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Abstract. We propose a partial differential equation to be used for
interpolating M -channel data, such as digital color images. This equation
is derived via a semi-group from a variational regularization method
for minimizing displacement errors. For actual image interpolation, the
solution of the PDE is projected onto a space of functions satisfying
interpolation constraints. A comparison of the test results with standard
and state-of-the-art interpolation algorithms shows the competitiveness
of this approach.

1 Introduction

A frequent task in image processing is interpolation, which we refer to as the
process of assigning a discrete set of pixel positions and according discrete M -
channel image data (e.g. RGB color data) an interpolating function. Interpola-
tion is frequently used for zooming into or scaling digital images. A special kind
of image interpolation problems is inpainting, i.e. the problem of reconstructing
lost or corrupted parts of images.

Linear interpolation (that is convolution methods) [18], such as for exam-
ple nearest neighbor, spline, and the Whittaker-Shannon interpolation [14,4], is
computationally efficient but produce unpleasant artifacts. On the other hand,
nonlinear methods adapting to geometrical structures can produce more visually
attractive results but are computationally more demanding . Nowadays, most of
these nonlinear methods are motivated by energy minimization or by scale spaces
of partial differential equations, see for example [1, 22, 21, 18]. In particular for
inpainting such nonlinear methods are widely used, see for example [2, 5, 6, 23].

In this paper we derive a partial differential equation that is designed to
correct and filter for displacement errors in M -channel data. Combined with the
interpolation ideas of [11, 16], this method is suited for interpolation.

The paper is organized as follows: In Section 2 we consider a variational ansatz
for correcting displacement errors. Application of the semi-group concepts yields
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a PDE, which can be considered the gradient flow of the variational problem. A
relationship of our PDE to the Mean Curvature Flow (MCF) equation is estab-
lished. Our approach is combined with interpolation constraints in Section 3.

For comparison, we show in Section 4 results from the proposed method and
from interpolation methods from the scale space literature. In particular we
take into account the GREYCstoration software of Tschumperlé [21] and the
interpolation method proposed by Roussos and Maragos [18,19]. The paper ends
with a conclusion in Section 5.

2 Displacement Regularization

Let u : Ω → IRM be an M channel function representing continuous M -channel
data on a bounded open domain Ω ⊆ IR2.

We presume the following image acquisition model: Data u(0) of u are given,
which satisfy

u(0) = u ◦ Φ , (1)

where Φ : Ω → Ω is a displacement vector field.
In the following we consider the problem of finding (u,Φ) satisfying (1) such

that the displacement Φ − Id is small and u has minimal total variation. A
variational method corresponding to this problem consists in minimization of

1
2

∫
Ω

|Φ(x) − x|2 dx + α

∫
Ω

|∇u(x)| dx , (2)

for small α > 0 over the set of functions satisfying u(0) = u ◦ Φ. Here

∇u =
(

∂1u1 ∂1u2 ∂1u3

∂2u1 ∂2u2 ∂2u3

)
and |∇u(x)| =

⎛
⎝ M∑

j=1

2∑
i=1

(∂iuj(x))2

⎞
⎠

1/2

.

We want to avoid solving a coupled system for (u,Φ), and therefore we assume
that u is a smooth function, so that we can make a first order Taylor series
expansion. Then it follows from our modeling assumptions that

u(0)(x) = (u ◦ Φ)(x) = u(x + (Φ(x) − x)) ≈ u(x) + ∇uT (x) (Φ(x) − x) . (3)

Here, ≈ symbolizes that the left hand side approximates the right hand side
for small displacements Φ− Id. In the following, we assume that equality holds
instead of ≈, which implies that only small displacements occur.

Note that the equation ∇uT (x)(Φ(x) − x) = u(0)(x) − u(x) for unknown
Φ(x)−x is overdetermined. In case that the difference u(0)(x)−u(x) is not only
caused by a distortion Φ, no solution to this problem might exist. To overcome
this problem, we consider the minimization of

∣∣∣∇uT (x)(Φ(x) − x) − u(0)(x) + u(x)
∣∣∣2 , (4)
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that is, we search for the displacement vector Φ(x) − x , which fits best to the
data (u(0)(x),u(x)). The minimizer of (4) is given by

Φ(x) − x = (∇uT (x))†(u(0)(x) − u(x)), (5)

where (∇u(x))† denotes the pseudo–inverse (see [17]) of ∇u(x).
For notational convenience, we leave out the dependence of u with respect to

x in the following. Inserting (5) into (2) gives the functional

F0
u(0)(u) :=

1
2

∫
Ω

(u − u(0))T (∇uT∇u)†(u− u(0)) + α |∇u| dx . (6)

In order to avoid computation of the pseudo–inverse, we additionally regularize
the probably singular matrix ∇uT∇u by the regular, symmetric, and strictly
positive definite matrix (εI + ∇uT∇u) with some ε > 0. To summarize, we
consider in the sequel the variational problem of minimizing

Fε
u(0)(u) :=

1
2

∫
Ω

(u − u(0))T (εI + ∇uT∇u)−1(u − u(0)) + α |∇u| dx . (7)

For this functional, existence theory within the classical framework of the Cal-
culus of Variations [7, 8] is not applicable. Moreover for a theoretical analysis,
minimization has in fact to be considered over the space of M -channel functions
with components of finite total variation. In order to implement the minimiza-
tion of Fε

v numerically, quasi-convexification techniques would be most efficient.
This approach requires the analytical calculation of the quasi-convex envelope
of the function

(x, ξ, ν) → 1
2
(ξ − v(x))T (εI + νT ν)−1(ξ − v(x)) + α |ν|

with respect to ν. However, the quasi-convex envelope function is not known so
far, and thus efficient numerical minimization based on this approach is not at
hand.

In the following we recall the convex semi-group solution concept [3]: Let
R : H → IR ∪ {∞} be a convex functional on a Hilbert space H , and let uα be
a minimizer of the variational regularization functional

Gu(0)(u) :=
1
2

∥∥∥u − u(0)
∥∥∥2

H
+ αR(u) .

Then, for u(0) sufficiently smooth, (uα − u(0))/α converges for α → 0 to an ele-
ment in the subgradient ∂R(u(0)) of R. Choosing u(k) ∈ argminGu(k−1) , iterative
minimization of Gu(k) yields an approximation of the solution of the flow

∂u
∂t

∈ ∂R(u)

at scale t = kα. In other words, variational regularization approximates a dif-
fusion filtering scale space, which is the associated gradient flow equation. For
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convex semi-groups the solutions of diffusion filtering and variational methods
are comparable and look rather similar [20].

We expect a similar behavior for the non-convex functional Fε
u(0) and derive

the according flow equation, which is the gradient flow associated with (7). We
use the abbreviations

Aε(u) :=
(
εI + ∇uT∇u

)−1
and

Sε
u(k−1)(u) :=

1
2

∫
Ω

(u − u(k−1))T Aε(u)(u − u(k−1)) dx .

The directional derivative of Sε
u(k−1) at u in direction φ (provided it exists)

satisfies

∂τSε
u(k−1)(u + τφ) =

∫
Ω

φT Aε(u)(u − u(k−1)) dx+

1
2

∫
Ω

(u − u(k−1))T ∂u,φAε(u) (u − u(k−1)) dx ,

(8)

where
∂u,φAε(u) := lim

τ→0

Aε(u + τφ) − Aε(u)
τ

.

In a similar way, the directional derivative of Rα(u) := α
∫

Ω |∇u| at u in direction
φ can be derived in a formal way:

∂τRα(u + τφ) = α

∫
Ω

∇φT ∇u
|∇u| dx. (9)

Note that the right hand side of (9) is meant as the subdifferential of the TV
semi-norm evaluated in the direction of φ.

Using (8) and (9), the optimality condition for the minimizer u(k) of Fε
u(k−1)

reads as ∫
Ω

φT Aε(u(k))
u(k) − u(k−1)

α
dx

+
1
2

∫
Ω

(u(k) − u(k−1))T

α
∂u(k),φAε(u(k)) (u(k) − u(k−1)) dx

= −
∫

Ω

∇φT ∇u(k)

|∇u(k)| dx.

(10)

Let t > 0 be fixed and k = 
t/α�, then, as in the convex case, we can expect
that (u(k) − u(k−1))/α converges to ∂tu(t) for α → 0. From this it follows then
that u(k) − u(k−1) → 0, and from (10) it follows that∫

Ω

φT Aε(u(t))∂tu(t) dx = −
∫

Ω

∇φT ∇u(t)
|∇u(t)| dx. (11)

Using Green’s formula and the fundamental lemma, from (11) the strong formu-
lation

Aε(u(t))∂tu(t) =
(
εI + ∇uT (t)∇u(t)

)−1
∂tu(t) = ∇ ·

( ∇u(t)
|∇u(t)|

)
, (12)

follows, where u(t) satisfies natural (Neumann) boundary conditions.
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In the following, we leave out the dependence of u with respect to t for no-
tational convenience. Multiplying both sides of (12) by (εI + ∇uT∇u), we get

∂tu = (εI + ∇uT∇u) ∇ ·
( ∇u
|∇u|

)
. (13)

Moreover, the initial condition associated with the flow is u(0) := u(0). Now,
letting ε → 0, which only seems to make sense mathematically if M ≤ 2, we
obtain the evolutionary partial differential equation

∂tu = (∇uT∇u) ∇ ·
( ∇u
|∇u|

)
. (14)

Remark 1. For scalar data (M = 1) the equation (14) reads as

∂tu = |∇u|2 ∇ ·
( ∇u

|∇u|
)

. (15)

One recognizes that (15) differs from the Mean Curvature Flow equation by the
leading factor |∇u|2 instead of |∇u|.
We generalize the functional in (6) to

1
2

∫
Ω

(u − u(0))T
(
(∇uT∇u)p

)†
(u− u(0)) + α |∇u| dx (16)

with p ≥ 0. We note that the power of a matrix is defined via spectral decom-
position. The case p = 1/2 is of particular interest, because

– the functional (16) becomes invariant under affine rescaling of the image
brightness.

– The semi-group approach (see also [10] for the scalar case) gives the gradient
flow

∂tu = (∇uT∇u)
1
2 ∇ ·

( ∇u
|∇u|

)
,

which, in the scalar case, is the Mean Curvature Flow equation. For an
analytical comparison of the solution of (16) for scalar, radial-symmetric
monotonous data to the MCF solution we refer to [9].

3 Interpolation of M-Channel Data

The evolution equation (14) can be used for interpolating discrete M -channel
data by restricting u to satisfy interpolation constraints. The problem of inter-
polating M -channel data has already been studied in the literature before, see
for example [1, 21, 18, 19]. The difference between the approaches by [21, 18, 19]
and our approach are the different PDEs for filtering: [21,18,19] use anisotropic
diffusion, whereas the PDE (14) generalizes the Mean Curvature Flow equation.
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To begin with, we recall the interpolation constraints proposed in [11,16]. For
the simplicity of notation we restrict ourself to M -channel data defined on a
two-dimensional rectangular domain

Ω :=
(

1
2
, Nx +

1
2

)
×

(
1
2
, Ny +

1
2

)
,

where Nx, Ny ∈ N. The domain is partitioned into cells (’pixels’)

Qi,j :=
(

i − 1
2
, i +

1
2

)
×

(
j − 1

2
, j +

1
2

)
, (i, j) = (1, 1), (1, 2) . . . , (Nx, Ny) .

Let G be a kernel function defined on IR2 and compactly supported in [− 1
2 , 1

2 ]2.
Let Z := (zm,i,j) a tensor, which denotes sampled data of a function G ∗ u :
IR2 → IRM at the positions (i, j). Here ∗ denotes the convolution operator. In
particular:

zm,i,j := (G ∗ um)(i, j), (m, i, j) = (1, 1, 1), (1, 1, 2) . . . , (M, Nx, Ny) . (17)

Examples for kernel functions typically used in literature are listed in [18].
We rewrite (17) as follows: Let Gi,j := G(· − (i, j)), then

zm,i,j = 〈Gi,j , um〉L2(Ω) , (m, i, j) = (1, 1, 1), . . . , (M, Nx, Ny) .

We say that an M -channel function u = (u1, . . . , uM ) satisfies the interpolation
constraints for some discrete data Z = (zm,i,j), if

〈Gi,j , um〉L2(Ω) = zm,i,j.

The set of functions satisfying the interpolation constraints for data Z is denoted
by UZ,G.

Example 1. We consider for G the two-dimensional δ distribution, i.e.,

G(x, y) = δ(x)δ(y).

Then zm,i,j = um((i, j)). The nearest neighbor (componentwise, piecewise con-
stant) interpolation reads as

u(0)
m |Qi,j = zm,i,j , (m, i, j) = (1, 1, 1), . . . , (M, Nx, Ny) .

Here, u(0) = u◦Φ, where Φ(x, y)|Qi,j = (i, j). In particular u can be interpreted
as a distortion of u(0) by a local sampling displacement Φ.

Now let u(0) ∈ UZ,G be arbitrary. The nearest neighbor interpolation in Example
1 motivates the assumption that, for a sampled function u, there exists Φ such
that u(0) = u ◦Φ. Recalling the concepts presented in Section 2 we consider the
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functional defined in (7) restricted to the set UZ,G in order to reconstruct u from
given u(0). In turn, we restrict the flow equation (13) to UZ,G:

∂tu = PU0,G

(
(εI + ∇uT∇u)∇ ·

( ∇u
|∇u|

))
, (18)

where

PU0,G(v) = v − ‖G‖−2
L2(R2)

Nx∑
i=1

Ny∑
j=1

〈Gi,j , v〉L2(Ω) Gi,j

is applied on each component separately. Note that the assumption u(0) ∈ UZ,G

together with ∂tu ∈ U0,G asserts that the solution u(t), t ≥ 0 stays in UZ,G. At
this point we remark that there is no analytical theory guaranteeing the well
posedness of (18).

Since (18) comprises a projection, in order to solve (18) numerically a time-
explicit scheme with sufficiently small step size Δt is required.

4 Numerical Results

We compare our method consisting in numerically solving (18) to two standard
interpolation methods, namely nearest neighbor and cubic interpolation, as well
as to established, sophisticated interpolation methods proposed by Tschumperlé
& Deriche [21] and by Roussos & Maragos [19]. The method of Tschumperlé
& Deriche is implemented in the GREYCstoration software (see http://cimg.
sourceforge.net/greycstoration/), for the method of Roussos & Maragos, test
results are available from the site http://cvsp.cs.ntua.gr/∼tassos/PDEinterp/
ssvm07res/.

In our method, the kernel function has to be chosen appropriately. We use

G(x, y) :=
1∫

[− 1
2 , 12 ]2

gσ(x, y) dx dy
χ[− 1

2 , 1
2 ]2 gσ(x, y),

where gσ is the two-dimensional isotropic Gaussian of standard deviation σ. In
our method a value of 20 is used for the variance σ2.

For evaluating the methods, we use the two test images shown in Fig. 1.
For both images, a low and a high resolution version is available, where the
low resolution image is obtained from the high resolution image via low-pass
filtering (convolution with a bicubic spline) and downsampling by a factor of
four, see [19]. The test images were provided by Roussos & Maragos.

The methods mentioned above are used to upsample the low resolution image
by a factor four.

Our method is applied with 100 time steps, Δt = 0.03 , ε = 0.05 and σ2 = 20
for the first and 100 time steps, Δt = 0.05, ε = 0.01 and σ2 = 20 for the
second test image, respectively. For GREYCstoration (version 2.9) we use the
option ’-resize’ together with the aimed size of the high resolution image and
parameters ’-anchor true’, ’-iter 3’ and ’-dt 10’. For the remaining parameters
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Fig. 1. Two test images. Each test image is available in a low and a high resolution
version with a factor of four between both resolution.

the default values are used. The results of Roussos’ method were obtained from
the web site mentioned above.

Let us consider the results of upsampling the first test image. In order to
highlight the differences between the methods, we compare only details of the
resulting images, see Fig. 2.

The results with nearest neighbor and cubic interpolation are shown in
Fig. 2, top right and middle left, respectively. Both results are unsatisfactory
and confirm, what is well known from the literature, that by nearest neigh-
bor interpolation the upsampled images look blocky and cubic interpolation
produces blurry images. The result of GREYCstoration with interpolation con-
straints (Fig. 2, middle row right) also appears blurry, but compared to cubic
interpolation better reconstruct the edges in the image. The method proposed
by Roussos & Maragos as well as our method (see Fig. 2, bottom row) produce
sharp and well reconstructed edges.

In order to further investigate the differences between the PDE based meth-
ods, we zoom into two regions of the second test image, one region containing
an edge (see Fig. 3) and one region with texture (see Fig. 4).

Fig. 3 shows the edge region after applying the methods proposed by Tschum-
perlé with interpolation constraints (top row, second left), Roussos (top row,
second right) and our method (top row, right). For comparison we have plotted
the detail of the original image (top row, left). One can see that by Tschumperlé’s
method the edges appear blurry and irregular. This seems to be an effect of
the interpolation constraints, because when Tschumperlé’s method is applied
without constraints, strong anisotropic diffusion along the edge occurs so that the
edge becomes more regular. By the method of Roussos the edge is reconstructed
in a sharp way, but overshots appear. Our method is also able to reconstruct the
edge sharply but with little overshots. Concerning the gray mark at the parrot’s
beak, we observe that Tschumperlé’s method reconstructs the shape of the mark
better than the other methods do.

The differences in the behavior of the methods can also be recognized when
applying the Sobel operator to the interpolated images: The thickness of the
edges in the result of the Sobel operator indicates the blurriness of the recon-
structed edge. We see that the proposed method produces sharper edges than the
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Fig. 2. Upsampling by a factor of four, Detail of the first test image. top left: original
high resolution image, top right: nearest neighbor interpolation, middle left: cubic inter-
polation, middle right: interpolation using GREYCstoration, bottom left: interpolation
method proposed by Roussos et. al, bottom right: proposed interpolation method.

method by Roussos and more regular edges than the method by Tschumperlé.
The overshots introduced by Roussos’ method can also be observed in the out-
come of the Sobel operator. They are far stronger than the overshots produced
by our method.

Now we investigate the effect of the interpolation methods on textures. Fig. 4,
top left, shows a textured region of the original image. The results of the meth-
ods proposed by Tschumperlé (with interpolation constraints) and Roussos are
given in Fig. 4, top right and bottom left, respectively. The result of the pro-
posed method is shown in Fig. 4, bottom right. One observes a certain blurriness
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Fig. 3. Detail of an edge in the original and interpolated images (top row, using
GREYCstoration with interpolation constraints, Roussos’ method, and the proposed
method) and subsequently applied Sobel operator (bottom row)

in the results by Tschumperlé’s method. As for the result before, we point out
that incorporating the interpolation constraints seems to have a strong effect on
the result. When applying GREYCstoration without imposing constraints, the
results are much more influenced by the anisotropic diffusion and the edges and
the texture are accentuated. In the result of the interpolation method proposed
by Roussos, we see a strong effect of the anisotropic diffusion on the texture, so
that the result is more visually appealing than the other results. Nevertheless, a
comparison with the original image shows that original and reconstructed tex-
ture differ significantly. In particular the orientations of the short stripes in the
face of the parrot are different. Note that the anisotropic diffusion induced by
the direction of the texture also affects the pupil of the parrot. On the result
of our method we remark that the reconstruction of the texture is quite con-
servative, i.e., we stay near the initial guess. The blockyness is slightly reduced
by the evolution process. Taking a look at the eye of the parrot, the relation of our
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Fig. 4. A texture detail of the original (top left) and interpolated images using
GREYCstoration (top right), Roussos’ method (bottom left) and the proposed method
(bottom right)

method to Mean Curvature Flow can be observed: The pupil is reconstructed as
a perfectly circular shape.

5 Conclusion

We have proposed a new PDE based method for the interpolation of color im-
ages. The method differs from other state-of-the-art methods by the underly-
ing evolution process. We use a PDE which is a generalized Mean Curvature
Flow, whereas other methods are based on anisotropic diffusion. Interpolation
constraints are satisfied by projecting the evolution process onto an adequate
function space.

Numerical tests show that our method is competitive to state-of-the-art in-
terpolation methods. Due to the Mean Curvature Flow nature of the method,
edges are well reconstructed. Textures are treated in a conservative manner.
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