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Preface

It is our great pleasure to present the proceedings of the 16th International
Conference on Analytical and Stochastic Modelling Techniques and Applications
(ASMTA 2009) that took place in Madrid.

The conference has become an established annual event in the agenda of
the experts of analytical modelling and performance evaluation in Europe and
internationally. This year the proceedings continued to be published as part of
Springer’s prestigious Lecture Notes in Computer Science (LNCS) series. This is
another sign of the growing confidence in the quality standards and procedures
followed in the reviewing process and the program compilation.

Following the traditions of the conference, ASMTA 2009, was honored to
have a distinguished keynote speaker in the person of Kishor Trivedi. Professor
Trivedi holds the Hudson Chair in the Department of Electrical and Computer
Engineering at Duke University, Durham, NC, USA. He is the Duke-Site Director
of an NSF Industry–University Cooperative Research Center between NC State
University and Duke University for carrying out applied research in computing
and communications. He has been on the Duke faculty since 1975. He is the
author of a well–known text entitled Probability and Statistics with Reliability,
Queuing and Computer Science Applications, published by Prentice-Hall, the
second edition of which has just appeared. He has also published two other books
entitled Performance and Reliability Analysis of Computer Systems, published
by Kluwer Academic Publishers, and Queueing Networks and Markov Chains,
by John Wiley. He is also known for his work on the modelling and analysis of
software aging and rejuvenation.

The conference maintained the tradition of high-quality programs with an
acceptance rate of about 40%. The program of ASMTA 2009 comprisd 27 high-
quality papers organized into 7 sessions. Almost every paper was peer reviewed
by three reviewers from the International Program Committee. The reviewers
were truly wonderful this year, as well, and in most of the cases the reviews
provided valuable comments that contributed to increasing the quality of the
final versions of the papers. In many cases, discussion panels were also organized
when the reviews were not decisive. We would like therefore to give a special
thanks to all the members of the International Program Committee for the
excellent work in the reviewing process and the subsequent discussion panels
during the selection process.

Keeping the tradition, ASMTA was co-located with the European Conference
on Modelling and Simulation, the official conference of the European Council on
Modelling and Simulation. This gave the participants of ASMTA a unique oppor-
tunity to interact with colleagues from these very relevant and complementary
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areas. They also enjoyed the keynote talks delivered by prominent figures in
those areas.

The local organizers made every effort to make it a memorable event. For
that we give them our sincere thanks and appreciation.

June 2009 Khalid Al-Begain
Dieter Fiems

Gábor Horváth
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Comparison of Multi-service Routing Strategies for IP
Core Networks

Ulf Jensen and Armin Heindl

Universität Erlangen-Nürnberg
Computer Networks and Communication Systems

Erlangen, Germany

Abstract. Service differentiation in IP core networks may be supported by dedi-
cated path selection rules. This paper investigates the degree of service distinction
achievable when common routing strategies, like ECMP, SWP and WSP, are ap-
plied to two traffic classes separately and in different combinations. One traffic
class requires low latencies, while the other is considered as best-effort traffic.

A Maple program has been developed that evaluates network performance
characteristics, like maximal link utilization, and per-class measures, like mean
end-to-end delay and mean number of hops, when paths are computed on demand
with traffic demands arriving in arbitrary order. Realistic network topologies may
be imported from the publicly available tool BRITE, while link capacities and
traffic patterns are chosen randomly (with realistic constraints) in Maple.

Experiments show that a comparable service differentiation may already be
achieved with less sophisticated strategy combinations, which apply ECMP to
the delay-critical traffic class.

1 Introduction

New applications and services [1] in the next-generation Internet (NGI) require dif-
ferent service guarantees typically negotiated in Service Level Agreements (SLA). In
order to provide appropriate service differentiation in the Internet, many proposals have
been made including diverse strategies for packet classification, queue management
and scheduling as well as bandwidth management and admission control. For instance,
such issues are addressed in the service models for Quality of Service (QoS) support
by the Internet Engineering Task Force (IETF), namely Differentiated Services (Diff-
Serv, [2]) and Integrated Services (IntServ, [3]). Today, these technologies coexist with
other approaches to provide QoS. Traffic engineering capabilities are supplied by Multi-
Protocol Label Switching (MPLS, [4,5]) and QoS routing constitutes another important
component in the overall QoS framework [6,7]. Architectures like GMPLS (General-
ized MPLS, [8,9]) and extensions to common IP routing protocols, like OSPF (Open
Shortest Path First, [10]), furnish the tools to handle traffic classes according to differ-
ent rules, but it is not fully understood to which extent such routing decisions contribute
to service differentiation or which rule combinations result in favorable performance.

In this paper, we investigate these issues for IP core networks. We assume that ser-
vices may be set up on a semi-permanent basis, i.e., a negotiated bandwidth has to be

K. Al-Begain, D. Fiems, and G. Horváth (Eds.): ASMTA 2009, LNCS 5513, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 U. Jensen and A. Heindl

reserved along a path or multiple paths through the network for a longer period. Ser-
vice requests are served on demand, i.e., the routes cannot be optimized from a global
perspective (in the knowledge of all traffic demands), but have to be computed incre-
mentally upon arrival of a request. Such a scenario is typically encountered in traffic
engineering, and its solution easily realized, e.g., by means of label-switched paths as
in (G)MPLS. Furthermore, we consider two traffic classes: one traffic class is related
to interactive applications and requires lower latencies, while the other represents best-
effort traffic. Different routing strategies are applied to each class: we distinguish alter-
native link weight systems, single/multi-path routing as well as standard/QoS routing
schemes, which disregard/regard the current state of the network.

A Maple program has been developed to read arbitrary topologies of realistic sizes
generated with the publicly available tool BRITE [11], to assign link capacities, to gen-
erate traffic patterns for the two traffic classes and to allocate the traffic demands to
the network according to specified rules. Finally, the overall network peformance is as-
sessed by means of the maximal link utilization and the minimal unused link capacity.
The service differentiation is ascertained in terms of the per-class performance mea-
sures, like the average number of hops along the paths and the mean end-to-end delays.

Just as Internet routing itself is focused on connectivity with QoS having been ad-
dressed much later, studies on traffic engineering are primarily targeted on issues like
load balancing and improvement of overall network performance instead of service dif-
ferentiation (e.g, [12,13,14,15,16]). While sophisticated QoS routing architectures have
been proposed (e.g., [17,18]) and mostly been evaluated by discrete-event simulation
on the packet level [18,19], many questions regarding fundamental design decisions re-
main open. In the context of Internet backbone networks, we are interested inasmuch
basic routing schemes cooperate or interfere when applied to different traffic classes.

Our approach has been inspired by a case study in [15], which examines similar
constraint-based routing schemes in the context of traffic engineering for a single traffic
class. We extend Wang’s procedure of incremental demand assignment to two traffic
classes in order to study the potential of service differentiation.

The paper is organized as follows: Section 2 presents the routing schemes, which are
applied in our experiments. The experiment setup and model evaluation is described in
Section 3, while numerical results in Section 4 compare different routing combination
for service differentiation. The paper concludes with Section 5.

2 Considered Routing Strategies

Traditional routing in the Internet is based on shortest paths between origin and desti-
nation. Each router (being the origin) computes this shortest path locally based on its
view of the network. The decision to which output interface the packet is directed de-
pends solely on the destination of the packet, which implies that all types of traffic are
equally processed. In order to enable service differentiation between best-effort traffic
and higher-priority traffic, current routing protocols, like OSPF [10,20], and architec-
tures, like GMPLS [8], make provisions to manage separate routing tables for different
traffic classes, which are computed based on different link metrics. Furthermore, path
computation may not only be based on metric weights assigned a priori and indepen-
dently of the dynamic network state, but may also reflect traffic engineering information
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like the unreserved bandwidth by priority, etc. Thus, various variants of constraint-based
path computation may be realized besides standard link-metric routing.

Commonly, routers periodically exchange network state information so that each
one can calculate the best path(s) based on some knowledge of the entire network state
conditions [17]. Other strategies have been proposed, e.g., using local information to
choose a path from predefined candidate paths [21], but remote network conditions
prove crucial to QoS routing. We follow the principle approach suggested in [17] that
fits into the GMPLS architecture and is thus highly compatible with the existing and
widely deployed routing protocols. In this paper, we focus on standard link-metric rout-
ing and QoS routing strategies solving the bandwidth-restricted path (BRP) problem
[6] (via metric ordering), namely Shortest-Widest-Path (SWP) and Widest-Shortest-
Path (WSP). In the context of QoS routing, we do not consider solutions to the so-
called Restricted-Shortest-Path problems due to their higher complexity and neither
approaches of metric combination due to their rough heuristic. Generally, QoS routing
may suffer from computation and communication overhead, which hamper scalability,
or from a strong snsitivity on the view of the network, where inaccuracies strongly de-
grade performance. These issues are only addressed in this paper in the sense that we
concentrate on less sophisticated QoS routing strategies.

2.1 Standard Link-Metric Routing

Here, the link weights are set to static default values and independently of the network
dynamics. In order to compute the shortest path to a destination, each router may apply
classic Dijkstra algorithms [22]. Naturally, the length or cost of a path is the sum of all
weights on the links between origin and destination.

Minimal Number of Hops (MH). Still today, the unit metric system is applied in
large parts of the Internet. All link weights are set to 1. The shortest path minimizes the
number of hops along the way between origin and destination.

Inverse Link Ratio (ILR). This metric system reflects the static link capacity. The link
weight is set to the reciprocal value of the link capacity. Thus, links with high capacity
attain smaller weights and are thus favored in the shortest path computation based on
these weights. The rationale that traffic travels faster on high-capacity links may, how-
ever, be counteracted by attracting high loads to these links. This metric system has
become very popular as a default setting in today’s routers.

Equal-Cost Multi-Path (ECMP). While the above strategies are associated with
single-path routing, the add-on property ECMP allows to route traffic from origin to
destination on multiple shortest paths. Essentially, the ECMP rule states that – if multi-
ple shortest paths exist – a flow is split equally. More precisely, “a flow to a destination
outgoing from a node is equally split onto these outgoing links which belong to the
shortest paths to this destination.” (from [22], where a recursive ECMP flow alloca-
tion algorithm is given). ECMP is realized with minimal modifications of the routing
tables, which now contain a next hop for every shortest path to a destination. All (or
some) shortest paths can be obtained by means of the k-shortest-path-algorithm based
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on any arbitrary metric, like MH, ILR, etc. ECMP balances the network load and is an
important feature of OSPF with impact on traffic engineering.

2.2 QoS Routing

QoS routing finds an optimal path that satisfies a particular request under constraints,
which reflect the dynamic state of the network. As a common example, the widest path
maximizes the so-called bottleneck bandwidth between origin and destination [23]. The
bottleneck bandwidth represents the minimal unused capacity of all links along a path.
Obviously, routers must therefore exchange information on the unreserved bandwidth of
links. Widest paths are well suited for load balancing, since paths with higher remaining
capacities are preferred. Longer paths in terms of number of hops, however, strain the
overall utilization of the network. More hops may also induce longer delays.

The Dijkstra algorithms for shortest paths are straightforwardly adapted to widest-
path computations [22]. The specific changes required for the algorithms applied in this
paper can be found in [24].

Since both metrics – a minimal number of hops and a high unused capacity along the
path – have their benefits, paths are desired which combine these favorable properties to
some extent. Solving the related bandwidth-restricted path problem implies the heuristic
of metric ordering, i.e., first the best paths are found with respect to one metric and then
– among these best paths – the best path with respect to the other metric is determined.

Widest Shortest Path (WSP). WSP algorithms first determine all shortest paths in
terms of a standard metric (independent of network load), between which the tie is
broken via the largest bottleneck bandwidth. Especially when MH is used in the first
step, this metric ordering emphasizes low resource consumption in the network. WSP is
computationally efficient, works well also for high network loads and/or with inaccurate
network info.

Shortest Widest Path (SWP). SWP algorithms turn the metric ordering around:
among all widest paths (possibly from a candidate list), the shortest one (according
to a standard metric, like MH or ILR) is eventually selected. Determining widest paths
first results in eventually longer paths. SWP primarily aims at load balancing. It scales
well, especially in combination with path precomputation, but exhibits a more selfish
behavior penalizing later requests.

In the next section, we describe in which setting these routing strategies are applied
to two traffic classes in different combinations. Traffic demands of these classes incre-
mentally routed over an initially empty network. All algorithms and computations have
been implemented as Maple procedures [25].

3 Experiment Setup and Model Evaluation

Section 3.1 describes the chosen experiment setup while Section 3.2 addresses how a
Maple program is used to evaluate the experiments.
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3.1 Experiment Setup

An experiment comprises five steps: topology generation and read-in, traffic creation,
path determination, traffic allocation and performance measure. Thereby, each traffic
class uses a preassigned strategy for path determination.

Topology Generation and Read-In. At first, the tool BRITE [11] is used to generate
realistic but artificial backbone topologies. In BRITE, the user can choose from a range
of network models to create topologies. The employment of the Barabási-Albert model
creates topologies with a majority of nodes of low degrees. The degree of a node reflects
the links connected to it. Link capacities are chosen according to a discrete uniform
distribution using the first seven levels of the European multiplex hierarchy. Hence,
capacity values range from 51.84 Mbps to 1866.24 Mbps, which represent the lower
and upper bound of the chosen multiplex levels. The links are bidirectional and share
their bandwidth as needed.

Traffic Creation. The presented software produces dedicated traffic flows on traffic
creation. A flow from source s to destination t will be distinguished from a flow from
source t to destination s. Prior to traffic demand creation, the nodes are split in boundary
nodes and transit nodes. Traffic demands use boundary nodes as source and destination,
transit nodes are only used as intermediate nodes. The partitioning into boundary and
transit nodes is carried out considering the degree of every node and the average node
degree. For details of this procedure see [24]. Once the nodes are partitioned, static
traffic demands can be established. A traffic volume drawn from a uniform distribution
in an arbitrary, but fixed interval is assigned to each demand. The traffic generation
process is the same, no matter how many traffic classes are used. To conclude this step
it can be stated that after splitting in transit and boundary nodes, the desired amount of
dedicated demands are established between unique pairs of boundary nodes.

Path Determination and Traffic Allocation. Traffic classes may assume different
shares of the overall traffic. This means that each class has a fraction of demands from
the set of overall demands. For example, if the best-effort class and the delay-critical
class have the same portion of traffic and ten traffic demands are to be allocated, each
class has to realize five demands. Starting with the total amount of estimated traffic
demands, each demand is assigned to a traffic class as follows.

1. A demand is randomly chosen.
2. The traffic class that will realize this demand is chosen. If both classes still require

demands, one class is randomly picked. Otherwise, the demand will be realized by
the only class which still has traffic to carry. This procedure ensures a ”mixing”
during the allocation of demands of the different traffic classes.

3. Having chosen a traffic class the demand belongs to, the routing path needs to be
determined using the strategies described in Section 2. In case of multi-path routing
(e.g. ECMP), potentially more than one path has to be identified.

4. The allocation of traffic simply means substracting the demand volume from the
capacities of all links along the routing path(s).

With this procedure, the network capacity will be downsized step by step with every
allocated demand.
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Performance Measures. In the final experiment step, performance measures are com-
puted. We first discuss network measures, which assess the aggregate performance of
the routing, and then per-class measures, which manifest the service differentiation be-
tween the traffic classes. Having saved the idle topology (i.e., with the original capaci-
ties fully available), it is easy to determine network characteristics using the loaded and
idle network. The maximal link utilization and the minimal unused link capacity are
determined. The formula

U = max
{

ye

ce
: e ∈ E

}
purveys the maximal link utilization in percent, where E denotes the set of edges/links
and ce their capacity. The term

ye =
∑

d

Pd∑
p=1

δedpxdp

describes the traffic on link e. The variable xdp contains the demand volume that is
routed on path p of the Pd paths which realize demand d. The logical value δedp deter-
mines whether path p (realizing demand d) uses link e (δedp = 1) or not (δedp = 0).
The minimal unused link capacity is computed in Mbps by using the formula

C = min {ce − ye : e ∈ E} .

To calculate traffic characteristics for each traffic class, the routing paths for each traf-
fic demand are needed. This data, together with the idle and loaded network, is the
base to compute the average number of hops on the path and the mean path delay. The
mean path delay depends on the link delay of each link on the path. The link delay is
approximated with the formula

De =
1

ce − ye
,

in analogy to the time in the system of an M/M/1-queue. This rather rough approxi-
mation is sufficient for our purposes of a relative comparison. The mean path delay,
weighted with the demand volume, is computed using the formula

D =
∑

d

Pd∑
p=1

xdp∑
d hd

∑
e

δedp
1

ce − ye
. (1)

The variable hd represents the demand volume of demand d. This delay includes trans-
mission and queueing delay and is denoted in seconds. Another important traffic char-
acteristic is the average number of hops which is also needed to compute the processing
delay. The formula

H =
∑

d

Pd∑
p=1

xdp∑
d hd

∑
e

δedp

is used to compute this characteristic. The paths are again weighted according to their
demand size. To estimate the end-to-end delay of the traffic of a traffic class, presump-
tions about the propagation delay and the processing delay per hop have to be made.
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This means, that both traffic characteristics shall be contemplated together with network
presumptions for the propagation and processing delay.

3.2 Usage of Maple Software

Executing the above-mentioned five steps results in network and traffic characteristics
for a fixed amount of demands and a specified demand ratio of the traffic classes. To ex-
tensively evaluate the performance of two routing strategies, we obtain values for differ-
ent amounts of demands. The use of different demand ratios is of high practical interest.
In addition, the randomness in traffic generation and demand assignment in an exper-
iment is coped with by executing an adequate amount of repetitions. The developed
Maple program provides for independent replications. Comprehensive experiments are
executed with a single function call, while the architecture allows simple enhancement
and adaption. The following section deals with usage, prospects and adaption options
of the software.

An experiment to compare two routing strategies that are assigned to a traffic class
each consists of different partial experiments. In these partial experiments, the portion
of demands of each traffic class on the overall demand amount differs. The results of
Section 4 use the ratios presented in Table 1. The ratios can easily be adapted to satisfy
practical situations.

Table 1. Share of demands of each traffic class of the overall demand amount

partial experiment
traffic class 1 2 3 4

best effort 100% 90 % 70% 50%
delay critical 0% 10 % 30% 50%

For the traffic classes, every desired combination of routing strategies can be chosen.
The strategies described in Section 2 are just a selection of common policies. Other
strategies can be easily added and are specified as an argument when calling the experi-
ment function which executes automatically the partial experiments. Another argument
is the ratio of boundary and transit nodes. Sufficiently many boundary nodes are needed
to create more unique source-destination-pairs as traffic demands are specified. The in-
terval for the demand volumes is an argument, too. The number of repetitions may be
specified as a tradeoff between statistical significance and execution time.

The developed program offers the opportunity of executing sophisticated experi-
ments that deliver extensive results while keeping usage easy. Numerous arguments
allow simple adaption and the modular architecture ensures easy enhancement.

4 Comparison of Multi-service Routing Schemes

This section presents results of experiments conducted with a topology of 40 nodes
and 77 links (as generated with BRITE). The link capacities are uniformly chosen from
the first seven layers of the European multiplex hierarchy. Further preferences are an
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interval between 3 and 12 for the demand volumes and the portion of 0.9 of all nodes for
the boundary nodes. The experiment starts with 20 demands and increases its number
by 10 up to 130. For the latter traffic, a maximum link utilization of around 60% is
attained for every experiment, which is considered as a reasonable operational load.

The result figures for the network performance characteristics show one curve for
each partial experiment (see Table 1). The solid curve displays the behavior without
traffic differentiation. In this case, the whole traffic is routed using the best-effort strat-
egy. The dashed line represents a share of 10% delay-critical traffic of the overall de-
mands. Partial experiment 3, illustrated in the dashed-dotted line, has a share of 30%
delay-critical traffic while the dotted line shows the results of the experiment where
both traffic classes realize the same number of demands.

One partial experiment is chosen to display the per-class traffic characteristics. The
figures show partial experiment 3 with a share of 30% of the overall demands for the
delay-critical traffic class. For comparison, the traffic characteristics of partial experi-
ment 1 with no traffic differentiation are shown as well.

To produce the results of each subsection (with seven replications in each specific
setting, i.e., for each demand number in each partial experiment), run times on standard
PCs varied between one hour for the simpler strategies and some hours for more com-
plex experiments with QoS routing. We do not show confidence intervals for our results
in order not to overload the figures. They can be found in [24].

Among the various strategies we have evaluated, we show here three routing com-
binations which highlight the potential of service differentiation without and with QoS
routing strategies.

4.1 ECMP (ILR) for Best Effort and ECMP (MH) for Delay-Critical Traffic

This combination was selected to find out whether strategies that do not use QoS routing
techniques are able to provide service differentiation by different weight assignments.
ECMP with the MH strategy is selected for the delay-critical traffic, since shortest paths
with the minimal number of hops minimize the per-node delays, while link loads are
somewhat balanced by ECMP leading to lower uilizations and thus lower delays. Note
that ECMP splits a demand over different paths of the same length. Best-effort traffic is
merely engineered to balance the network load. Besides the ECMP multi-path routing,
the ILR link weight assignment tends to direct traffic over possibly longer paths with
links of higher capacity. The static weights of inverse link capacities allow to avoid
bottlenecks slightly better than unit weights.

Figure 1 displays the network performance characteristics. According to intuition, as
the load on the network increases, the maximal link utilization increases and the mini-
mal unused link capacity decreases. With respect to the different partial experiments, we
only discuss the maximal link utilization. In partial experiment 1 (solid line), all traffic
is routed according to ECMP (ILR), i.e., without any traffic differentiation. Compared
with the other partial experiments with two traffic classes, this weight assignment due
to link capacities yields benefits in low network loads (see lower maximal link utiliza-
tion), but tends to show worse network performance for higher loads. In our experiment
setting, the maximal link utilization reaches values of beyond 80 %. Also with increas-
ing load, ILR prefers high-capacity links, which become heavily loaded. This effect is
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Fig. 1. Network characteristics for experiment with ECMP (ILR) for best-effort class and ECMP
(MH) for delay-critical class: maximal link utilization is shown left, minimal unused link capacity
on the right for different partial experiments
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Fig. 2. Traffic characteristics for experiment with ECMP (ILR) for best-effort class and ECMP
(MH) for delay-critical class: average hop count is shown left, mean path delay on the right for
partial experiments 1 and 3

mitigated in the presence of delay-critical traffic, which is routed according to different
rules, which explains the relatively bad performance of partial experiment 1.

In the center range, best network performance is achieved for the partial experiment
2 with a 10 % share of delay-critical traffic (see dashed curve). With higher such shares,
network performance deteriorates again, even more for 30 % (dashed-dotted line) than
for 50 % (dotted line). Obviously, small shares (around 10%) of delay-critical traffic
may have a positive influence on the network performance. We assume that the load on
lower-capacity links is too small to influence the overall network performance in partial
experiment 2.

The traffic characteristics per class are shown in Figure 2 for partial experiment 3
(30 % share of delay-critical traffic) along with reference curves for partial experiment
1. Considering the average hop count (left), the curves reveal that the delay-critical
class traffic (dashed-dotted line) is routed on shorter paths as desired to reduce the per-
node overhead. The solid line of partial experiment 1 (100 % best-effort traffic) and
the dashed line of the best-effort share are quite similar, with the dashed line assum-
ing slightly larger values in most cases. A difference of one hop (on average) can be
observed between best-effort and delay-critical traffic and substantiates the presump-
tions for choosing this strategy combination. The MH weight assignment accounts for
shorter routing paths, while ILR pays the price for avoiding low-capacity links with
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longer paths. The paths of the best-effort class are even longer than the paths of the
partial experiment 1 without traffic differentiation, because bottleneck links caused by
the delay-critical class need to be avoided additionally. A small but considerable differ-
entiation can be stated for the traffic characteristic of the average hop count.

The curves for the mean path delay are shown up to an amount of 80 demands. Above
this number, meaningful results could not be obtained due to overload situations. With
the maximal link utilization (averaged over 7 replications) beyond 60 %, the probability
that a single link in one of the replications becomes overloaded increases. In such a case,
the mean path delay (see equation (1)) can no longer be computed [24].

The curve constellation in Figure 2 (right-hand side) showing the mean path delay
is counterintuitive at first sight. The dashed-dotted line of the delay-critical class ranks
above the best-effort curve meaning that a best-effort traffic is routed on paths with
lower mean delays. Since the delay-critical traffic uses fewer hops on average, it must
traverse links which are more heavily loaded. According to (1), the link delays are the
crucial factor. Nevertheless, another issue needs to be adressed. The path delay for-
mula considers only transmission and queueing delays and does not regard propagation
and processing delays. For mean end-to-end delays, propagation and processing delays
have to be considered. Then, both traffic characteristics have to be evaluated together,
because processing delays are added for every hop and propagation delays for every
link used on the routing path. An assumption of 10 to 15 ms per hop for processing and
propagation delay is reasonable for the considered IP core networks and leads to a dif-
ferent situation for the evaluation of the end-to-end delay for the different traffic classes.
A difference of 10 ms on average for the mean path delay and one hop on average for
the hop count (as roughly shown by Figure 2) leads to the conclusion that the traffic
will only be differentiated with respect to the mean end-to-end delays, if the processing
and propagation delays rise above 10 ms. That means, to make clear predictions, details
about the network topology, like distances between nodes and node behavior, need to be
known. The strategy combination considered in this subsection is only useful for traffic
differentiation (for the mean end-to-end delays), if processing and propagation delays
are considerably larger than 10 ms.

4.2 SWP (MH) for Best-Effort and ECMP (ILR) for Delay-Critical Traffic

This experiment applies the QoS routing strategy SWP to the best-effort class to further
exploit load balancing for this traffic class. The MH weight assignment in SWP finds
the shortest path (in terms of number of hops) of a set of widest paths. Since widest
paths take into account the dynamic state of the network, load balancing is improved.
The predominant IP routing strategy ECMP with weight determination ILR is used for
the delay-critical class and is based on static network properties.

As before, Figure 3 displays the network characteristics and shows similar recipro-
cal trends for both network performance characteristics. However, with respect to the
previous experiment, the network performance is now considerably improved: for 130
demands, the maximal link utilization is now around 60 % (as opposed to 80 %) and the
minimal unused link capacity remains over 20 Mbps (as opposed to less than 10 Mbps).
As a consequence, all curves show smaller slopes than in the previous experiment.
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The QoS routing strategy for the best-effort class made load balancing more effective
and stable. All curves in each figure are quite close to each other, where the partial
experiments with a higher share of delay-critical traffic (dotted and dashed-dotted lines)
show slightly worse network performance. For higher loads, the ordering of the partial
experiments is as expected: with an increasing share of the delay-critical traffic (with
non QoS routing in this experiment), the network performance deteriorates. The good
performance of partial experiment 1 (10 % delay-critical traffic, dashed line) in the
center part may be attributed to the suitable ILR weight assignment for low network
load.
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Fig. 3. Network characteristics for experiment with SWP (MH) for best-effort class and ECMP
(ILR) for delay-critical class: maximal link utilization is shown left, minimal unused link capacity
on the right for different partial experiments
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Fig. 4. Traffic characteristics for experiment with SWP (MH) for best-effort class and ECMP
(ILR) for delay-critical class: average hop count is shown left, mean path delay on the right for
partial experiments 1 and 3

Figure 4 shows the per-class traffic characteristics. A significant differentiation can
be observed. With respect to the mean number of hops (see left-hand side), the quan-
titative difference, estimated to about one and a half hops, is larger than the one in the
previous experiment. The values for ECMP (ILR) remained rather unchanged, while
SWP (MH) uses paths that contain more hops on average. This use of widest paths
results in a considerable differentiation of the traffic classes for this characteristic.

The second traffic characteristic on the right side of Figure 4 appears quite different
compared with the experiment of Section 4.1. Due to the well-balanced network load,
meaningful results could be achieved for demand numbers up to 130. In addition, the
curve constellation itself is remarkable as both traffic classes reach quite similar values.
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The dashed-dotted line for the delay-critical traffic lies below the dotted line for the best-
effort traffic for most of the calculated values. As intended, the best-effort class which
uses longer paths on less loaded links now appears to encounter longer delays than the
delay-critical class, with uses potentially shorter paths with high capacities. Considering
both traffic characteristics together and assuming the same 10 ms for processing and
propagation delay as in the previous experiment, we conclude that a significant service
differentiation can be reached with respect to mean end-to-end delays with the strategy
combination chosen for this experiment. The delay-critical class traffic will be routed
faster even without taking topology details into account. The performance benefit will
further increase with higher values for the processing and propagation delay.

Further experiments with the same strategy combination were accomplished to back
up the observed results. On the one hand, the topology size was raised while using
the same network generation model. On the other hand, another generation model, the
Waxman model [11], was utilized in BRITE while keeping the network size constant.
Other preferences as described in Section 3.1 were not changed.
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Fig. 5. Traffic characteristics for 50 node experiment with SWP (MH) for best-effort class and
ECMP (ILR) for delay-critical class: average hop count is shown left, mean path delay on the
right for partial experiments 1 and 3

Figure 5 shows the traffic characteristics for the experiment with a 50 node topology
and same network generation model usage. The results for the application of the Wax-
man model show the same trends and can be extracted from [24]. The figures reveal,
that the number of demands was increased notedly. In a larger network, more traffic
is needed to reach a adequate operation load. With the higher amount of demands, the
curves are mainly flattened as the randomness in traffic generation and demand assign-
ment is balanced.

The average hop count curves that appear on the left side show a significant differ-
entiation with a difference of two hops in average. The values for all curves increased
with the network size as there are simply longer paths needed on the way from source
to destination. The best-effort class (dashed line) uses six hops while the delay-critical
class needs four hops on the path. The increased difference in comparison to the 40
node network experiment can also be imputed to the larger topology.

Contemplating the right figure with the mean path delay, it can be stated that the
dashed-dotted line (delay-critical class) lies below the dashed line of the best-effort
class. SWP, as used for the best-effort class, uses more hops and adds path delay for
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each link utilized. Although these links are few loaded, WSP that uses less but poten-
tially higher loaded links finds paths with less queuing and transmission delay in av-
erage. This differentiation, that appeared already as a trend in the 40 node experiment,
is significant and therefore a good capability to differentiate traffic can be attested this
strategy combination.

The comparing experiment with a 50 node network revealed, that this strategy com-
bination is able to differentiate the traffic classes in both traffic characteristics. A closer
examination of the topology is no longer needed. The trends assumed for the curves
shown above were approved.

4.3 SWP (MH) for Best Effort and WSP (ILR) for Delay-Critical Traffic

This section presents another promising strategy combination in our experiments. Now,
QoS routing strategies are applied to both traffic classes, namely SWP (MH) for best
effort (as before) and WSP for the delay-critical class (as opposed to ECMP). WSP with
ILR weight assignment was chosen to encourage the use of short paths while consider-
ing the bottleneck bandwith as second routing metric. In combination with SWP, load
balancing is expected to be further improved for this experiment. Both strategies reach
their routing decision based on the dynamic state of the network, while SWP focuses
on using the widest path and WSP on minimizing the hop count.
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Fig. 6. Traffic characteristics for experiment with SWP (MH) for best-effort class and WSP (ILR)
for delay-critical class: average hop count is shown left, mean path delay on the right for partial
experiments 1 and 3

The results for the network performance characteristics look alike to the previous
40-node experiment with slightly better values and are not shown here. For figures and
further details see [24].

Figure 6 shows the traffic characteristics for this experiment. In comparison to the
previous experiment, the curves that display the average hop count are quite similar. On
a closer look, they appear to be slightly closer together what may be due to a better load
balancing capability of WSP. A quantitative difference of one to one and a half hops
can be observed what leads again to a significant differentiation for this characteristic.

With respect to the curves displaying the mean path delays, it can be observed that
the dashed and dashed-dotted line are close to each other. Again, the delay-critical class
seems to reach somewhat better values thus faster paths are suggested. This strategy
combination does not reach a clear differentiation in this traffic characteristic in this
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scenario but can be identified as suited for an end-to-end delay traffic differentiation.
Therefore, the average hop count and assumptions concerning the processing and prop-
agation delays need to be considered together as in the previous experiment evaluation.

The strategy combinations SWP (MH)/WSP (ILR) and SWP (MH)/ECMP (ILR)
are quite comparable and their results reveal a good ability to differentiate traffic in IP
core networks. Unexpectedly, no major improvements are detected for the application
of QoS routing strategies at both traffic classes. For practical reasons ECMP (ILR)
should be preferred over WSP (ILR), as the determination of the bottleneck bandwidth
is computationally more complex than the determination of shortest paths with static
routing weights.

5 Conclusions

The next-generation Internet may tune various different QoS mechanisms to achieve
service differentiation between traffic classes. This paper investigates for IP backbone
networks with on-demand routing to which extent per-class routing may contribute to
this goal. A rather flexible computational framework has been developed in Maple to
quantitatively assess various combinations of standard link-metric routing and/or QoS
routing strategies.

Results for two traffic classes – delay-critical and best-effort – have shown that a
noticeable service differentiation in terms of mean end-to-end delays and mean number
of hops may already be achieved with rather fundamental routing schemes. Best results
were obtained when SWP (with shortest paths according to MH) is used for the best-
effort traffic, while the delay-critical traffic is routed according to WSP (ILR) or even
ECMP (ILR). The comparable performance in these two cases is remarkable, since
ECMP (ILR) does not take into account the dynamic state of the network. In any case
where non-QoS routing is applied, typically for the best-effort class, the ECMP feature
is crucial in order to achieve some service differentiation.

In future work, more complex QoS routing approaches will be considered in order
to assess the additional benefit of more sophisticated routing procedures – also in the
context of more distinct traffic classes with other QoS requirements.
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Abstract. Cognitive radio (CR) is a promising technology for increas-
ing the spectrum capacity for ad hoc networks. Based on CR, the unli-
censed users will utilize the unused spectrum of the licensed users in an
opportunistic manner. Therefore, the average spectrum usage will be in-
creased. However, the sudden appearance of the licensed users forces the
unlicensed user to vacate its operating channel and handoff to another
free one. Spectrum handoff is one of the main challenges in cognitive ad
hoc networks. In this paper, we aim to reduce the effect of consecutive
spectrum handoff for cognitive ad hoc users. To achieve that, the licensed
channels will be used as operating channels and the unlicensed channels
will be used as backup channels when the primary user appears. There-
fore, the number of spectrum handoff will be reduced, since unlicensed
bands are primary user free bands. A Markov chain model is presented
to evaluate the proposed scheme. Performance metrics such as blocking
probability and dropping probabilities are obtained. The results show
that the proposed scheme reduces all the aforementioned performance
metrics.

Keywords: Cognitive radio, Markov chain, ad hoc networks.

1 Introduction

A significant portion of the spectrum in the licensed band (e.g. TV band) is not
utilized [1]. On the contrary, ad hoc networks nowadays are managed by a static
spectrum allocation which leads to spectrum inefficiency problem. To overcome
this problem, the concept of cognitive radio (CR) [2], [3] was introduced. In CR
networks, there are two types of users: the licensed or primary users (PUs) and
the unlicensed or secondary users (SUs). The SUs can periodically search for
and determine unused channels in the licensed band. Based on the scan results,
SUs can communicate with each other without interfering the PUs. In [4], [5], an
interesting and brief overview of CR and current challenges in this technology
are introduced. One of the main challenges, that affects the performance of the
SU, is the sudden and consecutive appearance of a PU. In such a case, an SU
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is forced to vacate the occupied channel to another free channel. This process
continues until the SU finishes its transmission. This is called spectrum handoff
process. This process leads to a high transmission delay for SUs. Therefore,
spectrum handoff should be reduced. According to [4] and [6], SUs on neXt
Generation (XG) networks can operate in both licensed and unlicensed bands.
However, to the best of our knowledge, most of the researchers are focusing on
the behavior of SUs in the licensed band, supposing that the unlicensed band
is already saturated and therefore the effect of unlicensed bands is neglected.
The possibility that the unlicensed band may become free is not taken into their
consideration.

In this paper, a new scheme for spectrum access in a heterogeneous spectrum
environment of licensed and unlicensed bands is introduced. We believe that
most of the wireless devices in the future will have CR capabilities and only few
devices will be wireless devices without CR support. Since the licensed bands
cover a large geographical area and a significant portion of this spectrum is
unused, we suppose that an SU will utilize the licensed channels as operating
channels and the unlicensed channel as backup channels in case of the appearance
of PUs. The advantages of using the unlicensed channels as backup channels are
twofold: 1) the dropping probability will be reduced in case of the appearance
of PUs. 2) the number of spectrum handoff is reduced. A general Markov chain
model, to investigate the performance of SUs in this heterogeneous spectrum
environment, is presented. Based on this model, different performance metrics
such as blocking probability, dropping probability and throughput are derived.
This model is compared with the classical opportunistic spectrum access model.
As a result of using the unlicensed channels as backup channels, the blocking
and dropping probabilities for SUs are decreased. Furthermore, the throughput
is increased.

The rest of this paper is organized as follows: An overview about related work
is presented in section 2. The analytical models for the classical opportunistic
spectrum access scheme and the proposed scheme are introduced in section 3. In
section 4, the numerical results are illustrated. Finally, summary and conclusion
are presented in section 5.

2 Related Work

A number of analytical models for opportunistic spectrum access (OSA) schemes
have been introduced recently in the literature. However, these analytical models
evaluate the performance of SUs in the licensed band or the unlicensed bands
separately. The authors do not take into their considerations that SUs may
operate over both bands. They ignore that the unlicensed band may become
free after some time and therefore may be used again. Therefore, the effect of
unlicensed channels on the behavior of SUs was neglected. In their models, the
SUs are accessing the unused spectrum of PUs opportunistically. In case of an
appearance of a PU, the transmission of the SU will be stopped until another
free primary channel becomes free, otherwise the SU will be dropped.
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In [7], a Markov chain analysis for spectrum access in licensed bands for
cognitive radios was presented. The author derived the blocking probability and
dropping probability for SUs operating in the licensed band only. In [8], a Markov
chain model has been introduced to predict the behavior of open spectrum access
in unlicensed bands only.

In [9], the performance of SUs in spectrum sharing with PUs has been eval-
uated through a three-dimension Markov chain model. However, SUs spectrum
handoff is not presented in their model.

In [10], an efficient and fair MAC protocol as well as QoS provisioning for a CR
device, while coexisting with the legacy users on both licensed and unlicensed
bands, has been proposed. However, an analytical model was not investigated in
their work.

In [11], the spectrum usage for SUs is increased by setting the licensed chan-
nels as the operating channels, because it covers a large geographical area and a
significant portion of this spectrum is unused. Furthermore, the unlicensed chan-
nels will be used as backup channels in case of the appearance of PUs. However,
a detailed analytical model was not presented in this work.

The main contribution of this paper is to extend the work, done in [11],
by evaluating analytically the performance of SUs in a heterogeneous spec-
trum environment of licensed and unlicensed bands. A general Markov chain
model is presented and compared with the classical opportunistic spectrum ac-
cess model.

3 Analytical Model

In this section, the analytical models for the classical opportunistic spectrum
access (OSA) and the proposed scheme named opportunistic spectrum access
with backup channels (OSAB) will be analyzed. The common assumptions for
both schemes are summarized in the following section.

3.1 Common Assumptions

In this section, the common assumptions will be presented as follows.

– There are two types of available spectrum (channels), licensed and unli-
censed channels. The licensed channels are named primary channels, while
the unlicensed channels are named secondary channels.

– The maximum numbers of primary and secondary channels within the trans-
mission range of a given node are assumed to be c1 and c2, respectively.

– The total number of available channels for SUs depends on the number of
busy primary channels. This number is given as gi = c1 + c2 − i, where i is
the number of busy primary channels.

– The arrival process of PUs and SUs is assumed to be Poisson with rate λ1
and λ2, respectively.

– The service times of the PUs and SUs are assumed to be an exponential
distribution with expectation 1

μ1
and 1

μ2
respectively.
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For simplicity, it is assumed that the nodes of the cognitive ad hoc net-
work under consideration are all homogeneous, i.e. statistically identical and
independent.

3.2 Opportunistic Spectrum Access (OSA)

In this section, the classical OSA model is evaluated. Based on this model, the
SUs operate in the unoccupied primary channels. If the PU appears, an SU shall
immediately handoff from the current channel to another free one. If there are
no free primary channels, an SU is dropped. An SU is dropped, even if there are
free secondary channels. Therefore, the secondary channels have no effect on the
performance of SUs. The process of spectrum access to the primary channels is
modeled as a two-dimensional Markov chain. The number of primary channels,
c1 will be sharable between PUs and SUs. Therefore, states in the transition
diagram are described by (i, j), where i is the number of primary channels used
by PUs and j is the number of primary channels used by the SUs. The state
space S is given by

S = {(i, j) | 0 ≤ i ≤ c1, 0 ≤ j ≤ c1 − i}

Let pi,j be the steady-state probability distribution for a valid state (i, j) ∈ S.
The state transition diagram for this scheme is given by Figure 1.

Fig. 1. Markov chain model for spectrum sharing without backup channels
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The state (i, j) can be moved to one of the following states depending on the
arrival of PUs or SUs.

1. State (i + 1, j). This case can be reached, if either one of the two following
events happens:
– a PU arrives and occupies a free channel which is not utilized by an SU

with probability c1−(i+j)
c1−i . Therefore, the ongoing SU transmission will

not be affected.
– a PU arrives and occupies a channel which is utilized by an SU with

probability jαi,j

c1−i , whereas the indicator variable αi,j = 1, if i + j < c1
and 0 otherwise. Therefore, the PU preempts the SU from this channel.
Furthermore, the preempted SU performs a handoff to another free one
i + j < c1.

2. State (i + 1, j − 1). This case can be reached if a PU arrives and operates
in the same channel that is occupied by an SU with probability j

c1−i . Fur-
thermore, there are no primary channels available for the SU to complete its
transmission. Therefore, the SU will be preempted and dropped.

3. State (i, j + 1). This case can be reached if an SU arrives and operates in a
free primary channel.

Furthermore, the service completion for both the PU and the SU moves state
(i, j) to states (i− 1, j) and (i, j − 1), respectively. Based on the state transition
diagram in Figure 1, the steady-state balance equation for pi,j is given as follows:

For 0 ≤ i ≤ c1 and 0 ≤ j ≤ c1 − i.

Ai,jpi,j =
(

(c1 − (i − 1 + j))
c1 − (i − 1)

+
jαi,j

c1 − (i − 1)

)
λ1pi−1,j

+
(j + 1)

c1 − (i − 1)
λ1pi−1,j+1 + λ2pi,j−1

+(i + 1)μ1pi+1,j + (j + 1)μ2pi,j+1 (1)

where pi,j = 0 for i < 0, j < 0 or i + j > c1. The value of Ai,j is given as

Ai,j =
(c1 − i + jαi,j)

c1 − i
λ1 + λ2 + jμ2 + iμ1

An iterative technique will be adopted to obtain the steady-state probabilities
pi,j . Once these probabilities are obtained, some performance metrics can be
calculated. Note that, the following algorithm converges as long as λ1 + λ2 <
c1(μ1 + μ2).

1. Set a certain convergence threshold κ.
2. Input: c1, λ1, λ2, μ1 and μ2.
3. Initialize pold

i,j = 1 for i = j = 0 and pi,j = 0 for i + j > 0.
4. Compute the probabilities pnew

i,j using (1).
5. If

∣∣pnew
i,j − pold

i,j

∣∣ > κ, then set pold
i,j = pnew

i,j and go to Step 4.
6. Once the steady-state probabilities pi,j are obtained, the blocking and drop-

ping probabilities for SUs can be calculated
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Performance Metrics. Based on the aforementioned iterative algorithm, dif-
ferent performance metrics such as blocking probability, dropping probability
and throughput, can be derived. An SU gets blocked if upon its arrival, all pri-
mary channels are occupied. In such case, the blocking probability, Pb1 , can be
written as follows

Pb1 =
c1∑

i=0

λ2pi,c1−i

If a PU arrives and transmits in the same channel that is already occupied
by an SU, then an SU will be preempted. If there is no free primary channel to
handoff, the SU will be dropped. In such case, the dropping probability, Pd1 , can
be written as follows

Pd1 =
c1−1∑
i=0

λ1pi,c1−i

The throughput T1 can be defined as the average number of service comple-
tions for SUs per second. That is,

T1 =
c1−1∑
i=0

c1−i∑
j=1

jμ2pi,j

3.3 Opportunistic Spectrum Access with Backup Channels (OSAB)

This access scheme is different from the previous one in the way that an SU
is accessing the available spectrum. An SU operates first in the primary chan-
nels and uses it as the operating channels. In case of the appearance of a PU,
the SU should immediately handoff to the secondary channels. Therefore, the
secondary channels are used as backup channels. In case that there are no sec-
ondary channels available, the SU handoff again to the primary channels. This
is an extension for the work done in [11]. In [11], when a PU appears, an SU
performs a handoff to the backup channels. If there is no backup channel, the
SU is dropped. Figure 2 shows the transition diagram for this access scheme.
The number of primary channels, c1 is shared between PUs and SUs. The num-
ber of secondary channels, c2 is used as backup channels in case of the sudden
appearance of PUs. The process of spectrum access to the primary channels and
secondary channels are modeled as a three-dimensional Markov chain. Therefore,
states in the transition diagram are described by (i, j, k), where i is the number
of primary channels used by PUs, j is the number of primary channels used
by the SUs and k is the number of secondary channels used by SUs as backup
channels. The state space S is given by

S = {(i, j, k) | 0 ≤ i ≤ c1, 0 ≤ j ≤ c1 − i, 0 ≤ k ≤ c2}

Let pi,j,k be the steady-state probability distribution for a valid state (i, j, k) ∈
S. The state (i, j, k) can be moved to one of the following states depending on
the arrival of PUs or SUs.
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Fig. 2. Markov chain model for spectrum sharing with backup channels

1. State (i+1, j, k). This case can be reached, if either one of the two following
events happens:
– a PU arrives and occupies a free channel which is not occupied by an SU

with probability c1−(i+j)
c1−i . Therefore, the ongoing SU transmission will

not be affected.
– a PU arrives and occupies a channel which is utilized by an SU with

probability jαi,j,k

c1−i , whereas the indicator variable αi,j,k = 1, if i+ j < c1,
k = c2 and 0 otherwise. Therefore, the PU preempts the SU from this
channel. Furthermore, the preempted SU performs a handoff to another
free primary channel i+j < c1, since there is no backup channel available
k = c2.

2. State (i+1, j−1, k+1). This case happens, when a PU arrives and operates
in the same channel that is occupied by an SU with probability jδk

c1−i , whereas
the indicator variable δk = 1, if k < c2 and 0 if k = c2. Therefore, the PU
preempts the SU from this primary channel. Furthermore, the preempted SU
performs a handoff to a backup channel since there is an available backup
channel for the SU to complete his transmission (i.e. k < c2).

3. State (i + 1, j − 1, k). This case happens, when a PU arrives and operates
in the same channel that is occupied by an SU with probability j(1−δk)

c1−i .
Furthermore, there is no available backup channel for SU to complete its
transmission (i.e. k=c2). Therefore, the preempted SU will be dropped.

4. State (i, j + 1, k). This case happens, when an SU arrives and operates in
a free primary channel (i.e. i + j < c1), with probability γi,j,k, whereas the
indicator variable γi,j,k = 1, if i + j < c1, k < c2 and 0 otherwise.
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5. State (i, j, k + 1). This case happens, when an SU arrives and all primary
channels are occupied (i.e. i + j = c1), with probability νi,j,k, whereas the
indicator variable νi,j,k = 1, if i + j = c1, 0 < k < c2 and 0 otherwise.
Therefore, the SU operates in a free secondary channels (i.e. 0 < k < c2).

Furthermore, the service completion for PUs, moves state (i, j, k) to states
(i− 1, j, k). In addition, the service completion for SUs from one of the primary
or secondary channels, moves state (i, j, k) to states (i, j − 1, k) or (i, j, k − 1),
respectively. Based on the state transition diagram in Figure 2, the steady-state
balance equation for pi,j,k is given as follows:

For 0 ≤ i ≤ c1, 0 ≤ j ≤ c1 − i and 0 ≤ k ≤ c2.

Bi,j,kpi,j,k =
(

(c1 − (i − 1 + j))
c1 − (i − 1)

+
jαi,j,k

c1 − (i − 1)

)
λ1pi−1,j,k

+
(j + 1)(1 − δk)

c1 − (i − 1)
λ1pi−1,j+1,k + νi,j,kλ2pi,j,k−1

+
(j + 1)δk

c1 − (i − 1)
λ1pi−1,j+1,k−1 + γi,j,kλ2pi,j−1,k

+(k + 1)μ2pi,j,k+1 + (i + 1)μ1pi+1,j,k

+(j + 1)μ2pi,j+1,k (2)

where the value of pi,j,k = 0 for i < 0, j < 0 and k < 0 or k > c2 or i + j > c1.
The value of Bi,j,k is given as

Bi,j,k =
(c1 − i + jαi,j)

c1 − i
λ1 + (γi,j,k + νi,j,k)λ2 + (j + k)μ2 + iμ1

Performance Metrics. Using the aforementioned iterative in section 3.2 with
some modification, different performance metrics can be obtained such as block-
ing probability, dropping probability and throughput. An SU gets blocked if
upon its arrival, all primary channels and secondary channels are occupied. In
such case, the blocking probability, Pb2 , can be written as follows

Pb2 =
c1∑

i=0

λ2pi,c1−i,c2

If a PU arrives and transmits in the same channel that is already occupied
by an SU, then an SU will be preempted. If there is no backup channel or free
primary channel to handoff, the SU will be dropped. In such case, the dropping
probability, Pd2 , can be written as follows

Pd2 =
c1−1∑
i=0

λ1pi,c1−i,c2

The throughput T2 can be defined as the average number of service comple-
tions for SUs per second. Therefore,

T2 =
c1−1∑
i=0

c1−i∑
j=1

c2∑
k=0

jμ2pi,j,k +
c1−1∑
i=0

c1−i∑
j=0

c2∑
k=1

kμ2pi,j,k.
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4 Numerical Results

In this section, a comparison between OSA and OSAB is presented in term of
blocking probability, dropping probability and throughput.
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Fig. 3. Blocking probability for secondary user vs. arrival rate λ1

Firstly, we show the impact of the number of secondary channels c2 and the
variation of the arrival rate λ1 on the blocking and dropping probabilities of
the SUs. The following operational parameters have been set as follows: c1 = 10
channels, λ2 = 0.3 SU/sec, μ1 = 0.5 PU/sec and μ2 = 0.41 SU/sec. As shown
in Figure 3, the blocking probability for the SU in both schemes increases with
respect to the arrival rate of PU; λ1. This can be explained as follows: As λ1
increases, the number of available channels that can be accessed opportunisti-
cally by the SUs reduces, which will lead to higher blocking probability for SUs.
However, the blocking probability for OSAB is less than for OSA. This is intu-
itively clear, since OSAB increases the spectrum capacity for SUs by using the
unlicensed band as backup. In Figure 4, the dropping probability for the classical
OSA model is high compared to the one obtained from the OSAB model. The
difference between the dropping probability for both models can be clarified as
follows: in OSA model, as the arrival rate of PUs increases, the SU forced to
perform a handoff to another free channel. This process continues till all the pri-
mary channels are occupied and hence the dropping probability for SU increases.
In OSAB, when the arrival rate of PUs increases, the SU immediately performs
a handoff to the backup channel from the secondary channels. The secondary
channels are free from PUs and therefore, the SU will complete its transmission
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Fig. 4. Dropping probability for secondary user vs. arrival rate λ1
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Fig. 5. Blocking probability for secondary user vs. service rate μ1

and no need for spectrum handoff. If there are no free backup channels the SU
will handoff again to the primary channels.

Secondly, we show the effect of the variation of the service rate μ1 on the
blocking and dropping probabilities of the SUs. It is obvious that when the
service rate μ1 increases, the channel holding time for the PU will be decreased
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Fig. 6. Dropping probability for secondary user vs. service rate μ1

0 0.1 0.2 0.3 0.4 0.5

Arrival rate of PU, 1

0.2

0.22

0.24

0.26

0.28

0.3

T
hr

ou
gh

pu
t

OSA
OSAB, c2=2
OSAB, c2=3

Fig. 7. Throughput for secondary vs. arrival rate λ1

which leads to more primary channels being available. As a result, the blocking
probability for the SU will be decreased since the arrival rate of PU is fixed
λ1=0.2 as shown in Figure 5. Figure 6 also illustrates the dropping probability
for the SU. The figure shows that at a low service rate of PUs, the dropping
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probability is high because the channel holding time for the PU is high. As
the service rate of PUs increases, the dropping probability will decrease as the
holding time for the PU is decreased. This is clear, because more SUs will be
able to complete their transmission. Furthermore, the value of both blocking and
dropping probabilities for OSAB, compared to OSA, is reduced as a reason of
increasing the spectrum capacity for the SU.

Finally, Figure 7 depicts the throughput for SUs with variation of the arrival
rate λ1 and λ2 = 0.5 SU/sec. At low traffic load for the PU, the throughput
is high and when the arrival rate increases, the throughput decreases. This can
be explained as follows: at low arrival rate for the PU, more available channels
will be available for SUs and therefore the dropping probability for SUs will be
decreased which will lead to an increase at the throughput. When the arrival
rate of PUs increases, the dropping probability will be increased and as a result
the throughput will decreased.

5 Conclusion

In this paper, the performance of SUs in a heterogeneous environment of licensed
and unlicensed channels has been evaluated analytically. The average spectrum
usage for the SU is increased by employing licensed channels as operating chan-
nels and unlicensed channels as backup channels. The results show a significant
improvement of our model compared to the classical OSA in term of blocking
and dropping probabilities for SUs. Also, the throughput is increased due to the
proposed scheme. In future work, a validation for those metrics will be done
through a simulation.
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Abstract. Multihoming, the connection of a stub network through multiple 
Internet Service Providers (ISPs) to the Internet, has broadly been employed by 
enterprise networks as a sort of redundancy technique to augment the availabil-
ity and reliability of their Internet access. Recently, with the emergence of Intel-
ligent Route Control (IRC) products, IRC-capable multihomed networks  
dynamically select which ISPs’ link to use for different destinations in their 
traffic in a smart way to bypass congested or long paths as well as Internet out-
ages. This dynamic traffic switch between upstream ISPs is mostly driven by 
regular measurement of performance metrics such as delay, loss ratio, and 
available bandwidth of existing upstream paths. However, since IRC systems 
are commercial products, details of their technical implementation are not 
available yet. Having the incentive to delve into these systems deeply, in this 
paper, we employ traditional ant colony optimization (ACO) paradigm to study 
IRC systems in that domain. Specifically, we are interested in two major ques-
tions. Firstly, how much effectively does an ant based IRC system switch be-
tween upstream links in comparison to a commercial IRC system? Secondly, 
what are the realistic underlying performance metrics by which ants pick the 
path to a food source (destination network) in a multihomed colony? Through 
extensive simulations under different traffic load and link reliability scenarios, 
we observe that ants perform well in switching between available egress links. 
Moreover, delay of paths is not the only criterion by which ants select the path; 
instead, through their intuitive ACO paradigm, they tend to choose the path 
with a better performance in terms of both delay and loss ratio.  

Keywords: Intelligent route control, ant colony optimization. 

1   Introduction 

Multihoming has been widely used as a redundancy technique to provide stub enter-
prise networks with a higher level of availability and reliability in their Internet ac-
cess. In this practice, each stub network is connected to the Internet through several 
Internet Service Provider (ISP) upstream links rather than a single one. In the most 
straightforward deployment configuration, one of the ISPs is picked as the primary 
Internet provider while the others are just used as backup providers and only in the 
case of failures in the primary connection (Fig. 1). 
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Fig. 1. A multihomed network with three upstream ISPs 

Recently by the emergence of Intelligent Route Control (IRC) products [1]-[3], in-
stead of using only one of the upstream links at each time, all egress links are utilized 
and the IRC edge router dynamically selects the best upstream ISP for every major 
destination of the network traffic. This is typically done driven by some performance 
criterion such as delay and loss ratio. As a result, the proliferation of IRC systems by 
stub networks is not only for bypassing Internet outage but also to have their traffic 
experience a low latency and packet loss. 

There are just few recent studies on the potential performance/cost benefits of IRC 
systems [4]-[7]. However, since IRC systems are commercial products, only the basic 
implementation guidelines are discussed thus far. In this paper, we apply traditional 
ant colony optimization (ACO) paradigm to study these systems deeply. Because, as 
we observe throughout the paper, the way ants select their path to a food source using 
their heuristic pheromone-basis ACO paradigm is very similar to commercial IRC 
systems deployment. We translate the IRC problem into ant colony domain where 
ants are seeking the best egress path between their multihomed colony and source 
food destinations. Specifically, we are interested in two primary questions. Firstly, 
how much effectively does an ant based IRC deployment pick upstream links in com-
parison to a commercial IRC system? Secondly, what are the realistic underlying 
performance criterions by which ants select the path to a destination (food source) in a 
multihomed colony? We address these questions throughout this paper.  

The rest of the paper is structured as follows. Section 2 reviews the commercial 
IRC implementation guidelines from the literature. In Section 3, we translate the IRC 
problem into ant colony domain and argue about different design decisions we need  
to make. Performance, convergence time and criterion metric of the proposed ant 
based IRC system are evaluated in Section 4 and finally we conclude the paper in 
Section 5. 
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2   Commercial IRC Systems 

There are few works on performance evaluation of IRC systems such as [4]-[11]. 
More recently, in [5][6] Akella et al. emulate an IRC system on Akamai content dis-
tribution network and argue that multihoming can bring about a considerable amount 
of benefits in terms of both availability and performance. As for the degree of multi-
homing, their results state that IRC has the potential to achieve an average perform-
ance benefits improvement of 25% or more for a 2-multihomed stub network. The 
authors also show that typically having up to four upstream providers is enough to 
gain the full benefit out of multihoming. 

In previous works [12], an IRC system behavior is typically modeled as a periodic 
five-stage process, namely, idle, measurement, performance estimation, routing deci-
sion, and path switching. The whole period is TR seconds. There is an optional idle 
stage in the beginning of every cycle in which the system doesn’t probe the destina-
tions to reduce the overhead of the routing probes. Then, in the measurement stage 
which is TM seconds, different metrics of the existing upstream paths (e.g., delay, loss 
ratio and available bandwidth) are collected through sending Np number of probing 
packets. After receiving the acknowledgements of these probes, the IRC system esti-
mates a level of performance for each candidate path by a hybrid metric typically 
consisting of delay and loss ratio of the paths. In the routing decision stage, one of the 
paths is selected as the best upstream path based on the previous stage performance 
estimations. And finally, the IRC system routes the traffic through the chosen egress 
link at least during the entire coming routing period. Notice that performance estima-
tion, routing decision, and path switching stages are almost immediate tasks because 
they only include simple calculation and forwarding table (memory) update. Our 
proposed deployment of the IRC system follows this basic 5-stage process. We dis-
cuss the details of the ant based approach in the following Section.  

3   Ant Based IRC System 

Ant Colony Optimization (ACO) initially was proposed by Marco Dorigo in 1992 in 
his PhD thesis [13]. The aim of the first algorithm was searching for an optimal path 
in a graph based on the behavior of ants seeking a path between their colony and a 
food source [14]-[16]. Intuitively, ants do so by wandering around randomly on dif-
ferent paths while laying down pheromone trail, a chemical substance they use to 
form an indirect communication with each other. As soon as an ant finds a path to a 
source food, it comes back to the colony while still putting down pheromone on its 
way back to the home colony. Ants greedily believe that paths which are traveled 
more (by their companions) and, thus have more pheromone are more likely to be 
leading to source food. Thus, while an ant meanders randomly to find a short path to a 
food source, the chance it follows a specific existing path is somehow related to the 
amount of pheromone its senses on that specific path. Over time, however, the 
pheromone trail evaporates [17]. The more time it takes for an ant to travel down a 
specific path and back to the home again, the more time the pheromones have to 
evaporate. Yet, a short path gets marched over faster, and thus its pheromone density 
remains high even though its pheromones evaporate. As a result, the problem of  
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finding the best path (e.g., shortest one) which the ants are trying to solve naturally is 
indeed heuristically solved by this simple approach they follow. Thus far imitating 
ants’ behavior, diverse numerical problems are solved by employing ACO. See [15] 
for a complete survey. 

In this section, after this brief overview on ACO, we formulate the IRC problem as 
an ACO problem. Specifically, we are to denote the notations of ACO we employ in a 
typical IRC system, namely: 

(3.1) What are the correspondent elements of IRC in our ant based model? 
(3.2) How much pheromone do ants lie down on the path they travel? Is this 

amount constant or it may change dynamically? 
(3.3) How long does it take for pheromones to evaporate? In other words, what 

is the pheromone evaporation function? 
(3.4) How exactly do ants select the path they march on? 

In the coming subsections we address these questions. 

3.1   Ant Colony Model 

We consider a simple multihomed network with an IRC capable edge router which 
major traffic is destined to several probably big networks which are given a priori. In 
our model, the source IRC-equipped stub network represents the ant colony while 
each of its major destinations is like a food source to which ants are trying to find the 
best path (Fig. 2). In the ant based IRC system, ants play the role of the routing probes 
the edge router periodically transmits through its upstream links in order to obtain 
performance metrics of each of its paths to a specific destination. Both systems (ant 
based IRC and commercial one) have the same objective; calculating the best path to  
 

ISP 1 ISP 2
ISP 3

Enterprise Network
edge router

D

path 1 path 2 path 3

 

Fig. 2. An ant colony IRC system 



 How Would Ants Implement an Intelligent Route Control System? 33 

the major destinations of the stub network. There are actually two choices for the rate 
by which new ants march from the source to each destination. First, we may consider 
this rate as the traffic rate between the stub network and that destination. The alterna-
tive is to map this rate only to that of probing packets. Indeed, there are no significant 
differences between these two schemes, but as the principle purpose of the IRC sys-
tem is finding out the best path per destination through probing, we take the second 
option. As a result, in our model the rate of data packets between the source and des-
tination is not of importance given the fact that solely probing ants are trying to calcu-
late the best path. This roughly means that we have two sorts of ants: the elite type 
(routing probes packets) which generates pheromone while wandering and the normal 
ants (data packets) which solely traverse the best path picked by their elite compan-
ions. Unless otherwise specified, we are referring to the elite ants simply by ants 
throughout the paper.  

3.2   Pheromone Creation Formulation 

As the ants march on different upstream links, they lay down pheromone trails on the 
path they travel. Eventually, this would result in the augmentation of the pheromone 
value associated with good paths (i.e., shorter paths) to encourage more ants to pick 
them, and decrease in that of bad paths (i.e., longer paths) through pheromone evapo-
ration. Here, we formulate the pheromone update scheme we use throughout this 
paper by adapting the aging phenomena in the ACO [14]. Aging phenomena simply 
states that an older ant may produce less pheromone as a result of its decrepitude. It is 
one of the methods used to control the amount of pheromone of the whole system in 
the ACO. Thus, by adopting this fact, we assume that (i) the initial amount of phero-
mone an ant lies down on the paths it travels on is a constant value K0; (ii) ant’s 
pheromone generation rate decreases exponentially while it becomes older as the 
result of the aging phenomena. Specifically, the amount of pheromone an ant puts on 

a path at the age of t (seconds) is teK −
0 . Let (.),isτ  represent the amount of phero-

mone at egress point of path i of the enterprise source node s. Thus, if at time 0t  an 

ant a with the age of )(aage  marches on the egress point of path i of the IRC 

equipped enterprise network s, we have:  

)(
00,0, )()( aage

isis eKtt −+=+ τετ  (1) 

in which 10 <<< ε is a very small number. 

3.3   Evaporation Rate Formulation 

As explained earlier, to reduce the impact of past experience, an approach called 
evaporation [17] is typically applied in ACO. Evaporation avoids pheromone concen-
tration in optimal paths from being excessively high and preventing ants from explor-
ing other (new or better) alternatives [14]. Furthermore, with employing evaporation 
it is possible to switch between paths in case of dynamic changes in the optimal solu-
tion of the problem. Indeed, this is exactly what happens in the ant based IRC and we 
discuss this more later. Here, we formulate the pheromone evaporation paradigm we 
use in our ant based IRC. We assume that the initial K0 units of pheromones an ant put 
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down on the path are evaporated TE seconds later. This roughly results in a phero-

mone evaporation rate of 
ET

K0 . 

Now, by considering aforementioned pheromone generation and evaporation for-
mulas, we can analytically calculate the pheromone update function (.),isτ , recur-

sively by adding up the pheromone value changes during interval ],[ tttT ∆+=  on 

each path. Specifically, we have:  

∑
∈

+−+ ∆−+∆−=∆+
Tia E

aage

E
isis T

K
aageeK

T

K
tttt

in

0)(
0

0
,, )]))((1([)]1)(([)( ττ  (2) 

where },0max{][ zz =+ . In this formula, the first term corresponds to the residual 

amount of the initial value of pheromone on the path at time t after decreasing evapo-
rated amount out of it. The second term is the residual amount of pheromone added to 
the path as the result of ants walking on it during the interval T. Note that the summa-
rization is over all the ants marching on the egress point of path i in the time period T. 

)(aage represents the age of ant a exactly at the moment it is on the path and 

)(aage∆ denotes its age increase from the initial time it is on the egress point till 

tt ∆+ . 

3.4   Ants Routing Strategy 

In this subsection we bring up the routing strategy ants utilize to reach source foods 
and then travel back to their colony. We distinguish between three cases as follow: 

1) Egress upstream link: Ants select the egress upstream link attached to their source 
colony in a probabilistic nature based on the amount of pheromone they sense at 
each egress point at time they want to wander out of their colony. Specifically, if 
we denote the probability that an ant selects the egress upstream link i attached to 
the source colony s at time t by )(, tp is , we have:  

∑
=

i
is

is
is t

t
tp

)(

)(
)(

,

,
, τ

τ
. (3) 

2) Path from a specific egress link to a destination food source: Once an ant has cho-
sen the egress upstream link, it has to find out the path to the source food through 
that link. There are two choices for this path selection strategy. Firstly, to do so 
similar to egress link selection in a probabilistic nature through some ant based op-
timization schemes (e.g., following the pheromone trails). Secondly, to utilize the 
current available forwarding tables of each intermediate node to reach the destina-
tion. We stress that in an ant based IRC system, the objective is solely picking the 
egress link to a specific destination rather than the whole path which is already 
plain with the aid of underlying routing algorithms. Thus we select the second al-
ternative. One may note that the first choice would work as well with some addi-
tional overhead in the convergence time of the ACO. In other words, here, we  
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assume that ants have already solved the traditional problem of finding the best 
path from each node in the given network to the source foods and our focus is on 
IRC nature of the problem.   

3) Path from the destination to the source colony: Once an ant reaches a source food, 
it can simply travel back on the path it has already found between the source and 
destination to get back to its home colony. As a matter of fact, this travel back 
methodology has been traditionally used in ACO [13]. 

4   Experimental Results 

This section presents a performance evaluation of our proposed ant colony based IRC 
system. Specifically, we are interested in two aforementioned questions. Firstly, how 
much effectively does the ant based system switch between paths in comparison to a 
commercial IRC system? Secondly, what are the underlying performance criterions 
by which ants switch between paths? 

4.1   Simulation Setup 

Our simulations are performed with a customized simulator, implemented in C++, 
which precisely model the network topology and traffic at packet level. Unless other-
wise specified, we set simulation parameters like this: K0 = 1, TE = 3, TR = 2,    TM = 
0.8, and Np, the number of probing packets in each measurement period, is selected 30. 
We have conducted extensive simulations to study effects of each of these key parame-
ters on the results and then selected aforementioned values for each parameter. In sub-
section 4.2, we review how we derived these values for the simulation parameters. 

 

Fig. 3. The simulated network 

The test network used in our experiments consists of a 23-node 38-link network 
[19] depicts in Fig. 3 All links are 1 MB/s with the same routing metric cost. The 
background traffic consists of a number of random flows between nodes in the topol-
ogy. The node pairs, start time, duration, and rate of these flows are selected ran-
domly according to a uniform distribution. In the simulated network, source node S is 
multihomed by three different upstream links, namely to nodes 10, 15, and 17. We 
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pick node 2 as the major destination (food source) of this node due to the appropriate 
path diversity of selected upstream nodes to this destination. In particular, given the 
same cost for every link in the topology, any shortest-path routing algorithm (such as 
OSPF) picks the following paths as the shortest path between aforementioned up-
stream nodes to node 2: 

 
Path1: <S, 10, 9, 8, 18, 19, 2> 
Path2: <S, 15, 22, 20, 19, 2> 
Path3: <S, 17, 18, 19, 2> 
 

Here, we have chosen the node with lower id in case of any ties. For instance in the 
Path1, between two available paths with the same cost from intermediate node 22 to 
node 2 (<22, 20, 19, 2> and <22, 21, 1, 2>), the path through node 20 is selected 
rather than that of node 21. 
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Fig. 4. Comparison of delay of paths at 
different time (bottom graph) along with 
chosen path (top graph) in the commercial 
IRC in scenario 1 

Fig. 5. Comparison of pheromone  of paths 
at different time (bottom graph) along with 
chosen path (top graph) in the ant based IRC 
in scenario 1 

We explore the behavior of the ant based system and compare its effectiveness 
with a commercial delay based IRC system, i.e., an IRC system which path switching 
decisions are made solely on the basis of delay metric of the paths, in three different 
scenarios. In the first scenario, the underlying network traffic load on the paths is low 
and the paths are not congested as well as reliable and stationary. In other words, 
there are no temporal congestion, or delay oscillation and bursty packet losses. In the 
second scenario, we put a temporal congestion event on the Path1 which brings about 
a longer delay on this path. We then study the reaction of the systems to this delay 
increase. In the final scenario, we examine the impacts of unreliable links, e.g., lossy 
ones in a wireless like environment, on the efficiency of the systems. 

Path3 
Path2 
Path1 

Path3 
Path2 
Path1
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4.2   Performance Evaluation under Stationary Conditions 

Assuming the same propagation delay for all the links in the simulated network, Path3 
has the lowest minimum round trip time (RTT) due to having minimum number of 
intermediate nodes between source node S and destination node 2; after that comes 
Path2 and finally Path1 which has the longest native delay. In this section, we exam-
ine the stationary scenario in which the underlying network paths are under low load 
and they are stable in terms of delay, packet loss and congestion. 

Fig. 4 depicts the delay of the paths during a part of simulation time interval. The 
top graph in this figure shows corresponding chosen path of the delay based IRC 
system in each interval. As the switching decisions are made exactly every TR seconds 
(2 sec in this case) based on the average measured delay of the latest measurement 
interval TM (0.8 sec in this case), at each point the nearest measured delay is shown in 
the graph. This explains, the reason the curves are straight for an interval of TR - TM 
(1.2 seconds in this case) every TR seconds. According to the stable traffic load of this 
scenario, Path3 always has the lowest delay on average; Path2 comes next while 
Path1 has the longest delay. Thus, the delay based IRC system has always selected 
egress link of Path3 (the top graph) in this scenario. 

On the other hand, Fig. 5 shows the ant based IRC system path switching events 
along with correspondent switching metric, i.e., amount of pheromone on each egress 
link. As it is seen in this figure, the system works effectively and similar to the com-
mercial delay based system in terms of selecting the best upstream link during every 
iteration.  
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Fig. 6. Comparison of ants and routing probes end-to-end delay at different time for 
Path1 in scenario 1 

Another observation to make is regarding the ant age in the ant based IRC system 
and its correspondent in the commercial IRC system, i.e., packets end-to-end delay. 
Fig. 6 shows the ratio of this end-to-end delay measurement of the ant based system to 
that of the commercial IRC system for Path1. As it is seen in this graph, ants always 
have greater end-to-end delay than IRC probing packets. The reason behind this is that 
although both ants and routing probes follow the same path to the destination, yet on 
traveling back to the source network, routing probes come back on the shortest path 
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between the destination and source network (Path3 in this case) while ants travel back 
on exactly the same path (Path1 in this case) they have found from their source colony 
to the destination source food. This clearly led to a higher end-to-end delay for the ants 
due to the larger delay ants experience on their path from destination to their home. 

A discussion on the selection of the system key parameters is due here. First, note 
that K0, the initial amount of pheromone ants lay down while marching around, 
doesn’t have a critical impact on the path selection. Indeed, increasing/decreasing this 
parameter would increase/decrease the total amount of pheromone per iteration yet 
switching decisions are not altered. However, evaporation duration time, TE, has a 
significant effect on the convergence duration of the ant based IRC system. As an 
example, in Fig. 5, by choosing TE = 3, we observe that at the end of each measure-
ment period, the ant are able (e.g., have enough time) to find the best path correctly. 
However, if we reduce TE, to 2 seconds or so, the convergence duration may be longer 
and ants wouldn’t find the best path until the second iteration due to the rapid rate of 
pheromone evaporation which results in a lower difference between the amount of 
pheromone on each path. The lower difference of pheromone values in turn makes 
finding the best path a problematic issue for the ants as a result of probabilistic nature 
of ants’ movement. On the other hand, a bigger value of TE would make the initial 
convergence duration lower while bringing about a longer convergence time for the 
consequence path switching events in the case of sudden congestion on the selected 
path. Furthermore, it is evident that RE TT ≥ is a necessary constraint. With these in 

mind, TE = 3 is the best selection as expected and seen in our results. We would sug-
gest RE TT ×≈ 5.1  in a more generalized scheme. 
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Fig. 7. Comparison of delay of paths at different 
time (bottom graph) along with chosen path (top
graph) in the commercial IRC in scenario 2 

Fig. 8. Comparison of pheromone  of paths 
at different time (bottom graph) along with 
chosen path (top graph) in the ant based 
IRC in scenario 1 

As for TR and TM parameters, the bigger the TM is, the faster ants tend to find the 
best path. Thus, this actually imposes a trade-off between the amount of overhead we 
put into the network for probing the destinations through each available path and the 
speed of convergence which satisfy us. Furthermore, for faster response in case of 
network congestion, the idle period TR -TM within each iteration may be minimized or 

Path3 
Path2 
Path1

Path3 
Path2 
Path1 



 How Would Ants Implement an Intelligent Route Control System? 39 

even avoided. And, finally, it is important to note that the number of routing probe 
packets, Np, is of importance in the effectiveness of the system. Choosing a low value 
for Np, affects the correctness of the measurements and convergence time of the ant 
based system while a large value for Np imposes too much useless overhead. In addi-
tion, an approximate upper bound on Np for each path can be driven to assure that the 
probes are acknowledged by the destinations on time, i.e., before the next switching 
decision event. If we represent Np on egress link l by Np,l, we have:  

lp
l

M
l N

RTT

T
,f∀  (4)

where, RTTl denotes the average round trip time on the path correspondent to l . Con-
sidering the path with the maximum RTT, we can calculate the upper bound on Np. 
For instance, in our experiments, TM = 0.8 and msRTT 2.0}max{ ≈  results in an up-

per bound of 40 for Np. However, we notice that Np = 30 is big enough in terms of 
convergence speed. 

4.3   Performance Evaluation under Congested Links 

In this scenario, to study the effectiveness of the ant based IRC system in relation to 
that of a delay based one in case of path switching events, we introduce a congestion 
event at Path3 by CBR cross traffic between nodes 17 and 5, i.e., <17, 18, 5>, during 
the time interval [44, 48].  
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Fig. 9. Comparison of delay of paths at different 
time (bottom graph) along with chosen path (top
graph) in the commercial IRC in scenario 3 

Fig. 10. Comparison of pheromone of paths 
at different time (bottom graph) along with 
chosen path (top graph) in the ant based 
IRC in scenario 3 

Fig. 7 and Fig. 8 depict the path switching events of the IRC systems along with 
their switching metric. We observe that both systems recognize the congestion event 
on Path3 during interval [44, 46] and on the next switching event in 46 both switch to 
the best alterative after that path, Path2. Besides, once Path3 has recovered from tem-
poral congestion in 48, both systems have switched back to that path on the next 
switching event at time 50. 
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4.4   Performance Evaluation under Lossy Links 

In order to analyze effects of lossy links in a wireless like environment, we assume 
that link <17, 18> losses packets with probability 40% during time interval [44, 48] 
(See Fig. 11). Fig. 9 and Fig. 10 show the path switching events of the ant based and 
delay based IRC systems along with their switching metric. We make a few observa-
tions. First, the ant based system is still working effectively. Surprisingly, in time 
period [44, 46] ants have recognized the poor reliability of the link(s) on Path3 and on 
the next switching event in time 48, they have switched to the Path2 as it is the best 
alternative considering low delay after Path3. However, the delay based system hasn’t 
figure out this lossy behavior as it only considers the delay metric of the probes which 
arrive to it for making its decisions. Furthermore, again ants have switched back to 
Path3, once the lossy behavior of this path is finished. 
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Fig. 11. Comparison of loss ratio of paths at different time in scenario 3 

In sum, the results of experimental evaluation of this section evidently suggest that 
(i) ants efficiently choose the best egress links in comparison to a commercial IRC 
system. Indeed, all of the switching events of a delay based IRC system are detected 
and followed by the ants as well. (ii) The path ants heuristically select has low latency 
and also low packet drops. In other words, ants choose paths with a hybrid metric of 
delay and loss ratio. 

5   Conclusion 

The emergence of Intelligent Route Control (IRC) products has enabled the augmen-
tation of the reliability, availability and also the end-to-end performance of multi-
homed stub networks’ connection to the Internet. Leveraging ideas from ant colony 
optimization (ACO), this paper presents an ant based deployment of IRC systems to 
see how ants would intuitively implement such systems. Using extensive simulation 
experiences under different network traffic load and link reliability scenarios, we 
obtain two important results. First, ants perform quite efficiently in selecting the best 
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upstream path in comparison to commercial IRC systems. Second, we observe that 
the path ants tend to pick at each time through their heuristic pheromone-basis ACO 
paradigm is actually the most optimized upstream path in terms of a hybrid metric of 
both delay and loss ratio.  
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Abstract. Content delivery networks (CDN) and peer-to-peer systems currently 
account for the transport of a major portion of the Internet traffic. We compare 
the efficiency of both approaches, which are based on overlay structures within 
the network (CDN) or on the terminals of the users (P2P). Random source  
selection schemes in peer-to-peer protocols often chose to download content 
from somewhere across the globe although it may be available in the proximity, 
which leads to unnecessary high traffic load on inter-domain links. For  
content delivery networks, the distances from source to destination depend on 
the number and locations of servers involved in the CDN. Recent proposals to 
improve local exchange of popular data in the Internet are discussed with dif-
ferent implications for network resource efficiency, service provisioning and 
usage.  

Keywords: Content delivery, access pattern, Zipf law, application layer traffic 
engineering. 

1   Introduction 

Overlays of various types are used to bridge heterogeneous networks for seamless 
end-to-end services. Current networking trends towards fixed/mobile convergence 
make them even more relevant for integrating different technologies with Internet 
access. A major advantage of overlays is their ability to provide new services or ex-
tend existing ones on top of and independent of an underlying infrastructure.  

Peer-to-peer (P2P) networks establish overlays on the terminal equipment of the 
users, offering global services at a minimum of own network infrastructure for the 
provider. Fast delivery of large volumes of content within globally scattered commu-
nities is a main strength of the peer-to-peer principle, with scalability and adaptability 
for heterogeneous access [5][29]. Peer-to-peer networks are highly efficient for sev-
eral purposes due to their ability  
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 to exploit vacant resources (data, storage, computation power, bandwidth) dis-
tributed over user equipment, 

 to adapt to varying demands with scalability for huge communities, including 

dynamic flash crowds, 
 to embed support for search and replication of data for predefined demands in a 

self-organizing way, 
 to build and manage overlays without or at low cost for network and server infra-

structure.  

On the other hand, transmission paths for P2P data exchange often span around the 
globe although popular data is most often available in the near of a requesting peer. In 
contrast to P2P networks, content delivery networks (CDN) form overlays based on 
distributed server farms, which are known to do a good job in optimizing transmission 
paths and corresponding delay by delivering data from a server close to each request-
ing location [8][22][30].  

Network providers have to deal with overlay traffic in the planning and upgrading 
process, while they employ mechanisms for load balancing on their platforms 
[13][20]. In this way, inefficient routing on higher layers can be partly reduced by 
optimization on lower layers. Traffic engineering in overlays and on the application 
layer may offer additional optimization capabilities, but on the other hand may lead to 
increased overhead and cross-layer inefficiency by repeating similar and overlapping 
functions on higher layers or, in the worst case, by employing functions jarring with 
each other on different layers.  

Therefore overlays should be set up with implicit or explicit awareness of the un-
derlying network structure and protocols. Proposals for a better supply of the applica-
tion layer with information about the network topology include measurement based 
estimation of Internet coordinates [14][24] and the installation of an information  
service or oracle collecting network layer information for support of higher layer 
protocols [1][6][23][32]. It remains a challenging design problem for future Internet 
architectures to keep the layering structure simple and at the same time to keep the 
flexibility to respond to new requirements and technical opportunities as the main 
motivation for the emergence of overlays of various types. 

After a short discussion of the properties of P2P versus CDN content delivery, sec-
tion 2 addresses the relevance of Zipf laws for access pattern and many other Internet 
characteristics. Section 3 compares currently discussed approaches for local content 
distribution followed by the conclusions.  

2   Access to and Distribution of Content on the Internet via 
Overlays 

Today, well-known and most popular peer-to-peer applications are file sharing and 
voice over IP (Skype) attracting millions of users, while a much wider spectrum of 
Internet application can more or less benefit from P2P networking. P2P solutions for 
online gaming, video streaming and IPTV also have a potential to extend to mass 
market and in addition, P2P overlay support is useful for small communities and  
enterprises.  
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Although P2P protocol designers have developed highly efficient distributed data 
transfer and control schemes, there are still unsolved open issues for all parties in-
volved in P2P communication, including security concerns and uncontrolled distribu-
tion of partly illegal content in self-organizing communities. Business solutions based 
on P2P with controlled access and digital rights management have also been set up. 
The BBC iPlayer is such a publicly accessible P2P service for downloading television 
and radio programs of the last seven days, as a step towards integration of Internet 
and television [4].  

On the other hand, popular client-server based web sites usually are supported by 
content delivery networks (CDN) [8]. A study of transfer paths in Akamai´s CDN 
[30] shows how users are redirected from the original web site by the underlying 
CDN to a close-by server within a hierarchical server farm consisting of thousands of 
servers. The connection is dynamically switched to another server if performance 
measurement and load conditions indicate better quality of service for the new path. 
Su et al. [30] confirm that CDNs are efficient in shortening transmission paths and 
improving delays and throughput as main quality of service characteristics. Similar 
experience has been made for Limelight as another CDN provider, although a com-
parative study [22] reveals that the Limelight server platform is hosted on an essen-
tially smaller number of different locations.  

2.1   CDN versus P2P Content Distribution 

As compared to CDN transfers from a nearby server, P2P downloads usually experi-
ence much longer paths and delays which also affect throughput and reliability. For 
network providers, unnecessary long transfer paths impose higher load on peering and 
interconnection routes including expensive intercontinental links [6][23]. Figure 1 
illustrates the different behaviour of CDN and P2P networks, depicting a usual topol-
ogy of broadband access networks, where tree-shaped access regions are attached to 
edge routers of the backbone at points of presence (PoPs). 

Considering large provider networks serving millions of subscribers, it can be ex-
pected that a majority of the data of a global file sharing network is already found to 
be replicated on the platform of the same Internet service provider (ISP) and often 
already in the same access region of a P2P downloader. The fact that the major por-
tion of downloads is addressed to a small set of the currently most popular files 
strengthens this effect. 

We have evaluated the delays for traffic via P2P and CDN overlays through packet 
based measurement on a link in the aggregation of Deutsche Telekom’s broadband 
access network. We did not capture all traffic of both types, but selected a fraction that 
can be easily detected via P2P ports for BitTorrent, eDonkey and Gnutella and via IP 
address ranges indicating autonomous systems of Google, Akamai and Limelight 
server sites. The flows classified via P2P ports made only a fraction of 2.7% of the 
traffic volume, while the IP address ranges for CDNs and popular web sites accounted 
for 10.7% of the total traffic with a mean rate of about 820 Mb/s. The measurement 
was done for one hour at the daily peak rate in mid 2008. The measurement involved 
transmission in only one direction. We used two successive packets sent by the client 
in the TCP handshake to estimate the round trip delay, although this may also include 
reaction times of the server or peer in response to the TCP connection request. 
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Fig. 1. Transport paths in P2P and CDN overlays 

Figure 2 compares the cumulative distribution function (CDF) of those delays up to 
1s as well as the fraction of delays falling into each 0.01s time slot for both the P2P 
and CDN flows. As expected, the delays are shorter for CDN delivery. The mean 
delay for CDN flows is 0.125s, whereas P2P flows have a mean delay of 0.33s with 
about 10% of the delays exceeding 1s. 
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Fig. 2. Delay measurement for P2P and CDN overlays 
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In contrast to the generally behaviour visible in the measurement, a tendency for 
local exchange of P2P content can arise within social groups. A separation of user 
communities and content due to different languages is most obvious. When looking at 
downloads of German content to a German destination via eDonkey, it is not surpris-
ing to find an 80 : 20 rule, such that about 80% of the sources are again located in 
Germany, whereas the opposite, i.e. less than 20% of source locations are observed in 
Germany for downloads of English content [28]. The assignment of peers to the same 
supernode in the eDonkey network may also generate locality within the reach of a 
supernode, but which does not correspond to national or ISP boundaries. 

 Traffic locality also has been investigated for data exchange between regions 
within an ISP platform by Cho et al. [10] using measurement from several Japanese 
service providers. Based on IP address analysis, they found user-to-user traffic to be 
dominant, which may correspond to P2P or other applications running between users. 
The traffic matrices between regions are determined and do not reveal significant 
local dependencies, i.e. traffic is exchanged between neighboring regions at about the 
same rates as between distant regions.  

The lack of regional locality in traffic matrices is also visible for Internet traffic in 
Germany, in contrast to traffic on voice platforms, e.g. ISDN, with a considerable 
portion of local calls. But even when voice networks migrate to voice over IP, voice 
will contribute only a small fraction of the total IP traffic and thus locality in IP traffic 
matrices is expected to stay at a low level. 

2.2   The Relevance of Zipf Laws/Pareto Distributions in Internet Modelling  

Pareto or equivalent Zipf distributions are observed manifold in Internet statistics or 
more general, when a large population is accessing a large set of items. Originally V. 
Pareto introduced the form to characterize the distribution of property and income 
over the population, including the effect of extreme outliers, such that a small fraction 
of the largest items still has essential effect on the mean.  

According to a Zipf law, the item that has rank R in the order of highest access fre-
quency attracts  

A(R) = α R–β        (α > 0; 0 < β  < 1)                                    (1) 

accesses. In the same form of equation (1), A(R) can express the portion of accesses 
addressed to the item, when α is determined according to a normalization constraint, 

such that ΣR A(R) = 1. The items may refer to videos available on an Internet portal, 
e.g. via the BBC iPlayer, America Free TV or YouTube, or book, DVD sellings etc. 
The hit rate for a fraction of the most popular items in Zipf law distributed accesses is 
determined by the sum of access frequencies for the first N items:  

ββ

ββ
ββ

−
−+=

−
=>

−+−+

=

−

=

− ∫∑ 1

1)1(

1

11

1

11

11

NR
RdRR

NN

R

N

R

                        (2) 

since the sum is equivalent to the integral of a step function ⎣ ⎦ ββ −− ≥= RRRfU )(  as 

an upper bound of the real valued function R–β. Vice versa, we obtain the lower bound 
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The bounds on the sum can be used to determine the factor α in A(R) = α R–β ac-

cording to the total number of accesses σA = ΣR A(R):  
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For σA = 1, A(R) corresponds to the portion of accesses. As an alternative, the fact that 
A(1) = α  can be used to make α fit to the tail of the most often accessed items of the 
distribution. 

Zipf-like distributions for web sites have been investigated by Breslau et al. [7] 
based on a set of measurements from half a dozen different networks, yielding pa-
rameters in the range 0.64 < β < 0.85. Recent studies of access to YouTube [9][16] 
again show Zipf-like distributions although with deviation for seldom accessed vid-
eos. M. Eubanks [15] reports similar results for the popularity of content on America 
Free TV <americafree.tv> and for other cases. Thus, an essential portion of P2P data 
transfers could already be found and delivered within an ISP’s platform and even 
without crossing the backbone.  

The typical effect of a Zipf law concentrates a large portion of all accesses on a 
few most popular items. As a consequence, caches can be efficient by storing a small 
set of those items locally to shorten the access paths to the users. But it is apparent 
from equation (2) that the Zipf law effect does not hold for arbitrary large sets of 
items, since summation over the function  
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does not converge and the portion of accesses to the most popular top K items is de-
creasing to zero when the population N becomes very large. Therefore Zipf laws are 
usually observed only for a limited range of popular items [7][15][16], while the ac-
cess distribution deviates in the region of less popular ones.  

As an example,  Figure 3 compares the statistics of the traffic volume for user ses-
sions to a Zipf law. The volume statistics is based on more than 4500 sessions taken 
from measurement in the aggregation platform of Deutsche Telekom’s broadband 
access network over two afternoon hours in mid 2008. 

An upper curve shows the cumulative distribution function (CDF) of the number of 
sessions with regard to their volume. A second CDF curve is for the portion of the 
total volume that is contributed by those sessions in increasing order. In comparison, 
both curves confirm a  90 : 10 rule, such that only 10% of the sessions contribute about 
90% of the total traffic, where each of those largest sessions generates a traffic vol-
ume of more than 10MB during the measurement. On the other hand, 71% of the 
sessions generated volumes below 1MB each and together less than 1% of the total 
volume.  
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A third CDF curve has been adapted according to a Zipf law for the session vol-
ume size V(R) = 0.027⋅R 

−0.8, where β = 0.8 is determined to match the slope of the 
lower curve and α  = V(1) = 2.7% is the portion that the largest session contributes to 
the total volume. This example shows an almost perfect match for the largest sessions, 
although again severe deviations are visible for small sessions up to the 20MB range. 

This result on the asymmetry of traffic volumes generated per session or per access 
raises the question about the fairness of flat rate accounting. Although the trend to 
broader multi purpose usage detracts from the dominance of P2P traffic, ISPs and 
users still face the problem of inadequate charging for the majority of traffic on the 
Internet [29]. In Germany and Europe, subscribers prefer simple flat rate access with-
out accounting for the traffic volume, which is offered with only minor differentiation 
in access speeds. Volume based tariffs combined with a low monthly fee and flat rate 
up to a volume limitation would be sufficient for most users, but then they are often 
left without awareness or control of costs in excess of the limit until a next monthly 
bill. Even if the costs for transport of high traffic volumes in the backbone is only a 
part of the access provisioning costs, flat rate pricing seems to privilege the heavy 
traffic producers on account of all other users.  

 

Fig. 3. CDF of session volumes compared to a Zipf law. Upper curve: Fraction of the number 
of sessions with volume < x Byte. Lower curve: Fraction of total volume contributed by ses-
sions with volume < x Byte. 

As final remarks on the relevance of Zipf or Pareto distributions in Internet model-
ling, we refer to the fact that transmission of Pareto distributed transfer volumes with 
a memoryless Poisson arrival process causes self-similar traffic pattern, which is  
often observed in Internet traffic measurement, although not always in pure form [19]. 
The interconnection structure of the Internet also exhibits a Zipf law regarding the 
number of connections between web sites or between autonomous systems. Albert 
and Barabasi [2][3] have confirmed that many of the largest social networks show 
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similar properties of scale free networks. Scale free networks can be built randomly 
by inserting new nodes such that the probability of connecting a new node to an exist-
ing network node is proportional to the current degree of the node [18]. In this way, 
node degrees approach a Pareto distribution when the network becomes large, while 
the diameter of the network stays small (small world effect) and is estimated at about 
20 for the current Internet connection structure [3][18].  

3   Optimizing Data Access Paths 

The problem of replacing long transmission paths between peers by local data ex-
change among peers close to each other is addressed in a number of recent ap-
proaches. Information servers are proposed as depicted in Figure 4 [1][6][31][32], 
which can be queried by applications in order to localize data sources in the near 
based on information from network providers and other parties. Alternatives are coor-
dinate systems to be established for the sources of distributed applications [14][24] 
and caches [27], whose efficiency profits from the relevance of Zipf laws in access 
pattern. With knowledge of the position of peers or servers, the data flows of an ap-
plication can be optimized, even regarding bottlenecks on transmission links [32]. 
Since some of those proposals have to rely on a common and standardized concept, 
the Internet Engineering Task Force (IETF) has started activity in this area.  
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Fig. 4. Approaches for localized content delivery 

3.1   Current Ietf Discussion on Application Layer Traffic Engineering  

In 2008, the Internet Engineering Task Force (IETF) has set up a working group on ap-
plication layer traffic optimization (ALTO) [23], aiming at a standardized support to 
improve localized data exchange in P2P and other types of content distribution networks.  
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The basic problem to be addressed is how distributed applications can get informa-
tion about the locations and distances between the involved hosts or peers. A main 
focus is on cooperation between network operators and other parties who are able to 
provide location information for application protocols. Several projects and studies 
are already investigating approaches for a globally accessible information service that 
can be fed by parties with knowledge about network topologies in the Internet 
[1][6][31][32]. Distributed applications can access the information server through 
queries in order to optimize host or peer relationship for data exchange. As a starting 
point, information services about locations are already online, e.g. the Prefix WhoIs 
service <www.pwhois.org> or <www.closestnode.com>. Main preconditions and 
aspects of a standardized extension of a location information service are 

 Which kind of metrics and information is useful to estimate distances and local 
relationship between different hosts? 

 Which parties are expected to provide such information based on which own 
interest or incentives? 

 How should an interface to the service be designed for access by applications? 
 How can availability and scalability be achieved and failure cases be handled? 
 What is the effect of the location information service for users and traffic pattern 

in network provider platforms? How can it be measured and optimized? 

Two basic methods are considered for traffic path optimization: 

 IP address mapping as done by the Prefix WhoIs service, for assigning the 
autonomous system to an IP address as a crude classification or at a finer granu-
larity and 

 Probing methods to measure delay, throughput or other performance parameters. 
This approach is most sensitive and responsive to current network conditions, but 
requires considerable effort and overhead. It may be too time consuming for 
small data transfers. Probing can be implemented on the application layer in P2P 
protocol without involving servers.  

A coordinate system built on probing for delays between BitTorrent peers has been 
studied and implemented in prototype versions of the Azureus client [24]. The prob-
ing is piggybacked on other messages between peers to reduce probe messaging  
overhead. As a result, a two dimensional coordinate system is constructed with an 
additional height component to account for delays in the access. Much effort is 
needed to maintain a coordinate system. The variability of delay measurement results 
over time, changes in the routing and churn are among the main factors detracting 
from the accuracy. The study [24] concludes that useful coordinates can be estab-
lished on application layer, but the effort to employ a coordinate system seems to be 
affordable only for large scale P2P networks.  

A server system can combine information gathered from several sources to obtain 
more precise information with less effort. When a P2P download is initiated, the P2P 
protocol usually determines a list of possible sources offering the required content, 
which is handed over to the client, who connects to several proposed sources until a 
sufficient throughput is obtained in a multi source download process. While popular 
P2P protocols currently choose the sources more or less at random, a server with 
topology awareness can rank sources in the list due to distances from the requesting 
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peer. In the ranked list, the client can start choosing close-by sources, which may also 
be preferable with regard to throughput and delay, when they still have enough up-
stream capacity available. The solution again involves some overhead and has to be 
included into each P2P protocol, depending on servers to collect information from 
network providers or other parties who contribute knowledge on Internet topology 
and distances.  

3.2   Experience from the P4P Project Including Traffic Engineering  

A testbed for application layer traffic optimization has already been set up by the P4P 
project <codex.cs.yale.edu/avi/home-page/p4p-dir/p4p.html> and a P4P working 
group hosted by the Distributed Computing Industry Association <www.dcia.info>. 
Recent results of a field trial [32] claim that the mean path length for P2P downloads 
could be reduced from 5.5 to 0.9 metro-hops within the Verizon intra-domain net-
work. In general, the gain for intra-domain paths depends on the size and the structure 
of a provider platform, which often spans a smaller area with less than 5 hops to cross 
the backbone.  

On the other hand, more improvement is expected for inter-domain traffic paths, 
which traverse the boundaries of network platforms partly on expensive intercontinental 
links. Network providers would profit a lot from redirecting traffic paths into their plat-
form wherever possible. A classification of sources according to autonomous systems 
(AS), which usually correspond to network regions under common administration, is 
helpful to support this approach. Since not all P2P traffic can be bound within an AS, 
network providers could add policy information about which neighboring ASes are 
preferable for connections to peers in their platform, based on their knowledge of inter-
AS connectivity and bottlenecks as well as the expenses for utilizing inter-AS links. 

A corresponding inter-domain scenario has also been investigated by the P4P pro-
ject [32], considering usual BitTorrent traffic pattern and volume according to meas-
urement in the Abilene network in 2007. In one scenario, the traffic on the assumed 
inter-AS links is reduced to 2/3 by preferring sources based on low delay, whereas a 
second server-based scenario including the P4P traffic optimization method even 
yields less than 40% of the original P2P traffic load on inter-AS links. 

The application layer traffic engineering approaches studied in the P4P project  
include load balancing to avoid bottlenecks and to minimize costs associated with 
traffic on network links. Nevertheless, this raises the question whether the network 
providers or the applications should be responsible for traffic engineering in the future 
Internet and what is the overall effect when this is done on the network and on the 
application layer? Counterproductive scenarios may arise, e.g. when the application 
layer optimization reorganizes the overlay network structure in order to avoid a bot-
tleneck link. As a consequence, the traffic matrix on the network layer will observe a 
corresponding shift in traffic demands and the network provider may no longer see 
bottlenecks and the need to upgrade them, as illustrated in Figure 5.  

In practice, traffic engineering has to take link failures into account as well as a 
link upgrading process for steadily increasing Internet traffic [25]. On the network 
layer, load balancing solutions are available for that purpose [13][20], but it seems 
challenging to combine or even integrate them with similar application layer functions 
under different administration. 
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Fig. 5. Load balancing on the network and application layer? 

3.3   Influence of Biased Source Selection on the Overlay Topology 

The proposed biased source selection for exploiting local data exchange has an impact 
on the overlay network topology. Random source selection leads to a strongly con-
nected global mesh network without hierarchical or regional structures. Randomly 
built graphs develop towards scale free networks with small world effects. The global 
Internet structure is based on random and scale-free properties [2][3][18].  

Biased local source selection strengthens a tendency to build a number of clusters 
with strong internal connectivity and a loose coupling between those clusters. With 
preference for connections between nodes in the same AS, clusters or subnet struc-
tures can be expected within each AS. Thus improved locality may slow down the 
distribution of content over network boundaries of ISPs. In the worst case, strict local 
preference and a high churn in P2P networks may lead to separated subnets for the 
same content.  

Thus, sufficient inter-domain connectivity has to be sustained. An obvious ap-
proach is to mix biased local preference with randomness. Then the portion of random 
selection has to keep the inter-domain traffic throughput at a smallest possible level in 
a trade-off between avoiding a slow down of content propagation around the globe. 
The portion depends on the size of the overlay and can be smaller in large overlays, 
allowing for more efficient localization. Alternative approaches to maintain a struc-
tured and optimized overlay network for inter-domain connections have to cope with 
the randomness and churn in P2P networks.  

3.4   Caches 

Web caches provide another opportunity to optimize traffic paths [17][27]. In princi-
ple, caches are highly efficient for P2P data, again because of Zipf-like distributions 
[7][15][16] for accesses to content. Therefore storing a small fraction of most popular 
content is sufficient to attract a high hit rate. Problems of outdated data as in classical 
web caches are less relevant for most high volume video content or for uniquely iden-
tified P2P data using hash algorithms. Caches can be placed in aggregation nodes for 
broadband access close to the subscriber lines yielding minimal transport path 
lengths. 

On the other hand, the problem of supporting the distribution of copyright infringing 
or other illegal content by caches is apparent. In principle, the content of web caches 
always reflected content of the Internet, including problematic content although in an 
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agnostic way. Nevertheless, the problem now has attracted much more attention and is 
pursued by various counteractions since file sharing is suspected to be responsible for 
decreasing revenues for content providers in the music and film industry. Filtering or 
classification of content in a cache is as difficult as filtering web content requiring ex-
pensive deep packet inspection methods. Since users distrust content inspection which 
can be seen in conflict with privacy laws of many countries, ISPs should use filtering 
only on behalf of legal authorities rather than on their own policies. 

Since October 2004, the eDonkey/eMule P2P network offered an option to use the 
web caches of network providers by disguising P2P downloads as usual HTTP web 
browsing requests. When investigating the usage of this cache option in 2006, only a 
small portion of 5-10% of the download volume was observed to be supported by 
caches, although cases of downloading from the cache achieved essentially, often 5-
fold higher throughput [28]. Later protocol versions did not proceed with cache sup-
port, see <wiki.emule-web.de/index.php/webcache>.  

While file sharers obviously could benefit from cache downloads at higher 
throughput, the alternative of biased source selection with local preference is more 
favourable for network providers. The entire throughput of a P2P overlay is limited 
by the upstream capacities of the participating peers as a bottleneck especially in 
ADSL access. For biased source selection, this bottleneck remains unchanged even if 
it may be better exploited. But when caches are included, then the access bandwidth 
of the caches becomes available for downloading in addition to the upstream bottle-
neck. Although the bandwidth of a cache is under control of the service provider, file 
sharing can utilize the cache as well as the P2P overlay to maximize their throughput. 
The network provider may experience P2P traffic load to persist in the backbone and 
even to increase in the access due to cache support. From the user perspective, caches 
in the access would be ideal to improve the throughput and to shorten transport paths 
and corresponding delays. 

In principle, network providers can offer the most efficient support for content dis-
tribution using their own infrastructure including multicast/broadcast services. In this 
way, a single provider can’t build architectures of global reach, but it is appropriate 
for offering regional services or IPTV within a country or lingual community.  

3.5   Traffic Measurement and Control Options 

Finally, network providers can try to enforce locality by controlling and reducing the 
traffic especially on expensive links on peering and transatlantic routes. For that pur-
pose, P2P traffic has to be classified and differentiated from other traffic. There are a 
number of vendors of application identification systems and experience has been 
published for detection of main P2P protocols [6][21][26]. Reducing P2P traffic on 
the borders of an ISP network would again give preference for shorter intra-domain 
download paths. 

Nevertheless, P2P traffic classification is subject to non-negligible effort, as dem-
onstrated by more than 1000 behaviour patterns being included in a thorough decision 
process for classification of BitTorrent [21]. 
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4   Conclusions 

Frequently accessed content on the Internet has to be delivered on efficient short paths 
from nearby servers or distributed sources, where peer-to-peer networks currently 
leave a large potential open for optimization. We have investigated the alternatives to 
optimize the traffic paths via CDN and P2P overlays with support from location serv-
ers, caches or measurement based traffic engineering. The relevance of Zipf laws in 
access pattern is favourable for caching of popular content or other distributed 
schemes based on a large number of devices with limited storage.  

In the recently started IETF standardization process it is still open which ap-
proaches will be implemented and will play an important role in the future Internet. 
Nevertheless, progress can be expected towards more efficient localized transport on 
network platforms from which the users can also benefit in terms of shorter delay and 
higher throughput. The efficiency of P2P as well as CDN approaches in avoiding 
unnecessary traffic load and minimizing delays on short paths is a decisive factor to 
stay competitive, where combined P2P/CDN solutions [22] are a promising option.   
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Abstract. In communication networks that guarantee seamless mobil-
ity of users across service areas, reattempts occur as a result of user be-
havior but also as automatic retries of blocked handovers. A multiserver
system with two reattempt orbits is obtained when modeling these net-
works. However, an exact Markovian model analysis of such systems has
proven to be infeasible and resorting to approximate methods is manda-
tory. To the best of our knowledge all the existing methods are based on
computing the steady-state probabilities. We propose another approach
based on the relative state values that appear in the Howard equations.
We compare the proposed method with the most well-known methods
appeared in the literature in a wide range of scenarios. The results of the
numerical evaluation carried out show that this solution outperforms the
previous approaches in terms of both accuracy and computation cost for
the most common performance parameters used in retrial systems.

Keywords: Wireless and Mobile Systems and Networks (WLAN, 2G-
3G-4G), Queueing Systems and Networks, Stochastic Models, Markov
Models, Performance Modelling.

1 Introduction

The retrial phenomenon appears in multiple situations in telecommunications
and computer networking. In this paper, we focus our attention on a generic
communication network that guarantees seamless mobility to its customers by
means of a cellular architecture. In this type of networks, the network coverage
area is divided into cells and customers can move across different cells of the
network. When a customer with an active communication moves from one cell
to another, a so-called handover procedure is executed. Nowadays, perhaps the
most widespread and popular example of this type of networks are the cellular
telephone networks —2G and 3G— but the current perspective is that in near
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future a variety of technologies fitting into this category will be in place, e.g.,
Mobile IP, IEEE 802.16e —WiMAX— and IEEE 802.20 —Mobile Broadband
Wireless Access, MBWA.

This paper deals with the case in which reattempts appear not only when a
customer is blocked but also when a handover is blocked as in GSM [1]. To the
best of our knowledge, the first and only paper that has considered the effect
on network performance of both types of reattempts simultaneously is [2]. Now,
in this paper, we refer to the former as redials and to the latter as (automatic)
retrials, while we use the term reattempt to refer to any of them. Blocked han-
dovers will be automatically retried until a reattempt succeeds or the user moves
outside the handover area. In the former case the session will continue without
the user noticing any disruption, while in the latter the session will be abruptly
terminated. In contrast, persistence of redials depends on the user patience and
an eventual abandonment results in session setup failure. Another difference is
that the maximum number of unsuccessful automatic retrials is set by the net-
work operator while redials are affected by the randomness of human behavior.
Therefore, both types of reattempts have different characteristics and as a con-
sequence two separate retrial orbits have to be considered in the analysis of the
system.

The modeling of repeated attempts has been the subject of numerous in-
vestigations. Two functional blocks are typically distinguished in models which
consider reattempts: a block that accommodates the servers and possibly a wait-
ing queue, and a block where users that reattempt are accommodated, usually
called reattempt orbit. It is known [3] that to solve this type of systems it is nec-
essary to resort to approximate methods. These methods are usually grouped
into three categories: approximations, finite truncated methods and generalized
truncated methods [3, 4]. We will direct our attention only to finite and gen-
eralized truncated methods. The finite truncated methods replace the original
infinite state space by a finite one, where steady-state probabilities can be com-
puted. On the other hand, generalized truncated methods replace the original
infinite state space by another infinite but solvable state space. This last type of
methods usually outperforms the other two types [4].

All the approaches presented in the literature so far rely on the numerical solu-
tion of the steady-state Kolmogorov equations of the Continuous Time Markov
Chain (CTMC) that describes the system under consideration. Very recently,
however, an alternative approach for evaluating infinite state space Markov pro-
cesses has been introduced by Leino et al. [5]. The new method, named Value
Extrapolation (VE), does not rely on solving the global balance equations, but
considers the system in its Markov Decision Process (MDP) setting and solves
the expected value from the Howard equations written for a truncated state
space.

The main objective of this work is to tailor the VE method to a system with
two reattempt orbits and compare its performance with the performance of other
possible approximate methods. This performance evaluation is done in a cellular
network scenario that guarantees seamless mobility to its users. We conclude
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that VE greatly outperforms the rest of the methods throughout a wide range of
scenarios not only in terms of accuracy, but also in terms of computation cost,
so its use is highly recommendable.

The rest of the paper is structured as follows. First, we describe the cellular
network under study and its associated model. In Section 3, we enumerate and
explain the main features of the methods we compare VE with. Section 4 is
devoted to the description of VE and how it has been applied to the model under
study. A numerical study is performed in Section 5 and finally, a summary of
the paper and some concluding remarks are given in Section 6.

2 System Description and Model

We consider a cellular mobile network with a fixed channel allocation scheme
and where each cell is served by a different base station, where C is the number
of resources in the cell. As shown in Fig. 1 there are two arrival streams: the
first one represents new sessions and the second one handovers from adjacent
cells. Both arrival processes are considered to be Poisson with rates λn and
λh respectively. This leads to an overall arrival rate of λ = λn + λh. For the
sake of mathematical tractability, the channel holding time is assumed to be
exponentially distributed with rate μ [6].

In general, blocking a new session setup is considered to be less harmful than
blocking a handover attempt. Therefore, we must include an admission control
policy to guarantee the prioritization of handovers —and retrials— over new ses-
sions —and their associated redials— and therefore, assure a certain degree of
Quality of Service (QoS). The most widespread technique is to reserve some re-
sources to highest priority flows, being in our case handovers and their associated
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automatic retrials. This technique can be generalized to a fractional reservation,
the so-called Fractional Guard Channel (FGC) admission control policy [7]. The
FGC policy is characterized by only one parameter t (0 ≤ t ≤ C). New sessions
and redials are accepted with probability 1 when there are less than L = �t�
resources being used and with probability f = t − L, when there are exactly L
resources in use. If there are more than L busy resources, new sessions and re-
dials are no longer accepted. Handovers and automatic retrials are only rejected
when the system is completely occupied.

When an incoming new session is blocked, according to Fig. 1, it joins the
redial orbit with probability (1−P 1

in) or leaves the system with probability P 1
in.

If a redial is not successful, the session returns to the redial orbit with probability
(1−Pin), redialing after an exponentially distributed time with rate μred. Redials
are able to access to the same resources as the new sessions. Note that P 1

in and
Pin model the impatience phenomenon of leaving the system without having been
served. Similarly, P 1

ih, Pih and μret are the analogous parameters for automatic
retrials. There are several performance parameters that are generally used to
describe the behavior of this type of cellular systems with retrials and redials.
On the one hand, the widely used blocking probabilities for both new sessions
(Pn

b ) and handovers (P h
b ). On the other hand, the mean number of users redialing

(Nred) and handovers retrying (Nret) can describe more accurately the reattempt
phenomenon.

The model considered can be represented as a tridimensional (k, m, o) CTMC,
where k denotes the number of sessions being served, m specifies the number of
sessions in the redial orbit and o represents the number of sessions in the retrial
orbit. The state space can be represented by:

S := {(k, m, o) : k ≤ C; m ∈ Z+; o ∈ Z+}.

The transition rates of this model are represented in Table 1. The main
mathematical features of this queueing model consist of having two infinite di-
mensions —the state space of the model is {0, . . . , C} × Z+ × Z+— and the
space-heterogeneity along them. This heterogeneity is produced by the retrial
and redial rates, which respectively depend on the number of customers in the
retrial and the redial orbits.

3 Solving Methods

It is known that the classical theory, see, e.g., [8], is developed for random walks
on the semi-strip {0, . . . , C} × Z+ with infinitesimal transitions subject to con-
ditions of space-homogeneity. When the space-homogeneity condition does not
hold the problem of calculating the equilibrium distribution has not been ad-
dressed beyond approximate methods [9]. Indeed, if we focus on the simpler case
of multiserver retrial queues with only one retrial orbit, the absence of closed
form solutions for the main performance characteristics when C > 2 can be
enphasized [3].
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Table 1. Transition rates of the exact model

Transition Condition Rate

(k, m, o) → (k + 1, m, o) 0 ≤ k ≤ L − 1 λ

k = L λh + fλn

L < k < C λh

(k, m, o) → (k + 1, m, o − 1) 0 ≤ k ≤ C − 1 oμret

(k, m, o) → (k, m, o − 1) k = C oμretPih

(k, m, o) → (k + 1, m − 1, o) 0 ≤ k ≤ L − 1 mμred

k = L mμredf

(k, m, o) → (k, m − 1, o) k = L mμred(1 − f)Pin

L < k ≤ C mμredPin

(k, m, o) → (k − 1, m, o) 1 ≤ k ≤ C kμ

(k, m, o) → (k, m, o + 1) k = C λh(1 − P 1
ih)

(k, m, o) → (k, m + 1, o) k = L λn(1 − P 1
in)(1 − f)

L < k ≤ C λn(1 − P 1
in)

Obviously, to solve the system under study, it will also be necessary to resort
to approximate models and numerical methods of solution. Although other ap-
proaches exist, for the comparison against VE we have chosen the three most
well-known methods that are able to solve the problem under study. These meth-
ods are explained in the next subsections.

3.1 Double Truncation (DT)

The easiest and more intuitive method to solve the proposed model lies in the
truncation of the infinite dimensions of the state space [10]. In our case, it must
be applied to both the redial and retrial orbits, truncating them beyond levels
Qn and Qh respectively and obtaining the state space:

S := {(k, m, o) : k ≤ C; m ≤ Qn; o ≤ Qh}.

Obviously, by increasing the values of Qn and/or Qh the considered state space
in the approximation is enlarged and the accuracy of the solution is expected to
improve at the expense of a higher computational cost.

The stationary probability distribution can be obtained by solving πQ = 0
along with the normalization condition. As Q is a finite matrix this system can
be solved by any of the standard methods defined in classical linear algebra [11].

3.2 Double FM (DFM)

As DT, DFM belongs to the family of finite truncated methods [3]. These meth-
ods consist of replacing the original infinite state space by a finite one. However,
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DFM is more sophisticated than DT as it introduces in some sense the effect of
the truncated states.

In [12] we developed FM, a generalization of the approximation method pro-
posed in [13]. Although developed initially for a single orbit scenario, FM was
applied to a system like the one under study in [14]. In this case FM has been
applied to both retrial and redial orbits —resulting in DFM—, reducing the
state space to a finite set by aggregating all states beyond a given occupancy of
the orbits, producing the same approximate state space as DT:

S := {(k, m, o) : k ≤ C; m ≤ Qn; o ≤ Qh}.
where Qn (Qh) defines the occupancy from which the states in the redial (re-
trial) orbit are aggregated. In this case states of the form (·, Qn, ·) represent the
situation where at least Qn users are in the redial orbit. Likewise the states of
the form (·, ·, Qh) represent the situation where there are Qh or more users in
the retrial orbit. Due to that aggregation two new parameters for each orbit are
introduced. The parameter Mn denotes the mean number of users in the redial
orbit conditioned to those states where there are at least Qn users in the orbit,
i.e., Mn = E(m|m ≥ Qn). The probability that after a successful redial the
number of users in the redial orbit does not drop below Qn is represented by pn.
For the retrial orbit the parameters Mh and ph are defined analogously.

The global balance equations, the normalization equation and equations for
parameters Mn, pn, Mh, ph form a system of simultaneous non-linear equations,
which can be solved using, for instance, the iterative procedure shown in [14].

3.3 Truncation and Generalization (TNR)

While the two previous approximations consider a finite truncated method for
each retrial orbit, this method considers the use of a generalized truncated
method in one of the two orbits. Obviously, we cannot use a generalized method
for both orbits as the resulting model would not be solvable. For this reason, we
have applied a generalized truncated method for the automatic retrial orbit and
a Truncation (T) for the redial orbit. The method chosen for the retrial orbit is
the method proposed by Neuts and Rao, denoted as NR, in [15]. This method
is based on the homogenization of the model beyond a given level Qh, which
supposes to restrict the maximum automatic retrial rate, i.e.,

μret(o) =
{

oμret if o < Qh

Qhμret if o ≥ Qh

Therefore, the resulting state space is defined by

S := {(k, m, o) : k ≤ C; m ≤ Qn; o ∈ Z+}
With these two approximations we have to solve a system whose state space

presents two finite dimensions and an infinite one, being the infinite dimension
homogeneous beyond a given level Qh. So, we can solve the resulting system
and obtain the steady-state probabilities making use of the matrix-geometric
solutions for stochastic models proposed by Neuts in [8].
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4 Value Extrapolation

All the approximate methods described in the previous sections compute the
steady-state probabilities using the balance equations. Very recently, however,
an alternative approach for evaluating infinite state space Markov processes has
been introduced by Leino et al. [5]. This approach, named Value Extrapolation
(VE), does not rely on the probability of being in a certain state, but on a new
metric called relative state values, that appear when we consider the system in its
MDP setting. Formally, an MDP can be defined as a tuple {S,A,P ,R}, where
S is a set of states, A is a set of actions, P is a state transition function and
R is a revenue function. The state of the system can be controlled by choosing
actions a from A, influencing in this way the state transitions. The transition
function P : S × S × A → R+ specifies the transition rate to other states when
a certain action is taken at a given state. The first characteristic of VE is the
necessity of the definition of a revenue function that must be a function of the
system state, i.e., r(s). Following the definition of the revenue function for every
state, we will also have a mean revenue rate of the entire process (r), which will
be the performance metric we want to compute.

Once the MDP framework as well as the revenue function are specified, we
are able to define the relative state values. It is obvious that after performing an
action in state s the system will collect a revenue for that action (r(s)), but, as
the number of transitions increases, the average revenue collected converges to r.
The relative state value (v(s)) indicates the difference between the total revenue
incurred when the system starts at state s and the total revenue incurred in a
system for which the cost rate at all states is r. If we denote by tn the time
instants in which there is a change in the system state, then

v(s) = E

[ ∞∑
n=0

(r(S(tn)) − r)
∣∣∣S(t0) = s

]
.

The equations that relate revenues, relative state values, and transition rates
are the Howard equations defined by:

r(s) − r +
∑
s′

qss′ (v(s′) − v(s)) = 0 ∀s.

There will be as many Howard equations as number of states, |S|. The number
of unknowns will be the |S| relative state values plus the expected revenue r, i.e,
|S| + 1 unknowns. As only the differences in the relative values appear in the
Howard equations, we can set v(0) = 0, so we will have a solvable linear system
of equations with the same number of equations as unknowns.

However, a finite number of Howard equations are needed to solve the system
and, therefore, we need to truncate the state space to Ŝ. Whereas the tradi-
tional truncation consists of doing qss′ = 0 ∀s′ /∈ Ŝ, VE performs a more
efficient truncation. Basically, VE considers the relative state values outside Ŝ
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that appear in the Howard equations as an extrapolation of some relative state
values inside Ŝ. The objective of VE is to find a function f(s) that interpolates
some points (s, v(s)) for s ∈ Ŝ so that it approximates also (s, v(s)) for s /∈ Ŝ. It
is important to choose a fitting function, f(s), that makes the Howard equations
remain a closed system of linear equations. The most common fitting functions
that acomplish that fact are the polynomials. We can use all (s, v(s))-pairs of
the state space into the fitting procedure —global fitting— or only a subset (Sf )
of them —local fitting. The choice of Sf will highly depend on the relative state
value we want to extrapolate. Note also that function f(s) and set Sf need to be
chosen so that parameters have unambiguous values, i.e., in the case of choosing
a polynomial as the fitting function, the number of different (s, v(s))-pairs in Sf

has to be equal or greater than the number of coefficients in the polynomial.
Note that if the relative values outside Ŝ were correctly extrapolated, the results
obtained by solving the truncated model would be exact.

4.1 Howard Equations of the System

To obtain the Howard equations for a certain state of the system under study,
we can classify these states into four different cases depending on the number of
sessions being served (k). We next describe such cases and their corresponding
Howard equations.

1. k < L: states in which both new sessions and handovers are accepted. The
transition rates that go out from these states are represented in Fig. 2.
Therefore, the Howard equations related to these states are:

r(k, m, o) − r + λ[v(k + 1, m, o) − v(k, m, o)] + kμ[v(k − 1, m, o) − v(k, m, o)]+

+mμred[v(k + 1, m − 1, o) − v(k, m, o)] + oμret[v(k + 1, m, o − 1) − v(k, m, o)] = 0.

(k−1, m, o)

(k+1, m−1, o) (k, m, o)

kμ

��

λ ��mμred��

oμret

��

(k+1, m, o)

(k+1, m, o−1)

Fig. 2. Transition rates when k < L

(L−1, m, o)

(L+1, m−1, o) (L, m, o)

Lμ

��

λh+fλn��mμredf��

oμret

��

mμred(1−f)Pin

�����������
λn(1−f)(1−P1

in)

����������� (L+1, m, o)

(L, m−1, o) (L+1, m, o−1) (L, m+1, o)

Fig. 3. Transition rates when k = L

2. k = L: states in which handovers are accepted but new sessions are only
accepted with probability f = t − L, where t is the parameter that char-
acterizes the FGC admission control policy. Figure 3 represents the tran-
sition rates going out from these states, obtaining the next Howard
equations:
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r(L, m, o) − r + (λh + λnf)[v(L + 1, m, o) − v(L, m, o)]+

+Lμ[v(L − 1, m, o) − v(L, m, o)] + mμredf [v(L + 1, m − 1, o) − v(L, m, o)]+

+mμred(1 − f)Pin[v(L, m − 1, o) − v(L, m, o)]+

+oμret[v(L + 1, m, o − 1) − v(L, m, o)]+

+λn(1 − f)(1 − P 1
in)[v(L, m + 1, o) − v(L, m, o)] = 0.

3. L < k < C: states where handovers are accepted but new sessions are blocked,
as shown in Fig. 4. That leads to the Howard equations:

r(k, m, o) − r + λh[v(k + 1, m, o) − v(k, m, o)] + kμ[v(k − 1, m, o) − v(k, m, o)]+

+mμredPin[v(k, m − 1, o) − v(k, m, o)] + oμret[v(k + 1, m, o − 1) − v(k, m, o)]+

+λn(1 − P 1
in)[v(k, m + 1, o) − v(k, m, o)] = 0.

(k−1, m, o)

(k, m, o)

kμ

��

λh ��

oμret

��

mμredPin

�����������
λn(1−P1

in)

����������� (k+1, m, o)

(k, m−1, o) (k+1, m, o−1) (k, m+1, o)

Fig. 4. Transition rates when L < k < C
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λn(1−P1

in)

���������� (C, m, o+1)

(C, m−1, o) (C, m, o−1) (C, m+1, o)

Fig. 5. Transition rates when k = C

4. k = C: states where both new sessions and handovers are blocked, being
the transition rates as shown in Fig. 5 and their corresponding Howard
equations:

r(C, m, o) − r + λh(1 − P 1
ih)[v(C, m, o + 1) − v(C,m, o)]+

+Cμ[v(C − 1, m, o) − v(C, m, o)] + mμredPin[v(C, m − 1, o) − v(C,m, o)]+

+oμretPih[v(C, m, o − 1) − v(C,m, o)]+

+λn(1 − P 1
in)[v(C, m + 1, o) − v(C, m, o)] = 0.

4.2 Revenue Function

As performance parameters are not computed from the steady-state probabilities
as usual, it is important to explain more carefully how they are computed. For
that purpose we must set the inputs r(s) in the Howard equations properly
in order to ensure that the revenue rate of the entire process r is equal to
the performance parameter we want to compute. In a nutshell, r will be the
parameter we want to compute if we let r(s) to be the value of that parameter
when the system is in state s. Table 2 gives several examples on how r(s) can
be set in order to obtain the performance parameters under study.
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Table 2. Revenue function definition

Parameter Value

P h
b

r(k, m, o) = 1 for k = C, ∀m, ∀o

r(k, m, o) = 0 otherwise

P n
b

r(k, m, o) = 1 − f for k = L, ∀m, ∀o

r(k, m, o) = 1 for k ≥ L, ∀m, ∀o

r(k, m) = 0 otherwise

Nret r(k, m, o) = o ∀k, ∀m, ∀o

Nred r(k, m, o) = m ∀k, ∀m, ∀o

4.3 Polynomial Fitting and Solution

Note that in the system under study the number of states is infinite because
both m and o can take any value in Z+, thus some truncation is needed. We
have made a truncation similar to DT and DFM, obtaining a truncated state
space defined by:

Ŝ := {s = (k, m, o) : k ≤ C; m ≤ Qn; o ≤ Qh}.
Therefore, in the system under study, we have truncated the state space be-

yond a value of Qn (Qh) for the occupancy of the redial (automatic retrial)
orbit. However, in the Howard equations of the truncated state space, relative
state values of some states appear that do not belong to the truncated state
space, being v(C, m, Qh + 1) ∀m and v(k, Qn + 1, o) for k ≥ L and ∀o. There-
fore, we must extrapolate these two sets of states to obtain a closed system
of equations. We have used a (n − 1)-th degree polynomial that interpolates
the n points in {(j, vj)|vj = v(C, m, j), ∀m, Qh − n < j ≤ Qh} to extrapolate
v(C, m, Qh + 1). To extrapolate v(k, Qn + 1, o) for k ≥ L we interpolate the p
points in {(i, vi)|vi = v(k, i, o), k ≥ L, Qn−p < i ≤ Qn, ∀o}. Note that including
value extrapolation neither increase the computational cost nor the number of
Howard equations, remaining in |Ŝ| = (C + 1) × (Qn + 1) × (Qh + 1).

After some algebra, and using the Lagrange basis to reduce the complexity of
the procedure, we obtain a simple closed-form expression for the extrapolated
value of both sets

v(C,m, Qh + 1)(n) =
n−1∑
j=0

(−1)j

(
n

j + 1

)
v(C, m, Qh − j),∀m,

and

v(k, Qn + 1, o)(g) =
g−1∑
i=0

(−1)i

(
g

i + 1

)
v(k, Qn − i, o), k ≥ L, ∀o.

5 Results and Discussion

In this section a number of numerical examples are presented with the pur-
pose of illustrating the capabilities and versatility of our model and the analysis
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methodology. The numerical analysis is also aimed at assessing a comparison
between the proposed methodology and previous approaches not only in terms
of accuracy but also in terms of computation cost.

For the numerical experiments a basic configuration of the system is used and
then the different parameters are varied. Thus, unless otherwise indicated, the
value of the parameters will be those of the basic configuration: C = 10, t = 9,
μ = 1, P 1

ih = P 1
in = 0, Pih = Pin = 0.2, and μred = μret = 1. The values of

λn and λh have been modified by means of the system load ρ = λ/Cμ, being
λ = λn + λh and taking λh = 2λn in all cases. It must be noted that, due to the
introduction of the impatience phenomenon modeled by P 1

in, Pin, P 1
ih, and Pih,

we will be able to consider values of ρ > 1.

5.1 VE Performance

The objective of this section is to study the performance of different extrapola-
tion polynomials in a wide range of scenarios. Obviously, as stated in Section 3,
for the system under study we are not able to compute the exact values of the
most common performance parameters. For this reason, the first step is to as-
sume that the exact value can be obtained choosing increasing and sufficiently
high values of the truncation level. More specifically, we ran all methods pre-
sented in Section 3 and VE until the value of all the performance parameters
under study had stabilized up to the 8th decimal digit.

In the system under study, there are two different truncation levels that must
be specified, namely Qn and Qh. The purpose of this study will be to determine
the pair (Qn, Qh) that makes the cardinality of the problem ((C + 1) × (Qn +
1)× (Qh + 1)) as small as possible while a certain accuracy criterion is met. To
fulfil these requirements we must define a direction of search to determine the
desired (Qn, Qh) pair.

To avoid an exhaustive search to determine (Qn, Qh) we have used an algo-
rithm similar to the one proposed in [16]. Our algorithm increase (Qn, Qh) along
the diagonal until we obtain a system that fulfils the desired accuracy and later
we decrease both parameters separately following descendent directions of the
coordinate axis and finally take the best solution in terms of the cardinality of
the problem. The rationale behind this last movement for only one of the two
parameters (Qn or Qh) is the fact that, generally, Qn 	= Qh, and this cannot be
accomplished only with the diagonal movement, so the solution with this last
movement improves the initial diagonal movement.

In Table 3 we show the minimum complexity of the problem needed to fulfil a
relative error lower than 10−4 for parameters Pn

b and P h
b , for different loads (ρ)

and reattempt rates ({μred, μret}) and for different orders of the extrapolation
polynomial.

Note that VEx denotes the use of an extrapolation polynomial of order x. Note
also that the numbers shown in each cell represent the product (Qn+1)×(Qh+1)
which defines the complexity and it is denoted by Ω, although the cardinality of
the problem should also include the factor (C+1). However, we have omitted this
factor as it is common to all cases. Therefore, the best order for the extrapolation
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Table 3. Minimum Ω to obtain relative errors lower than 10−4 in P n
b /P h

b

μred, μret ρ VE1 VE2 VE3 VE4 VE5 VE6

{1,1}
0.4 25/30 12/12 16/16 25/25 36/36 49/49
0.8 144/144 49/72 64/72 49/35 36/36 49/49
1.2 484/506 342/342 240/36 98/120 121/132 99/120

{2,0.5}
0.4 20/25 12/12 16/16 25/25 36/36 49/49
0.8 130/90 45/55 56/64 36/30 36/36 49/49
1.2 -/- 432/336 280/170 99/136 126/144 135/168

{0.5,2}
0.4 20/25 12/12 16/16 25/25 36/36 49/49
0.8 160/160 66/110 80/100 56/49 36/42 49/49
1.2 -/- -/- 400/- 154/189 144/187 162/198

{0.5,0.5}
0.4 25/30 9/9 16/16 25/25 36/36 49/49
0.8 224/160 100/121 90/100 48/35 36/36 49/49
1.2 -/- -/- -/- 168/280 195/196 441/378

polynomial will be the one that has the lowest Ω, which is in bold in the table.
Moreover, we denote by “-” those cases in which the computer could not obtain
a result because of lack of memory1.

From the results in Table 3 we can conclude that there is not a clear choice
in the order of the extrapolation polynomial that is able to get the lowest Ω in
all cases. Neither the lowest nor the highest orders offer the best results. When
the load is not high (ρ = 0.4), VE2 offers the lowest complexities, due to the
fact that VE3-VE6 offer the result of the minimum Ω they require to work, e.g.,
to extrapolate with VE4 at least Qn = Qh = 4 is needed and therefore, the
minimum Ω required to use VE4 is (4 + 1) × (4 + 1) = 25. When the retrial
orbits are more heavily loaded, VE4 is a good choice, as it offers low values of
Ω. Therefore, hereafter we will use the polynomial of order 4 (VE4) and we will
simply denote it as VE.

5.2 Comparison among Different Methods

Accuracy: The objective of this section is to compare the performance of VE
with DT, DFM, and TNR. In Table 4 we show the minimum values of Ω needed
to obtain a relative error lower than 10−4 for Nred. The results for the rest of per-
formance parameters have been omitted as Nred is usually the worst case for all
methods and results are found to be qualitatively equivalent for all performance
parameters. We show in bold the best results, i.e., those that offer the minimum
complexity Ω. Results show that VE clearly outperforms classical methods as it
needs a much lower value of Ω to achieve the desired accuracy in all the scenarios
under study. Moreover, and what is probably more important, there are some
scenarios where VE is the only method that is able to get a result due to the
complexity of those scenarios produced by having low reattempt rates.

1 Results have been obtained using Matlab running in an Intel Core 2 Quad Q6600
with 4GB RAM memory.
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Table 4. Minimum Ω to obtain relative errors lower than 10−4 in Nred

μred, μret = {1, 1} μred, μret = {2, 0.5} μred, μret = {0.5, 5} μred, μret = {0.5, 0.5}

ρ 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2

DT 64 143 324 550 930 56 132 304 522 - 54 120 264 - - 63 180 528 - -

DFM 48 72 208 360 324 49 100 176 378 - 45 98 198 - - 56 126 352 - -

TNR 48 91 180 400 651 48 99 182 196 640 36 90 192 - - 54 135 240 - -

VE 25 25 35 110 196 25 25 35 108 204 25 25 60 66 161 25 25 45 195 396
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Fig. 6. Computation time for different methods

Computation cost: Although it is shown that VE clearly outperforms the
other methods in terms of accuracy, it is also interesting to study their associ-
ated computation cost. From a practical perspective, it is more interesting to
consider accuracy along with computation time. Figure 6 shows a joint represen-
tation of both parameters. As the figure shows, VE yields much higher accuracy
than any other method for a given computation time. Results should be inter-
preted carefully, because computation cost highly depend on the algorithm used
to solve the resulting system of equations. More concretely, in order to compute
matrix R that appear in TNR we have used the logarithmic reduction algo-
rithm as proposed in [17, Section 8.4], using a precision of 10−6 for the iterative
procedure. Moreover, for solving the systems obtained with the DT, DFM, and
TNR methods we have made use of the efficient algorithm described in [11] that
takes advantage of the block-tridiagonal structure that presents the infinitesimal
generator. Unfortunately, the linear system of equations obtained in VE has no
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longer such a block-tridiagonal structure, and therefore, we must use a more
general algorithm. More concretely, we have used LU factorization.

It can be seen that in the system under study the computation times needed
for any of the methods are not very high from a human point of view. For that
reason, the time results should be compared qualitatively, as the time units may
be different from just seconds when we solve more complex systems or when we
have to solve the basic retrial system several times —for example to balance the
incoming handover rate to the outgoing handover rate, as shown in [18]—.

6 Conclusions

In mobile communication systems like cellular networks, Mobile IP or the re-
cently defined IEEE 802.16e and IEEE 802.20 networks, mobile operators must
guarantee seamless mobility to its customers. In these networks, repeated at-
tempts occur due to user redials when their session establishments are blocked
and also due to automatic retries when a handover fails. The Markovian model
describing such a complex network is a multiserver retrial system that presents
space-heterogeneity along two infinite dimensions. To the best of our knowledge,
all the methods studied in the literature to solve these systems are based on
their steady-state probabilities. In this paper, we propose an alternative method
based on a different metric: the relative state values and the Howard equations
that relate them.

We have compared the proposed method with the most well-known approaches
appeared in the literature so far. The results show that the proposed method
greatly outperforms previous approaches not only in terms of accuracy, but also
in terms of computation cost. Moreover, we have shown that in some scenarios
the proposed method is the only one that is able to guarantee a certain accuracy.
For all those reasons the proposed method is highly recommendable to solve this
type of systems.

Acknowledgements

This work was supported by the Spanish Government (30% PGE) and the Eu-
ropean Commission (70% FEDER) through projects TSI2007-66869-C02-02 and
TIN2008-06739-C04-02.

References

1. Mouly, M., Pautet, M.B.: The GSM system for mobile communications. Published
by the authors (1992)
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Abstract. The supervision of industrial processes requires the exchange
of information in real time between users and control systems. Users may
be moving around a working area and need to consult information to
supervise a particular process. Therefore, it is important to study the
characteristics and stability of the paths to determine which services can
be offered. In this paper, the effect of mobility on duration and stability
of the links in an ad hoc network is analysed using stochastic activity
networks. The ad hoc network is made up of six mobile nodes where the
routing protocol is AODV. This study shows the path average lifetime
which enables the evaluation of which type of services can be offered by
the network.

Keywords: SAN (stochastic activity networks), modelling, MANET,
routing protocols, route maintenance, path average lifetime.

1 Introduction

In industrial environments the need to exchange information between mobile
users within a working area is becoming increasingly common. The services of-
fered to a user include:

– Information on process alarms.
– Access to previously stored control images [1], [2] or images related to a

previous event.
– General images of the plant and images of specific processes which need to

be monitored or controlled in real time by cameras installed in the plant.

In this paper we have studied the link performance which will in turn enable
us to understand which services can be supported by an ad hoc network with
sufficient quality and under which conditions.

A path is created when two users are in communication. A path can include
two or more links. The length of the path is the number of links. Therefore,
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link stability is crucial when generating a path between users. The protocol
performance depends on the duration of a path between the source and the
destination (path average lifetime).

In this paper we analyze the effect of the number of hops, the transmission
range and the speed of the mobility on the path average lifetime. Node mobility
is the major factor affecting the performance of the routing protocols. Since
a link break from a node movement invalidates all the routes containing this
link, alternate routes have to be discovered once the link is detected as broken.
Because of this, we have studied how node mobility affects these paths, causing
breaks in the links. The path average lifetime enables us to identify which services
can be offered on the ad hoc network designed, always taking into account that
the new route discovery will create a flood of routing requests and extended
delay for packet delivery.

This paper presents a study, in which formal models were used to analyse the
effect of mobility in an ad hoc network with six mobile nodes on the duration and
stability of the paths in order to determine how the services were affected. The
scenario to which these results may be applied does not require a large number
of nodes. Six nodes are sufficient to cover the working area, and there are not
usually more users needing to exchange information in these circumstances.

Although these results were obtained from a simulation, our aim is to create a
scenario as close to reality as possible. Our study is based on the routing protocol
AODV (Ad Hoc On-Demand Distance Vector Routing) [3], which is one of the
routing protocols under active development inside the IETF MANET working
group [4]. AODV is together with OLSR (Optimized Link State Routing) [5] the
most mature routing protocol from the implementation standpoint. It is for this
reason that they are the two most studied protocols. In [6], [7] are described real
experiments where the performance of these two routing protocols is compared,
using a number of nodes ranging from 5 up to 12 nodes (laptops and PDAs).
Other experimental evaluations have been carried out with a similar number of
nodes, in [8] 5 laptop computers were used to study AODV routing protocols
and OLSR protocols. Previous studies [9] have shown the existence of an Ad
Hoc horizon (2-3 hops and 10-20 nodes) after which the benefit of multi-hop ad
hoc networking disappears. As Conti states in [10], it is unrealistic to centre the
research on networks with hundreds of mobile nodes involved in CBR (constant
bit rate) data transfers.

AODV is a reactive protocol that minimizes the number of route broadcasts
by creating routes on-demand. Route discovery is initiated on-demand, the route
request (RREQ) is forwarded by the source node to the neighbours, and so on,
until either the destination or an intermediate node with a fresh route to the
destination, is located. The response to the route found is sent via a RREP packet
(route replay). This route can be single hop, which is a direct communication or
multi-hop when neighbouring nodes are necessary to reach the destination.

In section 2 previous results are presented and in 3 the scenario and the various
parts of the model are explained. The measurements and results are presented
in section 4, while the conclusions and future work are shown in section 5.
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2 Previous Results

In previous works by the authors, stochastic activity networks have been used to
create formal models that enable the study of mobility and reachability between
nodes [11]. In these models the tool used was UltraSAN [12] and now the tool
used is Mbius 2.1 [13], [14] both of which supports the specification of SAN [15]
models.

With our previous models the probability of the source reaching the des-
tination in an Ad Hoc network was studied in function of radio transmission
range [11], determining direct and indirect communications and failed attempts
at communication in which the destination was unreachable. In multi-hop1 com-
munications, with a radio range of more than 150m successful communications
began to decrease; direct communications with distances greater than 150m will
probably2 be successful. In other words, 150m was identified as the range for
which the number of multi-hop communications reached maximum3 value. The
radio range that offers this maximum value of multi-hop communications was
previously difficult to identify and with the SAN tool it has been obtained in a
simple manner.

Later, a more detailed study was carried out on multi-hop communications
[16], [17] dividing these according to the number of hops in each path estab-
lished. We observed that communications with two or three hops were the most
numerous, confirming the findings of Tschudin et al. in their studies [9]. Fur-
thermore most MANET routing protocols focus on minimizing the hop count of
the chosen path [18]. The number of hops corresponds with the number of times
a packet must be transmitted and received to reach its destination. Each addi-
tional transmission has some consequences; a longer path consumes additional
bandwidth and additional hops add more delay due to the additional buffering,
contention, and transmission time required. For this reason, in the models pref-
erence is given to shorter routes, thereby minimizing the number of links that
may break causing a path failure. From the percentages of multi-hop communi-
cations and according to the number of nodes participating in the path, we were
able to make an estimation of the potential energy savings obtained by using
this type of communication.

1 The terms direct or single-hop communications and indirect or multi-hop communi-
cations are used interchangeably.

2 In the models designed, preference was given to communications with the lower
number of nodes (just as an AODV behaves), and therefore direct communications
have preference over multi- hop, and it is because of this that with a certain value
of radio range an inflection point occurs after which there is a decrease in multi-hop
communication giving way to a greater percentage of direct communications between
source and destination.

3 The most significant characteristic of ad hoc networks is the use of neighbouring
nodes to reach the destination, and this is denominated multi-hop communication.
It is always possible to choose a range of radio ranges which enables us to obtain
a balance between energy savings through use of multi-hop communication against
single hop and a satisfactory number of communications obtained.
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In light of these results, we consider it interesting to study more deeply the
performance ad hoc networks. SAN enables us to modify and widen these models,
in a simple way and without having to redesign them. New submodels that
represent the working of the AODV protocol at the moment when the requested
route is obtained and when a lost route is recovered can be added.

3 Models

In this section, firstly we describe the scenario in which the ad hoc network was
incorporated, along with the parameters used in its design. Secondly there is a
description of each of the subnetworks that form the formal model of the ad hoc
network in question, in which the AODV was the routing protocol used. The
objective of these formal models is the evaluation of the effect of mobility on the
duration and stability of the routes in an ad hoc network.

3.1 Scenario

An area of 350x350m2 is large enough to cover most industrial installations.
The shape of the area is determined by the use of hexagonal cells. This type
of cell facilitates the representation of movement of nodes and their coverage
radio range. Six nodes were distributed (A, B, C, D, E, F) in the area, see
Fig. 1. In order to be sure that the initial position of the nodes did not affect the
results, different tests were carried out. This initial position was varied, without
variations in the results.

Regarding the number of nodes used in models, the scenario to which these
results may be applied does not require a large number of nodes, because this
number is sufficient to cover the working area. For this reason, in our case we
considered 6 to be the maximum number of mobile nodes. Moreover it is known
that a high density can cause traffic problems and reduce the efficiency of the
channel usage [10]. Furthermore, experiments in real scenarios are made up of a
few nodes, see [19], in which a multi-hop wireless ad hoc network was constructed
in a testbed of 8 nodes, 2 of them fixed, over an area of 700x300m2 and [7] where
experiments in string topology were set up in an open field about 300 meters
long. In [6], [7] real experiments were carried out, using a number of nodes
ranging from 5 up to 12 nodes.

As the area used is divided into hexagonal cells of the same size, see [20], the
probability of one node to visiting its neighbouring cells has an assumed value,
p = 1/6. The mobility model used in the results presented in this paper is a
random walk model.

We assume the time that a mobile node stays in a cell and the number of
communication attempts. These have an exponential time with mean value 1/λm
and 1/λc respectively [20]. The values of search rate and movement rate have
been chosen to adjust with real values of movement of the nodes [21], [22]. To this
end, considering that every cell is equivalent to 50m, we can calculate the mean
velocity of the users and this enables choose the most appropriate movement
rate.
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In the experiments, session times of 20s, 1 and 3 minutes were used. The
authors have chose typical session times used in the supervision of industrial
processes. In a real scenario, during this time the user could see control or mul-
timedia information. Depending on the service requested, it is logical that the
user will have to wait for differing periods of time. For example, if the user re-
quests detailed information on a process from a sensor, 20s can be considered
long enough to obtain and evaluate this information. However, when the user
wants to see control images from the installation or of a process, more time will
be needed to see and evaluate the images.

Another parameter used in these models is the radio transmission range, (R)
with values between 100m and 200m. In the experiments this was a nominal
range, with no variation. Two nodes can establish a connection when the dis-
tance between them is equal to or less than R. In our case for example, as each
hexagonal cell measures 50m across, one node with a radio range of 100m can
connect with all those nodes situated within the 2 rings around the cell in which
the node is located. In Fig. 1 the lined cells represent the radio coverage of 100m
from the node located in cell (1, 1).

Fig. 1. Working area, 350x350m2, numbering of cells and start position of mobile nodes

It is known that the characterization of the wireless channel is one of the
critical points in MANET simulation modelling. Although ideally we would like
the scenario to be as realistic as possible, certain assumptions were necessary.
For example, no link layer effects, such as HELLO packet losses were considered,
although it has been shown that this has a real effect on the link establishment in
MANETs [23]. It can also be assumed that interference from neighbouring nodes
will be nil. The hidden4 node problem has not been considered. The exposed5

4 Those nodes that cannot establish a connection directly between each other could
still be transmitting messages simultaneously to a common neighbour on the same
frequency.

5 A node near an active sender is ineligible to send or receive.
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node has also not been considered. We assume that links are symmetrical and this
is far from reality. Finally, it is important to note that there is no traffic on the
network, and so there are always resources available. We know that one drawback
with models is that when simplifications and assumptions are introduced; they
sometimes mask important characteristics of the real protocols performance. For
this reason, so that the performance of the models used is as realistic as possible,
we are working on the introduction of transmission errors in the model along
with heavy loads on the ad hoc networks being studied.

3.2 Characteristics of the Models

Most MANET studies are base on simulation tools. The most popular simulators
used in Ad Hoc networks are OPNET, ns-2 and Glomosim, but these are not
the only valid tools for studying this type of network. In this paper, we use the
power of stochastic activity networks (SANs) to observe the performance of ad
hoc networks based on submodels already designed in previous studies.

Stochastic activity networks are a stochastic extension of Petri nets to define
temporary characteristics with statistical parameters. Colored Petri nets [24]
and Fuzzy Petri nets [25] have been used to study mobility in ad hoc networks.
UltraSAN is used by different authors [20] to model mobility in mobile terminals.
Mbius, the successor of UltraSAN, is used for the creation of the formal models
whose results are presented in this paper.

The models designed are formed by five submodels:

– The ”search” submodel shows the attempt of communication between two
nodes.

– The ”position” submodels represent the position of every node in the area
and its movement through it. There is one position submodel for every node
in the network.

– The ”recover route” submodel studies whether a path remains active after
a movement. In this submodel if a path is lost, a new one is sought.

– The ”time” submodel.
– And the ”time to recover” both of which submodels are necessary to find

the average lifetime of a path.

The five submodels are interconnected, sharing some of their elements. In Fig. 2,
there is a brief outline plan of the global functioning, in which this interconnec-
tion can be seen.

The ”search” submodel, marked as (1) in Fig. 2, is used when there is a
communication attempt between source and destination, and the source node
sends a RREQ packet. The model is designed in such a way that the source and
destination nodes were always the same to simplify the programming. Knowing
the position of every node6 in the model, we find out if the communication with
6 To find a route from a source node to a destination, the source node in the Petri net

model should have its neighbours identifications to send broadcast messages. Note
that it is not necessary for nodes in a real MANET to know their neighbours, [24].
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Fig. 2. Diagram of how the model works. Interrelation between submodels.

the destination is direct, indirect (we obtain the number of hops) or if it is not
possible to communicate, using the supposition that there are no errors and no
traffic. In this calculation, the exact7 path is obtained. With no prior knowledge,
one path is equally likely to be as good as another, so in the model, the first
path found is chosen, always with the least number of nodes. At this moment,
the session is initiated because the user has requested a communication with the
destination and the request has been satisfied. The start of service means the
start of the count of the time that the route is active; the counter is situated
in the ”time” submodel (4). This count will stop when the user terminates the
session or when the connection is broken, see ”recover route” submodel (3).

In the ”search” submodel, see Fig. 3, if after the first RREQ there has not
been response, the process established by the AODV is initiated whereby there
are waiting times before the next RREQ packets are sent. Therefore, before a
destination is given up as unreachable, the route is requested up to three times.
If after the sending of the first RREQ, a positive response is not received, the

7 Discovering the exact path and storing it is very difficult in terms of programming,
but is necessary in order to be able to establish whether, after the movement of a
node forming part of a path, the path has been affected.
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Fig. 3. Search submodel designed with Mbius

following RREQ packet is not sent until 0.4s has elapsed. Once this time has
elapsed, if no response has been received, a new RREQ packet will be sent. In the
same way, if there is still no response after this second sending, a new packet will
be sent, this time after 0.8s. Finally, last request will be sent after 1.6s further
waiting time. If no route is possible, the destination is given up as unreachable
and the user cannot begin the session.

There is a ”position” submodel, marked as (2) in Fig. 2, for every node in the
network. This submodel evaluates the position of the node and its movement,
obtaining the new position8, which in turn depends on the angle of movement. If
the node changes cell, the distance to the other nodes of the network is obtained.
Also, if the node that has moved belongs to the active route, it is necessary to
check if the movement has caused a break in the route or if the route remains
active. In Fig. 4, the position submodel of node A designed with Mbius is pre-
sented.

The evaluation of the route after a node moves is done in the ”recover route”
submodel, marked as (3) in Fig. 2. Knowing the distance between nodes and the
current route, it is checked whether the movement of a node belonging to the
route has caused a break. There are two possibilities:

– A break has not occurred. The route remains the same as before although
the node is not in the same position. This means that the node that has
moved is still within range of its neighbours in the route.

– A break has occurred. The distance between the node that has moved and its
neighbours is now greater than the radio transmission range; therefore new
calculations are made to find an auxiliary route if possible. The auxiliary

8 Note that at the start of the simulation (Fig. 1) every node is alone in this cell but
after its movements two or more nodes can share cell.
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Fig. 4. Position submodel of node A designed with Mbius

route chosen will always be the shortest in the case that there is more than
one possibility. In order to find an auxiliary route the route request (RREQ)
is sent up to three times, repeating the same mechanisms as in the ”search”
submodel. This is done in the ”time to recover route” submodel. The model
takes into account the time needed to find the route and the number of nodes
which form it.

In Fig. 5, the ”recover route” submodel designed with Mbius is presented.
We have highlighted the different blocks that make it up; therefore it can be
more easily understood. It is important to state that ”recover route” submodel
programming is very complex (mainly the programming of some output gates),
and for this reason we have included the flow chart to show how it works with
the others submodels, Fig. 2. This complexity is due to the decision to create
a ”position” submodel in order to know the exact position of each node in the
network. Without knowing the exact position in the network, it is not possible
to know the exact route when a communication is requested between origin and
destination, and consequently it is impossible to know when a movement will
mean a loss of path. Authors such as Murata et al. [24], have previously studied,
through simulations, how mobility affects the performance of the AODV, but
without knowing the exact topology of the network in question, they conclude
that it is not easy to build a CPN (colored Petri net) of a MANET because
a node can move in and out of its transmission range and thus the MANETs
topology dynamically changes. Therefore, they propose a topology approxima-
tion to address this problem of mobility. According to the authors, it is possible
to model a MANET without information on its exact graph structure, but this
makes it impossible for them to study a break in the path and its recovery. Other
authors [25] have also analysed the AODV with a variant, but in their algorithm
they dont need to compute the ad hoc network topology and they only need the
information of neighbouring nodes for each node. However, they use the mecha-
nism of Fuzzy Petri net to find a route with the highest reliability but they have
not studied what happens after a route is obtained.

The ”time” and ”time to recover route” submodels, are marked such as (4)
and (5) respectively in Fig. 2. These submodels together with the elements of the
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Fig. 5. Recover route submodel designed with Mbius

other submodels with which they interact are necessary to obtain the average
time that a route remains active (average path lifetime). The ”time to recover
route” submodel (5) interacts with ”recover route” (3), and the same as when
a route is lost due to a movement of a node (”position” submodel), a recov-
ery process is initiated. This process is similar to the one carried out when an
initial route is required between source and destination, as there are also three
attempts to find an alternate route. In Fig. 6 ”time to recover route” submodel
is presented.

Fig. 6. Time to recover route submodel designed with Mbius

The submodel ”time” (4) in Fig. 2, measures the time during which the route
is active, whether this is in direct or indirect form. If a path is found in the
”search” submodel (1), the session is initiated and in the ”time” submodel the
counting time is initiated too. In reality, there will finally be the sum of all
the times when communication has been possible (total lifetime) in the counter,
and knowing the number of routes that have been obtained (direct or indirect)
we can obtain the average time that the routes have been active (average link
lifetime).
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Because of this, in this submodel it is necessary to know:

– When the direct or indirect route has been possible; this initiates the session
and the total lifetime counter.

– When the route has been lost (recover route submodel), this stops the
counter.

– And when the user finishes the session, at this moment the counter is stopped.
The ”time” submodel designed is shown in Fig. 7.

Fig. 7. Time submodel designed with Mbius

4 Measurements and Results

In this section the results using the models designed with 6 nodes according to
the design described in section 3 are shown.

– Firstly, the lost and recovered paths are evaluated. Lost and recovered paths
are also divided into direct and indirect.

– Secondly, average path lifetime is evaluated. This is the average time that a
path remains active.

The programming of some elements of the model is very complex. For this reason,
they were resolved through simulation rather than analytically.

Reward formalisms are functions that measure information about the system
being modelled. Currently, Mbius provides one reward formalism, performance
variables. The reward variables used to measure the results are impulse rewards
that can be used to count the number of times an action is executed during an
interval of time. We have used 6000 time units (seconds), as simulation time.
Rate reward variables are used to evaluate the number of tokens that have accu-
mulated in certain places. Each reward variable was evaluated for a confidence
level of 0.80 and a confidence interval of 0.1, that is, the average value of the
result will not be satisfied until the confidence interval is within 10% of the mean
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estimate 80% of the time. Each experiment was repeated 5 times to check the
validity of the results.

The mobility rate (λm) has been chosen as 10/6, that is, 10 movements every 6
minutes. With this rate and knowing that the size of a cell in the area is 50m, the
speed of movement of the nodes is: (10 movements x 50m / 6 minutes) = 1.38m/s.
This is the speed used in all the experiments except for the representation of link
average lifetime where other speeds have been used, [1.38, 5, 6, 7, 8, 9, 10, 15, 20]
m/s. The values of λm used in the experiments to correspond with these speeds
were: 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.3, and 0.4. This enables us to observe the
evolution of the path average lifetime with the speed of the nodes and compare
the results with those shown in [18]. Maximum speeds are chosen in order to test
the routing protocol because maximum speeds result in frequent routing changes
and test the abilities of the protocol to react. In fact, with the above-mentioned
speeds we are not really considering a realistic scenario, but rather an extreme
scenario in order to evaluate the protocol under these conditions.

The call rate (λc) chosen is 1 communication attempt every 180s (λc=0.005),
that is, the user requests information from the installation with a mean value
of 180s for 6000s, which is the simulation time used. This means that for one
experiment, more than one route request is produced. It is necessary to clarify
one point about this parameter; the route requests according to this parameter
should be approximately 33, but the value is less than this as there will not be
a new request while a session is in operation. Previous studies on the perfor-
mance of AODV with Petri nets [24], [25] do only the search for one path every
simulation. In the model presented, when the session time is finished another
path can be requested by the source node. The session times used were 20s, 1
and 3 minutes, as explained in the section describing the scenario. The number
of nodes used was 6 and the radio transmission range varied between 100m and
200m.

4.1 Lost and Recovered Paths

In Fig. 8 we show the performance of the AODV in the search, loss and recovery
of a path to the destination. In A, we show the total percentage of paths found
with respect to paths requested. It is clear that this percentage increases as radio
range increases. With 100m, the percentage of possible paths is 37.65%, however,
with 150m, 71.11% of the paths requested are possible, and if we increase the
radio transmission range to 200m the percentage rises to 91.54%.

We also show the percentage of direct and indirect routes lost due to the
movement of one of its nodes, see B and C in Fig. 8. Lost routes are lower
when radio range is great as is to be expected. We can observe that multi hop
paths suffered more losses. This is because more nodes participate in this type of
communication; therefore the probability that one of the nodes moves is higher,
leading to a higher probability of a break than in the case of a path formed by
only two nodes, source and destination.

Finally, we show the percentage of direct and indirect routes recovered com-
pared to the number of routes lost, D and E respectively. It was to be expected
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that as radio range was increased, recovered routes increased correspondingly
as D and E show. Given that the AODV gives preference to single-hop paths
over multi-hop paths, the majority of recovered routes should be direct com-
munications; but the results indicate that the majority of recovered routes were
found through multi-hop communication. The reason is that in spite of the low
probability of losing a path when radio range is high, if a direct route is lost, it
is recoverd almost 100% of the time via a multi-hop path.

Fig. 8. Percentage of paths found with respect to path requests made(A), direct(B) or
indirect(C) paths lost with respect to the number of established routes and recovered
through single-hop(D) or multi-hop(E) communication when these had been lost

In Table. 1 labelled as ”path lost” we show the sum of the percentages of
direct and indirect routes lost with respect to those that were active. The results
are shown for 3 radio ranges. Under the label ”recovered paths”, we show two
percentages. The first (*) is the sum of the percentages of direct and indirect
paths recovered compared with those lost. The second (**) shows the paths
recovered compared to those found after a request which were in effect, active
paths. The second percentage of ”recovered paths” was obtained through the
other two percentages in the table. Showing the same value in two ways anables
us to look at the results from two different perspectives. The paths recovered
with respect to those lost (*) enable us to see how the protocol reacts to a
break of link and loss of path. The paths recovered compared to those active
(**), enable us to understand in what measure the paths that are being used for
transmission of information could have problems through a momentary loss of
the path.
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We can say that with a range of 100m, 52.68% of active paths are lost (the
sum of direct and indirect losses, curves B and C in Fig. 8). Of the total of paths
lost, 36.83% were recovered, which is equivalent to 19.4% of the paths that were
found. We can also state that on 19.4% of all occasions, information was sent
with some packets lost due to momentary losses of path, but it was possible to
continue sending the information because the route was recovered within the
time established by the AODV. Along the same lines, we can state that 47.32%
(100% - 52.68%) of total communications were completed practically without
problems. This is the percentage of paths not lost compared to active paths.

For a radio range of 150m in 43.24% of active paths some links were lost,
causing a loss of path. 59.22% of the time, the lost links were recovered, which
is equivalent to a recovery of 25.6% of active paths lost.

For a radio range of 200m, only 29.21% of active routes were lost, and of
these paths 79.09% were recovered. That is to say, in 23.10% of active paths,
there are problems on some occasion during the transmission, and in 6.11%
(29.21%-23.10%) of active paths these problems could not be solved without
loss of information.

Table 1. Percentage of paths lost and recovered for different radio transmission ranges

Radio transmission range (m)
100 150 200

Path lost 52.68% 43.24% 29.21%
Recoverd paths
(*) with respct to path lost 36.83%(*) 59.22%(*) 79.09%(*)
(**) with respect to active paths 19.4%(**) 25.6%(**) 23.10%(**)

4.2 Average Path Lifetime

The average path lifetime is the total time (the sum of the parts if there are
breaks) at the end of the experiment during which there is a usable path between
source and destination, divided by the number of different paths found. An
example of this can be seen in Fig. 9 where we can see firstly the ideal path
lifetime. This is the time for which the source and the destination can maintain
communication, single-hop or multi-hop, until the source and the destination are
definitively out of range.

Secondly, we can see the time that we want to measure. The path begins to
be available when after a route request (RREQ), there is a route reply (RREP),
and it is at this moment that the usable path lifetime begins. In both cases
when the source and destination are out of range the time count stops and
continues if there is a new path after the new search. The average path lifetime
is obtained through the sum of the usable path lifetimes9 divided by the number
9 It is important to note that we modelled more than one path request during the

simulation, and it is because of this that Fig. 9, showing the times, is repeated as
many times as there are requests, and so we can define the average path lifetime as
the sum of these times divided by the number of routes.
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Fig. 9. Diagram of times showing the Path Lifetime

Fig. 10. Average path lifetime for a session time of 180s

of paths found throughout the simulation time. Average path times have been
obtained for different session times. The performance is the same independent
of the session time, but average path times values are not independent of this
time. The difference in results is because the session time affects the period in
which the paths active time is accumulating, and therefore affects the average
path lifetime.

In Fig. 10, we can see the average path lifetime for a session time of 180s.
It shows how the average time evolves as the speed of the nodes is increased
from 1.38m/s to 20m/s, in function of the range. The average path lifetime
decreases as the speed of the node increases. In turn, we can also see that as
the radio transmission range is greater, the average time is also greater. The
results obtained are comparable with those obtained by Ishibashi et al. (see Fig.
15 in [18]), in which they present the effects of mobility in an ad hoc network.
Although the lifetime is only dependent on the mobility and transmission range,
the density of the nodes in the network affects the quantity of links formed.
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In [18] the authors use 50 nodes and the mobility model used is the random
waypoint. Because of this, we cannot make a direct comparison between both
sets of results, but it is possible to state that the basic performance is the same.
The speed of the nodes affect the link lifetime.

5 Conclusions and Future Work

In this paper, formal models have been used to analyze the average path life-
time. These models represent an ad hoc network in which AODV is the routing
protocol. The values obtained enable us to better understand the temporal per-
formance of the paths created with this algorithm. It enables us to evaluate
which services can be offered in an environment with the characteristics of the
ad hoc network described here; where mobile users can request information in
real time (images or alarms). Although in the experiments 3 radio ranges were
used to give an overview of how this parameter affects maintenance of the path,
we consider a radio transmission range of 150m to be the best choice as we have
demonstrated in previous works [16], [17]. With this value of radio transmis-
sion range and taking into account the assumptions mentioned previously; the
average path lifetime is 58.49s when the session time is 180s.

If we think of a scenario where the technicians are consulting images in or-
der to control the normal operation of an industrial system, a session of 58s
would be sufficient to observe the installation or how a process is working at
a particular time. However, it is important to take into account that 43.24%
of paths (Table. 1) are lost due to movement of the nodes, but that 59.22%
(Table. 1) of these lost paths are recovered. Therefore, this type of network is
best suited to offering images or alarm services, or to check the operation of
a process within the plant at a particular moment. However, it is important
to highlight that it would be difficult to offer services such as video streaming
or voice. Providing multimedia applications in ad hoc networks is becoming a
critical issue nowadays, but these applications are delay-sensitive and have high
bandwidth requirements. Studies such as those made in [23] state that to provide
efficient QoS routing over wireless ad hoc networks, problems such as scalabil-
ity, power control, energy drain balancing and an efficient design of QoS MAC
protocols need to be further investigated.

As we have stated in this paper, various suppositions were made in the devel-
opment of the model, and therefore we should point out that the average path
lifetime values would probably be a little lower. To address this, we are currently
working on the introduction of traffic and transmission errors into the model in
order to simulate the performance as close to reality as possible. Moreover, it is
widely recognised that the performance of an ad hoc network varies according to
the mobility model used [26], and because of this, we are also working on the use
of the random waypoint mobility model, RW. With all of these improvements
in the model, it will be possible to obtain values which are very close to those
of real situations. This would enable study the repercussions of node mobility in
the quality of service perceived by a user in supervision and control application
within an industrial environment.



Path Average Lifetime in Ad Hoc Networks 87

Acknowledgments. This work was supported by the MCyT (Spanish Ministry
of Science and Technology) under the projects TSI2007-66637-C02-01/02, whose
are partially funded by FEDER.

References

1. Molinero, F.G.: Real-Time Requirements of Media Control Applications. In: 19th
Euromicro Conference on Real-Time Systems, Pisa, Italy (2007)

2. Silvestre, J., Sempere, V.: An architecture for flexible scheduling in Profibus Net-
works. Computer Standards & Interfaces 29, 546–560 (2007)

3. Perkins, C., Royer, E.: Ad-Hoc On-Demand Distance Vector Routing (AODV),
RFC 3561 (July 2003)

4. Official IETF working group MANET webpage,
http://www.ietf.org/html.charters/manet-charter.html

5. OLSR webpage, http://www.olsr.org
6. Eleonora, B., Marco, C., Franca, D., Luciana, P.: Lessons from an Ad Hoc Network

test-bed: Middleware and routing issues. Ad Hoc & Sensor Wireless Networks 1,
125–157 (2005)

7. Eleonora, B.: Experimental Evaluation of Ad Hoc Routing Protocols. In: 3rd In-
ternational Conference On Pervasive Computing and Communications Workshops
(2005)

8. Gupta, A., Wormsbecker, I., Williamson, C.: Experimental evaluation of TCP per-
formance in multi-hop wireless Ad hoc networks. In: IEEE Computer Society’s
12th Annual International Symposium on Modelling, Analysis, and simulation of
Computer and Telecommunications Systems (2004)

9. Tschudin, C., Gunningberg, P., Lundgren, H., Nordstrom, E.: Lessons from Ex-
perimental MANET Research. In: Conti, M., Gregori, E. (eds.) Ad Hoc Networks
Journal, special issue on Ad Hoc Networking for Pervasive Systems

10. Conti, M., Giordano, S.: Multihop Ad Hoc Networking: The theory. IEEE Com-
munications Magazine 45(4), 78–86 (2007)

11. Albero, T., Sempere, V., Mataix, J.: A study of mobility and reachability in Ad
Hoc networks using stochastic activity networks. In: 2nd Euro NGI Conference:
Next Generation Internet Desing and Engineering (2006)

12. Sanders, W.H.: UltraSAN users manual, University of Illinois (1995)
13. Clark, G., Courtney, T., Daly, D., et al.: The Mbius Modelling tool. In: 9th Inter-

national Workshop on Petri Nets and Performance Models, pp. 241–250 (2001)
14. PERFORM Group (Performability Engineering Research Group) of Illinois at

Urbana-Champaign, http://www.mobius.uiuc.edu/
15. Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic Activity Networks: Struc-

ture, Behaviour and Application, In: International Conference On Timed Petri
Nets, Turin, Italy, pp. 106–115 (1995)

16. Albero, T., Sempere, V., Mataix, J.: A study of multi-hop communications in Ad
Hoc Networks using Stochastic Activity Networks. In: Workshop on Wireless and
Mobility (2006)

17. Albero, T., Sempere, V., Mataix, J.: Estudio de alcanzabilidad en Redes Ad Hoc
mediante redes de Actividad Estocstica. VI Jornadas de Ingeniera Telemtica (JI-
TEL 2007), Mlaga (2007)

18. Ishibashi, B., Boutaba, R.: Topology and mobility considerations in mobile ad hoc
networks. Ad Hoc Networks Journal, Elsevier 3(6), 62–776 (2004)

 http://www.ietf.org/html.charters/manet-charter.html
http://www.olsr.org
http://www.mobius.uiuc.edu/


88 T. Albero-Albero, V.-M. Sempere-Payá, and J. Mataix-Oltra
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Abstract. In this paper we address the overall message delay analysis of
IEEE 802.16 wireless metropolitan area network with contention-based
multiple access of bandwidth requests. The overall delay consists of the
reservation and scheduling components. Broadcast polling is used for
bandwidth reservation with binary exponential backoff (BEB) collision
resolution protocol and a simple scheduling is applied at the base station.
An analytical model is developed with Poisson arrival flow for the Non
Real-Time Polling Service (nrtPS) class. The model enables asymmetric
traffic flows, different message sizes at the subscriber stations and also
allows for Best Effort (BE) service class. An approximation of the mean
overall delay is established for the nrtPS service class. The analytical
model is verified by means of simulation.
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1 Introduction

IEEE 802.16 is a notorious specification, which is recommended for Wireless
Metropolitan Area Networks (WMANs). The standard specifies an air interface
for Broadband Wireless Access (BWA) [1]. It proposes a high-speed access sys-
tem supporting multimedia services and an extensive quality-of-service (QoS)
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Many authors studied the performance of the various IEEE 802.16 features.
In particular, the bandwidth requests mechanism to reserve a portion of the
channel resources is frequently addressed. A detailed description of the reser-
vation techniques and a general queueing model are given in the fundamental
works [2] and [3]. The standard allows a random multiple access (RMA) reser-
vation scheme and implements the truncated binary exponential backoff (BEB)
protocol for the purposes of the collision resolution.

The asymptotic behavior of the BEB protocol was substantially addressed
in the literature. In [4] it was shown that the BEB protocol is unstable in the
infinitely-many users case. By contrast, [5] shows that the BEB is stable for any
finite number of users, even if it is extremely large, and sufficiently low input
rate. An exhaustive description of various analytical RMA models models may
be found in [6] and [7]. The performance of the BEB algorithm in the framework
of the reference RMA model ([8], [9]) is addressed in [10], which allowed a deeper
insight into its operation. In the fundamental analysis of [11] an extremely useful
Markovian model to analyze the performance of the BEB algorithm was first
introduced.

Together with the analysis of the BEB itself, much attention is paid to its
proper usage in IEEE 802.16 standard. It is known that the BEB algorithm
may be adopted for both broadcast and multicast user polling. The efficiency of
broadcast and multicast polling was extensively studied in [12] and [13]. Some
practical aspects of the BEB application for the delay-sensitive traffic were con-
sidered in [14].

Considerable research effort is done also on overall performance aspects of
the IEEE 802.16 system. For example in [15], [16] and [17] various frameworks
are built and analyzed to guarantee a specified level of QoS. Furthermore, in
[18] and [17] the overall system delay is estimated and verified. However none of
these methods are dealing with overall delay in the context of contention-based
random access.

In this paper we develop a first analytic approximation for the overall delay
in the IEEE 802.16 system with broadcast polling.

The rest of the paper is structured as follows. Section II gives a brief overview
of IEEE 802.16 MAC layer. In Section III we provide the description of the
model and the notations. We conduct the overall delay analysis in Section IV.
In Section V we verify the analytical results by means of simulation. Finally, we
give our conclusion in Section VI.

2 Brief Overview of IEEE 802.16 MAC

IEEE 802.16 standard supports two operational modes: the mandatory Point-to-
MultiPoint (PMP) and the optional mesh mode. In the centralized PMP archi-
tecture the Base Station (BS) is the main node. It is responsible for coordinating
the communication process among the other nodes – Subscriber Stations (SSs).
All communication among the SSs is directed through the BS and takes place on
independent transmission channels of two types. In the Downlink Channel (DL)
only the BS transmits data to the SSs, while in the Uplink Channel (UL) the
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Fig. 1. IEEE 802.16 MAC frame structure in TDD/TDMA mode

data is sent by the SSs to the BS. Hence, there is no multiple access on the DL
channel, while the UL channel is shared among multiple SSs.

The standard provides two channel allocation schemes: Frequency Division
Duplexing (FDD) and Time Division Duplexing (TDD). In FDD the the DL and
the UL channels are assigned to the different frequencies, while in TDD both
channels are assigned to the same frequency, and are differentiated by assigning
different time intervals to them. In this case the time is divided into fixed-length
frames, which consist of the DL and the UL sub-frames corresponding to the DL
and the UL channels, respectively. The length of the sub-frames can be varied
dynamically. The SSs access the UL channel by means of Time-Division Multiple
Access (TDMA).

The MAC frame structure can be seen in Figure 1. In the DL sub-frame
the BS broadcasts data to all the SSs, and each of them captures only those
addressed to it. Besides the DL scheduling, the BS is also responsible for the
UL scheduling. The BS determines the number of slots to be allocated for each
SS in the next UL sub-frame. This information is broadcasted in the UL-MAP
message in the beginning of each frame. After receiving the UL-MAP message,
the SS transmits data in the next UL sub-frame using the time slots which are
granted to it.

The SS can initiate bandwidth reservation by sending a Bandwidth Request
(BW-Req) message in the Reservation Interval (RI) in the beginning of each UL
sub-frame. The standard defines contention-free polling mechanism (unicast) and
contention-based random access polling mechanisms (multicast or broadcast) for
bandwidth reservation. The duration of the RI is not specified by the standard
explicitly. In case of contention-based random access, the defined collision reso-
lution mechanism is the truncated Binary Exponential Backoff (BEB) protocol.
Additionally, IEEE 802.16 enables piggybacking for sending BW-Reqs attached
to data packets.

3 Model and Notations

3.1 Restrictions of the Model

Our model describes the IEEE 802.16 MAC with the following limitations:
R.1: The operational mode is PMP.
R.2: TDD/TDMA channel allocation scheme is used.
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R.3: Messages of nrtPS and BE service classes are allowed, however we con-
sider only the performance of the nrtPS service class.

R.4: The bandwidth reservation mechanisms is the contention-based broad-
cast polling.

R.4: The uplink scheduler applies a simple scheduling (see in 3.2).
R.6: One connection per SS is allowed.
R.7: Piggybacking is not used.

3.2 General Model and Scheduling

There are 1 BS and N SSs in the system, which together comprise N +1 stations.
In this model we consider only the uplink traffic of messages. Each SS has infinite
buffer capacity to store the waiting messages. Messages transmitted by the SSs
consist of a number of data packets.

A BW-Req sent by a SS i represents the request for all i-messages, which are
accumulated in its outgoing buffer since its last successful BW-Req sending.

For each SS the BS maintains an individual buffer with infinite capacity. At
the end of each polling slot the BS performs an immediate processing of the
successfully received BW-Req, if any, and of non-empty individual BS buffers of
SSs, at which scheduling arises.

If BW-Req is received from SS i, then BS immediately assigns an individual
request to each data message represented by the received BW-Req and these
requests are put into the corresponding individual BS buffer of SS i (accord-
ing to their order taken from BW-Req). If the individual BS buffer of SS i is
empty upon receiving a BW-Req from that SS, then after putting the individual
requests into the individual BS buffer of that SS the i-message corresponding
to the first individual request is immediately scheduled for transmission on UL
in the next frame. The frame duration is Tf . As exactly one i-message can be
transmitted in one frame the BS schedules the i-messages corresponding to the
waiting individual requests periodically after each Tf time until the individual
BS buffer of SS i becomes empty.

The contention-based random access and the scheduling is illustrated in
Figure 2.
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This way one message will be scheduled from every non-empty individual BS
buffers of SSs during processing a frame (its RI). This processing is repeated
periodically in consecutive frames.

In the case when one or more SSs have no message of nrtPS service class to
send on uplink, the system is allowed to utilize the unused uplink transmission
capacity for uplink transmission of BE messages. This ensures a more efficient
capacity utilizing. However the modeling of reservation and transmission of BE
messages is out of scope of this paper.

3.3 Analytical Model

The message arrival process during each slot is Poisson at each SS. The duration
of a transmission slot is τ . We express the number of arrivals in messages per
time unit. The mean number of arriving i-messages per time unit is denoted by
λi. Hence the overall arrival rate is λ =

∑N
i=1 λi. The messages are assumed to be

of fixed length. Therefore, bi denotes the size of an i-message, i.e. the number of
packets (transmission slots) in a message arriving to SS i. The arrival processes
and the message sizes (in transmission slots) at the different SSs are assumed to
be mutually independent.

Denote the duration of the DL and UL sub-frames by Td and Tu, respectively.
Tri stands for the duration of the RI and Tud is the maximum available duration
of the uplink data transmission in a frame. It follows that:

Tu = Tri + Tud.

The transmission time of a BW-Req is α. The reservation interval of each frame
consists of K polling slots (transmission opportunities), whose sizes equal to the
transmission time of a BW-Req. Hence Tri = Kα and we get:

Tud = Tu − Kα. (1)

Since in one frame exactly one i-message can be transmitted on uplink from
every SSs, for the optimal capacity allocation of the SSs holds:

Tud =
N∑

i=1

bi. (2)

3.4 Model Assumptions

We denote the utilization of SS i by ρi. Since each SS gets a chance to trans-
mit on UL at most one message in each frame, we obtain for the utilization of
SS i:

ρi = λiTf . (3)
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Additionally, we formulate the following assumptions of our model:
A.1: The following relation holds for the arrival rate of each SS i:

ρi = λiTf < 1, i = 1, . . . , N. (4)

This relation ensures the stability of the model.
A.2: The time of BS processing including scheduling is negligible.
A.3: The channel propagation time is negligible.
A.4: The transmission channels are error-free.
A.5: BW-Req for i-messages arriving during RI can be sent first time in the

RI of the next frame.

4 Overall Delay Analysis

The overall delay of an i-message arises mainly due to waiting of the i-message
in the outgoing buffer of SS i to get access for successfully sending bandwidth
request (waiting for reservation) and the corresponding queuing in the individual
BS buffer of SS i (waiting for scheduling).

4.1 Overall Delay Definition

We define the overall delay (Wi) of the tagged i-message as the time interval
spent from its arrival into the outgoing buffer of SS i up to the end of its successful
transmission in the UL. It is composed of several parts:

Wi = W r
i + α + W s

i + W t
i + biτ, (5)

where W r
i is the reservation delay, which is defined as the time interval from

the i-message arrival to SS i until the start of successful transmission of the
corresponding BW-Req to the BS.

α is the transmission time of a BW-Req.
We define the scheduling time of the tagged i-message as the the end of the

polling slot, when the tagged i-message is scheduled by BS for transmission on
UL in the next frame.

W s
i is the scheduling delay, which is defined as the time interval from the end

of sending a BW-Req of the tagged i-message to its scheduling time.
W t

i is the transmission delay, which is defined as the time interval from the
scheduling time of the tagged i-message to the start of its successful transmission
in the UL sub-frame.

biτ is the transmission time of an i-message.

4.2 Reservation and Scheduling Delays

We consider the 2 most important terms of the overall delay (reservation and
scheduling delays) together, since it results in a simpler queueing model as treat-
ing them separately.
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Since SS i has an individual request buffer in BS and a fixed bandwidth for UL
transmission in each frame assigned to it, the statistical behavior of a particular
SS is independent of the behavior of the other SSs. Therefore the stochastic
behavior of a particular SS can be modeled by an individual queueing model.

In the queueing model for the reservation and scheduling delays W t
i does not

need to be taken into account. Hence in this queueing model the service of the
tagged i-message starts at its scheduling time, i.e. when the BS schedules that
message for transmission on UL in the next frame. In case of empty individual BS
buffer of SS i this happens at the end of successful BW-Req transmissions from
that SS. Hence in this queueing model the busy periods can start only at the
end of successful BW-Req transmissions from SS i. As SS i has fixed bandwidth
for UL transmission in each frame assigned to it, the service time is Tf . Thus
the appropriate model is an M/D/1 queueing model, in which the service time
equals Tf . Furthermore we observe that the service of the arriving i-message can
not start until the next successful BW-Req transmissions from SS i even if the
individual BS buffer of SS i is empty. Although this is a vacation-like property,
we rather apply the approach of [9] by means of the residual service time, since
it does not need any higher moments and hence it is simpler.

Applying the mean delay formula of the approach of the residual service time
in our model with the corresponding parameters leads to

E [W r
i + W s

i ] = E
[
W 0

i

]
+

λiT
2
f

2(1 − λiTf)
, (6)

where W 0
i is the initial message delay, which is the sum of the reservation and

scheduling delays conditioning on the fact that the arriving i-message sees the
system empty.

We remark here that (6) is an approximation. The approach of the residual
service time – exactly as the vacation model approach with exhaustive service
– assumes that the service is work conserving as far as there are i-messages
in the system. However if there are i-messages waiting for reservation when the
individual BS buffer of SS i becomes empty then the principle of work conserving
does not hold any more for this model, because the service stops.

4.3 Initial Message Delay – In General

We assume that in stationary situation the successful BW-Req transmission at
SS i in a polling slot has a constant probability, pst

i > 0.
In the following we introduce several quantities in order to determine E

[
W 0

i

]
in

our model. We define W rs
i as the time interval from the begin of first try of sending

a BW-Req of the tagged i-message until the start of successful transmission of the
correspondingBW-Req to the BS. Due to the constant probability of the successful
BW-Req transmission at SS i in a polling slot W rs

i is geometric in terms of the
number of polling slots. More precisely its distribution is given as:

P
{
W rs

i = � n

K
�Tf + (

n

K
)∗Kα

}
= (1 − pst

i )npst
i , n ≥ 0, (7)
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where �c� and (c)∗ stand for the integral part and the fractional part of c,
respectively.

By definition W rb
i is the interval seen by a first arriving i-message after a

successful BW-Req transmission until the begin of first try of sending the BW-
Req from that SS. Due to the empty system condition W 0

i is given as

W 0
i = W rb

i + W rs
i . (8)

After a successful BW-Req transmissions until the begin of first try of sending
a BW-Req from SS i all arrivals occurs only in the last Tf part. Hence

E
[
W rb

i

]
=

Tf

2
. (9)

It is shown in the Appendix that

E [W rs
i ] =

(
1 − pst

i

)K
1 − (1 − pst

i )K
Tf +

(
1 − pst

i K
(
1 − pst

i

)K−1 − (1 − pst
i

)K) 1−pst
i

pst
i

1 − (1 − pst
i )K

α. (10)

Applying (9) and (10) in (8) leads to

E
[
W 0

i

]
=

Tf

2
+

(1 − pst
i )K

1 − (1 − pst
i )K

Tf

+

(
1 − pst

i K (1 − pst
i )K−1 − (1 − pst

i )K
)

1−pst
i

pst
i

1 − (1 − pst
i )K

α. (11)

For high traffic load pst
i can be approximately determined by means of the

independent conditional collision probability assumption proposed by Bianchi
[11], which leads to a nonlinear equation (see also [13]).

However in other traffic ranges it does not hold, since during the collision res-
olution process the SSs influences each other. Thus in general the determination
of pst

i is a difficult task. Therefore, as a first analytic approximation, we consider
a simplified symmetric model to determine E

[
W 0

i

]
.

4.4 Initial Message Delay – Symmetric System

Let K per frame equal to 1 and we set the message sizes of all SSs bi equal to
1 packet. Further we set all λi values equal, which makes the system symmetric
in terms of the message arrival flows.

The performance of the BEB collision resolution protocol should be optimized
for the considered system settings. In [13] after the extensive analysis of the BEB
operation it was established that the optimal value of the BEB parameter W
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(initial contention window) should be equal to 2N − K, where N – number of
the nrtPS SSs in the system. We remark here that the polling slots of W can
be distributed over more frames. The second BEB parameter m (backoff stage)
should be equal to 0 for the optimal BEB protocol.

Therefore, the optimized BEB is reduced to the Aloha protocol [13], where
each backlogged SS (the one that has at least one message ready for transmission)
chooses one of W polling slots following the message arrival uniformly. In case
of collision the SS repeats the choice of a random polling slot to retransmit its
BW-Req until the transmission is finally successful. Once BW-Req is successfully
transmitted to the BS in a polling slot, the queue of messages that belong to
the corresponding SS is updated at the BS. Therefore, the information of all the
messages accumulated during the contention process is transfered to the BS and
the service starts.

In order to establish the initial message delay of a tagged SS i we consider the
sequence of service times, i.e. the ends of the polling slots in the frame following
the one where a BW-Req was transmitted successfully. We conclude, that as
arrival flow is Poisson, the newly arrived message firstly waits for Tf

2 time before
the first transmission attempt of a BW-Req according to the PASTA property
(for a more thorough explanation see [19]). Then the contention process starts,
which adds to the initial delay some random number of frames. Below we give
an estimation on this random number.

We consider the following simple linear feedback model. Notice that in terms of
bandwidth requesting each SS may be either thinking or backlogged. The thinking
SS has no message ready for transmission and generates one during a frame with
the probability z = 1− e−

λ
N Tf . Once a new message is generated, the SS enters

the backlogged state where no new arrivals are possible. This corresponds to the
real system where after the first arrival an SS starts the contention process and
the subsequent arrivals are irrelevant to establish the sought contention delay.
Once the transmission of a BW-Req is successful, the SS enters the thinking
state and is able to generate new messages. In each polling slot the backlogged
SS attempts to transmit a BW-Req with the probability p = 2

W+1 .
We describe the considered linear feedback model [20] with a Markov chain

consisting of N + 1 states (see Figure 3). Each state corresponds to the number
of the backlogged SSs in the system at the moment of the service time N (t). The
transition probabilities for the considered Markov chain are as follows:

pij = Pr{N (t+1) = j|N (t) = i} = (12)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, j ≤ i − 2
ip(1 − p)i−1(1 − z)N−i+1, j = i − 1
ip(1 − p)i−1(N − i + 1)z(1 − z)N−i+
+(1 − ip(1 − p)i−1)(1 − z)N−i, j = i

ip(1 − p)i−1
(

N − i + 1
j − i + 1

)
zj−i+1(1 − z)N−j+

+(1 − ip(1 − p)i−1)
(

N − i
j − i

)
zj−i(1 − z)N−j , j ≥ i + 1.
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0 1 2 N…

Fig. 3. Markov chain for linear feedback model

It may be shown that the considered chain is finite and irreducible for p, z > 0.
Therefore, a stationary probability distribution always exists. This distribution
may be obtained, for instance, by solving a system of N + 1 linear equations:⎧⎪⎪⎨⎪⎪⎩

Pj =
N∑

i=0
Pipij , j = 0, 1, . . . , N

N∑
i=0

Pi = 1.
(13)

Using the stationary probability distribution one may obtain the average num-
ber of the backlogged SSs

B =
N∑

n=1

nPn (14)

and the stationary success probability

S =
N∑

n=0

s(n, p)Pn, (15)

where s(n, p) = np(1 − p)n−1. Finally, the mean delay in the considered linear
feedback model is given by the Little’s result, that is D = B

S .
Combining the above, the initial message delay in the symmetric system is

given by the following expression:

E
[
W 0

i

]
= Tf(D +

1
2
). (16)

4.5 Transmission Delay – Symmetric System

Remember, that each SS has a fixed position in the uplink subframe, that is, the
transmission delay of SS i is (i − 1)τ . Summarizing it over every SSs yields the
transmission delay under symmetric settings as

W t
i =

1
N

N∑
i=1

(i − 1)τ = τ
N − 1

2
. (17)
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4.6 Mean Overall Message Delay

Applying (5) in symmetric system, the mean overall message delay is given as:

E [Wi] = E[W r
i + W s

i ] + α + E
[
W t

i

]
+ τ. (18)

Accounting for (18), (6), (16) and (17) the mean overall message delay for the
symmetric system can be expressed by:

E [W ] = Tf(D +
1
2
) +

λ
N T 2

f

2(1 − λTf

N )
+ τ

N + 1
2

+ α. (19)

5 Simulation Results

In order to validate the considered analytical model a simulation program for
IEEE 802.16 MAC was developed. The program is a time-driven simulator that
accounts for the discussed restrictions on the considered system model. The
applied simulation parameters of IEEE 802.16 MAC and PHY, which follows
[21], are summarized in Table 1.

Table 1. Basic IEEE 802.16 simulation parameters

Parameter Value
PHY layer OFDM

Frame duration (Tf ) 5 ms

DL/UL ratio 50:50
Channel bandwidth 7 MHz

MCS 16 QAM 3/4
Packet length 512 Byte

BW-Req duration (α) 0.17 ms

For the purposes of simplicity we again restrict our practical explorations to
the symmetric system case. This enables a better visibility of the below compar-
ison results.

In Figure 4 we conduct the comparison of the overall delay for the practical
system and the established theoretical estimation. We set the number of nrtPS
SSs in the system N equal to 6 and run each simulation point for approximately
10 minutes of the real time. Firstly, we notice that the derived analytical expres-
sion gives a good estimation on the realistic overall delay value.

Another interesting observation is the intricate shape of the theoretical overall
delay curve. Remember, that the analytic formulas are approximations, since the
work conserving does not hold any more for this model if there are i-messages
waiting for reservation when the individual BS buffer of SS i becomes empty.
Therefore the i-messages actually waiting for reservation experience an addi-
tional waiting time compared to the work conserving case, where the service
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Fig. 4. Verification of the derived model for the symmetric system case

would continue. This supplementary waiting time of the tagged i-message takes
until the next successful BW-Req transmission from SS i. It follows that our
approach with the work conserving assumptions underestimates the real waiting
time. On the other hand, the analytical approach overestimates the reservation
time since the first message in a batch transmitted in one BW-Req waits longer
than the others. Therefore we see that the shape of the curve changes. However
the result gives a good approximation for the practical value.

6 Conclusion

In this paper we have developed an analytical approximation for the mean overall
message delay of nrtPS traffic in IEEE 802.16 wireless network. This model ac-
counts for both reservation delay and scheduling delay components and enables
asymmetric Poisson arrival flows and different message sizes. More importantly,
the contention-based broadcast polling of subscriber stations is the studied band-
width reservation mechanism.

For symmetric system a simple linear feedback model is used to estimate the
contention delay. As our experiments show, the established theoretical overall de-
lay gives a good approximation for the practical values obtained with simulation.

The analytical approach used for symmetric system (the linear feedback
model) can be extended for the asymmetric system as well, where arrival flows
and/or message sizes are not equal. Moreover, the model may be also extended
to account the case of K > 1 and the various BEB parameters.
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A Mean of W rs
i

Using (10) the mean of W rs
i can be expressed for 0 < pst

i < 1 as

E [W rs
i ] =

∞∑
j=0

(
jTf

(j+1)K−1∑
n=jK

(
1 − pst

i

)n
pst

i +
(j+1)K−1∑

n=jK

(n − jK) α
(
1 − pst

i

)n
pst

i

)
. (20)

Rearranging results in

E [W rs
i ] =

∞∑
j=0

(
jTf

(
1 − pst

i

)jK
K−1∑

n−jK=0

(
1 − pst

i

)n−jK
pst

i

+ αpst
i

(
1 − pst

i

)jK
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(n − jK)
(
1 − pst
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)n−jK
)

(21)

=
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i

)jK
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i

)K)
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i K
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We remark here that pst
i = 1 implies W rs

i = 0 and thus (21) holds also for
pst

i = 1.
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Abstract. The throughput of the medium access control sub-layer in IEEE 
802.11 wireless local area network depends on the performance of the network 
at the physical layer level. In this paper, we perform cross layer analysis be-
tween the medium access control and the physical layers in order to study the 
behavior of the network including the achieved throughput for various types of 
modulation and coding schemes. In our analysis, we take into account the 
packet error rate of the schemes as a loss factor in an improved Markov Chain 
model. The model is in consistent with the DCF access mechanism of IEEE 
802.11 standard and it includes all of its parameters in different operating con-
ditions. Expressions for throughput and average service time of packets are 
provided. The analytical expressions are solved using MATLAB and the model 
is validated by experiments. 

Keywords: 802.11, Markov Chain, Modeling. 

1   Introduction 

Growth of wireless packet data applications drives the rapid evolution of next genera-
tion wireless networks. Accurate analysis should be conducted on the current wireless 
standards to obtain precise picture of what steps should be taken to eliminate any de-
ficiencies and make accurate improvements. One of the adopted techniques for study-
ing the behavior of the network in recent years is the cross-layer-based analysis; 
whereby values in different layers of a subsystem are linked together and co-analyzed. 
In a IEEE 802.11 wireless network [1], the medium access control (MAC) and physi-
cal (PHY) layers can be co-analyzed to obtain actual and accurate values of the 
achieved throughput by different devices connected to the network.  

The MAC throughput is strongly dependant on the following factors. First, the pro-
tocol timing overheads such as interframe spacing and the time of acknowledgements. 
Second, the time spent in the random backoff counter where the value range increases 
exponentially with transmission failures. It also depends on the transmission time of 
other users connected to the same network and sharing the same medium. Finally, it 
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depends on the packet error rate (PER) at the physical layer and the transmission du-
ration of each packet. Since the PER strongly depends on the modulation and coding 
schemes at the physical layer, the MAC throughput implicitly depends on the used 
scheme.  

In [2], we introduced a Markov Chain model for the DCF access mechanism to 
precisely analyze the effect of the first three factors on the MAC throughput. The 
model was validated experimentally and by simulations. We also studied in depth the 
effect of the transmission duration for each packet on the system. We found deficien-
cies in the performance of the network when stations emit data at different rates. 

The main contributions in this paper are summarized as follows. We analyze the 
effect of various types of modulation and coding schemes at the physical layer level 
on the MAC throughput. The studied schemes are Uncoded QPSK, Barker, CCK and 
PBCC which are used in 802.11b wireless LANs. We conduct the analysis by expand-
ing our introduced MAC model to a cross-layer-based model. We include in our 
analysis, the PER and SNR based on an in depth study of the IEEE 802.11 physical 
layer introduced in [3]. We use appropriate values of PER and SNR according to the 
transmission speed of stations. 

The rest of the paper is organized as follows. In Section II, we review relevant 
work in the literature. In Section III, we describe the cross-layer-based Markov Chain 
model. We provide expressions for the throughput and the average service time in 
Section IV. Finally, we discuss the numerical results in Section V.  

2   Relevant Work 

Relevant work is summarized in the following. In [4], Bianchi introduced a Markov 
chain model to compute the 802.11 DCF throughput. He made many assumptions in 
order to simplify the analysis. Many enhancements were then made on Bianchi’s 
model to make it more consistent with the standard. Most studies performed analysis 
on the MAC layer and assumed ideal channel conditions. Recent studies considered 
the addition of the physical layer parameters and their effect on the network perform-
ance. In [5], the authors proposed an analytical model that calculates the performance 
of the standard taking into account the transmission errors for the IEEE 802.11a pro-
tocol. In addition to the collision between packets, they added the transmission errors 
in calculating the probability of packet loss. They assumed in their calculations that 
both the transmission errors and the collisions are independent. In [6], Helkov and 
Spasenovaski analytically analyzed the impact of an error-prone channel overall per-
formance. They had a similar approach of the previous study in calculating the prob-
ability of packet loss. Finally, Manshaei et al proposed in [7], an analytical model that 
accounts for the positions of stations with respect to the access point while evaluating 
the performance of the MAC layer. They showed that the saturation throughput per 
station is strongly dependant not only on the station’s position but also on the posi-
tions of other stations. 

In [5] and [6], the authors included the PER without taking the channel aspects and 
its operating conditions in their calculations. They also did not show in their analysis, 
the dependency of PER on the SNR. On the other hand, although expressions for PER 
was analytically derived in [7], many assumptions and approximations were made to 
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simplify the analysis. For example, the authors assumed a simple path loss model that 
only considers the attenuation of power caused by the distance between the emitting 
terminal and the access point. 

In [8], we used Markov Chains in a cross layer environment to model the IEEE 
802.11 DCF access mechanism of the MAC layer for systems with multiple antennas. 
We studied the impact of adding MIMO links to achieve spatial multiplexing using 
ZF and MMSE on the performance of the MAC. All the analysis were conducted in a 
single rate environment and all stations were assumed to transmit data at the same 
speed.  

3   The Cross-Layer-Based Models 

Our proposed station model is shown in Fig. 1. In this paper we call stations which 
transmit data at full rate as fast stations and the ones which transmit data at lower 
rates as slow stations. Note that we model fast and slow stations in a similar manner. 
We use fast stations in deriving all expressions. Slow stations satisfy similar expres-
sions with different values unless otherwise mentioned.  

The model follows the operation of the IEEE 802.11 DCF. We describe it in the 
following.  

 
 

Backoff states 
Before a station starts transmission, it senses the channel to determine if it is idle. If 
the channel is idle for a DIFS, the station starts sending on the channel. Otherwise the 
station defers transmission for a backoff period of time β that is determined by ran-
domly choosing an interval within its contention window. It does so by setting a 
backoff counter to the value β and decrementing it progressively. The backoff counter 
is stopped when a transmission is detected on the channel and decremented when the 
channel is sensed idle again. The size of the contention window is increased to double 
the previous size for every unsuccessful transmission until it reaches its maximum 
value. The packet is dropped from the queue after M unsuccessful attempts. 

In our model, let a station be in one of the backoff states Bij. If the channel is idle 
during the last time slot, the station decrements its backoff timer and enter Bij-1 or else 
it stays in Bij. We denote the minimum and the maximum values of the contention 
window by W and Wmax respectively. The backoff counter Vi is selected uniformly 
from [l, 2i W] and the packet is retransmitted until the station reaches the backoff 
stage i such that 2mW =Wmax . From that point on, the backoff counters is always cho-
sen in the range [l, Wmax]. Furthermore, if the packet is lost, it will be retransmitted 
until the total number of transmission attempts equal to the maximum number of retry 
limits M. 

Note that we included the DIFS period of time that the station waits after sensing 
an idle medium in the channel model. This is discussed in the following section.   

 
Transmission states 
The station starts transmitting on the channel when it reaches the first state of any ith 
backoff stage. An ACK (CTS) frame is sent by the receiver upon successful reception of 
the transmitted frame. The station waits a period of time r that is equal to ACKTimeout 
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(CTSTimeout) in the standard before it detects that its previous transmission was not 
received successfully. During that time, the station is in the ATij states. If no ACK 
(CTS) is sent, the station enters the unsuccessful transmission states Uij.  

The station enters successful transmission states Si, if the data frame was not lost 
due to collisions or errors in the channel. Successful transmission is completed when 
the station receives the ACK. During that time, it is in the AKi states.  
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Fig. 1. The Station Model 
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Note that after any successful transmission, it is mandatory in the standard for the 
station to enter the first backoff stage even if it has a pending frame in its queue as 
shown in Fig. 1. 

 
Idle states  
The station enters state D only if its transmission queue is empty and its backoff timer 
is zero. It leaves D when it gets at least one frame from the upper layers. If the me-
dium is idle, the station initiates frame transmission on the channel. This frame will be 
successfully transmitted when the frame is not lost due to a collision or channel er-
rors. If the medium was busy, the stations enters Yi and starts its backoff procedure 
with a minimum contention window. When the backoff timer reaches zero, the station 
initiates frame transmission with probability 1 given that there is at least one frame in 
its queue. 

 
Basic and RTS/CTS access mechanisms 
Since the basic or RTS/CTS access mechanisms can be employed in the model, we 
use different notations for the frame lengths depending on where the frame is used. 
We denote the length of the transmitted frame by L1f when successful transmission 
occurs. This frame length is only equal to the length of a data frame. On the other 
hand, we denote the frame length by L2f when the frame is lost. Frame length L2f is 
equal to either, the length of a data frame or an RTS frame. 

Note that the station goes from the current state to itself, or another state, every 
time slot; i.e. the model has a constant transition time that equals the aSlotTime time 
interval of the standard. Therefore, we normalize the time duration of all variables to 
be a multiple number of time slots. For example, to calculate the length of data frame 
L1f of a station, we actually count the number of time slots it takes a frame to be 
transmitted on the channel. Thus, we calculate L1f as 

f
f DataRateaSlotTime

nBitsTheLengthI
L

.
1 = .                                     (1) 

The Number of time slots needed to transmit a frame depends on the transmission 
rate of the station. For example, it takes 400 time slots to transmit a frame whose size 
is 1000 bytes when the data rate is 1 Mbps, and it takes only 37 time slots to transmit 
the same frame when the data rate is 11 Mbps.  

Since the channel impacts the operation of all stations, we use a separate model for 
the channel.  

The channel model is shown in Fig. 2. The channel is in the idle state E when there 
is no transmission, and it is busy when it is in one of the following states, 

 

− successfully transmitting a frame of a fast station Ofi, (i=, 1,2,..L1f ),  
− successfully transmitting a frame of a slow station Ofsi, (i=, 1,2,..L1s ), 
− completing the frame exchange sequence of a successful transmission for a 

fast station OKfi, (i=, 1,2,..x),  
− completing the frame exchange sequence of a successful transmission for a 

slow station OKsi, (i=, 1,2,..x), 
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− transmitting two or more collided frames from fast stations Nf f i, (i=, 1,2,..L2f 
+DIFS), 

− transmitting  two or more collided frames from slow stations Nssi, (i=, 
1,2,..L2s +DIFS), 

− transmitting two or more collided frames from a mix of fast and slow sta-
tions Nfsi, (i= 1,2,.. L2+DIFS; L2=max(L2f , L2S )).  
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Fig. 2. The Channel Model 

Note that x represents the period of time the channel is busy after a successful 
transmission. It is equal to a time duration of (SIFS + δ + ACK + δ + DIFS) for the 
basic access mechanism, or (RTS + δ + SIFS + CTS + δ + SIFS + δ + SIFS + ACK + 
δ + DIFS) for RTS/CTS, where δ is the propagation delay. 

In the DCF, the backoff counter of a station is decremented in each idle time slot, 
frozen during channel activity periods and resumed after the medium is sensed idle 
again for a DIFS. The station resumes the backoff counter to the discrete value it had 
at the instant of time the busy channel period started. For example, suppose the back-
off counter is decremented to 3 during an idle slot. Then this value is frozen during 
the busy channel period and resumed, again to value 3, only a DIFS after the end  
of the busy period. As a consequence, it is decremented to value 2 only a time slot 
after the DIFS. This happens when the station transits from state Bij to Bi j-1. 

Based on our models, we derive expressions for throughput in the following section.   

4   Throughput  

Throughput of a station by definition is the volume of data that the station success-
fully transmits. Therefore, we have to first find the probability that a station is suc-
cessfully sending a frame to find the throughput. The computation of this probability 
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is equivalent to calculating P(Si), the probability of being in state Si, a successful 
transmission state, for all i = 1 to  L1f from the station model.  

From Fig.1, all the probabilities of being in the successful transmission states are 
equal, i.e. P(S1)=P(S2)=...=P(SM). Therefore, we have to find any of these probabili-
ties in order to find the others.  Note that the number is equal to L1f. Let Psuc be any of 
the successful transmission states. We then find Psuc by making the following steps. 
First, we find an expression for the normalization condition of the station model in a 
form that includes all state probabilities. We then solve the normalization condition to 
include the transition probabilities in the expression. By making simplifications, we 
write all the state probabilities in terms of Psuc. Thus, we end up with an expression 
with Psuc as a function of the transition probabilities.  

Now let the transition probability b be the probability that the channel was busy in 
the last time slot and the transition probability cf be the failure probability. Further-
more, let zf be the probability to find the queue empty at the time of transmission. 
Finally, let gf be the probability that at least one packet arrived from the upper layers 
in the last time slot.  

Since the sum of the probabilities of being in all states is one, we have  
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where P(Χ) denotes the probability of being in state Χ of the station model. 
We then find Psuc as a function of the transition probabilities b, ff, zf, gf. Thus, 
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Finally, we find the throughput from the following expression.  

.1. ffsucf DataRateLPThroughput =                                    (4) 

Note that expressions for the transition probabilities of the station model have not 
been found yet. We have to find their values to compute the throughput from equation 4. 
The transition probabilities of the station model are found in the following.  
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The probability of a busy channel  
We first find the probability b that the channel was busy in transmitting successful or 
corrupted frames. We solve for b by using similar steps as we did before in finding 
Psuc but we use the normalization condition of the channel model instead.   

Since the sum of the probabilities of being in all states is one, we have 
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where P(Χ) denotes the probability of being in state Χ of the channel model. 
We then use equation 5 to find an expression for b as a function of the transition 

probabilities of the channel. Note that b is equal to 1 – (the probability that the chan-
nel was in the idle state E). Hence,  

( ) ( ) ( ) +++++++=− ssff qxLqxLb 111111
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( ) sfs pDIFSL 12 ++ .                                                       (6) 

Next, we find the probability τf that a station initiates a transmission in the next 
time slot given that the channel was free. From the station model, we find that it 
equals the probability that the backoff counter is decremented to zero and the station 
is in one of the first backoff states at any stage or it is in the idle state and received a 
new packet from the upper layers. Thus, 

⎥
⎦

⎤
−⎢

⎣

⎡ +++
−

= ∑
=

)()1()()()(
1

1
00

1
00 BPzBPDPgYP

b f

M

i
iffτ  

b

cc

bz
P

f
M
f

f
suc

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−
=

+

1

1

1

1 1

.                                                                 (7) 

For a given number of fast stations nf and slow station ns, we find the transition 
probabilities of the channel model as follows.  Let qf be the probability that only one 
fast station initiates a transmission and no slow station initiates a transmission. Then,  

( ) ( ) .11 1 sf n
s

n
ffff nq τττ −−= −                                    (8) 

Let qs be the probability that only one slow station initiates a transmission and no 
fast station initiates a transmission. Then,  

( ) ( ) .11 1 fs n
f

n
ssss nq τττ −−= −                                    (9) 

Let pff be the probability that two or more fast stations initiate transmissions and no 
slow station initiates a transmission. Then,  
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( ) ( )( )( ) .1111 1 sff n
s

n
f

n
fffff np ττττ −−−−−= −                                (10) 

Let pss be the probability that two or more slow stations initiate transmissions and 
no fast station initiates a transmission. Then,  

( ) ( )( )( ) .1111 1 fss n
f

n
s

n
sssss np ττττ −−−−−= −                                (11) 

Finally, let pfs be the probability that one or more fast stations initiate transmission 
and one or more slow stations initiate transmission. Then,  

( )( ) ( )( )sf n
s

n
fsfp ττ −−−−= 1111 .                                           (12) 

The Probability of Packet Loss 
In a wireless network, the packet is lost if any of the following events occur. The 
packet is lost if it encounters a collision with another packet due to simultaneous 
transmission of two or more stations. It may also be lost if it is corrupted by errors 
during transmission on the channel due to fading, noise, interference, etc. Further-
more, a packet that encountered collisions after M transmission trials is dropped from 
the queue. Finally, a packet that joins a queue which is full is also dropped.  

In our model, we assume that the queue at each station is large and there are no 
dropped packets due to a queue being full. We also explained earlier how to take into 
account the third possibility by including the number of transmission attempts M in 
the station model. 

To compute the probability of a packet loss due to transmission failure because of 
collisions or channel errors, we define the failure probability cf of a fast station as 
follows: 

ffcolfcolf PERccc )1( ,, −+= .                                           (13) 

Similarly, for a slow station  

sscolscols PERccc )1( ,, −+= .                                         (14) 

The probability that a fast station encounters a collision is the probability that in 
any time slot, at least one of the remaining (nf – 1) fast stations or ns slow stations 
transmits. Hence, 

( ) ( ) .111 1
,

sf n
s

n
ffcolc ττ −−−= −                                     (15) 

Similarly, for a slow station 

( ) ( ) .111 1
,

fs n
f

n
sscolc ττ −−−= −                                    (16) 

Note that the calculation of PER, in a WLAN is hard to obtain analytically. As dis-
cussed in [7], approximations should be made to derive a close form of the PER as a 
function of the SNR. This motivated us to employ the study of the physical  
layer that was made in [3] for various types of coding and embed their results in our 
model. 
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Fig. 3. The packet error rate (PER) as a function of the SNR for various types of coding and 
modulation schemes 

Fig. 3 shows the PER of different types of coding and modulation schemes as a 
function of the received signal-to-noise ratio as it is illustrated in [3].  

In Wireless LANs, The IEEE 802.11 standard uses Direct Sequence Spread Spec-
trum (DSSS) with a data rate 1Mbps when the modulation is the Binary Phase shift 
keying (BPSK) and 2 Mbps when it is the Quadratic phase shift keying (QPSK). It 
also uses a Baker code as the coding scheme. The 802.11b is an extension to the 
802.11 standard using the same modulation types while providing higher data rates of 
5.5 and 11Mbps using two different coding schemes. One code uses a short block 
length code, known as complementary code keying (CCK), and the other code incor-
porates a 64-state packet-based binary convolutional code (PBCC). The main differ-
ence between the two involves the much larger coding gain of the PBCC over CCK at 
a cost of additional computations at the receiver. 

We found so far expressions for the transition probabilities b and cf of the station 
model. We still need to find expressions for zf and gf as well.  

For mathematical expediency, the arrival process has a Poisson distribution.  The 
model can be extended assuming any other arrival process as the expressions of the 
channel and the station models can include any arrival process. 

The system is analyzed using the M/G/1 queuing model. The consideration of other 
queuing models is possible but requires the distribution of the time ξ that a packet 
spends at the MAC layer before being correctly transmitted. This distribution is diffi-
cult to obtain without approximation. Using a M/G/1 queue, the average of this time is 
needed. This average can be found easily and accurately. 

The properties of the M/G/1 queue affect the computation of the probability to find 
the transmission queue of a station empty. In an M/G/1 queue, the probability to find 
the queue of a station empty is  

)],(.1,0max[ tEz fff λ−=                                         (17) 

where λf is the frame arrival rate. 



 Analyzing the Impact of Various Modulation and Coding Schemes 113 

The probability that at least one frame arrived at the queue during the last time slot 
is 1- (the probability that no frame arrived). Hence,  

.1 feg f

λ−−=                                                  (18) 

The average service time of a frame was derived in details in [2] and found as  

( ) ( ) ( ),tEtE)1(tE 2f1ff zz +−=                                      (19) 

Where,  
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To find the values of the variables in the equations, we solve all the expressions 
numerically using the fsolve command in the optimization toolbox of MATLAB. 
Other numerical tools and methods can be used. 

5   Numerical Results 

We performed experiments and simulations to validate our MAC model in [2]. The 
numerical results we obtained from our model match what we got from the experi-
ments. Since, the impact of the various modulation and coding schemes on the MAC 
throughput is represented by the addition of PER as a loss factor in the equation of the 
probability of packet loss and without changing the rest of the equations and parame-
ters, the validation of the model is still applicable.  

We now analyze the system by considering the channel aspects in evaluating its 
performance. Note from the graphs of Fig. 3 that the PER differs when the same type 
of coding and modulation is used while stations transmit at different data rates. It is 
inaccurate when studying the performance of the system to assume that the values of 
the PER are the same for fast and slow stations as was done in the literature. Our 
model differentiates between stations according to their data rates. Thus, we were able 
to assign appropriate values for each of them. 

Fig. 4 shows the throughput experienced by stations for various types of coding 
and modulation schemes. Number of stations is set to five for illustrated purposes 
only. The horizontal axis represents SNR instead of PER to highlight the relation be-
tween the SNR at the physical layer and the throughput achieved at the MAC layer. 
Note that each SNR value is taken from its corresponding PER value of Fig. 3. As 
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seen in the graph, the PBCC outperforms CCK at low SNR values. The graph also 
shows the advantage of using low data rates at low SNR when stations need to com-
municate. Note that the stations would not be able to transmit any frame if a high data 
rate is chosen.  
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Fig. 4. Throughput per station at the MAC level as a function of SNR for various types of cod-
ing and modulation schemes and at different data rates 

6   Conclusion 

In this paper, we analyzed and studied the performance of IEEE 802.11 wireless 
LANs in a cross layer environment. We continued our previous work in [2] by  
including all the factors that affect the achieved MAC throughput in an expanded 
cross-layer-based model. Using the introduced model, we were able to obtain a direct 
relationship between the SNR at the physical layer and the throughput at the MAC 
sub-layer. We assigned appropriate values of SNR according to the transmission 
speed of the station since our model analyzes multi-rate wireless LANs. We studied 
the impact of various modulation and coding schemes on the MAC throughput and 
showed the advantage of using PBCC over CCK at low SNR values.  
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Improving the Efficiency of the Proxel Method
by Using Individual Time Steps
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Abstract. Discrete stochastic models (DSM) are widely used in various
application fields today. Proxel-based simulation can outperform discrete
event-based approaches in the analysis of small stiff DSM, which can oc-
cur for example in reliability modeling. However, when parallel processes
with largely differing speed are involved, the faster process determines
the small discretization time step, investing far too much effort into the
approximation of the slower process. This paper relieves that problem
by using individual time steps for each transition and situation. The key
problem is to keep semantic consistency when using different time steps
for parallel transitions. However, the preservation of the probability mass
in every single simulation time step could be achieved. Experiments show
that binary step division in conjunction with appropriate subdivision
criteria can outperform the original Proxel method significantly. This
increases the applicability of Proxels, by enabling the analysis of larger
and therefore more realistic models.

Keywords: Proxel-based simulation, discrete-time Markov chains, state
space-based simulation, discrete stochastic models.

1 Introduction

Discrete stochastic models (DSM) are used in various application fields such as
reliability modeling, manufacturing, planning and control. The analysis of DSM
is usually done using discrete event-based simulation. This can become expensive
when small stiff models are involved, such as in reliability modeling. Many repli-
cations might be necessary to obtain statistically significant results. Proxel-based
simulation [1,2] can outperform traditional DES on small stiff models. It deter-
ministically discovers all possible system developments and their probabilities in
discrete time steps, avoiding a possibly large number of replications.

However, when transitions with largely differing speed are involved, the orig-
inal Proxel algorithm cannot perform optimally. A globally fixed constant time
step is either too small for a slow transition, investing more computational ef-
fort than necessary, or it is too large for a fast transition, producing a too large
error. A small constant time step also leads to a more pronounced state space
explosion, severely limiting the size of model that can be simulated effectively.
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An ideal solution would be to use a different time step for each transition,
adjusted to the speed of the transition, or even to the current situation. The
paper shows an approach realizing the concept of individual time steps for each
transition, these are also called variable time steps. It uses binary step division,
providing maximum flexibility and computational efficiency. The key problem to
tackle is a semantic inconsistency that arises when using different time steps for
parallel transitions. By redistributing the probability completely in every step,
the original Proxel-method ensures that the sum of the probability of all possible
states at one time is still 1. This is no longer valid when using differently sized
time steps in parallel. The solution proposed here computes all probabilities
for the smallest time step necessary. For slower transitions this probability is
collected in a container, which is processed further along the time scale.

Experimental results indicate that using an appropriate subdivision criterion,
variable time steps can increase the accuracy of a Proxel simulation by several
orders of magnitude, or accordingly decrease the computation time necessary to
obtain the same accuracy. Extrapolation of the results using different thresholds
for the subdivision criteria is only of limited applicability. The paper shows, that
variable time steps can reduce state space explosion, eventually enabling the
simulation of larger models and thereby increasing the applicability of Proxels.
The theory and results presented here are the result of a Masters thesis [3].

2 Proxel-Based Simulation

The Proxel-based simulation algorithm was developed by Horton [1] and further
improved by Lazarova-Molnar [2]. It is a state space-based simulation method,
which is based on the method of supplementary variables [4]. This section gives
a brief overview of the basic ideas involved in Proxel simulation.

A so-called Proxel (see Equation (1)) represents a probability element in the
expanded state space of the model. It contains the discrete model state dS
and the age vector τ of the active or race age transitions as coordinates in the
expanded state space. It also includes the current point in simulation time t,
the route to this particular Proxel R and the probability of that combination
p. Route R and simulation time t are rarely explicitly included in practical
implementations, t is usually global and by omitting R, the reachable state
space is reduced considerably.

P = (S, R, p) = ((dS, τ, t), R, p) (1)

By extending the discrete system states with the discretized age of all cur-
rently enabled or otherwise interesting transitions, a non-Markovian process is
turned into a discrete-time Markov chain (DTMC) [5]. The one-step transition
probability between these DTMC states can be determined dynamically using
the so-called instantaneous rate function (IRF), saving the effort of explicitly
building the Markov chain.
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The IRF as defined in Equation (2) represents the current rate of probability
flow from one state to the next [1].

μ(τ) =
f(τ)

1 − F (τ)
(2)

The main idea of the Proxel algorithm is a simple iterative approach. The
initial Proxel ((S0, τ0, 1)) contains the initial system state S0, an all zero age
vector τ0 and the probability 1. All possible successive system states are deter-
mined and using the given discrete time step Δ, the corresponding transitions
IRF μ and the transitions age in τ their probability at time Δ can be approx-
imated, assuming at most one state change can happen within one time step.
This procedure is then repeated for all follow-up Proxels generated at time Δ.
Thereby a so-called Proxel tree is generated, which contains all possible system
developments at discrete intervals. The number of Proxels at one point in time
can become quite large, due to the possible number of combinations of values in
the age vector, expanding the system state. This increases memory requirement
as well as computation cost.

The basic assumption of the Proxel method is that at most one state change
can happen within one time step, therefore the simulation result can only ever
be an approximation. The time step plays a central role in the performance
and accuracy of the method. The smaller the time step, the more accurate the
result is, but also the more pronounced the state space explosion and the more
expensive the computation. However, larger time steps can be used to extrapolate
more accurate results using Richardson extrapolation [6].

The key problem of Proxels is the state space explosion. Thus, a time step
as large as possible is desirable. However, if transitions of differing speed are
involved, the faster transition determines the maximum possible step size, re-
sulting in a time step that is smaller than necessary for the slower transition.
The example in Figure 1 illustrates that behavior. It shows a small stochastic
Petri net with two consecutive transitions that differ in speed by a factor of 10.
Both have a normal distribution and the same coefficient of variation. Using the
appropriate time step for the faster transition computes the result for the slower
transition to an accuracy that is ten times as large. Using the appropriate time
step for the slower transition reduces the accuracy of the faster transition by a
factor of 10. Either too much is invested, or the error induced is too large. In
this example, the ideal time steps of the two transitions would also vary by a
factor of 10, approximating both with comparable accuracy and effort.

The constant global time step is one of the key performance factors in Proxel
simulation, it influences accuracy, as well as cost. However, the accuracy achieved

Fig. 1. Simple Example Model with Transitions of Differing Speed
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using the same time step can be very different for transitions with largely dif-
fering speed. This paper tries to remedy this problem by using a separate time
step for each transition, which is adapted to the individual transitions speed.

2.1 Error Sources in Proxel Simulation

Since the goal of individual time steps is to simulate transitions of different
speed with comparable accuracy, one needs to be able to estimate the accuracy.
Therefore the error sources of Proxels need to be identified and investigated.

BA Error. The first source of error in Proxel-based simulation is an error made
knowingly through the basic assumption (BA). This assumption states that no
more than one state change can be made within one discrete time step, neglecting
the possibility of having two or more consecutive state changes within one step.
Since this is one basic property of the simulation algorithm, the effect of the error
can only be reduced by reducing the step size, but not by changing any algorithm
feature. However, the error can be estimated by calculating the probability of
two consecutive state changes in one step (see [3] for further details).

ODE Error. The second known source of error in Proxel-based simulation is the
integration method used when estimating the one-step transition probabilities
(ODE). The dynamic behavior of a single transition is defined by Equation (3),
where Π(t) represents the probability of the state at time t and μ(t) is the value
of the instantaneous rate function (IRF) at time t. This means that the rate
of change of the probability to stay in a state is proportional to the hazard
rate function value and the remaining probability mass at that time. This is
an ordinary differential equation and due to discretization the problem stated
in (4) needs to be solved. Former Proxel implementations used Eulers method
(5) or trapezoid integration (6) (Heuns method), which is not very accurate,
but was sufficient for small time steps. When using larger time steps for slower
functions, the error induced by an inappropriate integration method can no
longer be disregarded. The error can however easily be reduced by using higher
order integration methods such as Runge-Kutta. Using embedded Runge-Kutta
methods, the error can even be estimated at little extra cost. One example of such
a method is the combination of Euler’s method and Heun’s method, forming the
ODE12 integration scheme. A more accurate, but also more expensive method
was introduced by Dormand and Prince using fourth and fifth order integration
methods, which is simply called ODE45. A more detailed description of the
integration methods used in this paper can be found in [3].

dΠ

dt
= Π ′(t) = −Π(t) ∗ μ(t) (3)

Π(t + Δ) = Π(t) + k ∗ Δ (4)
k = −Π(t) × μ(t) (5)

k = −Π(t) × 1
2
(μ(t) + μ(t + Δ) (6)
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ND Error. A third source of error has been examined in detail for the first
time in [3]. It can be called error through the non-deterministic behavior of the
method (ND). Proxels approximate the continuous flow of probability between
two states by a step function, causing an unnatural behavior, which can have
unexpected side effects. One of these effects is, that there is one time step delay
in activation of the transitions leaving a subsequent state, even though when
in real continuous time they would have been activated almost as soon as the
simulation started. This error can be estimated by a more detailed computation
of the transitional behavior within the time step. Experiments showed that it
can be reduced by simply initializing the age of a new state to 1

2Δ instead of 0
as was done before. This takes into account that the subsequent transition could
in reality have been activated anytime within the time step and not at its end.
This is still just an approximation, but showed to be efficient and effective.

One primary goal of variable time steps is to control and reduce these errors.
Only then can larger time steps be used without unwanted loss of accuracy.

3 Introducing Variable Time Steps

This section first defines requirements of a Proxel algorithm using individual
(variable) time steps. Then some basic properties of the algorithm and the new
algorithm itself is described. The final part of the section details on the time
step subdivision criteria as a central item of the VTS algorithm.

3.1 Requirements of a VTS Algorithm

A suitable algorithm for variable time steps (VTS) should ideally fulfill the
following requirements:

– It can choose the ideal step size for each transition and current setting. Only
then can the full potential of VTS be exploited.

– It can dynamically determine the step size during runtime using model and
transition properties. This is more flexible than a pre-computation step, since
it can also react to changing circumstances during runtime.

– It does not have too much overhead over constant time steps (CTS), regard-
ing computation time and memory requirement. Too much overhead would
reduce the advantage of VTS compared to CTS.

– It is still able to conserve probability by completely distributing it to all
subsequent Proxels. It is necessary to locate the total probability mass in
each time step of the simulation to compute statistics and result measures.

Some of these requirements are contradicting, such as maximum flexibility and
minimum overhead, therefore we are looking for a good trade-off between them.

3.2 Properties of the VTS Algorithm

This section describes two key decisions made regarding the current implemen-
tation, which also distinguish it from a former attempt to use variable time steps
in Proxel simulation [7].
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The first decision was taken regarding the method of time step division. A
choice providing maximum flexibility would be an arbitrary time division. This
is however not suitable, since merging Proxels with the same age at the same
point in simulation time is one central way to counter state space explosion.
This would however no longer be possible using arbitrary step division. The
compromise between computational efficiency and flexibility taken in this paper
is to choose a binary step division scheme. This means for each transition leaving
a Proxel to decide whether the current time step is small enough, according to
some criterion, or whether it should be bisected and simulated in two steps. This
ensures that Proxels can be merged at higher level division points, maximizing
the number of joining points. Another effect is that it reduces the question of the
ideal time step to a simple decision problem, which can be applied recursively.
Therefore the decision can be made during runtime based on current model and
transition properties.

The second decision was to chose the time step separately for each transition
leaving a Proxel. This allows for maximum flexibility at additional computational
effort. However, choosing different time steps for parallel transitions can result in
semantic problems. It is no longer intuitively clear, how the probability should be
distributed to the different child Proxels, which can now exist at different points
in time. The conservation of the probability mass needs to be ensured at each
simulation time step, enabling the consistent computation of transient statistics
at the smallest steps taken. The solution chosen in this paper is to calculate the
probability leaving the parent Proxel for the smallest time step chosen. For the
transitions using longer time steps it is stored in containers for later handling.

3.3 New Proxel Simulation Using Variable Time Steps

This section briefly describes the current algorithm for Proxel-based simulation
using individual time steps.

The simulation starts with an initial Proxel with probability 1, all transition
ages set to 0 and in the initial discrete system state, as in the original Proxel
algorithm [2]. Then the algorithm computes all possible follow-up Proxels, re-
sulting from the firing of the transitions active in this state. In contrast to the
original algorithm the time step, and therefore the point in future simulation
time where the Proxel is created, is determined individually for each transition.
Since binary step division is used, the algorithm starts with a single time step
reaching to the end of simulation time and bisects it recursively. The time step
is then fixed for each transition out of the current Proxel and repeated until no
more probability is left in the original Proxel’s marking. For each Proxel gener-
ated this scheme is repeated, except that the maximum time step for a transition
is the next larger step taken on the higher levels. This ensures the possibility of
merging Proxels later on in the simulation time.

The algorithmic handling of different parallel time steps is pictured in Figure
2 (right). The SPN of the model being simulated is shown in Figure 2 (left).
The model has three parallel transitions, the transition leading to place B is
the fastest of the three, the transition to place C is two times slower and the
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Fig. 2. Example SPN of Model with Three Parallel Transitions of Differing Speed (left)
and Computing Successor Proxels for Example Model (right)

transition leading to state D four times slower than AB. Figure 2 (right) shows
the start of the Proxel tree resulting from the simulation of this SPN. Each
Proxel contains the following information: the current discrete system state, the
age of the three activated transitions in state A and an asterisk as a placeholder
for the probability of that expanded system state.

The discrete time steps chosen for the three transitions to places B, C, and
D are 1, 2 and 4. The Proxels for staying in place A and entering place B are
created in every time step. The probability to leave state A for the states C and
D is also computed for each step of size 1, however the Proxels are only created
at time 2 and 4 respectively. The probability leaving A in one time step is stored
in these containers until the appropriate time step is reached.

In this way one can ensure that the sum of the probability of all current and
future Proxels created out of a single Proxel corresponds to the Proxels original
probability. In each time step the location of the total probability mass is clearly
defined. The additional computational effort to compute all outgoing probability
at the minimal step needs to be invested to ensure semantic unambiguousness
and conservation of the probability mass. To reduce the effort of determining
the memory location and retrieval of future Proxels, the definition of a Proxel
is extended by a list of redirectors and redirector recursion depth. With the
help of these, the target Proxel for each transitions probability can be determine
using constant effort. The global storage of the Proxels in different time steps is
realized by a hierarchy of Proxel containers, one for each level of the recursion.
Experiments showed that no more than 20 recursion levels were required to
simulate the tested models to a sufficient accuracy.

3.4 Time Step Subdivision Criteria

One crucial point of a good algorithm for variable time steps using binary step
division is a good subdivision criterion. Five different criteria were developed in
[3], which will be described here and tested in the experiments section 4. The
main goal is to produce comparable accuracy for the simulation of transitions
with differing speed. Therefore, the subdivision criteria try to achieve a similar
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error in every simulation time step. All of the criteria use certain thresholds to
determine whether the time step should be subdivided or not.

GLOBAL PROB. A naive approach of a flexible time step size would be to set
a global threshold for the maximum probability of a Proxel (GLOBAL PROB).
This would mean to subdivide a time step until the resulting child Proxels have
a probability below the given threshold. This seems to be a reasonable criterion,
since the smaller the overall probability of a Proxel the smaller the possible
contribution to the global simulation error. This however fails when processing
the follow-up Proxels created for the initial Proxel. All of these have a probability
below the global threshold, therefore their outgoing transitions can be simulated
using the maximum possible time step, since the probability of the subsequent
Proxels can never exceed that of the parent Proxel. This is not the desired
behavior, and therefore (GLOBAL PROB) is not applicable.

TRANS PROB. Another simple idea is to limit the probability of a one-step
state transition (TRANS PROB). This threshold limits the fraction of proba-
bility that can leave a Proxel (discrete system state) within one time step. This
also makes sense, since using smaller time steps also reduces the possible error
made in one step. However, as the probability of the original Proxel is reduced,
the fraction reduces accordingly. If in each step half of the probability is allowed
to leave the Proxel, it will theoretically never loose all of its probability and the
time steps will become smaller, eventually preventing an advancing of simula-
tion time beyond the support of the distribution. The Proxel algorithm however
prevents this loop, since it discards Proxels below a given probability threshold.
Therefore, (TRANS PROB) will be investigated further.

ORIG PROB. The third criterion limits the amount of probability leaving a
Proxel within one step to a given fraction of the original Proxel probability
(ORIG PROB). This ensures that the time step is not decreased indefinitely as
can happen for TRANS PROB and that all of the probability leaves the Proxel
eventually. It also ensures similar accuracy in all successor Proxels and therefore
is a promising candidate for a subdivision criterion.

MEAN. The fourth criterion is based on a finding documented in [2], where it
was stated that the maximum time step allowed should not exceed one half of the
fastest transitions mean value. Generalizing this we define the MEAN criterion:
the time step size is not allowed to exceed the fraction k of the transitions
distribution mean. This rather simple criterion ensures about equal accuracy of
all distribution approximation, scales with the transitions speed and prevents an
indefinite subdivision of the time step.

UNANIMOUS. The fifth criterion developed in [3] is based on the three error
sources of Proxel-based simulation (see Section 2.1), which were described in
Section 2.1. The criterion UNANIMOUS is used in such a way, that it no longer
subdivides a time step when all three error methods do not exceed a given
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threshold anymore. This should directly limit the error made in each time step
to the given threshold.

All criteria except the GLOBAL PROB seem to be suitable candidates for a
valid subdivision criterion. Therefore they need to be tested for their applica-
bility and performance regarding runtime and accuracy. All of these criteria are
based on threshold values. Therefore, an extrapolation to a small threshold value
using rougher estimates computed using larger thresholds should be theoretically
possible. A formal proof of linear convergence of the results when reducing the
threshold k in a given criterion was not possible. Therefore experiments were
conducted to test the applicability of the Richardson extrapolation.

4 Experimental Results

This section describes some of the experiments conducted using the newly de-
veloped Proxel-based algorithm using variable time steps. The experiments are
selected from [3], for more detailed results and further experiments the reader is
referred there.

The first set of experiments (see Section 4.1) tests several combinations of
subdivision criteria and integration methods. We expect that at least some of
the criteria can reliably outperform constant time steps by attaining better ac-
curacy with comparable computational effort. The second set of experiments
(see Section 4.2) tests the applicability of Richardson extrapolation using the
thresholds of the subdivision criteria.

The general experiment setting used was the following:

– Trapezoid integration for the approximation of one-step transition probabil-
ity. (see Equation (6))

– As an exception, for the UNANIMOUS criterion embedded Runge-Kutta
methods (ODE12, ODE45) were necessary to estimate the integration error
per step.

– The age of a newly created Proxel was initialized with 1
2Δ, to reduce the

ND-error (see Section 2.1).
– Proxel cutoff probability was set to 10−15, meaning that Proxels with a

probability below that threshold were discarded, in order to dampen state
space explosion.

In earlier papers the comparison criterion between different approaches was
always the effort invested and accuracy obtained using a given time step size.
Since we are now looking at dynamically determined time step sizes, the per-
formance criterion needs to be generalized. The comparison between different
algorithm configurations happens according to the accuracy that could be ob-
tained over the computational effort invested. The accuracy is determined by the
error of the Proxel result compared to the analytically obtained solution. The
models chosen for testing were all simple enough to obtain an analytical solution
for the results of interest. Neither the solution accuracy nor the computational
effort can be controlled directly, both are a result of algorithm runtime behavior.
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Thus, the algorithms can not be compared at specific points and the individual
measurements need to be interpolated to yield comparable plots.

4.1 Which Subdivision Criterion to Use?

The first experiment was conducted using a simple chain-like model (see Fig-
ure 3) with five successive transitions of decreasing mean value. The distribu-
tions of the successive state transitions are the following: N(1; 0, 25), N(4; 0, 5),
N(9; 0, 75), N(16; 1) and N(25; 1, 25). The result measure of interest in the chain
model was the average time of the last transition firing.

The accuracy over runtime results for the criteria ORIG PROB, MEAN and
TRANS PROB as well as for constant time steps (CTS) are depicted in Figure
4. The results of all other criteria tested were omitted from the diagram, because
they did not converge to the actual result value (which was determined analyti-
cally). In this diagram the lowest curve shows the most efficient algorithm, since
here the least effort was needed to achieve a certain level of accuracy.

The constant time steps exhibit a reliable behavior, the more computational
effort is invested, the smaller the error of the result. Only the ORIG PROB crite-
rion can outperform the constant time steps, and it does so by about two orders
of magnitude. Hence, the plot looks as if it were a straight line. The MEAN
criterion can almost compete with the performance of CTS, but has a slightly
higher effort to obtain comparable accuracy. The TRANS PROB criterion be-
haved reliably, increasing the accuracy with increased effort, but could not reach
the efficiency of constant time steps.

The second experiment was conducted using a warranty model based on a
real life Proxel application also discussed in [2]. The reachability graph of the
model is shown in Figure 5. The goal is to compute the warranty cost for a
given configuration of year and mileage based warranty expiration, a given failure
distribution function and cost per failure. The measure of interest in the warranty
model was the average cost incurred within the warranty period.

The result graph includes results for constant time steps and the following
subdivision criteria: ORIG PROB, MEAN, TRANS PROB, UNANIMOUS us-
ing ODE12 embedded integration method (Unanimous-ODE12) and ODE45 em-
bedded integration method (Unanimous-ODE45). In this experiment again, CTS
showed reliable behavior, even though not as linearly-looking as for the chain
model. The constant time steps were only outperformed by the MEAN criterion
and by ORIG PROB, with the latter one being the most efficient criterion over-
all. The two settings of the UNANIMOUS criterion could not outperform CTS,

Fig. 3. Reachability Graph of Chain Model
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Fig. 4. Accuracy Obtained Over Computation Time for Chain Model and Different
Subdivision Criteria

Fig. 5. Reachability Graph of Warranty Model

even though the combination with ODE45 is comparable to constant time steps
regarding the results.

Result discussion. The experiments comparing the different time step subdivi-
sion schemes showed that few of them could reliably outperform constant time
steps. For further experiments refer to [3]. Only the ORIG PROB criterion was
better than CTS in all experiments. MEAN was competitive, but not always bet-
ter than CTS. The TRANS PROB criterion performed worse than CTS on some
models. The UNANIMOUS criterion did not converge to the analytical result
for any model and can not be used reliably. This poor performance is probably
due to a combination of still poor understanding of the exact effects of the differ-
ent errors and resulting improper estimation. Furthermore it is not clear how to
combine three totally different error effects using only one threshold, or what the
combination of three different thresholds could be. A competitive UNANIMOUS
criterion requires further research effort on these topics. Overall the results show
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Fig. 6. Accuracy Obtained over Computation Time for Warranty Model and Different
Subdivision Criteria

that individual (variable) time steps can outperform constant time steps, when
an appropriate time division criterion is chosen (here ORIG PROB).

4.2 Applicability of Richardson Extrapolation

This section presents some experimental results in the applicability of Richard-
son extrapolation. Only MEAN and ORIG PROB were tested, due to their con-
stant and reliable performance in earlier experiments. The extrapolation was
done using the threshold value k for the fraction of the transitions distribu-
tion mean (MEAN criterion) and the fraction of the original Proxel probability
(ORIG PROB criterion). Both thresholds were varied between 1 and 0, where 1
resulted in too rough results and 0 was excluded for obvious reasons. Again these
experiments are only a selection of the results shown in [3]. The graphs show
the actual result measures for each of the models for threshold values between
0 and 1, and for better resolution of small values also between 0 and 0.3.

The convergence behavior was tested on the chain and warranty models al-
ready described in the previous section. Using the MEAN subdivision criterion,
the results converge to the analytical solution, however not linearly. The so-
lutions of the warranty model alternate around the real value in successively
smaller jumps (see Figure 8) and the solution of the chain model converges as
a step function (see Figure 7). This is not a problem of the criterion, but a side
effect of the choice of binary subdivision of the steps. The model transitions
change step size by an order of 2 only at certain values of k and stay stable in
between. This behavior is not perfect, but using an intelligent choice of threshold
pairs (k and 1

2k) extrapolation should be possible using the MEAN criterion.
The convergence behavior of the ORIG PROB criterion is less reliable. Even

though the results do converge toward the analytical solution, this happens in
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Fig. 7. Result Extrapolation for Chain Model and MEAN Criterion

Fig. 8. Result Extrapolation for Warranty Cost and MEAN Criterion

an erratic fashion. The result of the chain model converges in seemingly un-
predictable jumps (Figure 9), making extrapolation more a lottery game than
reliable. The result of the warranty model seems to converge almost linearly
for larger threshold values (Figure 10), the magnification of the smaller values
however also shows unpredictable behavior. Therefore, extrapolation using the
ORIG PROB criterion is not reliable, an arbitrary combination of points might
point to the wrong final result.

Fig. 9. Result Extrapolation for Chain Model and ORIG PROB Criterion
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Fig. 10. Result Extrapolation for Warranty Cost and ORIG PROB Criterion

Result discussion. The experiments on extrapolation using the threshold values
of the subdivision criteria were only partially successful. The simulation results
did not converge linearly for either one of the two criteria. Using the MEAN cri-
terion, a good choice of the threshold values to extrapolate is a pair of values k
and 1

2k. Only then can one be sure that all model transitions are using twice the
step size for k than for 1

2k. The results obtained using the ORIG PROB subdi-
vision criterion converged erratically, and do not seem to exhibit any structure.
One problem could be that the binary step division forces the transition step
size to change in jumps instead of a smooth transition, however that is a key
point of the VTS algorithm presented and should not be changed.

5 Conclusion and Outlook

The paper showed an approach to tackle the problem of state space explosion in
Proxel-based simulation. Instead of the original constant time steps, time step
size was chosen dynamically for each single transition at runtime, enabling an
optimal step size in each situation. The choice for binary subdivision resulted in
an efficient algorithm with little computational overhead compared to constant
time steps. However, the choice of subdivision criterion is crucial to the perfor-
mance. Only two of the tested criteria could reliably outperform constant time
steps on the tested stiff models. The better of the two criteria could achieve the
same accuracy about 100 times faster than the constant time step algorithm.
Therefore the goal of the paper has been reached. Based on the experiments
and further experiments in [3] the extension of individual or variable time steps
increases the competitiveness of Proxels in real world applications, making the
algorithm feasible for larger and more realistic models.

Future work. More work is required in the future to enhance the competitive-
ness of variable time steps in Proxels. A better error estimation could lead to
more efficient subdivision criteria, as could a structural analysis of the model to
be simulated. To dampen state space explosion further when the time steps get
very small, one could start merging Proxels with similar, not just exactly match-
ing age vectors. The choice of integration method can also affect the algorithm
performance and should be observed more closely in the future.
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José-Carlos López-Ardao, and Cándido López-Garćıa
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Abstract. Several traffic measurement studies have shown the presence
of persistent correlations in modern networks. The use of stochastic pro-
cesses able to capture this kind of correlations, as self-similar processes,
has opened new research fields in network performance analysis, mainly
in simulation studies, where the efficient synthetic generation of samples
is one of the main topics. Although F-ARIMA processes are very flexi-
ble to capture both short- and long-range correlations in a parsimonious
way, only off-line methods for synthesizing traces are efficient enough
to be of practical use. In order to overcome this disadvantage, in this
paper we propose a M/G/∞-based efficient and on-line generator of the
correlation structure of F-ARIMA processes.

Keywords: F-ARIMA processes, M/G/∞ process, Correlation, Syn-
thetic efficient on-line generation.

1 Introduction

Several traffic measurement results have convincingly shown the existence of per-
sistent correlations in the traffic of modern networks [12,21,3,28,5,8,19]. These
experimental findings stimulated the opening of a new branch in the stochastic
modeling of traffic, since the impact of the correlation on the performance met-
rics may be drastic [22,26,23,11]. The use of classes of stochastic processes for
traffic modeling purposes, displaying forms of correlation as diverse as possible
by making use of few parameters, as self-similar processes, is important. Usu-
ally, real traces are of limited length and lack the necessary diversity required
to perform simulation studies.

Some of these processes are Fractional Gaussian Noise [25] (FGN), Fractional
AutoRegressive Integrated Moving Average [14,16] (F-ARIMA) and M/G/∞ [6].

Unlike the FGN process, whose correlation structure, determined by a single
parameter, is too rigid, F-ARIMA processes are very flexible to capture both
short- and long-range correlations using few parameters. In fact, these processes
have been widely used for modeling traffic sources [12,4,1]. Nevertheless, only
off-line methods for synthesizing F-ARIMA traces are efficient enough to be of
practical use.
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The M/G/∞ process is a stationary version of the occupancy process of an
M/G/∞ queueing model. In addition to its theoretical simplicity, it can be used
to model different traffic sources, because it is flexible enough to exhibit both
Short-Range Dependence (SRD) and Long-Range Dependence (LRD). Moreover,
queueing analytical studies are sometimes feasible [10,35,30,27], but when they
are not, it has important advantages in simulation studies [20,29], such as the
possibility of on-line generation and the lower computational cost (exact methods
for the generation of a trace of length n require only O(n) computations).

In this paper, we propose an efficient and on-line generator of M/G/∞ pro-
cesses for matching the correlation structure of F-ARIMA processes.

The remainder of the paper is organized as follows. In Section 2 we review the
main concepts related to SRD, LRD and self-similarity. In Section 3 we describe
F-ARIMA processes and the most important methods for synthesizing traces
that have been proposed. The M/G/∞ process is described in Section 4. We
also remind briefly the method that we have presented in [31,32] to improve
the efficiency of the generator when the distribution of the service time of the
M/G/∞ system has subexponential decay. In Section 5 we explain the main
concepts related to the Whittle estimator that we are going to use in order to
compare FGN and F-ARIMA processes for VBR video traffic modeling purposes.
In Section 6 we present the M/G/∞-based generator of the correlation structure
of F-ARIMA processes, and we evaluate its efficiency and the quality of the
samples, and in Section 7 we apply it to the modeling of the correlation structure
of VBR video traffic, and we use a method based on the prediction error of
the Whittle estimator to choose the best among several processes. Finally, in
Section 8 we summarize the conclusions.

2 SRD, LRD and Self-similarity

It is said that a process exhibits SRD when its autocorrelation function is
summable, i.e.,

∑∞
k=1 rk < ∞, like in those processes whose autocorrelation

function decays exponentially:

∃α ∈ (0, 1)
∣∣∣∣ lim

k→∞

rk

αk
= cr ∈ (0,∞) .

Its spectral density is bounded at the origin.
Conversely, it is said that a process exhibits LRD [7] when its autocorrelation

function is not summable, i.e.,
∑∞

k=1 rk = ∞, like in those processes whose
autocorrelation function decays hyperbolically:

∃β ∈ (0, 1)
∣∣∣∣ lim

k→∞

rk

k−β
= cr ∈ (0,∞) . (1)

Its spectral density has a singularity at the origin.
Let X = {Xn; n = 1, 2, . . . } be a stationary stochastic process with finite

variance and let X(m) be the corresponding aggregated process, with aggregation
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level m, obtained by averaging the original sequence X over non-overlapping
blocks of size m: X(m) =

{
Xi[m]; i = 1, 2, . . .

}
, where:

Xi[m] =
1
m

im∑
n=(i−1)m+1

Xn.

The covariance stationary process X is called exactly second-order self-similar,
with self-similarity parameter H [18], if the aggregated process X(m) scaled by
m1−H has the same variance and autocorrelation as X for all m, that is, if the
aggregated processes has the same non-degenerate correlation structure as the
original stochastic process.

The autocorrelation function of both X and X(m) is:

rk = rH
k

Δ=
1
2
[
(k + 1)2H − 2k2H + (k − 1)2H

] ∀k ≥ 1, (2)

where: limk→∞
rH
k

k2H−2 = H(2H − 1), that is, it decays hyperbolically as in (1),

with β = 2 − 2H, and so the process exhibits LRD if H ∈ (0.5, 1).
If (2) is satisfied asymptotically by the autocorrelation function of the ag-

gregated process, r(m)
k , then the process is called asymptotically second-order

self-similar:
lim

m→∞
r(m)
k = rH

k ∀k ≥ 1.

A covariance stationary process whose autocorrelation function decays hyper-
bolically as in (1) is asymptotically second-order self-similar.

The most commonly used self-similar processes are Fractional Gaussian Noise
(FGN), Fractional AutoRegressive Integrated Moving Average (F-ARIMA) and
M/G/∞. The main disadvantage of FGN is that its correlation structure, deter-
mined by a single parameter, is too rigid to capture both the short-term and the
long-term correlations simultaneously. Instead, F-ARIMA and M/G/∞-based
processes are much more flexible for traffic modeling purposes.

3 F-ARIMA Processes

Fractional AutoRegressive Integrated Moving Average processes are a general-
ization of ARIMA processes.

A F-ARIMA(p, d, q) process X = {Xn; n = 1, 2, . . .} satisfies the equation:

φp(B)(1 − B)dX = θq(B)ε,

where B is the backshift operator (BjXn = Xn−j), φp(B) is a polynomial of
order p in B, θq(B) is a polynomial of order q in B, d is a real value and ε is a
renewal process with zero mean and finite variance σ2

ε .
Although it is not generally feasible to obtain the autocorrelation function for

a F-ARIMA(p, d, q), for a F-ARIMA(0, d, 0) process is of the form:

rk =
Γ (1 − d)

Γ (d)
Γ (k + d)

Γ (k + 1 − d)
=
∏k

i=1(d + i − 1)∏k
i=1(i − d)

,
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whose asymptotic behavior is:

rk ∼ Γ (1 − d)
Γ (d)

k2d−1.

So, for 0 < d < 0.5, the autocorrelation function exhibits a hyperbolic decay
as expressed in (1) and the process is asymptotically second-order self-similar
with H = d + 0.5.

Cox [7] extended this result, showing that any F-ARIMA(p, d, q) process, with
0 < d < 0.5, is asymptotically second-order self-similar.

3.1 Synthetic Generation of F-ARIMA Processes

Although several methods exist for the generation of F-ARIMA processes, two
must be highlighted:

– The exact method proposed by Hosking [17]. Although it is an exact method
its main disadvantage is its extremely high computational cost, due to the
calculation of each sample depends on all the previous ones. That makes it
prohibitive for very long samples.

– The approximate method proposed by Ardao [24] as an extension of the
method of Paxson for FGN. It is a very efficient method that generates high
quality traces. Its main disadvantage is that all samples must be generated
simultaneously, with the problems for simulation studies that this supposes:
• the time of simulation is limited by the size of the traces obtained pre-

viously,
• the size of the traces is limited by the available memory.

Other approximate methods for generating samples of the F-ARIMA processes
are the method of Davies-Harte [9], the method of Haslett-Raftery [15] and the
method based on the aggregation of AR(1) processes [13]. The advantages and
drawbacks of each one are discussed in [24].

4 M/G/∞-Based Processes

The M/G/∞ process [6], X , is a stationary version of the occupancy process of
an M/G/∞ queueing system. Let λ be the arrival rate to the system, and denote
by S the service time distribution, with finite mean value E [S].

Although it is possible to use two different approximations to characterize the
M/G/∞ process, a discrete time analysis [7] and a continuous time analysis [24],
the most efficient way to generate it is to simulate the queue in discrete time, as
it is exposed in [33].

If the initial number of users is a Poisson random variable of mean value λE [S],
and their service times are mutually independent and have the same distribution
as the residual life of S, Ŝ:

Pr
[
Ŝ = k

]
=

Pr [S >= k]
E [S]

,
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then the stochastic process X is strict-sense stationary, ergodic, and enjoys the
following properties:

– the marginal distribution is Poissonian, with mean value: E [X ] = λE [S],
– the autocorrelation function is:

r[k] = Pr
[
Ŝ > k

]
∀k.

So, the autocorrelation structure of X is completely determined by the distribu-
tion of S.

In particular, the M/G/∞ process exhibits LRD when S has infinite variance,
as it happens in heavy-tailed distributions.

In [20] the authors show that an �+-valued sequence r[k] can be the auto-
correlation function of the stationary M/G/∞ process, with integrable S, if and
only if it is decreasing and integer-convex, with r[0] = 1 and limk→∞ r[k] = 0,
in which case the distribution function of S is given by:

Pr [S ≤ k] = 1 − r[k] − r[k + 1]
1 − r[1]

∀k > 0. (3)

Its mean value is: E [S] = (1 − r[1])−1.

4.1 Efficient Generation of Synthetic Traces

In this section we explain briefly a method that we have proposed in previous
works [31,32] in order to get a flexible and highly efficient M/G/∞ generator,
based on the decomposition property of the Poisson processes and the memory-
less property of the geometric random variables, and applicable to any distribu-
tion for the service time with subexponential decay.

When we use a discrete-time simulation model of the M/G/∞ system, every
sample value of the occupancy process, Xn, requires the generation of one sample
of the Poisson random variable An, with mean value λ, and An samples of the
random variable S. We denote by M the mean number of random values that
have to be generated for each sample value of Xn. In this case M = λ + 1. For
large values of λ, the computational time can be very high.

In order to reduce M, we divide the arrivals to the M/G/∞ system at each
instant n into K + L + 1 groups, according to the random variable from which
their service times are generated.

For the K first groups, the mean number of arrivals at each group is λdi; i =
1, 2, . . . , K, being di = Pr [S = i] ; i = 1, 2, . . . , K, and the service times are de-
terministic, with values i = 1, 2, . . . , K.

For the L following groups, we fit the distribution of the S random variable
with the composition of the distributions of L geometric random variables, with
parameters pi; i = 1, 2, . . . , L and shifted to k = KG = K + 1, G

′
i = KG + Gi; i =

1, 2, . . . , L. We denote by g
′
i; i = 1, 2, . . . , L the composition factors.

Finally, we denote by R the random variable whose distribution is:

r−1

{
Pr [S = k] −

L∑
i=1

g
′
i Pr

[
G

′
i = k

]}
∀k > K,
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where:

r = 1 −
K∑

i=1

di −
L∑

j=1

g
′
j

is the probability that a service time is generated from this random variable.
With this method, the mean number of random values that have to be gen-

erated for each sample value of the occupancy process is:

M = K + 2L + 1 + λr = K + 2L + 1 + λ

⎛⎝1 −
K∑

i=1

di −
L∑

j=1

g
′
j

⎞⎠ .

In order to generate samples of R, we use a modified version of the tabular
method of inversion of the cumulative distribution function of a non-negative
discrete random variable proposed in [33].

The interval [0,1] is discretized into as many subintervals as the range of a
pseudorandom number generator and then four tables are used to invert the
distribution function.

Two of the tables, index and DF, support a binary search algorithm for the
middle zone of the distribution.

The other two tables, DF inv left and DF inv right, are used to tabulate
the values of the left and right tails of the distribution function, respectively.
This is done to avoid losing precision in the generation of samples of random
variables which show non-negligible probability mass at their extremes.

5 Whittle Estimator

Let f θ (λ) be the spectral density function of a zero-mean Gaussian stochastic

process, X = {Xn; n = 1, 2, . . . } and let I
X

N︸ (λ) =
1

2πN

∣∣∣∑N−1
i=0 Xi+1e

−jλi
∣∣∣2 be

the periodogram of a sample of size N of X . θ = {θk; k = 1, . . . , M} is the vector
of parameters to be estimated.

The approximate Whittle MLE is the vector θ̂ =
{
θ̂k; k = 1, . . . , M

}
that

minimizes, for a given sample X
N︸ of size N of X , the statistic:

Q
X

N︸ (θ) Δ=
1
2π

[∫ π

−π

I
X

N︸ (λ)

f θ (λ)
dλ +

∫ π

−π

log f θ (λ)dλ

]
. (4)

Moreover, if θo is the real value of θ:

Pr
[∣∣∣θ̂ − θo

∣∣∣ < ε
]
−−−−→
N→∞

1 ∀ε > 0,

then
√

N(θ̂−θo) converges in distribution to ζ, as N → ∞, where ζ is a zero-mean
Gaussian vector with matrix of covariances C (θo) = 2 D−1 (θo), being:

Dij (θo) =
1
2π

∫ π

−π

∂

∂θi
log f θ (λ)

∂

∂θj
log f θ (λ)dλ

∣∣∣∣
θ=θo

. (5)

So, confidence intervals of the estimated values can be obtained.
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A simplification of (4) can be achieved by choosing a special scale parameter
θ1, such that:

f θ (λ) = θ1 f θ∗ (λ) = θ1 f ∗η (λ) ,

and: ∫ π

−π

log f θ∗ (λ)dλ =
∫ π

−π

log f ∗η (λ) dλ = 0,

where η = {θi; i = 1, . . . , M} and θ∗ = (1, η).
Thus:

θ1 = exp
(

1
2π

∫ π

−π

log f θ (λ) dλ

)
=

σ2
ε

2π
,

where σ2
ε is the optimal one-step-ahead prediction error, that is equal to the

variance of the innovations of the AR(∞) representation of the process [2]:

Xi =
∞∑

j=1

βjXi−j + εi.

Equation (4) therefore simplifies to:

Q
X

N︸ (θ∗) = Q∗
X

N︸ (η) =
∫ π

−π

I
X

N︸ (λ)

f θ∗ (λ)
dλ =

∫ π

−π

I
X

N︸ (λ)

f ∗η (λ)
dλ.

Additionally [2]:
σ̂2

ε = Q∗
X

N︸ (η̂) .

6 M/G/∞-Based Generation of the Autocorrelation
Structure of F-ARIMA Processes

First, we consider the autocorrelation function of the F-ARIMA(0,d,0) process,
i.e., of a fractional integration process:

r[k] = rd[k] Δ=
∏k

i=1(d + i − 1)∏k
i=1(i − d)

.

We denote by I the random variable for the service time in a M/G/∞ system
generating an occupancy process with such correlation structure. From (3) the
distribution function results:

Pr [S ≤ k] = 1 − rd
k − rd

k+1

1 − d

1 − d

∀k > 0.

and the mean value:
E [S] =

1

1 − d

1 − d

.
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Fig. 1. Probability mass function of I

The distribution function of the residual life, needed in order to initialize the
process in steady state is:

Pr
[
Ŝ ≤ k

]
= 1 − rd

k ∀k > 0.

In Fig. 1 we show the probability mass function of the service time for several
values of the parameter H. We can observe that it has subexponential decay, so
we can apply the method described in 4.1.

To improve the adjustment of the short-term correlation we propose to add
an AutoRegressive (AR) filter.

If Y is a process of type M/I/∞ the new process is obtained as:

Xn = α1Xn−1 + . . . + αpXn−p + Yn. (6)

Using the backshift operator B the equation (6) can be expressed as:

Yn = φp(B)Xn,

where φp(B) is is a polynomial of order p in B:

φp(B) = 1 − α1B − . . . − αpB
p = 1 −

p∑
i=1

αiB
i.

We denote the resulting process as M/I/∞-AR. In Fig. 2 we show the rela-
tionship between the two processes.

If the resulting autocorrelation function is decreasing and convex, we can
obtain the distribution of the service time of the process X by means of (3). In
other case, we will have to use an AR filter to generate X from Y , discarding a
sufficient number of samples in order to initialize the generator approximately
in steady state.

Specifically, we will focus on the particular case of an AR(1) filter. In this
case, the mean values and covariances are related by:

E [X ] =
E [Y ]

1 − α1
,



Efficient On-Line Generation of the Correlation Structure 139

γX
k =

1
1 − α2

1

(
γY

k +
∞∑

i=1

γY
k+iα

i
1 +

∞∑
i=1

γY
k−iα

i
1

)
,

and the autocorrelation function of X is the one of the F-ARIMA(1, d, 0) process.

Y XΦ−1
p

Fig. 2. Relationship between M/I/∞ and M/I/∞-AR

6.1 Efficiency of the Generator and Quality of the Traces

We have compared the efficiency of our method (METHOD 1) with that of the
method of Ardao (METHOD 2), being the results obtained similar in both cases.
In Table 1 we can see as an example the results (in seconds) for different lengths
of the synthetic traces and different values of the Hurst parameter, considering
the autocorrelation structure of F-ARIMA(0, d, 0) processes.

Table 1. Efficiency. Autocorrelation of F-ARIMA(0,d, 0).

N H METHOD 1 METHOD 2
106 0.6 5 3
106 0.75 6 4
106 0.9 6 4
107 0.6 48 38
107 0.75 53 43
107 0.9 57 48

Table 2. Quality. Autocorrelation of F-ARIMA(0,d, 0).

N H Ĥ

106 0.6 0.599944
106 0.75 0.749764
106 0.9 0.901234
107 0.6 0.600116
107 0.75 0.750076
107 0.9 0.900041

And related to the quality of the samples, in Table 2 we can see the estimated
parameter Ĥ using the Whittle estimator and the method of independent replies,
for different values of N and H, considering the autocorrelation structure of
F-ARIMA(0, d, 0) processes.
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7 Application: Modeling of the Correlation Structure of
VBR Video Traffic

In this section we show that F-ARIMA processes are more flexible in order to
fit the autocorrelation function obtained from some empirical VBR traces that
the FGN process.

We consider the following empirical trace of the Group of Pictures (GoP) sizes
of the MPEG encoded video “The Lord of the Rings”, with length N = 66000.
We have generated it from the three parts of the trilogy.

In order to use the Whittle estimator to estimate the parameters of each
process, we need the parametric form of its spectral density function.

For the FGN process the spectral density:

f(λ) = f H (λ) Δ= cf

∣∣ejλ − 1
∣∣2 +∞∑

i=−∞
|2πi + λ|−2H−1 ∀λ ∈ [−π, π],

can be computed efficiently with the Euler’s formula.
For the F-ARIMA(0, d, 0) process the spectral density is:

f(λ) = f d (λ) Δ=
σ2

ε

2π
|1 − ejλ|−2d =

σ2
ε

2π

(
2 sin

(
λ

2

))
∀λ ∈ [−π, π].

For the F-ARIMA(1, d, 0) process the spectral density is:

f X (λ) =
f Y (λ)

|1 − α1ejλ|2 ∀λ ∈ [−π, π].

In order to adjust simultaneously the marginal distribution and the autocor-
relation, as the marginal distribution in all cases is approximately Lognormal,
we apply a change of distribution.

After the transformation the estimations are as follows:

– FGN process: Ĥ = 0.741.
– F-ARIMA(0, d, 0) process: Ĥ = 0.788.
– F-ARIMA(1, d, 0) process: α̂1 = −0.086 and Ĥ = 0.831.

The variance (or confidence intervals) of the estimations can be computed
from (5).

We use σ̂2
ε as a measure of the suitability of each process, since smaller values

of σ̂2
ε mean numerically better adjustment to the empirical correlation of the

sample.
In Table 3 we show the estimations of the prediction error.
The results show that the F-ARIMA(1, d, 0) process leads to smaller prediction

errors.
As open questions in the use of this selection criterion, we may consider the

following ones:
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Table 3. σ̂2
ε with each adjustment

FGN 7.349 · 10−2

F-ARIMA(0,d, 0) 7.277 · 10−2

F-ARIMA(1,d, 0) 7.251 · 10−2

– Being the difference between the respective values of σ2
ε of each two models

so small, is this difference significant?
– F-ARIMA(1, d, 0) supposes a major flexibility in the adjustment of the au-

tocorrelation function that F-ARIMA(0, d, 0), and therefore a reduction of
the estimation of the prediction error, but is this improvement significant in
order to compensate the increase of complexity of the model?

To solve these questions, in an further work we are going to propose an hy-
pothesis test over the spectral density.

8 Conclusions and Further Work

In this paper we have proposed an efficient on-line generator of the correlation
structure of F-ARIMA processes based on the M/G/∞ process. We have checked
the efficiency and the quality of the traces, being the results obtained very satis-
factory. With an example, we have shown numerically that F-ARIMA processes
are more flexible in order to fit the autocorrelation function of some empirical
traces that the FGN processes. In an extended version of this paper we are going
to study if the numerically better adjustment is significant or not, by means of
an hypothesis test over the spectral density.
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Abstract. In this paper we discuss different monotonicity definitions
applied in stochastic modelling. Obviously, the relationships between the
monotonicity concepts depends on the relation order that we consider on
the state space. In the case of total ordering, the stochastic monotonicity
used to build bounding models and the realizable monotonicity used in
perfect simulation are equivalent to each other while in the case of partial
order there is only implication between them. Indeed, there are cases of
partial order, where we can’t move from the stochastic monotonicity to
the realizable monotonicity, this is why we will try to find the conditions
for which there are equivalences between these two notions. In this study,
we will present some examples to give better intuition and explanation
of these concepts.

1 Introduction

Simulation approaches constitute an alternative for performance evaluation,
when numerical methods fail. In fact, they are usually used to model complex sys-
tems, such as, optical networks, distributed computer systems, stochastic Petri
networks, and so on. In this paper we advocate the use of perfect simulation and
combining this technique with stochastic monotonicity to speed up the compu-
tation. This method is based on the more general theory of coupling for Markov
chains. Let us first review some ideas about coupling. Assume that we compute
with the same random sequence of random numbers a sample path beginning
at any initial state. If at time t two sample-paths are in the same state (we say
that they couple), they will continue forever during all the simulation. When all
the sample-paths have coupled, we obtain a sample state. We may use the state
to initialize the simulation or consider it as a sample, thus it is not necessary
anymore to continue the simulation.

It is known for a long time that coupling in the future does not provide
samples distributed according to the steady-state distribution. But Propp and
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Wilson have proved that coupling from the past (CFTP), also called backward-
coupling, gives an exact sample of the steady-state distribution [12]. Coupling
from the past is similar to coupling in the future but the initial time of the
simulation will be chosen randomly whereas the final time is deterministic. In
other words the Markov chain is not started at time 0 but sufficiently far away
in the past such that at time 0 all the paths are coupled.

This method is extremely efficient. But many practical and theoretical prob-
lems remain to be solved for discrete Markovian systems to obtain a fully versa-
tile technique. One of the problem we must consider is the number of operations
we need to obtain a sample. The general backward algorithm tries to couple
sample-paths beginning in every state in the state space. Thus modelling very
large state space systems requires some model transformations. Furthermore the
number of operations is at least linear in the size of the state space. The mono-
tonicity property of the event structure of the model (which is formally defined
in the next section) allows us to use a more efficient algorithm which sandwiches
all sample-paths to couple into extreme ones.

We consider in this paper different monotonicity definitions applied in differ-
ent context of stochastic modelling. First of them is the stochastic monotonicity
concept associated to a stochastic ordering relation. This implies that the evolu-
tion of the underlying model is monotone regarding to the considered stochastic
order. This monotonicity concept is one of the sufficient conditions to build
bounding models [14]. For performability analysis of complex models, bounding
models rather than the original one are considered to verify if performability re-
quirements are satisfied by the original model. Obviously the bounding models
must be easier to analyze than the original one [7].

In general the considered order relation on the state space is a total ordering.
However the partial order is more suitable for multidimensional models. We
explain first the stochastic monotonicity for a state space endowed with at least
a pre-order and study the relationships with other monotonicity definitions.

The remaining monotonicity definitions are related to perfect simulation
(sandwiching property). The first concept is called realizable monotonicity and
was defined in [4]. The other definition is used in a software to provide perfect
simulation of queueing networks (http://www-id.imag.fr/Logiciel/psi/). This is
called event monotonicity and has been defined in more general terms in [8].

In this paper we present these definitions by emphasizing if the state space is
totally ordered or not. We then compare them to give insights for the implications
between them. We have considered relations between monotonicity definitions
in a totally ordered state space [6]. In this case, the stochastic monotonicity and
the event monotonicity are equivalent to each other. Therefore it is possible to
construct bounding and stochastic monotone models in order to do monotone
perfect simulations of systems which are not event monotone.

This paper is organized as follows: The next section is devoted to a brief
presentation of considered stochastic models, perfect simulation, and stochastic
ordering. In section 3, we give the different definitions of monotonicity: first the
monotonicity in the sense of strong stochastic ordering then the realizable and
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event monotonicity used in perfect simulation. We present monotone perfect
simulation of realizable monotone models in section 4. In section 5, we study
the relationships between the stochastic monotonicity and the realizable mono-
tonicity in order to see if stochastic monotone models can be used to perform
monotone perfect simulation. So we show that these notions are different in the
case of a totally and partially ordered state spaces. This is why we try to find
a case of equivalence of these two notions under a partial order, and we give
algorithms to construct event monotone systems in these cases.

2 Preliminaries

Markovian Discrete Event Systems (MDES) are dynamic systems evolv-
ing asynchronously and interacting at irregular instants called event epochs [8].
These systems are defined by means of a state space X , a set of events E , a set
of probability measures P , and a transition function Φ. P(e) ∈ P denotes the
occurrence probability of event e ∈ E while Φ(x, e) denotes the state to which
the system moves from state x upon the occurrence of an event e ∈ E .

Definition 1 (event). An event e is an application defined on X , that asso-
ciates to each state x ∈ X a new state y ∈ X .

Definition 2 (Transition function). Let Xi be the state of the system at the
ith event occurrence time. The transition function Φ : X × E → X , defines the
next state of the system Xn+1 resulting from Xn upon the occurrence of an event
en+1:

Xn+1 = Φ(Xn, en+1) (1)

Φ must to obey to the following property to generate P:

pij = P(φ(xi, E) = xj) =
∑

e|Φ(xi,e)=xj

P(E = e) (2)

Markov processes constitute a special, perhaps the most important subclass of
stochastic processes [1]. We restrict ourselves here to the investigation of discrete
state space and in that case refer to the stochastic processes as chains. Discrete
Time Markov Chains(DTMC) are considered first, that is, Markov processes
restricted to discrete, finite, or countably infinite state space, X , and a discrete-
parameter space T (time). For the sake of convenience, we set T ⊆ N0.

We consider in this work only time-homogeneous Markov chains, i.e, the con-
ditional distribution function of a state Xn+1 does not depend on observation
time, that is, it is invariant with respect to time epochs n.

Definition 3 (DTMC). A given stochastic process {X0, X1, ..., Xn+1, ...} at
the consecutive points of observation 0, 1, ..., n + 1 constitutes a DTMC if the
following relation on the conditional probability mass function(pmf), that is, the
Markov property, holds for all n ∈ N and all xi ∈ X :

P(Xn+1 =xn+1|Xn =xn, Xn−1 = xn−1, ..., X0 = x0)=P(Xn+1 =xn+1|Xn =xn).
(3)
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Let X = {0, 1, 2, ...} and write conveniently the notation for the conditional
pmf of the process’s one-step transition from state i to state j at time n:

pij(n) = P(Xn+1 = xn+1 = j|Xn = xn = i). (4)

The one-step transition probability pij are given in a non-negative, stochastic1

transition matrix P:

P = P(1) = [pij ]

⎛⎜⎜⎜⎝
p00 p01 p02 . . .
p10 p11 p12 . . .
p20 p21 p22 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠
The following proposition gives how we can construct a transition function Φ for
a time-homogeneous DTMC with a probability transition matrix P [9].

Definition 4. A probability transition matrix P, on a partially ordered state
space (X ,�), can be described by a transition function

Φ : X × U → X , where U is a random variable taking values in an arbitrary
probability space U , such that, for all x, y ∈ X : P(Φ(x, U) = y) = pxy:

Xn+1 = Φ(Xn, Un+1) (5)

2.1 Perfect Sampling

Based on the transition function Φ, the following algorithm provides directly a
sample of the steady state distribution. Let X be finite state space set.

Algorithm 1. Backward coupling simulation
1: n=1;
2: E[1]=Generate-event();
3: repeat
4: n=2.n;
5: for all x ∈ X do
6: Y [x] ← x; {initialization of trajectories, size of vector Y is |X |}
7: end for
8: for i=n downto n/2+1 do
9: E[i]=Generate-event(); {generation of new events from -n/2 +1 to -n}

10: end for
11: for i=n downto 1 do
12: Y ← Φ(Y, E[i]); {generation of trajectories through events E[i], }
13: end for
14: {Y [x] is the state reached at time 0 for the trajectory issued from x at time -n}
15: until All Y [x] are equal; {Coupling of all trajectories at time 0}

1 The elements in each row of the matrix sum up to1.
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Let Eτ be the expectation of the coupling time, |X | be the size of the state
space and op(Φ) be the average number of operations to compute the transited
state. Clearly the average number of operations before coupling is |X |.Eτ.op(Φ).

Function Φ has a lot of influence on the number of operations. First the way
it is implemented has a linear influence because of term op(Φ).

2.2 Stochastic Ordering

Here we present the stochastic ordering of random variables and Markov chains.
We refer to [14] for further informations. Let X be a discrete countable state
space. We consider that X is endowed with at least a pre-order �.The strong
stochastic ordering associated to � will be denoted by �st.

A stochastic order can be defined by means of two approaches. The first way
is to define them from a set of functions. The stochastic order defined in this
case are called integral order. The second way is to define them from increasing
sets which is more useful when the state space is not totally ordered.

Definition 5. Let X and Y be two random variables taking values on X .

X �st Y ⇔ Ef(X) ≤ Ef(Y )

for all function f : X → R which is not decreasing according to relation �
whenever the expectations exist.

When the state space is totally ordered, the above definition implies the following
property:

Property 1. Let X and Y be two random variables taking values on X , with a
total order �, and let FX and FY be respectively their distribution functions:

X �st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ X
From the order relation (at least pre-order) � on X , we can define increasing
sets on X .

Definition 6. [Increasing set] Any subset Γ of X is called an increasing set if
x � y and x ∈ Γ implies y ∈ Γ.

The stochastic order �st is defined as follows from increasing sets:

Definition 7. Let T and V be two discrete random variables and Γ an increas-
ing set defined on X

T �st V ⇔
∑
x∈Γ

P(T = x) ≤
∑
x∈Γ

P(V = x), ∀Γ.

3 Different Definitions of Monotonicity

Here we present different monotonicity definitions used in stochastic modelling.
First we give the stochastic monotonicity associated to the stochastic order �st

then give the monotonicity definitions used for the perfect simulation.
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3.1 Stochastic Monotonicity

Following [14,10] let us give the definition of the stochastic monotonicity for
probability transition matrices of time-homogeneous DTMCs.

Definition 8 (stochastic monotonicity). Let P be a stochastic matrix, P is
st-monotone if and only if for any probability vectors on X , u and v, if u �st v
implies that uP �st vP.

Definition 9. Let P be the transition probability matrix of a time-homogeneous
Markov chain {Xn, n ≥ 0} taking values in X endowed with relation order �.
{Xn, n ≥ 0} is st-monotone if and only if,

∀(x, y) | x � y and ∀ increasing set Γ ∈ X∑
z∈Γ

pxz ≤
∑
z∈Γ

pyz (6)

If the state space is totally ordered, the st-monotonicity implies that the rows
of P are increasing:

Property 2. In the case of totally ordered state spaces, P is st-monotone if and
only if for all i, we have Pi,∗ �st Pi+1,∗.

In the following example, we discuss the st-monotonicity by considering respec-
tively a total order and then a partial order relation on the state space to show
that there is no implication. Let us remark here that we consider partial or-
ders compatible with the considered total order in the sense that the relation
orders for the partial order exist also in the total order, but some states are not
comparable under the partial order.

Example 1

P =

⎛⎜⎜⎝
1/2 1/6 1/3 0
1/2 1/6 0 1/3
1/2 0 1/6 1/3
0 0 2/3 1/3

⎞⎟⎟⎠
First we consider a total order: X = {a, b, c, d} and a � b � c � d. We can
see easily that the rows are increasing (property. (2)), so the matrix is stochastic
monotone in the total ordering. Now we consider a partial order: a � b � d;
and a � c � d. The increasing sets are Γ1 = {d}, Γ2 = {c, d}, Γ3 = {b, d},
Γ4 = {b, c, d}, Γ5 = {a, b, c, d}. P is not monotone with respect to this order.
For instance, for Γ3 = {b, d}, the probability measure for row b is 1/6 + 1/3,
while this measure is 1/3 for row d. Since b � d, this violates the monotonicity.

Therefore we can see that the monotonicity with a total order does not imply
the monotonicity with a partial order. From a first view, it may seem to be a
contradiction, because with total order we must compare all of the rows, however
with partial order we consider only comparable states. For example, we do not
compare row b and c for partial order in this example. However we do not have
the same increasing sets for these cases, for instance Γ3 = {b, d} is not an
increasing set with total order.



150 I. Kadi, N. Pekergin, and J.-M. Vincent

Property 3. If P is �st-monotone with respect to a total order defined on X ,
then P is not always �st-monotone with respect to a partial order defined on X .

3.2 Realizable Monotonicity

First, we will give the definition of realizable monotonicity, used in Fill and
Machida’s works on the perfect simulation [5].

Definition 10 (realizable monotonicity). Let P be a stochastic matrix de-
fined on state space X . P is said to be realizable monotone, if there exists a
transition function Φ as in Eq. 5, such that Φ preserves the order relation i.e.
for all u ∈ U, we have Φ(x, u) � Φ(y, u), whenever x � y.

There is an other definition of monotonicity used to perform perfect simulation
of finite queuing networks by software Psi2 [15].

Definition 11 (event monotonicity). The underlying model is said to be
event monotone, if the transition function by events (Eq. 1) preserves the order
ie. for each e ∈ E

∀(x, y) ∈ X x � y =⇒ Φ(x, e) � Φ(y, e)

This notion of event monotonicity is the same as the realizable monotonicity if
the set of events E is pre-defined. So a system is realizable monotone means that
there exists a finite set of events E for which the system is event monotone. In
the case of finite DTMCs, the cardinality of the set of events is upper bounded
by the number of non null entries of the transition matrix.

Example 2. Let (X , �) be a partial ordering state space, X = {a, b, c, d}, a �
b � d and a � c � d ;

We consider three events with the following probabilities pe1 = 1/6, pe2 =
1/3, pe3 = 1/2.

P =

⎛⎜⎜⎝
1/2 1/3 0 1/6
1/2 1/6 0 1/3
1/2 1/3 0 1/6
0 1/3 1/6 1/2

⎞⎟⎟⎠
1/6 1/6 1/6 1/6 1/6 1/6

a a b d
b a b d
c a b d
d b c d

e3 e2 e1

a a b d
b a d b
c a b d
d b d c

If we consider the initial set of event, we can see from the first table that P is
realizable monotone, but it is not event monotone, for instance we have in the
second table, for event pe1 = 1/6 , Φ(b, e1) = b is incomparable with Φ(d, e1) = c.
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But if we change the set of events, and define new events following the first
table, we obtain an event monotone system. For instance, we can, from the table
of realizable monotonicity, divide the interval [0,1] into monotone events, we
obtain five events with the following probabilities pe1 = 1/3, pe2 = 1/6, pe3 =
1/6, pe4 = 1/6, pe4 = 1/6.

pe1 pe2 pe3 pe4 pe5

a a a b b d
b a a b d d
c a a b b d
d b c d d d

We summarize the relationships between these types of monotonicity by the fol-
lowing scheme 1. We can see that there no implication between monotonicity
under the total order and a partial order compatible with the total order nei-
ther for the stochastic monotonicity nor the realizable monotonicity. When the
state space is totally ordered, both monotonicity notions are equivalent while for
partially ordered state spaces the realizable monotonicity implies the stochastic
monotonicity.

4 Realizable Monotonicity and Perfect Sampling

When the operator Φ is realizable monotone, the algorithm could be simplified
by making iteration only on maximal and minimal values of the state space. If
the trajectories issued from minimal and maximal states are coupled, due to the
realizable monotonicity, trajectories issued from all other states are also coupled.
The perfect simulation of monotone models will clearly reduce the computation
and memory complexity to obtain a sample [15].

We give in the following backward-coupling for event monotone models. Let
us turn now to the expectation of the coupling time for event-monotone sys-
tems. In the algorithm M (resp. m) denotes the set of maximal (resp. min-
imal) elements in the state space. This algorithm has the same convergence
properties as Algorithm (1). Thus the expected number of operations is (M +
m).Eτ1.op(Φ).

order
Partial

Total
order

Stochastic monotonicityRealizable monotonicity

Realizable monotonicity Stochastic monotonicity

Event System Transition matrix

Fig. 1. Relations between monotonicity notions in total and partial order
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Algorithm 2. Backward-coupling simulation (event monotone version)
1: n=1;
2: E[1]=Generate-event();
3: repeat
4: n=2.n;
5: for all x ∈ M∪ m do
6: Y [x] ← x; {initialization of trajectories,size of vector Y is |M ∪ m|}
7: end for
8: for i=t downto t/2+1 do
9: E[i]=Generate-event(); {generation of new events from -n/2 +1 to -n}

10: end for
11: for i=n downto 1 do
12: Y ← Φ(Y, E[i]); {generation of trajectories through events E[i], }
13: end for{Y [x] is the state reached at time 0 for the trajectory issued from x at

time -n}
14: until All Y ([x] are equal; {Coupling of maximal and minimal trajectories at time

0}

5 Stochastic Monotonicity and Perfect Simulation

Now we discuss how one can perform a monotone perfect simulation of a stochas-
tic monotone DTMC. So we will study the relations between the stochastic mono-
tonicity and the realizable monotonicity, and find the conditions that allow us
to move from a stochastic monotone DTMC to an event monotone MDES.

5.1 Totally Ordered State Space

When the state space is totally ordered the stochastic monotonicity and the
realizable monotonicity are equivalent [6]. However the stochastic monotonicity
is necessary but not sufficient for realizable monotonicity for partially ordered
state spaces. [4]

Theorem 1. When the state space is totally ordered (�), the stochastic mono-
tonicity and the realizable monotonicity are equivalent.

This result has already been proved, but for better comprehension we will give
a proof to this theorem.

Proof

– Realizable monotonicity =⇒ Stochastic monotonicity From the realizable
monotonicity definition, we have for each two states x and y ∈ X :

if x � y then ∀u ∈ [0, 1] : Φ(x, u) � Φ(y, u) (7)

The function Φ is the inverse probability distribution function. Let X and Y
be two random variables corresponding respectively to rows x and y of P.
So Φ(x, u) = F−1

X , ∀u.
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From (7), we obtain :
F−1

X (u) � F−1
Y (u), ∀u

this implies that for each state a ∈ X :

FX(a) ≥ FY (a)

It follows from the definition of the strong stochastic ordering ( property(1))
that X �st Y . Thus, the model is stochastically monotone.

– Stochastic monotonicity =⇒ Realizable monotonicity
From the stochastic monotonicity, we have for each two states x and y ∈ X :

if x � y then P [x, ∗] �st P [y, ∗] (8)

Let X and Y be two random variables corresponding respectively to rows x
and y of P. From equation (8) and property(1) of strong stochastic ordering
we obtain:

FX(a) ≥ FY (a), ∀a ∈ X (9)

Let u be a random variable, uniformally distributed in [0,1]. The equation
(9) implies that :

∀u ∈ [0, 1] : F−1
X (u) � F−1

Y (u)

We see that the function F−1 satisfies the conditions of monotonicity. So we
can always find a monotone transition function for the system.

Example 3. Let P3 be a transition matrix defined on a total ordered state space
(X , �), X = {a, b, c, d} and a � b � c � d.

P3 =

⎛⎜⎜⎝
1/2 1/6 1/3 0
1/2 1/6 0 1/3
1/2 0 1/6 1/3
0 1/6 1/2 1/3

⎞⎟⎟⎠
It can be easily verified that P3 is st-monotone. This model can be described by
a transition function Φ, obtained by the inverse probability distribution function.

1/6 1/6 1/6 1/6 1/6 1/6
a a b c
b a b d
c a c d
d b c d

It can be easily seen from the table that this model is realizable monotone.

5.2 Partially Ordered State Spaces

We now consider a partial order on the state space and show that there is only
implication but not the equivalence between these two monotonicity definitions.
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Theorem 2. In the case of partially ordered state spaces, if the system is real-
izable monotone, it is also stochastically monotone.

Proof. By means of Eq. 2 and definition 9, we can rewrite stochastic monotonic-
ity constraints of matrix P as follows

∀(x, y)|x � y and ∀Γ,
∑
z∈Γ

∑
u|φ(x,u)=z

P(U = u) ≤
∑
z∈Γ

∑
u|φ(y,u)=z

P(U = u)

From the realizable monotone definition, we have for each two states x and
y ∈ X :

if x � y then ∀u ∈ [0, 1] : x′ = Φ(x, u) � Φ(y, u) = y′

Thus if x′ belongs to an increasing set Γ , then y′ belongs to this set (definition
(6)). The above inequalities are satisfied for all increasing set Γ , thus P is st-
monotone.

The reciprocal of this implication is not true. We will prove it by a counter
example: We consider a transition matrix P3 in a partially ordered state space.
X = {a, b, c, d} and a � b � d; a � c � d.

P3 =

⎛⎜⎜⎝
1/2 1/6 1/3 0
1/3 1/3 0 1/3
1/2 0 1/6 1/3
0 1/3 1/3 1/3

⎞⎟⎟⎠
It can be easily verified that P3 is st-monotone. This model can be described by
transition function Φ, obtained by the inverse probability distribution function
by considering the total order a � b � c � d.

1/6 1/6 1/6 1/6 1/6 1/6
a a b c
b a b d
c a c d
d b c d

It can be seen from the table that it is not realizable monotone, for instance, we
have for u ∈ [3/6, 4/6] Φ(a, u) = b is incomparable with Φ(c, u) = c .

We can not find another transition function which makes this system realizable
monotone.

Proposition 1. It is not possible to construct a realizable monotone transition
function for the above example.

Proof. Since b � d and c � d, the transitions from states b, c, d to state d with
probability 1/3 must be associated to the same interval u. Similarly, since a � b
and a � c the transitions from states a, c to state a with probability 1/2 must
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be associated to the same interval u, the transitions from states a, b to state a
with probability 1/2 must be associated to the same interval u .

So, for states b, and c it remains only an interval of ue = 1/3 to assign. For
b the transition which is not associated is to state b, and for c there are two
transitions, one is to state a and the other is to state c. Now, we discuss the
case of state a, where a � c and a � b. For state a, we have an interval of 1/2
to assign, the transitions which are not associated are to state b and c. If we
associate b to the interval ue, we have a case of non comparability with state
Φ(c, ue) = c. Similarly, if we associate c to the interval ue, we will have a case
of non comparability with state Φ(b, ue) = b. Thus it is not possible to build a
realizable monotone transition function.

5.3 Case of Equivalence in Partial Order

We will give a case of partial order for which there is an equivalence between
the stochastic monotonicity and the realizable monotonicity, we will then give
an algorithm to construct the monotone transition function Φ which can be used
in PSI 2 to do monotone perfect simulation.

Theorem 3. When the state space is partially ordered in a tree, if the system
is stochastic monotone, then there exists a finite set of events e1, e2, ..., en, for
which the system is event-monotone.

 cm0

 cmn

 cm n−1
 c0n

0a

a
1

an c

 c

00

0 n−1

 c

 c10

1 h

1 n  c  1 n’

 c

Fig. 2. Tree

We consider one strongly connected component. Let A = {a1 ≤ a2 ≤ ...an}
be the states which are comparable with all others. This set contains at least the
root of the tree. F = {f1, ..., fm} denotes the set of leaves. Suppose that there
are m branches from an to each leaf fi. The branches from an to fi are called
Ci = {ci0, ..., cin = fi}, where ci0 is the successor of an. Obviously, the states
in a branch are totally ordered. We consider branch by branch. and for a given
branch Ci, we determine for all states x ∈ X , events eh, such that Φ(x, eh) = cij .
Let N be the number of states in X .

Now we will give the algorithm that construct the monotone transition func-
tion Φ, the idea of this algorithm can be summarized as follows: we consider
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branch by branch and for branch Ci we find events which trigger transition to
a state of Ci. Then we consider the states of A and find events which trigger
transition to a state of A.

Algorithm 3. Stochastic monotonicity → event-monotonicity
E = ∅{the set of events is initially empty}
for k ∈ {1, · · ·m} do

{Consider branch Ck}
V = [v1, v2, ..., vN ]{a vector representing the column index of the rightmost posi-
tive values for each row}
repeat

for i ∈ {1, 2 · · ·N} do
for j ∈ {vi, · · · , ck,l, ck,l−1, · · · ck,0, an, · · · a0} do

if pi,j = 0 then
j ← j + 1

end if
end for
vi ← j {update vector V }

end for
h ← h + 1 {the next event eh}
peh ← min1≤i≤N pi,vi{probability for event eh}
for i = 1 to N do

Φ(i, eh) ← vi

pi,vi ← pi,vi − peh{update matrix P}
end for

until
∑

eh∈E peh = maxx∈F}(
∑n

i=0 px,cki)
end for
repeat

for i = 1 to N do
j ← vi

while pi,j = 0 do
j ← j − 1

end while
vi ← j {update vector V }

end for
h ← h + 1 {the next event eh}
peh ← min1≤i≤N pi,vi{probability for event eh}
for i = 1 to N do

Φ(i, eh) ← vi

pi,vi ← pi,vi − peh{update matrix P}
end for

until
∑h

i=1 peh = 1

Proof. To prove this algorithm, we must show that for all two comparable
states x and y, if x � y, than we can find a transition function Φ, such that
Φ(x, u) � Φ(y, u), ∀u. For each branch k of the tree, we have from the stochastic
monotonicity the following proprieties
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pxckn
≤ pyckn

pxckn−1 + pxckn
≤ pyckn−1 + pyckn

. . .
pxck0 + ... + pxckn−1 + pxckn

≤ pyck0 + ... + pyckn−1 + pyckn

These proprieties satisfy the same conditions of the stochastic monotonicity in
a total order. This means that for each branch of the tree, we can construct a
monotone transition function by the same method used in the total order. Now,
if
∑n

i=0 pycki
>
∑n

i=0 pxcki
we must prove that for all u in the interval, which

represent
∑n

i=0 pycki
−∑n

i=0 pxcki
, Φ(y, u) � Φ(x, u).

Let

diffk =
n∑

i=0

pycki
−

n∑
i=0

pxcki

So, we must show that the sum of all the differences diffk is smaller than
(
∑

pxa + pxb). This can be verified in the following equation:

∑
pxa + pxb =

m∑
k=0

diffk +
∑

pya + pyb (10)

(10) =⇒
∑

pxa + pxb =
m∑

k=0

(
n∑

i=0

pycki
−

n∑
i=0

pxcki
) +
∑

pya + pyb

(10) =⇒
∑

pxa + pxb +
m∑

k=0

(
n∑

i=0

pxcki
) =

m∑
k=0

(
n∑

i=0

pycki
) +

∑
pya + pyb

(10) =⇒
∑

pxa + pxb +
m∑

k=0

(
n∑

i=0

pxcki
) = 1 =

m∑
k=0

(
n∑

i=0

pycki
) +

∑
pya + pyb

This last equation is evident because of the stochastic proprieties of the matrix.

6 Conclusion

In this paper, we study different monotonicity notions used in stochastic mod-
elling. The stochastic monotonicity associated to stochastic ordering relation and
the event and realizable monotonicity is used in perfect simulation. The mono-
tonicity concept depends on the relation order that we consider on the state
space. First, we show that if we have a monotone model on a total order, this
does not imply that it is monotone in the partial order for both monotonicity
notions.

Additionally, we have discussed the relationships between the stochastic
monotonicity and the monotonicity used to perform perfect simulation, in order
to see whether it is feasible to do monotone perfect simulation on a stochas-
tic monotone models. There are different mathematical tools to build bounding
models for complex discrete event systems. In conclusion, under a total order, the
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different monotonicity definitions are equivalent to each other. However, under a
partial order, the realizable monotonicity implies the stochastic monotonicity. In
fact, we have shown that stochastic monotonicity are not sufficient to obtain an
event monotone model, but we must verify others conditions on the DTMC. For
instance if the partial order is a tree, we have proved that there is an equivalence
between the two notions of monotonicity, and we have developed an algorithm
which construct the realizable monotone transition function Φ, to do perfect
monotone simulation.
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Abstract. In this paper we consider a multi-server queue with a near
general arrival process (represented as an arbitrary state-dependent Cox-
ian distribution), a near general state-dependent Coxian service time
distribution and a possibly finite queueing room. In addition to the de-
pendence on the current number of customers in the system, the rate of
arrivals and the progress of the service may depend on each other. We
propose a semi-numerical method based on the use of conditional prob-
abilities to compute the steady-state queue length distribution in such
a queueing system. Our approach is conceptually simple, easy to imple-
ment and can be applied to both infinite and finite Cm/Ck/c-like queues.
The proposed method uses a simple fixed-point iteration. In the case of
infinite queues, it avoids the need for arbitrary truncation through the
use of asymptotic conditional probabilities.

This preliminary study examines the computational behavior of the
proposed method with a Cox-2 service distribution. Our results indicate
that it is robust and performs well even when the number of servers and
the coefficient of variation of the service times are relatively high. The
number of iterations to attain convergence varies from low tens to several
thousand. For example, we are able to solve queues with 1024 servers and
the coefficients of variation of the service time and of the time between
arrivals set to 4 within 1100 iterations.

Keywords: Multi-server queue, general arrivals, general service times,
steady-state queue length distribution, simple efficient semi-numerical
solution.

1 Introduction
The use of multiple processing elements or servers to provide an overall high
processing capacity is a frequently applied technique in many areas includ-
ing multi-core processors, distributed systems, storage processors with multiple
internal “engines”, virtualization in operating systems, where multiple logical
CPUs are defined, as well as the Internet where most popular Web sites use
multiple“mirror” sites. The numbers of servers in these applications can read-
ily exceed 16 and appears to be growing. Due to intrinsic characteristics of
the service demands or the way service is provided, it is possible for the service
times and/or inter-arrival times to exhibit high variability. In particular, modern
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CPUs, storage processors, as well as Web sites make extensive use of internal
caches to reduce the expected service time for most requests. The mixture of
cache hits and much less frequent cache misses naturally leads to service time
distributions characterized by high variability. The potentially high variability
of service times is not limited to computer applications [32].

At a high level, the applications described can be viewed as instances of the
G/G/c queueing system with a possibly high coefficient of variation of the service
time, as well as of the time between arrivals. In real life, the maximum queue
depth or buffer capacity is finite. Additionally, in many systems, the rate of
service may depend on the current number of customers in the system, e.g. if
system overheads increase as the number of customers increases in computer
applications. State-dependent arrival rate allows us to represent, for instance,
a queue subject to requests generated by a finite set of memoryless sources. In
load balancing applications, it is also possible to have arrivals of requests that
depend on the progress of service.

We consider a G/G/c-like system in which the distribution of the times be-
tween arrivals is represented by a Coxian [10] series of memoryless stages. The
parameters of this Coxian distribution may depend on the number of customers
in the system. The service times are represented by a Coxian distribution gener-
alized to include state-dependent service rates and routing probabilities. Addi-
tionally, the rate of arrivals and the progress of the service may depend on each
other. A number of authors have studied algorithms for matching an arbitrary
distribution by a Coxian, e.g. [7, 25, 12, 19].

We base our method on conditional probabilities, which allows us to derive
a computationally efficient semi-numerical approach to the evaluation of the
steady-state queue length distribution. The proposed approach, applicable to
both finite and infinite Cm/Ck/c-like queues, does not rely explicitly on matrix-
geometric techniques [20, 22]. It is conceptually simple and appears numerically
stable in practice even for large numbers of servers. Unlike certain other ap-
proaches (e.g. [23]), our method requires minimal mathematical sophistication
and is easy to implement in a standard programming language, which should
make it of interest to every-day performance analysts. Results obtained from
our method have been verified using discrete-event simulation.

As it is well known (e.g. [30]), in the case of an infinite, state-independent
G/G/c-like queue, the form of the queue length distribution is asymptotically
geometric. Our method exploits this fact to avoid arbitrary truncation present
in other methods [29, 27, 22]. For the Cm/Ck/c queue, the coefficient of the
asymptotic geometric distribution can be independently obtained from a simple
set of equations.

In this paper we present preliminary experimental results on the computa-
tional behavior of the proposed approach in the particular case when the service
time distribution comprises two stages (generalized Cox-2). It is well known that
a standard state-independent two-stage Coxian can be used to match the first
two moments of any distribution whose coefficient of variation is greater than
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2, and a Coxian distribution with an unlimited number of stages (used for
the inter-arrival times) can approximate arbitrarily closely any distribution [1].

There is a large body of literature devoted to queues with multiple servers.
The computation of the stationary queue length distribution of the M/M/c or
the M/M/c/K queue is easy and well known [1]. However, no simple derivation
seems to exist, even for the first moment of the queue length, when the ser-
vice times are not exponentially distributed. For the M/D/c queue, Saaty [24]
presents a method to obtain the queue length distribution in steady state, and
Cosmetatos [9] proposes an approximate formula to compute the mean waiting
time in such a queue. Shapiro [28] considers the M/E2/c queue, and uses an
original state description that leads to a set of differential equations for which
he proposes a general solution framework. Mayhugh and McCormick [18], and
Heffer [13] expand Shapiro’s approach to the M/Ek/c queue for arbitrary values
of k. As pointed out by Tijms et al. [31], the solution of the resulting set of differ-
ential equations quickly becomes intractable as the value of k or the number of
servers increases. Thus, Tijms et al. [31] propose an algorithm to approximately
compute the steady-state queue length distribution for the M/G/c queue with
variation coefficients up to 3. Hokstad [15] attempts to use the method of sup-
plementary variables to study the M/K2/c queue, and is able to obtain partial
results for up to three servers. The method of supplementary variables is also
used by Hokstad [14] and Cohen [8] to derive the stationary queue length dis-
tribution for the M/G/2 queue. Extensions of this method to a higher number
of servers do not appear practical.

Results are even more difficult to obtain when the interarrival time distribu-
tion is also general. Ishikawa [16] uses the method of supplementary variables
to derive the solution for the G/E3/3 queue. De Smit [11] studies the G/H/c
queue but is not able to prove the existence of a solution in the general case,
and reports experimental results limited to the G/H2/c queue. Ramaswami and
Lucantoni [21] use the embedded Markov chain approach under the assumption
of a phase-type distribution of service times. Their method requires the solution
of a non-linear matrix equation. The high order of the matrices involved makes
the solution impractical for a higher number of servers. Bertsimas [3] considers
the Ck/Cm/c queue and proposes a general method to solve the resulting infinite
system of partial differential equations using generating functions. Asmussen and
Moller [2] propose a technique to evaluate the distribution of the waiting time in
a multi-server queue with phase-type service distributions. The latter two tech-
niques do not appear easy to implement in practice. Several authors consider
purely numerical approaches. Takahashi and Takami [29] and Seelen [27] present
numerical methods for the Ph/Ph/c queue. Their approach involves an iterative
solution of the balance equations using successive aggregation/disaggregation
steps. Seelen improves on the initial method proposed by Takashi and Takami
by introducing an over-relaxation parameter to speed up convergence. As is of-
ten the case, the optimal value of this parameter is not known in advance and
a poor choice may interfere with the convergence of the method. Additionally,
both methods [29, 27] require arbitrary truncation for a queue with unlimited
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queueing room, which can introduce errors. Seelen et al. [26] provide a large
number of numerical studies with many different distributions for both the in-
terarrival and service times, the number of servers not exceeding 50. Rhee and
Pearce [23] cast this type of queues as a quasi birth and death process [17], and
propose a solution but provide no data on its numerical behavior. Some of the
approaches proposed in the past even for simpler problems turned out to exhibit
computational stability issues (e.g. [35]).

In the next section we describe the queue under study, and we outline our
computational approach. We consider first the general case of state-dependent
arrival and service rates. We also consider the specific case of an infinite queue
where the arrival and service become independent of the number of customers
as the latter increases, and the asymptotic queue length distribution for such
a system. Section 3 is devoted to numerical results that illustrate the behavior
of our method. Although we do not have a theoretical proof of convergence or
numerical stability, our preliminary results indicate that the proposed method is
computationally stable even with large numbers of servers. Section 4 concludes
this paper.

2 Model and Its Solution
We consider the queueing system shown in Figure 1. We denote by n the current
number of customers and by c the number of servers in this system. The times
between arrivals of customers are represented by a series of m memoryless stages.
We use the index j (j = 1, . . . , m) to refer to the current stage of the arrival
process. The c servers are assumed to be homogeneous and the service times are
represented as a Coxian-like distribution with k memoryless stages. We use the
index i (i = 1, . . . , k) to refer to the current stage of the service process when
there are customers in the system.. We describe the state of this system in steady
state by the triple (j,

−→
l , n) where j (j = 1, . . . , m) is the current stage of the

arrival process,
−→
l = (l1, . . . , lk) is the vector giving the numbers of customers in

stages 1 through k of their service, and n is the current number of customers in
the system. Note that n refers to customers having completed the arrival process
but not yet departed from the system. Note also that it is sufficient to consider
stages 2 through k in the vector

−→
l since we have

∑k
i=1 li = min (n, c).

For the service time distribution, the completion rates of the stages and the
probability of exiting after each expect the last stage may depend on the current
number of users in the system as well as on the current stage of the arrival
process. We denote by μi(n, j) the service rate of stage i (i = 1, . . . , k) and by
qi(n, j) the probability that the customer completes its service following stage i
when there are n customers in the system and the arrival process is in stage j.
We let q̂i(n, j) = 1 − qi(n, j) denote the probability that the customer proceeds
to stage i + 1 upon completion of stage i. We assume that μi(n, j) > 0 for
i = 1, . . . , k, 0 < q̂i(n, j) ≤ 1 for i = 1, . . . , k − 1 and q̂k(n, j) = 0. For the
interarrival time distribution, we denote by λj(n,

−→
l ) the completion rate of

stage j (j = 1, . . . , m) when the current number of customers in the system is
n, the state of the servers is given by

−→
l , and by pj(n,

−→
l ) the probability to
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complete the arrival process following stage j. p̂j(n,
−→
l ) = 1 − pj(n,

−→
l ) denotes

the probability that the customer arrival process proceeds to stage j + 1 upon
completion of the preceding stage. We have 0 < p̂j(n,

−→
l ) ≤ 1 for j = 1, . . . , m−1,

and p̂m(n,
−→
l ) = 0 for all values of n. Note that, in the case when there is

no state dependency, the arrival process considered can be viewed as simply
a renewal process with a Coxian interrenewal distribution. Note also that the
stages described may correspond to actual stages of processing and service, or
may be just a device to represent non-exponential distributions.

Fig. 1. Cm/Ck/c-like queue considered

We let p(j,
−→
l , n) be the stationary probability that the system is in the state

described by (j,
−→
l , n). Denote by p(j,

−→
l |n) the corresponding conditional prob-

ability that the stage of arrival process is j and that the state of the servers is
described by

−→
l given that the current number of customers in the system is n.

Denote also by p(n) the steady-state probability that there are n customers in
the system. Clearly, assuming that p(n) > 0, we must have

p(j,
−→
l , n) = p(j,

−→
l |n)p(n). (1)

For each value of n, we must also have
m∑

j=1

∑
−→
l

p(j,
−→
l |n) = 1. (2)

It is a straightforward matter to derive the balance equations for the probabilities
p(j,

−→
l , n) both in the case of a finite and infinite queueing room. It is not difficult

to see that the rate of customer arrivals given n can be expressed as

α(n) =
m∑

j=1

∑
−→
l

p(j,
−→
l |n)λj(n,

−→
l )pj(n,

−→
l ), for n ≥ 0. (3)

Similarly, the rate of service completion given that there are n customers in the
system can be expressed as

ν(n) =
m∑

j=1

∑
−→
l

p(j,
−→
l |n)

k∑
i=1

liμi(n, j)qi(n, j), for n > 0. (4)
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Hence, p(n), the steady-state probability that there are n customers in the sys-
tem, is given by

p(n) =
1
G

n∏
k=1

α(k − 1)/ν(k), for n ≥ 0. (5)

In formula (5), G is a normalizing constant chosen so that
∑

n≥0 p(n) = 1.
In other words, the probability p(n) in our Cm/Ck/c-like system is the same
as the steady-state probability of the number of customers in a simple birth
and death process with birth (arrival) rate α(n) and death (service) rate ν(n).
This result can be derived by summing the balance equations for the steady-
state probabilities p(j,

−→
l , n) over all values of j and

−→
l , and using the fact that

p(j,
−→
l , n) = p(j,

−→
l |n)p(n) [cf. [6]]. Thus we have (implicit in formula (5))

p(n − 1)/p(n) = ν(n)/α(n − 1)
p(n + 1)/p(n) = α(n)/ν(n + 1).

(6)

To obtain the equations for these conditional probabilities p(j,
−→
l |n), it suffices

to use formula (1) together with (6) in the balance equations for p(j,
−→
l , n). In the

case of a finite queueing room of size N , there are several possible assumptions
regarding the behavior of the arrival process at the high limit resulting in special
boundary equations for n = N (and possibly n = N − 1).

We now focus on the case of an unrestricted queueing room. One possible
approach is to simply truncate the equations at some arbitrary high value for
n. A more elegant approach is possible if the parameters of the arrival process
λj(n,

−→
l ), pj(n,

−→
l ), as well as those of the service process μi(n, j), qi(n, j) become

independent of the number of users starting with some value of n = n0 so that
we have λj(n,

−→
l ) = λ̃j(

−→
l ), pj(n,

−→
l ) = p̃j(

−→
l ), μi(n, j) = μ̃i(j), qi(n, j) = q̃i(j)

for n ≥ n0. Under these conditions, and assuming that the system under con-
sideration is ergodic, one can expect that the conditional probabilities p(j,

−→
l |n)

tend to a limit as n increases: lim
n→∞

p(j,
−→
l |n) = p̃(j,

−→
l ).

As a result, starting with a sufficiently high value of n, say n ≥ ñ (clearly,
ñ > n), we have for ||p(j,

−→
l |n) − p̃(j,

−→
l )|| < δ for δ > 0, and the arrival and

departure rates α(n) and ν(n) become sufficiently close to their limiting values,
which we denote by α̃ and β̃

α̃ =
m∑

j=1

∑
−→
l :l1+...+lk=c

p̃(j,
−→
l )λ̃j(

−→
l )p̃j(

−→
l ) (7)

ν̃ =
m∑

j=1

∑
−→
l :l1+...+lk=c

p̃(j,
−→
l )

k∑
i=1

liμ̃i(j)q̃i(j). (8)
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Thus, we can express the steady-state distribution p(n) as

p(n) ≈ 1
G

{∏n
k=1 α(k − 1)/ν(k), n ≤ ñ∏ñ
k=1 α(k − 1)/ν(k)(α̃/ν̃)n−ñ, n > ñ

(9)

Following a common convention, empty products are set to one. The normalizing
constant G can be written as

G ≈ 1 +
ñ−1∑
n=1

n∏
k=1

α(k − 1)/ν(k) +
[ ñ∏

k=1

α(k − 1)/ν(k)
]

1
1 − (α̃/ν̃)

, (10)

and the expected number of customers in the system can be expressed as

n ≈ 1
G

{ ñ∑
n=1

np(n) +
[

ñ

1 − (α̃/ν̃)
+

(α̃/ν̃)
[1 − (α̃/ν̃)]2

] ñ∏
k=1

α(k − 1)/ν(k)
}

. (11)

We note that the form of the solution for p(n) given in formula (9) clearly
shows that the steady-state distribution is asymptotically geometric with “traffic
intensity” α̃/ν̃.

Thus, we solve the set of equations for the conditional probabilities p(j,
−→
l |n)

for all values of n, subject to the normalizing condition given by (2). In the case
of an infinite queue, the values to consider are n = 0, . . . , ñ, and in the case of
a finite queueing room, all values of n = 0, . . . , N . Because the equations for
p(j,

−→
l |n) involve in general the conditionals for n−1 and n+1, it does not seem

possible to solve these equations as a simple recurrence, as would be the case for
an M/G/1-like queue (cf. [5]).

However, a simple-minded and simple to implement fixed-point iteration can
be used to solve these equations as follows. We use a superscript to denote
the iteration number. We start with some set of initial values p0(j,

−→
l |n) for

n = 0, . . . , nmax (where nmax = N in the case of a finite queueing room, and
nmax = ñ0, an initial estimate of ñ, in the case of an infinite queue), and we
consider the possible states in the order of increasing n, enumerating all server
states

−→
l compatible with the value of n, and j, the latter varying the fastest.

We compute new values for the conditional probabilities directly from the cor-
responding equations. For each value of n, we normalize the newly computed
values so that

∑m
j=1
∑

−→
l

pi(j,
−→
l |n) = 1 once we have updated all the values

for all (j,
−→
l ), but in the iteration we use the latest (not necessarily normalized)

values as soon as they become available. Following the normalization, we can
compute new values for the conditional rate of request arrivals αi(n) and the
rate of completions νi(n).

In the case of an infinite queue (under the assumptions discussed earlier in
this section) we dynamically determine the “cutoff” value ñi as the value of
n for which |1 − αi(n − 1)/αi(n)| < ε, as well as |1 − νi(n − 1)/νi(n)| < ε,
and we consider that at this point the limiting values have been reached for
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the conditional probabilities at iteration i. Note that by selecting the value of
ε as desired we control the accuracy with which the convergence to limiting
conditional probabilities is determined. Thus our method provides an automatic
limitation for the values of n based on the accuracy of convergence to limiting
values, as opposed to arbitrary truncation used in several other methods. In
practice, in most cases, the convergence to limiting values tends to occur quickly
(i.e., for moderate values of ñi), so that the steady-state distribution can be
determined with high accuracy at a limited computational expense. For a finite
queueing room, the maximum value for n is the size of the queueing room N , and
there is no asymptotic convergence involved. The fixed-point iteration itself stops
when the values of the conditional probabilities at consecutive iterations differ
less than a specified convergence tolerance, e.g.||1−pi−1(j,

−→
l |n)/pi(j,

−→
l |n)|| < δ.

The fact that we use newly computed values for pi(j,
−→
l |n) as soon as they

become available not only reduces the space requirements of our method to a
single set of arrays to hold the values of pi(j,

−→
l |n), αi(n) and νi(n), but also

appears to speed up the convergence. We have not been successful in developing
a theoretical proof of convergence for the proposed approach.

In our initial study of the properties of this approach, we performed a large
number of test runs concentrated on the particular case of a Cox-2 service dis-
tribution, for which p(j,

−→
l |n) can be replaced by p(j, l2|n). In our test runs,

the proposed approach has always converged, typically within a relatively small
number of iterations although the number of iterations tends to increase as the
number of servers and the service time variability increase. The choice of the
initial distribution p0(j, l2|n) seems to have a limited effect. For each value of n,
the computational complexity of every iteration scales linearly with the number
of servers since the latter determines the number of values to consider for the
current number of customers in their second stage of service, l2. As discussed
in the next section, for the unrestricted queue, the value of ñ , and hence the
number of values of n to consider, appears to increase less than linearly as the
number of servers increases. Obviously, in the case of a finite queueing room, we
have n = 0, . . . , N at each iteration.

In the case of an infinite queueing room, it is possible to know indepen-
dently, from the solution of the corresponding equations, the limiting distribu-
tion p̃(j, l2). We find that using this limiting distribution for p0(j, l2|n) (truncated
and normalized for n < c), tends to speed up the iteration. It can be readily
computed from the equations for p̃(j, l2) using a simple fixed-point iteration.

In the next section, we present numerical results to illustrate the behavior of
our method for a number of values of queue parameters, including service times
with high variability (coefficient of variation of over 10) and number of servers
c ranging from 4 to 256.

3 Numerical Results
In this section we present numerical results to illustrate the good convergence
properties of our method, as well as its ability to solve systems both with high
number of servers and high service time variability. In most examples we consider
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Table 1. Parameters of selected service time distributions

Dist. Mean Coeff.Var. Skewness Kurtosis μ1 μ2 q̂1
I 1 0.8 1.80 5.05 4.25 1.308 1.000
II 1 2.0 3.06 12.77 1000.0 0.400 0.399
III 1 4.0 6.01 48.28 1000.0 0.118 0.117
IV 1 8.0 12.01 192.43 1000.0 0.031 0.031
V 1 16.0 24.02 769.55 1000.0 0.008 0.008

three levels of server utilization: 0.25, 0.5, 0.99, which correspond to 25%, 50%
and 99% of the c servers busy, respectively. The Cox-2 distributions used to rep-
resent the service times in our examples are given in Table 1. Note that skewness
and kurtosis relate to moments of order 3 and 4 of a probability distribution.
Results in the following figures are then labeled by the corresponding coefficient
of variation of the service time distribution. The mean service time is kept at
one in all cases. We used discrete-event simulation to confirm the accuracy of
our results for a selected set of cases.

With infinite queueing room, the “cutoff” point for the determination of ñi

was obtained using ε = 10−11. The overall iteration convergence criterion used
was ||1−νi−1(n)/νi(n)|| < δ and ||1−αi−1(n)/αi(n)|| < δ with δ = 10−5. These
values were used for all examples presented in this paper.

3.1 The M/G/c-Like Queue
In our first set of results we consider an infinite state-independent queue with
Poisson arrivals, i.e., an M/C2/c queue. Figures 2a through 2h show the number
of iterations needed to achieve convergence as well as the largest values of ñi

observed during the iteration process (thus indicating the number of equations
solved and storage requirements.)

We observe that the number of iterations is generally tame, ranging from
no more than around 200 for coefficients of variation up to 8 and 4 servers, to
below 1000 with 256 servers. In our examples, the number of iterations tends to
increase as the coefficient of variation of the service time increases, although, as
we discuss later in this section, the results can be quite sensitive to higher order
parameters of the service time distribution. When the coefficient of variation of
the service time is equal to 16, the number of iterations ranges from around 700
to below 4000. The convergence of p(j, l2|n) to the limiting distribution p̃(j, l2) as
n increases tends to occur relatively quickly. The maximum values of ñi attained
during the iteration range from low tens to below 1000 in the “worst” case for the
queue considered, viz. for 256 servers and coefficient of variation of the service
set to 16.

3.2 The M/G/c/N/N-Like Queue
In our second set of results we consider a similar queue subject to state dependent
memoryless arrivals, i.e., the rate of arrivals when there are n requests in the
queue (including the ones in service) is given by λ(n) = (N −n)γ. Such a model
corresponds to a set of N sources of requests as shown in Figure 3. Each source
generates a new request after an exponentially distributed time 1/γ following
the completion of its previous service period.
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(a) Number of iterations with 4

servers.

(b) Maximum value of ñi with 4

servers.

(c) Number of iterations with 32

servers.

(d) Maximum value of ñi with

32 servers.

(e) Number of iterations with

128 servers.

(f) Maximum value of ñi with

128 servers.

(g) Number of iterations with

256 servers.

(h) Maximum value of ñi with

256 servers.

Fig. 2. Behavior of the method for a multi-server queue for service time distributions
from Table 1 as a function of the number of servers c and the server utilization level

Fig. 3. Multi-server queue with N sources

The results shown in Figure 4 pertain to a queue with 8 servers and a coeffi-
cient of variation of the service time of 8. Figures 4a, 4b and 4c show the number
of iterations, the expected number of customers in the system (queued and in
service) n̄, as well as the utilization level (fraction of servers busy), respectively,
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(a) Number of iterations (b) Mean number of customers (c) Server utilization levels

Fig. 4. Behavior of the method for a multi-server queue with c = 8 servers and service
time distribution Dist. IV (cv = 8, cf. Table 1) as a function of the number of sources
N .

for numbers of sources ranging from 10 to 500. The value of γ is kept at 0.1. We
observe that the number of iterations to achieve convergence tends to increase
with the number of sources, but remains, in the example considered, below 500
in all cases.

3.3 The G/G/c-Like Queue
In Figure 5 we have represented results for a C2/C2/c queue with infinite queue-
ing room in which the time between consecutive arrivals is a Cox-2 distribution
with a coefficient of variation of 4. The parameters of the service time distri-
bution are given in Table 1. The generic parameters of the distributions of the
interarrival times used in our examples are given in Table 2. The values given in
this table correspond to a mean time between arrivals of one. For other values
of the mean interarrival time used in our examples, the rates of the stages of the
arrival process change in proportion to the inverse of that mean, while the stage
transition probabilities remain constant.

Table 2. Generic parameters of selected distributions of time between arrivals

Dist. Mean Coeff.Var. Skewness Kurtosis λ1 λ2 p̂1
I 1 0.8 1.80 5.05 4.248 1.308 1.000
II 1 2.0 3.36 15.31 10.00 0.375 0.338
III 1 4.0 6.66 59.30 10.00 0.107 0.096
IV 1 8.0 13.33 236.96 10.00 0.028 0.025
V 1 16.0 26.66 948.05 10.00 0.007 0.006

We give in Tables 1 and 2 the precise parameters of the distributions used
because the results can be sensitive to higher order parameters of both the
interarrival time distribution and the service time distribution [4, 33, 34]. This
sensitivity extends to the performance of our method, as well as the steady-state
probability distribution for the G/G/c queue itself.

The number of iterations ranges typically from 200 with 4 servers to 500 with
256 servers when the coefficient of variation of the service time does not exceed
8. With the coefficient on variation of the service time set to 16, the number of
iterations ranges from about 700 with 4 servers to 3500 with 256 servers. The
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(a) Number of iterations with 4

servers

(b) Maximum value of ñi with 4

servers

(c) Number of iterations with 32

servers

(d) Maximum value of ñi with

32 servers

(e) Number of iterations with

128 servers

(f) Maximum value of ñi with

128 servers

(g) Number of iterations with

256 servers

(h) Maximum value of ñi with

256 servers

Fig. 5. Behavior of the method for a multi-server queue for inter-arrivals time distri-
butions from Table 2 as a function of the number of servers c and the server utilization
level

maximum values of ñi attained during the iteration range from low tens to below
1000 in the “worst” case, which happens to be in this case for 256 servers and
coefficient of variation of the service set to 0.8.

Using a “proof-of-concept” implementation in C running on a 2.99 GHz Intel
processor, for the case of 128 servers at 0.99 server utilization level, we measured
execution times ranging from 3.97 s with cv = 8 to around 0.31 s with a lower
coefficient of variation of 2 (cv = 2). As mentioned before, lower numbers of
servers tend to result in faster execution, so that with 32 servers the correspond-
ing results range from 0.72 s to 0.16 s. With 4 servers the execution times of our
simple implementation range from about 0.14 s for cv = 8 to 0.03 s for cv = 2.
Note that the vast majority of execution times are below one second.
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The convergence stringency used throughout this paper, viz. ε = 10−11 and
δ = 10−5 appears generally sufficient. When focusing on individual state prob-
abilities in our trials, we used more stringent values: ε = 10−15 and δ = 10−8.
There seems to be limited difference in the results obtained.

Overall, our method appears to be computationally robust, reasonably fast
and quite scalable as the number of servers and the variability of service and
interarrival times increase. The next section is devoted to the conclusions of this
paper.

4 Conclusion
We consider a semi-numerical method to compute the steady-state distribution
of the number of users in a Cm/Ck/c-like system where the distributions of the
times between arrivals and the service times are represented by Coxian series
of memoryless stages. The parameters of both Coxian distributions may depend
on the current number of customers in the system. Additionally, arrivals and
the progress of the service may depend on each other. We base our approach
explicitly on conditional probabilities. This allows us to derive a conceptually
simple and computationally efficient semi-numerical approach to the evaluation
of the steady-state queue length distribution.

The proposed method can be used to solve both infinite and finite G/G/c-
like queues of the type considered. In the case of an infinite Cm/Ck/c queue
whose parameters don’t depend on the current number of customers, the form of
the queue length distribution is asymptotically geometric. Our method exploits
this fact to avoid arbitrary truncation of the balance equations. Instead, we
dynamically determine, with as much stringency as desired, the convergence
to asymptotic values, and use the latter in our solution. The coefficient of the
geometric distribution is a by-product of our iterative solution. It can also be
obtained independently, without solving the whole queue, using a simple set of
equations, easily solved via fixed-point iteration.

In this preliminary study, we examined empirically the computational proper-
ties of this method in the case of a Cox-2 service distribution. Our experimental
evidence indicates that the proposed method is numerically stable in practice.
In our numerical examples we have explored the behavior of our approach for
a range of values of the number of servers in the queue (4 to 256), as well as
for several coefficients of variation of the time between arrivals and of the ser-
vice times. Our results indicate that the proposed method performs well even
when the number of servers is relatively high (256 in our examples) and so is
the coefficient of variation (up to 16 in our examples). In the many cases we
considered, the method has never failed to converge within a reasonable number
of iterations. The number of iterations to attain convergence depends on the
parameters of the Cm/C2/c queue considered, and varies, in our examples, from
low tens to several thousand. It tends to increase for queues with high coeffi-
cients of variation of the service time and high number of servers. In additional
tests, not reported in Section 3, we were able to solve queues with 1024 servers,
the number of iterations not exceeding 1100 for the coefficients of variation of
the service time and of the time between arrivals set to 4.
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Our results underscore the potential importance of higher order moments of
the interarrival time and service time distributions in the steady-state probability
distribution for the number of customers in the G/G/c queue. This topic is
discussed in more detail in another paper.

Overall, the proposed method is conceptually simple, easy to implement, and
readily applicable to both finite and infinite systems. It requires minimal mathe-
matical sophistication. Our preliminary results indicate that it robust, fast, and
scales reasonably well with the number of servers. These qualities should make
the method attractive to performance analysts “in the trenches” when dealing
with systems that can be modeled as mutliserver queues.
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Abstract. The class of order 3 phase type distributions (PH(3)) is
known to be a proper subset of the class of order 3 matrix exponen-
tial distributions (ME(3)). In this paper we investigate the relation of
these two sets for what concerns their moment bounds. To this end we
developed a procedure to check if a matrix exponential function of order
3 defines a ME(3) distribution or not. This procedure is based on the
time domain analysis of the density function. The proposed procedure
requires the numerical solution of a transcendent equation in some cases.

The presented moment bounds are based on some unproved conjec-
tures which are verified only by numerical investigations.

Keywords: Matrix exponential distributions, Phase type distributions,
moment bounds.

1 Introduction

The availability of efficient matrix analytic methods (see e.g., [7,10]) reinforced
the research of distributions with matrix exponential representation. The order
of these distributions is defined as the (minimal) cardinality of the matrix that
describes the distribution. The two main classes of these distributions are the
class of phase type distributions [8,9], which has a nice stochastic interpretation
due to its underlying continuous time Markov chain, and the class of matrix
exponential distributions [1], which does not allow for a simple stochastic inter-
pretation.

It has been known for a long time that considering distributions of order 2 the
two classes are identical, ME(2)≡PH(2), but for n > 2 PH(n) is a proper subset
of ME(n) [12]. Unfortunately there are no tools to investigate the relation of the
ME(n) and the PH(n) classes for n > 2. However, recent results on ME(3) [5]
and PH(3) [6] distributions make it possible to investigate the relation of the
ME(3) and the PH(3) classes.

The practical importance of low order PH and ME distributions comes from
the fact that the complexity of the matrix analytic analysis increases rapidly
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with the order of the model components (e.g., PH distribution of the service
time). Recent results suggest that matrix analytic methods are applicable for
models with matrix exponential distributions as well as for models with phase
type distributions [2]. Consequently, one can gain if the durations to be modelled
can be described by a ME distribution with lower order than the application of
a PH distributions would require.

We compare the flexibility of the ME(3) and the PH(3) classes through their
moment bounds. It is not the only and not necessarily the easiest way to com-
pare them, but this choice is motivated by the fact that moments and related
measures (e.g., coefficient of variation) are the most frequently used parameters
of distributions.

This paper is strongly related to the extensive work of Mark Fackrell in [5]. We
reconsider some questions of [5] and complement those results with alternative
ones. The main goal of this paper is to answer the following question ([5] p. 110)
“The class of PH distributions is a proper subset of the class of ME distributions,
but how much larger is the latter class than the former?”. In [5] the question is
answered for ME(n) and ∪m≥n PH(m). We believe that this question has more
practical importance for ME(n) and PH(n). In this work we try to answer this
question for ME(3) and PH(3).

Related ME(3) results. [5] devotes its main attention to the matrix exponen-
tial distributions of order n > 2 and provides important necessary conditions
for being a member of ME(n). Additionally, [5] provides necessary and suffi-
cient conditions for being a member of ME(3). These conditions are given in
the Laplace transform domain. Assuming that for a given triple {b1, b2, b3} the
Laplace transform of a matrix exponential function takes the form

x2s
2 + x1s + b1

s3 + b3s2 + b2s + b1

(i.e., there is no probability mass at 0) the linear and parametric curves provided
in [5] bound the region of {x1, x2} where the matrix exponential function is a
member of the ME(3) class.

Unfortunately, we did not find an easy implementation of these transform
domain constraints, and this is why we developed a time domain counterpart for
ME(3) characterization.

An important property of the ME(3) class, namely its minimal coefficient of
variation, is studied in [4]. The results provided here verify the ones provided
there.

Related PH(3) results. Another important preliminary work is [6] which
provides a canonical representation of PH(3) distributions. More precisely, [6]
presents an algorithm that transforms any order 3 matrix exponential function
to PH(3) canonical form if it is possible. In this paper, this algorithm is used to
characterize the borders of the PH(3) class.

The rest of the paper is organized as follows. Section 2 defines the class of
matrix exponential distributions and the basic notations. Section 3 presents a
procedure to check if a matrix exponential function of order 3 is a member of
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the ME(3) class or not. Using this procedure and its counterpart for the PH(3)
class from [6], Section 4 investigates the relation of the moment bounds of these
two classes. The paper is concluded in Section 5.

2 Matrix Exponential Distributions

Definition 1. The vector matrix pair (v, H) defines a matrix exponential dis-
tribution iff

F (t) = Pr(X < t) = 1 − veHt1I , t ≥ 0 (1)

is a valid cumulative distribution function, i.e., F (0) ≥ 0, limt→∞ F (t) = 1 and
F (t) is monotone increasing.

In (1), the row vector, v, is referred to as the initial vector, the square matrix,
H, as the generator and 1I as the closing vector. Without loss of generality (see
[8]), throughout this paper we assume that the closing vector is a column vector
of ones, i.e., 1I = [1, 1, . . . , 1]T .

The density, the Laplace transform and the moments of the matrix exponential
distribution defined by (v, H) are

f(t) = veHt(−H)1I , (2)

f∗(s) = E(e−sX) = v(sI − H)−1(−H)1I , (3)

μn = E(Xn) = n!v(−H)−n1I . (4)

To ensure that limt→∞ F (t) = 1, H has to fulfill the necessary condition that
the real parts of its eigenvalues are negative (consequently H is non-singular).

The remaining constraint is the monotonicity of F (t). It is the most difficult
property to check. Instead of checking if F (t) is monotone increasing, in the next
section, we check if f(t) is non-negative.

3 Matrix Exponential Distributions of Order 3

We subdivide the class of ME(3) distributions according to the eigenvalue struc-
ture of H . With λ1, λ2, λ3 denoting the eigenvalues of the matrix −H, we have
the following possible cases:

– class A: λ1, λ2, λ3 ∈ �+, λ1 < λ2 < λ3

– class B: λ1, λ2, λ3 ∈ �+, λ1 = λ2 < λ3 or λ1 < λ2 = λ3

– class C: λ1 = λ2 = λ3 ∈ �+,
– class D: λ1 ∈ �+, λ2 = λ3 ∈ �+,

where �+ denotes the set of strictly positive real numbers and �+ the set of com-
plex numbers with strictly positive real part. The following subsections consider
these four cases.



Moments Characterization of ME(3) Distributions 177

3.1 Case A: 3 Different Real Eigenvalues

In this case the general form of the density function and its derivative are

f(t) = a1e
−λ1t + a2e

−λ2t + a3e
−λ3t (5)

f ′(t) = −a1λ1e
−λ1t − a2λ2e

−λ2t − a3λ3e
−λ3t (6)

Without loss of generality, we check the non-negativity of f(t) assuming that
λ1 < λ2 < λ3.

Theorem 1. f(t) is non-negative for t ≥ 0 iff

– a1 + a2 + a3 ≥ 0 and
– a1 > 0 and

– if a2 < −a1
λ3−λ1
λ3−λ2

then a3 ≥ a1
λ2−λ1
λ3−λ2

(
−a2

a1

λ3−λ2
λ3−λ1

)λ3−λ1
λ2−λ1 .

Proof. First, we note that f(t) is a monotone increasing function of a1, a2 and a3
for t ≥ 0 and both f(t) and f ′(t) can have at most 2 roots in (0,∞) (excluding
0 and infinity).

The non-negativity of f(t) at t = 0 results in the first condition and the
non-negativity of f(t) at t → ∞ results in the second condition of the theorem.

In the rest we suppose that a1 > 0 and a1 + a2 + a3 ≥ 0. We investigate the
non-negativity of f(t) by constructing f∗(t) = a1e

−λ1t + a2e
−λ2t + a∗

3e
−λ3t such

that a∗
3 takes the minimal a3 value with which f(t) is still non-negative, i.e., we

will have f∗(c) = 0 for some c ≥ 0.
We have the following two cases:

a) f∗(c) touches the x-axes at c > 0, that is, f∗(c) = 0 and f ′∗(c) = 0,
b) f∗(0) = 0 and f ′∗(0) ≥ 0.

In case a) we have

f∗(c) = a1e
−λ1c + a2e

−λ2c + a∗
3e

−λ3c = 0, (7)
f ′∗(c) = −a1λ1e

−λ1c − a2λ2e
−λ2c − a∗

3λ3e
−λ3c = 0, (8)

from which

a2

a1
= −λ3 − λ1

λ3 − λ2
e(λ2−λ1)c, (9)

a∗
3

a1
=

λ2 − λ1

λ3 − λ2
e(λ3−λ1)c. (10)

If a2 ≥ −a1
λ3−λ1
λ3−λ2

then there is no c > 0 that satisfies (9), since the left
hand side of (9) is negative and less than −λ3−λ1

λ3−λ2
. Consequently, case a) is not

possible when a2 ≥ −a1
λ3−λ1
λ3−λ2

.
If a2 < −a1

λ3−λ1
λ3−λ2

then c is obtained from (9) as

c =
log
(
−a2

a1

λ3−λ2
λ3−λ1

)
λ2 − λ1

,
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and substituting it to (10) gives

a∗
3 = a1

λ2 − λ1

λ3 − λ2

(
−a2

a1

λ3 − λ2

λ3 − λ1

)λ3−λ1
λ2−λ1

.

In case b) we have

f∗(0) = a1 + a2 + a∗
3 = 0, (11)

f ′∗(0) = −a1λ1 − a2λ2 − a∗
3λ3 ≥ 0. (12)

Substituting a∗
3 = −a1 − a2 from (11) into (12) we have that (12) holds when

a2 ≥ −a1
λ3−λ1
λ3−λ2

. ��

3.2 Case B: 2 Different Real Eigenvalues

In this case we have two options.

– The multiplicity of the dominant eigenvalue, λ1, (λ1 < λ2) is one and hence
the general form of the density function is

f1(t) = a1 e−λ1t + (a2 + a21t) e−λ2t. (13)

– The multiplicity of the dominant eigenvalue , λ1, (λ1 < λ2) is two and hence
the general form of the density function is

f2(t) = (a1 + a11t) e−λ1t + a2 e−λ2t. (14)

Theorem 2. f1(t) is non-negative for t ≥ 0 iff

a1 + a2 > 0 and a1 ≥ 0 and a21 ≥ a∗
21

where a∗
21 is that solution of

a21 ea2λ2/a21 + a1(λ2 − λ1) e1+a2λ1/a21 = 0 (15)

which satisfies a21 < a2(λ2 − λ1).

Proof. f1(t) is a monotone increasing function of a1, a2 and a21 for t ≥ 0 and
both f1(t) and f ′

1(t) can have at most 2 roots in (0,∞) (excluding 0 and infinity).
The non-negativity of f1(t) at t = 0 results in the first condition and the non-

negativity of f1(t) at t → ∞ results in the second condition. The minimal a21
value for which f1(t) is non-negative is obtained assuming that f1(t) touches the
x axes at t = c > 0, i.e., f1(c) = 0 and f ′

1(c) = 0. Solving this set of equations
for a21 and c, we have

c =
a21 − a2(λ2 − λ1)

a21(λ2 − λ1)
, (16)

and (15). If a21 > a2(λ2 − λ1) then (16) does not have solution for positive c,
i.e., f1(t) is nonnegative. If a21 < a2(λ2 − λ1) then (16) has a positive solution
and a21 has to be not less than the associated a∗

21. ��



Moments Characterization of ME(3) Distributions 179

Theorem 3. f2(t) is non-negative for t ≥ 0 iff

a1 + a2 > 0 and a11 ≥ 0 and a11 ≥ a∗
11

where a∗
11 is that solution of

a2 e
λ2

(
a1

a11
− 1

λ2−λ1

)
− a11(λ2 − λ1) e

λ1

(
a1

a11
− 1

λ2−λ1

)
= 0 (17)

which satisfies a11 < −a1(λ2 − λ1).

Proof. The proof follows the same pattern as the one for f1(t). ��
It has to be noted that the third condition of Theorem 2 and 3 are transcendent,
and consequently, numerical methods are required to compute them.

3.3 Case C: 1 Real Eigenvalue

In this case the general form of the density function is

f(t) = (a0 + a1t + a2t
2) e−λt. (18)

Theorem 4. f(t) is non-negative for t ≥ 0 iff

a0 > 0 and a2 > 0 and a1 ≥ −2
√

a0a2.

Proof. f(t) is a monotone increasing function of a0, a1 and a2 for t ≥ 0 and
both f(t) and f ′(t) can have at most 2 roots in (0,∞) (excluding 0 and infinity).
The non-negativity of f(t) at t = 0 results in the first condition and the non-
negativity of f(t) at t → ∞ results in the second condition.

Supposing that a0 > 0 and a2 > 0 we have the following two cases:

– if a1 ≥ 0 then a0 + a1t + a2t
2 is monotone increasing on (0,∞),

– if a1 < 0 then a0 + a1t + a2t
2 has a minimum at t = − a1

2a2
which is a0 − a2

1
4a2

.

From which the third condition comes. ��

3.4 Case D: One Real and a Pair of Complex Eigenvalues

In this case the general form of the density function is

f(t) = a1 e−λ1t + a2 cos(ωt + φ) e−λct (19)

where for uniqueness, a2 and φ are defined such that a2 > 0 and −π < φ ≤ π.

Theorem 5. f(t) is non-negative for t ≥ 0 iff

– a1 + a2 cos(φ) > 0 and
– a1 > 0 and
– λ1 ≤ λc and
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– a2 < a1e
(λc−λ1) 2π

ω and
– if a1 < a2 (< a1e

(λc−λ1) 2π
ω ) then f(ť) ≥ 0 and f(t̂) ≥ 0 and

– if a1 < a2 (< a1e
(λc−λ1) 2π

ω ) and f ′(t) has roots in [ť, t̂] then f(t) ≥ 0 at those
roots

where ť = max
(
0, π−2φ

2ω

)
and t̂ = min

(
1

λc−λ1
log
(

a2
a1

)
, π−φ

ω

)
.

Proof. The non-negativity of f(t) at t = 0 results in the first condition and the
non-negativity of f(t) at t → ∞ results in the second and the third conditions.
The non-negativity of f(t) for 0 < t < ∞ is determined by two main factors:

– the relation of the two exponential functions a1 e−λ1t and a2 e−λct,
– the value of the periodic term cos(ωt + φ).

From now on we assume that the first 3 conditions hold. The function f(t)
has then the following properties:

– f(t) is a monotone increasing function of a1 for t ≥ 0.
– Both f(t) and f ′(t) might have infinitely many roots in (0,∞) (excluding 0

and infinity).
– If a1 > a2 then a1 e−λ1t > a2 e−λct for ∀t > 0, and consequently f(t) > 0

for ∀t > 0.
– If a1 < a2 and λ1 < λc then a1 e−λ1t > a2 e−λct for ∀t > tr = 1

λc−λ1
log(a2

a1
),

and consequently f(t) > 0 for ∀t > tr. This is because for tr we have
a1 e−λ1tr = a2 e−λctr and λ1 ≤ λc.

– If at the end of the first period of cos(ωt + φ), i.e., at tp = 2π
ω , we have

a1 e−λ1tp < a2 e−λctp , then for t = π−φ
ω < tp we have

f(π−φ
ω ) = a1 e−λ1

π−φ
ω + a2 cos(ω π−φ

ω + φ) e−λc
π−φ

ω

= a1 e−λ1
π−φ

ω − a2 e−λc
π−φ

ω < a1 e−λ1tp − a2 e−λctp < 0 ,

i.e., f(t) is negative for a positive t.
– If f(t) > 0 for ∀t > 0 for a given a2, then for ∀ã2 ∈ [0, a2] the function

f̃(t) = a1 e−λ1t + ã2 cos(ωt + φ) e−λct > 0 for ∀t > 0.
– If f(t) ≥ 0 for ∀t ∈ [0, tp] then f(t) ≥ 0 for ∀t > 0. This is because the non-

negativity of f(t) for [tp,∞) is equivalent to the non-negativity of a1 e−λ1t +
ã2 cos(ωt + φ) e−λct where ã2 = a2 e−(λc−λ1)tp ≤ a2.

Based on the above properties, if λ1 < λc,

– a2 ≤ a1 implies that f(t) is non-negative.
– a2 > a1e

(λc−λ1) 2π
ω or equivalently tr > tp implies that f(t) is negative for

positive values of t,
– if a1 < a2 ≤ a1e

(λc−λ1) 2π
ω then f(t) can become negative depending on the

initial phase of the cosine term. f(t) can become negative only when the
cosine term is negative but due to the faster decay of the e−λct term it is
enough to study the first interval where the cosine term takes negative values,
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i.e., (π−2φ
2ω , π−φ

ω ). Depending on the initial phase, φ, π−2φ
2ω can be less than

0 and π−φ
ω can be greater than tr. Considering these additional constraints,

ť and t̂ define the borders of the decisive interval. If f(t) is non-negative on
[ť, t̂], it is non-negative for ∀t > 0.

We have f ′(ť) < 0 because both e−λ1t and cos(ωt + φ) e−λct decay at
t = ť. If f ′(t̂) is non-positive, f ′(t) has 0, 1, or 2 roots in [ť, t̂], and the sign
of f(t) at these roots decides the non-negativity of f(t). If f ′(t̂) is positive,
f(t) has a single minimum in [ť, t̂], and the sign of this minimum decides the
non-negativity of f(t). ��

4 Moments Bounds of the ME(3) Class

The previous section provides results to check the ME(3) membership of order
3 matrix exponential functions. We implemented those checks in a Mathematica
function. Using this implementation, in this section, we numerically investigate
the flexibility of the ME(3) class compared to the limits of the PH(3) class, for
which similar results are provided in [6] to check PH(3) membership.

A continuous ME(3) or PH(3) distribution is uniquely characterized by its
first 5 moments. For a given set of {μ1, . . . , μ5} moments we check the ME(3)
and PH(3) membership with a two step procedure.

– The first step is to compute a vector and matrix pair of order 3, (v, H),
for which i!v(−H)−i1I = μi, i = 1, . . . , 5. The procedure of Appie van de
Liefvoort in [12] provides such (v, H) pair with a proper transformation of
the closing vector.1

– Starting from (v, H), if the PH(3) transformation procedure in [6] generates
a valid canonical representation then {μ1, . . . μ5} represents a member of
the PH(3) set. Similarly, if the matrix exponential function, veHt(−H)1I, is
non-negative according to the checks of the previous section then {μ1, . . . μ5}
represents a member of the ME(3) set.

As in previous works, to reduce the number of parameters we introduce the
normalized moments, ni = μi

μi−1μ1
, which eliminate a scaling factor and represent

the shape of ME(3) and PH(3) distributions with 4 parameters, {n2, n3, n4, n5}.
The subsequent numerical results are divided into investigations of the n2, n3

domain with arbitrary n4, n5 and investigations of the n4, n5 domain with given
n2, n3.

4.1 The Second and Third Normalized Moments

The n2, n3 normalized moment bounds of the PH(3) class are not completely
known yet. There is a proved result for the valid range of the APH(3) class [3],
1 In [12] the initial and the closing vectors are {1, 0, 0, . . . , 0}. In our case the closing

vector is {1, 1, . . . , 1}, hence a similarity transformation is required as described in
[11].
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Fig. 1. The range of second and third normalized moments of the PH(3) and ME(3)
classes

and there is a numerically checked conjecture that the related borders of the
PH(3) class coincide with the ones of the APH(3) class [6]. Here we compare the
borders of the ME(3) class with these borders of the PH(3) class.

To check if an n2, n3 pair is inside the range of the ME(3) class is rather
difficult. We have tools to check if {n2, n3, n4, n5} defines an ME(3) distribution.
Based on this tool, for a given n2, n3 pair a natural procedure would be to check
the ME(3) membership of {n2, n3, x, y}, where x and y run through the positive
quarter plain. Unfortunately, this procedure is infeasible, because it is practically
impossible to find valid n4, n5 pairs with exhaustive search.

To get around this problem we applied special ME(3) subclasses whose struc-
ture is defined by 2 shape parameters and a scaling factor. Having these sub-
classes we set the 2 shape parameters to match n2, n3 and checked if we obtained
a valid distribution.

The Exp-Erlang and the Erlang-Exp distributions in [3] form such subsets,
which we used for n2, n3 pairs inside the range of the PH(3) class.

For n2, n3 pairs outside the range of the PH(3) class we used the following
function with complex roots (a1 = a2 = a, λ1 = λ2 = λ in (19))

f(t) = a e−λt(1 + cos(ωt + φ)) (20)

where a is a normalizing constant (
∫

t
e−λt(1 + cos(ωt + φ))dt = 1/a), λ is the

scaling factor and ω and φ are the two shape parameters. When λ = 1

n2 =
2
(√

1 + ω2 + cos(φ + arctan(ω))
) ((

1 + ω2
) 3

2 + cos(φ + 3 arctan(ω))
)

(1 + ω2 + cos(φ + 2 arctan(ω)))2
,

n3 =
3
(√

1 + ω2 + cos(φ + arctan(ω))
) ((

1 + ω2
)2 + cos(φ + 4 arctan(ω))

)
(1 + ω2 + cos(φ + 2 arctan(ω)))

(
(1 + ω2)

3
2 + cos(φ + 3 arctan(ω))

) .

For a given n2, n3 pair solving this equation for the φ, ω pair gives a matrix
exponential function whose second and third normalized moments are n2 and
n3. The non-negativity of this function can be checked by Theorem 5.

Figure 1 depicts the borders of the ME(3) class (obtained for subclass (20))
and the borders of the PH(3) class (inner borders of the figure) on the n2, n3
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Fig. 2. Realizable n4, n5 normalized moments with PH(3) (on the left) and ME(3) (on
the right) in case of n2 = 1.45 and n3 = 1.9015

Fig. 3. Lower peak of the realizable n4, n5 region with PH(3) (on the left) and ME(3)
(on the right) in case of n2 = 1.45 and n3 = 1.9015

plain. Our numerical investigations suggest that the outer borders in Figure
1 are the borders of the whole ME(3) class, but we cannot prove it. The left
most point of these borders, n2 = 1.200902 gives the ME(3) distribution with
minimal n2 or, equivalently, with minimal coefficient of variation, and this point
corresponds to the minimal coefficient of variation of the ME(3) class reported
in [4]. The PH(3) class, and consequently the ME(3) class, are known to be
only lower bounded when n2 > 1.5. That is why the upper bound curves end at
n2 = 1.5.

The results of Section 3 indicate already that the borders of the ME(3) class do
not exhibit nice closed form expressions, but numerical methods are required for
their evaluation. We used the standard floating point precision of Mathematica to
compute the presented results, but these computations are numerically sensitive.

4.2 The Fourth and Fifth Normalized Moments

In this section we study the region of realizable fourth and fifth normalized
moments (n4 and n5) for a given pair of second and third normalized moments
(n2 and n3). In order to find this region we make use of the subclasses presented
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Fig. 4. Realizable n4, n5 normalized moments with ME(3) for n2 = 1.45 and n3 = 1.725
(on the left) and n2 = 1.45 and n3 = 2.1 (on the right)

Fig. 5. Realizable n4, n5 normalized moments with ME(3) for n2 = 1.45 and n3 =
2.1249 (on the left) and n2 = 1.45 and n3 = 2.1373 (on the right)

Fig. 6. Realizable n4, n5 normalized moments with ME(3) for n2 = 1.6 and n3 = 1.9
(on the left) and n2 = 1.6 and n3 = 2.0 (on the right)

in Section 4.1. We use Erlang-Exp distributions [3] inside the PH(3) borders of
Figure 1 and the subclass defined by (20) between the PH(3) and the ME(3)
borders. First we generate a matrix exponential function from the given ME(3)
subclass that realizes the pair (n2,n3). Then we calculate n4 and n5 for this
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Fig. 7. Lower peak of the realizable n4, n5 region with PH(3) (on the left) and ME(3)
(on the right) in case of n2 = 1.6 and n3 = 2.2

Fig. 8. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 1.6 and n3 = 2.2

matrix exponential function and use them as starting point in exploring the
realizable region of n4 and n5. Since the realizable region of the PH(3) class is a
subregion of the realizable region of the ME(3) class, it is easier to start from a
PH(3) point if possible.

We start by considering cases for which n2 = 1.45. Based on the results
presented in Section 4.1, with this value of n2 the interval of realizable third
normalized moments is (1.6517, 2.1498) with ME(3) while it is (1.8457, 1.9573)
with PH(3). First we look at the middle point of the n3 interval that can be
realized with a PH(3), i.e., n3 = 1.9015. Figure 2 depicts the realizable region
of n4 and n5 for both PH(3) and ME(3). In all the figures we have n4 on the
x-axes and n5 on the y-axes. Further, the lighter gray region contains the points
that are realized with a ME(3) or PH(3) with one real and a pair of complex
eigenvalues (class D) while the darker gray area contains points where the ME(3)
or PH(3) is realized with three real eigenvalues. It is clear from Figure 2 that
the ME(3) gives much higher flexibility than the PH(3) does. In Figure 3 we
concentrate on the lower peak of the regions depicted in Figure 2. ME(3) is
somewhat more flexible in this subregion as well and one can observe that the
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Fig. 9. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 1.6 and n3 = 2.3

Fig. 10. Realizable n4, n5 region with ME(3) for n3 = 2.7333 (on the left) and n3 =
2.9333 (on the right) in case of n2 = 2.6

Fig. 11. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 2.2 and n3 = 3.1333
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Fig. 12. Realizable n4, n5 region with PH(3) (on the left) and ME(3) (on the right) in
case of n2 = 2.2 and n3 = 3.3333

flexibility is increased both for what concerns the distribution with one real and
two complex eigenvalues and for what concerns the distributions with three real
eigenvalues.

Now we turn our attention to such n3 values that cannot be realized by a
PH(3) with n2 = 1.45. In particular, Figure 4 depicts the realizable n4,n5 regions
for n2 = 1.45,n3 = 1.725 and n2 = 1.45,n3 = 2.1 which lie respectively beneath
and above the n3 interval that can be realized with PH(3). By comparison with
Figure 2 it is clear that approaching the possible minimum and maximum values
of n3 the realizable n4,n5 region not only changes its shape but it is shrinking
as well. To illustrate further this shrinking, Figure 5 depicts the realizable n4,n5
region for n2 = 1.45,n3 = 2.1249 and n2 = 1.45,n3 = 2.1373 where the realizable
region gets narrower and shorter.

Next we investigate a few cases with n2 = 1.6. We start with two such values
of n3, namely 1.9 and 2.0, that cannot be realized with a PH(3). The realizable
n4, n5 pairs are depicted in Figure 6. Diverging from the minimal n3 value, i.e. by
increasing the actual value of n3 the realizable region becomes larger. Diverging
further from the minimal n3 value, we choose n3 = 2.2 which can be realized by
PH(3). Figure 7 depicts the lower peak of the realizable n4, n5 region for PH(3)
and ME(3). This figure reports new qualitative properties. It indicates that the
realizable n4, n5 region can be composed by more than two areas and the areas
are not concave. The n2 = 1.6, n3 = 2.2 case is further illustrated by Figure
8, there is no upper bound for n4 and n5. Figure 9 illustrates instead how the
realizable n4,n5 is changed and moved by increasing n3 to 2.3.

In the following we investigate cases with n2 = 2.2. Figure 10 depicts the
realizable region for n3 = 2.7333 which cannot be realized by PH(3) and n3 =
2.9333 which is the lower limit for PH(3), i.e., in this point a single (n4, n5) point
can be realized with PH(3). For n3 = 3.1333 the regions are shown in Figure 11
and for n3 = 3.3333 in Figure 12. With n3 = 3.1333 there are upper bounds for
n4 and n5 which are not present with n3 = 3.3333.
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5 Conclusions

This paper is devoted to the investigation of the border of ME(3) distributions.
To this end we collected necessary and sufficient conditions for different kinds
of order 3 matrix exponential functions to be non-negative. It turned out that
these conditions are explicit in some cases, but they require the solution of a
transcendent equation in other cases. Due to this fact, only numerical methods
are available for the investigation of ME(3) borders.

Using those necessary and sufficient conditions we completed a set of numeri-
cal evaluations. The results show, in accordance with the common expectations,
that the ME(3) set has very complex moments borders and it is significantly
larger than the PH(3) set.
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Abstract. Session-based arrival streams are a new approach for mod-
elling the traffic generated by users in a telecommunication network. In
this paper, we analyze the behavior of a discrete-time buffer with one
output line, an infinite storage capacity and session-based arrivals. Users
from an infinite user population can start and end sessions during which
they are active and send packets to the buffer. Each active user generates
a random but strictly positive number of packets per time slot. Unlike in
previous work, there are T different session types and for each type, the
session-length distribution is general. The resulting discrete-time queue-
ing model is analyzed by means of an analytical technique, which is ba-
sically a generating-functions approach that uses an infinite-dimensional
state description. Expressions are obtained for the steady-state probabil-
ity generating functions of both the buffer content and the packet delay.
From these, the mean values and the tail distributions of the buffer con-
tent and the packet delay are derived as well. Some numerical examples
are shown to illustrate the influence of the session-based packet arrival
process on the buffer behavior.

Keywords: Discrete-time queueing model, Session-based arrivals, Gen-
eral session lengths, Analytic study, Buffer content and delay.

1 Introduction

In many subsystems of packet-based telecommunication networks, buffers are
used for the temporary storage of information packets. In order to assess the
behavior of these buffers, appropriate traffic models need to be considered. In
particular, there is a continuing need for models that can accurately capture the
correlated nature of the traffic streams in modern telecommunication networks.
Session-based arrival streams are a new traffic modelling approach. We consider
an infinite user population where each user can start and end sessions. During a
session a user is active and sends information packets through the communica-
tion system. Since we focus on discrete-time models, we assume time is divided

� SMACS: Stochastic Modeling and Analysis of Communication Systems.
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into fixed-length slots. Each active user generates a random but strictly positive
number of packets per slot. Note that such session-based packet generation in-
troduces time correlation in the packet arrival process. Session-based arrivals are
illustrated in Fig. 1. Here the term session length denotes the number of consec-
utive slots during which a user remains active, whereas the number of packets
generated per slot during a session is referred to as the session bandwidth.

Traffic
generated by

‘users’

time (slots)

Session length

Session bandwidth

Fig. 1. Session-based packet arrivals: session length and bandwidth

A possible application of session-based arrival processes is depicted in Fig. 2.
A web server accepts requests from users for a certain web page or file and
responds by sending the requested file to the user. The web server is connected
to the internet through a gateway and this gateway contains a buffer for outgoing
data from the server to the internet. If we define the download of a file by a user
as one session, the traffic towards the output buffer of the web server can be
adequately described by a session-based arrival process.

Fig. 2. A web server connected to the internet through a gateway

In previous work [10,11], we have analyzed a discrete-time queue with session-
based arrivals and geometrically distributed session lengths. The train arrival
process, where messages (the equivalent of what we consider sessions) arrive
to the queue at the rate of exactly one packet per slot, is considered in [3, 5,
7, 14, 15, 16]. Also somewhat related are the on/off-type arrival models studied
in [8, 12, 18], where a finite number of users generate one packet per slot during
on-periods and no packets during off-periods. In [6], messages consisting of a
fixed number of packets are considered in case of an uncorrelated packet arrival
process. A related continuous-time model is analyzed in [1].
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The aim of the present paper is to further extend the previous analyses to a
discrete-time queueing system with general session-based arrivals. Specifically,
unlike in previous work, we consider heterogeneous sessions of T different types
with general type-dependent session-length distributions. This extension allows
e.g. to take into account the fact that files on a web server are typically ei-
ther small or very large [2]. A model with generally distributed session lengths
moreover makes it possible to investigate the impact of the nature of the session-
length distributions on the buffer behavior. We develop a mathematical analysis
technique, that makes extensive use of probability generating functions (PGFs).
As opposed to our previous work for geometric session lengths (see [10, 11]), an
infinite-dimensional state description is required in case of generally distributed
session lengths, which seriously complicates the analysis.

The outline of the paper is as follows. In Sect. 2, we describe the queueing
model under study. In Sect. 3, a set of state variables is defined and the sys-
tem equations are established. A functional equation for the joint PGF of the
system state vector is obtained in Sect. 4. Some further characteristics of the
session-based packet arrival process are studied in Sect. 5. Section 6 concen-
trates on the derivation of the mean value, the PGF and the tail distribution
of the buffer content from the functional equation. The packet delay is analyzed
in Sect. 7, for a first-come-first-served (FCFS) queueing rule for packets. Some
numerical examples are discussed in Sect. 8. Finally, the paper is concluded in
Sect. 9.

2 Queueing Model Description

We study a discrete-time queueing system with one single output line and an
infinite storage capacity for packets. As usual for discrete-time models (see e.g.
[4,13]), the time axis is divided into fixed-length slots and transmissions from the
buffer can only start at slot boundaries. Therefore, when the queueing system
is empty at the beginning of a slot, no packet can leave the buffer at the end of
that slot, even if some packets have arrived to the buffer during the slot.

A session-based arrival process is considered. Users from an infinite user pop-
ulation can start and end sessions during which they are active and send packets
to the queueing system. When a user starts a session, he generates a random
but strictly positive number of packets per slot. The session ends when the user
has no more data left to send.

There are T different session types. For sessions of type t (1 ≤ t ≤ T ), the
session lengths (expressed in slots) are assumed to be independent and identically
distributed (i.i.d.) random variables with the following probability mass function
(PMF) and PGF:

�t(i) = Prob[session length of type t is i slots] , i ≥ 1 ; (1)

Lt(z) =
∞∑

i=1

�t(i) zi . (2)



192 S. Wittevrongel, S. De Vuyst, and H. Bruneel

The numbers of new sessions of type t started by the user population during the
consecutive slots are assumed to be i.i.d. random variables with common PGF
St(z). Since in normal conditions, internet users act independently from each
other, this seems like a realistic assumption. The numbers of packets generated
per slot during a session of type t are assumed to be i.i.d. with PGF Pt(z), where
Pt(0) equals zero, since at least one packet is generated per slot per session.
Sessions of different types are assumed to be independent.

The queueing system has an unreliable output line subject to random failures
that are assumed to occur independently from slot to slot. The output line
availability is modelled by a parameter σ. Specifically, σ is the probability that
the output line is available during a slot. The transmission times of the packets
from the buffer are assumed to be constant, equal to one slot per packet. So,
whenever the queueing system is nonempty at the beginning of a slot, a packet
will leave the buffer at the end of this slot with probability σ and no packet will
leave with probability 1 − σ, independently from slot to slot. Note that these
assumptions result in a geometric distribution (with parameter 1 − σ) for the
effective transmission times required for the successful transmission of a packet
from the queueing system and the mean effective transmission time of a packet
equals 1/σ.

3 System Equations

The goal of this section is to introduce a Markovian state description for the
queueing system described above. In order to do so, we first take a closer look
at the packet arrival process. Let us define sk(t) as the number of new sessions
of type t started during slot k. In view of the model description of Sect. 2,
for a given t, the random variables sk(t) are i.i.d. with common PGF St(z). Let
an,k(t) be the random variable representing the number of active sessions of type
t that are already active for exactly n slots during slot k. Then the following
relationships hold:

a1,k(t) = sk(t) ; (3)

an,k(t) =
an−1,k−1(t)∑

i=1

ci
n−1,k(t) , n > 1 . (4)

The random variable ci
n−1,k(t) in (4) takes on the values 0 or 1, and equals 1 if

and only if the ith active session of type t that was in its (n − 1)th slot during
slot k − 1, remains active in slot k. We define πt(n − 1) as the probability that
a session of type t that was n− 1 slots long continues by at least one more slot,
i.e.,

πt(n − 1) �
1 −

n−1∑
i=1

�t(i)

1 −
n−2∑
i=1

�t(i)
. (5)
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Hence, we have that for given n and t, the ci
n−1,k(t)’s are i.i.d. random variables

with common PGF

Cn−1,t(z) � E
[
zci

n−1,k(t)
]

= 1 − πt(n − 1) + πt(n − 1) z , n > 1 , (6)

where E[.] is the expected value of the argument between square brackets.
Next, let mk denote the total number of packets generated during slot k. Then

mk can be expressed as

mk =
T∑

t=1

∞∑
n=1

an,k(t)∑
i=1

pi
n,k(t) , (7)

where pi
n,k(t) represents the number of packets generated during slot k by the

ith session of type t that is already active for exactly n slots. From Sect. 2, it
follows that for a given t, the random variables pi

n,k(t) are i.i.d. with PGF Pt(z).
Finally, let uk denote the buffer content (i.e., the total number of packets in

the queueing system, including the packet in transmission, if any) after slot k.
The evolution of the buffer content is governed by the following system equation:

uk = (uk−1 − rk)+ + mk , (8)

where (.)+ = max(., 0) and the rk’s are i.i.d. Bernoulli random variables equal
to zero with probability 1 − σ and equal to one with probability σ, in view of
the random interruptions of the output line.

From the above system equations (3)–(8) it is easily seen that the set of
vectors

{(
a1,k, . . . ,aT,k, uk

)}
, where at,k = (a1,k(t), a2,k(t), . . .), constitutes a

Markov chain. The state of the queueing system after slot k can hence be fully
described by the infinite-dimensional vector

(
a1,k, . . . ,aT,k, uk

)
.

4 Functional Equation

We start the analysis of the buffer behavior by defining the joint PGF of the
state vector

(
a1,k, . . . ,aT,k, uk

)
:

Qk(x1, . . . ,xT , z) � E

[(
T∏

t=1

∞∏
n=1

xn,t
an,k(t)

)
zuk

]
, (9)

where xt = (x1,t, x2,t, . . .). With this definition, (7) and (8), Qk(x1, . . . ,xT , z)
can then be obtained as

Qk(x1, . . . ,xT , z) = E

[(
T∏

t=1

∞∏
n=1

(xn,t Pt(z))an,k(t)

)
z(uk−1−rk)+

]
.

Next, by using (3) and (4), and by averaging over the distributions of the
ci
n−1,k(t)’s, defined in (6), we can transform the expression for Qk(x1, . . . ,xT , z)

further into
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Qk(x1, . . . ,xT , z) =

(
T∏

t=1

St(x1,t Pt(z))

)

· E
[(

T∏
t=1

∞∏
n=1

Gn,t(xt, z)an,k−1(t)

)
z(uk−1−rk)+

]
, (10)

where
Gn,t(xt, z) � Cn,t(xn+1,t Pt(z)) , n ≥ 1 , 1 ≤ t ≤ T . (11)

In order to remove the operator (.)+, we need to distinguish between the case
where rk = 0, the case where rk = 1, uk−1 > 0 and the case where rk = 1,
uk−1 = 0. Moreover, we note that uk−1 = 0 implies that no packets have arrived
during slot k − 1, and hence an,k−1(t) = 0 (n ≥ 1, 1 ≤ t ≤ T ), owing to the fact
that a packet can never leave the buffer at the end of its arrival slot. With this
property, the right-hand side of (10) can be further expressed in terms of the
Qk−1-function.

We now assume that the equilibrium condition is satisfied so that the queueing
system can reach a steady state. In the steady state, Qk(x1, . . . ,xT , z) becomes
independent of k. As a result, we then obtain the following functional equation
for the steady-state PGF Q(x1, . . . ,xT , z) :

z Q(x1, . . . ,xT , z) =

(
T∏

t=1

St(x1,t Pt(z))

)
· {Φ(z)Q(G1(x1, z) , . . . ,GT (xT , z) , z) + σ (z − 1) p0} , (12)

where

Gt(xt, z) � (G1,t(xt, z) , G2,t(xt, z) , . . .) , 1 ≤ t ≤ T ; (13)

Φ(z) � σ + (1 − σ) z , (14)

and p0 is the steady-state probability of an empty buffer. Note that Gt(xt, z) only
depends on xt and z, which is due to the fact that sessions of different types are as-
sumed to be independent. In principle, (12) fully describes the steady-state buffer
behavior. In the next sections, we will use (12) to derive several explicit results.

5 Packet Arrival Process

First, we study some further characteristics of the session-based packet arrival
process. These will prove to be useful for the buffer-content analysis further in
the paper. Let an(t) denote the steady-state version of an,k(t). The joint PGF
A(x1, . . . ,xT ) of the an(t)’s is then given by Q(x1, . . . ,xT , 1). Putting z = 1 in
(12), we obtain

A(x1, . . . ,xT ) =

(
T∏

t=1

St(x1,t)

)
A(G1(x1, 1) , . . . ,GT (xT , 1)) . (15)
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Successive applications of (15) then lead to

A(x1, . . . ,xT ) =
T∏

t=1

∞∏
j=0

St

(
j∑

i=1

�t(i) (1 − xj+1,t) + xj+1,t

)
. (16)

Here we have used the definitions (11) and (13) and the following relationships:

C1,t(C2,t(. . . Cj,t(xj+1,t) . . .)) =
j∑

i=1

�t(i) (1 − xj+1,t) + xj+1,t ; (17)

lim
j→∞

Cn,t(Cn+1,t(. . . Cj,t(xj+1,t) . . .)) = 1 , n ≥ 1 , (18)

which can be derived from (5) and (6). The marginal PGF An,t(z) of an(t) can
be obtained from (16) as

An,t(z) = St

(
n−1∑
i=1

�t(i) (1 − z) + z

)
. (19)

The average number of sessions of type t that are in their nth slot during an
arbitrary slot is then given by

E[an(t)] = A′
n,t(1) = S′

t(1)

(
1 −

n−1∑
i=1

�t(i)

)
, (20)

i.e., the mean number of new sessions of type t started during a slot times the
probability of having a session length of at least n slots.

Let m denote the total number of packet arrivals during an arbitrary slot in
the steady state. Then the PGF M(z) of m can be derived from (16) as

M(z) = A(x1, . . . ,xT )|xn,t=Pt(z), n≥1, 1≤t≤T . (21)

The mean number of packet arrivals per slot is then obtained as

E[m] = M ′(1) =
T∑

t=1

S′
t(1)L′

t(1)P ′
t (1) . (22)

The equilibrium condition states that the load ρ of the queueing system has to
be strictly smaller than one:

ρ =
M ′(1)

σ
< 1 . (23)

6 Buffer Content

In this section, we focus on the buffer content u after a slot in the steady state.
Starting from the functional equation (12), we derive expressions for the mean
value, the PGF and the tail distribution of the buffer content.
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6.1 Mean Buffer Content

We can find the mean buffer content if we consider those values of xn,t (n ≥ 1,
1 ≤ t ≤ T ) and z for which the arguments of the Q-functions on both sides of
(12) are equal to each another, i.e., for which

xn,t = Gn,t(xt, z) , (24)

or more explicitly,

xn,t = 1 − πt(n) + πt(n)xn+1,t Pt(z) . (25)

These relationships can be solved for the xn,t’s in terms of z. Denoting the
solution for xn,t by Xn,t(z), we obtain

Xn,t(z) =

∞∑
j=n

�t(j)Pt(z)j−n

1 −
n−1∑
j=1

�t(j)
, n ≥ 1 , 1 ≤ t ≤ T . (26)

Note in particular that

X1,t(z) =
Lt(Pt(z))

Pt(z)
(27)

and
Xn,t(1) = 1 , n ≥ 1 . (28)

Choosing xn,t = Xn,t(z) (n ≥ 1, 1 ≤ t ≤ T ) in (12), we then get a linear equa-
tion for the function Q(X1(z), . . . ,XT (z), z), which has the following solution:

Q(X1(z), . . . ,XT (z), z) =
σ (z − 1) p0 S(z)
z − S(z)Φ(z)

, (29)

where Xt(z) = (X1,t(z), X2,t(z), . . .) and the function S(z) is defined as

S(z) �
T∏

t=1

St(Lt(Pt(z))) . (30)

The probability p0 in (29) can be calculated from the normalization condition
Q(X1(z), . . . ,XT (z), z)|z=1 = 1. By using de l’Hôpital’s rule, we obtain

p0 = 1 − ρ , (31)

where ρ is the load of the system.
In order to obtain the mean buffer content, we calculate the first derivative

of (29) with respect to z in the point z = 1. This leads to

T∑
t=1

∞∑
n=1

E[an(t)] X ′
n,t(1) + E[u] =

d
dz

{
σ (z − 1) p0 S(z)
z − S(z)Φ(z)

}∣∣∣∣
z=1

, (32)
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where E[an(t)] is given by (20). With (26)–(28), after some further calculations,
we finally find the following explicit expression for the mean buffer content:

E[u] = −
T∑

t=1

1
2

S′
t(1)P ′

t (1)
[
σ2

L,t − L′
t(1) + L′

t(1)2
]

+
1

2σ (1 − ρ)

{
ρ σ (2 − ρ σ) +

T∑
t=1

(
σ2

S,t L′
t(1)2 P ′

t (1)2 + σ2
L,t S′

t(1)P ′
t (1)2

)
+

T∑
t=1

(
σ2

P,t − P ′
t (1)

)
S′

t(1)L′
t(1)

}
, (33)

where σ2
L,t, σ2

S,t and σ2
P,t are the variances of the session length, the number of

new sessions and the session bandwidth respectively, for sessions of type t.

6.2 PGF of the Buffer Content

The PGF U(z) of u is given by Q(1, . . . , 1, z). Successive applications of (12) then
allow to express U(z) in terms of the function Q(X1(z), . . . ,XT (z), z), given in
(29). As a result, we obtain

U(z) = Q(X1(z), . . . ,XT (z), z)

⎛⎝ ∞∏
j=1

Φ(z)
z

gj(z)

⎞⎠
+ σ (z − 1) p0

∞∑
k=1

1
Φ(z)

⎛⎝ k∏
j=1

Φ(z)
z

gj(z)

⎞⎠ , (34)

where we have used the property that

lim
j→∞

Cn,t(Pt(z)Cn+1,t(. . . Pt(z)Cj,t(Pt(z)) . . .)) = Xn,t(z) , (35)

n ≥ 1, 1 ≤ t ≤ T , as can be shown from (5), (6) and (26). The function gj(z) in
(34) is defined as

gj(z) �
T∏

t=1

St(Pt(z)C1,t(Pt(z)C2,t(. . . Pt(z)Cj−1,t(Pt(z)) . . .))) , (36)

and can be further calculated with (5) and (6) as

gj(z) =
T∏

t=1

St

(
Pt(z)j +

j−1∑
i=1

�t(i)
(
Pt(z)i − Pt(z)j

))
. (37)

Combination of (29) and (34) then leads to the following explicit expression for
the PGF U(z) :

U(z) =
σ (z − 1) p0 H(z)

z − S(z)Φ(z)
, (38)
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where H(z) is given by

H(z) = S(z)

⎛⎝ ∞∏
j=1

Φ(z)
z

gj(z)

⎞⎠+ [z − S(z)Φ(z)]
∞∑

k=1

1
Φ(z)

⎛⎝ k∏
j=1

Φ(z)
z

gj(z)

⎞⎠ .

(39)

6.3 Tail Distribution of the Buffer Content

In order to derive an expression for the tail distribution of the buffer content,
we will use an approximation technique described in [4]. Specifically, from the
inversion formula for z-transforms, it follows that the PMF Prob[u = i] of u can
be expressed as a weighted sum of negative ith powers of the poles of U(z). As
the modulus of all these poles is larger than 1, since U(z) is a PGF, it is clear
that for large values of i, Prob[u = i] is dominated by the contribution of the
pole of U(z) having the smallest modulus. Let z0 denote this dominant pole of
U(z). The pole z0 must necessarily be real and positive in order to ensure that
the tail distribution is nonnegative anywhere. From (38), it follows that z0 is a
real root of z − S(z)Φ(z) = 0. The PMF Prob[u = i] can then be approximated
by the following geometric form:

Prob[u = i] ≈ − θ0

z0

(
1
z0

)i

, (40)

for i sufficiently large, where the constant θ0 is the residue of U(z) in the point
z = z0. This residue can be calculated from (30), (38) and (39) as

θ0 = lim
z→z0

(z − z0)U(z) =
σ (z0 − 1) p0 Φ(z0)H(z0)

σ − S′(z0)Φ(z0)
2

=

σ z0 (z0 − 1) p0

(
∞∏

j=1

Φ(z0)
z0

gj(z0)

)

σ −
T∑

t=1

S′
t(Lt(Pt(z0))) L′

t(Pt(z0)) P ′
t(z0) z0 Φ(z0)

St(Lt(Pt(z0)))

. (41)

Notice the infinite product in the above expression for θ0. We know however
from (37) that lim

j→∞
gj(z) = S(z). Due to the definition of z0, we moreover have

that S(z0)Φ(z0) = z0. Therefore, we see that

lim
j→∞

Φ(z0)
z0

gj(z0) = 1 , (42)

i.e., the factors of the infinite product in (41) go to 1, as j goes to infinity. Hence,
we can calculate the residue θ0 numerically up to any desired precision by taking
the product over a sufficiently large number of factors.

A quantity of considerable interest is the probability that the buffer content
exceeds a certain threshold U . Indeed, this quantity is often used to approximate
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the packet loss ratio, i.e., the fraction of the arriving packets that is lost upon
arrival because of buffer overflow, in a buffer model with a finite storage capacity
(for U waiting packets), see e.g. [17]. From (40), we get

Prob[u > U ] ≈ − θ0

z0 − 1

(
1
z0

)U+1

, for large U . (43)

7 Packet Delay

In this section, we assume a FCFS queueing discipline for packets. We define
the delay of a packet as the time interval (expressed in slots) between the end
of the packet’s arrival slot and the end of the slot during which the packet is
transmitted.

In [9], it has been shown that for any discrete-time single-server infinite-
capacity queueing system with an FCFS queueing discipline and geometrically
distributed packet transmission times (with parameter 1 − σ), regardless of the
nature of the arrival process, the following relationship exists between the PGF
D(z) of the delay d of an arbitrary packet that arrives in the buffer during a slot
in the steady state and the PGF U(z) of the buffer content u after an arbitrary
slot in the steady state:

D(z) =
U(B(z)) − p0

ρ
, (44)

where B(z) = σ z
1−(1−σ) z is the PGF of the geometric transmission times.

Since the effective packet transmission times in our model have a geometric
distribution, the above relationship is also valid here. It allows us to express the
mean value and the tail distribution of the packet delay in terms of the previously
derived mean value and tail distribution of the buffer content. In particular, the
mean packet delay follows from (44) as

E[d] = D′(1) =
U ′(1)
ρ σ

=
E[u]
E[m]

, (45)

in accordance with Little’s theorem. For i sufficiently large, the PMF of the
packet delay can be approximated as

Prob[d = i] ≈ − θD

zD

(
1

zD

)i

. (46)

From (44), it follows that the dominant pole zD of D(z) is related to the dominant
pole z0 of U(z) as z0 = B(zD), or equivalently,

zD =
z0

σ + (1 − σ) z0
. (47)

The residue θD of D(z) in the point z = zD can be calculated from (44) as

θD = lim
z→zD

(z − zD)D(z) =
θ0

ρ B′(zD)
=

θ0 zD (zD − 1)
ρ z0 (z0 − 1)

. (48)
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8 Numerical Results and Discussion

In Fig. 3, we assume a single session type (T = 1) and show the mean buffer
content E[u] as a function of the load ρ. The mean length of the sessions is equal
to 100 slots for all of the shown curves, but the distribution of the session lengths
is different for each curve. That is, the session lengths respectively are constant,
uniform between 1 and 201, negative binomial with two stages, geometric and
mixed geometric. For the latter, the mixed geometric distribution of the session
lengths has two weighted parallel phases, i.e., the PGF and the mean value are
given by

L1(z) = w
γ1,1 z

1 − (1 − γ1,1) z
+ (1 − w)

γ1,2 z

1 − (1 − γ1,2) z
; (49)

L′
1(1) = w

1
γ1,1

+ (1 − w)
1

γ1,2
. (50)

The mean 1/γ1,1 of the first phase is taken to be 50 slots, while the second
phase has a mean of 200 slots. The weight w is chosen in order to ensure that
L′

1(1) = 100. For all curves, the bandwidth of the sessions is fixed at 2 packets
per slot, i.e., P1(z) = z2 and in each slot a new session starts with probability
1/4000. As in all further examples, the load is increased on the horizontal axis
by increasing the mean effective transmission time 1/σ of the packets. The plot
clearly illustrates that the mean buffer content E[u] depends not only on the first
moment L′

1(1) of the session-length distribution but on the second-order moment
as well. Specifically, (33) predicts a linear impact on the mean buffer content of
the variance σ2

L,1 of the session lengths, which for the considered session-length
distributions is 0, 3300, 4999.5, 9900 and 14900 respectively.
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Fig. 3. Mean buffer content as a function
of the load ρ in the homogeneous case
(T = 1) for different session-length dis-
tributions L1(z) with a mean of 100 slots.
Bandwidth and session starts have PGF
P1(z) = z2 and S1(z) = 3999+z

4000
.

200

400

800

γ−1
1,2 =1600

0 0.2 0.4 0.6 0.8 1
0

5

10

15

ρ

E
[d

]/
10

00

Fig. 4. Mean packet delay as a function
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)−1 and
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2400

. The session lengths are
mixed geometric with mean 100 and first
phase mean 1/γ1,1 = 50.
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This effect is illustrated further in Fig. 4, where the mean packet delay E[d]
is shown as a function of the load ρ. Again, the distributions of the session
starts and the session bandwidth are the same for all curves, as well as the mean
session length L′

1(1) which is 100 slots. The distribution L1(z) is chosen to be
mixed geometric of the form (49) with the first phase mean equal to 50 slots.
The plot shows the impact on E[d] if the second phase mean of the session-
length distribution is increased, i.e., 1/γ1,2 = 200, 400, 800, 1600. For the same
configuration and ρ = 0.8, the tail distribution of the buffer content Prob[u = i]
is shown in Fig. 5, together with the corresponding mixed geometric distributions
of the session lengths.
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Fig. 5. Logarithmic plot of the mixed
geometric session-length distribution and
the corresponding tail distribution of the
buffer content for load ρ = 0.8
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Fig. 6. Mean packet delay as a function of
the session mix α. On the left, all sessions
are of type 1, while all sessions are of type
2 on the right.

In Fig. 6, we assume heterogeneous traffic with two types of sessions, i.e.,
T = 2. The sessions of type 1 have a constant length of 25 slots, shifted geometric
bandwidth P1(z) = z

2−z with a mean of 2 packets per slot and a Bernoulli session-
start distribution with mean 1−α

200 . The sessions of type 2 have a length that is
uniformly distributed between 1 and 201, a bandwidth of exactly one packet
per slot and a Poisson start distribution with mean α

400 . The session mix α
(0 ≤ α ≤ 1) indicates the fraction of the load due to sessions of type 1. If α = 0,
all arrivals are of type 1, while if α = 1, there are only sessions of type 2. In
Fig. 6, the mean packet delay is shown for load ρ = 0.6, 0.7, 0.8, 0.9. We observe
a linear dependence of E[d] (and thus also E[u]) on the session mix, which is
predicted by (33).

In Fig. 7, we consider sessions of T different types and show E[d] as a function
of T in case the load is ρ = 0.6, 0.7, 0.8, 0.9. For a certain number of types T ,
the sessions of type t (1 ≤ t ≤ T ) receive an equal share ρ/T of the total
load. The sessions of all types have mean length L′

t(1) = 100, shifted geometric
bandwidth with a mean of P ′

t (1) = 2 packets per slot and a Bernoulli session-
start distribution with mean ρ σ

100·2·T . Also, the session-length distribution for all
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types is mixed geometric of the form (49), with first phase mean 1/γt,1 = 50
slots. The tail of the session length however is chosen to be larger for higher
types: the second phase mean of type t is 1/γt,2 = 100 + 2t. Again, we observe
a clear impact of the variance of the session lengths on the performance of the
system. For T = 5, 10 and load ρ = 0.8, the tail distributions of the buffer
content Prob[u = i] and the packet delay Prob[d = i] are shown in Fig. 8.
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Fig. 7. Mean packet delay as a func-
tion of the number of session types T .
For type t, the session-length distribu-
tion is mixed geometric with mean 100.
The phase means are 1/γt,1 = 50 and
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packet delay for T = 5, 10 heterogeneous
session types and ρ = 0.8

9 Conclusions

We have presented an analytical technique for the performance evaluation of a
buffer with session-based arrival streams. Differently from previous work, there
are T session types and for each type, the session lengths may have a general
distribution. Expressions have been obtained for the PGFs, the mean values and
the tail distributions of the buffer content and the packet delay. By means of
some numerical examples, the impact of the session-based packet arrival process
on the performance has been investigated. The results indicate that the buffer
behavior strongly depends on the session-length characteristics.

As future work, we plan to study the delay of a session. Also, we intend to
apply the model with general session-based arrivals to evaluate the performance
of a web server by fitting the model parameters to traces of web traffic.
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Abstract. Probabilistic queueing disciplines are used for modeling sev-
eral system behaviors. In particular, under a set of assumptions, it has
been proved that if the choice of the customer to serve after a job com-
pletion is uniform among the queue population, then the model has a
BCMP-like product-form solution. In this paper we address the prob-
lem of characterizing the probabilistic queueing disciplines that can be
embedded in a BCMP queueing network maintaining the product-form
property. We base our result on Muntz’s property M ⇒ M and prove
that the RANDOM is the only non-preemptive, non-priority, probabilis-
tic discipline that fulfils the M ⇒ M property with a class independent
exponential server. Then we observe that the FCFS and RANDOM dis-
cipline share the same product-form conditions and a set of relevant
performance indices when embedded in a BCMP queueing network. We
use a simulator to explore the similarities of these disciplines in non-
product-form contexts, i.e., under various non-Poisson arrival processes.

1 Introduction

Queueing models have a pivotal importance for performance evaluation pur-
poses. They have been widely used to model various types of systems, ranging
from computer hardware and software architectures, to telephony systems and
communication networks. Informally, a queueing model has a set of resources
that serves a finite or infinite set of customers. Customers arrive to the model
according to a stochastic process (the arrival process) and then they possibly wait
for the service in the queue. The service requires a time that is usually mod-
eled by a random variable with a known distribution. After being served, the
customers leave the queueing model. The analysis of queueing models, which is
usually based on the definition and solution of the underlying stochastic process,
provides a set of performance indices including the steady state distribution of
the number of customers in the system and some average performance measures,
such as the throughput and the mean response time.

In this paper we focus on multiclass queueing models with probabilistic
scheduling disciplines. In the simplest queueing models, we usually assume that
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all the customers are identical, i.e., they all arrive according to the same arrival
process and are served according to the same service time distribution. How-
ever, for many practical purposes these limitations are unrealistic. In multiclass
queueing models, the customers are clustered into classes, and each class is char-
acterized by an arrival process and a service time distribution. The scheduling
discipline may also depend on the customer class (e.g., scheduling with prior-
ity). According to the literature, in the following we use RANDOM to denote
the probabilistic queueing discipline in which every customer in the queue has
the same probability to enter in service immediately after a job completion, re-
gardless to its arrival time or class. From the performance modeling viewpoint,
note that using general probabilistic disciplines allows us to model systems in
which the class of a customer may influence the probability of entering in ser-
vice, thus modeling a sort of mild priority mechanism. For instance this tech-
nique is applied to the analysis of the performance of the Differentiated Services
architecture (RFC 2475) for Internet, as describe in [10]. Among probabilistic
disciplines the RANDOM queueing stations have been used to model several re-
source contention systems, such as shared bus contention systems, as described
in [1]. Multiclass queueing models can be embedded with some restrictions in
product-form queueing networks (QNs), maintaining the product-form property
of the model. Roughly speaking, a QN is a set of interconnected queueing sys-
tems that serve a set of customers. A QN is in product-form if its steady sate
distribution can be expressed as product of functions whose arguments depend
only on the state of one station. The definition of these functions depend on the
structure of the network (e.g., the customer routing among the queueing nodes),
on the average arrival and service rates and on the queueing discipline. QNs
satisfying the well-known BCMP theorem on product-form [3] are multiclass,
open, closed and mixed QNs, with probabilistic routing and consisting of sta-
tions with four possible scheduling disciplines: First Come First Served (FCFS),
Last Come First Served with Preemptive Resume (LCFSPR), Processor Sharing
(PS) and Infinite Servers (IS). The service time distribution is exponential for
FCFS nodes and general (Coxian) for the other three types of nodes. For these
models, exact and efficient analysis techniques have been defined. In [9] the au-
thor proves that all these node types fulfil a property called Markov implies
Markov (M ⇒ M) and that every other node type that fulfils that property
can be embedded in a BCMP QN maintaining the product-form property. In-
formally, the M ⇒ M property requires that under independent Poisson arrival
processes, possibly with different rates for class (class independent Poisson ar-
rivals), a work-conserving multiclass station exhibits departure processes that
are independent and Poisson distributed. The main strength of this property is
that it defines a relatively easy way to decide if a station leads to a QN with
product-form solution by its analysis in isolation and under Poisson arrivals.
Note that it is well-known that in a QN with cycles, the arrival processes to a
station may be non-Poisson, therefore M ⇒ M allows us to study the behavior
of a queueing center in a special case (independent Poisson arrivals) and then
derive the product-form property of the QN. Using M ⇒ M , several extensions
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of the BCMP theorem have been proposed, considering various disciplines and
other constraints (e.g. [1,7]).

In product-form QNs, FCFS and RANDOM disciplines share the same
product-form conditions (i.e. exponential service time with the same rate for
all the customer classes, i.e. class independent exponential service time [2])
and steady state queue length distribution under an appropriate aggregation
of states.

In this paper we study a class of probabilistic queueing disciplines and we focus
on the conditions under which multiclass queueing systems with such disciplines
admit product-form solutions. We consider the queuing system in isolation, and
its analysis as a building block that can be included in a product-form multi-
class QN.

We address the problem of identifying possibly product-form queueing sys-
tems having a probabilistic discipline that is not RANDOM. In this paper we
prove that, if we consider a general BCMP-like product-form solution, under
certain conditions, the only probabilistic discipline that leads to a product-from
is the RANDOM. In other words, this is a theoretical negative result that states
that the extension of BCMP product-form QNs cannot include nodes with prob-
abilistic disciplines, except for the RANDOM.

In order to discuss the effect of probabilistic disciplines on multiclass queue-
ing systems, we present a performance comparison of two queueing systems with
RANDOM and FCFS discipline, respectively, by varying the arrival processes. As
a consequence of the equivalence results between FCFS and RANDOM stations
under class independent Poisson arrivals, for many practical purposes, in a mul-
ticlass product-form QN, a RANDOM station can replace a FCFS station. This
can be useful for those networks that although they have a BCMP-like product-
form, they do not satisfy the conditions of the well-known algorithms for the
exact analysis. For instance, this can happen in case of some load-dependent
service rates or in case of nodes that are not strictly BCMP (e.g. Le Boudec’s
MSCCC [7]). In these cases, simulation may be required even for product-form
QNs and using the RANDOM disciplines instead of the FCFS allows for a great
simplification of the state of the model. In fact, for RANDOM stations, it is not
necessary to represent the arrival order but only the number of customers in the
queue for each class (therefore the simulation efficiency is improved).

We address the problem of understanding the different behaviors, in terms
of stationary queue length distributions and departure processes, of the FCFS
and RANDOM stations under stationary non-Poisson arrival processes. By the
results of these experiments, we observe that the two queueing systems show a
similar behaviors under low load conditions. Under heavy traffic conditions the
FCFS and RANDOM queueing systems still have a close queue length distri-
bution, but they exhibit some significant differences in the departure processes.
When the different classes have similar arrival rates, we observe a good approx-
imation of the steady state probabilities independently of the load factor, but
the departure processes can still exhibit major differences. As a consequence
we can derive the conditions under which RANDOM stations can be used to
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approximate FCFS stations in complex models that are not in product-form,
simplifying the model state and then improving the simulation efficiency.

The paper is structured as follows. Section 2 introduces the queueing model
and the definition of the underlying stochastic process. Section 3 reviews the
Markov implies Markov property (M ⇒ M) and introduces the main result
of this paper by proving that the RANDOM queueing discipline is the only
probabilistic discipline that fulfils the M ⇒ M property in queueing station
with class independent exponential service time and without preemption or pri-
ority. Section 4 presents a performance comparison between the two queuing
systems respectively with FCFS and RANDOM disciplines under various arrival
processes, through a set of simulation experiments. Section 5 gives some final
remarks.

2 Model Description and Notation

In this paper we consider multiclass queueing centers with probabilistic queueing
disciplines, single exponential server and class independent stationary arrivals.
We name this class of models PQD (Probabilistic Queueing Discipline). Let
R be the number of classes, μ the class independent service rate and λr the
arrival rate of class r customers, for r = 1, . . . , R. When a customer arrives
to the queuing system, its service immediately starts if the station is empty,
otherwise the customer waits in the queue. At a job completion, a customer
is probabilistically chosen from the queue and is immediately put in service.
This choice is such that the probability of choosing a customer is non-zero and
independent of its arrival time (but e.g. it may depend on its class, on its class
arrival rate, on the number of customers of that class in the queue).

Since we are interested in the analysis of the product-form properties of PQD
models, we assume exponential class-independent service rates. Indeed, in case
of Coxian distributed service times, the station balance condition must hold [4]
and this is more restrictive than M ⇒ M (e.g. FCFS does not satisfy station
balance although it is in product-form in case of class independent exponential
service time). Then, in Section 4 we consider PQD models with various arrival
distributions and we compare the RANDOM and the FCFS queueing systems
with the same service time distribution, in terms of the steady state distributions
of the queue lengths and the departure processes.

We denote the state of the model by m(r), where m is a R-dimensional vector
and r = 1, . . . , R denotes the class of the customer in service. If the queue is
empty we use the symbol m(ε)

0 ≡ m0, where ε means that there is no customer in
service. The s-th component of m(r) is denoted by ms and represents the number
of class s customers in the queue. For instance state m(r) = (m1, . . . , mR)(r)

represents the station with 1 +
∑R

s=1 ms customers and the customer being
served has class r.

At a job completion we probabilistically choose the next customer to be served.
We model this behavior by defining a set of non-negative functions ws(m(r))
that assign a weight to each class s = 1, . . . , R for every state m(r). Function
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ws(m(r)) assumes the value 0 if and only if ms = 0. After the job completion
the probability of choosing a customer of class s is then given by the following
expression:

ws(m(r))∑R
t=1 wt(m(r))

(1)

It should be clear that if ws(m(r)) = ms then the model is a M/M/1/RAND
station since every customer has the same probability of entering in service after
a job completion.

In the following, |m(r)|s denotes the total number of class s customers in the
station, i.e.:

|m(r)|s =

{
ms + 1 if r = s

ms otherwise
.

We define |m(r)| =
∑R

s=1 |m(r)|s, i.e., the total number of customers in the
station.

3 The RANDOM Queueing Discipline and the BCMP
Product-Form

Since BCMP theorem [3] has been formulated, many authors tried to characterize
this class of product-form models in terms of structural conditions (e.g. [4]) or
conditions on the underlying continuous time Markov chain (CTMC) (e.g. [6,9]).

In particular, in this paper, we focus on the M ⇒ M property introduced
in [9]. Informally, it states that a multiclass queueing station that, under class
independent Poisson arrivals, exhibits class independent Poisson departures, is
in product-form. This means that such a queueing station can be embedded in
a BCMP QN maintaining the product-form solution of the whole model. It is
worthwhile noting that, in general, the arrival processes to the stations within
a product-form QN are not Poisson. Therefore, the relevance of the M ⇒ M
is due to the possibility of studying the behavior of a station in isolation and
with independent Poisson arrivals, and then derive the steady state solution
when it is embedded in a BCMP-like QN. This property is defined under very
general assumptions, i.e., it requires the station to be work-conserving, without
priority, and with single-step transitions (see e.g. [5]). In order to prove that the
underlying process of a queueing center fulfils the M ⇒ M property it suffices
to prove that [9]:

∀s = 1, . . . , R, ∀γ ∈ Γ,
∑

ξ∈Ss+(γ)

π(ξ)q(ξ → γ) = π(γ)λs, (2)

where: Γ is the set of reachable states, π(γ) is the stationary probability of state
γ ∈ Γ and Ss+(γ) = {ξ ∈ Γ : |ξ|s = |γ|s + 1}, i.e., the set of states with one
customer of class s more than state γ, where |ξ|s denotes the number of class s
customers in state ξ, q(ξ → γ) is the transition rate between states ξ and γ and
λs is class s arrival rate.
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We can rewrite condition (2) for the multiclass probabilistic queue PQD in-
troduced in the previous section, as follows:

∀s = 1, . . . , R, ∀m(r) ∈ Γ
∑

m(s)∈Ss+(m(r))

π(m(s))q(m(s) → m(r)) = π(m(r))λs,

(3)
where Γ is the (infinite) set of reachable states.

Note that, since there is a single server, if m(r) can be reached from m(s)

in one step, and |m(s)|t = |m(r)|t + 1, then it follows that s = t. Intuitively,
this is due to the fact that if m(s) has a customer of class t more than m(r)

and the latter state can be reached from the former in one step, then that step
corresponds to a class s job completion, hence t = s.

The main theoretical result of this paper is given by the following theorem.
Informally it states that the RANDOM discipline is the only probabilistic dis-
cipline that fulfils the M ⇒ M property for multiclass queueing centers with
single server, without preemption, and with class independent exponential ser-
vice rates. Note that it is well-know that the multiclass RANDOM queueing
discipline fulfils the M ⇒ M property [1], however, in this paper we prove that
it is also necessary for those stations that satisfy the conditions of Theorem 1.

Theorem 1. The RANDOM queue is the only PQD that fulfils the M ⇒ M
property.

The proof that RANDOM ⇒ (M ⇒ M) is given in [1] and the stationary
distribution is derived. Hence, we have to prove that (M ⇒ M) ⇒ RANDOM. In
order to prove the theorem, we introduce some definitions and lemmas. Hereafter,
for the sake of simplicity, we just write m(·) to denote a state when the class of
the customer being served is not important.

Definition 1. Let m(·),p(·) ∈ Γ . We say that m(·) ≤ p(·) if:

∀s = 1, . . . , R |m(·)|s ≤ |p(·)|s,

and we define dist(p(·),m(·)) = |p(·)| − |m(·)|.
Relation ≤ is a partial order in Γ , and dist(p(·),m(·)) is the number of customers
that p(·) has more than m(·).

Definition 2 (MM-step and MM-path). Given states p(s) we call MM-
Step a transition to state m(r) if |p(s)|s = |m(r)|s + 1. We denote a MM-step
by: p(s) r−→ m(r) and if m(r) = m0 we set r = ε. A MM-path is a sequence of
MM-steps and is described by a vector whose components are the ordered labels
of the arrows as well as the initial state.

In order to help the intuition let us consider a simple example for state p(s) =
(2, 1)(2) of a R = 2 classes PQD. A possible MM-Path from p(s) to m0 is:

(2, 1)(2) 1−→ (1, 1)(1) 2−→ (1, 0)(2) 1−→ (0, 0)(1) ε−→ m0
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Hence the MM-path is α = (2, 1)(2); [1, 2, 1, ε]. In the following, Greek letters
denote MM-pathes. Note that, in general, given a state m, the number of possible
MM-paths to m0 is given by the multinomial coefficient( ∑R

s=1 ms

m1, . . . , mR

)
.

Definition 3 (Function Ψ). Let m(·),p(·) ∈ Γ , with m(·) < p(·), and let α be
a MM-path between p(·) and m(·). The function Ψ is defined as follows:

Ψ(α) =

{
1 if α = p(·); [] ∨ α = p(·); [ε]∑R

s=1 ws(p(·))
wr(p(·)) Ψ(β) otherwise,

(4)

where β is the MM-path α with the first MM-step removed.

Intuitively, function Ψ is the reciprocal of the probability that MM-path α occurs
given that there has not been any arrival to the queueing center.

The following lemmas state that if the PQD model fulfils the M ⇒ M prop-
erty, then function Ψ only depends on the initial and the final states of the path,
i.e., is independent of the order of the MM-steps.

Lemma 1. If a PQD satisfies the M ⇒ M property, then:

1. if (p(s) r−→ m(r)) then we can write:

π(p(s))
π(m(r))

=
λs

μ

∑R
t=1 wt(m(s))
wr(m(s))

.

2. if p(s) ε−→ m0 then we an write:

π(p(s))
π(m0)

=
λs

μ
.

Proof. Condition (3) holds by hypothesis, and we already noted that Ss+(m(r))
= {p(s)}. We know that the transition rate from p(s) to m(s) is μ multiplied by
the probability of choosing a class r customer to put in service. Then the lemma
can be derived by trivial algebra. ��

Lemma 2. A PQD satisfies the M ⇒ M property if and only if for all states
p(s) ∈ Γ and for all the MM-pathes α from p(s) to m0 we have Ψ(α) = ψ(p(s)).
Then the stationary probability of state p(s) can be expressed as follows:

π(p(s)) = π(m0)
R∏

t=1

(λt

μ

)|p(s)|t
ψ(p(s)). (5)
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Proof. Suppose that the PQD model satisfies the M ⇒ M property, and let α
be an arbitrary MM-path from p(r) to m0. First, we prove by induction that

π(p(s)) = π(m0)
R∏

t=1

(λt

μ

)|p(s)|t
Ψ(α). (6)

Base case: if p(s) ε−→ m0 then Equation (6) is verified by Lemma 1 and Defini-
tion 3.

Inductive step: suppose that:

α = p(s) r−→ m(r) → · · · → m0︸ ︷︷ ︸
β

,

and r = ε. By induction we know that:

π(m(r)) = π(m0)
R∏

t=1

(λt

μ

)|p(s)|t μ

λs
Ψ(β). (7)

We can write:
π(p(s))
π(m0)

=
π(p(s))
π(m(r))

π(m(r))
π(m0)

,

that, by Lemma 1 combined with Equation (7) becomes:

π(p(s))
π(m0)

=
λs

μ

R∏
t=1

(λt

μ

)|p(s)|t μ

λs
Ψ(β)

∑R
t=1 wr(p(s))
wr(p(s))

.

Using definition 3 we conclude the proof by induction.
Let us consider two different MM-pathes α1 and α2 from p(s) to m0. By the

uniqueness of π for ergodic CTMCs, the following condition is satisfied:

π(m0)
R∏

t=1

(λt

μ

)|p(s)|t
Ψ(α1) = π(m0)

R∏
t=1

(λt

μ

)|p(s)|t
Ψ(α2),

that implies Ψ(α1) = Ψ(α2) = ψ(p(s)). Equation (5) can be obtained from
Equation (6) by substitution of Ψ with ψ.

Vice versa let us assume Equation (5) and prove that the M ⇒ M property
holds. We need to prove Equation (3) rewritten as follows recalling that the
transition rate from p(s) to m(r) is μwr(p(s))/

∑R
t=1 wt(p(s)):

π(p(s))μ
wr(p(s))∑R
t=1 wt(p(s))

= π(m(r))λs.

This can be easily derived by substituting function π by formula (5), in fact:

R∏
t=1

(λt

μ

)|p(s)|t
ψ(p(s))μ

wr(p(s))∑R
t=1 wt(p(s))

=
R∏

t=1

(λt

μ

)|m(r)|t
ψ(m(r))λs.
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Noting that |p(s)|s = |m(r)|s + 1 and |p(s)|t = |m(r)|t with t = s, we have:

λs

μ

R∏
t=1

(λt

μ

)|m(r)|t
ψ(p(s))μ

wr(p(s))∑R
t=1 wt(p(s))

=
R∏

t=1

(λt

μ

)|m(r)|t
ψ(m(r))λs.

This is true if:

ψ(p(s))
wr(p(s))∑R
t=1 wt(p(s))

= ψ(m(r)).

Let us consider a MM-path α = p(s) r−→ m(r) → · · · → m0 and β = m(r) →
· · · → m0, by hypothesis Ψ(α) = ψ(p(s)) and Ψ(β) = ψ(m(r)), then we can
apply Definition 3 and conclude the proof of the lemma. ��
Although Lemma 2 states that a PQD model satisfies the M ⇒ M property if
and only if for every state p(·) ∈ Γ there exists a function ψ depending only on
p(·) such that ψ(p(·)) = Ψ(α) for every MM-path α from p(·) to m0, it does not
give any information about the definition of ψ. The following Lemma gives the
definition for ψ from which we straightforwardly derive the proof of Theorem 1.

Lemma 3. If a PQD model fulfils the M ⇒ M property then we can write, for
each p(·) ∈ Γ :

ψ(p(·)) =
( ∑R

s=1 ps

p1, . . . , pR

)
. (8)

Proof. The proof is by induction on |p(s)|.
Let A(p(·)) be the set of the class labels with at least one customer in the

queue, defined as follows:

A(p(·)) = {r : pr > 0}, with r = 1, . . . , R

Note that if |A(p(·))| ≤ 1 then we immediately obtain ψ(p(·)) = 1. Therefore if
|p(·)| ≤ 2 the lemma is trivially satisfied.

Base case: |p(·)| = 3. In this case there is a customer in service and two
customers in the queue. If the latter ones belong to the same class then the base
case is verified as there is obviously just one possible choice of the class to put
in service. Let us consider the case that the queued customers have two different
classes s and t. Then the MM-pathes from p(·) to m0 are:

α : p(·) s−→ m(s) t−→ n(t) ε−→ m0

β : p(·) t−→ m(t) s−→ n(s) ε−→ m0,

hence:

Ψ(α) =
ws(p(·)) + wt(p(·))

ws(p(·))

Ψ(β) =
ws(p(·)) + wt(p(·))

wt(p(·))
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By Lemma 2 we have that ψ(p(·)) = Ψ(α) = Ψ(β) because by hypothesis the
station fulfils the M ⇒ M property. Therefore, we conclude ws(p(·)) = wt(p(·))
and ψ(p(·)) = 2.

Induction step: let us consider a state p(·) with |p(·)| > 3. If A(p(·)) = 1 then the
result immediately follows. Let us assume |A(p(·))| > 1 and let r ∈ A(p(·)). Let
us consider an MM-path α to m0 such that the first MM-step is p(·) r−→ m(r).
Since |m(r)| < |p(·)|, by inductive hypothesis we have that:

ψ(m(r)) =
( ∑R

s=1 ms

m1, . . . , mR

)
=
(

(
∑R

s=1 ps) − 1
p1, . . . , pr − 1, . . . , pR

)
that gives:

Ψ(α) =

∑
t∈A(p(·)) wt(p(·))

wr(p(·))
ψ(m(r)). (9)

Let us consider r′ ∈ A(p(·)) with r′ = r. In a similar manner we obtain a
MM-path β and:

ψ(m(r′)) =
( ∑R

s=1 ms

m1, . . . , mR

)
=
(

(
∑R

s=1 ps) − 1
p1, . . . , p′r − 1, . . . , pR

)
,

Ψ(β) =

∑
t∈A(p(·)) wt(p(·))

wr′(p(·))
ψ(m(r)).

By Lemma 2 we have that Ψ(α) = Ψ(β). Then:

1
wr(p(·))pr′

=
1

wr′(p(·))pr
.

that can be written as:
wr(p(·))
wr′(p(·))

=
pr

pr′
.

Since this relation must hold for every couple r, r′ ∈ A(p(·)) and for each state
p(·) that has at least two different classes of customers in the queue (note that
when the queue is empty or all the customers belong to the same class the
definition of function w is not really important) we conclude that wr(p(·)) =
f(p(·))pr for every r ∈ A(p(·), where f is a non-negative function. By replacing
this expression in Equation (9) we conclude the proof of the lemma. ��
Proof (Theorem 1). Using the previous lemmas, the theorem proof is very simple.
First we observe that the class r weight function wr influences the model behavior
only if there are two or more customers belonging to different classes in the
queue. In this case Lemma 3 states that wr(p(·)) = f(p(·))pr, with p(·) ∈ Γ
and f a non-zero function. Note that f is does not affect the behavior of the
PQD because the definition of the probability of entering in service is given by
Expression (1). Therefore, we proved that a necessary condition for a PQD to
fulfil the M ⇒ M property is that the scheduling discipline is RANDOM. ��
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4 Comparison of RANDOM with FCFS Queueing
Discipline

It is well-known that under class independent Poisson arrivals a queueing system
with RANDOM or FCFS queueing disciplines is in product-form if the service
time distribution is class independent and exponential. In particular, according
to the model description given in Section 2 the steady state solution for the
RANDOM discipline is:

π(m) = π0

( ∑R
r=1 mr

m1, . . . , mR

) R∏
r=1

(λr

μ

)mr

, (10)

where π0 is the stationary probability of observing the empty station, m is a vec-
tor whose components mr represent the total (in service or in queue) number of
customers of class r in the station. The state of FCFS station must represent the
arrival order of the customers therefore a straightforward comparison with the ex-
pression given by Formula (10) is not possible. However, if we consider an aggre-
gation of states that just represents the number of customers in the station despite
to their arrival order, Equation (10) expresses its steady state solution. Note that
this equivalence holds even for multiple exponential servers as proven in [2].

In this section we compare the FCFS queueing system with the RANDOM
one by assuming class independent exponential service time and under various
arrival processes. We focus our attention on the following indices, that are known
to be equal in case of Poisson arrivals:

– the steady state probability of observing a given number of customers of a
class,

– the distribution of the interdeparture time for a class of customers in steady
state. This characterizes the departure process.

By these experiments, we just aim to present an example to illustrate that
in multiclass stations the queueing discipline influences the station performance
indices, even if it is work-conserving and without priority, and if the service
time distribution is class independent and exponential (i.e. with the memoryless
property). From this observation we informally derive the conditions under which
a multiclass FCFS station embedded in a large model can be approximated by
a RANDOM station maintaining the overall model behavior unchanged.

4.1 Experiments

In order to obtain these estimates, we have built a simulator in Java using
the combined multiple recursive generator class by L’Ecuyer [8]. Since we are
interested in steady state estimates, we used Welch’s procedure to define the
warmup period [11], performed a set of independent replications of the simulation
and constructed 90 percent confidence intervals. The validation of the model
has been done with independent Poisson arrivals comparing the estimates with
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the exact results. We have considered uniform, hyperexponential and Erlang
interarrival time distributions and different load factors.

For the sake of brevity, in this section we show the results of some experiments
obtained with the following conditions:

– R = 3 classes of customers.
– the interarrival time distributions are Erlang r.v.s with 20 stages of service,

with means 1/λ1 = 1.3, 1/λ2 = 10.0 and 1/λ3 = 4.0
– the service rate is exponentially distributed with mean 1/μ.

We vary the value of μ in order to change the station load factor ρ = (λ1 +
λ2 + λ3)/μ. Since only the classes with the slowest arrival rates present major
differences for the considered performance indices, Figures 1, 2, 3 and 4 illustrate
the comparison of the two disciplines for classes 2 and 3 and different values of ρ.
For all the experiments we observe that the confidence interval width is always
less than 0.001, so they are not drawn in the pictures.
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Fig. 1. Class 2 queue population for different values of ρ in steady state

The results clearly show that the queueing disciplines influence the departure
processes and the queue population distributions in steady state even if the
service time distribution is class independent.

In general we have observed that the FCFS and the RANDOM discipline
exhibit similar behaviors in terms of queue population and departure process,
if: the class arrival rates are similar, the load factor of the station is low and the
interarrival rate distributions can be approximated by independent exponential
random variables.

By observing figures 1, 2, 3, 4, it is possible to see the RANDOM and FCFS
disciplines exhibit an almost identical behavior, in terms of the considered per-
formance indices, when the load factor ρ ≤ 0.5. This has an intuitive motivation,
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Fig. 3. Class 2 interdeparture time X accumulation function in steady state

i.e., when the traffic is low the probability of observing many customers in the
queue is low, therefore the scheduling discipline tends to have a low impact on
the considered performance measures. The load factor seems to be a reasonable
parameter to analyze if we want to approximate the FCFS stations of a simu-
lated model by RANDOM stations for the sake of improvement of the simulation
performance using a more compact state representation.

It is worthwhile pointing out that, for the considered performance indices, the
product-form property shows an insensitivity to the scheduling discipline (FCFS
or RANDOM) for these multiclass models that is not true in general. Note that this
is a peculiarity of multiclass models, while for single class models it is well-known
the insensitivity property ofwork-conservingand non-prioritydisciplines (e.g. [5]).
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Fig. 4. Class 3 interdeparture time X accumulation function in steady state

5 Conclusions

In this paper we have presented and proved a new theoretical result that char-
acterizes the probabilistic disciplines that fulfil the M ⇒ M property, i.e., that
can be embedded in a BCMP-like QN maintaining the product-form property
of the model. Moreover, we have performed a set of simulation experiments to
compare the behaviors of FCFS and RANDOM disciplines under non-Poisson
arrival processes. In particular, we have shown the impact of the load-factor on
the similarity of the queue population distributions and the departure processes
in steady state. In the first part of the paper we have shown that assuming a
class independent exponential server the only probabilistic queueing discipline
that fulfils the M ⇒ M property is the RANDOM. The importance of this re-
sult is about the impossibility of defining general non-RANDOM probabilistic
disciplines (e.g. [10]) with a class independent exponential server that can be
composed in a BCMP-like manner, i.e., that can be studied very efficiently by
exact techniques.

In the second part of the paper we have addressed the problem of analyzing
the impact on a set of relevant performance indices of the queueing discipline
under some non-Poisson class independent arrival processes. The simulation re-
sults show that, in case of heavy load, the population distributions and the
departure processes of the FCFS and RANDOM models differ. In practice, we
explore the possibility of replacing a FCFS station by a RANDOM station (with
class independent exponential server) in a non-product-form model. This can be
useful because the state representation of the RANDOM station is much more
compact than that of FCFS. However, although this leads to exact results in
case of product-form QNs, we have observed that it is not generally true. In
particular major differences on the steady state population distributions and on
the departure processes are observed in case of heavy traffic.
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Abstract. A batch-service finite-buffer queuing model for the non con-
tinuous frame assembly scheme is presented. The steady-state probabil-
ities are computed by simply solving the bi-dimensional Markov chain
which models the queueing system. However, transitions between states
require to know the conditional (as it depends on each state) probability
distribution of the on-going batch size, which in turn is computed from
the queue departure distribution. Finally, the model is used to evaluate
the system performance when the minimum (a) and maximum (b) batch
size thresholds are tuned.

1 Introduction

Packet aggregation, from simple packet concatenation to complex data fusion
techniques, is used to enhance communication systems. It is able to improve the
system performance in terms of throughput, delay and/or energy consumption,
by reducing both unnecessary protocol headers and channel contention / trans-
mission attempts. Examples of technologies using aggregation are: Optical Burst
Switching [1] or IEEE 802.11n WLANs [2]. Additionally, packet aggregation is
also applied on top of a broad set of technologies, such as in mesh networks [3] or
in 3G cellular communications [4], in order to enhance the transmission of traffic
types which suffer from the inclusion of multiple large headers from the different
layers of the protocol stack together with the small portion of useful data (e.g.
Voice over Internet Protocol), resulting in a significant waste of transmission
resources.

Considering the instant when the batch size is completely determined, two
aggregation schemes can be depicted: i) Continuous Packet Assembly (CPA),
where new incoming packets can be aggregated to the already on-going batch
transmission, until the maximum batch size is reached, and ii) Non-Continuous
Packet Assembly (NCPA), where the batch length is completely determined at
the instant it is scheduled, based on the number of packets stored in the queue.

In this paper, only the NCPA scheme is considered. In Figure 1 the transmis-
sion queue is shown, where the a and b thresholds are the minimum and maxi-
mum allowed batch size, respectively. The queue main features considered are:
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Fig. 1. The NCPA queue

– A packet concatenation strategy is used, where a single header is added to
each batch (where a batch is the payload of a group of packets assembled
together). The maximum batch size is b packets.

– The transmitter does not store the packets in transmission. They remain in
the queue until the batch is completely transmitted.

– Next batch is scheduled as soon as previous transmission has finished and
there are at least a packets in the queue. Otherwise, it remains idle.

The proposed model allows to obtain performance metrics such as the packet
blocking probability, the average batch size or the average transmission delay. To
solve it, a very intuitive relation between the departure πd and the steady-state
πs probability distributions is used. This relation is based on the conditional
batch length probability distribution αq, which can be computed from the queue
departure distribution and is used to determine the transitions inside the set of
possible queuing states.

The NCPA queue is based on the queues with bulk-service times [5]. They
have received a lot of attention in past years (for example the GI/M [1,b]/1/K
[6], the M/G[a,b]/1/K [7] or the GI/MSC [a,b]/1/K [8]), although there are still
few works applying these models to real scenarios or communication problems,
probably due to its mathematical complexity. Examples are the works from S.
Kuppa et al. [9] and Kejie Lu et al. [10] focusing on WLANs performance analy-
sis. Thus, even though the model presented here only works under the assump-
tion of Poisson arrivals and Exponential (batch-length dependant) batch service
time distribution. If these assumptions are acceptable, it benefits from two main
properties: i) a clear and elegant state-based description (Markov chain) and
ii) a striking simplicity which makes it suitable for further enhancements to the
packet assembly scheme (e.g. dynamically adapt the b and κ (aggregation factor)
parameters to the queuing state) and for its consideration in a joint design with
more complex schemes (MAC/PHY protocols).

Once the model is introduced, it is used to show the queue response when the
a, b and κ (aggregation factor) parameters are tuned.

2 NCPA Model Description

The NCPA scheme is modeled using a M/M [a,b]/1bd/K (bd :batch dependent)
queue with space for K packets, included those in service (there is not a specific
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space for them). Packets arrive to the queue according to a Poisson process with
rate λ and are served in batches of length l packets, with l taking values between
a and b, the minimum and maximum batch size respectively. The batch-service
times are exponentially distributed with rate μl and depend on the number of
packets assembled in each batch. Let qm be the number of packets in the queue
after the departure of the m− 1 batch. Then, next batch size satisfies the policy
lm = β(qm) where:

β(qm) =

⎧⎨⎩
a qm < a

qm a ≤ qm < b
b b ≤ qm

(1)

with the following queue state recursion at departure instants

qm = qm−1 − β(qm−1) + min (vm−1, K − qm−1) (2)

where vm−1 are the packet arrivals between the m−2 and m−1 batch departure
instants (note that the m batch is scheduled as soon as the m−1 batch departs,
which leaves qm packets in the queue).

The average batch service time depends on the aggregation factor κ, the packet
length (L, bits), the number of packets assembled together in a single batch (l)
and the channel capacity (C, bits/second):

1
μl

=
L + (l − 1) · κ · L

C
(3)

The κ parameter must be understood as the proportional part of useful data
(payload) in each packet. For example, a packet of length L bits has a payload
length equal to κ · L bits and a header of length (1 − κ) · L bits. Thus, the
aggregation process consists on, given l individual packets, the extraction of
the header from each one and assemble their payload together, adding a single
header for the entire batch. This will result in a final batch-length equal to
(1 − κ)L + l · κ · L bits.

Note how the κ parameter has a double effect: first, it results in batches of
variable size and second, it impacts on the effective traffic load to the queue.
Regarding nomenclature, throughout the paper, the traffic load (A) only refers
to the load related to the relation between the packet arrival rate and the service
time given that no aggregation is done (or equivalently, each batch comprises a
single packet) and therefore, A = λ 1

μ1
.

2.1 Departure Distribution

The limiting departure probability distribution, πd, gives the probabilites of
having q packets in the queue right after batch departures. It is obtained using
the Embedded Markov chain approach, solving the linear system Pπd = πd,
together with the normalization condition πd1T = 1. P is the probability
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μb
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λ λ λ λ
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αK-b,a μb

Fig. 2. 2-dimensional Markov chain modelling the NCPA scheme

Table 1. Transition Rates from state Sq,l, lε[a, min(q, b)]

Next State Rate Conditions
Packet arrivals: q < K

Sq+1,0 λ q < a
Sq+1,l′ αq+1,l′λ q ≥ a, l′ε[a, min(q + 1, b)]

Packet departures: 0 < a ≤ q ≤ K

Sq−l,0 μl q − l < a
Sq−l,l′ αq−l,l′μl q − l ≥ a, l′ε[a, min(q − l, b)]

transition matrix, where the transition probabilities from state iε[0, K] to state
jε[0, K] are given by:

pi,j =

⎧⎪⎪⎨⎪⎪⎩
pa,j i < a, jε[0, K − a]

dj+β(i)−i,β(i) i ≥ a, jε[i − β(i), K − β(i) − 1]
1 −∑K−β(i)−1

u=i−β(i) pi,u i ≥ a, j = K − β(i)
0 otherwise

(4)

where dn,l is the probability of n arrivals during the transmission of a batch
involving l packets, with

dn,l =
∫ ∞

0
fv(t)fl(t)dt =

∫ ∞

0
e−λt (λt)n

n!
μle

−μltdt (5)
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where fv(t) and fl(t) are the probability functions of the packet arrivals and the
l-batch service time, respectively.

Example. Considering the queue M/M [1,2]/1bd/5, the P matrix is given by:

P =

⎡⎢⎢⎢⎢⎢⎢⎣
d0,1 d1,1 d2,1 d3,1 1 − d0,1 − d1,1 − d2,1 − d3,1 0
d0,1 d1,1 d2,1 d3,1 1 − d0,1 − d1,1 − d2,1 − d3,1 0
d0,2 d1,2 d2,2 1 − d0,2 − d1,2 − d2,2 0 0
0 d0,2 d1,2 1 − d0,2 − d1,2 0 0
0 0 d0,2 1 − d0,2 0 0
0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (6)

2.2 Steady-State Distribution

Let {s(t) : t > 0} be the stochastic process which represents the temporal evo-
lution of the number of packets inside the queue. Its state-space is:

S = {Sq : 0 ≤ q ≤ K} (7)

and its extended counterpart, including the on-going batch size:

Se = {Sq,l : 0 ≤ q ≤ K; 0 ≤ l ≤ b} (8)

A sketch of Se is shown in Figure 2 (black states), including some represen-
tative transitions between states, where the x-axis corresponds to the number
of packets in the queue and the y-axis to the size of the current batch in ser-
vice. The transitions from state Sq,l are summarized in Table 1. Let πse

be the
limiting steady-state probability vector. It can be obtained by solving the linear
system πse

Q = 0, where Q is the infinitesimal generator of se(t), together with
the normalization condition, πse

1T = 1. Note that

πs
q =

min(q,b)∑
j=a

πse

q,j , q ≥ a (9)

with πs
q = πse

q,0 otherwise. The (q, 0) state means that there are q packets in the
queue, although there is not any active transmission.

From Table 1, transition rates between states are partitioned by the condi-
tional batch size distribution αq = {αq,l, a ≤ q ≤ K, lε[a, min(q, b)]}, where each
αq,l is the probability that given a queuing state q, the system is transmitting a
batch of length l.

With respect to the αq probability distribution, computed in next subsection,
it is important to remark that it is the steady-state distribution of the on-going
batch length when the queue is in state q, regardless if the queue moves to that
state after a new packet arrival or after a departure. This assumption allows the
simple model construction, although it introduces some transitions which are
physically impossible, such as the one with label αa+1,a+1 in Figure 2.
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Example. Considering the queue M/M [1,2]/1bd/5, the ininitesimal generator
Q is given by:

Qλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ λ 0 0 0 0 0 0 0 0
0 −λ1 α2,1λ 0 0 0 α2,2λ 0 0 0
0 0 −λ α3,1λ 0 0 0 α3,2λ 0 0
0 0 0 −λ α4,1λ 0 0 0 α4,2λ 0
0 0 0 0 −λ α5,1λ 0 0 0 α5,2λ
0 0 0 0 0 0 0 0 0 0
0 0 0 α3,1λ 0 0 −λ α3,2λ 0 0
0 0 0 0 α4,1λ 0 0 −λ α4,2λ 0
0 0 0 0 0 α5,1λ 0 0 −λ α5,2λ
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

Qμ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
μ1 −μ1 0 0 0 0 0 0 0 0
0 μ1 −μ1 0 0 0 0 0 0 0
0 0 α2,1μ1 −μ1 0 0 α2,2μ1 0 0 0
0 0 0 α3,1μ1 −μ1 0 0 α3,2μ1 0 0
0 0 0 0 α4,1μ1 −μ1 0 0 α4,2μ1 0
μ2 0 0 0 0 0 −μ2 0 0 0
0 μ2 0 0 0 0 0 −μ2 0 0
0 0 α2,1μ2 0 0 0 α2,2μ2 0 −μ2 0
0 0 0 α3,1μ2 0 0 0 α3,2μ2 0 −μ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

where the bidimensional Markov chain, considering only the black states from
Figure 2, has been transformed in a single dimensional chain. The infinitesimal
generator is Q = Qλ + Qμ.

2.3 Conditional Batch Size Probability Distribution

Given that there are q packets in the queue, with a ≤ q ≤ K (otherwise there is
no batch transmission), the probability that the length of the on-going batch is
l packets, with a ≤ l ≤ b, is:

αq,l =
∑q

i=l Iβ(i)=l

(
pd

i · pa(q − i|1/μβ(i))
)∑q

j=a pd
j · pa(q − j|1/μβ(j))

(12)

where Iβ(i)=l is a boolean indicator function which returns 1 if the condition
β(i) = l is satisfied. Otherwise, it returns 0. Additionally,

pd
i =

⎧⎨⎩
∑a

j=0 πd
j i = a

πd
i a < i ≤ K
0 otherwise

(13)

and pa(i|1/μj) is the probability of at least i arrivals during the service time
with rate 1/μj.

pa(i|1/μj) =
{

1 i = 0
1 −∑i−1

m=0 dm,j otherwise
(14)
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Example. Considering the queue M/M [1,2]/1bd/5, the α4 probability distribu-
tion is given by:

α4,0 = 0

α4,1 =
pd
1 · pa(3|1/μ1)

pd
1 · pa(3|1/μ1) + pd

2 · pa(2|1/μ2) + pd
3 · pa(1|1/μ2) + pd

4 · pa(0|1/μ2)

α4,2 =
pd
2 · pa(2|1/μ2) + pd

3 · pa(1|1/μ2) + pd
4 · pa(0|1/μ2)

pd
1 · pa(3|1/μ1) + pd

2 · pa(2|1/μ2) + pd
3 · pa(1|1/μ2) + pd

4 · pa(0|1/μ2)
(15)

Note that pd
i = 0 if i > K − b. Expressions from Equation 15 can be simplified

accordingly.

2.4 Performance Metrics

Once the πd and πse distributions are obtained, several performance metrics
can be computed, such as the packet blocking probability,

Pb = πs
K (16)

and the probability that the transmitter is empty or non-transmitting:

Pnt =
a−1∑
q=0

πs
q (17)

Additionally, the average size of the transmitted batches,

E[γ] =
K∑

i=a

pd
i β(i) (18)

the average number of packets in the queue,

E[N ] =
K∑

q=0

qπs
q (19)

and the average packet transmission time, obtained from E[N ] by applying Lit-
tle’s Law:

E[R] =
E[N ]

λ(1 − Pb)
. (20)

3 Model Validation and NCPA Analysis: Numerical
Example

Some numerical and simulation results are provided to validate the accuracy
and applicability of the presented queuing model. The M/M [a,b]/1bd/K queue
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Table 2. Arrival/Steady-state and Departure distributions for A = 0.5 and 1.5 Erlangs

A = 0.5 Erlangs M/M [1,2]/1bd/5 M/M [1,3]/1bd/5
State πd πs πd πs

(0) 0.6243 (0.6239) 0.5385 (0.5381) 0.6465 (0.6468) 0.5443 (0.5445)
(1) 0.2359 (0.2363) 0.2473 (0.2477) 0.2279 (0.2276) 0.2454 (0.2452)
(2) 0.0889 (0.0886) 0.1153 (0.1150) 0.0863 (0.0862) 0.1129 (0.1129)
(3) 0.0401 (0.0403) 0.0564 (0.0565) 0.0283 (0.0284) 0.0525 (0.0525)
(4) 0.0106 (0.0106) 0.0254 (0.0255) 0.0107 (0.0108) 0.0253 (0.0253)
(5) 0.0 (0.0) 0.0168 (0.0170) 0.0 (0.0) 0.0193 (0.0194)

A = 1.5 Erlangs M/M [1,2]/1bd/5 M/M [1,3]/1bd/5
State πd πs πd πs

(0) 0.2484 (0.2483) 0.1164 (0.1163) 0.3294 (0.3299) 0.1424 (0.1427)
(1) 0.2388 (0.2386) 0.1370 (0.1369) 0.2274 (0.2271) 0.1445 (0.1444)
(2) 0.1739 (0.1739) 0.1387 (0.1386) 0.2423 (0.2422) 0.1592 (0.1592)
(3) 0.2756 (0.2758) 0.1779 (0.1779) 0.1285 (0.1285) 0.1439 (0.1439)
(4) 0.0631 (0.0631) 0.1391 (0.1392) 0.0721 (0.0721) 0.1206 (0.1206)
(5) 0.0 (0.0) 0.2907 (0.2908) 0.0 (0.0) 0.2891 (0.2888)

Table 3. Arrival/Steady-state and Departure distributions for A = 0.5 and 1.5 Erlangs

A = 0.5 Erlangs M/M [2,3]/1bd/5 M/M [3,3]/1bd/5
State πd πs πd πs

(0) 0.5662 (0.5662) 0.2638 (0.2639) 0.5000 (0.5000) 0.1538 (0.1541)
(1) 0.2452 (0.2457) 0.3781 (0.3784) 0.2500 (0.2503) 0.2307 (0.2313)
(2) 0.1155 (0.1151) 0.1851 (0.1851) 0.2500 (0.2495) 0.3076 (0.3057)
(3) 0.0729 (0.0729) 0.0963 (0.0961) 0.0 (0.0) 0.1538 (0.1561)
(4) 0.0 (0.0) 0.0425 (0.0424) 0.0 (0.0) 0.0769 (0.0754)
(5) 0.0 (0.0) 0.0340 (0.0338) 0.0 (0.0) 0.0769 (0.0772)

A = 1.5 Erlangs M/M [2,3]/1bd/5 M/M [3,3]/1bd/5
State πd πs πd πs

(0) 0.2933 (0.2936) 0.0908 (0.0909) 0.2500 (0.2497) 0.0533 (0.0540)
(1) 0.2066 (0.2066) 0.1547 (0.1549) 0.1875 (0.1877) 0.0933 (0.0968)
(2) 0.2508 (0.2505) 0.1609 (0.1609) 0.5625 (0.5624) 0.2133 (0.2441)
(3) 0.2756 (0.2758) 0.1779 (0.1779) 0.0 (0.0) 0.1600 (0.1591)
(4) 0.0631 (0.0631) 0.1391 (0.1392) 0.0 (0.0) 0.1200 (0.1192)
(5) 0.0 (0.0) 0.2907 (0.2908) 0.0 (0.0) 0.3600 (0.3565)

is evaluated using different traffic loads and a and b parameters. A small queue,
K = 5, is considered in order to be able to show the complete πs, πd and αq

values. The channel has a constant capacity equal to C = 100 Kbps, L = 100
bits (including the header) is the average packet length and κ = 0.5, resulting
in these batch-service times are: 1/μl = [100/C, 150/C, 200/C], for l = 1, . . . , 3.

In Table 2 and 3, the departure and steady state distributions obtained by
solving the queuing model are compared with the simulation ones (between
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Table 4. αq and πse distributions with A = 1.5 Erlangs

- M/M [1,2]/1bd/5 M/M [1,3]/1bd/5 M/M [2,3]/1bd/5 M/M [3,3]/1bd/5
State αq,l πse αq,l πse αq,l πse αq,l πse

(0,0) 1 0.1164 1 0.1424 1 0.0908 1 0.0533
(1,0) - - - - 1 0.1547 1 0.0933
(1,1) 1 0.1370 1 0.1445 - - - -
(2,0) - - - - - - 1 0.2133
(2,1) 0.6269 0.0822 0.5795 0.0867 - - - -
(2,2) 0.3730 0.0564 0.4204 0.0725 1 0.1609 - -
(3,0) - - - - - - - -
(3,1) 0.3069 0.0493 0.4035 0.0520 - - - -
(3,2) 0.6930 0.1285 0.3377 0.0502 0.676 0.1114 - -
(3,3) - - 0.2587 0.0416 0.324 0.0578 1 0.1600
(4,0) - - - - - - - -
(4,1) 0.2377 0.0296 0.2969 0.0312 - - - -
(4,2) 0.7622 0.1095 0.2860 0.0347 0.6582 0.0771 - -
(4,3) - - 0.4162 0.0546 0.3417 0.0433 1 0.1200
(5,0) - - - - - - - -
(5,1) 0.2128 0.0444 0.2586 0.0468 - - - -
(5,2) 0.7871 0.2463 0.2882 0.0782 0.64 0.1735 - -
(5,3) - - 0.4531 0.1640 0.36 0.1301 1 0.3600

Table 5. E[γ] (packets) and E[R] (milliseconds) against A Erlangs

- M/M [1,2]/1bd/5 M/M [1,3]/1bd/5 M/M [2,3]/1bd/5 M/M [3,3]/1bd/5
A E[γ] E[R] E[γ] E[R] E[γ] E[R] E[γ] E[R]
0.5 1.139 1.695 1.164 1.687 2.073 2.852 3 4.333
1.0 1.351 2.367 1.429 2.293 2.177 2.756 3 3.592
1.5 1.512 2.780 1.643 2.647 2.249 2.858 3 3.416
2.0 1.621 3.027 1.799 2.855 2.296 2.952 3 3.353
2.5 1.694 3.182 1.911 2.986 2.329 3.003 3 3.325
3.0 1.746 3.286 1.995 3.075 2.353 3.085 3 3.312
3.5 1.783 3.360 2.058 3.139 2.372 3.131 3 3.306

brackets). The simulator has been developed in C programming language us-
ing the COST simulation libraries [11]. In Table 4, the steady-state distribution
of the expanded state-space, along with the conditional batch distribution are
introduced and, finally, in Table 5, the average batch size and the average trans-
mission delay are shown.

At low traffic conditions, comparing the M/M [1,2]/1bd/5 and M/M [1,3]/1bd/5
queues, the latter shows a higher blocking probability, Pb = πs

5. As there is
not an specific space for the packets in service and they are only dequeued
after the batch is completely transmitted, it results in long periods of time in
which there are no packet departures, increasing the probability of losing several
consecutive packets. However, this result changes when traffic increases as the
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Fig. 3. Average Batch Size

queue M/M [1,3]/1bd/5 becomes more efficient. Thus, a higher b value allows to
increase the Pnt = πs

0 probability, as well as the E[γ], resulting also in a lower
transmission delay, E[R] (Table 5).

On the other hand, the M/M [2,3]/1bd/5 and M/M [3,3]/1bd/5 increase the a
value, which results in higher Pb = πs

5 and Pnt = πs
0 +πs

1 and Pnt = πs
0 +πs

1 +πs
2

probabilities respectively. At low traffic conditions, the extra delay to schedule
a batch is clearly shown, as at least two and three packets are required in each
case. This inefficiency is proportionally reduced at high traffic loads, as single
packet batches are avoided.

Regarding the values of αq (Table 4), notice that they also provide a very
useful information to understand how the queue performs. For example, notice
how increasing b from 2 to 3 in the M/M [1,b]/1bd/5 queue results in a higher
probability to transmit single packet batches (in Table 4, this is to be in a
given state and with a single packet batch active). This, in turn, is caused by
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Fig. 4. Blocking Probability

the transmission of these longer batches (3 packets) that now are possible, which
left the system at lower states when they depart. Furthermore, increasing a from
1 to 2, it is even worst in terms of increasing the presence of 3 packet batches
when there are 4 or 5 packets in the queue.

4 Results: Impact of a and b

This section focuses on the impact of different a and b values, traffic loads
(A = 0.6 and A = 1.2 Erlangs) and κ values (0.1, 0.3, 0.7 and 0.9) on the
queue response. The same NCPA parameters used in previous example, with
the exception of K = 15 and a and b that range from 1 to 8, are considered.
Notice that in the Figures, the x-axis values are the index of the set of possible
a and b values, which are between brackets in the legend.
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Fig. 5. Non-transmitting probability

In Figure 3, the average batch size (E[γ]) is shown. As expected, higher traffic
loads and κ values result in longer batches (as the batch size is proportional to the
number of packets stored in the queue when it is scheduled, that in turn depends
on the duration of previous batch). Increasing a, the batch size is constrained to
this minimum value. Plus, notice that for a values greater than K/2 all scheduled
batches will have a size equal to a packets. On the other hand, increasing b results
in higher E[γ] values until a saturation point is reached, from where E[γ] remains
approximately constant. Clearly, this saturation point is also proportional to the
traffic load and κ and it is also related to the number of packets arriving at the
queue during previous batch transmission.

In Figure 4 the blocking probability is plotted. Increasing a results in higher
blocking probabilities, except the case with κ = 0.1. In this case, it is slightly
better to wait until a second packet arrives to the queue than to start the batch
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Fig. 6. Average Transmission Delay

transmission as soon as possible (note that the low κ makes the aggregation
process very efficient). Conversely, when the b parameter is increased, a minimum
in the blocking probability appears for some traffic loads and κ values. For higher
traffic loads (A = 1.2 Erlangs) there is always a minimum (for all κ values). On
the contrary, for low traffic loads, it requires low κ values to show that minimum.
For example, in the cases with A = 0.6 and κ equal to 0.7 and 0.9, always a
longer batch results in higher blocking probabilities. These results, in general,
are caused by the fact that the packets of a batch are not deallocated until its
completion and thus longer batches increase the probability that new arrivals
fill the queue.

In terms of the non-transmitting probability (Figure 5), higher b values result
always in higher Pnt, but not significantly. Thus, although increasing b results
in a more efficient use of the channel, the channel utilization still remains high
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because of the next batch is scheduled as soon as a single packet (a = 1) is ready
in the queue (single packet batches are more frequent). Conversely, increasing a
this probability boosts substantially as the transmitter remains idle until there
are at least a packets. Furthermore, it also causes more efficient aggregations
(compared when increasing b), as longer batches are mandatory. Increasing κ,
batches also become longer, which increases the channel utilization, thus reduc-
ing Pnt. A high Pnt value means a lower link occupation which in single-user
point to point links can result, for example, in lower energy consumption (less
transmitted bits or longer sleep periods). However, in random access solutions,
it becomes a fundamental parameter as their performance is influenced by the
number and persistence of the transmission attempts, which depends on Pnt

[10]. Then, low Pnt values will reduce the collision probability, which can result
in higher throughput or lower delay, as well as lower energy consumption.

Finally, the a and b values also show a notably impact in terms of transmission
(including queuing) delay (Figure 6). There is a relation (quasi linear) between
a, the response delay and the time between packet arrivals. The transmitter
remains idle until there are at least a packets in the queue, which is proportional
to a and inversely proportional to the traffic load, as 1/λ = 1/(Aμ1). On the
contrary, increasing b always result in lower queuing delays, except for high κ
values (and low traffic loads, Figure 6.d), where the extra delay waiting for the
completion of previous batch (which is longer) becomes more relevant than the
aggregation gain achieved.

5 Conclusions

A queuing model for the non-continuous frame aggregation scheme in finite
buffers has been presented. It is used to provide some directions about the impact
of tuning the batch size parameters.
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Abstract. Size-based scheduling is advocated to improve response times
of small flows. While researchers continue to explore different ways of
giving preferential treatment to small flows without causing starvation
to other flows, little focus has been paid to the study of stability of
systems that deploy size-based scheduling mechanisms. The question on
stability arises from the fact that, users of such a system can exploit
the scheduling mechanism to their advantage and split large flows into
multiple small flows. Consequently, a large flow in the disguise of small
flows, may get the advantage aimed for small flows. As the number of
misbehaving users can grow to a large number, an operator would like to
learn about the system stability before deploying size-based scheduling
mechanism, to ensure that it won’t lead to an unstable system. In this
paper, we analyse the criteria for the existence of equilibria and reveal the
constraints that must be satisfied for the stability of equilibrium points.
Our study exposes that, in a two-player game, where the operator strives
for a stable system, and users of large flows behave to improve delay, size-
based scheduling doesn’t achieve the goal of improving response time of
small flows.

1 Introduction

Scheduling based on flow size (or flow age) has been gaining importance in the
recent times. Researchers have proposed different ways of scheduling based on
size, ranging from SRPT (Shortest Remaining Processing Time) to LAS (Least
Attained Service) to MLPS (Multi-level Processor Sharing) scheduling mecha-
nisms [1,2,3]. These scheduling strategies differ from the general model for flow
scheduling in the Internet. The queues in the Internet nodes, though are served
in an FCFS order at packet level, can be modeled using an M/G/1-PS (pro-
cessor sharing) queue at flow level. The motivation to deviate from this norm,
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and schedule flows based on size, is to give better completion time to small
flows. Strictly speaking, the aim has been to improve the conditional mean re-
sponse time of small flows, at negligible cost to large flows. LAS, for example,
always gives highest priority to the flow that has attained the least service. More
details on size-based scheduling policies and the advantages they bring, can be
found in [4] and [2]. Note that, researchers use age-based scheduling to refer to the
scheduling schemes that are blind, in the sense that, they do not have information
about the size of the flow when it arrives, and hence uses its age (the number of
bytes/packets already scheduled) to make scheduling decision. Whereas, in this
paper, we use the broader phrase size-based scheduling to include all the policies
that use age or size to make scheduling decisions.

A user (an end-user or an application) sends a file as a single flow across
the Internet. We take this as a normal behaviour. If size-based scheduling is
deployed by an operator, there is a clear motivation for one or more users to
deviate from the normal behaviour. Indeed, there is an incentive in splitting a
flow (possibly large, but more precisely, one that is not small) into multiple small
flows to exploit the advantage (say, priority in scheduling) given to small flows
to improve the response time. If a considerable number of users deviate from
the normal behaviour, then the operator’s aim of giving shorter response time
to small flows might well be deceived. More importantly, an operator would like
to know if such user manipulations would lead to an unstable system behaviour.
This poses an important problem in the context of size-based scheduling systems
which, to the best of our knowledge, has not been addressed yet. This is the
problem we address in this work. In the scenario where users do not misbehave,
the stability issue (for network of queues) has been addressed in [5] recently.

The focus of this work is to study the equilibria in size-based scheduling system
where users misbehave. We believe this would lead to better understanding of the
implication of deploying a size-based scheduling mechanism. More description of
the problem is given in Section 2. The model is elaborated in Section 3. The
existence of equilibria are studied for two kinds of system behaviours: one in
which the service rates are fixed, is studied in Section 4; and the other in which
the service rates are varying, is studied in Sections 5 and 6. We summarize our
analysis as a game between the operator and users, in Section 7.

2 Problem Statement and Assumptions

We study the problem that arises when an operator deploys a size-based schedul-
ing mechanism. Though there are different ways of scheduling based on size, our
focus is on size-based scheduling using two queues. Here, flows are classified
based on their sizes. Small flows are sent to one queue, and large flows to an-
other1. Each queue is assigned a specific service rate, such that the total service

1 A flow is called small if its size is less than a threshold, θ. In practice, θ bytes of
every large flow also go to the small queue. But, we ignore this to keep the model
simple. Besides, this affects neither the analysis nor the results given here.
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rate equals the line capacity. The aim of operator in setting such a mechanism
is to give to reduce the average response times of small flows.

To formulate the objective of the operator, we assume Poisson flow arrivals.
Arrivals and service rates are in units of small flow. λx and λy are the arrival
rates for small and large flows respectively. Each large is F times a small flow.
The service rates at small and large queues are φx and φy respectively, such that
if C denotes the line capacity, φx + φy = C. Each queue is served using the PS
discipline; hence it is an M/G/1 − PS queue.

We study the existence of equilibria under the scenario where users cheat by
splitting a large flow into multiple small flows to improve their delay. This is
explored in two cases: (i) where the service rates assigned are static, (ii) where
the operators exhibits control by dynamically changing the service rates. In
the latter case, we explore the existence of interesting equilibria, and state the
conditions required for stability, under the assumption that the incentive for
players to migrate is to minimize the delay the flow will incur. Note that, by
‘players’, we consider only the users who migrate.

3 Model Description

The fluid model used in this work is inspired by the one used in [6], where the
authors analyse dynamic bandwidth resource allocation and migration between
guaranteed performance and best effort traffic classes.

The two-queues model is depicted in Fig. 1. The queue for small flows is called
small queue and is referred to as Qx. The other queue is called the large queue
which is denoted by Qy. The number of flows at Qx is represented by x. At the
large queue, this number (in number of small flows) is denoted by y. We assume
infinite queues. The service rates, φx and φy, are also in number of small flows.
They are both assumed to take non-zero values.

The system parameters φx and φy are set by the operator. System state is
modeled using averaged queue sizes: x and y. Depending on the measured de-
lay values, a user might decide to split a large flow into multiple small flows.
Therefore, a fraction of the flows arriving at the large queue might be migrated
to the small queue. This migration function, which is a result of aggregate user
behaviour, is represented as m(x, y). It is linear in λyF as a result of the inte-
gration of individual user that send dλy each:

∫
mdλy = λym. We take m to be

a non-negative and continuous function of x and y. m represents the fraction of
λy which goes to Qx.

x

y

λx

λyF

φx

φy

λyFm(x, y)

Fig. 1. Two-queues model
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0 ≤ m(x, y) ≤ 1 (1)

For every large flow that migrates, it adds an overhead of η (e.g. connection
establishment cost, slow-start cost). The rate equations can now be written as:

dx

dt
= λx − φx + λyFm(x, y)(1 + η), x > 0 (2)

dy

dt
= λyF − φy − λyFm(x, y), y > 0 (3)

The rate equations are different at the borders. For x = 0,

dx

dt

∣∣∣∣
x=0

= [λx − φx + λyFm(x, y)(1 + η)]+ (4)

and for y = 0,
dy

dt

∣∣∣∣
y=0

= [λyF − φy − λyFm(x, y)]+. (5)

4 System Analysis for Static Service Rates

This section details the analysis of a system where the service rates at both the
queues are fixed.

Proposition 4.1. An interior point (x, y) is an equilibrium iff φx−λx = λyF −
φy and m is such that m(x, y) = φx−λx

λyF and 0 ≤ m(x, y) ≤ 1.

Proof (Proof of Prop. 4.1)
Let (x, y) be an interior point. It is an equilibrium if and only if:⎧⎨⎩

dx
dt = 0
dy
dt = 0
0 ≤ m(x, y) ≤ 1

⇐⇒

⎧⎪⎨⎪⎩
m(x, y) = φx−λx

λyF (1+η)

m(x, y) = λyF−φy

λyF

0 ≤ m(x, y) ≤ 1
��

Remark 4.2. Existence of interior equilibrium does not only depend on m func-
tion but also on the arrival rates and service rates. Meaning that they can only
exist in very specific cases.

Proposition 4.3. (0, 0) is an equilibrium point if and only if:⎧⎪⎨⎪⎩
m(0, 0) ≤ φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(0, 0)
0 ≤ m(0, 0) ≤ 1
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Proof (Proof of Prop. 4.3). Using equations (4) and (5), we obtain that (0, 0) is
an equilibrium point if and only if:⎧⎪⎨⎪⎩

dx
dt

∣∣
x=0 = 0

dy
dt

∣∣∣
y=0

= 0

0 ≤ m(0, 0) ≤ 1

⇐⇒
⎧⎨⎩

λx−φx

1+η + λyFm(0, 0) ≤ 0
λyF − φy − λyFm(0, 0) ≤ 0
0 ≤ m(0, 0) ≤ 1

⇐⇒

⎧⎪⎨⎪⎩
m(0, 0) ≤ φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(0, 0)
0 ≤ m(0, 0) ≤ 1

��

Proposition 4.4. (0, y) with y > 0 is an equilibrium point if and only if:⎧⎪⎨⎪⎩
m(0, y) ≤ φx−λx

λyF (1+η)

m(0, y) = λyF−φy

λyF

0 ≤ m(0, y) ≤ 1

Proof (Proof of Prop. 4.4). Using equations (4) and (3), we obtain that (0, y) is
an equilibrium point if and only if:⎧⎨⎩

dx
dt

∣∣
x=0 = 0

dy
dt = 0
0 ≤ m(0, y) ≤ 1

⇐⇒
⎧⎨⎩

λx−φx

1+η + λyFm(0, y) ≤ 0
λyF − φy − λyFm(0, y) = 0
0 ≤ m(0, y) ≤ 1

⇐⇒

⎧⎪⎨⎪⎩
m(0, y) ≤ φx−λx

λyF (1+η)

m(0, y) = λyF−φy

λyF

0 ≤ m(0, y) ≤ 1
��

Proposition 4.5. (x, 0) with x > 0 is an equilibrium point if and only if:⎧⎪⎨⎪⎩
m(x, 0) = φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(x, 0)
0 ≤ m(x, 0) ≤ 1

Proof (Proof of Prop. 4.5). Using equations (2) and (5), we obtain that (x, 0) is
an equilibrium point if and only if:⎧⎪⎨⎪⎩

dx
dt = 0
dy
dt

∣∣∣
y=0

= 0

0 ≤ m(0, y) ≤ 1

⇐⇒
⎧⎨⎩

λx−φx

1+η + λyFm(x, 0) = 0
λyF − φy − λyFm(x, 0) ≤ 0

0 ≤ m(x, 0) ≤ 1

⇐⇒

⎧⎪⎨⎪⎩
m(x, 0) = φx−λx

λyF (1+η)
λyF−φy

λyF ≤ m(x, 0)
0 ≤ m(x, 0) ≤ 1

��
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0
λx

λyF

C

Cφx

φy

φx

1+η
+ φy

Fig. 2. Existence region of equilibrium (0, 0) under static service rate

4.1 Discussion

The aim of a network operator in deploying such a scheduling mechanism is to
give shorter delays to small flows, at negligible cost to large flows. With this in
mind, we can now evaluate which among the equilibrium points are interesting
and useful (from the perspective of a network operator).

To start with, let us consider the equilibrium point (0, 0). The inequalities of
Prop. 4.3 give the shaded region of Fig. 2, where one m can exist to make (0, 0)
an equilibrium. This region is dominated by the line λx+λyF = C, which defines
the region where a single queue system would have empty queue equilibrium.
Thus, this equilibrium (in the two queue system) is not of great interest for the
network operator.

The lines (x, 0) and (0, y) constitute the remaining border point equilibria. (x, 0)
is the set of those points where there is queueing in the small queue, but not at
the large queue. For this reason, these are not desirable equilibria from operator’s
point of view. Similarly existence of (0, y) means, there is nothing queueing at Qx.
So, there is incentive for users to migrate to Qx. Hence (0, y) will not be stable.

As seen in previous section, interior point equilibrium are only possible in
limiting cases where the surplus rate at the large queue is exactly equal to the
surplus of service of x, with the additional constraint that m transfers exactly
this. This situation is too constrained to happen in a real scenario. To introduce
more flexibility, the operator can control the service rate. But this requires the
use of some observable parameters of the system. In this system, the only ob-
servable parameters are x and y as arrival rates λx and λy are not separable at
the queues.

5 Control on φx Using Parameter x

In this section we study the system when operator controls the service rates
using a single parameter. Let f be the control function, and x be the control
parameter. In the remaining of this section we use the following definition for
φx(x) and φy(x).
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Definition 5.1. φx(x) and φy(x)
φx(x) = f(x)
φy(x) = C − f(x)

C being the maximum link capacity (or service rate), let:

0 < f(x) < C (6)

so that the service rate at any queue doesn’t vanish.

5.1 Delay Condition

We introduce the delay condition which is satisfied at equilibrium, as the users
have no incentive to migrate once the delays at both queues are equal. Let us
look the delay a large flow will incur Qx, if it is split into F small flows. For a
service rate of φx at Qx, each small flow gets φx

x+F of service. Hence the time
to transfer a large flow through Qx is Tx = x+F

Fφx
(1 + η). On the other hand,

if the arriving large flow decides to queue at Qy, the delay experienced will be
Ty = y+1

φy
.

At equilibrium, Tx = Ty; thus,

(x + F )(1 + η)
Fφx

=
y + 1
φy

(7)

5.2 Analysis of Equilibrium

For equilibrium to exist, the equations (2) and (3) should be equated to zero.

Proposition 5.2. If η is zero, no equilibrium will exist unless C = λx + λyF .

Proof (Proof of Prop. 5.2).

From the combination (2) + (3) at equilibrium, when η is 0, we get C = λx+λyF .
��

In the remaining, η is taken to be strictly positive.
Using equations (2) and (3) at equilibrium, gives the constraints (8) on f for

the existence of such an equilibrium point.

f(xe) =
(1 + η)(C − λyF ) − λx

η
(8)

There can be multiple such points xe or no depending on f .

Proposition 5.3. For a given set of parameters (λx, λy , C, η, f, m) with η > 0,
the system has inner equilibrium points (xe, ye) where:

xe ∈ f−1(
(1 + η)(C − λyF ) − λx

η
) (9)
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and:

ye =
C − f(xe)
Ff(xe)

(xe + F )(1 + η) − 1

iff: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
λx + λyF ≤ C
λx + λyF (1 + η) > C

f−1( (1+η)(C−λyF )−λx

η ) = ∅
m(xe, ye) = C−(λx+λyF )

ηλyF

(10)

Proof (Proof of Prop. 5.3)

From the combination, (2) + (1 + η)(3), at equilibrium, we obtain Eq. (8). The
system has equilibriums iff there is point xe satisfying this equation, meaning
f−1( (1+η)(C−λyF )−λx

η ) is not empty (η = 0). From Eq. (7), we get corresponding
ye. Then from Eq. (2) at equilibrium, we have m as defined in Eq. (10).

Due to constraint (1) on m, and constraint (6) on f , we have the existence of
this equilibrium iff: {

λx + λyF ≤ C
C < λx + λyF (1 + η) (11)

Second inequality is strict because of Eq. (6). ��

Fig. 3 shows the region of arrival rates where equilibrium can exist, dashed-line
is excluded from this.

Corollary 5.4. If f is strictly monotonic. For every 2-tuple of (λx, λy) satis-
fying the line equation: (1 + η)(C − λyF ) − λx = k (for a constant k), there is
maximum of one equilibrium point.

Proof. Corollary 5.4

If f is strictly monotonic, there is utmost one pre-image by f−1. As potential
equilibria are determined by Eq. (9) (and ye which only depends on xe), all points
of the line of arrival rates: (1 + η)(C − λyF ) − λx = k have the same potential
equilibrium. Since m(xe, ye) has to satisfy Eq. (10), which gives a different line
in λx and λy, there is at most one equilibrium point (the intersection). ��

From the above, it can be observed that, for a monotonic f , there exists utmost
one equilibrium point for the whole line of arrival rates. This gives only a few
equilibrium points for a wide range of arrival rates. A non-monotonic f will give
more equilibrium points. But still, it is not feasible to obtain equilibrium points
for all values of (λx, λy) satisfying the line of arrival rates, as it would require
an infinite queue or an infinite variability of f .

Hence, we conclude that control using a function of x alone, is not of any use
to the operator.
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λx

λyF

C

C

C
(1+η)

Fig. 3. Interior equilibrium existence region under φx(x) = f(x)

6 Control on φx Using Parameters x and y

As seen in previous section, using only one parameter is not enough to stabilize
the system as the control space is too small. We thus use a control function with
two parameters: x and y.

Definition 6.1. φx(x, y) and φy(x, y)

φx(x, y) = g(x, y)
φy(x, y) = C − g(x, y)

Similar to what have been done with f , if C is the maximum link capacity (or
service rate), let:

0 < g(x, y) < C (12)

Note that, definition of delay equation at equilibrium as given in (7) remains
the same and so we directly proceed to the analysis of potential equilibria.

6.1 Analysis of Equilibrium

For equilibrium to exist, the equations (2) and (3) should be equated to zero.
Prop. 5.2 still holds in this case as φx and φy also sum to C; therefore from
equations (2) and (3) we can prove the same. Hence η is also taken strictly
positive here.

Similarly to what have been done for Prop.5.3, at equilibrium, using Eq. (2)
and (3), we obtain the following constraint on g:

g(xe, ye) =
(1 + η)(C − λyF ) − λx

η
(13)
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Proposition 6.2. For a given set of parameters (λx, λy, C, η, g, m) with η > 0,
the system has inner equilibrium points (xe, ye) iff:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g(xe, ye) = (1+η)(C−λyF )−λx

η

m(xe, ye) = C−(λx+λyF )
ηλyF

(x+F )(1+η)
Fφx

= y+1
φy

λx + λyF ≤ C
λx + λyF (1 + η) > C

(14)

Proof (Proof of Prop. 6.2). Same as Prop. 5.3 except that (8) has been replaced
by (13). ��
Note that the region of arrival rates where equilibrium points can exist is the
same.

We define an equivalent load Γ :

Definition 6.3. Γ (λx, λy) = λx

1+η + λyF .

Definition 6.4. D(Γ ) is the set of (x, y) satisfying:

y = a(Γ )x + b(Γ ) (15)

where

a(Γ ) =
(1 + η)Γ − C

F (C − Γ )

and

b(Γ ) =
(2 + η)Γ − 2C

C − Γ

Proposition 6.5. For a given setting of arrival rates (λx, λy) satisfying

Γ (λx, λy) = k (16)

and the two inequalities of Prop. 6.2, equilibria (xe, ye) under this load are on
D(k). Besides, for all the equilibrium points in D(k), g satisfies (13) and is
constant:

g(xe, ye) =
1 + η

η
(C − Γ ) (17)

Proof (Proof of Prop. 6.5). Let (λx, λy) be a setting of arrival rates satisfying
Eq. (16) and the two inequalities of Prop. 6.2.

We first show that D(k) contains all the potential equilibrium points. By
replacing g using Eq. (13) in the delay equation (7), we obtain Eq. (15).

All equilibrium points of arrival settings satisfying (16) have the same value
of g as Eq. (13) holds and gives Eq. (17) which is constant in Γ (λx, λy). ��
Fig. 4 shows Γ -lines in the λxλy-plane and their corresponding D(Γ )-lines in
the xy-plane. On each such line in the xy-plane, g is constant and thus gradient
is orthogonal. From Eq. (17), we also know ∂g

∂Γ is negative which justifies the
orientation of gradient on the figure.
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D(Γ1) Γ3

Γ2

Γ1

∇g

Fig. 4. Interior equilibrium existence region and mapping of Γ (λx, λy) lines to D(Γ ),
level sets and gradient field of g(x, y)

Proposition 6.6. For any (λx, λy) verifying the two inequalities of Prop. 6.2,
D(Γ (λx, λy)) for does not intersect in first quadrant.

Proof (Proof of Prop. 6.6). For Γ (λx, λy) = Γ satisfying the two inequalities of
Prop. 6.2, satisfy: (1 + η)Γ > C and C ≥ λx + λyF > Γ .

Under this, da
dΓ and db

dΓ are strictly positive and a is strictly positive. Thus,
D(Γ (λx, λy)) do not intersect in the first quadrant. ��
This basically means g is ‘feasible’. As a corollary of Prop. 6.6, we give:

Corollary 6.7. g can exist in the sense that there are no incompatible con-
straints resulting from Prop. 6.2.

Proof (Proof of Corollary 6.7). Prop. 6.5 gives the value g must have on D(Γ )
in order to have equilibria on it and according to Prop. 6.6 these lines do not
intersect in the first quadrant where g can be defined. It proves there is no
incompatibility in the definition of g. ��
Proposition 6.8

lim
Γ→C−

a(Γ ) = +∞ ; lim
Γ→ C

1+η
+

a(Γ ) = 0

lim
Γ→C−

b(Γ ) = +∞ ; lim
Γ→ C

1+η
+

b(Γ ) = −1

Proof (Proof of Prop. 6.8). Trivial. ��
In particular, this last proposition implies that g can be defined in the whole
first quadrant using Eq. (13) and lines D(Γ ).

As of now, we demonstrated that it is feasible to define g so that point of
D(Γ ) can be equilibria for (λx, λy) on Γ line. Next, we study the stability of
the potential equilibria in order to define the additional constraints on m. The
only constraint on m coming from existence of equilibrium (Prop. 6.2) is that
m(xe, ye) = C−(λx+λyF )

ηλyF . The point where this will hold is not specified and
depends on m. Defining m will thus define a mapping of arrival rates (λx, λy) to
the actual equilibrium point.
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6.2 Stability of the Equilibria and Definition of m

As demonstrated in the previous section, g that doesn’t prevent existence of
equilibrium is feasible. We now like to have the constraints that m has to satisfy.
We already know from the previous section the range m must cover, but we
don’t know where they have to be located in xy-plane. In order to get more
constraints on m, we study the conditions for stable equilibriums. To do so
we rely on Hartman Grobman theorem and the study of the stability of the
linearized system.

Proposition 6.9. For an equilibrium point (xe, ye) as defined by Prop. 6.2 if
the following equations hold:⎧⎪⎨⎪⎩

∂m

∂x
< (1+ye)C

λy(F (2+η+ye)+xe(1+η))2

∂m

∂x
+
(

ye + 1
xe + F

)
∂m

∂y
< 0

(18)

then (xe, ye) is asymptotically stable.

Proof (Proof of Prop. 6.9)

To analyse of the equilibrium point (xe, ye), we take the Jacobian J of the rate
equations (2) and (3) at this point. The partial derivatives ∂g

∂x and ∂g
∂y at (xe, ye)

are obtained from the delay equation, Eq. (7).

∂g

∂x
(xe, ye) =

(1 + η)(ye + 1)FC

(Fye + xe(1 + η) + F (2 + η))2
(19)

∂g

∂y
(xe, ye) = − (1 + η)(xe + F )FC

(Fye + xe(1 + η) + F (2 + η))2
(20)

The equilibrium point (xe, ye) is asymptotically stable if the eigenvalues of
the J at (xe, ye) have strictly negative real parts [7, Ch. 2 & 5]. Characteristic
polynomial of J is:

λ2 +
(λyF (∂m

∂y − (1 + η)∂m
∂x ) + ∂g

∂x − ∂g
∂y ) λ +

η(λyF (∂m
∂x

∂g
∂y − ∂m

∂y
∂g
∂x ))

From this and equations (19) and (20), real parts of the roots are strictly
negative iff:

(1 + η)
∂m

∂x
− ∂m

∂y
<

(1 + η)C(1 + xe + ye + F )
λy(F (2 + ye + η) + xe(1 + η))2

(21)

and
∂m

∂x
+
(

ye + 1
xe + F

)
∂m

∂y
< 0 (22)

Inequalities of the proposition are obtained using combination of equations
(21) and (22). ��
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Proposition 6.2 and 6.9 give sufficient conditions on m to define stable equilibria.
Next, we prove that there exists m which stabilizes the system for any arrival
setting.

Proposition 6.10. There exists an m satisfying the constraints of propositions
6.2 and 6.9 which stabilizes the system for any arrival rates in the shaded region
of the Fig. 4.

Proof (Proof of Prop. 6.10)

We prove this by exhibiting one such m. Let m be such that

m(x, y) = e−xy

The m satisfies the constraints of Eq. (18) for any λy in (0, C) as ∂m
∂x = −ye−xy

and ∂m
∂y = −xe−xy, are both strictly negative on the interior. Besides, as m ranges

from 1 to 0, from the borders (y = 0 and x = 0) to infinity, thus by continuity,
there exists an equilibrium point (xe, ye) where m(xe, ye) = C−(λx+λyF )

ηλyF for any
arrival rates as all D(Γ )-lines enter the first quadrant by one its borders. ��
Note that if m is strictly monotonic, there is only one equilibrium point for any
arrival rate setting in the equilibrium existence region (refer Fig. 3) located at
the intersection of the level set of g and m. In addition, it is not possible to
apply this for all setting of arrival rates in order to get equilibria for all of them,
unless queue are infinite.

Proposition 6.11. If queues are finite, some setting of arrival rates can’t have
equilibrium.

Proof (Proof of Prop. 6.11). As a(Γ ) tends to 0 when Γ tends to C/1 + η+, and
b(Γ ) tends to -1, intersection of y = 0 and D(Γ ) tends to infinity. Hence, for any
xmax, it is possible to find Γ close enough to C/1 + η so that equilibrium which
have to be on D(Γ ) (due to Prop. 6.5) would have to be after xmax.

Using limits of a(Γ ) and b(Γ ) when Γ tends to C, it is possible to pursue the
same reasoning and prove that for some settings of arrival rates, there can’t be
equilibrium under finite queue for large flows. ��
Thus we see that, the system can attain stability depending on the decision of
users, and the control function used by operator.

7 Game

We summarize our results in the form of a game with two players: operator and
user (with a large flow to send). Here, we make the fair assumption that Tx < Ty.
The operator can take one of the two actions:

– AFP: Assume fair play, and not use a g.
– AUP: Assume unfair play, and use a g.
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From the users, we consider a collective behaviour.

– UC: Users cheat,
– UR: Users rightful

Under AUP, Tx = Ty. We use preferential ordering of payoffs for both players.
That is (ao, au) ≺p (a′

o, a
′
u), if player p prefers second strategy over the first. The

letter o is used to refer to operator, and u to refer to users.

– (AFP, UR) ≺u (AFP, UC): Users prefer to cheat when the operator does
nothing to stop them from cheating, as this would give them shorter response
time in the small queue (when Tx < Ty).

– (AUP, UR) ≺u (AUP, UC): Users also prefer to cheat when the operators
are aware and are setting service rates dynamically to achieve stability, as
this would ensure a finite queue; hence a finite delay. Observe that, if the
don’t cheat (and stay in Qy), there is no equilibrium (from Prop. 6.2); hence
the queue will build up without bound.

Therefore, it can be drawn that UC strictly dominates UR under any action
of the operator (AFP or AUP). Hence, the action UR can be eliminated [8]. So,
what lefts to be analysed is the preference of operator under this user action
(UR). We see, (AFP, UC) ≺o (AUP, UC), as there is no equilibrium for general
arrival rates (from Prop. 6.2, and if Tx remains less than Ty, migration will create
additional load due to η) leading to overflow.

From the above analysis, (AUP, UC) is a Nash equilibrium in the two-players
game. That is, assuming operators and users are rational, users will tend to
cheat, and operators will look to stabilize the system to maintain finite queues
(when the system is operating near to saturation, depending on η).

Note that if the operator’s setting of service rates is such that Tx > Ty, then
migrating to small queue is no more an incentive for large flows. This doesn’t
preclude operator from favoring small flows as x

φx
< y

φy
can still hold. In such

a scenario, it can be seen that (AFP, UR) will be a Nash equilibrium. This
situation can happen if η is large enough and φy

φx
can be maintained such that:{

φy

φx
< y

x
y+1
x+f

F
1+η <

φy

φx

Second constraint will not be satisfied if operator want to favor small flows too
much, say, as in the priority based scheduling proposed in [2]; meaning that it
will be of interest for users to cheat.

8 Conclusions

Starting from the setting of static service rates, and moving to dynamic service
rate settings, we analysed the existence of equilibria. For the existence of equi-
libria that is of interest to the operator, it is necessary to have control over the
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service rate as a function of the queue lengths. Even then, not all the stable
equilibrium points are of interest to the operator, as they give the same delay to
small and large flows. Therefore, if a large number of users cheat, the operator
has no visible incentive in deploying a size-based scheduling system.

The focus of our study revolved around saturation (of the line capacity) as
we assumed that there is some cost η incurred due to migration. In the future,
we plan to analyse the system in overload. Similarly, it would be interesting to
understand what happens if the operator deploys a mechanism to detect and
shift some of the disguised large flows from the small queue to the large queue.
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Abstract. In this paper we present a scalable approximate model for
packet loss analysis in load-balancing Birkhof-von Neumann switch with
finite buffers and variable length packets assumption. We also present a
numerical method to solve the model for large switches (up to the size
∼ 30) equipped with large buffers (up to the buffer size ∼ 1000). With
regards to previously introduced models the main contribution of our
model is its scalability in terms of the switch size as its computational
complexity is linear with the number of ports. Contrary to previous mod-
els we assumed homogeneous input processes in this paper.

1 Introduction

Internet is a huge asynchronous mesh network which is composed of several
sub-networks connected to each other through switches. As the traffic over the
network and the number of links grow exponentially the transmitting media
can be easily adopted using optical fibre. Although the links could provide high
throughput, the switches are not always capable to fulfill both the throughput
growth and increasing number of connections. Some solutions with high through-
put and centralized control exist but they are poorly scalable.

Recently in [1,2] the authors introduced a promising and highly scalable solu-
tion, a two-stage switching architecture called load-balancing (LB) Birkhof-von
Neumann switch.

[1, 2] shows initial investigations on the switch under some strong assump-
tions (infinite buffers, traffic admissibility, equal size packets in the system).
On the contrary [3] used realistic scenarios and carried out a simulation based
throughput analysis of the LB switch with finite buffers. [4] pointed out that
in cell-based (packets of the same size) LB switch a loss can occur because of
buffer overflow. This latter paper also presents mathematical analysis for cell
loss probability evaluation. Besides, going further in this approach, [5, 6] give
analytical results for both finite buffers and variable size packets.
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Whereas in [5] the authors present the full characterization of a realistic sce-
nario, with finite buffers and variable size packets, a less complex approximating
model is given in [6]. In spite of the complexity O

(
2N
)

we still need a fast proce-
dure to solve the model. The aim of this paper is to present an analysis with fast
solution procedure. However a restrictive assumption is applied, i.e., the model
assumes identical stochastic processes on all the inputs.

We will demonstrate that, besides this assumption, the newly introduced
model captures the two most important performance measures. We analyzed
the packet loss – as the switch is equipped with finite buffers – and gave an
estimate of the mean packet waiting time. The first parameter affects the Qual-
ity of Service (QoS) characteristics of data transfers (using TCP). The second
parameter has high influence on real time traffic, e.g., speech (using UDP) over
the network [7,8].

We also introduced a folding algorithm-based numerical method to solve the
model of switches with large buffers.

The rest of the paper is organized as follows. In Section 2 we give the mod-
eling assumptions and the basic principles of the switch. Section 3 presents the
model into detail. The numerical solution method is introduced in Section 4 and
Section 5 verifies the model. Finally Section 6 concludes the paper.

2 Basic Principles and Main Assumptions of the
Switching Mechanism

2.1 Basic Principles

The LB switch is considered to be a two-stage switching architecture. The first
stage uniformly distributes the arriving traffic to the central stage, which is
an input buffer of the second switch (see Figure 1). Its scalability lies in the
distributed, distinct and deterministic control between different switching stages.

To improve the buffer utilization the arriving packets are segmented into cells
of equal size. The basic operating time unit is the service time of a cell – here-
inafter referred to as time slot.

The arrival rate of the cells at the input ports are assumed to be identical to
the service rate of the inputs, i.e., there is no cell loss here. The service rate of

L o a d - b a l a n c i n g S w i t c h i n g

V O Q s

V O Q s

0

N - 1

0

N - 1

F I F O s
R R U

0

N - 1

Fig. 1. The load-balancing switch considered for the analysis
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each output is assumed to be greater than the arrival rate of cell, i.e., the switch
is not overloaded.

In the followings N denotes the size of the switch, i.e., the number of input
and output ports. The central stage consists of N sets of N virtual output queues
(VOQs). In each set there is one buffer dedicated to every output. Hereinafter
VOQk denotes the kth set of VOQs. The cells directed to output j are put in
the jth VOQ out of the kth set – hereinafter denoted as VOQkj .

During the t1st time slot input i is connected to VOQk according to round-
robin (RR) interconnection policy

k = i + t1 mod N i, k ∈ [0, N − 1] (1)

by means of crossbar switches without buffers inside (contrary to [9]). The actual
cell arriving from input i and directed to output j is put into VOQkj if a free
position is available and it is dropped otherwise. In our assumption a cell can
only be lost due to buffer overflow as the VOQs are finite. The VOQs are served
according to the FIFO policy.

As the packets are segmented into cells we consider a packet to be lost, when
at least one of its cells is lost, i.e., packet loss can occur also according to the
finite VOQs.

VOQkj is served in the t2nd time slot, when VOQk is connected to output j
by means of crossbar switches operating according to RR policy

j = k + t2 mod N j, k ∈ [0, N − 1] . (2)

As both crossbars applies RR interconnection policy with the same modulus (N),
the LB switch itself has periodic behavior of period N time slots – hereinafter
referred to as time period.

Finally a packet is reassembled in the re-sequencing and reassembly unit
(RRU) at the output (see Figure 1), like in [10], and sent to the external link.

2.2 Modeling Assumptions

In a time slot, first, the VOQs are connected to the outputs and then the inputs
to the VOQs. This order of interconnections inhibits a cell from passing through
the switch in a single time slot.

During our work we assumed Markovian behavior of system, more precisely
geometric distributed random variables. On the one hand we can fit one pa-
rameter of the observed distributions, but on the other hand we can use the
sophisticated and numerically efficient algorithms to solve discrete time Markov
chains (DTMCs). In order to increase the precision of the analysis, one can
expand the number of fitted parameters to an arbitrary level by using more
complex Markovian structures like discrete time Phase-Type (DPH) distribu-
tions or discrete time Markovian Arrival Processes (DMAPs). Yet such a choice
would increase the complexity of the model and, to a certain extent, shift the
focus of the paper.
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According to the Markovian assumption the packet length (X) distribution
(in cells) of the arrival process is geometric distributed with probability mass
function (PMF)

Pr (X = i) = p̂ (1 − p̂)i−1
i = 1, 2, . . . (3)

The length of the idle periods between packets (Y ) are also geometric distributed
(in time slots) with PMF

Pr (Y = i) = q̂ (1 − q̂)i i = 0, 1, . . . (4)

The parameters are the same for all inputs according to the identical input pro-
cess assumption, which makes us possible to introduce a compact approximate
model of the LB switch. The packets arriving at an arbitrary input are spread
uniformly between the outputs, i.e., the probability of sending a packet to a
particular output is

t̂ =
1
N

. (5)

Previous works [5,6] introduced the differences between traffic paths traversing
the switch. This phenomenon is recalled in the next section.

2.3 On the Different Paths

It is shown in [5] and [6] that the cell loss probability and accordingly the packet
loss probability depend on the path through which it traverses the switch. Where
path means a triple, denoted as {i, j, k}, containing the ordinal number of the
input, the output and the VOQ respectively.

Mainly the difference of the paths comes from the time difference between
the service of a VOQ and the arrival to it. Using (1) and (2) the time difference
between the service of a VOQ and the arrival to it is expressed as

t2 − t1 = d = 2k − i − j mod N, (6)

which also gives the number of inputs that have the right to send cells to VOQkj

before input i in the same time period. d is then directly proportional to the loss
probability of a path, i.e., the higher the d value is the higher the loss probability
of that path is. Here we use the term loss probability of a path to emphasize the
difference between the cell loss probabilities depending on the triple {i, j, k} or
equivalently depending on d.

Based on (6) we recall the term type-d path introduced in [6] for a given path
with characteristic value d.

2.4 On the Definition of the Different Loss Probabilities

Cell loss probability is simply the ratio between the number of cells which were
dropped from the observed VOQ versus the total number of cells sent through
the VOQ.
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The calculation of a packet loss inside the VOQ is not that trivial since cells
belonging to the same packet can be spread to different VOQs. Accordingly we
consider the packet loss in terms of a specific VOQ, i.e., the packet is considered
to be lost, if at least one of its cells is lost in the observed VOQ.

The cell loss probability and accordingly the packet loss probability depends
on the path as it is described in the previous section, it is referred as loss prob-
ability of a path.

Since our main interest is the packet loss probability, the precise way how it
is calculated is given in Section 3.4 and the different loss probabilities for all the
paths are considered in the numerical study in Section 5.

3 The Model

In this section we give the detailed model of VOQ00 as part of path {1, 0, 0} of
the 3×3 switch. This is a type-2 path of that particular switch, but the detailed
analysis of all 3 types of paths will be given in Section 3.4.

3.1 The Model of the Input Processes

The parameters of the identical input process are

p̂ the parameter of the geometric distributed packet length (3) in cells,
q̂ the parameter of the geometric distributed idle period length (4) in time slots

and
t̂ = 1

N the probability of choosing a specific output for a given packet (5).

Based on the geometric assumption we can build the DTMC model, fully char-
acterizing any of the identical inputs, with state transition probability matrix

PC =

⎛⎜⎜⎝
(1 − p̂) + p̂q̂t̂ p̂q̂t̂ p̂q̂t̂ p̂ (1 − q̂)

p̂q̂t̂ (1 − p̂) + p̂q̂t̂ p̂q̂t̂ p̂ (1 − q̂)
p̂q̂t̂ p̂q̂t̂ (1 − p̂) + p̂q̂t̂ p̂ (1 − q̂)
q̂t̂ q̂t̂ q̂t̂ 1 − q̂

⎞⎟⎟⎠ (7)

and graph given in Figure 2, where the state identifiers are the following

j corresponds to cell arrival from the input to output j j = 0, 1, 2
id corresponds to the idle period of the input.

According to the observed output, i.e., output 0, the states of the DTMC in
Figure 2 are divided into two subsets, a one element subset and all the others,
hereinafter denoted as on and off, respectively. Their meaning are

on the state represents cell arrival from the observed input to output 0 and
off the states represent no cell arrival from the observed input to output 0.

In the following we introduce the approximating two state ON/OFF model of
the general input mainly as replacing the set off with a single state OFF. Here-
inafter uppercase ON and OFF denote the states of the approximating two state
description of the input process.
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Fig. 2. The graph of the DTMC fully characterizing any input of the 3 × 3 switch

The ON Properties. State ON replaces the one element subset on with the
same sojourn probability (1 − p̂) + p̂q̂t̂. Accordingly the state transition proba-
bility from ON to OFF is 1 minus the sojourn probability p̂ − p̂q̂t̂.

The OFF Properties. The OFF state replaces the set of off states by ap-
proximating their sojourn time with the absorbing time of a DPH distribution
described in the followings.

For output 0 the transient states of the DPH are the off states and the
absorbing state is the on state as depicted in Figure 3.

Based on PC , given in (7), we give the initial distribution (β) and the state
transition probability matrix (B) of the DPH. The initial distribution is the state
probability right after entering off from on. It is obtained as the renormalization
of the zeroth row of PC without its zeroth element

β =
(

q̂t̂

2q̂t̂+(1−q̂)
q̂t̂

2q̂t̂+(1−q̂)
1−q̂

2q̂t̂+(1−q̂)

)
,

q̂t̂

p̂q̂t̂

p̂q̂t̂

p̂q̂t̂
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p̂q̂t̂

q̂t̂
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Fig. 3. The graph of the DPH substitution of the off states in terms of output 0
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(1 − p) (1 − q)
q

p
OFFON

Fig. 4. The ON/OFF model of the input process with the simplified notation

which is also indicated in Figure 3. The 3 × 3 sized state transition probability
matrix of the off states is obtained from PC by cutting its zeroth row and zeroth
column

B =

⎛⎝(1 − p̂) + p̂q̂t̂ p̂q̂t̂ p̂ (1 − q̂)
p̂q̂t̂ (1 − p̂) + p̂q̂t̂ p̂ (1 − q̂)
q̂t̂ q̂t̂ 1 − q̂

⎞⎠ .

The mean absorbing time of this DPH is then

μ = β (I− B)−1 h, (8)

where I is the identity matrix and h is the column vector of ones of appropriate
size.

Here we note that according to the structure of (7) μ is the same for any
output and any input – indeed the input processes are identical.

Consequently the sojourn probability of state OFF is 1 − 1
μ . The state tran-

sition probability from OFF to ON is 1
μ which sets the mean sojourn time in

state OFF equal to μ.
The state transition probability matrix of the two state DTMC describing the

ON/OFF input process for the general path is

P =
(

(1 − p̂) + p̂q̂t̂ p̂ − p̂q̂t̂
1
μ 1 − 1

μ

)
=
(

1 − p p
q 1 − q

)
, (9)

where we also introduced a simplified notation with p and q. The graph of the
ON/OFF DTMC using the simplified notation is given in Figure 4 which is the
same for all the inputs according to the identical input process assumption.

3.2 Aggregate Input Model

We describe the combined behavior of the N inputs by a DTMC of N +1 states
representing the number of inputs in ON. Using the considerations in Section 3.1
and especially (9) the ijth element of the state transition probability matrix of
such a DTMC describing N inputs after 1 time slots is

(PN,1(p, q)
)

ij
=

min(i,N−j)∑
k=max(0,j−i)

(
i

k

)
pk (1 − p)i−k

(
N − i

j − i + k

)
qj−i+k (1 − q)N−j−k

(10)
where we also indicated that these probabilities depend on the parameters of
(9) – p, q. The first binomial factor of (10) represents that out of i ON sources k
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moves to OFF and the second factor represents that out of N − i OFF sources
j − i + k moves to ON, i, j ∈ [0, N − 1] . (10) also introduces the notation
PN,M (p, q) hereinafter denoting the state of N inputs during M time slots with
each input modeled by an ON/OFF DTMC with parameters p and q given in
(9). For example the state of N inputs after M time slots is

PN,M (p, q) = PM
N,1(p, q). (11)

Using the above method there can be given behavior of any number of inputs
in any number of time slots.

Based on PN,M(p, q) we give the arrival based decomposition of the arrival
process as

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p0

0
...
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

0 arrivals

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
p1

0
...
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

1 arrival

F1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
p2

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

2 arrivals

. . . FN−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...
0

pN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

N arrivals

, (12)

where pi denotes the ith row vector of PN,M(p, q).
The arrival based decomposition of the N × N switch in M time slots, is

formalized in Algorithm 1.

Algorithm 1. Arrival based decomposition of the input process
INPUT: N, M,P from (9)
OUTPUT: B,L, F1, . . . ,FN−1 the arrival based decomposition
1. determine PN,M (p, q) similar to (11) using P
2. decompose PN,M (p, q) as in (12)
3. return B,L,F1, . . . ,FN−1

3.3 The Cell Level Model of the 3 × 3 Switch

We show how the packet loss is calculated in path {1, 0, 0} for which we give the
cell level model of the corresponding VOQ – VOQ00. It is a quasi birth-death
like (QBD-like) structure whose level represents the queue length and phase
represents the state of the input process.

As the phase process of the QBD-like model is the combined state of the
inputs their arrival based decomposition gives the level transition matrices used
to build the QBD-like structure. B,L,F1,F2 are determined by Algorithm 1
with input parameters N = 3, according to the number of inputs, M = 3 the
number of time slots in a time period and P (from (9)). Here M = 3 since the
time period of the DTMC is 3 time slots long – as it is given in Section 2.1.
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A level transition backward is according to B since there is one cell served dur-
ing a time period and B represents 0 arrivals. Local state transition is according
to L and there are 1(2) forward level transition(s) according to F1(F2) .

The state transition probability matrix of the QBD-like model is

P =

⎛⎜⎜⎜⎜⎜⎜⎝
B L F1 F2 0 . . .
B L F1 F2 0 . . .
. . . . . . . . . . . . .
. . . 0 B L F1 F2
. . . 0 0 B L F′

1
. . . 0 0 0 B L′

⎞⎟⎟⎟⎟⎟⎟⎠ , (13)

where F′
1 = F1 + F2 and L′ = L + F1 + F2.

The steady state solution of this QBD-like model is the solution of the linear
system of equations

πP = π, πh = 1. (14)

3.4 Packet Level Model

With the geometric assumption for the packet length, given in Section 2.2, the
life cycle of a packet in the observed path can be modeled by a transient DTMC
in which there are two absorbing states corresponding to the two possible end-
ing of a packet. The first absorbing state corresponds to the first cell loss, or
equivalently the packet loss (PL) and the other one corresponds to the success-
ful packet transmission (ST). The transient DTMC with two absorbing states is
given in Figure 5. In this section we present this transient DTMC with its state
transition probability matrix and initial distribution based representation.

The Transient Part of the DTMC. Basically during the life cycle of a packet
VOQ00 is modeled by a quasi birth like (QB-like) structure. Its level represents

�

s

LR (
FR

1 + FR
2

)
h

LR FR
1

FR
2 h

LRLR FR
1

FR
2

LR FR
1

FR
2

PL

ST

QB-like part

. . .

Fig. 5. The transient DTMC modelling the VOQ during the life cycle of a packet
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the queue length and its phase process is the combined state of the 3 inputs.
In this case there is one important difference compared to the model given in
the previous section. Input 1 is in ON for sure, since this is the model of the
life cycle of a packet arrives from input 1, which also implies that there is no
backward level transition.

The other two inputs behave in the “normal” manner, i.e., their corresponding
level transition matrices are determined by Algorithm 1 with input parameters
N = 2, M = 3 and P in (9). M = 3 since the time unit of the 3 × 3 switch is 3
time slots. The result of the algorithm is

B,L and F, (15)

of size 3 × 3 as they describe 2 inputs (the possible states of this phase process
are 0, 1 and 2 – the number of inputs that are in ON).

According to these considerations the state transition probability matrix of
the QB-like structure is built using the blocks

LR = (1 − p)3 B, FR
1 = (1 − p)3 L and FR

2 = (1 − p)3 F. (16)

Superscript R denotes quantities describing this transient DTMC of Figure 5.
(16) describes the joint behavior of input 1 (given by (1 − p)3 , the probability
that input 1 remains in ON) and the other two inputs (given by matrices B,L,F).

Finally using (16) the state transition probability matrix of the transient part
and the state transition probability vector to state PL are

PR =

⎛⎜⎜⎜⎜⎝
LR FR

1 FR
2 0 . . .

. . . . . . . . . . . . . .
. . . 0 LR FR

1 FR
2

. . . 0 0 LR FR
1

. . . 0 0 0 LR

⎞⎟⎟⎟⎟⎠ , � =

⎛⎜⎜⎜⎜⎜⎝
0
...
0

FR
2 h(

FR
1 + FR

2
)
h

⎞⎟⎟⎟⎟⎟⎠ , (17)

where � tells that if input 1 is in ON (which is the fundamental assumption here)
then there is packet loss if at the beginning of the time period there is either

– one free position in the VOQ and there are three arrivals
(
FR

2 h
)

or
– no free positions in the buffer and there are either

• two arrivals
(
FR

1 h
)

or
• three arrivals

(
FR

2 h
)
.

Using PRh + � + s = h the state transition probability vector to state ST is

s = h − (PRh + �
)
. (18)

The Initial Distribution of the Transient DTMC. The initial distribution
of PR in (17) is determined as the state of the system right after the arrival of
an incoming packet. In this section we determine the probability distribution of
the system at this time instance, right after a new packet arrival.
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Here we give the joint probability of arriving a new packet at input 1 and the
“normal” behavior of the other two inputs. Using the notations introduced in
(9) the first probability is 1−(1 − q)3 and latter one is determined as the output
of Algorithm 1 with input parameters N = 2, M = 3,P, the same as in (15). If
q̃ = 1 − q then their joint behavior is described by the matrices

B̂N =
(
1 − q̃3)B, L̂N =

(
1 − q̃3)L and F̂N =

(
1 − q̃3)F. (19)

The block sizes of π in (14) are 4 since they describe all the 3 inputs. According
to this there is a row of zeros appended to every level transition matrices in
(19) as

BN =
(
B̂N

0

)
LN =

(
L̂N

0

)
FN =

(
F̂N

0

)
. (20)

The last row expresses that in case of a new packet arrival there cannot be all the
N = 3 inputs in ON. Here we recall that in our model there is no corresponding
cell arrival to state change from OFF to ON, i.e., in case of new packet arrival
there is no cell arrival from the observed input.

Then starting from the steady state of the cell level model (14) and using the
level transitions according to new packet arrival (20) the blocks of the initial
distribution of the transient DTMC given in Figure 5 are

π̂N
0 = π0BN + π1BN

π̂N
1 = π0LN + π1LN + π2BN

π̂N
2 = π0FN + π1FN + π2LN + π3BN

π̂N
i = πi−1FN + πiLN + πi+1BN 3 ≤ i ≤ b − 1

π̂N
b = πb−1FN + πb

(
LN + FN ) .

π̂N is normalized as

πN =
π̂N

π̂Nh
(21)

resulting in the initial distribution of the packet level model in Figure 5.

The Packet Loss of the System. Using (17), (18) and (21) the packet loss
probability of the system and the probability of successful packet transmission
on the given path are calculated as absorbing in state PL and ST, respectively,
i.e.,

p� = πN (I− PR)−1
�, ps = πN (I − PR)−1

s = 1 − p�. (22)

Estimation for the Packet Waiting Time. We estimate the mean packet
waiting time with the mean cell waiting time. The mean cell waiting time equals
to the mean system time of the cells entering the queue minus the cell service
time. Since the service of the VOQ is deterministic the system time of a cell in
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the VOQ is N = 3 time slots times the queue length right after the cell arrival
given that the cell is not dropped (denoted as π̃′).

π̃′ can be determined by the equation system

π̃′
1 = π1

(
1
3
F2 +

1
2
F1 + L

)
+ π0

(
2
3
F2 + F1 + L

)
π̃′

i = πi−2
1
3
F2 + πi−1

(
1
3
F2 +

1
2
F1

)
+ πi

(
1
3
F2 +

1
2
F1 + L

)
i ∈ [2, b − 2]

π̃′
b−1 = πb−3

1
3
F2 + πb−2

(
1
3
F2 +

1
2
F1

)
+ πb−1

(
1
2
F2 +

1
2
F1 + L

)
π̃′

b = πb−2
1
3
F2 + πb−1

(
1
2
F2 +

1
2
F1

)
+ πb (F2 + F1 + L) .

π̃′ is normalized as π̃ = π̃′
π̃′h resulting in the queue length distribution right after

a cell arrival given that the cell enters the queue.

4 On the Solution of Large QBD-Like DTMCs

Building the cell level DTMC as in (13) and solving it as in (14) results in the
solution of a linear equation system of size (b + 1) (N + 1) which can be easily
led to inaccurate numerical results.

As a fast and numerically efficient solution of this we apply the folding algo-
rithm, e.g., in [11], based solution of (14). The algorithm is prepared to block
tri-diagonal matrices, hence we repartition (13) as

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

B L F1 F2 0
B L F1 F2
0 B L F1 F2 0 00 0 B L F1 F2
. . . . . . . . . . . . . . . . .

0 0 B L F′
1

0 0 B L′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎝
L′ F′ 0
B L F 0
. . . . . . .

0 B L′′

⎞⎟⎟⎠ , (23)

where we have enlarged the block size to (N − 1)(N + 1). The inverse of the
enlarged block is calculated in the folding algorithm, by which we have increased
the complexity as well. We can increase the buffer size b to high values as the
computational complexity of the folding algorithm is O (log2 b) .

In the followings we give the reduction of the matrix inversion of I − PR, in
(22), to the inversion of its diagonal block – denoted as V = I−LR. Considering
the matrix equation

x
(
I − PR) = πN (24)

where the coefficient matrix
(
I− PR) has an upper triangular structure, on the

block level, we can apply the following iterative solution of the matrix equation
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x0V = πN
0 → x0 = πN

0 V−1

x0F1 + x1V = πN
1 → x1 =

(
πN

1 − x0F1
)
V−1

and all the other blocks for i = 2, . . . , b are

xi−2F2 + xi−1F1 + xiV = πN
i → xi =

(
πN

i − xi−1F1 − xi−2F2
)
V−1

Rearranging (24) results in x = πN (I− PR)−1 which implies that from (22)
the packet loss probability (p�) and the probability of successful packet trans-
mission (ps) of the observed VOQ can be calculated as

p� = x� and ps = xs. (25)

5 A Numerical Study

In contrast to [5, 6] where we described extended methodology of packet loss
analysis in the LB switch, this paper presents optimized solution with linear
complexity. The computational study has two parts. The first part shows the
behavior of the packet loss and waiting time of the LB switch as a function of
buffer length and switch size. The second part examines some extreme cases
when central stage buffers are large to show the power of the folding algorithm
based solution method presented in Section 4. For the results of this section
we used the parameters given in Table 1. In order the comparative analysis, we
made the specified measurements also with our LB switch simulation tool.

Table 1. Parameters used for the numerical studies

Figure 6(a) 6(b) 6(c) 6(d) 7(a) 7(b)

name p� vs. b p� vs. N T vs. b T vs. N p� vs. b T vs. b
without folding algorithm with folding

N 4 4, . . . , 32 4 3, . . . , 33 3
b 8, . . . , 40 36 8, . . . , 40 127 9, . . . , 999
p̂ 1

20
1
40

1
20

1
50

q̂ 1
3

1
2

1
3

t̂ 1
N

Part 1. In [5,6] we examined the dependence of packet loss at the central stage
buffers on the buffer size and switch size. It was found that the packet loss
probability strongly depends on the chosen path ({i, j, k}). Figure 6(a) and 6(b)
present similar results using the approximate model introduced in this paper.

Figures 6(c) and 6(d) indicate another performance characteristic, the packet
waiting time estimator compared to simulation results. The packet waiting time
is evaluated considering only the successfully transmitted packets. The packet
waiting time is generally increases together with the buffer size (larger interval
between cell arrivals and services), like in Figure 6(c) and switch size (cells are
spread to more queues), like in Figure 6(d).
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Fig. 6. Numerical results for the packet loss analysis of LB switches
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Fig. 7. Behavior of switches with large buffers

Part 2. Figure 7(a) and 7(b) shows the applicability of the analytical model
for large buffer sizes. According to presented results, we admit that the ratio
between the switch size and buffer length of the VOQs is a crucial issue for the
expected packet loss and system performance. Unfortunately, the optimal set of
parameters (e.g. switch size and buffer length) is not constant and should be
chosen to the specific needs.
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6 Conclusions

In this paper we present a scalable model for the packet loss and packet waiting
time analysis in the load-balancing Birkhof-von Neumann switch.

This model also reflex the previously shown property of different loss proba-
bilities on the chosen path traversing the switch [5, 6].

The computational complexity of the approximate model introduced in this
paper is reduced to be linear with N, the number of ports of the switch. The
other contribution of the paper is the folding algorithm based, numerically stable
and fast algorithm to solve the DTMCs for large buffer sizes (b). This allow us
to solve switches of size up to ∼ 30 equipped with buffer of size up to ∼ 1000.
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Abstract. This paper studies a single-server queue with two traffic
classes in order to model Expedited Forwarding Per-Hop Behaviour in
the Differentiated Services architecture. Generally, queueing models as-
sume infinite queue capacity but in a DiffServ router the capacity for high
priority traffic is often small to prevent this traffic from monopolizing the
output link and hence causing starvation of other traffic. The presented
model takes the exact (finite) high-priority queue capacity into account.
Analytical formulas for system contents and packet delay of each traffic
class are determined. This requires extensive use of the spectral decom-
position theorem as the service time of a high-priority packet takes a
general distribution, which complicates the analysis. Numerical exam-
ples indicate the considerable impact of the finite capacity on the system
performance.

Keywords: Queueing Systems and Networks, Performance Modelling.

1 Introduction

In the nodes (routers, etc.) of computer networks, packets typically have to wait
before being transmitted to the next node and queues are present in order to
preserve waiting packets. Roughly two types of packets can be distinguished.
Real-time traffic, such as Voice-over-IP, requires low delays but can endure a
small amount of packet loss. Data traffic, such as file transfer, benefits from low
packet loss but has less stringent delay characteristics.

Evidently, configuring the queue in order to allow both classes to meet their
Quality of Service (QoS) requirements is of paramount importance. This is en-
abled by implementing Differentiated Services (DiffServ), a computer networking
architecture in Internet Protocol (IP) networks that classifies packets [1]. It pro-
vides QoS differentiation between traffic classes by basing the order in which
packets are transmitted on class-dependent priority rules. DiffServ defines the
packet forwarding properties associated with a class of traffic by using Per-Hop
Behaviors (PHBs). Obviously, implementation of DiffServ is particularly inter-
esting in wireless networks and access networks, as these typically struggle to
provide acceptable QoS because bandwidth is limited and/or variable.
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This paper considers a two-class priority queueing system representing a Diff-
Serv implementation where real-time traffic (Expedited Forwarding PHB) has
strict priority scheduling over data traffic (Default PHB). This is the most drastic
scheduling algorithm, as data packets are only served if there are no real-time
packets in the system. It thus minimizes the delay of the real-time packets.
However, caution is required as these packets could occupy the server (almost)
permanently, causing starvation of data traffic. This should be alleviated by
controlling the amount of real-time traffic allowed into the system. Moreover,
queueing a very large amount of real-time packets is useless anyway as they re-
quire small delays. These two observations emphasize the importance of limiting
the capacity for real-time packets, without neglecting the packet loss constraints
for these packets. On the other hand, the loss-sensitivity of data packets yields
a capacity as large as practically feasible for these packets. Therefore, we can
assume that the capacity for data packets is sufficiently large to be approximated
by infinity but that the capacity for real-time packets should be modelled ex-
actly. In the literature, priority queues have been discussed with various arrival
and service processes. Analytic studies of queueing systems often assume infinite
queue capacity facilitating mathematical analysis of the system.

From the former paragraph it indeed follows that we can assume that the
capacity for data packets is sufficiently large to be approximated by infinity but
that the capacity for real-time packets should be modelled as a finite number.
The presented model is related to [2] where both queues are presumed to have
infinite capacity and it is an extension of [3], where service of a packet was
deterministically equal to a single slot for both classes. The current contribution
introduces differentiation amongst packet sizes of both classes as the service
time of a real-time packet takes a general distribution. This nontrivial extension
leads to extensive use of the spectral decomposition theorem [4] in order to study
the performance of our system. Finite queue capacity is considered in [5] as well,
albeit by a different methodology, but only packet loss is investigated profoundly
and delay is not analyzed at all. Assessing the impact of the finite real-time queue
capacity is the main purpose of this contribution, as well as studying the effect
of the general service times for real-time packets.

The remainder of this paper is organized as follows: first the model under
consideration will be thoroughly described. In section 3, several performance
measures for our system are determined analytically. Afterwards, the results are
investigated in some (numerical) examples. The paper is concluded in section 5.

2 Model

This paper studies a discrete-time single-server two-class priority queueing sys-
tem where class-1 (real-time) packets receive strict priority over class-2 (data)
packets. Packets are handled in a First-In-First-Out (FIFO) manner within a
class. We limit the capacity of the class-1 queue to N packets such that real-
time packets that arrive at a full queue are dropped by the system. The system
can hence contain up to N + 1 class-1 packets simultaneously, N in the queue
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and 1 in the server. In contrast, the class-2 queue has infinite capacity. Time
is divided into fixed-length slots and a packet can only enter the server at slot
boundaries, even if arriving in an empty system.

Let si denote a generic random service time of a class-1 packet. Service of
a class-2 packet takes a single slot (for convenience purposes), whereas service
of a class-1 packet follows a general distribution with pgf S(z) and mean value
μ. When observing the system at the beginning of a slot this is after possible
departures in the previous slot and before arrivals in the current slot.

We assume that for both classes the number of arrivals in consecutive slots
form a sequence of independent and identically distributed (i.i.d.) random vari-
ables. We define ai,k as the number of class-i (i = 1, 2) packet arrivals during
slot k. The arrivals of both classes are characterized by the joint probability
mass function (pmf) a(m, n) = Pr[a1,k = m, a2,k = n] which allows us to take
into account dependence between both classes. The partial probability generat-
ing function (pgf) of the number of class-2 arrivals in a slot with i (0 ≤ i ≤ N)
and i or more class-1 arrivals are respectively denoted by Ai(z) and A∗

i (z). We
establish

Ai(z) = E[za2,k 1{a1,k = i}] =
∞∑

j=0

a(i, j)zj , A∗
i (z) =

∞∑
j=i

Aj(z) . (1)

The indicator function 1{.} evaluates to 1 if its argument is true and to 0 if it is
false. The mean number of class-1 and class-2 arrivals per slot are respectively
expressed as

ā1 =
∞∑

i=1

iAi(1) , ā2 =
d

dz
A∗

0(z)
∣∣∣∣
z=1

= A∗
0
′(1) . (2)

The mean number of total arrivals is represented by āT = ā1 + ā2. Therefore,
the arrival load is described as ρT = ā1μ + ā2.

3 Analysis

First, we review the spectral decomposition theorem for non-diagonalisable ma-
trices as it will be used frequently in the remainder of this paper. The next
subsection addresses the characterization of arrivals during a class-1 service.
The system contents are obtained at so-called start-slots and non start-slots
consecutively enabling identification of the system contents at the beginning of
random slots. Finally, the packet delay is obtained for both classes.

3.1 Spectral Decomposition of Non-diagonalisable Matrices

Consider a square m × m matrix A and a scalar function f . The spectral de-
composition theorem allows us to express the image of A under f by evaluating
f (and its derivatives) in the eigenvalues of A, see e.g. [4].
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In this paper, the function f is typically a power series f(z) =
∑∞

n=0 fnzn

and the matrix A is non-diagonalisable. Such a matrix A cannot be reduced to a
completely diagonal form by a similarity transform. However, any square matrix
can be reduced to a form that is almost diagonal, called the Jordan normal form
J. Based on this reduction, it is possible to prove that the matrix f(A) can be
uniquely defined as

f(A) =
s∑

j=1

kj−1∑
i=0

1
i!

f (i)(λj) (A − λjI)i Gj . (3)

In this expression, {λ1, . . . , λs} (s�m) are the eigenvalues of A, kj denotes the
index of eigenvalue λj and f (i) is the ith derivative of f . Obviously, it is required
that the function f and its derivatives exist in the eigenvalues, i.e.

λj ∈ dom f (i) , j = 1, . . . , s , i = 0, . . . , kj−1 . (4)

The matrices Gj are called the constituents or spectral projectors of A belonging
to the eigenvalue λj and have the following properties:

– Gj is idempotent, i.e. G2
j =Gj .

– G1 + G2 + . . . + Gs = I, with I the m × m identity matrix.
– GjGj′ = 0 whenever j = j′ (1�j, j′�s).

In general, the matrices Gj need to be calculated from the transformation matrix
P, for which J = P−1AP. Specifically, if P is partitioned conformably as

A = PJP−1 =
[
P1 P2 · · · Ps

]
⎡⎢⎢⎢⎣
J1

J2
. . .

Js

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Q1
Q2
...

Qs

⎤⎥⎥⎥⎦ , (5)

with Jj the Jordan segment corresponding with eigenvalue λj , then the projec-
tors Gj are

Gj = PjQj (j = 1, . . . , s) . (6)

We also note that the columns of Pj span the space of the right eigenvectors of A
corresponding to λj while the rows of Qj span the space of its left eigenvectors.

This spectral decomposition theorem provides us with a very powerful tool
from the computational point of view. Instead of having to evaluate the matrix
power series

∑∞
n=0 fnAn we now only need to evaluate the function f and its

derivatives for scalar arguments and compute a finite number of matrix multi-
plications. The downside is that the eigenvalues of A have to be calculated, as
well as the matrices Gj . But once this is done, f(A) can easily be calculated for
any function f satisfying (4). In subsection 3.2, it will become clear that in our
case these downsides are virtually non-existent as the eigenvalues and spectral
projectors are surprisingly easy to obtain.
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3.2 Arrivals During a Class-1 Service

Let ei,k represent the number of class-i arrivals during a class-1 service that
starts in slot k. We have

ei,k =
s1−1∑
m=0

ai,k+m . (7)

Notice that the ei,k are i.i.d. as the ai,k are i.i.d. and independent of s1. The
partial pgfs of the number of class-2 arrivals during a class-1 service, during which
i (0 ≤ i ≤ N) and i or more class-1 packets arrive are respectively denoted by
Ei(z) and E∗

i (z). We have

Ei(z) = E[ze2,k 1{e1,k = i}] , E∗
i (z) =

∞∑
m=i

Em(z) . (8)

Obtaining these partial pgfs can be a tedious task. During each slot of a class-1
service, packets are added to the queue according to the (N +1)×(N +1) matrix

Y(z) =

⎡⎢⎢⎢⎢⎢⎢⎣
A0(z) A1(z) · · · AN−1(z) A∗

N (z)
0 A0(z) · · · AN−2(z) A∗

N−1(z)
...

. . .
. . .

...
...

...
. . . A0(z)

...
0 · · · · · · 0 A∗

0(z)

⎤⎥⎥⎥⎥⎥⎥⎦ . (9)

More precisely, given that the class-1 queue content (excluding the server) is i−1
during the previous slot, Y(1)ij is the probability that it is j − 1 in the current
slot (this is the probability that j − i class-1 packets are effectively allowed into
the system), while Y(z)ij is the partial pgf of the packets added to the class-2
queue.

The partial pgfs Ei(z) and E∗
i (z) are found as elements of the matrix S

(
Y(z)

)
,

which plays a crucial role. Using spectral decomposition, the latter is easily
evaluated because of the special eigenstructure of Y(z). As this matrix has a
triangular form, the eigenvalues simply are its diagonal elements. There are two
distinct eigenvalues: λ1 = A∗

0(z), with index 1, and λ2 = A0(z), with index N .
The corresponding spectral projectors are shown to be independent of z and
given by

G1 =
[
0 · · · 0 e

]
, G2 =

[
I −e

0T 0

]
. (10)

Here I denotes the identity matrix of appropriate size, xT is the transpose of
vector x and e and 0 indicate the column vector of appropriate size with all
elements equal to 1 and 0 respectively.

Spectral decomposition (3) yields

S
(
Y(z)

)
= S

(
A∗

0(z)
)
G1 +

N−1∑
j=0

S(j)
(
A0(z)

)
j!

(
Y(z) − A0(z)I

)j
G2 . (11)
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3.3 System Contents at the Beginning of Start-Slots

A start-slot is a slot where service of a packet can start. Note that a slot where
the system is empty at the beginning of the slot is a start-slot as well. The class-i
system contents at the beginning of start-slot l are denoted by ni,l. The partial
pgf of the class-2 system contents at the beginning of start-slot l that has class-1
system contents equal to i is denoted as

Ni,l(z) = E[zn2,l 1{n1,l = i}] . (12)

The set {(n1,l, n2,l), l ≥ 1} forms a Markov chain. Assume that start-slot l
corresponds with slot k. Relating start-slots l and l + 1 establishes the following
set of system equations:

n1,l+1 =

{
min(N, a1,k) if n1,l = 0
min(N, n1,l − 1 + e1,k) if n1,l > 0

,

n2,l+1 =

{
(n2,l − 1)+ + a2,k if n1,l = 0
n2,l + e2,k if n1,l > 0

.

(13)

Here (.)+ is shorthand for max(0, .). The system equations can be explained as
follows: if n1,l > 0, a class-1 packet starts service at the beginning of start-slot
l and it leaves the system immediately before start-slot l + 1. For each class,
admitted arrivals during this service contribute to the system contents at the
beginning of start-slot l + 1. On the other hand, if n1,l = 0, a class-2 packet
starts service at the beginning of start-slot l if there are class-2 packets present
in the system. As this service only takes a single slot, start-slot l + 1 is the next
slot. If the system is empty, the server is idle and start-slot l + 1 is the next
slot. Note that the class-1 system contents at the beginning of start-slots cannot
exceed N .

We now define the (N + 1) × (N + 1) matrix

X(z) =

⎡⎢⎢⎢⎢⎢⎣
A0(z) A1(z) · · · AN−1(z) A∗

N (z)
E0(z) E1(z) · · · EN−1(z) E∗

N (z)
0 E0(z) · · · EN−2(z) E∗

N−1(z)
...

. . . . . .
...

...
0 · · · 0 E0(z) E∗

1 (z)

⎤⎥⎥⎥⎥⎥⎦ , (14)

and the row vector of N + 1 elements

nl(z) =
[
N0,l(z) N1,l(z) · · · NN,l(z)

]
, (15)

which corresponds with the system contents at the lth start-slot and we will use
this phrase to determine vectors like (15) throughout this paper. Using standard
z-transform techniques, a relation between nl(z) and nl+1(z) is derived from the
system equations (13). We have
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nl+1(z) = nl(z)

⎡⎢⎢⎢⎣
1
z

1
. . .

1

⎤⎥⎥⎥⎦X(z) + nl(0)

⎡⎢⎢⎢⎣
z−1

z
0

. . .
0

⎤⎥⎥⎥⎦X(z) . (16)

Assume that the system has reached steady-state and define following steady-
state values

n(z) = lim
l→∞

nl(z) = lim
l→∞

nl+1(z) =
[
N0(z) N1(z) · · · NN (z)

]
. (17)

Taking the limit of (16) for l → ∞ induces

n(z)
(

zI−

⎡⎢⎢⎢⎣
1

z
. . .

z

⎤⎥⎥⎥⎦X(z)
)

=
(

(z − 1)N0(0)
[
1 0 · · · 0

]
X(z)

)
. (18)

The constant N0(0) is still unknown. Note that X(1) is a right-stochastic matrix
by construction. Therefore, observe that(

I − X(1)
)
e = 0 ,

[
1 0 · · · 0

]
X(1)e = 1 . (19)

Keeping these identities in mind, derivation of (18) with respect to z, evaluation
in z = 1 and multiplication of both sides of the resulting equation by e yields

N0(0) = n(1)
(
I −

⎡⎢⎢⎢⎣
0

1
. . .

1

⎤⎥⎥⎥⎦X(1) − X′(1)
)
e . (20)

The vector n(1) is yet to be obtained. Evaluating (18) in z = 1 produces

n(1)
(
I − X(1)

)
=
[
0 · · · 0

]
. (21)

As X(1) is right-stochastic, each row of matrix [I−X(1)] sums to 0 and it hence
has rank N and is not invertible. We thus require an additional relation in order
to obtain the vector n(1). Observe that Ni(1) represents the probability that
the class-1 system contents at the beginning of a start-slot in steady state equal
i and thus

Ni(1) = lim
l→∞

Pr[n1,l = i] . (22)

The normalization condition provides n(1)e = 1. Combining this observation
with (21) yields

n(1) =
[
0 · · · 0 1

]([
I − X(1)

∥∥e])−1

. (23)
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By [A‖b] we denote the matrix A with the last column replaced by the column
vector b.

The probability mass function (pmf) of the class-1 system contents at the
beginning of a start-slot in steady state has been obtained in (23). Substituting
it in (20) produces N0(0), the only unknown in (18). The latter yields the pgf of
the class-2 system contents at the beginning of a start-slot in steady state as

lim
l→∞

E[zn2,l ] = n(z)e . (24)

3.4 Queue Contents at the Beginning of Non Start-Slot Slots

If a random slot k is not a start-slot, a class-1 packet started service in the start-
slot preceding the random slot (start-slot l). We know that no packets leave the
server between these two slots. Hence, we study the queue contents, instead of
the system contents, at the beginning of slots that are not start-slots. The system
certainly contains class-1 packets at the beginning of start-slot l, one of which
enters the server (leaves the queue) at the beginning of start-slot l. Therefore,
the steady-state queue contents of both classes, at the beginning of a start-slot
in steady state where a class-1 packet starts service, are characterized by the
vector of N + 1 elements

m(z) =
1

1 − N0(1)
[
N1(z) · · · NN(z) 0

]
. (25)

Slot k lies in the time epoch between start-slots l and l + 1. No packets leave
the system (and hence the queue) during this epoch. In start-slot l and in the
slots up to start-slot l+1, packets (of both classes) arrive at the queue according
to the matrix Y(z) given in (9). Slot k is one of the s1−1 slots between start-slot
l and l + 1 with s1 the service time of the class-1 packet in service. Standard
renewal theory [6] yields that q(z), the vector of N + 1 elements representing
the queue contents of both classes at the beginning of a non start-slot in steady
state is given by

q(z) = m(z)

E

[s1−1∑
i=1

Y(z)i

]
μ − 1

. (26)

Define the function Sn(x) as

Sn(x) = E

[s1−1∑
i=1

xi

]
=

S(x) − x

x − 1
. (27)

By combining (26) and (27) and keeping in mind that the spectral decomposition
theorem (3) enables evaluation of Sn

(
Y(z)

)
, we have

q(z) = m(z)
Sn
(
Y(z)

)
μ − 1

. (28)
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3.5 System Contents at the Beginning of a Random Slot

On average, a start-slot corresponds with μ slots if a class-1 packet starts service
and with one slot if this is not the case (the system is void of class-1 packets).
Therefore, γ, the (long-run) probability that a random slot is a start-slot, is
defined as

γ = lim
k→∞

Pr[slot k is a start-slot] =
1

N0(1) +
(
1 − N0(1)

)
μ

. (29)

The class-i system contents at the beginning of a random slot are denoted
by ui,k. Note that 0 ≤ u1,k ≤ N + 1. The system contents (of both classes) at
the beginning of a random slot in steady state are determined by u(z), a vector
of N + 2 elements. The class-1 system contents at the beginning of a start-slot
never exceed N and the server contains a class-1 packet during non start-slots,
yielding

u(z) =
[
U0(z) · · · UN+1(z)

]
= γ

[
n(z) 0

]
+ (1 − γ)

[
0 q(z)

]
. (30)

The pmf of the class-1 and the pgf of the class-2 system contents at the beginning
of a slot are respectively determined by u(1) and u(z)e.

The number of class-1 packets effectively entering the system and leaving the
system in steady-state must be equal. This allows us to determine the effective
class-1 load ρe

1, the mean number of effective class-1 arrivals āe
1 and the class-1

packet loss ratio plr1, the fraction of class-1 packets rejected by the system. We
have

ρe
1 = 1 − U0(1) , āe

1 =
ρe
1

μ
, plr1 =

ā1 − āe
1

ā1
. (31)

3.6 Class-1 Delay

Tag an arbitrary class-1 packet that effectively arrives at the system in a slot
in steady-state. The arrival slot of the packet is assumed to be slot k. Let the
delay of the packet be denoted by d1. Recall that class-1 packets are not affected
by class-2 packets. We obtain the amount of class-1 packets in the system at
the moment the tagged packet arrives. As the service times are i.i.d., each of
these packets (except the class-1 packet in service during slot k) will contribute a
random number of s1 slots to the delay, as will the tagged packet itself. Therefore,
once a class-1 packet arrives at the system, its delay is known.

Let f1,k denote the amount of class-1 packets arriving in slot k but before
the tagged packet. Renewal theory states that a random packet is more likely
to arrive in a slot with a lot of arrivals. This yields, considering that the tagged
packet has to be an effective arrival,

Pr[f1,k = m | (u1,k − 1)+ = i] =
A∗

m+1(1)
āe
1

, m = 0 . . .N − i − 1 ,

Pr[f1,k = m | (u1,k − 1)+ = i] = 0 , m > N − i − 1 .

(32)
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Define the matrix Fe
1 such that the element on row i, column j (1 ≤ i ≤ N +

1, 1 ≤ j ≤ N) corresponds with Pr[f1,k = j − i | (u1,k − 1)+ = i − 1]. We have

Fe
1 =

1
āe
1

⎡⎢⎢⎢⎢⎢⎢⎣
A∗

1(1) A∗
2(1) · · · A∗

N (1)
0 A∗

1(1) · · · A∗
N−1(1)

...
. . . . . .

...
...

. . . A∗
1(1)

0 · · · · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (33)

Note that the queue cannot be entirely full upon arrival of the tagged packet as
the latter must be able to enter the system.

If the system does not contain class-1 packets at the beginning of slot k the
delay is rather straightforward as only the tagged packet and the packets arriving
before it in slot k contribute to the delay. On the other hand, if u1,k > 0 a class-1
packet is in service and additional random variables are involved. Let s−1 denote
the elapsed service time and let s+

1 denote the remaining service time (slot k
excluded). The packet in service only contributes s+

1 slots to the tagged packet’s
delay. The class-1 packets in the queue at the moment the tagged packet arrives
each contribute s1 slots to the delay. They are constituted by m(1), the queue
content at the start-slot preceding slot k, obtained in (25), the number of arriving
class-1 packets during s−1 and f1,k, the number of class-1 packets arriving before
the tagged packet in slot k.

Define the function
Sb(x, y, z) � E[xs−

y zs+
] , (34)

where the arguments can be matrices and the order in which the arguments
appear is hence important as matrix multiplication does not commute. From
the discussion above follows that we need to calculate Sb

(
Y(1),Fe

1, z
)

in or-
der to obtain the class-1 delay. Considering that Fe

1 does not contain stochas-
tic variables and that scalar multiplication of a matrix commutes, we have
Sb
(
Y(1),Fe

1, z
)

= Sb
(
Y(1), 1, z

)
Fe

1.
The random variables s−1 and s+

1 are generally dependent. Slot k may be any
slot in s1 with equal probability [6]. For scalar arguments x, y, z this yields

Sb(x, y, z) = E[xs−
y zs+

] =
S(x) − S(z)

μ(x − z)
y . (35)

Using the spectral decomposition theorem (3), we can express the image of a
matrix under the function Sb, as it can be seen as a scalar function in a single
variable by considering the other two variables to be constant. This allows us to
obtain Sb

(
Y(1), 1, z

)
from (35). Bringing everything together, the pgf D1(z) of

the steady-state class-1 delay is given by

D1(z) =
([

U0(1) 0 · · · 0
]
+
(
1−U0(1)

)
m(1)Sb

(
Y(1), 1, z

))
Fe

1

⎡⎢⎢⎢⎣
S(z)
S(z)2

...
S(z)N

⎤⎥⎥⎥⎦ . (36)
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3.7 Class-2 Delay

The delay of class-2 packets is more intricate as it is influenced by class-1 packets
arriving at the system until the class-2 packet enters the server. In order to
capture this influence we first study the (remaining) class-1 busy period.

The remaining class-1 busy period in start-slot l, denoted by rl, is the number
of slots until the system is void of class-1 packets (for the first time). Obviously,
it depends on the number of class-1 packets in the system at start-slot l. The
conditional pgf of the remaining class-1 busy period in start-slot l, if the class-1
system contents at the beginning of start-slot l equal j is denoted by

Rl(z|j) = E[zrl |n1,l = j], j = 0 . . .N . (37)

Define the vector Rl(z) =
[
Rl(z|0) · · ·Rl(z|N)

]T . Relating start-slot l and l + 1
yields

Rl(z) =
[
1 0 · · · 0

]T +
[
0T 0
I 0

]
S
(
Y(1)z

)
Rl+1(z) . (38)

The first term results from Rl(z|0) marking the end of the (remaining) busy
period as the system is empty. The second term expresses that for Rl(z|j), j > 0
the packet in service leaves the system by the next start-slot and that we keep
track of the number of slots during the epoch s1 between start-slots l and l + 1
and the arrivals during this epoch. In each slot of this epoch class-1 packets
arrive according to Y(1). Spectral decomposition (3) again yields evaluation
of S

(
Y(1)z

)
. In steady-state, taking the limit for l of (38) results in a simple

expression for R(z) = liml→∞ Rl(z) = liml→∞ Rl+1(z) .
A class-1 busy period b is the number of consecutive slots with class-1 sys-

tem contents greater than zero. Notice that a class-1 busy period is simply the
remaining class-1 busy period in a random start-slot preceded by a start-slot
with empty class-1 system contents at the beginning of the slot and a number of
class-1 arrivals larger than 0. Thus we obtain the pgf of the steady-state class-1
busy period as

B(z) =
∑N−1

m=1 R(z|m)Am(1) + R(z|N)A∗
N(1)

1 − A0(1)
. (39)

The extended service completion time of a class-2 packet, denoted by t2,
starts at the slot where the packet starts service and lasts until the next slot
wherein a class-2 packet can be serviced [7]. If no class-1 packets arrive during
the service-slot of the packet, the server can handle another class-2 packet in the
next slot. If there are class-1 arrivals, we have to wait for a class-1 busy period
after the service-slot until the service of another class-2 packet can start. We can
thus express the pgf of the extended service completion time in steady state as
T2(z) = A0(1)z +

(
1 − A0(1)

)
B(z)z.

Now, we can finally tackle the class-2 delay. Tag an arbitrary class-2 packet
arriving at the system in a slot in steady-state. The arrival slot of the packet is
assumed to be slot k. Let the delay of the packet be denoted by d2. It resembles
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the class-1 delay but here we need to keep track of packets of both classes.
Consider the first start-slot succeeding slot k. The remainder of the delay of
the tagged packet is simply the remaining class-1 busy period in this start-slot
followed by an extended service completion time for each class-2 packet to be
served before the tagged packet and a single slot to serve the tagged packet itself.

Let f2,k denote the amount of class-2 packets arriving in slot k but before the
tagged packet. We determine the number of class-2 arrivals before the tagged
packet. It is clear that a1,k and f2,k are correlated. The corresponding matrix
can be found using renewal arguments [6]. We have

Â(z) =
Y(z) − Y(1)

ā2(z − 1)
. (40)

Given that the class-1 queue contents are i − 1 at the beginning of the slot,
Â(z)ij is the partial pgf of the class-2 packets arriving before the tagged packet
while j − i class-1 packets are effectively allowed into the system in this slot.

We obtain the system state in the first start-slot succeeding slot k as follows.
If the system does not contain class-1 packets at the beginning of slot k the next
start-slot is simply the next slot and the class-2 system contents at the beginning
of slot k (if any) contribute to the delay. On the other hand, if u1,k > 0 a class-1
packet is in service and additional random variables are involved. Let s−1 denote
the elapsed service time and let s+

1 denote the remaining service time (slot k
excluded). The packets contributing to the delay are m(z), the queue contents
at the start-slot preceding slot k, obtained in (25), the number of arriving packets
of both classes during s−1 and the number of arriving class-1 packets during s+

1 .
Note that s+

1 contributes to the delay as well.
This discussion leads to the following pgf D2(z) of the steady-state class-2

delay as

D2(z) =
([

U0

(
T2(z)

)
+
(
T2(z)−1

)
U0(0)

T2(z) 0 · · · 0

]
Â(T2(z))

+
(
1 − U0(1)

)
m(T2(z))Sb

(
Y(T2(z)), Â(T2(z)),Y(1)z

))
R(z)z .

(41)

Finally we calculate Sb
(
Y(T2(z)), Â(T2(z)),Y(1)z

)
. As matrices generally

do not commute, there is no multivariate version of the spectral decomposition
theorem. However, if we specify the function Sb by its power series expansion
we can apply the spectral decomposition theorem on the arguments separately.
Power series expansion produces

Sb
(
Y
(
T2(z)

)
, Â(T2(z)),Y(1)z

)
= E

[
Y
(
T2(z)

)s−
1 Â(T2(z))

(
Y(1)z

)s+
1

]
=

1
μ

∞∑
n=0

Prob[s1 = n + 1]
n∑

i=0

Y
(
T2(z)

)i
Â(T2(z))

(
Y(1)z

)n−i
(42)

Spectral decomposition (3) enables evaluation of Y
(
T2(z)

)i and
(
Y(1)z

)n−i.
Note that both decompositions share the same spectral projectors G1 and G2.
The eigenvalues and their index are respectively denoted by
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λ1 = A∗
0(T2(z)) with k1 = 1 , λ2 = A0(T2(z)) with k2 = N ,

λ′
1 = A∗

0(1)z with k′
1 = 1 , λ′

2 = A0(1)z with k′
2 = N .

(43)

After the spectral decomposition we can reconstruct the power series yielding

Sb
(
Y
(
T2(z)

)
, Â(T2(z)),Y(1)z

)
=

2∑
j=1

kj−1∑
i=0

2∑
j′=1

k′
j′−1∑
i′=0

Qii′(λj , λ
′
j′)(Y

(
T2(z)

)− λjI)iGj

× Â(T2(z)) (Y(1)z − λ′
j′I)

i′Gj′ .

with Qii′(λj , λ
′
j′ ) � 1

i!
1
i′!

∂i+i′

∂xiyi′ S
b
(
x, 1, y

)∣∣∣∣∣x=λj

y=λ′
j′

.

(44)

By taking proper derivatives of the pgfs obtained in this paper, all moments
of the corresponding random variables can be calculated.

4 Numerical Examples

With the formulas at hand, we study an output-queueing switch with L inlets
and L outlets and two types of traffic as in [2]. On each inlet a batch arrives
according to a Bernoulli process with parameter νT . A batch contains b (fixed)
packets of class 1 with probability ν1/νT or b packets of class 2 with probability
ν2/νT (with ν1 +ν2 = νT ). Incoming packets are routed uniformly to the outlets
where they arrive at a queueing system as described in this paper. Therefore, all
outlets can be considered identical and analysis of one of them is sufficient. The
arrival process at the queueing system can consequently be described by the pmf

a(bn, bm) =
L!
(

ν1
L

)n(ν2
L

)m(1 − νT

L

)L−n−m

n!m!(L − n − m)!
, n + m ≤ L , (45)

and by a(p, q) = 0, for all other values of p and q. Obviously the number of
arrivals of class-1 and class-2 are negatively correlated as there can be no more
than Lb−i class-2 arrivals in a slot with i class-1 arrivals. For increasing values of
L the correlation increases and for L going to infinity the numbers of arrivals of
both types become uncorrelated. We now study a 4× 4 output-queueing switch.

For Fig. 1, let ν1 = ν2. On average the system thus receives the same amount
of packets of both classes. On the left, the batch size is b = 10, ν1 = ν2 = 0.02 and
service of a class-1 packet takes the distribution S(z) = 0.25z + 0.75z4 yielding
a mean class-1 of service time μ = 3.25 slots and hence ρT = 0.85. The mean
and the standard deviation of the system contents at the beginning of random
slots of both classes are plotted versus the class-1 queue capacity N . The values
increase for increasing N , as the number of dropped class-1 packets decreases.
For larger N the values clearly converge to the values corresponding with the
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Fig. 2. Mean delays versus total load

infinite system [2], represented by the horizontal lines. However, the convergence
is rather slow, especially for class-2. On the right, b = 1, ν1 = ν2 = 0.199 and we
have plotted the mean class-2 system contents versus the class-1 queue capacity
for three distributions with μ = 4 slots yielding ρT = 0.995. These distributions
have different variances. In order of increasing variance, we have

S1(z) = z4 , S2(z) = 0.25(z + z3 + z5 + z7) , S3(z) = 0.7z + 0.3z11 . (46)

For large values of N the expected (from the infinite model) behaviour arises as
increased variance normally yields increased system content. However, for small
values of N the inverse effect occurs as the class-1 queue is likely to get full
during a large service time causing arriving packets to be dropped. Therefore,
the effective class-1 load will be lower when the variance of the class-1 service
times is larger, increasing class-2 performance. As the queue capacity gets bigger
less packets are lost and the normal behaviour is exemplified. Evidently, this
effect cannot be predicted by infinite capacity queueing models.

For Fig. 2, we assume that b = 3, ν1 = ν2 and that the service of a class-1
packet takes the distribution S(z) = 0.25z + 0.75z4. We keep N = 15 constant
and vary ν1 and ν2 and hence the total load. The class-1 delay (on the left)



278 T. Demoor et al.

and the class-2 delay (on the right) are plotted versus the total load and are
compared to results for the infinite model. We clearly see the effect of the priority
scheduling as the low mean for the class-1 delay delivers the performance required
for real-time traffic at the cost of the class-2 delay. Note that the starvation effect
is alleviated (compared to the infinite model) when the load gets high, as an
increasing amount of class-1 packets are dropped, in turn improving the delay
performance of packets (of both classes) allowed into the system.

5 Conclusions

A two-class priority queue with finite capacity for high-priority packets has been
studied in order to model a DiffServ router with Expedited Forwarding Per-
Hop Behaviour for high-priority traffic. The service times of class-1 packets are
generally distributed, which considerably complicates the analysis. Analytical
formulas for system content and packet delay of all traffic classes were deter-
mined making extensive use of the spectral decomposition theorem. In a DiffServ
router, the capacity for high-priority packets is often small to prevent this traf-
fic monopolizing the system. Opposed to existing models, the presented model
takes the exact (finite) high-priority queue capacity into account. The resulting
impact on system performance is clearly indicated by numerical examples.
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the Research Foundation Flanders (F.W.O.-Vlaanderen), Belgium.
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Stochastic Automata Networks with
Master/Slave Synchronization: Product Form

and Tensor
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Abstract. We present some Continuous Time Stochastic Automata
Networks (SAN) based on Master/Slave synchronizations with a product
form steady-state distribution. The proof is purely algebraic and is based
on some simple properties of the tensor product. The result generalizes
many known theorems on product form of queueing networks.

1 Introduction

Stochastic Automata Networks (SAN for short) are since their introduction [21]
associated to efficient numerical analysis of Markov chains (see for instance
[2,3,6,23]). A tool have been developed [22] and the tensor representation proved
for SAN has been generalized to Stochastic Petri Nets [5] and Stochastic Process
Algebra [20]. This representation allows to describe the transition rate matrix
of a continuous-time Markov chain as tensor products and sums for small ma-
trices associated to the automata and more generally to the components. More
formally Plateau proved in [21]:

Q =
n⊗g

l=1
Ll +

s∑
r=1

(
n⊗g

i=1
Mr

i + Nr), (1)

where n is the number of automata, s is the number of synchronizations, Li and
M r

i are matrices which describe respectively the local transitions and the effect
of synchronization r on automaton i. N r

l is the normalization of M r
i ⊗g and ⊕g

denote the generalized tensor product and generalized tensor sum. These oper-
ators have been generalized to handle functional rates and probabilities in the
definition of the SAN. The components interact with functional rates (i.e. rates
which depend on the states of all automata) and synchronizations. Intuitively,
synchronized transitions are the interactions we are used to consider in queueing
networks models while functional rates are typically used in statistical physics
(for instance Ising model). Here we only consider here models without functions,
we only have to use a simpler version of this equation with ordinary tensor sum
and product. We do not present here the general theory which now can be found
in many publications [6,9,21,22,23].

Recently, the tensor representation was also associated to analytical closed-
form solutions such as product form. The main idea is the simple fact that a

K. Al-Begain, D. Fiems, and G. Horváth (Eds.): ASMTA 2009, LNCS 5513, pp. 279–293, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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product distribution is the tensor product of marginal distributions. Therefore
as the solution and the transition rate matrix are both described by tensors
products and sums, it may be possible to verify the balance equations using the
tensor algebra.

This approach has been used in [8,9] to find a very simple algebraic sufficient
condition for product form of steady-state solution of continuous-time SAN with-
out synchronizations where interactions are limited to functional rates. Similarly
a more complex sufficient condition has been proved in [10] for discrete-time SAN
without synchronizations. These conditions are based on the existence of a com-
mon vector in the kernel of all the matrices obtained when the functional rates
change. The results obtained by this approach generalize Boucherie’s theory of
Markov chains in competition [1].

Here we consider Stochastic Automata Networks with synchronization and
without functions. Furthermore we consider the following constraints on syn-
chronization: only two automata are involved on any synchronization. We as-
sume that the synchronization follows the Master/Slave paradigm. The Master
automata triggers the synchronization and the slave follows even if it is allowed
that the slave perform a self loop. Thus the synchronization we consider are
generalization of a customer or a signal movement in a generalized network of
queues (usually denoted as G-networks).

In fact as we deal with tensor representation of the Markovian transition
rate matrix, the high level formalism we consider is not really important. Our
results only relies on algebraic properties of the matrices used to describe the
components. These matrices are the inputs of the model for a SAN but they can
easily be found for a Markovian network of queues or generated by a reachability
algorithm for a stochastic Petri net or a Stochastic Process Algebra.

The proof is purely algebraic and we generalize many well known results such
as the product form for Jackson’s network or for Gelenbe’s network with posi-
tive and negative customer. We also prove many new results and we give a very
simple framework to found new product form results but also to build new ap-
proximations. This proof is based on algebraic properties of tensors. This type
of proof was presented in [11] for a more complex synchronization denoted as
a Domino. The idea developed here is to consider the simplest synchronization
(i.e. the Master/Slave) to understand which properties of the tensor are really
necessary to derive the proof. An extension could be to generalize the tensor ap-
proach to Zero-Automatic networks [4]. As SANs are very close to PEPA, many
results proved on PEPA apply also on SAN (for instance [15,16,17,18,19]). But
our objective here is to present a new type of proof which is purely algebraic
while the references cited before give a probabilistic interpretation of the suffi-
cient assumptions for product form. We want to emphasis that all the examples
presented in section 4 may clearly be proved by RCAT Theorem [18].

The rest of the papers is as follows. First in section 2, we give a small in-
troduction to the properties of tensor we need and we describe Master/Slave
synchronizations and give their tensor representations. Section 3 is devoted to
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the main theorem while we present in section 4 many well known results and
new product form networks as well.

2 Master Slave Synchronization

In this paper, we restrict ourself to continuous-time SAN without functions. The
generator is based on the tensor sum and product local components. Recall that
with

A =
(

a11 a12
a21 a22

)
and B =

⎛⎝ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞⎠ ,

the tensor sum A ⊕ B is given by:⎛⎜⎜⎜⎜⎜⎝
a11 + b11 b12 b13 a12 0 0

b21 a11 + b22 b23 0 a12 0
b31 b32 a11 + b33 0 0 a12

a21 0 0 a22 + b11 b12 b13

0 a21 0 b21 a22 + b22 b23

0 0 a21 b31 b32 a22 + b33

⎞⎟⎟⎟⎟⎟⎠ ,

and the tensor product A ⊗ B is:⎛⎜⎜⎜⎜⎜⎝
a11b11 a11b12 a11b13 a12b11 a12b12 a12b13

a11b21 a11b22 a11b23 a12b21 a12b22 a12b23

a11b31 a11b32 a11b33 a12b31 a12b32 a12b33

a21b11 a21b12 a21b13 a22b11 a22b12 a22b13

a21b21 a21b22 a21b23 a22b21 a22b22 a22b23

a21b31 a21b32 a21b33 a22b31 a22b32 a22b33

⎞⎟⎟⎟⎟⎟⎠ .

The tensor product and sums have many algebraic properties (see [6] for
proofs). We give some of them in the following for the sake of completeness. It is
worthy to remark that the conditions of the theorem are based on the same kind
of properties used in [8,9,10] to prove product form steady-state distributions for
other types of SAN. The key property is the fact that a product form solution
of n distributions (πl)l=1..n can be written as Cπ1 ⊗ π2 ⊗ . . . ⊗ πn.

Property 1 (Basic properties of Tensor Product). Let A, B and C, A1, A2, B1,
B2 be arbitrary matrices, the following properties hold:

– Associativity: (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).
– Distributivity over Addition:

(A1 + A2) ⊗ (B1 + B2) = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 + A1 ⊗ B2.

– Compatibility with matrix multiplication: For all vectors πA and πB whose
sizes are consistent we have:

(πA ⊗ πB)(A ⊗ B) = (πAA) ⊗ (πBB).
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The state space of the system is the Cartesian product of the states of the
automata which are combined in the network. The effective state space is in gen-
eral only a subset of this product. The synchronization formerly used for SAN
are defined as ”Rendez-Vous”. This simply says that a synchronized transition is
possible, if and only if, all automata are ready for this synchronized transition.
We have to consider a variant of the rendez-vous : the master-slave synchro-
nization. As we synchronize automata and we do not allow functional rates, the
generator is given by:

Q = ⊗n
l=1Ll +

s∑
r=1

(⊗n
i=1M

r
i − Nr), (2)

with for all r, Mr
i = I for all i except the two distinct indices used to describe

a synchronization. More formally,

Definition 1. Let r be a synchronization number or label. The Master/Slave
synchronization consists of an ordered list of two automata called the master
msr(r) and the slave sl(r). The master of synchronization r is the initiator of
the synchronization. It performs a real transition (i.e. a loop is not allowed).
The slave always follows but it is allowed to perform a loop. As the loop is not a
valid transition for the master during the synchronization, the global transition
of the system is not a dummy transition.

Remark 1. Note that this definition of synchronization implies that the master
is never blocked by the slave (it is not a general rendez-vous). This implies that
every state of automaton sl(r) is the origin of at least one synchronized transition
marked by synchronization label r.

The automata are defined by the following matrices which may be either finite
or infinite:

– n transition rate matrices denoted as Ll for automaton l. Ll models the rates
of local transitions. The matrices are normalized, i.e.

Ll[k, i] ≥ 0 if i = k and
∑

i

Ll[k, i] = 0.

– s tuples of two matrices (D(r),E(r)). In the tensor product associated to
Master/Slave synchronization r ⊗n

i=1M
r
i all matrices except D(r) and E(r)

are equal to Identity. In the usual description of a SAN [21] the master of
a synchronization is a transition rate matrix and the other matrices used
in the tensor product are transition probability matrices. We use the same
formulation here. In D(r) we find the transitions due to synchronization r on
the master automaton. It is assumed that the synchronizations always have
an effect on the master (i.e. its transition is not a loop).

The effect of synchronization r on the slave (i.e. automaton sl(r)) is
specified by matrix E(r). E(r) is a transition probability matrix.

D(r)[k, i] ≥ 0 if i = k and
∑

i D
(r)[k, i] = 0,

E(r)[k, i] ≥ 0 and
∑

i E
(r)[k, i] = 1.
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To complete the description of the generator of the SAN, one must give the
description of the normalization associated to synchronization r. Let Nr be this
matrix. It is a non positive diagonal matrix.

Definition 2. Let M be a matrix, as usual diag(M) is a diagonal matrix whose
elements are the diagonal elements of M .

For the sake of readability, we assume that the SAN is suitably reordered such
that the automata involved in synchronization r are the first two ones. The
description of the other automata is simply an Identity which is denoted here
as I1 to avoid the confusion. The SAN description associated to Master/Slave
synchronization r consists in 2 terms:

1. (D(r) − diag(D(r))) ⊗ E(r) ⊗ I1: synchronization.
2. diag(D(r)) ⊗ I ⊗ I1: normalization of term 1.

3 Product Form Solution

We now establish a sufficient condition for a SAN with Master/Slave synchro-
nization to have steady-state distribution which is obtained as the product of
the steady-state distributions of the automata in isolation. To keep the proofs
as clear as possible, we use in the following indices i, j, k and m for states, l for
an automaton, r for a synchronization.

Theorem 1. Consider a SAN with n automata and s Master/Slave synchro-
nizations. Let (X1, X2, · · · , Xn) be the global state and Xl the state of com-
ponent l. Assume that the continuous-time Markov chain associated with the
SAN is ergodic. Consider matrices D(r) = D(r) − diag(D(r)) and E(r) as-
sociated to the description of synchronization r. Let gl be such a left eigen-
vector of D(r) associated to eigenvalue Γr. If gl is in the kernel of matrix[
Ll +

∑s
r=1

(
D(r)1msr(r)=l + Γ (r)(E(r) − I)1sl(r)=l

)]
, then the steady-state dis-

tribution has a product form solution:

Pr(X1, X2, · · · , Xn) = C

n∏
l=1

gl(Xl), (3)

and C is a normalization constant.

The proof is based on some properties of tensor products which are presented at
the end of this section. Let us rewrite the conditions of the theorem: there exists
a solution (gl)l, (Γ (r))r to the fixed point system:{

Γ (r) gl = gl D(r) if msr(r) = l,
gl

[
Ll +

∑s
r=1

(
D(r)1msr(r)=l + Γ (r)(E(r) − I)1sl(r)=l

)]
= 0,

(4)

A simple interpretation may be given to these equations. The equation defines
gl as the invariant distribution (up to a normalization constant) of a continuous-
time Markov chain which models the automaton in isolation (i.e. glMl = 0),
with:

Ml = Ll +
s∑

r=1

D(r)1msr(r)=l +
s∑

r=1

Γ (r)(E(r) − I)1sl(r)=l. (5)
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Remember that E(r) is a stochastic matrix. Thus E(r) − I is a generator.
As Ll and D(r) are generators, and Γ (r) and Ωr are positive, matrix Ml is the
generator of a continuous-time Markov chain. Of course, this construction does
not prove in general that the chain is ergodic. However, if the chain is finite and
if matrix Ll is irreducible, then matrix Ml is irreducible and the chain of the
automaton in isolation is ergodic. Furthermore, the terms of the summation have
an intuitive interpretation. The first term corresponds to the local transitions.
The last two terms represent the effects of the synchronization on the automata.
The effect on the master are explicitly represented by the transition matrix D(r)

while the effect on the slave are represented by matrix E(r) − I multiplied by
an appropriate rate. This rate is obtained from defined the first equation of
the fixed point system Γ (r) gl = gl D(r). This equation states that Γ (r) is the
left-eigenvalue associated to eigenvector gl for an operator obtained from matrix
D(r) by removing the diagonal elements. The examples presented in the next
section show that this equation is a generalization of queueing networks flow
equation. Note that, like in product form queueing network, the existence of
these eigenvalues Γ (r) does not imply that the whole network send a Poisson
streams of synchronization on automaton l. Similarly, the product form holds
even if the underlying Markov chain is not reversible.

It is worthy to remark that the ergodicity of the CTMC must be assumed.
We present in the next section an example where the fixed point system has a
solution and the CTMC is not irreducible. Therefore the existence of a solution
to the fixed point system does not imply ergodicity.

We present in the next section some examples where the product form holds.
Before let us proceed with the proof of the theorem using relations between
tensor products and product form distributions we have already used in [8,9,10].

3.1 Proof of the Theorem

Consider the generator or the SAN:

Q = ⊗n
l=1Ll +

s∑
r=1

(⊗n
i=1M

r
i − Nr), (6)

with for all r, Mr
i = I for all i except for the master and the slave of synchroniza-

tion r. A steady-state distribution of the SAN is a probability vector π which
satisfies πQ = 0. Assume that π has product form Cg1 ⊗ g2 ⊗ . . .⊗ gn. Thus one
must check that:

(g1 ⊗ g2 ⊗ . . .⊗ gn)(⊗n
l=1Ll)+

s∑
r=1

(g1 ⊗ g2 ⊗ . . .⊗ gn)((⊗n
i=1M

r
i )+Nr) = 0. (7)

First let us remember that A ⊕ B = A ⊗ I + I ⊗ B. Therefore the tensor
sum becomes the sum of n tensor products of n matrices (n − 1 of which are
equal to Identity). We then apply the compatibility with ordinary product and
we remark that glI = gl to simplify the tensor product.
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We have n + 2s products of n terms. The key idea is to factorize into n terms
such that each term is a tensor product of n vectors. Furthermore each of these
products is equal to zero because one of the vectors is zero. More precisely, each
of these terms is equal to: (g1W1 ⊗ g2W2 ⊗ . . . ⊗ gnWn) and all matrices Wi

are equal to Identity except one which is equal to Ml (defined in Equation 5).
As glMl = 0, the tensor product is zero.

For the sake of readability we first present the proof for the first synchro-
nization and the automata involved in this synchronization. We also take into
account the local transitions for these automata. We assume that the SAN has
been reordered such that these automata the master is the first automaton and
the slave is the second one. The description of (g1 ⊗ g2 ⊗ . . .⊗ gn)Q consists in 4
terms (two coming from the tensor sum, one for the Master/Slave synchroniza-
tion and one for the normalization of the synchronization):

(g1L1 ⊗ g2 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2L2 ⊗ . . . ⊗ gn)
+ (g1(D(r) − diag(D(r))) ⊗ g2E(r) ⊗ . . . ⊗ gn)
+ (g1diag(D(r)) ⊗ g2I ⊗ . . . ⊗ gn)

Now remember that g1(D(r)−diag(D(r))) = g1Γr. And of course g2I = g2. After
simplification, we get:

(g1L1 ⊗ g2 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2L2 ⊗ . . . ⊗ gn)
+ (g1Γr ⊗ g2E(r) ⊗ . . . ⊗ gn)
+ (g1diag(D(r)) ⊗ g2 ⊗ . . . ⊗ gn)

Now, we remark that g1Γr⊗g2E(r) = g1⊗g2ΓrE(r) because the ordinary product
is compatible with the tensor product. We factorize the first and the last terms
and we do the same for the second and the third term. Furthermore we add and
subtract the following term: (g1(D(r) − diag(D(r))) ⊗ g2 ⊗ . . . ⊗ gn).

(g1(L1 + diag(D(r))) ⊗ g2 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2(L2 + ΓrE(r)) ⊗ . . . ⊗ gn)
− (g1(D(r) − diag(D(r))) ⊗ g2 ⊗ . . . ⊗ gn)
+ (g1(D(r) − diag(D(r))) ⊗ g2 ⊗ . . . ⊗ gn)

We factorize the first and the last term and we note that g1(D(r)−diag(D(r))) =
g1Γr to simplify the third term:

(g1(L1 + D(r)) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2(L2 + ΓrE(r)) ⊗ . . . ⊗ gn)
− (g1Γr ⊗ g2 ⊗ . . . ⊗ gn)

Again we use the compatibility of the ordinary product with the tensor product
and we get after factorization:

(g1(L1 + D(r)) ⊗ g2 ⊗ g3 ⊗ . . . ⊗ gn)
+ (g1 ⊗ g2(L2 + Γr(E(r) − I)) ⊗ . . . ⊗ gn)
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This is the decomposition we need. Now we can continue with the second syn-
chronization and factorize the terms to obtain n tensor products. Each of them
contains a product by vector glMl which is zero due to the assumptions of the
theorem. Therefore (g1⊗ . . .⊗gn)Q = 0 and the SAN has a product form steady
state distribution.

4 Examples

Before proceeding with the examples we give notation which are useful to de-
scribe the matrices involved in the models.

– I: the identity matrix,
– Upp: the matrix full of 0 except the main upper diagonal which is 1,
– Low: the matrix full of 0 except the main lower diagonal which is 1,
– I0: the identity matrix except the first diagonal element which is 0.
– J0: the null matrix except the first column whose elements are equal to 1.

4.1 Jackson Networks of Queues

First consider a Jackson’s network of queues. Each automaton is associated to a
queue. The states of one automaton is the number of customer in the associated
queue. The synchronization between Automaton i and Automaton j describes
the customer movement from queue i to queue j. Therefore we have in the SAN
model a number of synchronizations which is equal to the number of non zero
elements in the routing matrix P of the Jackson network we consider.

The local transitions are the external arrivals (rate λl) of customers, and the
departures to the outside (rate μl multiplied by probability dl). Assume that the
master of synchronization r is l and the slave s. This synchronization describes
a service in queue l followed by a transit from queue l to queue s. Therefore the
rate of this synchronization is μl multiplied by probability P (l, s). And we get:

Ll = λl(Upp − I) + μldl(Low − I0)
D(r) = μlP (msr(r), sl(r))(Low − I0),
E(r)

1 = Upp.
(8)

After substitution, we get for Ml:

Ml = (λl +
s∑

r=1

Γr1sl(r)=l)(Upp−I)+μl(dl +
s∑

r=1

P (l, sl(r))1msr(r)=l)(Low−I0).

Now, we take into account to simplify the expression of Ml that for all l we have:
dl +

∑s
r=1 P (l, sl(r))1msr(r)=l = 1. Clearly for all l matrices Ml are tridiagonal.

The equation glMl = 0 can be solved very easily: gl has a geometric distribution
with rate ρl such that:

ρl =
λl +

∑s
r=1 Γ (r)1sl(r)=l

μl
.
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Let us now consider the other equation of the fixed point system. If m is the mas-
ter of synchronization r, then we must have: Γ (r) gm = gmμmP (m, sl(r)) Low.
Therefore for all i (remember that the master of synchronization r is automa-
ton m):

Γrgm(i) = μmP (m, sl(r))gm(i + 1)

As gm is geometric with ratio ρm, this relation becomes: Γr = ρmμmP (m, sl(r)).
After substitution we get:

ρl =
λl +

∑s
r=1 μmρmP (m, sl(r))1sl(r)=l

μl
.

This is the flow equation of a Jackson’s network. Clearly gl is also the marginal
distribution found for this type of queueing network.

4.2 Gelenbe’s Networks of Positive and Negative Customers

The concept of Generalized networks (G-networks for short) have been intro-
duced by Gelenbe in [12]. These networks contain customers and signals. In the
first papers on this topic, signals were also denoted as negative customers. Signals
are not queued in the network. They are sent into a queue, and disappear instan-
taneously. But before they disappear they may act upon some customers present
in the queue. As customers may, at the completion of their service, become sig-
nals and be routed into another queue, G-networks exhibit some synchronized
transitions which are not modeled by Jackson networks. The first signal consid-
ered in [12] was described as a negative customer. A negative customer deletes
an usual customer if there is any. These networks have a steady-state product
form solution under usual Markovian assumptions. We consider an infinite state
space. Each automaton models the number of positive customers in a queue.
The signal are not represented in the states as they vanish instantaneously. The
local transitions are the external arrivals (rate λ+

l ) of customers, the arrivals
of negative customers with rates λ−

l and the departures to the outside (rate μl

multiplied by probability dl). We have two types of synchronizations: The first
type of synchronization describes the departure of a customer on the master (the
end of service with rate μl and probability P−(msr(r), sl(r)) and the arrival of
a negative customers at the slave. The other type of synchronizations is the one
used in Jackson networks: departure of a customer from the master and arrival as
an usual customer at the slave. The rate is μl and probability P+(msr(r), sl(r)).
More formally:

Ll = λ+
l (Upp − I) + μldl(Low − I0) + λ−

l (Low − I0),
D(r)

1 = μlP
−(msr(r), sl(r)))(Low − I0),

D(r)
2 = μlP

+(msr(r), sl(r)))(Low − I0),
E(r)

1 = Low and E(r)
2 = Upp.

(9)

After substitution in the system considered in theorem 1, it must be clear
that matrix Ml is again tridiagonal with constant diagonals. Thus, again gl has
a geometric distribution with rate ρl:
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ρl =
λ+

l +
∑s

r=1 Γ
(r)
2 1sl(r)=l

μl + λ−
l +

∑s
r=1 Γ

(r)
1 1sl(r)=l

.

Of course, one must check that for all l, ρl is smaller than 1. Because of its
geometric distribution, gl is an eigenvector of operators D(r)

1 and D(r)
2. Finally,

we obtain:
Γ

(r)
1 = ρmsr(r)μmsr(r)P

−(msr(r), sl(r)),

and
Γ

(r)
2 = ρmsr(r)μmsr(r)P

+(msr(r), sl(r)).

After substitution, we get the generalized flow equation which has been found
in [12].

4.3 Gelenbe’s Networks of Queues with Catastrophes

A catastrophe is a signal which flushes the customers out of the queue. Thus we
have E(r) = J0. The catastrophe has been studied in [7] with a multiclass model
and can be defined using a model of batch deletion [13] where it can be assumed
that the size of the batch of negative customers. The model is described by (for
the sake of simplicity we assume that there is no movement of usual customers
between the queues and at service completion the customers move and become
signals):

Ll = λ+
l (Upp − I) + μldl(Low − I0)

D(r) = μlP
(msr(r), sl(r)))(Low − I0),

E(r) = J0.

(10)

Matrix Fl has a tridiagonal structure plus the first column. The following prop-
erty addresses the type of solution for such a matrix (the proof is omitted for
the sake of concision).

Property 2. For all positive a, b and c, CTMC with transition rate matrix
(a(Upp−I)+b(Low−I0)+c(J0−I)) has a geometric steady-state distribution.
The rate ρ of the geometric is the only one solution of bX2− (a+b+c)X+a = 0
which is between 0 and 1. Clearly such a solution already exists.

Therefore the marginal distribution of matrix Fl is geometric with rate ρl and
the other equation implies that Γr = ρl. Again the fixed point system we found
after substitution is equivalent to the one studied in [7].

4.4 Fixed Point System and Ergodicity

In the previous section we have mentioned that the existence of a fixed point
system does not imply ergodicity of the CTMC associated to the SAN. Let us
present now an example:

Ll = J0− I
D(r) = b(Low − I0),
E(r) = a(Upp − I) + (1 − a)(Low − I0).

(11)
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Then Ml has the same structure we have mentioned before for a network with
catastrophes. Therefore gl has the same steady-state distribution. As D(r) does
not change, gl is still an eigenvector and if the solution exists for a network of
queues with catastrophes it also exists for the new system in Eq. 11. But if we
consider the Markov chain associated with the SAN, it can easily be observed
that it is not irreducible. Indeed, state (0, 0, . . . , 0) is now absorbing:

– local transitions are always possible but the automaton jumps to 0.
– synchronized transitions are not allowed when we are in state (0, 0, . . . , 0).

Thus the chain associated to the SAN is not ergodic.

4.5 Networks with Resets

In [14], the authors have presented a new type of signals denoted as reset which
acts when the queue is empty. A reset makes the queue jumps to any state except
0 with a distribution which is closely related to the steady state distribution. If
the queue is not empty at the arrival of a reset, it has no effect. Without loss
of generality we assume there are no arrivals of resets from the outsides. The
customers arrive from the outside with rate λl in queue l and as usual the service
rate is μl, the departure probability dl and we have two routing matrices P+ for
the routing of customers and P− for the customers which join another queue as
reset. The first synchronization is the transformation of a customer into a reset
while the second one is the movement of customer. The network with customers
and resets is defined by:

Ll = λl(Upp − I) + μldl(Low − I0) + Γ
(r)
1 (E(r)

1 − I) + Γ
(r)
2 (Upp − I),

D(r)
1 = μlP

−(msr(r), sl(r)))(Low − I0),
D(r)

2 = μlP
+(msr(r), sl(r)))(Low − I0),

E(r)
2 = Upp.

E(r)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 gl(0) gl(1) . . . gl(n)
0 1 0 0 0 0 0
0 0 1
0 1
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎠

(12)

But due to the definition of E(r)
1 we have the following property:

Property 3. If distribution gl is geometric, we have: gl(Upp− I) = gl(E(r)
1− I).

Proof: First perform the product of vector gl by matrix (Upp − I):

gl(Upp − I) = (−gl(0), gl(0) − gl(1), gl(1) − gl(2), . . . , gl(n) − gl(n + 1), . . .)



290 T.H. Dao Thi and J.M. Fourneau

Remember that distribution gl is geometric with ratio ρl. Therefore:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gl(0) − gl(1) = (1 − ρl)2 = gl(0)2

gl(1) − gl(2) = gl(0)gl(1)
gl(2) − gl(3) = gl(0)gl(2)
. . .
gl(n) − gl(n + 1) = gl(0)gl(n)

Therefore after substitution and factorization we get:

gl(Upp − I) = gl(0)(−1, gl(0), gl(1), . . . , gl(n), . . .)

Now perform the product of vector gl by matrix (E(r)
1 − I) :

gl(E(r)
1 − I) = gl(0)(−1, gl(0), gl(1), . . . , gl(n), . . .)

Both terms are equal. The equation is satisfied.
Let us now prove that this property implies the product form for that network

with resets. We can rewrite the definition of Ll to substitute gl(E(r)
1 − I) by

gl(Upp − I). The new version of this equation is the same as the equation we
found for a Jackson network.

⎧⎪⎨⎪⎩
gl

(
λl(Upp − I) + μl(Low − I0) + Γ

(r)
1 (Upp − I) + Γ

(r)
2 (Upp − I)

)
= 0

Γ
(r)
1 gl = μlP

−(msr(r), sl(r)))gl(Low − I0),
Γ

(r)
2 gl = μlP

+(msr(r), sl(r)))gl(Low − I0),
(13)

These equations implies that the product form exist (see section 4.1) and the
flow equation is similar to the one we get for a Jackson network.

4.6 First Generalization of Resets

Let us now generalize the former approaches. Assume that the model satisfy
Theorem 1 and assume that gl is geometric with rate ρl. Furthermore assume
that D(r) = ar(Low − I0). After substitution we get:{

Γ (r) = arρl if msr(r) = l,

gl

[
Ll +

∑s
r=1(Low − I0)1msr(r)=l +

∑s
r=1 Γ (r)1sl(r)=l(E(r) − I)

]
= 0.

(14)
Now we add a new synchronization in that model. This synchronization is de-
scribed by the same matrix we have already described for resets:

E(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 gl(0) gl(1) . . . gl(n)
0 1 0 0 0 0 0
0 0 1
0 1
0 1
0 1
0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Consider now the equation of the marginal and add the new synchronization.

gl

[
Ll+

s∑
r=1

ar(Low − I)1msr(r)=l +
s∑

r=1

Γ (r)(E(r) − I)1sl(r)=l + Γ (0)(E(0) − I)1sl(0)=l

]

But property 3 holds and we can substitute Ez by Upp in the equation on
the marginal distribution of probability.

gl

[
Ll+

s∑
r=1

ar(Low − I)1msr(r)=l +
s∑

r=1

Γ (r)(E(r) − I)1sl(r)=l + Γ (0)(Upp − I)1sl(0)=l

]

And this system is much easier to analyze than the former one. For instance,
we obtain very easily that:

Property 4. Queueing networks with positive and negative customers and catas-
trophes and resets defined by matrix E(0) have product form steady-state dis-
tribution if the rates of the marginal distributions (which are geometric) are
smaller than one.

The proof consists only to verify that the system without resets has a geometric
distribution and that the system with matrix (Upp − I) added in the marginal
matrix still has a geometric vector in its kernel.

4.7 Second Generalization of Resets

Assume now that we have found a solution to the following fixed point equations:

{
Γ (r) gl = gl D(r) if msr(r) = l,

gl

[
Ll +

∑s
r=1 D(r)1msr(r)=l +

∑s
r=1 Γ (r)1sl(r)=l(E(r) − I)

]
= 0.

(15)

Now we add some effects for a new signal. Let E(0) the matrix description of
this new signal. Assume that E(0) satisfies:

E(0) =

[
I +

(Ll +
∑s

r=1 D(r)1msr(r)=l +
∑s

r=1 Γ (r)1sl(r)=l(E(r) − I))
δ + ε

]k

(16)

where k is any positive integer, ε is positive and δ is the uniformization factor
for matrix (Ll +

∑s
r=1 D(r)1msr(r)=l). The summation on r does not take into

account the new signal we add. Remember that (ε and k are dependent on r):

δ = maxi(−Ll[i, i] −
s∑

r=1

D(r)[i, i]1msr(r)=l)).

Property 5. Assume that the system is based on equation 15 and add some signal
with effect described by equation 16, then the fixed point system has the same
solution.
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Proof: Consider a solution of system 15. Clearly, this allows to simplify the first
equation of the marginal:

gl

[
Ll +

∑s
r=1 D(r)1msr(r)=l+

∑s
r=1 Γ (r)(E(r) − I)1sl(r)=l + Γ (0)(E(0) − I)1sl(0)=l

]
= glΓ

(0)(E(0) − I)1sl(0)=l.

Now, consider the definition of E(0). We have:

gl

[
I +

(Ll +
∑s

r=1 D(r)1msr(r)=l +
∑s

r=1 Γ (r)(E(r) − I)1sl(r)=l)
δ + ε

]
= gl.

Therefore, glE(0) = 0. Finally:

gl

[
Ll +

s∑
r=1

D(r)1msr(r)=l +
s∑

r=1

Γ (r)(E(r) − I)1sl(r)=l + Γ (0)(E(0) − I)1sl(0)=l

]
= 0,

and Γ (r) is still the same. Therefore resets defined by this family of matrix E(0)

preserve the steady-state product distribution.

5 Conclusions

The theorem we prove here allows to generalize many results on queues with
customers and signals. But the post important result is a simple algebraic proof
based on tensor. As the tensor representation is not limited to SAN (see for
instance [5,20]). We hope that this approach will lead to new research activities
on the link between tensor representation and closed form solutions.
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Abstract. The probabilistic model checking provides a precise formal-
ism for the performance and reliability verification of telecommunication
systems modeled by Markov chains. We study a queueing system simi-
lar to a Jackson network except that queues have a finite capacity. We
propose to study in this paper (state and path) formulas from the Con-
tinuous Stochastic Logic (CSL), in order to verify performability proper-
ties. Unfortunately, transient and stationary analysis is very complex for
multidimensional Markov processes. So we propose to use the stochastic
comparisons in the sense of weak orderings to define bounding processes.
Bounding processes are represented by independent M/M/1 queues for
which transient and stationary distributions can be computed as the
product of probability distributions of each queue. We use the increasing
set method, and we develop an intuitive formalism based on events to
establish weak stochastic comparisons.

1 Introduction

Probabilistic model checking is an efficient method for the verification of per-
formance and reliability properties on telecommunication and computer net-
works systems. CSL (Continuous Stochastic Logic) [1,2] formalism allows us to
check transient and stationary properties of the considered system modelled by
a CTMC (Continuous Time Markov Chain). CSL formulas are computed from
transient or the steady-state probability distributions of the underlying chain.
If there is not a specific form for (the stationary and transient) probability dis-
tributions then it could be difficult to compute them for multidimensional cases
due to the state space explosion. For particular processes as independent M/M/1
queues, both stationary and transient probability distributions can be derived
easily. We propose in this paper to study a queueing system similar to a Jackson
network except that queues have a finite capacity, in order to verify some prop-
erty occurrences such as congestions, availability, etc.. This queueing system does
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K. Al-Begain, D. Fiems, and G. Horváth (Eds.): ASMTA 2009, LNCS 5513, pp. 294–308, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Weak Stochastic Comparisons for Performability Verification 295

not have product-form solution thus it is difficult to analyze. Thus we propose
to bound it by a process defined as independent M/M/1 queues which is easier
to study. Establishing stochastic bounds in the case of multidimensional state
spaces is complex. Several stochastic orderings can be defined corresponding to
different comparison relations of the underlying distributions. There are different
methods to compare processes: increasing sets, and the coupling. Increasing set
methods [10], [11] is a general formalism, allowing the definition of the strong
stochastic ordering �st, and weaker orderings as �wk, and �wk∗ . The coupling
method [8] is a more direct method, but it allows to define only the �st ordering.
The two methods lead to the comparison of transition rates but the approach
used is different: one with the coupling of sample paths, and the other with the
definition of families of increasing sets.

Bounding methods are suitable in model checking, since we need to check
if some constraints are satisfied or not without considering exact values. The
stochastic comparison approach provides an interesting alternative for model
checking since this approach lets us to provide the bounds on transient distribu-
tions as well as the stationary distribution of the underlying Markovian model.
Indeed, the stochastic comparison of distributions provides the inequalities on
the partial sum of probabilities. In model checking, given a formula, the verifi-
cation is resumed to compute the sum of probabilities of states satisfying this
formula in a transient or the stationary distribution. The verification through
bounding models depends on the comparison operator, let explain it for the
case to check if an upper bound is satisfied (≤ p). Instead of computing the
sum of probabilities over states satisfying the considered property (formula), we
compute bounds Binf and Bsup considering bounding models. There are 3 pos-
sible decisions: i. If Bsup ≤ p then we can decide that formula is satisfied. ii.
If Binf > p then we can decide that formula is not satisfied. iii. otherwise it is
not possible to decide with these bounding values, the bounding models must
be refined if it is possible.

Related works
There are some interesting studies about the model checking of multidimensional
CTMCs. In [13], CSL model checking on infinite state spaces in the case of Jack-
son queueing networks is studied. A general approach based on finite CTMCs
and QBDs is adopted for CSL path formulas. For the case of finite and large
state spaces, the lumping equivalence is used in order to reduce Markov chains
state spaces [2]. The notion of state equivalence relation also called stochastic
bisimulation is introduced in order to build a reduced state space called quo-
tient. The relation is based on the required conditions that must have equivalent
states as equality of state labeling, rewards, exit rates. The advantage is the ver-
ification of CSL logic formulas on a reduced state space. Stochastic comparison
method has been also used for the model checking of complex system. In [12], it
has been proposed to check state formulas defined over Discrete Time Markov
Chain (DTMC) rewards. The authors have assumed a total order on the state
space, and generate the aggregated Markov chains using the LIMSUB algorithm
[7], based on lumpability constraints. In [4], we suppose a partial order which
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allows tighter comparison conditions for the definition of aggregated bounding
Markov processes. A parametric aggregation scheme is proposed in order to im-
prove the quality of the bounds so the precision of the checking procedure. In
[3], the model checking approach for CSL logic is studied using class C bounding
Markov chains, which have closed-form solutions for transient and steady state
distribution. For more details, [15] presents in details the stochastic comparison
methods for the model checking of complex Markov chains. Although stochastic
bounding method provides an efficient technique in the model checking context,
most studies are based on the strong stochastic ordering which implies severe
constraints between the compared processes. We propose in this paper to use the
weak ordering in order to improve the quality of the bounds. Thus we increase the
number of cases for which we can conclude by this approach. This paper has two
main objectives: first, we develop the stochastic comparison based on increasing
sets and we provide an intuitive approach using events. Secondly we apply the
model checking on bounding Markov processes by evaluating states and paths
formulas. We present an application on a telecommunication system modelled
as a queueing network in order to verify performance properties. This system is
equivalent to a Jackson network except that queues have a finite capacity. Un-
fortunately, quantitative analysis of this system for stationary or steady-state
is very difficult. We propose to bound it by a process represented by indepen-
dent M/M/1 queues which is easier to analyze. We propose to compute steady
state and path formulas from the CSL logic on bounding systems instead of the
original one in order to perform the verification.

This paper is organized as follows: first, we present basic notions of the
stochastic ordering theory, precisely increasing sets method for weak stochas-
tic comparisons. Section 3 introduces the systems to compare, and presents the
increasing sets formalism for the stochastic comparisons of processes (CTMC).
Note that the monotonicity is also presented in order to prove the ”weak” mono-
tonicity of independent M/M/1 queues. Section 4 is devoted to the CSL model
checking, we explain how to apply weak stochastic comparisons for the verifica-
tion of steady-state and path formulas.

2 Stochastic Comparison Method

Quantitative analysis of multidimensional Markov processes could be very dif-
ficult for stationary and transient analysis. In order to solve this problem, we
propose to bound the original Markov process by another Markov process which
is easier to analyze, in order to compute performance measure bounds. Stochastic
comparison method is based on the stochastic ordering theory, which is presented
just after.

2.1 Stochastic Ordering Theory

Let E be a discrete, and countable state space, and � be at least a preorder
(reflexive, transitive but not necessarily an anti-symmetric binary relation) on
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E. We suppose that E is a multidimensional state space, where each component
is discrete, as it is generally the case in the queueing models. Several stochastic
orderings related to increasing sets (functions) can be defined when the state
space is partially ordered. The most known is the strong stochastic ordering
�st, but also weaker orderings can be defined: �wk, and �wk∗ [10]. The strong
stochastic ordering is equivalent to a sample path ordering, the �wk ordering
to a tail distributions comparison, and �wk∗ serve the same role for cumulative
distribution functions. Different formalisms can be used to define a stochastic or-
dering: increasing functions, and increasing sets [14]. We focus on the increasing
set formalism in this paper, since it will be used to establish the comparison of
processes. Let us remark here that we apply the term process to mean continuous
time Markov chains in the sequel.

2.2 Increasing Set Formalism

First, we define an increasing set. Let Γ ⊆ E, we denote by

Γ ↑= {y ∈ E | y � x, x ∈ Γ} (1)

Definition 1. Γ is called an increasing set if and only if Γ = Γ ↑
From the general definition of an increasing set, [10] has defined the family
Φ(E) of increasing sets generating the stochastic ordering �Φ. Three families of
increasing sets are defined. The first one is Φst(E) which is defined from all the
increasing sets of E:

Φst(E) = {all increasing sets on E} (2)

Φst(E) induces the �st ordering. In the same way, the stochastic orderings
�wk and �wk∗ are defined respectively from the families Φwk(E) and Φwk∗(E)
by taking particular kinds of increasing sets [10].

Φwk(E) = {{x} ↑, x ∈ E} (3)

and
Φwk∗(E) = {E − {x} ↓, x ∈ E} (4)

Let X and Y be two random variables defined on E, and their probability
measures given respectively by the probability vectors p and q where p[i] =
Prob(X = i), ∀i ∈ E (resp. q[i] = Prob(Y = i), ∀i ∈ E).

Definition 2

X �Φ Y ⇔
∑
x∈Γ

p[x] ≤
∑
x∈Γ

q[x], ∀Γ ∈ Φ(E) (5)

Next, we present the stochastic comparison of Markov processes.
Let {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0}) a CTMC defined on E. We will compare

stochastically X(t) with Y (t) using a stochastic ordering �Φ (�st, �wk, �wk∗)
[14], [10].
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Definition 3. We say that

{X(t), t ≥ 0} �Φ {Y (t), t ≥ 0} (6)

if X(0) �Φ Y (0) =⇒ X(t) �Φ Y (t), ∀t > 0 (7)

If we suppose that {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0} ) is a CTMC with
infinitesimal generator matrix Q1 (resp. Q2), then we present the theorem of the
stochastic comparison of CTMC using increasing set formalism [10], [14].

Theorem 1. We say that:

{X(t), t ≥ 0} �Φ {Y (t), t ≥ 0} (8)

if and only if the following conditions are verified:

1. X(0) �Φ Y (0)
2. {X(t), t ≥ 0} or {Y (t), t ≥ 0} is �Φ-monotone
3.

∀x ∈ E,
∑
z∈Γ

Q1(x, z) ≤
∑
z∈Γ

Q2(x, z), ∀Γ ∈ Φ(E) (9)

The monotonicity is one of the sufficient conditions of this theorem and it means
that, depending on the initial condition, the process is increasing or decreasing
in time.

corresponds to an increasing in time of a process. Next we give the definition
of the �Φ-monotonicity.

Definition 4. We say that {X(t), t ≥ 0} is �Φ −monotone if

X(t) �Φ (�Φ)X(t+τ), ∀t ≥ 0, ∀τ ≥ 0 (10)

The �st-monotonicity can be proved by the coupling of the process with itself
[8,9], or from the increasing sets formalism generating transition rate compar-
isons [10]. But the coupling can be used only for the �st ordering, and there is
no result about transition rates comparisons for the �wk ordering. Next, we try
to generalize the transition rates comparison [10] to any order �Φ (�st, �wk,
�wk∗).

Theorem 2. If the following condition is verified:

∀Γ ∈ Φ(E),
∑
z∈Γ

Q1(x, z) ≤
∑
z∈Γ

Q1(y, z), x � y ∈ E, x, y ∈ Γ or x, y ∈ Γ (11)

then process X(t)is �Φ-monotone.

The proof of this theorem is given in [5].
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3 Stochastic Comparison Application

In this section, we present the exact and the bounding systems. We give the
proof of the stochastic comparison using increasing set formalism, for the �wk

ordering.

3.1 Considered Systems

The system understudy is similar to a Jackson network with n finite capac-
ity queues. Let {X(t), t ≥ 0} be the (CTMC) representing the evolution of this
system, and Q the infinitesimal generator. We denote by Π the stationnary prob-
ability distribution. Each queue i has a finite capacity Bi, and is characterized
by the following parameters:

– Exponential inter-arrival times, with parameters λi

– Exponential service times, with parameters μi, and after the service, we have:
• with the probability pij the customer transits from queue i to queue j if

it is not full
• with the probability di the customer goes out.

As queues have a finite capacity, then a customer arriving in a full queue is
lost. {X(t), t ≥ 0} is a multidimensional CTMC and there is no product form
solution to compute the steady-state nor transient distributions. We propose to
use the stochastic comparisons to derive bounding models to consider CSL path
and state formulas. This bounding model is defined on E = Nn. We consider the
widely used component-wise partial ordering � on this state space:

∀x, y ∈ Nn, x � y ⇔ xi ≤ yi, ∀i = 1, . . . , n (12)

We propose to bound {X(t), t ≥ 0} by the CTMC {Xu(t), t ≥ 0} defined
by n independent M/M/1 queues. Independent queues are defined by deleting
links between queues, and by adding transit flow to the arrivals in the queues.
Each queue i has a finite capacity Bi, with the following parameters: arrival
rates λi +

∑n
j=1 μjpji, and service rate μi. This process is interesting as the

stationary and transient probability distribution can be computed as the product
of probability distributions of M/M/1 queues. We denote by Qu the infinitesimal
generator, and Πu the stationnary probability distribution. In [10], [11], a similar
study has been presented with infinite capacities queues. First, the �st ordering
is not possible because using the coupling of the sample path we can see that the
rate to go outside μidi of the exact process is lower than the rate decrease μi of
the M/M/1 queues. This means that in the upper bounding model the decrease
rate is greater which is a contradiction. In [10,11], an operator approach has
been used in order to prove that the weak ordering could be defined. In the
present paper, we suppose that systems have a finite capacity, and we develop
the increasing set formalism governed with events for the weak ordering �wk.
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3.2 Stochastic Comparison with Weak Orderings

We will explain in this section how to compare X(t) and Xu(t) using the increas-
ing set formalism. We apply theorem 1, for the �wk ordering. The increasing set
theory is not easy to apply because the stochastic comparison is performed on
all the increasing sets of a family. For multidimensional state spaces, as the state
space increases exponentially, then the number of increasing sets will be also
very large. We propose to solve this problem by defining only the increasing sets
which are necessary to the comparison.

In theorem 1, there are two steps: first we must verify the monotonicity of one
of the processes (condition 2), and secondly, we have to compare the transition
rates of the processes (condition 3). We begin with the monotonicity, and we
apply theorem 2 in order to verify if the process represented by independent
M/M/1 queues is �wk-monotone. We choose this process as it is easier to analyze
(with less events).

”�wk” Monotonicity of the Independent M/M/1 Queues. As E is
multidimensional, then the set Φwk(E) could be very large. So we need to define
the increasing sets which are used for the �wk- monotonicity. And we have to
prove that transitions rates from states x and y, to states in increasing sets are
verified. As these transitions are triggered by events, we define the increasing
sets from the states x, y and these events. From a state x, in a queue i, we can
have an arrival, or a service or nothing.

Let ei be a binary vector on {1, . . . , n}, where all the components are null
except the component i which equals 1. This vector will be used to represents
the evolution of the process from a state x after an event. For example, with an
arrival in queue i, we have a transition from state x to x + ei. So the increasing
sets used for the monotonicity are:

{x} ↑, {x + ei} ↑, {x − ei} ↑, {y} ↑, {y + ei} ↑, {y − ei} ↑ (13)

Since we must also take the condition:

x, y ∈ Γ or x, y ∈ Γ (14)

we do not have to take the increasing set: {y} ↑ as x is not in this increasing
set. We denote by Swk(E) the set of increasing states which are sufficient for the
comparison. It is defined by:

Swk(E) = {{x} ↑, {x + ei} ↑, {y + ei} ↑, {x − ei} ↑, {y − ei} ↑} (15)

Next, we define each increasing set.

Increasing sets definition: We have three constraints to use: the condition x � y,
the events, and the condition x, y ∈ Γ or x, y ∈ Γ .

We give for each increasing set the list of states to which the transitions are
not null. The three dots (. . .) in the sets means that there are others states, but
we don’t need to give them as transitions are null.
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– For {x + ei} ↑, we need to define states which are greater than x + ei.
In this case, if xi < yi we have : x + ei, y, y + ei (as y � x + ei, and
y + ei � x + ei). As condition (14) will not be verified, then we don’t take
this case. If xi = yi, then we have the states: x + ei, y + ei, and so the
condition 14 will be verified. So if xi < Bi and yi < Bi:

{x + ei} ↑= {x + ei, . . . , y + ei, . . .} (16)

– For {y + ei} ↑, we need to define states which are greater than y + ei, so we
have only y + ei. If yi < Bi, then:

{y + ei} ↑= {y + ei, ....} (17)

– For {x} ↑, we need to define states which are greater than x. So we have x,
we have also y as x � y, and we can have also some states y−ek, k = 1, . . . , n
such that y−ek � x, we have also x+ek(k = 1 . . . n, and y+ek(k = 1, . . . n).
So we have:

{x} ↑= {x, . . . y − ek (k = 1, . . . , n if yk > 0 and y − ek � x) . . . , y, . . . ,

x + ek(k = 1 . . . n, if xk < Bk), . . . , y + ek(k = 1, . . . n if yk < Bk)} (18)

– For {x − ei} ↑, we obtain if xi > 0

{x − ei} ↑= {x − ei, . . . , y − ek(k = 1 . . . n, y − ek ≥ x − ei), . . . ,

x, . . . y, . . . , x + ek(k = 1 . . . n, xk < Bk), . . . y + ek(k = 1 . . . n, yk < Bk)}
(19)

– For {y − ei} ↑, we have y in the set, but we are not sure to have x. In order
to have the condition (14) verified, then we take the case where x is also in
the increasing set which could be true if y − ei = x (so in the set we write
only one of them: y − ei) . If yi > 0, then

{y − ei} ↑= {y − ei, . . . , y, . . . x + ek(k = 1 . . . n, x + ek < Bk), . . . ,

y + ek(k = 1 . . . n, yk < Bk)} if yi > 0 (20)

We compute now the transition rates in these increasing sets. In order to
simplify the notation, we denote as follows the increasing sets: Γx+ei = {x+ei} ↑,
Γx = {x} ↑, Γx−ei = {x − ei} ↑, Γy+ei = {y + ei} ↑, Γy−ei = {x − ei} ↑.

In the case of frontier states, for example x (resp y) is such that xi = Bi

(resp yi = Bi), then only increasing sets Γx = {x} ↑, Γx−ei = {x − ei} ↑,
Γy−ei = {y − ei} ↑ are necessary for the comparison. In the case of only y is
such that yi = Bi, then we use increasing sets Γx, Γx−ei , and Γy−ei . In the case
of xi = yi = 0, then we use Γx+ei = {x + ei} ↑, Γy+ei = {y + ei} ↑, Γx = {x} ↑.
Now, as we have defined the increasing sets, we can compute the transition rates
of the processes in order to compare them.
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Transition rates comparison: For each increasing set, we compute the transition
rates

∑
z∈Γ Qu(x, z) and

∑
z∈Γ Qu(y, z) for Γ ∈ Swk(E), in order to compare

them.

Γ
∑

z∈Γ Qu(x, z)
∑

z∈Γ Qu(y, z)
Γx+ei λi +

∑
j 	=i μjpji λi +

∑
j 	=i μjpji

Γy+ei 0 λi +
∑

j 	=i μjpji

Γx −∑n
k=1 μk1xk>0 −∑n

k=1 μk1yk>01yk=xk

Γx−ei −
∑

k 	=i μk1xk>0 −∑k 	=i μk1yk>01yk=xk

Γy−ei −∑k μk1xk>0 −∑k 	=i μk1yk>0

For the case where x = y, then we choose only increasing sets defined from x
or y, for example {x + ei}, {x}, {x − ei}, and in this case we can deduce easily
that the transition rates are equal.

In the case where x ≺ y, the comparison of the transition rates is easy
for increasing sets Γx+ei and Γy+ei . For others increasing sets, we need to
explain how to compare transition rates. Lets compare −∑n

k=1 μk1xk>0 with
−∑n

k=1 μk1yk>01yk=xk
. We need to compare the term:

μk1xk>0 with μk1yk>01yk=xk

As : 1yk>01yk=xk
= 1xk>01yk=xk

and : 1xk>01yk=xk
≤ 1xk>0,

then we have the comparison of the sum:

−
n∑

k=1

μk1xk>0 ≤ −
n∑

k=1

μk1yk>01yk=xk
(21)

For increasing sets Γx−ei and Γy−ei the comparison is similar. So we can
deduce that:

∀x � y | x, y ∈ Γ, or x, y ∈ Γ (22)

∀Γ ∈ Swk(E),
∑
z∈Γ

Qu(x, z) ≤
∑
z∈Γ

Qu(y, z) (23)

We conclude that Xu(t) is �wk-monotone. We can apply theorem 1, and pre-
cisely the comparison of the transition rates of each process in order to perform
the comparison.

Generator Comparison with Weak Orderings. We give briefly the proof
of the �wk-comparison of X(t) and Xu(t). We apply theorem 1: so we compare∑

z∈Γ Q(x, z) and
∑

z∈Γ Qu(x, z) for increasing sets Γx+ei , Γx−ej+ei , Γx, Γx−ei .

Γ
∑

z∈Γ Q(x, z)
∑

z∈Γ Qu(x, z)
Γx+ei λi λi +

∑
k 	=i μkpki

Γx−ej+ei μjpji + λi λi +
∑

k 	=i μkpki

Γx −∑n
k=1 μk1xk>0 −∑n

k=1 μk1xk>0

Γx−ei −∑k 	=i μk1xk>0 −∑k 	=i μk1xk>0
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So we can deduce from theorem 1 that: {X(t), t ≥ 0} �wk {Xu(t), t ≥ 0}
which means that:

P (X(t) ∈ Γ ) ≤ P (Xu(t) ∈ Γ ), ∀Γ ∈ Φwk(E) (24)

It is easy to see that ∀Γ ∈ Φwk(E) , as Γ = {x} ↑, and x = (x1, . . . , xn), then
Γ = ×n

i=1Γi, where Γi = {xi} ↑. We deduce that ∀x = (x1, . . . , xn):

P (X(t) � x) ≤ Πn
i=1P (Xu

i (t) � xi) (25)

Where Xu
i (t) is the Markov process representing evolution of the M/M/1 queue

i. So we can bound the transient behavior of X(t) by the product of the transient
behavior of M/M/1 queues. Note that as we have defined an upper bound for
X(t), we can also define a lower bound X l(t) with n independent queues, where
each queue i is represented by an arrival rate λi, and a service rate μi. We
can prove easily the monotonicity of this process, and also the comparison of
the generators. Next we explain how to apply equation 25 to verify some path
formulas of CSL model checking.

4 CSL Model Checking Using Stochastic Comparisons

Continuous Stochastic Logic (CSL) is an extension of Computation Tree Logic
(CTL) with two probabilistic operators that refer to the steady-state and tran-
sient behaviors of the underlying system. It is a branching-time temporal logic
with state and path formulas defined for the considered model which is a con-
tinuous time Markov chain (CTMC) [1,2]. The states formulas are interpreted
over states of the CTMC, while path formulas are interpreted over paths of
the CTMC. We assume that each state is labelled with atomic propositions.
Atomic propositions identify specific situations of the system such as “buffer
full“, “buffer empty“ or “variable X is positive“. Let I be an interval on the
real line, p a probability and �, a comparison operator (� ∈ {<,≤, >,≥}). The
syntax of CSL is defined by the following grammar [9]:

State-formulas:

φ ::= true | a | φ ∨ φ | φ ∧ φ | ¬φ | P�p(ψ) | S�p(φ)

Path-formulas:
ψ ::= φ1 UIφ2 | X I(φ)

For the state formulas ¬, ∨ and ∧ the meanings are as usual in logic. In order to
express the time span of a certain path, the path operators until (U) and next
(X ) use the time interval I [2]. The next operator X I(φ) states that a transition
to a φ-state is made in the time interval I. The until operator φ1 UIφ2 asserts
that φ2 is satisfied in the time interval I and that all preceding time instants φ1
holds.

The probabilistic operator P�p(φ), is valid in state s (written as s |= P�p(φ))
if the probability measure of the set of paths starting in s and satisfying path
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formula φ meets the bound �p. The steady state operator S�p(φ) denotes that
the steady state probability for φ-states meets the bound p. We explain in this
section how we use the �wk comparisons for CSL model checking. Let us first
remark here that we consider the case of the upper bounding threshold ≤ p
(< p), since we build upper bounding models. Thus we can conclude that a CSL
property φ (for example P≤p(ψ) for a given initial state s0) is satisfied if the sum
of states satisfying φ (the sum of probabilities over paths initiated from s0 passing
through states ψ) is less than p. The lower bounds on the threshold p (>,≥) can
be also considered since the satisfaction of φ is ≤ p then the satisfaction of
property ¬φ is > 1 − p.

4.1 Checking S�p(φ)

For this formula, let us to check if the property is satisfied in the long run. Thus
one must compute the steady-state probability distribution and then sum the
probabilities that satisfy this property. In the case where the underlying model
is ergodic, there is an unique steady-state distribution whatever the initial state
is. Thus if S�p(φ) is satisfied then it is satisfied for all initial states. To check
this formula we have to see if : ∑

s∈Sat(φ)

Π(s) ≤ p (26)

where Sat(φ) = {x ∈ E | x |= φ}. We propose to verify the formula using
the upper bounds on the probability distributions Πu. The verification can be
performed as follows: if Sat(φ) ∈ Φwk(E) then from the stochastic comparison
of the processes: ∑

s∈Sat(φ)

Π(s) ≤
∑

s∈Sat(φ)

Πu(s) (27)

so if
∑

s∈Sat(φ) Πu(s) ≤ p then inequality (26) is valid so the formula is satisfied.
In the case of

∑
s∈Sat(φ) Π l(s) > p, then the formula is not satisfied. Otherwise,

we can’t conclude with bounding values.
For instance, if we are interested in verifying that loss probability in queue i is

lower then p, then we search for all states s ∈ E verifying the property si = Bi,
and we need to compute S≤p(si = Bi). As Sat(si = Bi) represents an increasing
set of Φwk(E) because Sat(si = Bi) = {x ∈ E | x � s}, then we can verify the
formula from the bounds.

4.2 Checking P�p(φ1U [t1,t2]φ2)

We propose to study the time-bounded until operator. We verify if :

s |= P�p(φ1U [t1,t2]φ2) (28)

As an example of properties φ1 and φ2, we could have: φ1 means that only one
queue is full, and φ2 means that all queues are full. The computation of this path
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formula could be useful in the study of the congestion problem in a network, in
order to see the impact of the overload of one queue in the overload of the whole
system using the time constraint. In order to check the Until formula, we need
to define a new process from X(t) by partitioning the state space and making
some states absorbing according to the properties φ1 and φ2. We suppose that
[t1, t2] = [0, t], so we study the behavior of the Markov process until we reach a
state which verifies ¬φ1 ∨ φ2. If a state verifying ¬φ1 ∧¬φ2 is reached, then the
formula is not valid. So all the states which verify ¬φ1 ∨ φ2 are made absorbing
[15].

For a given property ω defined on states of the underlying Markov process
X(t), let X [ω](t) be a Markov process defined from X(t) with infinitesimal gen-
erator Q[ω] :

Q[ω](x, x′) = Q(x, x′) if x |= ω

= 0 otherwise (29)

where x |= ω means x don’t verify the property ω. For the Until formula
φ1U [0,t]φ2, then the infinitesimal generator Q is transformed to Q[ω] where
ω = ¬φ1 ∨ φ2. Let Probs(φ1U [0,t]φ2) be the probability of reaching a state
verifying φ2 on a path during the time interval [0, t] via only φ1-states, starting
from the initial state s. We have:

s |= P�p(φ1U [0,t]φ2) ⇔ Probs(φ1U [0,t]φ2) � p (30)

We denote by Π [ω](s, t) the transient probability distribution starting from state
s of the process X [ω](t), and by Π [ω](s, s′, t) the probability to be in state s’ at
time t starting from the initial state s. We have:

Probs(φ1U [0,t]φ2) =
∑

s′∈Sat(φ2)

Π [ω](s, s′, t) (31)

As the transient probability distribution Π [ω](s, t) is very difficult to compute,
we propose to use stochastic comparisons. In the former section, we have proved
that: {X(t), t ≥ 0} �wk {Xu(t), t ≥ 0}. For the verification of the until formula,
the bounding process must be transformed with the same modifications. We
need to prove that: {X [ω](t), t ≥ 0} �wk {Xu[ω](t), t ≥ 0}.

�wk-Stochastic Comparison. We use theorem 1 for �wk-stochastic compar-
ison. We begin with the monotonicity property, so we need to verify if one of
the processes is monotone. We try to prove that Xu[ω](t) is �wk-monotone. Us-
ing the properties φ1 and φ2, the state space E can be divided into three state
spaces: Sat(¬φ1 ∧¬φ2) (failure states), Sat(φ1 ∧¬φ2) (inconclusive states), and
Sat(φ2) (success states) [15]. As we have explained before, for the computation
of Until formula, states verifying ω = ¬φ1 ∨ φ2 are made absorbing, they are
represented by states of sets Sat(¬φ1 ∧ ¬φ2) and Sat(φ2).

The monotonicity property in theorem 2 corresponds to an increasing of the
generator lines with the increasing of the states. So as some states will become
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absorbing states, then the monotonicity condition could be not verified. Let
explain the problem in more details. We study the inequality in theorem 2, for
states x and y such that x � y. We have proved previously that the process Xu(t)
is �wk-monotone, so Qu verifies the inequality in theorem 2, for any states x and
y such that x � y. Qu[ω] is defined from Qu by making states which verify ω
absorbing. For states which don’t verify ω, there is no modification for the states,
so as the inequality is verified for Qu, it is also verified for Qu[ω]. Suppose that
in the inequality in theorem 2 applied to Qu, one of the state becomes absorbing.

– If state x becomes absorbing : then the inequality is still valid, because we
reduce the left term as we have removed the transitions from x to the higher
states and replaced by transition to a lower state which is x.

– If state y becomes absorbing, then the inequality could be not valid because
it results that x could have now transitions to higher states than y, so the
monotonicity could be not valid.

We can conclude for this problem that the monotonicity must verified for Qu[ω]
using the inequality in theorem 2, and it depends on the properties φ1 and φ2,
and the order defined on the state space E.

Furthermore, the comparison of generators Q[ω] and Qu[ω] is immediate as
the generators Q and Qu are comparable. From theorem 1, we can deduce that:
{X [ω](t), t ≥ 0} �wk {Xu[ω](t), t ≥ 0}.

Probs(φ1U [0,t]φ2) =
∑

s′∈Sat(φ2)

Π [ω](s, s′, t) (32)

The stochastic comparison of the processes induces the comparison of the
transient probability distributions. So if Sat(φ2) ∈ Φwk(E), then:∑

s′∈Sat(φ2)

Π [ω](s, s′, t) ≤
∑

s′∈Sat(φ2)

Πu[ω](s, s′, t) (33)

If we want to verify on state s the following formula: s |= P≤p(φ1U [0,t]φ2),
then it is equivalent to:

Probs(φ1U [0,t]φ2) ≤ p (34)

Then using the upper bound, if:∑
s′∈Sat(φ2)

Πu[ω](s, s′, t) ≤ p (35)

then the formula is valid on the exact process. Also, if we have defined the lower
bound X l(t), then if ∑

s′∈Sat(φ2)

Π l[ω](s, s′, t) > p (36)

then the formula is not valid, otherwise we cannot conclude. The advantage of
this comparison is that the upper bound (and the lower bound) can be computed
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easily from the product of transient probability distributions of M/M/1 queues.
For the upper bound we have:

Πu[ω](s, t) = Πn
i=1piexp(tQu

i [ω]) (37)

Where Qu
i is the infinitesimal generator of queue i, computed from Qu. For the

initial state s = (s1, . . . , sn), then pi is the one dimensional probability vector
of queue i such that pi(si) = 1 otherwise 0.

Example. We suppose the following properties φ1: means queue i is full, and
φ2 means all queues are full. The goal of this study is to verify the path formula
P≤p(φ1U [0,t]φ2), in order to evaluate the impact of the congestion of a particular
queue in the congestion of all the queues.

We define Q[ω] from Q by making states which verify ω = ¬φ1∨φ2 absorbing
states, and similarly Qu[ω] from Qu. The state space E = Nn can be represented
by three sets according to the properties φ1 and φ2:

E = Sat(¬φ1 ∧ ¬φ2) ∪ Sat(φ1 ∧ ¬φ2) ∪ Sat(φ2) (38)

where Sat(¬φ1 ∧ ¬φ2) = {x ∈ E | x = (B1, . . . Bn)}, Sat(φ1 ∧ ¬φ2) = {x ∈ E |
xi = Bi, and x = (B1, . . . Bn)}, and Sat(φ2) = {x ∈ E | x = (B1, . . . Bn)}.

The monotonicity property is verified for Qu[ω] in the case of states belonging
to the same set ( as it is true for Qu), because states x and y are either both
absorbing or not.

The problem could happen for states x and y belonging to different sets, in the
case of one of the state becomes absorbing. In fact, as we have explained before, if
the state y becomes absorbing. If we apply the order component by component,
then we can see that states of Sat(φ1∧¬φ2) are either greater or not comparable
with states of Sat(¬φ1 ∧ ¬φ2) which are made absorbing. In the inequality of
theorem 2 we can have only x ∈ Sat(¬φ1 ∧ ¬φ2) and y ∈ Sat(φ1 ∧ ¬φ2), then
the inequality is valid for Qu[ω].

For the set Sat(φ2), there is no problem to make the state absorbing as it is
the upper state (we couldn’t have a transition to an upper state).

The comparison of the two generators Q[ω] and Qu[ω] is also verified, so we
obtain the comparison of the transient distributions. As Sat(φ2) ∈ φwk(E), then
we obtain for the until formula:

Probs(φ1U [0,t]φ2) ≤
∑

s′∈Sat(φ2)

Πu[ω](s, s′, t) (39)

and the verification could be performed from the upper bound.

5 Conclusion

This paper develops an increasing set formalism in order to apply weak order-
ings for the model checking of multidimensional Markov processes. We study
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the steady state and path formulas of CSL logic. As an example, we present
a queueing system similar to a Jackson network with finite capacity queues.
We prove that the system can be bounded by independent M/M/1 queues for
which the stationary and transient distributions are easily computed. The weak
ordering generate the comparison of tail probability distributions, allowing the
comparison of some state and transient formulas. As a future work, we consider
to improve the quality of the bounds, by defining bounding systems as a set of
independent sub-networks.
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1 Introduction

Markovian models have been proved useful in many areas of applied probabil-
ity, specially in performance evaluation. In general, the exact computation of
the transient/stationary state probability vector is needed. However, a standard
problem in Markov modeling is the state dimensional explosion. Furthermore,
Markov models for which nice computational properties like product-form prop-
erty or matrix-geometric solutions apply, are rare. Hence, an exact computation
can not always be achieved. This makes state space reduction techniques very at-
tractive. These techniques provide approximate solutions except when a (weak)
lumpability property holds (see Kemeney and Snell [10]). State space reduc-
tion techniques are usually efficient and work well. However, they provide no
warranty on the error. To overcome such a limitation, methods for computing
bounds on the performance parameters of interest may be used. When upper
and lower bounds can be derived, they also provide an upper bound for the
error on the estimates of the performance parameters. Standard performance
parameters are interpreted as functionals of Markov chains. Thus, performance
evaluation requires to deal with state space reduction policies and functional of
Markov chains. In order to obtain bounds, methods for the comparison of state
probability vectors of Markov chains with different state spaces are needed (e.g.
see Pekergin [16], Doisy [6], Abu-Amsha and Vincent [1], Ledoux and Truffet
[12], Truffet [17] and references therein). Let us mention that the matrix-based
approach developed here, is inspired by earlier results of Keilson and Kester [9],
Kester [8], Whitt [18], Massey [14], Li and Shaked [13], Kijima [11] and references
therein. Hereafter, we give the precise formulation of the problem addressed here.

Let E and F be two finite sets with respective cardinal d and d′. Let X =
(Xn)n be a Markov chain with state space E and transition probability matrix
(t.p.m.) A. Consider a second Markov chain Y = (Yn)n with state space F
and t.p.m B. The probability distribution of the random variable Xn (resp.
Yn) is denoted by x(n) (resp. y(n)). The sequences (x(n))n and (y(n))n are the
one-dimensional distributions/marginal distributions of the stochastic processes
X and Y, respectively. They satisfy the following linear systems of difference
equations: {

x(0) ∈ Sd,
x(n) = Ax(n − 1), n ≥ 1,

(1)

and {
y(0) ∈ Sd′ ,
y(n) = By(n − 1), n ≥ 1.

(2)

where Sd and Sd′ are the sets of probability vectors on Rd and Rd′
, respectively.

Let us consider two matrices K ∈ Mm,d(R) and K′ ∈ Mm,d′(R). We define
the binary relation ≤K,K′ by:

(x,y) ∈ Sd × Sd′ : x ≤K,K′ y ⇐⇒ Kx ≤m K′y. (3)
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The binary relation (3) can be seen as an extension of the notion of integral
stochastic order (see e.g. Muller and Stoyan [15, Chap 2]) for discrete random
variables.

We say that the Markov chains X and Y are (K,K′)-comparable if the fol-
lowing assertion is true(

x(0) ∈ Sd,y(0) ∈ Sd′ and x(0) ≤K,K′ y(0)
)

=⇒ ∀n ∈ N, x(n) ≤K,K′ y(n).
(4)

Let us introduce the following condition:

H : {(x,y) ∈ Sd × Sd′ | Kx ≤m K′y} = ∅. (5)

Noticing that condition (4) is logically equivalent to:(
x ∈ Sd, y ∈ Sd′ , and x ≤K,K′ y

)
=⇒ Ax ≤K,K′ By. (6)

The starting point of our numerical method for bounds computations is the
following Theorem which is reported in Ahmane and al. ([2], [3]). This Theorem
gives necessary and sufficient conditions (NSC) for (K,K′)-comparison of two
Markov chains.

Theorem 1 (NSC for (K,K′)-comparison)
Assume H (cf. (5)). The two Markov chains defined by (1) and (2) are said
to be (K,K′)-comparable if and only if there exist non-negative matrix H ∈
Mm,m(R+) and vectors u, v ∈ Rm such that:⎧⎨⎩ −u1�

d ≤ HK−KA
HK′ −K′B ≤ v1�

d′

u + v ≤ 0m.
(7)

In this paper, we propose a numerical method for bounds computations of
Markov chains deducted from the algebraic criterion of (K,K′)-comparison given
in Theorem 1. This method consists to transform the algebraic criterion un-
der the standard form of a linear system of inequalities which permits us to
determine the set of all possible bounds of a given Markov chain.

We draw the reader attention that the (K,K′)-comparison have two important
properties: the first one is that (K,K′)-comparison permit us to compare two
systems with different dimensions; and the second one is that matrices K and
K′ are not invertible.

This paper is organized as follows. In Section 2, we recall some definitions
about cones and solutions of system of inequalities. Section 3 is dedicated to
propose a method for the transformation of the algebraic criterion of (K,K′)-
comparison of Theorem 1 under the form of a linear system of inequalities
Mx ≤ b. In section 4, we give the method for solving Mx ≤ b. Section 5
is devoted to present the Gamma-algorithm implemented on Scilab, that will
permit us to solve this linear system of inequalities. Illustrative example is given
in Section 6. Finally, we conclude in Section 7.
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2 Background

In this section we remind the reader about some elementary concepts about
cones and the solution of system of inequalities.

2.1 Polyhedral Convex Cones

Polyhedral convex cones play an important role in dealing with systems of in-
equalities.

Definition 1. Let A be a matrix, and {a1, ...,am} be the set of its column vec-
tors. The set Aπ given by: Aπ = {x ∈ En|x = π1a1 + ... + πmam, πi ≥ 0; i =
1, ..., m} of all nonnegative linear combinations of the column vectors of A is
known as the finitely generated cone, the polyhedral convex cone or simply the
cone generated by A. The vectors {a1, ...,am} are called ’cone generators’.

Similarly, we shall denote Aρ as the linear space generated by columns of A.

Definition 2 (standard form of a cone). Let Aπ be a cone. Its generators
{a1, ...,am} can be classify into two groups:

1. The generators whose opposite vectors belong to the cone, that is,
C ≡ {ai| − ai ∈ Aπ}.

2. The generators whose opposite vectors do not belong to the cone, that is,
D ≡ {ai| − ai /∈ Aπ}.

Thus, the cone can be expressed in the following form:

Aπ ≡ (C | −C | D)π ≡ Cρ + Dπ,

which is known as the standard form of a cone. The standard form of a cone
distinguishes between its linear space part Cρ and its proper cone part Dπ.

2.2 Dual Cones

Definition 3 (Non-positive dual or polar cone). Let Aπ be a cone in En,
with generators {a1, ...,am}. The non-positive dual or polar Ap

π (denoted with a
p super-index) of Aπ is defined as the set:

Ap
π ≡ {v ∈ En|ATv ≤ 0} ≡ {v ∈ En|aT

i v ≤ 0; i = 1, ..., m}.
Note that the dual of a cone is the set of vectors such that their products by those
of the cone are non-positive.

2.3 Solutions of Systems of Inequalities

It is well known that the general solution of a system of inequalities Mx ≤ b is
a polyhedron, that can be written, in its minimal form, as the sum of a linear
space, polyhedral convex cone and a polytope, i.e.:

x =
∑

i

ρivi +
∑

j

πjwj +
∑

k

λkqk, ρi ∈ R, πj , λk ≥ 0,
∑

k

λk = 1, (8)

where vi, wj , qk ∈ En. Our aim is to obtain a minimal set of generators for this
polyhedron.
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Algorithm1. Castillo and al. [5] proposed the following algorithm to solve
Mx ≤ b

Step 1. Obtain the dual cone K = Vρ + Zπ.
Step 2. Normalize the vectors of Z with non-null last component zn+1 by
dividing them by zn+1.
Step 3. Write K as K = Vρ + Wπ + Qλ, where W and Q are the vectors in
Z with null and unit last component, respectively.
Step 4. Remove the (n + 1) component of all vectors.

3 Transformation of (K, K′)-Comparison into Mx ≤ b

In this section we transform the (K,K′)-comparison of Theorem 1 p. 311 under
the form of the classical linear system of inequalities Mx ≤ b, where matrix M,
vectors x and b to be determined. For this, equation (7) becomes:⎧⎨⎩

−HK− u1�
d ≤ −KA

HK′ −K′B− v1�
d′ ≤ 0

u + v ≤m 0m.
(9)

Also from Theorem 1, matrix H must be non-negative, then we add for (9) the
following inequality:

H ≥ 0m×m ⇐⇒ −H ≤ 0m×m. (10)

Since we treat Markov chains, the lower bound (matrix A) and the upper bound
(matrix B) must be column stochastic vectors. Then if we look to determine
the unknown matrix A (lower bound), we need adding to (9) the following
supplementary inequalities:⎧⎨⎩

i=d∑
i=1

A(i,j) = 1, j = 1, ..., d

−A ≤ 0d×d

, which is equivalent to:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

i=d∑
i=1

A(i,j) ≤ −1

i=d∑
i=1

A(i,j) ≤ 1

−A ≤ 0d×d,

(11)

and therefore in the case where B is unknown (upper bound), we add:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

i=d′∑
i=1

B(i,j) ≤ −1; j = 1, ..., d′

i=d′∑
i=1

B(i,j) ≤ 1

−B ≤ 0d′×d′ .

(12)
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Finally, by assembling all the inequalities previously defined by (9, 10, 11), we
obtain in the case where A is unknown the following system of inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−HK− u1�
d −KA ≤ 0m×d

HK′ − v1�
d′ ≤ K′B

u + v ≤ 0m

−H ≤ 0m×m

−A ≤ 0d×d

−
i=d∑
i=1

A(i,j) ≤ −1d

i=d∑
i=1

A(i,j) ≤ 1d,

(13)

and in the case where B is unknown, by assembling (9, 10, 12) we obtain the
following system of inequalities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−HK− u1�
d ≤ −KA

HK′ −K′B− v1�
d′ ≤ 0m×d′

u + v ≤ 0m

−H ≤ 0m×m

−B ≤ 0d′×d′

−
i=d′∑
i=1

B(i,j) ≤ −1d′

i=d′∑
i=1

B(i,j) ≤ 1d′ .

(14)

The objective now is to make Systems (13) and (14) under the form of Mx ≤ b.
Then, for (13) the column vector b is defined in this case by:

bT = (0(m×d), (K
′B).,1, . . . , (K′B).,d′ ,0m+(m×m)+(d×d),−1d,1d). (15)

And for system (14), the column vector b is defined in this case by:

bT = ((−KA).,1, . . . , (−KA).,d,0(m×d′)+m+(m×m)+(d′×d′),−1d′ ,1d′). (16)

It remains now to determine the different elements constituting matrix M and
vector x for system (13) (resp. (14)). For that, we proceed as follows. We put
all the constant elements (without the elemets constituting vectors b defined
previously) of system (13) (resp. (14)) in matrix M and the unknown elements
in vector x. However, in the two systems of inequalities previously defined by
(13) and (14), we remark that in certain matrix products of the same inequality,
unknown matrices are sometimes on the left and sometimes on the right. More
precisely, let us look for example the 1st inequality of system (13): −HK−u1�

d −
KA ≤ 0m×d, we note that the unknown matrices H and A are on the left and
on the right of matrix K, respectively. We recall that matrices K and K′ are
not invertible, then we recover the problem due to the non-commutability of the
matrix product because in Mx ≤ b, vector x of unknown elements is only on
the right of matrix M.
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In order to solve the non-commutability problem, we propose a method which
permits us to put the constant elements (without the elemets constituting vectors
b defined previously) of system (13) (resp. (14)) in matrix M and the unknown
elements in vector x. First, we remark that matrix M and the column vector b
have the same number of rows and that equal to l = ((m× d) + (m× d′) + m +
(m×m) + (d× d) + (d× 2)) for (13) (resp. l = ((m× d) + (m× d′) + m + (m×
m) + (d′ × d′) + (d′ × 2)) for (14)).

Let us consider for example the 1st inequality of system (13):
−HK− u1�

d −KA ≤ 0m×d, we remark that

(HK)i,j = Hi,.K.,j = KT
.,jH

T
i,.. (17)

In order to illustrate, let us consider a simple case where m = d = d′ = 2. The
matrix product HK is given as follows:(

H1,1K1,1 + H1,2K2,1 H1,1K1,2 + H1,2K2,2
H2,1K1,1 + H2,2K2,1 H2,1K1,2 + H2,2K2,2

)
,

which can be put under the form of a vector as follows:⎛⎜⎜⎝
H1,1K1,1 + H1,2K2,1
H2,1K1,1 + H2,2K2,1
H1,1K1,2 + H1,2K2,2
H2,1K1,2 + H2,2K2,2

⎞⎟⎟⎠ . (18)

According to equation (17), equation (18) is equal to:⎛⎜⎜⎝
K1,1 K2,1 0 0

0 0 K1,1 K2,1
K1,2 K2,2 0 0

0 0 K1,2 K2,2

⎞⎟⎟⎠
⎛⎜⎜⎝

H1,1
H1∗,2
H2,1
H2,2

⎞⎟⎟⎠ . (19)

As seen peviously in equation (19), we have just to make the transposes of each
column of matrix K in matrix M.

Now, the non-commutability problem of the matrix product is resolved. We
can now define in each case (system (13) or (14)) the different elements consti-
tuting matrix M and vector x.

Then, in the case where A is unknown, we define the column vector x for
system (13) as follows:

xT = (HT
1,., . . . ,H

T
m,., u1, . . . , um, v1, . . . , vm,A.,1, . . . ,A.,d),

and reciprocally in the case where B is unknown, the column vector x for system
(14) is:

xT = (HT
1,., . . . ,H

T
m,., u1, . . . , um, v1, . . . , vm,B.,1, . . . ,B.,d′).

As seen previously, the vectors x are defined in both cases. It remains only to
define the element constituting matrix M in each case. Let l = (m × d) + (m ×
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d′)+m+(m×m)+ (d×d)+ (d×2) for (13) (resp. l = (m×d)+ (m×d′)+m+
(m × m) + (d′ × d′) + (d′ × 2) for (14)) be the number of row vectors of M, we
take MH ∈ Ml,m×m(R) , Mu ∈ Ml,m(R), Mv ∈ Ml,m(R), MA ∈ Ml,d×d(R)
and MB ∈ Ml,d′×d′(R). For each system (13) or (14), we define matrix M as
follows:

– if matrix A is unknown, for system (13) we have

M = (MH|Mu|Mv|MA)

– if matrix B is unknown, for system (14) we have

M = (MH|Mu|Mv|MB)

Then, in each case we have the following matrices:

In the case where A is unknown In the case where B is unknown

MH =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−K.,1 0 . . . 0

0
. . .

. . .
...

...
. . . . . . 0

0 . . . 0 −K.,1
...

−K.,d 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 −K.,d

K′
.,1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 K′

.,1
...

K′
.,d 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 K′

.,d′

0m×(m×m)
−I(m×m)

0(d×d)×(m×m)
0(d×2)×(m×m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, MH =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−K.,1 0 . . . 0

0
. . .

. . .
...

...
. . . . . . 0

0 . . . 0 −K.,1
...

−K.,d 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 −K.,d

K′
.,1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 K′

.,1
...

K′
.,d′ 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 K′

.,d′

0m×(m×m)
−I(m×m)

0(d′×d′)×(m×m)
0(d′×2)×(m×m)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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In the case where A is unknown In the case where B is unknown

Mu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Im

...
−Im

0(m×d′)×m

Im

0(m×m)×m

0(d×d)×m

0(d×2)×m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Mu =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Im

...
−Im

0(m×d′)×m

Im

0(m×m)×m

0(d′×d′)×m

0(d′×2)×m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the case where A is unknown In the case where B is unknown

Mv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(m×d)×m

−Im

...
−Im

Im

0(m×m)×m

0(d×d)×m

0(d×2)×m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Mv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(m×d)×m

−Im

...
−Im

Im

0(m×m)×m

0(d′×d′)×m

0(d′×2)×m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In the case where A is unknown In the case where B is unknown

MA =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K 0m×d . . . 0m×d

0m×d
. . . . . .

...
...

. . . . . . 0m×d

0m×d . . . 0m,d K
0(m×d′)×(d×d)

0m×(d×d)
0(m×m)×(d×d)

−I(d×d)
−1T

d 0T
d . . . 0T

d

0T
d

. . .
. . .

...
...

. . . . . . 0T
d

0T
d . . . 0T

d −1T
d

1T
d 0T

d . . . 0T
d

0T
d

. . . . . .
...

...
. . . . . . 0T

d

0T
d . . . 0T

d 1T
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, MB =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0(m×d)×(d′×d′)
−K′ 0m×d′ . . . 0m,d′

0m×d′
. . . . . .

...
...

. . .
. . . 0m×d′

0m×d′ . . . 0m×d′ −K′

0m×(d′×d′)
0(m×m)×(d′×d′)

−I(d′×d′)
−1T

d′ 0T
d′ . . . 0T

d′

0T
d′

. . .
. . .

...
...

. . . . . . 0T
d′

0T
d′ . . . 0T

d′ −1T
d′

1T
d′ 0T

d′ . . . 0T
d′

0T
d′

. . . . . .
...

...
. . . . . . 0T

d′

0T
d′ . . . 0T

d′ 1T
d′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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4 Resolution of the System of Inequalities Mx ≤ b

After having defined in Section 3 all the elements M, x and b of Mx ≤ b, the
objective now is to enumerate all possible solutions in x for Mx ≤ b by using
Gamma-algorithm which will be defined in Section 5 p. 319.

Let us consider l, k the rows and columns numbers of matrix M respectively.
The system of inequalities Mx ≤ b can be written as follows:⎧⎪⎪⎨⎪⎪⎩

M1,1x1 +M1,2x2 . . . +M1,nxn ≤ b1
M2,1x1 +M2,2x2 . . . +M2,nxn ≤ b2

. . . . . . . . . . . . ≤ . . .
Mm,1x1 +Mm,2x2 . . . +Mm,nxn ≤ bm.

(20)

Before using Gamma-algorithm we need to transform the system of inequalities
(20), by using the technique proposed by Ziegler [19], to the following homoge-
neous system of inequalities Px∗ ≤ 0 with adding an extra variable xn+1 = 1 as
follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M1,1x1 +M1,2x2 . . . +M1,nxn −b1xn+1 ≤ 0
M2,1x1 +M2,2x2 . . . +M2,nxn −b2xn+1 ≤ 0

. . . . . . . . . . . . . . . ≤ . . .
Mm,1x1 +Mm,2x2 . . . +Mm,nxn −bmxn+1 ≤ 0

−xn+1 ≤ 0
xn+1 = 1

(21)

which can be written also as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(M1,1, . . . , M1,n,−b1)(x1, . . . , xn, xn+1)T ≤ 0
(M2,1, . . . , M2,n,−b2)(x1, . . . , xn, xn+1)T ≤ 0

. . . ≤ . . .
(Mm,1, . . . , Mm,n,−bm)(x1, . . . , xn, xn+1)T ≤ 0

−xn+1 ≤ 0
xn+1 = 1

(22)

The system of inequalities (22) shows that (x1, . . . , xn, xn+1) is included in the
dual cone of the cone generated by all the vectors:

{(M1,1, . . . , M1,n,−b1), (M2,1, . . . , M2,n,−b2), . . . , (Mm,1, . . . , Mm,n,−bm),
(0, 0, . . . , 0,−1)}.

The system of inequalities (22) can be written as follows:⎧⎪⎪⎨⎪⎪⎩
⎛⎝ M | −b

−− −− −−
0 | −1

⎞⎠( x
xn+1

)
≤ 0

xn+1 = 1

where P =

⎛⎝ M | −b
−− −− −−
0 | −1

⎞⎠ ,x∗ =
(

x
xn+1

)
.

(23)
The advantage of this method consists firstly to solve Px∗ ≤ 0 and secondly to
force the supplementary constraint xn+1 to be equal to 1. The set of solutions
of (23) is the dual of the cone generated by the row vectors of (M| − b).
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5 Gamma-Algorithm

Introducedby Jubete [7] anddevelopedbyCastillo andal. [5], this algorithmhas for
main goal to spread several applications of linear algebra to the cases of polyhedral
convex cones and to linear systems of inequalities. Its main applications are:

– determine if a vector belongs or not to the cone,
– get the minimal representation of a cone and its dual under the form of its

linear space and its pointed cone,
– get the intersection of two cones,
– determine the compatibility of a linear system of inequalities,
– solve a linear system of inequalities.

Note that the complexity of the Gamma-algorithm is polynomial, but the complex-
ity of the bounds computations strongly depends on the type of the starting cone.

5.1 Implementation on Scilab

1- Function gammasepar
As given in Definition 2 p. 312, this function permit to separate a generators
of a given cone into two groups. It is implemented on Scilab software as follows
(we use the transpose of matrix P because the set of solutions of (23) is the dual
of the cone generated by the row vectors of (M| − b)). Taking PT = R:

Function [G,J] = gammasepar(R)
Input parameters:
- R: Matrix of all generating vectors of the polyhedral convex cone.
Output parameters:
- G: Matrix of all generating vectors whose opposite belong in R.
- J: Matrix of all generating vectors whose opposite do not belong in R.

The steps of scilab algorithm of gammasepar function is given in Appendix
section, p. 323.

2- Function gammalgo
As given in Definition 3 p. 312, this function permit to obtain the dual of a
given cone. It is implemented on scilab as follows:

Function [V,Z] = gammalgo(G,J, nbiter)
Input parameters:
- G and J are defined above.
- nbiter: number of vectors of R (i.e. number of iteration).
Output parameters:
-V: Matrix of all generating vectors of the dual of the linear space.
- Z: Matrix of all generating vectors of the dual of the polyhedral convex cone
and the polytope.

After obtaining Z, we will normalize its column-vectors with non-null last com-
ponent zn+1 by dividing them by zn+1 as showing in Algorithm1 p. 313.

The steps of Scilab algorithm of gammasepar function is given in Appendix
section, p. 323.
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6 Illustrative Example

Considering the following 3 × 3 dimensional transition probability matrix of
Markov chain:

A =

⎛⎝ b0 b0 0
b1 b1 b0
b2 b2 b1 + b2

⎞⎠ =

⎛⎝0.4 0.4 0
0.3 0.3 0.4
0.3 0.3 0.6

⎞⎠ .

Trying now to obtain an upper bound B of size 2 × 2 for the matrix A in the
sens of the binary relation ≤K,K′ defined by the two following matrices:

K =

⎛⎝ 1 2 3
−1 −2 −3
1 0 0

⎞⎠ ;K′ =

⎛⎝−1 −1
0 0
−1 −2

⎞⎠ .

After having put our example under the form of equation (23), we use the Scilab
algorithm of gammasepar function, we obtain matrices G and J as defined in sub-
section5.1p. 319.For saving space,weomit thedetails.Byusing ofScilabalgorithm
of gammalgo function given in subsection 5.1 p. 319, we generate many vectors.
Here, we are interested to find all possible bounds B. In all the vectors generated
by gammalgo (the size of each column vector is fifteen), their last four components
(B1,1, B2,1, B1,2, B2,2) are equal to the last four components of the five vectors de-
fined above. Then the set of all solutions in x (see assertion (8)) is given by:

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,1
H1,2
H1,3
H2,1
H2,2
H2,3
H3,1
H3,2
H3,3
u1
u2
u3
v1
v2
v3

B1,1
B2,1
B1,2
B2,2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= π1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.33
0
1
0
0
0
0
0
0

−0.67
0
0

0.67
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ λ1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.16
1.43
0.73
0.3
0.3
0

2.4
2.4
0

0.43
−1.9
0.4

−0.43
−0.3
−0.4

0
1
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ λ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.45
0

1.45
0

0.73
0

0.7
0
0
−1
0

−0.3
1
0

0.3
1
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ λ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.16
1.43
0

0.3
0.3
0

0.7
0

0.7
1.16
−1.9
−1

−1.16
−0.3

1
1
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ λ4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.16
1.43
0.73
0.3
0.3
0

1.2
0
0

0.43
−1.9
−0.8
−0.43
−0.3
0.8
0
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where π1, λ1, λ2, λ3, λ4 ≥ 0 and λ1 + λ2 + λ3 + λ4 = 1.

Taking for example π1 = 1, λ1 = 0.25, λ2 = 0.3, λ3 = 0.45, λ4 = 0, we obtain
the following upper bound B:

B =
(

0.75 0.3
0.25 0.7

)
,

and the following matrices of equation (7):

H =

⎛⎝2.277 1.0010 1.6175
0.21 0.429 0
1.125 0.6 0.315

⎞⎠ ;u =

⎛⎝−0.3405
−1.33
−0.44

⎞⎠ , v =

⎛⎝0.3405
−0.21
0.44

⎞⎠ .
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Verification:
As showing follows, the matrices defined above verify equation (7) of Theo-
rem 1, p. 311:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u1�
3 =

⎛⎝0.3405 0.3405 0.3405
1.33 1.33 1.33
0.44 0.44 0.44

⎞⎠ ≤ HK−KA =

⎛⎝0.9935 0.652 1.228
1.681 1.462 1.943
0.44 0.65 1.575

⎞⎠

HK′ −K′B =

⎛⎝−2.8945 −4.512
−0.21 −0.21
−0.19 −0.055

⎞⎠ ≤ v1�
2 =

⎛⎝0.3405 0.3405
−0.21 −0.21
0.44 0.44

⎞⎠

u + v =

⎛⎝0
−1.54
0

⎞⎠ ≤ 03

H =

⎛⎝2.277 1.0010 1.6175
0.21 0.429 0
1.125 0.6 0.315

⎞⎠ ≥ 03×3

7 Conclusion

In this paper, a numerical method for bounds computations of Markov chains
is proposed by using Gamma-algorithm. This method is based on the necessary
and sufficient conditions for the comparison of one-dimensional distributions (or
point-wise comparison) of Markov chains with different state spaces. For this
we proceed firstly to transform the comparison criterion under the form of a
complete linear system of inequalities and secondly to use our implementation on
Scilab software of Gamma-algorithm to determine the set of all possible bounds
of a given Markov chain. We note that Gamma-algorithm tends to generate
many vectors. That is why in the future works, we will be interested in search
of new numerical methods to treat the problem.
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Appendix (Scilab Algorithms)
Scilab algorithm of gammasepar function
Step 1: initialize the arguments of ’linpro’ (for the definition of linpro, see Step 4),
Step 2: look for each column vector of a given matrix R if its opposite is positive
linear combination of the column vectors of R,
Step 3: if there does not exist a realizable solution, recover the error in order to
prevent the stopping function,
Step 4: use the following function ’linpro’ to solve the linear programming:

[x, lagr, f ] = linpro (p,Ce, be,Ci,Cs, me)
p: column vector with real coefficients of the function objective (i.e cost function).
Ce: matrix of constraints with real coefficients. be: column vector of constraints with
real coefficients. Ci: column vector of the lower bounds of variables. Cs: column
vector of the upper bounds of variables. me: number of constraints of equalities. x:
column vector of solutions allowing to obtain the optimal value. lagr: column vector
of Lagrange-multipliers. f : optimal value.
Step 5: According to Step 4, one has vector r of R in G or J.

Scilab algorithm of gammalgo function
- Let be V(0) = In , Z(0) = ∅, and U(0) = (V(0) | Z(0)).
- To each vector uj of matrix U(h) is associated at the hth iteration the set IR(uj)

that contains the set of indices of vectors of R orthogonal to uj .
Step 1: Calculation of the scalar product th = rT

hU(h).
Step 2: Research of the pivot. Seek a column vector of V(h) such that th

pivot �= 0.
Step 3: Separation of the algorithm. if a pivot were determined, continue on Step 4,
otherwise go to Step 5.
Step 4: Process I.

- normalize the pivot by dividing each one of its terms by −th
pivot.

- For each column vector uh
j of U(h) = Uh

i,j s.t. j �= pivot, put Uh
i,j = Uh

i,j +thj Uh
j,pivot.

- add the index h to the set IR(uj)
for all j �= pivot.

- withdraw the vector uh
pivot of V(h).

If rh /∈ G, add the vector uh
pivot to Z(h) and then go to Step 6.

Step 5: Process II.

- add the index h to the set IR(uj)
for all j such that uj ∈ V(h).

- Let be zi the ith column vector of Z(h) = Zh
i,j . Determine the sets:

I− ≡ {i | zT
i rh < 0}, I+ ≡ {i | zT

i rh > 0}, I0 ≡ {i | zT
i rh = 0}.

- add the index h to the set IR(zi)
for all i ∈ I0.

If rh ∈ G, then withdraw of Z(h) all vectors zi such that i ∈ I−or i ∈ I+.
Otherwise, if I+ ≡ ∅ go to Step 6.
Otherwise, if I− ≡ ∅ withdraw of Z(h) all zi such that i ∈ I+.

Otherwise, for every i ∈ I− and every j ∈ I+, construct the set
IR(Zi,j)

≡ (IR(zi)
∩ IR(zj)

) ∪ {h}
If �p ∈ I−, q ∈ I+, k ∈ I0 with p �= i and q �= j such that:

IR(Zi,j)
⊆ IR(Zp,q)

and IR(Zi,j)
⊆ IR(zk)

,
then add to Z(h) for every i and j the vector Zi,j = th

j zi − th
i zj , to which

associate the set IR(Zi,j)
.

Then withdraw of Z(h) all zi such that i ∈ I+.
Step 6: if h ≺ m, then h = h + 1 and go to Step 1, otherwise END.
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Abstract. When we represent a network of sensors in Euclidean space
by a graph, there are two distances between any two nodes that we may
consider. One of them is the Euclidean distance. The other is the distance
between the two nodes in the graph, defined to be the number of edges
on a shortest path between them. In this paper, we consider a network
of sensors placed uniformly at random in a two-dimensional region and
study two conditional distributions related to these distances. The first
is the probability distribution of distances in the graph, conditioned on
Euclidean distances; the other is the probability density function asso-
ciated with Euclidean distances, conditioned on distances in the graph.
We study these distributions both analytically (when feasible) and by
means of simulations. To the best of our knowledge, our results consti-
tute the first of their kind and open up the possibility of discovering
improved solutions to certain sensor-network problems, as for example
sensor localization.

Keywords: Sensor networks, Random geometric graphs, Distance
distributions.

1 Introduction

We consider a network of n sensors, each one placed at a fixed position in two-
dimensional space and capable of communicating with another sensor if and only
if the Euclidean distance between the two is at most R, for some constant radius
R > 0. If δij denotes this distance for sensors i and j, then a graph representation
of the network can be obtained by letting each sensor be a node and creating
an edge between any two distinct nodes i and j such that δij ≤ R. Such a
representation is, aside from a scale factor, equivalent to a unit disk graph [1].

Often n is a very large integer and the network is essentially unstructured,
in the sense that the sensors’ positions, although fixed, are generally unknown.
In domains for which this holds, generalizing the graph representation in such
a way that each node’s position is given by random variables becomes a crucial
� Corresponding author.
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step, since it opens the way to the investigation of relevant distributions related
to all networks that result from the same deployment process. Such a general-
ization, which can be done for any number of dimensions, is known as a random
geometric graph [2]. Similarly to the random graphs of Erdős and Rényi [3] and
related structures [4], many important properties of random geometric graphs
are known, including some related to connectivity and the appearance of the
giant component [5,6,7] and others more closely related to applications [8,9,10].

One curious aspect of random geometric graphs is that, if nodes are positioned
uniformly at random, the expected Euclidean distance between any two nodes
is a constant in the limit of very large n, depending only on the number of
dimensions (two, in our case) [11]. In this case, distance-dependent analyses
must necessarily couple the Euclidean distance with some other type of distance
between nodes. The natural candidate is the standard graph-theoretic distance
between two nodes, given by the number of edges on a shortest path between
them [12]. For nodes i and j, this distance is henceforth denoted by dij and
referred to simply as the distance between i and j.

Given i and j, the Euclidean distance δij and the distance dij between the two
nodes are not independent of each other, but rather interrelate in a complex way.
Our goal in this paper is to explore the relationship between the two when all
sensors are positioned uniformly at random in a given two-dimensional region.
Specifically, for i and j two distinct nodes chosen at random, we study the
probability that dij = d for some integer d > 0, given that δij = δ for some
real number δ ≥ 0. Similarly, we also study the probability density associated
with δij = δ when dij = d. Our study is analytical whenever feasible, but is also
computational throughout. Depending on the value of d, we are in a few cases
capable of providing exact closed-form expressions, but in general what we give
are approximations, either derived mathematically or inferred from simulation
data exclusively.

We remark, before proceeding, that we perceive the study of distance-related
distributions for random geometric graphs as having great applicability in the
field of sensor networks, particularly in domains in which it is important for each
sensor to have a good estimate of its location. In fact, of all possible applications
that we normally envisage for sensor networks [13], network localization is crucial
in all cases that require the sensed data to be tagged with reliable indications
of where the data come from; it has also been shown to be important even for
routing purposes [14]. So, although we do not dwell on the issue of network
localization anywhere else in the paper, we now digress momentarily to clarify
what we think the impact of distance-related distributions may be.

The problem of network localization has been tackled from a variety of per-
spectives, including rigidity-theoretic studies [15, 16], approaches that are pri-
marily algorithmic, either centralized [17, 18] or distributed [19, 20, 21, 22], and
others that generalize on our assumptions by taking advantage of sensor mobil-
ity [23, 22] or uneven radii [24]. In general one assumes the existence of some
anchor sensors (regularly placed [25] or otherwise), for which positions are known
precisely, and then the problem becomes reduced to the problem of providing,
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for each of the other sensors, the Euclidean distances that separate it from three
of the anchors (its tripolar coordinates with respect to those anchors, from which
the sensor’s position can be easily calculated [26]).

Finding a sensor’s Euclidean distance to an anchor is not simple, though.
Sometimes signal propagation is used for direct or indirect measurement [27,
28,29, 30, 31, 32], but there are approaches that rely on no such techniques [33,
25, 20]. The latter include one of the most successful distributed approaches
[20], which nonetheless suffers from increasing lack of accuracy as sparsity or
irregularity in sensor positioning become more pronounced. The algorithm of [20]
assumes, for each anchor i, that each edge on any shortest path to i is equivalent
to a fixed Euclidean distance, which is estimated by i in communication with
the other anchors and by simple proportionality can be used by any node to
infer its Euclidean distance to i. We believe that knowledge of distance-related
distributions has an important role to play in replacing this assumption and
perhaps dispelling the algorithm’s difficulties in the less favorable circumstances
alluded to above.

We proceed in the following manner. In Section 2 we give some notation
and establish the overall approach to be followed when pursuing the analytical
characterization of distance-related distributions. Then in Section 3 we present
the mathematical analysis of the d = 1 and d = 2 cases (already known from
[34]), and in Sections 4 and 5 that of the d = 3 case. We continue in Section 6
with computational results related to d ≥ 1 and close in Section 7 with some
discussion and concluding remarks.

2 Overall Approach

Let i and j be two distinct, randomly chosen nodes. For d > 0 an integer and
δ ≥ 0 a real number, we use Pδ(d) to denote the probability, conditioned on
δij = δ, that dij = d. Likewise, we use pd(δ) to denote the probability density,
conditioned on dij = d, associated with δij = δ. These two quantities relate to
each other in the standard way of combining integer and continuous random
variables [35].

If we assume that Pδ(d) is known for all applicable values of d and δ, then it
follows from Bayes’ theorem that

pd(δ) =
Pδ(d)p(δ)

P (d)
, (1)

where p(δ) > 0 is the unconditional probability density associated with the
occurrence of an Euclidean distance of δ separating two randomly chosen nodes
and P (d) > 0 is the unconditional probability that the distance between them
is d. Clearly, P (d) =

∫ dR

r=0 Pr(d)p(r)dr, since Pr(d) = 0 for r > dR. Moreover,
p(r) is proportional to the circumference of a radius-r circle, 2πr, which yields

pd(δ) =
Pδ(d)δ∫ dR

r=0 Pr(d)rdr
. (2)
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In view of Equation (2), our approach henceforth is to concentrate on calcu-
lating Pδ(d) for all appropriate values of d and δ, and then to use the equation
to obtain pd(δ). In order to calculate Pδ(d), we fix two nodes a and b such that
δab = δ and proceed by analyzing how the two radius-R circles (the one centered
at a and the one at b) relate to each other. While doing so, we assume that
the two-dimensional region containing the graph has unit area, so that the area
of any of its sub-regions automatically gives the probability that it contains a
randomly chosen node. We assume further that all border effects can be safely
ignored (but see Section 6 for the computational setup that justifies this).

3 The Distance-1 and Distance-2 Cases

The case of d = 1 is straightforward, since dab = d if and only if δ ≤ R.
Consequently,

Pδ(1) =
{

1, if δ ≤ R;
0, otherwise (3)

and, by Equation (2),

p1(δ) =
{

2δ/R2, if δ ≤ R;
0, otherwise.

(4)

For d = 2, we have dab = d if and only if δ > R and at least one node k exists,
with k /∈ {a, b}, such that δak ≤ R and δbk ≤ R. The probability that this holds
for a randomly chose k is given by the intersection area of the radius-R circles
centered at a and b, here denoted by ρδ. From [26], we have

ρδ =
{

2R2 cos−1 (δ/2R)− δ
√

R2 − δ2/4, if δ ≤ 2R;
0, otherwise.

(5)

Because any node that is not a or b may, independently, belong to such inter-
section, we have

Pδ(2) =
{

1 − (1 − ρδ)n−2, if δ > R;
0, otherwise.

(6)

As for p2(δ), it is as given by Equation (2), equaling 0 if δ ≤ R or δ > 2R (we
remark that a closed-form expression is obtainable also in this case, but it is too
cumbersome and is for this reason omitted).

4 The Distance-3 Case: Exact Basis

The d = 3 case is substantially more complex than its predecessors in Section 3.
We begin by noting that dab = d if and only if the following three conditions
hold:
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C1. δ > R.
C2. No node i exists such that both δai ≤ R and δbi ≤ R.
C3. At least one node k /∈ {a, b} exists, and for this k at least one node � /∈

{a, b, k}, such that δak ≤ R, δk� ≤ R, δb� ≤ R, δa� > R, and finally δbk > R.

For each fixed k and � in Condition C3, these three conditions result from the
requirement that nodes a, k, �, and b, in this order, constitute a shortest path
from a to b.

If we fix some node k /∈ {a, b} for which δak ≤ R and δbk > R, the probability
that Condition C3 is satisfied by k and a randomly chosen � is a function of
intersection areas of circles that varies from case to case, depending on the value
of δ. There are two cases to be considered, as illustrated in Figure 1. In the first
case, illustrated in part (a) of the figure, R < δ ≤ 2R and node � is to be found
in the intersection of the radius-R circles centered at b and k, provided it is not
also in the radius-R circle centered at a. The intersection area of interest results
from computing the intersection area of two circles (those centered at b and k)
and subtracting from it the intersection area of three circles (those centered at
a, b, and k). The former of these intersection areas is given as in Equation (5),
with δbk substituting for δ; as for the latter, closed-form expressions also exist,
as given in [36] (it is significant, though, that the expressions for the intersection
area of three circles have only been published quite recently; without them, it
does not seem that the present analysis would be possible). The second case,
shown in part (b) of Figure 1, is that of 2R < δ ≤ 3R, and then the intersection
area of interest is the one of the circles centered at b and k. Regardless of which
case it is, we use σk

δ to denote the resulting area. Thus, the probability that at
least one � exists for fixed k is 1 − (1 − σk

δ )n−3.
Now let P ′

δ(3) be the probability that a randomly chosen k satisfies Con-
dition C3. Let also Kδ be the region inside which such a node can be found
with nonzero probability. If xk and yk are the Cartesian coordinates of node k,
then each possible location of k inside Kδ contributes to P ′

δ(3) the infinitesimal
probability [1 − (1 − σk

δ )n−3]dxkdyk. It follows that

P ′
δ(3) =

∫
k∈Kδ

[1 − (1 − σk
δ )n−3]dxkdyk. (7)

There are three possibilities for the region Kδ, shown in parts (a) through (c)
of Figure 2 as shaded regions, respectively for R < δ ≤ R

√
3, R

√
3 < δ ≤ 2R,

and 2R < δ ≤ 3R. The shaded region in part (a) is delimited by four radius-R
circles, the ones centered at nodes a (above and below) and b (on the right) and
the ones centered at points D and E (on the left). As δ gets increased beyond
R
√

3—and, at the threshold, point D becomes collinear with point B and node
b—we move into part (b) of the figure, where the shaded region is now delimited
on the left either by the radius-R circles centered at D and E or by the radius-2R
circle centered at b, depending on the point of common tangent between each of
the radius-R circles and the radius-2R circle (note that projecting either point
of common tangent on the straight line that goes through a and b yields point
a exactly). The next threshold leads δ beyond 2R, and in part (c) of the figure
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a b

k

(a)

a b

k

(b)

Fig. 1. Regions (shown in shades) whose areas yield the value of σk
δ for R < δ ≤ 2R

(a) and 2R < δ ≤ 3R (b)

the shaded region is delimited on the left by the radius-2R circle centered at b,
on the right by the radius-R circle centered at a.

Figure 2 is also useful in helping us obtain a more operational version of
the expression for P ′

δ(3), to be used in Section 6. First we establish a Cartesian
coordinate system by placing its origin at node a and making the positive abscissa
axis go through node b. In this system, the shaded regions in all of parts (a)
through (c) of the figure are symmetrical with respect to the abscissa axis. If for
each value of xk we let y−

k (xk) and y+
k (xk) be, respectively, the minimum and

maximum yk values in the upper half of the shaded region for the value of δ at
hand, then

P ′
δ(3) = 2

∫ x+
k

xk=x−
k

∫ y+
k (xk)

yk=y−
k (xk)

[1 − (1 − σk
δ )n−3]dxkdyk, (8)

where x−
k and x+

k bound the possible values of xk for the given δ.
All pertinent values of x−

k and x+
k , as well as of y−

k (xk) and y+
k (xk), are given

in Table 1, where δ− and δ+ indicate, respectively, the lower and upper limit for
δ in each of the three possible cases. This table’s entries make reference to the
abscissae of points A, B, C, and D (respectively xA, xB , xC , and xD) and to
the ordinate of point D (yD). These are given in Table 2.
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A

a b

C

D

E

B

(a)

A

a b

C

D

E

B

(b)

A

a b

B

(c)

Fig. 2. Regions (shown in shades) where node k can be found with nonzero probability
for R < δ ≤ R

√
3 (a), R

√
3 < δ ≤ 2R (b), and 2R < δ ≤ 3R (c)

5 The Distance-3 Case: Approximate Extension

Obtaining Pδ(3) from P ′
δ(3) requires that we fulfill the remaining requirements

set by Conditions C2 and C3 in Section 4. These are that no node exists in the
intersection of the radius-R circles centered at a and b and that at least one
node k exists with the properties given in Condition C3. While the probability
of the former requirement is simply (1 − ρδ)n−2, expressing the probability of
the latter demands that we make a careful approximation to compensate for the
lack of independence of certain events with respect to one another.

For node i /∈ {a, b}, let εi stand for the event that Condition C3 does not hold
for k = i. Let also Qδ(εi) be the probability of εi and Qδ the joint probability
of all n − 2 events. Clearly, Qδ(εi) = 1 − P ′

δ(3) for any i and, for δ > R,
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Table 1. Cartesian coordinates delimiting the upper halves of shaded regions in
Figure 2

δ− δ+ x−
k x+

k y−
k (xk) y+

k (xk) Figure

R R
√

3 xA xB yD −√R2 − (xk − xD)2 yD +
√

R2 − (xk − xD)2 2(a)

xB 0 yD −√R2 − (xk − xD)2
√

R2 − x2
k

0 xC 0
√

R2 − x2
k

xC xD

√
R2 − (xk − δ)2

√
R2 − x2

k

R
√

3 2R xA 0 yD −√R2 − (xk − xD)2 yD +
√

R2 − (xk − xD)2 2(b)

0 xB 0
√

4R2 − (xk − δ)2

xB xC 0
√

R2 − x2
k

xC xD

√
R2 − (xk − δ)2

√
R2 − x2

k

2R 3R xA xB 0
√

4R2 − (xk − δ)2 2(c)

xB R 0
√

R2 − x2
k

Table 2. Cartesian coordinates used in Table 1

δ− δ+ xA xB xC xD yD Figure

R R
√

3 δ/2 − R
(
δ −√3(4R2 − δ2)

)
/4 δ − R δ/2

√
4R2 − δ2/2 2(a)

R
√

3 2R δ/2 − R (δ2 − 3R2)/2δ δ − R δ/2
√

4R2 − δ2/2 2(b)

2R 3R δ − 2R (δ2 − 3R2)/2δ 2(c)

Pδ(3) = (1−Qδ)(1− ρδ)n−2. Therefore, if all the n− 2 events were independent
of one another, we would have

Qδ =
∏

i/∈{a,b}
Qδ(εi) = [1 − P ′

δ(3)]n−2 (9)

and, consequently,

Pδ(3) =
{ {1 − [1 − P ′

δ(3)]n−2}(1 − ρδ)n−2, if δ > R;
0, otherwise.

(10)

However, once we know of a certain node i that Condition C3 does not hold
for it, immediately we reassess as less likely that the condition holds for nodes
in the Euclidean vicinity of i. The n − 2 events introduced above are then not
unconditionally independent of one another, although we do expect whatever
degree of dependence there is to wane progressively as we move away from node i.

We build on this intuition by postulating the existence of an integer n′ < n−2
such that the independence of the n′ events not only holds but is also sufficient
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to determine Pδ(3) as indicated above, provided the corresponding n′ nodes are
picked uniformly at random. But since this is precisely the way in which, by
assumption, sensors are positioned, it suffices that any n′ nodes be selected,
yielding

Pδ(3) =
{
{1 − [1 − P ′

δ(3)]n
′}(1 − ρδ)n−2, if δ > R;

0, otherwise.
(11)

Similarly to the previous cases, p3(δ) is given by Equation (2) and equals 0 if
δ ≤ R or δ > 3R.

It remains, of course, for the value of n′ to be discovered if our postulate is to
be validated. We have done this empirically, by means of computer simulations,
as discussed in Section 6.

6 Computational Results

In this section we present simulation results and, for d = 1, 2, 3, contrast them
with the analytic predictions of Sections 3 through 5. The latter are obtained by
numerical integration when a closed-form expression is not available (the case
of d = 3 also requires simulations for finding n′; see below). For d > 3, we
demonstrate that good approximations by Gaussians can be obtained.

We use n = 1 000 and a circular region of unit area, therefore of radius
√

1/π ≈
0.564, for the placement of nodes. Node a is always placed at the circle’s center,
which has Cartesian coordinates (0, 0), and all results refer to distances to a.
Our choice for the value of R depends on the expected number of neighbors (or
connectivity) of a node, which we denote by z and use as the main parameter.
Since z = πR2n for large n, choosing the value of z immediately yields the value
of R to be used. We use z = 3π and z = 5π (though it seems that lower values of
z also occur in practice [37]), which yield, respectively, R ≈ 0.055 and R ≈ 0.071.
We note that both values of z are significantly above the phase transition that
gives rise to the giant component, which happens at z ≈ 4.52 [38]. In all our
experiments, then, graphs are connected with high probability.

For each value of z, each simulation result we present is an average over 106

independent trials. Each trial uses a matrix of accumulators having n − 1 rows
(one for each of the possible distance values) and 1 000

√
1/π columns (one for

each of the 0.001-wide bins into which Euclidean distances are compartmental-
ized). A trial consists of: placing n− 1 nodes uniformly at random in the circle;
computing the Euclidean distance between each node and node a; computing
the distances between each node and node a (this is done with Dijkstra’s algo-
rithm [39]); updating the accumulator that corresponds to each node, given its
two distances. At the end of each trial, its contributions to Pδ(d) and pd(δ) are
computed, with d = 1, 2, . . . , n − 1 and δ ranging through the middle points of
all bins. If M is the matrix of accumulators, then these contributions are given,
respectively, by M(d, δ)/

∑
d′ M(d′, δ) and M(d, δ)/0.001

∑
δ′ M(d, δ′).

The case of d = 3 requires two additional simulation procedures, one for
determining simulation data for P ′

δ(3), the other to determine n′ for use in
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Fig. 3. Pδ(1) (a) and p1(δ) (b). Solid lines give the analytic predictions.
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Fig. 4. Pδ(2) (a) and p2(δ) (b). Solid lines give the analytic predictions.
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δ(3). Solid lines give the analytic predictions.

obtaining analytic predictions for Pδ(3). The former of these fixes node b at
coordinates (δ, 0) and performs 107 independent trials. At each trial, two nodes
are generated uniformly at random in the circle. At the end of all trials, the
desired probability is computed as the fraction of trials that resulted in nodes k
and � as in Section 4.
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Fig. 6. Pδ(3) (a) and p3(δ) (b). Solid lines give the analytic predictions.
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Fig. 7. Pδ(d) and pd(δ) for d > 3, with z = 3π (a, b) and z = 5π (c, d). Solid lines
give the Gaussians that best fit some of the pd(δ) data, each of mean μ and standard
deviation σ as indicated.

The simulation for the determination of n′ is conducted for δ = 2R only,
whence ρδ = 0. This is the value of δ for which the results from the simulation
above for Pδ(3) and the analytic prediction given by 1− [1−P ′

δ(3)]n−2 differ the
most (and significantly; data not shown). Moreover, as we will see shortly, the
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value of n′ we find using this value of δ is good for all other values as well. The
simulation is aimed at finding the value of Qδ and proceeds in 109 independent
trials. Each trial fixes node b at (δ, 0) and places the remaining n−2 nodes in the
circle uniformly at random. The fraction of trials resulting in no node qualifying
as the node k of Section 4 is the value of Qδ. We set n′ to be the m < n− 2 that
minimizes |Qδ − [1−P ′

δ(3)]m|, where P ′
δ(3) refers to the analytic prediction. Our

results are n′ = 779 for z = 3π, n′ = 780 for z = 5π.
Results for d = 1 are shown in Figure 3, for d = 2 in Figure 4, for d = 3 in

Figures 5 and 6, and for d > 3 in Figure 7. In all figures, both Pδ(d) and pd(δ)
are plotted against δ, since it seems better to visualize what happens as one gets
progressively farther from node a in Euclidean terms. For this reason, the plots
for Pδ(d) do not constitute a probability distribution for any fixed value of d.

7 Discussion and Conclusion

The results summarized in Figures 3 through 6 reveal excellent agreement be-
tween the analytic predictions we derived in Sections 3 through 5 and our simu-
lation data. This holds not only for the simple cases of d = 1 and d = 2, but also
for the considerably more complex cases of P ′

δ(3) and Pδ(3). The latter, in par-
ticular, depends on the empirically determined n′. In this respect, it is clear from
Figure 6 that, even though n′ could have been calculated for a greater assortment
of δ values, doing it exclusively for δ = 2R seems to have been sufficient.

Figure 7 contemplates some of the d > 3 cases, for which we derived no
analytic predictions. The values of d that the figure covers in parts (a, b) and
(c, d), respectively for z = 3π and z = 5π, are 4, . . . , 11. Of these, d = 11 for
z = 5π in part (d) typifies what happens for larger values of d as well (omitted
for clarity), viz. probability densities sharply concentrated at the border of the
radius-

√
1/π circle centered at node a. Note that the same also occurs for z = 3π,

but owing to the smaller R it only happens for larger values of d (omitted from
part (b), again for clarity).

For 4 ≤ d ≤ 11 with z = 3π, and 4 ≤ d ≤ 9 with z = 5π, Figures 7(b) and (d)
also display Gaussian approximations of pd(δ). Parts (a) and (c) of the figure, in
turn, contain the corresponding simulation data only, and we remark that the
absence of some approximation computed from the Gaussians of part (b) or (d)
is not a matter of difficulty of principle. In fact, the counterpart of Equation (2),
obtained also from Bayes’ theorem and such that

Pδ(d) =
pd(δ)P (d)

p(δ)
=

pd(δ)P (d)∑n−1
s=1 ps(δ)P (s)

, (12)

can in principle be used with either those Gaussians or the concentrated densities
in place of ps(δ) as appropriate for each s. What prevents this, however, is that
we lack a characterization of P (s) that is not based on simulation data only.

Still in regard to Figure 7, one possible interpretation of the good fit by
Gaussians of the simulation data for pd(δ) comes from resorting to the central
limit theorem in its classical form [35]. In order to do this, we view δ as valuing
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the random variable representing the average Euclidean distance to node a of all
nodes that are d edges apart from a. The emergence of pd(δ) as a Gaussian for
d > 3 (provided d is small enough that the circle’s border is not influential) may
then indicate that, for each value of d, the Euclidean distances of those nodes
to node a are independent, identically distributed random variables. While we
know that this does not hold for the smaller values of d as a consequence of
the uniformly random positioning of the nodes in the circle (smaller Euclidean
distances to a are less likely to occur for the same value of d), it would appear
that it begins to hold as d is increased.

To summarize, we have considered a network of sensors placed uniformly at
random in a two-dimensional region and, for its representation as a random geo-
metric graph, have studied two distance-related distributions. One of them is the
probability distribution of distances between two randomly chosen nodes, con-
ditioned on the Euclidean distance between them. The other is the probability
density function associated with the Euclidean distance between two randomly
chosen nodes, given the distance between them. We have provided analytical
characterizations whenever possible, in the simplest cases as closed-form expres-
sions, and have also validated these predictions through simulations.

While further work related to additional analytical characterizations is worth
undertaking, as is the investigation of the three-dimensional case, we find that
the most promising tracks for future investigation are those that relate to ap-
plications. In Section 1 we illustrated this possibility in the context of sensor
localization, for which it seems that understanding the distance-related distri-
butions we have studied has the potential to help in the discovery of better
distributed algorithms. Whether there will be success on this front remains to
be seen, as well as whether other applications will be found with the potential
to benefit from the results we have presented.
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Abstract. We extend an existing analytic framework for modeling software
transactional memory (STM) to an optimistic STM variant in which write locks
are acquired lazily. Lazy locking requires a different calculation of the transition
probabilities of the underlying discrete-time Markov chain (DTMC).

Based on few relevant input parameters, like the number of concurrent trans-
actions, the transaction lengths, the share of writing operations and the number of
accessible transactional data ojects, a fixed-point iteration over closed-form ana-
lytic expressions delivers key STM performance measures, e.g., the mean number
of transaction restarts and the mean number of processed steps of a transaction.

In particular, the analytic model helps to predict STM performance trends as
the number of cores on multi-processors increases, but other performance trends
provide additional insight into system behavior.

1 Introduction

As a parallel programming model for shared-memory chip multi-processors (CMPs),
the concept of transactional memory (TM, [1,2]) has received a lot of attention as an
alternative to synchronizing parallel applications by means of classical locking mechan-
ims to coordinate access to shared data.

Writing parallel multi-threaded programs based on classical locking is a challenging
task. Fine-grained locking may become very complex enhancing the risk of deadlocks
or otherwise incorrect program behavior. Coarse-grained locking may result in ineffi-
cient code. TM tries to overcome these drawbacks by providing primitives to the pro-
grammer to label critical code with external memory accesses, so-called transactions,
and resolves resulting conflicts between concurrent transactions at runtime. Outside
of the TM system, transactions (including several read and write operations to trans-
actional memory) appear to be executed atomically, while the TM system ensures a
consistent view of the concurrent transactions on the transactional data. Non-conflicting
transactions may execute unaffectedly until they successfully finish (i.e., commit). Con-
flicting data accesses are detected and resolved in different ways ranging from delaying
to aborting and restarting one or more transactions.

Many different mechanisms for meta-data organization, concurrency control and
contention management have been proposed and can be combined to various different
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TM systems. Some variants have been implemented by the research community in order
to better understand TM behavior – either in software [3,4,5], in hardware [1,6,7,8,9]
or in a hybrid way [10]. These implementations are very important triggers for push-
ing forward TM advancement. We believe, however, that they should be complemented
with other techniques that facilitate the decision making in the multitude of TM design
choices [2], especially for the more flexible software TM (STM).

In [11], we first proposed to model STM performance on the basis of a discrete-time
Markov chain (DTMC), whose current states encode the progress of a representative
transaction. As this so-called tagged transaction executes in the system, it is influenced
by other concurrent transactions via aggregate parameters, which characterize the sys-
tem state in terms of meta-data like read and write set sizes. The models in [11,12] have
been developed for STM variants, where write locks are acquired eagerly, i.e., write
locks are acquired at the time the transaction accesses the data (and released at commit
or abort time). Here, we consider another popular STM variant, namely optimistic STM
with write buffering, where write locks are acquired lazily, i.e., only for the duration of
the final commit step. The shorter lock holding times enable a higher degree of concur-
rency for speculative transactions at the risk of detecting conflicts later than with early
locking.

The analytic model for optimistic STM with write buffering and lazy locking is elab-
orated within the framework proposed in [12]. Starting from a DTMC with identical
structure, other closed-form expressions must be derived for the transition probabilities
in order to reflect the fact that elements in the write set of a transaction no longer imply
write locks on the respective transactional data. The resulting fixed-point iteration over
a set of algebraic equations efficiently delivers the same set of STM performance char-
acteristics, like the mean number of restarts of a transaction or the mean total number
of steps of a possibly restarted transaction.

Analytical models for TM algorithms were also proposed in [13,14]. However, the
execution model in [13] does not consider a transactional memory execution, but rather
the inter-dependencies between sets of potential parallel tasks. As a result, the approach
cannot be used to provide insight into the dynamics of TM algorithms, as we do in this
paper. In [14], the authors study the performance of an STM system in the context
of false sharing. They analyze the tensions between the size of a transaction and the
likelihood of conflict resulting in closed-form expressions. Our approach is based on
a different methodology leading to a rather flexible framework, which provides a wide
range of performance measures. This framework may be adapted to other STM variants
beyond the ones studied so far.

The rest of the paper is organized as follows. Section 2 describes the base STM
system, for which we construct the performance model in Section 3. Therein, we also
develop the closed-form expressions for the evaluation of the model. After a validation
of the model against discrete-event simulation, we present the trend behavior of critical
STM performance measures in Section 4. Finally, we conclude in Section 5.

2 Optimistic STM with Write Buffering and Lazy Locking

Diverse names can be found in the literature for the optimistic STM variant studied in
this paper: write buffering is sometimes referred to as deferred update, write-back or
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lazy version management. Lazy locking is also called commit-time locking (as opposed
to eager locking alias encounter-time or open/acquire-time locking).

The STM variant discussed in this paper is obstruction-free and object based with
per-object meta-data [15]. Since the terms write buffering and lazy locking in the con-
text of optimistic STM still leave several design decisions open, e.g., with respect to
concurrency control, conflict detection and resolution and versioning rules, we clarify
in this section upon which operational rules the DTMC-based model of the next section
will be constructed.

In STM, a transaction is a sequence of read and write operations that appears indivis-
ible and instantaneous to the outside world. Other transactions (or threads) notice that
all operations of a transaction have been executed or none (atomicity). A transaction
always leaves the transactional data in a consistent state (consistency), irrespective of
the number of concurrent transactions (isolation).

By means of mutually exclusive read and write locking of the respective data objects,
potentially conflicting data accesses could be resolved as early as possible, namely at
encounter time (as in pessimistic STM). However, optimistic STM allows write ac-
cesses to transactional data even if other transactions are currently reading the data ob-
ject. Under certain circumstances, such speculative readers in write-after-read (WAR)
situations may finish successfully after all, thus reducing the number of restarts and
increasing the throughput of the STM system. On the other hand, if restarts are only
delayed (as compared to pessimistic STM), more computation time is wasted.

Optimistic STM operates without read locks, while write locks may in principle be
acquired any time between the initial access to the data (or its meta-data descriptor)
and the release of all locks the transaction holds (at commit and abort times). With
lazy locking, the acquisition of write locks is deferred to the beginning of the commit
operation. Lazy locking mandates write buffering1 to temporarily hide the impact of
write operations from other transactions. Write buffering means that transactional write
operations are not performed on the global data, but in thread-local buffers. Throughout
their lifetime, transactions manipulate these local copies of the transactional data until
the changes are made visible by a successful commit operation.

Essentially, the local write buffers constitute the write set of a transaction. A trans-
action also keeps track of the transactional data it has read since it has (re)started. The
corresponding set is called read set. By means of its read set and a proper versioning
scheme, the transaction validates that its view on the transactional data is consistent

In this paper, we assume that it is not visible to a transaction which other transac-
tions are currently reading or writing on transactional data in its own read or write set.
As a consequence, we only consider passive aborts, i.e., a transaction can only abort
itself upon a detected conflict, but not other conflicting transactions. Neither can locks
be stolen from another transaction. It suffices that the meta-data for transactional data
indicates if the data is write-locked or not. The data structures required for correspond-
ing meta-data organization – both for write locking and read/write set organization – is
beyond the scope of this paper and is described elsewhere (see e.g., [15]).

Thus, in optimistic STM with write buffering and lazy locking, a read or write request
to some data object is granted to a transaction, unless this data object is write-locked by

1 Of course, write buffering may also be combined with eager locking.
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another transaction. Note that write-locking only occurs during the commit phase. Only
the write locks are mutually exclusive. On the contrary, read and write sets of concurrent
transactions may arbitrarily overlap (including WAR, WAW, RAW and RAR situations).
If a transaction writes to a data object (i.e., it actually stores the data value to be written
in a local buffer) which it has read before, the corresponding element is moved from the
read set to the write set.

The overlap of read and write sets among concurrent transactions requires a val-
idation procedure to detect states of data inconsistency, i.e., to detect that a reading
transaction is working with outdated transactional data (due to successfully performed
writes by other transactions). We assume that such a validation check is based on ver-
sion numbers of the transactional data and is performed right at the end of every read
request and at the final commit operation.

Versioning essentially means to associate a global counter (visible to any transaction)
with each transactional data object. Write operations eventually increment these coun-
ters to indicate that the transactional data has been modified. When a transaction first
successfully reads transactional data, it records the value of its counter (i.e., the current
global version number of the transactional data) in a newly created read set entry. In
every validation procedure, the transaction compares all locally stored version numbers
with the respective current global version numbers. If any global version number has
been incremented by another transaction in the meantime (i.e., any locally stored ver-
sion number is smaller than the corresponding global version number), the validation
check fails and the validating transaction aborts and restarts. Otherwise the transaction
may continue with the next operation.

In the commit step, a transaction

1. must successfully acquire all write locks for the data in its write set,
2. must successfully validate its read set,
3. then increments the global version numbers of the write-locked data
4. copies the values in the local write buffers to the global memory locations,
5. and releases all write locks.

If the commit operation fails (in the first two steps), the transaction releases all obtained
write locks and aborts. An abort (also on other occasions) always implies that current
read and write sets are dissolved and the transaction restarts. Due to the local write
buffers, an abort generally leaves the global memory unmanipulated. The global mem-
ory locations are only modified (i.e., the local values are copied to the global memory
locations), if a transaction successfully finishes making the local changes permanent
and visible to other transactions. Only then are the version numbers incremented.

In any WAR (write-after-read) or RAW (read-after-write) situations, the reading
transaction will not have to abort due to the respective data, as long as the writing
transaction does not successfully commit before the reading transaction does. In fact, if
the reading transaction also issues a write request on the respective data in a subsequent
operation, the “reading” transaction may even successfully commit after the writing
transaction. In this case, if both attempt to commit at the same time, their write-lock
acquisitions may conflict.

While concurrent transactions may operate on different values for the transactional
data (due to local copies), (incremental) validation checks guarantee that each
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transaction has a consistent view of the transactional data. For instance, data that is
only read will always have the same value for this transaction between (re)start and
commit; otherwise the transaction will be aborted.

3 The DTMC-Based Model

Instead of modeling explicitly all transactions in their concurrent behavior, our model
characterizes the representative behavior of a single so-called tagged transaction. The
impact of the other transactions will be captured by appropriately computing the pa-
rameters of the single-transaction model. To some extent, this approach assumes that
all transactions have a similar probabilistic behavior.

Since we want to study performance measures independently of the specific timing
between data accesses, we consider the behavior of the tagged transaction at the instants
of read/write requests. As in [12], we propose to model this behavior as an (absorbing)
embedded Markov chain, whose states are enumerated according to the current number
of read/write operations that have been successfully performed, i.e., the current progress
of the transaction. This includes repeated accesses to the same data. The transition prob-
abilities of the absorbing discrete-time Markov chain (DTMC) will mainly depend on
how many write locks on the transactional data are currently held by the transactions,
but also on the sizes of their write and read sets, especially before the commit oper-
ation. This information can in turn be inferred from the DTMC. As a consequence, a
fixed-point iteration scheme arises.
The models is determined by only four key input parameters L, N, k and lw:

– Integer L denotes the number of transactional data items in the system, i.e., the
amount of data accessible to all transactions.

– Integer N denotes the number of concurrent transactions competing for the trans-
actional data. We assume that there are always N active transactions on dedicated
cores, i.e., N is constant2.

– The tagged transaction has to perform k subsequent read and write operations suc-
cessfully in order to finish (where k includes repeated reads/writes to same data).

– We do not assume any particular ordering of the read and write operations in a
transaction. Instead, any request is issued as a write access with probability lw
(and as a read access with probability lr = 1 − lw). All transactional data objects
are equally popular, i.e., have the same probability of being accessed (i.i.d. data
accesses with uniform distribution on L).

3.1 Transaction Behavior

The execution of a tagged transaction T (j) (1 ≤ j ≤ N ) is observed at the epochs
when a read or write request is issued. (In the following, we omit the superscript j to
simplify notation.) With each successful read or write operation on transactional data,
transaction T advances to the next epoch, i.e., we define state i of transaction T as the
state in which T has performed a sequence of i successful operations.

2 Otherwise, we might work with an effective number Neff of concurrent transactions.
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Fig. 1. Absorbing DTMC representing the execution of a single transaction

Depending on the current state i of the tagged transaction and the behavior of the
other transactions, the current read/write request will be successful with (non-zero)
probability qi, i.e., with this non-conflict probability the tagged transaction moves from
state i to state i + 1 (0 ≤ i < k). With the complementary probability 1 − qi, a conflict
occurs and the transaction must restart in state 0, i.e., resumes execution from state 0.

Figure 1 depicts this behavior in form of an absorbing discrete-time Markov chain
(DTMC). Here, we assume that when the transaction is aborted, it restarts immediately.
At stage k, a commit operation (which includes the write lock acquisition and validation
of the read set) succeeds with probability qk and fails with 1 − qk, possibly depending
on factors like the sizes of the read and write sets of the tagged transaction and the
writing behavior of the other transactions. The transaction completes when it reaches
the absorbing state k + 1.

In state i (0 ≤ i ≤ k), the combined size of read and write sets of a transaction
may be smaller than i due to repeated read and write accesses to the same data. The
number of accesses to distinct data corresponds to the sizes of read and write sets. Since
a transaction accesses data equiprobabilistically, we can compute the mean combined
size of read and write sets in state i as

n(i)
q = L

(
1 − (1 − 1

L
)i

)
(1)

according to the general birthday problem [16]. An average number of n
(i)
q data objects

are actually touched by i independent data accesses to L data objects. On average, the
size of the write set is approximately n

(i)
qw = lwn

(i)
q and that of the read set n(i)

qr = lrn
(i)
q .

We will use this and similar information about the non-tagged transactions below in
order to establish expressions for the non-conflict probabilities qi.

3.2 Average Sizes of Read and Write Sets Held by an Arbitrary Transaction

Assuming probabilistically identical behavior3, we may interpret the DTMC of Figure 1
as the representative behavior of an arbitrary (not only the tagged) transaction. With the
DTMC fully specified, important performance measures, like the mean number E[S]
of steps of a transaction before absorption, can be computed as outlined below. E[S]

3 Otherwise, we exploit some experimental proportionality between the average current progress
of a transaction and k, the given number of operations, similar to a discussion in [11].



An Analytic Model for Optimistic STM with Lazy Locking 345

counts all requests, including those, which might have to be repeated due to a restart
of the transaction, plus the final commit step, and thus corresponds to the number of
steps of the transient DTMC until absorption. Let us also introduce E[I] as the average
current progress of an arbitrary transaction, i.e., the average of the state numbers, in
which it may reside at an arbitrary instant of time before absorption.

The absorbing DTMC of Figure 1 consists of k + 2 states, where state k + 1 is the
absorbing state. We denote by pi (0 ≤ i ≤ k) the probability that – at an arbitrary
instant of time before absorption – the DTMC is in state i, i.e., the probability that the
transaction has successfully processed the first i read and write operations at an arbitrary
instant before its completion.

For an absorbing DTMC, pi may be computed as the ratio of the mean number of
visits to state i, E[Si], over the mean number of steps of the transient DTMC until
absorption, E[S]. E[S] is computed as [17]

E[S] = v0 (I − P)−1 e , (2)

where row vector v0 is the initial probability vector of the transient DTMC with (sub-
stochastic) transition probability matrix P. Matrix I is the identity matrix of appropriate
dimension and column vector e a corresponding vector of ones. For the DTMC of Fig-
ure 1, matrices and vectors are of dimension k + 1 and more specifically

v0 =
[
1 0 . . . 0

]
, P =

⎡⎢⎢⎢⎢⎢⎢⎣
1 − q0 q0 0 · · · 0

1 − q1 0 q1 0
...

...
...

. . .
. . . 0

1 − qk−1 0 · · · 0 qk−1
1 − qk 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
Evaluating equation (2) and using the fact that – with the specific initial probability
vector v0 – E[Si] simply equals the ith component of the first row of the fundamental
matrix (I − P)−1), we get

E[S] = Σk
i=0

1
Πk

j=iqj
and E[Si] =

1
Πk

j=iqj
. (3)

If all non-conflict probabilities equal 1, E[S] = k + 1 and E[Si] = 1 as expected.
Hence, the probabilities pi = E[Si]

E[S] for i = 0, . . . , k are

pi =
Πi−1

j=0qj

Σk
i=0Π

i−1
j=0qj

. (4)

We compute the average current progress of a transaction, denoted by E[I], as

E[I] =
k∑

i=0

i pi =
Σk

i=0iΠ
i−1
j=0qj

Σk
i=0Π

i−1
j=0qj

. (5)
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3.3 Non-conflict Probabilities for Optimistic STM with Lazy Locking

In this section, we determine the non-conflict probabilities in response to read/write
requests, i.e., probabilities that, given a transaction is in state i (0 ≤ i < k), it does not
encounter a conflict upon its (i + 1)th request and continues executing from state i + 1
in the next step.

In case a transactional read operation is issued in the considered STM variant, a
transaction T moves from state i to the next state i + 1 in one step, if and only if both
conditions below hold:

data unlocked: The requested data object is not write-locked by another transaction
and
validation successful: The additional validation of the read set (via the version num-

bers) does not fail.

For successful progress with a transactional write operation, only the first condition
must be fulfilled.

Now, given that a request occurs, it may be either a write request with probability lw
or a read request with probability lr = 1 − lw. We can then write qi as follows

qi = lw Pi{data unlocked} + lr Pi{data unlocked} · Pi{validation successful} , (6)

where 0 ≤ i < k and subscript i denotes that the tagged transaction is in state i.
To compute Pi{data unlocked}, we recall that in optimistic STM with lazy locking,

a transaction only holds write locks for the duration of its commit operation. At an
arbitrary time, (N − 1)pk transactions are in the commit phase (on average); each of
them has issued lwk successful write requests. Since up to the commit phase, write
requests (and write sets) in different transactions may refer to the same data, the average
number of distinct data to be write-locked is again computed in the setting of the general
birthday problem, namely by L

(
1 − (1 − 1

L )(N−1)pklwk
)
. Here, we neglect the fact

that actually fewer write locks my be held, since overlapping write sets of committing
transactions will lead to conflicts and thus aborts with immediate release of already
acquired write locks. The possibility of such conflicts is, however, taken into account in
the probability for successful commit operations (see qk below).

Pi{data unlocked} is then obtained as the ratio of the mean numbers of unlocked
data to all accessible data, i.e.,

Pi{data unlocked} =
L − L

(
1 − (1 − 1

L )(N−1)pklwk
)

L
= (1 − 1

L
)(N−1)pklwk . (7)

Since – with write buffering – each transaction actually only writes on the globally
visible data with the successful commit operation, the effective write rate can be ap-
proximated with 1

E[S] . If we know the probability p
(i)
c,0 that the commit operation of an

arbitrary transaction does not affect the read set of the tagged transaction in state i, we
can approximate Pi{validation successful} by

Pi{validation successful} =

(
1 − 1 − p

(i)
c,0

E[S]

)N−1

. (8)
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Here,
1−p

(i)
c,0

E[S] is the probability that an arbitrary other transaction would cause the tagged
transaction to fail in step i. With the product of the complementary probabilities, we
require that none of the N − 1 other transactions interferes with the tagged transaction.

Let us now determine the probability p
(i)
c,0 as the ratio of successful commit opera-

tions of a committing transaction that do not write to the read set of the tagged trans-
action in state i to all commit operations. Potentially, any set of n

(k)
qw data objects to be

written out of L−n
(k)
qr data objects, to which the committing transaction can write, may

result in a successful commit operation, i.e., we have
(L−n(k)

qr

n
(k)
qw

)
. Here, we subtract the

size of the read set from L, since read set and write set of the committing transaction
necessarily cover distinct data objects.

For the numerator, the number of positive events is the number of combinations in
which n

(k)
qw data objects to be written can be drawn (without putting back) from L −

L
(
1 − (1 − 1

L )lrk+lri+(N−2)pklwk
)
, i.e., we have

(L−L(1−(1− 1
L )(N−2)pklwk+lri+lrk)

n
(k)
qw

)
.

Here, we subtract not only the size of the read set n
(k)
qr of the committing transac-

tion, but also the size of the read set n
(i)
qr of the tagged transaction as well as all

data objects which are currently write-locked by other committing transactions (on
average n

(k)
qw for a single transaction, of which there are (N − 2)pk in the commit

operation). Accessing these write-locked data objects would lead to an unsuccessful
commit operation. Instead of subtracting n

(k)
qr + n

(i)
qr + (N − 2)pkn

(k)
qw above, we sub-

tract L
(
1 − (1 − 1

L)lrk+lri+(N−2)pklwk
)

in order to eliminate write/read requests to
non-distinct data of the tagged and the other committing transactions. Once again, the
solution of the general birthday problem delivers this expression. Note that the tagged
transaction is in state i, while the others are committing in state k and recall that with
lazy locking, read and write sets of the involved transactions are rather decoupled so
that both the read sets of the tagged transaction and of the considered committing trans-
action and the write sets of the other committing transactions may all overlap. Therefore
we subtract only the number of distinct data objects.

Rounding the parameters to reasonable integer values so that the corresponding bi-
nomial coefficients can be computed yields

p
(i)
c,0 =

(�L−L(1−(1− 1
L )(N−2)pklwk+lri+lrk) 

�n(k)
qw �

)
(�L−n

(k)
qr 

�n(k)
qw �

) =

(�L(1− 1
L )(N−2)pklwk+lri+lrk 

�n(k)
qw �

)
(�L−n

(k)
qr 

�n(k)
qw �

) (9)

Combining (7) and (8), we write (6) as follows:

qi = lw (1 − 1
L

)(N−1)pklwk + lr (1 − 1
L

)(N−1)pklwk

(
1 − 1 − p

(i)
c,0

E[S]

)N−1

(10)

With similar arguments as above, we compute probability qk that the commit operation
is successful. Before validation is performed (in analogy to (8) for i = k), the write
locks for all data objects in the write set of the tagged transition have to be acquired.
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Thus, we obtain

qk = P{successful commit} (11)

=

(�L−L(1−(1− 1
L )(N−1)pklwk+lrk) 
�n(k)

qw �

)
(�L−n

(k)
qr 

�n(k)
qw �

) ·
(

1 − 1 − p
(k)
c,0

E[S]

)N−1

=

(�L(1− 1
L )(N−1)pklwk+lrk 

�n(k)
qw �

)
(�L−n

(k)
qr 

�n(k)
qw �

) ·
(

1 − 1 − p
(k)
c,0

E[S]

)N−1

.

The first fraction in this expression follows in analogy to p
(i)
c,0 itself. However, now the

perspective of the tagged transaction is assumed: instead of excluding the read-set items
of another transaction, we require that none of the possibly overlapping write sets of all
other N − 1 transactions (to be turned into write locks) are accessed (while the tagged
transaction cannot write on its own read set a priori).

3.4 Algorithm and Performance Measures

Solving the DTMC-based STM model means iterating over the following equations
until a sufficient precision is reached:

(3) for E[S] (with qi = 1.0 initially)
(4) for pk

(9) for p
(i)
c,0 with n(k)

qw = lwL

(
1 − (1 − 1

L
)k

)
(10) for qi (0 ≤ i < k)

(11) for qk with n(k)
qr = lrL

(
1 − (1 − 1

L
)k

)

On the right-hand side, we indicate definitions that are used in the equations listed on
the left-hand side. In all our experiments with reasonable parameters settings, we have
always encountered convergence of this scheme.

Several STM performance measures may be obtained from the DTMC-based mod-
els. For instance, the values of the non-conflict probabilities or – as a global charac-
teristic – the mean number of data objects referenced in read and/or write sets at an
arbitrary time may be of interest. In the next section, we focus on the following key
STM performance measures of an arbitrary transaction:

– mean number of restarts: E[R] = E[S0] − 1 (see (3) for E[S0])
– mean number of steps of a transaction (counting lock requests and the final commit

step): E[S] = Σk
i=0

1
Πk

j=iqj

– mean sizes of read and write sets of a transaction: E[Q] = L
(
1 − (1 − 1

L )E[I]
)

(see (5) for E[I])
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The parameters E[R] and E[S] should be interpreted together to assess the quality of
the concurrency control scheme. Obviously, the smaller the mean number of restarts,
the better the performance of the STM system. A smaller value of E[S] (for similar
values of E[R] and fixed k) indicates that on the average the restarts occurred earlier in
the sequence of read and write operations. Then, less work is lost per restart. Generally,
the mean number of transaction steps summarizes the total cost of read/write barrier
operations inside a transaction.

The average number E[Q] of read/write set sizes of a transaction may serve as a mea-
sure of the total cost of maintaining STM-related meta-data information in the system
(when multiplied with the lifetime of the transaction E[S]).

4 Numerical Results

In this section, we apply the DTMC-based model proposed in this paper to study the be-
havior of a transactional memory system. We first validate the analytic model with data
from a discrete-event simulation, which will show that the DTMC-based model cap-
tures typical trends observed in optimistic STM with write buffering and lazy locking.
Further experiments with the analytic model demonstrate its application in a sensitivity
analysis of STM performance.

Especially for larger numbers of N or k and/or often small values for performance
measures (like the mean number of restarts), a discrete-event simulation requires rela-
tively long run times for statistically significant results, whereas the numeric evaluation
of the analytic iteration scheme of the previous section produces results in Maple [18]
quasi immediately after a few iterations. For larger values of N or k, the number of it-
erations may increase beyond 20 for convergence of non-conflict probabilities qi within
an absolute deviation of 10−4.

As opposed to the DTMC-based model, the simulation model implements N transac-
tions explicitly as concurrent processes, of which each one initially selects a sequence
of k read and write accesses according to the probability lw. This sequence is main-
tained throughout the lifetime of the (simulated) transaction, i.e., after an abort, the
transaction retries the identical sequence of operations (unlike the analytical model).
Moreover, the simulation selects exponentially distributed delays for read and write op-
erations. Regarding concurrency control and contention management, the simulation
model implements the logic described in Section 2. More details about the settings for
the simulation model can be found in [19]. The simulation experiments have been per-
formed in the tool AnyLogic [20] with a confidence level of 95% and a relative error of
5% (over all shown performance results).

Figure 2 shows the behavior of the performance measures E[R] and E[Q] as the
probability lw increases. The total number of transactional data L, the number of threads
N and the static length of transactions k were set to L = 1 mio, N = 16, k = 100,
respectively. These values fall in the ranges of typical benchmark applications [21]. We
do not show curves for the mean number of steps of a transaction E[S], since their
shapes (with different scaling) are very similar to the curves for E[R] (left-hand side of
Figure 2). The solid and dashed lines correspond to the analytical and simulation results,
respectively. Starting from lw = 0 with no conflicts, the mean number of restarts E[R]
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Fig. 2. Mean number of restarts E[R] per transaction (left) and mean size of read/write sets E[Q]
per transaction (right), each vs. write probability lw ∈ [0, 1] (for L = 1 mio, N = 16, k = 100)

per transactions increase with an increasing share of write operations (up to lw = 0.4).
Conflicts are mainly caused by failed validations after reads or in commit operations.
With fewer and fewer read operations, E[R] decreases again, but does not reach 0 again
at lw = 1 due to the possibility of collisions at write-lock acquisition for the commit.
While simulation and analytical results for E[R] are in good agreement in the range
lw ∈ [0.0, 0.3], the analytical model underestimates the number of restarts for lw ∈
[0.4, 0.8] by up to 15% in terms of relative errors. With almost only writing operations,
i.e., lw near 1, the relationship of the curves is inverted.

On the right-hand side of Figure 2, the mean combined size of read and write sets per
transaction, E[Q], behaves invertedly to E[R]. A minimum of E[Q] is shaped near the
center range of lw, where E[R] assumes the maximum. The averaged sizes of read and
write sets of a transaction will be smaller, the more often this transaction restarts, since
it spends relatively more time in states with smaller read/write set sizes. At first sight,
the deviation between simulation and analysis appear more pronounced for E[Q] (than
for E[R]), but relative errors are much smaller (below 1%). Suprisingly, the simulation
curve for E[Q] is approximated better for large values of lw than for small values of lw.

In the light of the mentioned fundamental differences between simulation model and
DTMC-based model, the analytical results prove sufficiently accurate. Still, we point
out that the motivation of this analytical approach does not lie in producing accurate
numbers for specific existing benchmarks, but in efficiently studying trends and trade-
offs for projected system parameter values (not yet realizable in current implementa-
tions). In the following, we illustrate the intended use of the DTMC-based model.

In the remaining experiments, we fix the share of write operations to lw = 0.3, since
fewer write than read operations (often much less) are most common in applications
(see also [21]). For different values of k, Figure 3 shows by which percentages E[R]
(left) and E[S] (right) are increased (relative to the result for the previous value of N )
when the number of threads/processors N is doubled. Here, the number of transactional
data is fixed at L = 1 million. For the incremental increases, results for E[R] are
provided for values N = 32, 64, 128, 256, 512 (with initial reference values at N =
16), while for E[R] the incremental increases are already computed for N = 16 with
respect to the number of transaction steps k + 1 in the conflict-free case. For N = 16,
the values for the mean number of restarts are E[R] = 1.10×10−3, 3.60×10−3, 7.51×
10−3, 12.73× 10−3, 19.36× 10−3 for k = 25, 50, 75, 100, 125, respectively.
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Fig. 3. Incremental increase in mean number of restarts E[R] per transaction (left) and incremen-
tal increase of mean number of steps E[S] per transaction (right), each in per cent, whenever N
is doubled (N = 16, 32, 64, 128, 256, 512) for L = 1 mio and different values of k

From Figure 3, we see that – as N doubles, i.e., is increased by 100 % – E[R] in-
creases dramatically (by up to 250 % per step, depending on the specific N and k),
while E[S] grows moderately in comparison. The largest jump of 33% for E[S] occurs
for k = 100, when N is doubled from N = 128 to N = 256. Especially for lower
values of N , introducing more parallelism seems to result in relatively more restarts
earlier in the lifetime of transactions so that their average total lifetime is not affected
too much. Interestingly, the incremental increases for E[R] tend to be more pronounced
for smaller values of k, while for E[S] the incremental increases are larger for larger
values of k. In other words, shorter transactions suffer more in terms of number of
restarts, while longer transactions suffer more in terms of total number of steps (when
N is doubled). For the given value of L and at least for longer transactions (k = 100
or 125), the increase of E[S] by around 30 % in the step from N = 256 to N = 512
already indicates scalability problems of STM with high parallelism. If the processing
power is doubled (increased by 100 %), an application will not run twice as fast, but
only around 70 % faster. Of course, more specific data access patterns than the assumed
i.i.d. read/write accesses on L may adversely affect these numbers. Also, the funda-
mental trends in Figure 3 only consider performance loss due to conflicts and neglect
operational overhead due to meta-data organization.

In the given setting, optimistic STM with write buffering and lazy locking – though
better than most other variants – still peforms poorly for N = 512: the mean number
of restarts per transaction E[R] range from 0.34 (for k = 25) to 1.51 (for k = 125),
while e.g. a transaction with k = 100 operations requires 169 steps on average (also see
curve for L = 1 million in Figure 4). For fixed N , performance decreases faster with
increasing k, when N is smaller. For instance, doubling k for N = 16 increases E[R]
by a factor of around 3.5, while for N = 512 this factor is around 2.

Finally, we also show how strongly STM performance depends on L. For different
values of L (between 100,000 and 100 millions), Figure 4 plots the increase of the mean
number of steps per transaction (E[S] in absolute numbers) as N increases. Naturally,
fewer transactional data – under otherwise unchanged conditions – lead to more con-
flicts and thus longer transaction lifetimes. Initially, i.e., with one processor (N = 1),
each transaction finishes in 101 steps without any conflicts. Already with 10 times as
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Fig. 4. Mean number of steps E[S] per transaction vs N for different L (and fixed k = 100)

many transactional data objects, the performance at N = 512 becomes more than ac-
ceptable. In this case, transactions with k = 100 read/write operations require 110.66
steps on average to finish. With respect to mean number of restarts, we also observed
that – in ranges common for applications – increasing L by a factor of 10 decreases
E[R] by a factor of around 10 – especially for smaller values of N . For larger N and
small L, the reduction in E[R] diminishes.

5 Conclusions

We adapted an approach to model base STM systems to optimistic STM with write
buffering and lazy locking. Based on few critical input parameters and amenable to
efficient evaluation, the presented analytic model helps us to argue about the perfor-
mance tradeoffs in optimistic STM – also for design choices realizable only in future
implementations. Some rules of thumb shedding light on the complex parameter inter-
actions could be identified. Via discrete-event simulation, especially for small values
as encountered for E[R] and with statistical significance, this would be a computation-
ally expensive task. In experiments on existing STM systems (with limited parameter
sets) – apart from being time-consuming as well – trends are often also blurred due to
implementation specifics and other effects, like varying transaction sizes, etc.
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Abstract. In this paper, a control theory is used for planning inspections in 
service of fatigue-sensitive aircraft structure components under crack 
propagation. One of the most important features of control theory is its great 
generality, enabling one to analyze diverse systems within one unified 
framework. A key idea, which has emerged from this study, is the necessity of 
viewing the process of planning in-service inspections as an adaptive control 
process. Adaptation means the ability of self-modification and self-adjustment 
in accordance with varying conditions of environment. The adaptive control of 
inspection planning process in service of fatigued aircraft structures differs 
from ordinary stochastic control of inspection planning process in that it 
attempts to reevaluate itself in the light of uncertainties in service of aircraft 
structures as they unfold and change. Thus, a catastrophic accident during flight 
can be avoided.  

Keywords: Aircraft, fatigue crack, inspection, optimal adaptive planning. 

1   Introduction 

In spite of decades of investigation, fatigue response of materials is yet to be fully 
understood. This is partially due to the complexity of loading at which two or more 
loading axes fluctuate with time. Examples of structures experiencing such complex 
loadings are automobile, aircraft, off-shores, railways and nuclear plants. Fluctuations 
of stress and/or strains are difficult to avoid in many practical engineering situations 
and are very important in design against fatigue failure. There is a worldwide need to 
rehabilitate civil infrastructure. New materials and methods are being broadly 
investigated to alleviate current problems and provide better and more reliable future 
services. 

While most industrial failures involve fatigue, the assessment of the fatigue 
reliability of industrial components being subjected to various dynamic loading 
situations is one of the most difficult engineering problems. This is because material 
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degradation processes due to fatigue depend upon material characteristics, component 
geometry, loading history and environmental conditions. 

According to many experimental results and field data, even in well-controlled 
laboratory conditions under constant amplitude loading, crack growth results usually 
show a considerable statistical variability. 

Fatigue is one of the most important problems of aircraft arising from their nature 
as multiple-component structures, subjected to random dynamic loads. The analysis 
of fatigue crack growth is one of the most important tasks in the design and life 
prediction of aircraft fatigue-sensitive structures (for instance, wing, fuselage) and 
their components (for instance, aileron or balancing flap as part of the wing panel, 
stringer, etc.). 

Airworthiness regulations require proof that aircraft can be operated safely. This 
implies that critical components must be replaced or repaired before safety is 
compromised. For guaranteeing safety, the structural life ceiling limits of the fleet 
aircraft are defined from three distinct approaches: Safe-Life, Fail-Safe, and Damage-
Tolerant approaches. 

The common objectives to define fleet aircraft lives by the three approaches are to 
ensure safety while at the same time reducing total ownership costs. Although the 
objectives of the three approaches are the same, they vary with regard to the 
fundamental definition of service life. 

The Safe-Life approach is based on the concept that significant damage, i.e. fatigue 
cracking, will not develop during the service life of a component. The life is initially 
determined from fatigue test data and calculations using a cumulative damage ‘‘law’’. 
Then the design Safe-Life is obtained by applying a safety factor. When the service 
life equals the design Safe-Life the component must be replaced.  

The Fail-Safe approach assumes initial damage as manufactured and its subsequent 
growth during service to detectable crack sizes or greater. Service life in Fail-Safe 
structures can thus be defined as the time to a service detectable damage. 

However, there are two major drawbacks to the Safe-Life and Fail-Safe approaches: 
(1) components are taken out of service even though they may have substantial 
remaining lives; (2) despite all precautions, cracks sometimes occur prematurely. 
These facts led the Airlines to introduce the Damage Tolerance approach. 

The Damage Tolerance approach is based on the concept that damage can occur 
and develop during the service life of a component. Also, it assumes that cracks or 
flaws can be present in new structures. Safety is obtained from this approach by the 
requirements that either (1) any damage will be detected by routine inspection before 
it results in a dangerous reduction of the static strength (inspectable components), or  
(2) initial damage shall not grow to a dangerous size during the service life (non-
inspectable components). For Damage Tolerance approach to be successful it must be 
possible to: 

• Define either a minimum crack size that will not go undetected during routine 
inspections, or else an initial crack size, nominally based on pre-service inspection 
capability. 

• Predict crack growth during the time until the next inspection or until the design 
service life is reached.  
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An adjunct to Damage Tolerance is Durability analysis. This is an economic life 
assessment for components that are not safety-critical. The prediction of crack growth 
is similar to that for Damage Tolerance approach, except that a much smaller initial 
crack size is used. 

2   Stochastic Modelling 

To capture the statistical nature of fatigue crack growth, different stochastic models 
have been proposed in the literature. Some of the models are purely based on direct 
curve fitting of the random crack growth data, including their mean value and 
standard deviation (Bogdanoff and Kozin [1]). These models, however, have been 
criticized by other researchers, because less crack growth mechanisms have been 
included in them. To overcome this difficulty, many probabilistic models adopted the 
crack growth equations proposed by fatigue experimentalists, and randomized the 
equations by including random factors into them (Lin and Yang [2]; Yang et al. [3]; 
Yang and Manning [4]; Nechval et al. [5-7]; Straub and Faber [8]). The random factor 
may be a random variable, a random process of time, or a random process of space. It 
then creates a random differential equation. The solution of the differential equation 
reveals the probabilistic nature as well as the scatter phenomenon of the fatigue crack 
growth. To justify the applicability of the probabilistic models mentioned above, 
fatigue crack growth data are needed. However, it is rather time-consuming to carry 
out experiments to obtain a set of statistical meaningful fatigue crack growth data. To 
the writers’ knowledge, there are only a few data sets available so far for researchers 
to verify their probabilistic models. Among them, the most famous data set perhaps is 
the one produced by Virkler et al. [9] more than twenty years ago. More frequently 
used data sets include one reported by Ghonem and Dore [10]. Itagaki and his 
associates have also produced some statistically meaningful fatigue crack growth 
data, but have not been mentioned very often (Itagaki et al. [11]). In fact, many 
probabilistic fatigue crack growth models are either lack of experimental verification 
or just verified by only one of the above data sets. It is suspected that a model may 
explain a data set well but fail to explain another data set. The universal applicability 
of many probabilistic models still needs to be checked carefully by other available 
data sets. 

Many probabilistic models of fatigue crack growth are based on the deterministic 
crack growth equations. The most well known equation is 

btaq
t

ta
))((

d

)(d =   (1) 

in which q and b are constants to be evaluated from the crack growth observations. 
The independent variable t can be interpreted as either stress cycles, flight hours, or 
flights depending on the applications. It is noted that the power-law form of q(a(t))b at 
the right hand side of  (1) can be used to fit some fatigue crack growth data 
appropriately and is also compatible with the concept of Paris–Erdogan law (Paris and 
Erdogan [12]). The service time for a crack to grow from size a(t0) to a(t) (where t > 
t0) can be found by performing the necessary integration  
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For the particular case (when b=1), it can be shown, using Lopital's rule, that 
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Thus, we have obtained the Exponential model  
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The Exponential model is quite often used for calculation of growth of 
population/bacteria etc. The basic equation of it is 
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Rewrite (4) as 
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where τj  is the time of the jth in-service inspection of the aircraft structure 
component, a(τj) is the fatigue crack size detected in the component at the jth 
inspection. 

It is assumed, in this paper, that the parameter q is a random variable, i.e. q≡Q, 
which can take values within a finite set {q(1), q(2), …, q(r)}. However, in order to 
simplify the computation, at first we consider the case when only two values are 
chosen. Assume that, at any sampling time instant, the random parameter Q takes on 
two values, q(1) and q(2), with probabilities p and 1-p, respectively, and that the value 
of the probability p is not known. It takes on two values p1 and p2 with a priori 
probability ξ and 1−ξ, respectively. Now (7) can be rewritten as 

jjj Quxx +=+1 ,   j=0, 1, … ,   (8) 

where 

)],(ln[ jj ax τ=     (9) 

jjju ττ −= +1    (10) 

represents the interval between the jth and (j+1)th inspections. 



358 K. Nechval et al. 

3   Terminal-Control Problem 

Let us suppose that a fatigue-sensitive component such as, say, upper longeron [13] 
(Fig. 1)  has  been  found  cracked  on  one aircraft at the time τ0. The detectable crack 
length is a0=a(τ0). The maximum allowable crack length is a• =4.75 mm (Fig. 2).  

 

 

Fig. 1. Inspection points of the upper longeron of RNLAF F-16 aircraft 

 

 

Fig. 2. RNLAF longeron mean crack growth curve. Functional impairment at 5310 flight hours. 
(assumed initial crack = 0.178 mm; critical crack length = 4.75 mm). 
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We plan to carry out N in-service inspections of the above component and are in 
need to assign intervals, u0, u1, …, uN−1, between sequential inspections so that the 
performance index 

{ }, )( 2
NxxEI −= •  (11) 

where x• = ln(a•), is minimized. 

4   Optimal Adaptive Inspection Planning Process 

The design is initiated with the determination of the a posteriori probabilities 
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Let the minimum of I be denoted by fN(x0,ξ), where  

x0 = ln(a0), (16) 

a0 is the initial crack length detected in the component. The minimum of I is a 
function of x0 and the a priori probability ξ, and is given by 
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At any sampling instant j + 1, xj+1 takes on two values: 
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For j = 0, x1 takes on the value 

0
)1(

0
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1 uqxx +=    with probability p0  (20) 

and the value 

0
)2(

0
)2(

1 uqxx +=    with probability 1−p0,   (21) 

where p0 is the expected value of p and is given by 
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Hence, for N=1, 
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For N ≥ 2, invoking the principle of optimality yields 
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where )1(:1 q
ξ , )2(:1 q

ξ , ,)1(
1x and )2(

1x are defined in (14), (15), (20), and (21), 

respectively. As a result of the first decision, the process will be transformed to one of 

the two possible states )1(
1x or )2(

1x with probability p0 or 1−p0. If the process moves to 

state )1(x , the a posteriori probability )1(:1 q
ξ is computed. If the process moves to state 

)2(x , the a posteriori probability )2(:1q
ξ is determined. 

In a one-stage process, the optimum decision is found by differentiating (23) with 
respect to u0 and equating the partial derivative to zero. This leads to 
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are functions of ξ. By defining 
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it can readily be shown that E{Q} can be written as 
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Similarly, by defining 

  2)2(2)1(2 ])[1(][}{ qpqpQE iii −+= ,   i=1, 2,    (31) 



Optimal Adaptive Inspection Planning Process in Service of Fatigued Aircraft Structures 361 

E{Q2} can be expressed in terms of ξ as 
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The minimum for the one-stage process is given by 
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the optimum decision u0 may be written as 
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It can be shown by mathematical induction that 
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The minimum for a (k+1)-stage process is  
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From this recurrence relationship it is found that the optimum decision is given by  
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From (40) and (41) it follows that 
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Equations (33), (34), (47), and (48) are recurrence relationships with which it is 
possible to evaluate the minimum for an N-stage process fN(x0,ξ).  

With the initial state x0 and initial information ξ, the first optimum decision is 

),)(( 010 xxhu N −= •
− ξ    (51) 

where )(1 ξ−Nh  is evaluated from (42) to (46) and (48) to (50), with k = N −1. The 

second optimum decision should be made after observation of the random variable Q 
in the first decision stage. If it is observed that Q = q(1),  the a posteriori probability 
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ξ and the new state 
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are used as the initial information for the remaining N −1 stages. The second optimum 
decision can be determined in similar manner and is given by    
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If the observed value of Q after the first decision is q(2), the a posteriori probability 
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are used as the initial information and the initial state for the remaining N −1 stages. 
The second optimum decision is then given by 
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1:121 )2( xxhu

qN −= •
− ξ .   (55) 

Thus, after the first inspection, the computer must calculate the a posteriori 
probability )1(:1 q

ξ or )2(:2 q
ξ , the new state x1 and the second optimum decision u1. 

If the observed value of Q after the second decision is q(1), the a posteriori probability 
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ξ  and the new state 

1
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are used as the initial information and the initial state for the remaining N - 2 stages, 
in particular, to determine the third optimum decision 
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In (56), if )1(
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ξ and u1 is given by (53); and if 
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If the observed value of Q after the second decision is q(2), the a posteriori probability 
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are used to determine the third optimum decision, which is 
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By repeated observation and computation in the above manner, the optimum-
inspection policy (u0, …, uN−1) for the fatigue-sensitive component, which has been 
found cracked on one aircraft at the time τ0, can be determined.  

Each new optimum decision is made by using new information resulting from the 
observation of the random variable Q. 

It will be noted that if the probability p is assumed to be known, then the minimum 
of (11) can be found as follows. Let the minimum of (11) be 
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For N≥2, the minimum of (11) is 
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with u0 given by (62). 

For an illustration, one of the versions (for N=5) of adaptive minimizing the 
expected value of the performance index (11) for the upper longeron of RNLAF F-16 
aircraft is plotted in Fig. 3. 
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Fig. 3. Inspection schedule version for the upper longeron of RNLAF F-16 aircraft 

Fig.4 shows the deterministic inspection requirements [14] for the RNLAF 
longerons. 

 

 

Fig. 4. Deterministic Damage Tolerance inspection requirements for the RNLAF longerons 
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Now consider the case when the parameter q is a random variable, i.e. q≡Q, which 
can take values q(1), q(2), …, q(r) with probabilities p1, p2, …, pr, respectively, where  
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These probabilities are unknown. Suppose the parameter Q is observed n times. Let ni 
= number of occurrences of Q = q(i). Clearly  
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,
 ..., ,

) ..., , , ..., , ,| ..., ,( 1
1

1
1

)()1(
1

rn
r

n

r
r

r
r pp

nn

n
ppqqnnnL L⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  (68) 

a multinomial distribution. 
The convenient prior distribution to use over the pi’s is a member of the 

multidimensional Beta family, i.e., 
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where Β(m1, …, mr) is the generalized Beta function defined by 
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For a positive integer m, Γ(m)=(m−1)! 
To verify that (69) is in fact a frequency function, we note that 
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Restricting to the case of three random variables (r−1=3) for convenience, and 
recalling that  
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Using repeatedly the relation 
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the integral in (74) is readily seen to equal unity. This result is easily generalized to 
any number of variables. Thus (69) is a frequency function. 

From our choice of likelihood function and prior distribution it follows directly that 
the ensuing posterior distribution will be a new member of the same multidimensional 
Beta family (a consequence of the judicious choice of the prior family). 

The new parameters (mi″) are easily obtained from the old ones (mi′) and the 
observed data (ni) by means of the following rule: mi″= mi′+ni. The prior parameters, 
(m0, …, mr) have to be selected. If the decision-maker has prior beliefs it is logical to 
select the parameters to reflect these. 

If we integrate (69) over all pi except pj we obtain the marginal prior distribution of pj, 
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The prior probability of Q = q(j) is given by  
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Thus, with the determination of the a posteriori distributions 
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the marginal a posteriori distributions 
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and the a posteriori probabilities 
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we obtain the following. 
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For N=1, the minimum of (11) is 
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For N≥2, the minimum of (11) is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

=
∑ )(  min),( )(

11
1

00
0

i
N

r

i
i

u
N xfpxf ξ  

 

2
0

11
2

11
2

11
2

0 )(
)}({

)}({
)}({))(( xx

GQE

QGE
GExxG

QN

QN
QNN −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−= •

−

−
−

•

ξ
ξ

ξξ    (85) 

with  

 ),(
)}({

)}({
))(( 0

11
2

11
010 xx

GQE

QGE
xxhu

QN

QN
N −=−= •

−

−•
− ξ

ξ
ξ   (86) 

where 

∑
=

− =
r

i
q

i
iQN iGqpQGE

0
1

)(
011 ),()}({ )(ξξ    ∑

=
− =

r

i
q

i
iQN iGqpGQE

0
1

2)(
011

2 ).(][)}({ )(ξξ  (87) 

5   Optimal Number of In-Service Inspections 

By plotting  fN(x0,ξ)  versus N the optimal number of  in-service inspections N* can be 
determined as 

    ],),([infarg 0 NcxfcN NNf
N

+=∗ ξ      (88) 

where cf and cN represent the specified weight coefficients. Fig. 5 illustrates the 
graphical method of finding the optimal number of in-service inspections. 
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Fig. 5. Graphical method of finding the optimal number N*of in-service inspections 

6   Conclusion 

An analytical solution to the terminal-control problem is generally not easy to derive, 
and numerical procedures should be followed. In this paper, the design of adaptive 
and learning control processes is considered. The design of such processes is carried 
out on the basis of the Bayes theorem and the functional-equation approach of 
dynamic programming. An inspection planning process of cracked aircraft structure 
component is used to illustrate the design procedure. 
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Abstract. The nowadays explosion of new media distribution channels
and the new digital tools based production work-flows require an imme-
diate revision of the traditional ways in which media industry makes its
business. Leading experts agree in recognizing automation of processes as
one of the key for success in this scenario, especially for the potential pro-
duction costs reduction introduced by it. However, there is a substantial
lack of precision in evaluating the overall economical weight of this new
business, which is particularly due to the extra complexity introduced by
the advent of non-linear consumption paradigms (like the Internet), in
which user’s feedback have a central importance. This paper represents
an attempt to apply performance evaluation techniques to multi-channel
productions, and it illustrates how these methods can help in optimizing
the evaluation of costs of this kind of processes.

1 Introduction

The nowadays explosion of new media distribution channels and the new pro-
duction work-flows based on digital computer-based tools requiere an immediate
revision of the traditional ways of making business in media industry. Recent
market surveys [4][11] are demonstrating that in a very near future the Inter-
net based multimedia fruition model will undermine the existing one-to-many
broadcasting model, thus putting under serious discussion an important sector
of the European tertiary economy.

To cope with these upcoming changes, broadcasters have been revolutioniz-
ing their point of view, trying to embrace new models into their facilities rather
than being routed by them [1][2]. However the overall economic convenience
of these initiatives is still to be fully proved, and the risk is that of making
bets rather than plans. Leading experts all agree in recognizing automation of
processes as one of the key for success in this scenario, because of the poten-
tial production costs reduction introduced by it. More recently, the adoption of
tools for intelligent analysis and synthesis of multimedia data are seen as sub-
stantial enabling factors in making interactive, multi-channel and multi-purpose
productions value-returning [6][7][9].
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However, there is a substantial lack of precision in evaluating the overall eco-
nomical weight of this new business, which is particularly due to the extra com-
plexity introduced by the advent of non-linear consumption paradigms (like the
Internet), in which users’ feedback have a central importance. Though modelling
users’ behaviors, attitudes and profiles would be a key enabling factor in this
scenario, very often this is not practically feasible due to a number of technologi-
cal and ethical limitations. An alternative approach can be found in introducing
stochastic modelling. To address these complex problems with a well-grounded
and robust approach, a crucial aspect is represented by the ability of perform-
ing a correct process modelling, which should include all the relevant stochastic
elements. This paper represents an attempt to apply performance evaluation
techniques to multi-channel productions, and it illustrates how these methods
can help in optimizing the evaluation of costs of this kind of processes.

2 The Considered System

The main idea of this work is to deal with multimedia contents published on a
given platform, at regularly recurring intervals. The collection of these contents
constitutes a series. We can better explain the series concept, using the defi-
nition of [12], as any ”publication in any medium issued under the same title
in a succession of discrete parts, usually numbered (or dated) and appearing at
regular or irregular intervals with no predetermined conclusion”. In our models
we will focus only on regular intervals of equal size D.

We assume throughout this paper that an episode is the main medial content
to be produced by a deadline, equal to the interval size D. A medial content
is, for example, a single episode of a television series that must be broadcasted
by a certain date and time. Another example of main content is an issue of a
newscast. Together with the main content, we suppose the making of additional
extra contents. These extras are, for example, small video packaged from the
main content to be broadcasted on the program’s web site, or even full spin-off
programs to be scheduled during the intervals between the main episodes. More
in general we can say that the extras are autonomous and independent contents
that may be published on different broadcasting platforms. The extras can also
be produced by an automatic generation process, however we imagine that their
production will require the same resources used for the main production: that
is, extras cannot be produced in parallel with the main contents. We imagine
the existence of a key point P , that we will call the poll deadline, that identifies
a time interval between the production of two consecutive episodes, that can be
used to gather information to improve the content of the next episode, based
on reactions to the previous one. For example, it can correspond to the results
obtained by a generic poll system, used to probe the opinion of the audience
about it. We imagine the size of this feedback window fixed in length, and equal
for all the episodes composing the series. While in the real-world productions, as
far as we know, there aren’t yet any poll-based tv series to use as an examples, we
can think here to the various reality-shows. In these programs, the content (i.e.
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the participants) of the next episode will vary considering the audience vote.
Other examples came from some theater dramas, during which the audience
is requested to choose one of the possible endings, e.g. Shear Madness, a very
famous American comedy [3]. By some extend, we can also consider as examples
the movies alternative endings published within their DVD versions, e.g. I Am
Legend which DVD includes an alternate ending more similar to that originally
intended by the story author, Richard Matheson. In both cases the audience
is required to choose between two or more alternatives already produced. This
means that between those alternatives there is not necessarily the public’s most
favored one. Moreover, all the alternatives published were produced and thus
were a cost for the overall production of that movie.

We also assume that, if the production is guided by the poll results, is possible
to produce episodes more matching with the audience expectancies, and we are
able to estimate this gain. Exploiting the effects of the poll system can become
a powerful retention tool for expanding and consolidating the audience during
the series production [8][10]. With the help of such a tool is possible to create
a product matching with the audience expectancies without having to produce
unnecessary contents. If we consider a newscast, the poll can be interpreted
as the possibility to wait for the latest events to report. We assume that the
extra contents are made in a time frame that starts after the completion of the
current main content and finishes at the end of the next episode poll. That is,
their production must finish strictly before the starting of the production of the
next episode poll dependent content. The extras exceeding this deadline in their
making will not be considered.

As mentioned in the Section 1, there is a lack of precision in evaluating
the economical impact of a production influenced by a non-linear consumption
paradigm. In our models we will use a common metric that we will generically
address as quality: an abstract measurement of such a profit. This matric may
be used to express the expected overall income of the production, either in terms
of public share or financial returns. By using the word abstract we mean that
while this profit cannot be exactly calculated, we can nonetheless describe its
general behavior. We will consider this metric to be additive: that is that the
total quality can be obtained by summing up the qualities coming from the
different parts composing an episode. The considered system will be analyzed
using three models of increasing complexity. All the models will share a common
measurement of the quality of the poll, described in Section 3.

3 The Poll Model

As introduced in Section 2, we imagine a poll deadline P , that defines the time
interval that might be used to gather information that can be used to improve
the quality of the next episode. This information can came either from users’
feedback (as in the case of reality shows), or from the chance of considering
”breaking-news” (as in the case of newscasts).

In case of users’ feedback, we call R a continuous positive random variable
that describes the time required by a user to answer the poll and provide her/his
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feedback. Suppose that we expect Nu users to give their feedback. We call S(P )
a discrete random variable that counts the number of answers received before the
deadline P . Users can be considered independent, and thus it can be defined as:

S(P ) = Binom(Nu, R(P )) (1)

where Binom(N, p) denotes a Binomial distribution with population parameter
N and probability parameter p, and R(t) denotes the c.d.f. of random variable R.

Let us call qF (n) a multiplicative factor that can increase or decrease the total
quality of a production, when feedback from n users out of the Nu population
is received. qF (n) should be minimum when n = 0 (i.e.: no feedback has been
received, and thus taken into account), and maximum when n = N (i.e.: when
the feedback came from all the users that has been considered). We can call
Q̄F (P ) the average expected feedback quality, when the deadline is set to P . It
can be computed as:

Q̄F (P ) =
Nu∑
i=0

Pr{S(P ) = i} · qF (i) (2)

For the breaking news example, we imagine to have Q̄F (P ) computed from
statistics regarding the probability of having an important event that must be
considered before P .

4 The Basic Model

In this section we discuss the basic version of the proposed model. Here we
assume the making of a single main content whose production starts right after
the poll ending. If the main content is finished before the deadline, the remaining
time can be used for producing the extra contents. The production of these extra
contents can continue even after the deadline, but must finish before the next
episode’s poll end. This ensures that at least the next episode’s poll time is used
for extras production. Figure 1 shows a diagram of a possible configuration for
this production.

Let us recall that D defines the episode deadline, and P the poll window. Let
us call M a continuous random variable that defines the time required to finish
the main production. If the contents would require more time than available
(that is more than D − P ), the production will be forced to finish within the
deadline, reducing its quality.

We call qM (t) the quality of the production that can be achieved by the
shortening of a t time. If the production can finish before the deadline, then
t ≤ 0. Otherwise, if the production would have required D − P + α time, then
t = α > 0, since it must have been shortened of α in order to fit the D −P slot.
Therefore we expect qM (t) being at its maximum value for t < 0, and we expect
qM (t) → 0 for t → ∞. For example, a possible definition of the production
quality function can be:

qM (t) =

{
qmax for t ≤ 0
qmax e−( t

qs
) for t > 0

(3)
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Fig. 1. The basic model

where qmax is the maximum quality that can be achieved, and qs expresses
an exponential decay rate at which the quality decreases as the production is
shortened. We can then compute the average quality of the main production
content Q̄M (P ) as:

Q̄M (P ) =
∫ ∞

0
m(t)qM (t − D + P ) dt (4)

where m(t) is the p.d.f. of distribution M . In order to simplify the presentation in
Equation (4), and in all subsequent equations, we have not shown the dependence
on D.

We imagine that the time wasted waiting for the polling, and the time left
before the deadline can be used to produce extra contents. We call Ei a random
variable that describes the time required to produce the i-th extra content. We
imagine that we put a limit Ne to the number of extra contents that can be
produced, and that all the Ei are independent. We define with NE(t) a random
variable that describes the the number of extra contents that can be produced
if the time left available to the production of extra contents is t. We have that:

Pr{NE(t) = n} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pr{E1 > t} n = 0∫ t

0
en(s)Pr{En+1 > t − s} ds 0 < n < Ne

Pr{
Ne∑
i=1

Ei ≤ t} n = Ne

(5)

where en(s) is the p.d.f. of the random variable Sn =
∑n

i=1 Ei. We can use NE(t)
to compute NED|P , the distribution of the number of extra contents, given a
deadline P . In particular, we have that:

Pr{NED = n|P} = Pr{NE(P ) = n}Pr{M ≥ D − P} +

+
∫ D−P

0
Pr{NE(D − s) = n} m(s) ds
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The second term of the r.h.s. of the previous equation takes into account the
fact that if the main production can finish earlier than the deadline (at time
s) then all the remaining time (D − s) can be used to produce extra contents.
The first term instead takes into account the cases where the production time is
truncated at D−P to respect the deadline, leaving only P (the time before the
arrival of the results of the next poll) for extra contents creation.

If we call qe(i) the quality that we can obtain if i extra contents are produced,
then we can compute the average quality of the extra contents Q̄E(P ) as:

Q̄E(P ) =
Ne∑
i=0

Pr{NED(t) = i|P}qe(i) (6)

For example a simple possible definition for qe(i) can be:

qe(i) = i · αe (7)

where αe is a constant that describes the quality gained for each extra content.
We can use the previous definitions to compute the average production quality
Q̄1(P ), given a deadline P , as:

Q̄1(P ) = Q̄M (P )Q̄F (P ) + Q̄E(P ) (8)

We can use Equation (8) to find the optimal P to achieve the highest possible
quality.
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An example of the results we can obtain by this model is shown in Figure 2,
where the elements composing the quality are visible. In that experiment, we
used a seven days deadline. We expected the poll answers to arrive following an
exponential distribution with mean of 2 days. The time required to complete
the main content follows an uniform distribution between 1 and 3 days. We also
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assumed a maximum of eight extra content to be produced, and their distribution
is a gaussian one with a mean of 1 day and variance of 0.5 days.

The main production quality followed Equation (3) with qmax = 10 and qs = 1
day(s). Also, the poll quality function was set to qF (n) = 1

2 + 3
2

√
n

Nu
with

Nu = 100 . qe(i) follows Equation (7) with αe = 2.5.
It seems quite clear how the poll factor is influencing the main production

quality: the more poll information obtained: if all the expected people responds
to the poll, the main content quality is doubled. If none of the expected peo-
ple answers the poll, then the main content quality is halved. This is because
we assume that the main content will be made coherently with the audience
expectancies. In the same figure is also important to notice that the quality of
the main production decrease approaching the deadline. This is because the less
probability we have to complete the main content, the less content quality we
can obtain. About the extra, the more we are distant from the end of the poll,
the more extra we are able to produce because of the time at our disposal. The
quality of the extra is proportional to the number of the extras produced, which
in turn are proportional to the time available before the start of the next episode
production. This time quantity became larger as the poll deadline increases, this
is due to the fact that with a larger poll deadline there is an higher chance to
truncate the making of the main production in favor of extra content generation.
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Fig. 3. Quality as function of the production a) mean, b) variance

In Figure 3 we consider the main content making being normal distributed,
and we studied the whole production quality as a function of both production
mean and variance. Also for this example we used a seven day deadline. In the
first case a) we can observe how the bigger mean value we have, the bigger
quality production we gain. It seems to be a good solution to end the poll before
the exact mean of the main production because, otherwise, the drop in quality
for not completing the main episode is hardly compensated by other factors.
For the variance example b) we can see how rising the variance influences the
maximum obtainable production quality.
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5 Adding an Institutional Content

Until here we assumed the main content to be a single entity. However this
assumption is quite non-realistic: in most of the productions there are tasks that
must be performed, and that are independent from the feedback. For those tasks,
is not meaningful to wait until the end of the poll. For this reason, we extend
the model by considering the episode composed by two distinct parts. The first
one, that we call institutional, is the part of the main content not influenced by
the poll results. The second one, the request based part, is, of course, oriented
by the audience. Indeed an episode relying only on the poll results for deciding
it’s contents can be very hard to produce.

We imagine that the institutional part of the main content might not start
immediately after the end of the previous episode. We allow the introduction of
a delay W , that might be used to model organizational issues, before the making
of the new episode. Please note that during this waiting time it is still possible
to continue the previous episode’s extra contents.

P P
D

MI(t)

E1(t) E2(t)

MR(t)

W(t) W(t)

I1 I2

MI(t)

t

Time used for
producing extras
(current episode)

Time used for
producing extras
(previous episode)

Fig. 4. Institutional and request based contents

Figure 4 shows the schema of this model. In this case, the production time for
the extra contents is given by the sum of two different time quantities: the time
remaining after finishing the institutional part before the poll end and the time
remaining after finishing the request based content before the next episode’s poll
end. Please note that the production of an extra content can be split in two parts
to better use the time available for extras. We give priority to the production
of the institutional part. If the institutional content is finished after the poll’s
end, then request based content will have to wait the end of the former before
starting its production. Let’s also assume that the W time cannot be longer
than D, i.e.: Pr{W > D} = 0. The main content distribution M can thus be
considered as the sum of two independent distributions: the institution content
distribution MI , and the feedback dependent content distribution MR. That is:
M = MI +MR. We also imagine to have two production quality functions qMI (t)
and qMR(t).
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Due to the different assumptions about the time at which each production
starts, the average qualities must be computed in two different ways. First note
that the average quality of the institutional content Q̄MI does not depend on
the poll time P (since it starts after W , regardless of when the poll ends). If we
call MW = W + MI , and we define mW (t) as its probability density function,
then Q̄MI can be computed simply computed as:

Q̄MI =
∫ ∞

t=0
mW (t)qMI (t − D) dt (9)

Note that since we have supposed that Pr{W > D} = 0, we can be certain that
at least the production of the institutional content will start before the deadline.

The feedback based content, will be produced starting immediately after P
(if the production of the institutional content would have finished earlier than
the end of the poll), or after the end of the institutional content whichever it
cames last. In particular, we can compute Q̄MR(P ) as:

Q̄MR(P ) = Pr{MW < P}
∫ ∞

0
mR(t)qMR(t − D + P ) dt +

+
∫ D

P

∫ ∞

0
mW (v)mR(t)qMR(t + v − D) dt dv +

+ Pr{MW > D}
∫ ∞

0
mR(t)qMR(t) dt

where mR(t) is the p.d.f. of MI . The first term on the r.h.s. of the previous
equation represents the case when the institutional contents finish before the
poll, the second one the case when it finishes between P and D, and the third
one the case when it finishes after the deadline D. In the last case, the production
is shortened by its entire length, obtaining less possible quality for the request
based part.

The distribution of the number of extra contents NE′D|P , given a deadline P
is also different from the same quantity computed in Section 4. In particular, if
we call TA|P the distribution of the time available for producing extra contents
given a poll deadline P , and aA(t|P ) its p.d.f., then:

Pr{NE′D = n|P} =
∫ D

0
Pr{NE(v) = n} aA(v|P ) dv (10)

TA|P can be computed as the sum of two different independent distributions:
TA|P = TC |P +TN |P . In this definition, TC |P is the time available for the extra
contents production during the current episode, and TN |P the one during the
following episode (please recall that we have supposed that all the time before
the end of the poll of one episode can still be used to produce extra contents
associated to the previous one). We have that:

TC |P = max(0, D − P − MR − max(0, W + MI − P )) (11)
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In Equation (11), max(0, W +MI−P ) represents the part of the main production
that might exceed the poll, which is then subtracted from D − P − MR that
considers the time in the slot (P, D) that is not used by the request based
content. Similarly we can define:

TN |P = max(W, P − MI) (12)

as simply the time maximum between the waiting time, and the time not used
by the production of the institutional content in time slot (0, P ). Similar to the
first case, we can define:

Q̄E′(P ) =
Ne∑
i=0

Pr{NE′D(t) = i|P}qe(i) (13)

We can use the previous definitions to compute the average production quality
for the institutional content case Q̄2(P ), given a deadline P , as:

Q̄2(P ) = Q̄MI + Q̄MR(P )Q̄F (P ) + Q̄E′(P ) (14)

Note that in this case the feedback quality modifies only the quality of the
feedback dependent part of the production.
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Fig. 5. a) components of the production quality, b) distribution of the time available
for producing extra

In Figure 5a) the various contributions to the overall quality are presented.
In that case, we imagine answers to the poll arriving uniformly distributed be-
tween 2 and 3 days, and we use the same poll quality function as in the previous
example. Also the waiting time was chosen uniformly distributed between 1 and
2 days. Main content and request based content production times were both
considered Normal distributed, with mean 3 and variance 2, and mean 1 and
variance 1 (expressed in days) respectively. We considered a maximum of 8 ad-
ditional contents, each with a Normal distributed production time, characterized
by mean 1 day, and variance 0.5. The poll quality function was chosen to be as
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in Equation (7), with α = 1.5, and both the institutional content and request
based content quality functions where set as in Equation (3), with qmaxI

= 10
and qsI = 1, and qmaxR

= 5 and qsR = 0.5 respectively. In Figure 5b) the dis-
tribution of the time available for producing extras, TA|P is investigated for
different values of the poll deadline P . It is interesting to see how the finite
support characteristic of the waiting time distribution is clearly visible by the
tooth shaped peak on the left side of the figure. As the poll deadline increases,
the density of the probability mass moves on the right side of the figure, leaving
thus an higher chance of producing more extra contents.

6 Parallel Production

Usually, several different units take part in the production of a single episode. We
extend the model presented in Section 5 to include also this feature, as shown in
Figure 6. We imagine the main content of the episode being divided into n poll
based segments, and m institutional contents. The production is then carried
on by k independent pipelines that works in parallel toward the common goal
of completing both the main and the extra contents. The number of pipelines
is not related to the number of institutional contents, neither to the number of
expected request based contents, nor to the maximum number of extra contents.
As in the second model, we assume that the institutional contents have priority
over the request based contents. Also, each pipeline might expect a waiting
time before actually starting their work. Moreover, we imagine that as soon as
a troupe has finished to work on a content, it immediately starts working on
another. All the produced contents are then assembled in a complete episode.
We imagine that the assembly work is carried on by one of the pipelines. This
model represents quite well the production of a newscast. We can imagine the
pipelines as different ”troupes” working on different news. To simplify the model,
in this case we imagine that when the k pipelines are not working on institutional
or request based contents, they can work on the extra contents. In this case we
suppose that all the extra contents have to be produced before the deadline.

In this model version, MR is divided in m smaller contents: MR =
∑m

j=1 M j
R,

while MI is divided in n smaller contents: MI =
∑n

j=1 M j
I . W , is the waiting

time for that each pipeline has to wait before being operative on the episode.
After all the main contents, institutional or request based, are completed, the
assembly and publishing phase is modelled by the random variable A.

To simplify the analysis, we suppose that all the activities durations are
characterized by exponential distributions. We implement the case proposed in
Figure 6 with the Petri Net presented in Figure 7. Here white boxes represent
exponentially distributed timed transition, gray boxes deterministic timed tran-
sitions, while narrow black boxes immediate transitions. All timed transitions
have infinite server semantic, and their mean firing time is written below them.

Place p1 contains as many token as production pipelines (i.e. k). Each pro-
duction unit becomes active only after W : this fact is modelled by transition T1.
Place p2 contains the pipeline that are operative: that is production units that
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Fig. 6. Parallel production

can actually devote their effort to the realization of the considered episode. The
number of institutional contents m that composes the production is represented
by the initial marking of place p3. In the same way, the initial marking n of
place p4 counts the request based contents required for this episode. Immediate
transitions t1 and t2 allocates available production pipelines to either type of
contents. Institutional contents have priority over poll based ones. This is mod-
elled by the inhibitor arc that connects place p3 to transition t2, allowing it to
fire only when all the institutional contents have started their production. Deter-
ministic transition T7 represents the end of the poll. As soon as the poll period
is over, this transition moves the token from place p9 to p10. An input/output
(’test’) arc connecting place p10 to transition p2 prevents request based contents
to start their production before the end of the poll. Places p5 and p6 represent
respectively the number of institutional and request based content currently in
production. The actual institutional content production is modelled by expo-
nential transition T2 with mean firing time MI , while T3 of mean firing time
MR models the production of request based contents. Place p7 holds the content
produced. As soon as all the n + m contents have been produced, immediate
transition t3 becomes enabled, and starts the assembly phase by putting a to-
ken in place p8. Assembly is modelled by transition T4 with mean firing time
A. If assembly is completed, a token is placed in place p14. The production of
extra contents is modelled by the subnet on the right hand side of Figure 7.
In particular, place p12 holds the maximum number Ne of extra contents that
might be generated. The generation is modelled by transitions T5 and T6, both
with mean firing time E. The two transitions represent whether the resources
used to produce this extra has already become active for main contents (T5), or
not (T6). Place p13 counts the number of extra contents actually produced. The
end of the deadline is modelled by Deterministic transition T8, characterized by
firing time D, and enabled by the token in place p11.

The proposed model is a Generalized Stochastic Petri Net (GSPN [5]), with
two deterministic transition. However it has the properties that the poll end
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Fig. 7. Petri Net model for the multiple institutional and request based contents case

P < D always happen before the deadline, and that both deterministic tran-
sitions T7 and T8 becomes enabled at the same time. For these reasons it can
analyzed by considering two different GSPNs: one where place p9 is marked,
and another where place p10 is marked. Transient analysis of the first GSPNs is
carried on from initial marking up to time P . Then the obtained state probabil-
ity distribution is mapped to the initial state of the second GSPNs. Transient
analysis is then applied to consider the evolution for the remaining D−P time.
Let us call π(S, P ) the probability of reaching a state with the marking con-
figuration S at the end of the deadline, given P . Let us assume that the total
quality is linear in the number of productions, with coefficients QI , QR and QE

for the number of institutional contents, poll based contents and extra contents
respectively. Let us also assume that there is an extra quality gain QA when the
system can conclude also the assembly phase. We can then compute the mean
production quality Q̄3(P ) as:

Q̄3(P ) =
m∑

i=1

i · QI · π(m − (#p3 + #p5) = i, P ) +

+
n∑

i=1

i · QR · π(n − (#p4 + #p6) = i, P ) · Q̄F (P ) +

+
Ne∑
i=1

i · QE · π(#p13 = i, P ) + QA · π(#p14 = 1, P )

where #pi represent the number of tokens in place pi. Note that both the number
of institutional and request based contents produced are computed by subtract-
ing to the total number of required contents (m or n), the number of contents
still waiting to be produced (places p3 and p4) or currently in production but
not yet finished (places p5 and p6). Note also, that as in Section 5, the quality
of the poll (Q̄F (P )) influences only the request based contents.

In Figure 8 the quality components composing this model are shown. For this
example we assumed a production having a deadline of 12 hours. We imagined
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3 different working pipelines working on 6 institutional contents, 6 poll based
contents and just 2 extra contents, to be assembled in 1 hour. The quality coef-
ficient where set to: QI = 1.5, QR = 2, QE = 1.5 and QA = 6. The poll quality
was considered as in previous models, but feedback was expected to arrive as a
mixture of two uniform distribution, one between 3 and 6 hours with probability
.95, and the other between 6 and 9 hours with probability .05.

It is easy to notice how both the extra contents ant the institutional contents
are always finished before the deadline. i.e. their contribution is not almost unaf-
fected by the time at which the poll is set. The contribution given by completing
the assembly of the different parts in time is, instead, doomed to decay the more
we approach the deadline. The more poll quality we have, the more overall qual-
ity we can obtain, but approaching the deadline can only decrease this quality,
since there is a smaller chance to finish the contents in time.
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In Figure 9, we studied the overall quality varying different system configu-
ration: in a) the number k of pipelines working to the production and in b) the
ratio between institutional and poll based main contents. The case a) shows that
the maximum quality level obtainable is proportional to the number of pipelines
available. However, as we approach the case where each content (institutional,
request based and extra) has a pipeline (that would be k = 14), the gain in in-
creasing the number of the troupes becomes more limited. Case b) shows how we
can obtain higher quality by increasing the number of the poll based contents.
However, if we do not allow sufficient time for the production to complete the
request based contents, the total quality degrades much faster, as shown by the
higher slope of the curves with a higher number of request based contents.

7 Conclusions

In this paper we have studied three models, of increasing complexity, of multi-
media productions based on users feedbacks. In particular we have focused our
studies on the optimization of the poll deadline, by computing all the related
performance indices as function of P . However, the same models, might be used
in larger studies, and optimized against other parameters, such as for example
the deadline D, or the quality requirements. This work should be considered as a
preliminary work on a topic largely not yet explored that aims to the application
of existing methodologies of stochastic performance evaluation to multi channels
productions. Thus we are still acquiring the experimental data so important for
the complete validation of the proposed models. The publication of these data
is intended to be the goal of one of our next papers.
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Abstract. The large scale of current and next-generation massively par-
allel processing (MPP) systems presents significant challenges related to
fault tolerance. For applications that perform periodic checkpointing,
the choice of the checkpoint interval, the period between checkpoints,
can have a significant impact on the execution time of the application
and the number of checkpoint I/O operations performed by the appli-
cation. These two metrics determine the frequency of checkpoint I/O
operations performed by the application and, thereby, the contribution
of the checkpoint operations to the demand made by the application on
the I/O bandwidth of the computing system. Finding the optimal check-
point interval that minimizes the wall clock execution time has been a
subject of research over the last decade. In this paper, we present a sim-
ple, elegant, and accurate analytical model of a complementary perfor-
mance metric - the aggregate number of checkpoint I/O operations. We
present an analytical model of the expected number of checkpoint I/O
operations and simulation studies that validate the analytical model. In-
sights provided by a mathematical analysis of this model, combined with
existing models for wall clock execution time, facilitate application pro-
grammers in making a well informed choice of checkpoint interval that
represents an appropriate trade off between execution time and num-
ber of checkpoint I/O operations. We illustrate the existence of such
propitious checkpoint intervals using parameters of four MPP systems,
SNL’s Red Storm, ORNL’s Jaguar, LLNL’s Blue Gene/L (BG/L), and
a theoretical Petaflop system.

1 Introduction

As Massively Parallel Processing (MPP) systems scale to tens of thousands of
nodes, reliability and availability become increasingly critical. Scientists have
predicted that three of the most difficult and growing problems in future high-
performance computing (HPC) installations will be - avoiding, coping with, and
recovering from failures. With the increase in the scale of computing systems,
element failures become frequent, making it increasingly difficult for long run-
ning applications to make forward progress in the absence of fault tolerance
mechanisms [5].
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Checkpoint restart is a common technique to provide fault tolerance for
applications running on MPP systems. Checkpointing can be either application-
directed or system-directed. An application’s checkpoint data is data that repre-
sents a consistent state of the application that can be saved and then, in the event
of a failure, restored and used to resume execution at the saved state. A check-
point is generally stored to persistent media (e.g., a file system). Checkpoint
latency is the amount of time required to write checkpoint data to persistent
storage and a checkpoint interval is the application execution time between two
consecutive checkpoint operations. Checkpoint overhead is the increase in the
execution time of an application due to checkpointing.

In a disk-based periodic checkpointing system, selecting an appropriate check-
point interval is important especially since the storage system is physically sep-
arated from the processors used for execution of the scientific application. If the
checkpoint interval is too small, the overhead created by network and storage
transfers of a large number of checkpoints can have a significant impact on per-
formance, especially when other checkpointing applications share the network
and storage resources. Conversely, if the checkpoint interval is too large, the
amount of work lost in the event of a failure can significantly increase the time
to solution. Deciding upon the optimal checkpoint interval is the well known
optimal checkpoint interval problem. Most solutions attempt to minimize to-
tal execution time (i.e., the application time plus the checkpoint overhead) [18]
[3] [15]. In this paper we focus on another performance metric, the number of
checkpoint I/O operations performed during an application run.

1.1 Motivation

The rate of growth of disk-drive performance, both in terms of I/O operations
per second and sustained bandwidth, is smaller than the rate of growth of the
performance of other components of computing systems [15]. Therefore, in order
to attain good overall performance of computing systems, it is important to
design applications to use the I/O resources efficiently, bearing in mind the
limitations posed by them. There are several scientific papers that elaborate on
this problem, an example of a recent paper is [15].

I/O operations performed by an application can be segregated into productive
I/O and defensive I/O. Productive I/O is the component that is performed for
actual science such as visualization dumps, whereas defensive I/O is the com-
ponent used by fault tolerance mechanisms such as checkpoint/restart. In large
applications, it has been observed that about 75% of the overall I/O is defensive
I/O [1]. As indicated by [5] and other scientific literature, the demand made by
checkpoint (defensive) I/O is a primary driver of the sustainable bandwidth of
high performance filesystems. Hence, it is critical to manage the amount and
rate of defensive I/O performed by an application. In a recent paper [15] exten-
sive results are presented showing that as the memory capacity of the system
increases so does the I/O bandwidth required to perform checkpoint operations
at the optimal checkpoint interval that attains the minimum execution time. An
example presented in the paper is for a system with an MTBF of 8 hours and
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memory capacity of 75TB. When the checkpoint overhead is constrained to be
less than or equal to 20% of application solution time, there is no solution for the
optimal checkpoint interval unless the I/O bandwidth is larger than 29GB/sec.
They define utility in a cycle as the ratio of time spent doing useful calculations
to the overall time spent in a cycle and show that the I/O bandwidth required
to achieve a utility of 90% is higher than what is available for present systems.
Thus, while performing checkpoints at the optimal checkpoint interval that min-
imizes execution time, if we either restrict the checkpoint overhead to less than
or equal to 20% of solution time or expect a utility greater than or equal to 90%,
the I/O bandwidth required is often larger than what is available at present.

Our efforts are focused towards enhancing an understanding of the variation
of the volume of generated defensive I/O, as a function of the checkpoint interval.
The contributions of this paper are:

– In Section 3, we present a simple and elegant analytical model of the aggre-
gate number of checkpoint I/O operations and a mathematical analysis of
its properties that have a bearing on system performance.

– In Section 4, we present results of Monte Carlo simulations that were per-
formed to validate the analytical model. The results show that
• The model is accurate by demonstrating that it has a small relative error.
• The idealization used in our analytical modeling is reasonable and it

does not introduce large errors.
– In Section 5 we discuss the performance implications inferred from the math-

ematical analysis of Section 3.
– In Section 6, based on Poisson Execution Time Model, described next, and

the modeling studies presented in this paper, we show the existence of pro-
pitious checkpoint intervals using parameters of four MPP systems, Red
Storm, Jaguar, BlueGene/L, and the Petaflop machine.

Finally, in Sections 7 and 8 we present related work and future work, respectively.

2 The Poisson Execution Time Model (PETM)

The work presented in this paper is based on and complementary to the following
execution time model formulated by John Daly. The total wall clock time to
complete the execution of an application, the optimal checkpoint interval, and
an approximate optimal checkpoint interval are given by:

T = MeR/M
(
e(τ+δ)/M − 1

)
Ts

τ for δ << Ts

τopt = M
(
1 + ProductLog

(
−e−

δ+M
M

))
The approximation to τopt, τappx, is given by

τappx =
√

2δM
[
1 + 1

3

(
δ

2M

) 1
2 + 1

9

(
δ

2M

)]− δ for δ < 2M

= M for δ ≥ 2M
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where
Ts = application solution time,

τ = checkpoint interval,
δ = checkpoint latency,

M = mean time between interruptions (MTTI) of the application, and
R = restart time.

In this paper, for the sake of convenience, we refer to the execution time
model and the model of the optimal checkpoint interval presented above as the
Poisson Execution Time Model (PETM) and the ProductLog Optimal Check-
point Interval Model w.r.t Execution time (POCIME), respectively. Note that
in the original literature [3], which presents these models, the terms PETM and
POICME are not used to refer to the models. We introduce these terms with
permission from the author of that literature.

3 Modeling the Number of Checkpoint I/O Operations:
ProductLog Optimal Checkpoint Interval Model w.r.t
I/O(POCIMI)

The set of I/O operations performed by a checkpoint/restart mechanism is com-
prised of reads and writes. In a periodic checkpointing system we know that
checkpoint writes are performed periodically at every checkpoint interval and,
therefore, the number of checkpoint write operations is given by the solution
time of the application divided by the checkpoint interval.

Expected number of checkpoint writes = Ts/τ

When a failure occurs in a periodic checkpointing system, the last checkpoint
data that was successfully written needs to be read to restart the application.
Therefore, the number of checkpoint read operations is given by the expected
number of failures.

Expected number of checkpoint reads =
Expected execution time

M = Tse
R/M (e

δ+τ
M −1)

τ .

Expected number of aggregate checkpoint I/O operations,

NI/O = Ts
τ

[
1 + eR/M

(
e

δ+τ
M − 1

)]
(1)

For values of parameters MTTI = 24 hours, checkpoint latency = 5 minutes,
restart time = 10 minutes, and solution time = 500 hours, using the expression
for the number of checkpoint I/O operations from POCIMI and the expression
for execution time from PETM, we obtain the plot shown in Fig. 1. From mod-
eling studies in [3], we know that the execution time is a convex function of the
checkpoint interval and it has a single minimum at τopt = 117 minutes. From
Fig. 1, it appears like NI/O, the aggregate number of checkpoint I/O operations,



390 S. Arunagiri, J.T. Daly, and P.J. Teller

also is a convex function of the checkpoint interval, with a minimum value in the
range 0 ≤ τ ≤ M . In this case, the minimum is 1,436 minutes, which is larger
than the value of τopt, 117 minutes. It is important to know if these properties
are invariant with respect to parameter values. In the rest of this section we
present mathematical proof that the properties observed are, indeed, true for
any given set of parameters.
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Fig. 1. Plots of Execution Time and the Number of Checkpoint I/O Operations as
functions of checkpoint Interval. The parameters are MTTI, M = 24 hours, Check-
point latency, δ = 5 minutes, and Restart time, R = 10 minutes, and Solution time,
Ts=500hrs.

Theorem 1. The function NI/O has a single minimum in the range 0 ≤ τ ≤ M ;
let us denote it by τI/O. NI/O does not have any other stationary points in this
range. τI/O is given by

τI/O = M
(
1 + ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

))
(2)

Proof. NI/O is given by Equation 1. We look for stationary points of NI/O w.r.t.
τ , i.e., values of τ at which the first derivative of NI/O w.r.t τ is zero.

dNI/O

dτ
=

Ts

τ2

[
τ

M
e

R
M e

δ+τ
M −

(
e

R
M (e

δ+τ
M − 1)

)
− 1

]
(

dNI/O

dτ
= 0

)
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(
e

R
M e
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M

τ

M
− e

R
M e
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M + e

R
M − 1 = 0
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e
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M e
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M

(
τ

M
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)
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R
M
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M

(
τ
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τ = M
(
1 + ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

))
(3)

There is a unique positive value of τ that satisfies the above equation; let us
denote it by τI/O. The ProductLog term in Equation 3 is negative and its ab-
solute value is less than one. Therefore, τI/O is always less than M . We use the
second derivative test in order to determine whether the stationary point τI/0 is
a minimum, maximum, or an inflexion point.

We know that

NI/O =
Expected Execution Time

M
+

Ts

τ
=

T

M
+

Ts

τ
dNI/O

dτ =
1
M

dT

dτ
− Ts

τ2

d2NI/O

dτ2 =
1
M

d2T

dτ2 + 2
Ts

τ3 (4)

From [3] we know that d2T
dτ2 is positive for all values of τ in the range 0 < τ ≤ M .

This makes the right-hand side of Equation 4 and, thus, d2NI/O

dτ2 positive for all
τ in the range 0 < τ ≤ M . Therefore, the stationary point τI/O is a minimum
with respect to the number of I/O operations. ��

We now investigate the relationship between τI/O and τopt for any given set of
checkpoint parameters.

Theorem 2. The value of the checkpoint interval that minimizes the number of
I/O operations, τI/O, is always greater than the value of the checkpoint interval
that minimizes the expected execution time, τopt.

Proof. Recall the expressions for τopt and τI/O;

τopt = M
(
1 + ProductLog

(
−e−

δ+M
M

))
τI/O = M

(
1 + ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

))
Consider arguments to the ProductLog function in the above equations for
τopt and τI/O. They are both negative and the absolute value of the argu-
ment in the equation for τopt is larger than that of the equation for τI/O. Since
ProductLog(−1/e) = −1 and the ProductLog function is monotonically increas-
ing in the range (− 1

e to 0).

|ProductLog
(
−e−

δ+M
M

)
| > |ProductLog

(
−e−

δ+M
M + e−

R+δ+M
M

)
|

=⇒ τopt < τI/O ��

Thus, as illustrated by Fig. 1, we have established that for checkpoint intervals τ
in the range τopt ≤ τ ≤ τI/O, the number of checkpoint I/O operations decreases
with increasing checkpoint intervals.
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Corollary 1. For checkpoint intervals, τ , in the range τopt ≤ τ ≤ τI/O, the
expected value of the frequency of checkpoint I/O operations decreases as the
checkpoint interval increases.

Proof. We know from PETM that for values of checkpoint intervals, τ , in the
range τopt ≤ τ ≤ M , the expected execution time increases as the checkpoint
interval increases. Since τI/O < M , it follows that the expected execution time
increases as the checkpoint interval increases for τ in the range τopt ≤ τ ≤ τI/O.
This information and Theorem 2 together imply that for checkpoint intervals, τ ,
in the range τopt ≤ τ ≤ τI/O, the expected value of the frequency of checkpoint
I/O operations decreases as the checkpoint interval increases. ��
In order to evaluate the accuracy of our analytical model, POCIMI, it is in-
feasible, in terms of system availability, execution time, and effort, to conduct
repeated runs of experiments on the scale of systems that we are studying. Thus,
the only feasible alternative for us is a simulation study, which we describe and
discuss next.

4 Monte Carlo Simulation to Validate the Analytical
Model, POCIMI

The goal of our simulation study was to validate the accuracy of the analytical
model for the number of checkpoint I/O operations, POCIMI, by comparing
the numbers estimated by POCIMI with those obtained using simulation of the
execution of an application on an MPP system.

4.1 Details of Simulation

The simulator was coded using MATLAB to perform a discrete event simulation
of the physical process of running an application on a 1,000-node system with
each node having an exponential failure distribution. The events in the simula-
tion were confined to those relevant to the process of checkpoint/restart. Failure
times were generated using random number generators and, as time progresses,
the number of checkpoint reads, number of checkpoint writes, execution time,
and number of failures are counted until the application completes execution.

Six sets of simulations were performed, one for each of the following values of
checkpoint latency: 5,10,15,20,25, and 30 minutes. The other parameter values
were set as follows: solution time of the simulated application: 500 hours, restart
time: 10 minutes, and MTTI of the parallel system: 24 hours or 1440 minutes.
These parameter values were picked from examples in the published literature.
Each set of experiments had five trials. The design variable was the checkpoint
interval and the response variable was the number of checkpoint I/O opera-
tions. During each trial, the values of the response variable, i.e., the number of
checkpoint I/O operations, were counted; each value corresponds to a different
value of the design variable, i.e., the checkpoint interval. The range of interest
for values of the checkpoint interval was 0 to 1440. We split this range into
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three subintervals, low values, medium values, and high values, and picked six
data points within each subinterval. Accordingly, the design points of our simu-
lation study were the following 18 values of checkpoint intervals: {50,75,...,175,
650,675,...,775,1350,1375,...,1475}. For each trial, and at each chosen checkpoint
interval, we simulated 100 runs of the application and recorded the number of
checkpoint I/O operations, in addition to other data, such as execution time and
number of failures. For each trial, we calculated the average values of the metrics
of interest as an arithmetic mean over the 100 runs of the trial. For the plots
presented in Fig. 2, we arbitrarily picked data from one trial, i.e., Trial 3, which
has a checkpoint latency of 5 minutes. The decision to depict data from only one
trial was made for the sake of clarity – the lines representing the simulated mean
values of all trials were almost overlapping and cluttering the figure. Subplot(a)
of Fig. 2 is a plot of 99% confidence interval of the mean simulated number of
checkpoint I/O operations and the number estimated by the analytical model,
POCIMI. For completeness sake, we present in Subplot(b) and Subplot(c)the ex-
ecution time and inter-arrival times of checkpoint I/O operations, respectively.
As can be seen from the plot, at the scale at which the figure is presented, the
line representing the analytical model and the one representing the simulated
mean almost overlap, and the 99% confidence interval is very small. When we
did zoom into the figure, we were able to see that there was, indeed, an error
bar showing the confidence interval. While the plots in Fig. 2 present the trends
for checkpoint intervals varying over the whole range of interest, Figs. 3 and 4
show the details. Note that unlike Fig. 2, Figs. 3 and 4 use data from all trials
belonging to all sets of experiments, i.e., 30 trials in total. Subplot(a) and Sub-
plot(b) of Fig. 3 show bar graphs that represent the range of values of absolute
errors and relative errors of the 30 trials. The absolute error and relative error
are defined by,

Absolute error = # checkpoint I/O operations of POCIMI
-mean simulated # checkpoint I/O operations

Relative error= Absolute error
# checkpoint I/O operations of POCIMI ∗ 100

For the simulated number of checkpoint I/O operations for all 30 trials, Sub-
plot(a) of Fig. 4 presents the maximum value of the size of the 99% confidence
interval.

4.2 Discussion of Results

– The value of the relative error of the estimates provided by the analytical
model for all 30 trials lies within ±6%. This demonstrates the degree of
accuracy of the model.

– The size of the 99% confidence interval of the number of simulated checkpoint
I/O operations is no more than 8% of its mean value. This implies that the
aggregate number of checkpoint I/O operations from the simulation runs has
a small variance.
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4.3 Addressing the Idealization in Analytical Modeling

Idealization is the process by which scientific models assume facts about the
phenomenon being modeled that may not be entirely accurate. Often these as-
sumptions are used to make models easier to understand or solve. One of the
caveats of analytical modeling is the idealization used in order to make the model
tractable or solvable, or mathematically elegant. With an intent to quantify the
contribution of idealization to the error in the predictive accuracy of POCIMI,
we performed the following experiment. Corresponding to every simulated run
of the application at each chosen design point, i.e., value of checkpoint interval,
we ran three versions of the simulation: the base version, the idealized version,
and the minimally idealized version.

The details of this experiment are presented in [2]. Subplot(b) of Fig. 4 shows
the difference in relative error between the idealized version of the simulation and
the minimally idealized version of the simulation. We find that the contribution
to the relative error made by the idealization used in our analytical model is
within the range ±2%. This demonstrates that the idealization used in POCIMI
is not too restrictive and, therefore, does not affect the accuracy of the model
too much.
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Fig. 2. Subplot(a): Number of checkpoint I/O operations as a function of the check-
point interval. Subplot(b): Execution time versus checkpoint intervals. Subplot(c):
Mean interarrival time, in hours, of checkpoint operations.

5 Performance Implications Inferred by Analyzing
POCIMI

1. An insight provided by the model is that while τopt and τI/O are both func-
tions of δ and M , τI/O is also a function of the restart time, R. τI/O decreases
with increasing values of R.

2. Corollary 1 is key to promising avenues in performance improvement. For
values of τ in the range τopt ≤ τ ≤ τI/O, both the expected values of the
frequency of checkpoint I/O operations and the number of checkpoint I/O
operations decrease with increases in the checkpoint interval.
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Fig. 3. Subplot(a): Absolute error of POCIMI. Subplot(b): Relative error.
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Fig. 4. Subplot(a): Size of the 99% confidence interval(CI) of the simulated number of
checkpoint I/O operations. Subplot(b): Difference between relative errors of POCIMI
w.r.t. the idealized and minimally idealized versions of the simulation.

3. For time-critical applications for which having a minimum wall clock exe-
cution time is important, using τopt as a checkpoint interval makes perfect
sense. However, for all other applications it would be of interest to find out
whether it is possible to choose a checkpoint interval that is larger than the
τopt such that the corresponding execution time is marginally larger than
the minimum execution time, while the corresponding number of checkpoint
I/O operations is drastically smaller than its value at τopt.

4. If we explore clues from visual inspection of Fig. 1, we observe that for
checkpoint intervals greater than and in the vicinity of τopt, the execution
time curve rises slowly, while the curve of the number of checkpoint I/O
operations falls steeply. This seems to indicate that, probably, in this re-
gion, there are checkpoint intervals such that the corresponding numbers of
checkpoint I/O operations are drastically smaller than values corresponding
to τopt, while the execution times are marginally larger than the minimum
execution time. Whether or not this observation holds good, in general, for
all values of parameters, is not clear. To know this requires a rigorous math-
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ematical analysis involving gradients of the execution time function and the
number of checkpoint I/O operations function, in the region of interest. This
appears to be a non-trivial mathematical exercise and it could be prospec-
tive future work. Nonetheless, in the next section, we investigate this idea
for specific cases using parameters from four MPP systems.

6 Investigation of Performance Improvement

In this section, using POCIME and POCIMI, we model the performance of four
MPP architectures: SNL’s Red Storm, ORNL’s Jaguar, LLNL’s Blue Gene/L
(BG/L), and a theoretical Petaflop system. The values of parameters of these
systems are presented in Table 1. For all experiments, we consider a repre-
sentative application with a solution time, Ts, of500 hours and a restart time,
R, of10 minutes. For each of the four computing systems and the representa-
tive application, assume that the checkpoint interval is larger than τopt and the
corresponding expected execution time is 105% of the minimum execution time,
Emin, given by PETM, represented as τ1.05Emin. For the representative applica-
tion running on the four MPP systems, we investigate the extent to which the
number of checkpoint I/O operations corresponding to the checkpoint interval
τ1.05Emin is reduced, as compared to the number of checkpoint I/O operations at
τopt. For each MPP system, assume that

– the application runs on all nodes of the system,
– the MTTI of each node is 5 years, and
– the application checkpoints half of each processor’s memory at each check-

point.

This set of assumptions is labeled Standard. We then consider three other vari-
ations of the standard assumptions. The first variation assumes that the ap-
plication checkpoints 25% of its memory, instead of 50%. The second variation
assumes that the MTTI of each node is 2.5 years, instead of 5 years. Finally, the
third variation assumes that the application runs on 1/8th of the nodes of each
system, instead of all the nodes. In this last case, while computing the check-
point latency, the partition is considered to have 1/8th of the storage bandwidth
available to it. These assumptions cover a few common cases.

For the sixteen cases discussed earlier, the impact of increasing the checkpoint
interval, from τopt to τ1.05Emin, on the number of checkpoint I/O operations is

Table 1. Parameter values for the studied MPPs

Parameter Red Storm Blue Gene/L Jaguar Petaflop

nmax × cores 12, 960 × 2 65, 536 × 2 11, 590 × 2 50, 000 × 2
dmax 1GB 0.25GB 2.0GB 2.5GB
Mdev 5 years 5 years 5 years 5 years
βs 50GB/s 45GB/s 45GB/s 500GB/s
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Table 2. Decrease in the number of checkpoint I/O operations of the representative
application at τ1.05Emin

MPP System Conditions
# checkpoint
I/O operations
for τ = τopt

# checkpoint
I/O operations
for τ = τ1.05Emin

% decrease

Red Storm

Standard 962 587 38.94
25% memory checkpointed 1248 669 46.35
Partition Size: 1/8th nmax 280 109 61.04

Node MTTI: 2.5years 1569 1091 30.48

Blue Gene/L

Standard 3407 2907 14.68
25% memory checkpointed 3660 2773 24.24
Partition Size: 1/8th nmax 631 380 39.42

Node MTTI: 2.5years 6212 5571 10.25

Jaguar

Standard 712 482 32.53
25% memory checkpointed 895 537 40.02
Partition Size: 1/8th nmax 194 86 55.63

Node MTTI: 2.5years 1215 924 23.94

Petaflop

Standard 2697 2100 22.35
25% memory checkpointed 3166 2195 32.22
Partition Size: 1/8th nmax 615 324 47.22

Node MTTI: 2.5years 5568 4852 12.86

presented in Table 2. For each of the four systems considered, the case that has
the largest decrease in the number of checkpoint I/O operations is shown in bold.
The reduction in the number of checkpoint I/O operations was in the range of
10.25% to 61.07%.

7 Background and Related Work

There is a substantial body of literature regarding the optimal checkpoint prob-
lem and several models of optimal checkpoint intervals have been proposed.
Young proposed a first-order model that defines the optimal checkpoint interval
in terms of checkpoint overhead and mean time to interruption (MTTI). Young’s
model does not consider failures during checkpointing and recovery [18]. How-
ever, POCIME, which is an extension of Young’s model to a higher-order ap-
proximation, does [3]. In addition to considering checkpoint overhead and MTTI,
the model discussed in [16] includes sustainable I/O bandwidth as a parameter
and uses Markov processes to model the optimal checkpoint interval. The model
described in [11] uses useful work, i.e., computation that contributes to job com-
pletion, to measure system performance. The authors claim that Markov models
are not sufficient to model useful work and propose the use of Stochastic Activ-
ity Networks (SANs) to model coordinated checkpointing for large-scale systems.
Their model considers synchronization overhead, failures during checkpointing
and recovery, and correlated failures. This model also defines the optimal number
of processors that maximize the amount of total useful work. Vaidya models the
checkpointing overhead of a uniprocess application. This model also considers
failures during checkpointing and recovery [17]. To evaluate the performance and
scalability of coordinated checkpointing in future large scale systems, [4] simu-
lates checkpointing on several configurations of a hypothetical Petaflop system.
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Their simulations consider the node as the unit of failure and assume that the
probability of node failure is independent of its size, which is overly optimistic
[6]. Yet another related area of research is failure distributions of large-scale sys-
tems. There has been a lot of research conducted in trying to determine failure
distributions of systems. Failure events in large-scale commodity clusters as well
as the BG/L prototype have been shown to be neither independent, identically
distributed, Poisson, nor unpredictable [8] [10]. [12] presents a study on system
performance in the presence of real failure distributions and concludes that Pois-
son failure distributions are unrealistic. Similarly, a recent study by Sahoo [14]
analyzing the failure data from a large-scale cluster environment and its impact
on job scheduling, reports that failures tend to be clustered around a few sets
of nodes, rather than following a particular distribution. In 2004 there was a
study on the impact of realistic large-scale cluster failure distributions on check-
pointing [10]. Oliner et. al.[9] profess that a realistic failure model for large-scale
systems should admit the possibility of critical event prediction. They also state
that the idea of using event prediction for pro-active system management is a
direction worth exploring [10][13]. Recently, there has been a lot of research to-
wards finding alternatives for disk-based periodic checkpointing techniques [9] [7]
and there have been some promising results. However, until these new techniques
reach a level of maturity, disk-based periodic checkpointing technique will con-
tinue to be the reliable and time-tested method of fault tolerance [15]. Besides,
a lot of important legacy scientific applications use periodic checkpointing and,
therefore, issues related to periodic checkpointing still need to be addressed.

Note that PETM and POCIME do not make any assumptions on the failure
distribution of the system for its entire lifetime. However, they assume an ex-
ponential failure distribution only for the duration of the application run,
which might be a few days, weeks, or months. Note that this is drastically differ-
ent from assuming an exponential failure distribution for the life of the system.
This model offers the application programmer the flexibility to use whatever
means is deemed right for the system to determine the value of MTTI, M , at
the beginning of the application run. Given this value of M , the model then
assumes that during the application run the failure distribution of the system is
exponential. This makes the model mathematically amenable, elegant, and use-
ful. The assumption of exponential failure distribution for the duration of the
application run is validated by the observation that a plot of the inter-arrival
times of 2,050 single-node unscheduled interrupts, gathered on two different plat-
forms at Los Alamos National Laboratories over a period of a year, i.e., January
2003 to December 2003, fits a Weibull distribution with a shape factor 0.91/0.97.
Since an exponential distribution is equivalent to a Weibull distribution with a
shape factor 1.0, it is reasonable to assume an exponential failure distribution.
Due to space constraints, we do not present the plot in this paper.

8 Conclusions and Future Work

We believe that the modeling work presented in this paper, based on the POCIMI
model, is complementary to that associated with the PETM and POCIME



Modeling and Analysis of Checkpoint I/O Operations 399

models. Together they provide pointers and insights for making an informed
tradeoff between expected execution time and the number of checkpoint I/O
operations. This facilitates an application programmer to chose a value of the
checkpoint interval, a tunable parameter, that balances the frequency at which
the application performs checkpoint I/O operations and expected execution time.
To the best of our knowledge, at this time there is no quantitative guidance to
facilitate such a tradeoff. Both models do not factor in the deterioration caused
by resource contention. However, they model the general case, which can be used
as a guidance for specific cases.

In an MPP system that has a system-wide view of all concurrently executing
applications and has control over the checkpoint parameters of these applica-
tions, checkpoint intervals could be tuned to provide performance differentiation
and performance isolation of concurrent applications. For example, the applica-
tion with highest priority can be run with a checkpoint interval that is optimal
w.r.t execution time, while applications with the lowest priorities can be set
to run with checkpoint intervals that are closer to the value of the optimal
checkpoint interval w.r.t total number of checkpoint I/O operations. The other
applications can, perhaps, use checkpoint intervals that are between their two
optimal values. For periodic checkpointing applications, both the expected wall
clock execution time and the expected number of checkpoint I/O operations are
important metrics to be considered in order to make decisions about checkpoint
intervals. An important target of our future work is to provide specific guide-
lines about how to coordinate checkpoint operations of concurrently executing
applications in order to achieve high system throughput.
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