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Abstract. Most inverse problems require a regularization term on the
data. The classic approach for the variational formulation is to use the L2

norm on the data gradient as a penalty term. This however acts as a low
pass filter and thus is not good at preserving edges in the reconstructed
data.

In this paper we propose a novel approach whereby an anisotropic
regularization is used to preserve object edges. This is achieved by cal-
culating the data gradient over a Riemannian manifold instead of the
standard Euclidean space using the Laplace-Beltrami approach. We also
employ a modified fidelity term to handle impulse noise.

This approach is applicable to both scalar and vector valued images.
The result is demonstrate via the Wiener filter with several approaches
for minimizing the functional including a novel GSVD based spectral
approach applicable to functionals containing gradient based features.

1 Introduction

Handling degraded images, both due to blur and noise, is a practical reality in
any imaging field. The common image degradation model is

I = I0 ∗ h + n (1)

where I, the observed image, is the result of a convolving the input image (or
ideal image) I0 with some blurring kernel h. The result is then summed with
additive noise n. This is a common model for any system that contains a lens
and sensor. Both the blur and noise are a combination of several processes.
Some typical causes for image blue are out of focus images, motion blur due to
an unstable camera and/or object and a low pass filter resulting from the finite
aperture and anti aliasing filter on the sensor. Noise can result from the sensor
and amplifier due to low light, heat, dead pixels and background radiation or
from memory and communication corruption. Each of these processes has it’s
own typical blur kernel and noise distribution statistics [1, 2].

A direct naive approach to handle the blur can be given using a spectral
(Fourier) approach manipulation of the degradation model equation. To see the
difficulty though, look at the Fourier transform of this equation Î = Î0 · ĥ + n̂
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(where the hat notation denotes the Fourier transform). This transforms the
convolution into a multiplication which allows for an easy rearrangement of the
the equation. Extracting Î0 gives us Î0 =

(
Î − n̂

)
/ĥ. Any L2 kernel h will

decay to zero at infinity. This results with a divide by zero issue at least for
high frequencies. Add to that the issue that the SNR usually drops at these
frequencies, which makes this procedure very sensitive to noise.

One solution is this case is the Wiener filter [3], which can be derived from the
standard variational formulation for ill posed inverse problems by adding prior
knowledge (or assumptions) via an additional penalty term to the reconstruction.
That is to minimize an energy functional of the form

S (I0) = ‖I0 ∗ h − I‖︸ ︷︷ ︸
fidelity term

+ μ ‖Φ (I0)‖︸ ︷︷ ︸
penalty

. (2)

Here Φ is some function of the parameter I0 that imposes the assumptions on
the model. A common constraint term is Φ (I0) = ∇I0 which penalizes high
frequencies as these are often the source of instability. The side effect of this
constraint is that while high frequency noise is reduced in the reconstruction,
edge detail is lost as well as is demonstrated in Fig. 1.

(a) Original Image (b) Degraded Input (c) μ = 5 · 10−4 (d) μ = 5 · 10−5

Fig. 1. Edge preservation vs. Noise suppression with the Wiener filter. The input image
1(a) is degraded using Gaussian white noise 1(b). The results show the difference
between preferring noise suppression 1(c) to edge preservation 1(d).

This functional is often minimized under the L2 norm which is appropriate for
Gaussian noise. This is mainly due to the fact that the resulting Euler Lagrange
equations are linear and are thus (relatively) easy to solve. That is, the classic
Wiener filter functional based on the L2 norm

S (I0) = ‖I0 ∗ h − I‖2
L2

+ ‖∇I0‖2
L2

=
∫

|I0 ∗ g − I|2 + |∇I0|2 dA . (3)

results with the following Euler Lagrange equations (see [4] for the derivation of
the Euler Lagrange formulation of the convolution)

−h (−x̄) ∗ (h (x̄) ∗ I0 − I) − μΔI0 = 0 . (4)
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Here x̄ is the coordinate vector x̄ = (x, y) for the two dimensional case. This can
be solved as before by applying the Fourier transform, which results with

ĥ (−ω) ·
(
ĥ (ω̄) · Î0 − Î

)
+ μ |ω̄|2 Î0 = 0 (5)

where ω̄ = (ωx, ωy) is the frequency vector for the resulting frequencies along the
x and y axes respectively. Now, assuming that the convolution kernel is real we
can use the identity ĥ (−ω) = ĥ∗ (ω) (where h∗ is the conjugate of h) to rewrite
the equation as

Î0 =
ĥ∗ (ω)∣∣∣ĥ (ω)
∣∣∣
2

+ μ |ω|2
Î . (6)

Despite being easy to solve, there are two main issues with the L2 norm
approach, both for the constraint and the fidelity term.

The first issue is that it fails to preserve object boundaries (Fig. 1). The main
reason is the penalty term that penalizes high frequencies. As the fidelity term
is also L2 it does little to alleviate this problem.

The second issue is that the fidelity term is designed to handle Gaussian noise
and behaves poorly in the presence of impulse noise

One solution to both these issues is to use the L1 or total variation (TV)
norm [5,6,7]. When used for the fidelity term it improves behavior with impulse
noise. For the constraint it improves edge preservation. For the functional

S (I0) = ‖I0 ∗ h − I‖TV + μ ‖∇I0‖TV =
∫

|I0 ∗ h − I| + μ |∇I2| dA (7)

the resulting Euler-Lagrange equations are

−h (−x̄) ∗ h (x̄) ∗ I0 − I

|h (x̄) ∗ I0 − I| − μdiv
( ∇I

|∇I|
)

= 0 . (8)

Unfortunately though the solution of which is unstable. One approach to improve
on this is to use an augmented TV norm [5]

S (I0) =
∫ √

(I0 ∗ h − I)2 + η + μ

√
|∇I0|2 + ηdA (9)

with 0 < η � 1. The resulting modified Euler-Lagrange equation are

−h (−x̄) ∗ h (x̄) ∗ I0 − I√
(h (x̄) ∗ I0)

2 + η
− μdiv

⎛
⎝ ∇I√

|∇I|2 + η

⎞
⎠ = 0 . (10)

This greatly improves the response of the fidelity term to impulsive noise, but
not so much for the edge preservation of the constraint. It also doesn’t account
explicitly for the edges in the image.

Other approaches include using Mumford-Shah like techniques of edge detec-
tion into the functional [4], weighing the Laplacian based on edge detection [8],
Perona-Malik like regularizers [9], maximal likelihood estimators [10], certainty
maps [11] and channel pairing on color images [12].
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We propose two novelties in this paper. The first is to combine the augmented
L1 norm on the fidelity term for handling impulse noise with anisotropic reg-
ularization based on the Laplace Beltrami operator for edge preservation. This
is achieved by keeping the L2 norm of the gradient, however this is calculated
over a Riemannian manifold instead of the standard Euclidean space using a
Laplace-Beltrami approach [13]. When combined with the augmented TV norm
(9), this approach also produces exceptional results for impulsive noise (Sec. (4))

The second is the use of the GSVD (generalized singular value decomposi-
tion) for the minimization of functionals that employ a gradient based penalty
term. It’s direct contribution is the ability easily minimize non-local operators
and functionals defined on non square domains where the Fourier transform is
inapplicable. For isotropic operators it can be very efficient as the decomposition
needs to be calculated once only off line.

One interesting point to both these approaches is the relation to other frame-
works. In particular it enables to better understand the relation to sparse rep-
resentation and K-SVD [14].

It is important to note that both these ideas are easily applicable to general
ill posed inverse problems over general feature spaces, and specifically for this
case, also for color images [15] and textures [16].

The rest of this paper is organized as follows: Sec. 2 discusses the anisotropic ap-
proach. Sec. 3 discusses several approaches to minimizing the functional, including
a novel approach using the GSVD. Sec. 4 shows some results of the method.

2 Anisotropic Regularization for the Wiener Filter

The problem with edge preservation lies with the gradient based penalty term.
In the Euler-Lagrange equations it manifests as a Laplacian that acts as a low
pass filter. In order to correctly formulate the anisotropic penalty term, we start
with the Euler Lagrange equation for the Wiener filter

−h (−x) ∗ (h (x) ∗ I0 − I) − μΔI0 = 0 (11)

and replace the Laplacian with an anisotropic operator, namely the Laplace-
Beltrami operator [13] resulting with

−h (−x) ∗ (h (x) ∗ I0 − I) − μΔgI0 = 0 . (12)

The Laplace Beltrami operator is defined as

ΔgI =
1√
g
div
(√

gG−1∇I
)

(13)

where for the gray-scale case

G =
(

1 + I2
x IxIy

IxIy 1 + I2
y

)
, g = det (G) . (14)

What this does is apply the Laplacian diffusion operator, but instead of applying
it under the standard Euclidean norm, it is applied over the image manifold [13].
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This means that we are looking at the image as a two dimensional manifold in
three dimensional space for gray scale images and in 5 dimensional space for
color images. When applying the diffusion operator, distance between pixels is
measured over this manifold so the distance takes into account not only spatial
offset but also intensity offset. The result is that pixels on different side of an
edge are farther apart than pixels on the same homogeneous region and the edges
act as insulators so that image data doesn’t flow across edges.

This can be extended to color images by applying the diffusion on a per-
channel basis, that is for each channel Ii the process is ΔgI

i= 1√
g div

(√
gG−1∇Ii

)
with

G =

(
1 +

∑
i

(
Ii
x

)2 ∑
i Ii

xIi
y∑

i Ii
xIi

y 1 +
∑

i

(
Ii
y

)2
)

. (15)

The metric itself takes into account all the channels coupling them in the final
process to remove misalignment of the edges across the different channels. Note
that the image channels can be color channels such as RGB, CMY or more
general features such as textures [16]).

When extending the functional to handle impulse noise using the augmented
L1 fidelity term, the Euler-Lagrange equations become instead

−h (−x̄) ∗ h (x̄) ∗ I0 − I√
(h (x̄) ∗ I0)

2 + η
− μΔgI = 0 . (16)

3 Finding the Minimizer

There are several approaches to minimizing the resulting functional. We already
have the Euler-Lagrange equations, i.e Eq. (12) and 16.

Using the direct Fourier space approach, even for the L2 fidelity term, is
not applicable here since the Fourier transform doesn’t diagonalize the Laplace-
Beltrami operator. A different relatively simple direct approach approach is to
use the gradient descent equations

∂

∂t
I0 = h (−x̄) ∗ h (x̄) ∗ I0 − I√

(h (x̄) ∗ I0)
2 + η

+ μΔgI (17)

For the L2 fidelity term there are two other spectral approaches that can be
applied here, and eigen transform and the GSVD. The advantage of these among
other things is that they provide a direct solution and thus prove the existence
of the minimizer, same as for the standard Wiener filter.

Proving the existence of a minimizer for the proposed Tikhonov functional is
much more difficult and beyond the scope of this paper, but can be done using
similar lines to those taken in [5].

3.1 The Laplace-Beltrami Eigen-Space

We can use the same approach implemented in [17] to diagonalize the Laplace-
Beltrami operator. The problem is that the Eigenvectors of the Laplace-Beltrami
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operator don’t convert the convolution into a multiplication, so we need to com-
bine this approach with the Fourier transform.

We start with the Euler-Lagrange equations for the anisotropic Wiener filter,
Eq. (12). If we linearize the Laplace Beltrami operator by fixing the metric, it
becomes a self adjoint negative (semi) definite operator and thus it’s eigenspace
is a bases to the function space under the L2 norm. Insert into this equation the
eigen decomposition of the image using this eigen space

I0 =
∑

i

c0
i φi, I =

∑
i

ciφi (18)

This produces

h (−x) ∗
(

h (x) ∗
∑

i

c0
i φi −

∑
i

ciφi

)
+ μ

∑
i

λic
0
i φi = 0 (19)

which after rearrangement gives
∑

i

c0
i h (−x) ∗ h (x) ∗ φi + μλic

0
i φi =

∑
cih (−x) ∗ φi . (20)

Now, to handle the convolution, apply the Fourier transform
∑

i

−ĥ∗ · ĥ · c0
i φ̂i + μλic

0
i φ̂i = −

∑
i

ciĥ
∗φ̂i (21)

which can be rewritten as

∑
i

c0
i

(∣∣∣ĥ
∣∣∣
2

− μλi

)
φ̂i =

∑
i

ciĥ
∗φ̂i . (22)

This is a linear set of equations of the form AĨ0 = BĨ. Here Ĩ = (ci) and
Ĩ0 =

(
c0
i

)
are the coefficient vectors in the Laplace-Beltrami eigen-space. This is

a system of equations needs to be solved for Ĩ0. Using these coefficients the ideal
image I0 can be reconstructed.

For a full solution this needs to be combined with fixed point iterations up-
dating the metric, although it is stable with respect to the flow so in effect this
is rarely need.

There are two things to note here. First, the coefficients of I decay rather
quickly so we can truncate Ĩ and thus not calculate the right hand side of B.
The same assumption can be made for Ĩ0 and thus for A.

3.2 Using the GSVD

Consider an energy functional with two linear operators La and Lb using the L2

norm
S (f) =

∫
|Laf |2 + μ |Lbf |2 dA . (23)
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Assuming that these operators can be discretized as matrices A and B respec-
tively this can written as equations with v a vector representation of the func-
tion f

S (v) = ‖Av‖2 + μ ‖Bv‖2 . (24)

The two matrices A and B have a joint diagonalization based on the general
singular value decomposition (GSVD) of the form [18]

A = UΣ1X
T , B = V Σ2X

T (25)

with U and V unitary matrices and Σ1 and Σ2 positive diagonal (not necessarily
square). U and V must have the same number of columns but not necessarily
the same number of rows (this last property we will need later on). Thus Eq.
(24) can be rewritten as

S (v) =
∥∥UΣ1X

T v
∥∥2

L2
+ μ

∥∥V Σ2X
T v
∥∥2

L2
. (26)

Now, we can substitute ṽ = XT v to construct a functional in ṽ. Also note
that the L2 norm is invariant to unitary transformations, thus this functional is
equivalent to

S (ṽ) = ‖Σ1ṽ‖2
L2

+ μ ‖Σ2ṽ‖2
L2

. (27)

This new functional can be minimized according to ṽ resulting with

ΣT
1 Σ1ṽ + μΣT

2 Σ2ṽ = 0 (28)

We would like to do something similar with the Wiener-Filter formulation.
The problem is that the gradient operator can not be discretized as a matrix
operator since it takes a function and returns a vector. Luckily, what we need
is an operator operating on I such that the norm would be equal to that of the
gradient. For the L2 case this can be achieved as follows

S (I0) =
∫

|h ∗ I0 − I|2 + μ |∇I0|2 dA

⇒ ‖HI0 − I‖ +
∥∥∥∥
(

Dx

Dy

)
I0

∥∥∥∥
2

L2

= ‖HI0 − I‖2
L2

+ ‖DI0‖2
L2

(29)

where H is the convolution matrix (which is block cyclic but not cyclic in the
2D case) and D =

(
Dx

Dy

)
is the matrix resulting from stacking the matrix for the

derivative in the x direction and the one for the derivative in the y direction.
For the L2 case we get

∥∥∥∥
(

Dx

Dy

)
I0

∥∥∥∥
2

L2

= ‖DxI0‖2
L2

+ ‖DyI0‖2
L2

= ‖∇I0‖2
L2

. (30)

Now we can use the fact that the GSVD can be applied to matrices with a
different number of rows to diagonalize this equation

H = UΣ1X
T , D = V Σ2X

T (31)
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Using this we can do the same procedure as before

‖HI0 − I‖2
L2

+ ‖DI0‖2
L2

⇒ ∥∥UΣ1X
T I0 − I

∥∥2

L2
+
∥∥V Σ2X

T I0

∥∥2

L2
(32)

and again based on U and V being unitary and substituting Ĩ0 = XT I0 and
Ĩ = U−1I = UT I results with

S
(
Ĩ0

)
=
∥∥∥Σ1Ĩ0 − Ĩ

∥∥∥
2

L2

+
∥∥∥Σ2Ĩ0

∥∥∥
2

L2

(33)

this can be minimized according to Ĩ0 to produce

ΣT
1

(
Σ1Ĩ0 − Ĩ

)
+ ΣT

2 Σ2Ĩ0 = 0 (34)

or after rearrangement and back-substitution

I = X−T
(
ΣT

1 Σ1 + μΣT
2 Σ1

)−1
ΣT

1 UT I0 . (35)

Note that ΣT
1 Σ1 + μΣT

2 Σ1 is a diagonal matrix and thus easy to invert (in fact
for μ = 1 it is the identity matrix).

To apply the same idea to the anisotropic case, we need to formulate the
prior to the Laplace-Beltrami operator as a gradient over a manifold instead.
The operator is the minimizer of the following symmetric positive definite

∫
∇IT G−1∇I

√
gdmσ =

∫
‖Dg∇I‖2

dmσ,
√

gG−1 = D2
g (36)

and the discrete formulation for the anisotropic derivative matrix Dg (which
replaces D in Eq. 29) can be found via an eigen decomposition of the matrix√

gG−1

Dg = A

(
Dx

Dy

)
=

⎛
⎜⎝

I2
x+

√
1+I2

x+I2
yI2

y

(I2
x+I2

y) 4
√

1+I2
x+I2

y

Dx +
IxIy(1−

√
1+I2

x+I2
y)

(I2
x+I2

y) 4
√

1+I2
x+I2

y

Dy

IxIy(1−
√

1+I2
x+I2

y)
(I2

x+I2
y) 4
√

1+I2
x+I2

y

Dx +
I2

y+
√

1+I2
x+I2

yI2
x

(I2
x+I2

y) 4
√

1+I2
x+I2

y

Dy

⎞
⎟⎠ (37)

One advantage of this approach is that it is applicable to non-local operators
and to non square domains where the Fourier transform as applied to the original
Wiener filter fails. For the isotropic case it needs to be calculated once off line as
the transform is constant and thus can be very efficient for reoccurring problems
(or by splitting the problem into constant sized patches as described in [17]).

4 Numerical Results

Comparing the reconstruction quality based on standard measurements alone
such as SNR and PSNR doesn’t do justice to the method. This is due to the fact
that these values are not good assessors for edge reconstruction being L2 based
measures. Despite this and for a lack of a better objective comparison method,
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we do see an improvement in the reconstruction based on these measurements.
It is important to also note the subjective difference when looking at the images
themselves. The biggest difference is seen near pronounced edges and textures
which are much better preserved than with the standard wiener filter. This
method also removes ringing (Gibbs effect) seen around strong edges and color
skews in color images.

The results are cropped and zoomed to better accent the difference due to the
limit of the medium.

(a) Input (b) Degraded (c) Standard W.F. (d) Anisotropic W.F.

Fig. 2. Reconstruction of a gray-scale image (2(a)) degraded using a Gaussian kernel
and Gaussian noise (2(b)) with standard deviation of 10%. The image is reconstructed
using the standard (2(c)) and anisotropic Wiener filter (2(d)).

The first example (Fig. 2) shows the results for a gray scale image degraded
by a Gaussian kernel and Gaussian noise with standard deviation of 10% (with
a resulting SNR of 16.34db). The reconstruction for both the standard Wiener
filter (2(c)) and the anisotropic version (2(d)) is done based on the L2 fidelity
term. The SNR of the reconstructed images are 20.72db and 21.08db respectively.

The anisotropic reconstruction displays less noise, especially visible in homo-
geneous areas such as the white background and skin. The edges in the isotropic
version on the other hand display both blur (such as the back, hands and hair)
and ringing around pronounced edges not appearing in the anisotropic version.
This is most pronounced around the dominant edges of the back and the hair.

Figure 3 shows the results of applying the Wiener filter to an image with im-
pulse noise (11% density, with 8.47db SNR). The first two examples (3(b), 3(e))
display the result of applying the standard and anisotropic Wiener filters respec-
tively, both using the L2 fidelity term. Despite improving SNR values (15.9db and
16.48db) the results are still rather miserable, although the anisotropic version
still displays more pronounced edges (teeth, wall) as well as less noise. On the
other hand, looking at the versions employing the augmented L1 fidelity term
(3(c) and 3(f)), on first look one can mistake them for the input image. Despite
this the anisotropic version still displays much sharper results up close, as well
as improved SNR (22.48db compared to 22.98db).

The following examples for color images show the extendability of the method
to vector valued images.
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(a) Input Image (b) Std. W.F. L2 fidelity (c) Std. W.F., L1 fidelity

(d) Degraded Image (e) AI W.F., L2 fidelity (f) AI W.F., L1 fidelity

Fig. 3. Restoration of a gray scale image corrupted by impulse noise of density 0.11.
Figures 3(b) and 3(e) show the reconstruction using regular and anisotropic Wiener
filter with L2 fidelity. Figures 3(c) and 3(f) show the reconstruction using the L1 fidelity
term.

Figure 4 shows the results for a color image degraded by a Gaussian kernel
and Gaussian noise with a standard deviation of 10% (SNR of 16.7db). As can
be seen, the anisotropic reconstruction produces sharper edges without the color
shifts and ringing which is visible around sharp edges. Additionally, there is less
overall noise and color shifts due to the smoothing of the noise. SNR for the
isotropic case is 21.04db compared to 21.6db for the anisotropic variation.

Fig. 5 shows the results of applying both the regular and anisotropic Wiener
filter, both based on the L1 fidelity term, to a color image degraded by a Gaussian
kernel and impulse noise with 11% density (SNR of 11db). The anisotropic vari-
ation shows sharper edges, better color restoration and less color skews around
edge boundaries. This, like the previous results, is most pronounced around
bright edges such as the teeth, eyes and wall. The SNR of the reconstruction is
20db and 23.1db for the isotropic and anisotropic varieties respectively.
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(a) Degraded image (b) Standard W.F. (c) Anisotropic W.F.

Fig. 4. Color image degraded by a gaussian kernel and uncorrelated Gaussian noise
(4(a)) with standard deviation of 10%. Figures 4(b) and 4(c) show the results for the
standard and the anisotropic reconstruction.

(a) Degraded image (b) Std. W.F. L1 fidelity (c) AI W.F. L1 fidelity

Fig. 5. Color image degraded by a gaussian kernel and uncorrelated impulse noise
(5(a)) with density 0.11. Figures 5(b) and 5(c) show the results for the standard and
anisotropic restoration based on the L1 fidelity term.

5 Conclusion

In this work we presented an anisotropic regularization term for inverse problems
that allows to better preserve object edges while at the same time improving
noise suppression. Combined with an augmented L1 fidelity term it provides
remarkable results for images corrupted by impulse noise.
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