AUTOMS-F: A Framework for the
Synthesis of Ontology Mapping
Methods

Alexandros G. Valarakos, Vassilis Spiliopoulos, and George A. Vouros

Abstract. Effective information integration is still one of today’s emerging
research goals. The explosive growth of heterogeneous information sources
makes the task harder and more challenging. Although ontologies promise
an effective solution towards information management and coordination, it
would be a surprise if two independent parties have constructed the same
ontology to manage information for the same domain. Hence, to integrate
information effectively, ontology mapping methods are invaluable. This pa-
per presents the AUTOMS-F framework, which aims to facilitate the de-
velopment of synthesized methods for the efficient and effective automatic
mapping of ontologies. AUTOMS-F is highly extendable and customizable,
providing facilities for supporting the rapid prototyping of synthesized map-
ping methods, adapting some well established programming design patterns.
The paper presents the AUTOMS mapping method as an evaluated case of
AUTOMS-F’s potential.

1 Introduction

During the last years the world is faced with the information overload phe-
nomenon: Information is growing exponentially, is being provided in various
forms and is stored in decentralized systems that range from inter-/intra-
organization systems to those operating over the World Wide Web. Mean-
while, the need for transparent and bidirectional communication between
these decentralized systems is more vital than ever before, as the exploita-
tion of the available information is required for the right decision at the
right time. To effectively deal with information heterogeneity, state-of-the-
art approaches utilize ontologies. Ontologies formalize a conceptualization of

Alexandros G. Valarakos, Vassilis Spiliopoulos, and George A. Vouros

AT Lab, Information and Communication Systems Engineering Department,
University of the Aegean, Samos 83 200, Greece

e-mail: alexv,vspiliop, georgev@aegean. gr

S. Schaffert et al. (Eds.): Networked Knowledge - Networked Media, SCI 221, pp. 4559
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009

{alexv,vspiliop,georgev}@aegean.gr

46 A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

a certain domain by defining specific elements (concepts and properties) and
the relations among them. Ontologies provide the key technology for the ful-
filment of the Semantic Web vision, where - in contrast to what is happening
today - provided information will not be mainly targeted to humans, but will
be machine understandable and exploitable, as well: Innovative Semantic Web
applications are expected to be able to deal effectively with the information
overload phenomenon and manage available information successfully.

In spite of the fact that ontologies provide a formal and unambiguous
representation of domain conceptualizations, it would be a surprise if two
independent parties would have constructed the same ontology to manage
information even for the same domain. This is true, because ontologies are
mainly developed in a decentralized fashion and are freely provided in the
World Wide Web for being used in numerous applications. This heterogene-
ity introduces ambiguity on the appropriateness of information and restrains
interoperability between different information sources. Simple examples of
ontologies heterogeneity include ontologies which use different lexicalizations
for the same ontology elements: For example car and vehicle may denote the
same class of entities. More complicated situations appear in cases where on-
tologies formalize different conceptualizations of the same domain, compris-
ing different elements, and being structured (in terms of ontology elements
relations) in different ways.

True interoperability, data integration and effective management of infor-
mation will be admittedly achieved through reaching an agreement, by produc-
ing a single and well-agreed ontology or by coordinating source ontologies so
that each party uses its own ontology, but refers to the information of the other
party, by exploiting concept and relation mappings between the two ontologies.
Ontology Mapping is of increasing importance towards this goal. Specifically,
given two ontologies O1 and Oy, mapping one of them to the other involves
computing pairs of elements with highly similar intended meaning.

Towards this goal, state-of-the-art ontology mapping systems exploit syn-
thesized mapping methods, each one targeting different kinds of ontological
features, by utilizing different similarity strategies. All these efforts have as
common goal the optimum synthesis of individual (atomic) mapping methods,
in order to maximize their efficiency. In the context of the Ontology Align-
ment Evaluation Initiative (OAEI) [B], for instance, all participating systems
(especially the best performing ones), heavily focus on the effective and effi-
cient synthesis of individual mapping methods. As a result, the investigation
of the optimum synthesis of individual mapping methods is of paramount im-
portance. Therefore, for the proper investigation of the best performing syn-
thesis of atomic methods and for the production of ontology mapping systems
that achieve the effectiveness needed in real-world applications, solid, generic,
expandable and configurable ontology mapping frameworks must exist, facili-
tating the development and evaluation of synthesized methods.

AUTOMS-F (AUTomated Ontology Mapping through Synthesis -
Framework) is a Java application programming interface (API) that aims to

AUTOMS-F: A Framework for the Synthesis of Ontology 47

facilitate the development of integrated tools for the automatic mapping of
domain ontologies. The main concern of AUTOMS-F is the provision of facil-
ities for the advanced, flexible and rapid synthesis of several ontology map-
ping methods. As already stated, the ultimate goal is to provide synthesized
approaches realized as integrated tools that produce better results and per-
formance measures than each of the synthesized individual mapping methods
alone. The framework has been used for the implementation of the AUTOMS
mapping method [3] which is described as a case study in the fourth section of
this article.

The paper is structured as follows: Section 2 presents the ontologies map-
ping problem, the requirements and the assumptions made towards imple-
menting AUTOMS-F. Section 3 describes AUTOMS-F in detail. Section 4
presents AUTOMS, a specific mapping tool implemented using AUTOMS-F
as a case study of using the proposed framework. Section 5 presents related
work, and section 6 concludes the paper, sketching our future plans.

2 Problem Statement and Requirements

A mapping between two ontologies is expressed by a one-to-one function be-
tween (matching) ontology elements (i.e., ontology concepts and properties).
Therefore, establishing a mapping [§] between ontology elements involves the
computation of pairs of elements whose meaning is assessed to be similar.
Similarity in meaning can be computed using a number of metrics that ex-
ploit ontology elements features. It is important to note that the mapping
process does not modify the involved ontologies: It produces, as output, a set
of mapping pairs together with their computed similarity (match) measure.

The majority of the mapping methods can be described by the generic
mapping process [9] depicted in Fig. 1. The discrete steps of this process are
as follows:

1. Feature Engineering: Ontologies are transformed into an internal repre-
sentation. This step selects a fragment of the ontology to be processed.

2. Search Step Selection: Element pairs from the two input ontologies are
being selected, with the one element belonging to the first ontology and the
other to the second. Depending on the mapping method, all element pairs
or only a subset of them may be considered. The set of pairs constitute
the search space of the method.

3. Similarity Computation: This step computes the similarity of the previ-
ously selected pairs. Many different similarity metrics may be utilized by
a single method.

4. Similarity Aggregation: In this step all similarity metrics, which may ex-
ploit different ontological features, are aggregated into a single one.

48

A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

Feature Search Step Similarity Similarity
[EnglnuuﬂngJE>[Selection]E>[Computation]E> Interpretation :

Fig. 1 The commonly accepted discrete steps of the generic mapping process

. Interpretation: This step concludes to a set of matching pairs by exploiting

the aggregated similarities computed in the previous step (e.g., a trivial
case is the use of threshold value(s)).

. Iteration: The whole process may be repeated several times, by prop-

agating and updating the assessed similarities, taking into account the
structure of the input ontologies.

Any framework that aims to facilitate the development of ontology map-

ping methods must support the development of the generic steps exposed in
Fig. 1. AUTOMS-F, aiming to the provision of a generic framework for the
development of mapping methods, in accordance to the steps proposed, poses
a number of requirements:

1.

According to the Feature Engineering step, a mapping method may utilize
only a subset of the available information provided by the input ontologies.
Different mapping methods should be able to use different sets of features.
The manipulation of the input ontologies must abstract from their specific
representation formalism. Thus, ontologies in various representation for-
malisms, such as xml dialects, plain texts, rdfs, owl etc., must be handled.
According to the Search Step Selection step, a method may examine only
a subset of the candidate matching pairs, while different methods should
be able to select different subsets of pairs, under well-defined conditions.
Moreover, a method may be applied to the candidate matching pairs pro-
duced by other methods.

According to the Similarity Computation step, different mapping methods
may need to compute different similarity measures for the assessment of
matching pairs.

Also, a mapping method must be able to re-examine the results of other
methods, supporting the development of more effective (in terms of correct
mappings) mapping methods.

According to the Similarity Aggregation step, the synthesis of different
mapping methods and the aggregation of their corresponding similarity
measures must be robust, expandable and easily supported by the frame-
work.

According to the Interpretation step, the matching pairs may be pro-
duced based on the aggregated similarity values assessed, and after the

AUTOMS-F: A Framework for the Synthesis of Ontology 49

application of a selection policy, aiming at choosing the best matching
element pairs of the input ontologies.

Concerning the requirements of the framework’s Application Programming
Interface (API) the following are required:

1. Simplicity: The API should be the result of an abstract specification of
the ontology mapping process, and should be independent of the particu-
lar implementation of the constituent mapping methods and their specific
configurations. Moreover, it must support the development of easily con-
figurable and extensible systems, reducing effectively the time and cost of
development.

2. Flexibility: It must cleanly separate the implementation of the above men-
tioned distinct steps of the mapping process, resulting in an easily config-
urable and extensible API, supporting reusability and thus, reducing the
development cost and time.

3 AUTOMS-F: Architecture and Implementation

AUTOMS-F is an open source toolkit implemented using the Java program-
ming language. It provides a basic framework for developing customized and
synthesized ontology mapping methods. The framework is accessible by a
comprehensive API.

In this section, we firstly present the conceptualization of AUTOMS-F,
exposing its main components. Then, we present the AUTOMS-F compo-
nents in accordance to the steps of the generic mapping process presented in
section 2. Secondly, we specify key programming issues concerning the im-
plementation of AUTOMS-F, towards the rapid and effective development of
synthesized ontology mapping methods.

3.1 Framework’s Conceptualization

AUTOMS-F, aiming at the satisfaction of the requirements stated in sec-
tion 2, is broken into operation-specific component parts. The main types
of components defined in AUTOMS-F and which are further detailed in the
paragraphs that follow, are: 1) The Mapping Method, 2) the Mapping Task,
3) the Mapping Association Tree, 4) the Parser, 5) the Concept Property
Selector, 6) the Aggregation Operator, 7) the Similarity Method, 8) the Pair
Selector and 9) the Result Renderer. These types of components are suf-
ficient for describing an ontology mapping task according to the presented
mapping process. They constitute the backbone of the framework and their
specific implementation leads to different specifications of the ontology map-
ping process. Their manipulation/implementation is achieved through the
AUTOMS-F’s API, resulting to individual mapping methods.

50 A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

3.1.1 Mapping Method and Mapping Task

The mapping method is the central component of AUTOMS-F. This compo-
nent aggregates all the necessary information that is exploited in the various
steps of the mapping process: a) The elements of the input ontologies se-
lected to participate in the candidate matching pairs, b) the metric used for
assessing the similarity between the elements in the candidate matching pair,
¢) the logic used for combining the results of the various mapping methods,
resulting in a new set of assessed matching pairs, d) the logic used for select-
ing valid matching pairs form the resulting ones, and e) the representation
format that will be used for visualizing the valid matching pairs.

A mapping method can be associated with other mapping methods. When
a mapping method is associated with at least another mapping method or
another association of mapping methods, then this association constitutes a
mapping task (or synthesized mapping method). A task specifies the synthe-
sis of different (atomic or synthesized) methods.

Tasks, due to their recursive definition specify a hierarchical tree of ar-
bitrary complexity, which is named the Mapping Association Tree (MAT).
Fig. 2 depicts an example of M AT that consists of 2 mapping tasks (77 and
T5), each with 2 mapping methods (m1, me and my, ms, respectively), and 2
mapping methods (ms and mg) that are siblings to these tasks. A mapping
task is depicted by a rectangular, whereas a mapping method is depicted in
oval. The specific configuration of a method or task is shown by the corre-
sponding symbols attached to it, e.g., P; for parser, etc (these are further
explained in the next subsections).

The root mapping method is always a mapping task (TR) since it is al-
ways associated with other methods. The M AT defines a hierarchical struc-
ture that among others specifies the execution order of mapping methods. A

Fig. 2 An example of a Mapping Association Tree: Tasks (7"), methods (m),
parsers (P), aggregator operators (A) and concept-property selectors (o)

AUTOMS-F: A Framework for the Synthesis of Ontology 51

left-to-right depth-first execution order of the methods and tasks in the M AT
has been adopted. Hence, according to Fig. 2, the method ms follows the exe-
cution of method my. The execution order of the methods and tasks in M AT
is: my, ma, 11, ms, Ta, my, ms, mg, TR. Moreover, this hierarchical structure
implies inheritance relations that are exploited for usability and performance
reasons, as it will be shown in the next subsections.

Similarity measures are not specified in tasks, since their role is to com-
bine/manipulate the results produced by the subsequent methods and tasks
(those that are rooted by this task in the M AT). The root task (TR) has a
default manipulation method which unifies the results produced by its sub-
sequent methods and tasks. This is in contrast to the other tasks, which can
be associated with different combination/manipulation methods.

3.1.2 The Parser

The parser is responsible for collecting the candidate matching pairs of on-
tologies elements involved in the mapping process. This collection is an
(n x m) similarity matrix, where n and m are the number of elements
of the target and source ontology, respectively. AUTOMS-F’s internal rep-
resentation distinguishes ontology elements in concepts (C) and proper-
ties (P). Candidate matching pairs between concepts and properties of the
two input ontologies come from the cartesian product of their respective
sets. Hence, the candidate matching pairs of concepts is the C; x Cy =
(611, 621), (011, 622), ey (012, 021), ey (Cln7 sz), where Cl is the set of con-
cepts in the first ontology, and C is the set of concepts in the second ontol-
ogy. Therefore, c1; and cp; are concepts from the first and second ontology,
respectively.

A parser is assigned to a mapping task or method. According to the M AT
structure a parser is inherited to subsequent tasks (i.e., tasks lower in the
hierarchy) and methods (i.e., methods lower in the hierarchy) that have not
been associated to any parser. Supporting the parsers inheritance property,
and for consistency preservation reasons, we assume that tasks or methods in
the M AT use parsers that collect pairs of ontological elements that are super-
sets of the sets collected by subsequent tasks or methods parsers. Different
parsers can be defined at any level of the tree. Because of this, different
methods may exploit different collections of element pairs: Generally, the
similarity matrix of a method contributes to the computation of the similarity
matrix of the root task, which always contains the super-set collection of
ontological element pairs.

In the M AT example (Fig. 2) a parser (PR) has been assigned to the root
task (TR) which is inherited to its subsequent methods and tasks, given that
no parser is specified for them. Thus, the parser is inherited to the methods
mg, mq and to the task T5, in contrast to the methods m; and ms that
inherit the parser (Py) that is assigned to the task T5. Finally, method ms is
associated to the parser Ps.

52 A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

It is possible for a method to have two different parsers attached: one
for collecting elements of the first input ontology and one for the second.
This feature is useful in cases where the two input ontologies are represented
in different formalisms: A situation usually appearing in integrating legacy
systems (schema oriented databases) with ontology-based applications.

Whenever there is not an one-to-one correspondence between the internal
representation of AUTOMS-F (which is an ontology based one: concepts and
properties along with all of their features) and the input ontologies/schemata,
a transformation method is employed for defining correspondences between the
appropriate elements of the ontologies/schemata with the elements in
AUTOMS-F internal representation. For, example, the user may explicitly de-
fine which xml tag (e.g., tag <description>) of the input ontology/schema cor-
responds to which ontology element (e.g., <rdfs:comment> element) of the
internal representation of the AUTOMS-F. The framework provides the neces-
sary infrastructure for extending and adapting this behavior as needed by the
specific needs of the input ontologies/schemata and their implementation.

3.1.3 Similarity Method

A similarity method is assigned to every mapping method and it specifies
the way a match between the candidate matching pairs is being computed.
Every similarity method results to an (n1 X m2) similarity matrix, where n4
and mqy are the number of the elements (concepts or properties) of the two
input ontologies, respectively. For each element a different similarity matrix is
produced. The value of each matrix entry specifies the similarity of the specific
pair of elements (assessed matching pair) to which the entry corresponds.
The candidate matching pairs, to which the similarity method is applied,
are produced by the parser of the corresponding mapping method or by a
selector component (the concept-property selector component is explained in
the next subsection) applied to the candidate matching pairs computed by
the parser of another mapping method.

Also, since the internal representation of the AUTOMS-F is entirely based
on Jena’s ontology model, every similarity method has access to a copiousness
of features regarding the selected elements of the input ontologies and the
ontologies themselves. The set of the available features, which is the minimum
and complete set concerning the manipulation of an ontology, is provided by
Jena’s ontology model. For example, a similarity method can directly access
the local name of a concept and the property names of the concepts that
constitute its vicinity.

A sophisticated similarity assessment method exploits information beyond
the one found in the candidate matching pairs. Therefore, a similarity method
has direct access to the involved ontologies. The framework’s API supports
all available settings of Jena’s [I] ontology models, supporting the creation
of advanced similarity methods. In order to facilitate synthesis of mapping
methods, every similarity method of a mapping method has direct access to
a previously-executed mapping method’s similarity matrix.

AUTOMS-F: A Framework for the Synthesis of Ontology 53

3.1.4 Concept-Property Selector

A concept-property selector is assigned to a mapping method for producing
candidate matching pairs on which the method’s similarity method will be
applied. Since a concept-property selector and a parser have the same effect
(producing candidate matching pairs for the similarity method), when both
of them exist in a mapping method the concept-property selectors override
the parser. It must be noticed that, in contrast to a parser, the concept-
property selector of a mapping method makes the combination of mapping
methods results that do not belong to the same branch in the M AT, feasible.
This feature makes possible the implementation of rules, such as, in similarity
method my exploit as candidate matching pairs only those that have not been
assessed as such by the mapping method m;.

Also, the way matching pairs are being selected by the concept-property
selectors preserve the consistency of the results produced: Indeed, the candi-
date mapping pair set produced by a concept-property selector in a method mi
should be at least a subset of the set produced by their super methods or tasks.

The selection of the candidate matching pairs is based on a similarity
matrix of a previously executed mapping method and the models of the
involved ontologies. In Fig. 2 the dashed lines represent the concept-property
selectors. The square at the one end of the line denotes the method to which
the selector is assigned, whereas the other end of the line denotes the mapping
method that provides the similarity matrix. As it is depicted in Fig. 2, oy is
assigned to the method mq using m4’s similarity matrix, o9 is assigned to the
method mg using m1’s similarity matrix, o3 is assigned to the method mg
using mg’s similarity matrix, and o3, 04 and o5 are assigned to the method
me using mg3’s, my4’s and ms’s similarity matrices, respectively.

3.1.5 Aggregation Operator

An aggregation operator is assigned to every mapping task in a M AT and it
is responsible for specifying the way similarity matrices of direct subsequent
methods or tasks are being combined. Hence, as can be seen in Fig. 2, the
aggregator of the task 77 combines the similarity matrices of the methods m;
and meo. The aggregation operator of the task T» combines the similarities
matrices attached to methods m4 and ms, whereas the aggregation operator
of the root task (TR) combines the similarities matrices of the methods mg
and mg and the tasks 77 and T,. The root task (TR) is being related to a
default aggregation operator which selects the best similarity value amongst
the values produced by the mapping methods and tasks in the M AT, for
every assessed mapping pair. Also, the models of the ontologies involved are
accessible by aggregation operators so as to facilitate advanced aggregation
techniques and tests.

54 A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

3.1.6 Pairs Selector

Every mapping method and task is assigned a pair selector. A pair selector
defines the criteria for selecting the best matching pairs from the matching
pairs assessed by the similarity method. For example, a pair selector may
define that the best matching pair is the one with the highest similarity value
(resulting in one-to-one matching pairs) or define that the n% of the candidate
matching pairs with the highest similarity value, are the best mapping pairs
(resulting in one-to-many mapping pairs). A common strategy found in state-
of-the-art mapping systems is the application of the pair selector only in the
aggregated similarity matrix of the root task. The selected mapping pairs are
passed to the result renderer component in order to be visualized. Also, the
models of the involved ontologies are accessible by this component, enabling
the development of advanced selection techniques, beyond the ones based on
threshold values.

3.1.7 Result Renderer

A result renderer is responsible for the presentation of the mapping pairs. Ev-
ery mapping method and task in the MAT is assigned with a result renderer.
This facilitates the separate evaluation of each method and task, leading to
better decisions concerning their individual vs. synthesized deployment. Fur-
thermore, this component is responsible for the storage of results.

3.2 Synthesizing Mapping methods

To the best of our knowledge, all the available frameworks adapt a sequential
synthesis of mapping processes following the sequential execution order of
the mapping processes. This results in a linear synthesis of atomic mapping
methods. AUTOMS-F’s mapping method adequately represents more com-
plex synthesis patterns, such as the one presented in section 2: In contrast
to other existing frameworks, AUTOMS-F facilitates a non-linear synthesis
of the mapping methods and tasks, introducing the notion of M AT in com-
bination with selectors and aggregation operators. According to the above
subsections, the synthesis of mapping methods in AUTOMS-F is supported
in three ways:

1. By allowing a mapping method to have direct access to the similarity
matrix computed by another method or task,

2. By combing the similarity matrices of mapping methods or tasks using
specific aggregation operators, and

3. By selecting candidate matching pairs from other methods or tasks, by
exploiting concept-property selectors. These pairs are being used as input
to the mapping methods.

The first and the third way facilitate a non-linear synthesis of mapping methods.

AUTOMS-F: A Framework for the Synthesis of Ontology 55

3.3 Implementation Issues

AUTOMS-F has been developed using the Jena Java Framework [I]. It has
been implemented in Java for ensuring platform independency. A great con-
cern during its development was the easy extensibility of the framework API,
hence well-established programming design patterns [2] for ensuring usability,
reuse, extensibility and abstraction were employed.

Fig. 3 depicts a UML diagram of the main classes of the framework ac-
cording to its conceptualization (section 3.1). The MappingMethodImpl class
is linked through an aggregation relation with itself and it aggregates at least
one MappingMethodImpl class. Also, the same class is linked with exactly one
of the following abstract classes: SimilarityMethod, PairFilter, Parser, Opera-
tor and ResultRenderer. The MappingMethodImpl class stores a list with the
methods-tasks to which it is linked using the mappingMethodList attribute.
This method is responsible for doing the necessary initializations (initialize
operation) and for performing the mapping operations (the match opera-
tion of the MappingMethodImpl class). The SimilarityMethod class supports
various manipulations of the similarity matrices to support the synthesis of
methods. Due to space restrictions we present only some of the attributes
and operations of the system. All the classes, except the MappingMethod-
Impl class, constitute hot spots for the framework, hence these are the classes
that can be further extended.

The Strategy pattern - behavioural design pattern - is used in the Map-
pingMethodImpl class to support the creation of different mapping methods.
The template method pattern in the SimilarityMethod class - a behavioural
pattern - is used for the computation of the similarity of a pair of ontology
elements. Thus, instantiating the framework, one can define - override - the
methods that measure the similarity between a pair of ontological elements
and leave the construction of the similarity matrix to the SimilarityMethod

1 ResultRenderer

SimilarityMethod 1 firesultPring
matchMatricesList

b

HgetCanceptsOfRowAndColumn() 1 MappingMethodimpl #operalor [~ gporator
L getPropertiesOfRowARdColumn() FrappingMemhodList A —
+getConceptsMatchedMatrix() — aizel] 4 1
+getPropertiesMatchedMatrix) simi ﬂ"‘;f ke i

e parser
HogetPropertiesSimilarity() +isTask()

Hoompute()

+addMethod()
PairFilter 1 #filtering | [+matchi() 1 Parser

LI | #methodList 1

Fig. 3 UML diagram of the main AUTOMS-F classes, attributes and operations

56 A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

class. Also, the composition pattern - a structural pattern - is exploited for
the specification of the M AT.

AUTOMS-F, as it exploits Jena’s model loader, can handle ontologies that
are implemented in RDF, RDFS, OWL and DAML+OIL formalisms. The on-
tologies can be read from the local disk or be accessed through their URLs.
An ontology element can be any of Jena’s ontology class (OntClass) or prop-
erty (OntProperty) objects. Hence, a method can retrieve any information
about an ontology element, i.e. label, super-concepts, class properties etc.

AUTOMS-F contains samples of all the extensible classes resulting in a de-
fault mapping method. More advanced mapping methods can be developed
by extending the SimilarityMethod class and overriding the methods that
measure the similarity between ontology elements, i.e., concepts and proper-
ties. However, one may integrate a method into the framework by extending
the SimilarityMethod class and overriding the compute operation that ex-
ecutes the similarity method. This means that the new class computes the
mapping and the similarity matrix defined in the extended class. In this way,
special attention is given to the manipulation of the ontology elements pairs,
since the manipulation of the candidate matching pairs is left to the specific
implementation of the method. Also, for the selection of the ontology elements
we recommend the unified use of the framework’s-based defined parser: This
ensures consistency between the produced candidate matching pairs.

4 A Case Study: The AUTOMS Ontology Mapping
Tool

AUTOMS-F has been used for developing the AUTOMS ontology mapping
tool. AUTOMS synthesizes 6 mapping methods [3]: The lexical, the seman-
tic, the simple structural, the properties-based, the instances-based and the
iterative structural methods. Fig. 4 depicts the association tree of AUTOMS
and the position of the mapping methods in it. The lexical and semantic
methods are executed first. Then, the structural matching method follows
by exploiting the results of the previously run methods, whose results have
been aggregated by task Ts. Afterwards, AUTOMS executes the properties-
based and instances-based mapping methods, and finally, the iterative struc-
tural matching method is being executed by exploiting results from the other
methods in its level, as well as from the task that aggregates results from
lower levels. AUTOMS uses the same parser and aggregation operator in any
of its tasks. The parser is defined in the TR task and the aggregation oper-
ator of each task selects the best values of each assessed matching pair from
the similarity matrices of its constituent methods and tasks.

The requirements of AUTOMS have been satisfied by the flexibility and
extensibility provided by the framework. The learning curve of the framework
was rather short. In some cases, AUTOMS developers needed to extend the
framework for capturing OAEI contest’s requirements [5]; however this did

AUTOMS-F: A Framework for the Synthesis of Ontology 57

Iterative Struc-
tural matching

Instances-based
matching

Simple structural
matching

Properties-based
matching

Lexical matching

Fig. 4 AUTOMS’s Mapping Association Tree and its particular configurations

not affect the development of AUTOMS and AUTOMS-F proved to be a very
robust and flexible framework. AUTOMS-F developers have been provided
with an optimized version of their API, resulting in quite short (comparing
to other tools of the OAEI contest) AUTOMS execution times. Scalability
was a weak point at the time AUTOMS-F was used to develop AUTOMS,
since very large ontologies (30MB) provided by the OAEI organizers could
not be loaded and parsed. AUTOMS was evaluated in the OAEI 2006 contest
among 10 other systems, achieving very good results as far as its efficiency
and effectiveness are concerned.

5 Related Work

To the extent of our knowledge the works that are related to AUTOMS-
F are the following: The Alignment API [4] and the COMA++ system
[10, 1T]. The Alignment API has been used for the evaluation of the ontology
mapping methods that participated in the Ontology Alignment Evaluation
Initiative workshop [5]. It has been implemented using Java and provides
an API for incorporating, evaluating and presenting the results of different
mapping algorithms.

AUTOMS-F and the Alignment API are based on different semantic-web
technologies. AUTOMS-F uses the Jena Java framework whereas the Align-
ment APT uses the OWL API [6]. Moreover, the Alignment API executes
mapping methods in a pipeline, in contrast to AUTOMS-F which defines an
execution structure of the mapping methods - the Mapping Association Tree
- facilitating the effective synthesis of different mapping methods, as well as
their parallel execution. The Alignment API supports the combination of two
methods by means of the fixed operators [7] compose, join, inverse and meet,
which combine the result matrices of the constituent methods. However, these

58 A.G. Valarakos, V. Spiliopoulos, and G.A. Vouros

operators have not been fully implemented as far as the version 2.5 is con-
cerned. On the other hand, using AUTOMS-F one has the flexibility to define
his/her own aggregation operators, combining more than two matrices. Also,
AUTOMS-F supports the use of different parsers, on each of the involved on-
tologies, for collecting their elements. Different parsers can be applied in the
context of a specific method or task. Furthermore, AUTOMS-F incorporates
selectors, which are built in components: This makes their exploitation very
easy and straightforward. These facilities are not provided by the Alignment
API. At the current version, AUTOMS-F does not provide any evaluation
utilities, something that Alignment API does. In general, AUTOMS-F pro-
vides more hot spots than the Alignment API, thus making itself more ex-
tensible and customizable. Alignment API is under LGPL license. The new
version of AUTOMS-F will be available soon in www.icsd.aegean.gr/ai-lab
under GPL licence.

The COMA++ system, although it provides the necessary interfaces for in-
tergrading arbitrary mapping methods and taking advantage of its matching-
pairs visualization features, it is not an extendible API framework. More
precisely, it is not possible for the user to define its own similarity aggrega-
tion or interpretation (pair selection in AUTOMS-F) policies as presented
in Fig. 1. For this purpose, a predefined list must be exploited. Finally, in
comparison to AUTOMS-F it does not support advanced synthesis utilities
such as the Mapping Association Tree and the notion of selectors. To sum
up, in contrast to AUTOMS-F and the Alignment API, the main focus of
COMA++ implementation is not to provide the infrastructure for facilitating
the building of mapping tools, but the development of a mapping tool.

6 Concluding Remarks and Future Work

AUTOMS-F addresses the ontology mapping problem providing advanced
methods synthesis facilities. The framework provides solutions to integrat-
ing and combining different mapping methods that aim to solve the ontology
mapping problem. AUTOMS-F successfully meets all the requirements speci-
fied in section 2 and smoothly implements all the steps of the generic mapping
process (presented also in section 2) except the step concerning the iteration
of the mapping process which constitutes future research work. AUTOMS
[3] is an evaluated case of the framework’s potential. Although the full au-
tomation of ontology mapping is still a challenge, AUTOMS-F provides a
robust framework for synthesizing different mapping methods, increasing the
benefits of deploying state of the art mapping technology.

We plan to extend AUTOMS-F in several ways. Firstly, execution threads
will be added to the methods of a task at each task level, in order to de-
crease the execution time of systems that combine many different methods.
Secondly, we will introduce a consistency checking method that will ensure
consistency between the resulted matching pairs. Thirdly, we will investigate

AUTOMS-F: A Framework for the Synthesis of Ontology 59

a way to introduce iterative execution of the mapping methods and tasks
in the framework preserving their synthesis capability, hence satisfying all
the steps of the generic mapping process shown in Fig. 1. Fourthly, we will
investigate the scalability issue: mapping between large ontologies and last
but not least, we plan to add evaluation utilities for appropriate assessing
and comparison of the implemented mapping methods and tasks.

Acknowledgements. This work is part of the 03ED781 research project, imple-
mented within the framework of the Reinforcement Programme of Human Re-
search Manpower (PENED) and co-financed by National and Community Funds
(25% from the Greek Ministry of Development-General Secretariat of Research and
Technology and 75% from E.U.-European Social Fund). The authors are grateful
to K. Kotis for his valuable comments concerning the evaluation of the AUTOMS
mapping tool.

References

1. Jena - A Semantic Web Framework for Java, http://jena.sourceforge.net/
(accessed December 24, 2007)

2. Brandon, G.: The Joy of Patterns: Using Patterns for Enterprise Development.
Addison-Wesley Pub.Co., Reading (2001)

3. Kotis, K., Valarakos, A., Vouros, G.: AUTOMS: Automating Ontology Map-
ping through Synthesis of Methods, OAEI (Ontology Alignment Evaluation
Initiative), 2006 contest, Ontology Matching International Workshop, Atlanta
USA (2006)

4. Alignment API and Alignment Server, http://alignapi.gforge.inria.fr/
(accessed December 24, 2007)

5. Ontology Alignment Evaluation Initiative (2006), http://oaei.
ontologymatching.org/2006/newindex.html (accessed December 24, 2007)

6. Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the OWL API.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 659-675. Springer, Heidelberg (2003)

7. The Alignment API documentation (2006), http://gforge.inria.fr/docman/
view.php/117/251/align.pdf (accessed August 24, 2007)

8. INTEROP - Network of Excellence, State of the art and state of the practice in-
cluding initial possible research orientations. Deliverable d8.1, NoE INTEROP,
IST Project n. 508011 (2004)

9. Ehrig, M., Staab, S.: QOM - Quick Ontology Mapping. GI Jahrestagung (1),
356-361 (2004)

10. Aumueller, D., Do, H., Massmann, S., Rahm, E.: Schema and ontology match-
ing with COMA++. In: Proceedings of SIGMOD, Demonstration (2005)

11. Do, H., Rahm, E.: COMA - A System for Flexible Combination of Schema
Matching Approaches. In: Proceedings of VLDB (2002)

http://jena.sourceforge.net/
http://alignapi.gforge.inria.fr/
http://oaei.ontologymatching.org/2006/newindex.html
http://oaei.ontologymatching.org/2006/newindex.html
http://gforge.inria.fr/docman/view.php/117/251/align.pdf
http://gforge.inria.fr/docman/view.php/117/251/align.pdf

	AUTOMS-F: A Framework for the Synthesis of Ontology Mapping Methods
	Introduction
	Problem Statement and Requirements
	AUTOMS-F: Architecture and Implementation
	{\it Framework's Conceptualization}
	{\it Synthesizing Mapping methods}
	{\it Implementation Issues}

	A Case Study: The AUTOMS Ontology Mapping Tool
	Related Work
	Concluding Remarks and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

