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Abstract. In this paper, we introduce a semi-automated segmentation
method based on minimizing the Geodesic Active Contour energy incor-
porating a shape prior. We increase the robustness of the segmentation
result using the additional shape information that represents the desired
structure. Furthermore the user has the possibility to take corrective
actions during the segmentation and adapt the shape prior position. In-
teraction is often desirable when processing difficult data like in medical
applications. To facilitate the user interaction we add a shape deforma-
tion which allows to change the shape position manually by the user
and automatically in terms of underlying image features. Using a vari-
ational formulation, the optimization can be done in a globally optimal
manner for a fixed shape representation. To obtain real-time behavior,
which is especially important for an interactive tool, the whole method
is implemented on the GPU. Experiments are done on medical, as well
as on video data and camera streams that are processed in real-time. In
terms of medical data we compare our method with a segmentation done
by an expert. The GPU based binaries will be available online on our
homepage.

1 Introduction

Image segmentation is a very common problem in computer vision. Many seg-
mentation methods use low-level features to obtain a division into fore- and
background. Due to the need of robustness it has become a common practice
to incorporate high level knowledge to gain reasonable results. The method pre-
sented in this paper enhances the robustness of segmentation by imposing shape
information of the desired object which allows a precise result with difficult im-
age data (Fig. 1). Pioneering contributions have been made by Cremers et al. [1]
with their variational approach of ‘Diffusion Snakes’, the level set formulation
by Leventon et al. [2, 3] as well as the region based approach by Paragios and
Rousson [4, 5].

The efficient registration of the shape prior to the desired image structure is
a challenging problem. Therefore we developed a semi-automated segmentation
tool that allows to adjust the object position by hand and by a local optimiza-
tion routine which is modelled as shape transformation in either case. For the
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Fig. 1. Segmentation of the metacarpal bone of a ring finger. The left image shows
a simple intensity thresholding which clearly fails. The pure GAC segmentation in
the middle image does not result into a valid segmentation either. The shape prior
segmentation in the right image can also deal with the low-contrast regions and
provides an accurate result.

realization of the segmentation method we use a variational formulation of the
Geodesic Active Contour (GAC) energy. The minimization is done with a fast
primal-dual approach that is implemented using NVIDIA graphics hardware to
become real-time capable. Therefore the method can even be used for track-
ing objects in videos or live camera streams. Approaches based on the calculus
of variation have had great success and recently it has been shown that varia-
tional methods show good parallelization capabilities that benefit from a GPU
implementation [6, 7].

The main contribution of our work is the incorporation of a shape represen-
tation into a variational segmentation framework. We show that the resultant
segmentation is globally optimal for a fixed shape prior and provide a GPU im-
plementation for a fast primal-dual optimization procedure defining a definite
convergence criterion. Therefore we can add the possibility to interact with the
shape position and get a segmentation result in real-time. The framework per-
mits a local optimization of the shape position to get a correct segmentation of
objects with a preceding misalignment of the prior.

The remainder of the paper is organized as follows: First we give an overview
of related work. Section 3 discusses the method on combining a shape prior
with a variational formulation of the GAC segmentation model which leads to
a segmentation model utilizing a Mumford-Shah (MS) like data term as shape
force. In Section 3.1 we propose a fast numerical algorithm to compute the
solution of the segmentation model. In 4 we present experiments and a qualitative
assessment on reference data. Finally, Section 5 gives a short conclusion.

2 Related Work

2.1 Mumford-Shah Segmentation

In [8], Mumford and Shah (MS) proposed a segmentation model of the form

min
u,Γ

{∫

Ω

(u − f)2 dx + α

∫

Ω\Γ

|∇u|2 dx + β length (Γ )
}

(1)
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where f denotes the observed image, u its piecewise smooth approximation and
Γ represents the edges in u. Equation (1) is based on a piecewise smooth approx-
imation of the intensity function and was used in the computer vision community
for various tasks like denoising, inpainting, stereo matching, segmentation and
many more. A special case of the MS model to segment an image into fore- and
background was proposed with the so-called piecewise constant MS segmenta-
tion model (2) that was later used by Chan and Vese [9] in combination with a
level-set optimization.

min
Σ,c1,c2

{
Per (Σ) + λ

∫

Σ

(f − c1)
2 dx + λ

∫

Ω\Σ

(f − c2)
2 dx

}
(2)

In (2) f denotes the input image and c1, c2 the mean values of the fore- and
background intensities separated by the region Σ. This realization of the MS
functional represents the Potts model [10] for two distinct classes. In addition
Chan et al. provided a convex formulation in [11] in form of a Total Varia-
tion (TV) functional for a binary segmentation u = 1Σ :

min
u∈{0,1}

{∫

Ω

|∇u| dx + λ

∫

Ω

us (x) dx
}

(3)

with
s (x) = (c1 − f (x) )2 + (1 − u) (c2 − f (x) )2 (4)

and with
∫

Ω
|∇u| dx being the TV-norm in a distributional sense

∫
Ω
|D u|. Due

to the fact that we are working on image data which can be interpreted as
sufficient smooth functions, the TV-norm is valid for any input u and we stick
to the notation

∫
Ω |∇u| dx in this paper. For this formulation the TV-norm

denotes the length of the segmentation:
∫

Ω
|∇u| dx = Per (Σ).

Moreover Chan et al. [11] showed that a global minimizer can be found for (2)
with a restricted minimization of the relaxed problem (3) so that 0 ≤ u ≤ 1.
The minimization set is then given by

Σ =
{
x ∈ Ω : u > μ

}
, for every μ ∈ (0, 1) . (5)

2.2 Geodesic Active Contours

Based on the Snake model of Kass et al. [12], Caselles et al. [13] and Kichenas-
samy et al. [14, 15] proposed an energy that is invariant with respect to new
parametrizations of the contour. The Geodesic Active Contour (GAC) (in 3D
the model is called minimal surface) is defined as the variational problem

min
C

{ ∫ |C|

0

g (|∇I (C(s))|) ds
}

, (6)

where |C| describes the Euclidean length of the curve C and the function g
models an edge detector. The edge strength has to be restricted to an interval
g ∈ (0, 1]. One common choice for computing g is

g(|∇I|) = e−η|∇I|κ , for some reasonable parameters κ and η. (7)
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The general intention of the Snake model is to locate the curve at points
with a high edge strength and keep a certain smoothness in the curve. The main
advance of GACs is the profound mathematical framework that makes the model
very versatile for different applications. The main drawbacks of the model are
the non-convexity of the GAC energy and that the empty set is always a global
minimizer of (6).

In [16, 17, 18], several authors proposed the so-called weighted Total Varia-
tion (8) that can be used to give an alternative formulation of the GAC energy.
They showed that if u = 1ΩC is a binary function with C the boundary of ΩC ,
the energy (8) equals the GAC energy (6).

TVg(u) =
∫

Ω

g |∇u| dx (8)

Note that the weighted TV-norm is similar to the regularization term of (3). The
additional weighting function g is a pointwise constant multiplier and therefore
the method of Chan et al. [11, 19] mentioned in the previous Section 2.1 is
still valid. Based on these assumptions they showed that by replacing 1ΩC with
u ∈ [0, 1], (8) becomes convex, allowing to compute a global minimizer. How-
ever, there remains the problem that the empty set depicts a global optimal
solution. In [6, 7], Unger et al. proposed a variational formulation incorporating
user constraints that avoid this drawback of the classical GAC model.

3 Shape Prior Segmentation

Our main contribution is to combine GAC segmentation and a MS-like data term
to incorporate shape information. Therefore we model the GAC energy with the
weighted Total Variation (8) and utilize the need of additional constraints by
imposing the shape prior.

Starting with a formulation of the Mumford-Shah like energy utilized by Chan
and Vese in [9] we obtain a variational optimization problem like in (3). The
multiplicative part in the data-term will be used as shape information s (x) to
model the shape prior segmentation energy. In addition we use the weighted
Total Variation (8) to model the GAC energy and add a parameter λ to balance
between regularization and shape force:

min
0≤u≤1

{∫

Ω

g |∇u| dx + λ

∫

Ω

s (x)u dx
}

(9)

For a low λ the result of the GAC will be preferred, whereas for increasing λ
the shape prior will be taken more into account. In Fig. 2 the effects of differ-
ent parameter settings are shown. Since (9) is homogeneous of degree one, the
thresholding theorem of [11] still applies in our case, allowing us to compute the
global minimizer of (9) as mentioned in Section 2.1 according the MS segmen-
tation model (3). The optimization method will be discussed in more detail in
the following Section 3.1.
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Fig. 2. Evaluation of different settings of λ: The images show that with increasing
λ = {0.01, 0.02, 0.1} (left to right) the segmentation is more attracted to the fixed
shape. For a low λ the influence of the pure GAC energy increases and the segmentation
is more attracted to significant edges.

The shape prior itself influences the segmentation by setting pixelwise fore-
and background constraints which are modelled in the following way:

s (x) < 0 . . . Foreground
s (x) > 0 . . . Background

(10)

Therefore one can use different types of shape representations. As a simple ex-
ample we defined the shape s (x) as a binary function with s (x) = −1 within
the shape region and s (x) = 1 outside similar to [20] where Cremers et al. use
subspace methods to learn a representative set of shapes. Binary functions are
used to encode shapes which lead to problems when interpolating between two
instances. As a consequential step we use a signed-distance map with the con-
straints (10) which implicitly includes a distance information towards the shape
boundary. That means for our algorithm that the more a pixel is within the
shape boundary, the more likely this region belongs to the desired segmentation.
In Fig. 5 we show the benefit on using a signed-distance map as shape represen-
tation compared to a binary one. This representation and the combination with
a GAC energy allows to handle deformations with a single prior.

3.1 Solving the Shape Prior Segmentation Model

It is well known that functionals like (9) are difficult to optimize due to the L1-
norm |∇u|. Chan et al. [21], Carter [22] and Chambolle [23,24] proposed a dual
formulation for optimizing the classical variational problem of Rudin, Osher and
Fatemi [25] for image denoising. Such a primal-dual approach can be applied to
our minimization problem (9). The main intention is to remove the singularity
by introducing the dual formulation of the weighted TV-norm

∫

Ω

g |∇u| dx = max
||p||≤g

{
−

∫

Ω

u div p dx
}

, (11)

where p =
(
p1, . . . , pd

)T : Ω → R
d is the dual variable with d being the problems

dimension. Combining this maximization problem with the initial minimization
task (9) this leads to
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min
0≤u≤1

max
||p||≤g

{
−

∫

Ω

u div p dx + λ

∫

Ω

s (x) u dx
}
. (12)

For a fixed shape prior the outline of the primal-dual optimization algorithm
is given as follows:

1. Primal update: The primal update accomplishes the segmentation update
and therefore performs the optimization according to the minimization of u:

∂

∂u

{
−

∫

Ω

u · div p dx + λ

∫

Ω

s (x) u dx
}

= − div p + λs (x) (13)

Performing a gradient descent update scheme this leads to

un+1 = Π[0,1]

(
un − τP (− div p + λs (x) )

)
, (14)

where τP denote the steplength and the orthogonal projection Π towards
the binary set [0, 1] can be done with a simple thresholding step.

2. Dual update: The maximization according to p can be stated as

∂

∂p

{∫

Ω

p · ∇u dx + λ

∫

Ω

s (x) u dx
}

= ∇u (15)

with the additional constraint ||p|| ≤ g. This results into a gradient ascent
method with a orthogonal reprojection to restrict the length of p to the
weight g:

pn+1 = ΠBg
0

(
pn + τD∇u

)
(16)

Here Bg
0 denotes a d-dimensional ball centered at the origin with the radius g.

The reprojection onto Bg
0 can be formulated with

ΠBg
0

(
q
)

=
q

max
{
1, ||q||

g

} (17)

3. Iterate until convergence: Solving the optimization problem (12) results
in a consecutive update scheme with a gradient descent (14) and a gradi-
ent ascent step (16). Such an iterative algorithm demand on a convergence
criterion. Therefore we take the energy of the single steps into account:
Primal energy: The primal energy can be calculated by solving (12) by

maximizing the equation towards the dual variable p. Due to (11) p can
be restated as

p =
∇u

|∇u|g if ∇u �= 0

p ∈ Bg
0 else

(18)

for the optimization. This results into the energy equation (19) which is
the same as evaluating the energy functional (9).

EPrimal =
∫

Ω

g |∇u| + λ s (x)u dx. (19)
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Fig. 3. Relation of primal to dual energy while optimizing with the proposed primal-
dual update scheme. The plot shows the iterations in a logarithmic scale over 100
iterations. Note that after 20 iterations the primal-dual gap is small enough to stop
iterating.

Dual energy: The dual energy can be formulated by minimizing (12) to-
wards u:

min
0≤u≤1

{∫

Ω

u
(
− div p + λs (x)

)
dx

}
, (20)

which conclude that the binary segmentation u ∈ {0, 1} is set to u = 1
if the term − div p + λs (x) < 0 and u = 0 otherwise:

EDual =
∫

Ω

min
{
− div p + λs (x) , 0

}
dx (21)

In [26,27], Zhu et. al. introduce a measurement for the convergence state of
primal-dual algorithms in case of the ROF model. As a criterion they use
the gap between the primal and dual energy. Applied to our primal-dual
optimization algorithm we get an adaption of the energies like in Fig. 3.
Therefore we use a fixed stepwidth for the primal (τP ) and dual update (τD)
with the constraint that τP τD ≤ 1

2 . For all the results shown in this paper
we used τP = τD = 1√

2
. We also tried adaptive timesteps (τP , τD) for the

optimization steps similar to the work of Zhu and Chan in [26] but did not
find a reasonable equivalent for our method.

3.2 Shape Alignment

So far, our considerations assume a spatially fixed shape prior s (x) . In order to
adapt the shape prior to different locations in the image we introduce a set of
transformation parameters φ = {t, R, S} with the transformation parameters t
for translation, R for rotation and S for the scale. Imposing this transformation
into the segmentation energy (9) leads to an additional optimization parameter:

min
u,φ

{∫

Ω

g |∇u| dx + λ

∫

Ω

(
φ (t, R, S) ◦ s (x)

)
u dx

}
(22)
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Fig. 4. Segmentation of a vertebra in an X-ray image of the spline. Due to very bad
contrast the segmentation without prior would fail completely. The definition of the
prior was prepared by us and therefore cannot be considered as reference data.

In [20], Cremers et al. show with the help of the Lipschitz continuity that
with an integrated rigid body motion the energy functional remains convex and
therefore can be optimized globally for fixed transformation parameters. They
additionally show that for optimizing the shape position itself the complete sub-
space Ω where the energy (9) is defined has to be sampled on a rather fine
grid with all possible shape positions for evaluating the minimization task in a
global manner. This is of course not feasible for an interactive application due
to the need of optimizing the problem in real-time. Therefore we added a semi-
automated approach that allows the user to have influence on the shape position
and in addition an automated search for the optimal transformation parameters
in a local neighborhood can be done. The optimization scheme in Sect. 3.1 can
be retained with an extension on optimizing the transformation φ:

1. Solve shape prior segmentation model.
2. Optimize transformation parameters φ with a fixed u: Here we use

a semi-automated position optimization of the shape prior. First, the user
has the possibility to do a coarse positioning of the shape and second an
optimization step tries to fit the shape to desired surrounding structures.
Therefore we evaluate the energy (19) for different transformations φ. The
optimal position is found where (19) has its minimum. The user gets an
immediate result while changing the shape position and therefore can directly
interact with the segmentation algorithm.

3. Iterate until convergence.

Note that the domain of φ is restricted due to performance issues. Doing a com-
plete search over the whole parameters space of the transformation parameters,
a global optimal solution of (22) can be calculated like in [20].

4 Experimental Results

To reach real-time performance we have to compute the iterative solution as fast
as possible. Due to the good parallelization attributes of variational algorithms
we decided to implement the method using GPGPU programming with the help
of NVIDIAs CUDA. The involved enhancements offer the possibility to combine
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Fig. 5. The same dataset as in Fig. 1 was used to evaluate the shape alignment step.
Therefore the shape prior is placed nearby the desired bone (left image) and the align-
ment step searches for the optimal position in the local neighborhood. The results
(middle image) show that the segmentations are equivalent to the hand-labeled points.
The right image shows the alignment step using a binary shape prior which fails for
the optimization step. For the correct result in the middle image a signed distance
representation of the shape term was used.

Fig. 6. The position refinement is robust against partial occlusion

user interactivity with the computational intensive variational method and get
a segmentation result at interactive rates. The performance depends mainly on
the size of the search region in the parameter space and on the shape prior’s size
as well. As an example we achieve 80 frames per second on a NVIDIA GeForce
GTX 280 for pure segmentation and 20 frames per second including the position
optimization.

In our Framework we have two possibilities to provide a shape prior for the
segmentation. Either the user can define a shape prior directly with a segmenta-
tion of a structure using pure GAC energy by setting foreground and background
seeds. This is especially useful when recurring structures have to be segmented.
For more accurate results especially on difficult data we can load a predefined
shape structure that is used for the segmentation method.

In Fig. 1 a predefined prior is used for segmenting finger bones and compare
the segmentation result with a simple intensity thresholding and a segmentation
with the pure GAC-energy. The result shows an identical segmentation result
for the shape prior segmentation and the reference data labeled by an expert. A
more difficult example is shown in Fig. 4 which shows a segmentation of a single
vertebra in an X-ray image of the spline. Due to the very bad contrast simple
thresholding would obviously fail completely and also pure GAC energy would
end up into setting very much seed information.
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Fig. 7. Real-time tracking of an espresso cup in a live camera stream

Fig. 8. Multiple vertebrae of the cervical spline are tracked separately through a se-
quence. The intention is to ascertain the movement of the vertebrae towards each
other.

Fig. 9. Segmentation of bottles with a single shape prior

Examples of automated shape alignment with optimizing the transformation
parameters in a local neighborhood are shown in Fig. 5–8. Fig. 5 shows again the
labeled bone dataset. The overlay with reference data shows that the position
optimization leads to the correct segmentation. For non-medical image data
examples are presented in Fig. 6 and 7. The first one shows that the proposed
method is robust against partial occlusion. Furthermore the method can be used
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for tracking a certain structure over a sequence of frames. Fig. 7 shows a sequence
of an espresso cup which was directly processed from a camera image with on-the-
fly segmentation and position optimization. For a restricted domain of movement
we gain real-time performance for tracking a sequence.

In Fig. 8 we track parts of the cervical spline in a moving X-ray image series to
obtain a path of movement of the vertebrae to each other during a flexion. The
predefined shapes of the four vertebrae are initialized in the first frame and than
automatically tracked over the complete flexion. This can be used to ascertain
shapes of implants for intervertebral discs.

In Fig. 9 multiple objects are segmented with the help of a single shape prior.
Therefore a prior is defined in form of a bottle and placed roughly on each bottle
in the image. The fine adjustments are done automatically.

5 Conclusion

In this paper, we proposed a globally optimal shape prior segmentation method
with additional user interaction and automated position refinement. With this
approach we can handle very different images and gain robust segmentation
results. Especially the segmentation for difficult data like the low-contrast spline
image benefits from the additional shape information. A great advantage of
variational methods like this are the parallelization capability that especially
profits by the modern graphics hardware that are able to boost the performance
of such highly parallel algorithms.
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