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Abstract. We analyze the rate in which image details are suppressed as a func-
tion of the regularization parameter, using first order Tikhonov regularization,
Linear Gaussian Scale Space and Total Variation image decomposition. The
squared L2-norm of the regularized solution and the residual are studied as a
function of the regularization parameter. For first order Tikhonov regularization
it is shown that the norm of the regularized solution is a convex function, while
the norm of the residual is not a concave function. The same result holds for
Gaussian Scale Space when the parameter is the variance of the Gaussian, but
may fail when the parameter is the standard deviation. Essentially this imply
that the norm of regularized solution can not be used for global scale selection
because it does not contain enough information. An empirical study based
on synthetic images as well as a database of natural images confirms that the
squared residual norms contain important scale information.

Keywords: Regularization, Tikhonov Regularization, Scale Space, TV, Total
Variation, Geometric Structure, Texture.

1 Introduction

Images contain a mix of different type of information - from fine scale stochastic tex-
tures to large scale geometric structures. Image regularization can be viewed as approx-
imating the observed original image with a simpler image, where simpler is defined
by the regularization (prior) term and the regularization parameter λ. Here an image is
considered to be simpler if it is smoother (or piece-wise smoother). Regularization can
also be viewed as decomposing the observed image into a regularized (smooth) com-
ponent and a small scale texture/noise component (called the residual, because it is the
difference between the regularized solution and the observed image). By increasing the
regularization parameter λ smoother and smoother approximations are generated. The
rate in which image details are suppressed as a function of the regularization parameter
depends on the image content and regularization method. The image residual contains
the details that are suppressed during the regularization and the norm of the residual is
a measurement of the amount of details that are suppressed. The norm of the residual as
a function of the regularization parameter gives important information about the image
content. For images containing small scale structure a lot of details are suppressed even
for small λ and the norm of the residual will be large for small λ. For images containing
solely large scale geometric structures few details will be suppressed for small λ and
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the norm of the residual will be small. The rate in which details are suppressed can be
viewed as the derivative of the norm of the residual with respect to the regularization
parameter, and reveals the amount of details that are suppressed if the regularization
parameter increases.

First order Tikhonov regularization, Gaussian linear scale space (which is equivalent
to infinite order Tikhonov regularization [1]) and Total Variation image decomposi-
tion are studied. The squared L2-norm of the regularized solution and the residual are
studied as functions of the regularization parameter. Of special interest is the convex-
ity/concavity of those norms viewed as functions, because it relates to the possibility
that the rate in which details are suppressed can increase/decrease. In section 2, first
order Tikhonov regularization is revisited and it is shown that the norm of the regu-
larized solution is a convex function, while the norm of the residual is not a concave
function. In section 3, linear Gaussian Scale Space is revisited, and it is shown that the
norm of the regularized solution is convex as a function of the Gaussian variance, or
equivalently diffusion time, but may fail to be convex when the parameter is the Gaus-
sian standard deviation. The squared norm of the residual is in general not a concave
function of its parameter. In section 4, Total Variation (TV) image decomposition is
revisited. In section 5 experimental results are presented, the norm of the Sinc func-
tion, synthetic image containing image structures at different scales and natural images
are studied.

These studies tend to show that the square residual norm contains scale information,
particularly at values where local convexity/concavity behavior changes.

1.1 Related Work

Characterization of images by analyzing the behavior of the norm of the regularized
solution and the residual as functions of the regularization parameter has not received
much research attention. Sporring and Weickert [2, 3] view images as distributions of
light quanta and use information theory to study the structure of images in scale space.
The entropy of an image as a function of the scale (in scale-space) is analyzed and
shown to be an increasing function of the scale. The result holds both for linear Gaussian
scale space and non-linear scale-space. Furthermore the derivative of the entropy with
respect to the scale is shown, empirically, to be a good texture descriptor. The derivative
of the scale-space entropy function with respect to the scale is a global measure of how
much the entropy of an image changes at different scale. Where Sporring and Weickert
studies monotone functions of images across scale, we study norms of the scale space
image and residual.

Buades et.al [4] introduced the concept of Method Noise in denoising. The Method
Noise is the image details that are removed in the denoising - i.e. the residual image
- and the content is used for comparing denoising methods. The residual image has
often been used for determine the optimal regularization parameter. (See Thompson
et.al [5] for a classical study.) Selection of the optimal stopping time for diffusion filter
was studied by Mrazek and Navara [6], which also relate to the Lyapunov functionals
studied by Weickert [7].
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1.2 Convexity, Fourier Transforms, Power Spectra

Recall that a function f(x) defined on a convex set C is convex if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all 0 ≤ λ ≤ 1 and for all x, y ∈ C. If f(x) is convex on a convex set C then −f(x)
is said to be concave on C. When f(x) is twice-differentiable, a necessary and sufficient
condition for convexity is

∀x ∈ C, f ′′(x) ≥ 0 (1)

(in the multidimensional case a the Hessian matrix is positive semi-definite). Two ele-
mentary facts will be used in the sequel: 1) let h(λ) be a function of the form

h(λ) =
∫

d(λ, x)s(x)dx (2)

where d(λ, x) is convex in λ and s(x) ≥ 0 then h(λ) is convex. 2) Assume that f(x) =
h(g(x)) where g : R

n → R
k and h : R

k → R. Then

– if h is convex and non-decreasing and g is convex, then f is convex,
– if h is convex and non-increasing and g is concave, then f is concave.

The Fourier transform of a function f is denoted with f̂ . Parseval’s theorem asserts
that this is an isometry of L2: ‖f‖L2 = ‖f̂‖L2 where

‖f(x, y)‖2
2 =

∫∫
|f(x, y)|2dxdy. (3)

The frequency domain variables are denoted (ωx, ωy) =: ω. The power spectrum func-
tion of a function f is the function ω �→ |f̂(ω)|2. f is said to follow a (α-)power law if
|f̂(ω)| ∼ C/|ω|α, where C and α are some constants. It is well known that the power
spectra computed over a large ensemble of natural image approximate a power law in
spatial frequencies with α around 1.7 or at least in (0, 2) [8, 9].

We use often implicitly the following classical result from Calculus. Let B :=
B(0, 1) the unit ball of R

n and Bc its complement. Let g a positive function defined on
R

n. Assume that g ∼ ‖x‖−α in B (resp Bc). Then
∫

B
g dx < ∞ if and only if α < n

(resp.
∫

Bc g dx < ∞ if and only if α > n).
Finally, to conclude this paragraph, given a regularization, the functions s(λ) and

r(λ) will denote the squared L2-norm of respectively the the regularized solution and
of the residual as a function of the regularization parameter λ.

2 Tikhonov Regularization

The first order Tikhonov regularization is defined as the minimizer of the energy
functional

Eλ[f ] =
∫∫

(f − g)2 + λ|∇f |2dxdy (4)
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where g is the observed data and λ is the regularization parameter. The energy func-
tional is composed of two terms: the data fidelity term ‖f − g‖2

2 and the regulariza-
tion term ‖∇f‖2

2. Note that Wiener filter can be regarded as a Tikhonov regularization
method applied to the Fourier domain. Thanks to Parseval’s theorem all calculation can
be performed in the Fourier domain where this energy becomes

Êλ[f ] =
∫∫

(f̂ − ĝ)2 − λ(ω2
xf̂2 + ω2

yf̂
2)dωxdωy. (5)

Using the Calculus of Variations, a necessary condition for a function f to minimize
the functional (4) is given by its Euler-Lagrange equation: (f − g) − λΔf = 0. In the
Fourier domain, it becomes

f̂ − ĝ + λ(ω2
xf̂ + ω2

y f̂) = 0 i.e f̂ =
ĝ

1 + λ|ω|2 (6)

that is, the original signal multiplied with the filter function F (λ, ω) = 1
1+λ|ω|2 which

is a non-increasing convex function w.r.t λ (for λ ≥ 0). Set d(λ, ω) = F (λ, ω)2. It
is important to remark that defining the regularization in frequency domain by λ →
F (λ, ω)ĝ(ω) extends Tikhonov regularization beyond the case where g ∈ W 1,2(R2),
the Sobolev space of L2 functions with L2 weak derivatives, which is the natural space
for Tikhonov regularization as defined by minimization of (4). Indeed, the correspond-
ing function s(λ) is given by

s(λ) = ‖F (λ, ω)ĝ‖2
2 =

∫∫
d(λ, ω)|ĝ|2dω. (7)

This is the integral of the squared filter function times the power spectrum of the original
signal g, and we have the following result:

Proposition 1. The squared L2-norm s(λ) of the minimizer of the Tikhonov regulariza-
tion functional as a function of the regularization parameter λ is, for non-trivial images,
a monotonically decreasing convex function (for λ ∈ (0,∞)), when it exists.

If g follows an α-power law, then from the Calculus fact recalled in the previous sec-
tion, g �∈ L2(Rn), however s(λ), s′(λ) and s′′(λ) exist and are finite for λ > 0 if and only
if α ∈ (0, 2) (which is the case for natural images). Both s′ and s′′ diverge for λ → 0+.

The square of a non-increasing convex function is a convex function, and from Section
1.2 we have the first part of the proposition. Now

dλ(λ, ω) = − 2|ω|2
(1 + λ|ω|2)3 , dλλ(λ, ω) = 6

2|ω|4
(1 + λ|ω|2)4 .

s′(λ) =
∫∫

dλ(λ, ω)|g|2 dω and s′′(λ) =
∫∫

dλλ(λ, ω)|g|2 dω and the rest of the
proposition follows by elementary analysis. �

Set R(λ, ω) = 1 − F (λ, ω) and e(λ, ω) = R(λ, ω)2. The Fourier image residual is
R(λ)ĝ and its squared norm is

r(λ) = ‖R(λ, ω)ĝ‖2 =
∫∫

e(λ, ω)|ĝ|2 dω
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An elementary calculation gives eλ(λ, ω) = 2λ|ω|2/(1 + λ|ω|2)3 and this function, is
for λ fixed, bounded in ω while it satisfies

∀ω, lim
λ→0+

eλ(λ, ω) → 0, lim
λ→∞

eλ(λ, ω) → 0

The same holds for r′(λ) when it is finite and therefore by the mean value theorem, as
it is positive, it must have a maximum and r′′(λ) must change sign and we can state the
following:

Proposition 2. Assume first that g ∈ W 1,2(R2) is non trivial. Then, although s(λ)
is convex and decreasing, the squared norm residual r(λ) of Tikhonov regularization,
while increasing from 0 to ‖g‖2

2, is neither concave nor convex.

Note that when g is a α−power law with α ∈ (0, 2), g �∈ L2(R) while its regularization
gλ is when λ > 0, thus g − gλ �∈ L2(R2) and r(λ) = ‖g − gλ‖2

2 = +∞.

3 Linear Scale-Space and Regularization

Linear scale-space theory [10, 11, 12] deals with simplified coarse scale representation
of an image g, generated by solving the diffusion (heat) equation with initial value g:

∂f

∂t
= f, f(−, 0) = g(−) (8)

where  = ∂xx + ∂yy is the Laplacian. Equivalently, this coarse scale representation
can be obtained by convolution with a Gaussian kernel:

fσ = g ∗ Gσ, Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (9)

and the link between the two formulations is given by fσ = f(−, 2σ2). A third formu-
lation of Linear Scale-Space is obtained as “infinite order” Tikhonov regularization, the
1-dimensional case was introduced by Nielsen et al. in [1]. In dimension 2, one defines
for λ > 0

E[f ] =
∫∫

(f − g)2 dxdy +
∞∑

k=1

λk

k!

∫∫ k∑
�=0

((
k

	

)
∂kf

∂x�∂yk−�

)2

dxdy (10)

where
(
k
�

)
is the (	, k)-binomial coefficient. By a direct computation, its associated

Euler-Lagrange equation is given by

f − g +
∞∑

k=1

(−1)kλk

k!
kf = 0

where k is the k-th iterated Laplacian

k =  ◦ · · · ◦ ︸ ︷︷ ︸
k times

=
k∑

�=0

(
k

	

)
∂2k

∂x2�∂y2(k−�)
.

Via Fourier Transform, the Laplacian operator becomes the multiplication by −|ω|2
operator and as in 1st order Tikhonov regularization, the solution is given by filtering:
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f̂ =
ĝ

1 +
∑∞

k=1
λk|ω|2k

k!

= e−λ|ω|2 ĝ. (11)

The solution of the filtering problem for a given λ > 0 is the same as solving (8) with
t = λ. By setting λ = 2σ2 and applying the convolution theorem to (9) one gets the
above equation. Using the Fourier formulation, the squared norm of the solution at λ of
(11) s(λ) the squared-norm residual r(λ) are given by

s(λ) = ‖e−λ|ω|2 ĝ‖2
2 =

∫∫
e−2λ|ω|2 |ĝ(ω)|2 dω,

r(λ) = ‖(1 − e−λ|ω|2)ĝ‖2
2 =

∫∫ (
1 − e−λ|ω|2

)2

|ĝ(ω)|2 dω.

If one defines d(λ, ω) = e−2λ|ω|2 and e(λ, ω) = (1 − eλ|ω|2), they have with respect
to convexity/concavity, the same properties as their Tikhonov counterpart defined in the
previous section and one can state the following, in term of heat equation / Gaussian
variance

Proposition 3
1. The squared L2-norm s(t) of the solution of heat equation as a function of the diffu-

sion “time” t (or equivalently the convolution by the Gaussian kernel in function of
the kernel variance) is, for non-trivial images, a monotonically decreasing convex
function (for t ∈ (0,∞)), when it exists.

2. The squared norm residual r(t) of the solution of the heat equation at time t, while
increasing from 0 to ‖g‖2

2, is neither concave nor convex.

If, instead of using the diffusion time / variance as parameter, one uses the standard
deviation σ of the Gaussian kernel, the resulting solution squared norm function s(σ),
although increasing, may fail to be convex as the function σ �→ e−σ2|ω|2 is not convex
in σ, this is a half Gaussian bell. A simple example showing the convexity failure is
provided by the band limited function b whose Fourier transform is b̂(ω) = 1 if |ω| ≤ 1
and b̂(ω) = 0 otherwise. A direct calculation gives

s(σ) =
π

σ

(
1 − e−σ2

)

which is neither convex nor concave. In the other hand, for a function g following a
α−power law with α < 2, s(σ), this seems to be convex (for instance if α = 0,
s(σ) = π/σ2, if α = 1, s(σ) = π3/2/σ2).

If,again, the power spectrum of the image g is following a power law in spatial
frequencies, while its regularized L2- norm is finite, the residual norm is not as the
initial datum is not square-integrable.

4 Total Variation Image Decomposition

Bounded Variation image modeling was introduced in the seminal work of Rudin et al.
in [13], where the following variational image denoising problem is considered. Given
an image g and λ > 0, find the minimizer of the following energy

E(f ; g, λ) =
∫

(g − f)2dxdy + λ

∫∫
|∇f | dxdy (12)
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The regularized image fλ can be interpreted as a denoised version of g, but also as
the “geometric” content of g while the residual νλ = g − fλ contains the “noise/fine
texture” component. Several methods have been proposed to solve the above equation,
by solving a regularized form of the Euler-Lagrange equation of the functional

f − g − λ∇ · ∇g

|∇g| = 0

where ∇· denote the divergence operator, but also for instance the non linear projection
method of Chambolle ( [14]), which we have used in this work. λ is a regularization
parameter that determines the level of details that ends up in the (noise/texture) compo-
nent νλ. As λ increases νλ will contain details of larger and larger scale, that will not
appear in fλ.

Again it is interesting so see how the image content changes as λ increases. The
component vλ is the residual of the regularization and contains the details that are sup-
pressed in the cartoon component fλ and we set

r(λ; g) = ‖vλ‖2
2 = ‖g − fλ‖2

2 (13)

i.e. the squared L2-norm of the residual image as a function of the regularization pa-
rameter λ. Related to the norm of the residual is the norm of the cartoon component as
a function of λ

s(λ; u0) = ‖uλ‖2
2 (14)

s′(λ) encodes the rate in which details are suppressed in the cartoon component uλ.
Due to the high non linearity of the TV-regularization problem, there is no relatively
simple expression for s(λ), r(λ) and their respective derivatives.

A norm study for the dual norm of the TV norm was done by Meyer in [15]. A more
direct behavior for the 2-norm can be computed in a few cases. For instance Strong
and Chan [16] showed that if g is the function g(x) = 1 if x ∈ B(0, 1) the unit disk,
g(x) = 0 if x �∈ B(0, 1), then its regularization has the form cg, where c ∈ (0, 1) is a
constant, therefore attenuating the contrasts of the image.

In general situation, we cannot expect these type of simple results. We have instead
decided to study the behavior of these functions experimentally on an image database.

5 Experiments

5.1 Sinc in Scale Space

Let g(x) = sin(x)/x be the Sinc function where x ∈ [−∞,∞]. The squared L2 norm
of the residual as a function of the regularization parameter is in the Tikhonov case

r(λ) =
∫ 1

−1

(
λx2

1 + λx2
)2dx (15)

and in the scale space case

r(σ) =
∫ 1

−1

(1 − e
−ω2σ2

2 )2dω. (16)
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Fig. 1. The residual norm as a function of the regularization parameter for g(x) = sin(x)
x

. The
plots clearly indicate that residual norm function are, in both case, increasing functions, but not
concave.

The result is presented in figure 1. The plots clearly indicate that the residual norm -
in both cases -is not concave.

5.2 Black Squares with Added Gaussian Noise

The first experiment is done on an artificially generated 100 × 100 image containing
four 3 × 3 black squares, one 20 × 20 black square and added Gaussian white noise
with σ2 = 12. The white background has intensity 125 and the black square 10, after
the noise has been added the image is zero mean normalize.

In figure 2 the regularized and residual image are shown for increasing regularization
using first order Tikhonov Regularization. As the small scale noise is suppressed, the
large scale geometric structures are also smoothed out. The norm of the residual is an
increasing function of the scale and it seems to be concave, and in fact it can be concave
for the shown λ. However λ may be small at the inflection point.

In figure 3 the regularized and residual images are shown for increasing regulariza-
tion using linear gaussian scale space. The results for the linear Gaussian scale-space is
similar to the result using first order Tikhonov regularization.

In figure 4 the regularized and residual images are shown for increasing regulariza-
tion using Total Variation image decomposition. The different structures are suppressed
at using different λ while the large scale structures are well preserved. At λ = 12 the
gaussian white noise is suppressed, and at λ = 210 is the small boxes remove and fi-
nally the large box is suppressed at λ = 550. The residual norm as a function of the
regularization parameter is not a concave function of λ.
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Fig. 2. Result for the squares and noise image using first order Tikhonov regularization. On the
first row the regularized and the residual images for λ = 3, 10, 20 and 50 are shown. The plots
contain the L2−norm of the residual as a function the scale λ, followed by the first order deriva-
tive in log-scale.
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Fig. 3. Result for the squares and noise image using linear scale space. On the first row the regular-
ized and the residual images for σ2 = 1, 7, 13 and 64 are shown. The plots contain the L2−norm
of the residual as a function the scale σ, followed by the first order derivative in log-scale.

5.3 DIKU Multi Scale Image Sequence Database I

The newly collected DIKU Multi-Scale image sequence database [17], contains se-
quences of the same scene captured using varying focal length. The sequences contain
both man-made structures and nature, the distance to the main objects in the scenes also
show a large variation (from a few meters to a few kilometers).
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Fig. 4. Result for the squares and noise image using TV-decomposition. On the row regularized
and the residual images for λ = 12, 38, 100 and 200 are shown. The plots contain the L2−norm
of the residual as a function the scale λ, followed by the first order derivative in log-scale. The
residual norm seems to be a monotonically increasing non-concave function. The residual norm
has three points of ’high’ curvature: one at λ = 12 - the noise is suppressed - and λ = 210 - the
small squares are suppressed, and λ = 580 - the large square is suppressed.

Each image has first been normalized by an affine intensity range change so that
that the intensity range becomes [0, 1], followed by subtracting the mean value (i.e. the
mean intensity is 0 in each image).

The mean residual norm was computed on the normalized images in the database,
using fixed scales σ = 2i where i = 0, · · · , 12, using linear gaussian scale space. The
result is a feature vector 〈r̄(0), · · · , r̄(12)〉 containing

r̄(i) =
1
N

∑
I∈F

r(i; I) (17)

where F is the set of all N normalized images in the database.
The (signed) distance function d(I0) of a normalized image I0 ∈ F to the mean is

defined as

d(I0) =
12∑

i=0

r(i; I0) − r̄(i) (18)

The (signed) distance to the mean has been computed for all images in the DIKU
database. Images with large positive values have a larger than average residual and
images with large negative values have a smaller than average residual.

The first row in figure 5 contains the 4 images with the largest positive distance to the
mean, on the second row the 4 images with the largest negative distance to the mean.
The image contents difference is striking and clearly indicate that the residual norm
contains important contents information. The same experiment was performed using
first order Tikhonov regularization with similar, but not identical, result.
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Fig. 5. The top row show images where f(σ) is much larger than the average and bottom row
show images where f(σ) is much smaller than the average. The contents difference is striking!
The images in the first row contain small scale details (texture), while the images in the bottom
row contain large scale geometric structures.

6 Conclusions

For square-integrable images, the squared L2-norms of the regularized images in first
order Tikhonov regularization and linear Gaussian Scale Space are, in general decreas-
ing convex functions of the regularizing parameter. This may fail for Linear Scale space
when Gaussian standard deviation is used as a parameter. Their squared residual norm
are however not concave functions. For the the Total Variation regularization too, it is
shown empirically that the squared norm of the residual is not concave.

This confirms that the squared norm of the residual may be an indicator of image
structure, both for 1st order Tikhonov regularization, Gaussian Scale Space as well as
Total variation regularization. The behavior of the latter will be studied further in future
research.
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