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Abstract. In this work we introduce the composed segmentation (C-
segmentation), that is a priori composition of sources to obtain a sin-
gle one segmentation result according to specific logic combinations.
The approach and the segmentation model are general but we apply
the C-segmentation technique to the challenging problem of segmenting
tubular-like structures. The reconstruction is obtained by continuously
deforming an initial distance function following the Partial Differential
Equation (PDE)-based diffusion model derived from a minimal volume-
like variational formulation. The gradient flow for this functional leads to
a nonlinear curvature motion model. An anisotropic variant is provided
which includes a diffusion tensor aimed to follow the tube geometry.
Numerical examples demonstrate the ability of the proposed method to
produce high quality 2D/3D segmentations of complex and eventually
incomplete synthetic and real data.

1 Introduction

Segmentation of three-dimensional (3D) images can be a very useful computer
aided diagnosis tool for clinical routines or surgical planning. We use the term
composed segmentation for systems that extract structures from several images,
by combining them according to specific Boolean operations. Traditionally, the
segmentation process independently performed on single images have to be
combined by cumbersome algorithms. The goal of C-segmentation is to combine
complementary multispatial, multisensor, multitemporal and/or multiview infor-
mation into one new domain containing only the information to be segmented. The
term composed means by Boolean operations which depends on the application re-
quirements. The individual images entering the C-segmentation process need to
be registered to a common frame of reference, this is a nontrivial task which could
affect the robustness of the segmentation approach, but it is not addressed in this
work. We assume the input images have been preliminary registered.

Let us illustrate the role of C-segmentation in different applications. Multi-
modal fusion deals with images that capture different physical properties of the
original scene. In this case, C-segmentation identifies and segments the union of
regions of interest. Multispatial fusion is related to several images which cover
a single one scene, for example several aerial photographs to represent an en-
tire territorial region, or multiple CT scans to reconstruct a human organ. The
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C-segmentation unifies all the information, eventually replicated in the multiple
sources, into a single one segmented structure. Multitemporal composition re-
quires the comparison between images representing the same structures acquired
at different timing. For example, in medical analysis, a tumor-region growing is
monitored by subsequently images of the region of interest. The C-segmentation
can identify and segment the difference between structures in two images, recon-
structing the grown area.

While our segmentation methodology is quite general, we focus our atten-
tion on the most challenging problem of tubular-like segmentation which is
particularly difficult in case of multiple sources due to the huge amount of con-
nected structures that should be reconstructed. In particular, we will consider
applications in medical image analysis which are interested in the extraction of
anatomical surfaces of tubular structures like blood vessels. Indeed, problems like
aneurysm or stenosis can occur in a vessel, and the clinicians need tools to help
them in interpreting and quantifying the images for evaluating the pathology,
for proposing a therapy or a surgical operation, for planning minimally invasive
treatment.

A number of deformable model-based approaches for vessel segmentation or,
generally tube-like structures, have received considerable attention and success.
We refer the reader to [4] for an extended review on vessel segmentation algo-
rithms. Since explicit deformable model representation is usually impractical,
level set techniques to evolve a deformable model have been recently introduced,
which provide implicit representation of a deformable model. A curve in 2D or
a surface in 3D evolves in such a way as to cover a complex shape or structure.
Its initialization can be either manual or automatic and it needs not to be close
to the desired solution. A disadvantage of level sets segmentation approach is
the computational effort required to cover the entire domain of interest which
is, in general, one dimension higher than the original one. Interested readers
are referred to recent literature on the level set segmentation strategy for tubu-
lar structures [5], [6], [7], [8], [10]. A generalization of the single-channel active
contour without edges model is proposed in [9] for object detection using logic
operations. This logic framework suffers from the active contour model limits,
and is not suitable for detecting tubular structures.

In this work, we modify a geometric deformable model segmentation proce-
dure based on level sets [2], to obtain a fast and accurate method for solving
the C-segmentation problem to extract tubular structures from multiple 2D/3D
images, and we apply the proposed segmentation method for segmenting blood
vessels, neurovascular structures and similar characteristics medical images. The
main contributions of this work concern the design of a strategy to deal with
directionality in the vessels based on a diffusion tensor, and the capability to
compose segmentation of multiple images according to Boolean operations. The
former makes the segmentation algorithm able to follow tubular structures and
connect eventually disconnected parts, while the latter let simultaneously com-
bine different information into a robust segmentation method. The proposed
method is able to segment twisted, convoluted, and occluded structures without
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the user interactivity, following branching of different layers, from thinner to
larger structures. One of the major disadvantages of the geometric deformable
models, that is the computational cost, is strongly reduced by the proposed nu-
merical approach which limits the dimensions of the linear systems involved in
the solution.

The paper is organized as follows. The non-linear PDE model for tubular
structures segmentation is introduced in Section 2, and numerical aspects re-
lated to the discretization of the PDE model are discussed in Section 3. The C-
segmentation algorithm is discussed in details in Section 4, and the anisotropic
variant of the segmentation model is introduced in Section 5. Synthetic as well as
real tests are provided in Section 6. Some selected 3D examples are also presented
in Section 6 to demonstrate the effectiveness of this technique for automatic seg-
mentation of bloods vessels in volumetric MRA/CTA images. Section 7 contains
concluding remarks.

2 A Segmentation Model for Tubular Structures

Several recently proposed 3D segmentation methods are based on deformable
models, which can naturally capture the physics and geometry of shapes varying
in space and time. In this section we formulate the segmentation problem as a
special deformation of a 3D manifold driven by the structures we want to re-
cover. Classical segmentation problems show oversmoothed structures and even-
tually uncomplete boundaries and the surface evolution usually flows over the
boundaries of longer and thinner objects when propagating. A common choice
to detect structure boundaries and to drive diffusion or segmentation process is
the Perona-Malik diffusivity

g(s) = 1/(1 + (s/ρ)2), (1)

where ρ > 0 is a small positive constant.
For the implicit representation of the segmented surface, we consider a special

3D manifold which is the graph of a trivariate function φ mapping an open set
Ω ⊂ R

3 into R. The problem of determining the surface that best fits the object
boundary represented in a 3D image I, can be posed as a volume minimization
problem with objective function

Vg :=
∫

Ω

g(‖∇I‖)dV dV =
√

1 + ‖∇φ‖2dxdydz, (2)

where the metric g is defined by (1) in Ω and Vg represents the weighted volume
of a 3D manifold on Ω.

The volume functional (2) can be minimized and according to the steepest
descent, reading ε = 1, we have

∂φ

∂t
=

√
ε2 + ‖∇φ‖2∇.

(
g(‖∇I‖) ∇φ√

ε2 + ‖∇φ‖2

)
, (3)
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or, equivalently, in advection-diffusion form

∂φ

∂t
=

√
ε2 + ‖∇φ‖2g(‖∇I‖)∇.

(
∇φ√

ε2 + ‖∇φ‖2

)
+ ∇g · ∇φ. (4)

The PDE model (4), ε = 1, represents the mean curvature motion of the 3D
manifold in 4D space with metric g. The metric g in (4) is the edge function
appropriately chosen so that the object boundaries act as attractors under a
particular flow. This term allows us to extract sharp features, such as edges,
corners, spikes, and to accelerate the deformation of the initial function. In the
evolution of φ according (4) the 3D manifold assumes constant values for most
regions far from the boundaries. The first term in (4) corresponds to a minimal
volume regularization weighted by the function g, while the second term cor-
responds to the attraction to the image edges. The advection term in equation
(4) introduces a driving force which moves the level surfaces towards the object
boundaries.

Equation (3) in case ε ∈ (0, 1] is proposed in [2] for dealing with the boundary
completion problem. The variability in the parameter ε, ε ∈ (0, 1], provides both
a regularization effect and a hole filling strategy. The effect of the parameter ε
is to segment boundaries which are eventually uncompleted due to, for example,
noise or corruptions in the acquisition phase. However, this does not help in the
reconstruction of slightly disconnected tubular structures. The latter problem is
solved by the introduction of a suitable diffusion tensor, which is discussed in
Section 5.

The starting initial function φ0 is usually a problem, since it involves user
interaction for locating some starting points at one particular recognizable part
of the structure to be segmented inside the 3D image. This is overcome by
our method which automatically initialize the surface evolution using a suitably
designed distance function, as described in Section 4.

We can adapt the PDE model (3) to compute Boolean operations between
implicit surfaces M1 and M2. This can be carried out quite easily, using the
min, max tools on the related signed distance functions dist1(x) and dist2(x). In
fact the union, intersection and differences between two surfaces can be obtained
applying the evolving PDE (3) initialized by (9) in Section 4, where dist(x) is
defined respectively by

dist(x) = min{dist1(x), dist2(x)}, union
dist(x) = max{dist1(x), dist2(x)} intersection
dist(x) = max{dist1(x),−dist2(x)} difference(M1 −M2)
dist(x) = max{−dist1(x), dist2(x)} difference(M2 −M1).

(5)

3 Solving the PDE Model

The computational method for solving (3) is based on an efficient semi-implicit
co-volume scheme as suggested in [2]. The semi-implicit in time discretization
is obtained by treating the nonlinear terms of the equation from the previous
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time step while the linear ones are considered at the current time level. Time-
discretization of (3) by Euler’s method yields the following semi-discrete scheme

Let τ be a uniform discrete time step, φ0 be a given initial function. Then,
for every discrete time step tn = nτ , n = 1, . . .N , we look for a function φn,
solution of the equation

1√
ε2 + ‖∇φn−1‖2

φn − φn−1

τ
= ∇.

(
g0 ∇φn√

ε2 + ‖∇φn−1‖2

)
, (6)

where g0 := g(‖∇I‖).
The computational domain is obtained through Ω-decomposition into cubic

cells and the construction of a co-volume mesh using a complementary 3D tetra-
hedral grid. Following the classical finite volume methodology we integrate (6)
over every co-volume p, p = 1, . . . , M and according to the details explained
in [2] we get at the time step n, a system of linear equations which can be
written in matrix-vector form as

AΦn = b, (7)

where A ∈ R
M×M is the coefficient matrix, which is symmetric and diagonally

dominant M-matrix, and Φn = (φ1, . . . , φM ) is the vector solution. Since the
unknown function φ(x, t) evolves only on nodes sufficiently close to the structure
boundary, we speed up the computation by determining the updated values for
φ(x, t) only for the nodes identified by initial function φ0(x) > η, for a given
small positive threshold η.

In case of vessel structures, for example, this means a significant reduction
of the computational effort required since the number of nodes representing
the vessels is small compared with the dimension of the entire 3D image which
contains them. In practice, at each time step, the number of unknowns of the
linear system (7) is significatively reduced, and thus both the storage and the
computational cost are much lower. Since at each row of A corresponds a node
in Ω, if we consider a limited number of nodes M1 << M , we get a linear system
with a sparse coefficient matrix of rank M1, which contains M − M1 zero rows
and columns. It is easy to verify that if we first apply a suitable permutation
of rows and columns of A , and corresponding elements of b, we get a linear
system with a coefficient matrix Ã ∈ R

M1×M1 with full rank which has the same
properties as A, that is, it’s symmetric and positive definite. In a similar way,
the same permutation applied to the components of the right-hand side vector
b, leads to a vector b̃ ∈ R

M1 . Therefore, instead of solving the linear system (7)
which involves a M × M coefficient matrix, we can apply the preconditioned
conjugate gradient iterative method, using diagonal scaling as preconditioner,
for computing the solution Φ̃ of the linear system

ÃΦ = b̃, (8)

with a negligible approximation error on the solution.
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4 The C-Segmentation Algorithm

The C-segmentation procedure consists of two steps: the partitioning phase
driven by the Boolean operations to obtain an initial function, and the seg-
mentation phase. The case of segmentation of tubular structures from a single
input image is trivially a simplification of the proposed C-segmentation method.
In this section, we discuss the implementation of the PDE model (3) for segmen-
tation of multiple 3D images.

Let Ω be a common support. Each gray-level 3D image i containing tubular
structures of interest is thresholded to obtain a rough segmentation estimate
which is used to generate an initial distance function. The thresholding process
consists of making a binary image Ii from the input i image based on a user
threshold. Since the images can be represented by a real-valued function defined
on a region Ω ⊂ R

3 or by the discretization of such a function, the threshold
process let us define in a natural way the sub-domain Ωi ⊂ Ω, Ωi := {x ∈
Ω : Ii(x) = 1}. The choice of the threshold value is not an issue due to the
fact that in practical cases the structures to be segmented are characterized by a
particular intensity value represented by a given gray level. For example, vascular
system containing a contrast fluid, can be identified as the brightest formations
in the volume. As it will be better illustrated by the examples in Section 6 the
3D mask Ii resulting from the pre-computed binarization, in general, preserves
the largest tubular structures while breaks up into small pieces the thinnest
ones. These structures will be perfectly recover and reconnected by the surface
evolution process.

Each image i has an associated set (region) Ωi. Depending on the type of the
fusion task {Ωi}i=1,··· ,S , where S is the number of input images, need not be
exactly disjoint and/or cover the whole region Ω. The composed signed distance
function dist(x) is then obtained by the signed distance functions disti(x), i =
1, .., S, with respect to Ωi, following the rules (5).

We define the initial function φ0 as follows

φ0(x) =

{
1 if dist(x) < 0
(1 − dist(x)

max{dist(x)}) else . (9)

The implicit function φ0 represents the initial surface which continuously
evolves, by following equation (3), towards the boundaries of the tubular struc-
tures. The evolution is stopped when a change of solution in time (in L2-norm)
is less than a prescribed tolerance.

A critical issue is the definition of the composed diffusion function g(·) in
(3) when the C-segmentation considers several input images. For example, in
case of difference between two images, which are characterized by g1 and g2, the
composed diffusion function g0 used in (3) is given by

if ((g1 ≤ ε)and(g2 ≤ ε) or (g1 ≥ ε)and(g2 ≥ ε)) g0 = 1
else g0 = min(g1, g2), (10)

with ε > 0, we used ε = 1 ·10−3 in the computational examples. We can proceed
similarly for other Boolean operations.
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Finally, the reconstructed surface is obtained from the implicit surface φ as
the zero level set of the function φ(x) − s, that is the s-level set of φ: {x ∈
Ω : φ(x) = s}, where s = (max(Φ) + min(Φ))/2. This is motivated by the fact
that the flow driven by (3) forms a sharp step in the proximity of the object
boundaries, while it approaches at constant values inside/outside the object.

5 An Anisotropic Variant of the Segmentation Algorithm

In this section we provide a variant of the isotropic model (3) designed to improve
significantly the connectivity of the coherent structures in the segmentation. The
idea is to incorporate local orientation of the tubular structures into the dynamic
segmentation process in such a way that at each time step the surface evolves
by isotropic mean curvature motion in homogeneous regions, while it is driven
by the directional field representing the orientation of the tube in presence of
tubular structures. We aim to capture the vessel’s structure and the vessels
directions locally by a local spatial coherence descriptor. Coherence enhancing
image smoothing has been introduced by [3] and successfully applied in image
filtering by anisotropic diffusion. This type of nonlinear diffusion includes the
construction of a diffusion tensor which is built as follows. Given an image I, and
its Gaussian-smoothed version ∇Iσ, a regularized shape descriptor is provided
by

Jδ(∇Iσ) := (Kδ ∗ (∇Iσ ⊗∇Iσ)) (11)

where Kδ is a Gaussian kernel with δ ≥ 0. The matrix Jδ is symmetric positive
semi-definite and its eigenvalues μ1 ≥ μ2 integrate the variation of the gray
values within a neighborhood of size O(δ). They describe the average contrast in
the corresponding eigendirections v1 and v2. The orientation of the eigenvector
v2, corresponding to the smaller eigenvalue, represents the direction of lowest
fluctuations, the so-called coherence orientation. In this way, constant areas are
characterized by μ1 = μ2 = 0, while straight edges give μ1 
 μ2 = 0.

The normalized coherence value which measures the anisotropic structures
within a window of scale δ is thus defined as

c =
(μ1 − μ2)2

max{(μ1 − μ2)2} , c ∈ [0, 1]. (12)

Thus c approaches to 1, for anisotropic structures and tends to zero for isotropic
structures.

The diffusion tensor D is a matrix with the same eigenvectors as the (regu-
larized) structure tensor Jδ and its eigenvalues are given by

λ1 = g(‖∇I‖)
λ2 =

{
g(‖∇I‖) if μ1 = μ2

g(‖∇I‖) + (1 − g(‖∇I‖))e−κ/c κ > 0, else
(13)

where g(·) is the composed diffusion function, defined for example, by (10) which
suitably adapts its values to the anisotropy. The parameter κ has the role of a
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threshold, and c is the coherence defined in (12). Therefore, the matrix D has
the following form

D = [v1 v2 ]
[
λ1 0
0 λ2

] [
vT

1

vT
2

]
. (14)

In local homogeneous areas of an image the diffusion is reduced to be the
isotropic mean curvature motion driven by (3), in fact we have D = g(‖∇I‖).
Areas nearby elongated structures are characterized by values of g(·) approaching
to zero, which gives λ2 >> λ1. The effect on the diffusion of the segmentation
function is thus stronger along the coherence directions. In all the experiments
reported in Section 6 we set κ = 1 · 10−5. Since if c >> κ then λ2 ≈ 1, while if
c << κ then λ2 ≈ g(‖∇I‖), the segmentation function flows along the coherence
direction when it approaches to the edges and stops when the object boundary
is reached. The incorporation of the diffusion tensor D defined by (14) in the
segmentation model (3) leads to the following nonlinear anisotropic segmentation

∂φ

∂t
=

√
ε2 + ‖∇φ‖2∇.

(
D

∇φ√
ε2 + ‖∇φ‖2

)
, φ(x, 0) = φ0(x) x ∈ Ω. (15)

We will refer to the models (3) and (15) by isotropic and anisotropic segmen-
tation models, respectively. The PDE model (15) can be easily extended to 3D
or 4D segmentation problems; we refer the reader to [1] for the numerical aspects
involved in the discretization of the diffusion tensor.

6 Results and Experiments

We tested the performance of the proposed C-segmentation method on 2D/3D
synthetic and real examples. Example 1 and 2 demonstrate the performance
of the anisotropic C-segmentation model compared with the isotropic one to
verify the important role of the diffusion tensor in the segmentation of tubu-
lar structures. Examples 3, 4 and 5 illustrate results from the application of
composed segmentation of 2D/3D images. For all the experiments, we apply
C-segmentation algorithm as illustrated in Section 4, with or without diffusion
tensor, and we set the time step parameters involved to τ = 1 · 10−3, for 3D
images and τ = 1 · 10−2 for the 2D images, and ε = 1 · 10−3 in (3). We stop the
iterations when the change of solution in time is less than 1 · 10−4. In our exper-
iments, the segmentation of images with high contrast (see Examples 2 and 3)
provides good results when an automatic choice for parameter s is chosen such
as s = (max(Φ) + min(Φ))/2, while in case of images like in Examples 1, 4 and
5, the results are more sensitive to the choice of s, and visual inspection could
be required to tune the automatic choice of s.

Example 1. In the first 2D example we consider the segmentation of a carotid
vascular system represented in a Magnetic Resonance Angiography (MRA) im-
age of 182 × 182 pixels shown in Fig. 1 (left). MRA is based on detection of
signals from flowing blood and suppression of signals from other, static, tissues.
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Fig. 1. Carotid vascular system segmentation; the original image (left); results of the
isotropic model (center), and anisotropic model (right)

Fig. 2. First row: original synthetic image (left); results obtained by the isotropic
(left) and anisotropic segmentation model (right). Second row: associated segmentation
function φ is shown at the final time step of isotropic (left) and anisotropic segmentation
(right).

The blood vessels appear as high intensity regions in the image. The structures
to be segmented represent several vessels of variable diameters which are close
to each other, partial occlusions and intersections make the segmentation very
challenging. In Fig.1 the segmented structures obtained by 10 iterations of the
isotropic (center) and anisotropic (right) segmentation models are displayed. The
boundary curves in pink color are extracted using contour values s = 0.90 and
s = 0.98, respectively. Visual comparison shows the anisotropic segmentation
method to give the most accurate restoration.

Example 2. The second example illustrates the ability to reconstruct structures
which present small occlusions along the coherence direction. The synthetic im-
age to be segmented of dimension 200× 200 pixels is shown in Fig. 2 (first row,
left). Applying 10 time steps of the anisotropic segmentation model, the struc-
ture is well reconstructed while maintaining the narrowing, as shown in Fig.2
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(a) (b)

(c) (d)

Fig. 3. C-segmentation of images (a) and (b). Result in (c) of (b)\(a) and in (d) of
(a)\(b).

(first row, right). The propagation driven by the isotropic segmentation model
leads to enhance the disconnections, as shown in Fig.2 (first row, center). The
boundary curves determined as iso-contours of the segmentation functions shown
in Fig.2 (second row), using s = 0.95 are over-imposed on the original image and
shown in Fig.2 (first row).

Example 3. Verification of the proposed C-segmentation method is carried out
on a real echo image show in Fig.3 (a) where we generated one synthetic bump
and two synthetic holes, simulating aneurysm and stenosis effects, as illustrated
in Fig.3 (b). Applying C-segmentation to the Boolean difference (b) \ (a) we are
able to enhance the aneurysm as shown in Fig.3 (c), while to detect the stenosis
effects we apply C-segmentation to the Boolean difference (a) \ (b), obtaining
the results illustrated in Fig.3 (d).

Example 4. Volumetric segmentation is applied to a Computed Tomographic An-
giography (CTA) data set shown in Fig.4(left). The volumetric data set kidney
of dimension 201 × 201 × 201 has been extracted from a 436 × 436 × 540 CTA
image of the kidney vasculature system and present vessel patterns with different
curvatures, diameters and bifurcations. The final segmentation obtained after 10
time steps of the segmentation algorithm is shown in Fig.4(right).

Example 5. The last experiment demonstrates the performance of the proposed
technique to segment a complex structure extracted from two overlapping 3D
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Fig. 4. Segmentation of the kidney volume data set: (left) original CTA image (right)
segmentation result

Fig. 5. Segmentation of the lung volume data set: (left) original MRA image, (right)
C-segmentation result

MRA images representing the airway tree of a human lung. The original MRA
image is illustrated in Fig.5(left) using volume rendering. In particular the ellip-
soidal area outlined in the image includes the region of interest for segmentation
inside the lung image. The data set lung is DICOM format and sample images
available on the web site (http://www.osirix-viewer.com/Downloads.html).
We simulated the acquisition of two partially overlapping 3D MRA images cover-
ing the area of interest consisting of 156× 156× 156 voxels each, and we applied
the C-segmentation algorithm using union Boolean composition. Fig.5(right)
shows the obtained single one segmentation of the human airway tree, where
several branching generations were detected.

These preliminary results demonstrate the applicability of the developed
method for the C-segmentation of quite different and topological complex tubu-
lar structures.
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7 Conclusions

In this paper we introduced the C-segmentation method based on the distance
function which is successfully applied to 2D/3D images containing tubular struc-
tures. The algorithm is automatic, accurate and fast. The latter is due to a speed
up strategy in the iterative method for linear systems. The algorithm is provided
with a diffusion tensor to move the evolving surface toward elongated tubular
structures, connecting gaps in the underlying raw data, while keeping the struc-
tures distinguished along the coherence direction. This model defines a general
segmentation framework which combines object information from different im-
ages into any logical combination, rather than following the difficult a posteriori
process to compose segmentation results obtained separately.
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