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Abstract. We study three dimensional volumes of higher order tensors,
using Finsler geometry. The application considered here is in medical
image analysis, specifically High Angular Resolution Diffusion Imaging
(HARDI) [1] of the brain. We want to find robust ways to reveal the
architecture of the neural fibers in brain white matter. In Diffusion Ten-
sor Imaging (DTI), the diffusion of water is modeled with a symmet-
ric positive definite second order tensor, based on the assumption that
there exists one dominant direction of fibers restricting the thermal mo-
tion of water molecules, leading naturally to a Riemannian framework.
HARDI may potentially overcome the shortcomings of DTI by allowing
multiple relevant directions, but invalidates the Riemannian approach.
Instead Finsler geometry provides the natural geometric generalization
appropriate for multi-fiber analysis. In this paper we provide the exact
criterion to determine whether a field of spherical functions has a Finsler
structure. We also show a fiber tracking method in Finsler setting. Our
model also incorporates a scale parameter, which is beneficial in view of
the noisy nature of the data. We demonstrate our methods on analytic
as well as real HARDI data.

1 Introduction

High Angular Resolution Diffusion Imaging (HARDI) is a non-invasive medical
imaging modality that measures the attenuation of directional MRI (Magnetic
Resonance Imaging) signal due to the diffusion of water molecules. Diffusion
weighted measurements are taken in several directions, typically ranging from 50
to 130 (equidistant) angular directions. It is assumed that this diffusion of water
molecules reveals relevant information of the underlying tissue architecture. The
so-called apparent diffusion coefficient, D(g), is computed from the Stejskal-
Tanner [2] formula

S(g)
S0

= exp(−bD(g)), (1)
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where S(g) is the signal associated with gradient direction g, S0 the signal ob-
tained when no diffusion gradient is applied, and b is a parameter associated
with the imaging protocol.

In the Diffusion Tensor Imaging framework, (1) is interpreted as

S(g)
S0

= exp(−bgT Dg) , (2)

with the 3 × 3 two-tensor D describing the probability of directional diffusivity
at each voxel. A natural way to do geometric analysis on the image, is to use
the inverse of the diffusion tensor D as the Riemann metric tensor [3]. This ap-
proach has been exploited to some extent in the DTI literature [4], [5], [6], [7].
Since HARDI data typically contains more directional measurements than the
traditional DTI, we study it as a metric space, but using a more refined model
for directional information than can be accounted for by using only the local
position dependent inner product i.e. Riemannian metric. Higher order tensor
representations [8], [9], [10], [11] of HARDI data are well suited to differential
geometric methods. We mention that Finsler geometry has already been intro-
duced in HARDI setting. In the work of Melonakos et al. [12] the homogeneity
condition is forced by normalizing the parameter-vectors, but we take a different
approach, using higher order monomial tensors and an ODE-based fiber tracking
method.

This paper is organized as follows. In section 2, we give a very short introduc-
tion to Finsler geometry and in section 3, we show that indeed HARDI measure-
ments can be modeled with a Finsler-structure and give the specific condition
which ensures this. In section 4 we discuss how to switch back and forth between
iterative polynomial tensor fitting, that allows Laplace-Beltrami smoothing, and
a monomial tensor fitting convenient for constructing a Finsler-norm. In section
5 we show some results of fiber-tracking based on the local Finsler metric and
demonstrate it on an analytical example as well as on a real HARDI data of a
rat brain scan. In the appendix we will give the details of the construction of
the strong convexity criterion.

2 Finsler Geometry

In a perfectly homogeneous and isotropic medium, geometry is Euclidean,
and shortest paths are straight lines. In an inhomogeneous space, geometry is
Riemannian and the shortest paths are geodesics. If a medium is not only inho-
mogeneous, but also anisotropic1, i.e. has innate directional structure, the appro-
priate geometry is Finslerian [13] [14] and the shortest paths are correspondingly
Finsler-geodesics. As a consequence the metric tensor depends on both, position
and direction. This is also a natural model for high angular resolution diffusion
images.
1 We will call a medium isotropic if it is endowed with a direction independent inner

product, or Riemannian metric. In the literature such a medium is also often referred
to as anisotropic due to the directional bias of the metric itself.
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Definition 1. We denote the bundle of tangent spaces T(x,y)M (y �= 0) as TM \
{0}. A Finsler norm is a function F : TM → [0,∞) that satisfies each of the
following criteria:

1. Differentiability: F is C∞ on the tangent bundle TM \ {0}.
2. Homogeneity: F (x, λy) = λF (x, y).
3. Strong convexity: The Hessian matrix, with components

gij(x, y) =
1
2

∂2F 2(x, y)
∂yi∂yj

, (3)

is positive definite at every point (x, y) of TM \ {0}.

3 Finsler Norm on HARDI Higher Order Tensor Fields

We want to show that higher order tensors, such as those fitted to HARDI data,
do define a Finsler norm, which can be used in the analysis of this data. We
take as a point of departure a given orientation distribution function (ODF),
which if normalized, is a probability density function on the sphere and which
can be computed from the data by using one of the methods described in the
literature [15], [16], [17], [18], [19]. It models the probability that a given direction
corresponds to a direction of a fiber. We use the heuristics that a high probability
of finding a fiber in direction y corresponds to a larger diffusivity and at the same
time to a shorter travel time from the diffusing particle point of view. Just as
in the Riemannian framework, we can actually take our metric tensor to be
the inverse of a local (y-dependent) two-tensor. We use the Einstein summation
convention aib

i =
∑

i aib
i, and put

y = (y1,y2,y2) = (sin θ cosϕ, sin θ sin ϕ, cos θ) , (4)

thus y denotes a unit vector while y = ||y||y is a general vector in R
3.

We denote the higher order spherical tensor (a homogeneous polynomial re-
stricted to sphere) approximating the ODF as D. As an example, we show how
a field of sixth order tensors D(x) defines a Finsler norm. This can be extended
directly to all even order tensors.

We put
F (x, y) =

(
Dijklmn(x)yiyjykylymyn

)1/6
. (5)

In the following, we verify the defining criteria stated in Definition 1.

1. Differentiability: The tensor field D(x) is constructed by fitting a tensor
to the set of angular samples at each voxel, using a least squares method.
The data set with fixed angle is continuous in x by linear interpolation
between the sample points and differentiable w.r.t. x using Gaussian deriva-
tives. Therefore the tensor field itself is differentiable in x, and because D
is always positive, differentiability of F w.r.t. x follows. The differentiability
of F in y is obvious from Eq. (5).



Finsler Geometry on HOT Fields 227

Fig. 1. Left:A fourth order spherical harmonic (or tensor), representing the (not con-
vexified) norm function and 3 ellipsoids illustrating the metric tensors corresponding
to the 3 vectors with same color. Right: Similarly a sixth order spherical harmonic
function with 3 metric tensors.

2. Homogeneity: Indeed for any α ∈ R+, x ∈ M , v ∈ TxM :

F (x, αv) =
(
Dijklmn(x)αviαvjαvkαvlαvmαvn

)1/6
= αF (x, v) . (6)

3. Strong convexity:
We now state a strong convexity criterion for a general Finsler norm in R

3,
by analogy to the R

2-criterion by Bao et al [13]. We have put the derivation
of the condition into the appendix, and merely state the result here. We
consider the so-called indicatrix of the norm function F at any fixed x,
which is the set {g | g : (θ, ϕ) → R

3 , F (g) = 1}. In our case the indicatrix
is the ODF, which can be easily seen from the homogeneity condition 2. in
Definition 1.

F (y(θ, ϕ)) =
1

ODF (θ, ϕ)
=⇒ F (ODF (θ, ϕ) · y(θ, ϕ)) = 1 .

We denote ġθ := ∂
∂θ (g), g̈θ := ∂2

∂θ2 (g) and similarly for ϕ. We define the
following three matrices:

m =

⎛

⎝
g1 g2 g3

ġ1
θ ġ2

θ ġ3
θ

ġ1
ϕ ġ2

ϕ ġ3
ϕ

⎞

⎠ , mθ =

⎛

⎝
g̈1

θ g̈2
θ g̈3

θ

ġ1
θ ġ2

θ ġ3
θ

ġ1
ϕ ġ2

ϕ ġ3
ϕ

⎞

⎠ , mϕ =

⎛

⎝
g̈1

ϕ g̈2
ϕ g̈3

ϕ

ġ1
θ ġ2

θ ġ3
θ

ġ1
ϕ ġ2

ϕ ġ3
ϕ

⎞

⎠ . (7)

Then the strong convexity requires:

det(mθ)
det(m)

> 0 , and
det(mϕ)
det(m)

>
(gij ẏ

i
θ ẏ

j
ϕ)2

gij ẏi
θẏ

j
θ

. (8)

Since we use linear interpolation between tensors, we only need to check the
condition at original data-points. This condition is always met in our ODF-data,
and we expect it to hold quite generally.

The goal of this section was to define a Finsler-structure and in particular a
Finsler metric tensor gij(x, y) corresponding to a given tensorial ODF. Indeed



228 L. Astola and L. Florack

in case the ODF is a symmetric tensor of order two, this metric tensor is equiv-
alent to the Riemann metric tensor. Following our Finsler approach, instead of
one metric tensor per voxel we obtain a bundle of metric tensors at any x. For
illustration, see Fig.1.

4 Transforming a Polynomial Tensor to a Monomial
Tensor

Assume we wish to apply Laplace-Beltrami smoothing to our spherical data, by
which we obtain a field of spherical functions at any desired scale, and that we
wish to use a tensorial representation of the data instead of spherical harmonics.
As is shown in [10], this smoothing is easy to do, using iterative polynomial
tensor fitting. The point here is that for Finsler analysis, we would rather work
with a tensor representation of monomial form

D(y) = Di1···inyi1 · · ·yin , (9)

than with the equivalent polynomial expression

D̃(y) =
n∑

k=0

D̃i1···ik
yi1 · · ·yik , (10)

but still exploit the convenient (co-domain) scale space representation of the
latter:

D̃(y, τ) =
n∑

k=0

e−τk(k+1)D̃i1···ik
yi1 · · ·yik . (11)

This poses no problem, since we can rather easily transform the polynomial
expression to a monomial one, using the fact that our polynomials are restricted
to the sphere (eq. (4)), thus we may expand a lower order tensor to a sparse
higher order one and symmetrize it. We can also always transform the monomial
expression to polynomial sum of irreducible monomial tensors using Clebsch-
projection [20].

5 Fiber Tracking in HARDI Data Using Finsler
Geometry

In DTI setting the most straightforward way of tracking fibers is to follow the
principal eigenvector corresponding to the largest eigenvalue of the diffusion ten-
sor until some stopping criterion. This method cannot reveal crossings and only
provides a single direction (if at all) per voxel. Instead computing the shortest
paths according to the diffusion-induced Riemann metric tensor, we could expect
these to be the candidates for real fibers [5]. Of course, most of the shortest paths
(geodesics) are not representing actual fibers, and therefore we should extract
the potential neural fibers from arbitrary geodesics based on their connectiv-
ity [6]. We show some results of solving well-connected geodesics in an analytic
as well as in a real rat brain data.
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5.1 Analytic Tensor Field

We treat an analytic norm field in R
2, but the situation can be directly extended

to R
3. Let us take as a convex norm function at each spatial position

F (ϕ) = (cos 4ϕ + 4)
1
4 =

(
5 cos4 ϕ + 2 cos2 ϕ sin2 ϕ + 5 sin4 ϕ

) 1
4 . (12)

This is an example of fourth order tensor on unit vectors. Such a tensor field
could represent an infinitely dense field of orthogonally crossing fibers. From
the fact that F has no x-dependence we conclude that the geodesic coefficients
vanish and that the geodesics coincide with the Euclidean geodesics γ(t) =
(t · cosϕ, t · sinϕ), i.e. straight lines. However the so-called connectivity of a
geodesic [6], [21] is relatively large, only in cases, where the directional norm
function is correspondingly small. In Finsler setting the connectivity measure
m(γ) is:

m(γ) =
∫ √

ηij γ̇iγ̇jdt
∫ √

gij(γ, γ̇)γ̇iγ̇jdt
, (13)

where the ηij(γ) represents the covariant Euclidean metric tensor which in Carte-
sian coordinates reduces to the constant identity matrix, γ̇ the tangent to the
curve γ and gij(γ, γ̇) the Finsler-metric tensor (which depends not only on the
position on the curve but also on the tangent of the curve). For illustration we
compute explicitly the metric tensors, using Cartesian coordinates:

gij =
1

(5 cosϕ4 + 2 cosϕ2 sin ϕ2 + 5 sinϕ4)3/2

(
g11 g12

g21 g22

)

, (14)

where

g11 = 5(5 cosϕ6 + 3 cosϕ4 sinϕ2 + 15 cosϕ2 sinϕ4 + sin ϕ6)
g12 = g21 = −48 cosϕ3 sin ϕ3

g22 = 5(cosϕ6 + 15 cosϕ4 sinϕ2 + 3 cosϕ2 sin ϕ4 + 5 sinϕ6)

The strong convexity criterion g̈1ġ2−ġ1g̈2

ġ1g2−g1ġ2 > 0 in R
2 [13] on the indicatrix g(ϕ),

for metric (14) is satisfied for every ϕ, since

g̈1ġ2 − ġ1g̈2

ġ1g2 − g1ġ2
=

13 − 8 cos 4ϕ

(4 + cos 4ϕ)2
> 0 . (15)

The connectivity measure for a (Euclidean) geodesic γ can be computed analyt-
ically:

m(γ) =
∫

dt
∫

(4 + cos(4ϕ))1/4dt
, (16)

which gives the maximal connectivities in directions {π
4 , 3π

4 , 5π
4 , 7π

4 }, as expected.
See Fig. 2 for an illustration. We observe that on such a norm field the Rieman-
nian (DTI) framework would result in Euclidean geodesics and constant con-
nectivity over all geodesics thus revealing no information at all of the angular
heterogeneity.
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Fig. 2. Left:A field of fourth order spherical harmonics as in the norm function eq. (12)
representing dense crossings and some well connected geodesics, colored in red. Right:
200 equiangular metric tensors of the same norm function, and an ellipse with light
blue color corresponding to the metric in direction ϕ = π

4
.

Fig. 3. Left:Finsler geodesics emanating from a voxel, and the most connective ones
in red. Right: Fibers through same neighborhood in the traditional DTI principal
eigenvector tracking.

5.2 Real Rat Brain Data

The Subthalamic Nucleus is a small area in the brain, that is involved in phys-
iopathology of Parkinson’s disease [22]. We computed the Finsler geodesics and
their connectivities, having an initial point in several central voxels in the Sub-
thalamic Nucleus. These voxels were located based on comparison to an atlas of
rat brain [23]. We tracked Finsler geodesics using the standard equation (ODE-
formulation) [14](p.78) and second order Taylor approximation, with initial di-
rections as the 49 measurement directions, stepsize 0.2 voxel size and for 10
steps. Then we selected those 30% of all geodesics that have the best connectiv-
ity. Compared to the traditional DTI-tracking, we found that one of the main
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directions with strong connectivity typically coincide with the DTI-fibers, but
we also found other potential fiber directions. For illustration see Fig. 3.

6 Conclusions and Future Work

We have seen that it is indeed possible to analyze spherical tensor fields using
Finsler geometry. It gives new methods to work with the data and also has the
potential to give new information on the data. Finsler geodesics and Finsler
curvatures are examples of geometric measures that can be applied on HARDI
fiber-analysis, and which will be a subject of extensive future work.
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Appendix

We seek the general condition for

gij(y)vivj > 0 , (17)

to be valid in R
3(= TxM). From the homogeneity of the norm function F , it

follows that it is sufficient to have this condition on the unit level set of the
norm. We consider this level surface i.e. the set of vectors y for which F (y) = 1
and a parametrization y(θ, ϕ) = (y1(θ, ϕ), y2(θ, ϕ), y3(θ, ϕ)). In what follows we
abbreviate gij = gij(x, y). From F (y) = 1 we have

gijy
iyj = 1 . (18)

Taking derivatives of both sides and using a consequence of Euler’s theorem
for homogeneous functions ( [13] p.5) that says

∂gij

∂yk
yk = 0 , (19)

we obtain

gij ẏ
i
θy

j = 0

gij ẏ
i
ϕyj = 0 ,

(20)

implying ẏθ ⊥g y and ẏϕ ⊥g y.
Taking derivatives once more, we get

gij ÿ
i
θy

j = −gij ẏ
i
θẏ

j
θ

gij ÿ
i
ϕyj = −gij ẏ

i
ϕẏj

ϕ

gij ÿ
i
θϕyj = −gij ẏ

i
θẏ

j
ϕ .

(21)

We may express an arbitrary vector v as a linear combination of orthogonal
basis vectors:

v = αy + βẏθ + γ

(

ẏϕ − 〈ẏϕ, ẏθ〉
〈ẏθ, ẏθ〉 ẏθ

)

. (22)

We substitute this expression for v to the left hand side of (17) and obtain:

gijv
ivj = α2gijy

iyj + β2gij ÿ
i
θy

j + γ2

(

gij ÿ
i
ϕyj − (gij ẏ

i
θẏ

j
ϕ)2

gij ẏi
θ ẏ

j
θ

)

, (23)

because the mixed terms vanish due to the orthogonality of basis vectors.
On the other hand, for y’s on the indicatrix we have as a consequence of

Euler’s theorem on homogeneous functions (denoting Fyi = ∂F
∂yi ):

Fyiyi = F (y) = 1 . (24)



234 L. Astola and L. Florack

Differentiating eq. (24) w.r.t. θ and ϕ, we obtain two equations:

Fyi ẏi
θ = 0 (25)

Fyi ẏi
ϕ = 0 , (26)

for F is a homogeneous function.
The matrices m, mθ, mϕ are as defined in eq. (7). Solving system of equations

(24), (25) and (25) we get:

Fy1 =
ẏ2

ϕẏ3
θ − ẏ3

ϕẏ2
θ

det(m)
, Fy2 =

ẏ3
ϕẏ1

θ − ẏ1
ϕẏ3

θ

det(m)
, Fy3 =

ẏ1
ϕẏ2

θ − ẏ2
ϕẏ1

θ

det(m)
. (27)

Now using equalities

Fyi = gijy
j, gij ÿi

θy
j = Fyk ÿk

θ , gij ÿi
ϕyj = Fyk ÿk

ϕ , (28)

and
−gij ÿ

i
θy

j =
det(mθ)
det(m)

, −gij ÿ
i
ϕyj =

det(mϕ)
det(m)

(29)

we obtain

gijv
ivj = α2 − β2gij ÿ

i
θy

j − γ2

(

gij ÿ
i
ϕyj − (gij ẏ

i
θẏ

j
ϕ)2

gij ẏi
θẏ

j
θ

)

> 0 (30)

if
det(mθ)
det(m)

> 0 and
det(mϕ)
det(m)

>
(gij ẏ

i
θẏ

j
ϕ)2

gij ẏi
θ ẏ

j
θ

. (31)
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