
Mixed Finite-/Infinite-Capacity Priority Queue

with General Class-1 Service Times

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst,
and Herwig Bruneel

Department of Telecommunications and Information Processing,
Ghent University, St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

Tel.: 003292648902; Fax: 003292644295
{thdemoor,jw,df,sdv,hb}@telin.ugent.be

Abstract. This paper studies a single-server queue with two traffic
classes in order to model Expedited Forwarding Per-Hop Behaviour in
the Differentiated Services architecture. Generally, queueing models as-
sume infinite queue capacity but in a DiffServ router the capacity for high
priority traffic is often small to prevent this traffic from monopolizing the
output link and hence causing starvation of other traffic. The presented
model takes the exact (finite) high-priority queue capacity into account.
Analytical formulas for system contents and packet delay of each traffic
class are determined. This requires extensive use of the spectral decom-
position theorem as the service time of a high-priority packet takes a
general distribution, which complicates the analysis. Numerical exam-
ples indicate the considerable impact of the finite capacity on the system
performance.

Keywords: Queueing Systems and Networks, Performance Modelling.

1 Introduction

In the nodes (routers, etc.) of computer networks, packets typically have to wait
before being transmitted to the next node and queues are present in order to
preserve waiting packets. Roughly two types of packets can be distinguished.
Real-time traffic, such as Voice-over-IP, requires low delays but can endure a
small amount of packet loss. Data traffic, such as file transfer, benefits from low
packet loss but has less stringent delay characteristics.

Evidently, configuring the queue in order to allow both classes to meet their
Quality of Service (QoS) requirements is of paramount importance. This is en-
abled by implementing Differentiated Services (DiffServ), a computer networking
architecture in Internet Protocol (IP) networks that classifies packets [1]. It pro-
vides QoS differentiation between traffic classes by basing the order in which
packets are transmitted on class-dependent priority rules. DiffServ defines the
packet forwarding properties associated with a class of traffic by using Per-Hop
Behaviors (PHBs). Obviously, implementation of DiffServ is particularly inter-
esting in wireless networks and access networks, as these typically struggle to
provide acceptable QoS because bandwidth is limited and/or variable.

K. Al-Begain, D. Fiems, and G. Horváth (Eds.): ASMTA 2009, LNCS 5513, pp. 264–278, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Finite-/Infinite-Capacity PQ 265

This paper considers a two-class priority queueing system representing a Diff-
Serv implementation where real-time traffic (Expedited Forwarding PHB) has
strict priority scheduling over data traffic (Default PHB). This is the most drastic
scheduling algorithm, as data packets are only served if there are no real-time
packets in the system. It thus minimizes the delay of the real-time packets.
However, caution is required as these packets could occupy the server (almost)
permanently, causing starvation of data traffic. This should be alleviated by
controlling the amount of real-time traffic allowed into the system. Moreover,
queueing a very large amount of real-time packets is useless anyway as they re-
quire small delays. These two observations emphasize the importance of limiting
the capacity for real-time packets, without neglecting the packet loss constraints
for these packets. On the other hand, the loss-sensitivity of data packets yields
a capacity as large as practically feasible for these packets. Therefore, we can
assume that the capacity for data packets is sufficiently large to be approximated
by infinity but that the capacity for real-time packets should be modelled ex-
actly. In the literature, priority queues have been discussed with various arrival
and service processes. Analytic studies of queueing systems often assume infinite
queue capacity facilitating mathematical analysis of the system.

From the former paragraph it indeed follows that we can assume that the
capacity for data packets is sufficiently large to be approximated by infinity but
that the capacity for real-time packets should be modelled as a finite number.
The presented model is related to [2] where both queues are presumed to have
infinite capacity and it is an extension of [3], where service of a packet was
deterministically equal to a single slot for both classes. The current contribution
introduces differentiation amongst packet sizes of both classes as the service
time of a real-time packet takes a general distribution. This nontrivial extension
leads to extensive use of the spectral decomposition theorem [4] in order to study
the performance of our system. Finite queue capacity is considered in [5] as well,
albeit by a different methodology, but only packet loss is investigated profoundly
and delay is not analyzed at all. Assessing the impact of the finite real-time queue
capacity is the main purpose of this contribution, as well as studying the effect
of the general service times for real-time packets.

The remainder of this paper is organized as follows: first the model under
consideration will be thoroughly described. In section 3, several performance
measures for our system are determined analytically. Afterwards, the results are
investigated in some (numerical) examples. The paper is concluded in section 5.

2 Model

This paper studies a discrete-time single-server two-class priority queueing sys-
tem where class-1 (real-time) packets receive strict priority over class-2 (data)
packets. Packets are handled in a First-In-First-Out (FIFO) manner within a
class. We limit the capacity of the class-1 queue to N packets such that real-
time packets that arrive at a full queue are dropped by the system. The system
can hence contain up to N + 1 class-1 packets simultaneously, N in the queue



266 T. Demoor et al.

and 1 in the server. In contrast, the class-2 queue has infinite capacity. Time
is divided into fixed-length slots and a packet can only enter the server at slot
boundaries, even if arriving in an empty system.

Let si denote a generic random service time of a class-1 packet. Service of
a class-2 packet takes a single slot (for convenience purposes), whereas service
of a class-1 packet follows a general distribution with pgf S(z) and mean value
µ. When observing the system at the beginning of a slot this is after possible
departures in the previous slot and before arrivals in the current slot.

We assume that for both classes the number of arrivals in consecutive slots
form a sequence of independent and identically distributed (i.i.d.) random vari-
ables. We define ai,k as the number of class-i (i = 1, 2) packet arrivals during
slot k. The arrivals of both classes are characterized by the joint probability
mass function (pmf) a(m, n) = Pr[a1,k = m, a2,k = n] which allows us to take
into account dependence between both classes. The partial probability generat-
ing function (pgf) of the number of class-2 arrivals in a slot with i (0 ≤ i ≤ N)
and i or more class-1 arrivals are respectively denoted by Ai(z) and A∗

i (z). We
establish

Ai(z) = E[za2,k 1{a1,k = i}] =
∞∑

j=0

a(i, j)zj , A∗
i (z) =

∞∑

j=i

Aj(z) . (1)

The indicator function 1{.} evaluates to 1 if its argument is true and to 0 if it is
false. The mean number of class-1 and class-2 arrivals per slot are respectively
expressed as

ā1 =
∞∑

i=1

iAi(1) , ā2 =
d

dz
A∗

0(z)
∣∣∣∣
z=1

= A∗
0
′(1) . (2)

The mean number of total arrivals is represented by āT = ā1 + ā2. Therefore,
the arrival load is described as ρT = ā1µ + ā2.

3 Analysis

First, we review the spectral decomposition theorem for non-diagonalisable ma-
trices as it will be used frequently in the remainder of this paper. The next
subsection addresses the characterization of arrivals during a class-1 service.
The system contents are obtained at so-called start-slots and non start-slots
consecutively enabling identification of the system contents at the beginning of
random slots. Finally, the packet delay is obtained for both classes.

3.1 Spectral Decomposition of Non-diagonalisable Matrices

Consider a square m × m matrix A and a scalar function f . The spectral de-
composition theorem allows us to express the image of A under f by evaluating
f (and its derivatives) in the eigenvalues of A, see e.g. [4].



Finite-/Infinite-Capacity PQ 267

In this paper, the function f is typically a power series f(z) =
∑∞

n=0 fnzn

and the matrix A is non-diagonalisable. Such a matrix A cannot be reduced to a
completely diagonal form by a similarity transform. However, any square matrix
can be reduced to a form that is almost diagonal, called the Jordan normal form
J. Based on this reduction, it is possible to prove that the matrix f(A) can be
uniquely defined as

f(A) =
s∑

j=1

kj−1∑

i=0

1
i!

f (i)(λj) (A − λjI)i Gj . (3)

In this expression, {λ1, . . . , λs} (s�m) are the eigenvalues of A, kj denotes the
index of eigenvalue λj and f (i) is the ith derivative of f . Obviously, it is required
that the function f and its derivatives exist in the eigenvalues, i.e.

λj ∈ dom f (i) , j = 1, . . . , s , i = 0, . . . , kj−1 . (4)

The matrices Gj are called the constituents or spectral projectors of A belonging
to the eigenvalue λj and have the following properties:

– Gj is idempotent, i.e. G2
j =Gj .

– G1 + G2 + . . . + Gs = I, with I the m × m identity matrix.
– GjGj′ = 0 whenever j �= j′ (1�j, j′�s).

In general, the matrices Gj need to be calculated from the transformation matrix
P, for which J = P−1AP. Specifically, if P is partitioned conformably as

A = PJP−1 =
[
P1 P2 · · · Ps

]

⎡

⎢⎢⎢⎣

J1

J2

. . .
Js

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Q1

Q2

...
Qs

⎤

⎥⎥⎥⎦ , (5)

with Jj the Jordan segment corresponding with eigenvalue λj , then the projec-
tors Gj are

Gj = PjQj (j = 1, . . . , s) . (6)

We also note that the columns of Pj span the space of the right eigenvectors of A
corresponding to λj while the rows of Qj span the space of its left eigenvectors.

This spectral decomposition theorem provides us with a very powerful tool
from the computational point of view. Instead of having to evaluate the matrix
power series

∑∞
n=0 fnAn we now only need to evaluate the function f and its

derivatives for scalar arguments and compute a finite number of matrix multi-
plications. The downside is that the eigenvalues of A have to be calculated, as
well as the matrices Gj . But once this is done, f(A) can easily be calculated for
any function f satisfying (4). In subsection 3.2, it will become clear that in our
case these downsides are virtually non-existent as the eigenvalues and spectral
projectors are surprisingly easy to obtain.



268 T. Demoor et al.

3.2 Arrivals During a Class-1 Service

Let ei,k represent the number of class-i arrivals during a class-1 service that
starts in slot k. We have

ei,k =
s1−1∑

m=0

ai,k+m . (7)

Notice that the ei,k are i.i.d. as the ai,k are i.i.d. and independent of s1. The
partial pgfs of the number of class-2 arrivals during a class-1 service, during which
i (0 ≤ i ≤ N) and i or more class-1 packets arrive are respectively denoted by
Ei(z) and E∗

i (z). We have

Ei(z) = E[ze2,k 1{e1,k = i}] , E∗
i (z) =

∞∑

m=i

Em(z) . (8)

Obtaining these partial pgfs can be a tedious task. During each slot of a class-1
service, packets are added to the queue according to the (N +1)×(N +1) matrix

Y(z) =

⎡

⎢⎢⎢⎢⎢⎢⎣

A0(z) A1(z) · · · AN−1(z) A∗
N (z)

0 A0(z) · · · AN−2(z) A∗
N−1(z)

...
. . .

. . .
...

...
...

. . . A0(z)
...

0 · · · · · · 0 A∗
0(z)

⎤

⎥⎥⎥⎥⎥⎥⎦
. (9)

More precisely, given that the class-1 queue content (excluding the server) is i−1
during the previous slot, Y(1)ij is the probability that it is j − 1 in the current
slot (this is the probability that j − i class-1 packets are effectively allowed into
the system), while Y(z)ij is the partial pgf of the packets added to the class-2
queue.

The partial pgfs Ei(z) and E∗
i (z) are found as elements of the matrix S

(
Y(z)

)
,

which plays a crucial role. Using spectral decomposition, the latter is easily
evaluated because of the special eigenstructure of Y(z). As this matrix has a
triangular form, the eigenvalues simply are its diagonal elements. There are two
distinct eigenvalues: λ1 = A∗

0(z), with index 1, and λ2 = A0(z), with index N .
The corresponding spectral projectors are shown to be independent of z and
given by

G1 =
[
0 · · · 0 e

]
, G2 =

[
I −e

0T 0

]
. (10)

Here I denotes the identity matrix of appropriate size, xT is the transpose of
vector x and e and 0 indicate the column vector of appropriate size with all
elements equal to 1 and 0 respectively.

Spectral decomposition (3) yields

S
(
Y(z)

)
= S

(
A∗

0(z)
)
G1 +

N−1∑

j=0

S(j)
(
A0(z)

)

j!
(
Y(z) − A0(z)I

)j
G2 . (11)



Finite-/Infinite-Capacity PQ 269

3.3 System Contents at the Beginning of Start-Slots

A start-slot is a slot where service of a packet can start. Note that a slot where
the system is empty at the beginning of the slot is a start-slot as well. The class-i
system contents at the beginning of start-slot l are denoted by ni,l. The partial
pgf of the class-2 system contents at the beginning of start-slot l that has class-1
system contents equal to i is denoted as

Ni,l(z) = E[zn2,l 1{n1,l = i}] . (12)

The set {(n1,l, n2,l), l ≥ 1} forms a Markov chain. Assume that start-slot l
corresponds with slot k. Relating start-slots l and l + 1 establishes the following
set of system equations:

n1,l+1 =

{
min(N, a1,k) if n1,l = 0
min(N, n1,l − 1 + e1,k) if n1,l > 0

,

n2,l+1 =

{
(n2,l − 1)+ + a2,k if n1,l = 0
n2,l + e2,k if n1,l > 0

.

(13)

Here (.)+ is shorthand for max(0, .). The system equations can be explained as
follows: if n1,l > 0, a class-1 packet starts service at the beginning of start-slot
l and it leaves the system immediately before start-slot l + 1. For each class,
admitted arrivals during this service contribute to the system contents at the
beginning of start-slot l + 1. On the other hand, if n1,l = 0, a class-2 packet
starts service at the beginning of start-slot l if there are class-2 packets present
in the system. As this service only takes a single slot, start-slot l + 1 is the next
slot. If the system is empty, the server is idle and start-slot l + 1 is the next
slot. Note that the class-1 system contents at the beginning of start-slots cannot
exceed N .

We now define the (N + 1) × (N + 1) matrix

X(z) =

⎡

⎢⎢⎢⎢⎢⎣

A0(z) A1(z) · · · AN−1(z) A∗
N (z)

E0(z) E1(z) · · · EN−1(z) E∗
N (z)

0 E0(z) · · · EN−2(z) E∗
N−1(z)

...
. . . . . .

...
...

0 · · · 0 E0(z) E∗
1 (z)

⎤

⎥⎥⎥⎥⎥⎦
, (14)

and the row vector of N + 1 elements

nl(z) =
[
N0,l(z) N1,l(z) · · · NN,l(z)

]
, (15)

which corresponds with the system contents at the lth start-slot and we will use
this phrase to determine vectors like (15) throughout this paper. Using standard
z-transform techniques, a relation between nl(z) and nl+1(z) is derived from the
system equations (13). We have



270 T. Demoor et al.

nl+1(z) = nl(z)

⎡

⎢⎢⎢⎣

1
z

1
. . .

1

⎤

⎥⎥⎥⎦X(z) + nl(0)

⎡

⎢⎢⎢⎣

z−1
z

0
. . .

0

⎤

⎥⎥⎥⎦X(z) . (16)

Assume that the system has reached steady-state and define following steady-
state values

n(z) = lim
l→∞

nl(z) = lim
l→∞

nl+1(z) =
[
N0(z) N1(z) · · · NN (z)

]
. (17)

Taking the limit of (16) for l → ∞ induces

n(z)
(

zI−

⎡

⎢⎢⎢⎣

1
z

. . .
z

⎤

⎥⎥⎥⎦X(z)
)

=
(

(z − 1)N0(0)
[
1 0 · · · 0

]
X(z)

)
. (18)

The constant N0(0) is still unknown. Note that X(1) is a right-stochastic matrix
by construction. Therefore, observe that

(
I − X(1)

)
e = 0 ,

[
1 0 · · · 0

]
X(1)e = 1 . (19)

Keeping these identities in mind, derivation of (18) with respect to z, evaluation
in z = 1 and multiplication of both sides of the resulting equation by e yields

N0(0) = n(1)
(
I −

⎡

⎢⎢⎢⎣

0
1

. . .
1

⎤

⎥⎥⎥⎦X(1) − X′(1)
)
e . (20)

The vector n(1) is yet to be obtained. Evaluating (18) in z = 1 produces

n(1)
(
I − X(1)

)
=

[
0 · · · 0

]
. (21)

As X(1) is right-stochastic, each row of matrix [I−X(1)] sums to 0 and it hence
has rank N and is not invertible. We thus require an additional relation in order
to obtain the vector n(1). Observe that Ni(1) represents the probability that
the class-1 system contents at the beginning of a start-slot in steady state equal
i and thus

Ni(1) = lim
l→∞

Pr[n1,l = i] . (22)

The normalization condition provides n(1)e = 1. Combining this observation
with (21) yields

n(1) =
[
0 · · · 0 1

]([
I − X(1)

∥∥e
])−1

. (23)



Finite-/Infinite-Capacity PQ 271

By [A‖b] we denote the matrix A with the last column replaced by the column
vector b.

The probability mass function (pmf) of the class-1 system contents at the
beginning of a start-slot in steady state has been obtained in (23). Substituting
it in (20) produces N0(0), the only unknown in (18). The latter yields the pgf of
the class-2 system contents at the beginning of a start-slot in steady state as

lim
l→∞

E[zn2,l ] = n(z)e . (24)

3.4 Queue Contents at the Beginning of Non Start-Slot Slots

If a random slot k is not a start-slot, a class-1 packet started service in the start-
slot preceding the random slot (start-slot l). We know that no packets leave the
server between these two slots. Hence, we study the queue contents, instead of
the system contents, at the beginning of slots that are not start-slots. The system
certainly contains class-1 packets at the beginning of start-slot l, one of which
enters the server (leaves the queue) at the beginning of start-slot l. Therefore,
the steady-state queue contents of both classes, at the beginning of a start-slot
in steady state where a class-1 packet starts service, are characterized by the
vector of N + 1 elements

m(z) =
1

1 − N0(1)
[
N1(z) · · · NN(z) 0

]
. (25)

Slot k lies in the time epoch between start-slots l and l + 1. No packets leave
the system (and hence the queue) during this epoch. In start-slot l and in the
slots up to start-slot l+1, packets (of both classes) arrive at the queue according
to the matrix Y(z) given in (9). Slot k is one of the s1−1 slots between start-slot
l and l + 1 with s1 the service time of the class-1 packet in service. Standard
renewal theory [6] yields that q(z), the vector of N + 1 elements representing
the queue contents of both classes at the beginning of a non start-slot in steady
state is given by

q(z) = m(z)

E

[s1−1∑

i=1

Y(z)i

]

µ − 1
. (26)

Define the function Sn(x) as

Sn(x) = E

[s1−1∑

i=1

xi

]
=

S(x) − x

x − 1
. (27)

By combining (26) and (27) and keeping in mind that the spectral decomposition
theorem (3) enables evaluation of Sn

(
Y(z)

)
, we have

q(z) = m(z)
Sn

(
Y(z)

)

µ − 1
. (28)



272 T. Demoor et al.

3.5 System Contents at the Beginning of a Random Slot

On average, a start-slot corresponds with µ slots if a class-1 packet starts service
and with one slot if this is not the case (the system is void of class-1 packets).
Therefore, γ, the (long-run) probability that a random slot is a start-slot, is
defined as

γ = lim
k→∞

Pr[slot k is a start-slot] =
1

N0(1) +
(
1 − N0(1)

)
µ

. (29)

The class-i system contents at the beginning of a random slot are denoted
by ui,k. Note that 0 ≤ u1,k ≤ N + 1. The system contents (of both classes) at
the beginning of a random slot in steady state are determined by u(z), a vector
of N + 2 elements. The class-1 system contents at the beginning of a start-slot
never exceed N and the server contains a class-1 packet during non start-slots,
yielding

u(z) =
[
U0(z) · · · UN+1(z)

]
= γ

[
n(z) 0

]
+ (1 − γ)

[
0 q(z)

]
. (30)

The pmf of the class-1 and the pgf of the class-2 system contents at the beginning
of a slot are respectively determined by u(1) and u(z)e.

The number of class-1 packets effectively entering the system and leaving the
system in steady-state must be equal. This allows us to determine the effective
class-1 load ρe

1, the mean number of effective class-1 arrivals āe
1 and the class-1

packet loss ratio plr1, the fraction of class-1 packets rejected by the system. We
have

ρe
1 = 1 − U0(1) , āe

1 =
ρe
1

µ
, plr1 =

ā1 − āe
1

ā1
. (31)

3.6 Class-1 Delay

Tag an arbitrary class-1 packet that effectively arrives at the system in a slot
in steady-state. The arrival slot of the packet is assumed to be slot k. Let the
delay of the packet be denoted by d1. Recall that class-1 packets are not affected
by class-2 packets. We obtain the amount of class-1 packets in the system at
the moment the tagged packet arrives. As the service times are i.i.d., each of
these packets (except the class-1 packet in service during slot k) will contribute a
random number of s1 slots to the delay, as will the tagged packet itself. Therefore,
once a class-1 packet arrives at the system, its delay is known.

Let f1,k denote the amount of class-1 packets arriving in slot k but before
the tagged packet. Renewal theory states that a random packet is more likely
to arrive in a slot with a lot of arrivals. This yields, considering that the tagged
packet has to be an effective arrival,

Pr[f1,k = m | (u1,k − 1)+ = i] =
A∗

m+1(1)
āe
1

, m = 0 . . .N − i − 1 ,

Pr[f1,k = m | (u1,k − 1)+ = i] = 0 , m > N − i − 1 .

(32)



Finite-/Infinite-Capacity PQ 273

Define the matrix Fe
1 such that the element on row i, column j (1 ≤ i ≤ N +

1, 1 ≤ j ≤ N) corresponds with Pr[f1,k = j − i | (u1,k − 1)+ = i − 1]. We have

Fe
1 =

1
āe
1

⎡

⎢⎢⎢⎢⎢⎢⎣

A∗
1(1) A∗

2(1) · · · A∗
N (1)

0 A∗
1(1) · · · A∗

N−1(1)
...

. . . . . .
...

...
. . . A∗

1(1)
0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (33)

Note that the queue cannot be entirely full upon arrival of the tagged packet as
the latter must be able to enter the system.

If the system does not contain class-1 packets at the beginning of slot k the
delay is rather straightforward as only the tagged packet and the packets arriving
before it in slot k contribute to the delay. On the other hand, if u1,k > 0 a class-1
packet is in service and additional random variables are involved. Let s−1 denote
the elapsed service time and let s+

1 denote the remaining service time (slot k
excluded). The packet in service only contributes s+

1 slots to the tagged packet’s
delay. The class-1 packets in the queue at the moment the tagged packet arrives
each contribute s1 slots to the delay. They are constituted by m(1), the queue
content at the start-slot preceding slot k, obtained in (25), the number of arriving
class-1 packets during s−1 and f1,k, the number of class-1 packets arriving before
the tagged packet in slot k.

Define the function
Sb(x, y, z) � E[xs−

y zs+
] , (34)

where the arguments can be matrices and the order in which the arguments
appear is hence important as matrix multiplication does not commute. From
the discussion above follows that we need to calculate Sb

(
Y(1),Fe

1, z
)

in or-
der to obtain the class-1 delay. Considering that Fe

1 does not contain stochas-
tic variables and that scalar multiplication of a matrix commutes, we have
Sb

(
Y(1),Fe

1, z
)

= Sb
(
Y(1), 1, z

)
Fe

1.
The random variables s−1 and s+

1 are generally dependent. Slot k may be any
slot in s1 with equal probability [6]. For scalar arguments x, y, z this yields

Sb(x, y, z) = E[xs−
y zs+

] =
S(x) − S(z)

µ(x − z)
y . (35)

Using the spectral decomposition theorem (3), we can express the image of a
matrix under the function Sb, as it can be seen as a scalar function in a single
variable by considering the other two variables to be constant. This allows us to
obtain Sb

(
Y(1), 1, z

)
from (35). Bringing everything together, the pgf D1(z) of

the steady-state class-1 delay is given by

D1(z) =
([

U0(1) 0 · · · 0
]
+

(
1−U0(1)

)
m(1)Sb

(
Y(1), 1, z

))
Fe

1

⎡

⎢⎢⎢⎣

S(z)
S(z)2

...
S(z)N

⎤

⎥⎥⎥⎦ . (36)



274 T. Demoor et al.

3.7 Class-2 Delay

The delay of class-2 packets is more intricate as it is influenced by class-1 packets
arriving at the system until the class-2 packet enters the server. In order to
capture this influence we first study the (remaining) class-1 busy period.

The remaining class-1 busy period in start-slot l, denoted by rl, is the number
of slots until the system is void of class-1 packets (for the first time). Obviously,
it depends on the number of class-1 packets in the system at start-slot l. The
conditional pgf of the remaining class-1 busy period in start-slot l, if the class-1
system contents at the beginning of start-slot l equal j is denoted by

Rl(z|j) = E[zrl |n1,l = j], j = 0 . . .N . (37)

Define the vector Rl(z) =
[
Rl(z|0) · · ·Rl(z|N)

]T . Relating start-slot l and l + 1
yields

Rl(z) =
[
1 0 · · · 0

]T +
[
0T 0
I 0

]
S

(
Y(1)z

)
Rl+1(z) . (38)

The first term results from Rl(z|0) marking the end of the (remaining) busy
period as the system is empty. The second term expresses that for Rl(z|j), j > 0
the packet in service leaves the system by the next start-slot and that we keep
track of the number of slots during the epoch s1 between start-slots l and l + 1
and the arrivals during this epoch. In each slot of this epoch class-1 packets
arrive according to Y(1). Spectral decomposition (3) again yields evaluation
of S

(
Y(1)z

)
. In steady-state, taking the limit for l of (38) results in a simple

expression for R(z) = liml→∞ Rl(z) = liml→∞ Rl+1(z) .
A class-1 busy period b is the number of consecutive slots with class-1 sys-

tem contents greater than zero. Notice that a class-1 busy period is simply the
remaining class-1 busy period in a random start-slot preceded by a start-slot
with empty class-1 system contents at the beginning of the slot and a number of
class-1 arrivals larger than 0. Thus we obtain the pgf of the steady-state class-1
busy period as

B(z) =
∑N−1

m=1 R(z|m)Am(1) + R(z|N)A∗
N(1)

1 − A0(1)
. (39)

The extended service completion time of a class-2 packet, denoted by t2,
starts at the slot where the packet starts service and lasts until the next slot
wherein a class-2 packet can be serviced [7]. If no class-1 packets arrive during
the service-slot of the packet, the server can handle another class-2 packet in the
next slot. If there are class-1 arrivals, we have to wait for a class-1 busy period
after the service-slot until the service of another class-2 packet can start. We can
thus express the pgf of the extended service completion time in steady state as
T2(z) = A0(1)z +

(
1 − A0(1)

)
B(z)z.

Now, we can finally tackle the class-2 delay. Tag an arbitrary class-2 packet
arriving at the system in a slot in steady-state. The arrival slot of the packet is
assumed to be slot k. Let the delay of the packet be denoted by d2. It resembles



Finite-/Infinite-Capacity PQ 275

the class-1 delay but here we need to keep track of packets of both classes.
Consider the first start-slot succeeding slot k. The remainder of the delay of
the tagged packet is simply the remaining class-1 busy period in this start-slot
followed by an extended service completion time for each class-2 packet to be
served before the tagged packet and a single slot to serve the tagged packet itself.

Let f2,k denote the amount of class-2 packets arriving in slot k but before the
tagged packet. We determine the number of class-2 arrivals before the tagged
packet. It is clear that a1,k and f2,k are correlated. The corresponding matrix
can be found using renewal arguments [6]. We have

Â(z) =
Y(z) − Y(1)

ā2(z − 1)
. (40)

Given that the class-1 queue contents are i − 1 at the beginning of the slot,
Â(z)ij is the partial pgf of the class-2 packets arriving before the tagged packet
while j − i class-1 packets are effectively allowed into the system in this slot.

We obtain the system state in the first start-slot succeeding slot k as follows.
If the system does not contain class-1 packets at the beginning of slot k the next
start-slot is simply the next slot and the class-2 system contents at the beginning
of slot k (if any) contribute to the delay. On the other hand, if u1,k > 0 a class-1
packet is in service and additional random variables are involved. Let s−1 denote
the elapsed service time and let s+

1 denote the remaining service time (slot k
excluded). The packets contributing to the delay are m(z), the queue contents
at the start-slot preceding slot k, obtained in (25), the number of arriving packets
of both classes during s−1 and the number of arriving class-1 packets during s+

1 .
Note that s+

1 contributes to the delay as well.
This discussion leads to the following pgf D2(z) of the steady-state class-2

delay as

D2(z) =
([

U0

(
T2(z)

)
+
(
T2(z)−1

)
U0(0)

T2(z) 0 · · · 0

]
Â(T2(z))

+
(
1 − U0(1)

)
m(T2(z))Sb

(
Y(T2(z)), Â(T2(z)),Y(1)z

))
R(z)z .

(41)

Finally we calculate Sb
(
Y(T2(z)), Â(T2(z)),Y(1)z

)
. As matrices generally

do not commute, there is no multivariate version of the spectral decomposition
theorem. However, if we specify the function Sb by its power series expansion
we can apply the spectral decomposition theorem on the arguments separately.
Power series expansion produces

Sb
(
Y

(
T2(z)

)
, Â(T2(z)),Y(1)z

)
= E

[
Y

(
T2(z)

)s−
1 Â(T2(z))

(
Y(1)z

)s+
1

]

=
1
µ

∞∑

n=0

Prob[s1 = n + 1]
n∑

i=0

Y
(
T2(z)

)i
Â(T2(z))

(
Y(1)z

)n−i
(42)

Spectral decomposition (3) enables evaluation of Y
(
T2(z)

)i and
(
Y(1)z

)n−i.
Note that both decompositions share the same spectral projectors G1 and G2.
The eigenvalues and their index are respectively denoted by



276 T. Demoor et al.

λ1 = A∗
0(T2(z)) with k1 = 1 , λ2 = A0(T2(z)) with k2 = N ,

λ′
1 = A∗

0(1)z with k′
1 = 1 , λ′

2 = A0(1)z with k′
2 = N .

(43)

After the spectral decomposition we can reconstruct the power series yielding

Sb
(
Y

(
T2(z)

)
, Â(T2(z)),Y(1)z

)

=
2∑

j=1

kj−1∑

i=0

2∑

j′=1

k′
j′−1∑

i′=0

Qii′(λj , λ
′
j′)(Y

(
T2(z)

) − λjI)iGj

× Â(T2(z)) (Y(1)z − λ′
j′I)

i′Gj′ .

with Qii′(λj , λ
′
j′ ) � 1

i!
1
i′!

∂i+i′

∂xiyi′ S
b
(
x, 1, y

)
∣∣∣∣∣x=λj

y=λ′
j′

.

(44)

By taking proper derivatives of the pgfs obtained in this paper, all moments
of the corresponding random variables can be calculated.

4 Numerical Examples

With the formulas at hand, we study an output-queueing switch with L inlets
and L outlets and two types of traffic as in [2]. On each inlet a batch arrives
according to a Bernoulli process with parameter νT . A batch contains b (fixed)
packets of class 1 with probability ν1/νT or b packets of class 2 with probability
ν2/νT (with ν1 +ν2 = νT ). Incoming packets are routed uniformly to the outlets
where they arrive at a queueing system as described in this paper. Therefore, all
outlets can be considered identical and analysis of one of them is sufficient. The
arrival process at the queueing system can consequently be described by the pmf

a(bn, bm) =
L!

(
ν1
L

)n(
ν2
L

)m(
1 − νT

L

)L−n−m

n!m!(L − n − m)!
, n + m ≤ L , (45)

and by a(p, q) = 0, for all other values of p and q. Obviously the number of
arrivals of class-1 and class-2 are negatively correlated as there can be no more
than Lb−i class-2 arrivals in a slot with i class-1 arrivals. For increasing values of
L the correlation increases and for L going to infinity the numbers of arrivals of
both types become uncorrelated. We now study a 4× 4 output-queueing switch.

For Fig. 1, let ν1 = ν2. On average the system thus receives the same amount
of packets of both classes. On the left, the batch size is b = 10, ν1 = ν2 = 0.02 and
service of a class-1 packet takes the distribution S(z) = 0.25z + 0.75z4 yielding
a mean class-1 of service time µ = 3.25 slots and hence ρT = 0.85. The mean
and the standard deviation of the system contents at the beginning of random
slots of both classes are plotted versus the class-1 queue capacity N . The values
increase for increasing N , as the number of dropped class-1 packets decreases.
For larger N the values clearly converge to the values corresponding with the



Finite-/Infinite-Capacity PQ 277

 0

 10

 20

 30

 40

 50

 60

 70

 25  50  75  100

Class-1 Queue Capacity (N)

E[u1]

E[u2]

σu1

σu2

 0

 100

 200

 300

 400

 500

 600

 5  15  25

Class-1 Queue Capacity (N)

E[u2]S1

E[u2]S2

E[u2]S3

Fig. 1. System contents versus class-1 queue capacity

 10

 12

 14

 16

 18

 20

 22

 0.5  0.6  0.7  0.8  0.9  1
Total Load (ρT)

E[d1]

E[d1]∞

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.5  0.6  0.7  0.8  0.9  1
Total Load (ρT)

E[d2]
E[d2]∞

Fig. 2. Mean delays versus total load

infinite system [2], represented by the horizontal lines. However, the convergence
is rather slow, especially for class-2. On the right, b = 1, ν1 = ν2 = 0.199 and we
have plotted the mean class-2 system contents versus the class-1 queue capacity
for three distributions with µ = 4 slots yielding ρT = 0.995. These distributions
have different variances. In order of increasing variance, we have

S1(z) = z4 , S2(z) = 0.25(z + z3 + z5 + z7) , S3(z) = 0.7z + 0.3z11 . (46)

For large values of N the expected (from the infinite model) behaviour arises as
increased variance normally yields increased system content. However, for small
values of N the inverse effect occurs as the class-1 queue is likely to get full
during a large service time causing arriving packets to be dropped. Therefore,
the effective class-1 load will be lower when the variance of the class-1 service
times is larger, increasing class-2 performance. As the queue capacity gets bigger
less packets are lost and the normal behaviour is exemplified. Evidently, this
effect cannot be predicted by infinite capacity queueing models.

For Fig. 2, we assume that b = 3, ν1 = ν2 and that the service of a class-1
packet takes the distribution S(z) = 0.25z + 0.75z4. We keep N = 15 constant
and vary ν1 and ν2 and hence the total load. The class-1 delay (on the left)



278 T. Demoor et al.

and the class-2 delay (on the right) are plotted versus the total load and are
compared to results for the infinite model. We clearly see the effect of the priority
scheduling as the low mean for the class-1 delay delivers the performance required
for real-time traffic at the cost of the class-2 delay. Note that the starvation effect
is alleviated (compared to the infinite model) when the load gets high, as an
increasing amount of class-1 packets are dropped, in turn improving the delay
performance of packets (of both classes) allowed into the system.

5 Conclusions

A two-class priority queue with finite capacity for high-priority packets has been
studied in order to model a DiffServ router with Expedited Forwarding Per-
Hop Behaviour for high-priority traffic. The service times of class-1 packets are
generally distributed, which considerably complicates the analysis. Analytical
formulas for system content and packet delay of all traffic classes were deter-
mined making extensive use of the spectral decomposition theorem. In a DiffServ
router, the capacity for high-priority packets is often small to prevent this traf-
fic monopolizing the system. Opposed to existing models, the presented model
takes the exact (finite) high-priority queue capacity into account. The resulting
impact on system performance is clearly indicated by numerical examples.

Acknowledgements. The second and third authors are postdoctoral fellows with
the Research Foundation Flanders (F.W.O.-Vlaanderen), Belgium.

References

1. Carpenter, B.E., Nichols, K.: Differentiated services in the Internet. Proceedings of
the IEEE 90(9), 1479–1494 (2002)

2. Walraevens, J., Steyaert, B., Bruneel, H.: Performance analysis of a single-server
ATM queue with a priority scheduling. Computers & Operations Research 30(12),
1807–1829 (2003)

3. Demoor, T., Walraevens, J., Fiems, D., Bruneel, H.: Mixed finite-/infinite-capacity
priority queue with interclass correlation. In: Al-Begain, K., Heindl, A., Telek, M.
(eds.) ASMTA 2008. LNCS, vol. 5055, pp. 61–74. Springer, Heidelberg (2008)

4. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial
and Applied Mathematics, 599–615 (2000)

5. Van Velthoven, J., Van Houdt, B., Blondia, C.: The impact of buffer finiteness on
the loss rate in a priority queueing system. In: Horváth, A., Telek, M. (eds.) EPEW
2006. LNCS, vol. 4054, pp. 211–225. Springer, Heidelberg (2006)

6. Takagi, H.: Queueing Analysis. Discrete-Time Systems, vol. 3. Elsevier Science Pub-
lishers, Amsterdam (1993)

7. Fiems, D.: Analysis of discrete-time queueing systems with vacations. PhD thesis.
Ghent University (2003)


	Mixed Finite-/Infinite-Capacity Priority Queue with General Class-1 Service Times
	Introduction
	Model
	Analysis
	Spectral Decomposition of Non-diagonalisable Matrices
	Arrivals During a Class-1 Service
	System Contents at the Beginning of Start-Slots
	Queue Contents at the Beginning of Non Start-Slot Slots
	System Contents at the Beginning of a Random Slot
	Class-1 Delay
	Class-2 Delay

	Numerical Examples
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




