a uniform random subset of A, let q be a uniform
random element of A, and let P ′ = P � {q}. Let (A, P) and (A, P ′) denote
the expansions of A by a new unary relation symbol interpreted as P and P ′,
respectively.

Theorem 8. The composition of minimal strategies M(A,P)
r ◦M(A,P ′)

r is almost
surely a winning strategy in the game
r((A, P), (A, P ′)). In fact,

Pr
[
M(A,P)

r ◦M(A,P ′)
r is not winning in
r((A, P), (A, P ′))

]
� O
(
(logn)O(r)/n

)
.

The key notion in proving Theorem 8 is that of an A-minimal r-tuple. We will
show (Lemma 12) that the set of induced substructures on A-minimal r-tuples
contains the essential information about the strategy MA

r .

Definition 9 (A-Minimal tuples). An r-tuple (a1, . . . , ar) ∈ Ar is A-minimal
if for all i ∈ {1, . . . , r}, there exists a′ ∈ A such that ai = MA

r (a1, . . . , ai−1, a
′).

Ehrenfeucht-Fräıssé Games on Random Structures 355

The next lemma is essentially a folklore result in model theory. (Lemma 10 is
also valid when A is an infinite structure with a given well-ordering.)

Lemma 10. There exists a constant c = c(r, σ) (depending only on r and the
signature σ) such that for every structure A, there exist � c distinct A-minimal
r-tuples.

Proof (sketch). This lemma follows from the folklore fact that there are only
finitely many ≡r-equivalence classes of k-tupled structures for all r, k ∈ � (see
[16]). (In fact, one can prove a bound of c �

∏r
j=1 cj where cj is the number of

≡r−j-equivalence classes of (k + j)-tupled structures.)

Definition 11 (Strong r-equivalence). Structures A1 and A2 with a com-
mon universe A are strongly r-equivalent if for every (a1, . . . , ar) ∈ Ar,

– (a1, . . . , ar) is A1-minimal if and only if it is A2-minimal, and
– if (a1, . . . , ar) is A1-minimal, then A1|{a1,...,ar} = A2|{a1,...,ar} (i.e., these

induced substructures are identical).

Alternatively, can replace these two conditions with the single (equivalent) con-
dition that A1|{a1,...,ar} = A2|{a1,...,ar} whenever (a1, . . . , ar) is A1-minimal or
A2-minimal.

The next lemma characterizes strong equivalence via minimal strategies.

Lemma 12. A1 and A2 are strongly r-equivalent if and only if MA1
r ◦MA2

r is
a winning strategy in
r(A1,A2).

We omit the proof of Lemma 12, which follows easily from definitions. Note that
Lemma 12 reduces Theorem 8 to the inequality

Pr
[
(A, P) and (A, P ′) are not strongly r-equivalent

]
� O
(
(logn)O(r)/n

)
.

The remainder of the proof of Theorem 8 (which proves this inequality using a
result from circuit complexity that AC0 functions have low average sensitivity)
is given in Appendix A.

4 Criterion for ≡k
r-Equivalence

We present a criterion for establishing ≡k
r -equivalences among a family of k-

tupled structures with the same universe. The criterion speaks about a family
{Gv̄}v̄∈V k of structures indexed by k-tuples over a common universe V , plus an
additional structure G∗ with universe V . We give two hypotheses which together
imply that (Gv̄, v̄) ≡k

r (G∗, v̄) for every k-tuple v̄ ∈ V k. In the next section, we
describe how this condition is used to show that �-Clique is not definable in
.�/4/-variable first-order logic.

356 B. Rossman

To state the criterion, we fix a set V and a symmetric binary relation ∼ on
V with finite diameter d (so that every two elements of V are connected by a
∼-path of length � d). For k-tuples v̄, w̄ ∈ V k, let

v̄ ∼ w̄
def⇐⇒ ∃i ∈ [k] such that vi ∼ wi and vj = wj for all j ∈ [k] \ {i}.

(In other words, the binary relation ∼ on k-tuples is the kth Cartesian power of
binary relation ∼ on V .)

Proposition 13 (Criterion for ≡k
r). Let {Gv̄}v̄∈V k be a family of structures

Gv̄ with universe V (indexed by k-tuples v̄ ∈ V k) and let G∗ be another structure
with universe V . Suppose that

i. (Gv̄, v̄) ≡0 (G∗, v̄) for all v̄ ∈ V k, and
ii. (Gv̄, v̄) ≡rd (Gw̄ , v̄) for all v̄, w̄ ∈ V k such that v̄ ∼ w̄.

Then (Gv̄, v̄) ≡k
r (G∗, v̄) for all v̄ ∈ V k.

Remark 14. Proposition 13 is valid with a weaker hypothesis in which ≡rd is
replaced by ≡k

rd. It is even valid when V is infinite. However, Proposition 13 as
stated is all that we require (for the application in §5).

Proposition 13 can be proved by a very simple argument using the inductive
definition of ≡rd. However, we prefer to understand Proposition 13 in light of the
winning strategy it entails in the game
k

r ((Gv̄, v̄), (G∗, v̄)). An examination of the
proof reveals a deterministic strategy for winning the game
k

r ((Gv̄, v̄), (G∗, v̄))
given black-box winning strategies in games
rd((Gv̄ , v̄), (Gv̄, w̄)) for all v̄, w̄ ∈ V k

such that v̄ ∼ w̄. Under this strategy for
k
r ((Gv̄ , v̄), (G∗, v̄)), Duplicator plays a

sequence of simulated games
rd((Gv̄ , v̄), (Gv̄, w̄)), in fact making
(
r
2

)
queries to

these auxiliary black-box strategies.
We will explicate this strategy (and also prove Proposition 13) later in §6.

First, let’s see a neat application of Proposition 13.

5 �-Clique Requires ��/4� Variables

Fix any � � 2 and let k = .�/4/.
Let G = (V,E,<) be an ordered Erdos-Renyi random graph where V = [n]

and E is a random anti-reflexive symmetric binary relation on V which includes
each pair of vertices independently with probability p(n) = n−2/(�−1.5). Note
that p(n) is below the �-clique threshold, i.e., G is almost surely �-clique-free.
Let A be a uniform random �-element subset of V , let G∗ = (G ∪ clique on A),
and let 1̄ = (1, . . . , 1) denote the all 1’s k-tuple in V k.

The following theorem is proved in [20].

Theorem 15. For every r, it holds a.a.s. (asymptotically almost surely as n →
∞) that (G, 1̄) ≡k

r (G∗, 1̄).

Since G is almost surely �-clique-free, while G∗ contains an �-clique (with prob-
ability 1), it follows that �-clique is not definable in k-variable first-order logic.

Ehrenfeucht-Fräıssé Games on Random Structures 357

We now explain how Theorem 15 is proved using Proposition 13. There are
three steps.

Step 1. For a sufficiently small constant ε > 0 (to be determined), we fix an
arbitrary reflexive and symmetric binary relation ∼ on V with degree � nε and
diameter � 2/ε (e.g., a spanning tree).

Step 2. For all k-tuples v̄ ∈ V k, define Av̄ ⊆ A by

Av̄ �
{
a∈A : ∃A′ ⊆ A s.t.

|A′| < 2k and
(G ∪ clique on A′) �≡$2r/ε% (G ∪ clique on A′ \ {a})

}

and let Gv̄ � (G ∪ clique on Av̄).

Step 3. We show that for all v̄ ∈ V k, Pr
[
|Av̄| > 0

]
= o(1),

Pr
[
|
⋃

w̄∼v̄ Aw̄| � 2k
]

= o(1/nk).

Steps 1 and 2 are merely definitions. Step 3 (where all the work is done) is
proved by a probabilistic argument with ingredients from circuit complexity (see
[20] for the proof). However, the intuition behind Step 3 is not hard to under-
stand. The edge probability p(n) = n−2/(�−1.5) lies below the �-clique threshold
Θ(n−2/(�−1))), but above the (� − 1)-clique threshold Θ(n−2/(�−2)). In particu-
lar, for every �′ < �, the random graph G almost surely has many �′-cliques. In
particular, G almost surely has ω(nk) cliques of size 2k (≈ �/2).

For every k-tuple v̄ ∈ V k, the set Av̄ depends only on the ≡$2r/ε%-equivalence
classes of ordered graphs (G ∪ clique on A′) for subsets A′ ⊆ A of size |A′| < 2k.
But because G already contains huge numbers of cliques of size � 2k, the addition
of a random �′-clique where �′ � 2k is unlikely to change the ≡$2r/ε%-equivalence
class of (G, v̄): this boils down to the fact that AC0 functions have low average
sensitivity (cp. Appendix 8). In fact, Pr[|Av̄| � �′] is roughly bounded by 1/E[#
of �′-cliques in G]. Thus, we get Pr[|Aā| > 0] = o(1) and Pr[|Av̄| � 2k] < o(1/nk).
Using the fact that v̄ has at most knε ∼-neighbors (and picking a sufficiently
small constant ε in Step 1), we are able to show Pr[|

⋃
w̄∼v̄ Aw̄| � 2k] � o(1/nk),

proving Step 3.
Steps 1–3, together with Proposition 13, furnish a proof of Theorem 15. By

Step 3, it holds almost surely that A1̄ = ∅ (hence G1̄ = G) and |
⋃

w̄∼v̄ Aw̄| < 2k
for all v̄ ∈ V k (taking a union bound over all k-tuples in V k). Given that
these events hold, hypotheses (i) and (ii) of Proposition 13 follow directly from
the definition of Av̄ and Gv̄ in Step 2. Therefore, by Proposition 13, we have
(Gv̄, v̄) ≡k

r (G∗, v̄) for all v̄ ∈ V k. In particular, we have (G, 1̄) = (G1̄, 1̄) ≡k
r

(G∗, 1̄), proving Theorem 15.

6 Winning Strategy Behind the ≡k
r-Criterion (Prop. 13)

We now analyze the winning strategy in the game
k
r ((Gv̄, v̄), (G∗, v̄)) that arises

from our criterion for ≡k
r -equivalence (Proposition 13). In order to more clearly

358 B. Rossman

describe this strategy, we move over to the simpler setting of games on Kripke
structures. In §6.1, we state and prove an analogous criterion for establishing
∼m-equivalences among classes of Kripke structures with the same universe. In
§6.2, we reprove this criterion in terms of games on Kripke structures to get a
clear picture of the winning strategy that emerges. In Appendix B, we prove
Proposition 13 from the analogous criterion on Kripke structures. In this way,
we get a clear picture of the winning strategy in
k

r ((Gv̄, v̄), (G∗, v̄)).
For our purposes, we consider a restricted version of Kripke structures, namely

colored directed graphs (digraphs) with a single distinguished vertex.

Definition 16. Let A = (V,E) be a digraph. For a ∈ V , let NA(a)—or simply
N(a) if A is clear from context—denote the set of vertices a′ ∈ V such that
(a, a′) ∈ E. A function f : V −→ � is called a coloring of A. The pair (A, f)
is called a colored digraph. For a ∈ V , the triple (A, f, a) is called a Kripke
structure.

Definition 17. For every m ∈ �, equivalence relation ≈m on Kripke structures
is defined inductively by

– (A, f, a) ≈0 (B, g, b) def⇐⇒ f(a) = g(b);
– for m � 1, (A, f, a) ≈m (B, g, b) def⇐⇒ f(a) = g(b) and

∀a′ ∈ NA(a) ∃b′ ∈ NB(b) (A, f, a′) ≈m−1 (B, g, b′),
∀b′ ∈ NB(b) ∃a′ ∈ NA(a) (A, f, a′) ≈m−1 (B, g, b′).

Remark 18. The equivalence relation ≈m characterizes indistinguishability of
Kripke structures up to sentences of rank m in modal logic (cp. Proposition 5).

There is a simple characterization of ≈m-equivalence in terms of appropriately
defined games (cp. Definition 3).

Definition 19. For Kripke structures (A, f, a) and (B, g, b) the game
m((A, f,
a), (B, g, b)) is defined as follows. There are two players, Spoiler and Duplicator.
The “game board” consists of disjoint copies of digraphs A and B. There are two
“game pieces”, α and β which sit on vertices of A and B, respectively. Initially α
sits on a and β sits on b. The game itself takes place in a sequence of m rounds.
In each round, Spoiler moves first. Spoiler’s move consists of choosing either A
or B and moving the corresponding game piece forward along an edge. Duplicator
then replies by moving the other game piece along an edge in the other graph.
The “record” of a game is the sequence (a0, b0), . . . , (am, bm) of positions before
and after each of the m rounds (where (a0, b0) = (a, b) is the initial position of α
and β). Duplicator is declared the winner iff f(ai) = g(bi) for all i ∈ {0, . . . ,m}.
Duplicator is said to have a winning strategy if he can play in a manner such
that he wins no matter what moves Spoiler makes.

6.1 Criterion for ≈m-Equivalence

Analogous to Proposition 13, we have the following criterion for ≈m-equivalence.

Ehrenfeucht-Fräıssé Games on Random Structures 359

Proposition 20. Let A = (V,E) be a digraph, let {fa}a∈V be a family of col-
orings fa : V −→ � indexed by vertices a of A, and let g : V −→ � be an
additional coloring of A. Suppose that

i. fa(a) = g(a) for all a ∈ V , and
ii. (A, fa, b) ≈m (A, fb, b) for all (a, b) ∈ E.

Then (A, fa, a) ≈m (A, g, a) for all a ∈ V .

Proof. Because we consider various Kripke structures with the same underlying
graph, we simplify notation by abbreviating (A, fa, b) and (A, g, a) as (fa, b) and
(g, a), respectively.

The proof is a simple argument by induction: for � = 0, . . . ,m we claim that
(fa, a) ≈� (g, a) for every a ∈ V . The base case when � = 0 we get by hypothesis
(i). For the induction step, assume that � > 0 and (fa, a) ≈�−1 (g, a) for every
a ∈ V . Consider any (a, b) ∈ E. We have (fa, b) ≈m (fb, b) by hypothesis (ii).
We have (fb, b) ≈�−1 (g, b) by the induction hypothesis. Therefore, we have
(fa, b) ≈�−1 (g, b) by the fact that ≈m refines ≈�−1 and by transitivity of ≈�−1.
We now check that

– fa(a) = g(a) (by hypothesis (i)),
– for all a′ ∈ N(a) there exists ∃b′ ∈ N(a) (namely b′ = a′) such that

(fa, a′) ≈�−1 (g, b′),
– for all b′ ∈ N(a) there exists ∃a′ ∈ N(a) (namely a′ = b′) such that

(fa, a′) ≈�−1 (g, b′).

Thus we have (fa, a) ≈� (g, a) by definition of ≈�.

6.2 Winning Strategy behind the ≈m-Criterion (Proposition 20)

We now unravel the induction in the proof of Proposition 20 in order to ex-
tract a winning strategy in the game
m((fa, a), (g, a)). Suppose that for every
edge (a, b) ∈ E, we are given a black-box winning strategy S(a, b) in the game

m((fa, b), (fb, b)). Our goal is to devise a winning strategy—let’s call itΣΣΣ(a)—in
the game
m((fa, a), (g, a)). Before describing the strategy ΣΣΣ(a) in an informal
manner, we prove a key lemma that captures the basic idea behind ΣΣΣ(a).

Lemma 21. Assume the hypotheses of Proposition 20. Let � ∈ {0, . . . ,m}, let
x0, . . . , x� and y0, . . . , y� be vertices of A such that x� = y� and

(†) (fx0 , y0) ≈m−� (fx1 , y1) ≈m−�+1 · · · ≈m−1 (fx�−1 , y�−1) ≈m (fx�
, y�).

Then

1. fx0(y0) = g(y�),
2. if � < m, then for every z0 ∈ N(y0) there exists (z1, . . . , z�) ∈ N(y1)× · · · ×

N(y�) such that

(fx0 , z0) ≈m−�−1 (fx1 , z1) ≈m−� · · · ≈m−1 (fx�
, z�) ≈m (fz�

, z�),

360 B. Rossman

3. if � < m, then for every z� ∈ N(y�) there exists (z0, . . . , z�−1) ∈ N(y0) ×
· · · ×N(y�−1) such that

(fx0 , z0) ≈m−�−1 (fx1 , z1) ≈m−� · · · ≈m−1 (fx�
, z�) ≈m (fz�

, z�).

Proof. We first prove statement (1). Hypothesis (†) implies that (fx0 , y0) ≈m−�
(fx�

, y�). Therefore fx0(y0) = fx�
(y�). By hypothesis (i) of Proposition 20 we

have fy�
(y�) = g(y�). Since x� = y� we get fx0(y0) = g(y�) as required.

For statement (2), assume � < m and let z0 ∈ N(y0). The fact that (fx0 , y0)
≈m−� (fx1 , y1) by (†) implies there exists z1 ∈ N(y1) such that (fx0 , z0) ≈m−�−1
(fx1 , z1). Next, the fact that (fx1 , y1) ≈m−�+1 (fx2 , y2) by (†) implies there
exists z2 ∈ N(y2) such that (fx1 , z1) ≈m−� (fx2 , z2). Continuing in this fashion
we obtain a sequence (z1, . . . , z�) ∈ N(y1)× · · · ×N(y�) such that

(fx0 , z0) ≈m−�−1 (fx1 , z1) ≈m−� · · · ≈m−2 (fx�−1 , z�−1) ≈m−1 (fx�
, z�).

Finally, we have (fx�
, z�) ≈m (fz�

, z�) by hypothesis (ii) of Proposition 20 since
z� ∈ N(y�) = N(x�).

For statement (3), again assume � < m and this time let z� ∈ N(y�). From
(fx�−1 , y�−1) ≈m (fx�

, y�), it follows that there exists z�−1 ∈ N(y�−1) such that
(fx�−1 , z�−1) ≈m−1 (fx�

, z�). Continuing, we get a sequence (z0, . . . , z�−1) ∈
N(y0)× · · · ×N(y�−1) such that

(fx0 , z0) ≈m−�−1 (fx1 , z1) ≈m−� · · · ≈m−2 (fx�−1 , z�−1) ≈m−1 (fx�
, z�).

As before, we get (fx�
, z�) ≈m (fz�

, z�) by Proposition 20(ii) since z� ∈ N(y�) =
N(x�).

Lemma 21 implicitly contains a winning strategy ΣΣΣ(a) for Duplicator in the
game
m((fa, a), (g, a)) for every a ∈ V , given a family {S(u, v)}(u,v)∈E of black-
box winning strategies in games
m((fu, v), (fv, v)) for all edges (u, v) ∈ E.
Suppose (a0, b0), . . . , (a�, b�) is the sequence of positions before and after each
of the first � rounds of
m((fa, a), (g, a)). (In particular, (a0, b0) = (a, a) is
the initial position.) Under the strategy ΣΣΣ(a), Duplicator maintains sequences
x0, . . . , x� and y

(�)
0 , . . . , y

(�)
� such that

• x0 = a and y
(�)
0 = a� and x� = y

(�)
� = b�,

• x0, . . . , x� is a path in A, and
• (†) holds, that is,

(fx0 , y
(�)
0) ≈m−� (fx1 , y

(�)
1) ≈m−�+1 · · · ≈m−1 (fx�−1 , y

(�)
�−1) ≈m (fx�

, y
(�)
�).

Assuming � < m, Duplicator plays under strategy ΣΣΣ(a) in round � + 1 as
follows. First, suppose Spoiler plays a�+1 ∈ N(a�) in the colored digraph (A, fa).
Then Duplicator sets z0 = a�+1, using strategies S(x0, x1), . . . ,S(x�−1, x�) (note
that (xi−1, xi) ∈ E for all 1 � i � �), constructs the sequence z1, . . . , z� as
in Lemma 21(2). Duplicator then plays z� ∈ N(b�) in (A, g) and updates his
internal bookkeeping by setting x�+1 = z� and y

(�+1)
0 = z0, . . . , y

(�+1)
� = z� and

y
(�+1)
�+1 = z�. If instead Spoiler plays b�+1 ∈ N(b�) in (A, g), then Duplicator

responds in a similar manner using Lemma 21(3).

Ehrenfeucht-Fräıssé Games on Random Structures 361

References

[1] Ajtai, M.: Σ1
1 formulae on finite structures. Annals of Pure and Applied Logic 24,

1–48 (1983)
[2] Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing

the clique function with at most (1/6) log log n negation gates. SIAM J. Com-
put. 35(1), 201–215 (2005)

[3] Beame, P.: Lower bounds for recognizing small cliques on CRCW PRAM’s. Dis-
crete Appl. Math. 29(1), 3–20 (1990)

[4] Beame, P.: A switching lemma primer. Technical Report UW-CSE-95-07-01,
Department of Computer Science and Engineering, University of Washington
(November 1994)

[5] Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inf. Process.
Lett. 63(5), 257–261 (1997)

[6] Dawar, A.: How many first-order variables are needed on finite ordered structures?
In: We Will Show Them: Essays in Honour of Dov Gabbay, pp. 489–520 (2005)

[7] Denenberg, L., Gurevich, Y., Shelah, S.: Definability by constant-depth
polynomial-size circuits. Information and Control 70(2/3), 216–240 (1986)

[8] Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hi-
erarchy. Mathematical Systems Theory 17, 13–27 (1984)

[9] Goldmann, M., H̊astad, J.: A simple lower bound for the depth of monotone
circuits computing clique using a communication game. Information Processing
Letters 41(4), 221–226 (1992)

[10] Gurevich, Y., Lewis, H.R.: A logic for constant-depth circuits. Information and
Control 61(1), 65–74 (1984)

[11] H̊astad, J.: Almost optimal lower bounds for small depth circuits. In: STOC 1986:
Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,
pp. 6–20 (1986)

[12] Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput.
Syst. Sci. 25(1), 76–98 (1982)

[13] Immerman, N.: Descriptive Complexity. In: Graduate Texts in Computer Science.
Springer, New York (1999)

[14] Immerman, N., Buss, J., Barrington, D.M.: Number of variables is equivalent to
space. Journal of Symbolic Logic 66 (2001)

[15] Koucky, M., Lautemann, C., Poloczek, S., Therien, D.: Circuit lower bounds via
Ehrenfeucht-Fraisse games. In: CCC 2006: Proceedings of the 21st Annual IEEE
Conference on Computational Complexity, pp. 190–201 (2006)

[16] Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
[17] Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform,

and learnability. J. ACM 40(3), 607–620 (1993)
[18] Lynch, J.F.: A depth-size tradeoff for boolean circuits with unbounded fan-in. In:

Structure in Complexity Theory Conference, pp. 234–248 (1986)
[19] Razborov, A.A.: Lower bounds on the size of bounded depth networks over a com-

plete basis with logical addition. Matematicheskie Zametki 41, 598–607 (1987);
English translation in Mathematical Notes of the Academy of Sciences of the
USSR 41, 333–338 (1987) (in Russian)

[20] Rossman, B.: On the constant-depth complexity of k-clique. In: Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, pp. 721–730 (2008)

[21] Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In: Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pp. 77–82 (1987)

362 B. Rossman

A Proof of Theorem 8

We begin by defining circuits, the complexity class AC0(depth d) and the average
sensitivity of functions with domain {0, 1}n.

Definition 22. A circuit on n inputs is an acyclic directed graph C in which
sources are labeled by elements of [n]× {+,−} (where (i,+) corresponds to the
literal xi and (i,−) corresponds to the literal xi) and all other nodes are labeled
by ∧ or ∨. Sinks in C are called outputs. The circuit C computes a Boolean
function {0, 1}n −→ {0, 1}m where m = |{output nodes in C }|.

Definition 23. Let C̄ = (Cn)n∈� be a sequence of circuits Cn on n inputs. We
say that C̄ ∈ AC0(depth d) if

– Cn has size nO(1) and
– there exists a constant c such that for all n, every directed path in Cn contains

at most d nodes of fan-in (i.e., in-degree) > c.

Definition 24. For a function f with domain {0, 1}n and an element x ∈
{0, 1}n, the sensitivity of f at x is defined by

sens(f, x) � |{i ∈ [n] : f(x) �= f(x1, . . . , xi−1, 1− xi, xi+1, . . . , xn)}|.

The average sensitivity of f is defined by

ave-sens(f) � 2−n
∑

x∈{0,1}n sens(f, x).

The next lemma is a fundamental result in circuit complexity.

Lemma 25 ([17, 5]). Suppose f : {0, 1}n −→ {0, 1}m is computed by a circuit
in AC0(depth d). Then ave-sens(f) = O

(
m logd−1 n

)
.

We now make an observation about strong r-equivalence akin to well-known
results in descriptive complexity characterizing first-order logic in terms of AC0

(see [7, 10, 12, 13]).

Lemma 26. Let A be a structure with universe [n] (really, a sequence of struc-
tures, one for each natural number n). There exists a function (really, a se-
quence of functions) fA : {0, 1}n −→ {0, 1}O(logn) computed by circuits in
AC0(depth O(r)) such that for all P,Q ⊆ [n], structures (A, P) and (A, Q) are
strongly r-equivalent iff fA(P) = fA(Q) (where we view P and Q as elements of
{0, 1}n).

That is, fA(P) completely describes the set of (A, P)-minimal sequences (a1, . . . ,
ar) of length r as well as substructures (A, P)|{a1,...,ar}.

Proof (sketch). We use the fact that the number of minimal sequences of length
r in any structure is bounded by an absolute constant (by Lemma 10). We can
thus represent the set of all (A, P)-minimal sequences (a1, . . . , ar) of length r
as well as substructures (A, P)|{a1,...,ar} using only O(log n) bits. This can be
achieved by a polynomial-size circuit of depth O(r) using standard arguments
(cp. [7, 10, 12, 13]).

Ehrenfeucht-Fräıssé Games on Random Structures 363

Using Lemmas 25 and 26, we easily prove Theorem 4. As remarked at the end
of §3, it suffices to prove

Pr
[
(A, P) and (A, P ′) are not strongly r-equivalent

]
� O
(
(logn)O(r)/n

)
whereA is an arbitrary structure with universe [n], P is a uniform random subset
of [n], and P ′ = P � {q} where q is a uniform random element of [n]. But the
statement that (A, P) and (A, P ′) are not strongly r-equivalent is equivalent to
fA(P) �= fA(P ′). Completing the proof, we have

Pr[fA(P) �= fA(P ′)] = E [sens(f, P)/n] = ave-sens(f)/n = O
(
(logn)O(r)/n

)
.

B Proof of Proposition 13

In order to prove Proposition 13 (the criterion for ≡k
r -equivalence), we first state

a suitable generalization of Proposition 20 (the criterion for ≈r-equivalence of
Kripke structures). Rather than digraphs, we consider k-digraphs A=(V,E1, . . . ,
Ek) where each Ei is a binary relation on V . For a ∈ V and i ∈ [k], let NA,i(a)
for the neighbor set of a under edge relation Ei and let NA(a) = NA,1(a)∪ · · · ∪
NA,k(a).

A k-Kripke structure is a triple (A, f, a) where A is a k-digraph and f :
V −→ � is a coloring of A and a ∈ V is a distinguished vertex. ≈r-equivalence
of k-Kripke structures is defined as follows (cf. Definition 2 of ≡k

r -equivalence):

– (A, f, a) ≈0 (B, g, b) def⇐⇒ f(a) = g(b);
– for r � 1, (A, f, a) ≈r (B, g, b) def⇐⇒ f(a) = g(b) and for all i ∈ [k],

∀a′ ∈ NA,i(a) ∃b′ ∈ NB,i(b) (A, f, a′) ≈r−1 (B, g, b′),
∀b′ ∈ NB,i(b) ∃a′ ∈ NA,i(a) (A, f, a′) ≈r−1 (B, g, b′).

We have the following generalization of Proposition 20 to k-Kripke structures.

Proposition 27. Let A = (V,E1, . . . , Ek) be a k-digraph, let {fa}a∈V be a fam-
ily of colorings fa : V −→ � indexed by vertices a ∈ V , and let g : V −→ � be
another coloring of A. Suppose that

i’. fa(a) = g(a) for all a ∈ V , and
ii’. (A, fa, b) ≈r (A, fb, b) for all (a, b) ∈ E1 ∪ · · · ∪ Ek.

Then (A, fa, a) ≈r (A, g, a) for all a ∈ V .

The proof of Proposition 27 is virtually identical to the proof of Proposition 20
in §6.1. The game version of this proof given in §6.2 likewise generalizes to the
k-Kripke setting.

We are ready to derive Proposition 13 from Proposition 27. Let V ,∼, {Gv̄}v̄∈V k

and G∗ be as in Proposition 13. Assume that hypotheses (i) and (ii) hold:

364 B. Rossman

i. (Gv̄, v̄) ≡0 (G∗, v̄) for all v̄ ∈ V k, and
ii. (Gv̄, v̄) ≡rd (Gw̄ , v̄) for all v̄, w̄ ∈ V k such that v̄ ∼ w̄.

Consider the k-digraph A = (V k, E1, . . . , Ek) with vertex set V k and edge
relations

Ei =
{
(v̄, w̄) ∈ V k × V k : vi ∼ wi and vj = wj for all j ∈ [k] \ {i}

}
.

Fix an arbitrary enumeration of the (finitely many) ≡0-equivalence classes of
k-tupled structures. For all v̄ ∈ V k, define fv̄ : V k −→ �, and also define
g : V k −→ �, by

fv̄(w̄) = index of the ≡0-equivalence class of (Gv̄, w̄),

g(v̄) = index of the ≡0-equivalence class of (G∗, v̄).

Check that

– fv̄(v̄) = g(v̄) for all v̄ ∈ V k (by hypothesis (i)),
– fv̄(w̄) ≈rd fw̄(w̄) for all (v̄, w̄) ∈ E1 ∪ · · · ∪ Ek (using hypothesis (ii)).

Therefore, by Proposition 27 we have (A, fv̄, v̄) ≈rd (A, g, v̄) for all v̄ ∈ V k.
But what exactly does (A, fv̄, v̄) ≈rd (A, g, v̄) mean? It is easy to see that this

is equivalent to the existence of a winning strategy in the following ∼-constrained
rd-round k-pebble game, which we denote
̃k

rd((Gv̄, v̄), (G∗, v̄)): the∼-constrained
game is just like the usual rd-round k-pebble game, except that when either
player moves a pebble from its present location on an element v, he is required
to place that pebble on an element w such that v ∼ w. To complete the proof of
Proposition 13, we claim that a winning strategy in
̃k

rd((Gv̄, v̄), (G∗, v̄)) implies
a winning strategy in the usual r-round k-pebble game
k

r ((Gv̄, v̄), (G∗, v̄)). Here
we exploit the fact that ∼ has diameter � d, which lets us map each move in

k
r ((Gv̄, v̄), (G∗, v̄)) to a sequence of � d moves in
̃k

rd((Gv̄, v̄), (G∗, v̄)). We thus
get a winning strategy by playing d moves in a simulation of
̃k

rd((Gv̄, v̄), (G∗, v̄))
for each move in the game
k

r ((Gv̄, v̄), (G∗, v̄)).

Sound and Complete Tree-Sequent Calculus
for Inquisitive Logic

Katsuhiko Sano�

Department of Humanistic Informatics
Graduate School of Letters

Kyoto University / JSPS
katsuhiko.sano@gmail.com

Abstract. We introduce a tree-sequent calculus for inquisitive logic (Groenendijk
2008) as a special form of labelled deductive system (Gabbay 1996). In particular,
we establish that (i) our tree-sequent calculus is sound and complete with respect
to Groenendijk’s inquisitive semantics and that (ii) our tree-sequent calculus is
decidable and enjoys cut-elimination theorem. (ii) is semantically revealed by our
argument for (i). The key idea which allows us to obtain these results is as follows:
In Groenendijk’s inquisitive semantics, a formula of propositional logic is evalu-
ated against a pair of worlds on a model. Given the appropriate pre-order on the
set of such pairs, any inquisitive model can be regarded as a Kripke model for in-
tuitionistic logic. This representation enables us to connect inquisitive semantics
with the tree-sequent technique for non-classical logics (Kashima 1999).

1 Introduction

Jeroen Groenendijk [8] introduced the inquisitive semantics for a language of proposi-
tional logic. Unlike his earlier work, Logic of Interrogation [7], the syntactic distinction
between the categories of declarative and interrogative sentences is not carried over
to the semantics. That is, often, questions are uninformative and assertions are unin-
quisitive. In the current setting, however, some sentences can be both informative and
inquisitive in evaluating a formula against a pair of worlds. For example, a plain con-
tingent disjunction p ∨ q is counted as such.

Groenendijk [8] gave only a semantic definition of his logic for inquisitive semantics.
As suggested in [3, p.63], however, we also need to understand the proof theory of this
logic for practical applications like building question-answering systems. This paper
contributes to this point. That is, we give a sound and complete Gentzen-style sequent
calculus to strengthen the logical basis for inquisitive semantics.

We study the inquisitive logic employing the method of tree-sequent calculus [12],
which is a special form of Labelled Deductive System [6]. This style of formulation is

� I would like to thank Yurie Hara for introducing me to the inquisitive semantics in D. Lewis
reading group at Kyoto University and checking my English. I also would like to thank Floris
Roelofsen for his comments on the earlier version of this paper. I wish to thank Jeroen Groe-
nendijk for connecting me with him. I would like to thank the anonymous referees for their
comments and suggestions. Finally, I am grateful to Ryo Kashima for introducing me to the
tree-sequent technique in May 2004. All errors, however, are mine.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 365–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

366 K. Sano

useful in axiomatizing various logics defined through Kripke models without regard to
whether they are expressed in intuitionistic or modal languages (see, e.g., [9,10,11]).
Now, the question pertains to: how we shall bridge the gap between the inquisitive
semantics and the method of tree-sequent calculus? The answer is to represent a model
of inquisitive semantics as a Kripke model for intuitionistic logic.

Recently, Salvador Mascarenhas [13] has provided a complete Hilbert-style axiom-
atization for inquisitive logic. Independently, Ivano Ciardelli and Floris Roelofsen [5]
also have established the completeness results for a hierarchy of inquisitive logics, one
of which corresponds to our tree-sequent calculus. Unlike our approach, both of these
works have based on Hilbert-style axiomatization. Since our tree-sequent calculus can
be converted into a tableau calculus, it is easier to show a theorem or construct a coun-
terexample. Furthermore, we show that our tree-sequent calculus is decidable and en-
joys cut-elimination theorem.

The organization of the paper is as follows. In Section 2, we define inquisitive se-
mantics and extract the semantical essence by examining the relation between inquisi-
tive semantics and Kripke semantics for intuitionistic logic. In Section 3, we introduce
our tree-sequent calculus for inquisitive logic and give some examples of its deriva-
tions. In Section 4, we prove the completeness of the (cut-free) tree-sequent calculus
by constructing saturated tree-sequents (see Theorem 1). In Section 5, we introduce a
translation of tree-sequents into formulas, and then establish the soundness of our tree-
sequent calculus (with cut-rule) (see Theorem 2). As a corollary to our completeness
and soundness results, Section 6 shows that our tree-sequent calculus is decidable and
enjoys cut-elimination theorem (see Corollary 1).

2 Inquisitive Semantics

First of all, let us introduce our syntax. Our language L℘ consists of (i) a countable set
of propositional variables ℘; (ii) the propositional connectives:⊥, ¬, →, ∧ and ∨; and
(iii) the parentheses: (,). Then, the formulas of L℘ are defined inductively by:

A ::= p | ⊥ | (¬A) | (A ∧B) | (A ∨B) | (A → B).

We define� := ¬�, !A := ¬¬A, ?A := A∨¬A. For a finite set Γ of formulas,
∧
Γ (or,∨

Γ) is defined as the conjunction (or, disjunction) of all formulas of Γ , if Γ is non-
empty; otherwise� (or,⊥, respectively). Groenendijk [8] referred to !A as an assertion,
and to ?A as a question.

An inquisitive model M is a pair consisting of (i) a non-empty set W , called the
domain of M, and (ii) a valuation V : ℘ → P(W). Given any inquisitive model M =
〈W,V 〉, any w, v ∈ W and any formula A, the satisfaction relation (w, v) |=M A is
defined by:

(w, v) |=M p iff w ∈ V (p) and v ∈ V (p);
(w, v) |=M ⊥ iff Never ;

(w, v) |=M ¬A iff for all pairs π in {w, v }: π �|=M A;

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 367

(w, v) |=M A ∧B iff (w, v) |=M A and (w, v) |=M B;
(w, v) |=M A ∨B iff (w, v) |=M A or (w, v) |=M B;

(w, v) |=M A → B iff for all pairs π in {w, v }: π |=M A implies π |=M B.

We usually drop the subscript M from |=M, if it is clear from the context.
We will use the following [8, Theorem 2 and Proposition 2].

Proposition 1. Let w, v in M. (i) (w, v) |= A implies (v, w) |= A. (ii) (w, v) |= A
implies (w,w) |= A and (v, v) |= A. (iii) (w, v) |= ¬A iff (w,w) �|= A and (v, v)
�|= A.

By (i), it suffices to consider the pairs (w,w), (v, v), (w, v) from {w, v } for the con-
ditions of satisfaction of ¬A and A → B. By (iii), we can spell out the conditions of
satisfaction of !A and ?A as follows:

(w, v) |=!A iff (w,w) |= A and (v, v) |= A,

(w, v) |=?A iff (w, v) |= A or ((w,w) �|= A or (v, v) �|= A).

The following proposition tells us that any diagonal pairs (w,w) behave classically.

Proposition 2. Given any M and any w in M, (i) (w,w) |= ¬A iff (w,w) �|= A; (ii)
(w,w) |= A → B iff (w,w) |= A implies (w,w) |= B.

Given any M = 〈W,V 〉, A is valid in M (notation: |=M A) if for any w, v ∈ W ,
(w, v) |=M A. Let M be a class of inquisitive models. We say that A is valid in M if
|=M A for any inquisitive model M in M.

Definition 1. Mall is the class of all inquisitive models and M2 :={〈W,V 〉 |#W =2 }.
M1 := { 〈W,V 〉 |#W = 1 } and M≥2 := { 〈W,V 〉 |#W ≥ 2 }.

Proposition 3. Assume that #W ≥ 2. Then, A is valid in an inquisitive model M iff
(w, v) |= A for any distinct w, v in M.

Proof. By Proposition 1 (ii). ��

Proposition 4. (i)A is valid in M1 iff A is a truth-functional tautology. (ii) If A is
valid in M≥2, then A is a truth-functional tautology.

Proof. (i) is trivial from Proposition 2. Let us show the contrapositive implication of
(ii). Assume that A is not a truth-functional tautology. So, there exists some truth-
functional valuation V : ℘ → { t, f } such that V(A) �= t. Define M = 〈W,V 〉 as
follows: W := { 0, 1 }, V (p) := W (if V(p) = t); ∅ (o.w.). Then, we can easily show
that: for any B, (0, 0) |=M B iff V(B) = t. Thus, we conclude (0, 0) �|=M A. ��

By Proposition 4, the validity in M≥2 implies the validity in M1. So, whenever we
consider the validity in Mall, we need not consider M1. By Propositions 3 and 4, we
deduce the following.

Proposition 5. A is valid in Mall iff (w, v) |=〈W,V 〉 A for any distinct w, v in W
and any 〈W,V 〉 in M≥2.

368 K. Sano

Some readers may find that inquisitive semantics have some similarity to Kripke seman-
tics for intuitionistic logic. By the following procedure, we can regard any inquisitive
model M = 〈W,V 〉 as a Kripke model for intuitionistic logic. Let us define the binary
relation≤ on W ×W by: (w, v) ≤ (w′, v′) iff (w′, v′) is a pair from {w, v }. Clearly
≤ is a reflexive and transitive relation. Next, we define V ′ : ℘ → P(W ×W) by V ′(p)
:= V (p)×V (p). Then, V ′(p) satisfies the hereditary condition, i.e., (w, v) ∈ V ′(p) and
(w, v) ≤ (w′, v′) implies (w′, v′) ∈ V ′(p). Thus, 〈W ×W,≤, V ′ 〉 is a Kripke model
for intuitionistic logic. Let � be the satisfaction relation of Kripke semantics for intu-
itionistic logic. Then, we can show that (w, v) |=M A iff 〈W ×W,≤, V ′ 〉, (w, v) �
A for any w, v ∈W and any formula A. Therefore:

(w, v) |= A → B iff for any (w′, v′) ∈ W ×W : (w, v) ≤ (w′, v′) implies (w′, v′) |= A.

This observation allows us to say that all theorems of intuitionistic logic are valid in
Mall (cf. [14, Section 3]).

(w, v)

(w, w)

(v, v)

(v, w)

(w, v)

(w, w)

(v, v)

Fig. 1. How to extract the semantical basis for our tree-sequent

The above representation of a inquisitive model as a Kripke model also gives us
the semantical basis of our tree-sequent calculus introduced in Section 3 as follows.
Proposition 5 tells us that any distinct pair is crucial for validity. Let us fix such a
distinct pair (w, v). In order to evaluate any formula at (w, v), it suffices to consider all
the ≤-connected pairs, where ≤ is defined as above (rigorously speaking, we need the
notion of generated submodel [4, p.29] here). Then we obtain the situation depicted in
the left part of Figure 1, where the solid lines represent the ≤-relation (but we omit all
the reflexive arrows here). Proposition 1 (i) allows us to fold this ‘square’ on the dotted
diagonal line and to obtain the tree-structure depicted in the right part of Figure 1. This
is the semantical basis for our tree-sequent calculus. We will label this tree with 0, 1
and 2 in Section 3 (see Definition 2).

3 Tree-Sequent Calculus for Inquisitive Logic

In this section, we introduce a tree-sequent calculus for Inquisitive Logic, i.e., the set of
formulas valid in Mall, as a special form of Labelled Deductive Systems [6].

Definition 2 (tree-sequent). Let T = 〈 { 0, 1, 2 },≤〉 be the tree equipped with the
order ≤ := { 〈 0, 1 〉, 〈 0, 2 〉 } ∪ { 〈x, x 〉 |x ∈ { 0, 1, 2 } }. A label is an element of

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 369

{ 0, 1, 2}. We use letters α, β, etc. for labels. A labelled formula is a pair α : A, where
α is a label and A is a formula of the language L℘. A tree-sequent is an expression
Γ ⇒ Δ where Γ and Δ are finite sets of labelled formulas.

Unlike the previous studies [9,10,11], we use the fixed tree T here. This difference
become important when we prove the soundness in Section 5.

Now, let us introduce the tree-sequent calculus TInqL for inquisitive logic. This sys-
tem defines inference schemes which allow us to manipulate tree-sequents. The axioms
(i.e., the initial tree-sequents) of TInqL are of the following forms:

α : A,Γ ⇒ Δ,α : A (Ax) α : ⊥, Γ ⇒ Δ (⊥L).

The inference rules of TInqL are the following:

0 : p, Γ ⇒ Δ

1 : p, 2 : p, Γ ⇒ Δ
(Atom L)

1 : A, 2 : A,Γ ⇒ Δ

0 : A,Γ ⇒ Δ
(Move)

α : A,α : B,Γ ⇒ Δ

α : A ∧B,Γ ⇒ Δ
(∧L)

Γ ⇒ Δ,α : A Γ ⇒ Δ,α : B
Γ ⇒ Δ,α : A ∧B

(∧R)

α : A,Γ ⇒ Δ α : B,Γ ⇒ Δ

α : A ∨B,Γ ⇒ Δ
(∨L)

Γ ⇒ Δ,α : A,α : B
Γ ⇒ Δ,α : A ∨B

(∨R)

Γ ⇒ Δ,α : A
α : ¬A,Γ ⇒ Δ

(¬L)
α : A,Γ ⇒ Δ

Γ ⇒ Δ,α : ¬A (¬R1,2) where α �= 0

1 : A,Γ ⇒ Δ 2 : A,Γ ⇒ Δ

Γ ⇒ Δ, 0 : ¬A (¬R0)

Γ ⇒Δ,α : A α : B,Γ ⇒ Δ

α : A → B,Γ ⇒Δ
(→ L)

α : A,Γ ⇒ Δ,α : B
Γ ⇒ Δ,α : A → B

(→ R1,2) where α �=0

0 : A,Γ ⇒ Δ, 0 : B 1 : A,Γ ⇒ Δ, 1 : B 2 : A,Γ ⇒ Δ, 2 : B
Γ ⇒ Δ, 0 : A → B

(→ R0)

Γ ⇒ Δ,α : A α : A,Γ ⇒ Δ

Γ ⇒ Δ
(Cut)

The tree-sequent calculus cutfreeTInqL is obtained by dropping (Cut) from TInqL.
Whenever a tree-sequent Γ ⇒ Δ is provable in TInqL (or, in cutfreeTInqL), we write
TInqL � Γ ⇒ Δ (or, cutfreeTInqL � Γ ⇒ Δ, respectively).

Remark 1. We can remove either ⊥ or ¬ from our vocabulary. As for ⊥, it suffices to
define⊥:= p∧¬p. Then we can easily derive (⊥ L) from (Ax) and (∧L). Let us describe
how to eliminate ¬. First, in our system, notice that the (depth-preserving) weakening
is admissible, i.e., if one can derive Γ ⇒ Δ, then one can also derive α : A,Γ ⇒
Δ,β : B, where α and β are any label from 0, 1, 2. Then, in order to establish our
aim, it suffices to show the rules about the negation are derivable in the system without
the negation. (¬L) is easy to show. As for (¬R1,2) and (¬R0), it suffices to use the
weakening above (remark that we also need (Move) when deriving (¬R0)).

370 K. Sano

Let us give some derivations in our tree-sequent calculus. We say that A of L℘ is prov-
able in cutfreeTInqL (or, TInqL) if ⇒ 0 : A is provable in cutfreeTInqL (or, TInqL,
respectively).

Proposition 6. The following are all provable in cutfreeTInqL:

(i) ¬¬p → p
(ii) (¬A → B ∨ C) → (¬A → B) ∨ (¬A → C)
(iii) (¬A →?B) → (¬A → B) ∨ (¬A → ¬B)
(iv) A ∨ (A → (B ∨ ¬B))
(v) (A → (B ∨ C)) ∨ (B → (A ∨ C)) ∨ (C → (A ∨B))

Let us explain these formulas. As for (i), remark that ¬¬A → A is not valid in Mall in
general. For example, ¬¬(p ∨ q) → (p ∨ q) is not valid in Mall (see [8, p.11]). Thus,
together with our soundness result shown later, we can say that the inquisitive logic,
i.e., all the formulas valid in Mall, is not closed under uniform substitutions.

The formula (ii) is usually called the Kreisel-Putnam Axiom. Since ?B := B ∨ ¬B,
(ii) implies (iii) as a special case. The validity of (iii) has been called Mascarenhas
Theorem [8, Theorem 3, see also footnote 16 in p.12]. (iv) says that every frame is of
depth ≤ 2 over intuitionistic Kripke frames [4, Proposition 2.38.]. Finally, (v) says that
every rooted subframe of the original frame is of width ≤ 2 over intuitionistic Kripke
frames [4, Proposition 2.39.].

Proof. Here we show (i) alone. The crucial part is the following derivation:

0 : p ⇒ 0 : p
1 : p, 2 : p ⇒ 0 : p (Atom L)

2 : p ⇒ 0 : p, 1 : ¬p (¬R1,2)

⇒ 0 : p, 1 : ¬p, 2 : ¬p (¬R1,2)

2 : ¬¬p ⇒ 0 : p, 1 : ¬p (¬L)

1 : ¬¬p, 2 : ¬¬p ⇒ 0 : p (¬L)

0 : ¬¬p ⇒ 0 : p (Move)

The rest of the proof can be found in Appendix A. ��

4 Completeness

In this section, we show that the tree-sequent calculus cutfreeTInqL is sufficient to
prove all formulas that are valid in Mall.

In the following, Γ , Δ are possibly infinite in the expression Γ ⇒ Δ of a tree-
sequent. In the case where Γ , Δ are all finite, the tree-sequent Γ ⇒ Δ said to be
finite. A (possibly infinite) tree-sequent Γ ⇒ Δ is provable in cutfreeTInqL, if
cutfreeTInqL � Γ ′ ⇒ Δ′ for some finite tree-sequent Γ ′ ⇒ Δ′ such that Γ ′ ⊂ Γ
and Δ′ ⊂ Δ. In what follows, we extend our notation cutfreeTInqL � Γ ⇒ Δ to
cover any possibly infinite tree-sequent in the sense explained above.

Definition 3 (Saturatedness). A tree-sequent Γ ⇒ Δ is saturated, if it satisfies the
following conditions:

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 371

(consistency) (i) If α : A ∈ Γ , then α : A /∈ Δ, (ii) α : ⊥ /∈ Γ .
(hereditary condition) If 0 : A ∈ Γ , then 1 : A ∈ Γ and 2 : A ∈ Γ .
(atom l) If 1 : p ∈ Γ and 2 : p ∈ Γ , then 0 : p ∈ Γ .
(∧l) If α : A ∧B ∈ Γ , then α : A ∈ Γ and α : B ∈ Γ .
(∧r) If α : A ∧B ∈ Δ, then α : A ∈ Δ or α : B ∈ Δ.
(∨l) If α : A ∨B ∈ Γ , then α : A ∈ Γ or α : B ∈ Γ .
(∨r) If α : A ∨B ∈ Δ, then α : A ∈ Δ and α : B ∈ Δ.
(¬l) If α : ¬A ∈ Γ , then α : A ∈ Δ.
(¬r1,2) If α : ¬A ∈ Δ and α �= 0, then α : A ∈ Γ .
(¬r0) If 0 : ¬A ∈ Δ, then 1 : A ∈ Γ or 2 : A ∈ Γ .
(→l) If α : A → B ∈ Γ , then α : A ∈ Δ or α : B ∈ Γ .
(→r1,2) If α : A → B ∈ Δ and α �= 0, then α : A ∈ Γ and α : B ∈ Δ.
(→r0) If 0 : A → B ∈ Δ, then (0 : A ∈ Γ and 0 : B ∈ Δ) or (1 : A ∈ Γ and

1 : B ∈ Δ) or (2 : A ∈ Γ and 2 : B ∈ Δ).

Lemma 1. If a finite tree-sequent Γ ⇒ Δ is not provable in cutfreeTInqL, then there
exists a saturated tree-sequent Γ+ ⇒ Δ+ such that Γ ⊂ Γ+ and Δ ⊂ Δ+ and
Γ+ ⇒ Δ+ is not provable in cutfreeTInqL.

The proof of this Lemma can be found in Appendix B. Recall that M2 is the class of all
inquisitive models whose domain consists of exactly two elements.

Theorem 1. If A is valid in M2, then ⇒ 0 : A is provable in cutfreeTInqL. Therefore,
if A is valid in Mall, then ⇒ 0 : A is provable in cutfreeTInqL.

Proof. It suffices to establish the first part. We show the contrapositive implication of it.
Assume that ⇒ 0 : A is unprovable in cutfreeTInqL. Then, by Lemma 1, there exists
some saturated tree-sequent Γ+ ⇒ Δ+ such that 0 : A ∈ Δ+ and cutfreeTInqL ��
Γ+ ⇒ Δ+. Let us define W := { 1, 2 }, V (p) := {α ∈ { 1, 2 } |α : p ∈ Γ+ } (p ∈ ℘).
Now we show by induction on X of L℘ that:

(i) If 0 : X ∈ Γ+, then (1, 2) |= X .
(ii) If 0 : X ∈ Δ+, then (1, 2) �|= X .
(iii) If α : X ∈ Γ+ and α �= 0, then (α, α) |= X .
(iv) If α : X ∈ Δ+ and α �= 0, then (α, α) �|= X .

Here we consider only the cases where X is of the form p ∈ ℘, of the form ¬B, and, of
the form B → C.

(X is of the form p ∈ ℘). We only show the cases (i) and (ii). (i) Suppose that 0 : p ∈
Γ+. Since Γ+ ⇒ Δ+ is saturated, 1 : p, 2 : p ∈ Γ+ by (hereditary condition). So,
1, 2 ∈ V (p). Thus, (1, 2) |= p. (ii) Suppose that 0 : p ∈ Δ+. Since cutfreeTInqL ��
Γ+ ⇒ Δ+ and Γ+ ⇒ Δ+ is saturated, 0 : p /∈ Γ+ by (consistency). 0 : p /∈ Γ+

means that 1 : p /∈ Γ+ or 2 : p /∈ Γ+ by (atom l). So, 1 /∈ V (p) or 2 /∈ V (p). Thus, we
have (1, 2) �|= p.

(X is of the form ¬B). We show the cases (i) and (ii) alone. (i) Suppose that 0 : ¬B ∈
Γ+. Since Γ+ ⇒ Δ+ is saturated, 1 : ¬B ∈ Γ+ and 2 : ¬B ∈ Γ+ by (hereditary
condition). By (¬l), 1 : B, 2 : B ∈ Δ+. By I.H., we have: (1, 1) �|= B and (2, 2) �|= B.

372 K. Sano

It follows from Proposition 1 (iii) that (1, 2) |= ¬B. (ii) Suppose that 0 : ¬B ∈ Δ+.
Since Γ+ ⇒ Δ+ is saturated, 1 : B ∈ Γ+ or 2 : B ∈ Γ+ by (¬r0). We deduce from
I.H. that (1, 1) |= B or (2, 2) |= B. By Proposition 1 (iii), (1, 2) |= ¬A.

(X is of the form B → C). We only show the cases (i) and (ii). (i) Suppose that
0 : B → C ∈ Γ+. Since Γ+ ⇒ Δ+ is saturated, 0 : B ∈ Δ+ or 0 : C ∈ Γ+ by (→l).
We deduce from I.H. that (1, 2) |= B implies (1, 2) |= C. Next, we obtain 1 : B → C
and 2 : B → C ∈ Γ+ by (hereditary condition) and our assumption. Also by I.H.
and (→l), we get: (1, 1) |= B implies (1, 1) |= C, and, (2, 2) |= B implies (2, 2) |= C.
Therefore, we conclude that (1, 2) |= B → C. (ii) Suppose that 0 : B → C ∈ Δ+. By
(→r0), one of the following holds: (a) 0 : A ∈ Γ+ and 0 : B ∈ Δ+; (b) 1 : A ∈ Γ+

and 1 : B ∈ Δ+; (c) 2 : A ∈ Γ+ and 2 : B ∈ Δ+. By I.H., we establish that
(1, 2) �|= B → C.

Since 0 : A ∈ Δ+, we have (1, 2) �|= A. Therefore, A is not valid in this finite model
〈W,V 〉 ∈ M2. ��

5 Soundness

In this section, we establish that the tree-sequent calculus TInqL (i.e., cutfreeTInqL
with (Cut)) is sound with respect to the class Mall of all inquisitive models.

Each node α of a tree-sequent Γ ⇒ Δ is associated with a sequent Γα ⇒ Δα where
Γα (or, Δα) is the set of formulas such that α : A ∈ Γ (or,α : A ∈ Δ, respectively). We
define a translation of tree-sequents into formulas ofL℘. In the following, tree-sequents
are all finite.

Definition 4 (Formulaic Translation). Let Γ ⇒ Δ be a tree-sequent and s, t be fresh
propositional variables in Γ ⇒ Δ. The formulaic translation �Γ ⇒ Δ� is defined as:

�Γ ⇒ Δ� ≡
∧

Γ0 →
(
(s ∨ t) ∨

∨
Δ0 ∨ �Γ ⇒ Δ�1 ∨ �Γ ⇒ Δ�2

)
where:

�Γ ⇒ Δ�1 ≡ s ∧
∧

Γ1 → t ∨
∨

Δ1; �Γ ⇒ Δ�2 ≡ t ∧
∧

Γ2 → s ∨
∨

Δ2.

Note that this formulaic translation depends on the choice of s and t.

Remark 2. Recall from Definition 2 that we use the fixed tree T unlike the previous
studies [9,10,11] which employ ‘growing’ tree-sequents. This distinction makes us to
use some fresh propositional variables in our formulaic translation. This is because the
naive formulaic translation with no fresh variables:

�Γ ⇒ Δ�′ ≡
∧

Γ0 →
(∨

Δ0 ∨ �Γ ⇒ Δ�1 ∨ �Γ ⇒ Δ�2

)
where:

�Γ ⇒ Δ�′1 ≡
∧

Γ1 →
∨

Δ1; �Γ ⇒ Δ�′2 ≡
∧

Γ2 →
∨

Δ2.

does not preserve validity, e.g., when we apply (Atom L) (cf. Lemma 3 (atom left)).
One more difference. The previous studies mentioned above used the formulaic

translation to connect the tree-sequent calculus with the intended Hilbert calculus and
showed that the translation preserves the provability. We, however, use it to establish
the soundness.

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 373

From the definition of �Γ ⇒ Δ�, we can easily derive the following.

Lemma 2. If �Γ ⇒ Δ�α is valid in Mall for some α ∈ { 1, 2 }, then �Γ ⇒ Δ� is valid
in Mall.

Lemma 3. The following formulas are valid in Mall.

(ax) A ∧ C → A ∨D.
(⊥ left) ⊥ ∧ C → D.
(atom left) X1 → X2, where:

X1 ≡ p → (S ∨ T) ∨D ∨ (S ∧ E → T ∨ F) ∨ (T ∧G → S ∨H);
X2 ≡ (S ∨ T) ∨D ∨ (p ∧ S ∧E → T ∨ F) ∨ (p ∧ T ∧G → S ∨H).

(move) ((E ∧A → F) ∨ (G ∧A → H)) → (A → (E → F) ∨ (G → H)).
(∧ right) (C → D ∨A) ∧ (C → D ∨B) → (C → (D ∨ (A ∧B))).
(∨ left) (A ∧ C → D) ∧ (B ∧C → D) → (((A ∨B) ∧C) → D).
(¬ left) (C → D ∨A) → (¬A ∧ C → D).
(¬ right1,2) (C ∧A → D) → (C → D ∨ ¬A).
(¬ right0) X3 ∧X4 → X5, where:

X3 ≡ (S ∨ T) ∨D ∨ (S ∧E ∧A → F ∨ T) ∨ (T ∧G → S ∨H);
X4 ≡ (S ∨ T) ∨D ∨ (S ∧E → F ∨ T) ∨ (T ∧G ∧A → S ∨H);
X5 ≡ (S ∨ T) ∨ ¬A ∨D ∨ (S ∧E → F ∨ T) ∨ (T ∧G → S ∨H).

(→ left) (C → D ∨A) ∧ (C ∧B → D) → (C ∧ (A → B) → D).
(→ right1,2) (C ∧A → D ∨B) → (C → (D ∨ (A → B))).
(→ right0) (X6 ∧X7 ∧X8) → X9, where:

X6 ≡ A → ((S ∨ T) ∨D ∨B ∨ (S ∧ E → T ∨ F) ∨ (T ∧G → S ∨H));
X7 ≡ (S ∨ T) ∨D ∨ (S ∧ E ∧A → T ∨ F) ∨ (T ∧G → S ∨H);
X8 ≡ (S ∨ T) ∨D ∨ (S ∧ E → T ∨ F) ∨ (T ∧G ∧A → S ∨H);
X9 ≡ (S ∨ T) ∨ (A → B) ∨D ∨ (S ∧ E → T ∨ F) ∨ (T ∧G → S ∨H).

(cut) (C → D ∨A) ∧ (C ∧A → D) → (C → D).

Proof. Formulas except (atom left), (¬ right0) and (→ right0) are all theorems of
intuitionistic logic. Therefore, they are all valid in Mall (recall the description just after
Proposition 5). So, it suffices to check (atom left), (¬ right0) and (→ right0). For more
details, see Appendix C. ��

Lemma 4. If Γ ⇒ Δ is provable in TInqL, then �Γ ⇒ Δ� is valid in Mall.

Proof. By induction on the derivation of Γ ⇒ Δ in TInqL. First of all, let us choose
some fresh propositional variables s, t not occurring in the derivation. We assume that
all formulaic translations in this proof depend on s and t. All cases immediately follow
from Lemmas 2 and 3. ��

374 K. Sano

In order to establish the soundness through our formulaic translation with fresh vari-
ables, we need to show the following, which lets us use the fresh propositional variables
s and t to name three worlds (corresponding to 0, 1, 2 in our fixed tree) in an inquisitive
model 1.

Lemma 5. Assume that s and t do not occur in A. If (s ∨ t) ∨ A ∨ (s → t) ∨ (t → s)
is valid in Mall, then A is valid in Mall.

Proof. We prove the contrapositive implication. Assume that A is not valid in Mall. By
Proposition 5, there exists some inquisitive model M = 〈W,V 〉 and w, v ∈ W such
that w �= v and #W ≥ 2 and (w, v) �|=M A. Let us define a valuation V ′ extending V
by: V ′(p) := {w } (if p ≡ s); { v } (if p ≡ t); V (p) (o.w.). Write M′ = 〈W,V ′ 〉. Then,
(x, y) |=M B iff (x, y) |=M′ B, for any x, y ∈W and any subformula B of A. Thus,
(w, v) �|=M′ A. By definition of V ′, (w, v) �|=M′ (s∨t)∨(s → t)∨(t → s). Therefore,
(w, v) �|=M′ (s ∨ t) ∨A ∨ (s → t) ∨ (t → s). ��

Theorem 2. If ⇒ 0 : A is provable in TInqL, A is valid in Mall.

Proof. By Lemma 4, �⇒ 0 : A� is valid in Mall, i.e., (s ∨ t) ∨ A ∨ (s → t) ∨ (t → s)
is valid in Mall. It follows from Lemma 5 that A is valid in Mall. ��

6 Cut-Elimination and Decidability of TInqL

Corollary 1. The following are equivalent: (i) cutfreeTInqL �⇒ 0 : A; (ii) TInqL
�⇒ 0 : A; (iii) A is valid in Mall; (iv) A is valid in M2.

Proof. [(i) ⇒ (ii)] Trivial. [(ii) ⇒ (iii)] This follows from Theorem 2. [(iii) ⇒ (iv)]
Easy. [(iv) ⇒ (i)] This follows from Theorem 1. ��

By this corollary, we semantically establish that TInqL enjoys cut-elimination, i.e., (ii)
⇒ (i). Furthermore, this corollary tells us that TInqL is decidable.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.)
Handbook of Modal Logic, pp. 821–868. Elsevier, Amsterdam (2007)

2. Blackburn, P., ten Cate, B.: Pure extensions, proof rules, and hybrid axiomatics. Studia Log-
ica 84, 277–322 (2006)

3. Ten Cate, B., Shan, C.: Axiomatizing Groenendijk’s logic of interrogation. In: Aloni, M.,
Butler, A., Dekker, P. (eds.) Questions in Dynamic Semantics, pp. 63–82. Elsevier, Oxford
(2007)

4. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. Oxford Sci-
ence Publications, Oxford (1997)

5. Ciardelli, I., Roelofsen, F.: Generalized inquisitive logic (submitted for publication, 2009)
6. Gabbay, D.: Labelled Deductive Systems. Clarendon Press, Oxford (1996)

1 Some readers who are familiar with hybrid logic [1] may find the similarity with the proof-rule
called Name′ [2, p.294].

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 375

7. Groenendijk, J.: The logic of interrogation. In: Matthews, T., Strolovitch, D. (eds.) The Pro-
ceedings of the Ninth Conference on Semantics and Linguistic Theory, pp. 109–126. CLC
Publications, NY (1999)

8. Groenendijk, J.: Inquisitive semantics: Two possibilities for disjunction. Prepublication Se-
ries PP-2008-26, ILLC (2008)

9. Hasuo, I., Kashima, R.: Kripke completeness of first-order constructive logics with strong
negation. Logic Journal of the IGPL 11(6), 615–646 (2003)

10. Ishigaki, R., Kikuchi, K.: A tree-sequent calculus for a natural predicate extension of Visser’s
propositional logic. Logic Journal of the IGPL 15(2), 149–164 (2007)

11. Ishigaki, R., Kashima, R.: Sequent calculi for some strict implication logics. Logic Journal
of the IGPL 16(2), 155–174 (2008)

12. Kashima, R.: Sequent calculi of non-classical logics - Proofs of completeness theorems by
sequent calculi (in Japanese). In: Proceedings of Mathematical Society of Japan Annual Col-
loquium of Foundations of Mathematics, pp. 49–67 (1999)

13. Mascarenhas, S.: Inquisitive semantics and logic. The Institute for Logic, Language and
Computation, the University of Amsterdam, Forthcoming Master Thesis

14. Mascarenhas, S.: Inquisitive semantics and logic. ILLC, Amsterdam (2008) (manuscript)

A Some Examples of Derivations in TInqL

Let us finish proving Proposition 6. The remaining items are:

(ii) (¬A → B ∨ C) → (¬A → B) ∨ (¬A → C)
(iii) (¬A →?B) → (¬A → B) ∨ (¬A → ¬B)
(iv) A ∨ (A → (B ∨ ¬B))
(v) (A → (B ∨ C)) ∨ (B → (A ∨ C)) ∨ (C → (A ∨B))

It suffices to show (ii), (iv) and (v) are provable in cutfreeTInqL. As for (ii), the crucial
part in the following derivation:

D....
Θ ⇒ 1 : B, 2 : C, 0 : ¬A

Θ, 1 : B, 2 : B ⇒ 1 : B, 2 : C

Θ, 0 : B ⇒ 1 : B, 2 : C
(Move)

Θ, 1 : B, 1 : C ⇒ 1 : B, 2 : C

Θ, 0 : C ⇒ 1 : B, 2 : C
(Move)

Θ, 0 : B ∨ C ⇒ 1 : B, 2 : C
(∨L)

Θ, 0 : ¬A → B ∨ C ⇒ 1 : B, 2 : C
(→ L)

where Θ := { 1 : ¬A, 2 : ¬A } and D is:

1 : A, 2 : ¬A ⇒ 1 : B, 2 : C, 1 : A

1 : A, Θ ⇒ 1 : B, 2 : C
(¬L)

2 : A, 1 : ¬A ⇒ 1 : B, 2 : C, 2 : A

2 : A, Θ ⇒ 1 : B, 2 : C
(¬L)

Θ ⇒ 1 : B, 2 : C, 0 : ¬A
(¬R0)

We can establish (iv) as follows:

1 : B, 1 : A ⇒ 0 : A, 1 : B

1 : A ⇒ 0 : A, 1 : B, 1 : ¬B
(¬R1,2)

1 : A ⇒ 0 : A, 1 : B ∨ ¬B
(∨R)

2 : B, 2 : A ⇒ 0 : A, 2 : B

2 : A ⇒ 0 : A, 2 : B, 2 : ¬B
(¬R1,2)

2 : A ⇒ 0 : A, 2 : B ∨ ¬B
(∨R)

0 : A ⇒ 0 : A, 0 : B ∨ ¬B

⇒ 0 : A, 0 : A → (B ∨ ¬B)
(→ R0)

⇒ 0 : A ∨ (A → (B ∨ ¬B))
(∨R)

As for (v), the crucial part is the following derivation:
1 : A, 2 : B, 1 : B, 2 : C ⇒ 0 : B ∨ C, 1 : A, 1 : C, 2 : A ∨ B

0 : A, 1 : B, 2 : C ⇒ 0 : B ∨ C, 1 : A, 1 : C, 2 : A ∨ B
(Move)

0 : A, 1 : B, 2 : C ⇒ 0 : B ∨ C, 1 : A ∨ C, 2 : A ∨B
(∨R)

376 K. Sano

B A Proof of Lemma 1

Here, we would like to give a proof of Lemma 1.

Proof. Suppose that a finite tree-sequent Γ ⇒ Δ is not provable in cutfreeTInqL. In
the following, we construct an infinite sequence of finite tree-sequents (Γ i ⇒ Δi)i∈ω
and obtain Γ+ ⇒ Δ+ as the union of them.

Let (αi : Fi)i>1 be an enumeration of all labelled formulas such that each formula
of L℘ appears infinitely many times. From now on, we construct (Γ i ⇒ Δi)i∈ω such
that cutfreeTInqL �� Γ i ⇒ Δi.
(Basis) Let Γ 0 ⇒ Δ0 ≡ Γ ⇒ Δ. By assumption, cutfreeTInqL �� Γ 0 ⇒ Δ0.
(Inductive step) Suppose that we have already defined Γ k−1 ⇒ Δk−1 such that
cutfreeTInqL �� Γ k−1 ⇒ Δk−1. In this k-th step, we define Γ k ⇒ Δk so that
unprovability of the tree-sequent is preserved. The operations executed in the k-th step
are as follows:

– First, for any 0 : A ∈ Γ k, we add 1 : A and 2 : A to Γ k−1. Unprovabil-
ity is preserved because of the rule (Move). We denote the result of this step by
(Γ k−1)′ ⇒ Δk−1.

– Second, according to the form of αk : Fk, one of the following operation is exe-
cuted:

(1) The case where Fk ≡ p and αk �= 0 and αk : Fk ∈ (Γ k−1)′. Define:

Γ k ⇒ Δk ≡
{

0 : p, (Γ k−1)′ ⇒ Δk−1 if (3− αk) : p ∈ (Γ k−1)′;
(Γ k−1)′ ⇒ Δk−1 o.w.

Unprovability is preserved because of (Atom L).
(2) The case where Fk ≡ A ∧ B and αk : Fk ∈ (Γ k−1)′. Define Γ k ⇒ Δk

≡ αk : A,αk : B, (Γ k−1)′ ⇒ Δk−1. Unprovability is preserved because of
(∧L).

(3) The case where Fk ≡ A ∧ B and αk : Fk ∈ Δk−1. By (∧R), we know that
either (Γ k−1)′ ⇒ Δk−1, αk : A or (Γ k−1)′ ⇒ Δk−1, αk : B is unprovable.
So, choose an unprovable tree-sequent as Γ k ⇒ Δk.

(4) The case where Fk ≡ A ∨B and αk : Fk ∈ (Γ k−1)′. Similar to (3).
(5) The case where Fk ≡ A ∨B and αk : Fk ∈ Δk−1. Similar to (2).
(6) The case where Fk ≡ ¬A and αk : Fk ∈ (Γ k−1)′. Define Γ k ⇒ Δk ≡

(Γ k−1)′ ⇒ Δk−1, αk : A. Unprovability is preserved because of (¬L).
(7) The case where Fk ≡ ¬A and αk : Fk ∈ Δk−1.

• (αk = 1 or 2) Define Γ k ⇒ Δk ≡ αk : A, (Γ k−1)′ ⇒ Δk−1. Unprovabil-
ity is preserved because of (¬R1,2).

• (αk = 0) By (¬R0), we know that either 1 : A, (Γ k−1)′ ⇒ Δk−1 or 2 :
A, (Γ k−1)′ ⇒ Δk−1 is unprovable. So, choose an unprovable tree-sequent
as Γ k ⇒ Δk.

Sound and Complete Tree-Sequent Calculus for Inquisitive Logic 377

(8) The case where Fk ≡ A → B and αk : Fk ∈ (Γ k−1)′. By (→L), we know that
either αk : B, (Γ k−1)′ ⇒ Δk−1 or (Γ k−1)′ ⇒ Δk−1, αk : A is unprovable.
Thus, choose an unprovable tree-sequent as Γ k ⇒ Δk.

(9) The case where Fk ≡ A → B and αk : Fk ∈ Δk−1.
• (αk = 1 or 2) Define Γ k ⇒ Δk ≡ αk : A, (Γ k−1)′ ⇒ Δk−1, αk : B.

Unprovability is preserved because of (→R1,2).
• (αk = 0) By (¬R0), we know that none of 0 : A, (Γ k−1)′ ⇒ Δk−1, 0 : B

or 1 : A, (Γ k−1)′ ⇒ Δk−1, 1 : B or 2 : A, (Γ k−1)′ ⇒ Δk−1, 2 : B are
provable. So, choose an unprovable tree-sequent as Γ k ⇒ Δk.

(10) Otherwise. It suffices to define Γ k ⇒ Δk ≡ (Γ k−1)′ ⇒ Δk−1.

Now let Γ+ ⇒ Δ+ be (
⋃

i∈ω Γ i) ⇒ (
⋃

i∈ω Δi). It is easy to verify that the tree-
sequent Γ+ ⇒ Δ+ is saturated. ��

C A Proof of Lemma 3

Here we would like to give a detailed proof of Lemma 3.

Proof. Let us check (atom left), (¬ right0) and (→ right0) one by one. By Proposition
5, consider any 〈W,V 〉 with #W ≥ 2 and v, w ∈ W with w �= v.

(atom left) We show (w, v) |= X1 → X2. Assume for contradiction that (w, v) �|=
X1 → X2. Remark that X1 → X2 is a truth-functional tautology (it suffices to
note that P → Q is equivalent to ¬P ∨ Q in classical logic). Thus, (w, v) |= X1
and (w, v) �|= X2 by Proposition 2. From (w, v) �|= X2, we obtain (a) (w, v) �|= (S∨
T)∨D, (b) (w, v) �|= (p∧S∧E) → (T∨F) and (c) (w, v) �|= (p∧T∧G) → (S∨H).
In view of (a), we can restrict our attention to the following essential case where we
have (b′) (w,w) |= p∧S ∧E and (w,w) �|= T ∨F and (c′) (v, v) |= p∧T ∧G and
(v, v) �|= S ∨H . Since (w,w) |= p and (v, v) |= p, we have (w, v) |= p. It follows
from (w, v) |= X1 and (a) that (w, v) |= (S∧E → T∨F)∨(T∧G → S∨H). Thus,
we subdivide our argument into the following two cases: (Case 1) Assume that
(w, v) |= S∧E → T∨F . By Proposition 1 (ii), we have (w,w) |= S∧E → T ∨F .
It follows from (b′) that (w,w) �|= S ∨ E → T ∨ F . Contradiction. (Case 2)
Assume that (w, v) |= T ∧ G → S ∨H . Similarly to (Case 1), we get the desired
contradiction.

(¬ right0) We show that (w, v) |= X3 ∧ X4 → X5. Assume for contradiction that
(w, v) �|= X3 ∧X4 → X5. Similarly to the proof of (atom left), remark that X3 ∧
X4 → X5 is a truth-functional tautology. Thus, (w, v) |= X3 ∧ X4 and (w, v) �|=
X5 by Proposition 2. From (w, v) �|= X5, we have (a) (w, v) �|= (S ∨ T) ∨D, (b)
(w, v) �|= ¬A, (c) (w, v) �|= (S∧E) → (T ∨F), (d) (w, v) �|= (T ∧G) → (S∨H).
We can derive from (a) that (c′) (w,w) |= S ∧ E and (w,w) �|= T ∨ F and (d′)
(v, v) |= T ∧ G and (v, v) �|= S ∨H . By (w, v) |= X3 ∧X4, (a), (c), and (d), we
derive (e) (w, v) |= S∧E∧A → F ∨T and (f) (w, v) |= T ∧G∧A → S∨H . From
(b) and Proposition 1 (iii), we have (Case 1) (w,w) |= A or (Case 2) (v, v) |= A.
Since we can prove (Case 2) similarly to (Case 1), it suffice to check (Case 1).
Assume that (w,w) |= A. By Proposition 1 and (w, v) |= S ∧ E ∧ A → F ∨ T ,
(w,w) |= S ∧ E → F ∨ T . Together with our assumption and (c′), we obtain
(w,w) �|= S ∧ E → F ∨ T . Contradiction.

378 K. Sano

(→ right0) We show that (w, v) |= X6 ∧X7 ∧X8 → X9. Assume for contradiction
that (w, v) �|= X6∧X7∧X8 → X9. Since X6∧X7∧X8 → X9 is a truth-functional
tautology, we derive that (w, v) |= X6∧X7∧X8 but (w, v) �|= X9 by Proposition 2.
It follows from (w, v) �|= X9 that: (a) (w, v) �|= (S∨T)∨D; (b) (w, v) �|= A → B;
(c) (w, v) �|= (S ∧ E) → (T ∨ F); (d) (w, v) �|= (T ∧ G) → (S ∨ H). We
can derive from (a) that (c′) (w,w) |= S ∧ E and (w,w) �|= T ∨ F and (d′)
(v, v) |= T ∧ G and (v, v) �|= S ∨ H . Since (w, v) |= X7 and (w, v) |= X8, we
derive (e) (w, v) |= S ∧E∧A → F ∨T and (f) (w, v) |= T ∧G∧A → S∨H . By
(b), we subdivide our argument into the following three cases: (Case 1) (w, v) |= A
but (w, v) �|= B; (Case 2) (w,w) |= A but (w,w) �|= B; (Case 3) (v, v) |= A but
(v, v) �|= B. Because we can prove (Case 3) similarly to (Case 2), we only check
(Case 1) and (Case 2).

– (Case 1) Since (w, v) |= X6, we get (w, v) |= (S ∨ T) ∨D ∨B ∨ (S ∧ E →
T ∨E) ∨ (T ∧G → S ∨H), which implies a contradiction.

– (Case 2) It follows from (w,w) |= X6 and Proposition 1 (ii), and that (w,w) |=
S ∧E ∧A → T ∨E. Since (w,w) |= A, we have (w,w) |= S ∧E → T ∨E,
which contradicts (c′). ��

The Arrow Calculus as a Quantum
Programming Language

Juliana Kaizer Vizzotto1, André Rauber Du Bois2, and Amr Sabry3

1 Mestrado em Nanociências, Centro Universitário Franciscano
Santa Maria, RS/ Brazil

2 PPGI, Universidade Católica de Pelotas
Pelotas, RS/Brazil

3 Department of Computer Science, Indiana University
Bloomington, USA

Abstract. We express quantum computations (with measurements) us-
ing the arrow calculus extended with monadic constructions. This frame-
work expresses quantum programming using well-understood and famil-
iar classical patterns for programming in the presence of computational
effects. In addition, the five laws of the arrow calculus provide a conve-
nient framework for equational reasoning about quantum computations
that include measurements.

1 Introduction

Quantum computation [1] can be understood as a transformation of information
encoded in the state of a quantum physical system. Its basic idea is to encode data
using quantum bits (qubits). Differently from the classical bit, a qubit can be in
a superposition of basic states leading to “quantum parallelism.” This form of
parallelism is due to the non-local wave character of quantum information and is
qualitatively different from the classical notion of parallelism. This characteristic
of quantum computation can greatly increase the processing speed of algorithms.
However, quantum data types are computationally very powerful not only due
to superposition. There are other odd properties like measurement, in which the
observed part of the quantum state and every other part that is entangled with
it immediately lose their wave character.

These interesting properties have led to the development of very efficient quan-
tum algorithms, like Shor’s quantum algorithm for factorizing integers [2], and
Grover’s quantum search on databases [3]. Another important theme is the de-
velopment of quantum cryptographic techniques [4].

Since these discoveries, much research has been done on quantum computa-
tion. Summarizing the field of research we can classify it according three main
areas: i) physical implementations of quantum computers, ii) development of
new quantum algorithms; and iii) design of quantum programming languages.

This work is about the design of a quantum programming language, and
consequently about a high-level, structured and well-defined way to develop new
quantum algorithms and to reason about them.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 379–393, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

380 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

We have been working on semantic models for quantum programming. In
previous work [5] we established that general quantum computations (including
measurements) are an instance of the category-theoretic concept of arrows [6], a
generalization of monads [7] and idioms [8]. Translating this insight to a practical
programming paradigm has been difficult however. On one hand, directly using
arrows is highly non-intuitive, requiring programming in the so-called “point-
free” style where intermediate computations are manipulated without giving
them names. Furthermore reasoning about arrow programs uses nine, somewhat
idiosyncratic laws.

In recent work, Lindley et. al. [9] present the arrow calculus, which is a more
friendly version of the original presentation of arrows. The arrow calculus aug-
ment the simply typed lambda calculus with four constructs satisfying five laws.
Two of these constructs resemble function abstraction and application, and sat-
isfy familiar beta and eta laws. The remaining two constructs resemble the unit
and bind of a monad, and satisfy left unit, right unit, and associativity laws.
Basically, using the arrow calculus we can understand arrows through classic
well-known patterns.

In this work we propose to express quantum computations using the arrow
calculus axtended with monadic constructions. We show that quantum program-
ming can be expressed using well-understood and familiar classical patterns for
programming in the presence of computational effects. Interestingly, the five laws
of the arrow calculus provide a convenient framework for equational reasoning
about quantum computations (including measurements).

This work is organized as follows. The next two sections review the background
material on modeling quantum computation using classical arrows. Section 4
presents the arrow calculus. We show the quantum arrow calculus in Section 5.
We express some traditional examples of quantum computations using the quan-
tum calculus. Additionally, we illustrate how we can use the calculus to reason
about quantum programs. Section 6 concludes with a discussion of some related
works. Finally, Appendix A presents the constructs of simply-typed lambda cal-
culus, Appendix B gives an extension of the simply-typed lambda calculus with
monadic constructions, and Appendix C reviews general quantum computations.

2 Classic Arrows

The simply-typed lambda calculus is an appropriate model of pure functional
programming (see Appendix A). The standard way to model programming in
the presence of effects is to use monads [10] (see Appendix B). Arrows, like
monads, are used to elegantly program notions of computations in a pure func-
tional setting. But unlike the situation with monads, which wrap the results of
computations, arrows wrap the computations themselves.

From a programming point of view, classic arrows extend the simply-typed
lambda calculus with one type and three constants satisfying nine laws (see
Figure 1). The type A � B denotes a computation that accepts a value of type
A and returns a value of type B, possibly performing some side effects. The

The Arrow Calculus as a Quantum Programming Language 381

Types
arr :: (A → B)→ (A � B)
(>>>) :: (A � B)→ (B � C)→ (A � C)
first :: (A � B)→ (A× C � B × C)

Definitions
second : (A � B)→ (C × A � C ×B)
second = λf.arr swap >>> first f >>> arr swap
(&&&) : (C � A)→ (C � B)→ (C � A×B)
(&&&) = λf.λg.arr sup >>> first f >>> second g

Equations
(�1) arr id >>> f = f
(�2) f >>> arr id = f
(�3) (f >>> g) >>> h = f >>> (g >>> h)
(�4) arr(g.f) = arr f >>> arr g
(�5) first(arr f) = arr(f × id)
(�6) first(f >>> g) = first f >>> first g
(�7) first f >>> arr(id× g) = arr(id× g) >>> first f
(�8) first f >>> arr fst = arr fst >>> f
(�9) first(first f) >>> arr = arr assoc >>> first f

Fig. 1. Classic Arrows

three constants are: arr , which promotes a function to a pure arrow with no side
effects; ¿¿¿, which composes two arrows; and first , which extends an arrow to act
on the first component of a pair leaving the second component unchanged.

To understand the nine equations, we use some auxiliary functions. The func-
tion second , is like first , but acts on the second component of a pair, and f&&&g,
applies arrow f and g to the same argument and then pairs the results.

3 Quantum Arrows

Quantum computation is generally expressed in the framework of a Hilbert space
(see Appendix C for a short review of that model). As expressive and as con-
venient is this framework for mathematical reasoning, it is not easily amenable
to familiar programming techniques and abstractions. In recent work [5] how-
ever, we established that this general model of quantum computations (including
measurements) can be structured using the category-theoretic concept of arrows.
Figure 2 explains the main ideas which we elaborate on in the remainder of this
section.

In the figure, we have added type definitions (i.e, type synonyms) for conve-
nience. Type Vec A means that a vector is a function mapping elements from
a vector space orthonormal basis to complex numbers (i.e., to their probabil-
ity amplitudes). Type Lin represents a linear operator (e.g, a unitary matrix)
mapping a vector of type A to a vector of type B. Note that if we uncurry the
arguments A and B, it turns exactly into a square matrix (i.e, Vec (A,B)).
Type Dens A stands for density matrices and it is straight to build from Vec.
Type Super A B means a superoperator mapping a density matrix of type A

382 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

Type Definitions
type Vec A = A → C
type Lin A B = A → Vec B
type Dens A = Vec (A,A)
type Super A B = (A, A)→ Dens B

Syntax
Types A, B, C ::= ... Vec A | Lin A | Dens A | Super A B
Terms L, M, N ::= ... | return | >>= | arr | >>> | first

Monadic Definitions
return : A → Vec A
return a b = if a == b then 1.0 else 0.0
(>>=) : Vec A → (A → Vec B)→ Vec B
va >>= f = λb.

∑
a (va a)(f a b)

Auxiliary Definitions
fun2lin : (A → B)→ Lin A B
fun2lin f = λ a.return (f a)
(〈∗〉) : Vec A→ Vec B → Vec (A, B)
v1〈∗〉v2 = λ (a, b).v1 a ∗ v2 b

Arrow Types and Definitions
arr : (A → B)→ Super A B
arr f = fun2lin (λ (b1, b2)→ (f b1, f b2))
(>>>) :: (Super A B)→ (Super B C)→ (SuperA C)
f >>> g = λ b.(f b >>= g)
first :: (Super A B)→ (Super (A× C) (B × C))
first f ((b1, d1), (b2, d2)) = permute ((f(b1, b2))〈∗〉 return (d1, d2))

where permute v ((b1, b2), (d1, d2)) = v ((b1, d1), (b2, d2))

Fig. 2. Quantum Arrows

to a density matrix of type B. This type can be understood by interpreting it in
the same style as Lin.

We have defined in our previous work [5] the arrow operations for quantum
computations into two levels. First we have proved that pure quantum states (i.e,
vector states) are an instance of the concept of monads [7]. The definitions of
the monadic functions are shown in Figure 2. The function return specifies how
to construct vectors and >>= defines the behavior of an application of matrix to
a vector. Moreover we have used the auxiliary functions fun2lin , which converts
a classical (reversible) function to a linear operator, and 〈∗〉 which is the usual
tensor product in vector spaces.

The function arr constructs a quantum superoperator from a pure function
by applying the function to both vector and its dual. The composition of arrows
just composes two superoperators using the monadic bind. The function first
applies the superoperator f to the first component (and its dual) and leaves the
second component unchanged.

We have proved in our previous work that this superoperator instance of
arrows satisfy the required nine equations [5].

The Arrow Calculus as a Quantum Programming Language 383

4 The Arrow Calculus

In this section we present the arrow calculus [9] and show the translation of the
calculus to classic arrows (described in Section 2) and vice versa. The translation
is important because it essentially corresponds to the denotational semantic
function for the quantum version of the arrow calculus. The material of this
section closely follows the original presentation in [9].

4.1 The Calculus

The arrow calculus as shown in Figure 3 extends the core lambda calculus with
four constructs satisfying five laws. Type A � B denotes a computation that
accepts a value of type A and returns a value of type B, possibly performing
some side effects.

Syntax
Types A, B, C ::= . . . | A � B
Terms L, M, N ::= . . . | λ•x.Q
Commands P, Q, R ::= L • P | [M] | let x = P in Q

Types

Γ ; x : A � Q!B

Γ � λ•x.Q : A � B

Γ � L : A � B Γ ; Δ � M : A

Γ ; Δ � L •M !B

Γ, Δ �M : A

Γ ; Δ � [M]!A

Γ ; Δ � P !A Γ ; Δ, x : A � Q!B

Γ ;Δ � let x = P in Q!B
Laws

(β�) (λ•x.Q) •M = Q[x := M]
(η�) λ•x.(L • [x]) = L
(left) let x = [M] in Q = Q[x := M]
(right) let x = P in [x] = P
(assoc) let y = (let x = P in Q) in R = let x = P in (let y = Q in R)

Fig. 3. Arrow Calculus

There are two syntactic categories. Terms are ranged over by L,M,N , and
commands are ranged over by P,Q,R. In addition to the terms of the core
lambda calculus, there is one new term form: arrow abstraction λ•x.Q. There
are three command forms: arrow application L • M , arrow unit [M] (which
resembles unit in a monad), and arrow bind let x = P in Q (which resembles
bind in a monad).

In addition to the term typing judgment Γ �M : A there is also a command
typing judgment Γ ;Δ � P !A. An important feature of the arrow calculus is that
the command type judgment has two environments, Γ and Δ, where variables
in Γ come from ordinary lambda abstractions λx.N , while variables in Δ come
from arrow abstraction λ•x.Q.

384 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

Arrow abstraction converts a command into a term. Arrow abstraction closely
resembles function abstraction, save that the body Q is a command (rather than
a term) and the bound variable x goes into the second environment (separated
from the first by a semicolon).

Conversely, arrow application, L•M !B embeds a term into a command. Arrow
application closely resembles function application. The arrow to be applied is
denoted by a term, not a command; this is because there is no way to apply an
arrow that is itself yielded. This is why there are two different environments,
Γ and Δ: variables in Γ may denote arrows that are applied to arguments, but
variables in Δ may not.

Arrow unit, [M]!A, promotes a term to a command. Note that in the hy-
pothesis there is a term judgment with one environment (i.e, there is a comma
between Γ and Δ), while in the conclusion there is a command judgment with
two environments (i.e, there is a semicolon between Γ and Δ).

Lastly, using let, the value returned by a command may be bound.
Arrow abstraction and application satisfy beta and eta laws, (β�) and (η�),

while arrow unit and bind satisfy left unit, right unit, and associativity laws,
(left), (right), and (assoc). The beta law equates the application of an abstraction
to a bind; substitution is not part of beta, but instead appears in the left unit
law. The (assoc) law has the usual side condition, that x is not free in R.

4.2 Translation

The translation from the arrow calculus to classic arrows, shown below, gives a
denotational semantics for the arrow calculus.

[[λ•x.Q]] = [[Q]]x
[[L •M]]Δ = arr(λΔ.[[M]]) >>> [[L]]
[[[M]]]Δ = arr(λΔ.[[M]])
[[let x = P in Q]]Δ = (arr id &&& [[P]]Δ) >>> [[Q]]Δ,x

An arrow calculus term judgment Γ �M : A maps into a classic arrow judgment
Γ � [[M]] : A, while an arrow calculus command judgment Γ ;Δ � P !A maps into a
classic arrow judgment Γ � [[P]]Δ : Δ � A. Hence, the denotation of a command
is an arrow, with arguments corresponding to the environment Δ and result of
type A.

We omitted the translation of the constructs of core lambda calculus as they
are straightforward homomorphisms. The translation of the arrow abstraction
λ•x.Q just undoes the abstraction and call the interpretation of Q using x.
Application L • P translates to ¿¿¿, [M] translates to arr and let x = P in Q
translates to pairing &&&(to extend the environment with P) and composition
¿¿¿(to then apply Q).

The inverse translation, from classic arrows to the arrow calculus is defined
as:

[[arr]]−1 = λf.λ•x.[f x]
[[(>>>)]]−1 = λf.λg.λ•x.g • (f • x)
[[first]]−1 = λf.λ•z.let x = f • fst z in [(x, snd z)]

The Arrow Calculus as a Quantum Programming Language 385

Again we omitted the translation of the constructs of core lambda calculus as
they are straightforward homomorphisms. Each of the three constants from clas-
sic arrows translates to an appropriate term in the arrow calculus.

5 The Arrow Calculus as a Quantum Programming
Language

In this section we discuss how the arrow calculus can be used as a quantum
programming language.

We start by showing quantum programs using the standard quantum circuit
notation. The lines carry quantum bits. The values flow from left to right in steps
corresponding to the alignment of the boxes which represent quantum gates.
Gates connected via bullets to another wire are called controlled operations, that
is, the wire with the bullet conditionally controls the application of the gate. The
circuit in Figure 4 represents a quantum program for the Toffoli gate. Using the
classic arrows approach for quantum programming presented in Section 3 and
using the type of booleans, Bool, as the orthonormal basis for the qubit, this
program would be codded as follows:

toffoli :: Super (Bool,Bool,Bool) (Bool,Bool,Bool)
toffoli = arr (λ(a0, b0, c0) → (c0, (a0, b0))) >>>

(first H >>> arr (λ(c1, (a0, b0)) → ((b0, c1), a0))) >>>
(first cV >>> arr (λ((b1, c2), a0) → ((a0, b1), c2))) >>>
(first cNot >>> arr (λ((a1, b2), c2) → ((b2, c2), a1))) >>> ...

As already noted by Paterson [11] this notation is cumbersome for programming.
This is a “point-free” notation, rather different from the usual way of writing
functional programs, with λ and let. Paterson introduced syntactic sugar for
arrows, which we have used in our previous work [5]. However, the notation
simply abbreviates terms built from the three constants, and there is no claim
about reasoning with arrows. Using the quantum arrow calculus presented in
Figure 5, this program would be like:

toffoli :: Super (Bool,Bool,Bool) (Bool,Bool,Bool)
toffoli = λ•.(x, y, z).let z′ = H • z in

let (y′, z′′) = cV • (y, z′) in
let (x′, y′′) = cNot • (x, y′)in . . .

This style is more convenient and elegant as it is very similar to the usual
familiar classical functional programming and is amenable to formal reasoning in

VH HVVT

 Not Not

Fig. 4. Circuit for the Toffoli gate

386 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

a convenient way. Consider, for instance, the program which applies the quantum
not gate twice. That is obviously equivalent to identity. To do such a simple proof
using the classic arrows we need to learn how to use the nine arrow laws and
also to recover the definitions of the functions arr , >>> and first for quantum
computations presented in Figure 2.

The action of the quantum not gate, QNot, is to swap the amplitude proba-
bilities of the qubit. For instance, QNot applied to |0〉 returns |1〉, and vice versa.
But QNot applied to α|0〉+ β|1〉 returns α|1〉+ β|0〉.

Given the classical definition of not as follows:

not = λx.if x == True then False else True : Bool → Bool

Using the arrow calculus, the QNot would be written as:

QNot = λ•y.[not y] : Super Bool Bool.

Then, the program which applies the QNot twice, would be:

Γ � λ•x.let w = (λ•z.[not z]) • x in (λ•y.[not y]) • w

Again the syntax, with arrow abstraction and application, resembles lambda
calculus. Now we can use the intuitive arrow calculus laws (from Figure 3) to
prove the obvious equivalence of this program with identity. The proof follows
the same style of the proofs in classical functional programming.

λ•x.let w = (λ•z.[not z]) • x in (λ•y.[not y]) • w =(β�)

λ•x.let w = [not x] in (λ•y.[not y]) • w =(left)

λ•x.(λ•y.[not y]) • (not x) =(β�)

λ•x.[not(not x)] =def.not

λ•x.[x]

It is interesting to note that we have two ways for defining superoperators.
The first way is going directly from classical functions to superoperators as we
did above for not, using the default definition of arr . The other way is going
from the monadic pure quantum functions to superoperators. As monads are a
special case of arrows [6] there is always a translation from monadic functions
to arrows. Hence, any Lin A B is a special case of Super A B.

Hence, we construct the quantum arrow calculus in Figure 5 in three levels.
First we inherit all the constructions from simply-typed lambda calculus with
the type of booleans and with classical let and if (see Appendix A). Then we
add the monadic unit, [], to build pure vectors (over booleans), let to sequence
computations with vectors, and plus and minus to add and subtract vectors (the
monadic calculus [7] with its laws is presented in Appendix B). Finally, we add
the constructions of the arrow calculus. The appeal of using the arrows approach
is because we can express measurement operations (i.e, extract classical infor-
mation from the quantum system) inside the formalism. Therefore, we have two
computations for measurements on mixed states, meas and trL. The computa-
tion meas returns a classical value and a post-measurement state of the quantum

The Arrow Calculus as a Quantum Programming Language 387

Syntax
Types A, B, C ::= . . . | Bool | Dens A | Vec A | Super A B
Terms L, M, N ::= [T] | let x = M in N | λ•x.Q | + | −
Commands P, Q,R ::= L • P | [M] | let x = P in Q | meas | trL
Monad Types

Γ �M : A

Γ � [M] : Vec A

Γ �M : Vec A Γ, x : A � N : Vec B

Γ � let x = M in N : Vec B

Γ �M, N : Vec A

Γ �M+N : Vec A

Γ �M, N : Vec A

Γ �M−N : Vec A
Arrow Types

Γ ;x : A � Q! Dens B

Γ � λ•x.Q : Super A B

Γ � L : Super A B Γ ; Δ � M : A

Γ ; Δ � L •M ! Dens B

Γ, Δ �M : A

Γ ;Δ � [M]! Dens A

Γ ; Δ � P ! Dens A Γ ; Δ, x : A � Q! Dens B

Γ ; Δ � let x = P in Q! Dens B

Γ ;x : A � meas ! Dens (A, A) Γ ;x : (A,B) � trL ! Dens B

Fig. 5. Quantum Arrow Calculus

system. The computation trL traces out or projects part of the quantum state
(the denotation of these operations is provided in Appendix D).

To exemplify the use of the monadic constructions, consider, for example,
the hadamard quantum gate, which is the source of superpositions. For instance,
hadamard applied to |0〉 returns |0〉 + |1〉, and applied to |1〉 returns |0〉 − |1〉.
But, hadamard applied to |0〉+ |1〉 returns |0〉, as it is a reversible gate. To define
this program in the quantum arrow calculus, we just need to define its work for
the basic values, |0〉 and |1〉, as follows:

hadamard = λx.if x == True then [False]− [True]
else [False] + [True] : Lin Bool Bool

Then, the superoperator would be:

Had = λ•y.[hadamard y] : Super Bool Bool

Another interesting class of operations are the so-called quantum controlled
operations. For instance, the controlled not, Cnot, receives two qubits and applies
a not operation on the second qubit depending on the value of the first qubit.
Again, we just need to define it for the basic quantum values:

cnot = λ(x, y).if x then [(x, not y)]
else [(x, y)] : Lin (Bool,Bool) (Bool,Bool)

388 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

Again, the superoperator of type Super (Bool,Bool) (Bool,Bool) would be
Cnot = λ•(x, y).[cnot (x, y)].

The motivation of using superoperators is that we can express measurement
operations inside of the formalism. One classical example of quantum algorithm
which requires a measurement operation is the quantum teleportation [4]. It
allows the transmission of a qubit to a partner with whom is shared an entangled
pair. Below we define the two partners of a teleportation algorithm.

Alice : Super (Bool,Bool) (Bool,Bool)
Alice = λ•(x, y). let (x′, y′) = Cnot • (x, y) in

let q = (Had • x′, y′) in
let (q′, v) = meas • q in trL • (q, v)

Bob : Super (Bool,Bool,Bool) Bool
Bob = λ•(x, y, z). let (z′, x′) = Cnot • (z, x) in

let (y′, x′′) = (Cz • (y, x′)) in trL • ((y′, z′), x′′)

6 Conclusion

We have presented a lambda calculus for general quantum programming that
builds on well-understood and familiar programming patterns and reasoning tech-
niques. Besides supporting an elegant functional programming style for quantum
computations, the quantum arrow calculus allows reasoning about general or
mixed quantum computations. This is the first work proposing reasoning about
mixed quantum computations. The equations of the arrow calculus plus the equa-
tions of the monadic calculus provide indeed a powerful mechanism to make proofs
about quantum programs. In [12] we have proposed very similar reasoning tech-
niques, however for pure quantum programs. Also, in [13] the author presents a
quantum lambda calculus based on linear logic, but just for pure quantum
computations.

Acknowledgements

We thank Jeremy Yallop for very helpful comments.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

2. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: Proc. IEEE Symposium on Foundations of Computer Science, pp. 124–134
(1994)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
28. Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

The Arrow Calculus as a Quantum Programming Language 389

4. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.:
Teleporting an unknown quantum state via dual classical and EPR channels. Phys.
Rev. Lett., 1895–1899 (1993)

5. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: Superoper-
ators as arrows. Journal of Mathematical Structures in Computer Science: special
issue in quantum programming languages 16, 453–468 (2006)

6. Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (2000)

7. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in computer science, pp. 14–23. IEEE Press,
Los Alamitos (1989)

8. Mcbride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

9. Lindley, S., Wadler, P., Yallop, J.: The arrow calculus (functional pearl). In: Inter-
national Conference on Functional Programming (2008)

10. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

11. Paterson, R.: A new notation for arrows. In: Proc. International Conference on
Functional Programming, pp. 229–240 (September 2001)

12. Altenkirch, T., Grattage, J., Vizzotto, J.K., Sabry, A.: An algebra of pure quantum
programming. Electron. Notes Theor. Comput. Sci. 170, 23–47 (2007)

13. Tonder, A.v.: A lambda calculus for quantum computation. SIAM J. Com-
put. 33(5), 1109–1135 (2004)

14. MonadPlus (2005), http://www.haskell.org/hawiki/MonadPlus
15. Hinze, R.: Deriving backtracking monad transformers. In: ICFP 2000: Proceedings

of the 5th ACM SIGPLAN International Conference on Functional Programming,
pp. 186–197. ACM Press, New York (2000)

16. Aharonov, D., Kitaev, A., Nisan, N.: Quantum circuits with mixed states. In:
Proceedings of the thirteenth annual ACM symposium on Theory of computing,
pp. 20–30. ACM Press, New York (1998)

17. Selinger, P.: Towards a quantum programming language. Journal of Mathemati-
cal Structures in Computer Science: special issue in quantum programming lan-
guages 16, 527–586 (2006)

A Simply-Typed Lambda Calculus

The simply-typed lambda calculus with the type of booleans, and with let and
if is shown in Figure 6. Let A,B,C range over types, L,M,N range over terms,
and Γ,Δ range over environments. A type judgment Γ � M : A indicates that
in environment Γ term M has type A. As presented in the arrow calculus [9],
we are using a Curry formulation, eliding types from terms.

B Monadic Calculus

The simply-typed lambda calculus presented in Appendix A is the foundation of
purely functional programming languages. In this section we show the monadic
calculus [7], which also models monadic effects. A monad is represented using
a type constructor for computations m and two functions: return :: a → m a

http://www.haskell.org/hawiki/MonadPlus

390 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

Syntax
Types A,B, C ::= Bool | A×B | A → B
Terms L, M, N ::= x | True | False | (M, N) | fst L | snd L | λx.N | L M

let x = M in N | if L then M else N
Environments Γ, Δ ::= x1 : A1, . . . , xn : An

Types

∅ � False : Bool ∅ � True : Bool

(x : A) ∈ Γ

Γ � x : A

Γ �M : A Γ � N : B

Γ � (M, N) : A×B

Γ � L : A×B

Γ � fst L : A

Γ � L : A×B

Γ � snd L : B

Γ, x : A � N : B

Γ � λx.N : A → B

Γ � L : A→ B Γ �M : A

Γ � L M : B

Γ � M : A Γ, x : A � N : B

Γ � let x = M in N : B

Γ � L : Bool Γ �M, N : B

Γ � if L then M else N : B
Laws
(βx

1) fst (M, N) = M
(βx

2) snd (M, N) = N
(ηx) (fst L, sndL) = L
(β→) (λx.N)M = N [x := M]
(η→) λx.(L x) = L
(let) let x = M in N = N [x := M]
(βif

1) if True then M else N = M

(βif
2) if False then M else N = N

Fig. 6. Simply-typed Lambda Calculus

and >>=:: m a → (a → m b) → m b. The operation >>= (pronounced “bind”)
specifies how to sequence computations and return specifies how to lift values
to computations. From a programming perspective, a monad is a construct to
structure computations, in a functional environment, in terms of values and
sequence of computations using those values.

The monadic calculus extends the simply-typed lambda calculus with the con-
structs in Figure 7. Unit and bind satisfy left unit, right unit, and associativity
laws, (left), (right), and (assoc).

Beyond the three monad laws discussed above, some monads obey the Monad-
Plus laws. The MonadPlus interface provides two primitives, mzero and + (called
mplus), for expressing choices. The command + introduces a choice junction,
and mzero denotes failure.

The precise set of laws that a MonadPlus implementation should satisfy is not
agreed upon [14], but in [15] is presented a reasonable agreement on the laws.
We use in Figure 7 the laws introduced by [15].

The intuition behind these laws is that MonadPlus is a disjunction of goals
and >>= is a conjunction of goals. The conjunction evaluates the goals from left-
to-right and is not symmetric.

The Arrow Calculus as a Quantum Programming Language 391

Syntax
Types A, B, C ::= ... |M A
Terms L, M, N ::= ... | [M] | let x = M in N | mzero | + | −
Monadic Types

Γ �M : A

Γ � [M] : M A

Γ �M : M A Γ, x : A � N : M B

Γ � let x = M in N : M B
MonadPlus Types

Γ � mzero : M A

Γ � M, N : M A

Γ � M + N : M A
Laws
(left) let x = [L] in N = N [x := L]
(right) let x = L in [x] = L
(assoc) let y = (let x = L in N) in T = let x = L in (let y = N in T)
MonadPlus Laws
mzero + a = a
a + mzero = a
a + (b + c) = (a + b) + c
let x = mzero in T = mzero
let x = (M + N) in T = (let x = M in T) + (let x = N in T)

Fig. 7. Monadic Calculus

C General Quantum Computations

Quantum computation, as its classical counterpart, can be seen as processing
of information using quantum systems. Its basic idea is to encode data using
quantum bits (qubits). In quantum theory, considering a closed quantum system,
the qubit is a unit vector living in a complex inner product vector space know as
Hilbert space [1]. We call such a vector a ket (from Dirac’s notation) and denote
it by |v〉 (where v stands for elements of an orthonormal basis), a column vector.
Differently from the classical bit, the qubit can be in a superposition of the two
basic states written as α|0〉+ β|1〉, or(

α
β

)
with |α|2 + |β|2 = 1. Intuitively, one can think that a qubit can exist as a
0, a 1, or simultaneously as both 0 and 1, with numerical coefficient (i.e., the
probability amplitudes α and β) which determines the probability of each state.
The quantum superposition phenomena is responsible for the so called “quantum
parallelism.”

Operations acting on those isolated or pure quantum states are linear op-
erations, more specifically unitary matrices S. A matrix A is called unitary if
S∗S = I, where S∗ is the adjoint of S, and I is the identity. Essentially, those uni-
tary transformations act on the quantum states by changing their probability

392 J.K. Vizzotto, A.R. Du Bois, and A. Sabry

amplitudes, without loss of information (i.e., they are reversible). The appli-
cation of a unitary transformation to a state vector is given by usual matrix
multiplication.

Unfortunately in this model of quantum computing, it is difficult or impossible
to deal formally with another class of quantum effects, including measurements,
decoherence, or noise.

Measurements are critical to some quantum algorithms, as they are the only
way to extract classical information from quantum states.

A measurement operation projects a quantum state like α|0〉+ β|1〉 onto the
basis |0〉,|1〉. The outcome of the measurement is not deterministic and it is
given by the probability amplitude, i.e., the probability that the state after the
measurement is |0〉 is |α|2 and the probability that the state is |1〉 is |β|2. If
the value of the qubit is initially unknown, than there is no way to determine α
and β with that single measurement, as the measurement may disturb the state.
But, after the measurement, the qubit is in a known state; either |0〉 or |1〉.
In fact, the situation is even more complicated: measuring part of a quantum
state collapses not only the measured part but any other part of the global state
with which it is entangled. In an entangled state, two or more qubits have to
be described with reference to each other, even though the individuals may be
spatially separated 1.

There are several ways to deal with measurements in quantum computing,
as summarized in our previous work [5]. To deal formally and elegantly with
measurements, the state of the computation is represented using a density matrix
and the operations are represented using superoperators [16]. Using these notions,
the projections necessary to express measurements become expressible within the
model.

Intuitively, density matrices can be understood as a statistical perspective of
the state vector. In the density matrix formalism, a quantum state that used to
be modeled by a vector |v〉 is now modeled by its outer product |v〉〈v|, where
〈v| is the row vector representing the adjoint (or dual) of |v〉. For instance, the
state of a quantum bit |v〉 = 1√

2
|0〉+ 1√

2
|1〉 is represented by the density matrix:(1

2 − 1
2

− 1
2

1
2

)
Note that the main diagonal shows the classical probability distribution of basic
quantum states, that is, these state has 1

2 of probability to be |0〉 and 1
2 of

probability to be |1〉.
However, the appeal of density matrices is that they can represent states

other than the pure ones above. In particular if we perform a measurement on
the state represented above, we should get |0〉 with probability 1/2 or |1〉 with
probability 1/2. This information, which cannot be expressed using vectors, can
be represented by the following density matrix:(

1/2 0
0 0

)
+
(

0 0
0 1/2

)
=
(

1/2 0
0 1/2

)
1 For more detailed explanation about entangled, see [1].

The Arrow Calculus as a Quantum Programming Language 393

Such a density matrix represents a mixed state which corresponds to the
sum (and then normalization) of the density matrices for the two results of the
observation.

The two kinds of quantum operations, namely unitary transformation and
measurement, can both be expressed with respect to density matrices [17]. Those
operations now mapping density matrices to density matrices are called super-
operators. A unitary transformation S maps a pure quantum state |u〉 to S|u〉.
Thus, it maps a pure density matrix |u〉〈u| to S|u〉〈u|S∗. Moreover, a unitary
transformation extends linearly to mixed states, and thus, it takes any mixed
density matrix A to SAS∗.

As one can observe in the resulting matrix above, to execute a measurement
corresponds to setting a certain region of the input density matrix to zero.

D Definition of Measurement Operations

In this section we present the denotations of the programs for measurements, trl
and meas, added to the quantum arrow calculus.

trL :: Super (A,B) B
trL((a1, b1), (a2, b2)) = if a1 == a2 then return(b1, b2) else mzero

meas :: Super A (A,A)
meas(a1, a2) = if a1 == a2 then return((a1, a1), (a1, a1)) else mzero

We consider projective measurements which are described by a set of projections
onto mutually orthogonal subspaces. This kind of measurement returns a classi-
cal value and a post-measurement state of the quantum system. The operation
meas is defined in such a way that it can encompass both results. Using the
fact that a classical value m can be represented by the density matrix |m〉〈m|
the superoperator meas returns the output of the measurement attached to the
post-measurement state.

Knowledge, Time, and Logical Omniscience

Ren-June Wang

Computer Science
CUNY Graduate Center

365 Fifth Avenue, New York, NY 10016
rwang@gc.cuny.edu

Abstract. Knowledge’s acquisition happens in time. However, this fea-
ture is not reflected in the standard epistemic logics, e.g. S4 with its
possible world semantics suggested by Hintikka in [1], and hence their
applications are limited. In this paper we adapt these normal modal logics
to increase their expressive power such that not only is what is known
modeled but also when it is known is recorded. We supplement each
world with an awareness function which is an augmentation of Fagin-
Halpern’s to keep track of the time when each formula is to be derived.
This provides a new response to the logical omniscience problem. Our
work originates from the tradition of study of Justification Logic, also
known as Logic of Proofs, LP, introduced by Artemov ([2],[3],[4]). We
will give the axiom systems of the models built here, accompanied with
soundness and completeness results.

1 Introduction

To acquire new knowledge, we think, ponder, infer, and so on. All these activities
take time. However, this feature of knowledge is not reflected in the standard
epistemic logic such as S4, and hence their applications are limited. Since there’s
no time components helping to indicate when knowledge is acquired by the
knower, all knowledge, which is closed under logical consequence, has to be
assumed to be known at the one time. This makes the model unrealistic. Our
knower is logical omniscience.

There has been many approaches advocated in the literature to solve this
problem. Based on the understanding that the knower modeled by modal epis-
temic logics knows too much, these approaches provides various mechanisms such
as impossible worlds ([5]), awareness functions ([6]), and deduction structures
with incomplete deduction rules ([7]), to name some of them, to weaken standard
epistemic logics.1. Also in [10] the logical omniscience problem is understood as
a proof complexity problem. It is suggested that an epistemic logic system is
logical omniscience if and only if some knowledge assertion in the system cannot
be supported by a feasible size proof. And then it is shown that the Logic of
Proofs, LP ([3], [4]), now understood as Justification Logic ([2]), is not logical
omniscience.
1 Cf. [8] and chapter 9 in [9] for a survey of the logical omniscience problem.

H. Ono, M. Kanazawa, and R. de Queiroz (Eds.): WoLLIC 2009, LNAI 5514, pp. 394–407, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Knowledge, Time, and Logical Omniscience 395

To solve this problem, however, we choose to adapt the semantics for these
standard epistemic logics such that not only will what is known be modeled but
also when it is to be known will be recorded. In our point of view, it is not
so much a problem for an epistemic logic system which is intended to model
an intelligent agents, who are capable of performing logical inferences, to be
logical omniscience. But to enhance the applicability, the system has to be ac-
commodated to express the time, or other resources, needed for the knowledge
acquisition such that the evolution of knowledge over time can be grasped. For
this purpose, we introduce a collection of S4Δ logics, in which formulas such as
KF i are included with i a natural number, meaning formula F is known at time
i. The reason why we can have not a single one but a collection of logics cor-
responding to S4, is that our method is flexible enough to model knowers with
different initial knowledges. Some of these logics with richer initial knowledges
have been proved having the desired result, the realization theorem: every S4
theorem is a theorem in these logics without number labels.

In the literature, there have been many logics proposed combining epistemic
and temporal modals, and they have proved very useful.2 In the semantics of
these logics, the time components that the temporal modals range over are better
understood as rounds, stages, phases, etc. In each round, the knowers have new
information, and their knowledge gets updated. However, the epistemic modals
in these logics are essentially modals in normal modal logics, and hence knowers
know all the logical consequences of their knowledge within each round. Our
approach differs from these in not only using the method of explicit time points,
other than temporal modals, to deal with time, but also focusing on increasing
the expressive power of standard epistemic logics such that when these logics
are applied, we are able to decide, for example, in a round, what can be known
by a realistic knower, when whatever time bound is given for that round.

The method we will employ here is basically to extend the use of awareness
function, a concept introduced by Fagin and Halpern in [6] to give a possible
solution to the logical omniscience problem. In Fagin-Halpern approach, to say
that the knower knows some formula at a world means not only is the formula
true at all epistemic alternatives to the world, but also the formula should be
aware of at the world. In the same paper, they also suggested the possibility to
utilize awareness functions so that time can be put into the picture. Our method
can be viewed as a direct response to this suggestion. In our usage, not only is
what formulas to be aware of in each world provided, but also when will these
formulas to be aware of is given. More details will be in the sequel.

The initial of our paper, however, comes from the tradition of study of logics
of justification, which began with the Logic of Proofs, LP, introduced by Artemov
as an explicit proof counterpart of the modal logic S4. The axiom system S4Δ

of the semantics we are going to present here was first introduced in [17] as an
intermediate logic for to discuss the relations between proofs in S4 and proofs
in LP. A syntactical proof of the realization theorem has been given there. Our
model is adapted from Fitting’s work [18] on the Kripke-style semantics for

2 See [11], [12], [13], [14], [15], [16], and also chapters 4 and 8 in [9].

396 R.-J. Wang

LP, and some terminology is borrowed from there. Except for those necessary
alternation from objects representing justifications to time points, we also make
modifications both to fit the intuition concerning dealing with time points and for
comparisons with other neighboring logics of S4. More words about comparisons
between S4 and S4Δ and between S4Δ and LP will be said later in the paper.

In the final section, we will consider the Δ-style counterparts of other normal
modal logics, including logical system with the 5 axiom.

2 Semantics

We first review the possible world semantics in general and the semantics for S4
in particular. The language LK for S4 and other standard epistemic logics is a
extension of the language of propositional logic, i.e., formulas are built up from
propositional letters and connectives ¬, →, ∨ and ∧, and it has an additional
formula formation rule: if F ∈ LK then (KF) is also in LK (parentheses usually
omitted), where KF means the knower knows F .

A frame is a structure 〈W,R〉, where W is a non-empty set of possible worlds,
and R is a binary relation on W . A standard epistemic model is a structure
M = 〈W,R,V〉, where 〈W,R〉 is a frame, and V is a valuation from propositional
letters to worlds. Then the truth of formulas is defined as (for saving space,
we omit the cases for ∧ and ∨; nevertheless, they can be redefined by other
connectives):

1. (M,w) � P iff w ∈ V(P) for P is a propositional letter;
2. (M,w) � ¬F iff w � F ;
3. (M,w) � F → G iff w � F or w � G;
4. (M,w) � KF iff w′ � F for all w′ ∈ W with wRw′.

In this semantics, the diversity of the knower’s epistemic ability is reflected
by imposing different conditions on the binary relation. In this paper we mainly
consider the semantics which models the knowledge, contrary to the belief, of
the knower who has the ability to introspect his/her own knowledge. Then we
need the binary relation to be reflexive and transitive. This is the semantics of
S4 suggested by Hintikka as an epistemic logic.

This possible world semantic is based on the motto “information is elimination
of uncertainty.” Even though this motto is quite intuitive, once we directly apply
the semantics in a realistic environment, where the knower is supposed to take
time to reason, and only a finite amount of time is allowed, our knower knows all
logical truth within the amount of time. Most of complaint about this semantics
is that the knower modeled knows too much. We, however, consider that there’s
nothing wrong to suppose that it is possible for the knower to know all these
logical truths. But the problem is that different logical truth should take different
amount of time to derive, given the knower having some basic logical truths and
being able to apply some inference rules. This is just what we are going to do in
the following to reveal the hidden temporal relations between knowledge in this
semantics.

Knowledge, Time, and Logical Omniscience 397

2.1 Δ-Semantics

The language LΔ for our S4Δ logics and other Δ-logics is an extension of the
language of propositional logic with the formula formation rule: if F ∈ LΔ

then (KF i) is also in LΔ, where i is a natural number. The intended meaning
of formula KF i is that the knower knows F at time i, or the formula F is
known at time i (by the knower). We are intendedly not to write the formula as
KiF because it looks like presupposing that for each i, there is an independent
knowledge operator Ki.

The novel tool in our semantics is the awareness function α, which is a par-
tial function mapping formulas in LΔ to natural numbers. The purpose of the
awareness function is to capture the knower’s reasoning process by putting for-
mulas in order. One formula is to be aware of later than another because it
takes more time to be derived. Some conditions will be imposed on these func-
tions later on to reflect the knower’s reasoning ability. A Δ-model is a structure
M = 〈W,R, {αw},V〉, where 〈W,R,V〉 is a standard epistemic model and {αw}
is a collection of awareness functions with index w ∈ W . The truth of formulas
in LΔ is defined as above with the forth condition replaced by:

4’. (M,w) � KF i iff
– w′ � F for all w′ ∈W with wRw′, and
– αw(F) ≤ i

This condition says that the knower knows F at time i at a world w only if the
formula is true at all epistemic alternatives of w and s/he is aware of the formula
F before or at i.

2.2 S4Δ-Awareness Functions

Awareness functions are grouped by their bases. An awareness base is a tuple
A = 〈A, f〉, where the base set A is a collection of LΔ formulas, and the base
function f is a total function from A to natural numbers. Formulas in the base
set are those to be aware of by the knower either from outside where someone
tells him, or from inside where we assume the knower has them inherently, and
the base function tells us when the knower is aware of these formulas.

There are three sets of rules that an awareness function should follow. First,
given an awareness baseA, for an awareness function α based onA and a formula
A ∈ A, α(A) ≤ f(A), i.e., the knower is aware of A before or at f(A) since after
f(A) the knower must be aware of the formula. Second, we suppose that our
knower has the basic reasoning strength: s/he can do modus ponens and for
those formulas in the base set the knower is able to be aware of that s/he knows
those formulas. The third set of rules aims to reflect epistemic ability which we
assume the knower to possess. Here we need the rule that whatever the formulas
that the knower is aware of, s/he is able to be aware of that s/he knows the
formula. Notice that in our usage of being aware of a formula at time i only
means that at the moment the knower is aware of the possibility of the formula

398 R.-J. Wang

to be true. It does not mean that the formula must be true. It is possible for
the knower to be aware of mutual contradictory formulas and eventually aware
of all formulas. Here’s the formal definition.

Definition 1. Given an awareness base A = 〈A, f〉, an S4ΔA-awareness function
is a partial function from LΔ to N satisfying the following conditions (α(A)↓
denotes α(A) is defined.):

1. Initial condition

– if A ∈ A, then α(A)↓ and α(A) ≤ f (A),

2. Awareness by deduction

a. if α(F → G)↓ and α(F)↓, then
– α(G) ≤ max(α(F → G), α(F)) + 1,

b. if A ∈ A and f(A) ≤ i, then
– α(KAi) ≤ i + 1,

3. Inner positive introspection

a. if F ∈ LΔ and α(F) ≤ i, then
– α(KF i) ≤ i + 1.

The condition 2b. is covered by the condition of inner positive introspection.
One reason to separate them is that the former condition is more basic than the
latter. The other reason is partially syntactical. We will discuss this more in the
next section.

In our definition only general epistemic aspects of the knower are reflected in
awareness functions. There’s no position for the logical strength of the knower,
that is, the ability to manipulate logical constants such as and, ∧, and or, ∨.
Alternatively, it is determined by the bases. For example, to say a knower knows
the logical constant and, ∧, is to say that formulas of these kinds, F → (G →
(F ∧G)) and (F ∧G) → F , (F ∧G) → F , are in the base.

Among all S4ΔA-awareness functions, there is one playing a special role.

Definition 2. Given an awareness base A, we say an S4ΔA-awareness function
α∗A is critical if for any S4ΔA-awareness function α, and any F ∈ LΔ with
α∗A(F)↓, α(F) ≤ α∗A(F).

Lemma 1. For each awareness base A, there exists a unique critical S4ΔA-
awareness function α∗A.

2.3 S4Δ-Semantics and S4Δ-Awareness Bases

Definition 3. Given an awareness base A, a Δ-model M = 〈W,R, {αw},V〉
is an S4ΔA-model if the frame 〈W,R〉 is reflexive and transitive, and {αw} is a
collection of S4ΔA-awareness functions and satisfies the monotonicity condition:
for any wRw ′, αw′(F) ≤ αw(F).

Knowledge, Time, and Logical Omniscience 399

We say a formula is S4ΔA-valid in a S4ΔA-model if it is true at all worlds of the
model, and a formula is S4ΔA-valid, denoted as �S4Δ

A
F or �A F for simplicity, if

it is valid in all S4ΔA-models. The theory of the base, Th(S4ΔA), is the set of all
S4ΔA-valid formulas.

We need more terminology. Given awareness basesA = 〈A, f〉 and B = 〈B, g〉,
B ⊆ A if B ⊆ A and f(B) = g(B) for any B ∈ B, and A B if (1) A ⊆ B and
(2) B ⊆ Th(S4ΔA). For instance, for any B = 〈B, g〉 with B ⊆ Th(S4Δ∅), ∅ B,
where ∅ is the empty base. is not transitive.

Lemma 2. For any awareness bases B ⊆ A, Th(S4ΔB) ⊆ Th(S4ΔA).

Hence for any awareness base A, Th(S4Δ∅) ⊆ Th(S4ΔA).
Our definition of semantics is very general. For any awareness base A, even if

it might contain formulas contradictory to each other, S4ΔA-models are defined.
However, we are interested in the bases which contain only valid formulas, and
can be used to characterize the logical strength of knowers by the number of log-
ical truths they have. We need a constructive way to provide a general definition
of bases of this kind.

Definition 4. We say an awareness base A = 〈A, f〉 is an S4Δ-awareness base
if it satisfies one of the following three conditions:

1. A = ∅.
2. There are awareness bases A0, A1, . . . , An such that ∅ = A0 A1 · · ·
An = A.

3. there is a collection of awareness bases {Ai}i∈N with Ai = 〈Aifi〉, such that
∅ = A0 A1 A2 · · · , and A =

⋃
Ai, that is, A =

⋃
Ai and for any

A ∈ Ai, f(A) = fi(A).

Then it is not difficult to check that if A is an S4Δ-awareness base, for every
A ∈ A, �A A.

We say an awareness base is finite if its base set is finite.

Lemma 3. Given an S4Δ-awareness base A and a formula F ∈ LΔ, �A F if
and only if there is a finite S4Δ-awareness base B ⊆ A, �B F .

This lemma can be shown by first proving the compactness theorem of our
semantics, or is an immediate corollary of the completeness result that we will
give later when axiom systems of our semantics are introduced. There is an
interesting result about the critical awareness function.

Lemma 4. For each S4Δ-awareness base A, if α∗A(F)↓ then �A F .

The statement is not true for an arbitrary S4ΔA-awareness function. Before clos-
ing this subsection, we consider several conditions on collections of awareness
functions which related to positive introspection, in contrast with conditions we
will introduce later related to the negative introspection.

Definition 5. We say a collection of awareness functions satisfies the inner
positive introspection condition if every element of the collection satisfies the
condition.

400 R.-J. Wang

Definition 6. Given a model M = 〈W,R, {αw},V〉, we say the collection {αw}
satisfies the outer positive introspection condition if for any w with (M,w) �
KF i, αw(KF i) ≤ i + 1.

This condition says that if at some world the knower knows some formula at
some time, then at the world he is aware of the formula one time unit latter.
Though, this condition is derivable.

Fact. If a collection of awareness function satisfies the inner positive intro-
spection condition, then the collection satisfies the outer positive introspection
condition for any model the collection belongs to.

Now we put all the conditions relative to the positive introspection together.

Definition 7. Given a model M = 〈W,R, {αw},V〉, we say the collection {αw}
is positive regular if it is a monotonic and satisfies both inner and outer pos-
itive introspection conditions.

2.4 More on S4Δ-Awareness Bases

In our semantics, knowers with different awareness bases are regarded as having
different epistemic strength, and modeled differently. The smallest awareness
base is the empty base. We also can have a maximal awareness base. An S4Δ-
awareness base A = 〈A, f〉 is maximal if Th(S4ΔA) ⊆ A. Let {Ai}i∈N be a
collection of awareness bases with A0 the empty base and Ai+1 = 〈Ai+1, fi+1 〉
such that Ai+1 = Th(S4ΔAi

), and fi+1(A) = fi(A) for any A ∈ Ai, and let
A =

⋃
Ai. Then by using Lemma 3, it can be proved that A is a maximal

S4Δ-awareness base.
Notice that there is more than one maximal awareness base. Different base

functions will give us different maximal awareness bases. Call an awareness base
with the constant function 0 principal, and let A be the principal maximal
awareness base. Then if F is a S4ΔA-valid formula, so is KF 0.

Obviously, knowers with maximal awareness bases are not realistic. Several
other types of awareness bases have more intuitive appealing. Here’s the list. Let
A be an S4Δ-awareness base.

1. There is a maximal base B such that Th(S4ΔB) ⊆ Th(S4ΔA).
2. For any F ∈ Th(S4ΔA), α∗A(F) ↓.
3. For any F ∈ Th(S4ΔA), {α(F)} is bounded.
4. For any F ∈ Th(S4ΔA), KF i ∈ Th(S4ΔA) for some i.

The four definitions of these properties are from four different concerns. The
first one concerns the relationship between the theory of the base and the the-
ory of a maximal one. The statement in the second item is the converse of
of Lemma 4, concerning critical awareness function. The third one concerns
the awareness functions in general and the last one is about the theory of the
base itself. Now what really interests us is that these awareness bases are all
equivalent.

Knowledge, Time, and Logical Omniscience 401

Theorem 1. All the four properties of an S4Δ-awareness base A defined above
are equivalent.

Definition 8. An awareness base with one of the above property is called full.

These full awareness bases turn out to play a special role for the realization
theorem. In the next section we will see a concrete example of a full base.

3 Axiom Systems

Given an S4Δ-awareness base A = 〈A, f〉, the following is the axiom system
S4ΔA.

Definition 9.
Axioms
A0 classical propositional axiom schemes
A1 K(F → G)i → KF j → KGk i, j < k

A2 KAi → K(KAi)j i < j if A ∈ A and f(A) ≤ i

A3 KF i → KF j i < j

A4 KF i → K(KF i)j i < j

A5 KF i → F

Inference Rule
R1 � G, if � F → G and � F “modus ponens”
R2 � KAi if A ∈ A and f(A) ≤ i “A-necessitation”

We use �S4Δ
A
F , or �A F for simplicity, to denote that F is a theorem in S4ΔA.

Theorem 2. For any S4Δ-awareness base A, �A F if and only if �A F .

The proof is given in the appendix.
When our A is empty, the A2 axiom and the R2 rule are void. When A is

maximal, the clause “A ∈ A” can be replaced by “� A”, and when the base is
principal, “and f(A) ≤ i” can be removed. The most interesting awareness base
will be the one containing all axioms. This one will be full.

Lemma 5. Given an awareness base A = 〈A, f〉, if A contains all axiom in-
stances of the system, A is full.

Proof. With the completeness and soundness results above, it is sufficient to
prove that if �A F , then �A KF i for some i (hence if �A F , �A KF i). We
prove the statement by induction on the length of the proof of F . Suppose F
is an axiom, then by A-necessitation, �A KF i for i ≥ f(A). If G is derived
from F → G and F , by induction hypothesis �A K(F → G)i and �A KF j .
Then using axiom A1, we have �A KGk for k > i, j. If KF i is derived by
A-necessitation, by applying the axiom A2, �A K(KF i)j for j > i3.
3 This result is similar to Artemov’s Internalization Theorem in LP [4].

402 R.-J. Wang

Definition 10. We say an awareness base A is axiomatically appropriate if its
base set includes all axiom instances of the schemes in S4ΔA.

When A is axiomatically appropriate, the clause “A ∈ A” can be replaced by
“A is an axiom” in the axiom system.

Notice that the A1 and A2 axioms are needed in the proof of Lemma 5. In
our S4Δ axiom systems, all axioms except for the A2 axioms are S4Δ∅ -valid, and
since all the functions of the A2 axioms can be replaced by the A4 axioms, thus
an axiomatically appropriate base without the A2 axioms is still full. This makes
it possible to have a full S4Δ-awareness base A with ∅ A. But on the other
hand, if we consider the Δ-counterpart of other normal modal logics, especially
those without the A4 axioms, then the A2 axioms, which is corresponding to the
2b. condition of Definition 1, cannot be excluded from axiom appropriate bases
to have full awareness bases.

4 Realization Theorem and Relations to LP

As mentioned earlier, our attitude to the problem of logical omniscience is that
the standard epistemic logics, such as S4, do not model a knower who knows
too much, but, instead, lack the expressive power such that when it is applied,
we have to ascribe all logical truths as knowledge to the knower. To justify our
claim, relations between S4 and S4Δ logics should be built. There are two direc-
tions of the relations. One is trivial. Roughly speaking, if we drop all the number
labels from an S4ΔA proof, we will have an S4 proof. This implies that every S4ΔA
theorem is an S4 theorem with time labels. For the other direction, in [17] it
has been constructively proved that, for the principal axiomatically appropriate
awareness base A, every theorem in S4 can be translated to a theorem in S4ΔA by
adding suitable time labels to modal formulas. This theorem is called the real-
ization theorem. A sketch of the proof of this theorem is given at the end of this
paper. The semantic proof of this theorem is in progress. From the experience
of working on LP, the fullness of an awareness base would be sufficient for the
realization theorem to hold. Now we can conclude that theorems in S4 provides
us the relations between the knower’s knowledges without considering the rela-
tions between the time points indicating when the knowledges is known, which
are hidden in the S4 theorems and revealed in the theorems’ Δ-counterparts
in S4ΔA.

LP now is one of the family of Justification Logics. It is not only a logic
passing the logical omniscience test, as we mentioned before, but also a logic with
the justificatory complexity of knowledge acquisition is recorded. It has formula
atoms like t :F to mean t is a justification of F with t being an justification object.
A efficient translation between proofs in S4Δ and proofs in LP has been given
in [17]. The translation reflects an informal relations between justifications and
time. Justifications need time, and we gain knowledge through time by giving
justifications. LP has a more refined framework than S4Δ. With justifications
explicitly expressed, we can not only identify the temporal order of what we
know but also trace the reasoning history of our knowledge. However, reasoning

Knowledge, Time, and Logical Omniscience 403

in S4Δ is more intuitive and working on natural numbers with their linearity is
easier than directly dealing with justification objects.

5 Variations

Our logic S4Δ is adapted from S4, both semantically and syntactically. We add
an S4Δ-awareness function to each world in a S4 model to get the S4Δ-semantics
and add number labels to axiom schemes to have Δ-style axiom systems. By sim-
ilar manner we can have Δ-counterparts of the neighboring logics of S4, seman-
tically and syntactically. Let M = 〈W,R, {αw},V〉 be a Δ-model. In this section,
awareness functions are not supposed to satisfy the inner positive introspection
condition. The following is a table of the conditions on frames and collections of
awareness functions of models that the complete and sound semantics of these
sublogics of S4Δ should satisfy.

〈W,R〉 {αw}
KΔ no condition no condition
KTΔ reflexive no condition
K4Δ transitive positive regular
KT4Δ transitive and reflexive positive regular

For these Δ-logics, when an awareness base is axiomatically appropriate with
respect to their axiom systems, the base is full. Here the axiom A2 plays his role.

Now add the 5 axiom4: “¬KF i → K¬KF j for i < j.” into the picture.
We say an awareness function α satisfies the inner negative introspection
condition if α(¬KF i) ≤ i + 1, provided α(F) � i, and a collection of awareness
functions satisfies the condition if every element of the collection satisfies the
condition. Given a model M = 〈W,R, {αw},V〉, we say the collection {αw} is
anti-monotonic if for any wRw ′, whenever αw(F) � i, then αw′(F) � i, and we
say the collection {αw} satisfies the outer negative introspection condition
if αw(¬KF i) ≤ i+ 1, provided (M,w) � ¬KF i. Finally, we call the collection is
negative regular if the collection is anti-monotonic and satisfies both the inner
and outer negative introspection conditions. Then for those systems with the 5
axiom, in their complete and sound models, the frame should be Euclidean, and
the collection of awareness functions is negative regular.

Fact. If a collection of awareness function in a model satisfies the outer negative
introspection condition, then the collection satisfies the inner negative introspec-
tion condition.

Acknowledgements. I would like to thank profefossor S. Artemov for encour-
aging this work. And thank an anonymous reviewer for many practical sugges-
tions to improve this paper.

4 This work here is adapted from [20] and [21], more related to [20], but different.

404 R.-J. Wang

References

1. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two No-
tions. Cornell University Press (1962)

2. Artemov, S.N.: The logic of justification. The Review of Symbolic Logic 1(4), 477–
513 (2008)

3. Artemov, S.N.: Operational modal logic. Technical Report MSI 95-29, Cornell Uni-
versity (1995)

4. Artemov, S.N.: Explicit provability and constructive semanticsexplicit provability
and constructive semantics. Bulletin of Symbolic logic 7(1), 1–36 (2001)

5. Rantala, V.: Impossible worlds semantics and logical omniscience. Acta Philosoph-
ica Fennica 35, 107–115 (1982)

6. Fagin, R., Halpern, J.: Belief, awareness and limited reasoning. Artificial Intelli-
gence 34, 39–76 (1988)

7. Konolige, K.: A Deduction Model of Belief. Morgan Kaufmann, San Francisco
(1986)

8. Moreno, A.: Avoiding logical omniscience and perfect reasoning: A survey. AI Com-
munications 11(2), 101–122 (1998)

9. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowldge. MIT
Press, Cambridge (1995)

10. Artemov, S.N., Kuznets, R.: Logical omniscience via proof complexity. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, pp. 135–149. Springer, Heidelberg (2006)

11. Asher, N.: Reasoning about belief and knowledge with self-reference and time. In:
LFCS, pp. 61–81. Morgan Kaufmann, San Francisco (1988)

12. Kraus, S., Lehmann, D.: Knowledge, belief and time. Theoretical Computer Sci-
ence 58, 155–174 (1988)

13. Ladner, R.E., Reif, J.H.: The logic of distributed protocols. In: Halpern, J.Y. (ed.)
Theoretical Aspects of Reasoning about Knowledge: Proc. 1986 Conference, pp.
207–222. Morgan Kaufmann, San Francisco (1986)

14. Lehmann, D.: Knowledge, common knowledge, and related puzzles. In: Proceedings
of 3rd ACM Symp. on Principles of Distributed Computing, pp. 62–67 (1984)

15. Parikh, R., Ramanujam, R.: Distributed processes and the logic of knowledge. In:
Proceedings of the Conference on Logic of Programs, London, UK, pp. 256–268.
Springer, Heidelberg (1985)

16. Sato, M.: A study of kripke-type models for some modal logics by gentzen’s sequen-
tial method. In: Publications of the Research Institute for Mathematical Sciences,
vol. 13, p. 381. Kyoto University (1977)

17. Wang, R.J.: On proof realization on moda logic. Technical Report TR-2009003,
CUNY PhD Program in Computer Science (2009)

18. Fitting, M.C.: The logic of proofs, semantically. Annals of Pure and Applied
Logic 132, 1–25 (2005)

19. Fitting, M.C.: A logic of explicit knowledge. In: Behounek, L., Bilkova, M. (eds.)
Logica Yearbook 2004, Filosophia, pp. 11–22 (2005)

20. Pacuit, E.: A note on some explicit modal logics. In: Proceedings of the Fifth
Panhellenic Logic Symposium, pp. 117–125 (2005)

21. Rubtsova, N.: Evidence reconstruction of epistemic modal logic S5. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 313–321.
Springer, Heidelberg (2006)

Knowledge, Time, and Logical Omniscience 405

Appendix

Some Proofs

Proof of Lemma 1
Proof. Let a = min{j | f(A) = j, for every A ∈ A} with f the base function.
The construction is straightforward. First, let α∗A(F) = a for any f(F) = a.
Then suppose the construction of α∗A have been completed up to n, we just
define α∗(G) = n + 1 for whatever formula G needed to be defined. That is if
α∗A(G) is not defined yet when, say, α∗A(F → G) and α∗A(F) is defined, or G ∈ A
with f(G) = n + 1, define α∗A(G) = n + 1. Continue this process, we have the
unique critical awareness function.

Proof of Theorem 1
Proof. We prove the directions from 1 to 4 and 2 to 1, The directions form 4
to 3 and 3 to 2 are trivial. Suppose �A F and there is a maximal base A′ such
that �A′ F , then F ∈ A′. Since �A′ KF i for some i, �A KF i. This proves the
direction from 1 to 4.

Now we prove the direction from 2 to 1. Suppose for every S4ΔA-valid formula
F , α∗A(F) is defined. We define A′ = 〈A′, f ′〉 with A′ = {F |�A F} and f ′(F) =
α∗A(F). Since for any F ∈ A′ and any A-awareness function α, α(F) ≤ f ′(F)(=
α∗A(F)), α is an A′-awareness function. Hence every S4ΔA-model is a S4ΔA′ -model
and every S4ΔA′ -valid formula is an S4ΔA-valid formula. By the definition of A′,
every S4ΔA-valid formula is in A′. A′ is maximal.

Proof of Theorem 2
Proof. The soundness part is straightforward. For the completeness part, we
construct a model composed of maximal A-consistent sets. A set S of formulas
in LΔ is said to be A-consistent if there is no finite subset {F1, . . . , Fn} of S
such that �A ¬(F1 ∧ . . . ∧ Fn). The construction of a maximal such set is by
the standard Lindenbaum construction. Let W be the set of all maximal A-
consistent sets, and for any Γ , Γ ′ ∈ W , ΓRΓ ′ if and only if Γ # ⊆ Γ ′ where
Γ # = {F | KF i ∈ Γ}. αΓ (F) = min{i | KF i ∈ Γ} and V(P) = {Γ | P ∈ Γ}.
We claim this M = 〈W,R, {αw},V〉 is a S4ΔA model. R is transitive and reflexive
because of the axioms A2 and A4. αΓ satisfy the initial condition due to the
A-necessitation rule, and it is not difficult to check that αΓ satisfies all other
conditions by applying these conditions’ corresponding axioms. The collection
of these awareness functions also satisfies the monotonicity condition. When
αΓ (F) = i, KF i ∈ Γ . Since �A KF i → K(KF i)j , K(KF i)j ∈ Γ , so KF i ∈ Γ ′

for any Γ # ⊆ Γ ′. αΓ ′(F) ≤ i.
Then is the truth lemma, that is, for every Γ , F ∈ Γ if and only if (M,Γ) � F .

The proof is by inductin on the complexity of formulas. Most of cases are trivial.
We prove the modal case. If (M,Γ) � KF i then αΓ (F) ≤ i, KF i ∈ Γ . For the
other direction, if KF i ∈ Γ , αΓ (F) ≤ i and for any Γ # ⊆ Γ ′, F ∈ Γ ′, so by
induction (M,Γ ′) � F . Hence (M,Γ) � KF i. Now suppose F is not provable
in S4ΔA, ¬F is A-consistent. (M,Γ) � F with Γ a maximal A-consistent set
containing ¬F .

406 R.-J. Wang

The Realization Theorem

The realization procedure in [17] is the following. A Δ-style cut-free Gentzen
system S4ΔG− corresponding to a cut-free Gentzen system S4G− of S4 is intro-
duced. Every rule in the system is derivable in S4ΔA with A the principle maximal
awareness base. Then it is shown that every proof in S4G− can be turned into
a proof in S4ΔG− by supplementing suitable natural number labels to every
modal formulas. So it follows that every S4 theorem can be converted to an S4ΔA
theorem.

A sequent Γ ⇒ Γ ′ is a pair of finite multisets Γ , Γ ′ of formulas. It is convenient
to view a sequenct as a formula C1 → (. . . → (Cn →

∨
Γ ′) . . .) here. Given a

multiset Γ = {Ci} of formulas in LK, KΓ = {KCi}. Given a multiset Γ = {Ci}
of formulas in LΔ, KΓ ι = {KCji

i }, for ji a number in the multiset ι. |Γ | is the
number of formulas in Γ . Here’s the Gentzen systems.

Definition 11 (S4G−).
The only axiom is that P ⇒ P , for a propositional letter P .

The rules for weakening (W) and constraction (C)

LW Γ ⇒ Γ ′

A, Γ ⇒ Γ ′ RW Γ ⇒ Γ ′

Γ ⇒ Γ ′, A

LC
A, A,Γ ⇒ Γ ′

A, Γ ⇒ Γ ′ RC
Γ ⇒ Γ ′, A, A

Γ ⇒ Γ ′, A

The classical logical rules

L¬ Γ ⇒ Γ ′, A

¬A, Γ ⇒ Γ ′ R¬ Γ, A ⇒ Γ ′

Γ ⇒ Γ ′,¬A

L→ Γ ⇒ Γ ′, A B, Γ ⇒ Γ ′

A → B, Γ ⇒ Γ ′ R→ A, Γ ⇒ Γ ′, B

Γ ⇒ Γ ′, A → B

The modal rules are

RK
A, Γ ⇒ Γ ′

KA, Γ ⇒ Γ ′ RK
KΓ ⇒ A

KΓ ⇒ KA

Definition 12 (S4ΔG−).
The language for S4ΔG− is LΔ. It is the S4G− with the following Δ-modal

rules

LK
A, Γ ⇒ Γ ′

KAi, Γ ⇒ Γ ′ , for any i

RK KΓ ι ⇒ A

KΓ ι ⇒ KAi , for any i > max(ι) + |Γ |+ 1, when |Γ | �= 0, and

for any i when |Γ | = 0

Lemma 6. Every rule in the system is derivable in S4ΔA with A the principle
maximal awareness base.

Proof. It is sufficient to check the Δ-modal cases. The case for the left modal
rule is also trivial. By induction, it can be checked that for |Γ | > 0 and i >
max(ι, e) + |Γ |+ 1, K(KΓ ι ⇒ A)e → (KΓ ι ⇒ KAi) is provable in S4ΔA with A
the principle maximal awareness base. Then it follows that the right modal rule
is derivable.

Knowledge, Time, and Logical Omniscience 407

Lemma 7. Every S4G− proof is a proof of S4ΔG− without number labels.

Proof. Call the formulas with the modal operator K as the main connectives
as m-formulas. Let all negative m-formula occurrences have label 0, and all
positive m-formula occurrences have the label equal to the nubmer of formula
occurrences in the S4G− proof. Then the condition for the right Δ-modal rule
will be satisfied. So the resulting sequent tree is a proof in S4ΔG−.

In [17], a procedure coverting a proof in S4ΔA with A the principal maximal
awareness base to a proof in S4ΔA′ with A′ the principal axiomatically appropriate
awareness base is also given . The statement is jsutified.

Theorem 3. Given A the principal axiomatically appropriate awareness base,
every S4 theorem is a S4ΔA theorem without number labels.

Author Index

Alizadeh, Majid 72
Alves, Gleifer V. 84
Amato, Gianluca 99

Baaz, Matthias 113
Baltag, Alexandru 124
Bauer, Kerstin 218
Beckmann, Arnold 1
Belardinelli, Francesco 140

Caleiro, Carlos 13, 268
Chen, Hubie 155
Christiansen, Henning 170
Ciabattoni, Agata 113

Dahl, Verónica 170
de Groote, Philippe 182
de Queiroz, Ruy 84
Du Bois, André Rauber 379

Eiter, Thomas 26

Gentilini, Raffaella 218
Giménez, Omer 155
Gonçalves, Ricardo 13

Heinemann, Bernhard 197
Herbelin, Hugo 209

Kontinen, Juha 230

Lecomte, Alain 242
Lee, Gyesik 209
Link, Sebastian 256
Lomuscio, Alessio 140
Lutz, Carsten 26, 37

Marcos, João 268
Maruyama, Yoshihiro 281
More, Sara Miner 296

Naumov, Pavel 296
Nieves, Juan Carlos 305
Nurmi, Ville 230

Oliveira, Anjolina G. de 84
Ortiz, Magdalena 26
Osorio, Mauricio 305

Pogodalla, Sylvain 182
Pollard, Carl 182
Postniece, Linda 320
Preining, Norbert 113
Prisacariu, Cristian 335

Quatrini, Myriam 242

Rossman, Benjamin 350

Sabry, Amr 379
Salvati, Sylvain 48
Sano, Katsuhiko 365
Sato, Taisuke 61
Schneider, Gerardo 335
Schneider, Klaus 218
Scozzari, Francesca 99
Šimkus, Mantas 26
Smets, Sonja 124

Vizzotto, Juliana Kaizer 379

Wang, Ren-June 394
Wolter, Frank 37

Zepeda, Claudia 305

	Title Page
	Preface
	Organization
	Table of Contents
	Tutorials and Invited Talks
	A Characterisation of Definable NP Search Problems in Peano Arithmetic
	Introduction
	Peano Arithmetic
	Bounded Local Search with Goals
	Ordinal Notations for �0
	Notation System for Peano Arithmetic
	Definable {\sf NP} Search Problems in Peano Arithmetic
	Conclusion
	References

	Algebraic Valuations as Behavioral Logical Matrices
	Introduction
	Preliminaries
	Behavioral Algebraization
	Algebraic Valuations
	Some Bridge Results
	Conclusion
	References

	Query Answering in Description Logics: The Knots Approach
	Introduction
	Preliminaries
	Query Answering by Knot Elimination
	Knots
	Non-entailment of a Set of Tree-Shaped Queries
	From Unrestricted Queries to Tree-Shaped Ones
	Extensions

	Related Work and Conclusion
	References

	Mathematical Logic for Life Science Ontologies
	Introduction
	{\sc Snomed} CT
	Overview
	Applications and Engineering

	Mathematical Logic
	Conservative Extensions
	Uniform Interpolation

	Discussion
	References

	Recognizability in the Simply Typed Lambda-Calculus
	Introduction
	Preliminaries
	Simply Typed λ-Calculus
	Trees and Strings as λ-Terms
	Homomorphisms
	Models

	Recognizable Sets of λ-Terms
	Automata Characterizing Recognizable Sets
	Closure Properties
	Boolean Closure
	Homomorphisms

	Some Applications of Recognizability
	Parsing
	Higher Order Matching

	Conclusion and Future Work
	References

	Logic-Based Probabilistic Modeling
	Introduction
	Probabilistic Semantics
	The Basic Principle
	The Distribution Semantics

	PRISM: From Semantics to Implementation
	Statistical Abduction
	Probabilistic Modeling
	Concluding Remarks
	References

	Contributed Papers
	Completions of Basic Algebras
	Introduction
	Canonical Completion and Ideal Completion
	MacNeille Completions and Closed Ideal Completions
	Algebraic Completeness of Visser’s Predicate Logic
	References

	Transformations via Geometric Perspective Techniques Augmented with Cycles Normalization
	Introduction
	Related Work
	N-Graphs
	Cycles in {\sf N-Graphs}

	Normalization for {\sf N-Graphs}
	Cycles in Proof-Graphs
	Classes of Cycles
	Cycle Algorithm

	Normalization Proof
	Conclusion
	References

	Observational Completeness on Abstract Interpretation
	Introduction
	Basic Notions of Abstract Interpretation
	Observational Completeness
	Observational Completeness and Complete Shell
	The Case of Additive Functions

	Conclusions and Related Work
	References
	Appendix

	SAT in Monadic Gödel Logics: A Borderline between Decidability and Undecidability
	Introduction
	Syntax and Semantics of Gödel Logics
	Cantor-Bendixon Ranks and Gödel Sets

	Decidability Results
	Undecidability Results
	Infinite-Valued Gödel Logics with \det
	Infinite Gödel Sets with $\cbrank0 > 0$
	Infinite Gödel Sets with $\cbrank0 \ge 2$

	References

	Learning by Questions and Answers: From Belief-Revision Cycles to Doxastic Fixed Points
	Introduction
	Questions and Upgrades on Preferential Models
	Iterated Upgrades
	Conclusions
	References

	First-Order Linear-Time Epistemic Logic with Group Knowledge: An Axiomatisation of the Monodic Fragment
	Introduction
	Syntax
	Quantified Interpreted Systems
	The Monodic Fragment

	Message Passing Systems
	Axiomatisation
	Kripke Models

	Completeness
	Conclusions and Further Work
	References

	On-the-Fly Macros
	Introduction
	Preliminaries
	Macro Computation Algorithm
	Results on compute_macros
	References

	Abductive Logic Grammars
	Introduction
	Motivation
	Background
	Static Abductive Grammars with Logical Knowledge Base
	Dynamic Abductive Grammars
	Related Work and Concluding Remarks
	References

	On the Syntax-Semantics Interface: From Convergent Grammar to Abstract Categorial Grammar
	Convergent Grammar
	About the Commitment and Retrieve Rules
	Abstract Categorial Grammar
	ACG Encoding of CVG
	References
	TheCVGCalculi
	The CVG Syntactic Calculus
	The CVG Semantic Calculus
	The CVG Interface Calculus

	OnCVGDerivations
	How to Build an Applicative ACG

	Observational Effort and Formally Open Mappings
	Introduction
	The Upgraded Hybrid Language
	Hybrid Completeness
	The Logic of Pertinent HSSs
	Discussion
	References

	Forcing-Based Cut-Elimination for Gentzen-Style Intuitionistic Sequent Calculus
	Introduction
	The Sequent Calculus LJT
	Kripke Semantics
	Completeness
	Cut Admissibility
	Conclusion
	References

	Property Driven Three-Valued Model Checking on Hybrid Automata
	Introduction
	Preliminaries
	Three-Valued Model Checking on Hybrid Automata and the Problem of Discrete Bounded Bisimulation Explosion
	A General Algorithmic Framework for Property Driven Three-Valued CTL Model Checking on Hybrid Automata
	The Procedure D3MC
	The Subprocedure C3MC

	Specializing the General Algorithmic Framework for Different Classes of Hybrid Automata
	The Case of Hybrid Automata Based on Autonomous ODEs and Decidable Theories over the Reals: A Symbolic Approach
	The Case of (Uninitialized) Rectangular Automata: A Geometric Approach

	Conclusions
	References

	Team Logic and Second-Order Logic
	Introduction
	Preliminaries
	Background
	Examples
	The Main Result
	Applications
	References

	Ludics and Its Applications to Natural Language Semantics
	Meanings, Proofs and Games
	Dialogues and Ludics
	Ludics: A Theory of Interaction
	Ludics as a Formal Framework for Dialogues

	Logical Forms and Ludics
	Meaning through Dual Sentences
	Meaning as a Set of Justifications
	Meaning as Behaviour
	How to Go Further ?

	Conclusion
	References
	A Hypersequentialized Version of the Linear Sequent Calculus
	Formulas and Sequents
	Rules
	Remarks on Shifts

	Spoilt for Choice :Full First-Order Hierarchical Decompositions
	Introduction
	Full First-Order Decompositions
	The Role of the Permutation Rule
	Order-Invariant Hierarchical Dependencies
	Logic and Data Dependencies
	Conclusion
	References

	Classic-Like Analytic Tableaux for Finite-Valued Logics
	Background
	Truth-Functionality $vs.$ Bivalence
	A Uniform Analytic Deductive Formalism
	The Extraction of Adequate Classic-Like Tableau Systems for Finite-Valued Logics
	Future Work
	References

	A Duality for Algebras of Lattice-Valued Modal Logic
	Introduction
	A Natural Duality for L-VL-Algebras
	L-VL-Algebras and Their Spectra
	A Natural Duality for L-VL-Algebras

	A Jónsson-Tarski-Style Duality for L-ML-Algebras
	L-ML-Algebras and Their Relational Spectra
	A Jónsson-Tarski-Style Duality for L-ML-Algebras

	Conclusions and Future Work
	References

	An Independence Relation for Sets of Secrets
	Introduction
	Semantics of Secrets
	Logic of Secrets
	Soundness
	Completeness
	Axiom Independence
	Conclusion
	References

	Expressing Extension-Based Semantics Based on Stratified Minimal Models
	Introduction
	Background
	Syntax and Some Operations
	Semantics
	Argumentation Basics

	Stratified Minimal Model Semantics
	Stratified Argumentation Semantics
	Conclusions
	References

	Deep Inference in Bi-intuitionistic Logic
	Introduction
	Nested Sequents
	Nested Sequent Calculi
	Examples

	Soundness and Completeness of DBiInt
	Soundness of DBiInt
	Completeness of DBiInt

	ProofSearch
	Related Work, Future Work and Conclusion
	References

	\mathcal{CL}: An Action-Based Logic for Reasoning about Contracts
	Introduction
	The Contract Language \mathcal{CL}
	Semantics
	Properties
	Conclusion
	References

	Ehrenfeucht-Fra¨ıss´e Games on Random Structures
	Introduction
	Preliminaries: Structures, Games and Strategies
	A Winning Strategy in $\Game_r((\A,P),(\A,P'))$
	Criterion for \equiv^k_r-Equivalence
	ℓ-Clique Requires $\lfloor\ell/4\rfloor$ Variables
	Winning Strategy Behind the \equiv^k_r-Criterion (Prop. 13)
	Criterion for \approx_m-Equivalence
	Winning Strategy behind the \approx_m-Criterion (Proposition 20)

	References

	Sound and Complete Tree-Sequent Calculus for Inquisitive Logic
	Introduction
	Inquisitive Semantics
	Tree-Sequent Calculus for Inquisitive Logic
	Completeness
	Soundness
	Cut-Elimination and Decidability of TInqL
	References

	The Arrow Calculus as a Quantum Programming Language
	Introduction
	Classic Arrows
	Quantum Arrows
	The Arrow Calculus
	The Calculus
	Translation

	The Arrow Calculus as a Quantum Programming Language
	Conclusion
	References
	Simply-Typed Lambda Calculus
	Monadic Calculus
	General Quantum Computations

	Knowledge, Time, and Logical Omniscience
	Introduction
	Semantics
	\varDelta-Semantics
	$\ttS4^\Delta$-Awareness Functions
	$\ttS4^\Delta$-Semantics and $\ttS4^\Delta$-Awareness Bases
	More on $\ttS4^\Delta$-Awareness Bases

	AxiomSystems
	Realization Theorem and Relations to {\sf LP}
	Variations
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

