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Abstract. We present a generative model based method for recover-
ing both the shape and the reflectance of the surface(s) of a scene from
multiple images, assuming that illumination conditions are known in ad-
vance. Based on a variational framework and via gradient descents, the
algorithm minimizes simultaneously and consistently a global cost func-
tional with respect to both shape and reflectance. Contrary to previous
works which consider specific individual scenarios, our method applies
to a number of scenarios – mutiview stereovision, multiview photomet-
ric stereo, and multiview shape from shading. In addition, our approach
naturally combines stereo, silhouette and shading cues in a single frame-
work and, unlike most previous methods dealing with only Lambertian
surfaces, the proposed method considers general dichromatic surfaces.

1 Introduction and Related Work

Many methods have been proposed to recover the three-dimensional surface
shape using multiple images during these last two decades [1]. On the other hand,
for a long time, the estimation of surface radiance/reflectance was secondary.
Even some recent works [2,3,4,5] compute the 3D shape without considering ra-
diance estimation. However, radiance/reflectance estimation has become a mat-
ter of concern in multiview reconstruction scenarios in the last decade [6, 7, 8].
Especially, recovering reflectance is required for realistic relighting, which is also
fundamental in virtual reality as well as augmented reality. In addition, in real
life applications, perfect Lambertian surfaces are rare and, therefore, multiview
stereo algorithms have to be robust to specular reflection. Widespread ideas are
to use appropriate similarity measures [2,9,10] and/or to modify input images in
order to remove specular highlights [11, 12]. However, those similarity measures
are not generally valid under general lighting conditions and these methods are
strongly limited by the specific lighting configuration. Concerning the robustness
to non-Lambertian effects, it is also worth to cite [6] which considers the radiance
tensor. However, the radiance tensor presented in [6] is not appropriate when
the images of the scene are taken under several (different) lighting conditions.

In this paper, our goal is to provide a model based method that simulta-
neously estimates shape and reflectance by combining stereo, silhouette, and
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shading cues in a single framework. The method we propose is robust to non-
Lambertian effects by directly incorporating a specular reflectance model in the
mathematical formulation of the problem. By incorporating a complete photo-
metric image formation model, it also exploits prolifically all the photometric
phenomena, as it is explicitly done in photometric stereo methods. Also, it al-
lows to naturally deal with images taken under several lighting conditions. Let
us note that actually there already exist recent works that provide solutions in
this direction. [13] proposes a model-based method for recovering the 3D shape
and the reflectance of a non-Lambertian object. Nevertheless, in this paper,
the authors constrain the object to be made of a single textureless material —
the parameters of the reflectance (in particular the albedo) are the same for all
the points of the object surface. So, the method in [13] is a “multiview shape
from shading” method, similarly as the one proposed by [8, 14] which focus on
the Lambertian case. To our knowledge, with the exception of [15, 16], all the
works going in the same direction as ours are limited to surfaces made of a single
(textureless) material. In particular, this is the case for the photometric stereo
methods proposed by [17, 18] and for the multiview photometric stereo work
of [19]. Only the similar works [15, 16] are able to recover scenes with varying
albedo. However, in [15,16], the authors tried to filter out specular highlights by
using a simple thresholding and to use only diffuse components to estimate the
shape. [15] also used a thresholding to detect shadowed pixels not visible from
light sources, which is however not working under multiple light sources.

In our work, we do not want to restrain ourselves to a single textureless ma-
terial. (In return, we assume that lighting conditions are known in advance.)
And, more generally, one of the goals of this paper is to show that the joint
computation of shape and reflectance is beneficial from several points of view.
In addition to providing the reflectance of the scene, this allows to naturally
introduce specular models in the mathematical formulation of the multiview re-
construction problem; and thus the method to be robust to highlights. Without
any additional effort, it is also possible to deal with a set of images lighted by
several different conditions (which is not possible with radiance only). Moreover
in such a case, the method allows to completely exploit the variations of the
radiance according to the changes of illumination, as in photometric stereo. Fi-
nally, this allows to easily incorporate some constraints on the reflectance and so
in particular to naturally exploit shading effects in textureless regions. Here, let
us emphasize that, contrary to previous works considering specific scenarios, our
method can be applied indiscriminately to a number of scenarios — multiview
stereovision, multiview photometric stereo, and multiview shape from shading.

2 Modeling Assumptions and Notations

We assume here that the scene can be decomposed into two entities: the fore-
ground, which corresponds to the objects of interest, and the background. The
foreground is composed by a set of (bounded and closed) 2D manifolds of R

3

and represented by S.
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Images are generated by nc pinhole cameras. The perspective projection per-
formed by the ith camera is represented by Πi : R

3 → R
2. πi ⊂ R

2 is the image
domain of the ith camera. It is split into two parts: the pixels corresponding to the
foreground, πiF = πi ∩Πi(S), and the other points πiB = πi \ πiF . Ii : πi → R

c

is the image of the true scene, captured by the ith camera1. I is the set of input
images and IiF and IiB are the restrictions of the function Ii to πiF and πiB ,
respectively. In other respects, the visibility function vi

S : R
3 → R is defined by:

vi
S(X) = 1 if X is visible from the ith camera and vi

S(X) = 0 if not. Si denotes
the part of S that is visible from the ith camera and Π−1

i,S is the back-projection
from the ith camera onto Si. We model the scene as being illuminated by a finite
number of distant point light sources and an ambient light. nil is the number
of illuminants corresponding to the ith camera and lij ∈ S

2 and Lij ∈ R
c are

the direction and the intensity1 of the jth illuminant of the ith camera, respec-
tively. Similarly, Lia ∈ R

c is the intensity1 of the ambient illumination of the
ith camera. vLij : R

3 → R is the light visibility function: vLij (X) = 1 if the jth

illuminant of the ith camera is visible from X, vLij (X) = 0 otherwise.
We model the foreground object(s) by its shape S and its reflectance R.

We denote Ω = (S,R). Contrary to most previous stereovision methods, we
want to go beyond the Lambertian model. In order to get a solvable minimiza-
tion problem without too many unknowns, we represent the reflectance by a
parametric model. In this work, we consider the popular Blinn-Phong shad-
ing model. In this context, and assuming that Ii(x) is equal to the radiance
of the surface S at point X = Π−1

i,S (x) in the direction of the ith camera,
the images Ii are decomposed as Ii = Iid + Iis + Iia, where Iid, Iis, and Iia
are images with the diffuse, specular, and ambient reflection components of
Ii, respectively. Here, diffuse reflection can be expressed by using the cosine
law as Iid(x) =

∑nil

j=1 vLij (X)
(
ρd(X)Lij

(
n(X) · lij

))
, where ρd(X) ∈ R

c is

the diffuse albedo1 at point X ∈ S, n(X) is the normal vector to the sur-
face S at X. On the other hand, specular reflection is expressed as Iis(x) =
∑nil

j=1 vLij (X)
(
ρs(X)Lij

(
n(X) · hij(X)

)αs(X)
)
, where hij(X) is the bisector of

the angle between the view of the ith camera and the jth illuminant at X,
ρs(X) ∈ R

c and αs(X) ∈ R
+ are the specular albedo and the shininess parame-

ter at point X. The ambient illumination is assumed to be uniform and modeled
as Iia(x) = ρd(X)Lia, where Lia is defined above. Finally, the image formation
equation is given as

Ii(x) =
nil∑

j=1

vLij (X)Lij(X,n(X)) + ρd(X)Lia, (1)

where Lij(X,n(X)) = Lijρd(X)
(
n(X) · lij

)
+Lijρs(X)

(
n(X) ·hij(X)

)αs(X). We
denote R = (Rd, Rs), where Rd = ρd and Rs = (ρs, αs).

As suggested by [20,21], to be sure that the estimated foreground surface does
not shrink to an empty set, it is crucial to define and characterize the background.
1 Non-normalized color vector, if c = 3.
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In this work, we assume that we have the background images Ĩ = {Ĩ1, · · · , Ĩnc}
and define (ĨiF , ĨiB) analogously to (IiF , IiB).

3 Bayesian Formulation of the Problem

Clearly, the goal of this work is to estimate the shape S and the reflectance R
of a scene surface Ω, that maximize P (Ω|I) for given I. By Bayes’ rule,

P (Ω|I) = P (I|Ω) P (Ω)/P (I) ∝ P (I|Ω) P (Ω) = P (I|S,R) P (S) P (R) (2)

under the assumption that S and R are independent. Here, P (I|Ω) = P (I|S,R)
is a likelihood and P (S) and P (R) are priors on the shape and reflectance,
respectively.

When Πi is given, we can produce a synthetic image Īi(Ω) corresponding to
Ii by using the current estimation of Ω. This allows us to measure the validity of
the current estimation by comparing input images with generated ones. When
assuming an independent identical distribution of observations, the likelihood
can be expressed as P (I|Ω) ∝

∏nc

i=1 exp
(− ξi(Ω)

)
=

∏nc

i=1 exp
(− ξ(Ii, Īi(Ω))

)
,

where ξi(Ω) = ξ(Ii, Īi(Ω)) is a function of Ω, measuring image dissimilarity.
A typical and reasonable prior for the surface shape S is about the area given

as P (S) ∝ exp
(−ψ(S)

)
. Here, ψ(S) is the monotonic increasing function of the

surface area
∫

S
dσ where dσ is the Euclidean surface measure.

In other respects, a prior on the reflectance is also required because there are
not enough observations exhibiting specular reflection at every surface point. To
overcome the lack of observations, we assume that specular reflectance varies
smoothly within each homogeneous material surface patch. This prior is clearly
reasonable in real life applications and in common scenes. Thus, in this work,
we use the diffuse reflectance of a surface as a soft constraint to partition Ω and
define the prior on the surface reflectance as P (R) ∝ exp

(−ω(R)
)
, where ω(R)

will be defined later.

4 Description of the Cost Functions

Based on the section 3, the problem can be expressed in terms of cost functions
as Etotal(Ω) = Edata(Ω) + Eshape(S) + Erefl(R) =

∑nc

i=1 ξi(Ω) + ψ(S) + ω(R).
Maximizing the probability P (Ω|I) is equivalent to minimizing the total cost.

Data Cost Function. The current estimation of Ω gives a segmentation of the
input image Ii into foreground IiF and background IiB and we can synthesize
ĪiF according to the above image formation model. As for ĪiB , it is generated
according to the available background model. In this paper, we use actual back-
ground images, i.e. ĪiB=ĨiB . Also, as suggested by [20], ξi(Ω) = ξ(Ii, Īi) is then
rewritten as

ξ(Ii, Īi) = ξF (IiF , ĪiF ) + ξB(IiB , ĪiB) = ξ̂F (IiF , ĪiF ) + ξ(Ii, Ĩi), (3)
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where ξ̂F (IiF , ĪiF ) = ξF (IiF , ĪiF )− ξF (IiF , ĨiF ). Since ξ(Ii, Ĩi) is independent of
Ω, the data cost function is written as Edata(Ω) =

∑nc

i=1 ξ̂F (IiF , ĪiF )+C, where
C =

∑nc

i=1 Ci =
∑nc

i=1 ξ(Ii, Ĩi) is constant.
When computing ξ, any statistical correlation among color or intensity pat-

terns such as the sum of squared differences (SSD), cross correlation (CC), and
mutual information (MI) can be used. In any case, ξ can be expressed as the
integral over the image plane as ξ(Ii, Īi) =

∫
πi
ei(x)dσi, where dσi is the surface

measure and ei(x) is the contribution at x to ξi. The data cost function is then
given as

Edata(Ω) =
nc∑

i=1

∫

πiF

êi(x)dσi + C, (4)

where êi(x) = ei

(
Ii(x), Īi(x)

) − ei

(
Ii(x), Ĩi(x)

)
.

Decoupling Appearance from Surface Normal. As shown in Eq. (1), sur-
face appearance is dependent on both the surface normal and position, and this
makes the problem hard to solve and unstable. To resolve this problem, we in-
troduce a photometric unit vector field v satisfying ‖v‖ = 1 as in [14], which
is used for the computation of surface appearance. To penalize the deviation
between the actual normal vector n and the photometric normal vector v, we
add a new term

Edev(Ω) = τ

∫

S

χ(X)dσ = τ

∫

S

(1 − (n(X) · v(X))) dσ, (5)

to the cost function, where τ is a control constant.

Shape Area and Reflectance Discontinuity Cost Functions. By using the
area of a surface for the prior,Eshape(S) is simply defined as Eshape(S) = ψ(S) =
λ

∫
S dσ, where λ is a control constant. Based on the assumption in section 3,

we define a discontinuity cost function of surface reflectance, which makes the
discontinuities of specular reflectance generally coincide with the discontinuities
of diffuse reflectance, as

Erefl(R) = ω(R) = β

∫

S

f(X)dσ = β

∫

S

ζ
(
Rd(X)

) × η
(
Rs(X)

)
dσ, (6)

where β is a control constant, and ζ
(
Rd(X)

)
and η

(
Rs(X)

)
are defined as

ζ
(
Rd(X)

)
=

(

1 − ‖∇SRd(X)‖2

M

)

, η
(
Rs(X)

)
=

(‖∇Sρs(X)‖2 + γ‖∇Sαs(X)‖2
)

(7)

with a pre-defined constant M .2 ∇S denotes the intrinsic gradient defined on
S. By using the proposed discontinuity cost function of surface reflectance, sur-
face points that do not have enough specular observations get assigned specular
reflectance inferred from the specular reflectance of neighboring surface points.
2 Be sure that M ≥ 3 for gray-level images and M ≥ 9 for color images.
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Total Cost Function. Finally, the total cost function is given by

Etotal(Ω) = C +
nc∑

i=1

∫

πiF

êi(x)dσi+τ
∫

S

χ(X)dσ+λ
∫

S

dσ+β
∫

S

f(X)dσ. (8)

Here, it is worthy of notice that Edev(Ω), Eshape(S), and Erefl(R) are defined
over the scene surface while Edata(Ω) is defined as an integral over the image
plane. By the change of variable, dσi = −di(X)·n(X)

zi(X)3 dσ, where di(X) is the
vector connecting the center of the ith camera and X and zi(X) is the depth of
X relative to the ith camera, we can replace the integral over the image plane
by an integral over the surface [7]. When denoting g(X,n(X)) : R

3 ×Ω → R as

g(X,n(X)) =

(

−
nc∑

i=1

(
vi

S êi
di · n
zi

3

)
+ τχ+ λ+ βf

)

, (9)

Eq. (8) is simply rewritten as Etotal(Ω) = C +
∫

S g(X,n(X))dσ.

5 Scene Recovery

Recently, via graph cuts or convexity, some authors have proposed some global
optimization methods for the classical multiview stereovision problem [5,22,23].
Nevertheless, because of the presence of the normal but also of the visibility in
the cost function, the state of the art in optimization does not allow to compute
the global minimum of the energy we have designed. Also, here, scene recovery
is achieved by minimizing Etotal via gradient descents. In other respects, S and
R being highly coupled, it is very complicated to estimate all unknowns simul-
taneously. To solve the problem, we adopt an alternating scheme, updating S
for a fixed R and then R for a fixed S.

5.1 Shape Estimation – Surface Evolution

When assuming that R is given, Etotal is a function of S. In this work, we derive
the gradient descent flows corresponding to the cost functions respectively. The
final gradient descent flow is then given by

St =
(
St

∣
∣
data

+ St

∣
∣
dev

+ St

∣
∣
shape

+ St

∣
∣
refl

)
, (10)

where St

∣
∣
data

, St

∣
∣
dev

, St

∣
∣
shape

and St

∣
∣
refl

are described below.
The data cost is a function of the visibility of a surface point, which is depen-

dent on the whole surface shape. According to [20,21] for correctly dealing with
the visibility of non-convex objects, St

∣
∣
data

is given by

St

∣
∣
data

=
nc∑

i=1

(
− vi

S (êi − ê′i)
z3

i

(
dt

i∇ndt
iδ(di · n)

)
+

vi
S

z3
i

((
∂2êi∇Īi

) · di

) )
, (11)
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where δ(·) is the delta function and ê′i is an error computed by using the radiance
at point X′ in the direction of the ith camera, which is the terminator of a horizon
point X [21]. When a horizon point has no terminator point on the surface, ê′i = 0
because the terminator point is from the background. ∇Īi is expressed by using
Eq. (1) as ∇Īi =

∑nil

j=1{(∇vLij )Lij + vLij (∇Lij)} + (∇ρa)Lia. This gradient
descent flow includes both the variation related to the camera visibility changes
(the first term) and the variation related to the image changes (the second term),
which also includes the variation due to the light visibility changes.

In addition, similarly as [8, 14], the gradient descent flows for the normal
deviation cost St

∣
∣
dev

(originating from Edev(Ω)) is St

∣
∣
dev

= (−2τH + τ(∇ · v)).
Also St

∣
∣
shape

(from Eshape(S)) is the mean curvature flow as St

∣
∣
shape

= −2λH .
Due to the complexity of the discontinuity cost function of surface reflectance,

it needs more attention to derive the gradient descent flow. By using the deriva-
tion in [24], we get the following equation for surface evolution.

St

∣
∣
refl

= −2β
( 1
M
m(ρd)η(Rs) − (m(ρs) + γm(αs)) ζ(Rd)

)
. (12)

Here,m(y) =
(
II

(∇S y×n
)
+‖∇S y‖2H

)
, where II(t) is the second fundamental

form for a tangent vector t with respect to n.

5.2 Photometric Unit Vector Field Update

The computed gradient descent flows minimize the total cost with respect to
given reflectance and v. We then update the photometric unit vector field v to
minimize the total cost with respect to given shape and reflectance. The v that
minimizes the total cost satisfies the equation ∂g

∂v =
(
−∑nc

i=1 v
i
S∂2êi

∂Īi

∂v
di·n
zi

3

)
+

(−τn) = 0. Here, we have to keep ‖v‖ = 1. Since v ∈ S
2, v can be expressed in

spherical coordinates as [cos θv sinφv, sin θv sinφv, cosφv]T where θv and φv are
the coordinates of v. Therefore, we update θv and φv to update v. As before,
the θv and φv that minimize the total cost satisfy the following two equations
by the chain rule.

∂g

∂θv
=
∂g

∂v
· ∂v
∂θv

= 0,
∂g

∂φv
=
∂g

∂v
· ∂v
∂φv

= 0 (13)

So, we update v by performing gradient descent using above two PDEs.

5.3 Reflectance Estimation

Here, we estimate R for fixed S and v, still minimizing the total cost func-
tion. Since Edev and Eshape do not depend on R at all, we seek an optimal R
by minimizing (Edata(Ω) + Erefl(R)). Here, because it is also complex to esti-
mate diffuse and specular reflectance at the same time due to the high coupling
between them, we alternatively estimate surface reflectance one by one while
assuming that the rest are given and fixed. We repeat the procedure until they
no longer change.
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Diffuse Reflectance Estimation. For given S and Rs, we estimate ρd that
minimizes the cost (Edata +Erefl). Here, ρd that minimizes the total cost func-
tion will satisfy the Euler-Lagrange equation given as −∑nc

i=1 v
i
S∂2êi

∂Īi

∂ρd

di·n
zi

3 +
2β
M η

(
Rs

)
ΔSρd = 0, where ΔS denotes the Laplace-Beltrami operator defined

on the surface S. We solve the PDE by performing gradient descent using the
following PDE:

∂ρd

∂t
=

(

−
nc∑

i=1

vi
S∂2êi

∂Īi
∂ρd

di · n
zi

3

)

+
(

2β
M
η
(
Rs

)
)

ΔSρd. (14)

Specular Reflectance Estimation. We then estimate Rs = (ρs, αs) for
given S and Rd in the same manner. ρs that minimizes the total cost function
will satisfy the Euler-Lagrange equation given as

(
−∑nc

i=1 v
i
S∂2êi

∂Īi

∂ρs

di·n
zi

3

)
−

2β
(
ΔSρs

)
ζ
(
ρd

)
= 0. We again solve the PDE by performing gradient descent

using the following PDE.

∂ρs

∂t
= −

nc∑

i=1

(

vi
S∂2êi

∂Īi
∂ρs

di · n
zi

3

)

− 2β
(
ΔSρs

)
ζ
(
ρd

)
. (15)

αs is also estimated in the same manner by solving the PDE as

∂αs

∂t
= −

nc∑

i=1

(

vi
S∂2êi

∂Īi
∂αs

di · n
zi

3

)

− 2βγ
(
ΔSαs

)
ζ
(
ρd

)
. (16)

Single-Material Surface Case. When dealing with a single-material surface
that has a single specular reflectance Rs, the discontinuity cost function of sur-
face reflectance, Erefl(R), can be excluded because f(X) is zero everywhere on
the surface. The PDE used for the ρd estimation, Eq. (14), then simplifies to
∂ρd

∂t = −∑nc

i=1 v
i
S∂2êi

∂Īi

∂ρd

di·n
zi

3 . Here ρs and αs are also computed by performing
gradient descent using PDEs given as

∂ρs

∂t
=

∫

S

−
nc∑

i=1

vi
S∂2êi

∂Īi
∂ρs

di · n
zi

3
dσ,

∂αs

∂t
=

∫

S

−
nc∑

i=1

vi
S∂2êi

∂Īi
∂αs

di · n
zi

3
dσ. (17)

6 Experiments

We have implemented the gradient descent surface evolution in the level set
framework. The proposed method starts with the visual hull obtained by rough
silhouette images to reduce computational time and to avoid local minima. We
also adopt a multi-scale strategy. 640×480 or 800×600 images were used as
inputs and the simple L2-norm was used to compute the image similarity, e.

For synthetic data sets, the estimated shape is quantitatively evaluated in
terms of accuracy and completeness as in [1]. We used 95% for accuracy and
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(a) input images (b) synthesized images (c) results

Fig. 1. “dino” image set (16 images) — Lambertian surface case (static illumination)

(a) ground-truth model (b) estimated model (c) input vs. synthesized image

Fig. 2. “bimba” image set (18 images) — textureless Lambertian surface case (varying
illumination and viewpoint). 95% accuracy (shape, ρdr, ρdg, ρdb)=(2.16mm, 0.093,
0.093, 0.093), 1.0mm completeness (shape, ρdr, ρdg, ρdb) = (82.63%, 0.104, 0.104,
0.104), eimage=1.44.

the 1.0mm error for completeness. For easy comprehension, the size of a target
object is normalized so that it is smaller than [100mm 100mm 100mm]. Here,
beside the shape evaluation, we also evaluated the estimated reflectance in the
same manner. In addition, we computed the average difference between input
images and synthesized images as eimage = 1

nc

∑nc

i=1
1
A

∫
πi
‖(Ii(x) − Īi(x)

)‖dσi,
where A =

∫
πi
dσi.

Due to the generality of the proposed method, it can be applied to various
types of image sets with different camera/light configurations. Here, knowledge
of illumination allows to factorize radiance into reflectance and geometry. In
practice, depending on the scenario, that knowledge may not be required, e.g. for
recovering shape and radiance of Lambertian surfaces with static illumination. In
this case, the proposed method can be applied even without lighting information,
assuming only an ambient illumination, and the proposed method works much
like the conventional multiview stereo methods. Figure 1 shows the result for the
“dino" image set [1], for which no lighting information is required. The proposed
method successfully recovers the shape as well as the radiance.

The proposed method can also be applied to images taken under varying
illumination. Results using images of textureless/textured Lambertian surfaces
are shown in Fig. 2 and Fig 3. In the case of Fig. 2, the proposed method works
as a multiview photometric stereo method and recovers the shape and the diffuse
reflectance of each surface point. Based on these, we can synthesize images of
the scene for different lighting conditions.

We then applied our method to the images of textureless/textured non-
Lambertian surfaces showing specular reflection. Note that, unlike [15, 16], we
do not use any thresholding to filter out specular highlight pixels. The result for
the smoothed “bimba” data set is shown in Fig. 4. In this case, the surface has
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(a) input image (b) true refl. (c) true shading (d) est. refl. (e) est. shading

Fig. 3. “dragon" image set (32 images) — textured Lambertian surface case (static
illumination and varying viewpoint). 95% accuracy (shape, ρdr, ρdg, ρdb)=(1.28mm,
0.090, 0.073, 0.066), 1.0mm completeness (shape, ρdr, ρdg, ρdb) = (97.11%, 0.064, 0.056,
0.052), eimage=1.25.

(a) true model (b) est. shape (c) diffuse & specular images (d) synthesized

Fig. 4. Smoothed “bimba" image set (36 images) — textureless non-Lambertian surface
case (uniform specular reflectance, varying illumination and viewpoint). 95% accuracy
(shape, ρdr, ρdg, ρdb, ρs, αs)=(0.33mm, 0.047, 0.040, 0.032, 0.095, 8.248), 1.0mm com-
pleteness (shape, ρdr, ρdg, ρdb, ρs, αs) = (100%, 0.048, 0.041, 0.032, 0.095, 8.248),
eimage=1.63.

uniform diffuse/specular reflectance and each image was taken under a different
illumination. Here, we used the method with Eq. (17) to estimate the specular
reflectance. Although there is high-frequency noise in the estimated shape, the
proposed method estimates the specular reflectance well — the ground-truth
specular reflectance is (ρs=0.7, αs=50) while the estimated one is (ρs=0.61,
αs=41.8). Here, note that small errors in estimated surface normals can cause
large errors in specular reflectance due to its sensitivity to the surface normal.
For instance, 0.7 × (0.98)50(= 0.255) ≈ 0.61 × (0.979)41.8(= 0.251).

Note that most previous methods do not work for image sets taken under
varying illumination and, moreover, they have difficulties to deal with specular
reflection even if the images are taken under static illumination. For example,
Fig. 5 shows results obtained by the method of [2] and our result for comparison.
We ran the original code provided by the authors many times while changing
parameters and used mutual information (MI) and cross correlation (CCL) as
similarity measures to get the best results under specular reflection. As shown,
the method of [2] fails to get a good shape even when the shape is very simple,
while our method estimates it accurately. Also, with such images, given the large
proportion of overbright surface parts, it seems intuitive that the strategy chosen
by [16] and [15] (who consider bright pixels as outliers) might return less accurate
results, because it removes too much information.
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(a) two input images (b) results using [2] (MI, CCL) (c) our result

Fig. 5. Comparison using the “ellipse" image set (16 images) — textureless non-
Lambertian surface case (uniform specular reflectance, static illumination and varying
viewpoint)

(a) (b) (c) (d) (e) (f)

Fig. 6. Result for real image sets. (a) input image (b) initial shape (c) estimated shape
(d) diffuse image (e) specular image (f) synthesized image.

We also used real image sets of textured glossy objects, which were taken
by using fixed cameras/light sources, while rotating the objects as in [15, 16].
Here, we simply assumed a single-material surface. (72 × 72 × 72) grids were
used for the “saddog” (59 images) and “duck” (26 images) image sets. Figure 6
shows that, although sparse grid volumes were used, the proposed method suc-
cessfully estimated the shape of the glossy object even under specular reflection
while estimating specular reflectance. In addition, although the estimated spec-
ular reflectance may not be so accurate because of the inaccuracy of lighting
calibration, saturation, and some unexpected photometric phenomenon such as
interreflection, it really helps to recover the shape well.

Finally, we applied our method to the most general case — textured non-
Lambertian surfaces with spatially varying diffuse and specular reflectance and
shininess, cf. Fig. 7. (64 × 125 × 64) grids were used in this case. We can see
that the proposed method yields plausible specular/diffuse images and shape.
However, there is high-frequency noise in the estimated shape. Moreover, the
error in reflectance estimation is rather larger compared to the previous cases.
This result shows that, although the proposed discontinuity cost function of
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(a) input
image

(b) true
shading

(c) init.
shape

(d) est.
shading

(e) syn. im-
age

Fig. 7. Result for the “amphora" image set (36 images). 95% accuracy (shape, ρdr, ρdg,
ρdb, ρs, αs)=(0.59mm, 0.041, 0.047, 0.042, 0.226, 13.59), 1.0mm completeness (shape,
ρdr, ρdg, ρdb, ρs, αs) = (89.73%, 0.042, 0.047, 0.042, 0.226, 13.55), eimage=1.99.

surface reflectance helps to infer the specular reflectance of all points with sparse
specular reflection observation, reliably estimating specular reflectance for all
surface points is still difficult unless there are enough observations of specular
reflection for every surface point.

7 Conclusion

In this paper, we have presented a variational method that recovers both the
shape and the reflectance of surfaces using multiple images. Scene recovery is
achieved by minimizing a global cost functional by alternation. As a result, the
proposed method produces a complete description of scene surfaces. Contrary
to previous works that consider specific scenarios, our method can be applied
indiscriminately to a number of classical scenarios — it naturally fuses and
exploits several important cues (silhouettes, stereo, and shading) and allows to
deal with most of the classical 3D reconstruction scenarios such as stereo vision,
(multi-view) photometric stereo, and multiview shape from shading. In addition,
our method can deal with strong specular reflection, which is difficult even in
some other state of the art methods using complex similarity measures.
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