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Abstract. Segmentation of images is often posed as a variational prob-
lem. As such, it is solved by formulating an energy functional depending
on a contour and other image derived terms. The solution of the seg-
mentation problem is the contour which extremizes this functional. The
standard way of solving this optimization problem is by gradient descent
search in the solution space, which typically suffers from many unwanted
local optima and poor convergence. Classically, these problems have been
circumvented by modifying the energy functional. In contrast, the focus
of this paper is on alternative methods for optimization. Inspired by ideas
from the machine learning community, we propose segmentation based
on gradient descent with momentum. Our results show that typical mod-
els hampered by local optima solutions can be further improved by this
approach. We illustrate the performance improvements using the level
set framework.

1 Introduction

A very popular and powerful approach for solving image segmentation problems
is through the calculus of variations. In this setting the solution is represented
by a contour, which parameterizes an energy functional depending on various
image based quantities such as intensities or gradients. In general, the set of
possible contours constitutes the solution space, where the goal is to find the
contour which extremizes the energy in this space. As an optimization prob-
lem, there are many possible strategies to find this solution. One approach is to
use the method of graph cuts to find a global optimum [1]. However, this can
only be applied to a small class of energy functionals. For more general prob-
lems, the standard method has been to deform an initial contour in the steepest
(gradient) descent of the energy. Equations of motion for the contour is derived
using the Euler-Lagrange equation and the condition that the first variation of
the energy functional should vanish at a (local) optimum. Then, the contour is
evolved to steady-state given the resulting equations. A standard implementa-
tion of this strategy is usually hampered by two common problems. The first
problem is sensitivity to local optima, which are manifested due to noisy data.
To avoid this, the usual approach has been to modify the energy functional by
adding regularizing terms. The second common problem is poor convergence due
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to difficulties in choosing good initial conditions. To improve convergence, very
effective solvers based on multi-grid [2, 3] and AOS schemes [4, 5, 6] have been
developed. However, these methods all search for a solution in the gradient de-
scent direction and little focus has been given to the underlying optimization
problem. This has been identified in recent work [7, 8], where the metric defin-
ing the notion of steepest descent (gradient) has been studied. By changing the
metric in the solution space, local optima due to noise are avoided in the search
path.

Along the same direction, this paper presents an alternative search strategy for
the optimization solver. Our idea stems from the machine learning community,
where an optimization problem is solved to update the system to adapt to a given
stimulus. A simple, but effective, modification to gradient descent was proposed
in [9], which basically adds a momentum to the motion in solution space. This
simulates the physical properties of inertia and momentum and effectively allows
the search to avoid local optima and accelerate in favorable directions. In this
paper, we show how this idea can be used for image segmentation in a variational
framework using level set methods. The results show faster convergence and less
sensitivity to local optima.

The paper will proceed as follows. In Section 2, we describe the idea of gradi-
ent descent with momentum in a general setting and give examples highlighting
the benefits. Then, Section 3 presents how this idea can be used to solve seg-
mentation problems in a level set framework. This is exemplified in Section 4
and Section 5 where we give implementation details and compute segmentations
given a common energy functional. Finally, Section 6 concludes the paper and
presents ideas for future work.

2 Gradient Descent with Momentum

Considering general optimization problems, gradient descent is a very simple
approach which can handle many types of cost functions. It is intuitive, since it
always moves in the direction of steepest descent, which locally gives the largest
amount of decrease in the cost function. In addition, it only requires first order
derivatives of the function, providing simple and fast computations. On the other
hand, it is well known that gradient descent suffers from poor convergence and
high sensitivity to local optima for many practical problems. Therefore, other
descent directions (Newton, Quasi-Newton, etc.) have been studied and proved
superior, see e.g. [10] for a rigorous reference.

A simple alternative to these, more theoretically sophisticated methods, is
often applied in the machine learning community. A typical problem here is
the construction of adaptive systems that can classify unknown inputs. This
can be formulated as an optimization problem and one of the goals of machine
learning is to construct fast learning or adaptation rules that can be implemented
in very simple hardware or software devices. To improve the convergence and
robustness of a simple gradient descent solution, while avoiding the complexity
of more sophisticated optimization methods, gradient descent with momentum
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was proposed [9]. The starting point of our derivation of the proposed method
is the following description of a standard line search optimization method:

xk+1 = xk + sk (1)
sk = αkpk (2)

where xk is the current iterate, sk is the next step consisting of length αk

in direction pk. To guarantee convergence, it is often required that pk be a
descent direction while αk gives a sufficient decrease in the cost function. A
simple realization of this is gradient descent which moves in the steepest descent
direction according to pk = −∇fk, where f is the cost function, while αk satisfies
the Wolfe conditions [10].

Turning to gradient descent with momentum, we will adopt some terminology
from the machine learning community and choose a search direction according
to:

sk = −η(1 − ω)∇fk + ωsk−1 (3)

where η is the learning rate and ω ∈ [0, 1] is the momentum. Note that ω = 0
gives standard gradient descent sk = −η∇fk, while ω = 1 gives “infinite iner-
tia” sk = sk−1. The intuition behind this strategy is that the current iterate
has an inertia, which prohibits sudden changes in the velocity. This will effec-
tively filter out high frequency changes in the cost function and allow for greater
steps in favourable directions. Selecting appropriate parameters, our hope is
that the rate of convergence is increased while eventual local optima will be
overstepped.

The effect of the momentum term is illustrated in Figure 1. The iterates with
momentum ω = 0 show the behaviour of standard gradient descent when varying
the learning rate (step length) η. In comparison, for an appropriate choice of
momentum ω = 0.1, the solution approaches the optimum more rapidly. It can
be seen however, that too high momentum of ω = 0.4 leeds to oscillations.
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Fig. 1. Gradient descent search with/without momentum on a quadratic cost function
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3 Minimizing Level Set Flows

As was previously outlined, segmentation problems in image analysis are often
described as optimization problems with solutions derived using the calculus of
variations. The standard procedure is to formulate an energy functional by means
of a contour and various image derived terms. Extremals of this functional are
then identified by an Euler-Lagrange equation, which is used to derive equations
of motion for the contour [11]. This typical procedure yields a gradient descent
search in a high dimensional solution space, in which each possible contour is
represented by a point. For example [11] presents, among others, the derivation
of weighted region described by the following functional:

E(C) =
∫∫

ΩC

f(x, y)dxdy (4)

where C is a 1D curve embedded in a 2D domain, ΩC is the inside region of
C, and f(x, y) is a scalar function. This functional is used to maximize some
quantity given by f(x, y) inside C. A simple example is f(x, y) = 1 which mea-
sures, and maximizes, the area. Calculating the first variation of Eq. (4) yields
the evolution equation:

∂C

∂t
= −f(x, y)n (5)

where n is the curve normal. Again, setting f(x, y) = 1 gives a constant flow in
the normal direction, typically referred to as the “balloon force”.

The representation, or parameterization, of the contour C can in general be
chosen arbitrarily. However, it is often convenient to use the implicit level set
method by Osher and Sethian [12], since this allows for arbitrary topological
changes. To summarize the basic ideas, a contour is represented implicitly as a
zero level set of a time dependent scalar function (referred to as the level set
function). Formally, a contour C is described by C = {x : φ(x, t) = 0}. To
deform C, the level set function is evolved in time according to a set of partial
differential equations (PDEs). The transition from the equations of motion for
a parametrized curve (Eq. (5)) to a level set PDE is accomplished by a simple
procedure. In general, the motion ∂C

∂t = γn translates to the level set equation
∂φ
∂t = γ |∇φ| [11]. Thus, Eq. (5) gives the familiar level set equation:

∂φ

∂t
= −f(x, y) |∇φ| (6)

The remainder of this section will describe how we modify the typical level
set method update scheme to incorporate a momentum term as presented in
Section 2.

3.1 Momentum for Minimizing Level Set Flows

We have noted that the contour evolving according to the Euler-Lagrange equa-
tion yields a gradient descent search. Recall that each contour can be repre-
sented as a point in the solution space (the structure of the space will depend on
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parameterization). Thus, we can approximate the direction of the gradient by
computing the vector between two subsequent points. In the level set framework
we achieve this by taking the difference between two subsequent time instances
of the level set function, representing the entire level set function as one vector:

∇f(tn) ≈ φ(tn) − φ(tn−1)
Δt

(7)

where f is a cost function in compliance with the terminology used in Section 2.
Note that this is indeed an approximation, depending on the time difference
Δt = tn − tn−1. Following the ideas from Section 2, we update the level set
function to incorporate a momentum term:

s(tn) = −η(1 − ω)
φ̃(tn) − φ(tn−1)

Δt
+ ωs(tn−1) (8)

φ(tn) = φ(tn−1) + Δts(tn) (9)

The complete procedure works as follows:

Procedure UpdateLevelset

Given the level set function φ(tn−1), compute the next (intermediate)1

time step φ̃(tn). This is performed by evolving φ according to a PDE
(such as Eq. (6)) using standard techniques (e.g. Euler integration).

Compute the approximate gradient by Eq. (7).2

Compute a step s(tn) according to Eq. (8). This step effectively modifies3

the gradient direction by incorporating the momentum term as a fraction
of the previous step s(tn−1).

Compute the next time step φ(tn) by Eq. (9). Note that this replaces the4

intermediate level set function computed in Step 1.

The procedure is very simple and is directly compatible with any type of level
set implementation.

4 Experiments

We now describe some details of the implementation and illustrate properties of
the suggested method using two examples. Here we study 1D curves embedded
in a 2D domain, but the approach readily generalizes to 2D surfaces in 3D given
the level set framework.

4.1 Implementation Details

We have implemented the proposed ideas in Matlab using standard level set
techniques based on [13, 14]. Reference code can be found online at the site
http://dmforge.itn.liu.se/ssvm09/. Some details of our implementation are the
following:
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– The level set function is reinitialized (reset to a signed distance function) af-
ter Step 1 and Step 4. This is typically performed using the fast marching [15]
or fast sweeping algorithms [16]. There are two reasons for this: Firstly it is
required for stable evolution in time due to the use of explicit Euler inte-
gration. Secondly we want a momentum induced by the zero level set of φ
(the contour), rather than all level sets of φ. Reinitialization could be omit-
ted, with the effect of introducing a momentum on all individual level sets.
Interpreting each sample of φ as a parameter of the contour, this is equiva-
lent to applying momentum on each parameter. While feasible, we have not
experimented with momentum without incorporating reinitialization.

– We avoid instabilities by dampening s(tn) in Step 3 using a sigmoidal func-
tion:

ŝ(s(tn), smax) =
2smax

1 + e−2s(tn)/smax
− smax (10)

where smax is the maximum step length allowed.
– Any explicit or implicit time integration scheme canbeused inStep 1.Due to its

simplicity, we have used explicit Euler integration which might require several
inner iterations in Step 1 to advance the level set function by Δt time units.

4.2 Weighted Region Based Flow

To verify our idea, we have used a simple energy functional based on a weighted
region term (Eq. (4)) combined with a penalty on curve length for regularization.
The goal is to maximize:

E(C) =
∫∫

ΩC

f(x, y)dxdy − α

∮
C

ds (11)

where α is a regularization weight parameter. The target function f(x, y) is
image based, computed using the approach in [17]. This method uses quadrature
filters [18] across multiple scales to detect line structures. Taking the real part of
the complex filter response, f(x, y) gives positive values on the inside of linear
structures, negative on the outside, and zero on the edges. Translating Eq. (11)
to a level set PDE following [11] gives:

∂φ

∂t
= −f(x, y) |∇φ| + ακ |∇φ| (12)

where κ is the curvature of the contour. First we illustrate some properties of
the method with a synthetic test image depicted in Figure 2(a), which mimics
the common problem of intensity variation in medical imaging. The intensity of
the object ranges from 0.3 to 1, while the noise level is 0.1. This image yields
the target function f(x, y) in Figure 2(b) where bright and dark colors indicate
positive and negative values respectively. As exemplified in our first experiment
(Figure 3) the dip in contrast results in a local optimum in the solution space.
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(a) Input image (b) Target function f(x, y)

Fig. 2. Synthetic test image illustrating the presence of a local optima in the solution
space

(a) time = 0 (b) time = 40 (c) time = 100

(d) time = 170 (e) time = 300 (f) time = 870

Fig. 3. Iterations without momentum (conventional gradient descent)

Figure 3 shows the results after evolving the level set function by Eq. (12) until
convergence without momentum, using conventional methods. We define conver-
gence as |∇f |∞ < 0.03 (using the infinity/maximum norm), with ∇f given
in Eq. (7). For this experiment we used parameters α = 0.7 and we reinitial-
ized the level set function every fifth time unit. For comparison, Figure 4 shows
the results after running our method using parameters α = 0.7, ω = 0.8, η =
10, smax = 100, Δt = 5. Plots of the energy functional for both experiments are
shown in Figure 5. Here, we plot the weighted area term and the length penalty
term separately, to illustrate the balance between the two. Note that the func-
tional without momentum in Figure 5(a) is monotonically increasing, due to the
nature of gradient descent, while the functional with momentum visits a number
of local maxima during the search.

To further exemplify the behaviour of our method, we created a slightly mod-
ified version of Figure 2(a), shown in Figure 6(a). In contrast to Figure 2(a),
the shape in Figure 6(a) is disconnected, so the global optimum is expected to
contain two separated regions. Not surprisingly, conventional gradient descent
captures only a local minimum as displayed in Figure 7, while gradient de-
scent with momentum succeeds in capturing the global solution as two separated
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(a) time = 0 (b) time = 20 (c) time = 40

(d) time = 60 (e) time = 150 (f) time = 200

(g) time = 245 (h) time = 320 (i) time = 460

Fig. 4. Iterations using momentum
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(b) With momentum

Fig. 5. Plots of energy functionals for synthetic test image in Figure 2(a)

regions (Figure 8). For this experiment, we used the same parameters as in Fig-
ure 3 and Figure 4.

As a third test image we used a 458 × 265 retinal image from the DRIVE
database [19], shown in Figure 9(a). The target function f(x, y) is illustrated
in Figure 9(b). As in the previous experiment, bright and dark colors indi-
cate positive and negative values for f(x, y). The convergent result without mo-
mentum using parameters α = 0.07 and reinitialization every tenth time unit
is shown in Figure 10, given the initial condition in Figure 10(a). Applying
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(a) Input image (b) Target function f(x, y)

Fig. 6. Synthetic test image illustrating the presence of a local optima in the solution
space

(a) time = 0 (b) time = 200 (c) time = 515

Fig. 7. Iterations without momentum (conventional gradient descent)

(a) time = 0 (b) time = 40 (c) time = 70

(d) time = 180 (e) time = 240 (f) time = 485

Fig. 8. Iterations using momentum

the idea of momentum yields the result in Figure 11, using the parameters
α = 0.07, ω = 0.5, η = 1.3, smax = 40, Δt = 10. The energy functionals are
plotted in Figure 12 to display the convergence of both methods.

5 Results

The synthetic test image in Figure 2(a) illustrates a local optimum in the solu-
tion space when applying the parameters in our first experiment. As expected,
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(a) Input image (b) Target f(x, y)

Fig. 9. Retinal image

(a) time = 0 (b) time = 20 (c) time = 40 (d) time = 100

(e) time = 200 (f) time = 400 (g) time = 600 (h) time = 1210

Fig. 10. Iterations without momentum (conventional gradient descent)
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(a) time = 0 (b) time = 20 (c) time = 40 (d) time = 100

(e) time = 200 (f) time = 400 (g) time = 600 (h) time = 820

Fig. 11. Iterations using momentum
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Fig. 12. Plots of energy functionals for the retinal image in Figure 9(a)
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the conventional gradient descent approach converges to this local optimum as
depicted in Figure 3. In contrast, our proposed method gains enough momentum
in order to overstep the optimum, while at the same time the global solution is
reached more rapidly. The process (illustrated in Figure 4) intuitively expands
the curve beyond a local optimum, followed by a retraction if the search does not
provide any increase in that direction. Using a slightly modified input image, our
second example shows that our method is capable of capturing global optima,
even when the solution consists of separated regions (Figure 8).

Our third example illustrates our method on real data using a retinal image. In
Figure 10 we see that conventional gradient descent fails to capture many weak
signal blood vessels. This is a typical case of local optima solutions introduced
by noise and poor image contrast. Under the same conditions, gradient descent
with momentum captures practically all visible vessels as shown in Figure 11.
Note that this example does not include any verification of the accuracy of the
segmented vessels. The primary purpose is to illustrate that our method reaches
a stronger optimum value for the energy functional, as shown in Figure 12.

6 Conclusions and Future Work

In this paper we have presented the idea of gradient descent with momentum
in the context of segmentation using the level set method. We have illustrated
the drawbacks of conventional gradient descent and showed examples on how
the solution is improved by adding momentum. In contrast to much of the pre-
vious work, we have improved the solution by changing the method of solving
the optimization problem rather than changing the parameters of the energy
functional.

In the future, we will further study the general optimization problem of image
segmentation to propose more efficient solutions. Regarding the particular idea
of momentum, we will apply this on real applications and verify the quality of
the results.
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