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Abstract. We consider detection of local image symmetry using linear filters. 
We prove a simple criterion for determining if a filter is sensitive to a group of 
symmetries. We show that derivative-of-Gaussian (DtG) filters are excellent at 
detecting local image symmetry. Building on this, we propose a very simple 
algorithm that, based on the responses of a bank of six DtG filters, classifies 
each location of an image into one of seven Basic Image Features (BIFs). This 
effectively and efficiently realizes Marr’s proposal for an image primal sketch. 
We summarize results on the use of BIFs for texture classification, object 
category detection, and pixel classification.  
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1   Introduction 

Previous schemes for detection of image symmetry are fairly complex [1-6]; 
requiring, for example, comparison of the outputs of filters at multiple positions. 
Herein we show that symmetries may be detected by single linear filters. Building on 
this we present a simple algorithm that computes a Marr-type primal sketch [7] by 
categorizing local image structure according to its approximate symmetry. 

The paper is organized as follows. In section 2 we present results on image 
symmetries. In 3 we show how to test whether a linear filter is sensitive to a 
symmetry. In 4 we review image measurement with derivative-of-Gaussian (DtG) 
filters. In 5 we consider the symmetry-sensitivity of these DtG filters. In 6 we show 
how this sensitivity gives rise to a system of Basic Image Features (BIFs). In 7 we 
summarize results on using BIFs for texture categorization, object category detection 
and pixel classification. In 8 we conclude. Sections 2-5 are a distillation of work 
published, in press and under review  in fuller form elsewhere [8-14]; 6 is new; parts 
of 7 have been presented or are under review in fuller form elsewhere [9, 11]. 

2   Image Symmetries 

Symmetry of a structure (X) is always relative to some class of admissible 
transformations. A structure is said to have a symmetry when a non-trivial group of 
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admissible transformations, known as the automorphism group, each leave it 
indistinguishable from the original. This is denoted by [ ] { }: |Aut X t t X X= = . 

Considering images, an obvious class of transformations are the spatial isometries; 
and the possible symmetries, relative to this class, have long been catalogued [15-17]. 
A broader class of transformations, where each spatial isometry is combined with a 
permutation of a finite set of image ‘colour’ values, has also been considered. These 
allow the symmetries of, for example, Escher’s ‘Reptiles’ to be expressed [18]. The 
gamut of possible ‘colour symmetries’ has been fully determined [19, 20].  

We propose that the class of ‘image isometries’, defined as a spatial isometry 
combined with an intensity isometry, is appropriate for images. We write an image 
isometry as ( ),g i s= , where :i →  is an intensity isometry, and 2 2:s →  is 

a spatial isometry. Such an image isometry is applied to an image 2:I →  

according to ( ) ( )( )( )_ _g I i I s i I s= = . Choosing a class of transformations is 

tantamount to choosing a geometry [21], and the geometry that corresponds to the 
class of image isometries has previously been considered for images [22] and  much 
earlier, abstractly, as one of a larger class of possible geometries [23]. 

We have employed a method for determining the possible automorphism groups of 
images, relative to the class of image isometries. The method relies on two results. 
First, that the projection of a group of image isometries onto their spatial or intensity 
components in both cases makes a group. Second, that (except for a special case) the 
intensity projection group must be isomorphic to a factor group of the spatial 
projection group [8]. Using the method, we have determined the possible 
automorphism groups of 2-D images, except for cases that contain discrete periodic 
translations. A summary of these possible symmetries, together with our notational 
system is shown in fig. 1. The symmetries include: familiar ones, such as reflectional 
(J2,1), reflect-and-negate (J6,1 ), and Yin-Yang type (J7,2); simple but often ignored 
ones, such as variation in one direction only (J3); simple but novel, such as continuous 
translate-and-increment in one direction, plus a line of reflection parallel to that 
direction (J11); and some wholly novel, such as  continuous translate-and-increment in 
one direction, plus a continuous line of centres of Yin-Yang type symmetry (J12). 

3   Sensitivity of Linear Filters to Symmetries 

Detection of a symmetry seems to require multiple measurements, but this is 
incorrect. Consider a +1/-1 filter, such as used in finite-difference schemes. When 
positioned so that it straddles a putative line of reflection, a necessary criterion for the 
symmetry is that the filter gives a 0 response. We generalizes this: a filter F is 
sensitive to a symmetry K if it gives the same response to all images that have the 
symmetry (i.e. [ ]f Aut I K F I f∃ ∈ ⊇ ⇒ = ). This definition is impractical 

because it requires assessment across all images. However, we have found a 
necessary and sufficient test that requires only a single integral to be computed. We 
present this below in Theorem 1, after introducing some notation. 
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We use an inner product notation ( ( ) ( )
2

:
x

F I F x I x
∈

= ∫ ) to denote the 

measurement of an image 2:I →  by a filter 2:F → ; and we define an 

operator ( )

( ),

:K

i s K

F i s F
∈

= ∑  which, roughly speaking, ‘smears’ a filter by a group.  

Theorem: Symmetry-Sensitivity Test for Filters 

F is sensitive to K if and only if ( ) 0KF F =  

Proof 
A formal proof will be published elsewhere [14]. Intuitively the truth of the theorem 
can be understood as follows. The signal that a filter ‘sees’ best is a copy of itself. Of 
all the symmetric signals, a symmetrised version of the filter should be the most easily 
seen. If the filter cannot see a symmetrised version of itself, then it is insensitive to 
the symmetry. 

4   Gaussian Derivative Filters 

Gaussian Derivative (DtG) filters are defined in 1-D by  

( ) ( ) ( )( ) ( ) ( )
2

1
222 2 1

: 2 , :
2 2

nx n
n

nn

d x
G x e G x G x H G x

dx
σ

σ σ σ σπσ
σ σ

−− −⎛ ⎞ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

where Hn is the nth Hermite polynomial; and in 2-D by 

( )( ) ( )( ) ( )( ), , :m n m nG x y G x G yσ σ σ= . 

They are used as a general-purpose method to probe an image location (which for 
simplicity we assume is at the origin 0 ) by computation of inner products 

( ),m n
mnj G Iσ= . 

Typically, one measures with a family of DtG filters up to some order e.g. the 2nd 

order family ( ){ }, | 0 2m nG m nσ ≤ + ≤ . Scale-normalized filter responses : p q
pq pqc jσ +=  

make later equations simpler. 
The suitability of DtGs as the front-end of an uncommitted computational vision 

system arises from the symmetries that individual filters and families possess [24]. 
First amongst these is a scale symmetry, which manifests as a change of size, but not 
of shape, when a DtG is rescaled by blurring with a Gaussian kernel. Second is that 
the linear span of a family of DtGs is rotationally symmetric. 

The responses of a bank of DtG filters entangle intrinsic and extrinsic aspects of 
image structure. For example, an in-plane rotation of the image about the 
measurement point causes the DtG responses to change. A representation that  
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disentangles these aspects for measurement up to 2nd order has been developed [13]. 
The representation works by factoring out of the 6-D 2nd order DtG response space the 
changes due to the group of image isometries that fix the measurement point and do 

not invert the intensity axis which we denote ( ) ( )1D A+
∞ ×0 . 

=

image 
patch

2nd order DtG
family

=

=
The 2nd order

local-image-structure 
orbifold 
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6-D
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- The group 
of centred rotations and 
reflections, and positive 
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( ) ( )1D A+
∞ ×0

 

Fig. 2. The top part illustrates schematically the probing of an image patch by a bank of DtG 
filters resulting in a point in jet space; the bottom, the factoring of the jet space by a group of 
transformations resulting in the local-image-structure orbifold 

The result is an orbifold – a type of manifold with boundaries, creases and corners 
allowed – consisting of a 3-D and a 0-D component (figure 2). The intrinsic aspect of 
a 6-tuple of filter responses corresponds to a particular location in the orbifold, and is 
invariant to rotating the image about the measurement point, reflecting it in a line 
through the measurement point, or affinely scaling the intensity. When the responses 
of the 1st and 2nd order DtG filters are all zero, the intrinsic aspect is the 0-D part of 
the orbifold; all other responses map to the 3-D component. A coordinate system 

( ) 2 2 2 2
, , , 0, 0,l b a π π π π⎡ ⎤ ⎡ ⎤ ⎡ ⎤∈ − × ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦  for the 3-D component is given by [13]: 

( ) ( )22 2 2
10 01 20 02 11 20 02arctan 4 4 ,l c c c c c c c⎛ ⎞= + + − + +⎜ ⎟

⎝ ⎠
 

( )22 2 2
10 01 20 02 11arctan 2 , 4b c c c c c⎛ ⎞= + − +⎜ ⎟

⎝ ⎠
 

( )( ) ( ) ( )( )( )2 2 2 21
01 10 02 20 10 01 11 01 10 11 10 01 20 022

arctan 4 , 2a c c c c c c c c c c c c c c= − − + − + −  

The orbifold has been equipped with a metric, induced by one on the filter 
response space, which expressed as a line element in the lba-system is 

( )( )12 2 2 2 2 2cos 2 5 3cos2 sin 2ds dl l db da b b
−= + + − . The orbifold is intrinsically 

curved, but it can be embedded into Euclidean 3-space with only mild distortion. 
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5   Symmetry-Sensitivity of DtG Filters 

Using the elements of sections 2-4, we can determine which DtG filters are sensitive 
to which symmetries. We consider not just canonical filter forms (e.g. an x-derivative) 
but any linear combination of filters in the 2nd order filter family. This allows us to 
determine the symmetry-sensitivity of the entire filter family, independent of the 
particular basis filters used. For example, while the x-derivative filter is sensitive to a 
reflectional symmetry with a vertical mirror line through the measurement point, the 
x- and y-derivatives together are sensitive to any reflectional symmetry in a line 
through the measurement point.  

SS is the
exterior only

SS is the
entire volume

2,1
aJ

2,2

8,2

5

a

a

a

J

J

J

+

+
+

0J

10J 11

12

g

g

J

J

1,2 2,1

6,1 7,2

8,2

g g

g g

g

J J

J J

J

+ +

+ +

+

6,1
aJ 6,2

8,2

a

a

J

J

+

−
+

3J 4

9

g

g

J

J11
aJ1,2

cJ 2,2
cJ

4
aJ 7,2

cJ 8,2 9

12

c a

a
slope

J J

J J{ }1, 3,
cJ { }1, 4,

2,3 5

c

c c

J

J J+
8,4
cJ

6,2

7,4

c

c

J
J

{ }

{ }

6, 3,

7, 6,

8,4

c

c

c

J

J

J

{ }

{ }

{ }

6, 6,

7, 12,

8, 6,

c

c

c

const

J

J

J
J

 

Fig. 3. The sensitivity-submanifolds (SS) of different symmetry types are shown in red. The 
different possible SS are arranged in a lattice induced by inclusion relations. The symmetry 
type labels correspond to those used in figure 1. Superscripts indicate the spatial relationship 
between the symmetry and the origin: a c indicates origin-centred rotation; an a+ that the origin 
is contained in a line of reflection, but is not a centre of rotation; similarly for a- and 
anti-reflections; a g indicates general position, neither centred nor aligned. All symmetries 
labelled in a box have the indicated SS; those on the left are minimal. 

The filter family sensitivities can be projected into the orbifold to determine where 
the intrinsic component of the jet responses must lie whenever the image has any of a 

class of symmetries equivalent by conjugation with an element of ( ) ( )1D A+
∞ ×0 . We 
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call the restricted set of possible responses the sensitivity-submanifold (SS). For 
example the SS is the orbifold exterior ( 0 2a a π= ∧ = ) for reflectional symmetry in 

a mirror through the measurement point. The results are summarized in fig 3. 

6   Symmetry-Based Basic Image Features (BIFs) 

We have used the symmetry sensitivities of the DtG filters as a starting point in 
defining a set of Basic Image Features (BIFs) that realize Marr’s idea of a primal 
sketch of image structure, in a computationally simple scheme. We do not claim that 
the scheme is derived as rigorously as the results on symmetry sensitivity. 

Our scheme works by considering the orbifold projection of jets, and classifying 
them according to the SS that they are closest to i.e. we define a Voronoi cell 
partitioning of the orbifold with the SS as cell centres. We find that this works best 
when only seven 0-D SS (the first and second rows of figure 3) are used, though we 
cannot justify this beyond that it produces nice results. The resulting orbifold 
partitioning is shown in the top-left of figure 4. 

 

Fig. 4. Top left: the partitioning of the orbifold into BIF categories. Bottom left: BIFs 
calculated across a range of scales for a simple image of a figure ‘8’; in each cube scale 
increases right-to-left. Lower cubes sectioned for visualisation. Right: an example complex 
greyscale image, with BIFs calculated at one particular scale. 

The orbifold distance to the six of these SS that lie in the 3-D component of the 

orbifold are simple to compute; for example, the distance to the 7,2
cJ SS is 

( ) ( )1 2 2 2 2 21 1
20 11 02 10 012 2tan c c c c c− + + + . To find which distance is shortest it is 
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computationally equivalent but simpler to find which of six quantities is maximum. 
The distance to the seventh SS, which corresponds to the origin of jet space where all 
the 1st and 2nd derivative filters have zero response, is not well-defined. We 
incorporate it into our scheme by using a multiple of the 0th order jet response. The 
full resulting scheme for computing BIFs is as follows.  

i) compute scale-normalized DtG filter responses as described in section 7. 

ii) compute ( )1
20 022

: c cλ = +  and ( )2 21
20 02 114

: c c cγ = − +  

iii)classify according to which is the largest of 

( ) ( ){ }2 2
00 10 01. , , , , 2 , 2 ,M c c cε λ λ γ λ γ λ γ= + − + − . 

In our scheme the only free parameters, that have to be tuned to the application are 
the filter scale σ  and ε  which controls the amount of image classified as flat; a 
setting of 0.05ε =  is an effective default. For display purposes we find the following 
colour scheme effective: if 00.cε  is the largest of M then colour the pixel pink; if 

2 2
10 01c c+ is largest colour it grey; then black, white, blue, yellow and green.  

7   Example Applications Using BIFs 

We summarize results on using BIFs for texture, object and pixel classification. 

7.1   Texture Classification 

Textures are often classified based on a representation of them by a histogram over a 
texton vocabulary [25-29]. Textons are categorical patch classifications [25, 30]. To 
define the texton vocabulary, a space of patch descriptions is typically Voronoi 
partitioned into on-the-order-of 1000 texton categories, usually around centres found 
by k-means clustering of the responses from many images. Textures are then 
classified by nearest-neighbour matching of histograms. 

We have investigated the classification performance of an approach in which 
images are labelled using spatial complexes of BIFs instead of Voronoi cells in a  
local description vector space. Our approach is (i) simpler because we have 
eliminated the clustering step needed to produce a dictionary of features, and (ii) 
faster because we assign image patches to histogram bins without having to use a 
high-dimensional nearest-neighbour computation.  

We call the spatial complexes of BIFs that we use analogously to textons, Basic 
Image Patterns (BIPs). The type of BIP that we have found effective for texture 
description is a scale-template of the BIFs at the same location but at four, 
octave-separated scales. Unlike spatial-template BIPs, these scale-templates retain the 
rotation invariance of BIFs, which has been shown [30] to be advantageous in texture 
classification tasks. For textures, we do not use the pink/flat BIF category, so four 
scales produces a 64=1296 bin histogram representation, which seems to capture the 
right trade-off between specificity and generality (see figure 5). 
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Fig. 5. Left: An image from the CUReT 'polyester' texture class. Centre: BIFs computed at four 
octave-separated scales, stacked to form an array of 'column-BIPs'. Right: Occurrence 
histogram of column-BIPs from every position in the image". 

Our method has been tested on the CUReT texture dataset [31]. As reported in [9], 
the simple column-BIP representation and nearest-neighbour matching using the 
Bhattacharyya distance correctly classifies 98.2±0.1% of the remaining 49 images per 
class, which is at least as good as other methods using nearest-neighbour classifiers. 
Extending this method by using a multi-scale histogram comparison [9] results in an 
improvement to 98.6±0.1% on CUReT, which is comparable to methods [27] using 
SVMs for classification; and produces what are, to the best of our knowledge, the best 
reported results [9] on the more challenging UIUCTex [32] and KTH-TIPS [27] 
datasets, which include variations in scale. 

7.2   Object Categorization 

Texton approaches have also been shown to be useful for object categorization [28, 
33]. Similar to texture, the ‘standard’ approach is to partition a patch descriptor space, 
such as that used by SIFT [34, 35], into on-the-order-of 1000 categories (visual 
words) and then to describe each image to be analyzed by what visual words it 
contains, and to use machine learning techniques to determine a classifier that can 
predict the category of object based on such descriptions.  

We have conducted preliminary experiments to assess whether visual words built 
from BIFs could be used rather than SIFT-space categories. As with texture this 
would be simpler and faster. For our initial experiments, we have labelled pixels 
according to their BIF type and, inspired by SIFT, with an orientation, quantized at 
the 4π  level. The orientation depends on the BIF type: grey BIFs have one of eight 
possible orientations based on 1st order structure; yellow, green and blue BIFs have 
one of four possible orientations based on 2nd order structure; black, white and pink 
BIFs are unoriented. Thus we have twenty-three possible orientation-augmented BIF 
(oBIF) labels. oBIFs are a natural 2nd order generalization of the gradient orientation 
alphabet typically used in SIFT [34, 35]. See figure 6 for an example image and 
calculated oBIFs.  
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Fig. 6. The top row (left) shows an image from the PASCAL challenge, labeled with 
direction-augmented BIFs at right. On the bottom are shown the 4ä4 template BIPs whose 
occurrence in an image most informatively signals the presence of a car.  

We have tested three different types of visual word, which when built from BIFs or 
oBIFs we call Basic Image Patterns (BIPs); two based on geometrical partitioning of 
patch space and one based on more standard data-driven quantization. Each BIP 
system has been used with simple un-optimised of-the-shelf classifiers and applied to 
the 20-class PASCAL VOC 2008 [33] object recognition challenge dataset. Our score 
in figure 7 is based on a late fusion of the three schemes and is mid-field: above other 
first-time entrants and below well-optimised veteran entries. Using the PASCAL 
VOC 2008 [33] dataset, examples of 4x4 template BIPs whose presence in images is 
approximately independent, and which are maximally informative for the ‘car’ 
category are shown in figure 6. 
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Fig. 7. Results for the PASCAL VOC 2008 challenge. Each bar in the chart is a challenge entry 
- our result is highlighted. 
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7.3   Pixel Classification 

Many image problems involve inferring one of a small class of labels for each pixel of 
an image. For complex images with unpredictable global structure, most approaches 
balance the likelihood of the labels, given the local image structure, and the likelihood 
of the local arrangement of inferred labels. In both cases the likelihoods are computed 
on the basis of statistics learnt from groundtruth-labelled training data. 

We have experimented with the use of BIFs in the computation of label likelihoods 
given the image i.e. ignoring the likelihood of arrangements of inferred labels. For our 
experiments we have used 2-D Electron Microscopy images of neuronal grey matter 
tissue, stained to enhance neuronal membranes. We trained on four images with 
hand-drawn groundtruth data, indicating the position of membranes, and evaluated on 
a further four images. We use a k-Nearest Neighbour (k-NN) approach to 
classification. NN classification starts by compiling a list of descriptors of all the 
patches in the training data, together with the groundtruth label of the pixel in the 
patch centre. The classifier is used by extracting a patch around each pixel to be 
classified, forming a description of it, comparing the description to each the compiled 
descriptions, finding the k which are most similar, and assigning the pixel being 
analyzed with the label associated with the majority of the k. 

We evaluated a baseline solution based on pixel values. The distance between two 
patch descriptions is simply the Euclidean distance between their blurred pixel values, 
minimized over allowing one patch to be rotated or reflected into eight configurations. 
We jointly optimize blur, patch size and k. The best settings that we find are: no blur, 
7ä7 patches, and k=14. At these settings membrane-labelled pixels overlap 
(intersection divided by union) with the groundtruth by 48%. 

Our solution uses a patch of BIF labels as a patch descriptor. The distance between 
two descriptors is simply the number of pixels where the label does not agree. As in 
the baseline, we minimize the distance over one of the patches being rotated or 
reflected. We jointly optimize the scale (σ ) at which the BIFs are computed, the 
parameter ε  which controls the amount of the flat BIF class, patch size and k. The 
best settings that we find are 1.2σ = , 0.15ε = , 9ä9 patches, and k=10. At these 
settings we achieve an overlap of 55%. See figure 8. 

image groundtruth greylevel-based 
classification

BIF-based 
classification

BIFs

 

Fig. 8. Typical results of our pixel-classification system 

So, using BIF- rather than greylevel-description raises the score from 48% to 55%. 
Computation is also faster because the kNN lookup dominates the cost of computing 
patch descriptions, and with BIFs the distances that need to be computed are of a 
Hamming rather than Euclidean type.  
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8   Conclusions 

We have derived a scheme for classifying image structure into one of seven BIF types 
based on the outputs of a bank of six DtG filters. Applied to an entire image, the 
output realizes Marr’s notion of an image primal sketch. Presented results show that 
BIF description is simple, fast and effective for texture, object and pixel classification. 

The BIF system was derived by considering the sensitivity of DtG filters to image 
symmetry. Although the final algorithm is pleasingly simple, there are some weak 
points in the derivation of the BIFs from symmetry sensitivities. Specifically, why are 
only the 0-D SS considered, how exactly does orbifold distance correspond to degree 
of failure of symmetry, why should least-approximate local symmetry be an effective 
feature label? We hope that the foundation of symmetry-sensitivity of DtGs can 
eventually answer all of these questions in a scheme where arbitrary choice has been 
eliminated. Such a scheme will be extendable to higher-order filter families (where 
appeal to visual evidence and past practice are less effective), for which a richer 
alphabet of feature labels is to be expected. We predict that such a richer alphabet will 
give more effective solutions in the application areas that we have reviewed.  
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