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Abstract. We introduce a novel implicit approach for surface patch seg-
mentation in 3D images starting from a single point. Since the boundary
surface of an object is locally homeomorphic to a disc, we know that the
boundary of a small neighboring domain intersects the surface of interest
on a single closed curve. Similarly to active surfaces, we use a cost po-
tential which penalizes image regions of low interest. First, Using a front
propagation approach from the source point chosen by the user, one can
see that the closed curve corresponds to a valley line of the arrival time
from the source point. Next, we use an implicit 3D segmentation method.
It assumes that the object boundary contains two known constraining
curves. In our case, the first curve is reduced to a point and the other one
is automatically detected by our approach. A partial differential equation
is introduced and its solution is used for segmentation. The zero level set
of this solution contains the valley line and the source point as well as
the set of minimal paths joining them. We present a fast implementa-
tion which has been successfully applied to 3D biomedical and synthetic
images.

1 Introduction

In this paper we are interested in interactive segmentation of a surface in a 3D
image by clicking a single point on the boundary of an object and obtaining
a patch of the desired surface around the given point. For this we use energy
minimizing techniques and partial differential equations. Energy minimization
techniques have been applied to a broad variety of problems in image processing
and computer vision. Since the original work on snakes [1], they have notably
been used for boundary detection. An active contour model, or snake, is a curve
that deforms its shape in order to minimize an energy combining an internal part
which smooths the curve and an external part which guides the curve toward
particular image features. One of the main drawbacks of this approach is that it
suffers from local minima ’traps’. Consequently, results strongly depend on the
model initialization. Since the publication of [1], much work has been done in
order to free active models from the problem of local minima.

Cohen and Kimmel [2] introduced an approach to globally minimize the
geodesic active contour energy, provided that two endpoints of the curve are
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initially supplied by the user. This energy is of the form
∫

γ
P̃ where the incre-

mental cost P̃ is chosen to take lower values on the contour of the image, and
γ is a path joining the two points. The solution of this minimization problem
is obtained through the computation of the minimal action map associated to
a source point. The minimal action map can be regarded as the arrival times of
a front propagating from the source point with velocity (1/P̃), and it satisfies
the Eikonal equation. Therefore, we can compute efficiently the minimal action
map with the Fast Marching Method as will be detailed in section 2. However
their approach [2] cannot be directly extended to find the global minimum for
an active surface in a 3D image. Nevertheless, this approach has been extended
to surfaces in a 3D image by extracting a minimal surface laying on two given
curves [3]. The advantage of this method is that it does not suffer from local
minima problems, as would other active surface methods like [4, 5].

In this work, we focus on a novel approach for 3D object segmentation. Our
aim is to generate a local surface patch from a single point. The method presented
herein can be seen as an extension of the Eulerian approach presented by Ardon
et al in [3] for surface extraction from a couple of ’constraining’ closed curves.
But in our case, one of the curves is reduced to a single point and the other one
is unknown. Let P̃ : Ω → R

+ be a potential , where Ω ⊂ R
3, such that P̃ takes

lower values on the surface of the object to be extracted, noted S and unknown.
Having a single point p on S and a neighborhood od p: Σ ⊂ Ω, the required
conditions are (see figure 1.)

• the boundary ∂Σ is a connected closed surface.
• ∂Σ ∩ S is a simple closed curve.
• p ∈ S ∩ Σ.

The volume Σ might be a ball or any topology equivalent volume.
Our objective is to find the surface patch S ∩ Σ from the source point p and

the potential P . We proceed in two stages : first, we look for the boundary of the

Fig. 1. On the left, one can see the required conditions for the surface patch extraction.
The point p must be initialized on the surface S in the volume Σ. ∂Σ, the boundary of
Σ, is a closed surface and ∂Σ ∩ S is a simple closed curve. On the right, we represent
the information one has in practice : the surface S is unknown but the potential P
takes lower values along S and higher values elsewhere.
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surface patch S ∩ ∂Σ and give a good estimate of it Γ ; in fact, running the Fast
Marching algorithm (which will be detailed is section 2) from the source point p
one can see that the Valley Line, noted Γ , of the arrival time on the boundary ∂Σ
is a good approximation of S∩∂Σ. A detailed definition of the valley line and the
way it is extracted is presented in section 3. Next, one can represent the surface
of interest as a dense network of minimal paths joining points of the valley line
Γ to the source point p (section 4). The surface generated by this algorithm is
completely composed of globally minimal paths. Indeed, by solving a stationary
transport equation of the form : ∇Ψ.∇U = 0, where U is the action map (defined
in section 2), and Ψ is the unknown, we show that any minimal path between the
valley line Γ and the source point p is contained in its zero level set Ψ−1({0}).
Important advantages of this approach are that it needs minimal interaction and
that it is computationally efficient as explained later. This approach can also be
used as computing brick for a complete segmentation from one single point (see
section 5). Segmentation results on synthetic and medical images are presented
in section 5. Finally conclusions, advantages and drawbacks of our method, and
perspectives follow in section 6.

2 Background on Minimal Paths

Given a 3D image I : Ω → R
+ and two points p1 and p2, the underlying idea

introduced by Cohen and Kimmel [2] is to build a potential P : Ω → R
∗+

which takes lower values near desired features of the image I. The choice of
the potential P depends on the application. For example, one can define P as
a decreasing function of ‖∇I‖ to extract image edges by finding a curve that
globally minimizes the energy functional E : Ap1,p2 → R

+

E(γ) =
∫

γ

{
P(

γ(s)
)

+ w
}

ds =
∫

γ

P̃(
γ(s)

)
ds, (1)

where Ap1,p2 is the set of all paths connecting p1 to p2, s is the arc-length
parameter, w > 0 is a regularization term and P̃ = (P +w). A curve connecting
p1 to p2 that globally minimizes the energy (1) is a minimal path between p1 and
p2, noted Cp1,p2 . The solution of this minimization problem is obtained through
the computation of the minimal action map U1 : Ω → R

+ associated to p1. The
minimal action is the minimal energy integrated along a path between p1 and
any point x of the domain Ω:

∀ x ∈ Ω, U1(x) = min
γ∈Ap1,x

{∫

γ

P̃(
γ(s)

)
ds

}

. (2)

The values of U1 may be regarded as the arrival times of a front propagating
from the source p1 with velocity (1/P̃). U1 satisfies the Eikonal equation

‖∇U1(x)‖ = P̃(x) for x ∈ Ω, and U1(p1) = 0. (3)
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Fig. 2. Minimal action map U from the source p using the potential P of figure 1
computed using the Fast Marching algorithm. Left: slices through the volume. Right:
some equi-distant surfaces (level sets) of U .

The map U1 has only one local minimum, the point p1, and its flow lines satisfy
the Euler-Lagrange equation of functional (1). Thus, the minimal path Cp1,p2

can be retrieved with a simple gradient descent on U1 from p2 to p1, solving the
following ordinary differential equation with standard numerical methods like
Heun’s or Runge-Kutta’s:

dCp1,p2(s)
ds

= −∇U1

(Cp1,p2(s)
)
, and Cp1,p2(0) = p2. (4)

2.1 Fast Marching Method

The Fast Marching Method (FMM) is a numerical method introduced by Sethian
in [6] and Tsitsiklis in [7] for efficiently solving the isotropic Eikonal equation on
a cartesian grid. In equation (3), the values of U may be regarded as the arrival
times of wavefronts propagating from the point of S with velocity (1/P̃). The
central idea behind the FMM is to visit grid points in an order consistent with
the way wavefronts propagate. It leads to a single-pass algorithm for solving
equation (3) and computing the minimal action map U .

The FMM is a front propagation approach that computes the values of U
in increasing order, and the structure of the algorithm is almost identical to
Dijkstra’s algorithm for computing shortest paths on graphs [8]. In the course of
the algorithm, each grid point is tagged as either Alive (point for which U has
been computed and frozen), Trial (point for which U has been estimated but not
frozen) or Far (point for which U is unknown). The set of Trial points forms an
interface between the set of grid points for which U has been frozen (the Alive
points) and the set of other grid points (the Far points). This interface may be
regarded as a set of fronts expanding from each source until every grid point
has been reached. The key to the speed of the FMM is the use of a priority
queue to quickly find the Trial point with the smallest U value. If Trial points
are ordered in a min-heap data structure, the computational complexity of the
FMM is O(N log2N), where N is the total number of grid points.
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A way to estimate U , for a grid point xn is presented here. We limit ourselves to
the 3D case. Adopting standard notation, we denote by Ui,j,k the value of U at the
grid vertex (i, j, k) associated to the point xn with coordinates (i hx, j hy, k hz),
where hx, hy and hz are grid spacings in the x, y and z directions. A discretized
version of (3) is solved in order to compute Ui,j,k. For the Eikonal equation,
classic finite difference schemes tend to overshoot and are unstable. Rouy and
Tourin [9] showed that the correct viscosity solution for Ui,j,k is given by the
following first order accurate scheme :

(
max{(Ui,j,k − Ui−1,j,k), (Ui,j,k − Ui+1,j,k), 0}

hx

)2

+

(
max{(Ui,j,k − Ui,j−1,k), (Ui,j,k − Ui,j+1,k), 0}

hy

)2

+

(
max{(Ui,j,k − Ui,j,k−1), (Ui,j,k+1 − Ui,j,k), 0}

hz

)2

= (P̃i,j,k)2. (5)

This is an upwind scheme : the forward and backward differences are chosen to
follow the direction of the flow of information.

3 Valley Line Detection

In this section, we present a method to extract the intersection between the
sub-domain boundary and the unknown surface of interest. We propose to use
the minimal action map to extract the desired curve, since one can see that
it corresponds to a valley line of the minimal action map (without a formal
proof). Ridge and valley lines are concepts used in geomorphology and computer
vision [10,11]. According to Koenderink [12], valley lines are the locus of points
on a surface at which the normal curvature assumes a local minimum in the
principal direction associated with the largest, negative curvature.

The main drawback of the existing criteria [10, 11] is that thresholding is
needed. Hence, the detection is not precise enough, and needs more interaction
for real noisy images. Moreover, these approaches are not adapted to our case
where we want to extract the valley line of a scalar function defined on a surface
topologically equivalent to a sphere. Our approach is heuristic, based on the fact
that the fast marching propagates faster along the desired surface and then the
minimal action map takes lower values along the curve of intersection between
the domain boundary and the surface.

Discrete definition of Σ and ∂Σ and Minimal action map on ∂Σ
In practice, we assume that the volume Σ is defined as a boolean array. Then, we
can partition Σ into two subsets, int(Σ) and ∂Σ, its interior and its boundary.
A voxel x ∈ Σ is in the interior of the volume if all its 6 neighbors are in Σ, and
it is a point of the boundary ∂Σ if x ∈ Σ \ int(Σ). Then ∂Σ is also represented
by a boolean array (see figure 3).
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(a) (b)

Fig. 3. Discrete representation of the volume Σ and its boundary ∂Σ. (a) The volume
Σ is described by a boolean array. (b) Σ is partitioned into two subsets int(Σ) and ∂Σ
such that ∂Σ is connex according to on 26-connectivity.

frontier Γ of the surface patch

(b) (c)(a)

Fig. 4. Minimal action map associated to source point p and potential of figure 1.
(a) Cut views of the minimal action map U on volume Σ. (b) View of U on ∂Σ, and
its valley line Γ . (c) Unfolded U|∂Σ , valley line, and different marked points on Γ
correspond to local minima.

Let us note U|∂Σ : ∂Σ → R
+∗ the restriction of U on ∂Σ (see figure 4.) The

value U(x) for a point x in ∂Σ is the arrival time to point x of the wavefront
propagating from the source point p with velocity 1/P̃. Since potential P̃ takes
lower values along the surface S, the front propagates faster along it. So, we
can reasonably assume that the first point reached by the front on ∂Σ belongs
to ∂Σ ∩ S. This point is easy to detect, because it is the global minimum of
U|∂Σ and is noted xmin. In a more general manner, each local minimum xm of
U|∂Σ has been reached by the front before all points in a small neighborhood
of xm. Since, the wavefront propagates faster along S, one can expect that the
curve ∂Σ ∩ S corresponds to valley lines on U|∂Σ. For valley line detection, our
approach is simple and fast. Using the function U|∂Σ and without parametrizing
the surface ∂Σ, we find frontier Γ of the surface patch S ∩ ∂Σ by looking for
the cyclic sequences of the valley lines of U|∂Σ containing xmin.

Finding Valley Lines of U|∂Σ

As explained above, valley lines of U|∂Σ contain the local minima xm as well as
the saddle points. A robust way to link two local minima is to detect the saddle
point between them and to make a double gradient descent to each minimum.
The difficulty here is that some local minima and saddle points of U|∂Σ do not
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belong to the curve of interest. To avoid this, saddle points of U|∂Σ are detected
by increasing order. During this step, we store the information on a graph G
such that vertices of the graph correspond to local minima of U|∂Σ , and an edge
corresponds to a pair of valley lines joining two local minima via a saddle point.
The valley line detection algorithm stops when a cycle (in the sense of a simple
closed path) is detected in the graph G.

However, the closed curve Γ tends to have low length, linking between close
local minima. In practice, one adds two ad hoc constraints which make it pos-
sible to extract the border of the surface patch in a more robust manner. The
algorithm stops as soon as the global minimum of U∂Σ , xmin, belongs to the
closed sequence �, and the subset of int(Σ) defined by :

U−1
|int(Σ)(] max

x�∈�
{U(x�)}, +∞[) = {x ∈ int(Σ);U(x) > max

x�∈�
(U(x�))}

includes exactly two connected components for the 26-connectivity, which means
that the sequence � cuts the boundary ∂Σ into exactly two connected compo-
nents (see figure 4).

4 Dense Network of Minimal Paths: An Implicit
Approach

Once the boundary curve Γ is obtained, it is easy to construct explicitly a net-
work of minimal paths linking points of Γ to the source point p by simple gra-
dient descents as in [13]. The network linking Γ to p is noted NΓ

p =
⋃

xΓ ∈Γ

CxΓ ,p.

Since this networkmay have holes, our objective is to find a smooth function
Ψ : Σ → R, such that the network NΓ

p is included in the zero level set of Ψ , i.e
NΓ

p ⊂ Ψ−1({0}), where Ψ−1({0}) = {x ∈ Σ; Ψ(x) = 0}. A necessary condition
on function Ψ is

∇Ψ(x).∇U(x) = 0, (6)

for each point x belonging to a path CxΓ ,p. Thus, vector ∇Ψ is perpendicular
to ∇U along the minimal paths of the network NΓ

p . Extending the constraint
given by equation (6) to the whole domain Σ gives a sufficient condition on Ψ .
Moreover, adding a linear term on Ψ smoothes the solution without changing
the zero level set of Ψ .

Hence, if Ψ is a smooth function satisfying the following conditions:
{

(C1) ∀ x ∈ Σ, ∇Ψ(x) · ∇U(x) − α Ψ(x) = 0,
(C2) ∀ x ∈ Γ, Ψ(x) = 0,

(7)

where α ≥ 0, then NΓ
p ⊂ Ψ−1({0}). Finally, Ψ−1({0}) is a dense network of min-

imal paths. Indeed, if Ψ satisfies conditions (C1) and (C2), then ∀x ∈ Ψ−1({0}),
the minimal path Cx,p linking x to the source p in included in Ψ−1({0}). De-
tailed proof of these results can be found in [3]. Using conditions (C1) and (C2),
we look for a solution Ψ of the following Dirichlet problem:
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{∇Ψ(x) · ∇U(x) − α Ψ(x) = 0 if x ∈ int(Σ),
Ψ(x) = d|∂Σ(x) if x ∈ ∂Σ,

(8)

where d|∂Σ is a signed Euclidean distance to Γ on ∂Σ. Indeed, that makes
the function Ψ satisfying the second condition (C2). One can propose other
boundary conditions satisfying (C2), but empirically, we found that the signed
distance is an adequate choice. Since Γ is a simple closed curve on ∂Σ and
∂Σ is topologically equivalent to a sphere, Γ partitions ∂Σ into two distinct
open surfaces. That makes the sign choice for d|∂Σ obvious. First, the unsigned
distance from Γ on ∂Σ is calculated using the Fast Marching algorithm (this
time using 26-connectivity), then different signs are attributed to the distance
on each connected component of ∂Σ \ Γ of the partition (see figure 5).

Fig. 5. Transport initialization. First, the distance map from the curve Γ is computed.
Then using Γ , ∂Σ \ Γ is partitioned into exactly two parts. Finally, different signs are
attributed to d|∂Σ on each connected component.

Equation (8) is a stationary transport equation. The associated non station-
ary PDE models the transport in time and space of material along the vector
field ∇U . The stationary transport equation has been studied [3] for surface
segmentation, for computing tissue thickness [14] and inpainting [15].

The stationary transport equation (8), as most PDEs for which characteristics
intersect are numerically hard to solve. Nevertheless, the direction on which
information propagates is known (−∇U) thus one can elaborate a single pass
algorithm based on an ordered sweeping of the grid points [3,14,15]. We propose
to find values of Ψ by exploring points of Σ in decreasing order of |Ψ |. The
algorithm, called Fast Transport is similar to the Fast Marching algorithm :
only the ordering is different as well as the local update scheme. The complexity
of the Fast Transport algorithm is O(N log(N)).

The information propagates from ∂Σ to the source point p following the
direction −∇U . Thus, it is important to use an upwind scheme that takes into
account the direction −∇U to approximate the derivatives of Ψ . Let us note Ψi,j,k

the value of Ψ at point x of coordinate (ihx, jhy, khz), ∂dΨi,j,k the derivative of Ψ
along direction d (d corresponds to x, y or z-direction) and ∂dUi,j,k the derivative
of U along direction d. If ∂dUi,j,k < 0, the information is transported increasingly
along d direction. Thus along the x direction we have:
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Fig. 6. On the left and on the middle are respectively shown, on a cut view, the
function Ψ and its sign on Σ. On the right is shown the extracted surface pathc, i.e.
the isosurface Ψ−1({0}), as well as the network of minimal paths NΓ

p .

∂xΨi,j,k =

⎧
⎪⎪⎨

⎪⎪⎩

Ψi+1,j,k − Ψi,j,k

hx
if ∂xUi,j,k ≥ 0,

Ψi,j,k − Ψi−1,j,k

hx
if ∂xUi,j,k < 0.

The derivatives along y and z direction are similar. The update scheme of the
Fast Transport algorithm is based on the previous equation, by injecting it in
equation (8), see [3] for more details. Lastly, although this scheme is of relatively
low precision and dissipative, it gives satisfactory results in our experiments with
an acceptable convergence speed. In our implementation α is a parameter that
can be fixed through the maximum discontinuity jump of Ψ around the source
p. Indeed, by considering the minimal path Cx,p, linking a point x ∈ ∂Σ to p,
parametrized on the interval J = [0,L(x)], where L(x) is the Euclidean length
of the path, one can prove using equation (8) that

∀ s ∈ J, Ψ
(Cx,p(s)

)
= d|∂Σ(x) e−αs.

Thus the discontinuity jump occurs around the source point p and is as high as
|d|∂Σ(x)|e−αL(x). Fixing a maximum discontinuity jump ε and

α =
log

(
max
x∈∂Σ

|d|∂Σ(x)|
)

− log(ε)

min
x∈∂Σ

L(x)
,

guaranty that the discontinuity jump around the source point p is less or equal
than ε. Imposing this constraint requires the computation of the Euclidean length
L of the minimal paths. This calculus can be easily done during the Fast March-
ing propagation as explained in [16, 17]. On figure 6, function Ψ solution of
equation (8), the final segmentation result Ψ−1({0}) as well as the network of
minimal paths are shown.
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Fig. 7. We select a sub-volume from a CT cardiac image. Then an edge detector poten-
tial, inversely proportional to the gradient magnitude of the image ‖∇I‖ is shown. The
Fast Marching algorithm is launched from the selected source point to compute the
minimal action map U . Then the valley line of U is calculated. Finally the information
is transported from the initialized values of the sub-volume boundary using the fast
transport algorithm, and the segmentation result of this patch of surface is found using
the marching cube algorithm on the solution of the transport equation.

Fig. 8. On the left: segmentation of a synthetic torus. On the right: segmentation of
a closed cell from electronic microscopy image. (a) Potential P taking lower values on
the features of interest on which a single source point is selected. The other points
are found automatically using the approach presented in [17]. (b) A cut view of the
visited domain Ω∗ showing the value of the minimal action map U . (c) A Cut view of
the domain Ω∗ showing the Voronoi partition. (d) The set of sources and the valley
lines detected on each Voronoi cell. (e) A cut view of the domaine Ω∗ showing values of
function Ψ solution of the transport equation (8). (f) Isosurface Ψ−1({0}) on which the
detected keypoint points, the valley lines and the geodesic meshing are superimposed.
On the right: (g-h-i) Some slices of the original image and the final segmentation
Ψ−1({0}) superimposed on it.

5 Experimental Results

Using our method, one can extract a surface patch from a single point, see
figure 7. The main advantages of our method is that it is minimally interactive
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and fast. The important constraint is that the boundary of the selected sub-
volume intersects the surface on a single closed curve. One can imagine that by
considering a subdivision of the whole domain, and by selection of a few points
on the sub-domains that contains the surface of interest, one can extract a full
segmentation of the desired object.

Recently, we presented [17] a new method for segmenting closed contours and
surfaces. Our work builds on a variant of the minimal path approach. First, an ini-
tial point on the desired contour is chosen by the user. Next, new keypoints are
detected automatically using a front propagation approach. We assume that the
desired object has a closed boundary. This a-priori knowledge on the topology is
used to devise a relevant criterion for stopping the keypoint detection and front
propagation. The final domain visited by the front will yield a band surrounding
the object of interest. Using this method for 3D closed objects, we can extract a
networks of minimal paths from a 3D image called Geodesic Meshing. But this seg-
mentation is insufficient. The Voronoi partition of the visited domain gives a good
subdivision of it, and by applying the algorithm presented in this paper on each
Voronoi cell, one can find a full segmentation of the object of interest, see figure 8.

6 Conclusion

In this paper we have proposed a new method to segment a surface patch from
a single source point. Our method needs minimal interaction : a single source
point. An important condition is that the boundary of the sub-volume that
contains the surface patch of interest should intersects the surface on a single
closed curve. By remarking that this closed curve corresponds to the valley line
of the arrival time from the source point we have proposed a heuristic to extract
it automatically. Finally we adapted an existing implicit surface segmentation
method to find a complete surface that contains the valley line and the network
of minimal paths linking this valley line to the source point. Our approach can be
extended to segment a complete surface by subdividing the domain into several
sub-domains containing the desired surface patches. Then, a few points can be
enough to generate a coherent object boundary segmentation.
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