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Abstract. We propose a novel image resolution enhancement method for multi-
dimensional images based on a variational approach. Given an appropriate down-
sampling operator, the reconstruction problem is posed using a deconvolution
model under the assumption of Gaussian noise. In order to preserve edges in the
image, we regularize the optimization problem by the norm of the total variation
of the image. Additionally, we propose a new edge-preserving operator that em-
phasizes and even enhances edges during the up-sampling and decimation of the
image. Furthermore, we also propose the use of the Bregman iterative refinement
procedure for the recovery of higher order information from the image. This is
coarse to fine approach for recovering finer scales in the image first, followed
by the noise. This method is demonstrated on a variety of low-resolution, nat-
ural images as well as 3D anisotropic brain MRI images. The edge enhanced
reconstruction is shown to yield significant improvement in resolution, especially
preserving important edges containing anatomical information.

Keywords: Edge-preserving operators, total variation regularization, deconvolu-
tion, Gaussian blur, Bregman iteration, up/down sampling.

1 Introduction

With the recent advances in low-cost imaging solutions and increasing storage capac-
ities, there is an increased demand for better image quality in a wide variety of ap-
plications involving both image and video processing. Often times, owing to sensor
shortcomings, low-power requirements, or environmental limitations, one is only able
to acquire a low-resolution observation of the scene. The low-resolution data can exist
in the form of still images, a sequence of image frames devoid of inter-frame motion, a
single video sequence, or a collection of video sequences. Furthermore the observations
can be corrupted by motion-induced artifacts either in the case of still images or videos.
The collective approach that tackles the problem of reconstructing a high-resolution
image from one or more of the above low-resolution observations is termed as super-
resolution. There are several prominent approaches to this problem, all of them largely
employing various cues such as sub-pixel shifts between successive frames, the camera
blur, defocus, and zoom, etc. These approaches can be divided into two types, ones that
use motion information between successive frames (e.g., video super-resolution), and
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the others that use a motion-free approach. Most of these approaches usually expect
multiple low-resolution observations as input. Super-resolution image reconstruction
can be mathematically modeled as a nonlinear process consisting of a convolution op-
erator acting on the image, followed by a down sampling operation and the mixing of
additive noise. Most of the earlier research work in this area has been developed in the
frequency domain approach using (discrete) Fourier transform and wavelet-transform
based methods. For e.g. the approach of Tsai and Huang [13] first outlined the idea of
super-resolution in their seminal paper. Peleg et al. [8] used the iterative back projection
scheme to achieve image reconstruction. Yet another approach [12] uses projections on
convex sets (POCS) of images to restrict the solution domain for reconstruction. A hy-
brid approach by Elad and Feuer [5] combines the POCS and the maximum likelihood
approaches for both motion-based and motion-free super-resolution. A very different
set of methods use the learning-based approach for super-resolution. The general idea
here is to learn a set of image features from exemplar images and use them for the
reconstruction of a high-resolution image. Capel and Zisserman [2] use PCA on face
image databases to learn the image model and use it to reconstruct images from mul-
tiple views. Freeman et al. [6] learn a feature set of image patches that encode the
relationships among different spatial frequencies from a large training set and use it
as prior information for reconstructing higher frequencies for resolution enhancement.
The reader is referred to an excellent monograph by Chaudhari and Joshi [4] for a
comprehensive bibliography and references in the field. Along with a wide range of
applications of super-resolution methods in tasks such as satellite image processing,
surveillance, computer vision, and even video processing, there has been a consider-
able effort by researchers trying to apply these methods to medical imaging. In par-
ticular, MRI acquisitions usually have a low-resolution in the inter-slice direction, and
it is of considerable interest to “fill-in” the intermediate slices. Carmi et al. [3] use
sub-pixel shifted MR (Magnetic Resonance) images for high resolution reconstruction.
Greenspan et al. [7] combine several low resolution images in the slice-select direction
to achieve SR reconstruction. Kornprobst et al. [9] also achieve higher resolution in the
slice-select direction for fMRI sequences.

While super-resolution methods attempt to exploit the information redundancy in
several low-resolution observations of images, at times, only a single low-resolution in-
stance of the image is available. This is sometimes the case in MRI images, where due
to economic or health reasons, a patient is scanned only once over a period of time, or
the time elapsed between successive scans may be too large to preserve any temporal
coherence to take advantage of. Based on this assumption, we will focus mainly on the
problem of single frame high resolution reconstruction of images. Our approach will be
based upon a variational model that uses the TV norm [11] as a regularizing functional.
Recently, Marquina et al. [14] have proposed a new variational model based on the TV
norm [11] for super-resolution of multidimensional images. They use a new multi-scale
approach (Bregman iterations) for iterative refinement and recovery of finer details in
images. We will follow this approach to solve the more general super-resolution prob-
lem using the TV norm as regularizing functional. In addition, we propose an iterative
refinement procedure based on an original idea by Bregman [1], to improve spatial
resolution. The proposed super-resolution method improves upon the behavior of any
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interpolation method (including high order and sinc interpolation) because our method
preserves edges satisfactorily avoiding Gibbs phenomenon, whereas the iterative refine-
ment procedure allows us to recover fine scales of the image. The main contributions of
this paper are as follows:

– a three-dimensional variational model based on the TV norm [11] regularizer.
– a new multi-scale approach (Bregman iterations) for iterative refinement and recov-

ery of finer details in images.
– a new piecewise-linear up(down) sampling operator that preserves edges.
– application of this method for super-resolution for anisotropic 3D MRI images.

This paper is organized as follows: Section 2 outlines the super-resolution model
using TV regularization. In particular, it explains the variational model as well as a
new scale-space approach that utilizes the Bregman iterative procedure for recovering
finer details from images. Additionally, section 2.2 proposes a new edge-preserving up
(down) sampling operator used in the model. Section 3 presents details of the numerical
implementation of the model. Section 4 demonstrates experimental results for a few 2D
natural images as well as 2D slices and 3D volumes of MRI images, followed by the
summary.

2 Image Observation and Synthesis Model

The low resolution image observation model can be formulated in a standard fashion as
a down-sampled degraded version of the original high resolution image. We assume that
the low resolution image f is defined on a subset of a plane Ω ⊂ R

k. For the purpose
of this paper, k is either 2 or 3. Here onwards, all the notation will be specified for 3D
images. The restriction to 2D images is straightforward. For a discrete representation,
we assume f ∈ R

n×R
m×R

p . Let the unknown high resolution image to be estimated
be given by u ∈ R

2m ×R
2n ×R

2p. Then given a linear down sampling operator D, we
can write the observation model as,

f = D(h ∗ u) + n, (1)

where n is an additive Gaussian white noise with zero mean and variance σ2, and h
is a translation invariant convolution kernel corresponding to the point spread function
of the imaging device. A related problem in the above formulation is the estimation of
the kernel h, that we shall skip in this paper. Throughout this paper, we assume that the
kernel is given by the Gaussian,

h(x, y, z) = Ke
− 1

2

[
x2

σ2
x

+ y2

σ2
y

+ z2

σ2
z

]
, (2)

where K is a normalization constant, and σx, σy, σz are variances along the X , Y , and
Z directions respectively. The problem in Eqn. 1 is usually solved as a constrained op-
timization problem that seeks to minimize the regularizer

∫
Ω
||∇u||2dxdy, while con-

straining the noise to be ||h ∗u− f ||2
L2 = σ2. This ensures that the reconstructed image

u is free of discontinuities. An alternative to the above regularizer is the total variation



392 S.H. Joshi et al.

proposed by Rudin and Osher [11]. This norm is shown to recover edges in images
satisfactorily. The total variation norm is given as,

TV(u) =
∫

Ω

|∇u|dxdy (3)

Using the regularizer in Eqn. 3, we can state the single frame image reconstruction
model as follows:

û = argmin
u

{TV (u) +
λ

2
[||f − D(h ∗ u)||2

L2 − σ2]} (4)

The Euler-Lagrange formulation for Eqn. 4 can be written as

∇ · ∇u

|∇u| + λ(h̃ ∗ S(f) − h̃ ∗ (S ◦ D(h ∗ u))) = 0 (5)

=⇒ ∇ · ∇u

|∇u| + λh̃ ∗ (ḡ − T (h ∗ u)) = 0 (6)

where S is an upsampling operator, h̃ is the inverse of h, ḡ = S(f), and the operator T
is defined as T = S ◦ D. Furthermore D ◦ S = Id

The Euler-Lagrange equation given by Eqn. 6 can be solved as a time-dependent
equation

ut = ∇ · ∇
|∇u| + λh̃ ∗ (ḡ − T (h ∗ u)) (7)

with homogeneous Neumann boundary conditions and initiating with u0 = S(f).

2.1 Bregman Iterative Method

The convergence of Eqn. 7 to the steady state yields a reconstructed high resolution
image. However if one wishes to recover even finer scales from the reconstructed image,
one can use the Bregman iterative refinement procedure [1] to do so. If u0 is the solution
of Euler-Lagrange equation (6), then we have,

∇ · ∇u0

|∇u0| + λh̃ ∗ (ḡ − T (h ∗ u0)) = 0 (8)

We will denote the image residual in the high resolution scale by v0 as,

v0 = ḡ − T (h ∗ u0) (9)

We now solve the Euler-Lagrange equation for the new image ḡ + v0 to obtain a new
solution, which we denote by u1. Again, the solution u1 will satisfy

∇ · ∇u1

|∇u1| + λh̃ ∗
(
ḡ + v0 − T (h ∗ u1)

)
= 0, (10)

where the new residual is defined as

v1 = ḡ + v0 − T (h ∗ u1) (11)
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and so on. The sequence of images u0, u1, · · · , uj , · · · are also referred to as Bregman
iterates. It is advisable to terminate this procedure when a satisfactory image quality
is obtained, otherwise it has a tendency to recover noise after all the finer scales in
the image are recovered. This iterative procedure was introduced for image restoration
in [10].

2.2 Edge-Preserving Up (Down)-Sampling Operator

There are various choices for the up (S) and down (D) sampling operators used in
the observation model in Eqn. 1 and the synthesis model in Eqn. 7 respectively. The
simplest down sampling operator can be an averaging operator that simply averages the
eight neighbors of the pixel using either a Gaussian kernel, or an arithmetic average.
Correspondingly, the up sampling operation simply involves repeating voxel values for
each row, column, and slice. Alternately, one can also use bilinear interpolation for
up sampling and down sampling images. The problems with the above approaches are
the unnecessary blurring (averaging) that is caused at each step of the iteration while
solving the Euler Lagrange equation in 6. To overcome this problem, one can use better
signal preserving operators that involve sinc or Fourier interpolation for up and down
sampling. However these methods can potentially introduce ringing artifacts in images
with sharp edges or boundaries.

Especially for images with prominent edges and interfaces, we need an appropri-
ate interpolation operator that preserves these features. Accordingly, we propose a new
piecewise-linear up (down) sampling operator that preserves such edges and bound-
aries. We describe the edge-preserving operator in detail below. We set up the grid
xj = (j − 1)Δx, yk = (k − 1)Δy and zl = (l − 1)Δz, where Δx > 0, Δy >
0, Δz > 0 and j = 1, . . . , n, k = 1, . . . , m and l = 1, . . . , p. We define the do-
main E = [0, A] × [0, B] × [0, C], where A = (n − 1)Δx, B = (n − 1)Δy, and
C = (n − 1)Δz. We consider the grid function u defined as

uj,k,l : R
3 → R

We define the edge-preserving piecewise linear approximation of the grid function u
as the function L(x, y, z)|Ejkl

= Ljkl(x, y, z) where the computational voxel Ejkl is
given by

Ejkl = [xj − Δx

2
, xj +

Δx

2
] × [yk − Δy

2
, yk +

Δy

2
] × [zl − Δz

2
, zl +

Δz

2
]

and
Ljkl(x, y, z) = uj,k,l + a(x − xj) + b(y − yk) + c(z − zl),

where a, b, and c are determined from a = minmod
(

Δx
−uj,k,l

Δx ,
Δx

+uj,k,l

Δx

)
,

b = minmod
(

Δy
−uj,k,l

Δy ,
Δy

+uj,k,l

Δy

)
, and c = minmod

(
Δz

−uj,k,l

Δz ,
Δz

+uj,k,l

Δz

)
, where the

operations in the term containing derivatives are understood component-wise, and given
by Δx±un

i,j,k = ±(un
i±1,j,k − un

i,j,k), Δy
±un

i,j,k = ±(un
i,j±1,k − un

i,j,k), and Δz±un
i,j,k =

±(un
i,j,k±1 − un

i,j,k), where i, j, k are the indices of the 3D grid.
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The minmod(d, e) function is defined as,

minmod(d, e) =
sgn(d) + sgn(e)

2
min(|d|, |e|), (12)

where sgn(d) = 1 if d ≥ 0 and sgn(d) = −1 otherwise.
The function Ljkl(x, y, z) is defined on the computational voxel Ejkl . We want to

up-(down) sample the grid function u with a spatial resolution of hx > 0, hy > 0, hz >
0. Then the up-(down) sampled grid function v is defined on a new grid v(q, r, s) for
q = q, . . . , nh, r = 1, . . . , mh, and s = 1 . . . , ph where

nh = floor

(
A

hx

)
, mh = floor

(
B

hy

)
, ph = floor

(
C

hz

)
,

where floor(d) is the maximum of all integers i such that i ≤ d. The new grid is then
defined as xhq = (q− 1)hx, yhr = (r− 1)hy, and zhs = (s− 1)hz. Based on this grid,
the function v is defined as v(q, r, s) = L(xhq , yhr , zhs).

We demonstrate the edge-preserving property of the above operator by applying it
to a checkerboard pattern as shown in Fig. 1. Figure 1 shows a low-resolution image,
as well as its up sampled versions using a bilinear, sinc and the edge-preserving opera-
tor for two different types of checkerboard patterns. It also shows a magnified portion
from the center of the image. It is observed that the bilinear and the sinc interpolation
operators introduce significant spurious levels of gray in between the black squares in
the pattern. Furthermore, they have a tendency to smooth out the boundaries of the flat
black squares in the image. In contrast, the edge-preserving operator has retained, and in
some cases even enhanced the boundaries and edges as compared to the low-resolution
image.

Figure 3 shows similar results with a 280 × 200 scene image. The first image in the
top row shows the 560×400 pixel replicated image, whereas the last image is the super-
resolved image. The bottom row shows a small portion of the image magnified to show
detail. One can immediately observe the blocking effects due to pixel replication in the
first image, and blurring of the edge boundaries in the bilinearly interpolated version.
The edges get somewhat better using the sinc interpolation, but the best quality is given
by the super-resolved image, that resolves and even enhances sharp edges and interfaces
in the image. In both the above cases, we used an isotropic Gaussian kernel with kernel
widths σx = σy = 1.

3 Numerical Implementation

This section discusses the numerical implementations of the solution to the Euler La-
grange equation. The Euler-Lagrange derivative of the TV-norm is not well defined at
points where ∇u = 0, due to the presence of the term 1

|∇u| . Hence we modify the
regularization TV functional as follows:

∫
Ω

√
|∇u|2 + ε dxdy (13)
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Low-resolution Image Bilinear Interpolation Sinc Interpolation Edge-preserved Upsampling

Fig. 1. The first and the third rows show a low-resolution image from the left, and its up sampled
versions using a bilinear interpolation operator, a sinc operator, and the new edge-preserving op-
erator for two different checkerboard patterns. The second and the fourth rows show a magnified
area from the center of the image.

where ε is a small positive parameter. We express the 3D model (7) in terms of explicit
partial derivatives

ut =λh̃ ∗ (ḡ − T (h ∗ u))

+
un

xx((un
y )2+(un

z )2 + ε))+un
yy((u

n
x)2+(un

z )2 + ε))+un
zz((u

n
x)2+(un

y )2 + ε))
[(un

x)2 + (un
y )2 + (un

z )2 + ε]3/2

+
−2un

xyu
n
xun

y − 2un
xzu

n
xun

z − 2un
yzu

n
yun

z

[(un
x)2 + (un

y )2 + (un
z )2 + ε]3/2

(14)
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low-resolution image sinc interpolation

Super-resolved reconstruction 1st Bregman refinement

Fig. 2. Clockwise from top, a 380 × 285 low-resolution image, upsampled to twice the size by
sinc interpolation, and super-resolved reconstruction, and the first Bregman iterated image

using u0 = S(f) as the initial guess and homogeneous Neumann boundary conditions
(i.e. absorbing boundary).

The above expression can also be rewritten as

un+1
i,j,k − un

i,j,k

Δt
= λ[h̃ ∗ (ḡ − T (h ∗ un))]i,j,k (15)

+
un

xx((un
y )2+(un

z )2+ε))+un
yy((u

n
x)2+(un

z )2+ε))+un
zz((u

n
x)2+(un

y )2+ε))
[(un

x)2+(un
y )2+(un

z )2+ε]3/2
(16)

+
−2un

xyu
n
xun

y − 2un
xzu

n
xun

z − 2un
yzu

n
yun

z

[(un
x)2 + (un

y )2 + (un
z )2 + ε]3/2

(17)

The approximations to the derivatives in Eqn. 17 can be calculated as: [un
xx]i,j,k

= Δx
+Δx

−un
i,j,k/h2

x, [un
yy]i,j,k = Δy

+Δy
−un

i,j,k/h2
y , [un

zz]i,j,k = Δz
+Δz

−un
i,j,k/h2

z ,
[un

xy]i,j,k = (Δx
− + Δx

+)(Δy
− + Δy

+)un
i,j,k/4(hxhy), [un

xz]i,j,k = (Δx
− + Δx

+)(Δz
− +

Δz
+)un

i,j,k/4(hxhz), [un
yz]i,j,k = (Δy

− + Δy
+)(Δz

− + Δz
+)un

i,j,k/4(hyhz), [un
x ]i,j,k =

(Δx
− + Δx

+)un
i,j,k/2hx, [un

y ]i,j,k = (Δy
− + Δy

+)un
i,j,k/2hy, [un

z ]i,j,k = (Δz
− + Δz

+)
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Low-resolution Image Bilinear Interpolation Sinc Interpolation Super-resolved reconstruction

Fig. 3. Top row shows the low-resolution image, and the upsampled versions using bilinear, sinc
and the super-resolved reconstruction. The bottom row shows a magnified detail of a portion of
the image.

un
i,j,k/2hz The Lagrange multiplier λ was chosen to be the maximum value for which

the algorithm was stable. It was empirically determined to be λ = 10, and was not
changed thereafter.

4 Experimental Results

Lastly, we demonstrate the algorithm by performing experiments with 2D natural im-
ages, 2D slices of 3D volumetric images, and finally the full 3D volumetric MRI images
themselves.

4.1 Results for Natural Images

Figure 2 shows the results of the super-resolution reconstruction algorithm applied to a
380 × 285 map image. This image has been scaled to 760 × 570 by pixel-replication
for display purposes. It can be observed that pixel replication inherently adds blocking
artifacts to the image. The low-resolution image is up sampled by a factor of two using
bilinear interpolation, and sinc interpolation, and finally using the super-resolution re-
construction method. It is observed that bilinear interpolation grossly smoothes out the
image, the result due to sinc interpolation is preserves some high frequency information,
whereas the super-resolved reconstruction yields a sharp, crisp image, even resolving
the little text at finer scales. One can further enhance this image by performing the 1st

Bregman iteration as shown in Fig. 2. However, this process should be terminated after
one or two iterations.

4.2 Results for 2D Slices of 3D MRI Image

In this experiment, we look at enhancing the in-plane resolution of individual transverse
slices of a 3D MRI image. From left, all rows of Fig. 4 show an isotropic original image
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Original Image Subsampled Image Fourier Interpolation SR reconstruction

Fig. 4. Examples of super-resolved reconstruction for 2D slices of 3D MRI images

180 × 216, the subsampled image, a Fourier interpolated image, and a super-resolved
reconstructed image. For display purposes, the subsampled image is shown at twice the
resolution using pixel-replication. It is observed that the high resolved reconstructed im-
age has sharper edge features, more details, and visually closely resembles the original
image as compared to the Fourier interpolated result.

4.3 Results for Full 3D MRI Images

The proposed super-resolution algorithm can be applied to arbitrary 2D images oreven 3D
volumes of anisotropic voxel dimensions. In this experiment, we apply the reconstruction
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Original Image Subsampled Image Fourier Interpolation SR reconstruction

Fig. 5. Examples of super-resolved reconstruction for full 3D MRI images (volume rendered)

algorithm to the full 3D MRI image volume. Figure 5 shows a volume rendering of an
original image of dimensions256×256×160, at voxel widths given by1×1×1.25mm3.
This image is first subsampled to half the resolution at 128×128×80 (2×2×2.5mm3)
and then super-resolved to a full isotropic 256× 256× 160 image with 1 × 1 × 1 mm3

resolution. As expected, we can see an improvement in the resolution plus an increase in
the detail simultaneously across all X, Y, and Z dimensions. In this experiment, we used
an anisotropic Gaussian kernel with the variances proportional to the voxel dimensions.
Furthermore the grid dimensions for the edge-preserving up sampling and down sampling
operators were taken to beΔx = hx

2 , Δy = hy

2 , Δz = hz

2 , wherehx, hy, hz are the voxel
dimensions of the appropriate up sampled or down sampled image.

5 Conclusion and Future Directions

We have presented a method for enhancement of resolution of images. The strengths of
this approach lie in the i) TV norm as a regularizing functional in the variational model,
and ii) a new piecewise-linear up(down) sampling operator that preserves edges. While
we are aware that the proposed method works with the physical space, and not the
frequency (k-space) of the data, we emphasize that the TV prior is a nonlinear prior that
does modify the amplitudes of the k-space data. In other words, our algorithm works on
the processed physical image, yet it modifies the spectral information implicitly in the
data. This is an important point to be noted, especially in view of comparison with other
methods that involve MRI image processing that work with the k-space representation
of the data. We have demonstrated the improvement in spatial resolution for 2D as well
as 3D anatomical MRI images. In the future, we intend to investigate the problem of
high resolution reconstruction of DT-MRI images using the proposed method.
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