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Abstract. This paper shows a potential use of scale space for statisti-
cal validation of watershed regions of a greyscale image. The watershed
segmentation has difficulty in distinguishing valid watershed regions as-
sociated with real structures of the image from invalid random regions
due to background noise. In this paper, a hierarchy of watershed regions
is established by following merging process of the regions in a Gaussian
scale space. The distribution of annihilation scales (lives) of the regional
minima is investigated to statistically judge the regions as being valid or
not. Recursive validation using the hierarchy prevents oversegmentation
due to the randomness.

1 Introduction

The aim of this study is to develop a statistical validation scheme for segmenta-
tion of a greyscale image. If we do not have a priori knowledge on the shapes or
structures of objects in the image, topographic features of the greyscale image,
and the watersheds in particular, are useful for unsupervised image segmentation.
A well-known phenomenon in the watershed segmentation is oversegmentation,
that is, producing a large number of undesired tiny regions. Since the undesired
watershed regions are mainly caused by noise in the image, it is desirable to
settle the oversegmentation problem by taking account of statistical properties
of the randomness.

There is a body of literature dealing with the oversegmentation problem of
watersheds [1,2,3,4,5,6,7,8]. In the antecedent work, most schemes for prevent-
ing the oversegmentation attempt to hierarchically merge the oversegmented
regions on the basis of similarity between adjacent regions measured by the
MDL [3], colour distance [8], and so on. Diffusion-based multiscale image rep-
resentations are also used for merging the regions [5, 6, 8], since the scale space
theory [9,10,11,12,13,14,15] mathematically underpins topological relationships
among the topographic features without a priori knowledge about them. The
oversegmentation can be reduced by selecting levels in the hierarchy of regions,
or by setting lower bounds to the scale above and below which the watersheds
are valid and invalid, respectively.

In this paper, we show that the scale-space treatment of the image is also
useful for the statistical analysis of the random watershed regions. The validity
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of a watershed region can be quantified in terms of the statistical confidence of
distinguishing it from invalid watershed regions due to randomness. We present
a fully unsupervised watershed segmentation algorithm, in which the watershed
regions are recursively validated according to their hierarchical relationships in
the scale space.

2 Watershed Segmentation with Variable Scale

2.1 Gaussian Scale Space

In the Gausian scale-space theory [9,10,11,12,14,15,16], a one-parameter family
of nonnegative functions is derived from a d-dimensional greyscale image f(x),
x ∈ R

d.
f(x, σ) = G(x, σ) ∗ f(x) (1)

Here, “∗” expresses d-dimensional convolution, and G(x, σ) is an isotropic Gaus-
sian function with the scale σ.

G(x, σ) =
1

√
2π

d
σd

exp
(
−|x|2

2σ2

)
(2)

We redefine the d-dimensional greyscale image and its scale-space representa-
tion in the extended real scale and space as follows.

Definition 1. A d-dimensional greyscale image is defined as a nonnegative
scalar function f(x), x ∈ R̄

d with a finite net image intensity
∫
x∈R̄d f(x)dxd.

Definition 2. The scale-space image f(x, σ), (x, σ) ∈ (R̄d, R̄+), is the convo-
lution of the greyscale image f(x) with the isotropic Gaussian kernel G(x, σ).

Here, R̄
d and R̄

+ denote the d-dimensional extended real space including a point
at infinity and the extended real scale including an infinite scale, respectively.
Although the domain of a greyscale image in practice is bounded within a lim-
ited area or volume, we embed such an image in the extended real scale space.
The point at infinity will be theoretically used as a representative point of the
background of the image in the watershed segmentation later.

2.2 Watershed Segmentation and Hierarchy of Regions

The watershed segmentation was derived from spatial partitioning on the basis
of the drainage patterns of rainfall. As the topographic height map defines the
boundaries of the catchment basins draining to the same lowest points, a two-
dimensional greyscale image defines the watershed boundary curves enclosing
regions with local minima when we regard the image intensity as the topographic
height. For a d-dimensional image, the entire space is partitioned by (d − 1)-
dimensional hypersurfaces into d-dimensional watershed regions. Each watershed
region defined by a smooth function f(x) contains a unique local minimum, to
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which any point in the watershed region is connected by a gradient curve of f(x).
In practice, the watershed segmentation of the gradient image |∇f(x)| is known
to provide better intuitive partitions than that of the image f(x) itself [2,5,6,8]
because object boundaries in a scene may cause large spatial changes in the
image intensity.

Simple computation of the watersheds of the images results in oversegmen-
tation caused by tiny and insignificant catchment basins. As suggested in the
antecedent work [3, 5, 6, 8], hierarchical relationships among the watershed re-
gions are of great help for merging the oversegmented regions. We employ the
scale-space framework to derive the hierarchy because the scale-space axioms
are acceptable in general cases where any prior information about the similar-
ities among the unexpected watershed regions are not given. If we apply the
gradient watershed segmentation to the image f(x, σ) with the variable scale
σ, we can observe the evolution of the watersheds with respect to scale. The
catastrophy theory applied to the gradient watershed segmentation in the Gaus-
sian scale space [5] shows that the gradient watershed regions of f(x, σ) may
be generically annihilated, merged, created and splitted with increasing scale σ.
Therefore, hierarchical watershed segmentation using multiscale representation
of the image [2,6,8] is essentially the extraction of the hierarchical relationships
among the watershed regions in the scale space through the generic events.

Since every watershed region is represented by its local minimum, the trajec-
tories of the regional minima in scale space describe the relationships among the
regions. For the purpose of validation of the regions, we derive the hierarchy from
all the traceable regional minima from the finest scale along their trajectories
in scale space. We trace the trajectories by local minimisation at every level of
scale [16]. In an annihilation or merging event, two regional minima and a saddle
between them are involved. We regard one of these two regional minima as a
child of the resulting regional minimum after the event. We trace only one of
two local minima after a creation or splitting event because we are interested in
the hierarchy of the regions at the finest scale. Remark that the point at infinity
is a local minimum which exists at any scale. The local minimum at infinity
is the regional minimum of the image background because the rainfall in the
background region is drained to this ideal point.

The following algorithm RegionHierarchy traces every trajectory of the
regional minimum from every pixel p ∈ P at σ = 0 until the regional minimum
disappears or goes outside the image boundary toward the local minimum at
infinity with increasing scale.

RegionHierarchy(set of pixel centres P , image f(p ∈ P ))
1 let G be a graph with card(P ) + 1 nodes with the labels l = 0, . . . , N where

l = 0 represents the point at infinity;
2 store σt

l = ∞ in all nodes of G;
3 set σmax to be the size of the convex hull of P ;
4 σ := 0;
5 Q := P ;
6 while card(Q) �= 1 or σ < σmax do
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7 Q′ := Q;
8 σ := σ+Δσ, where Δσ is a small value compared with the space intervals

of the points Q;
9 for each ql ∈ Q do

10 update ql by minimising |∇f(x, σ)|2 with ql as the initial position 1;
11 if ql is outside the convex hull of P then
12 connect the two nodes of G labelled 0 and l;
13 end if
14 end for
15 let L be a list of labels corresponding to the points in Q;
16 while card(L) �= 1 do
17 pop a label l from L;
18 n :=NearestNeighbour(L, l);
19 if |ql − qn| < εσ, where ql, qn ∈ Q, and ε is the tolerance of minimisa-

tion then
20 if |ql − q′

l| > |qn − q′
n|, where q′

l, q
′
n ∈ Q′ then

21 child := l and parent := n;
22 else
23 child := n and parent := l;
24 end if
25 connect the two nodes of G labelled parent and child;
26 set σt

child := σ;
27 remove qchild from Q;
28 end if
29 end while
30 end while
31 return G.

The resulting graph G is a set of trees representing the hierarchy of the wa-
tershed regions of the gradient image. Any node in G represents a watershed
region consisting of the pixels indicated by its subtree nodes. The annihilation
or merging scale σt is stored at the node in G corresponding to p.

We utilise the bicubic spline interpolation [17] to seach for the local minimum
with subpixel precision in Step 10. The function NearestNeighbour in Step
18 searches for the nearest point to pl in the set of points listed in L and returns
its label. The annihilation or merging event is detected in Step 19, and one of
the two regional minima with larger displacement is identified as the child in
Step 20.

Figure 1 shows an example of the trajectories of regional minima and the
region hierarchy obtained by RegionHierarchy. Since the set of tree, G, ex-
presses hierarchical relationships among the image pixels, any tree node with a
scale σ > 0 represents a set of pixels consisting a watershed region.

1 It is trivial that the watershed regions of the gradient magnitude squared |∇f |2 are
identical to those of the gradient magnitude |∇f |.



Validation of Watershed Regions by Scale-Space Statistics 179

(a) (b)

σ

(c)

Fig. 1. Trajectories of regional minima and region hierarchy. (a) A noisy 96×96 image
f(x) embeded in a dark background. (b) Gradient magnitude squared |∇f(x, σ = 20)|2.
The brighter the larger magnitude. (c) Trajectories of the regional minima in scale
space. The thick curves (blue) are the parts of the trajectories for σ > 5. The thin
straight lines (red) are the edges of G between the nodes with σ > 5.

2.3 Scale Selection Problem

We need a criterion to select the scales or the tree levels in hierarchy. One may
expect that the watersheds of the image f(x, σ) at a small scale σ well ap-
proximates the boundary of true image regions. However, if noise spoils the fine
structure of the image, the estimated watersheds at small scales are stochastic
and experimentally less reproducible. The noise is suppressed at a large scale,
but the watershed segmentation is poor in terms of detection ability and locali-
sation: the edges of small watershed regions are smoothed out, and the boundary
shapes of large regions are simplified. Since the randomness is the major cause
of the oversegmentation problem in the watershed methods [1,4,5], the overseg-
mentation problem should be resolved in a statistical manner.

3 Validation of Watershed Regions

3.1 Valid Watershed Regions

Generally, a greyscale image expresses spatial distribution of a measured phys-
ical quantity. The true image f true(x), which we want to measure and apply
the watershed segmentation to, is inevitably spoiled by random noise through
the measurement. Therefore, the actual image f(x) presents valid watersheds
related to those of the true image f true(x) and invalid watersheds due to the
randomness.

Assertion 1. A valid watershed region of an observed gradient image |∇f(x)|
is related to one of the watershed regions of the true gradient image |∇f true(x)|.
Since the watershed regions are represented by the region minima, the image
f(x) has the valid watershed regions of the gradient image |∇f(x)| iff the true
gradient image |∇f true(x)| has corresponding local minima. Contrapositively,
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iff |∇f true(x)| is a featureless image without any local minimum, then no valid
watershed exists for any observation f(x), which should be considered as an im-
age of the background only. This condition means that f true(x) = 0 everywhere
in R̄

d because of the Definition 1. Therefore, f(x) for f true(x) = 0, i.e., the
noise image, produces only the invalid watershed regions. The valid watershed
region must be statistically distinguishable from such invalid region. From this
viewpoint, the validity of the watershed region is interpreted as the statistical
confidence in rejecting the following null hypothesis.

Null hypothesis H0: The watershed region is that of the noise image.
Alternative hypothesis H1: The watershed region is not that of the noise

image.

The null hypothesis H0 is rejected if the regional minimum is distinguishable
from that of the noise image using test statistics.

3.2 Life Distribution

An important fact is that the randomness of the image f(x, σ) is filtered out
as the scale σ increases, and deterministic features of the image f(x) emerge at
large scales. In other words, the deterministic features such as the valid watershed
regions are established from coarse to fine. There presumably exists a critical
lower bound of scale, above and below which the watersheds of f(x, σ) are valid
and invalid, respectively.

In order to observe how the valid regions survive until large scales against the
scale-space filtering, we define the life of the watershed region.

Definition 3. The life of the watershed region is defined as the annihilation
scale σt of the regional minimum.

Let W be a distribution of the lives of the watershed regions of |∇f(x, σ)| for the
image of random noise. If W can be parametrically modelled, a goodness-of-fit
test can be performed under the null hypothesis H0. That is, if an image f(x)
is an observation of a true uniform image with noise, then the model of W fits
the distribution of lives {σt} of its watershed regions, and H0 for any watershed
regions of f(x) is accepted.

We investigate experimentally the life distribution W for the gradient water-
shed regions of a Gaussian white noise image as shown in Fig. 2(a). We averaged
the frequencies of lives over one hundred noise images. We discard the lives of
pixel points whose annihilations are detected in 0 < σ ≤ Δσ by RegionHier-
archy because not all the pixel centres are the local minima. Figure 2(b) is
the averaged histogram of life. The obtained life histogram shows an unimodal
shape. This implies that there exists a scale where the merging of the regions
most frequently occurs. The regional minima of the noise image are uniformly
distributed random points, and the regions tend to merge with nearest regions.
Therefore, we deduce that this unimodal property is associated with distribution
of the nearest neighbour distances of random points. In fact, the nearest neigh-
bour distance distribution has a unimodal shape (See appendix A). The scale of
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(a) (b)

σ

Relative frequency

Fig. 2. Noise image and the averaged life histogram for its gradient watershed regions.
(a) The noise image has uncorrelated random pixel values. (b) The life histogram
shows relative frequency of scale at which the regional minima of the gradient image
are annihilated as Gaussian blurring of the noise image proceeds.

the mode can be used as a gauge of the density of invalid regions. The regional
minima with significantly large values of life out of the unimodal distribution W
can be identified to be valid, because such regional minima are distinguishable
from the invalid regional minima of the noise image.

3.3 Recursive Validation

We can set a critical value of the scale to judge the watershed regions valid or
invalid. Although the computation of such a critical scale requires the parametric
model of the life distribution in the strict sense of statistics, the critical scale
can be roughly evaluated by the peak and decaying form of the life histogram.
If the image contains valid regions, the life histogram may be multimodal or
may have a peak at a small scale relative to the outlying lives representative of
the valid regions. According to our experimental result in Section 3.2, a regional
minimum with a life which is more than six times greater than the peak can be
considered to be valid with the statistical confidence level α > 99% under the
assumption of uncorrelated Gaussian random pixel values of a two-dimensional
image as the noise.

We present an algorithm RegionDiscovery for discovery of the valid wa-
tershed regions. This algorithm recursively validates the regions in a top-down
fashion using each tree T in G by RegionHierarchy. According to the hierar-
chy, any discovered region is split into subregions as long as they are valid. Each
subregion is validated using the life histograms constructed from the lives stored
in the subtrees of T corresponding to the subregion.
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RegionDiscovery(tree T , set of valid regions V , significance level α)
1 let Σ be a set of life values stored in T except the root;
2 let s be the subroot node of T with the largest life value σmax ∈ Σ;
3 if IsMultimodal(Σ) or IsOutlier(σmax, Σ, α) then
4 RegionDiscovery(Subtree(T , s), V , α);
5 RegionDiscovery(T \Subtree(T , s), V , α);
6 else
7 push the region R :=Pixels(T ) into V ;
8 end if.

Here, the function IsMultimodal returns true if the histogram of Σ is not
unimodal. IsOutlier returns true if the life σt is greater than the critical α-
level of scale computed from the given set of lives Σ. Note that these functions
discard the lives in 0 < σ ≤ Δσ. Subtree extracts the subtree with subroot
node s from the tree T . Pixels returns a set of pixels whose labels are recorded
at the nodes in the given tree.

The following function, Watershed, executes our watershed segmentation
algorithm for a given image f with a set of pixels P and a significance level α.
It returns the set of valid watershed regions consisting of subsets of P .

Watershed(set of pixel centres P , image f , significance level α)
1 set V := ∅;
2 G := RegionHierarchy(P, f);
3 for each tree T in G do
4 RegionDiscovery(T , V , α);
5 end for
6 return V .

(a) (b) (c)

 5

 10

 15

 20

 25

 30

scalescale

Fig. 3. An example of our watershed segmentation of noisy image. (a) Original image
with 20% noise. (b) Trajectories of local minima of the gradient magnitude of (a) in
scale space. The trajectories reaching out of the spatial domain are subordinate to a
local minimum at infinity. (c) Watershed regions of the gradient magnitude by the
algorithm Watershed. The brightness indicates the order of lives.
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4 Test Example

We demonstrate our gradient watershed segmentation Watershed for a noisy
greyscale image. The purpose of this section is not to test the performance of the
algorithm, but to show that the statistics in scale space has potential to discover
the valid watershed regions without any prior information about them.

Figure 3(a) shows a 128 × 128 test image f(x) with 20% additive noise [18].
The trajectories of local minima of |f(x, σ)| traced from σ = 0 in scale space are
shown in Fig. 3(b). We see a large number of local minima created by the noise at
small scales. As the scale increases, the local minima are hierarchically grouped
and representative local minima survive at larger scales. Figure 3(c) shows the
segmentation result with a confidence level α = 99% for f(x). There are nine

σ = 2 σ = 6 σ = 12

Fig. 4. Watershed segmentation of Fig. 3(a) at different scales. First row: the scale-
space image f(x, σ). Second row: the gradient magnitude |∇f(x, σ)|. Third row: the
watersheds of |∇f(x, σ)|. Each column corresponds to the same scale indicated below.
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discovered regions clearly corresponding to the major regions of the original
image. The tiny faults in the regions were caused by failure in the minimisation.
They were wrongly assigned to the image background, which should be fixed in
the future work.

For the comparision purpose, we show in Fig. 4 the simple watershed seg-
mentation results at a few levels of scale without using the region hierarchy or
statistics in scale space. We see invalid small regions at small scales while the
shapes of valid regions at large scales are distorted. It is remarkable that struc-
tural and statistical analyses using scale space can reconstruct the precise edges
of statistically valid watershed regions despite the significant noise.

5 Concluding Remarks

The scale-space treatment of the image clarifies not only the hierarchical rela-
tionships among the watershed regions but also their statistical properties. We
can observe in the Gaussian scale space how the random features are suppressed
and deterministic features emerge as the scale grows.

A valid watershed region must be statistically distinguishable from unrepro-
ducible regions caused by the random features. The reproducibility is a desirable
ability of image recognition techniques. On the basis of this simple requirement
we described the null hypothesis H0, which is to be rejected if the watershed re-
gion is valid. A watershed region is recognised as valid at a statistical confidence
level in rejecting H0.

We presented a validation scheme for watershed segmentation using statistics
in scale space. We defined the life of a watershed region, whose distribution is
useful for testing H0. We showed that the life distribution for the noise image is
unimodal, and the valid regions can be identified by the regional minima with
significantly large values of lives out of the unimodal distribution. The statistical
properties of the life and the region hierarchy enable the recursive validation of
the watershed regions.

A distinctive feature of our scheme is that it does not require any definition
of similarity or dissimilarity measures between watershed regions, which is used
in many methods for preventing oversegmentation. Instead, we focused on the
statistical differences between the valid and invalid regions in scale space. In
order to take advantage of the potential of scale-space statistics, our scheme
requires further investigation, especially in relation to the model of the life dis-
tribution, and improvement and acceleration of the algorithms to obtain feasible
segmentation results for larger size real images.
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A Distribution of Nearest Neighbour Distances

We present a proof that the nearest neighbour distances obey the Weibull dis-
tribution if the points in R

d are uniformly distributed in a Poisson arrange-
ment [19]. The Poisson arrangement is defined as the uniformly random distri-
bution of points with constant density ρ such that the number of points x in a
fixed volume V follows the Poission distribution.

Po(x; λ) =
λx exp(−λ)

x!
(3)

http://sampl.ece.ohio-state.edu/database.htm
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Here, λ = ρV is the expected number of points in the volume V . Let r be
the distance from an arbitrary point. The distribution of the nearest neighbour
distances, p(r), can be regarded as the probability that the nearest neighbour
is found in an infinitesimal gap between r and r + δr. This is the case that no
points are found within the distance r, and at least one point is found between
r and r + δr. Since the volume Vd of a unit d-ball and its surface area Sd−1 has
a relationship Vdd = Sd−1, we have

p(r)δr = Po(0; ρVdr
d)

{
1 − Po(0; ρSd−1r

d−1δr)
}

≈ exp(−ρVdr
d)

{
1 − exp(ρSd−1r

d−1δr)
}

= exp(−ρVdr
d) · ρSd−1r

d−1δr

= exp(−ρVdr
d) · ρVddrd−1δr

Letting s = 1/d
√

ρVd be the scale of the average volume of d-dimensional hyper-
cube per point, we obtain the Weibull distribution

p(r; s, d) =
d

s

(r

s

)d−1

exp
{
−

(r

s

)d
}

(4)

where s and d correspond to the so-called scale and shape parameters of the
Weibull distribution, respectively. This distribution p(r; s, d) has a mode at r =
s d
√

(d − 1)/d. For a fixed dimensionality, the mode depends only on the scale
parameter s, which enables us to calculate the point density ρ from the mode.
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