
Developing Semantic Web
Applications with the OntoWiki
Framework

Norman Heino, Sebastian Dietzold, Michael Martin, and Sören Auer

Abstract. In this paper, we introduce the OntoWiki Application Framework
for developing Semantic Web applications with a strong emphasis on collabo-
ration. After presenting OntoWiki as our main show case for the framework,
we give both an architectural overview and a detailed view on the included
components. We conclude this paper with a presentation of different use cases
where the framework was strongly involved.

Introduction

Web application development usually begins with clarifying requirements,
goals and usage scenarios. Today more than ever, requirements of modern
Web applications lead to a strong need for semantic technologies. Depend-
ing on the context of the Web application, expectations for integrating those
technologies vary greatly. They can range from advantages in search han-
dling, categorization and content management to flexibility in handling dif-
ferent data schemes. Particularly, semantic technologies have the potential
to facilitate data exchange between Web applications and allow them to be
used together in unforeseeable ways.

In this paper we present a framework for developing Semantic Web applica-
tions. The OntoWiki Application Framework has been developed with applica-
tions in mind that have a strong emphasis on collaboration. As the OntoWiki
Application Framework is a successor of OntoWiki, a visual Semantic Wiki [2],
we will first introduce OntoWiki. The role of OntoWiki is, however, not limited

Norman Heino, Sebastian Dietzold, Michael Martin, and Sören Auer
Institute of Computer Science
University of Leipzig
Johannisgasse 26
04103 Leipzig
e-mail: {heino,dietzold,martin,auer}@informatik.uni-leipzig.de

S. Schaffert et al. (Eds.): Networked Knowledge - Networked Media, SCI 221, pp. 61–77.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

{heino,dietzold,martin,auer}@informatik.uni-leipzig.de

62 N. Heino et al.

to a show case for the OntoWiki Application Framework, but it is intended as
a generic management backend for Semantic Web applications.

The paper is structured as follows. In section 1 we will give a short intro-
duction to the central goals of OntoWiki. Section 2 will present the OntoWiki
Application Framework including its components and features. Subsequently,
in section 3 we demonstrate OntoWiki usage in three different application
scenarios. The article concludes with lessons learned from the use cases and
future developments.

1 OntoWiki – A Visual Semantic Wiki

In this section we present OntoWiki. It is a tool which, briefly speaking, sup-
ports presentation and knowledge engineering in a Web environment. We will
sketch central issues which have resulted in the development of the tool, ex-
plain why it is called OntoWiki and outline the problems while using conven-
tional Wiki systems. Subsequently, we explain the major goals of OntoWiki,
some general use cases and describe existing views and workflows.

1.1 OntoWiki – Not a Classical Wiki

The driving force behind OntoWiki development was the need of a Web tool
for rapid and simple knowledge acquisition in a collaborative way. Therefore,
technologies were required for presenting information in a human-readable
and machine-interpretable fashion. The tool presented is called OntoWiki,
since it is inspired by classical Wiki systems. Its design, however, is indepen-
dent and complementary to conventional Wiki technologies. The approach
taken with OntoWiki differs from previously emerged strategies to integrate
Wiki systems and the Semantic Web (cf. [4, 3, 8, 10, 12]). In these works it is
proposed to integrate RDF triples into text-based Wiki systems by means of
a special syntax. It is a straightforward combination of existing Wiki systems
and the Semantic Web knowledge representation paradigms. Yet, we see the
following obstacles:

Usability: The main advantage of Wiki systems is their unbeatable usabil-
ity. Adding more and more syntactic possibilities counteracts ease of use
for editors.

Redundancy: To allow the answering of real-time queries to the knowledge
base, statements have to be additionally kept in a triple store. This intro-
duces a redundancy, which complicates the implementation.

Evolution: As a result of storing information in both Wiki texts and triple
store, supporting evolution of knowledge is difficult.

In contrast to other semantic Wiki approaches, in OntoWiki text edit-
ing and knowledge engineering (i. e. working with structured knowledge
bases) are not mixed. Instead, OntoWiki directly applies the Wiki paradigm

Developing Semantic Web Applications 63

of “making it easy to correct mistakes, rather than making it hard to
make them” [9] to collaborative management of structured knowledge. This
paradigm is achieved by interpreting knowledge bases as information maps
where every node is represented visually and interlinked to related resources.
Furthermore, it is possible to enhance the knowledge schema gradually as
well as the related instance data agreeing on it. As a result, the following
requirements have been determined for OntoWiki:

Intuitive display and editing of instance data should be provided in generic
ways, yet enabling means for domain-specific presentation of knowledge.

Semantic views allow the generation of different views and aggregations of
the knowledge base.

Versioning and evolution provides the opportunity to track, review and
roll-back changes selectively.

Semantic search facilitates easy-to-use full-text searches on all literal data,
search results can be filtered and sorted (using semantic relations).

Community support enables discussions about small information chunks.
Users are encouraged to vote about distinct facts or prospective changes.

Online statistics interactively measures the popularity of content and ac-
tivity of users.

Semantic syndication supports the distribution of information and their
integration into desktop applications.

OntoWiki enables the easy creation of highly structured content by dis-
tributed communities. The following points summarize some limitations and
weaknesses of OntoWiki and thus characterize the application domain:

Environment : OntoWiki is a Web application and presumes all collabora-
tors to work in a Web environment, possibly distributed.

Usage Scenario: OntoWiki focuses on knowledge engineering projects where
a single, precise usage scenario is either initially (yet) unknown or not (eas-
ily) definable.

Reasoning: Application of reasoning services was (initially) not the primary
focus.

1.2 Generic and Domain-Specific Views

OntoWiki can be used as a tool for presenting, authoring and managing
knowledge bases adhering to the RDF data model. As such, it provides
generic methods and views, independent of the domain concerned. Two
coarse-grained generic views included in OntoWiki are the resource view and
the list view. While the former is generally used for displaying all known
information about a resource, the latter can present a set of resources, typi-
cally instances of a certain concept. That concept not necessarily has to be
explicitly defined as rdfs:Class or owl:Class in the knowledge base. Via its
facet-based browsing, OntoWiki allows the construction of complex concept

64 N. Heino et al.

definitions, with a pre-defined class as a starting point by means of property
value restrictions. These two views are sufficient for browsing and editing all
information contained in a knowledge base in a generic way.

For domain-specific use cases, OntoWiki provides an easy-to-use extension
interface that enables the integration of custom components. By providing
such a custom view, it is even possible to hide completely the fact that an
RDF knowledge base is worked on. This permits OntoWiki to be used as
a data-entry frontend for users with a less profound knowledge of Semantic
Web technologies.

1.3 Workflow

With the use of RDFS [5] and OWL [11] as ontology languages, resource def-
inition is divisible into different layers: a terminology box for conceptual in-
formation (i. e. classes and properties) and an assertion box for entities using

Fig. 1 The list and details view in OntoWiki

Developing Semantic Web Applications 65

the concepts defined (i. e. instances). There are characteristics of RDF which,
for end users, are not easy to comprehend (e. g. classes can be defined as in-
stances of owl:Class). OntoWiki’s user interface, therefore, provides elements
for these two layers, simultaneously increasing usability and improving a user’s
comprehension for the structure of the data.

After starting and logging in into OntoWiki with registered user creden-
tials, it is possible to select one of the existing ontologies. The user is then
presented with general information about the ontology (i. e. all statements ex-
pressed about the knowledge base as a resource) and a list of defined classes,
as part of the conceptual layer.

By selecting one of these classes, the user receives a list of resources that
are instances of it. In figure 1 the class Student has been selected and yields
a list of students being either instance of Student directly or of its subclass
PhDStudent; OntoWiki applies basic rdfs:subClassOf reasoning automat-
ically. After selecting an instance from the list – or alternatively creating a
new one – it is possible to manage (i. e. insert, edit and update) information
in the details view, which is depicted in figure 1 as well.

OntoWiki focuses primarily on the assertion layer, but also provides ways
to manage resources on the conceptual layer. By enabling the visualization
of schema elements, called System Classes in the OntoWiki nomenclature,
conceptional resources can be managed in a similar fashion as instance data.
One of the missing features for schema management is a knowledge base
consistency check, which will be included as part of the upcoming reasoning
support in the near future.

2 The OntoWiki Application Framework

In the previous section we have shown how OntoWiki can be used as a Se-
mantic Wiki. In order to render its functionality, OntoWiki relies on several
APIs that are also available to third-party developers. Usage of these pro-
gramming interfaces enables them to extend, customize and tailor OntoWiki
in several ways. In this section we describe the OntoWiki Application Frame-
work that builds the foundation for OntoWiki and related applications. To
get an idea as to what can be achieved with the framework, we refer to the
use cases described in section 3.

2.1 Architecture Overview

As depicted in figure 2, the OntoWiki Application Framework consists of
three separate layers. The persistence layer consists of the Erfurt API which
provides an interface to different RDF stores. In addition to the Erfurt API,
the application layer is built by a) the underlying Zend Framework1 and b) an

1 http://framework.zend.com/

http://framework.zend.com/

66 N. Heino et al.

Application Layer

OntoWiki API Zend Framework

Persistence Layer (Erfurt API)

RDF Store

S
to

re
A

da
pt

er

Authentication, ACL,
Versioning, …

User Interface Layer

CSS
Framework

OntoWiki UI
API

RDFa
Widgets

Templates

Fig. 2 The OntoWiki Application Framework with its three layers: persistence
layer, application layer, user interface layer

API for OntoWiki extension development. With the exception of templates,
the user interface layer is primarily active on the client side, providing the
CSS framework, a JavaScript UI API, RDFa widgets and HTML templates
generated on the Web-server side.

2.2 Persistence Layer

Persistent data storage as well as associated functionality such as versioning
and access control are provided by the Erfurt API. This API consists of the
components described in the subsequent paragraphs.

2.2.1 Authentication and Access Control Components

For Semantic Web applications it might be useful to have a means of au-
thenticating users against an RDF store, instead of a database table. Erfurt
therefore includes an authentication component that provides an API for user
management.

Although Leuf and Cunningham define openness to everyone as one of the
key concepts for a Wiki software [9], we think that especially in enterprise
scenarios it might be useful to have access control at read and write level.
Therefore, Erfurt allows fine-grained access control for both – groups of users
and individuals. Access control rules can be defined in OntoWiki itself by

Developing Semantic Web Applications 67

modifying the system configuration model. It provides a class for models
as well as actions, whose instances are objects of access control statements.
Since in OntoWiki, each registered user has his/her URI which can be used
as subject of a rule statement, an example access control statement, which
grants the admin user the right to register new users, would be as follows:

<http://localhost/OntoWiki/Config/Admin>
<http://ns.ontowiki.net/SysOnt/grantAccess>
<http://ns.ontowiki.net/SysOnt/registerNewUser>.

The above statement is, of course, unnecessary in OntoWiki since the admin
user is granted any action by default.

2.2.2 Caching Component

Erfurt supports several caching mechanisms based on Zend_Cache. Almost
any entity from objects to function return-values can be stored for faster
retrieval. Zend_Cache allows the usage of several cache backends of which
database and file backends are the most important. Developers are encour-
aged to make use of Erfurt’s caching facilities as it will greatly improve user
experience.

2.2.3 Event Dispatcher

The Erfurt event dispatcher builds the foundation of Erfurt’s and of On-
toWiki’s plug-in system. Since the dispatcher implements the Observer pat-
tern, extensions can register code for execution when certain events occur.
The registrants can be either classes or objects. In both cases, a method with
the same name as the event, must exist and will be executed once the event
is triggered. Events can be triggered by using the event dispatchers trigger
method. For a detailed description of OntoWiki’s plug-in architecture, see
section 2.3.

2.2.4 RDF/RDFS/OWL API

These classes provide a resource-, property- or model-centric view on the
triples in an RDF store, taking into account additional inbuilt semantics
that are provided by different layers of the Semantic Web stack.

Once the heart of the Erfurt API (then named pOWL [1]), they provided an
easy-to-use interface which unfortunately led to extensibility and scalability
problems. Thus, the current state of Erfurt contains only the most important
classes with a reduced method set.

Functionality currently provided by these classes includes the following:

• adding/removing statements,
• updating models with a statement diff,
• namespace handling,
• URI handling,

68 N. Heino et al.

• transitive closure calculation and
• owl:imports handling.

For performance reasons, complex retrieval tasks are not covered by the
API and should be done through SPARQL [6] in combination with domain-
specific MVC models instead (see section 2.3 on how this is done in OntoWiki
core components).

2.2.5 Store Component

Triple storage and retrieval are provided by Erfurt’s storage component. Er-
furt allows for easy integration of RDF stores via adapters that mediate
between the store’s communication protocols and Erfurt’s PHP API. The
API provided by adapters is not directly exposed to framework clients. In-
stead, a lightweight intermediate layer (Erfurt_Store) is used to assure that
access control rules are adhered to and that versioning information is kept
along with changes to the RDF store. This architectural decision has two
implications:

• Versioning and ACL enforcement is completely transparent to store adapt-
ers.

• The store architecture is open to extension, for instance different import
and export formats can thus be supported by the API.

Erfurt comes with store adapters for MySQL and OpenLink Virtuoso [7].
The list of supported stores will be expanded in future versions of the frame-
work. As a matter of fact, work is currently being done on Redland and
Oracle adapters.

2.2.6 Versioning Component

As its name implies, this component is responsible for keeping versioning
information on an RDF store. Versioning is handled on statement level,
i. e. actions that are recorded are statement-added, statement-removed and
statement-changed. The usual entry point is a resource URI which yields all
changes that have been made to statements about that specific resource.
In addition, Erfurt’s versioning component provides other entry points such
as user URI or model URI, where all changes are returned that have been
made by a specific user or have been made to statements in a specific model,
respectively.

2.3 Application Layer

OntoWiki as a Web application is based on the Zend Framework which lays
out the basic architecture and is primarily responsible for request handling.
In the following paragraphs we cover custom OntoWiki classes and aspects of

Developing Semantic Web Applications 69

the Zend Framework that need to be considered when developing Semantic
Web applications with the OntoWiki Application Framework.

2.3.1 OntoWiki Request Lifecycle

The single entry point to the application is the index.php file which sets
up the basic environment and starts the OntoWiki_Application singleton.
The latter initializes the OntoWiki application itself and serves as a global
registry for objects and simple values. Thereafter, the Zend Framework takes
over control and dispatches the request to an appropriate controller with an
action that handles the request. The content is then rendered into templates,
as described in the Templates paragraph of section 2.4.

2.3.2 OntoWiki MVC Models

One of OntoWiki’s most outstanding features is that it automatically displays
human-readable representations of resources instead of URI strings. The nam-
ing or title properties it uses are configurable both on a global level and per
model. SPARQL queries that test all naming properties can be quite complex.
OntoWiki therefore provides a model base class that builds SPARQL query
fragments and fetches the correct naming property value from an Erfurt store
result set.

Fig. 3 Screenshot of OntoWiki with OntoWiki Application Framework compo-
nents: 1) menu, 2) toolbar, 3) navigation, 4) module window and 5) message

70 N. Heino et al.

2.3.3 Menus

Menus in OntoWiki (see 1 in figure 3) consist of instances of OntoWiki_Menu.
Entries are set by using the setEntry instance method that takes two ar-
guments: the name of the menu entry and the content, which can be a
string, another instance of OntoWiki_Menu or a menu separator stated by
OntoWiki_Menu::SEPARATOR. An optional third parameter denotes whether
entries of the same name should be replaced or not.

2.3.4 Toolbar

To ensure a consistent user interface throughout all views, the toolbar is cen-
trally managed. In each request there exists an instance of OntoWiki_Toolbar
to which buttons and separators can be appended or prepended. An example
toolbar is depicted under 2 in figure 3. Table 1 shows default buttons that
are available.

Table 1 Toolbar buttons available in OntoWiki.

Constant Name CSS class Function

CANCEL Cancel Cancel an operation
SAVE Save Save current changes
EDIT Edit edit-enable Enter editing mode
ADD Add Add a new entity
EDITADD Add a new entity by editing another
DELETE Delete Delete the current selection
SUBMIT Submit submit Save changes
RESET Reset reset Reset changes

The name or CSS class of default buttons can be overwritten by providing
the appendButton or prependButton method with a configuration array as
the second parameter. If the configuration array is the only parameter, a
custom button will be generated (in that case an image URL should be
provided, as well).

2.3.5 Navigation

Without any customization, OntoWiki’s main navigation is displayed as a tab
bar in the upper part of the main window (see 3 in figure 3). Components can
register one or more actions with the navigation. A component’s default action
is registered automatically by the component manager. Disabling the naviga-
tion is possible by calling OntoWiki_Navigation::disableNavigation().

2.3.6 Extension Architecture

The OntoWiki Application Framework differentiates between three kinds of
extensions:

Developing Semantic Web Applications 71

Plug-ins are the most basic, yet most flexible types of extensions. They
consist of arbitrary code that is executed on certain events. Plug-ins need
to be registered for events in the plugin.ini config file that has to be
placed in the same folder as the plug-in class.

Modules display little windows that provide additional user interface ele-
ments with which the user can affect the main window’s content. Since
some modules are highly dynamic extensions, they can be configured both
statically and dynamically. Static configuration works in the same way as
with other extensions; a module.ini file is placed in the module’s root di-
rectory. In addition, a module class needs to extend OntoWiki_Module and
can redefine several of its methods in order to allow for dynamic customiza-
tion. If present, return values will overwrite static configuration settings
in the module.ini file.

Components are pluggable MVC controllers to which requests are dis-
patched. Usually but not necessarily, components provide the main win-
dow’s content and, in that case, can register with the navigation to be
accessible by the user. In other cases components can function as con-
trollers that serve asynchronous requests. Components are statically con-
figured by a component.ini file within the component’s folder.

2.3.7 Localization

Zend_Translate along with CSV files are used to translate user inter-
face strings. Extensions can provide their own translation files. If done
so, the folder containing the translations must be set in the configuration
file. Translatable strings are printed using the the _ member function of
OntoWiki_View. Alternatively, the translate object that can be requested
from OntoWiki_Application provides a translate method.

2.3.8 URLs and URI Parameters

By convention, the URL parameter that identifies a resource is named r.
If this parameter contains only a URI’s local part or a cURI2, OntoWiki
automatically expands it into a full URI by using namespace prefixes from
imported knowledge base files.

For constructing URLs, usage of OntoWiki_Url is recommended. This class
initializes itself with the currently active URL but all parameters includ-
ing controller and action can be replaced. Apart from name and value, the
setParam method accepts a third optional parameter that, if set to true, en-
ables automatic URI compacting by replacing namespaces with their prefixes
or no prefix at all for the currently active model. This behaviour allows for
user-friendly short URLs with almost no extra effort for the developer.
2 http://www.w3.org/TR/rdfa-syntax/#s_curieprocessing

http://www.w3.org/TR/rdfa-syntax/#s_curieprocessing

72 N. Heino et al.

Layout

Main Content
Main Content

Inner
Window

Inner
Window

Fig. 4 OntoWiki template hierarchy. The main content is produced by the con-
troller action. Layout content is applied automatically by the template system.

2.3.9 Messages

User notifications are represented by OntoWiki_Messagewhich is instantiated
by passing a message text and a type constant. Recognized types are SUCCESS,
INFO, WARNING and ERROR. The main OntoWiki_Application object keeps
a message stack that is automatically displayed in the upper part of the
page. In figure 3, a message is depicted under 5. Elements can be added
to this stack via OntoWiki_Message member functions appendMessage or
prependMessage.

2.4 User Interface Layer

2.4.1 Templates

Content is rendered in OntoWiki through templates, as suggested by the
Zend_View template system. The controller action serving the request renders
its output in a template. In doing so, it has control over inner windows within
the main content and can explicitly include modules (see figure 4). In order
to build a complete page the main content is inserted into a layout template
that defines the position of main content and side windows.

2.4.2 User Interface API and CSS Framework

While much of the user interface dynamism found in OntoWiki is made avail-
able via a JavaScript API, its look and feel results from a sophisticated CSS
framework that makes it almost unnecessary to provide custom style sheets.
Since the API itself relies heavily on jQuery3, large parts of it are implemented
as jQuery plug-ins. This design allows, not only style, but also behaviour be
used automatically on HTML elements that carry the respective CSS classes.
3 http://jquery.com/

http://jquery.com/

Developing Semantic Web Applications 73

2.4.3 RDFa Widgets

By exposing RDFa, structured data is available in rendered HTML code. A
set of JavaScript-based widgets that make use of statements extracted from
RDFa provides editing functionality to be directly invoked from the client side
(i. e. inside the user’s web browser). Since complete statements are available to
those widgets and they can even fetch additional metadata, e. g. rdf:range
or rdf:datatype constraints, it is possible to provide the user with well-
suited edit forms. Changed statements are then sent back asynchronously, so
no HTML page refresh is required after performing an edit action.

3 Use Cases

In this section we introduce exemplarily three projects that make use of the
OntoWiki Application Framework to different extents.

3.1 SoftWiki – Requirements Engineering the Wiki
Way

SoftWiki is a specialized Wiki application for end-user-centered requirements
engineering. The aim of the SoftWiki application is to support the collabora-
tion of all stakeholders in software development processes in particular with
respect to software requirements. Potentially very large and spatially dis-
tributed user groups shall be enabled to collect, semantically enrich, classify
and aggregate software requirements. Thus, SoftWiki is a prime example for
such knowledge-rich applications which can be developed with the OntoWiki
Application Framework.

Requirements for the SoftWiki application can be outlined as follows:

• The main entity in SoftWiki is a requirement with its attributes and rela-
tions between requirements.

• Users should be enabled to create and manage requirements as well as
relations between them in an easy way with respect to two different man-
agement schemes, namely topic hierarchies and tag clouds.

• Users should be supported in their collaboration, for instance, if they want
to discuss and vote on particular requirements.

Based on these requirements, SoftWiki was developed as a plug-in for On-
toWiki instead of developing a new Semantic Web application from scratch.
SoftWiki uses the majority of the backend functionality including version-
ing, access control and authentication. In addition to the OntoWiki-provided
backend, SoftWiki implements a dynamic user interface, built upon asyn-
chronously loaded GUI components from the OntoWiki base system.

74 N. Heino et al.

Fig. 5 SoftWiki detail view for a specific requirement. All marked windows are
reused GUI components.

The list of GUI components includes

• a tag cloud which is based on the tag ontology from Ayers et al.4,
• a generic hierarchy browser to visualize container hierarchy (this compo-

nent is used for a class tree but SoftWiki uses it for a hierarchy of SKOS
concepts which are used to manage requirements) and

• a generic vote and discussion component which enables users to comment on
a specific resource (in SoftWiki these resources are limited to requirements.).

Fig. 5 shows a screenshot of a detailed view for a specific requirement in
SoftWiki, where components reused from generic OntoWiki application are
marked with a black dot. These components are integrated by Ajax calls from
the SoftWiki application. Every component is a specific action and can be
used from inside or outside OntoWiki.

Reusing and integrating OntoWiki core functionality was very important
in the SoftWiki development. However, the main development effort was done
on the SoftWiki plug-in controller which implements specialized views for list-
ing and editing requirements. This controller uses the Erfurt API to store and
query statements on a project’s requirements and generates the custom views
using the CSS framework. Both new and reused components are connected

4 http://www.holygoat.co.uk/owl/redwood/0.1/tags/

http://www.holygoat.co.uk/owl/redwood/0.1/tags/

Developing Semantic Web Applications 75

by JavaScript functionality which handles all user input and requests the
specific GUI elements.

3.2 Caucasian Spiders Database

The Caucasian Spiders database 5 is a faunistic knowledge base on the spiders
of the Caucasus. It consists of several components:

• a biological taxonomy of spiders,
• concepts for records, locations and publications,
• instance data about individual spiders with localities and
• geographical information.

The knowledge base has a size of about 240k triples. It is browsable in On-
toWiki with only minor tweaks to internal inference algorithms6. The project
uses OntoWiki as both a knowledge-base editor for data entry and a browser
for displaying instance data. OntoWiki supports these use cases with generic
user interface components like class tree, facet-based browsing and Map com-
ponent just to name a few. Significant customizations of the user interface
were not required.

The project might, however, benefit from a custom hierarchy tree that can
be based on arbitrary properties. This would allow tree-based browsing of
the biological taxonomy instead of the rdfs:subClassOf hierarchy, which is
more natural to biologists. Such a component has been developed for another
project (see section 3.1) and will be integrated into OntoWiki in one of the
upcoming versions.

3.3 Professor Catalogue of the University of Leipzig

In the course of the 600th anniversary of the University of Leipzig a database
of Leipzig professors from the nineteenth and twentieth century7 has been
built in the department of history.

The database has been realized using Semantic Web technologies allowing
it to be queried in various ways. One could for instance try to find the names
of professors who were taught by Nobel Prize winners. However useful that
query might be, it shows the flexibility that is gained by building upon RDF
and related technologies.

Since OntoWiki can work with any RDF knowledge base, it was a natural
choice as a generic data wiki for collaboratively building the database and
5 http://caucasus-spiders.info/
6 E. g. disabling inference that resource A is a class if there exists at least one

resource ai that has A as its rdf:type (called implicit class in OntoWiki termi-
nology).

7 http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

http://caucasus-spiders.info/
http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

76 N. Heino et al.

entering instance data. The result was a knowledge base with about 60 schema
elements and 800 entries.

4 Conclusion

In this paper we presented the OntoWiki Application Framework which can
be used a basis for developing Semantic Web applications in different environ-
ments. We described the usage of the framework and gave example use-cases
that were implemented with the OntoWiki Application Framework.

There is, of course, room for future improvements and refinements of the
OntoWiki Application Framework. One often-requested feature is reasoning
support which is currently integrated as a component. Work is also done on
scalability problems that occurred when using very large datasets or complex
queries. Scalability becomes paramount with statement-based access control,
which heavily decelerated the use of the OntoWiki Application Framework.
Further improvements could also include integration with different Semantic
Web endpoints like DBpedia8, Sindice9 or Linked Data providers.

References

1. Auer, S.: Powl – A Web Based Platform for Collaborative Semantic Web De-
velopment. In: Proceedings of the 1st Workshop on Scripting for the Semantic
Web at the ESWC, CEUR Workshop Proceedings, Heraklion, Greece (May 30,
2005)

2. Auer, S., Dietzold, S., Riechert, T.: OntoWiki - A Tool for Social, Semantic
Collaboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp.
736–749. Springer, Heidelberg (2006)

3. Aumüller, D.: Semantic Authoring and Retrieval within a Wiki (WikSAR). In:
Demo Session at the Second European Semantic Web Conference (ESWC 2005)
(May 2005), http://wiksar.sf.net

4. Aumüller, D.: SHAWN: Structure Helps a Wiki Nvigate. In: Proceedings of the
BTW-Workshop ”WebDB Meets IR” (2005)

5. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C recommendation, W3C (February 2004),
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

6. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF. W3c
recommendation, W3C (January 2008),
http://www.w3.org/TR/rdf-sparql-protocol/

7. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Auer, S.,
Bizer, C., Müller, C., Zhdanova, A.V. (eds.) The Social Semantic Web 2007,
Proceedings of the 1st Conference on Social Semantic Web (CSSW), Leipzig,
Germany, September 26-28, 2007. LNI, vol. 113, pp. 59–68 (2007)

8 http://dbpedia.org/
9 http://sindice.com/

http://wiksar.sf.net
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/rdf-sparql-protocol/
http://dbpedia.org/
http://sindice.com/

Developing Semantic Web Applications 77

8. Krötzsch, M., Vrandecic, D., Völkel, M.: Wikipedia and the Semantic Web -
The Missing Links. In: Voss, J., Lih, A. (eds.) Proceedings of Wikimania 2005,
Frankfurt, Germany (2005)

9. Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley Professional, Reading (2001)

10. Oren, E.: SemperWiki: A Semantic Personal Wiki. In: Decker, S., Park, J.,
Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at the
ISWC, Galway, Ireland, November 6, vol. 175 (2005)

11. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language -
Semantics and Abstract Syntax. W3c:rec, W3C (February 10, 2004),
http://www.w3.org/TR/owl-semantics/

12. Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5), 87–91
(2005)

http://www.w3.org/TR/owl-semantics/

	Developing Semantic Web Applications with the OntoWiki Framework
	OntoWiki – A Visual Semantic Wiki
	{\it OntoWiki – Not a Classical Wiki}
	{\it Generic and Domain-Specific Views}
	{\it Workflow}

	The OntoWiki Application Framework
	{\it Architecture Overview}
	{\it Persistence Layer}
	{\it Application Layer}
	{\it User Interface Layer}

	Use Cases
	{\it SoftWiki – Requirements Engineering the Wiki Way}
	{\it Caucasian Spiders Database}
	{\it Professor Catalogue of the University of Leipzig}

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

