
GRISINO – A Semantic Web Services, Grid
Computing and Intelligent Objects Integrated
Infrastructure

Tobias Bürger, Ioan Toma, Omair Shafiq, Daniel Dögl, and Andreas Gruber

Abstract. Existing information, knowledge and content infrastructures are currently
facing challenging problems in terms of scalability, management and integration of
various content and services. The latest technology trends, including Semantic Web
Services, Grid computing and Intelligent Content Objects provide the technological
means to address parts of the previously mentioned problems. A combination of the
three technologies could provide a sound technological foundation to build scalable
infrastructures that provide highly automated support in fulfilling user’s goals.

This paper introduces GRISINO, an integrated infrastructure for Semantic Web
Services, Intelligent Content Objects and Grid computing, which may serve as a
foundation for next generation distributed applications.

1 Introduction

The GRISINO1 project investigates the use of semantic content models in service
oriented architectures based on Semantic Web Services- and Grid-Technology [13]
by combining three technology strands: Semantic Web Services [6], Knowledge
Content Objects [2] and Grid Computing [7]. By that, GRISINO aims at defining
and realizing intelligent and dynamic business processes based on dynamic service
discovery and the internal state of complex objects. Advantages of this approach

Tobias Bürger, Ioan Toma, Omair Shafiq
Semantic Technology Institute - STI Innsbruck, University of Innsbruck, Austria
e-mail: {tobias.buerger,ioan.toma,omair.shafiq}@sti2.at

Daniel Dögl
Uma Information Technology GmbH, Vienna, Austria
e-mail: daniel.doegl@uma.at

Andreas Gruber
Salzburg Research Forschungsgesellschaft mbH, Salzburg, Austria
e-mail: andreas.gruber@salzburgresearch.at

1 http://www.grisino.at

S. Schaffert et al. (Eds.): Networked Knowledge - Networked Media, SCI 221, pp. 113–128.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

{{tobias.buerger,ioan.toma,omair.shafiq}}@sti2.at
daniel.doegl@uma.at
andreas.gruber@salzburgresearch.at
http://www.grisino.at

114 T. Bürger et al.

include the possibility to establish service based processes ad-hoc based on the user
requirements or their alteration during run-time based on the state of the intelligent
content objects. The main output of the project is a test bed for experimentation with
complex processes and complex objects that takes user requirements into account
and fulfils them by dynamically integrating the three underlying technologies. For
this testbed, advanced prototypes of each of the technology strands are combined:

• The Web Service Modelling Ontology (WSMO) [11], the Web Service Mod-
elling Language (WSML)2 and the Web Service Modelling Execution Environ-
ment (WSMX)3 as a framework for the description and execution of Semantic
Web Services,

• Knowledge Content Objects (KCOs) as a model for the unit of value for con-
tent to be exchanged between services, together with its management framework,
the Knowledge Content Carrier Architecture (KCCA) [2].

• The Globus toolkit4 as an existing Grid infrastructure.

In this chapter we will detail the main results of the GRISINO project: its architec-
ture (section 2) and the core parts of the architecture which realize the integration
of the three technologies, i.e. a set of transformers between the protocol and de-
scription standards used (section 3 and 4). Furthermore, we provide details about
the proof of concept implementation which serves to demonstrate the functionality
and interoperability within the GRISINO testbed in section 5.

2 GRISINO Architecture

One of the major driving forces for the Web and its future derivatives is content
which can range from multimedia data (with some metadata) to “intelligent ob-
jects”, i.e. content that itself, can either exhibit behavior or at least, carry semantic
information that can (and must) be interpreted by the services on the Semantic Grid.
The GRISINO system architecture as shown in Figure 1 provides a set of APIs and
an implementation of these APIs to ease the handling and development of applica-
tions which intend to use the three technologies together:

• the GRISINO API which gives application developers easy access to the com-
bined functionality of the three technologies.

• the Transformer API including protocol transformations between the technolo-
gies,

• the Selector API issuing calls to transformers or the foundational API, and
• the foundational API, which is an abstracted view onto the APIs of the core

technologies.

Most notably the GRISINO system architecture includes extensions to the core com-
ponents that enable communication between the technologies. This includes:

2 http://www.wsmo.org/wsm
3 http://www.wsmx.org
4 http://www.globus.org/toolkit/

http://www.wsmo.org/wsm
http://www.wsmx.org
http://www.globus.org/toolkit/

GRISINO – A Semantic Web Services 115

Fig. 1 GRISINO System Architecture

• an extension of WSMX for the interpretation of KCOs,
• a semantic layer for services offered by KCCA to enable their discovery and
• an extension of the Globus toolkit which extends Globus with a semantic layer

in order to handle Grid services like other SWS.

The GRISINO system architecture integrates specific SWS and Grid solutions be-
cause of the existence of a wide variety of different and diverse approaches: We
based our efforts on WSMO and WSMX as execution platforms because they are
being well supported by an active research community to handle SWS. Furthermore
we are using the Globus Toolkit as being the most widely used Grid computing
toolkit which is fully compatible with the OGSA5 - and Web Service Resource

5 http://www.globus.org/ogsa/

http://www.globus.org/ogsa/

116 T. Bürger et al.

Framework (WSRF) specifications6. The integration of Semantic Web Services and
Grid computing includes the extension of the Semantic Web Services infrastructure
to model Grid Services and resources on the Grid in order to realize the vision of
the Semantic Grid. Benefits of this integration include:

• Resources on the Grid may profit from machine reasoning services in order to
increase the degree of accuracy of finding the right resources.

• The background knowledge and vocabulary of a Grid middleware component
may be captured using ontologies. Metadata can be used to label Grid resources
and entities with concepts, e.g. for describing a data file in terms of the applica-
tion domain in which it is used.

• Rules and classification-based reasoning mechanisms could be used to gener-
ate new metadata from existing metadata, for example describing the rules for
membership of a virtual organization and reasoning that a potential member’s
credentials are satisfactory for using the VO resources.

• Activities like Grid Service discovery or negotiation of service level agreements
can be potentially enhanced using the functionalities provided by Semantic Web
Service technologies.

• Searches / discovery of SWS can be seamlessly extended to Grid Services.

The integration of SWS and KCO technologies will benefit from each other in sev-
eral different aspects. In a KCO various kinds of information are modeled in so
called semantic facets that allow to deal with KCOs in different situations. A more
standardized exposition of KCO facet information would allow to base the actions
that take place in a (goal-based) Web Service execution on the facet information of
KCOs: for example to search for a KCO that contains certain content or to match
a certain licensing schema. Also choreography could be based on facet informa-
tion, e.g. to fulfill a special licensing schema where you first have to pay before you
consume the content. Another benefit would be that these services could also be au-
tomatically discovered, which represents a key requirement for ad-hoc instantiation.
Further benefits of the integration of SWS and KCO/KCCA include:

• Goal-based Web service execution can be based on the various kinds of informa-
tion which is modeled in so called semantic facets inside KCOs; e.g. to search
for a KCO that contains certain content or to match a certain licensing scheme.

• Choreography of Web services can be based on facet information, e.g. to fulfil a
special licensing scheme in which you first have to pay before you consume the
content.

• Plans that describe how to handle content and which are modeled inside a KCO
can be automatically executed by using SWS or Grid services.

The following section will provide further details about two of the three major as-
pects of the integration, i.e. the integration of SWS and Grid, as well as the integra-
tion of SWS and KCOs.

6 http://www.globus.org/wsrf/

http://www.globus.org/wsrf/

GRISINO – A Semantic Web Services 117

3 SWS-Grid Transformer

The main task of this transformer (mentioned as T2 in the Figure 1) is the real-
ization of the link between SWS based systems and Grid Computing systems. Our
approach was to extend and refactor an existing SWS solution, namely the Web Ser-
vice Modeling Ontology, Language and Execution Environment with Grid concepts
in order to address Grid related requirements. The resulting modeling framework
for Semantic Grid enriches the OGSA with semantics by providing a Grid Service
Modeling Ontology (GSMO)7 as an extended version of WSMO.

Based on the proposed conceptual model for Semantic Grid services, a new lan-
guage called GSML (Grid Service Modelling Language) was developed that inher-
its the syntax and semantics of the WSML language and adds a set of additional
constructs reflecting the GSMO model. Last but not least an extension of the Web
Service Modeling Execution Environment (WSMX), called Grid Service Model-
ing Execution Environment has been proposed. More details about the conceptual
model, the language and the new execution environment are available in [12].

3.1 Extensions to the WSMO Conceptual Model

The conceptual model of Semantic Web Services provides a set of guidelines or
recommendations on how Semantic Web Service descriptions should look like.
The Web Service Modeling Ontology (WSMO) [11] refers to the concepts it
defines as its top level elements. WSMO has four top-level elements, i.e. Ontolo-
gies, Web Services, Mediators and Goals. We have extended the WSMO concep-
tual model to model Semantic Grid Services based on an analysis of the GLUE
schema [1] for which we provided semantic annotations. The proposed extended
version, called GSMO has 6 major top level entities which were either newly added
to the WSMO conceptual model, are refinements of original entities or are entities
which are inherited from the WSMO model. The GSMO elements are graphically
represented in Figure 2: The elements GSMO, Job, VO, Resources, Computational
Resource, Data Resource were newly added, the element Grid Service is the rede-
fined element and finally the elements Ontology and Mediator have been inherited
or adopted:

• Job represents the functionality requested, specified in terms of what has to be
done, what are the resources needed, etc. A Job is fulfilled by executing one or
more Grid Services. Ontologies can be used as domain terminology to describe
the relevant aspects. Job as one of the top level entities of GSMO is adapted from
WSMO Goals and is taken in GSMO as its extended version.

• Ontologies provide the terminology used by other GSMO elements to describe
the relevant aspects of a domain. This element has been inherited from the
WSMO top level entity as Ontologies.

7 http://www.gsmo.org/

http://www.gsmo.org/

118 T. Bürger et al.

Fig. 2 Grid Service Modeling Ontology (GSMO)

• Grid Service describes the computational entity providing access to physical re-
sources that actually perform the core Grid tasks. These descriptions comprise
the capabilities, interfaces and internal working of the Grid Service. All these
aspects of a Web Service are described using the terminology defined by the on-
tologies. The Grid Service top level entity has been adopted from WSMO’s Web
Services as its top level entity.

• Mediators describe elements that overcome interoperability problems between
different WSMO elements. Due to the fact that GSMO is based on WSMO, it will
be used to overcome any heterogeneity issues between different GSMO elements.
Mediators resolve mismatches between different used terminologies (data level);
communicate mismatches between Grid services (protocol level) and on the level
of combining Grid Services and Jobs (process level).

• Resources describe the physical resources on the Grid which can be further clas-
sified into computing resources and storage resources. These computation- and
storage-resources are key elements of the underlying Grid.

• The Virtual Organization element describes any combination of different physi-
cal resources and Grid Services formed as virtual organizations on the Grid. This
element will help in automated virtual organization formation and management.

3.2 Extensions to the WSML Formal Language

Based on the conceptual model for Semantic Grid services presented in the previous
section, this section introduces the basic constructs towards a semantic language
for describing entities in the realm of the Semantic Grid. We propose a new lan-
guage which is based on an existing language for Semantic Web services, namely
the WSML language. The new language called GSML (Grid Service Modelling
Language) inherits the syntax and semantic of the WSML language. Additional con-
structs not defined in WSML such as VO and resource can be used to semantically

GRISINO – A Semantic Web Services 119

describe Virtual Organizations and resources on the Semantic Grid. The constructs
webService and goal from WSML are replaced by gridService and job.

As mentioned above, GSML follows the conceptual model of GSMO defining a
clear syntax for each of the elements described in the previous section. The top level
constructs introduced by GSML will be further described below:

A Grid service (gridService) in GSML has the following structure:

g r i d S e r v i c e = ’ g r i d S e r v i c e ’ i d ? heade r ∗ c a p a b i l i t y ? i n t e r f a c e ∗
u s e s R e s o u r c e s ∗ belongsToVOs ∗

The id, header, capability and interface constructs from a Grid service defi-
nition are defined in the same way as described in WSML. Additionally the uses-
Resources and belongsToVOs constructs with n-ary cardinality could be used to
specify the resources used by the service in order to provide its functionality, re-
spectively the VOs the service belongs to. A simplified example of a Grid service
which provides movie rendering functionality is given below:

namespace { ” h t t p : / / www. gsmo . org / movieRenderGS #” ,
dc ” h t t p : / / p u r l . org / dc / e l e m e n t s / 1 . 1 # ” ,
rO ” h t t p : / / www. gsmo . org / r e n d e r O n t o l o g y #”}
g r i d S e r v i c e ” h t t p : / / www. gsmo . org / movieRenderGS . wsml ”

n o n F u n c t i o n a l P r o p e r t i e s
dc # t i t l e hasValue ” Movie Render Grid s e r v i c e ”
dc # p u b l i s h e r hasValue ”GSMO”

e n d N o n F u n c t i o n a l P r o p e r t i e s
c a p a b i l i t y

s h a r e d V a r i a b l e s {? model}
p r e c o n d i t i o n

de f i nedBy ? model memberOf rO#Model .
p o s t c o n d i t i o n

de f i nedBy ? movie memberOf rO# lMovie and rO#
hasModel (? movie , ? model) .

i n t e r f a c e M o v i e R e n d e r S e r v i c e I n t e r f a c e
cho reog raph y M ovi eRende rSe rv i ceChoreog raphy
o r c h e s t r a t i o n M o v i e R e n d e r S e r v i c e O r c h e s t r a t i o n
u s e s R e s o u r c e s { ” h t t p : / / www. gsmo . org / r e s o u r c e s # proc1 ,

” h t t p : / / www. gsmo . org / r e s o u r c e s #mem1}
belongsToVOs { ” h t t p : / / www. gsmo . org / r e s o u r c e s #VO1,

” h t t p : / / www. gsmo . org / r e s o u r c e s #VO2}

The usesResources and belongsToVOs are defined as follows:

u s e s R e s o u r c e s = ’ usesR esou rce s ’ i d l i s t

belongsToVOs = ’ belongsToVOs ’ i d l i s t

The idlist construct from the above definitions are the IDs of resources, re-
spectively VOs. According to the principle inherited from WSML, the elements
in GSML are identified mainly by IRIs, and thus idlist is a list of IRIs.

120 T. Bürger et al.

A user job (job) in GSML has similar structure than a gridService construct. Ad-
ditionally an application element can be defined to explicitly specify the application
to be run:

j ob = ’ job ’ i d ?
heade r ∗ c a p a b i l i t y ? i n t e r f a c e ∗ u s e s R e s o u r c e s ∗
belongsToVOs ∗ a p p l i c a t i o n ?

a p p l i c a t i o n = ’ a p p l i c a t i o n ’ i d ? heade r ∗ name ? v e r s i o n ?
e x e c u t a b l e ? argument ∗ env i ronm en t ∗ i n p u t ? o u t p u t ?
e r r o r ? w o r k i n g d i r e c t o r y ?

Equally as in the gridService construct definition, the id, header, capability
and interface constructs are inherited from WSML. The usesResources and be-
longsToVOs constructs are to be used in the same way as described above for the
gridService construct. A simplified example of a job specification, a request for a
movie rendering is given below:

namespace { ” h t t p : / / www. gsmo . org / movieRenderGS #” , dc
” h t t p : / / p u r l . org / dc / e l e m e n t s / 1 . 1 # ” , rO
” h t t p : / / www. gsmo . org / r e n d e r O n t o l o g y #”}

j ob ” h t t p : / / www. gsmo . org / MovieRender . wsml ”
n o n F u n c t i o n a l P r o p e r t i e s

dc # t i t l e hasValue ” MovieRender Grid s e r v i c e ”
dc # p u b l i s h e r hasValue ”GSMO”

e n d N o n F u n c t i o n a l P r o p e r t i e s
c a p a b i l i t y

s h a r e d V a r i a b l e s {? model}
p r e c o n d i t i o n

de f i nedBy ? model memberOf rO#Model .
p o s t c o n d i t i o n

de f i nedBy ? movie memberOf rO# lMovie and rO# hasModel
(? movie , ? model) .

i n t e r f a c e M o v i e R e n d e r S e r v i c e I n t e r f a c e
cho reog raph y M ovi eRende rSe rv i ceChoreog raphy
o r c h e s t r a t i o n M o v i e R e n d e r S e r v i c e O r c h e s t r a t i o n

u s e s R e s o u r c e s { ” h t t p : / / www. gsmo . org / r e s o u r c e s # p roc1}
belongsToVOs { ” h t t p : / / www. gsmo . org / r e s o u r c e s #VO1}

Equally, a job can be specified using the application element instead of the capa-
bility element. In this case the functionality is explicitly specified by naming the
application that needs to be executed to fulfill the job. The elements of an ap-
plication description include: the name of the application (name), the version of
the application (version), the main executable file of the application (executable),
the arguments (argument*), any additional libraries needed to run the application
(environment), the input data for the application specified in the input file (input),
the output file (output), the error file (error) and finally the working directory.

GRISINO – A Semantic Web Services 121

namespace { ” h t t p : / / www. gsmo . org / movieRenderGS #” , dc
” h t t p : / / p u r l . org / dc / e l e m e n t s / 1 . 1 # ” , rO
” h t t p : / / www. gsmo . org / r e n d e r O n t o l o g y #”}

j ob ” h t t p : / / www. gsmo . org / MovieRender . wsml ”
n o n F u n c t i o n a l P r o p e r t i e s

dc # t i t l e hasValue ” MovieRender Grid s e r v i c e ”
dc # p u b l i s h e r hasValue ”GSMO”

e n d N o n F u n c t i o n a l P r o p e r t i e s
u s e s R e s o u r c e s { ” h t t p : / / www. gsmo . org / r e s o u r c e s # p roc1}
belongsToVOs { ” h t t p : / / www. gsmo . org / r e s o u r c e s #VO1}
a p p l i c a t i o n

n o n F u n c t i o n a l P r o p e r t i e s
dc # t i t l e hasValue ” MovieRender a p p l i c a t i o n ”
dc # p u b l i s h e r hasValue ”GSMO”

e n d N o n F u n c t i o n a l P r o p e r t i e s
name movieRender
v e r s i o n 0 . 1
e x e c u t a b l e / b i n / u s r / movieRender
i n p u t / home / g r i s i n o / model . mod
o u t p u t / home / g r i s i n o / movie . a v i
e r r o r / home / g r i s i n o / e r r o r
w o r k i n g d i r e c t o r y / home / g r i s i n o

By describing the Semantic Grid services and jobs in a symmetric manner, us-
ing terminology provided by ontologies, a semantic matchmaker will be able to
determine if jobs and services hosted on the Semantic Grid match in terms of func-
tionality, behavior, resources and VOs requested, respectively provided.

A Grid resource (resource) in GSML has the following structure:

r e s o u r c e = ’ r e s o u r c e ’ i d ?
heade r ∗ h a s D e f i n i t i o n ? h a s P o l i c y ∗ belongsToVOs ∗

The id, and header constructs from a resource specification are defined in the
same way as described in WSML. The hasDefinition contains a logical definition
in terms of concepts and relations from ontologies describing the resource. The
hasPolicy construct specifies the policy and access rules associated with the re-
source. The belongsToVOs construct is used to specify the VOs the resource be-
longs to. A resource could be further refined as described in the previous section in
computationalResource and dataResource.

A VO construct in GSML has the following structure:

vo = ’ vo ’ i d ?
heade r ∗ hasMembers∗ h a s D e s c r i p t i o n ?

The id and header constructs in VO specification are defined in the same way as
described in WSML [5].

122 T. Bürger et al.

Fig. 3 Towards a Grid Services Execution Environment

3.3 Extensions to the WSMX Execution Environment

This section presents the initial architecture of the Grid Service Execution Envi-
ronment which will be layered on top of OGSA based Grid toolkits (e.g. Globus
Toolkit8). The objective of the Grid Service Execution Environment is to process the
semantically enabled descriptions of Grid Services and to process the semantic de-
scriptions of Jobs submitted on the Grid. The Grid Service Execution Environment
will take care of the service execution management of user-defined applications
defined at the semantics layer, which may require specific resource requirements,
and imply complex interactions between services. The execution management will
extend the conventional execution management of jobs on the Grid, including the
execution of Web and Grid Services, with semantically enhanced descriptions of
required resources.

The architecture of the proposed framework is based on the Web Services Ex-
ecution Environment (WSMX) which itself is compliant to the Service Oriented
Architecture (SOA) paradigm and consists of a set of loosely coupled collaborat-
ing software components. The architecture of Semantic Grid Services Execution
Environment is shown in Figure 3. It will act as reference architecture for all the
components (existing WSMX and Globus components and the new ones proposed
based on GSMO) and integrate them inside one infrastructure. The following newly
added components in the Semantic Grid Services Execution Environment are based
on GSMO:

• Resource Management which deals with semantic-based resource discovery, ad-
vanced reservation, negotiation, deployment and provisioning of computational
and storage resources on the Grid

8 http://www.globus.org/toolkit/

http://www.globus.org/toolkit/

GRISINO – A Semantic Web Services 123

• Virtual Organization Manager which deals with creation and management issues
of dynamic business oriented Virtual Organizations of services, resources and
users in the Grid

• Extended WSML Reasoner for GSML which addresses the knowledge represen-
tation and reasoning aspects for discovery, composition and mediation of Grid
resources described in GSML.

• Extended Execution Management which covers the implementation of execution
semantics of internal Grid Service Execution Environment, and also for exter-
nal user-defined services and jobs including scheduling, fault-management, and
support of the monitoring of execution.

Figure 3 shows the initial architecture of the Grid Service Execution Environment.
It shows the initial set of required components which are grouped in three different
layers: The upper layer is the problem solving layer in which end user tools, devel-
opment tools and application frameworks are situated. In this layer already available
development tools for WSMX will be extended. Moreover, it includes the Applica-
tion Framework to support developers in building applications for the Semantic Grid
based on the Grid Service Execution Environment. The middle layer (the applica-
tion layer) includes the newly introduced components based on the extensions of
WSMO as GSMO and WSML as GSML, i.e. the VO Manager, Resource Manager,
GSML reasoner, the extended execution manager, as well as existing components in
the application layer of WSMX such as discovery, selection, composition, negotia-
tion, mediation etc., and the core OGSA services. The bottom (base) layer includes
the foundation of the environment such as Grid service descriptions based on Web
Services infrastructure and physical resources including computing and storage re-
sources on the Grid.

4 The KCO-SWS Transformer

The main objective of the KCO-SWS transformer (mentioned as T1 in Figure 1)
is the realization of the link between knowledge content based systems (resp. the
KCCA system) and its Knowledge Content Objects with Semantic Web Service
based systems (resp. WSMX). Our intention was to use information stored inside
Knowledge Content Objects (KCO) for service discovery and plan execution, e.g.
to automatically negotiate or to automatically enrich content and knowledge about
that content during the execution of web based workflows like e.g. a document-
based business process or workflow to index and enrich documents with additional
knowledge. In order to do so, WSMX needs to be able to interpret KCOs and the
services offered by KCCA need to be able to communicate with the other services
offered by the GRISINO system.

The approach to integrate existing KCO / KCCA technology with the SWS/Grid
technologies in the GRISINO system was twofold:

• Metadata descriptions that are contained inside KCOs are translated into WSMO
descriptions in order to be useable for service discovery and ranking.

124 T. Bürger et al.

• The KCCA system is wrapped with Web service descriptions that describe its
invoke-able functionality. These descriptions are further semantically described.

We started the integration with the investigation of the ontology of plans [8] as well
as the “Description and Situation” modules embedded in the OWL DL 3979 version
of foundational ontology DOLCE. Similar work has been reported in [3] or [10].
However, no fully functional translation between DOLCE (resp. its plans extension
DDPO10) and WSMO has been developed so far for obvious reasons: WSMO in
general is a richer knowledge representation language than OWL-DL. The same
holds - in principle - for DOLCE, but in order to comply with the restrictions of cur-
rent semantic web machinery, DDPO has been designed for the restrictions of OWL-
DL. Therefore, OWL DL has to be the lowest common denominator for WSMO and
DDPO with respect to defining a mapping between the two knowledge representa-
tion schemes. This task been done partially already by the WSMO Community [9].

The remaining task was to map the concepts of the DOLCE Design and Plan On-
tology (DDPO) and the regarding constructs for the KCO community facet (which
are ’static’ descriptions of conceptualizations over situations or states) onto WSMO
descriptions. In GRISINO we used a subset of concepts defined in DDPO. The ser-
vices developed within the project are focussed on fairly small parts of document
processing, in which goals and plans usually described in KCOs are more generic
and most likely closer to a business goal description. Furthermore, they likely in-
clude (human) agents in their description, while GRISINO is focussed on automatic
manipulation of processes. The concepts ’description’, ’situation’, ’task’, ’role’, ’pa-
rameter’, ’perdurant’, ’endurant’ and ’region’ describe the community facet of the
KCO and have been mapped onto WSMO elements as shown in Table 111:

1. DDPO:Goal is not the same as WSMO:Goal because DDPO:Goal is a descrip-
tion of a very general (and semantically open) desire, whereas WSMO:Goal is a
specification of a resulting situation for which several plans and executions may
exist and where there is a rigid structure containing a domain ontology, a media-
tor, a capability and an interface. In addition, DDPO:Goal does not play a central
role in the actual execution of a DDPO:plan.
Conclusion: DDPO is epistemologically more open than WSMO. The universe of
discourse for WSMO is the world of web services which is linked to the world of
“goals” (i.e. desired states of the world) via mediators and whose actual queries
(i.e. the goals) are formulated according to the vocabulary of arbitrary ontologies.
All we want to ever express in WSMO is a desired state for which it is assumed
that it can be reached by the execution of a sequence of web services. For a map-
ping between DDPO and WSMO it is therefore sufficient to constrain DDPO to
the generative power of WSMO. Furthermore, since KCOs only require a very
specific set of WSMO descriptions, we can constrain DDPO to those WSMO
descriptions which cover KCCA functions for KCOs.

9 http://www.loa-cnr.it/ontologies/DLP_397.owl
10 DDPOisaacronymusedforDOLCEDesignandPlanOntology
11 The numbers in the listing below refer to the rows in the table.

http://www.loa-cnr.it/ontologies/DLP_397.owl
DDPO is a acronym used for DOLCE Design and Plan Ontology

GRISINO – A Semantic Web Services 125

Table 1 Conceptual mapping of DDPO and WSMO elements

DDPO Concept DDPO Features WSMO WSMO Features

1 DDPO GOAL, PLAN
(subclass of
’description’)
SITUATION,
TASK, ROLE,
PARAMETER,
ENDURANT,
PERDURANT,
REGION

WSMO GOALS, ONTOLOGIES, WEB
SERVICES, MEDIATORS

2 DESCRIPTION
and SITUA-
TION

GOAL constrained-by: nonFunctional-
Property (=labelling) Ontology
Capability Mediator Interface

3 PLAN ROLE, TASK, PA-
RAMETER

Ontology terminology for specifying the goal

4 SITUATION (ENDURANT,
PERDURANT,
REGION)

Capability nonFunctionalProperty (=labelling)
Ontology ooMediator shared-
Variables axioms (Precondition)
axioms(Assumption) axioms (Post
condition) axioms (Effects)

2. DDPO:Plan is the conceptual and descriptive equivalent of WSMO:Goal in its
ability to define and reuse concepts that can classify situations, i.e. states in the
world. WSMO:Goal, via its capability section describes the specific situation that
needs to be fulfilled by a web services capability. The axioms here are used to
determine the pre- and/or postconditions for achieving the goal.

3. The concepts role, task and parameter are the descriptive counterparts to classify
“objects”, “events” and “values” of a given setting. These concepts of DDPO pro-
vide the terminology for specifying goals and to describe the domain knowledge.

4. A DDPO:Situation holds the relevant information to describe the pre- and postcon-
dition. A particular situation can be mapped to an axiom used within a capability.

5 Use Case Example

Today information retrieval and text analytics for special interest searches are usu-
ally realized as “one of a kind” expert systems. The user input usually is a set of
information sources and some definition of the “typical” users point of view, which
are fed into a sequence of steps like information acquisition, processing, extraction,
annotation, analysis, . . . with the goal to deliver rich search and filtering capabil-
ities based on authoritative, domain specific background knowledge. The systems
tend to be mostly monolithic, with predefined processes for the specific domains in
question.

126 T. Bürger et al.

Fig. 4 GRISINO Demonstrator

While such systems deliver a good user experience, they are hard to build, be-
cause the one who builds the system has to provide in depth domain knowledge,
technological knowledge, many different skills and different resources packaged as
a single high quality service.

To meet the demands of the users it is considered very favorable, often even
mandatory to be able to personalize the whole processing pipeline according to the
needs of an user. Additionally the number of specialized providers for knowledge,
content and services is growing, so that as a solution builder you have to consider in-
tegration of these providers, as it is hard if not impossible to be expert in all relevant
areas, and have all needed information and specialized knowledge readily available,
to answer the demands of the user. Thus we will need to build uniform but person-
alized solutions in the future, which transform a currently static, hardwired process
into a dynamic, service oriented process. This dynamic process should be driven by
the goals of the user, utilize and bundle services provided by different organizations
and gather and combine information and data from different sources. The vision for
such a process is to

“Transform the goal of the user into the appropriate process, execute it and deliver the
solution automatized.”

In order to demonstrate the functionality of the integration and the interoperabil-
ity between the technologies in the GRISINO test bed, a semantic search application

GRISINO – A Semantic Web Services 127

has been designed that realizes a scalable, flexible and customizable search applica-
tion generator that enables knowledge-based search in unstructured text. The search
applications generated are customized and tailored to specific needs expressed by
end users. The search applications include very specialized knowledge about a par-
ticular domain (e.g. football in the 19th century), collected from different knowledge
bases and consolidated into one index to provide a single point of access.

To achieve this, a number of processing services deployed on the grid, are tied
together to selectively collect, index and annotate content according to different
knowledge bases and to generate custom search applications according to a users’
input. The foundation of the users’ input is his/her knowledge background or special
interests. In particular the search application generator decomposes the user input
(e.g. data sources of interest, specific keywords or entities considered important,
etc.), into different sub goals which are used to consider different service providers
for enriching the initial input. It queries these services to ask for related terms and
entities, as well as authoritative information sources, such as popular websites ac-
cording to the topic of interest. Using additional services, such as clustering services,
the collected documents are then indexed and deployed for the use by the end user.

The goal of the scenario is amongst others to exploit as much of the GRISINO
functionality as possible, e.g. to select services based on plans modeled inside KCOs
or based on document types, and to parallelise indexing on the Grid. The underly-
ing GRISINO infrastructure enables automation of the whole process of putting
together the custom search application by using a number of different services from
different service providers and bundling its output into a coherent application that
combines knowledge and functionality from different sources. This reflects the par-
ticular and very common situation in which both knowledge found in all kinds of
knowledge bases and specific skills encapsulated in special technical functionality is
not found within one organization or provided by a specific technology provider, but
is spread over a greater number of specialized organizations. While the benefit for
the user obviously is a richer output informed by knowledge of a number of author-
itative service providers, this model allows the commercial aspect of contributing
specialized services as input to an open service mix by selling functionality and/or
encapsulated knowledge bundled into one coherent service.

6 Conclusions

The GRISINO project brought forward the integration of three distinct technologies
as detailed in this chapter. Two major sub-results of GRISINO are a new approach
to realize the Semantic Grid which has been the goal of the SWS - Grid trans-
former and the possibility to use self-descriptions of documents for dynamic SWS
discovery in order to automate and execute specific tasks. Regarding the first re-
sult, we have followed a new, and previously unexplored approach. More precisely
we started from a SWS system (i.e. WSMO/L/X) and added Grid specific features
and by that transformed an SWS system into a SWS-Grid system. Furthermore we
support the integration of legacy systems such as Globus. The second result, might

128 T. Bürger et al.

be applied in document processing, multimedia content adaptation or other similar
scenarios. The semantic search application generator implemented as a proof-of-
concept, shows the added value of the GRISINO system both for service providers
as well as for end users.

Acknowledgements. The reported work is funded by the Austrian FIT-IT (Forschung, In-
novation, Technologie - Informationstechnologie) programme under the project GRISINO -
Grid semantics and intelligent objects.

References

1. Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mambelli, M., Schopf, J.,
Viljoen, M., Wilson, A.: GLUE schema specification (December 2005)

2. Behrendt, W., Arora, N., Bürger, T., Westenhaler, R.: A Management System for Dis-
tributed Knowledge and Content Objects. In: Proc. of AXMEDIS 2006 (2006)

3. Belecheanu, R., et al.: Business Process Ontology Framework; SUPER Deliverable 1.1
(May 2007)

4. Bürger, T.: Putting Intelligence into Documents. In: Proc. of the 1st European Workshop
on Semantic Business Process Management (SBPM) held in conjunction with ESWC
2007 (2007)

5. de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M., Fensel,
D.: The Web Service Modeling Language WSML. Technical report, WSML. WSML Fi-
nal Draft D16.1v0.21 (2005), http://www.wsmo.org/TR/d16/d16.1/v0.21/

6. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic Com-
merce Research and Applications 1(2), 127–160 (1991)

7. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, San Francisco (1999)

8. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task Taxonomies for
Knowledge Content. METOKIS Deliverable D07 (2004), http://metokis.
salzburgresearch.at/files/deliverables/metokis_d07_task_
taxonomies_final.pdf

9. Keller, U., Feier, C., Steinmetz, N., Lausen, H.: Report on reasoning techniques and
prototype implementation for the WSML-Core and WSMO-DL languages. RW2 Deliv-
erable (July 2006)

10. Mika, P., Oberle, D., Gangemi, A., Sabou, M.: Foundations for Service Ontologies:
Aligning OWL-S to DOLCE. In: Proc. of the 13th Int. World Wide Web Conf (WWW
2004). ACM Press, New York (2004)

11. Roman, D., Lausen, H. (eds.): Web service modeling ontology (WSMO). Working Draft
D2v1.2, WSMO (2005), http://www.wsmo.org/TR/d2/v1.2/

12. Shafiq, O., Toma, I.: Towards semantically enabled Grid infrastructure. In: Proc. of the
2nd Austria Grid Symposium, Innsbruck, Austria, September 21-23 (2006)

13. Toma, I., Bürger, T., Shafiq, O., Dögl, D., Behrendt, W., Fensel, D.: GRISINO: Combin-
ing Semantic Web Services, Intelligent Content Objects and Grid computing. In: Proc.
of EScience 2006 (2006)

14. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine. Definition, Verifi-
cation, Validation.: Definition, Verification, Validation. Springer, Berlin (2001)

http://www.wsmo.org/TR/d16/d16.1/v0.21/
http://metokis.salzburgresearch.at/files/deliverables/metokis_d07_task_taxonomies_final.pdf
http://metokis.salzburgresearch.at/files/deliverables/metokis_d07_task_taxonomies_final.pdf
http://metokis.salzburgresearch.at/files/deliverables/metokis_d07_task_taxonomies_final.pdf
http://www.wsmo.org/TR/d2/v1.2/

	GRISINO – A SemanticWeb Services, Grid Computing and Intelligent Objects Integrated Infrastructure
	Introduction
	GRISINO Architecture
	SWS-Grid Transformer
	{\it Extensions to the WSMO Conceptual Model}
	{\it Extensions to the WSML Formal Language}
	{\it Extensions to the WSMX Execution Environment}

	The KCO-SWS Transformer
	Use Case Example
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

