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Abstract. We examine relations between popular variational methods
in image processing and classical operator splitting methods in convex
analysis. We focus on a gradient descent reprojection algorithm for image
denoising and the recently proposed Split Bregman and alternating Split
Bregman methods. By identifying the latter with the so-called Douglas-
Rachford splitting algorithm we can guarantee its convergence. We show
that for a special setting based on Parseval frames the gradient descent
reprojection and the alternating Split Bregman algorithm are equivalent
and turn out to be a frame shrinkage method.

1 Introduction

In recent years variational models were successfully applied in image restoration.
These methods came along with various computational algorithms. Interestingly,
the roots of many restoration algorithms can be found in classical algorithms
from convex analysis dating back more than 40 years. It is useful from different
points of view to discover these relations: Classical convergence results carry
over to the restoration algorithms at hand and ensure their convergence. On the
other hand, earlier mathematical results have found new applications and should
be acknowledged.

The present paper fits into this context. Our aim is twofold: First, we show
that the Alternating Split Bregman Algorithm proposed by Goldstein and Osher
for image restoration and compressed sensing can be interpreted as a Douglas-
Rachford Splitting Algorithm. In particular, this clarifies the convergence of the
algorithm. Second, we consider the following denoising problem which uses an
L2 data-fitting and a Besov-norm regularization term [1]

argmin
u∈B1

1,1(Ω)

{1
2
‖u− f‖2

L2(Ω) + λ‖u‖B1
1,1(Ω)}. (1)

We show that for discrete versions of this problem involving Parseval frames the
corresponding alternating Split Bregman Algorithm can be seen as an application
of a Forward-Backward Splitting Algorithm. The latter is also related to the
Gradient Descent Reprojection Algorithm, see Chambolle [2]. Since our methods
are based on soft (coupled) frame shrinkage, we also establish the relation to the
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classical wavelet shrinkage scheme. Finally, we consider the Rudin-Osher-Fatemi
model [3]

argmin
u∈BV (Ω)

1
2
‖u− f‖2

L2(Ω) + λ

∫
Ω

|∇u(x)| dx, (2)

which is a successful edge-preserving image restoration method. We apply our
findings to create an efficient frame-based minimization algorithm for the discrete
version of this problem.

2 Operator Splitting Methods

Proximation and Soft Shrinkage. We start by considering the proximity operator

proxγΦ(f) := argmin
u∈H

{ 1
2γ

‖u− f‖2 + Φ(u)} (3)

on a Hilbert space H . If Φ : H → R ∪ {+∞} is proper, convex and lower
semi-continuous (lsc), then for any f ∈ H , there exists a unique minimizer
û := proxγΦ(f) of (3). By Fermat’s rule, this minimizer is determined by the
inclusion

0 ∈ 1
γ

(û− f) + ∂Φ(û)

⇔ f ∈ û+ γ∂Φ(û) ⇔ û = (I + γ∂Φ)−1f,

where the set-valued function ∂Φ : H → 2H is the subdifferential of Φ. If Φ is
proper, convex and lsc, then ∂Φ is a maximal monotone operator. For a set-valued
function F : H → 2H , the operator JF := (I +F )−1 is called the resolvent of F .
If F is maximal monotone, then JF is single-valued and firmly nonexpansive.
In this paper, we are mainly interested in the following two functions Φi, i = 1, 2,
on H := R

M :

i) Φ1(u) := ‖Λu‖1 with Λ := diag(λj)M
j=1, λj ≥ 0,

ii) Φ2(u) := ‖Λ̃ |u| ‖1 with Λ̃ := diag(λ̃j)N
j=1, λ̃j ≥ 0 and |u| :=

(
‖uj‖2

)N

j=1

for uj := (uj+kN )p−1
k=0 and M = pN .

The corresponding Fenchel conjugate functions are given by

i) Φ∗
1(u) := ιC(u) with C := {u ∈ R

M : |uj| ≤ λj , j = 1, . . . ,M},
ii) Φ∗

2(u) := ιC̃(u) with C̃ := {u ∈ R
M : ‖uj‖2 ≤ λ̃j , j = 1, . . . , N},

where ιC the indicator function of the set C (or C̃), i.e., ιC(u) := 0 for u ∈ C
and ιC(u) := +∞ otherwise. A short calculation shows that for any f ∈ R

M we
have

proxΦ1
(f) = TΛ(f), proxΦ2

(f) = T̃Λ̃(f),
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where TΛ denotes the soft shrinkage function given componentwise by

Tλj (fj) :=
{

0 if |fj| ≤ λj ,
fj − λj sgn(fj) if |fj| > λj ,

(4)

and T̃Λ̃ denotes the coupled shrinkage function, compare [2, 4, 5],

T̃λ̃j
(fj) :=

{
0 if ‖fj‖2 ≤ λ̃j ,

fj − λ̃jfj/‖fj‖2 if ‖fj‖2 > λ̃j .

Similarly, we obtain

proxΦ∗
1
(f) = f − TΛ(f), proxΦ∗

2
(f) = f − T̃Λ̃(f). (5)

Operator Splittings. Now we consider more general minimization problems of
the form

(P ) min
u∈H1

{
g(u) + Φ(Du)︸ ︷︷ ︸

:=FP (u)

}
,

where D : H1 → H2 is a bounded linear operator and both functions g : H1 →
R ∪ {+∞} and Φ : H2 → R ∪ {+∞} are proper, convex and lsc. Furthermore,
we assume that 0 ∈ int(D dom(g)−dom(Φ)). For g(u) := 1

2γ ‖u−f‖2 and D = I
this is again our proximation problem. The corresponding dual problem has the
form

(D) − min
b∈H2

{
g∗(−D∗b) + Φ∗(b)︸ ︷︷ ︸

:=FD(b)

}
.

We assume that solutions û and b̂ of the primal and dual problems, respectively,
exist and that the duality gap is zero. In other words, we suppose that there
is a pair (û, d̂) which satisfies the Karush-Kuhn-Tucker conditions 0 ∈ ∂g(û) +
D∗b̂, 0 ∈ −Dû+ ∂Φ∗(b̂). Then û is a solution of (P ) if and only if

0 ∈ ∂FP (û) = ∂g(û) + ∂(Φ ◦D)(û).

Similarly, a solution b̂ of the dual problem is characterized by

0 ∈ ∂FD(b̂) = ∂(g∗ ◦ (−D∗))(b̂) + ∂Φ∗(b̂).

In both primal and dual problem, one finally has to solve an inclusion of the
form

0 ∈ A(p̂) +B(p̂). (6)

Various splitting techniques make use of this additive structure. In this paper, we
restrict our attention to the forward-backward splitting (FBS) and the Douglas-
Rachford splitting (DRS). The inclusion (6) can be rewritten as fixed point equa-
tion

p̂− ηB(p̂) ∈ p̂+ ηA(p̂) ⇔ p̂ ∈ JηA(I − ηB)p̂, η > 0 (7)

and the FBS algorithm is just the corresponding iteration. For the following
convergence result and generalizations of the algorithm we refer to [6, 7, 8, 9].
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Theorem 1 (FBS). Let A : H → 2H be a maximal monotone and βB : H → H
be firmly nonexpansive for some β > 0. Furthermore, assume that a solution of
(6) exists. Then, for any p(0) and any η ∈ (0, 2β) the following FBS algorithm
converges weakly to such a solution of (6)

p(k+1) = JηA(I − ηB)p(k). (8)

To introduce the DRS, we rewrite the right-hand side of (7) as

p̂+ ηBp̂ ∈ JηA(I − ηB)p̂+ ηBp̂ ⇔ p̂ ∈ JηB

(
JηA(I − ηB)p̂+ ηBp̂︸ ︷︷ ︸

:=t̂

)

The DRS algorithm [10] is the corresponding iteration, where we use t(k) :=
p(k) +ηBp(k). For the following convergence result, which in contrast to the FBS
algorithm holds also for set-valued operators B, see [6, 8].

Theorem 2 (DRS). Let A,B : H → 2H be maximal monotone operators and
assume that a solution of (6) exists. Then, for any initial elements t(0) and p(0)

and any η > 0, the following DRS algorithm converges weakly to an element t̂:

t(k+1) = JηA(2p(k) − t(k)) + t(k) − p(k),

p(k+1) = JηB(t(k+1)).

Furthermore, it holds that p̂ := JηB(t̂) satisfies 0 ∈ A(p̂) + B(p̂). If H is finite-
dimensional, then the sequence

(
p(k)

)
k∈N

converges to p̂.

3 Bregman Methods

For a function ϕ : H → R ∪ {+∞}, the Bregman distance D(p)
ϕ is defined as

D(p)
ϕ (u, v) = ϕ(u) − ϕ(v) − 〈p, u− v〉,

with p ∈ ∂ϕ(v), cp. [11]. Given an arbitrary initial value u(0) and a parameter
γ > 0, the Bregman proximal point algorithm (BPP) applied to (P ) has the
form [12,13, 14]

u(k+1) = argmin
u∈H1

{ 1
γ
D(p(k))

ϕ (u, u(k)) + FP (u)}, p(k+1) ∈ ∂ϕ(u(k+1)). (9)

For conditions on ϕ such that (u(k))k∈N converges to a minimizer of (P ), see [13]
and the references therein. For ϕ := 1

2‖ · ‖2
2, we recover the classical proximal

point algorithm (PP) for (P ) which can be written as follows, compare [15],

u(k+1) = proxγFP
(u(k)) = argmin

u∈H1

{ 1
2γ

‖u− u(k)‖2
2 + FP (u)

}
= Jγ∂FP (u(k)).
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Under our assumptions on g, Φ andD, the weak convergence of the PP algorithm
is guaranteed for any initial point u(0), see [16]. In the same way, we can define
the PP algorithm for (D)

b(k+1) = proxγ∂FD
(b(k)) = argmin

b∈H2

{ 1
2γ

‖b− b(k)‖2
2 + FD(b)

}
= Jγ∂FD(b(k))

and the same convergence result holds true. It is well-known that the PP algo-
rithm applied to (D) is equivalent to the augmented Lagrangian method (AL) for
the primal problem, see, e.g., [15,14]. To define this algorithm we first transform
(P ) into the constrained minimization problem

min
u∈H1,d∈H2

E(u, d) s.t. Du = d, (10)

where E(u, d) := g(u) + Φ(d). This problem was introduced in [29]. The corre-
sponding AL algorithm for (P ) is then defined as

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
E(u, d) + 〈b(k), Du− d〉 +

1
2γ

‖Du− d‖2
2

}

b(k+1) = b(k) +
1
γ

(Du(k+1) − d(k+1)). (11)

Indeed, it has been shown that for the same initial value b(0) the sequence
(b(k))k∈N coincides with the one produced by the PP algorithm applied to (D),
see [15]. Moreover, if (b(k))k∈N converges strongly then every strong cluster point
of (u(k))k∈N is a solution of (P ), cf. [17]. To solve the constrained optimization
problem (10), Goldstein and Osher [18] proposed to use the Bregman distance

D
(p(k))
E (u, d, u(k), d(k)) = E(u, d)−E(u(k), d(k))−〈p(k)

u , u−u(k)〉− 〈p(k)
d , d−d(k)〉

and the term 1
2γ ‖Du− d‖2

2 instead of FP in (9). This results in the algorithm

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
D

(p(k))
E (u, d, u(k), d(k)) +

1
2γ

‖Du− d‖2
2

}
, (12)

p(k+1)
u =p(k)

u − 1
γ
D∗(Du(k+1) − d(k+1)), p(k+1)

d = p
(k)
d +

1
γ

(Du(k+1) − d(k+1)),

where we have used that (12) implies

0 ∈ ∂E(u(k+1), d(k+1)) − (p(k)
u , p

(k)
d

)

+
( 1
γ
D∗(Du(k+1) − d(k+1)),− 1

γ
(Du(k+1) − d(k+1))

)
,

= ∂E(u(k+1), d(k+1)) − (p(k+1)
u , p

(k+1)
d

)
,

so that
(
p
(k)
u , p

(k)
d

) ∈ ∂E(u(k), d(k)). Setting p(k)
u = − 1

γD
∗b(k) and p

(k)
d = 1

γ b
(k)

for all k ≥ 0 and regarding that for a bounded linear operator D,

D
(p(k))
E (u, d, u(k), d(k)) +

1
2γ

‖Du− d‖2
2 = E(u, d) − E(u(k), d(k))

− 1
γ
〈b(k), Du−Du(k)〉 − 1

γ
〈b(k), d− d(k)〉 +

1
2γ

‖Du− d‖2
2,
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Goldstein and Osher obtained the Split Bregman method [18]

(u(k+1), d(k+1)) = argmin
u∈H1,d∈H2

{
E(u, d) +

1
2γ

‖b(k) +Du− d‖2
2

}
,

b(k+1) = b(k) +Du(k+1) − d(k+1). (13)

As already discovered in [19], the Split Bregman algorithm (13) is just the AL
algorithm (11) with the only difference that in (13) the iterates b(k) are scaled by
γ. Hence, we can conclude that the sequence ( 1

γ b
(k))k∈N generated by the Split

Bregman method (13) converges to solutions of the dual problem. The same
holds true for the sequence (p(k)

d )k∈N we get from (12). To summarize:

PP for (D) = AL for (P ) = Split Bregman Alg.

Since the minimization problem in (13) is hard to solve, Goldstein and Os-
her [18] proposed the following alternating Split Bregman algorithm without a
convergence proof:

u(k+1) = argmin
u∈H1

{
g(u) +

1
2γ

‖b(k) +Du− d(k)‖2
2

}
, (14)

d(k+1) = argmin
d∈H2

{
Φ(d) +

1
2γ

‖b(k) +Du(k+1) − d‖2
2

}
, (15)

b(k+1) = b(k) +Du(k+1) − d(k+1). (16)

The next theorem identifies this alternating Split Bregman method as a special
case of a DRS.

DRS for (D) = Alternating Split Bregman Alg.

If H1 and H2 are finite-dimensional it therefore provides us with a convergence
result for the sequence (b(k))k∈N of this algorithm.

Theorem 3. The alternating Split Bregman algorithm coincides with the DRS
algorithm applied to (D) with A := ∂(g∗ ◦ (−D∗)) and B := ∂Φ∗, where η = 1/γ
and

t(k) = η(b(k) + d(k)), p(k) = ηb(k), k ≥ 0. (17)

Proof: 1. First, we show that for a proper, convex, lsc function h : H1 →
R ∪ {+∞} and a bounded linear operator K : H1 → H2 the following relation
holds true:

p̂ = argmin
p∈H1

{η
2
‖Kp− q‖2 + h(p)

}
⇒ η(Kp̂− q) = Jη ∂(h∗◦(−K∗))(−ηq).

(18)
The first equality is equivalent to

0 ∈ ηK∗(Kp̂− q) + ∂h(p̂) ⇔ p̂ ∈ ∂h∗
(− ηK∗(Kp̂− q)

)
.
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Applying −ηK on both sides and adding −ηq implies

−ηKp̂ ∈ −ηK∂h∗(− ηK∗(Kp̂− q)
)

= η ∂
(
h∗ ◦ (−K∗)

)(
η(Kp̂− q)

)
−ηq ∈ (I + η ∂(h∗ ◦ (−K∗))

)(
η(Kp̂− q)

)

which is by the definition of the resolvent equivalent to the right equality in (18).
2. Applying (18) to (14) with h := g, K := D and q := d(k) − b(k) we get

η(b(k) +Du(k+1) − d(k)) = JηA(η(b(k) − d(k))).

Assume that the alternating Split Bregman iterates and the DRS iterates coin-
cide with the identification (17) up to some k ∈ N. Using this induction hypoth-
esis it follows that

η(b(k) +Du(k+1)) = JηA(η(b(k) − d(k))︸ ︷︷ ︸
2p(k)−t(k)

) + ηd(k)︸ ︷︷ ︸
t(k)−p(k)

= t(k+1). (19)

By definition of b(k+1) in (16) we see that η(b(k+1) + d(k+1)) = t(k+1). Next we
apply (18) to (15) with h := Φ, K := I and q := b(k) + Du(k+1) which gives
together with (19),

η(b(k) +Du(k+1) − d(k+1)) = JηB(η(b(k) +Du(k+1))︸ ︷︷ ︸
t(k+1)

) = p(k+1).

Again by the formula (16) for b(k+1) we obtain ηb(k+1) = p(k+1) which completes
the proof. �

A similar result was shown in [20, 21].

4 Application to Image Denoising

In the following, we restrict our attention to a discrete setting. We consider
digital images defined on {1, . . . , n} × {1, . . . , n} and reshape them columnwise
into vectors f ∈ R

N with N = n2. If not stated otherwise the multiplication of
vectors, their square root etc. are meant componentwise.

We will now apply the algorithms defined in Sections 2 and 3 to the discrete
denoising problem of the form

argmin
u∈RN

{1
2
‖u− f‖2

2 + Φ(Du)
}
, D ∈ R

M,N , M ≥ N, (20)

where Φ is defined as in Section 2. Consider the alternating Split Bregman al-
gorithm (14)-(16) with g(u) := 1

2‖u − f‖2
2. Theorem 3 implies the convergence

of
(
b(k)
)
k∈N

and it is not hard to show that for this special choice of g, the se-
quence

(
u(k)

)
k∈N

converges to a solution of the primal problem. The quadratic
functional in (14) with the above choice of g can simply be minimized by setting
its gradient to zero which results in

u(k+1) = (γI +DTD)−1
(
γf +DT(d(k) − b(k))

)
.
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Goldstein and Osher proposed to calculate the inverse (γI +DTD)−1 by Gauß-
Seidel iterations. Applying (4) we see that for Φ = Φ1 the solution of the proxi-
mation problem in (15) is given by

d(k+1) = TγΛ(b(k) +Du(k+1)).

The following algorithm shows the case Φ = Φ1. Observe that in order to better
compare this method to the other algorithms in this section, we have changed
the order in which we compute u(k+1). This is allowed because there are no re-
strictions on the choice of the starting values.

Algorithm (Alternating Split Bregman Shrinkage)
Initialization: u(0) := f , b(0) := 0.
For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := TγΛ(b(k) +Du(k)),

b(k+1) := b(k) +Du(k) − d(k+1),

u(k+1) := (γI +DTD)−1
(
γf +DT(d(k+1) − b(k+1))

)
.

For Φ = Φ2 we have to replace the soft shrinkage TγΛ by the coupled shrinkage
T̃γΛ̃. Note that this algorithm can also be used for the deblurring problem which
differs from (20) in having a more general data-fitting term g(u) := 1

2‖Ku− f‖2
2

with some linear operator K. In this case one has to invert the matrix γKTK +
DTD which can be diagonalized in many applications by FFT or DCT tech-
niques, e.g., if it is circulant.

The problem (20) can also be solved via its dual problem by û = f − DTb̂,
where

b̂ = argmin
b∈RM

{1
2
‖f −DTb‖2

2 + Φ∗
i (b)}, i = 1, 2 (21)

see, e.g., [22]. Applying the FBS algorithm (8) to the dual problem (21) gives

b(k+1) = proxγΦ∗
i

(
b(k) + γD(f −DTb(k))

)
, i = 1, 2,

where 0 < γ < 2/‖DTD‖2. Using the relation (5) we obtain for Φ = Φ1

b(k+1) = b(k) + γD(f −DTb(k)) − TΛ

(
b(k) + γD(f −DTb(k))

)
.

This yields the following algorithm to compute the minimizer of (20) for Φ = Φ1:

Algorithm (FBS Shrinkage)
Initialization: u(0) := f , b(0) := 0
For k = 0, 1, . . . repeat until a stopping criterion is reached

d(k+1) := TΛ

(
b(k) + γDu(k)

)
,

b(k+1) := b(k) + γDu(k) − d(k+1),

u(k+1) := f −DTb(k+1).
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For the functional Φ2 we have to replace the shrinkage functional by T̃Λ̃. This
algorithm can also be deduced as a simple gradient descent reprojection algorithm
as it was done, e.g., by Chambolle [2]. Note that this is not the often cited
Chambolle algorithm in [22]. A relation of this method to the Bermúdez-Moreno
algorithm which also turns out to be an FBS algorithm was shown in [23]. A
connection to min-max duality was established in [24].

4.1 Besov-Norm Regularization

For a sufficiently smooth orthogonal wavelet basis {ψi}i∈I of L2(Ω) with wavelets
of more than one vanishing moment, problem (1) can be rewritten as

1
2
‖d− c‖2


2 + λ‖d‖
1 ,

where c := (〈f, ψi〉)i and d := (〈u, ψi〉)i. In the discrete setting, consider the
orthogonal matrix W ∈ R

N,N having as rows the filters of orthogonal wavelets
(and scaling functions) up to a certain level. Then the minimization problem
corresponding to (1) is given by

û = argmin
u∈RN

{1
2
‖u− f‖2

2 + ‖ΛWu‖1

}

= argmin
u∈RN

{1
2
‖Wu−Wf‖2

2 + ‖ΛWu‖1

}
. (22)

The orthogonality of W yields further û = WTd̂, where

d̂ = argmin
d∈RN

{1
2
‖d− c‖2

2 + ‖Λd‖1

}
, c := Wf, Λ := λIN (23)

and by (4) we obtain the known wavelet shrinkage procedure û = WTTΛ(Wf)
consisting of a wavelet transform W followed by soft shrinkage TΛ of the wavelet
coefficients and the inverse wavelet transform WT.

However, for image processing tasks like denoising or segmentation, ordinary
orthogonal wavelets are not suited due to their lack of translational invariance
which leads to visible artefacts. Nevertheless, without the usual subsampling, the
method becomes translationally invariant and the results can be improved. But
then W ∈ R

M,N , M = pN , where p is three times the decomposition level plus
one for the rows belonging to the scaling function filters on the coarsest scale.
We still have WTW = IN , but of course WWT �= IM , i.e., the rows of W form a
discrete Parseval frame on R

N but not a basis. For the design of such frames see,
e.g., [25, 26]. Equality (22) is still true for Parseval frames, but the problem is
no longer equivalent to (23). Instead we can apply FBS shrinkage or alternating
Split Bregman shrinkage with D = W and Φ = Φ1. Note that in order to use
the FBS algorithm, γ has to fulfill 0 < γ < 2/‖WTW‖2. Now WTW = IN , thus
we have to choose γ in (0, 2) and γ = 1 is an admissible choice. It was shown
in [27] that both algorithms coincide for D = W with WTW = IN and γ = 1:
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Alternating Split
Bregman Shrinkage = FBS

Shrinkage

Moreover, the third step of both algorithms can be simplified to the frame syn-
thesis step

u(k+1) = WTd(k+1). (24)

4.2 ROF Regularization

In this section, we apply the algorithms presented so far to the discrete ROF
denoising method. We use an appropriate discretization of the absolute value
of the gradient. Let h0 := 1

2 [1 1] and h1 := 1
2 [1 − 1] be the filters of the Haar

wavelet. For convenience of notation, we use periodic boundary conditions and
the corresponding circulant matrices are denoted by H0 ∈ R

n,n and H1 ∈ R
n,n.

Then the following matrix fulfills WTW = IN but WTW �= I4N

W :=

⎛
⎜⎝

H0 ⊗ H0

H0 ⊗ H1

H1 ⊗ H0

H1 ⊗ H1

⎞
⎟⎠ =

⎛
⎜⎝

H0

H1

⎞
⎟⎠ .

In [4,5] it was shown that
((

(H0 ⊗H1)u
)2+

(
(H1 ⊗H0)u

)2+
(
(H1 ⊗H1)u

)2) 1
2

is a consistent finite difference discretization of |∇u|. Using this gradient dis-
cretization, the discrete version of the ROF functional in (2) reads

argmin
u∈RN

{1
2
‖u− f‖2

2 + ‖Λ̃ |H1u| ‖1

}
, Λ̃ := λIN . (25)

Observe that if we use the alternating Split Bregman algorithm with D = H1

for this problem we have to solve a linear system of equations in the third step of
each iteration. This problem can be avoided by using that H1 is part of a Parseval
frame, cp. [27]. To this end we define the proper, convex and lsc functional Φ̃2

which differs from Φ2 in that the first part of the input vector is neglected, i.e.,

Φ̃2(c) = ‖Λ̃ |c1| ‖1, for c = (c0, c1) ∈ R
N × R

3N .

Now we can rewrite (25) as follows

argmin
u∈RN

{1
2
‖u− f‖2

2 + Φ̃2(Wu)
}
.

Applying the alternating Split Bregman algorithm, or equivalently the FBS
method, with γ = 1 and (24) we obtain the following algorithm.
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Initialization: u(0) := f , b(0) := 0.
For k = 0, 1, . . . repeat until a stopping criterion is reached

d
(k+1)
0 := (Wu(k))0,

d
(k+1)
1 := T̃Λ̃

(
b(k) + (Wu(k))1

)
,

b(k+1) := b(k) + (Wu(k))1 − d
(k+1)
1 ,

u(k+1) := WT

(
d
(k+1)
0

d
(k+1)
1

)
, (26)

where (Wu)0 := H0u and (Wu)1 := H1u. Note that starting with b
(0)
0 := 0 all

iterates b(k)
0 remain zero vectors. We also obtain algorithm (26) if we apply FBS

shrinkage directly to (25) with D = H1 and γ = 1.
We now give a numerical example for these two algorithms. The computa-

tions were performed in MATLAB. In Fig. 1 we see the result of applying the
two algorithms to a noisy image. Note that we only show the resulting image
for algorithm (26) here, since the difference to the alternating Split Bregman
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Fig. 1. Comparison of algorithm (26) and the alternating Split Bregman method with
D = H1. Stopping criterion: ‖u(k+1) − u(k)‖∞ < 0.5. Top left: Original image. Top
right: Noisy image (white Gaussian noise with standard deviation 25). Bottom left:
Algorithm (26), λ = 70, (53 iterations). Bottom right: Difference to alternating Split
Bregman shrinkage with D = H1, (53 iterations).
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method with D = H1 is marginal. We also found that the two algorithms need
nearly the same number of iterations. However, algorithm (26) is extremely fast
and does not require solving a linear system of equations as the alternating Split
Bregman shrinkage does. Moreover, γ = 1 seems to be a very good parameter
choice. For the above numerical experiment we used periodic boundary condi-
tions, concerning Neumann boundary conditions, see, e.g., [28].
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