
Incremental Approach to Error Explanations in
Ontologies
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Abstract. Explanations of modeling errors in ontologies are of crucial importance
both when creating and maintaining the ontology. This work presents two novel
incremental methods for error explanations in semantic web ontologies and shows
their advantages w.r.t. the state of the art black-box techniques. Both promising
techniques together with our implementation of a tableau reasoner for an important
OWL-DL subset SHIN are used in our semantic annotation tool prototype to explain
modeling errors.

1 Introduction

The problem of error explanations turned out to be of high importance in ontol-
ogy editors and semantic annotation authoring tools. Users of such tools need to
be informed both about inconsistencies in the modeled ontology and about reasons
for these inconsistencies to occur. Rationale for this work was formulated during
the implementation and evaluation of our narrative annotation tool [10] developed
within the CiPHER project [4].

This work presents two novel incremental algorithms for error explanations in
ontologies. These techniques can be regarded as a compromise between glass-box
error explanation methods, that are fully integrated into the reasoning algorithms
and thus strongly dependent on the expressivity of the chosen semantic web lan-
guage and hardly reusable for other ones, and black-box techniques, that are fully
reasoner-independent, but therefore quite inefficient, especially in combination with
– already EXPTIME or worse – reasoning algorithms for expressive description
logics. The proposed incremental algorithms are universal enough to be reused
with wide variety of reasoners, which seems to be advantageous especially in the
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dynamic field of semantic web languages, yet having quite tight interaction with
the reasoner using the reasoner state. Proposed techniques were tested with our im-
plementation of SHIN description logic tableau algorithm [1] with an incremental
interface.

Section 2 surveys current black box and glass box techniques for error explana-
tions in ontologies and shows advantages and disadvantages of these methods. Our
incremental approach for error explanations is introduced in section 3 and evalu-
ated in section 4. Section 5 briefly overviews our annotation tool prototype and this
chapter is concluded by section 6.

2 Error Explanation Techniques – State of the Art

The mainstream of error explanations for description logic knowledge bases tries
to pinpoint axioms in the knowledge base to localize errors. The notion of minimal
unsatisfiability preserving subterminology (MUPS) has been introduced in [11], to
describe minimal sets {Si} of axioms that cause a given concept to be unsatisfiable.
Removing a single axiom from each of these sets turns the concept satisfiable. Sim-
ilarly to defining MUPSes for concept satisfiability, in [8] the notion of justification
for arbitrary axiom entailments has been presented. These justifications allow for
explaining knowledge base inconsistencies, in our case annotation errors. Notions
of MUPSes and justifications are dual, as for each concept an axiom can be found,
for which the set of justifications corresponds to the set of MUPS of the concept.
From now on, we use w.l.o.g. only the notion of MUPS and concept satisfiability.

At present, there are two general approaches for computing explanations of con-
cept unsatisfiability: black-box (reasoner-independent) techniques and glass-box
(reasoner-dependent) techniques. The former ones can be used directly with an ex-
isting reasoner, performing many satisfiability tests to obtain a set of MUPSes. The
latter ones require a smaller number of satisfiability tests, but they heavily influence
the reasoner internals, thus being hardly reusable with other reasoning algorithms.

In addition to these basic methods, [8] presents several practically interesting
extensions. One of the techniques splits axioms into simpler ones (like A � B�C
into A � B and A �C) trading the error explanation granularity for the size of the
knowledge base. Another technique tries to find concepts (called root concepts),
unsatisfiability of which causes unsatisfiability of other concepts. Getting rid of un-
satisfiability of these root concepts makes the other concepts satisfiable as well. The
former technique can be used as a preprocessing and the latter as a postprocessing
to all the methods described below.

2.1 Black-Box Techniques

There are plenty of black-box techniques that can be used for the purposes of error
explanations. All of them have worst-case exponential time complexity in the num-
ber of axioms, as they search the power set of the axiom set – they differ in the search
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strategies and pruning efficiency. For each candidate set of axioms a satisfiability
check is necessary to determine, whether this axiom set causes the unsatisfiability
of a given concept or not.

In [5], several simple methods based on conflict set tree (CS-tree) notion are
shown (see Fig.1). CS-trees allow for efficient and non-redundant searching in the
power set of a given axiom set. Each node in a CS-tree is labeled with two sets, a set
D of axioms that necessarily belong to a MUPS and a set P of axioms that might be-
long to a MUPS. Each node represents the set D∪P and it has |D∪P| children, each
one lacking an axiom from D∪P. The method (denoted as allMUPSbb) introduced
in [5] effectively searches the CS-tree in the depth-first manner, pruning necessar-
ily satisfiable nodes. The CS-tree structure allows for various pruning methods, like
constraint set partitioning and eliminating always satisfiable constraints, see [5] for
more details. However, detailed evaluation of the feasibility of these methods and
their optimizations for the axiom pinpointing problem is still an open issue.

Example 1 (Basic CS-tree algorithm). Consider a knowledge base consisting of
three axioms

1 : C � B�∃R .A,

2 : B� ∀R .¬A,

3 : C � D.

The concept C is unsatisfiable due to the single MUPS {1,2}. The run of the basic
CS-tree algorithm presented in [5] is shown in Fig.1. The algorithm starts in the
root [], [1,2,3] and tries to find all MUPSes in the depth-first manner. All children
for [], [1,2,3] are generated and the left-most node [], [2,3] is used for exploration.
As this node is satisfiable, all of its children are pruned, the algorithm backtracks to
the node [1], [3], which is also satisfiable. After pruning its child and backtracking
to the [1,2], [] the searched MUPS is obtained. In this configuration the algorithm
needs 4 satisfiability tests, while for the reversed axiom list 6 tests are needed.

An interesting black-box approach [8], [11] is based on a method for computing a
single MUPS (denoted as singleMUPSbb) of a concept for a given axiom set. In the
first phase, this algorithm starts with an empty set K and fills it with all available
axioms one by one until it becomes unsatisfiable. In the second phase, each axiom
is conditionally removed from K. If the new K turns satisfiable, the axiom is put
back. An important observation is that singleMUPSbb algorithm is polynomial in
the number of axioms. In the worst case we need 2n full consistency checks, where
n is the number of axioms.

To obtain an algorithm for all MUPSes the general purpose Reiter’s algorithm
[13] for computing hitting sets of a given conflict set is used. This algorithm gen-
erates a tree (see Fig.2), where each node is labeled with the knowledge base and a
MUPS computed for this knowledge base using singleMUPSbb. Starting with an ar-
bitrary root MUPS, each of its children is generated by removing one of the MUPS
axioms from the knowledge base and computing a single MUPS for the new knowl-
edge base. The search terminates when all leaves of the tree are satisfiable. The
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Fig. 1 An example of the basic CS-tree algorithm run searching MUPSes in a set of three
axioms. Pruned nodes are darker.

advantage of this approach is that it provides also repair solutions that are repre-
sented by axioms of minimal (w.r.t. set inclusion) paths starting in root. These paths
correspond to hitting sets of the set of MUPSes. Due to the lack of space we refer to
the works [5], [8], [11] and [12] for detailed algorithm descriptions (see Fig.2).

Fig. 2 A hitting set tree example

Example 2 (Single black box MUPS algorithm + Reiter’s method). Let’s have a
knowledge base consisting of three axioms (A,B,C are concepts and R is a role.)
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1 : B� ∀R− .¬A,

2 : A� ∀R .¬B,

3 : C � A�∃R .B.

The concept C is unsatisfiable due to the MUPS set {{1,3},{2,3}}. The algorithm
first uses singleMUPSbb, with {1,2,3} as its input to find a MUPS, corresponding to
the root of the hitting set tree in Fig.2. The singleMUPSbb has to perform 3 tests in
the first phase ({1}= SAT , {1,2}= SAT , {1,2,3}=UNSAT ) to get an unsatisfiable
set {1,2,3} and 3 tests in the second phase ({2,3}= UNSAT , {2}, {3}).

Now, all children of the root are generated and the left-most child is being ex-
plored, calling the singleMUPSbb to obtain a MUPS in {1,2,3} \ {2} = {1,3},
which is {1,3}. As both sub-knowledge bases {1},{3} of {1,3} are satisfiable, the
algorithm backtracks and tests the satisfiability of {1,2,3} \ {3}= {1,2}, which is
satisfiable. Therefore two MUPSes {1,3} and {2,3} were found together with the
hitting sets {3} and {1,2}. If any of these sets is removed from the knowledge base,
the concept C turns satisfiable.

As stated above all black box methods require, in general, time exponential to the
number of axioms. Combining this with already (at least) exponential satisfiability
checking for most description logic languages, we reach scalability problems for
most real world ontologies.

2.2 Glass-Box Techniques

A fully glass-box technique for axiom pinpointing in the description logic ALC [1]
is introduced in [11]. This method labels all concepts and roles in nodes of a com-
pletion tree with axioms they depend on. These labels are modified according to the
applied expansion rules. Whenever no rule is applicable on any tableau, the union
of labels of clashing concepts/roles builds up a superset of some MUPS. To obtain
a MUPS, this set is minimized by backtracking the rule changes applied during ex-
pansions and constructing a boolean formula φ (so called minimization function)
using another set of rules (see [11]). The searched MUPS is equivalent to the mini-
mal set of axioms, conjunction of which implies φ . For a more formal and detailed
description, see [11].

Example 3 (A glass-box technique for ALC). Let’s have a knowledge base contain-
ing two axioms :

1 : A� B�∃R .A,

2 : A� ¬A.

The only MUPS for the satisfiability of A is clearly {2}. The completion graphs
evolve as depicted in fig.3. Inference rule applications are represented by double
arrows, labeled with the type of the used rule. Right of each concept a set of axioms
is shown, that is responsible for the concept appearing in the node label. The initial
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Fig. 3 Completion graph evolution for Example 3

completion graph G0 contains a new individual I, asserted to belong to A. Rule
applications result in two completion graphs G3 and G6, both containing a clash.
The clash in G3 is caused only by axiom 2, while the clash in G6 is caused either by
single axiom 2, or by axiom set {1,2}. Using the minimization rules introduced in
[11], the following minimization function is obtained

2∧ (2∨ (1∧2)). (1)

The minimal set of axioms that makes this formula valid is {2}, which corresponds
to the searched MUPS.

To the best of our knowledge there is no adaptation of this approach to more expres-
sive languages, like SHIN, or OWL-DL. The problem lies in possibly complex in-
teractions between completion rules for different language constructs that have to be
traced back in the minimization function. However, [8] presents a partially glass-box
method for searching a single MUPS in OWL-DL. The algorithm is an extension of
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the first phase of the fully glass-box method described above. During completion
graph expansion, concepts and roles are labeled with sets of axioms they depend
on. Finding a clash in all branches, union of labels of clashing concepts/roles is a
superset of a MUPS, usually much smaller than the initial axiom set. This method is
then used as a preprocessing step in the first phase of the singleMUPSbb algorithm.

3 Incremental Approach to Error Explanations

A high number of very expensive tableau algorithm runs required for black-box
methods, as well as a lack of glass-box methods, together with their poor reusability,
has given rise to the idea of using incremental techniques for axiom pinpointing.
These methods require the reasoner to be able both to provide its current state, and
to apply a given axiom to a given state. There is, however, no other interaction with
the reasoner. These features place incremental methods somewhere between black-
box and glass-box approach.

3.1 Incremental Tableau Reasoner

Incremental tableau reasoning has already been studied in [6], where additions and
deletions of ABox (concept and role) assertions are considered. While additions can
be implemented in a straightforward way due to the nature of tableau algorithms, to
handle deletions all completion rules applications had to be tracked. When deleting
an ABox axiom a rollback of the parts of completion graph dependent on this axiom
had to be performed and completion rules reapplied.

For the purpose of incremental algorithms presented in the next section we just
require the reasoner to support incremental additions of all axiom types (TBox,
RBox, ABox). Thus, due to the monotonicity of considered description logics (like
SHIN) we do not need making any changes to the implementation of the tableau
reasoning strategy. We only need the reasoner to provide us with its current state.
The tableau reasoner state consists of two parts: a set of completion graphs, and
an axiom set used for expanding this completion graph so far. More formally, we
represent the incremental reasoner as

(ns,r)← test(a,s) (2)

where s is the state before and ns the state after performing the incremental test, a is
an axiom and r is a boolean result of the satisfiability test. Although we have tested
its feasibility with a tableau algorithm for SHIN [7], our incremental approach can
be used with a wide range of reasoning algorithms.

The following sections introduce two novel incremental methods for finding all
MUPSes of a given concept. They use the above incremental reasoner interface as
a black box. This makes them applicable to reasoning services (like DL tableau-
algorithms) of monotonic logics without interaction with internals of these services.
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3.2 Computing a Single MUPS

In this section, a novel incremental algorithm for computing a single MUPS is pre-
sented. This algorithm (see Algorithm 1) starts with an axiom list P and an empty
state e of the reasoner. Axioms from P are tested one by one with the current rea-
soner state until the incremental test fails. The axiom P(i) causing the unsatisfiabil-
ity is put into the single MUPS core D, the rest of the axiom list is pruned and the
direction of the search in the axiom list changes. The algorithm terminates, when all
axioms are pruned.

Correctness. Correctness of the algorithm is ensured by the following invariant.
Before each direction changes, D contains axioms that, together with some axioms
in the non-pruned part of the axiom list, form a MUPS. Whenever an axiom i causes
unsatisfiability, there must exist a MUPS that consists of all axioms in D, axiom
i and some axioms in the previously searched part of the axiom list. This MUPS
cannot be affected by pruning the axiom list tail that has not been explored in this
iteration.

Algorithm 1. An Incremental Single MUPS Algorithm
1: function SINGLEMUPSINC(P,e) � P . . . initial axioms, e . . . initial state.
2: lower, i← 0
3: upper← length(P)−1
4: D← /0
5: sD, last← e
6: direction←+1
7: while lower ≤ upper do
8: if i≥ length(P) then
9: return /0

10: end if
11: (incState,result)← test(P(i), last)
12: if result then
13: last← incState
14: i = i+direction
15: else
16: D← D∪{P(i)}
17: (sD,result)← test(P(i),sD)
18: last← sD
19: if direction = 1 then
20: upper← i−1
21: else
22: lower← i+1
23: end if
24: direction←−direction � +1. . . right, −1. . . left
25: end if
26: end while
27: return D
28: end function
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Example 4. Let’s have an ontology containing six axioms 1 . . .6, where the unsatis-
fiability of some concept is caused by MUPSes {{1,2,4},{2,4,5},{3,5},6}. The
singleMUPSInc algorithm works as follows :

direction input list mups core
[1, 2, 3, 4, 5, 6] D = []

−→ [1, 2, 3, 4, 5, 6] D = [4]
←− [1, 2, 3, 4, 5, 6] D = [4,1]
−→ [1, 2, 3, 4, 5, 6] D = [4,1,2]

Each line corresponds to a direction change. Whenever an unsatisfiability is de-
tected, the search direction is changed, ”overlapping” axioms are pruned ( empha-
sized by strikeout ) and the last axiom that caused the unsatisfiability ( in bold ) is
put into the MUPS core D.

Let’s have n axioms. All incremental consistency checks in a single run between
two direction changes correspond approximately to one full consistency check per-
formed for all axioms in the run. Thus, the incremental method requires in the worst
case n full consistency tests (n(n + 1)/2 incremental consistency tests), comparing
to worst-case 2n full consistency tests for the singleMUPSb algorithm. In the exam-
ple above, 9 incremental consistency tests (effectively 3 full consistency tests) are
needed comparing to 8 full consistency tests needed by the singleMUPSbb.

3.3 Computing All MUPSes

An incremental algorithm that can be used to search for all MUPSes (let’s denote
this algorithm as allMUPSInc1) is presented in [5]. This algorithm assumes that a
state of the underlying reasoner depends on the order of axiom processing. However,
tableau algorithms [1] are adopted in almost all current semantic web reasoners (for
example Pellet). In case of tableau algorithms, two different permutations of an ax-
iom set shall result in two equivalent states. Exploiting this fact, we modified the
original algorithm to decrease the number of redundant calls to the testing proce-
dure, resulting in Algorithm 2 (allMUPSInc2).

The original algorithm allMUPSInc1 manages three axiom lists D, T and P.
At the beginning of each recursive call, D contains axioms that must belong to all
MUPSes searched in this recursive call, P represents possible axioms that might
belong to some of these MUPSes and T represents a list of already tested axioms.
The first while cycle adds axioms from P to T while T remains satisfiable. If an
axiom that causes unsatisfiability is detected, the execution is branched. The first
recursive call tries to remove this axiom and go on adding axioms from P to T ,
while the second branch tries to add the axiom to the MUPS core D found so far. If
D turns unsatisfiable, a MUPS has been found. If A does not contain a subset of this
MUPS, it is inserted into A, and A is returned.

Our modification of the original algorithm avoids executing some redundant tests
– both in the while cycle and in testing whether D turns unsatisfiable. For this pur-
pose, we store the position of the first unsatisfiability test in P in the parameter
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Algorithm 2. Modified version of allMUPSInc1

1: function ALLMUPSINC2(D,sD,P,T,sT,A,cached) � sD (sT ) is the state for D (T ).
2: result← true
3: i←−1
4: while result ∧∃c ∈ P do
5: i← i+1
6: if c /∈ T then
7: T ← T ∪{c}
8: lT ← sT
9: if i = cached then

10: result← f alse
11: break
12: else
13: (result,sT )← test(c,sT )
14: end if
15: end if
16: end while
17: if result then
18: return A
19: end if
20: A← allMUPSInc2(D,sD,P \{c},T \{c}, lT,A,−1)
21: D← D∪{c}
22: if i = 0∧d = t then
23: result← f alse
24: else
25: (result,sD)← test(c,sD)
26: end if
27: if ¬result then
28: if ¬∃a ∈ A such that a⊂D then
29: A← A∪{D}
30: end if
31: return A
32: end if
33: return allMUPSInc2(D,sD,P\{c},D,sD,A, i−1)
34: end function

cached. Let’s denote T = {t1, . . . ,ta} and P = {p1, . . . , pb}. Then cached is such an
index to P, that {t1, . . . ,ta, p1, . . . , pcached} is unsatisfiable and each of its subsets is
satisfiable.

Correctness. Correctness of the algorithm is ensured by the same invariant as for
allMUPSInc1 presented in [5] and the fact that, the variable cached uses the infor-
mation of the last successful test performed on T only in the second recursive call,
where D = T . In the first recursive call, the information cannot be used, as the sets
D and T differ.
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Example 5. To show how allMUPSInc2 works, assume an axiom set {1,2,3}.
MUPSes for unsatisfiability of a concept are {{1,2},{1,3}}. The algorithm runs
as follows :

−1, [], [1,2,3], []

[1], [1, 2]

��

[2] �� 0, [2], [1,3], [2]

[1, 2]

��

[1, 2]�� {2,1}

−1, [], [1,3], [1]

[1, 3]

��

[3] �� 0, [3], [1], [3]

[1, 3]

��

[1, 3]�� {3,1} −1, [2], [3], [2]

[2, 3]

�−1, [], [1], [1] −1, [3], [], [3]

Each node in this graph represents a call to the procedure allMUPSInc2, with the
signature cached,D,P,T . The search starts in the node −1, [], [1,2,3], [] and is per-
formed in the depth first manner preferring up-down direction (first recursive call) to
the horizontal one (second recursive call). Axioms that cause unsatisfiability in the
given recursive call are underlined. Edges are labeled with the tests that have been
done before the unsatisfiability is found and struck axiom sets represent the tests that
are not performed, contrary to allMUPSInc1. In this example allMUPSInc2 requires
6 tests contrary to 10 tests executed by allMUPSInc1.

4 Experiments

First, the discussed methods have been compared with respect to the overall per-
formance. Two ontologies have been used for the tests: the miniTambis ontology
(30 unsatisfiable concepts out of 182) and the miniEconomy ontology1(51 unsatis-
fiable out of 338). As shown in Tab.1, the performance of incremental methods is
significantly better than the fully black box approach. Furthermore, combination of
Reiter’s algorithm and singleMUPSInc1 is typically 1-2 times worse than the fully
incremental approaches. However, the main advantage of the singleMUPSInc1 in
comparison to the fully incremental approaches is that it allows direct computation
of hitting sets of the set of MUPSes (i.e. generating repair diagnoses), which makes
them more practical.

It can be seen that our modification allMUPSesInc2 of allMUPSesInc1 provides
just a slight increase in the performance. To evaluate the difference in more detail,
see Fig.4. This figure shows the significance of caching for different MUPS config-
urations. The highest performance gain (over 30%) is obtained for ontologies con-
taining a lot of MUPSes with approx. half size of the ontology size. This is caused

1 To be found at http://www.mindswap.org/2005/debugging/ontologies
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Table 1 Comparison of incremental and black-box algorithms

miniTambis (time [ms]) miniEconomy (time [ms])

allMUPSbb > 15min. > 15min.
Reiter + singleMUPSbb 67481 > 15min.
Reiter + singleMUPSinc 19875 19796
allMUPSInc1 8655 14110
allMUPSInc2 7879 12970
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Fig. 4 Comparison of incremental algorithm with caching and without it. Different config-
uration of MUPSes of 15 axioms, say {1, . . . ,15}, were tested. For each 1 ≤ k ≤ 15 (the
x-axis), the set of all MUPSes is generated, so that it contains all axiom combinations of
size k, thus containing 15!

k!(15−k)! MUPSes. For example, for k = 2, the set of MUPSes is

{{1,2},{1,3}, . . . ,{1,15},{2,3}, . . .}.

by the fact, that the broader the search tree of the allMUPSesInc2 algorithm (see 5)
is, the more applications of the caching occur.

Second, the performance and robustness of the incremental methods with respect
to the axiom ordering were tested. As all permutations of a given axiom set are
required, two small ontologies have been chosen. TambisP is a subset of Tambis
ontology 2, restricted to the definitions of unsatisfiable concepts metal, nonmetal
and metalloid (6 axioms). MadCowP is the restriction of Mad cow ontology 3 to the
7 axioms causing unsatisfiability of the concept madCow. The best results were
obtained with allMUPSInc2, which is most efficient (measured by the count of
IT) and robust enough to the axiom ordering (measured by test count variance).
The results also show, like above, that the performance of Reiter + singleMUPSinc
strongly depends on the axiom ordering.

2 http://protege.stanford.edu/plugins/owl/owl-library/tambis-full
3 http://www.mindswap.org/2005/debugging/ontologies/madcow.owl
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Table 2 Comparison of discussed incremental methods. For each ontology and each unsatis-
fiable concept, the tests are performed for all permutations of the input axiom set. ’#’, ’avg’
and ’var’ stands for number of, average and variance of incremental tests.

tambisP # of inc. tests avg var

R. + singleMUPSinc 268362 124.29 206.81
allMUPSInc1 75696 35.04 36.44
allMUPSInc2 61590 28.51 16.76

madCowP # of inc. tests avg var

R. + singleMUPSinc 277200 55.00 8.00
allMUPSInc1 131040 26.00 0.00
allMUPSInc2 119520 23.04 0.50

5 Annotation Tool Prototype

Exploiting our experience with the annotation prototype based on conceptual graphs
[10], we are developing an annotation tool, see Fig.5, that will integrate described
reasoning services to support detecting modeling errors. The tool is aimed at authors
of semantic annotations of narratives and other natural language documents.

The annotation tool prototype consists of several modules. The ontology mod-
ule is the core of the system. Its internal model corresponds to the description

Fig. 5 Annotation Tool Prototype
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logic SHIN. This model is connected to our implementation of a tableau rea-
soner for SHIN, allowing for concept satisfiability, subsumption, disjointness test-
ing and knowledge base consistency checking. Furthermore, the reasoner could be
run in server mode, using the DIG [3] interface for communication. The reasoner is
equipped with the above introduced concept satisfiability explanation functionality.

The annotation module will serve to create annotations using annotation graphs.
Basic form of these graphs allows for creating ABOX assertions. Further refine-
ments are needed to provide inequality assertions, equality assertions, n-ary rela-
tions, and other.

The document module manages the documents to be annotated. It provides a
simple text editor, that allows for visualizing the annotated parts of the document
directly in the texts. Finally, the marking module allows for color highlighting of
annotations according to the classes they belong to.

6 Conclusions and Future Work

Two novel incremental algorithms for finding minimal sets of axioms responsible
for given modeling error in an ontology have been introduced. The first one is a
novel incremental algorithm that searches for one such minimal axiom set (MUPS).
The second one is an extension of the fully incremental algorithm presented in [5]
used for searching all minimal axiom sets.

The introduced incremental methods seem promising and our experiment proved
that they are also more efficient than the fully black box approaches in the context
of error explanations. Although the fully incremental approaches are more efficient
than the combination of single MUPS testers and Reiter’s algorithm, they do not
allow to compute diagnoses directly. This justifies our focus on both approaches.
Efficient generation of diagnoses by the fully incremental methods is an open issue.

While it does not seem feasible to invent a sound and complete fully glass-box
method that might be reused in a wide range of description logics formalisms, it
seems promising to use an incomplete glass-box approach (like the one discussed
in sec. 2.2) as the preprocessing step for the incremental methods discussed above.
Furthermore, we would like to test several optimizations of the introduced methods,
like partitioning of the axiom set.
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