
Modeling and Analysis of Checkpoint I/O

Operations

Sarala Arunagiri1, John T. Daly2, and Patricia J. Teller1

1 The University of Texas at El Paso
{sarunagiri,pteller}@utep.edu

2 The Center for Exceptional Computing
john.t.daly@ugov.gov

Abstract. The large scale of current and next-generation massively par-
allel processing (MPP) systems presents significant challenges related to
fault tolerance. For applications that perform periodic checkpointing,
the choice of the checkpoint interval, the period between checkpoints,
can have a significant impact on the execution time of the application
and the number of checkpoint I/O operations performed by the appli-
cation. These two metrics determine the frequency of checkpoint I/O
operations performed by the application and, thereby, the contribution
of the checkpoint operations to the demand made by the application on
the I/O bandwidth of the computing system. Finding the optimal check-
point interval that minimizes the wall clock execution time has been a
subject of research over the last decade. In this paper, we present a sim-
ple, elegant, and accurate analytical model of a complementary perfor-
mance metric - the aggregate number of checkpoint I/O operations. We
present an analytical model of the expected number of checkpoint I/O
operations and simulation studies that validate the analytical model. In-
sights provided by a mathematical analysis of this model, combined with
existing models for wall clock execution time, facilitate application pro-
grammers in making a well informed choice of checkpoint interval that
represents an appropriate trade off between execution time and num-
ber of checkpoint I/O operations. We illustrate the existence of such
propitious checkpoint intervals using parameters of four MPP systems,
SNL’s Red Storm, ORNL’s Jaguar, LLNL’s Blue Gene/L (BG/L), and
a theoretical Petaflop system.

1 Introduction

As Massively Parallel Processing (MPP) systems scale to tens of thousands of
nodes, reliability and availability become increasingly critical. Scientists have
predicted that three of the most difficult and growing problems in future high-
performance computing (HPC) installations will be - avoiding, coping with, and
recovering from failures. With the increase in the scale of computing systems,
element failures become frequent, making it increasingly difficult for long run-
ning applications to make forward progress in the absence of fault tolerance
mechanisms [5].

K. Al-Begain, D. Fiems, and G. Horváth (Eds.): ASMTA 2009, LNCS 5513, pp. 386–400, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Modeling and Analysis of Checkpoint I/O Operations 387

Checkpoint restart is a common technique to provide fault tolerance for
applications running on MPP systems. Checkpointing can be either application-
directed or system-directed. An application’s checkpoint data is data that repre-
sents a consistent state of the application that can be saved and then, in the event
of a failure, restored and used to resume execution at the saved state. A check-
point is generally stored to persistent media (e.g., a file system). Checkpoint
latency is the amount of time required to write checkpoint data to persistent
storage and a checkpoint interval is the application execution time between two
consecutive checkpoint operations. Checkpoint overhead is the increase in the
execution time of an application due to checkpointing.

In a disk-based periodic checkpointing system, selecting an appropriate check-
point interval is important especially since the storage system is physically sep-
arated from the processors used for execution of the scientific application. If the
checkpoint interval is too small, the overhead created by network and storage
transfers of a large number of checkpoints can have a significant impact on per-
formance, especially when other checkpointing applications share the network
and storage resources. Conversely, if the checkpoint interval is too large, the
amount of work lost in the event of a failure can significantly increase the time
to solution. Deciding upon the optimal checkpoint interval is the well known
optimal checkpoint interval problem. Most solutions attempt to minimize to-
tal execution time (i.e., the application time plus the checkpoint overhead) [18]
[3] [15]. In this paper we focus on another performance metric, the number of
checkpoint I/O operations performed during an application run.

1.1 Motivation

The rate of growth of disk-drive performance, both in terms of I/O operations
per second and sustained bandwidth, is smaller than the rate of growth of the
performance of other components of computing systems [15]. Therefore, in order
to attain good overall performance of computing systems, it is important to
design applications to use the I/O resources efficiently, bearing in mind the
limitations posed by them. There are several scientific papers that elaborate on
this problem, an example of a recent paper is [15].

I/O operations performed by an application can be segregated into productive
I/O and defensive I/O. Productive I/O is the component that is performed for
actual science such as visualization dumps, whereas defensive I/O is the com-
ponent used by fault tolerance mechanisms such as checkpoint/restart. In large
applications, it has been observed that about 75% of the overall I/O is defensive
I/O [1]. As indicated by [5] and other scientific literature, the demand made by
checkpoint (defensive) I/O is a primary driver of the sustainable bandwidth of
high performance filesystems. Hence, it is critical to manage the amount and
rate of defensive I/O performed by an application. In a recent paper [15] exten-
sive results are presented showing that as the memory capacity of the system
increases so does the I/O bandwidth required to perform checkpoint operations
at the optimal checkpoint interval that attains the minimum execution time. An
example presented in the paper is for a system with an MTBF of 8 hours and

388 S. Arunagiri, J.T. Daly, and P.J. Teller

memory capacity of 75TB. When the checkpoint overhead is constrained to be
less than or equal to 20% of application solution time, there is no solution for the
optimal checkpoint interval unless the I/O bandwidth is larger than 29GB/sec.
They define utility in a cycle as the ratio of time spent doing useful calculations
to the overall time spent in a cycle and show that the I/O bandwidth required
to achieve a utility of 90% is higher than what is available for present systems.
Thus, while performing checkpoints at the optimal checkpoint interval that min-
imizes execution time, if we either restrict the checkpoint overhead to less than
or equal to 20% of solution time or expect a utility greater than or equal to 90%,
the I/O bandwidth required is often larger than what is available at present.

Our efforts are focused towards enhancing an understanding of the variation
of the volume of generated defensive I/O, as a function of the checkpoint interval.
The contributions of this paper are:

– In Section 3, we present a simple and elegant analytical model of the aggre-
gate number of checkpoint I/O operations and a mathematical analysis of
its properties that have a bearing on system performance.

– In Section 4, we present results of Monte Carlo simulations that were per-
formed to validate the analytical model. The results show that
• The model is accurate by demonstrating that it has a small relative error.
• The idealization used in our analytical modeling is reasonable and it

does not introduce large errors.
– In Section 5 we discuss the performance implications inferred from the math-

ematical analysis of Section 3.
– In Section 6, based on Poisson Execution Time Model, described next, and

the modeling studies presented in this paper, we show the existence of pro-
pitious checkpoint intervals using parameters of four MPP systems, Red
Storm, Jaguar, BlueGene/L, and the Petaflop machine.

Finally, in Sections 7 and 8 we present related work and future work, respectively.

2 The Poisson Execution Time Model (PETM)

The work presented in this paper is based on and complementary to the following
execution time model formulated by John Daly. The total wall clock time to
complete the execution of an application, the optimal checkpoint interval, and
an approximate optimal checkpoint interval are given by:

T = MeR/M
(
e(τ+δ)/M − 1

)
Ts

τ for δ << Ts

τopt = M
(
1 + ProductLog

(
−e−

δ+M
M

))

The approximation to τopt, τappx, is given by

τappx =
√

2δM
[
1 + 1

3

(
δ

2M

) 1
2 + 1

9

(
δ

2M

)] − δ for δ < 2M

= M for δ ≥ 2M

Modeling and Analysis of Checkpoint I/O Operations 389

where
Ts = application solution time,

τ = checkpoint interval,
δ = checkpoint latency,

M = mean time between interruptions (MTTI) of the application, and
R = restart time.

In this paper, for the sake of convenience, we refer to the execution time
model and the model of the optimal checkpoint interval presented above as the
Poisson Execution Time Model (PETM) and the ProductLog Optimal Check-
point Interval Model w.r.t Execution time (POCIME), respectively. Note that
in the original literature [3], which presents these models, the terms PETM and
POICME are not used to refer to the models. We introduce these terms with
permission from the author of that literature.

3 Modeling the Number of Checkpoint I/O Operations:
ProductLog Optimal Checkpoint Interval Model w.r.t
I/O(POCIMI)

The set of I/O operations performed by a checkpoint/restart mechanism is com-
prised of reads and writes. In a periodic checkpointing system we know that
checkpoint writes are performed periodically at every checkpoint interval and,
therefore, the number of checkpoint write operations is given by the solution
time of the application divided by the checkpoint interval.

Expected number of checkpoint writes = Ts/τ

When a failure occurs in a periodic checkpointing system, the last checkpoint
data that was successfully written needs to be read to restart the application.
Therefore, the number of checkpoint read operations is given by the expected
number of failures.

Expected number of checkpoint reads =
Expected execution time

M = Tse
R/M (e

δ+τ
M −1)

τ .

Expected number of aggregate checkpoint I/O operations,

NI/O = Ts
τ

[
1 + eR/M

(
e

δ+τ
M − 1

)]
(1)

For values of parameters MTTI = 24 hours, checkpoint latency = 5 minutes,
restart time = 10 minutes, and solution time = 500 hours, using the expression
for the number of checkpoint I/O operations from POCIMI and the expression
for execution time from PETM, we obtain the plot shown in Fig. 1. From mod-
eling studies in [3], we know that the execution time is a convex function of the
checkpoint interval and it has a single minimum at τopt = 117 minutes. From
Fig. 1, it appears like NI/O, the aggregate number of checkpoint I/O operations,

390 S. Arunagiri, J.T. Daly, and P.J. Teller

also is a convex function of the checkpoint interval, with a minimum value in the
range 0 ≤ τ ≤ M . In this case, the minimum is 1,436 minutes, which is larger
than the value of τopt, 117 minutes. It is important to know if these properties
are invariant with respect to parameter values. In the rest of this section we
present mathematical proof that the properties observed are, indeed, true for
any given set of parameters.

0

200

400

600

800

1000

Checkpoint Interval in Minutes

E
xe

cu
tio

n
T

im
e

in
 H

ou
rs

Illustration of the Two Optimal Checkpoint Intervals Under Consideration

0 350 725 1100 1475
0

500

N
um

be
r

of
 C

he
ck

po
in

t I
/O

 O
pe

ra
tio

ns

Execution Time
Checkpoint I/O Operations

0

100

200

300

400

500

POCIMI Optimal Checkpoint Interval
is 1436 minutes

POCIME Optimal Checkpoint Interval
is 117 minutes

Fig. 1. Plots of Execution Time and the Number of Checkpoint I/O Operations as
functions of checkpoint Interval. The parameters are MTTI, M = 24 hours, Check-
point latency, δ = 5 minutes, and Restart time, R = 10 minutes, and Solution time,
Ts=500hrs.

Theorem 1. The function NI/O has a single minimum in the range 0 ≤ τ ≤ M ;
let us denote it by τI/O. NI/O does not have any other stationary points in this
range. τI/O is given by

τI/O = M
(
1 + ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

))
(2)

Proof. NI/O is given by Equation 1. We look for stationary points of NI/O w.r.t.
τ , i.e., values of τ at which the first derivative of NI/O w.r.t τ is zero.

dNI/O

dτ
=

Ts

τ2

[
τ

M
e

R
M e

δ+τ
M −

(
e

R
M (e

δ+τ
M − 1)

)
− 1

]

(
dNI/O

dτ
= 0

)
=⇒

(
e

R
M e

δ+τ
M

τ

M
− e

R
M e

δ+τ
M + e

R
M − 1 = 0

)
=⇒

(
e

R
M e

δ+τ
M

(
τ

M
− 1

)
= 1 − e

R
M

)
=⇒

(
e

δ+τ
M

(
τ

M
− 1

)
= −

(
1 − e

− R
M

))
=⇒

(
e

τ
M

(
τ

M
− 1

)
= −e

− δ
M

(
1 − e

− R
M

))
=⇒

(
e

(
τ
M

−1
) (

τ

M
− 1

)
= −e

− δ+M
M

(
1 − e

− R
M

))
=⇒

((
τ

M
− 1

)
= P roductLog

(
−e

− δ+M
M

(
1 − e

− R
M

)))
=⇒

(
τ

M
= 1 + P roductLog

(
−e

− δ+M
M

(
1 − e

− R
M

)))
=⇒

(
τ = M

(
1 + P roductLog

(
−e

− δ+M
M

(
1 − e

− R
M

))))

Modeling and Analysis of Checkpoint I/O Operations 391

τ = M
(
1 + ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

))
(3)

There is a unique positive value of τ that satisfies the above equation; let us
denote it by τI/O. The ProductLog term in Equation 3 is negative and its ab-
solute value is less than one. Therefore, τI/O is always less than M . We use the
second derivative test in order to determine whether the stationary point τI/0 is
a minimum, maximum, or an inflexion point.

We know that

NI/O =
Expected Execution Time

M
+

Ts

τ
=

T

M
+

Ts

τ
dNI/O

dτ =
1
M

dT

dτ
− Ts

τ2

d2NI/O

dτ2 =
1
M

d2T

dτ2
+ 2

Ts

τ3
(4)

From [3] we know that d2T
dτ2 is positive for all values of τ in the range 0 < τ ≤ M .

This makes the right-hand side of Equation 4 and, thus, d2NI/O

dτ2 positive for all
τ in the range 0 < τ ≤ M . Therefore, the stationary point τI/O is a minimum
with respect to the number of I/O operations. ��

We now investigate the relationship between τI/O and τopt for any given set of
checkpoint parameters.

Theorem 2. The value of the checkpoint interval that minimizes the number of
I/O operations, τI/O, is always greater than the value of the checkpoint interval
that minimizes the expected execution time, τopt.

Proof. Recall the expressions for τopt and τI/O;

τopt = M
(
1 + ProductLog

(
−e−

δ+M
M

))

τI/O = M
(
1 + ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

))

Consider arguments to the ProductLog function in the above equations for
τopt and τI/O. They are both negative and the absolute value of the argu-
ment in the equation for τopt is larger than that of the equation for τI/O. Since
ProductLog(−1/e) = −1 and the ProductLog function is monotonically increas-
ing in the range (− 1

e to 0).

|ProductLog
(
−e−

δ+M
M

)
| > |ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

)
|

=⇒ τopt < τI/O ��

Thus, as illustrated by Fig. 1, we have established that for checkpoint intervals τ
in the range τopt ≤ τ ≤ τI/O, the number of checkpoint I/O operations decreases
with increasing checkpoint intervals.

392 S. Arunagiri, J.T. Daly, and P.J. Teller

Corollary 1. For checkpoint intervals, τ , in the range τopt ≤ τ ≤ τI/O, the
expected value of the frequency of checkpoint I/O operations decreases as the
checkpoint interval increases.

Proof. We know from PETM that for values of checkpoint intervals, τ , in the
range τopt ≤ τ ≤ M , the expected execution time increases as the checkpoint
interval increases. Since τI/O < M , it follows that the expected execution time
increases as the checkpoint interval increases for τ in the range τopt ≤ τ ≤ τI/O.
This information and Theorem 2 together imply that for checkpoint intervals, τ ,
in the range τopt ≤ τ ≤ τI/O, the expected value of the frequency of checkpoint
I/O operations decreases as the checkpoint interval increases. ��
In order to evaluate the accuracy of our analytical model, POCIMI, it is in-
feasible, in terms of system availability, execution time, and effort, to conduct
repeated runs of experiments on the scale of systems that we are studying. Thus,
the only feasible alternative for us is a simulation study, which we describe and
discuss next.

4 Monte Carlo Simulation to Validate the Analytical
Model, POCIMI

The goal of our simulation study was to validate the accuracy of the analytical
model for the number of checkpoint I/O operations, POCIMI, by comparing
the numbers estimated by POCIMI with those obtained using simulation of the
execution of an application on an MPP system.

4.1 Details of Simulation

The simulator was coded using MATLAB to perform a discrete event simulation
of the physical process of running an application on a 1,000-node system with
each node having an exponential failure distribution. The events in the simula-
tion were confined to those relevant to the process of checkpoint/restart. Failure
times were generated using random number generators and, as time progresses,
the number of checkpoint reads, number of checkpoint writes, execution time,
and number of failures are counted until the application completes execution.

Six sets of simulations were performed, one for each of the following values of
checkpoint latency: 5,10,15,20,25, and 30 minutes. The other parameter values
were set as follows: solution time of the simulated application: 500 hours, restart
time: 10 minutes, and MTTI of the parallel system: 24 hours or 1440 minutes.
These parameter values were picked from examples in the published literature.
Each set of experiments had five trials. The design variable was the checkpoint
interval and the response variable was the number of checkpoint I/O opera-
tions. During each trial, the values of the response variable, i.e., the number of
checkpoint I/O operations, were counted; each value corresponds to a different
value of the design variable, i.e., the checkpoint interval. The range of interest
for values of the checkpoint interval was 0 to 1440. We split this range into

Modeling and Analysis of Checkpoint I/O Operations 393

three subintervals, low values, medium values, and high values, and picked six
data points within each subinterval. Accordingly, the design points of our simu-
lation study were the following 18 values of checkpoint intervals: {50,75,...,175,
650,675,...,775,1350,1375,...,1475}. For each trial, and at each chosen checkpoint
interval, we simulated 100 runs of the application and recorded the number of
checkpoint I/O operations, in addition to other data, such as execution time and
number of failures. For each trial, we calculated the average values of the metrics
of interest as an arithmetic mean over the 100 runs of the trial. For the plots
presented in Fig. 2, we arbitrarily picked data from one trial, i.e., Trial 3, which
has a checkpoint latency of 5 minutes. The decision to depict data from only one
trial was made for the sake of clarity – the lines representing the simulated mean
values of all trials were almost overlapping and cluttering the figure. Subplot(a)
of Fig. 2 is a plot of 99% confidence interval of the mean simulated number of
checkpoint I/O operations and the number estimated by the analytical model,
POCIMI. For completeness sake, we present in Subplot(b) and Subplot(c)the ex-
ecution time and inter-arrival times of checkpoint I/O operations, respectively.
As can be seen from the plot, at the scale at which the figure is presented, the
line representing the analytical model and the one representing the simulated
mean almost overlap, and the 99% confidence interval is very small. When we
did zoom into the figure, we were able to see that there was, indeed, an error
bar showing the confidence interval. While the plots in Fig. 2 present the trends
for checkpoint intervals varying over the whole range of interest, Figs. 3 and 4
show the details. Note that unlike Fig. 2, Figs. 3 and 4 use data from all trials
belonging to all sets of experiments, i.e., 30 trials in total. Subplot(a) and Sub-
plot(b) of Fig. 3 show bar graphs that represent the range of values of absolute
errors and relative errors of the 30 trials. The absolute error and relative error
are defined by,

Absolute error = # checkpoint I/O operations of POCIMI
-mean simulated # checkpoint I/O operations

Relative error= Absolute error
checkpoint I/O operations of POCIMI ∗ 100

For the simulated number of checkpoint I/O operations for all 30 trials, Sub-
plot(a) of Fig. 4 presents the maximum value of the size of the 99% confidence
interval.

4.2 Discussion of Results

– The value of the relative error of the estimates provided by the analytical
model for all 30 trials lies within ±6%. This demonstrates the degree of
accuracy of the model.

– The size of the 99% confidence interval of the number of simulated checkpoint
I/O operations is no more than 8% of its mean value. This implies that the
aggregate number of checkpoint I/O operations from the simulation runs has
a small variance.

394 S. Arunagiri, J.T. Daly, and P.J. Teller

4.3 Addressing the Idealization in Analytical Modeling

Idealization is the process by which scientific models assume facts about the
phenomenon being modeled that may not be entirely accurate. Often these as-
sumptions are used to make models easier to understand or solve. One of the
caveats of analytical modeling is the idealization used in order to make the model
tractable or solvable, or mathematically elegant. With an intent to quantify the
contribution of idealization to the error in the predictive accuracy of POCIMI,
we performed the following experiment. Corresponding to every simulated run
of the application at each chosen design point, i.e., value of checkpoint interval,
we ran three versions of the simulation: the base version, the idealized version,
and the minimally idealized version.

The details of this experiment are presented in [2]. Subplot(b) of Fig. 4 shows
the difference in relative error between the idealized version of the simulation and
the minimally idealized version of the simulation. We find that the contribution
to the relative error made by the idealization used in our analytical model is
within the range ±2%. This demonstrates that the idealization used in POCIMI
is not too restrictive and, therefore, does not affect the accuracy of the model
too much.

50 100 175 725 775 850 13751425 1500
0

100

200

300

400

500

600

700

Checkpoint Interval in Minutes

N
um

be
r

of
 C

he
ck

po
in

t I
/O

 O
pe

ra
tio

ns

Subplot(a)

/~/ /~/

99% CI of Simulated Number
Analytical Model

50 100 175 725 775 850 13751425 1500
0

200

400

600

800

1000

Checkpoint Interval in Minutes

E
xe

cu
tio

n
T

im
e

in
 H

ou
rs

Subplot(b)

// //// //

90% CI Simulated Execution Time

Execution Time as per PETM

50 100 175 725 775 850 13751425 1500
0

5

10

15

20

Checkpoint Interval in Minutes

In
te

ra
rr

iv
al

 T
im

es

Subplot(c):Interarrival Time in Hours per Checkpoint Operation

// //

Fig. 2. Subplot(a): Number of checkpoint I/O operations as a function of the check-
point interval. Subplot(b): Execution time versus checkpoint intervals. Subplot(c):
Mean interarrival time, in hours, of checkpoint operations.

5 Performance Implications Inferred by Analyzing
POCIMI

1. An insight provided by the model is that while τopt and τI/O are both func-
tions of δ and M , τI/O is also a function of the restart time, R. τI/O decreases
with increasing values of R.

2. Corollary 1 is key to promising avenues in performance improvement. For
values of τ in the range τopt ≤ τ ≤ τI/O, both the expected values of the
frequency of checkpoint I/O operations and the number of checkpoint I/O
operations decrease with increases in the checkpoint interval.

Modeling and Analysis of Checkpoint I/O Operations 395

50 100 175 725 775 850 1375 1425 1500
−20

−15

−10

−5

0

5

Checkpoint Interval in Minutes

M
ax

. A
bs

ol
ut

e
E

rr
or

Subplot(a)

// //
50 100 175 725 775 850 1375 1425 1500

−6

−4

−2

0

2

4

6

8

Checkpoint Interval in Minutes

M
ax

. R
el

at
iv

e
E

rr
or

Subplot(b)

// //

Fig. 3. Subplot(a): Absolute error of POCIMI. Subplot(b): Relative error.

50 100 175 725 775 850 1375 1425 1500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Checkpoint Interval in MinutesM
ax

. D
iff

er
en

ce
 o

f R
el

at
iv

e
E

rr
or

 B
et

. I
de

al
iz

ed
 a

nd
 M

in
im

al
ly

 Id
ea

liz
ed Subplot(b)

// //
50 100 175 725 775 850 1375 1425 1500

0

1

2

3

4

5

6

7

8

Checkpoint Interval in Minutes

M
ax

. S
iz

e
of

 9
9%

 C
I i

n
T

er
m

s
of

 %
 M

ea
n

N
um

be
r

of
 C

hk
pt

. I
/O

 O
pn

s Subplot(a)

// //

Fig. 4. Subplot(a): Size of the 99% confidence interval(CI) of the simulated number of
checkpoint I/O operations. Subplot(b): Difference between relative errors of POCIMI
w.r.t. the idealized and minimally idealized versions of the simulation.

3. For time-critical applications for which having a minimum wall clock exe-
cution time is important, using τopt as a checkpoint interval makes perfect
sense. However, for all other applications it would be of interest to find out
whether it is possible to choose a checkpoint interval that is larger than the
τopt such that the corresponding execution time is marginally larger than
the minimum execution time, while the corresponding number of checkpoint
I/O operations is drastically smaller than its value at τopt.

4. If we explore clues from visual inspection of Fig. 1, we observe that for
checkpoint intervals greater than and in the vicinity of τopt, the execution
time curve rises slowly, while the curve of the number of checkpoint I/O
operations falls steeply. This seems to indicate that, probably, in this re-
gion, there are checkpoint intervals such that the corresponding numbers of
checkpoint I/O operations are drastically smaller than values corresponding
to τopt, while the execution times are marginally larger than the minimum
execution time. Whether or not this observation holds good, in general, for
all values of parameters, is not clear. To know this requires a rigorous math-

396 S. Arunagiri, J.T. Daly, and P.J. Teller

ematical analysis involving gradients of the execution time function and the
number of checkpoint I/O operations function, in the region of interest. This
appears to be a non-trivial mathematical exercise and it could be prospec-
tive future work. Nonetheless, in the next section, we investigate this idea
for specific cases using parameters from four MPP systems.

6 Investigation of Performance Improvement

In this section, using POCIME and POCIMI, we model the performance of four
MPP architectures: SNL’s Red Storm, ORNL’s Jaguar, LLNL’s Blue Gene/L
(BG/L), and a theoretical Petaflop system. The values of parameters of these
systems are presented in Table 1. For all experiments, we consider a repre-
sentative application with a solution time, Ts, of500 hours and a restart time,
R, of10 minutes. For each of the four computing systems and the representa-
tive application, assume that the checkpoint interval is larger than τopt and the
corresponding expected execution time is 105% of the minimum execution time,
Emin, given by PETM, represented as τ1.05Emin. For the representative applica-
tion running on the four MPP systems, we investigate the extent to which the
number of checkpoint I/O operations corresponding to the checkpoint interval
τ1.05Emin is reduced, as compared to the number of checkpoint I/O operations at
τopt. For each MPP system, assume that

– the application runs on all nodes of the system,
– the MTTI of each node is 5 years, and
– the application checkpoints half of each processor’s memory at each check-

point.

This set of assumptions is labeled Standard. We then consider three other vari-
ations of the standard assumptions. The first variation assumes that the ap-
plication checkpoints 25% of its memory, instead of 50%. The second variation
assumes that the MTTI of each node is 2.5 years, instead of 5 years. Finally, the
third variation assumes that the application runs on 1/8th of the nodes of each
system, instead of all the nodes. In this last case, while computing the check-
point latency, the partition is considered to have 1/8th of the storage bandwidth
available to it. These assumptions cover a few common cases.

For the sixteen cases discussed earlier, the impact of increasing the checkpoint
interval, from τopt to τ1.05Emin, on the number of checkpoint I/O operations is

Table 1. Parameter values for the studied MPPs

Parameter Red Storm Blue Gene/L Jaguar Petaflop

nmax × cores 12, 960 × 2 65, 536 × 2 11, 590 × 2 50, 000 × 2

dmax 1GB 0.25GB 2.0GB 2.5GB

Mdev 5 years 5 years 5 years 5 years

βs 50GB/s 45GB/s 45GB/s 500GB/s

Modeling and Analysis of Checkpoint I/O Operations 397

Table 2. Decrease in the number of checkpoint I/O operations of the representative
application at τ1.05Emin

MPP System Conditions
checkpoint
I/O operations
for τ = τopt

checkpoint
I/O operations
for τ = τ1.05Emin

% decrease

Red Storm

Standard 962 587 38.94
25% memory checkpointed 1248 669 46.35
Partition Size: 1/8th nmax 280 109 61.04

Node MTTI: 2.5years 1569 1091 30.48

Blue Gene/L

Standard 3407 2907 14.68
25% memory checkpointed 3660 2773 24.24
Partition Size: 1/8th nmax 631 380 39.42

Node MTTI: 2.5years 6212 5571 10.25

Jaguar

Standard 712 482 32.53
25% memory checkpointed 895 537 40.02
Partition Size: 1/8th nmax 194 86 55.63

Node MTTI: 2.5years 1215 924 23.94

Petaflop

Standard 2697 2100 22.35
25% memory checkpointed 3166 2195 32.22
Partition Size: 1/8th nmax 615 324 47.22

Node MTTI: 2.5years 5568 4852 12.86

presented in Table 2. For each of the four systems considered, the case that has
the largest decrease in the number of checkpoint I/O operations is shown in bold.
The reduction in the number of checkpoint I/O operations was in the range of
10.25% to 61.07%.

7 Background and Related Work

There is a substantial body of literature regarding the optimal checkpoint prob-
lem and several models of optimal checkpoint intervals have been proposed.
Young proposed a first-order model that defines the optimal checkpoint interval
in terms of checkpoint overhead and mean time to interruption (MTTI). Young’s
model does not consider failures during checkpointing and recovery [18]. How-
ever, POCIME, which is an extension of Young’s model to a higher-order ap-
proximation, does [3]. In addition to considering checkpoint overhead and MTTI,
the model discussed in [16] includes sustainable I/O bandwidth as a parameter
and uses Markov processes to model the optimal checkpoint interval. The model
described in [11] uses useful work, i.e., computation that contributes to job com-
pletion, to measure system performance. The authors claim that Markov models
are not sufficient to model useful work and propose the use of Stochastic Activ-
ity Networks (SANs) to model coordinated checkpointing for large-scale systems.
Their model considers synchronization overhead, failures during checkpointing
and recovery, and correlated failures. This model also defines the optimal number
of processors that maximize the amount of total useful work. Vaidya models the
checkpointing overhead of a uniprocess application. This model also considers
failures during checkpointing and recovery [17]. To evaluate the performance and
scalability of coordinated checkpointing in future large scale systems, [4] simu-
lates checkpointing on several configurations of a hypothetical Petaflop system.

398 S. Arunagiri, J.T. Daly, and P.J. Teller

Their simulations consider the node as the unit of failure and assume that the
probability of node failure is independent of its size, which is overly optimistic
[6]. Yet another related area of research is failure distributions of large-scale sys-
tems. There has been a lot of research conducted in trying to determine failure
distributions of systems. Failure events in large-scale commodity clusters as well
as the BG/L prototype have been shown to be neither independent, identically
distributed, Poisson, nor unpredictable [8] [10]. [12] presents a study on system
performance in the presence of real failure distributions and concludes that Pois-
son failure distributions are unrealistic. Similarly, a recent study by Sahoo [14]
analyzing the failure data from a large-scale cluster environment and its impact
on job scheduling, reports that failures tend to be clustered around a few sets
of nodes, rather than following a particular distribution. In 2004 there was a
study on the impact of realistic large-scale cluster failure distributions on check-
pointing [10]. Oliner et. al.[9] profess that a realistic failure model for large-scale
systems should admit the possibility of critical event prediction. They also state
that the idea of using event prediction for pro-active system management is a
direction worth exploring [10][13]. Recently, there has been a lot of research to-
wards finding alternatives for disk-based periodic checkpointing techniques [9] [7]
and there have been some promising results. However, until these new techniques
reach a level of maturity, disk-based periodic checkpointing technique will con-
tinue to be the reliable and time-tested method of fault tolerance [15]. Besides,
a lot of important legacy scientific applications use periodic checkpointing and,
therefore, issues related to periodic checkpointing still need to be addressed.

Note that PETM and POCIME do not make any assumptions on the failure
distribution of the system for its entire lifetime. However, they assume an ex-
ponential failure distribution only for the duration of the application run,
which might be a few days, weeks, or months. Note that this is drastically differ-
ent from assuming an exponential failure distribution for the life of the system.
This model offers the application programmer the flexibility to use whatever
means is deemed right for the system to determine the value of MTTI, M , at
the beginning of the application run. Given this value of M , the model then
assumes that during the application run the failure distribution of the system is
exponential. This makes the model mathematically amenable, elegant, and use-
ful. The assumption of exponential failure distribution for the duration of the
application run is validated by the observation that a plot of the inter-arrival
times of 2,050 single-node unscheduled interrupts, gathered on two different plat-
forms at Los Alamos National Laboratories over a period of a year, i.e., January
2003 to December 2003, fits a Weibull distribution with a shape factor 0.91/0.97.
Since an exponential distribution is equivalent to a Weibull distribution with a
shape factor 1.0, it is reasonable to assume an exponential failure distribution.
Due to space constraints, we do not present the plot in this paper.

8 Conclusions and Future Work

We believe that the modeling work presented in this paper, based on the POCIMI
model, is complementary to that associated with the PETM and POCIME

Modeling and Analysis of Checkpoint I/O Operations 399

models. Together they provide pointers and insights for making an informed
tradeoff between expected execution time and the number of checkpoint I/O
operations. This facilitates an application programmer to chose a value of the
checkpoint interval, a tunable parameter, that balances the frequency at which
the application performs checkpoint I/O operations and expected execution time.
To the best of our knowledge, at this time there is no quantitative guidance to
facilitate such a tradeoff. Both models do not factor in the deterioration caused
by resource contention. However, they model the general case, which can be used
as a guidance for specific cases.

In an MPP system that has a system-wide view of all concurrently executing
applications and has control over the checkpoint parameters of these applica-
tions, checkpoint intervals could be tuned to provide performance differentiation
and performance isolation of concurrent applications. For example, the applica-
tion with highest priority can be run with a checkpoint interval that is optimal
w.r.t execution time, while applications with the lowest priorities can be set
to run with checkpoint intervals that are closer to the value of the optimal
checkpoint interval w.r.t total number of checkpoint I/O operations. The other
applications can, perhaps, use checkpoint intervals that are between their two
optimal values. For periodic checkpointing applications, both the expected wall
clock execution time and the expected number of checkpoint I/O operations are
important metrics to be considered in order to make decisions about checkpoint
intervals. An important target of our future work is to provide specific guide-
lines about how to coordinate checkpoint operations of concurrently executing
applications in order to achieve high system throughput.

Acknowledgments

We are pleased to recognize the support of this work by the Army High Per-
formance Computing Research Center (AHPCRC) under ARL grant number
W11NF-07-2-2007 and the helpful professional interactions we have had with
Seetharami Seelam (IBM), Ron Oldfield and Rolf Riesen (Sandia National Lab-
oratories), and Maria Ruiz Varela (UTEP).

References

1. Asci purple statement of work, lawrence livermore national laboratory, http://
www.llnl.gov/asci/purple/attachment_02_purplesowv09.pdf (accessed: April
23, 2006)

2. Arunagiri, S., Daly, J.T., Teller, P.J.: Propitious checkpoint intervals to improve
system performance. Technical Report UTEP-CS-09-09, University of Texas at El
Paso (2009)

3. Daly, J.: A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Generation Computer Systems 22, 303–312 (2006)

4. Elnozahy, E.N., Plank, J.S.: Checkpointing for peta-scale systems: A look into the
future of practical rollback-recovery. IEEE Transactions on Dependable and Secure
Computing 1(2), 97–108 (2004)

 http://www.llnl.gov/asci/purple/attachment_02_purplesowv09.pdf
 http://www.llnl.gov/asci/purple/attachment_02_purplesowv09.pdf

400 S. Arunagiri, J.T. Daly, and P.J. Teller

5. Gibson, G., Schroeder, B., Digney, J.: Failure tolerance in petascale computers.
CTWatch Quarterly (November 2007)

6. Kavanaugh, G.P., Sanders, W.H.: Performance analysis of two time-based coordi-
nated checkpointing protocols. In: PRFTS 1997: Proceedings of the 1997 Pacific
Rim International Symposium on Fault-Tolerant Systems, Washington, DC, USA,
p. 194. IEEE Computer Society, Los Alamitos (1997)

7. Kim, Y., Plank, J.S., Dongarra, J.J.: Fault tolerant matrix operations for networks
of workstations using multiple checkpointing. In: HPC-ASIA 1997: Proceedings of
High-Performance Computing on the Information Superhighway, HPC-Asia 1997,
Washington, DC, USA, p. 460. IEEE Computer Society, Los Alamitos (1997)

8. Liang, Y., Sivasubramaniam, A., Moreira, J.: Filtering failure logs for a bluegene/l
prototype. In: Proceedings of the 2005 International Conference on Dependable
Systems and Networks (DSN 2005), June 2005, pp. 476–485 (2005)

9. Oliner, A.J., Rudolph, L., Sahoo, R.K.: Cooperative checkpointing: a robust ap-
proach to large-scale systems reliability. In: ICS 2006: Proceedings of the 20th An-
nual International Conference on Supercomputing, Cairns, Queensland, Australia,
pp. 14–23. ACM Press, New York (2006)

10. Oliner, A.J., Rudolph, L., Sahoo, R.K.: Cooperative checkpointing theory. In: Pro-
ceedings of IPDPS, Intl. Parallel and Distributed Processing Symposium (2006)

11. Pattabiraman, K., Vick, C., Wood, A.: Modeling coordinated checkpointing for
large-scale supercomputers. In: Proceedings of the 2005 International Conference
on Dependable Systems and Networks (DSN 2005), Washington, DC, pp. 812–821.
IEEE Computer Society, Los Alamitos (2005)

12. Plank, J.S., Elwasif, W.R.: Experimental assessment of workstation failures and
their impact on checkpointing systems. In: Proceedings of the The Twenty-Eighth
Annual International Symposium on Fault-Tolerant Computing, June 1998, pp.
48–57 (1998)

13. Sahoo, R.K., Bae, M., Vilalta, R., Moreira, J., Ma, S., Gupta, M.: Providing per-
sistent and consistent resources through event log analysis and predictions for
large-scale computing systems. In: SHAMAN Workshop, ICSY 2002 (June 2002)

14. Sahoo, R.K., Sivasubramaniam, A., Squillante, M.S., Zhang, Y.: Failure data anal-
ysis of a large-scale heterogeneous server environment. In: Proceedings of the In-
ternational Conference on Dependable Systems and Networks (DSN 2004), June
2004, pp. 772–781 (2004)

15. Subramaniyan, R., Grobelny, E., Studham, S., George, A.D.: Optimization of
checkpointing-related i/o for high-performance parallel and distributed comput-
ing. J. Supercomput. 46(2), 150–180 (2008)

16. Subramaniyan, R., Studham, R.S., Grobelny, E.: Optimization of checkpointing-
related I/O for high-performance parallel and distributed computing. In: Proceed-
ings of The International Conference on Parallel and Distributed Processing Tech-
niques and Applications, pp. 937–943 (2006)

17. Vaidya, N.H.: Impact of checkpoint latency on overhead ratio of a checkpointing
scheme. IEEE Transactions on Computers 46(8), 942–947 (1997)

18. Young, J.W.: A first order approximation to the optimum checkpoint interval.
Communications of the ACM 17(9), 530–531 (1974)

	Modeling and Analysis of Checkpoint I/O Operations
	Introduction
	Motivation

	The Poisson Execution Time Model (PETM)
	Modeling the Number of Checkpoint I/O Operations: ProductLog Optimal Checkpoint Interval Model w.r.t I/O(POCIMI)
	Monte Carlo Simulation to Validate the Analytical Model, POCIMI
	Details of Simulation
	Discussion of Results
	Addressing the Idealization in Analytical Modeling

	Performance Implications Inferred by Analyzing POCIMI
	Investigation of Performance Improvement
	Background and Related Work
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

