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Abstract. A key aspect to study in the field of interface agents is the
need to detect as soon as possible the user intentions. User intentions
have an important role for an interface agent because they serve as a
context to define the way in which the agents can collaborate with users.
Intention recognition can be used to infer the user’s intentions based on
the observation of the tasks the user performs in a software application.
In this work, we propose an approach to model the intentions the user
can pursue in an application in a semi-automatic way, based on Variable-
Order Markov models. We claim that with appropriate training from the
user, an interface agent following our approach will be able both to detect
the user intention and the most probable sequence of following tasks the
user will perform to achieve his/her intention.

1 Introduction

Interface Agents [Maes, 1994] are computer programs designed to assist human
users in their computer-based tasks in a personalized manner. This kind of agent
is able to learn interests, preferences, priorities, goals and needs of a user aiming
at providing him/her proactive and reactive assistance in order to increase the
user’s productivity regarding to the application at issue.

With the aim of assisting a user of a software application, interface agents
not only have to learn the user’s preferences and habits regarding the use of the
application itself, but should also consider what his/her intention is before ini-
tiating an interaction with the user. Considering the status of a user’s attention
(i.e. his/her intention or the goal he/she is pursuing) and the uncertainty about
the user’s intentions are critical factors for the effective integration of automated
services with direct manipulation interfaces [Horvitz et al., 1998]. A correct de-
tection of the user’s intention will avoid the agent interrupting the user in an
improper moment. Users generally don’t want to be interrupted while working
on a specific task, unless this interruption is strongly related to the task they
are performing [Whitworth, 2005]. By considering the user’s intention the agent
will be able to answer to his/her requirements always in the realm of his/her
current intention. As a result, we must build agents capable of detecting the
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user’s intention so that it can predict opportune moments for gaining the user’s
attention.

In this work we propose an approach to automatically obtain a model of
the user intentions in a software application to allow a posterior detection of
those intentions. This model aims at being considered by an interface agent as
a context that represents the user’s focus of attention in a particular moment in
the use of the application. The interface agent can use this knowledge to assist
the user in the context of his/her intentions and, moreover, to find a suitable
moment to initiate an interaction with him/her (that is, when the agent is quite
sure of his/her intention). However, how the agent uses the detected intention
to assist the user is out of the scope of our work.

The rest of this work is organized as follows. Section 2 describes some related
work in the area and the problems detected in existent approaches. Next, in
Section 3 we describe our approach to the problem of modeling and detecting
a user’s intention. In Section 4 we present the experiments we performed to
validate our proposal. Finally, in Section 5, we present our conclusions.

2 Problem Overview

Intention recognition in this context can be defined as the process of inferring
a user intentions based on the observation of the actions he/she performs in a
software application. Intention recognition is a special case of plan recognition in
which only the intention of the user, but not the associated plan is predicted. A
complete plan recognition process is a more complex and time requiring task. In
the domain of an interface agent, such as in many other domains, it is preferable a
fast detection of just the user’s intention than a slower detection of the complete
plan needed to fulfill his/her intention.

The basic idea beyond the intention recognition process is to narrow the num-
ber of possible goals the agent believes the user is pursuing. This task is accom-
plished by observing the actions the user performs. For example, when starting
a scheduling application, the user can have any goal G1, G2, · · · , Gn. Now, if
the agent observes that the user performs certain task, like selecting “Add new
contact” in the application menu, the set of goals is reduced to those in which
the task performed is included as a particular step (for example, organizing an
event with the new contact as a participant, or sending a email to him/her). If
the next task observed is “Compose new email”, the set of candidate intentions
can be further narrowed. Note that even if there is only one candidate inten-
tion, the agent will not always be absolutely sure that the user really has that
intention. This way, each time the user performs an action in the application,
the set of candidate intentions might be reduced and/or some intention will be
more probable than others.

The basic algorithm to accomplish plan or intention recognition seems to be
straightforward; however, most of previous approaches to the problem fail in
three main aspects. The first problem that makes many previous approaches
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to the problem of plan recognition unsuitable for interface agents is that
plan libraries are usually hand-coded by a domain expert [Kautz, 1991]
[Charniak and Goldman, 1993] [Horvitz et al., 1998] [Lesh et al., 1999]. Build-
ing a plan library is a tedious and error prone task and the success of a plan
recognizer firstly relies on the correctness and completeness of the plan li-
brary itself. For this reason, in the recent years researchers have put spe-
cial attention in the acquisition of plan libraries by constructing models that
capture regularities in the user behavior. Nevertheless, most of this research
was conducted to learn the parameters of the model, such as probabilities,
while the structure of the model itself remained fixed [Nguyen et al., 2005]
[Duong et al., 2006] [Liao et al., 2007]. On the other hand, few efforts were put
on the task of learning plan libraries from the interaction history of a user with a
software application and the proposed approaches are limited in the kind of plan
structures that they are able to model [Bauer, 1999] [Gorniak and Poole, 2000]
[Garland; and Lesh, 2002]. Behavior usually differs from one user to another and
a predefined structure of plans may not fit a specific user behavior. For these
reasons, the automatic acquisition of plan libraries is desirable.

Second, one of the most important problems that an interface agent faces
when inferring the user’s intention is the uncertainty related to the moment in
which the user starts a new plan to achieve a new goal, that is how does the
agent become aware that the user has already achieved one goal and started
pursuing a new one? This issue is not usually addressed by many approaches
to the problem of plan recognition, and they consider only one "session", which
starts with the first observed action and ends when the algorithm recognizes the
user’s intention. In an interface agent environment, the user will repeatedly start
pursuing new goals in the application, with no preplanned behavior. Moreover,
the user can even change his/her intention without completing his/her previous
goal. This problem is usually tackled by restricting the memory of the plan
recognizer so that it only considers the most recent tasks performed by the user,
or it considers each task for only a fixed interval of time and then they are
completely disregarded [Brown, 1998] [Waern, 1996].

Another issue to take into account is that users usually follow several in-
tentions at a time. Consequently, a plan recognizer used by an interface agent
should be able to manage the realization of multiple user intentions simultane-
ously. Plan recognizers that limit themselves to one-at-a-time intentions are not
suitable in the interface agents domain. Related to this issue is the execution
of noisy tasks. Noisy tasks are tasks that the user performs but that do not
belong to his/her main goal, such as checking the current time while answering
an email. Predictions of a plan recognizer should not be highly affected by the
presence of such kind of tasks.

Although there are many approaches to the problem of plan recognition, no
previous approach is able to manage all the issues stated in this section. In
the next section we present our approach to deal with all these aspects of an
intention recognition system for interface agents.
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3 Proposed Approach

3.1 Learning an Intention Model from Examples

Markov models are a natural way of modeling sequences of actions observed along
time. In its simplest form, a Markov chain is a stochastic process with the Markov
property. Having the Markov property means that, given the present state, future
states are independent of the past states. In other words, the description of the
present state fully captures all the information that could influence the future
evolution of the process. Future states will be reached through a probabilistic
process instead of a deterministic one. At each step the system may change
its state from the current state to another state, or remain in the same state,
according to a certain probability distribution. The changes of state are called
transitions, and the probabilities associated with various state-changes are called
transition probabilities.

Markov chains of fixed order are a natural extension in which the future state
is dependent on the previous m states. Although this extension is beneficial
for many domains, there are some main drawbacks in the use of these models.
First, only models with very small order are of practical value since there is
an exponential grow in the number of states of Markov chains as their order
is increased. Second, for sequences of tasks performed by a user to achieve an
intention, the probability of the next performed task is not always determined
by the same fixed number of previous tasks. There is usually a variable length
previous “context” that determines the probability distribution of what the user
may perform next.

Hidden Markov Models are an alternative way of modeling natural sequences.
Although these models are a powerful and popular representation, there are
theoretical results concerning the difficulty of their learning [Ron et al., 1996].

Variable Order Markov (VOM) models arose as a solution to capture longer
regularities while avoiding the size explosion caused by increasing the order of the
model. In contrast to the Markov chain models, where each random variable in a
sequence with a Markov property depends on a fixed number of random variables,
in VOM models this number of conditioning random variables may vary based
on the specific observed realization, known as context. These models consider
that in realistic settings, there are certain realizations of states (represented
by contexts) in which some past states are independent from the future states
conducting to a great reduction in the number of model parameters.

Algorithms for learning VOM models over a finite alphabet Σ attempt to
learn a subclass of Probabilistic Finite-state Automata (PFA) called Probabilis-
tic Suffix Automata (PSA) which can model sequential data of considerable
complexity. Formally, a PSA can be described as a 5-tuple(Q, Σ, τ, γ, π), where
Q is a finite set of states, Σ is the task universe, τ : Q×Σ → Q is the transition
function, γ : Q×Σ → [0, 1] is the next task probability function, where for each
q ∈ Q,

∑

σ∈Σ

γ(q, σ) = 1, π : Q → [0, 1] is the initial probability distribution over

the starting states, with
∑

σ∈Σ

π(q) = 1.
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A PFA is a PSA if the following property holds. Each state in a PSA M is
labeled by a sequence of tasks with finite length in Σ∗ and the set of sequences
S labeling the states is suffix free. Σ is the domain task universe, that is the
finite set of tasks that the user can perform in the domain. A set of sequences
S is said to be suffix free if ∀s ∈ S, Suffix∗(s) ∩ S = {s}, where Suffix∗(s) =
{si, · · · , sl|1 ≤ i ≤ l} is the set of all possible suffixes of s, including the empty
sequence e. For every two states q1 and q2 ∈ Q and for every task σ ∈ Σ, if
τ(q1, σ) = q2 and q1 is labeled by a sequence s1, then q2 is labeled by a sequence
s2 that is a suffix of s1 · σ.

In contrast to N-order Markov models, which attempt to estimate conditional
distributions of the form Pr(σ|s), with s ∈ ΣN and σ ∈ Σ, VOM algorithms
learn such conditional distributions where context lengths |s| vary in response
to the available statistics in the training data. Thus, PSA models provide the
means for capturing both large and small order Markov dependencies based on
the observed data. In [Armentano, 2008] we proposed an algorithm for learning
such models in an incremental way.

For learning a user’s intention model we follow a Programming By Example
(PBE) [Lieberman, 2001] approach in the sense that the user will teach the agent
what sequence or sequences of tasks he/she usually performs when he/she has
a given intention. However, unlike the classic programming by demonstration
approach, our aim is not to create a program that allows the agent to perform
repetitive tasks on behalf of the user, but to detect the user’s intention that lead
him/her to perform a set of tasks.

Learning the user’s intention model by example has the main advantage that
we do not need any additional information of the domain being modeled more
than the tasks that can be performed in the domain. The agent will be able to
learn regularities in the user’s behavior just by analyzing the examples given by
the user. This way the agent will be able to learn any intention the user may
have in the domain, just by giving an example of how to fulfill this intention.

By using the examples provided by the user, the agent will build a PSA model
for each goal the user can pursue in the domain. When a new example for an
existent model is provided, it may correspond to an alternative way of reaching
the same goal, so the corresponding model is updated to reflect this fact.

3.2 Recognizing a User’s Intentions

To perform plan recognition, the agent will have a PSA model for each goal for
which it was trained by means of examples provided by the user. By having a
separate model for each goal, the agent will be able to track several goals that
are being pursued simultaneously by the user.

Conventionally, to compute the probability assigned by a PSA k to a given

sequence of observations, we should compute PPSAk(r) =
N∏

i=1

γ(si−1, ri), where

γ(si−1, ri) is the probability value assigned in state si−1 to the observed task
ri, and will select the PSA that assigns the maximum probability as the PSA
corresponding to the user’s intention. However, as the user continues performing
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tasks, the total cumulative probability value assigned by each PSA will become
smaller and smaller as we are multiplying values in the range (0, 1]. Furthermore,
we must consider the uncertainty related to the moment in which the user starts
a new plan to achieve a new goal. The agent will be faced with a continuous
stream of tasks and should be able to recognize changes in the user’s current
intention. Moreover, the plan recognition process should not be affected by the
execution of noisy tasks. The problem we are facing is not a classical problem of
classification as we do not predict a “class” (intention) after observing a complete
sequence of performed tasks. In our domain, the interface agent should be able
to predict the most probable intention after each performed task, and the limit
between sequences of tasks corresponding to different intentions is often fuzzy.

To tackle this problem we use an exponential moving average on the prediction
probability γ(s, σ) at each step in each PSA as the predicted value for each
corresponding user intention. Moving averages are one of the most popular and
easy to use tools to smooth a data series and make it easier to spot trends. An
exponential moving average (EMA) [Hunter, 1986] is a statistic for monitoring
a process that averages the data in a way that gives less and less weight to
data as time passes. The weighting for each step decreases exponentially, giving
much more importance to recent observations while still not discarding older
observations entirely. By the choice of a weighting factor 0 ≤ λ ≤ 1, the EMA
control procedure can be made sensitive to a small or gradual drift in the process.
Alternatively, λ may be expressed in terms of N time periods, where λ = 2

N+1 .
EMAt expresses the value of the EMA at any time period t. EMA1 is set to

the a priori probability of the first observed task σ. Then, the computation of
the EMA at time periods t ≥ 2 is done according to equation 1

EMAt = λγPSAi(s, σ) + (1 − λ)EMAt−1 (1)

The parameter λ determines the rate at which older probabilities enter into
the calculation of the EMA statistic. A value of λ = 1 implies that only the
most recent measurement influences the EMA. Thus, a large value of λ gives
more weight to recent probabilities and less weight to older probabilities; a small
value of λ gives more weight to older probabilities. The value of λ is usually set
between 0.2 and 0.3 [Hunter, 1986] although this choice is somewhat arbitrary
and should be determined experimentally.

To sum up, the plan recognition process works as follows: as the user performs
tasks in the application at issue the agent will keep making the corresponding
state transitions in each PSA and computing the exponential moving average
of the transition probability of the performed tasks given each PSA. At each
step, the agent will own a probabilistically ranked set of PSAs which correspond
to the most probable intentions the user may have at each moment.

The problems we pointed out in Section 2 are then solved with our approach.
The uncertainty related to the moment in which the user starts a new plan to
achieve a new goal is managed by the exponential moving average by giving more
importance to recent observations than to older ones. The rate at which previous
intentions are forgotten is controlled by parameter λ of the EMA calculation.
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The fact that users usually pursue several goals at a time is managed by keeping
a set of PSA models, one for each goal the user can try to accomplish. With each
task performed by the user, a transition is made in every model. Noisy tasks are
also considered as the prediction of each PSA is computed as an EMA. Again,
how much this task influences the prediction is controlled by parameter λ of the
EMA calculation. Finally, personalization of the plan library is implicit in our
approach, as it is the user who gives examples on which his/her intentions are
and how to achieve each of them.

4 Experimental Evaluation

In the experiments shown in this section we evaluate two different metrics. The
Error for a model q given an observed task sequence Seq = σ1, · · · , σN is com-
puted as the sum of the absolute differences between the value assigned for each
model with respect to the higher value assigned by all the PSAs, as shown in
Equation 2

errorq(Seq) =
∑N

i=1 |q(σi) − qbest(σi)|
∑N

i=1 qbest(σi)
(2)

On the other hand, the Convergence is a metric that indicates how much time
took the recognizer to converge in what the current user goal was. If from the time
step t to the time step corresponding to the last performed task the algorithm
predicted correctly the actual user goal, the convergence is computed as shown
in Equation 3. The time step t is called convergence point.

convergenceq(Seq) =
N − t + 1

N
, (3)

not bestq(σt−1),
bestq(σj), ∀j t ≤ j ≤ N

where bestq(σi) =
{

1 if q(σi) = qbest(σi)
0 otherwise

(4)

4.1 Recognition in the Presence of Noisy Tasks

The purpose of the experiments described in this section is to test the ability of
the proposed model to perform well in the presence of noisy tasks. We considered
three kinds of “noise” that can be observed while performing plan recognition:
Omitted tasks (tasks that were observed in a training sequence and that are
not executed in the recognition process), Inserted tasks (tasks that were not
observed in a training sequence and are observed during the execution of a
sequence corresponding to a given intention) and Replaced tasks (tasks that were
performed in the place of another task that was expected for a given intention).

To test the influence of the length of the task sequences corresponding to the
intentions being modeled in the accuracy of the predictions, we run different ex-
periments for different sequences length. For each experiment we used sequences
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of a fixed length for training 20 PSA models. Each sequence was generated ran-
domly from a set of 26 abstract tasks. Then we altered each training sequence
by introducing different combinations of noise, both in amount and kind to build
25 testing sequences for each model and each combination of noises. The noise
was introduced in amounts varying from 0 to 90 percent of the length of the
sequence and in the three different kinds detailed above.

Figure 1 shows a comparison between the mean error for different values of
λ for sequences of length 5, 15, 25 and 50. We did not compute convergence in
this case because our goal is to evaluate individual sequences so that we can
have a better perception of the influence of noise. We can observe that with
few amount of noise present in the testing sequences, longer sequences lead to
lower error in the prediction for any value of λ. However, as we increase the
noise we introduce in the testing sequences there is a strong dependence on the
value selected for λ and the length of sequences for the error of the predictions.
As a general observation, we can state that higher values of λ make the system
predict shorter sequences better than longer sequences, while lower values of λ
make the system predict better longer sequences of tasks. For long sequences, it
is suggested that the value of λ has to be reduced to 0.1 to obtain better results.
However, for sequences of length 5, the value of λ that leads to lower error in
the predictions is 0.3. This result is due to the fact that a lower value for the
smoothing constant will take into consideration a history longer than 5 tasks,
and this will include tasks not belonging to the current user intention.

4.2 Prediction of Consecutive Intentions

In this section we will analyze the amount of tasks the plan recognizer needs
to observe to detect a change in the user intention (convergence) and how the
execution of consecutive plans affects the error of the plan recognizer. We used
the same set of 20 PSA models as in the previous experiments. For testing,
we generated 50 sequences by concatenating sequences belonging to a set of η
models selected randomly for each case. We experimentally set λ = 0.9, since we
obtained better results with this value of the smoothing constant.

Figure 2 shows a comparative plot of the values obtained for convergence
and error metrics for different sequence lengths when 3, 10 and 20 successive
intentions were simulated.

We can observe that there is a fall in convergence, that is more notorious for
shorter sequences, when we increase the number of successive intentions simu-
lated. For longer sequences, however, there is almost no change in the value for
this metric for 10 and 20 successive intentions. The convergence point is risen
to 1.60, 2.02, 2.06 3.45 for sequences of length 5, 10, 15 and 25 respectively and
for both cases of 10 and 20 successive intentions; for 10 successive intentions us-
ing sequences of length 50 the convergence point obtained is 7.55 tasks and for
20 successive intentions 7.9. For the error metric, on the other hand, the value
obtained is higher as we simulate more successive intentions, but the difference
tends to be smaller for longer sequences of tasks.
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Fig. 1. Average error for different sequences length and different values of the smooth-
ing constant

Fig. 2. Metrics values for different number of consecutive simulated intentions

4.3 Prediction of Interleaved Intentions

In this section we will describe another series of experiments performed to ana-
lyze the behavior of the plan recognizer when the user performs tasks belonging
to different intentions.
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The set of models used are the same we used the previous section. We varied
two variables in these experiments: the number of simultaneous models being
tested η and the percentage of tasks performed before changing the current
intention ζ. The smoothing constant λ was set experimentally to a value 0.9.
For all the experiments η was varied to take values in the set {2, 3, 5} and ζ to
take “chunks” corresponding to the 20, 40, 60 and 80 percent of the length of the
sequences.

For creating testing sequences we randomly selected a subset of the 20 mod-
els and generated a testing sequence by interleaving the tasks belonging to each
model in this subset, taking chunks of a specified size each time. We also ran-
domly selected the next model from which to take tasks, not considering the
same model used immediately before. The last chunk remained usually shorter
than the chunk size ζ. When this was the case, the performance of the recognizer
usually decreased. For each combination of η and ζ we repeated the experiment
50 times selecting different models.

Figure 3 presents the values obtained for convergence and error metrics for
sequences of length 5, 10, 15, 25 and 50.

Fig. 3. Metrics values for interleaved intentions for different sequences length

Notice that for sequences of length 5 by using subsequences of 20% and 80% of
the length of the sequence highly increases the error of the plan recognizer. This
is due to the fact that a subsequence of 20% leads to isolated tasks (sequences of
length 1). This represents a very uncommon situation in which the user would
alternate between different intentions performing one task of each one. Sequences
of length 1 are not sufficient to activate the memory of the model. Something
similar happens with 80% of the sequence length; we will have a subsequence of
length 4 and a sequence of length 1 would be left (the last task in the sequence).
In general, we can observe that the number of simultaneous models considered
in the experiments does not have a major influence in the resultant values for
the error and convergence metrics. We can observe that there is a general better
behavior of the recognition algorithm for both metrics for the case of chunks
with size ζ = 60%. The reason for this is that this is the test case with a better
equilibrium in the sizes of the chunks that lead to a better performance.
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A final observation from the graphics presented in Figure 3 is that our plan
recognizer predict longer sequences better. We obtained an error lower than 5%
and a convergence of more than 80% for the best case of sequences of length 50
for all tested cases of interleaved intentions, and an error lower than 25%, with
a convergence of more than 50% for the worst case of sort sequences of length 5.

One advantage we found for our plan recognizer is that there is no need to
“remember” which was the last task performed before interrupting the current
intention and start pursuing a different goal. Subsequences of the sequences used
to train a model lead to correct predictions, although we do not start executing
the sequence from its beginning.

5 Conclusions and Discussion

In this article, we presented an approach to model and recognize a user’s inten-
tions from the unobtrusive observation of his interaction with a software appli-
cation. We propose the use of Variable Order Markov models to model each user
intention and the use of an exponential moving average to tackle the evolution of
the process through long user sessions. We evaluated our proposal with promis-
ing results. However, there is still a challenge that need further study that is
the way the user will provide the system with training examples for building the
intention models needed by the agent. Currently, we are evaluating our approach
in a concrete application domain, using data collected from the observation of
real users.

References

[Armentano, 2008]Armentano, M.G.: Recognition of User Intentions with Variable-
Order Markov Models. Ph.D thesis, Universidad Nacional del Centro de la Provincia
de Buenos Aires. Argentina (2008)

[Bauer, 1999]Bauer, M.: From interaction data to plan libraries: A clustering approach.
In: IJCAI 1999: Proceedings of the Sixteenth International Joint Conference on Ar-
tificial Intelligence, pp. 962–967. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

[Brown, 1998]Brown, S.: A Decision Theoretic Approach for Interface Agent Develop-
ment. Ph.D thesis, Faculty of the Graduate School of Engineering of the Air Force
Institute of Technology Air University (1998)

[Charniak and Goldman, 1993]Charniak, E., Goldman, R.P.: A bayesian model of plan
recognition. Artificial Intelligence 64(1), 53–79 (1993)

[Duong et al., 2006]Duong, T.V., Phung, D.Q., Bui, H.H., Venkatesh, S.: Human be-
havior recognition with generic exponential family duration modeling in the hidden
semi-markov model. In: International Conference on Pattern Recognition, vol. 3,
pp. 202–207 (2006)

[Garland; and Lesh, 2002]Garland, A., Lesh, N.: Learning hierarchical task models by
demonstration. Technical report, Mitsubishi Electric Research Laboratories (2002)



184 M.G. Armentano and A.A. Amandi

[Gorniak and Poole, 2000]Gorniak, P., Poole, D.: Building a stochastic dynamic model
of application. In: Boutilier, C., Goldszmidt, M. (eds.) Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI 2000), Stanford University, Stanford,
California, USA, pp. 230–237. Morgan Kaufmann, San Francisco (2000)

[Horvitz et al., 1998]Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.:
The Lumière project: Bayesian user modeling for inferring the goals and needs of
software users. In: Cooper, G.F., Moral, S. (eds.) Proceedings of the Fourteenth Con-
ference on Uncertainty in Artificial Intelligence, pp. 256–265. Morgan Kaufmann,
San Mateo (1998)

[Hunter, 1986]Hunter, J.S.: The exponentially weighted moving average. Journal of
Quality Technology 18(4), 203–209 (1986)

[Kautz, 1991]Kautz, H.: A formal theory of plan recognition and its implementation.
In: Allen, J.F., Kautz, H.A., Pelavin, R., Tenenberg, J. (eds.) Reasoning About
Plans, pp. 69–125. Morgan Kaufmann Publishers, San Mateo (1991)

[Lesh et al., 1999]Lesh, N., Rich, C., Sidner, A.L.: Using plan recognition in human-
computer collaboration. In: International Conference on User Modeling (UM 1999),
pp. 23–32. Mitsubishi Electric Research Laboratories (1999)

[Liao et al., 2007]Liao, L., Patterson, D.J., Fox, D., Kautz, H.A.: Learning and inferring
transportation routines. Artificial Intelligence 171(5-6), 311–331 (2007)

[Lieberman, 2001]Lieberman, H.: Your Wish Is My Command: Programming by Ex-
ample. Morgan Kaufmann, San Francisco (2001)

[Maes, 1994]Maes, P.: Agents that reduce work and information overload. Communi-
cations of the ACM (1994)

[Nguyen et al., 2005]Nguyen, N.T., Phung, D.Q., Venkatesh, S., Bui, H.H.: Learning
and detecting activities from movement trajectories using the hierarchical hidden
markov model. In: IEEE Computer Vision and Pattern Recognition or CVPR,
pp. 955–960. IEEE Computer Society, Los Alamitos (2005)

[Ron et al., 1996]Ron, D., Singer, Y., Tishby, N.: The power of amnesia: Learning prob-
abilistic automata with variable memory length. Machine Learning 25(2-3), 117–149
(1996)

[Whitworth, 2005]Whitworth, B.: Polite computing. Behaviour and Information Tech-
nology 24(5), 353–363 (2005)

[Waern, 1996]Wærn, A.: Recognizing Human Plans: Issues for Plan Recognition in
Human-Computer Interaction. Ph.D thesis, Royal Institute of Technology (1996)


	Recognition of User Intentions for Interface Agents with Variable Order Markov Models
	Introduction 
	Problem Overview 
	Proposed Approach
	Learning an Intention Model from Examples
	Recognizing a User's Intentions

	Experimental Evaluation
	Recognition in the Presence of Noisy Tasks 
	Prediction of Consecutive Intentions
	Prediction of Interleaved Intentions

	Conclusions and Discussion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




