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Abstract. Fourth-order nonlinear diffusion filters are isotropic filters in
which the strength of diffusion at regions with strong image features such
as regions with an edge or texture is reduced leading to their preservation.
However, the optimal choice of parameter in the numerical solver of these
filters for having a minimal distortion of the image features results in a
very slow convergence rate and formation of speckle noise on the denoised
image especially when the noise level is moderately high. In this paper,
a new fourth-order nonlinear diffusion filter is introduced, which have an
anisotropic behavior on the image features. In the proposed filter, it is
shown that a suitable design of a set of diffusivity functions to unevenly
control the diffusion on the directions of level set and gradient leads to
a fast convergent filter with a good edge preservation capability. The
comparison of the results obtained by the proposed filter with that of
the classical and recently developed techniques shows that the proposed
method produces a noticeable improvement in the quality of denoised
images evaluated subjectively and quantitatively as well as a substantial
increment of the convergence rate comparing to the classical filter.

1 Introduction

Nonlinear diffusion denoising filters are known for their good edge preservation
capabilities. In these techniques, the denoised image is a solution of a partial dif-
ferential equation (PDE). The first kind of these denoising methods is introduced
by Perona and Malik [1] in 1990 based on solving a nonlinear second-order PDE
(i.e. the so-called Perona-Malik equation). Since then, there has been a great
deal of research in this filed which led to introduction of variety of nonlinear
diffusion denoising techniques (see [2], [3] as a few examples).

In spite of the good edge preservation obtained by these techniques, these
methods tend to produce blocky effects in the images [4]. In fact, the solution
of Perona-Malik equation is a piecewise constant solution, therefore these filters
create blocky effects on the smooth regions of the image. A spatially regularized
version of the nonlinear diffusion filter has been introduced by Catte et al. [2]
to reduce the formation of the these artifacts on the denoised image. You and
Kaveh [4] proposed a more effective solution to this problem by using a fourth-
order PDE for noise removal, where a planar approximation of the noisy image
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is supported in the solution of the PDE resulting in a significant improvement
of the ramp edge preservation and a dramatic reduction of blocky effects. Based
on this idea a variety of the fourth-order PDE based denoising techniques have
been developed such as the filters given in [5], [6], and [7]. However, the fourth-
order diffusion filters damp high spatial frequency components (i.e. noise and
step edges) much faster than the second-order ones [5]. This feature can result
in distorting of the step edges during the evolutionary process of the image
denoising especially when smoothing strength of the filter for the detected edges
is not effectively reduced by a diffusivity function. Setting a small threshold value
in the diffusivity function substantially reduces the diffusivity on the edges with
the expense of a very slow convergence rate, as reported in [4] and [5].

All of previously mentioned techniques belong to a class of diffusion-based
denoising filters known as isotropic nonlinear diffusion denoising methods. It
means that total amount of the diffusion controlled by the diffusivity function
is applied on the different regions of the image regardless of the direction of the
image features. To improve edge preservation of these filters, the other class of
diffusion-based denoising techniques have been emerged in which the diffusion
is adapted to the direction of the local image features [8], [9] and [10]. It means
that the filter minimizes the diffusion strength on the direction perpendicular
to the direction of local features and maximizes it in the direction of the local
features. However, these techniques have been developed in the context of the
second-order diffusion filters.

In this paper, an anisotropic fourth-order diffusion filter is proposed in which
the diffusion strength is adjusted respecting the direction of the local features. Two
different diffusivity functions are designed to extremely minimize the diffusion per-
pendicular to the feature orientation, while allowing the diffusion parallel to the
edge orientation and on the smooth regions to proceed with normal strength. The
comparison of the results obtained by the proposed filter with that of the classical
and newly developed ones reveals a noticeable improvement in the quality of the
denoised images evaluated subjectively and quantitatively as well as a substantial
increment of the convergence rate comparing to the classical filter.

2 A Brief Review

2.1 From Second to Fourth-Order Filters

The nonlinear diffusion filters are evolutionary processes. The fundamental PDE
of the nonlinear diffusion filter introduced by Perona and Malik [1] is given by

∂u/∂t = div. (c (‖∇u‖)∇u) , (1)

where u is the image intensity function, c(.) is a diffusivity function by which
the diffusion coefficient is calculated and t is the evolution time. Symbols of div.
and ‖.‖ are used for mathematical notation of Euclidean norm and divergence
respectively. The diffusivity function is a positive and none increasing function
of ‖∇u‖. One of these diffusivity functions defined by Perona and Malik is given
by
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c (‖∇u‖) = k2/
(
k2 + ‖∇u‖2

)
, (2)

where k is the so-called contrast parameter.
You and his colleagues [11], carried out a detailed analysis to show that the

solution of (1) is equal to the minimization of an energy functional. If the diffu-
sivity function of (2) is used then the energy functional is

R (u) =
∫

Ω

k2

2
ln

(
k2 + ‖∇u‖2

)
dxdy , (3)

where Ω is the region of support of u. R (u) is minimized when ‖∇u‖2 is mini-
mum, which leads to a piecewise constant approximation of u. Therefore, forma-
tion of staircase artifacts on the ramp edges is unavoidable. In order to resolve
this problem, You and Kaveh [4] introduced a fourth-order PDE-based denoising
method in which the denoised image is obtained by minimization of the potential
function given by

E (u) =
∫

Ω

f
(|∇2u|) dxdy , (4)

where f ′ (s) = sc (s)and |∇2u| is the absolute value of Laplacian of u. Therefore,
for the same diffusivity function in (2), E(u) is in form of

E (u) =
∫

Ω

k2

2
ln

(
k2 + |∇2u|) dxdy , (5)

meaning that E(u) is minimized when |∇2u| is minimum. Therefore, the ramp
region of u (i.e. the regions where |∇2u| = 0) are fit in the solution of the
associated fourth-order PDE. The solution of the Minimization problem of (4)
after using Euler equation followed by gradient descent procedure is given by

∂u/∂t = −∇2
(
c
(|∇2u|)∇2u

)
, (6)

By the forward Euler approximation of the ∂u/∂t , the numerical solver of (6)
is given by

un+1 = un − dt ×∇2
(
c
(|∇2un|)∇2un

)
,

u0 = u0 and n = 0, 1, · · · , N , (7)

where n is the number of iterations, dt is the time step-size and u0 is a noisy
image. This process is an iterative process. In order to protect the edges from
over-smoothing, the process needs to be ceased at a certain number of iterations
denoted by N.

Besides these nonlinear diffusion filters, another class of techniques known as
regularization techniques based on solving the nonlinear PDE has been widely
used for image restoration. The classical paper of Rudin, Osher and Fatemi [12]
is introduced one of the first kind of these filters in which PDE to be solved is
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of the second order. Therefore, the same problem of formation of staircases on
the ramp regions of the image motivates the researchers to introduce the new
regularization techniques by solving the higher order PDE such as [13], [14].
However, the focus of this paper is on the diffusion based techniques as they
have been reviewed earlier.

2.2 Edge Preservation and Convergence Rate

Apart from a significant advancement in reduction of the blocky effects on the
denoised image using (6), the optimal parameter setting for numerical solver in
(7) leads to very slow convergence rate in its numerical solver especially when
the level of contaminating noise is moderately high.

A recently developed technique known as a fourth-order hybrid model [6] uses
a relaxed median filter [15] to improve the quality of the denoised image when
the observed image is heavily contaminated by noise. The numerical model of
this filter is given by

un+1 = RMαω

(
un − dt ×∇2

(
c
(|∇2un|)∇2un

))
, (8)

where RM denotes the relaxed median filter with a lower bound of α and upper
bound of ω. This filtering process needs a lower number of iterations to give a
denoised image. However, the denoised image is highly affected by using the re-
laxed median filter and the main advantage of using fourth-order diffusion filters
(i.e. the ramp edge preservation) is hindered as it is shown later. Moreover, the
computational burden per iteration is dramatically higher than that of the You
and kaveh. Another recently introduced technique [7] demonstrates a significant
improvement in the convergence rate along with a good ramp edge preservation.
In this technique, the diffusivity function of the You and Kaveh filter, c

(|∇2u|)
, is replaced by c (‖∇u‖) and the PDE of the filter is given by

∂u/∂t = −∇2
(
c (‖∇u‖)∇2u

)
, (9)

Although the energy functional of (9) does not have a closed form, it can be seen
that the filter can still support the planar approximation of the image. The ramp
edge preservation of this fourth-order diffusion filter comes from the fact that
∂u/∂t → 0 when ∇2u → 0. However, as|∇2u| ≥ ‖∇u‖ the diffusivity function of
c
(|∇2u|) gives the smaller diffusion coefficient for the step edges compared to

c (‖∇u‖) . Therefore, in spite of the good convergence rate obtained by (9), the
step edges are still facing the higher amount of the distortion comparing to that
of the classical methods.

2.3 Anisotropic Diffusion Filters

The so-called anisotropic diffusion filters refer to the schemes in which the dif-
fusion rate is specifically controlled based on the direction of the local features
such as the ones introduced in [8], [9] and [10]. The coherence-enhancing diffu-
sion filter [9] is one this kind in which the scalar diffusion coefficient in (1) is
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replaced by a tensor diffusion coefficient to reduce the diffusivity of the filter in
perpendicular to the orientation of the local features, while let the diffusion with
high strength is performed at the direction of the level set. Another anisotropic
filter introduced by Carmona and Zhong [10] uses the scalar diffusivity functions
to perform anisotropic diffusion. The PDE of this filter is given by

∂u/∂t = c1 (c2uηη + c3uξξ) , (10)

where c1,c2 and c3 are different diffusivity functions and uηη and uξξ are the
second-order directional derivative. Let η denote the perpendicular direction to
the orientation of the feature or the so-called gradient direction and ξ denote
the direction of the contour or level set.

All of these techniques belong to a class of filters known as the second-
order diffusion filters. Some techniques such as [16] for surface smoothing by
anisotropic diffusion filtering of the normals to the surface or its other variant
for image denoising [17] can be considered as fourth-order anisotropic filters,
however these filters are two phase filters meaning that at the first phase, an
anisotropic filter applies on the normal map of the surface or image and at the
second phase, a surface is fitted to the processed normals. In Section 3, a new
setting of the fourth-order anisotropic diffusion filter is proposed, which is a sin-
gle phase filter and can be seen as a generalization of the classical fourth-order
nonlinear diffusion filter of You and Kaveh.

3 The Proposed Model

3.1 Diffusion Equation

The previously mentioned fourth-order diffusion filters are isotropic in which
the extent of the diffusion is controlled by the diffusivity function regardless
of the orientation of the edges. The only anisotropic behavior of those filters
is limited to the anisotropic response of the discrete Laplacian operator. Most
of the discrete Laplacian operators exhibit an anisotropic response to the edge
with respect to x and y (i.e. the Cartesian coordination) [18]. However, in order
to give an anisotropic realization of the fourth-order diffusion filter, one should
consider the second-order directional derivative of the image. Two normalized
and orthogonal vectors of η and ξ pointing at the direction of the gradient and
level set respectively are given by

η =
[ux uy]√
u2

x + u2
y

and ξ =
[−uy ux]
√

u2
x + u2

y

. (11)

Based on the definition in (11) , one can derive the second order derivative of
the image in the direction of the gradient and level set as

uηη =
uxxu2

x + 2uxuyuxy + uyyu
2
y

u2
x + u2

y

(12)

and
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uξξ =
uxxu2

y − 2uxuyuxy + uyyu
2
x

u2
x + u2

y

. (13)

However, it can be simply shown that the summation of these second directional
derivatives is equal to the Laplacian of the image,

∇2u = uxx + uyy = uξξ + uηη . (14)

Therefore, the proposed fourth-order diffusion equation, which is of a general-
ization of (6) can be written as

∂u/∂t = −∇2 (c1 (c2uηη + c3uξξ)) . (15)

In the proposed model, c1, c2 and c3 are the diffusivity functions, where c1

controls total amount of diffusion and c2 and c3 control the uneven diffusion in
the direction of η and ξ . Apparently, choosing c2 = c3 and c1 ∗ c2 = c will lead
to the nonlinear diffusion filter of (6) or (9) depending on the definition of c. In
the next section, the criteria of a suitable choice for these diffusivity functions
are discussed.

3.2 Diffusivity Functions

Different diffusivity functions in context of nonlinear diffusion denoising have
been introduced and depending on the choice of the diffusivity function, the
behavior of the filter can be varied. The most commonly used diffusivity function
in fourth-order diffusion filters is the one in (2) as c (s), where s is the modulus of
the derivative of the image (s = |∇2u| in (6) or s = ‖∇u‖ in (9). This diffusivity
function regardless of the choice of s is a function bounded in (0,1]. However, a
low computational cost and suitable choice of these diffusivity functions in our
proposed model is given by

c1(s) = c2(s) = c (‖∇u‖) and c3 = 1 . (16)

Similar to (9), s in the function c1 is the modulus of the gradient of u which
leads to a fast convergence rate and c2 = c1 is an optimal choice in terms of
overall computational cost of the filter. Therefore, the proposed model in (15)
can be rewritten in the form of

∂u/∂t = −∇2
((

c (‖∇u‖)2 uηη + c (‖∇u‖)uξξ

))
. (17)

Since the function c is bounded in (0, 1], the overall diffusivity in η direction
is smaller than the one in ξ direction. Before presenting comparative results in
the next section, the performance of the filter is compared to the second order
filter of Perona Malik in Fig.1, which can show the ability of the proposed filter
to preserve the ramp edges. In fact, the proposed filter supports the planar
approximation of the image similar to (6) and (9), since for planar regions,
uηη → 0 and uξξ → 0 which lead to ∂u/∂t → 0.
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(a) (b) (c)

Fig. 1. Comparing the results obtained by a second-order filter and the proposed filter,
(a) noisy image, (b) denoised image by the Perona and Malik filter, (c) denoised image
by the proposed filter

3.3 Inverse Diffusion

The classical fourth-order filter of You and Kaveh [4] in (6) is a well-posed process
because its potential function, (5), is a positive potential function with a global
minimum. On the other hand, deriving the potential function of the proposed
filter, (17), is not as simple as (6). However, in order to demonstrate that the
uneven weighed summation of uηη and uξξ may lead to the inverse diffusion, it
is sufficient to show that at least for a sub-region of u

sing
(
c (‖∇u‖)2 uηη + c (‖∇u‖)uξξ

)
�= sign

(∇2u
)
. (18)

In this case, the dynamic flow of (17) performs an inverse diffusion, which results
in the edge enhancement.

The maximum of the uneven weight between coefficients of uηη and uξξ hap-
pens, when c (‖∇u‖) = 1/2. In this case, the linear version of the (17) can be
written in the form of

∂u/∂t = −∇2
(uηη

4
+

uξξ

2

)

= −∇2
((uηη

4
+

uξξ

4

)
+

uξξ

4

)

= −∇2

(∇2u

4
+

uξξ

4

)
. (19)

Knowing that (6) has a positive potential function, if sign
(∇2u/4 + uξξ/4

)
=

sign
(∇2u

)
, it results in a positive potential function for filter (19). It means

that |∇2u| > |uξξ| should be valid throughout the whole image, which does not
hold true. An example shown in Fig.2 can demonstrate the fact that the linear
diffusion equation of (19) performs an inverse diffusion on the edges. The signal
shown in Fig.2-(b) is the extracted intensity profile of the standard test image of
"disk" in Fig.2-(a) at the middle row. The signal in Fig.2-(c) is the same intensity
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Fig. 2. Inverse diffusion as a result of the uneven diffusion in the directions of η and
ξ, (a) is the original image of "disk", (b),(c) and (d) are the intensity of the original,
diffused image by (19) and diffused image by the proposed filter (17) at the middle row

profile of the image after being filtered by (19). The inverse diffusion in this case
leads to the edge enhancement. However, if the filter is run on the nonlinear
fashion as it is proposed in (17), the image shown in Fig.2-(d) shows that process
of uplifting of the edges is dramatically reduced. In the other word, in the general
application of the image denoising, the process of the inverse diffusion in the
proposed filter does not lead to instability of the filter and formation of ringing
artifacts around the edges.

4 Comparative Results

In this section, we are presenting the comparative results of the proposed method
with the other fourth-order nonlinear diffusion filters. The results of the following
filters are going to be compared:

1. The Proposed filter with the PDE of (17) with k=7 and dt=0.031 (i.e. the
time-step size that provides a data independent stability in the numerical
solver [7]).

2. The filter of (7) introduced by You and Kaveh [4] with the suggested param-
eters setting of dt=0.25 and k=1.

3. The filter of (8) introduced in [12] with the suggested parameters setting of
dt=0.1, k=3, α = 3 and ω = 5.

4. The filter in (9) introduced in [7] that is a self-governing filter. In this fil-
ter, the diffusivity function of Pernoa and Malik, c(s) has been used with
s = ‖∇u‖, the contrast parameter of k is estimated by histogram-based
mechanism used in [1] and dt=0.031.

Three test images of "Pepper", "Cameraman" and "House" have been cor-
rupted by white additive Gaussian noise with standard deviation of 15. In
Table 1, an objective comparison between the performances of these filters in
terms of signal-to-noise ratio (SNR) of the denoised image and their computa-
tional complexity are presented.
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Table 1. Quantitative comparison of the results

Noisy Image Denoised Image
SNR(dB) Method SNR(dB) Num. of Iter. CPU/Iter. Convergence(s)

Proposed 17.84 80 0.038 3.04
Pepper (9) 17.32 14 0.080 1.12
10.98 (7) 15.83 3133 0.031 97.12

(8) 15.21 2 0.155 0.31

Proposed 17.08 35 0.038 1.33
Cameraman (9) 16.83 6 0.082 0.492

12.38 (7) 16.59 3015 0.031 93.46
(8) 13.59 1 0.160 0.16

Proposed 17.44 89 0.038 3.382
House (9) 17.08 36 0.081 2.916
9.68 (7) 15.80 3907 0.031 121.12

(8) 15.39 2 0.160 0.32
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Fig. 3. Comparing the convergence rate of the filters for denoising of test image
"House"

The results exhibit that the proposed method constantly produces the de-
noised image with higher SNR. It is important to note that the results are
obtained at the optimal number of iterations in which the maximum SNR in
evolutionary process of the filters are achieved. If the iterative filtering process
is continued after the optimal number of iterations, the SNR of the denoised
image is reduced due to over-smoothness of edges.

The other important feature in the proposed method is its fast convergence
rate. As it is shown in Fig.3, for the test image of "House", the convergence rate
in the proposed method is much higher than the filter of You and Kaveh. The
computational burden of the filters is measured as CPU time of each iteration
provided that they are filtering the same image on the same computer. Thus, the
total convergence time for filtering process is a multiplication of CPU/iteration
by number of iterations. The relaxed median regularized filter converges faster
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparing the perceptual quality of the results. The pair of images labeled
(a) to (f) are as the following: (a) noiseless image, (b) noisy image, (c) denoised image
using (7), (d) denoised image using (8), (e) denoised image using (9), (f) is denoised
image using proposed filter (17).
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than the proposed method, however the maximum SNR is significantly lower
than that of other methods, and the decay rate of SNR due to over-smoothness
of the edges is also very fast. The computational cost of the proposed filter
compared to the one in (9) is slightly higher, however the higher SNR ob-
tained by the proposed filter justifies this amount of the higher computational
burden.

In Fig.4, the perceptual quality of the denoised image by the proposed method
is compared with that of the other methods. In the first row, the whole image and
in the second row, a magnified portion of the image are shown. Each pair of the
images is labeled from (a)-(f). The first two images (a) and (b) are the noiseless
and the noisy images. In Fig.4-(c), the denoised image by You and Kaveh filter is
shown in which formation of some speckle noise on the denoised image is visible.
This drawback is known and addressed in [4] and it is as a result of choosing
small value for k in diffusivity function, however this setting of k is necessary
to protect the edges from over-smoothing. In Fig.4-(d), the denoised image by
the relaxed median regularized filter using (8) is shown. This denoised image is
blurred and some staircase artifacts on smooth regions of the image are formed.
The next image, shown in Fig.4-(e) is the result of the filter in (9) in which the
extent of denoising and edge preservation is noticeably better than that of the
filters of (7) and (8). However, comparing this result with the one obtained by
the proposed filter in Fig. 4-(f) reveals that the extent of edge preservation in
the proposed filter is noticeably higher.

5 Conclusion

An anisotropic fourth-order PDE for noise removal has been proposed. A brief
theoretical review of the second and fourth-order diffusion denoising filters has
been presented with highlighting the fact that previously developed fourth-order
filters are isotropic filters in which the extent of the edge preservation is con-
trolled by reduction of the diffusivity of the filters near the edge regardless of
its orientation. A major challenge in these filters is that the optimal choice of
the model parameters for good edge preservation leads to a dramatically slow
convergence rate. However, in the proposed filter, the diffusion strength has
been adjusted with respect to the direction of the local features. Two different
diffusivity functions have been designed to extremely minimize the diffusion in
perpendicular to the feature orientation (i.e. gradient direction), while let the
diffusion on the direction parallel to the orientation of the edge (i.e. direction of
the level set) proceed with normal speed. Therefore, the proposed filter leads to
a faster reduction of the uncorrelated noise and overall faster convergence rate
with a good edge preservation due to reduction of the diffusivity of the filter in
the gradient direction. The comparison of the results obtained by the proposed
filter with that of the classical and newly developed ones has shown that the
proposed method produces a noticeable improvement in the quality of the de-
noised images evaluated subjectively and quantitatively as well as a substantial
increment of the convergence rate compared to the classical filter.
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