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Abstract. Size-based scheduling is advocated to improve response times
of small flows. While researchers continue to explore different ways of
giving preferential treatment to small flows without causing starvation
to other flows, little focus has been paid to the study of stability of
systems that deploy size-based scheduling mechanisms. The question on
stability arises from the fact that, users of such a system can exploit
the scheduling mechanism to their advantage and split large flows into
multiple small flows. Consequently, a large flow in the disguise of small
flows, may get the advantage aimed for small flows. As the number of
misbehaving users can grow to a large number, an operator would like to
learn about the system stability before deploying size-based scheduling
mechanism, to ensure that it won’t lead to an unstable system. In this
paper, we analyse the criteria for the existence of equilibria and reveal the
constraints that must be satisfied for the stability of equilibrium points.
Our study exposes that, in a two-player game, where the operator strives
for a stable system, and users of large flows behave to improve delay, size-
based scheduling doesn’t achieve the goal of improving response time of
small flows.

1 Introduction

Scheduling based on flow size (or flow age) has been gaining importance in the
recent times. Researchers have proposed different ways of scheduling based on
size, ranging from SRPT (Shortest Remaining Processing Time) to LAS (Least
Attained Service) to MLPS (Multi-level Processor Sharing) scheduling mecha-
nisms [1,2,3]. These scheduling strategies differ from the general model for flow
scheduling in the Internet. The queues in the Internet nodes, though are served
in an FCFS order at packet level, can be modeled using an M/G/1-PS (pro-
cessor sharing) queue at flow level. The motivation to deviate from this norm,
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and schedule flows based on size, is to give better completion time to small
flows. Strictly speaking, the aim has been to improve the conditional mean re-
sponse time of small flows, at negligible cost to large flows. LAS, for example,
always gives highest priority to the flow that has attained the least service. More
details on size-based scheduling policies and the advantages they bring, can be
found in [4] and [2]. Note that, researchers use age-based scheduling to refer to the
scheduling schemes that are blind, in the sense that, they do not have information
about the size of the flow when it arrives, and hence uses its age (the number of
bytes/packets already scheduled) to make scheduling decision. Whereas, in this
paper, we use the broader phrase size-based scheduling to include all the policies
that use age or size to make scheduling decisions.

A user (an end-user or an application) sends a file as a single flow across
the Internet. We take this as a normal behaviour. If size-based scheduling is
deployed by an operator, there is a clear motivation for one or more users to
deviate from the normal behaviour. Indeed, there is an incentive in splitting a
flow (possibly large, but more precisely, one that is not small) into multiple small
flows to exploit the advantage (say, priority in scheduling) given to small flows
to improve the response time. If a considerable number of users deviate from
the normal behaviour, then the operator’s aim of giving shorter response time
to small flows might well be deceived. More importantly, an operator would like
to know if such user manipulations would lead to an unstable system behaviour.
This poses an important problem in the context of size-based scheduling systems
which, to the best of our knowledge, has not been addressed yet. This is the
problem we address in this work. In the scenario where users do not misbehave,
the stability issue (for network of queues) has been addressed in [5] recently.

The focus of this work is to study the equilibria in size-based scheduling system
where users misbehave. We believe this would lead to better understanding of the
implication of deploying a size-based scheduling mechanism. More description of
the problem is given in Section 2. The model is elaborated in Section 3. The
existence of equilibria are studied for two kinds of system behaviours: one in
which the service rates are fixed, is studied in Section 4; and the other in which
the service rates are varying, is studied in Sections 5 and 6. We summarize our
analysis as a game between the operator and users, in Section 7.

2 Problem Statement and Assumptions

We study the problem that arises when an operator deploys a size-based schedul-
ing mechanism. Though there are different ways of scheduling based on size, our
focus is on size-based scheduling using two queues. Here, flows are classified
based on their sizes. Small flows are sent to one queue, and large flows to an-
other1. Each queue is assigned a specific service rate, such that the total service

1 A flow is called small if its size is less than a threshold, θ. In practice, θ bytes of
every large flow also go to the small queue. But, we ignore this to keep the model
simple. Besides, this affects neither the analysis nor the results given here.
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rate equals the line capacity. The aim of operator in setting such a mechanism
is to give to reduce the average response times of small flows.

To formulate the objective of the operator, we assume Poisson flow arrivals.
Arrivals and service rates are in units of small flow. λx and λy are the arrival
rates for small and large flows respectively. Each large is F times a small flow.
The service rates at small and large queues are φx and φy respectively, such that
if C denotes the line capacity, φx + φy = C. Each queue is served using the PS
discipline; hence it is an M/G/1 − PS queue.

We study the existence of equilibria under the scenario where users cheat by
splitting a large flow into multiple small flows to improve their delay. This is
explored in two cases: (i) where the service rates assigned are static, (ii) where
the operators exhibits control by dynamically changing the service rates. In
the latter case, we explore the existence of interesting equilibria, and state the
conditions required for stability, under the assumption that the incentive for
players to migrate is to minimize the delay the flow will incur. Note that, by
‘players’, we consider only the users who migrate.

3 Model Description

The fluid model used in this work is inspired by the one used in [6], where the
authors analyse dynamic bandwidth resource allocation and migration between
guaranteed performance and best effort traffic classes.

The two-queues model is depicted in Fig. 1. The queue for small flows is called
small queue and is referred to as Qx. The other queue is called the large queue
which is denoted by Qy. The number of flows at Qx is represented by x. At the
large queue, this number (in number of small flows) is denoted by y. We assume
infinite queues. The service rates, φx and φy, are also in number of small flows.
They are both assumed to take non-zero values.

The system parameters φx and φy are set by the operator. System state is
modeled using averaged queue sizes: x and y. Depending on the measured de-
lay values, a user might decide to split a large flow into multiple small flows.
Therefore, a fraction of the flows arriving at the large queue might be migrated
to the small queue. This migration function, which is a result of aggregate user
behaviour, is represented as m(x, y). It is linear in λyF as a result of the inte-
gration of individual user that send dλy each:

∫
mdλy = λym. We take m to be

a non-negative and continuous function of x and y. m represents the fraction of
λy which goes to Qx.

x

y

λx

λyF

φx

φy

λyFm(x, y)

Fig. 1. Two-queues model
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0 ≤ m(x, y) ≤ 1 (1)

For every large flow that migrates, it adds an overhead of η (e.g. connection
establishment cost, slow-start cost). The rate equations can now be written as:

dx

dt
= λx − φx + λyFm(x, y)(1 + η), x > 0 (2)

dy

dt
= λyF − φy − λyFm(x, y), y > 0 (3)

The rate equations are different at the borders. For x = 0,

dx

dt

∣
∣
∣
∣
x=0

= [λx − φx + λyFm(x, y)(1 + η)]+ (4)

and for y = 0,
dy

dt

∣
∣
∣
∣
y=0

= [λyF − φy − λyFm(x, y)]+. (5)

4 System Analysis for Static Service Rates

This section details the analysis of a system where the service rates at both the
queues are fixed.

Proposition 4.1. An interior point (x, y) is an equilibrium iff φx−λx = λyF −
φy and m is such that m(x, y) = φx−λx

λyF and 0 ≤ m(x, y) ≤ 1.

Proof (Proof of Prop. 4.1)
Let (x, y) be an interior point. It is an equilibrium if and only if:

⎧
⎨

⎩

dx
dt = 0
dy
dt = 0
0 ≤ m(x, y) ≤ 1

⇐⇒

⎧
⎪⎨

⎪⎩

m(x, y) = φx−λx

λyF (1+η)

m(x, y) = λyF−φy

λyF

0 ≤ m(x, y) ≤ 1
��

Remark 4.2. Existence of interior equilibrium does not only depend on m func-
tion but also on the arrival rates and service rates. Meaning that they can only
exist in very specific cases.

Proposition 4.3. (0, 0) is an equilibrium point if and only if:
⎧
⎪⎨

⎪⎩

m(0, 0) ≤ φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(0, 0)
0 ≤ m(0, 0) ≤ 1
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Proof (Proof of Prop. 4.3). Using equations (4) and (5), we obtain that (0, 0) is
an equilibrium point if and only if:

⎧
⎪⎨

⎪⎩

dx
dt

∣
∣
x=0

= 0
dy
dt

∣
∣
∣
y=0

= 0

0 ≤ m(0, 0) ≤ 1

⇐⇒
⎧
⎨

⎩

λx−φx

1+η + λyFm(0, 0) ≤ 0
λyF − φy − λyFm(0, 0) ≤ 0
0 ≤ m(0, 0) ≤ 1

⇐⇒

⎧
⎪⎨

⎪⎩

m(0, 0) ≤ φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(0, 0)
0 ≤ m(0, 0) ≤ 1

��

Proposition 4.4. (0, y) with y > 0 is an equilibrium point if and only if:
⎧
⎪⎨

⎪⎩

m(0, y) ≤ φx−λx

λyF (1+η)

m(0, y) = λyF−φy

λyF

0 ≤ m(0, y) ≤ 1

Proof (Proof of Prop. 4.4). Using equations (4) and (3), we obtain that (0, y) is
an equilibrium point if and only if:

⎧
⎨

⎩

dx
dt

∣
∣
x=0

= 0
dy
dt = 0
0 ≤ m(0, y) ≤ 1

⇐⇒
⎧
⎨

⎩

λx−φx

1+η + λyFm(0, y) ≤ 0
λyF − φy − λyFm(0, y) = 0
0 ≤ m(0, y) ≤ 1

⇐⇒

⎧
⎪⎨

⎪⎩

m(0, y) ≤ φx−λx

λyF (1+η)

m(0, y) = λyF−φy

λyF

0 ≤ m(0, y) ≤ 1
��

Proposition 4.5. (x, 0) with x > 0 is an equilibrium point if and only if:
⎧
⎪⎨

⎪⎩

m(x, 0) = φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(x, 0)
0 ≤ m(x, 0) ≤ 1

Proof (Proof of Prop. 4.5). Using equations (2) and (5), we obtain that (x, 0) is
an equilibrium point if and only if:

⎧
⎪⎨

⎪⎩

dx
dt = 0
dy
dt

∣
∣
∣
y=0

= 0

0 ≤ m(0, y) ≤ 1

⇐⇒
⎧
⎨

⎩

λx−φx

1+η + λyFm(x, 0) = 0
λyF − φy − λyFm(x, 0) ≤ 0

0 ≤ m(x, 0) ≤ 1

⇐⇒

⎧
⎪⎨

⎪⎩

m(x, 0) = φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(x, 0)
0 ≤ m(x, 0) ≤ 1

��
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0
λx

λyF

C

Cφx

φy

φx

1+η
+ φy

Fig. 2. Existence region of equilibrium (0, 0) under static service rate

4.1 Discussion

The aim of a network operator in deploying such a scheduling mechanism is to
give shorter delays to small flows, at negligible cost to large flows. With this in
mind, we can now evaluate which among the equilibrium points are interesting
and useful (from the perspective of a network operator).

To start with, let us consider the equilibrium point (0, 0). The inequalities of
Prop. 4.3 give the shaded region of Fig. 2, where one m can exist to make (0, 0)
an equilibrium. This region is dominated by the line λx+λyF = C, which defines
the region where a single queue system would have empty queue equilibrium.
Thus, this equilibrium (in the two queue system) is not of great interest for the
network operator.

The lines (x, 0) and (0, y) constitute the remaining border point equilibria. (x, 0)
is the set of those points where there is queueing in the small queue, but not at
the large queue. For this reason, these are not desirable equilibria from operator’s
point of view. Similarly existence of (0, y) means, there is nothing queueing at Qx.
So, there is incentive for users to migrate to Qx. Hence (0, y) will not be stable.

As seen in previous section, interior point equilibrium are only possible in
limiting cases where the surplus rate at the large queue is exactly equal to the
surplus of service of x, with the additional constraint that m transfers exactly
this. This situation is too constrained to happen in a real scenario. To introduce
more flexibility, the operator can control the service rate. But this requires the
use of some observable parameters of the system. In this system, the only ob-
servable parameters are x and y as arrival rates λx and λy are not separable at
the queues.

5 Control on φx Using Parameter x

In this section we study the system when operator controls the service rates
using a single parameter. Let f be the control function, and x be the control
parameter. In the remaining of this section we use the following definition for
φx(x) and φy(x).



240 S. Soudan et al.

Definition 5.1. φx(x) and φy(x)
φx(x) = f(x)
φy(x) = C − f(x)

C being the maximum link capacity (or service rate), let:

0 < f(x) < C (6)

so that the service rate at any queue doesn’t vanish.

5.1 Delay Condition

We introduce the delay condition which is satisfied at equilibrium, as the users
have no incentive to migrate once the delays at both queues are equal. Let us
look the delay a large flow will incur Qx, if it is split into F small flows. For a
service rate of φx at Qx, each small flow gets φx

x+F of service. Hence the time
to transfer a large flow through Qx is Tx = x+F

Fφx
(1 + η). On the other hand,

if the arriving large flow decides to queue at Qy, the delay experienced will be
Ty = y+1

φy
.

At equilibrium, Tx = Ty; thus,

(x + F )(1 + η)
Fφx

=
y + 1
φy

(7)

5.2 Analysis of Equilibrium

For equilibrium to exist, the equations (2) and (3) should be equated to zero.

Proposition 5.2. If η is zero, no equilibrium will exist unless C = λx + λyF .

Proof (Proof of Prop. 5.2).

From the combination (2) + (3) at equilibrium, when η is 0, we get C = λx+λyF .
��

In the remaining, η is taken to be strictly positive.
Using equations (2) and (3) at equilibrium, gives the constraints (8) on f for

the existence of such an equilibrium point.

f(xe) =
(1 + η)(C − λyF ) − λx

η
(8)

There can be multiple such points xe or no depending on f .

Proposition 5.3. For a given set of parameters (λx, λy , C, η, f, m) with η > 0,
the system has inner equilibrium points (xe, ye) where:

xe ∈ f−1(
(1 + η)(C − λyF ) − λx

η
) (9)
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and:

ye =
C − f(xe)
Ff(xe)

(xe + F )(1 + η) − 1

iff: ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λx + λyF ≤ C
λx + λyF (1 + η) > C

f−1( (1+η)(C−λyF )−λx

η ) �= ∅
m(xe, ye) = C−(λx+λyF )

ηλyF

(10)

Proof (Proof of Prop. 5.3)

From the combination, (2) + (1 + η)(3), at equilibrium, we obtain Eq. (8). The
system has equilibriums iff there is point xe satisfying this equation, meaning
f−1( (1+η)(C−λyF )−λx

η ) is not empty (η �= 0). From Eq. (7), we get corresponding
ye. Then from Eq. (2) at equilibrium, we have m as defined in Eq. (10).

Due to constraint (1) on m, and constraint (6) on f , we have the existence of
this equilibrium iff:

{
λx + λyF ≤ C

C < λx + λyF (1 + η) (11)

Second inequality is strict because of Eq. (6). ��

Fig. 3 shows the region of arrival rates where equilibrium can exist, dashed-line
is excluded from this.

Corollary 5.4. If f is strictly monotonic. For every 2-tuple of (λx, λy) satis-
fying the line equation: (1 + η)(C − λyF ) − λx = k (for a constant k), there is
maximum of one equilibrium point.

Proof. Corollary 5.4

If f is strictly monotonic, there is utmost one pre-image by f−1. As potential
equilibria are determined by Eq. (9) (and ye which only depends on xe), all points
of the line of arrival rates: (1 + η)(C − λyF ) − λx = k have the same potential
equilibrium. Since m(xe, ye) has to satisfy Eq. (10), which gives a different line
in λx and λy, there is at most one equilibrium point (the intersection). ��

From the above, it can be observed that, for a monotonic f , there exists utmost
one equilibrium point for the whole line of arrival rates. This gives only a few
equilibrium points for a wide range of arrival rates. A non-monotonic f will give
more equilibrium points. But still, it is not feasible to obtain equilibrium points
for all values of (λx, λy) satisfying the line of arrival rates, as it would require
an infinite queue or an infinite variability of f .

Hence, we conclude that control using a function of x alone, is not of any use
to the operator.
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λx

λyF

C

C

C
(1+η)

Fig. 3. Interior equilibrium existence region under φx(x) = f(x)

6 Control on φx Using Parameters x and y

As seen in previous section, using only one parameter is not enough to stabilize
the system as the control space is too small. We thus use a control function with
two parameters: x and y.

Definition 6.1. φx(x, y) and φy(x, y)

φx(x, y) = g(x, y)
φy(x, y) = C − g(x, y)

Similar to what have been done with f , if C is the maximum link capacity (or
service rate), let:

0 < g(x, y) < C (12)

Note that, definition of delay equation at equilibrium as given in (7) remains
the same and so we directly proceed to the analysis of potential equilibria.

6.1 Analysis of Equilibrium

For equilibrium to exist, the equations (2) and (3) should be equated to zero.
Prop. 5.2 still holds in this case as φx and φy also sum to C; therefore from
equations (2) and (3) we can prove the same. Hence η is also taken strictly
positive here.

Similarly to what have been done for Prop.5.3, at equilibrium, using Eq. (2)
and (3), we obtain the following constraint on g:

g(xe, ye) =
(1 + η)(C − λyF ) − λx

η
(13)
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Proposition 6.2. For a given set of parameters (λx, λy, C, η, g, m) with η > 0,
the system has inner equilibrium points (xe, ye) iff:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(xe, ye) = (1+η)(C−λyF )−λx

η

m(xe, ye) = C−(λx+λyF )
ηλyF

(x+F )(1+η)
Fφx

= y+1
φy

λx + λyF ≤ C
λx + λyF (1 + η) > C

(14)

Proof (Proof of Prop. 6.2). Same as Prop. 5.3 except that (8) has been replaced
by (13). ��
Note that the region of arrival rates where equilibrium points can exist is the
same.

We define an equivalent load Γ :

Definition 6.3. Γ (λx, λy) = λx

1+η + λyF .

Definition 6.4. D(Γ ) is the set of (x, y) satisfying:

y = a(Γ )x + b(Γ ) (15)

where

a(Γ ) =
(1 + η)Γ − C

F (C − Γ )

and

b(Γ ) =
(2 + η)Γ − 2C

C − Γ

Proposition 6.5. For a given setting of arrival rates (λx, λy) satisfying

Γ (λx, λy) = k (16)

and the two inequalities of Prop. 6.2, equilibria (xe, ye) under this load are on
D(k). Besides, for all the equilibrium points in D(k), g satisfies (13) and is
constant:

g(xe, ye) =
1 + η

η
(C − Γ ) (17)

Proof (Proof of Prop. 6.5). Let (λx, λy) be a setting of arrival rates satisfying
Eq. (16) and the two inequalities of Prop. 6.2.

We first show that D(k) contains all the potential equilibrium points. By
replacing g using Eq. (13) in the delay equation (7), we obtain Eq. (15).

All equilibrium points of arrival settings satisfying (16) have the same value
of g as Eq. (13) holds and gives Eq. (17) which is constant in Γ (λx, λy). ��
Fig. 4 shows Γ -lines in the λxλy-plane and their corresponding D(Γ )-lines in
the xy-plane. On each such line in the xy-plane, g is constant and thus gradient
is orthogonal. From Eq. (17), we also know ∂g

∂Γ is negative which justifies the
orientation of gradient on the figure.
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λx

λyFy

x

D(Γ2)
D(Γ3)

C

C
(1+η)

C

D(Γ1) Γ3

Γ2

Γ1

∇g

Fig. 4. Interior equilibrium existence region and mapping of Γ (λx, λy) lines to D(Γ ),
level sets and gradient field of g(x, y)

Proposition 6.6. For any (λx, λy) verifying the two inequalities of Prop. 6.2,
D(Γ (λx, λy)) for does not intersect in first quadrant.

Proof (Proof of Prop. 6.6). For Γ (λx, λy) = Γ satisfying the two inequalities of
Prop. 6.2, satisfy: (1 + η)Γ > C and C ≥ λx + λyF > Γ .

Under this, da
dΓ and db

dΓ are strictly positive and a is strictly positive. Thus,
D(Γ (λx, λy)) do not intersect in the first quadrant. ��
This basically means g is ‘feasible’. As a corollary of Prop. 6.6, we give:

Corollary 6.7. g can exist in the sense that there are no incompatible con-
straints resulting from Prop. 6.2.

Proof (Proof of Corollary 6.7). Prop. 6.5 gives the value g must have on D(Γ )
in order to have equilibria on it and according to Prop. 6.6 these lines do not
intersect in the first quadrant where g can be defined. It proves there is no
incompatibility in the definition of g. ��
Proposition 6.8

lim
Γ→C−

a(Γ ) = +∞ ; lim
Γ→ C

1+η
+

a(Γ ) = 0

lim
Γ→C−

b(Γ ) = +∞ ; lim
Γ→ C

1+η
+

b(Γ ) = −1

Proof (Proof of Prop. 6.8). Trivial. ��
In particular, this last proposition implies that g can be defined in the whole
first quadrant using Eq. (13) and lines D(Γ ).

As of now, we demonstrated that it is feasible to define g so that point of
D(Γ ) can be equilibria for (λx, λy) on Γ line. Next, we study the stability of
the potential equilibria in order to define the additional constraints on m. The
only constraint on m coming from existence of equilibrium (Prop. 6.2) is that
m(xe, ye) = C−(λx+λyF )

ηλyF . The point where this will hold is not specified and
depends on m. Defining m will thus define a mapping of arrival rates (λx, λy) to
the actual equilibrium point.
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6.2 Stability of the Equilibria and Definition of m

As demonstrated in the previous section, g that doesn’t prevent existence of
equilibrium is feasible. We now like to have the constraints that m has to satisfy.
We already know from the previous section the range m must cover, but we
don’t know where they have to be located in xy-plane. In order to get more
constraints on m, we study the conditions for stable equilibriums. To do so
we rely on Hartman Grobman theorem and the study of the stability of the
linearized system.

Proposition 6.9. For an equilibrium point (xe, ye) as defined by Prop. 6.2 if
the following equations hold:

⎧
⎪⎨

⎪⎩

∂m

∂x
< (1+ye)C

λy(F (2+η+ye)+xe(1+η))2

∂m

∂x
+

(
ye + 1
xe + F

)
∂m

∂y
< 0

(18)

then (xe, ye) is asymptotically stable.

Proof (Proof of Prop. 6.9)

To analyse of the equilibrium point (xe, ye), we take the Jacobian J of the rate
equations (2) and (3) at this point. The partial derivatives ∂g

∂x and ∂g
∂y at (xe, ye)

are obtained from the delay equation, Eq. (7).

∂g

∂x
(xe, ye) =

(1 + η)(ye + 1)FC

(Fye + xe(1 + η) + F (2 + η))2
(19)

∂g

∂y
(xe, ye) = − (1 + η)(xe + F )FC

(Fye + xe(1 + η) + F (2 + η))2
(20)

The equilibrium point (xe, ye) is asymptotically stable if the eigenvalues of
the J at (xe, ye) have strictly negative real parts [7, Ch. 2 & 5]. Characteristic
polynomial of J is:

λ2 +
(λyF (∂m

∂y − (1 + η)∂m
∂x ) + ∂g

∂x − ∂g
∂y ) λ +

η(λyF (∂m
∂x

∂g
∂y − ∂m

∂y
∂g
∂x ))

From this and equations (19) and (20), real parts of the roots are strictly
negative iff:

(1 + η)
∂m

∂x
− ∂m

∂y
<

(1 + η)C(1 + xe + ye + F )
λy(F (2 + ye + η) + xe(1 + η))2

(21)

and
∂m

∂x
+

(
ye + 1
xe + F

)
∂m

∂y
< 0 (22)

Inequalities of the proposition are obtained using combination of equations
(21) and (22). ��
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Proposition 6.2 and 6.9 give sufficient conditions on m to define stable equilibria.
Next, we prove that there exists m which stabilizes the system for any arrival
setting.

Proposition 6.10. There exists an m satisfying the constraints of propositions
6.2 and 6.9 which stabilizes the system for any arrival rates in the shaded region
of the Fig. 4.

Proof (Proof of Prop. 6.10)

We prove this by exhibiting one such m. Let m be such that

m(x, y) = e−xy

The m satisfies the constraints of Eq. (18) for any λy in (0, C) as ∂m
∂x = −ye−xy

and ∂m
∂y = −xe−xy, are both strictly negative on the interior. Besides, as m ranges

from 1 to 0, from the borders (y = 0 and x = 0) to infinity, thus by continuity,
there exists an equilibrium point (xe, ye) where m(xe, ye) = C−(λx+λyF )

ηλyF for any
arrival rates as all D(Γ )-lines enter the first quadrant by one its borders. ��
Note that if m is strictly monotonic, there is only one equilibrium point for any
arrival rate setting in the equilibrium existence region (refer Fig. 3) located at
the intersection of the level set of g and m. In addition, it is not possible to
apply this for all setting of arrival rates in order to get equilibria for all of them,
unless queue are infinite.

Proposition 6.11. If queues are finite, some setting of arrival rates can’t have
equilibrium.

Proof (Proof of Prop. 6.11). As a(Γ ) tends to 0 when Γ tends to C/1 + η+, and
b(Γ ) tends to -1, intersection of y = 0 and D(Γ ) tends to infinity. Hence, for any
xmax, it is possible to find Γ close enough to C/1 + η so that equilibrium which
have to be on D(Γ ) (due to Prop. 6.5) would have to be after xmax.

Using limits of a(Γ ) and b(Γ ) when Γ tends to C, it is possible to pursue the
same reasoning and prove that for some settings of arrival rates, there can’t be
equilibrium under finite queue for large flows. ��
Thus we see that, the system can attain stability depending on the decision of
users, and the control function used by operator.

7 Game

We summarize our results in the form of a game with two players: operator and
user (with a large flow to send). Here, we make the fair assumption that Tx < Ty.
The operator can take one of the two actions:

– AFP: Assume fair play, and not use a g.
– AUP: Assume unfair play, and use a g.
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From the users, we consider a collective behaviour.

– UC: Users cheat,
– UR: Users rightful

Under AUP, Tx = Ty. We use preferential ordering of payoffs for both players.
That is (ao, au) ≺p (a′

o, a
′
u), if player p prefers second strategy over the first. The

letter o is used to refer to operator, and u to refer to users.

– (AFP, UR) ≺u (AFP, UC): Users prefer to cheat when the operator does
nothing to stop them from cheating, as this would give them shorter response
time in the small queue (when Tx < Ty).

– (AUP, UR) ≺u (AUP, UC): Users also prefer to cheat when the operators
are aware and are setting service rates dynamically to achieve stability, as
this would ensure a finite queue; hence a finite delay. Observe that, if the
don’t cheat (and stay in Qy), there is no equilibrium (from Prop. 6.2); hence
the queue will build up without bound.

Therefore, it can be drawn that UC strictly dominates UR under any action
of the operator (AFP or AUP). Hence, the action UR can be eliminated [8]. So,
what lefts to be analysed is the preference of operator under this user action
(UR). We see, (AFP, UC) ≺o (AUP, UC), as there is no equilibrium for general
arrival rates (from Prop. 6.2, and if Tx remains less than Ty, migration will create
additional load due to η) leading to overflow.

From the above analysis, (AUP, UC) is a Nash equilibrium in the two-players
game. That is, assuming operators and users are rational, users will tend to
cheat, and operators will look to stabilize the system to maintain finite queues
(when the system is operating near to saturation, depending on η).

Note that if the operator’s setting of service rates is such that Tx > Ty, then
migrating to small queue is no more an incentive for large flows. This doesn’t
preclude operator from favoring small flows as x

φx
< y

φy
can still hold. In such

a scenario, it can be seen that (AFP, UR) will be a Nash equilibrium. This
situation can happen if η is large enough and φy

φx
can be maintained such that:

{
φy

φx
< y

x
y+1
x+f

F
1+η <

φy

φx

Second constraint will not be satisfied if operator want to favor small flows too
much, say, as in the priority based scheduling proposed in [2]; meaning that it
will be of interest for users to cheat.

8 Conclusions

Starting from the setting of static service rates, and moving to dynamic service
rate settings, we analysed the existence of equilibria. For the existence of equi-
libria that is of interest to the operator, it is necessary to have control over the
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service rate as a function of the queue lengths. Even then, not all the stable
equilibrium points are of interest to the operator, as they give the same delay to
small and large flows. Therefore, if a large number of users cheat, the operator
has no visible incentive in deploying a size-based scheduling system.

The focus of our study revolved around saturation (of the line capacity) as
we assumed that there is some cost η incurred due to migration. In the future,
we plan to analyse the system in overload. Similarly, it would be interesting to
understand what happens if the operator deploys a mechanism to detect and
shift some of the disguised large flows from the small queue to the large queue.
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