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Abstract. An algorithm is created, which performs human gait analysis
using spatial data and amplitude images from a Time-of-flight camera.
For each frame in a sequence the camera supplies cartesian coordinates
in space for every pixel. By using an articulated model the subject pose
is estimated in the depth map in each frame. The pose estimation is
based on likelihood, contrast in the amplitude image, smoothness and
a shape prior used to solve a Markov random field. Based on the pose
estimates, and the prior that movement is locally smooth, a sequential
model is created, and a gait analysis is done on this model. The output
data are: Speed, Cadence (steps per minute), Step length, Stride length
(stride being two consecutive steps also known as a gait cycle), and Range
of motion (angles of joints). The created system produces good output
data of the described output parameters and requires no user interaction.

Keywords: Time-of-flight camera, Markov random fields, gait analysis,
computer vision.

1 Introduction

Recognizing and analyzing human movement in computer vision can be used
for different purposes such as biomechanics, biometrics and motion capture. In
biomechanics it helps us understand how the human body functions, and if
something is not right it can be used to correct this.

Top athletes have used high speed cameras to analyze their movement either to
improve on technique or to help recover from an injury. Using several high speed
cameras, bluescreens and marker suits an advanced model of movement can be
created, which can then be analyzed. This optimal setup is however complex
and expensive, a luxury which is not widely available. Several approaches aim
to simplify tracking of movement.

Using several cameras but without bluescreens nor markers [11] creates a
visual hull in space from silhouettes by solving a spacial Markov random field
using graph cuts and then fitting a model to this hull.

Based on a large database [9] is able to find a pose estimate in sublinear time
relative to the database size. This algorithm uses subsets of features to find the
nearest match in parameter space.
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An earlier study uses the Time-of-flight (TOF) camera to estimate pose using
key feature points in combination with a an articulated model to solve problems
with ambiguous feature detection, self penetration and joint constraints [13].

To minimize expenses and time spent on multi camera setups, bluescreens,
markersuits, initializing algorithms, annotating etc. this article aims to deliver
a simple alternative that analyzes gait.

In this paper we propose an adaptation of the Posecut algorithm for fitting
articulated human models to grayscale image sequences by Torr et al. [5] to
fitting such models to TOF depth camera image sequences. In particular, we will
investigate the use of this TOF data adapted Posecut algorithm to quantitative
gait analysis.

Using this approach with no restrictions on neither background nor clothing
a system is presented that can deliver a gait analysis with a simple setup and no
user interaction. The project object is to broaden the range of patients benefiting
from an algorithmic gait analysis.

2 Introduction to the Algorithm Finding the Pose

This section will give a brief overview of the algorithm used to solve the prob-
lem of finding the pose of the subject. To do a gait analysis the pose has to
be estimated in a sequence of frames. This is done using the adapted Posecut
algorithm on the depth and amplitude stream provided by a TOF camera [2]
(Fig. M shows a depth map with amplitude coloring). The algorithm uses 4 terms
to define an energy minimization problem and find the pose of the subject as
well as segmenting between subject and background:

Likelihood Term: This term is based on statistics of the background. It is
based on a probability function of a given pixel being labeled background.

Smoothness Prior: This is a prior based on the general assumption that data
is smooth. Neighbouring pixels are expected to have the same label with
higher probability than having different labels.

Contrast Term: Neighbouring pixels with different labels are expected to have
values in the amplitude map that differs from one another. If the values are
very similar but the labels different, this is penalized by this term.

Shape Prior: Trying to find the pose of a human, a human shape is used as a
prior.

2.1 Random Fields

A frame in the sequence is considered to be a random field. A random field
consists of a set of discrete random variables {X7, X3,...,X,,} defined on the
index set I. In this set each variable X; takes a value z; from the label set
L ={L1,Ls,..., Ly} presenting all possible labels. All values of z;, Vi € I are
represented by the vector x which is the configuration of the random field and
takes values from the label set L™. In the following the labeling is a binary
problem, where L = {subject, background}.
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Fig. 1. Depth image with amplitude coloring of the scene. The image is rotated to
emphasize the spatial properties.

A neighbourhood system to X; is defined as N = {V;|i € I} for which it holds
that i ¢ N; and i € N; < j € N;. A random field is said to be a Markov field,
if it satisfies the positivity property:

P(x)>0 vx € L" (1)
And the Markovian Property:

P(zil{z; . j € I —{i}}) = P(zil{z; : j € Ni}) (2)

Or in other words any configuration of x has higher probability than 0 and the
probability of x; given the index set I — {3} is the same as the probability given
the neighbourhood of 1.

2.2 The Likelihood Function

The likelihood energy is based on the negative log likelihood and for the back-
ground distribution defined as:

&(D|x; = background) = — log p(D|z;) (3)

Using the Gibbs measure without the normalization constant this energy be-
comes: )

&(D|x; = background) = (D Q’UbaCkgmund’l) (4)

Ubackground,i

With no distribution defined for pixels belonging to the subject, the subject
likelihood function is set to the mean of the background likelihood function.
To estimate a stable background a variety of methods are available. A well
known method, models each pixel as a mixture of Gaussians and is also able to
update these estimates on the fly [I0]. In our method a simpler approach proved
sufficient. The background estimation is done by computing the median value
at each pixel over a number of frames.
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2.3 The Smoothness Prior

This term states that generally neighbours have the same label with higher
probability, or in other words that data are not totally random. The generalized
Potts model where j € IV; is given by:

_IKj wiF
sy ={ 10 0T )
This term penalizes neighbours having different labels. In the case of segmenting
between background and subject, the problem is binary and referred to as the
Ising model [4]. The parameter K;; determines the smoothness in the resulting
labeling.

2.4 The Contrast Term

In some areas such as where the feet touches the ground, the subject and back-
ground differs very little in distance. Therefore a contrast term is added, which
uses the amplitude image (grayscale) provided by the TOF camera. It is ex-
pected that two adjacent pixels with the same label have similar intensities,
which implies that adjacent pixels with different labels have different intensities.
By decreasing the cost of neighbouring pixels with different labels exponentially
with an increase in difference in intensity, this term favours neighbouring pixels
with similar intensities to have the same label. This function is defined as:

2 . .

o —9°(i, J)

Y(i,j) = Aexp (2 2 > (6)
Ubackground,i

Where ¢2(i, j) is the gradient in the amplitude map and approximated using con-

volution with gradient filters. The parameter A\ controls the cost of the contrast

term, and the contribution to the energy minimization problem becomes:

2.5 The Shape Prior

To ensure that the segmentation is human like and wanting to estimate a human
pose, a human shape model consisting of ellipses is used as a prior. The model is
based on measures from a large Bulgarian population study [§], and the model
is simplified such that it has no arms, and the only restriction to the model is
that it cannot overstretch the knee joints. The hip joint is simplified such that
the hip is connected in one point as studies shows that a 2D model can produce
good results in gait analysis [3]. Pixels near the shape model in a frame are more
likely to be labeled subject, while pixels far from the shape are more likely to
be background.
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Fig. 2. Raster model and the corresponding distance map

The cost function for the shape prior is defined as:
P(z:|©) = —log(p(x:|©)) (8)

Where © contains the pose parameters of the shape model being position, height
and joint angles. The probability p(z;|®) of labeling subject or background is
defined as follows:

1

1+ exp(p * (dist(¢, ®) — d,.))

9)
The function dist(¢, ®) is the distance from pixel i to the shape defined by ©,
d, is the width of the shape, and u is the magnitude of the penalty given to
points outside the shape. To calculate the distance for all pixels to the model,
the shape model is rasterized and the distance found using the Signed Fuclidian
Distance Transform (SEDT) [12]. Figure [2 shows the rasterized model and the
distances calculated using the SEDT.

p(z; = subject|®) = 1 — p(z; = background|®) =

2.6 Energy Minimization

Combining the four energy terms a cost function for the pose and segmentation
becomes:

U(x,0) =) | ¢(Dlz;) +(xi|®) + Y ($(wi,z;) + ¢(Dlzi ;) | (10)

1% JEN;

This Markov random field is solved using Graph Cuts [6], and the pose is
optimized in each frame using the pose from the previous frame as initializa-
tion.
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(a) Initial guess (b) Optimized pose

Fig. 3. Initialization of the algorithm

2.7 Initialization

To find an initial frame and a pose, the frame that differs the most from the
background is chosen based on the background log likelihood function. As a
rough guess on where the subject is in this frame, the log likelihood is summed
first along the rows and then along the columns. These two sum vectors are used
to guess the first and last rows and columns that contains the subject (Fig.
From the initial guess the pose is optimized according to the energy problem by
searching locally. Figure shows the optimized pose. Notice that the legs
change place during the optimization. This is done based on the depth image
such that the closest leg is also closest in the depth image (green is the right side
in the model) and solves an ambiguity problem in silhouettes.

The pose in the remaining frames is found using the previous frame as an
initial guess and then optimizing on this. This generally works very well, but
problems sometimes arise when the legs pass each other as feet or knees of one
leg tend to get stuck on the wrong side of the other leg. This entanglement is
avoided by not allowing crossed legs as an initial guess and instead using straight
legs close together.

3 Analyzing the Gait

From the markerless tracking a sequential model is created. To ensure
local smoothness in the movement before the analysis is carried out a little
postprocessing is done.

3.1 Post Processing

The movement of the model is expected to be locally smooth, and the influence
of a few outliers is minimized by using a local median filter on the sequences of
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(c) Error of right foot (d) Error of left foot

Fig. 4. (a) shows the vertical movement of the feet for annotated points, points from the
pose estimate, and for curve fittings (image notation is used, where rows are increased
downwards). (b) shows the points for the horizontal movement. (c¢) shows the pixelwise
error for the right foot for each frame and the standard deviation for each fitting.
(d) shows the same but for the left foot.

point and then locally fitting polynomials to the filtered points. As a measure of
ground truth the foot joints of the subject has been annotated in the sequence
to give a standard deviation in pixels of the foot joint movement. Figure [ shows
the movement of the feet compared to the annotated points and the resulting
error. The figure shows that the curve fitting of the points gives an improvement
on the accuracy of the model, resulting in a standard deviation of only a few
pixels. If the depth detection used to decide which leg is left and which is right
fails in a frame, comparing the body points to the fitted curve can be used to
detect and correct the incorrect left right detection.

3.2 Output Parameters

With the pose estimated in every frame the gait can now be analyzed. To find
the steps during gait, the frames where the distance between the feet has a
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(c) Stride length, speed and cadence (d) Range of motion

Fig. 5. Analysis output

local maximum are used. Combining this with information about which foot is
leading, the foot that is taking a step can be found. From the provided Cartesian
coordinates in space and a timestamp for each frame the step length (Fig.
and [5(D)), stride length, speed and cadence (Fig. are found. The found
parameters are close to the average found in a small group of subjects aging 17
to 31 [7], even though based only on very few steps and therefore expected to
have some variance, this is an indication of correctness. The range of motion is
found as the clockwise angle from the x-axis in positive direction for the inner
limbs (femurs and torso) and the clockwise change compared to the inner limbs
for the outer joints (ankles and head). Figure shows the angles and the
model pose throughout the sequence.

4 Conclusion

A system is created that autonomously produces a simple gait analysis. Because
a depth map is used to perform the tracking rather than an intensity map,
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there are no requirements to the background nor to the subject clothing. No
reference system is needed as the camera provides a such. Compared to manual
annotation in each frame the error is very little. For further analysis on gait the
system could easily be adapted to work on a subject walking on a treadmill.
The adaption would be that there is no longer a general movement in space (it
is the treadmill conveyor belt moving) hence speed and stride lengths should be
calculated using step lengths. With the treadmill adaption, averages could be
found of the different outputs as well as standard deviations.

Currently the system uses a 2-dimensional model and to optimize precision
in the joint angles the subject should move in an angle perpendicular to the
camera. While the distances calculated depends little on the angle of movement
the joint angles have a higher dependency. This dependency could be minimized
using a 3-dimensional model. It does however still seem reasonable that the best
results would come from movement perpendicular to the camera, whether using
a 3-dimensional model or not.

The camera used is the SwissRanger™ SR3000 [2] at a framerate of about
18 Fps, which is on the low end in tracking movement. A better precision could
be obtained with a higher framerate. This would not augment processing time
greatly, due to the fact that movement from one frame to the next will be
relatively shorter, bearing in mind that the pose from the previous frame is used
as an initialization for the next.
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